
ELECTRONICALLY REPRINTED FROM FEBRUARY 15, 2012

A
s the complexity of systems-on-chip (SoCs) continues
to increase, it is no longer possible to ignore the chal-
lenges caused by the convergence of software and hard-

ware development. These highly functional systems now
include a complex mix of software, firmware, embedded
processors, GPUs, memory controllers, and other high-speed
peripherals. This increased functional integration, combined
with faster internal clock speeds and complex, high-speed
I/O, means that delivering a functional and fully validated
system is harder than ever.
Traditionally, software validation and debug and hardware

validation and debug have been separate worlds. Often, soft-
ware and hardware teams work in isolation, with the former
concentrating on software execution within the context of the
programming model, and the latter debugging within the
hardware development framework, where clock-cycle accu-
racy, parallel operation and the relationship of debug data
back to the original design is key. In theory, fully debugged
software and hardware should work flawlessly together. But
in the real world that is rarely the case, a fact that often leads
to critical cost increases and time-to-market delays.
To deliver increased integration within a reasonable cost

and time, the industry must transition to a new approach –
design for visibility. Said another way, engineers must design,
upfront, the ability to deliver a full system view if we are
going to be able to continue to validate and debug these sys-
tems effectively. The key is to be able to understand causal
relationships between behaviors that span hardware and soft-
ware domains. This article describes an approach to debug-
ging an SoC using embedded instruments, and shows how

the integration of hardware and software debug views can
lead to faster and more efficient debug of the entire system.

Building the Test Bed
The test bed SoC shown in Figure 1 is composed of a 32-

bit RISC instruction set processor, connected to an AMBA
AHB system bus, and AMBA APB peripheral bus. The SoC
also contains a DDR2 memory controller, a gigabit Ethernet
network adapter, a Compact Flash controller, VGA controller
and number of low-speed peripheral interfaces. The SoC runs
Debian GNU Linux operating system version 4 running ker-
nel v2.6.21. The processor core operates at 60MHz, the DDR

Bridging software and hardware
to accelerate SoC validation
Brad Quinton, Tektronix

Figure 1: Baseline test bed SoC

memory controller at 100MHz, and the other I/O peripherals
operate at their native frequencies between 33MHz and
12MHz. The entire SoC is implemented on a Virtex-5 devel-
opment board.
Together, this system is a fully-functional computer able to

provide terminal-based user access, connect to the Internet,
run applications, mount file systems, etc. The SoC is charac-
teristic of those that create complex debug scenarios, and
stress the capabilities of both hardware and software debug
infrastructures. In most cases, key operations span hardware
and software.

Debug Infrastructures
Processor core developers generally provide debug infra-

structures, either as a fixed set of features for a given core or
as a configurable add-on to a family of cores. In either case,
the debug infrastructure becomes a part of the manufactured
core. Debug software then uses this infrastructure to provide
debug features to software developers.
The processor core highlighted here supports a basic set of

debug capabilities similar to those available on most modern
processors, including those from Intel, AMD, IBM, Oracle
and ARM. In this case, a “back-door” accessible via JTAG
allows a software debugger, for example GDB, to read and
write memory in the system and detect the operational state
of the processor. Through these mechanisms, along with ac-
cess to the original software source code, GDB and other soft-
ware debuggers can provide software breakpoints, single-step
operation, examination of variable values, stack tracing, con-
figuration of initial conditions, alternation of memory values
and resume functionality.
In most cases, hardware debug infrastructures are not de-

livered with the hardware IP cores that make-up a SoC. In-
stead the hardware debug infrastructure is often overlaid onto
an existing SoC design. There are a number of reasons for
this difference. First, unlike software debug, the underlying
functionality required of hardware debug is diverse and often
not completely understood until the SoC is assembled. In ad-
dition, each new SoC often requires a different debug infra-
structure. Finally, as an emerging area, there is less
standardization and less of an ecosystem around hardware
debug. The development of a hardware debug infrastructure
thus is often left to individual designers who create ad-hoc
debug features targeting different functional areas. In larger
organizations, internally supported tools and architectures are
often developed. However, as the complexity of SoCs con-
tinues to rise, so does the complexity of creating an efficient
hardware debug infrastructure, and internal development ef-
forts are difficult to sustain.
As an alternative, test and measurement vendors can pro-

vide complete design tools, IP library, and work flow to cre-
ate a hardware debug infrastructure. The set up shown in
Figure 2, called the Tektronix Clarus Post-Silicon Validation

