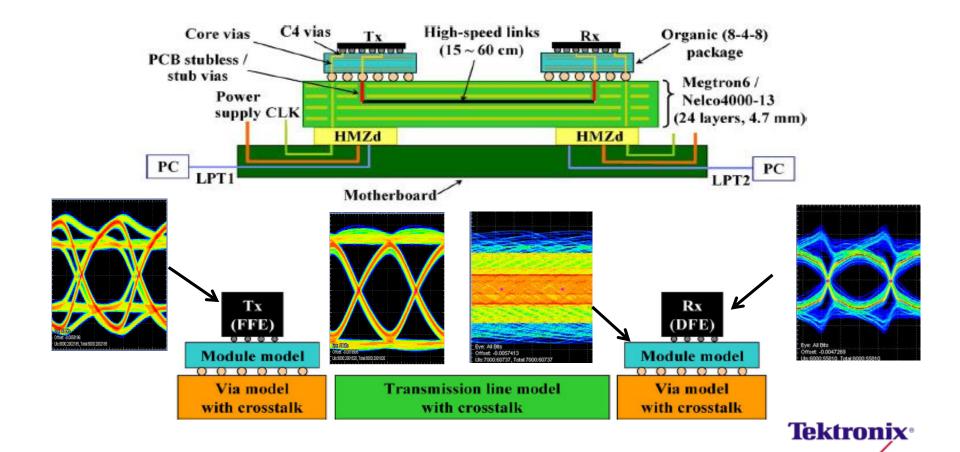
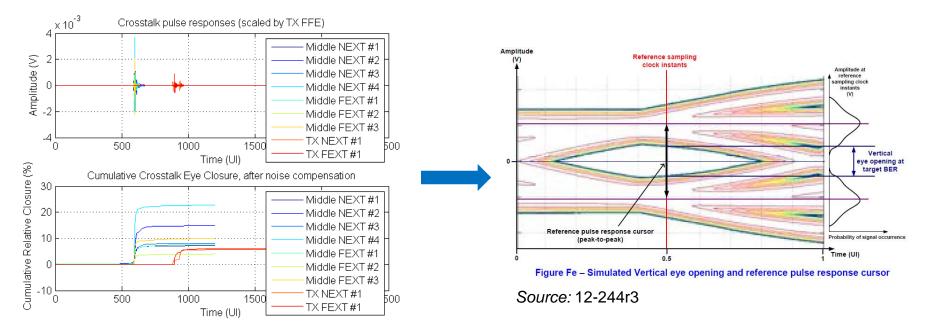

Storage PHY Test Solutions



Storage Timelines and Solutions Development


12G+ Design Problem: 1000mV, FFE, Crosstalk, DFE, 50mV

- Crosstalk and signal loss problems are the largest design challenge today.
- Significant advances in high tap count Decision Feedback Equalization are key to operating at 12G+.

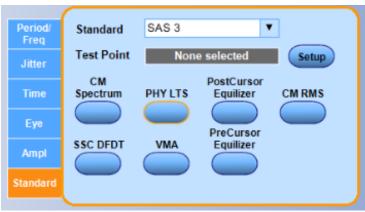
NEW Measurement for Crosstalk/ISI Evaluation

- SAS3_EYEOPENING* Measurement for accurate analysis of ISI and crosstalk effects
- Provides measure of relative vertical eye opening after reference equalization

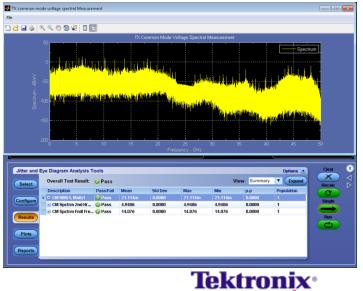
*Note, this measurement is similar to the SAS-2 Waveform Distortion Penalty (WDP) measurement but also includes Tx EQ in addition to DFE. The code was provided and distributed through the T10 Technical Committee and permission has been granted for Tektronix to reuse.

SAS3_EYEOPENING provides 4 different metrics

- 1. Relative Vertical Eye Opening: A direct indication of how much margin there is after equalization
 - Takes into account un-compensable ISI and crosstalk
 - ISI and crosstalk broken down in report
- 2. Main Cursor Amplitude: A direct indication of the amplitude after equalization
 - Assumes 800 mVppd max. TX launch amplitude, unless data is captured
- **3. Maximal FFE correction**: A direct indication of how much FFE correction is required by the transmitter
 - Max(abs(Cpre/Ccntr,Cpost/Ccntr))
- 4. Maximal DFE correction: A direct indication of how much DFE correction is required by the receiver
 - Max(abs(DFE/Main))



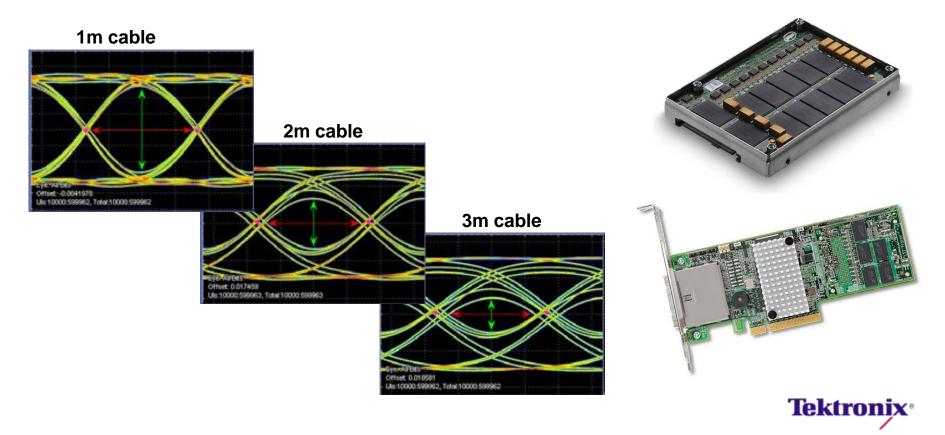
Source: T10/11-234r1


SAS-3 PHY Transmitter Solution – Option SAS3

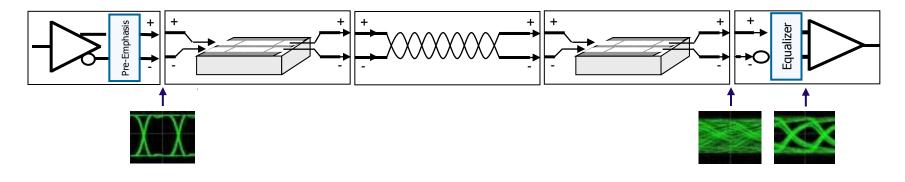
Test0	Parameter	Conformance Min/Max
5.1.1	Maximum Noise During OOB IDLE	< 120 mV
5.1.2	OOB Burst Amplitude	> 240 mV
5.1.3	OOB Offset Delta	+/- 25 mV
5.1.4	OOB Common Mode Delta	+/- 50 mV
5.2.1	SSC Modulation Type	Center-, No- and Down-spreading
5.2.2	SSC Modulation Frequency	30 kHz < SSC _{freq} < 33 kHz
		+/- 1000 ppm (center),
5.2.3	SSC Modulation Deviation	0 ppm (no spread) or
		+0/-1000 ppm (down)
5.2.4	SSC DFDT	850 ppm/μs
5.3.1	Physical Link Rate Long Term Stability	+/- 100 ppm
5.3.2	Common Mode RMS Voltage	< 30 mV
5.3.3	Common Mode Spectrum Mask	Below Spectrum Limit Lines (0.1
5.3.3	Hits	to 6 GHz)
5.3.4	Peak to Peak Voltage	850 mV < Vpk-pk < 1200 mV
5.3.5	VMA	> 80 mV
5.3.6	Rise Time	> 20.8 ps
5.3.7	Fall Time	> 20.8 ps
5.3.8	Random Jitter	0.15 UI (12.5 ps)
5.3.9	Total Jitter	0.25 UI (20.8 ps)
5.3.10	SAS3_EYEOPENING	> 55 %
5.3.11	Pre Cursor Equalization	1 V/V < R _{pre} < 1.67 V/V
5.3.12	Post Cursor Equalization	1 V/V < R _{post} < 3.33 V/V

SAS3 12 Gb/s Tx Test Software

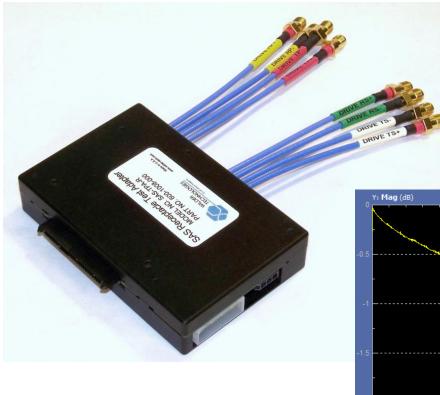
Common Mode Spectrum Measurement


SAS-3 PHY Transmitter Solution – Option SAS3

- Automated transmitter validation for 12 Gb/s SAS physical layer specification
- Integrated SAS3_EYEOPENING measurement for accurate analysis of ISI and crosstalk effects and relative vertical eye opening after reference equalization
- Easily reconfigure existing measurements to create user-specified test parameters or test limits
- Multiple plots and measurement configurations provides a quick comparison of the same acquired data with different settings
- Simultaneous two lane testing of primary and secondary ports
- Detailed test reports with screenshots, setup details, and pass/fail limits

