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Dual-Dirac, Scope Histograms and BERTScan Measurements

Abstract 
Much has been written about the strengths and weaknesses 
of dual-Dirac as a model for jitter measurement[i]. The aim of 
this note is to give a gentle introduction to the topic, and how 
the dual-Dirac relates to practical measurements that can be 
made with sampling scopes and BER-based instruments.

Histograms and PDFs
A common method of viewing jitter has traditionally been to 
look at a sampling scope eye diagram (Figure 1.1). By setting 
a window around the crossing point and plotting the number 
of hits during a measurement, it is possible to get an idea of 
the movement of the data edges in time.

Figure 1.1. Using an eye diagram to set a window around the crossing point and plot edge positions.

Figure 1.2. Example histogram taken from a sampling scope.
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While there are issues of sampling depth with an approach 
such as this, it is useful as an illustration. The more samples 
recorded in a particular position, the more frequently the 
edges were in that position. This leads to the idea of the 
histogram being a measure of the probability of an edge 
falling at a particular location, or time — a Probability Density 
Function (PDF). The longer the sampling period, the greater 
the ability to represent rare events such as edges that are 
further away from the ideal transition timing.

Figure 1.3 shows two example PDFs. The (a) is somewhat 
Gaussian, perhaps dominated by noise causing edges 
to move out of their ideal position. (b) is more complex. It 
appears that as well as some randomness in edge location, 

there also seems to be two distinct peaks — two locations 
that occur more frequently than would be expected were the 
movements purely random. An example of an eye diagram 
that could cause such a PDF is shown in (c). There are 
many underlying mechanisms that could cause such a PDF; 
examples of impairments include Inter Symbol Interference (ISI) 
and crosstalk. The mechanism might also be deliberate, such 
as modulation on edges by a signal generator. In all cases, the 
mechanisms are not random, and the results are repeatable 
— stimulating the system in the same way produces the same 
result. This leads to the idea that the jitter can be divided into 
a random component (Random Jitter, RJ) and a deterministic 
component (Deterministic Jitter, DJ).

Figure 1.3. Example probability density functions — (a) possibly Gaussian in nature. (b) A more complex example. (c) An eye diagram that could have produced a PDF such as (b).
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The Dual-Dirac Model in Theory
Conceptually, the dual-Dirac model of jitter is a way of taking 
a histogram of jitter (PDF) and making assumptions in order to 
divide it into random and deterministic portions. There are a 
number of reasons for doing this:

1) A lot of high speed digital communication standards require 
the total jitter (TJ) to be measured. This is the degree of 
eye closure due to jitter, measured at a particular BER, 
commonly 1x10–12. In effect this is a measure of the width 
of the eye crossing point, but extended downwards off the 
page to include even the very, very infrequently occurring 
events. In order to extend the distribution to include low 
probability events, it is important to fit actual measurements 
from higher-probability events to a mathematical model 
so lower-probability measurements can be extrapolated, 
as we’ll see. Ultimately, TJ is what matters for system 
operation, not the subcomponents.

2) An indication of whether the underlying jitter effects are 
random or deterministic is also very useful for R&D and 
troubleshooting efforts to reduce them. Some standards 
also suggest budgets for the RJ and DJ separately, since 
accumulating random effects are combined root-sum-
squared and deterministic peak-to-peak values are simply 
summed.

The dual-Dirac model of jitter is also called the double delta 
model, for reasons that will become obvious. It assumes that 
the tails on either side of a PDF are ultimately Gaussian in 
nature (Figure 2.1 (a)). It is useful to do this because Gaussians 
are easy to model and extrapolate down to low probabilities, 
and govern the randomness that is responsible for RJ. Further, 
it assumes that whatever DJ mechanisms are actually at 
work, they will be modeled purely as a separation of the two 
Gaussians being used to model the random effects (Figure 
2.1 (b)). This is a significant assumption, but if the goal of 
the modeling is to produce an accurate TJ number, it is a 
practically useful one to make.

Figure 2.1. (a) Using Gaussian distributions to model the tails of the jitter distribution. (b) Assigning the separation of the modeled Gaussians to be DJ. 
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Using mathematical concepts, the above can be described 
as follows. The jitter histogram can be modeled as the 
convolution of a Gaussian distribution with two delta functions 
(Figure 2.2 (a)). It may be remembered that delta functions, 
or Dirac functions, are assumed to be infinitely narrow, and 
to have a value of zero in all locations other than at a single 
position where they have the value of 1. The separation of the 
delta functions will be assumed to represent the peak-to-peak 
deterministic jitter, here labeled DJ(pp).

