
Advanced Measurement for Advanced Technology

http://breakthroughinitiatives.org/

Advanced Measurement for Advanced Technology

http://breakthroughinitiatives.org/

To achieve this, what's the challenge there?

New Material and Nano-technology

PART 4:
Signal, Data
storage/sorting

PART 2:

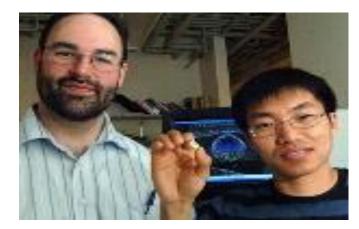
Power semiconductor devices

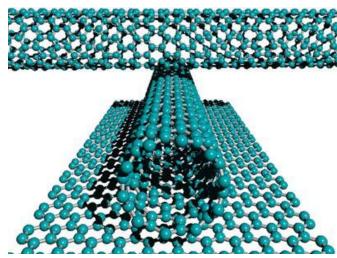
PART 5: ower

management

PART 3:

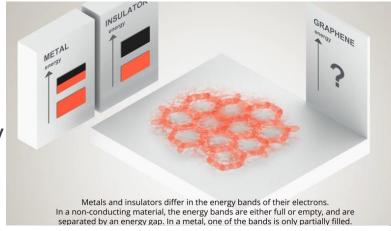
MEMS and Semiconductor Sensors

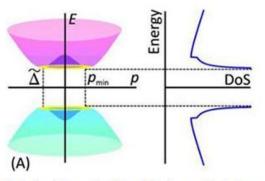




PART 6:
Opto-electronics

Nanoscale Materials & Devices


- Nanotechnology is science and engineering conducted at the nanoscale level
 - 1 to 100 nanometers
- Requires multiple disciplines:
 - Physics, material science, chemistry and measurement system design
- Nanoscale technologies have the potential to improve our quality of life
 - Medical delivery systems & detection
 - Faster electronics
 - Cheaper energy
 - Bio- and chemical detection systems


Nanoscale Materials & Devices

- Graphene:
 - 100 X stronger than the strongest steel
 - conducts heat and electricity efficiently
 - nearly transparent
 - And so on....

By Dexter Johnson Posted 19 May 2016 | 20:00 GMT

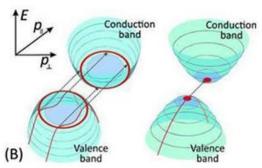
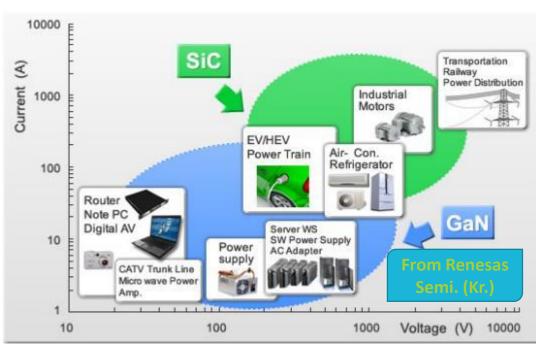
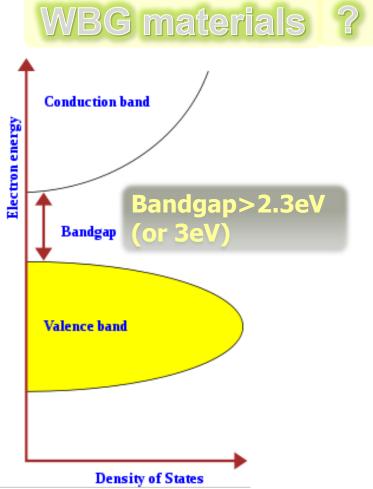


Illustration: Moscow Institute of Physics and Technology

Researchers at the Moscow
Institute of Physics and
Technology (MIPT) new tunnel
transistor based on bilayer
graphene


- reduce its power consumption
- increase in processors' clock speeds(two orders of magnitude)


http://spectrum.ieee.org/nanoclast/semiconductors/materials/bilayer-graphene-could-usher-in-new-tunnél-transistor

Wideband Gap material: GaN, SiC

Wide bandgap materials are often utilized in applications in which high-temperature operation is important

WBG material: GaN, SiC

- Greater emphasis on commercialization of devices made from wide bandgap materials, especially SiC and GaN
 - Benefits of SiC and GaN:
 - Faster switching speed than Si → smaller passive components → smaller size and lower weight → higher efficiency
 - Lower switching losses than Si (especially lower recovery losses in diodes)
 - Lower leakage currents → better switch
 - Higher power density
 - Pack more power into smaller areas → higher efficiency
 - Higher operating temperature (especially SiC) → able to handle higher power with fewer parametric changes and without requiring cooling systems as extensive as silicon-based electronics → smaller size and higher efficiency

What is a Source Measure Unit (SMU)?