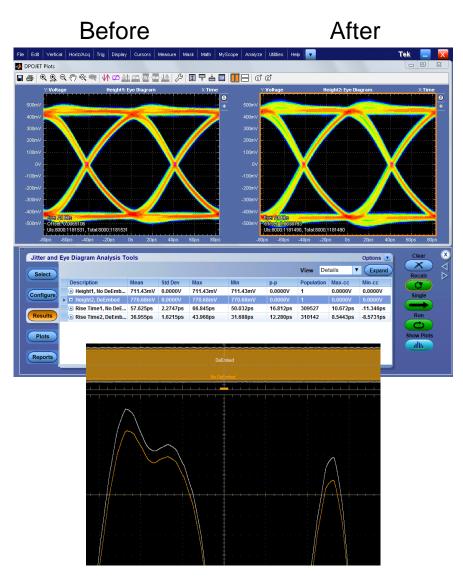

Beyond Compliance

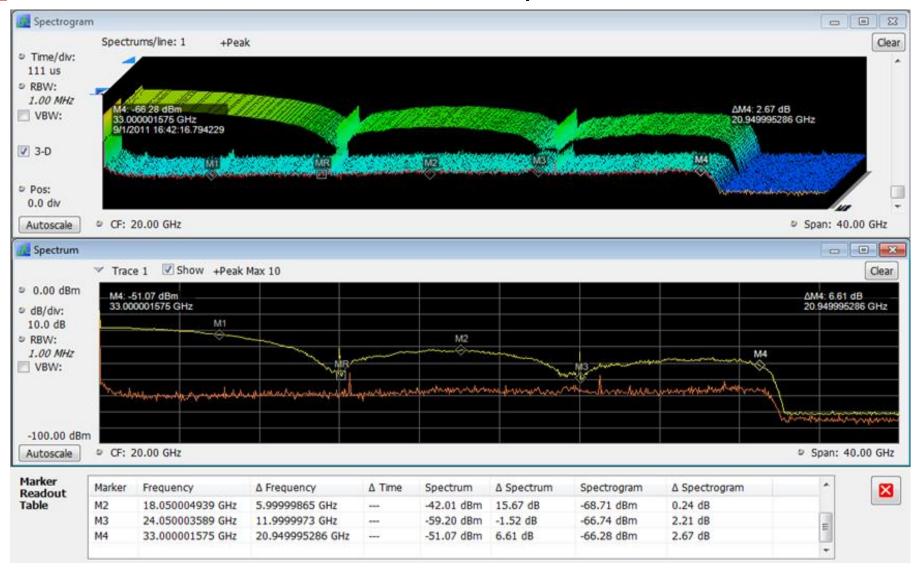
- How much margin is there in my design?
- How many DFE/FFE taps are needed to meet the system budget?
- What is longest channel (cable/backplane) the system can tolerate?
- How does process/voltage/temperature affect device performance?


Flexible Link Analysis Tools – option SDLA

- DFE/FFE modeling
 - Reference equalizer vs. vendor-specific
 - Equalizer implementation for PHYs
- Enhanced de-embedding
 - Full four-port network characterization
- Channel emulation for margin analysis

SAS Receptacle Test Adapter


Sdd21 (1x Thru) => -3dB@26 GHz

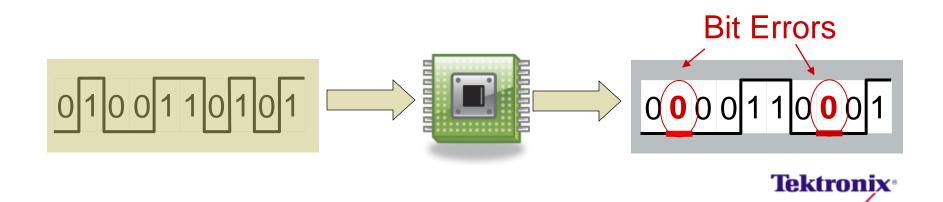

Test Fixture De-embedding

- Why de-embed?
 - Tx measurements referenced to die (ET)
 - Improve margin with removal of fixture effects
- S-Parameters acquired from calibration fixture or model extraction
- Use inverse response to compensate for loss

	Before De-Embed	After De-Embed
Eye Height	711 mV	770 mV
Rise Time	57	37

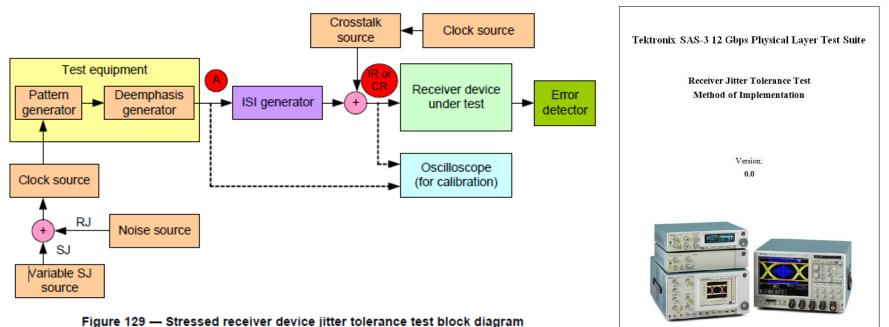
Bandwidth Considerations SAS PRBS11 12G NRZ Power Spectrum

Recommended Equipment


The following components are required for performing SAS12 Tx measurements

- DSA/DPO/MSO70K(C/D) Series Oscilloscope with Opt. 5XL or higher (Min. 20 GHz BW, ≥25 GHz recommended*)
- DPOJET Advanced (DJA) Prerequisite
- Option SAS3
- Test Fixtures:
 - <u>TF-SAS-TPA-R</u> SAS Gen3 Receptacle Adapter (drive form factor) or
 - <u>TF-SASHD-TPA-R</u> miniSASHD 12G SAS Receptacle (mini SAS HD 4i/x cables) or
 - Set of <u>TF-SASHD-TPAR-P</u> miniSASHD 12G SAS (Right Side) Plug and <u>TF-SASHD-TPAL-P</u> miniSASHD 12G SAS (Left Side) Plug (x8)
- PMCABLE1M or equivalent Phase Matched Cable Set (qty: 2)

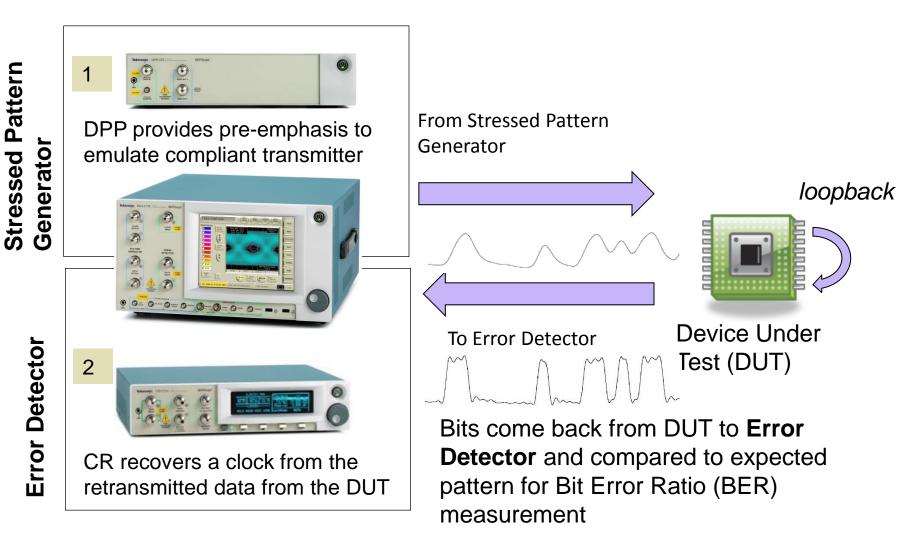
Tektronix.


SAS Implications for Receiver Testing

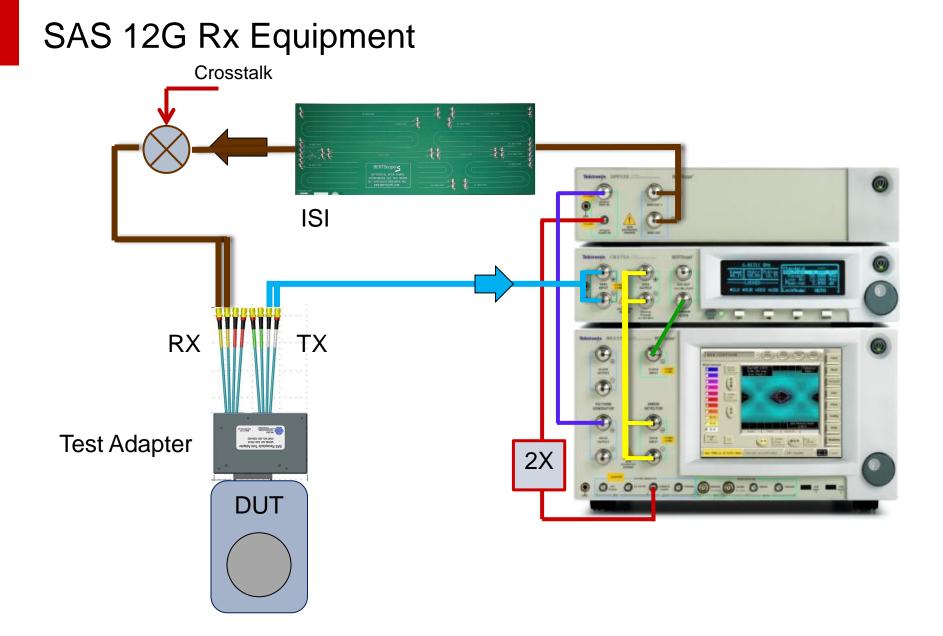
- System margins are decreasing, testing the transmitter only does not imply interoperability
- Receiver test requirements are expanding and will include testing with a crosstalk, ISI and Tx/Rx EQ
- Transmitter Equalization requires pre/post-cursor control
- Receiver Equalization is more sophisticated
 - Behavior equalizers (Continuous Time Linear and 5-tap Decision Feedback Equalization) must be used to compensate for channel loss
 - Transmitters must support back channel negotiation to auto-negotiate with Receivers to determine optimal equalization settings for testing

SAS 12 Gb/s Rx Test Setup

- Similar to SAS 6 Gb/s Rx configuration
- Rx calibration -> CJTPAT -> BER test
- Tektronix Method of Implementation (MOI) provides complete Rx Test procedure



SAS 12 Gb/s Rx MOI


Tektronix[®]

Source: sas3r03_18Oct2012

Receiver Test Made Easy with the BERTScope

Tektronix.