Before going too far with this, it is worth saying that the 
above is a way of getting information out of a complex PDF 
by simplifying it — we’ll look at this in more detail later. For 
the moment, we are going to look at how some PDFs might 
look under common conditions. We will then walk through a 
quick reminder of how convolution works. Bringing these two 
sections together will then help to explain why there is some 
confusion about the DJ reported by dual-Dirac.

Stressed eye testing is an example of where a clean data 
signal is modulated with a variety of different impairment 
signals. Figure 2.3 shows two examples — a square wave and 
a sine wave.

The square wave has the closest PDF to the ideal of two 
delta functions (2.3 (1)). However, real signals have finite rise 
and fall times, and so do spend time between extremes. The 
sine wave case is also shown (2.3 (2)) and translated into a 
modulation signal of data edges in an eye (2.3 (3)). The real 
world deviates from the ideal, and one important effect that 
must be taken into account is noise, whether it appears in the 
amplitude or timing domains. The real PDF or scope histogram 
that would be measured is the convolution of the modulation 
PDF with the noise.

Figure 2.2. (a) the basic idea behind the dual-Dirac model, the convolution of a single 
Gaussian with two delta functions. (b) The same with significant quantities labeled.

Figure 2.3. Looking at different jitter modulation signals and their individual PDFs (1 & 
2) and how this translates to the PDF of the data edges (or put another way, the ideal 
histogram that would be seen on a scope).
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We will now run through a quick reminder of the concept of 
convolution. This will be far from rigorous, and more detail can 
be found elsewhereiv. Convolution involves taking two separate 
functions, moving one past the other and recording how the 
overlap develops. An example of two square pulses is given in 
Figure 2.4. Notice that the resulting function is not necessarily 
the same width as one of the input pulses.

Examples (2), (3) and (4) of Figure 2.5 will be used as we build 
up the connection between theory and real measurements. 
Examples (3) and (4) are further illustrated in Figure 2.6.

Figure 2.4. Conceptual look at the convolution of two square pulses. One function is 
moved past the other and how the overlap develops is recorded.

Figure 2.5. More example convolutions. (1) is as Figure 2.4. Square pulse PDFs are 
great as an example, and could be produced by a triangle-wave jitter modulation. 
Bounded Uncorrelated (PRBS) Jitter (BUJ) also tries to approximate such a PDF. (2) is 
the classic case used for the dual-Dirac of a Gaussian and two delta functions. (3) is the 
triangle wave modulation convolved with noise. (4) is sine wave modulation convolved 
with noise.
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In Figure 2.6 two different modulation types are being used 
to cause jitter on a data eye. In the two cases the peak to 
peak modulation amplitudes are the same. The convolution 
between the idealized modulation and the system noise is 
shown at the bottom of the figure. The distributions are very 
different. We will see that although the initial modulation 
amplitudes are the same, once they are convolved with 
system noise into a histogram, and then fitted to the dual-
Dirac model, the resulting figure for DJ(δδ) will be different to the 
initial modulation amplitude DJ(pp), and will be different for each 
example1.

The dual-Dirac model has no knowledge of the distributions 
that went into generating a measured PDF. The aim is to fit 
a Gaussian curve to each side of the measured PDF, and to 

designate the separation of the means to be the deterministic 
jitter, DJ(δδ). It is important to realize that DJ(pp) does not equal 
DJ(δδ). In fact DJ(pp) is almost irrelevant to the main job of the 
model, which is to get the correct eye closure due to jitter at 
the specified BER (TJ(10–12)).

Let’s go back to the ideas of Figures 2.2 and 2.3, and apply 
them to the two example modulations of Figure 2.6. Figure 
2.7 shows a sequence of steps that lead to the fitting of the 
dual-Dirac to the two distributions. The convolution effect is 
to smear out the distributions such that when the dual-Dirac 
model fits Gaussians to the measured histogram, the means 
of the Gaussians appear in different positions than might be 
expected from the initial modulation amplitudes.