- Simultaneously source and measure voltage and/or current
- Perform resistance measurements

Precision DMM

True Current Source

Source Measure Unit (SMU)

Precision Power Supply

Electronic Load

Keithley SMU Family - Instruments

2400 SourceMeter SMU Instruments

- Family of single-channel models with I-V capability from 1100V to 100nV and 10.5A pulse to 1pA
- Smart alternative to separate Power Supplies and Digital Multimeters (DMMs)
- Convenient DMM-like user interface

2450 & 2460 Touchscreen SourceMeter SMU Instruments

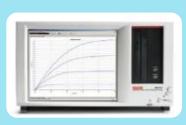
Industry-first 5" color capacitive touchscreen GUI Test up to 200V and 1A (**2450**) or up to 100 V and 7A (**2460**) Sub pA and sub μ V resolution

2600B System SourceMeter SMU Instruments

- Family of dual- or single-channel models with I-V capability from 10A pulse to 0.1fA and 200V to 100nV
- TSP® (Test Script Processor) technology for best-in-class throughput and lowest cost of test
- Browser-based GUI enables testing on any PC from anywhere in the world

2650A Hi-Power System SourceMeter SMU Instruments

- Source and measure up to 3kV or 50A pulse, with best-in-class low current resolution
- Up to 2000W pulse or 200W DC power
- Optimized for characterizing and testing high power semiconductors, electronics, and materials



Keithley SMU Family - Systems

Parametric Curve Tracers

- Power device characterization up to 3kV and 100A including high quality instruments, cables, test fixturing, and software
- ACS Basic Edition software features real-time curve tracing and full parametric characterization modes
- Easily re-configurable to meet changing test needs

4200-SCS Semiconductor Parameter Analyzer

- An integrated analyzer for complete and precise characterization: I-V, C-V, Ultra-Fast I-V, and Pulse measurements
- Characterize devices, materials, and semiconductor processes with sub-fA resolution
- Easy-to-use Windows® GUI, modular architecture, and over 450 user-modifiable test applications simplify complex measurement

S530 Parametric Test Systems

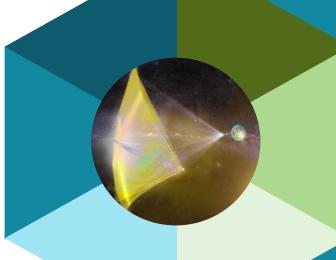
- High-speed semiconductor parametric testing with low cost of ownership
- Designed for production and lab environments managing a broad range of devices and product wafers
- Proven SMU instrumentation technology ensures high measurement accuracy and repeatability

S500 Parametric Test Systems

- Highly configurable and scalable SMU instrument-based system
- Semiconductor device testing along with Automated Characterization Suite (ACS) at the device, wafer, or cassette level
- Ideal for SMU-per-pin Wafer Level Reliability (WLR) testing, high speed parallel test, die sort, and Process Control Monitoring (PCM)

PART 1:

New Material and Nano-technology



PART 4:

Signal, Data storage/sorting

PART 2:

Power semiconductor devices

PART 5:

Power management

PART 3:

MEMS and Semiconductor Sensors

PART 6: Opto-electronics

Power semiconductor device:

- A power semiconductor device is a semiconductor device used as a switch or rectifier in power electronics; a switch-mode power supply is an example. Such a device is also called a power device or, when used in an integrated circuit, a power IC.
- Typical device : GTO / GTR / power MOSFET / IGBT

Characterization of power semiconductor device:

Characterization	Test Category	Devices and Parameters		
		IGBT	Power MOSFET	GTR
Static	ON-state	V _{CE-} I _C V _{GE-} I _C	$V_{DS-}I_{D}$ VTH $V_{GS-}I_{D}$ $R_{DS(on)}$	V _{CE-} I _C Gummel plot
	OFF-state	I _{CEO} I _{CES} BV _{CES} BV _{CEO} BV _{CBS}	I _{GSS} I _{DSS} BV _{DSS} BV _{DG}	I _{CEO} I _{CES} BV _{CES} BV _{CEO}
Dynamic	Charge	Q_G	Q_{G}	
	Capacitance	C_{iss} (a.k.a. C_{ies}) C_{oss} (a.k.a. C_{oes}) C_{rss} (a.k.a. C_{res})	C _{iss} (a.k.a. C _{ies}) C _{oss} (a.k.a. C _{oes}) C _{rss} (a.k.a. C _{res})	NA
Switching	Timing	$\begin{array}{c} T_{d(on)} \\ T_{r} \\ T_{d(off)} \\ T_{f} \end{array}$	$\begin{array}{c} T_{d(on)} \\ T_{r} \\ T_{d(off)} \\ T_{f} \end{array}$	T _s T _f

Static Characterization directly descripts DC performance and the quality of the devices, and the test is easy to perform.

Keithley Power Semi Test Solutions

MEET A WIDE RANGE OF CURRENT-VOLTAGE TESTING NEEDS

Up to 100A pulse for ON-State tests

Up to 3kV for OFF-State tests

Up to 10kV for breakdown voltage testing

Complete solution for ON-State, Off-State and C-V tests

NEW!! Up to 7A DC, 10A pulse for interactive ON-State testing

Keithley Power Semi Test Solutions

CONFIGURABLE SOLUTIONS

Single- or Dual-Channel SMU Instruments

COMPLETE SOLUTIONS

Parametric Curve Tracers

Options available:

- Software: ACS Basic Edition with built-in test libraries and real-time and parametric test modes
- Accessories: Test fixtures, protection modules, high voltage triaxial cables

A complete bench top system that includes a variety of SMU instruments, cables, test fixtures, and software for characterizing power devices

Power Semi Test Accessories

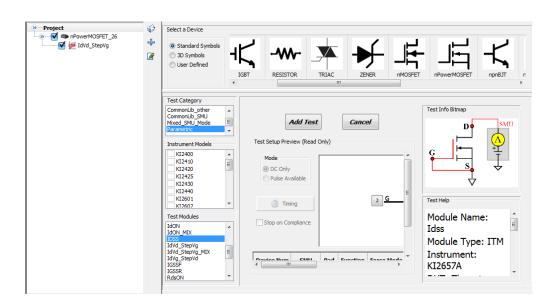
SUPPORT A VARIETY OF MEASUREMENT TYPES AND SIMPLIFY

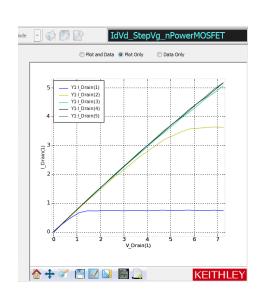
SYSTEM INTEGRATION

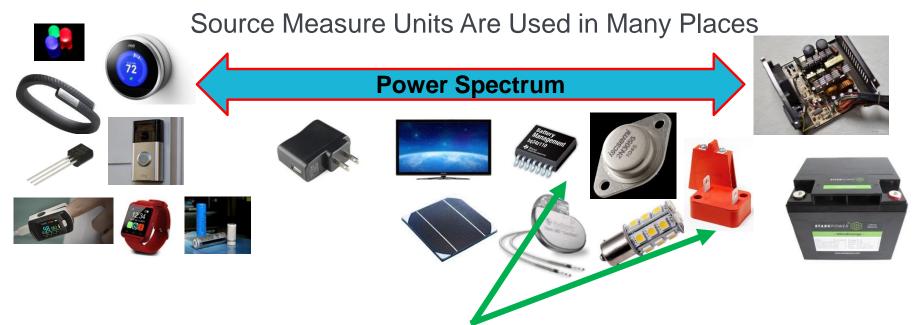
Specialized Cabling

High Power Test Fixtures

Overvoltage Protection Modules


High Voltage Bias Tee kits

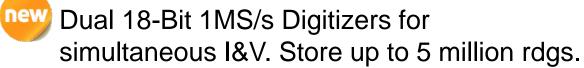

Power Semi Test Software


ACS BASIC, ACS

- ACS Software is the "glue" that brings all of the instruments together to make a solution
 - Supports Series 2400, 2600, and 4200 SMUs
- Includes hundreds of built-in device test libraries