Trained Link for Jitter Tolerance Test

- Complete Rx test exercises both CDR <u>and</u> Tx/Rx EQ capabilities
- Link optimization options
 - Iterate possible Tx/Rx EQ states and apply from 'best' optimized eye
 - Directly apply Preset based on typical configuration for worst case channel

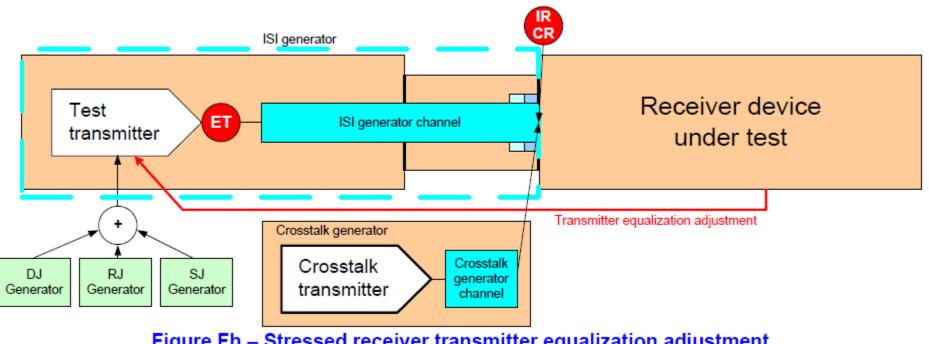
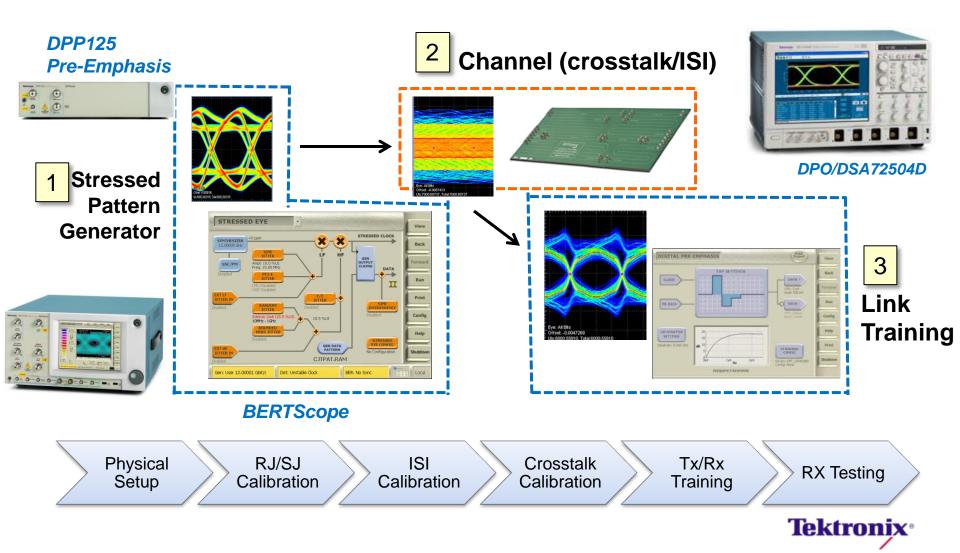
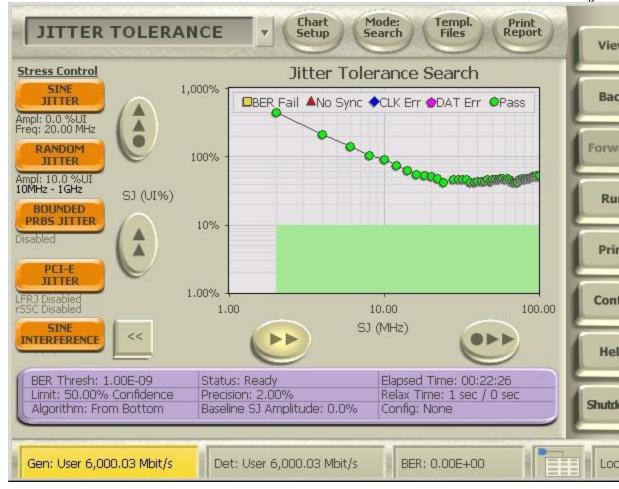



Figure Fh – Stressed receiver transmitter equalization adjustment



Stressed Pattern Calibration – Putting it Together

Rx Results (BERTScope)

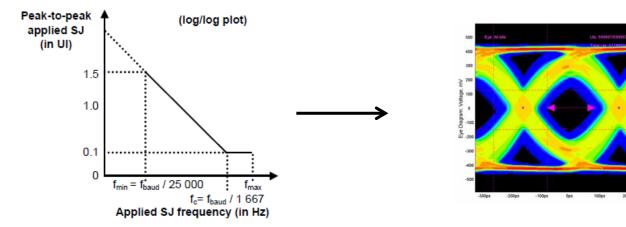
- Automated Scan from 10 Hz to 100 MHz
- SAS-3 (6/12 Gb/s) spec requires 97, 240 kHz & 2.06, 3.6 and 15 MHz

SJ	Bits	Errors	BE	R Status	ThreshVX De	layPS
0.1	4.52	6E+08	0	0.00E+00 PASSED	0	267.531
0.1	2.1	6E+08	0	0.00E+00 PASSED	0	266.451
0.1	1.42	6E+08	0	0.00E+00 PASSED	0	266.451
0.1	1.04	6E+08	0	0.00E+00 PASSED	-2	266.451
0.1	0.9	6E+08	0	0.00E+00 PASSED	0	266.451
0.1	0.74	6E+08	0	0.00E+00 PASSED	0	266.451
0.1	0.64	6E+08	0	0.00E+00 PASSED	-2	266.451
0.1	0.56	6E+08	0	0.00E+00 PASSED	0	266.451
0.1	0.54	6E+08	0	0.00E+00 PASSED	1	266.451
0.1	0.52	6E+08	0	0.00E+00 PASSED	0	266.451
0.1	0.48	6E+08	0	0.00E+00 PASSED	0	266.451
0.1	0.42	6E+08	0	0.00E+00 PASSED	0	266.451
	0.46	6E+08	0	0.00E+00 PASSED	0	267.531
_	0.46	6E+08	0	0.00E+00 PASSED	0	266.451
w	0.46	6E+08	0	0.00E+00 PASSED	0	266.451
	0.46	6E+08	0	0.00E+00 PASSED	0	266.451
	0.42	6E+08	0	0.00E+00 PASSED	0	266.451
-	0.42	6E+08	0	0.00E+00 PASSED	0	266.451
ck	0.44	6E+08	0	0.00E+00 PASSED	0	266.451
-	0.44	6E+08	0	0.00E+00 PASSED	0	266.451
1	0.44	6E+08	0	0.00E+00 PASSED	0	266.451
_	0.46	6E+08	0	0.00E+00 PASSED	0	266.451
ard	0.44	6E+08	0	0.00E+00 PASSED	0	266.451
aru	0.46	6E+08	0	0.00E+00 PASSED	0	267.531
	0.46	6E+08	0	0.00E+00 PASSED	0	266.451
-	0.46	6E+08	0	0.00E+00 PASSED	-2	267.531
n	0.48	6E+08	0	0.00E+00 PASSED	1	267.531
100	0.48	6E+08	0	0.00E+00 PASSED	0	266.451
	0.46	6E+08	0	0.00E+00 PASSED	-2	267.531
_	0.48	6E+08	0	0.00E+00 PASSED	0	266.451
nt	0.46	6E+08	0	0.00E+00 PASSED	0	266.451
	0.44	6E+08	0	0.00E+00 PASSED	-1	267.531
	0.42	6E+08	0 0	0.00E+00 PASSED	-3	267.531
-	0.42	6E+08		0.00E+00 PASSED	0	266.451
fig	0.42	6E+08	0 0	0.00E+00 PASSED	0 0	266.451
ng	0.46	6E+08	0	0.00E+00 PASSED	-2	266.451
	0.46 0.48	6E+08 6E+08	0	0.00E+00 PASSED 0.00E+00 PASSED	-2	267.531 266.451
	0.46	6E+08	0	0.00E+00 PASSED	-1	267.531
lp	0.40	6E+08	0	0.00E+00 PASSED	-1	266.451
ч.	0.48	6E+08	0	0.00E+00 PASSED	-2	267.531
1	0.48	6E+08	0	0.00E+00 PASSED	0	266.451
-	0.5	6E+08	0	0.00E+00 PASSED	0	266.451
lown	0.52	6E+08	0	0.00E+00 PASSED	-2	267.531
-	0.52	6E+08	0	0.00E+00 PASSED	0	266.451
	0.52	6E+08	0	0.00E+00 PASSED	-1	267.531
	0.54	6E+08	0	0.00E+00 PASSED	0	267.531
_	0.52	6E+08	0	0.00E+00 PASSED	0	266.451
al	-		-	LIMIT	-	
1000	0.54	6E+08	0	0.00E+00 REACHED	0	266.451