1 More explanation of DJ(δδ) is given in the next two pages, including Figure 2.7.

Figure 2.6. Two examples with the same peak to peak modulation amplitudes imposed on a data stream. The system noise is convolved with the modulation PDFs to yield the PDF 
histogram that would be measured on an eye diagram.
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As can be seen from Figure 2.7, the idea is to fit Gaussian 
curves to either side of the measured PDF. The left and right 
extremes of the PDF should correspond to the earliest and 
latest arriving edges, respectively. It is intuitive that DJ pushes 
the earliest and latest edges apart from each other, and that 
noise sits on top of the earliest and latest edges, adding a 
random placement of the edges before and beyond where the 
DJ would place them. Note that the model doesn’t care what 
goes on in between the two tails — it just fits Gaussians to the 
tails and derives a separation of means.

DJ(δδ) is always smaller than DJ(pp) in practical cases. It is 
sometimes said that the dual-Dirac model over estimates RJ, 
at the expense of DJ. Some instruments measure DJ(δδ), others 
DJ(pp); it is therefore important to know which DJ is being 
reported — most standards specify DJ(δδ).

Figure 2.7. Uses the examples of Figure 2.6: (1) Sine wave modulation and (2) Triangle wave modulation. The figure shows the time domain waveforms of the modulation (a); the 
idealized edge PDFs of the data eye (b); the convolved result of (b) with a Gaussian noise PDF, yielding the PDF that might be measured in real life (c); fitting of identical Gaussian 
curves to the left and right tails of the distribution of (c) — (d). Note that even though the modulation amplitudes of both modulation waveforms are identical (DJ(pp)), this figure is not 
the same as the dual-Dirac separation of means, DJ(δδ) for either example, neither are the DJ(δδ) the same as each other. DJ(pp) is always greater than DJ(δδ) in practical cases.
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Having fit Gaussians, the math is as follows. A Gaussian is 
fully described by the position of its mean, its amplitude, and 
its width, described by its standard deviation. The math of the 
model assumes that the likelihood of the transition being at 
either peak-to-peak extreme is equal, and so the amplitude of 
each individual one is 0.5. Note that the model also assumes 
that the distributions on left and right edges are inherently 
identical. Notice both of these assumptions are not always 
true, The position of the two means give DJ(δδ) as already 
described. The remaining quantity is the standard deviation, 
which describes how fat the Gaussian is. Once fitted, this is 
easy to derive in theory, and also corresponds to the slope of 
the Gaussian. 

The aim of the model is to provide TJ(10–12). This can be 
achieved by adding together the derived DJ(δδ) with the peak 
to peak RJ at the required BER level. Obviously the peak to 
peak width of RJ changes depending upon the depth that it is 
viewed at which is why it is important to use the correct value. 
Alternatively, the standard deviation value, RJ

σ
, may be used. 

There is a well known relationship for Gaussian curves that 
relates BER to RJ

σ
[v][vi].

Figure 2.8. A reminder of how the model goes together.
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It is from this that the commonly used approximation that 
to get RJ(pp)(10–12), RJ

σ
 should be multiplied by about 14. 

This works well providing RJ
σ
 is known accurately, but it is 

intuitively obvious that small errors in RJ
σ
 become significant 

when multiplied by 14. DJ(δδ) is defined to be constant 
irrespective of BER level, and because it is defined as the 
distance between two deltas, the lack of a multiplying factor 
makes error in this quantity less significant than in RJ

σ
.

When the dual-Dirac jitter distributions of several components 
are combined, it is not possible to just add the TJs together 
linearly, and here is one of the significant values in separating 

RJ and DJ with the model. DJ(δδ) components may be added, 
with the assumption that the different values are uncorrelated:

DJ(δδ)Total ≈ DJ(δδ)1 + DJ(δδ)2 + DJ(δδ)3 +…….

For RJ, the values must be combined differently, using the 
sigma’s and RSS’d together:

RJ
σ
Total= √((RJ

σ1)
2 + (RJ

σ2)
2 + (RJ

σ3)
2 + .......)

Many standards provide individual budgets through a 
communications link for allowable amounts of each. Once 
the subcomponents are combined, TJ(defined BER)Total may be 
determined as described above.

Table 2.1. Relationship between peak to peak width of a Gaussian and different BER (probability) levels.