For designers/researchers of lighting, power management, power conversion & control circuits and related devices

- Power transistor forward characteristics
- Battery Load Curves
- Charger simulation
- Dynamic load simulation
- 7A DC, 10A pulsed
- 2460/2461 SMU



Model 2461 SourceMeter SMU

KEITHLEY CONTINUES TO INVEST IN ITS LINE OF GRAPHICAL SOURCE MEASURE UNITS

- 10A @ 100V 1000W Pulse version of the Model 2460
- 1000W Pulse Source/Sink, 100W DC Source/Sink
- Pulses as fast as 150μS. Dedicated pulse screen and commands

 Succeeds the Model 2430, 2420-C, 2425-C, 2430-C, 2440-C SourceMeter SMUs.
 Opportunity to upsell to the 2461.

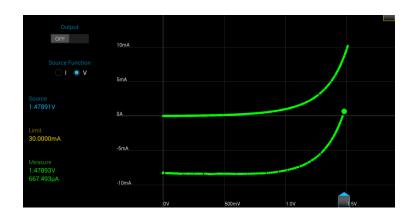
IVy Android/iOS App – Visualize, Interact, Share For Series 2600B SourceMeter SMU Instruments

Visualize Instant Responses

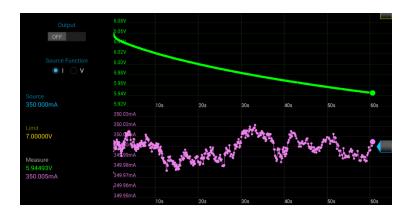
 Swipe to change the source value and instantly see your device's response

Interact for Better Understanding

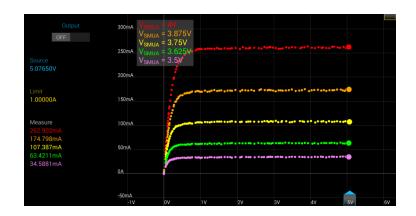
Pinch and zoom to gain deeper insight into your device's performance


Share Your Results

Share screen shots and CSV files instantly using built-in Android tools



IVy Application Examples


DUT comparison

LED Vf vs. Time

Diode Reverse Bias

MOSFET Family of Curves

PART 1: **New Material and**

Nano-technology

PART 4:

Signal, Data storage/sorting

PART 2:

Power semiconductor devices

PART 5:

Power management

PART 3:
MEMS and
Semiconductor
Sensors

PART 6: Opto-electronics

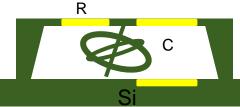
MEMS Background

MEMS (Micro-electro-mechanical Systems)

The technology of fabricating Micro mechanical structures (devices), Usually in Silicon wafers

Sensors: turn nonelectro-signal into electrical signal

Widely Used


Stress

- Pressure/Force
- **♦** Light
- Vibration/ acoustic wave
- Fluidics
- Temperature

•••

Actuator: Micromotor moving or controlling a mechanism or system

Stress induced R, C...value change

Measurable electrical signal

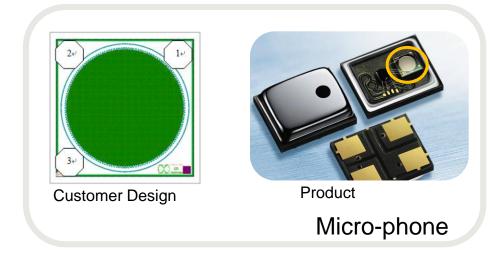
Structures: delicate structures for special use (silicon pump, e.g.)

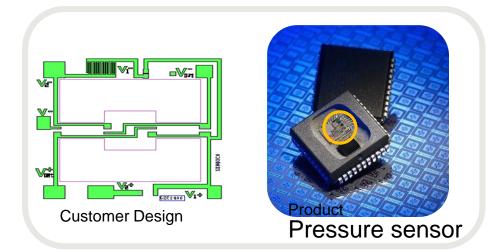
- Classical application:
 - Accelerometers, MEMS gyroscopes (used in Wii, smart phone...)
 - Silicon pressure sensors (car tire, blood pressure)
 - Bio-MEMS (biosensor, chemosensor)
 - Optical switching (for data communication)