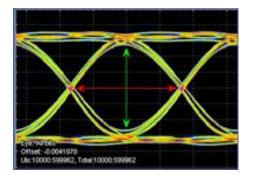
DATA T-MHz

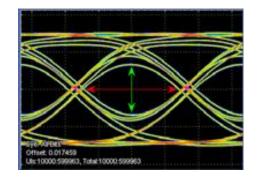
T-SJ 2

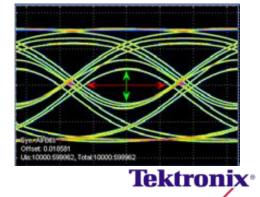
8


18 20

22


Tektronix


Need for Precise ISI generation

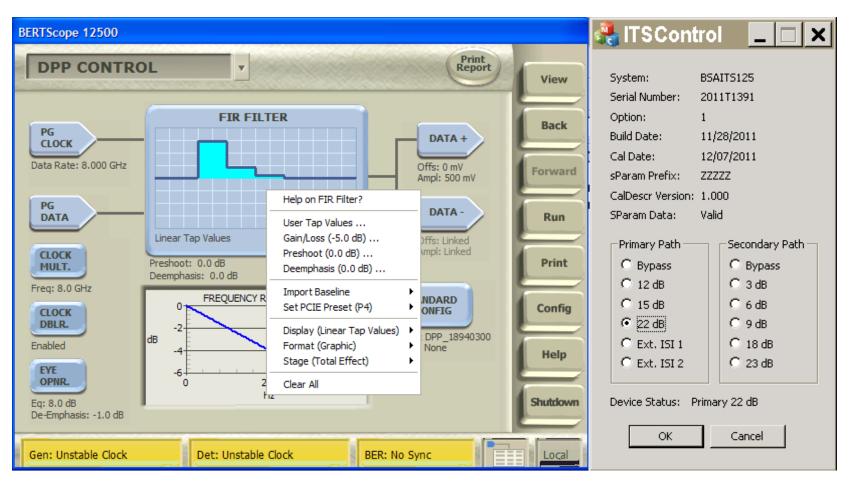

 Device margin testing against variable magnitude sinusoidal test vectors has been foundation of receiver characterization.

 Current PHY designs use sophisticated CTLE and/or DFE architectures, where tolerance and margining against DDJ is more important than SJ.

NEW SAS 12 Gb/s Receiver Test Solutions

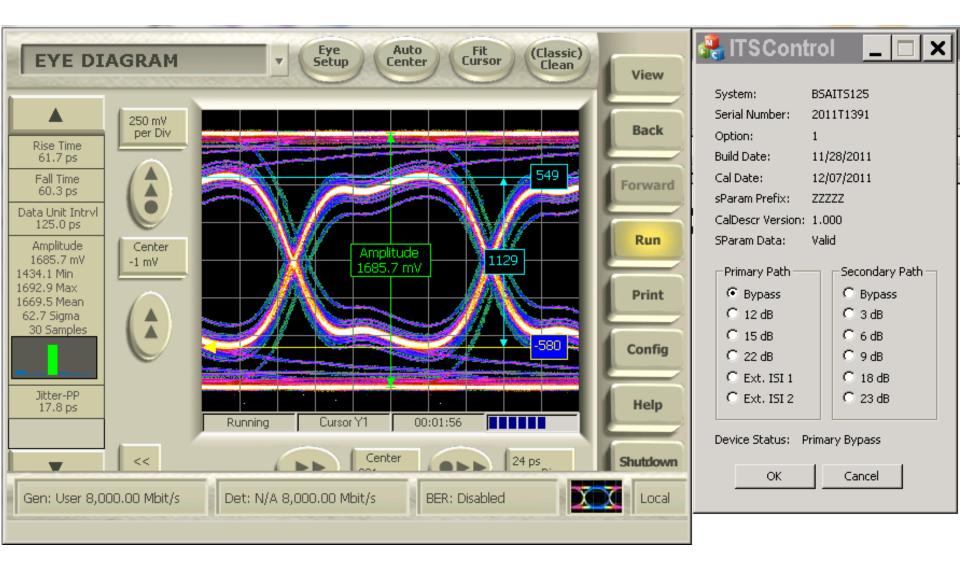
DPP125C Digital Pre-emphasis Processor

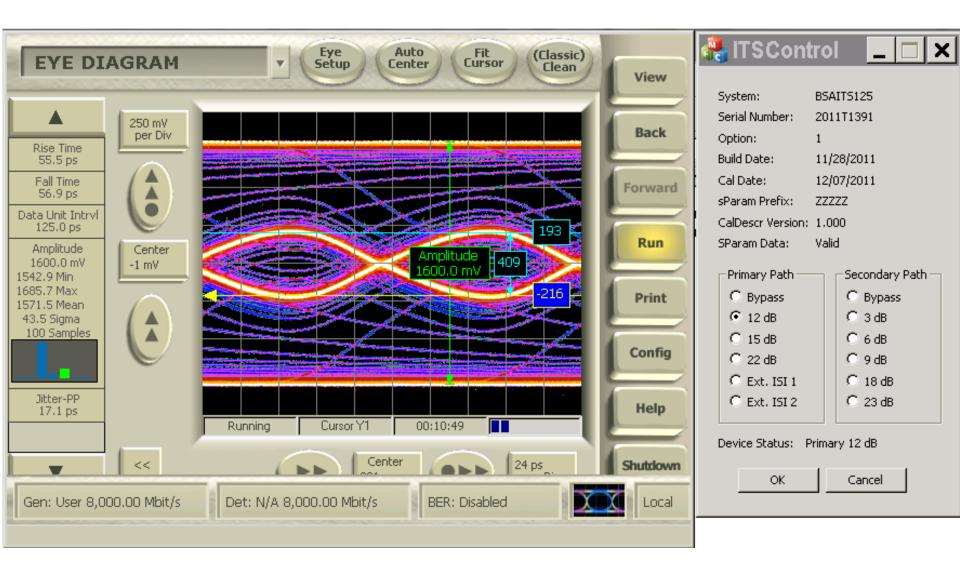
- Integrated eye opener functionality for testing DUTs with long channels
- Integrated clock doubler that enables full rate stress for 12 Gb/s


BSAITS125 Interference Test Set

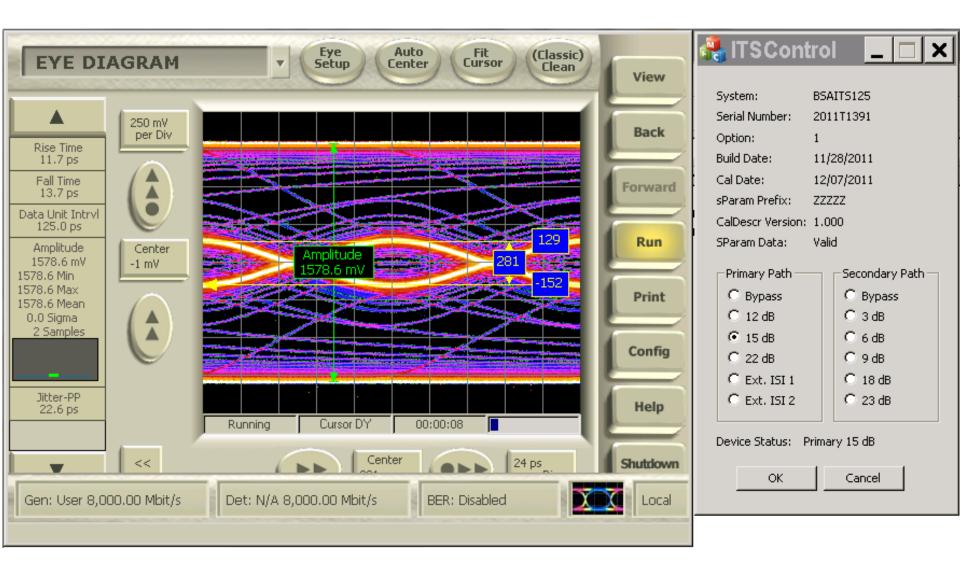
- Programmable variable ISI for automated testing and precision setting
- Integrated CM and DM interference combiner

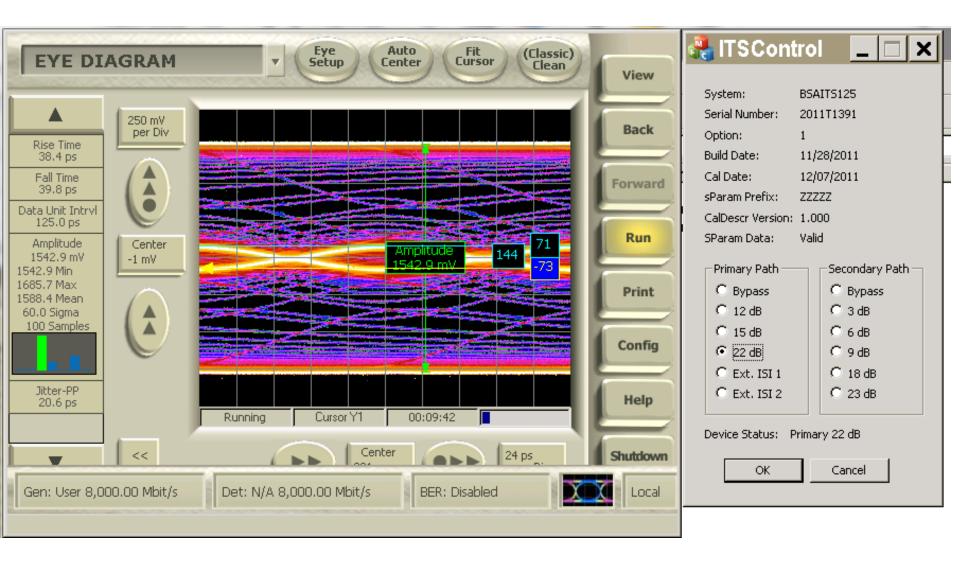
Tektronix


Data Dependent Jitter Variability with BSAITS


BSAITS automates selection of fixed ISI traces with fine (mdB) controls with the DPP FIR filter for a continuously variable high precision ISI source.