Limit BER Level BER Level Scaling factors

2σ (±1σ) 0.16 1x10-3 6.18

4σ (±2σ) 2.28 x10-2 1x10-4 7.438

6σ (±3σ) 1.35 x10-3 1x10-5 8.53

8σ (±4σ) 0.32 x10-4 1x10-6 9.507

10σ (±5σ) 2.87 x10-7 1x10-7 10.399

12σ (±6σ) 0.98 x10-9 1x10-8 11.224

14σ (±7σ) 1.28 x10–12 1x10–9 11.996

16σ (±8σ) 0.62 x10–15 1x10–10 12.723

18σ (±9σ) 1.13 x10–19 1x10–11 13.412

20σ (±10σ) 0.77 x10–23 1x10–12 14.069

1x10–13 14.698

1x10–14 15.301

1x10–16 16.444
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The Dual-Dirac in Practice
One significant problem with the practical application of the 
model is that the histogram taken from an eye is inherently 
shallow, coming from a relatively small number of samples. 
Many commonly used patterns are long, containing millions 
or billions of sequential combinations of bits. Some of the 
most aggressive sequential combinations of standard PRBS 
patterns such as PRBS-23 (223–1) and PRBS-31 (231–1) 
occur only once per pattern repetition. This means that 
although they are most likely to throw an edge the furthest 
(either early or late) than any other part of the pattern, this 
edge occurs so rarely it is highly unlikely to be picked up in an 
eye diagram. This is shown in Figure 3.1. In this example, the 
measured PDF would be the convolution of the noise with the 
pattern-related DJ, and obviously would be quite complex. 
The rarity of these deterministic effects causes them to be 
misinterpreted as random effects when fitting to the dual-Dirac 

model. The important part for the model to work is for the 
Gaussians to be fitted correctly to the earliest and latest edge 
parts of the PDF. The fit must be applied only to the tails of the 
distribution that are properly following the underlying Gaussian 
distribution, free from any residual deterministic effects.

Figure 3.2 shows how this PDF might look and how the model 
might be fitted to it. In (a) this distribution takes into account 
the earliest and latest edges even though they occur very 
infrequently. From this, curves may be correctly fitted and 
the correct TJ extrapolated. If, however, the PDF were only 
to be captured down to a shallower depth (as would be the 
case with a real eye-derived histogram) the fitting is almost 
guaranteed to be done incorrectly, and the wrong answers 
to be calculated; the rare deterministic effects would be 
considered as low-probability random effects. Practical ways 
of avoiding this will be discussed in the section on BER-based 
measurements.

Figure 3.1. The eye (top right) was measured using a PRBS-31 pattern after passing through a backplane. Not visible on the eye are a large number of edges that close the eye 
down significantly, but occur infrequently and so are not picked up by the eye diagram. We know they are there and causing significant closure because of the BER Contour 
measurement (top left). Dotted lines are superimposed on the eye diagram to show two of the worst rare edges. Underneath is shown the convolution that occurs to produce the 
histogram that might be measured on the eye crossing point.
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While the illustration in Figures 3.1 and 3.2 of the pattern 
related DJ is useful for getting the idea across, real 
distributions typically have so many peaks the distribution 
looks continuous. The DJ dominated, higher probability 
portions of the curve end up looking like they are following a 
Gaussian profile, and it becomes extremely difficult to discern 
where the real RJ portion begins. For a case such as this, 14 
does not end up being an appropriate multiplier to relate RJ

σ
 

to the peak to peak value RJpp(10–12).

A final note on pattern length and some other DJ effects: 
some standards such as OIF CEI[vii] are now using terminology 
that differentiates between the deterministic effects visible 
on an eye diagram (‘high probability DJ’) and those that fall 
below such visibility because they don’t occur frequently 
enough (‘low probability DJ’). DJ can derive from such things 
as pattern-related effects (ISI), crosstalk and power supply 
breakthrough (both termed PJ, or Periodic Jitter).

Having explored the dual-Dirac model a little above, we have 
seen that the more complex the DJ distribution, the more it 
deviates from looking like two delta functions. This has the 
consequence that the more the fitted means will move inward, 
and the smaller and more different DJ(δδ) will become relative to 
DJ(pp). It therefore becomes intuitive that the model is strongest 
at RJ/DJ separation when the signal being measured is either 
all RJ, or is mainly high probability DJ with little RJ to move 
the means inwards significantly. This is illustrated in simplistic 
terms in Figure 3.3.