Suite, is composed of re-configurable embedded instruments
that can be connected together and distributed throughout the
SoC to create a debug infrastructure specific to the functional
requirements. The Implementer tool allows the instrumenta-
tion of any signal, at any level of hierarchy, at the RTL-level
(Verilog, System Verilog, and VHDL) in the hardware design.
The Analyzer configures and controls the embedded instru-
ments via JTAG or an Ethernet connection. Lastly, the Inves-
tigator maps the data collected by the embedded instruments
back to the original RTL (in a simulation environment) to en-
able more complex debug.
The embedded instruments are applied to an SOC to pro-

vide a debug infrastructure as shown in Figure 3. An impor-
tant aspect is the ability to reconfigure the instrument to target
various signals and scenarios in different areas of the SoC
while debug is in progress. The base instruments are called
capture stations, which independently manage the selection,

Figure 2: Architecture of the Clarus Post-Silicon Validation Suite

Figure 3: Hardware debug infrastructure

compression, processing and storage of observed data. Mul-
tiple stations are often used together to create a design-spe-
cific infrastructure for a given SoC. During insertion, the
capture stations are configured with a list of potential signals
of interest, a maximum number of simultaneous observations,
and maximum RAM size. Capture stations are generally as-
signed to specific clock domains, and capture synchronously
to observed data. The analyzer collects the data from each
station, reverses the compression algorithms, and aligns the
data captured in each station to produce a time-correlated
view across all capture stations.
The SoC used in this example has four capture stations: one

in the processor clock domain, labeled Capture Station #1
(60MHz) targeting 362 signals; one in the RX Ethernet do-
main, labeled Capture Station #2 (25 MHz) targeting 17 sig-
nals; one in the TX Ethernet domain, labeled Capture Station
#3 (25 MHz) targeting 17 signals; and finally one in the com-
pact flash clock domain, labeled Capture Station #4 (33 MHz)
targeting 178 signals. Each of these stations operates in par-
allel, and is able to make selective observations of any com-
bination of signals. The final output of the analyzer tool is a
waveform representing the clock-cycle accurate signal trans-
actions in the actual silicon device as shown in Figure 4.

While both the software and hardware debug infrastruc-
tures perform well on the target platform for issues that are
confined to either software or hardware, it is a significant
challenge to understand behavior that involves the interaction
of software and hardware. Table 1 outlines a short list of some
of the issues encountered during the development of our test
bed, and which are representative of the issues we see across
the industry.

A primary challenge is that while the effects of the unex-
pected behaviors are “visible” using either the software or

hardware debug infrastructures, it is often very difficult to
determine whether the observed incorrect behavior is the
cause or the symptom. The question often becomes whether
the unexpected behavior in the software is a reaction to in-
correct hardware behavior, or the other way around. The key
is to determine the causal relationship between events, which
requires a common reference between the software and hard-
ware debug views.

Event Management
The ability to re-construct a causal relationship between

software and hardware debug views involves integration
across the debug state and event processing from the two
debug infrastructures, or integrated event management as
shown in Figure 5.