Tektronix.

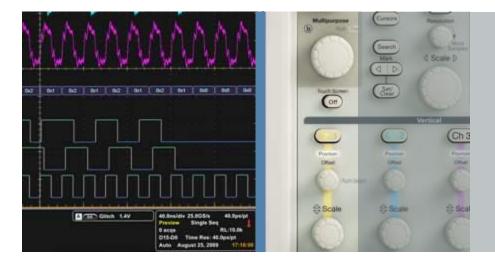

BSAITS Bypass mode


BSAITS 12dB mode

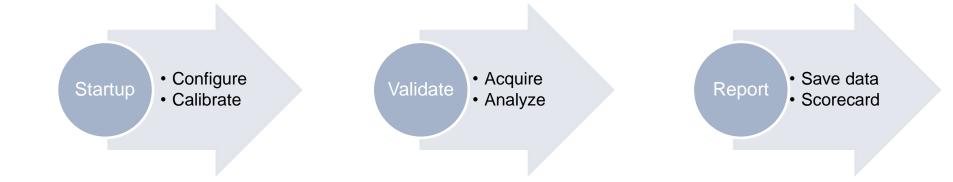
BSAITS 15dB mode

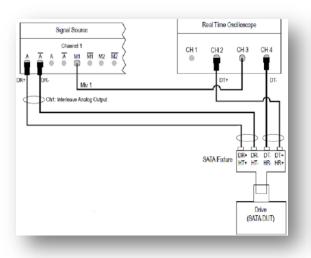
BSAITS 22dB mode

Tektronix.


Complete Tektronix SAS Testing

Receiver Tests/Active Cable Tests RSG/RMT - Receiver Silicon, Active cable characterization and Compliance testing capability to 26 Gb/s	BSA125C with option JMAP , STR & SF DPP125C , CR125A and BSAITS for Digital Emphasis, Clock recovery and ISI generation	
Channel Tests		
ICR: Insertion Loss/Crosstalk analysis.		
Rx/Tx - Device and Host electrical channel performance, Crosstalk, Impedance and return loss	DSA8300 Sampling Oscilloscope 80E10 TDR Sampling Module for DSA8300 Sampling Oscilloscope	
Passive Cable Tests	80SICON S-Parameter Analysis	11
Cable crosstalk, skew and frequency domain measurements, sdd21, sdd11.	software	Contraction of the second
PHY, TSG, and OOB Tests	DSA72504D Real-Time Oscilloscope	
PHY – Signal timing stability and SSC analysis.	Option SAS3 12 Gbps Tx Test Software	
TSG – Transmitter AC parametric, Jitter, Amplitude.	TekExpress SAS 6 Gbps Physical Layer Test software	
OOB- Out Of Band signal validation	DPOJET Jitter/Eye Analysis software	


Serial ATA PHY Validation



Basics of Serial ATA PHY Testing

A Telepers lend ATA Automated Solution (refs." For two: Tod : Help DUTD: DUTD: DUTD: DUTD: DUTD: DUTD: Personal For two: Tod : Help DUTD: DUTD: DUTD: DUTD: Personal For two: Tod : Help DUTD: DUTD: Personal	Y Voltage		(efes)*		100 11 52
DUTD CUTOT Reverse DUTD CUTOT Reverse Dut Auge DUTD CUTOT Reverse Reverse Dut Auge Reverse Dut D CUTOT Reverse Reverse Dut D CUTOT Reverse Reverse Dut D CUTOT Reverse Reverse Reverse Dut D CUTOT Reverse		File View Tools Help			
DUTD CUTOT Reverse DUTD CUTOT Reverse Dut Auge DUTD CUTOT Reverse Reverse Dut Auge Reverse Dut D CUTOT Reverse Reverse Dut D CUTOT Reverse Reverse Dut D CUTOT Reverse Reverse Reverse Dut D CUTOT Reverse					
State Auge Read Drive: 1MT 156 C00: SAA Gao 2010 1.4.44 • Augent in the Vanimum • Saar • Saar Drive: 1MT 156 C00: SAA Gao 2010 1.4.44 • Augent in the Vanimum • Augent in the Vanimum Inter: 1MT 156 C00: SAA Gao 2010 1.4.44 • Augent in the Vanimum • Augent in the Vanimum Inter: 1MT 156 C00: SAA Gao 2010 1.4.44 • Augent in the Vanimum • Augent in the Vanimum Inter: 1MT 156 C00: SAA Gao 2010 1.4.44 • Augent in the Vanimum • State Inter: 1MT 156 C00: SAA Gao 2010 1.4.41 • Augent in the Vanimum • Augent in the Vanimum Inter: 1MT 156 C00: SAA Gao 2010 1.4.42 • Augent in the Vanimum • Augent in the Vanimum Inter: 1MT 156 C00: SAA Gao 2010 1.4.140 • Augent in the Vanimum • Augent in the Vanimum Inter: 1MT 156 C00: Saar Augent in the Vanimum • Augent in the Vanimum					_
			DUTID DUT001	Resume	5100
		Select Access Anders Broat			
A Case Line Variations A Case Line Vari		and in the second se	1990.00 C		
Concerner		Drive : PHY-ISG-008 : SATA Gen 3-UTD	1.4-AI		
Concerner		Annuin Line Manalaum			
Texture Texture Texture Texture Texture Texture Texture Texture Texture Texture Texture Texture Texture Texture Texture Texture Texture Texture Texture Texture Texture Texture Texture Texture Texture Texture Texture Texture Texture Texture Texture Texture Texture Texture Texture Texture Texture Texture Texture Texture		Acquire Live Waveforms			
Texture Texture Texture Texture Texture Texture Texture Texture Texture Texture Texture Texture Texture Texture Texture Texture Texture Texture Texture Texture Texture Texture Texture Texture Texture Texture Texture Texture Texture Texture Texture Texture Texture Texture Texture Texture Texture Texture Texture Texture Texture Texture Texture Texture Texture Texture Texture		Contraction Descented			
Strict Stri		O Use Pre-Recorded			
Constant of the second and the		TestName	Acquisition	Statur	•
Statistics Structure Clarking Statistics Clarking Statistics Statistics Structure Statistics Structure Clarking Statistics Statistics Structure Statistics Structure Statistics Structure Statistics Structure	_				
Statustical S	-		LBP-Gen 3	To be started	
					_
Index Sector 2010 Address Capers Address Capers Address A					
Trans Anders Ores 2014 All Control Contro					
and Eye Diagram A Acquire She By Ohge Description Desc	-0.03 -0				
Description Discourse 124 Add CuI Deput Bit delignoreaster to PE Subit on: Relay: Discourse 124 Add CuI Deput Bit delignoreaster to PE Subit on: Relay: Discourse 124 Add CuI Deput Bit delignoreaster to PE Subit on: Relay: Discourse 124 Add CuI Deput Bit delignoreaster to PE Subit on: Relay: Discourse 124 Add CuI Deput Bit delignoreaster to PE Subit on: Relay: Discourse 124 Add CuI Deput Bit delignoreaster to PE Subit on: Relay: Discourse 124 Add CuI Deput Bit delignoreaster to PE Subit on: Relay: Discourse 124 Add CuI Deput Bit delignoreaster to PE Subit on: Relay: Discourse 124 Add CuI Deput Bit delignoreaster to PE Subit on: Relay: Discourse 124 Add CuI Deput Bit delignoreaster to PE Subit on: Relay: Discourse 124 Add CuI Deput Bit delignoreaster to PE Subit on: Relay: Discourse 124 Add CuI Deput Bit delignoreaster to PE Subit on: Relay: Discourse 124 Add CuI Deput Bit delignoreaster to PE Subit on: Relay: Discourse 124 Add CuI Deput Bit delignoreaster to PE Subit on: Relay: Discourse 124 Add CuI Deput Bit delignoreaster to PE Subit on: Relay: Discourse 124 Add CuI Deput Bit delignoreaster to PE Subit on: Relay: Discourse 124 Add CuI Deput Bit delignoreaster to PE Subit on: Relay: Discourse 124 Add CuI Deput Bit delignoreaster to PE Subit on: Relay: Discourse 124 Add CuI Deput Bit delignoreaster to PE Subit on: Relay: Discourse 124 Add CuI Deput Bit delignoreaster to PE Subit on: Relay: Discourse 124 Add CuI Deput Bit delignoreaster to PE Subit on: Relay: Discourse 124 Add CuI Deput Bit delignoreaster to PE Subit on: Relay: Discourse 124 Add CuI Deput Bit delignoreaster to PE Subit on: Relay: Discourse 124 Add CuI Deput Bit delignoreaster to PE Subit on: Relay: Discourse 124 Add CuI Deput Bit delignoreaster to PE Subit on: Relay: Discourse 124 Add CuI Deput Bit delignoreaster to PE Subit on: Relay: Discourse 124 Add CuI Deput Bit delignoreaster to PE Subit on: Relay: Discourse 124 Add CuI Deput		The rest frances of the sec a tradition frances f	COLUMN TO FALLER T	The first off indicat	
Construction Discretification Discreti		Acquire Step By Step	Show Acqui	re Parameters	
Construction Discretification Discreti	and Eye Diagram				
Execution				-	
Statistical Type: 2012 Add. 2017 Aug. 1: the Time Scope from FF Selds Damed Damed Damed Type: 2017 Add. 4: the Time Scope from FF Selds Damed Dam	a	10/6/2012 7:02-41 AM-DUT Oxford (HT+/DFI+) c	onnected to RF Switch on: Relay C	Direla Stat	in the second
15-027 / 219 Adv Landray gent lands 15-027 / 219 Adv Landray gent landray gent lands 15-027 / 219 Adv Landray gent	Description	10/6/2012 7:03:41 AM-DUT Delpat (HT+/DR+) or 10/6/2012 7:03:41 AM-DUT Delpat (HT+/DR+) or	Scope hors RF Switch Charget Chargel 1		ma
TU-KV012 20 50 AM Intelling Score TU-KV012 20 40 AM Intelling Score	Description	10/6/2012 7:03:41 AM-DUT Oxtput (HT+/DR+) c- 10/6/2012 7:03:41 AM-DUT oxtput + to Real Time 10/6/2012 7:03:42 AM-DUT Oxtput (HT-/DR+) co 10/6/2012 7:03:42 AM-DUT Oxtput (HT-/DR+) co	e Scope Iron: RF Switch Channet: Channel 1 nnectad to RF Switch on: Relay D Scope from RF Switch Channet: Channel 1	🕑 Auto Scroll	μ¢
	Description	10/6/2012 7:03:41 AM-OUT Output (HT+/DR+) c 10/6/2012 7:03:41 AM-OUT Output (HT+/DR+) c 10/6/2012 7:03:42 AM-OUT Output (HT+/DR+) co 10/6/2012 7:03:42 AM-OUT Output (HT+/DR+) co 10/6/2012 7:03:45 AM Started arcs, alko	e Scope Iron: RF Switch Channet: Channel 1 nnectad to RF Switch on: Relay D Scope from RF Switch Channet: Channel 1	Auto Scroll	na na
	Description	10/6/2012 7 02-41 AM-DUT Oxtput (HT+/DR+) c 10/6/2012 7 02-41 AM-DUT oxtput = 16 Real Tim 10/6/2012 7 02-44 AM-DUT oxtput = 16 Real Tim 10/6/2012 7 02-44 AM-DUT oxtput = 16 Real Time 10/6/2012 7 02-45 AM-DUT oxtput = 16 Real Time 10/6/2012 7 02-45 AM-indealing signal roucce 10/6/2012 7 02-95 AM-indealing score	e Scope Iron: RF Switch Channet: Channel 1 nnectad to RF Switch on: Relay D Scope from RF Switch Channet: Channel 1	Auto Scroll	Lis .
	Description	10/6/2012 7 02-41 AM-DUT Oxtput (HT+/DR+) c 10/6/2012 7 02-41 AM-DUT oxtput = 16 Real Tim 10/6/2012 7 02-44 AM-DUT oxtput = 16 Real Tim 10/6/2012 7 02-44 AM-DUT oxtput = 16 Real Time 10/6/2012 7 02-45 AM-DUT oxtput = 16 Real Time 10/6/2012 7 02-45 AM-indealing signal roucce 10/6/2012 7 02-95 AM-indealing score	e Scope Iron: RF Switch Channet: Channel 1 nnectad to RF Switch on: Relay D Scope from RF Switch Channet: Channel 1	Auto Scroll)))
Funning : SATA + All Drive PHY-15G-008 UTD 1.4 Tektronix	Description	10/6/2012 7 02-41 AM-DUT Oxtput (HT+/DR+) c 10/6/2012 7 02-41 AM-DUT oxtput = 16 Real Tim 10/6/2012 7 02-44 AM-DUT oxtput = 16 Real Tim 10/6/2012 7 02-44 AM-DUT oxtput = 16 Real Time 10/6/2012 7 02-45 AM-DUT oxtput = 16 Real Time 10/6/2012 7 02-45 AM-indealing signal roucce 10/6/2012 7 02-95 AM-indealing score	e Scope Iron: RF Switch Channet: Channel 1 nnectad to RF Switch on: Relay D Scope from RF Switch Channet: Channel 1	Auto Scroll	<u>р</u> а