Figure 3.2. (a) How the convolution of Figure A12 might look (continuous black line) over the top of the pattern related DJ (blue dotted lines). The part of the resulting PDF that 
represents noise and should be fitted to for the dual-Dirac model to correctly predict TJ, only appears below 1x10–9 BER. This is a level impossible to achieve with an eye histogram. 
Fitting to a shallower histogram (b) leads to the wrong DJ(δδ) and most crucially, the wrong width Gaussians meaning that the extrapolation to estimate TJ(10–12) will be significantly off. 
In (b) note that the extrapolation needs to be orders of magnitude deeper than in (a) as it is starting so much higher — another magnifier of any error.

Figure 3.3. Two examples where the dual-Dirac model is at its strongest — where the 
signal being measured is composed of RJ only (a), and when DJ is present with very 
little RJ (b).
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The Dual-Dirac and BER-Based  
Instruments
The ideas of dual-Dirac can be translated into the BER domain 
also. The key point is that a BER-based instrument does 
not measure PDFs, but CDFs. The Cumulative Distribution 
Function (CDF) is related to the PDF through integration. 
Before giving a more intuitive explanation, it is worth having a 
quick reminder of how a BER-based instrument can be used 
to measure jitter. More details can be found elsewhere[viii][ix][x], 
but a brief pictorial view is given in Figure 4.1. A BER-based 
instrument uses a decision point to decide whether incoming 
data correctly compares to the expected pattern. In normal 
operation the decision point is placed as far as possible from 
the edges of the eye in order to provide the highest chance of 
error-free operation. However, scanning the decision point in 
time at the amplitude of the eye crossing point will eventually 
cause the decision point to collide with data edges, and for 
it to make incorrect decisions as a consequence (errors). 
Mapping the errors against time position through the eye gives 
a Bathtub curve, BERTScan, or Jitter Peak (all names for 
basically the same thing).

Using the idea of scanning a decision point through the 
crossing point, let’s look at how PDFs and CDFs differ. 
Figure 4.2 shows 3 example edges in an eye diagram. When 
measured with an eye histogram, each edge contributes to 
a different part of the histogram. If instead we placed a BER 
decision point at an arbitrary position (the red cross in the 
figure) and examined the effect of different edges, the result 
would be different. In this case, the errors recorded would be 

Figure 4.1. The concepts behind BERTScan, Bathtub Jitter, Jitter Peak. (a) shows a decision point in its normal position when used to give error-free operation. (b) shows the 
decision point being moved (‘scanned’) through the eye crossing point. (c) illustrates the BER versus time graph (CDF) that results.

Figure 4.2. Comparing PDF (a) with CDF (b). Mapping the position of edges in time 
such as is done with an eye histogram would cause a distribution such as (a). Scanning 
a decision point and mapping errors yields the CDF in (b) — with the decision point 
positioned at the red cross, errors would be recorded due to edges 2 and 3. In other 
words, the error ratio at that point results from the cumulative effect of all edges 
occurring to the right of that point.

the cumulative effect of all edges that were thrown out beyond 
that position to the right. The further to right the decision 
point is moved, the fewer edges would be contributing to 
the recorded BER until a point might be reached where there 
were no edges and the BER was zero. Alternatively, moving to 
the left, more and more edges would be beyond the decision 
point and contributing errors to the BER until the BER-based 
instrument would lose synchronization.
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Common ways of viewing the CDF are shown in Figure 4.3, 
depending whether the slice is plotted through the crossing 
point or across the width of the eye.

TJ(10–12), RJ(pp)(10–12) and DJ(δδ) may all be derived from the Jitter 
Peak. The math is different — for example, in the CDF domain, 
the RJ is derived by fitting a quadratic2 rather than a Gaussian 
when it is plotted on a log scale as it almost always is, but the 
end result is conceptually the same. So why measure jitter 
with a BER based instrument?