0

MEMS (Micro-electromechanical Systems)

Keithley Solution for MEMS device test

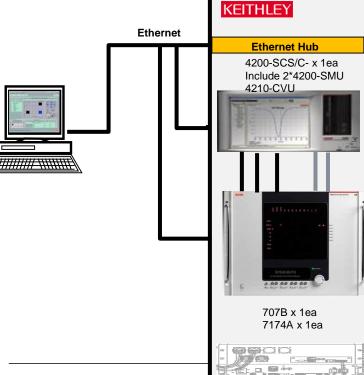

- Customer application:
 - Test with sensor structure for its intrinsic characteristic without stress (pressure, vibration etc.)
 - To verify if fabricating process are within control.
 - Micro-phone:

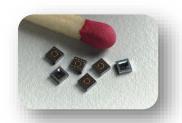

Voice → airflow → Capacitance change in MEMS sensor → electrical signal --- C test

Pressure sensor:

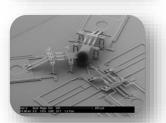
Pressure → R change in MEMS sensor → electrical signal --- R test

- Test requirement:
 - |-V:
 - R test: Force V measure I
 - V<10V</p>
 - R~KΩ
 - C-V
 - Capacitance test
 - f=100KHz DCV<30V
 - C~10pF (0.1pF accu.)
 - wafer level with auto-prober




Keithley Test Solution:

- Configuration:
 - 4200-SCS/C x 1ea4210-CVU*1
 - 4200-SMU*2

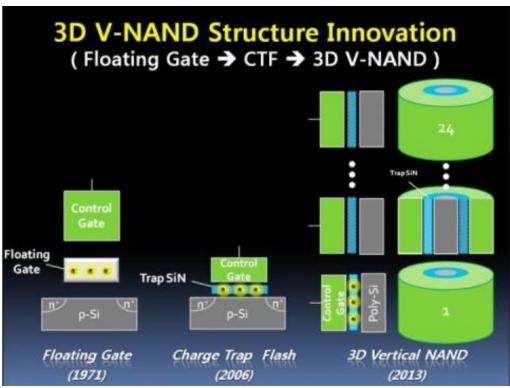

4200-PA*1

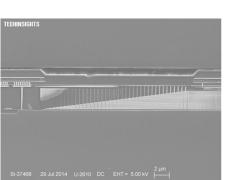
707B x 1ea7174A x 1ea

New Material and Nano-technology

PART 4:
Signal, Data
storage/sorting

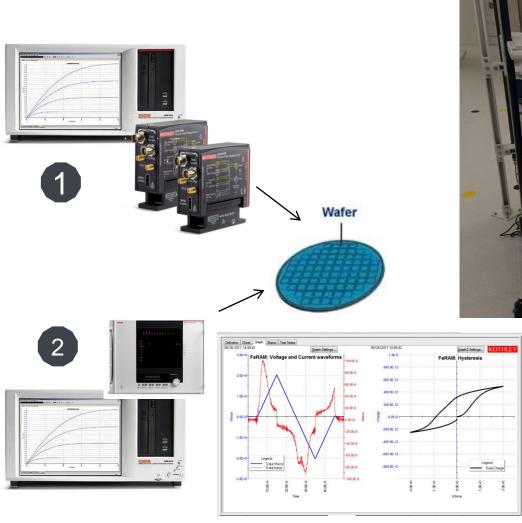
PART 2:
Power
semiconductor
devices

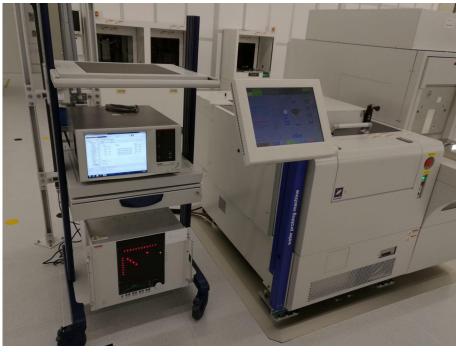

PART 3:
MEMS and
Semiconductor
Sensors

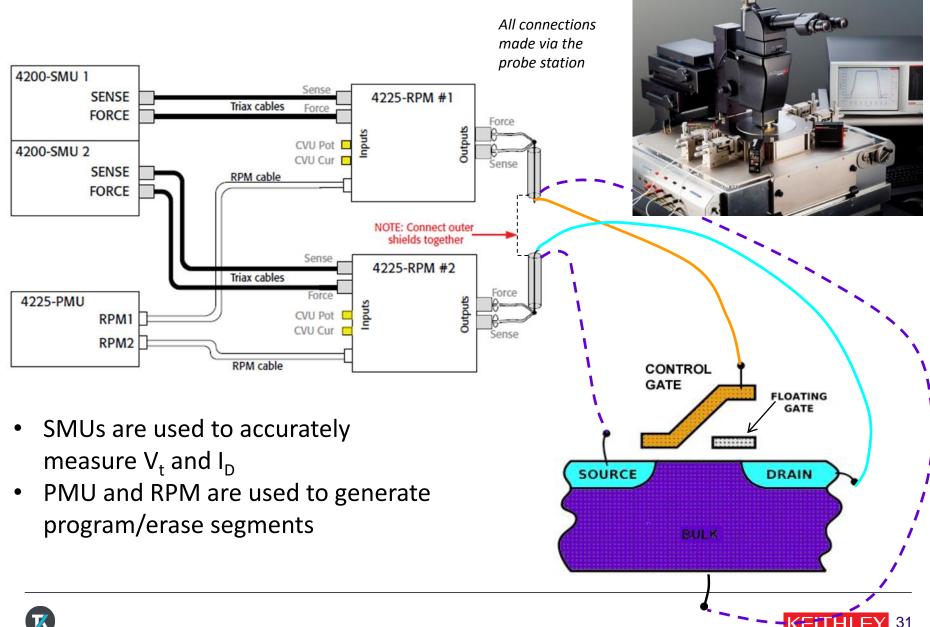

PART 6:
Opto-electronics

New Flash Memory, bigger and faster.

3D Nand Flash tech. makes the massive data store more easier and faster.



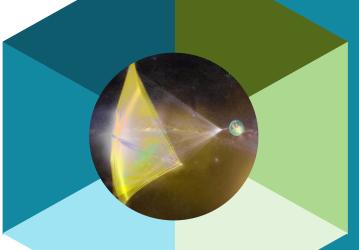



Non-volatile Memory Product Solutions

Configuration of Solution2 for 3D Nand Flash reliability test in one of our customer.

Example of Flash Memory Cell Test Setup

PART 1:



PART 4:

Signal, Data storage/sorting

PART 2: New power devices

PART 5: Power management

PART 3:

MEMS and **Semiconductor Sensors**

PART 6: Optical energy and device

More power and wisely use them

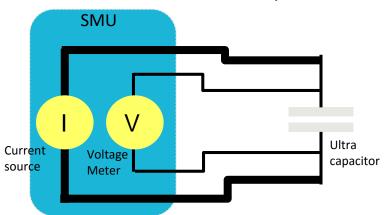
- Increase the Capacity of battery
 - Ultra capacitor: Need of Public transportation
 - Electrochemistry research for new battery
- Decrease the power consumption.
 - More accurate Power measurement for different mode.

"The limitation to the number of sensors and amount of generated data is the battery life of the Wearable."

Battery capacity Power consumption control Measure Power Management...is crucial in wearable technology because poor ment power management translates into battery drain...Battery life has a direct impact on a product's real usefulness... Characterizing a usage profile is a nontrivial design activity. Mitch Maiman,

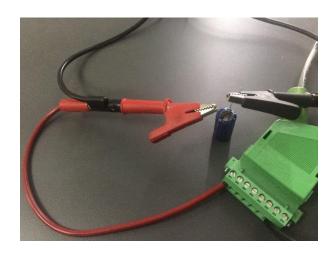
president and cofounder of Intelligent Product Solutions

Credit Suisse


Using SMU for Ultra-capacitor test

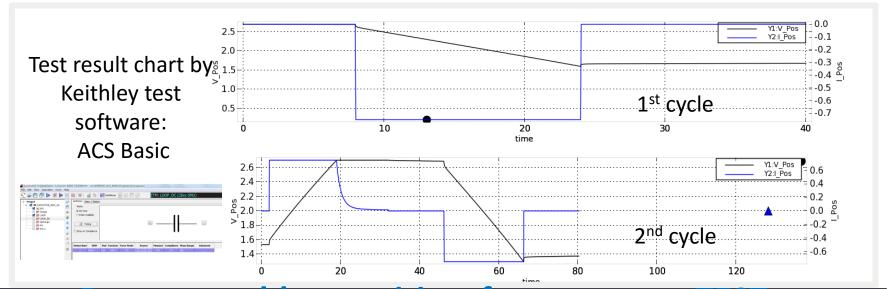
- Test Instrument:
 - Keithley 2612/36B* for C<=20F
 - Keithley 2651A for C>=350F