icrosoft Excel - phytsg_dpo_Seri	and the second										
de bit per part Fyrnet									G26 2 6.00	contractions	· - 5
N	Barth - WIND - IV-	R. E.	1 11 10 20		19						
									110		2 1
		Arel		1186.00	(M) (==	1000	101.00	Se 1.12	6.431761	M-3-1875	81 · 14
to the German Annual Parks											
418 · × × 4 6											
		c	0	1	P	0	н	1.	3	ĸ	1
HY Result Template Revision :	1243		NOTE For a	1 SGD/S	only pro-		all colu	nn J			
OT TEACHER CARLES OF THE TEACHER	THE SECOND		NOTE For a						GR/s (Well	to tank tales	research and
ate Tested	November S 2007		NUTE Any or							a mo mo	1.0.400.00
est ID			THAT IS HER D	e) 0 001	Variable International	and white	Concession of the second	THE CARE OF	- Wenter		
est to	phytsa_dpa										
								-	1	-	-
Fat	Measurement details	thinks	Pattern	Interface	and the second	Max Here	timer	Recall -	124	Fleoalt -	PUM
, and the second s	PREASON PRODUCTION AND	Outor	Fattern	Rete			margin	LIGHT	Assessmen	3.850/1	Austante
				Tested			- 250	Product		Product	
HYSBI Ostatests #	manumai	20	HETP	155644	1044333	470,2222	6.78		UAN.	562 L14052	
47.02 EnegancyLong Term Stateling	minto mat (No 55C)	10	HETP	310Gb/9 155644	333,2%?	335.987 395	0.19	-	USK	20278280031	PALL
HT-52 TrepencyLong Term Stability	man to man then Status	ppm ppm	HETE	1506rs	:78	250	- 72	-	1000		
	minop mar play \$16C)	1011	Nº 10	19064	350	199	11	-	100		LAAK
	may (mb) (with SSIC)			1006/9		350	3			10.410	19635
HT-00 - Tgrawb Spectrum Modulation Frequency											
	inin tu in ar	346	HETE	15000	20	22	00	_	104	115216	
HY 04 Spread-Spentrum Modulation Deviation			-	2.0004		- 14	40	-	_	1.52.14	1200
(E) (E)	ministrimat	ppm	147125	1058/9	4000		-699		UAK:		
And the second se			and the second second	105b/y	(\$000	0	-600		1207-001	-3375.56	
SG-01 SMeerential Output Visitage	minDLCM, VestUIP; midDLCM, VestAPP;	n Vijed	HETP, METP, LEP.	155564	631	-	20	_	UAK:	810.725	UAK
	undraiting Automati	wypad	HETP, METP, OFTH	1100H	830	100	0.005	-	14K	1426000	- 14K
		1		COLOCULA.	- 3 -	100	0.005			821203462	
		10	LITP.	18066			0.001			a a break a	
		H	The second second second		- 8	4.75	0.005	_	_	320520	-
	marticles.com.views.sPg marticles.com.viewsAPPg	in Vgart mVgart	HETP, METP, LOF	2.563444	420		32	-	-	124.005	CAR.
	requested mitoerty	- mygge	ANTE SALTE	100845		1.0	0.005	-		1	- All
		4			0	325	303.0			0	
		27	1972	3.96204		425	9.60%				
1642 Roof al Tine		1911	HETP		- 2	- 148	3.005	1	-		
NAME PRIME AT LINE	FilteTime Linit Mar 20-80% FalTime Linit Mar 20-80%	10	HEIP	100011	10	272	17.2	-	UNAC UNAC	The second second	
	PileDee Line Mar 20-801	14	HETP	20064		106	8.3			8039763204	
	FatTena Limit Mar 20.00%	10			47	06	1.3			1014562282	
RG-0.2 Differential Skew	manimum	10	HETP	155244	3	20	2		UNUC		
		_	MP1E-	2008/3 1008/3	. 0	20	2		126	2016/2011	PASS
* HAPHY/						41	5.1				

SATA UTD 1.4 TSG/PHY/OOB Measurements

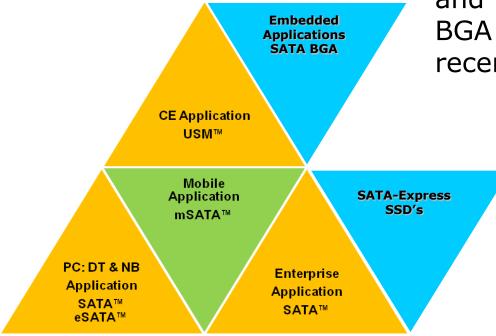
Drive : PHY-TSG-00B SATA Gen 3-UTD 1.4-All

Select	Test Name					
	Informative-df/dt Measurement					
	Informative-Eye diagrams					
	OOB01-OOB Signal Detection Threshold					
	OOB02-UI During OOB Signaling					
	OOB03-COMINIT_RESET and COMWAKE Transmit Burst Length					
	OOB04-COMINIT_RESET Transmit Gap Length					
	OOB05-COMWAKE Transmit Gap Length					
	OOB06-COMWAKE Gap Detection Windows					
	OOB07-COMINIT Gap Detection Windows					
	PHY01-Unit Interval					
	PHY02-Frequency Long Term Stability					
	PHY03-Spread-Spectrum Modulation Frequency					
	PHY04-Spread-Spectrum Modulation Deviation					
	TSG01-Differential Output Voltage-Option 1					
	TSG01-Differential Output Voltage-Option 2					
	TSG02-Rise-Fall Time					
	TSG03-Differential Skew					
	TSG04-AC Common Mode Voltage					
	TSG05-Rise-Fall Imbalance					
	TSG06-Amplitude Imbalance					
	TSG09-TJ at Connector, Clock to Data, fBAUD-500					
	TSG10-DJ at Connector, Clock to Data, fBAUD-500					
	TSG11-TJ at Connector, Clock to Data, fBAUD-500					
	TSG12-DJ at Connector, Clock to Data, fBAUD-500					
	TSG13-Transmit Jitter					
	TSG14-TX Maximum Differential Voltage Amplitude					
	TSG15-TX Minimum Differential Voltage Amplitude					
	TSG16-Tx AC Common Mode Voltage					