In this example, distributed, asynchronous instruments pro-
vided by the Clarus Suite, make it possible for each capture
station to be viewed as autonomous. To support “cross-trig-
gering” between instruments there is a shared event bus and a
centralized event processor. The centralized event processor,
labeled Access Control in Figure 5, communicates the debug
events and state to the Analyzer software that manages the
overall debug infrastructure. This enables the effective hard-
ware debug of many functional units and clock domains si-
multaneously. To create the integrated event management this
information propagates into and collects data from the soft-
ware debug infrastructure. With integrated event management
in place, the infrastructure can detect software breakpoint
events and the debug state of the processor. Likewise, the soft-
ware debug infrastructure is able to detect hardware triggers
and the debug state of the hardware debug infrastructure.
The two key benefits of integrated event management are

the ability of software debug initiated events to control hard-
ware triggers, and the ability of hardware debug initiated
events to control software debug. More specifically, software
breakpoints can be mapped to specific hardware behavior and
hardware triggers can break software at a specific point. Ex-

Figure 4: Example SoC waveform

Table 1: Example SoC debug issues

Figure 5: Integrated event management

Posted with permissions from the February 15, 2012 issue of EE Times, United Business Media LLC. Copyright 2012. All rights reserved.
For more information on the use of this content, contact Wright’s Media at 877-652-5295.

86983

amples of these two scenarios are shown in Figures 6 and 7.
To demonstrate the capabilities of the software-initiated

breakpoints in an integrated debug system, the Linux kernel
was modified to print the message “BLOCK” when a read
occurs on disk sector 0x00041d90. Then, traces from the
“sysace” Compact Flash controller with the debug infra-
structure were targeted. Using GDB, a hardware breakpoint
on line 714 of xsysace.c file (the line where the printk oc-
curs) was set. Then the test infrastructure was configured to
monitor the software debug infrastructure using integrated
event management. Finally, the “find /” command forced the
kernel to read the entire disk. As shown in Figure 6, the soft-
ware break point halted kernel execution on the desired line
and also triggered the hardware debug infrastructure. As a re-
sult the detailed behavior of the hardware is visible at the time
of the software breakpoint.
The Ethernet adapter was used to demonstrate the capabili-

ties of the hardware-initiated triggers in an integrated debug
system. A hardware trigger was set to occur when the “RX
Packet Ready Interrupt Bit” in the Ethernet adapter was cleared
by the Linux Kernel. The integrated event management inter-
face was configured to map hardware events to the software

debug infrastructure. A ping to the IP address of the router in
the system initiated a transmit packet from the SoC to which
the router responded. When that response occurred, the packet
arrived on the Ethernet PHY, and was processed by the Ether-
net adapter. The processor was then interrupted and the Linux
Kernel serviced the interrupt. When the interrupt servicing was
complete, the interrupt was cleared. This caused a hardware
trigger and the software halted, as shown in Figure 7. The re-
sulting view shows the simultaneous or time-correlated be-
havior of hardware and software in a complex system from the
PHY level all the way to the operating system.

Summary
By creating an integrated event management interface be-

tween software and hardware debug infrastructures, it is pos-
sible to achieve single event synchronization around both
software and hardware debug events. This synchronization
enables the meaningful presentation of simultaneous debug
data from both infrastructures. Such a full system view opens
a window into the causal relationship between SoC function-
ality that spans software and hardware, leading to faster and
more efficient debug of increasingly complex SoC designs.

Dr. Brad Quinton is the Chief Architect for the Embedded Instrumentation Group at Tektronix. He has over 15
years of engineering and research experience in the semiconductor industry. Quinton’s doctoral research at the
University of British Columbia exploring on-chip debug architectures, was the inspiration behind the technology
being developed by Veridae Systems Inc. which is now part of Tektronix Embedded Instrumentation Group.
Previously, Brad served as a consultant and senior design engineer at Teradici Corporation, and as a consultant
at Altera, where he designed and debugged new devices. Prior to this he spent many years at PMC-Sierra, where,
in his last role, he managed a multi-million dollar IC development from concept to market release. He can be
reached a brad.quinton@tektronix.com.

Figure 6: Example of a software-initiated event Figure 7: Example of a hardware-initiated event

About the Author

www.wrightsmedia.com
www.eetimes.com