The first advantage of BER-based instruments is their 
sampling efficiency. They are capable of making a decision on 
every incoming bit. Where an eye histogram may only reach 
down to an equivalent of 10-3 or 10-4 BER, note that the Jitter 

Peak of Figure 4.3 has its shallowest point at 10–5, and within 
a few seconds is measuring 10-9. With this approach it can be 
practical to make a measurement that measures TJ directly 
— it measures the actual eye opening at a BER of 10–12. It 
should be noted that this requires no use of dual-Dirac related 
assumptions; it is the true measure of one of a system’s 
most important parametric aspects. However, the math is still 
useful for giving an idea of RJ and DJ component. For users 
not wishing to spend the time a true 10–12 might take, it is 
intuitively obvious that extrapolating down to such a level must 
be more accurate when it is from a large number of much 
deeper points than it would be on a shallow measurement 
such as an eye histogram.

Figure 4.3. Two different views of the same BER-based jitter measurement — (a) showing a slice through the eye crossing point (“Jitter Peak”), and (b) showing a slice through the 
whole bit period (“BERTScan” or Bathtub”). The lower screenshot shown in (a) is taken from a BERTScope.

2 Fitting a quadratic is an assumption that works well for BERs below 1 x 10-5.
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The second advantage of BER-based measurements is 
directly related to the first. The deep measurements made on 
a CDF graph prove to be much less susceptible to the effects 
of error. Measurement error due to noise is inevitable, but the 
math of the CDF curve makes it suffer less. An exaggerated 
example is given in Figure 4.4. The expected result is shown 
with the purple dashed line. The blue and orange crosses 
show two points affected by noise, causing a deviation from 
the expected curve. It can be seen that the amplifying effect 
of the error down at low BER levels is much greater on (a), 
the PDF curve, than in (b), the CDF that would be measured 
by the BER-based instrument. Adding this to the fact that the 
points being extrapolated from would be so much deeper with 
the BER-based measurement, it is obvious that this adds up 

to much improved accuracy and repeatability over an eye-
based histogram measurement of jitter.

The third advantage of BER-based measurements is related to 
the inaccuracies that come from long patterns, as mentioned 
earlier. Remember that points on a Jitter Peak are acquired 
efficiently, and that they quickly achieve a depth of 10–9 BER. 
This means that a PRBS-31 with its worst case sequences 
appearing every 2x109 bits is much more likely to have these 
effects included in a measurement. However, there is a nuance 
here that is worth exploring, and is explained in much more 
detail in a very well written appendix of MJSQ[xi].

Figure 4.4. Exaggerated picture of the effect of measurement error in the extrapolation of a PDF (a) and CDF (b). Blue and orange points are similarly spaced but lead to very different 
extrapolated results. The purple dashed line is the expected result. Note that the BER-based CDF is likely to be composed also of much deeper data points, making the extrapola-
tion shorter and therefore also likely to be more accurate.
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The issue is illustrated in Figure 4.5, and derives from the 
fact that a long PRBS such as PRBS-23 or -31 has a PDF 
that looks Gaussian, but is bounded — that is, although it 
can cause outlying edges to occur, there is zero probability 
of excursions beyond those that are caused by this aspect 
alone. This bounded behavior can cause a slope change in 
the PDF and CDF but for long patterns this can be a long way 
down (the 10–9 depth we talked about before for a PRBS-31). 
Ultimately we will get different end results depending upon 
which measured points we include in our extrapolation.

MJSQ makes recommendations about how to handle the 
effect of pattern length. It terms the slope change as being 
a ‘DJ Ceiling’, and recommends including only points in any 
extrapolation from below 1/(2 x Pattern Length). For example, 
for a PRBS-31 with approximately 2 billion bits, this would say 
points should only be included that were measured at a BER 
of 2.3 x 10–10 and below (See Figure 4.6). This does raise a 
second issue, which is that the accuracy of any extrapolation 
is dependent upon the number of measured points taken, 
as this is the best way of averaging out the effects of noise. 
When the first points should be below 2.3 x 10–10, and several 
measured points are required for accuracy, it can prove to 
be the case that waiting for points to make an accurate 
extrapolation to 1 x10–12 can end up involving measured points 
taken at 1 x 10–12, negating the need to extrapolate. Figure 
4.7 shows a measured example on a BERTScope where the 
‘starting BER’, or depth of the shallowest included point, is 
varied.