SATA Gen 3-UTD 1.4-All	~
SATA Gen 2-UTD 1.2	~
SATA Gen 2-UTD 1.2-All	_
SATA Gen 2-UTD 1.3	_
SATA Gen 2-UTD 1.3-All	
SATA Gen 2-UTD 1.4	=
SATA Gen 2-UTD 1.4-All	
SATA Gen 3-UTD 1.4	_
SATA Gen 3-UTD 1.4-All	~

- Different test program and degrees of regression testing user selectable.
- Debug and diagnostic tools (Informative measurements)
- Updated SATA Gen3 measurements
 - New OOB patterns
 - TSG ECN additions

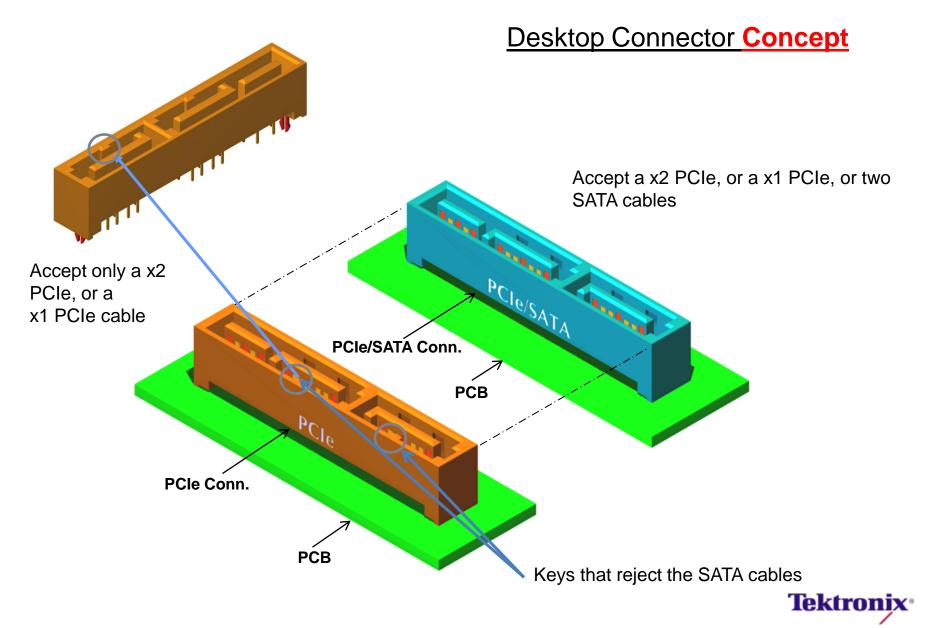
Tektronix

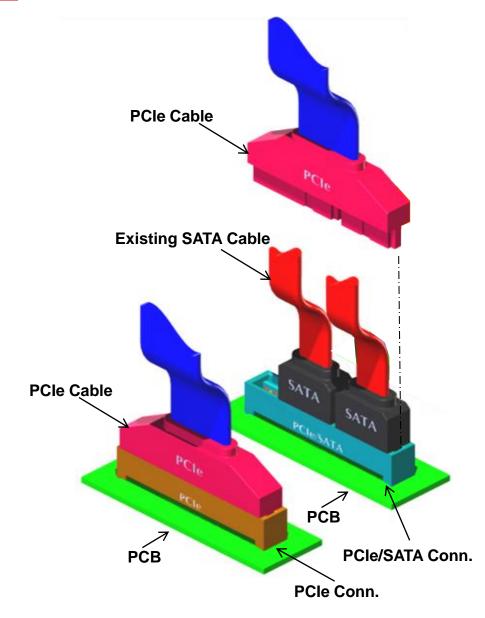

AWG Device State Control

Real Time Scope	DP072004B (GPIB8::1::INSTR)
BIST-L initialization by	Auto
Set scope scale, resolution and sampling rate	Custom Utility Operation without AWG
Set vertical scales automatically	User Defined Batch Script
BIST-L validation required	Always
Number of times AWG is turned ON/OFF for putting DUT in BISTL mode	2
Horizontal scale for PHY-TSG BIST-L acquisition (us/div)	4
Resolution for PHY-TSG BIST-L acquisition (ps/pt)	20
OOB validation required	First time only

- DUT control a significant challenge
 - BIST-L (loopback) <u>required</u> for compliance
- AWG has a successful track record of DUT control
 - Initiates loopback while seamlessly transitioning to Tx/Rx testing
- 3rd party tools available (Drivemaster, serial port control)

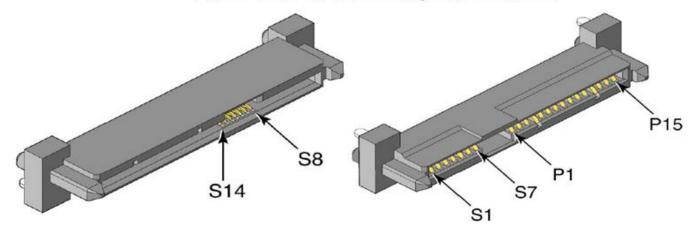
Waveform List X Sequence Force Trigger Force Event All 0 Waveform List X Sequence Force Trigger Force Event All 0 Waveform List X Sequence Force Trigger Force Event All 0 Waveform List X Sequence Force Event All 0 Waveform Name Length Da 1 Gen2 30kHz 62_5sj 10 1 1 Gen2 30kHz 62_5sj 10 1 1 Gen2 30kHz 62_5sj 10 1	utputs
Sampling Rate: 10.000 00 G5/s Status: Stopped Run Mode: Sequence Force Trigger Force Event All 0 Waveform List X	Running :
Sampling Rate: 10.000 000 GS/s Status: Stopped Run Mode: Sequence Trigger Event All U Waveform List X X Sequence Total Time: ??? Current Waveform Name Length Da 1 Gen2 30k12 62,5si 10 1 Y align_32 24Gs 5.12 k 200 3 IDLE:12x 10 1 Gen2 30k12 62,5si 10 Y crs01+_16x.24Gs 61.4 k 20i 3 IDLE:12x 10 1 Gen2 30k12 62,6si 10 1 Gen2 30k12 62,6si 10 1 Gen2 30k12 62,6si 10 1	Running :
User Defined Predefined Image: New York Current Waveform Name Length Da -	
User Defined Predefined Waveform Name Length Da 4a_test-6x 7.68 k 20 *_align_32_24Gs 5.12 k 20 align_32_6x 7.68 k 20 Cros01+_16x.24Gs 1 Gen2 30kHz 62_5sj 10 2 cros01+_16x.24Gs cwke01+_x16_24Gs 1.4 k 20 cwke01+_x16_24Gs 1.5.3 k 20 * cwke01+_x16_24Gs 10.2710_24Gs 101_2_710_24Gs 4.16 k 20 101_2_710_24Gs 4.16 k 20 101_2_710_24Gs 4.16 k 20 101_2_710_24Gs 4.16 k 20 101_2_710_24Gs 1.00 101_2_710_24Gs 1.00	
Waveform Name Length Da 4a_test.6x 7.68 k 200 *_align_32_24Gs 5.12 k 201 align_32_26x 7.68 k 200 *_crs01+_16x.24Gs 10 cwke01+#.46x 23.0 k 201 * cwke01+#.46x 24Gs * sync_256.alz_24Gs 650000 9 sync_256.alz_24Gs 65000 9 sync_256.alz_24Gs 65000 11 * rjrdy32_24Gs 100 * sync_256.alz_24Gs 65000 * sync_256.alz_24Gs 65	
4a_test.6x 7.68 k 200 Mile k 70 Control Mathematical Stress of the s	Go To
Y =align_32_24Gs 5.12 k 20i -align_32_24Gs 5.12 k 20i -align_32-6x 7.68 k 20i Y = crs01+_16x.24Gs 0 0 0LE-12x 10 0.0LE-12x 11 0.0LE-12x 11 0.0LE-12x 11 0.0LE-12x 11 0.0LE-12x 11 0.0LE-12x 11 0.0LE-12x 12 0.0LE-12x 13 0.0LE-12x 14 0.0LE-12x 15 0.0LE-12x 10 0.0LE-12x 10 0.0LE-12x 11 0.0LE-12x	
augn_2_r/103 3/14 3 IDLE-12x 10 -align_32-6x 7.68 k 200 4 cowke01+_x16_24Gs 5 Vcrs01+_16x.24Gs 61.4 k 201 5 0LE-12x 5 cwke01+_x16_24Gs 61.4 k 201 5 0LE-12x 5 cwke01+_x16_24Gs 15.3 k 201 6 D10_2710_24Gs 20 ° cwke01+_x16_24Gs 15.3 k 201 6 D10_2710_24Gs 20 ° cwke01+_x16_24Gs 30.7 k 201 8 -sync_256_al2_24Gs 65000 D10_2_710_6x_1 5.76 k 201 10 -sync_256_al2_24Gs 65000 P10_2710_24Gs 4.16 k 201 11 -t_rdy32_24Gs 100 BLS	
airgin 32-bx 7.08 k 200 * crs01+_f16x-24Gs 61.4 k 201 cwke01+#.6x 23.0 k 200 cwke01+#.6x 23.0 k 200 cwke01+.x16_24Gs 15.3 k 201 cwke01+_x16_24Gs 15.3 k 201 cwke01+_x16_24Gs 30.7 k 201 D10_2_710_6x_1 5.76 k 201 10 -sync_256_al2_24Gs 65000 10 -sync_256_al2_24Gs 65000 10 -sync_256_al2_24Gs 65000 11 -r_rdy32_4Gs 100 12 -r_rdy32_4Gs 100	
© crs01+_16x-24Gs 61.4 k 200 5 IDLE-12x 6 wke01+#.6x 23.0 k 200 6 D10_2710_24Gs 20 cwke01+#.24Gs 15.3 k 200 7 -align 32_24Gs 400 cwke01+ x16_24Gs 30.7 k 200 8 -sync_256_al2_24Gs 66000 D10_2.710.6x_1 5.76 k 201 9 -sync_256_al2_24Gs 65000 D10_2.710_24Gs 4.16 k 201 10 -sync_266_al2_24Gs 65000 D10_2.710_24Gs 4.16 k 201 11 -r_rdy32_24Gs 100 BIS	
cwke01+#.6x 23.0 k 201 6 D10_2710_24Gs 20 cwke01+_24Gs 15.3 k 201 7 -align_32_24Gs 400 vcwke01+_24Gs 30.7 k 201 8 -sync_256_al2_24Gs 66000 D10_2_710_6x_1 5.76 k 201 9 -sync_256_al2_24Gs 66000 10 -sync_256_al2_24Gs 65000 9 -sync_256_al2_24Gs 65000 10 -sync_256_al2_24Gs 65000 10 -sync_256_al2_4Gs 65000 10 -sync_256_al2_24Gs 10 -sync_256_al2_4Gs 65000 BIS	
cwke01+ 24Gs 15.3 k 20 7 -align 32,24Gs 400 ^cwke01+ x16 24Gs 30.7 k 20 8 -sync 256 al2,24Gs 65000 D10_2 710.6x_1 5.76 k 20 9 -sync 256 al2,24Gs 65000 010_2710_24Gs 4.16 k 20 11 -r.rdy32,24Gs 65000 9 -sync 256 al2,24Gs 65000 10 8 9 -sync 256 al2,24Gs 65000 11 -r.rdy32,24Gs 100	
Control + x16 24Gs 30.7 k 200 8 -sync 256 at2 24Gs 65000 D10_2 710.6x_1 5.76 k 201 9 -sync 256 at2 24Gs 65000 D10_2 710.24Gs 4.16 k 201 10 -sync 256 at2 24Gs 65000 V D10_2710_24Gs 4.16 k 201 11 -rdy32 24Gs 65000 U D10_2710_24Gs 4.16 k 201 11 -rdy32 24Gs 100	
Cwke01+ x10_240s 30.7 k 201 9 -sync_256_at2_24Gs 65000 D10_2.710.6x_1 5.76 k 201 10 -sync_256_at2_24Gs 65000 * D10_2710_24Gs 4.16 k 201 11 -r_rdy32_24Gs 100 * 0.0 - 5.0 k1.6 k 201 11 -rgrdy32_24Gs 100	
<u> </u>	
	T 1
Y Gen2 30kHz 62_5sj 1.20 M 20' 12 -align_32_24Gs Y Gen2 5CP 20 4 ferr 552 L 20' 13 -r_rdy32_24Gs 10	ST-L
Con3 ECD 20 1Err 552 k 20r 13 -r_rdy32_24Gs 10	
	iator
Gen3-FCP-2A-Clean 552 k 20 14 -r_ip32_24Gs 2	
	Jence
_HF-32Dword_24Gs 5.12 k 200 18 -X_rdy32-24Gs 20	
HFTP 40.9 k 20' 20 wtm+ 24Gs 20	
IDLE.12x 11.5 k 20 21 -wtm+_24Gs 70 idle-analog_24Gs 16.3 k 200 22 -sync_256_al2_24Gs 200 Vidle-analog_6Cr 24.5 k 200 22 -sync_256_al2_55 7	
HETP Infinite	
Zo RSG03-a-ZA-10MHZ Infinite OL	ress
_MF-32Dword_24Gs 5.12 k 200 26 R SG 03-a-4A-10MHz Infinite	
	terns
-r_ip32-6x 7.68 k 201 28 R SG03-b-4A-33MHz Infinite	
² -r_ok32_24Gs 5.12 k 201 30 Gen3-FCP-2A-Clean Infinite DiaC	nostic
-r ok32-6x 7.68 k 201 31 Gen3-CP-2A-LErr Infinite	nostic
→ INFO 2403 OF 2 FOR A STREET OF A STR	torne
Remote Command:	terns