- Connection:
 - 4-wires connection (remote sense)



- Test Sample:
 - KAMCAP 10F Urate=2.7V
 - Maxwell 350F/3000F Urate=2.7V

^{*} The test instrument can be anyone of SMUs family as long as the current can fulfill the requirement.


Experiment – Result

for 10F capacitor with 2636B

- Test result:
 - 2 cycles are tested

Cch =
$$I2 \times (t2 - t1) / (V2 - V1)$$

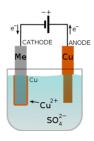
= 10.93 F
Cdch = $I5 \times (t5 - t4) / (V5 - V4)$
= 10.88 F

A Tektronix Company

Electrochemistry Applications

Basic Lab Research

Electrode Development


Electrolyte Research

Organic Semi

Nanomaterials

Electrodeposition

Dye-Sensitized Solar Cells

Health Care Sensors

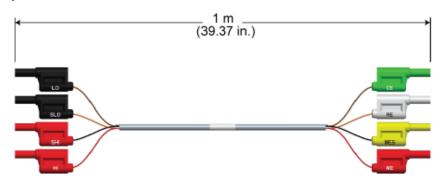
Corrosion Resistance

Batteries

Fuel Cells

Supercapacitors

Electrochemistry is the cornerstone for many new products such as: batteries, glucose sensors, solar cells, coatings, medical devices etc.


Involving Research, Design, Characterization, Performance Testing

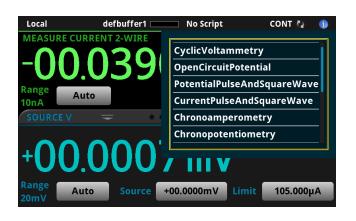
Keithley's Electrochemistry test solution

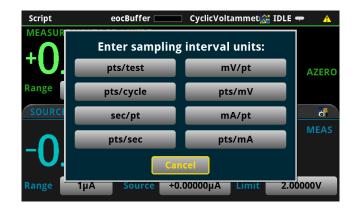
- 2450-EC: 1A, 200V, 20W
 Potentiostat/Galvanostat
- 2460-EC: 7A, 100V, 100W
 Potentiostat/Galvanostat
- Includes:
 - Potentiostat (SMU)
 - Cable for 2,3 or 4 electrodes
 - Built-in software with test techniques
 - Full documentation

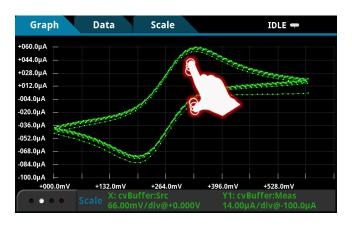
Keithley SMU for Electrochemistry Applications

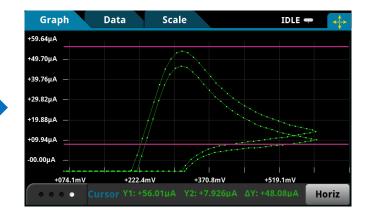
GROWING LIBRARY OF TECHNIQUES

- Cyclic Voltammetry
- Linear Sweep Voltammetry
- Open Circuit Potential
- Potential Pulse and Square
 Wave with Current Measure
- Current Pulse and Square Wave with Voltage Measure
- Chronoamperometry
- Chronopotentiometry