Figure 4.5. (a) shows two components of a long PRBS signal that can only be viewed when their effects are convolved together. The noise follows a Gaussian profile. The long PRBS 
signal looks like a Gaussian at high probability levels, but is actually bounded. At the limits of the bounding, a slope change occurs in the resulting PDF and CDF. Translating this to 
the BERTScan (CDF) shown in (b), the measured points (crosses) are the basis for extrapolation; the extrapolation is likely to be very different if made from the blue points alone (i.e. 
those representing just the noise)(represented by the blue dotted lines, offset for visibility) compared to ones made with either just the grey points (where the region is a mixture of 
noise and Gaussian-like DJ)(grey lines) or a mixture of blue and grey points.

Pattern Pattern Length (in bits)
1 

(2x Pattern Length)

27-1 127 4 x 10-3

211-1 2,047 2.4 x 10-4

215-1 32,767 1.5 x 10-5

220-1 1,048,575 4.8 x 10-7

223-1 8,388,607 6 x 10-8

231-1 2,147,483,647 2.3 x 10-10

K28.5 20 2.5 x 10-2

CRPAT 1,140 4.4 x 10-4

CJTPAT 1,320 3.8 x 10-4

CSPAT 10,320 4.8 x 10-5

Figure 4.6. Getting below the ‘DJ Ceiling’ referred to in MJSQ to be below the effects of 
pattern-related ISI. The table gives a variety of common patterns and their DJ Ceiling[x].
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In the end, systems operate at low BER levels and it is the TJ 
performance that matters. The distributions that come from 
the dual-Dirac model can be derived from a correctly and 
accurately measured TJ versus BER table, as shown in Figure 
4.8.

Where Did My DJ Go?
A common question when making dual-Dirac based 
measurements is “Where did my DJ go?” This often happens 
when long patterns are being used, and it is understood that 
DJ is present, but this is not reflected in the BERTScan or 
Jitter Peak result. As might be imagined given the discussion 
earlier on the perils of fitting Gaussian curves to distributions 
that are not truly Gaussian, it is very easy to fool the separation 
part of the model. However, as the aim of the model is 
to estimate the correct TJ at a given BER, the separation 
accuracy is not too important. An example of the effect on DJ 
is shown in Figure 4.7. The right hand screenshot includes 
less of the Gaussian-like DJ in the RJ fitting, and the reported 
DJ is therefore higher. Incidentally, sometimes a negative DJ 
can be reported by some instruments. This is typically caused 
by noise in the measured points throwing the curve fitting 
off. On the BERTScope, the DJ is always reported as zero or 
larger. The BERTScope gives the user control over the depth 
of measurements that are included in the curve fitting so that 
the effect of pattern length can be included.

In general, the dual-Dirac model does well separating RJ 
and DJ when the conditions involve RJ almost exclusively, or 
DJ with small amounts of RJ. For situations in between, the 
results are more mixed. It is important to remember, however, 
that TJ(at specified BER) is the main aim of the model and this is 
characterized well.

Figure 4.7. The Jitter Peak of a measurement made using a PRBS-31. Depending upon how many of the shallower points are included in the extrapolation, different answers result. 
Note that the right hand (10–8) results are based on many fewer points (bad) but that the points included are less influenced by underlying DJ (good). However, this measurement 
does not start low enough to exclude all DJ effects of the PRBS-31.

Figure 4.8. Measured and fitted TJ values based on BER points at low probability levels, 
close to the real operating point of a system.
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Dual-Dirac, Scope Histograms and BERTScan Measurements

Summary
We’ve looked at some of the background behind the dual-
Dirac model, and how it applies to eye histograms, and in 
translation to BER-based measurements. We’ve seen that it 
can yield good estimates of the total jitter (TJ) at the required 
BER level. We’ve also seen that it is important to be clear 
about the DJ being discussed — the model reports DJ(δδ), the 
quantity used to model the correct TJ and the one specified 
in most standards; we’ve seen that this differs from DJ(pp), the 
quantity that intuitively corresponds to a known applied jitter 
amplitude. We have explored the effect that long patterns can 
have in mixing a Gaussian-like DJ distribution in with the truly 
Gaussian distribution that comes from RJ, and how this can 
affect the answer for TJ, DJ and RJ. We have also noted that 
true TJ values may be evaluated with a BER-based instrument 
without needing to use such a model, and are the most 
accurate measure of TJ available.
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