The SATA Ecosystem: Now


Today, SATA is expanding in specialized low power, compact and high performance areas with BGA and SATA-Express Solutions recently approved by SATA-IO.

Enabling the New SATA Express Ecosystem

Enabling the New SATA Express Ecosystem


Desktop Cables Concept

- SATA devices will coexist with next generation PCIe devices
- SATA cost/performance benefits
- Requires a connector that supports both PCIe and SATA
 - Allows a single motherboard (backplane) connector to support both interfaces
- HDD-compatible form factors to be defined for PCIe devices
 - Enables system-level mechanical compatibility
 - Preserves high-capacity storage

SATA-IO CabCon has been chartered to develop SATA compatible connectors and form factors for PCIe SSD/hybrid drives

Physical Connections

Pinout Table for Host Backplane Connector

Signal List Summary

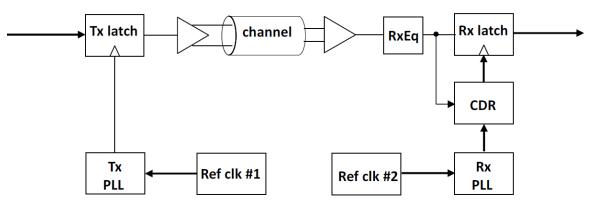
orginal Else Gammary						
Usage	Signals	Contacts				
x2 PCIe muxed with SATA	2*(Tx and Rx pairs) + GND pins	14				
Power	5V and 12V + GND pins	10				
Device Activity	DAS/DSS	1				
Signal/Disable Staggered						
Spinup (optional)						
SATA/PCIe DEVSLP	DEVSLP	1				
PCIe sideband	PERST#	1				
PCIe/SATA Interface	IFDet	1				
Detect						
Reserved	RSVD	1				

Source: SATA Express Specification (Technical Proposal)

Note, additional PCIe Ref Clk pins optional

SATA Express = PCIe PHY Layer

- Tx Test parameters
 - Voltage
 - Package Loss
 - Transmitter Equalization
 - Jitter
- NEW Ref Clock Spec definition
 - Independent Ref Clock model
 - 2nd Order transfer function for SSC harmonics attenuation

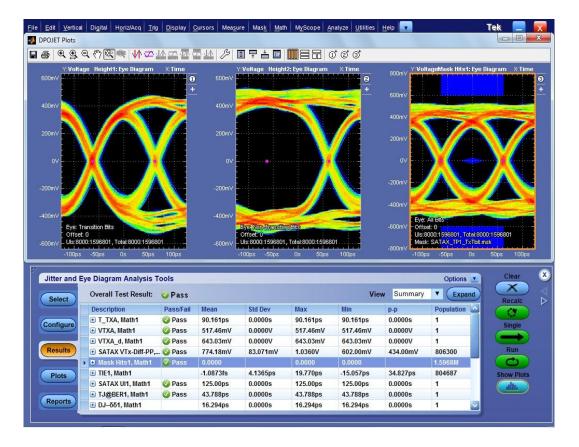

Jitter and	Eye Diagram Analys	is Tools				Clear	8
Select	Measurement T_TXA	Source(s)		Clock Recovery	Method Apply to All* PLL – Custom BW Apply	Recalc	$\nabla \Delta$
Configure	VTXA VTXA_d	Math1	≡	General	PLL Model Damping	Single	
Results	SATAX VTx-Diff-PP Mask Hits1	Math1		Global	Type II Type II Type II Type II Type II	Run	
Plots	TIE1 SATAX UI1	Math1			JTF BW 10MHz	Show Plots	
Reports	TJ@BER1 DJ–δδ1	Math1 Math1			Loop BW = 20.219M Advanced * Copies these clock recovery settings to other measurements		

Tektroni

Clocking Architectures – PCIe vs. SATA

- SATA
 - Supports SSC
 - Embedded clock
- PCIe
 - Three different synchronization methods
 - Forwarded Ref clock
 - Data clocked Ref clock
 - Separate Ref clock
- Client PCIe application

-> no need for "refclk"*


* PCI-SIG proposal under review

Independent Ref clock model for SATA Express

Tektronix Solutions for SATA Express Measurements

- DPOJET-based SATA Express setup (requires option PCE3)
- Support for Base/CEM spec measurements
- Supports all versions of PCI Express and includes SATA Express PLL configurations

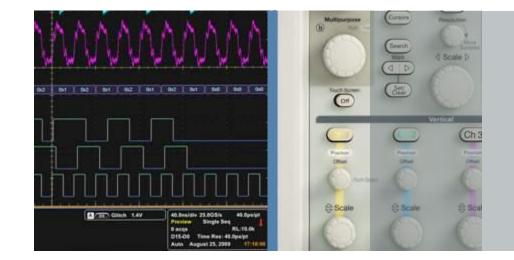
Tektronix

SATA Express Signal Access

- Recommend Luxshare-ICT Dual Port SAS fixtures (SFF-8482)
- Similar dimensions but different pinout
- For device testing use plug fixture (TF-4R21) to mate with SATAe plug
 - Both ports accessible (29 pin)
- For cable testing use receptacle fixture (TF-4P22) to mate with SATAe receptacle
 - Only port A is accessible (22 pin)

SAS Dual Port Plug Test Fixture

SAS Dual Port Receptacle Test Fixture



http://www.luxshare-ict.com/

Thanks!