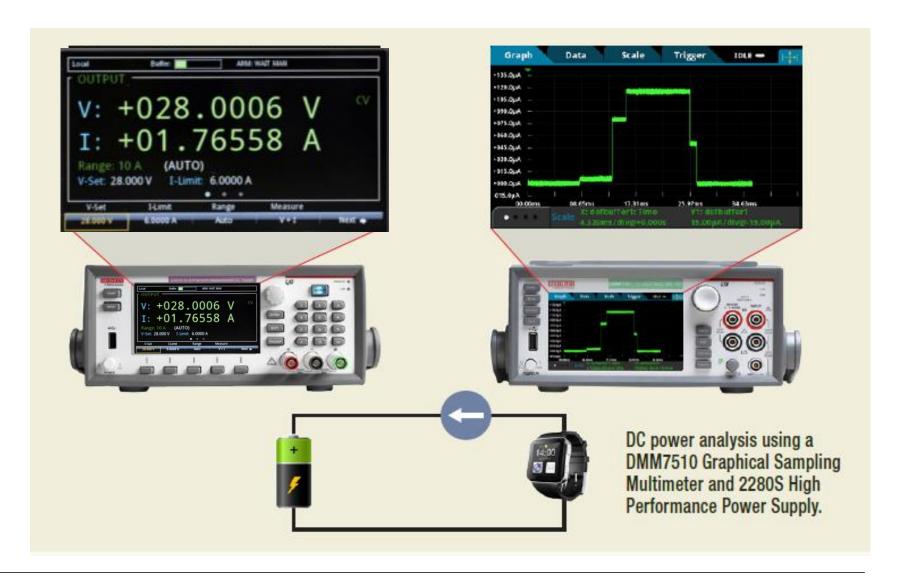



Distinctive differences


SIMPLICITY


Simplify learning and test set-up

 Configure test, run experiment, generate voltammogram plot, analyze results



Solution for low power consumption measurement: DMM7510 + 2280S

Example Application

More Detailed Power Consumption Info with DMM7510

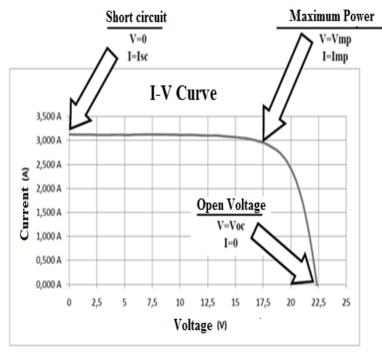
New Material and Nano-technology

PART 4:
Signal, Data
storage/sorting

PART 2:
Power
semiconductor
devices

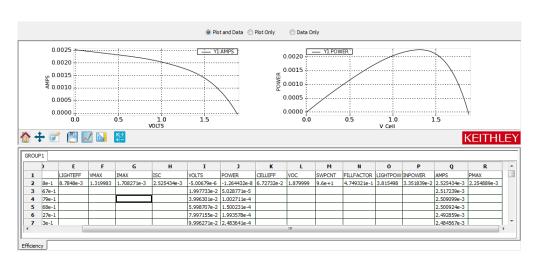
PART 3:

MEMS and Semiconductor Sensors



PART 6:
Opto-electronics

Optical energy: Solar cell


Keithley provides solution from single cell research test and mass production test.

Solar cell test solution:

 Based on SMUs' powerful capability of I-V characterization, solar cell test engineers are able to test the cell or cells more efficiently along with ACS Basic solar cell suit.

		Max.Cur.	Max.Volt.	Min.Cur/Volt.	Software
SolarCell-24	2450	±1.05A DC	±210V	10fA/10nV	ACS Basic
101,00450 17,00000A	2460	±7A DC	±100V	10fA/10nV	
SolarCell-26	2601B	±3A DC/ ±10A Pulse	±40V	100fA/100nV	ACS Basic
	2611B	±1.5A DC/ ±10A Pulse	±200V	100fA/100nV	
	2635B	±1.5A DC/ ±10A Pulse	±200V	10fA/10nV	
	2651A	±20A DC/ ±50A Pulse	±40V	0.1fA/100nV	

符号	参数名称			
Isc	短路电流			
Voc	开路电压			
Pmax	最大功率点			
Imax	最大功率点处的电流			
Vmax	最大功率点处的电压			
FF	填充因子			
η	转换效率			
Rsh	并联电阻			
Rs	串联电阻			
L. Ber Ak J. M. Marin In Andr.				

太阳能电池测试参数

Optical Module Components in Optical Communication

- Optical communication (a.k.a. optical telecommunication) is communication at a distance using light to carry information.
- Electrical signal (message) → optical signal
 → Electrical signal (information)
- "sender" and "receiver"
 - Laser diode
 - Photo detector



Keithley solution for Optical Module Components test

 Final DC test, Process control DC test, Coc parallel test, FA test for TOSA/ROSA, Tuneable, Coherent etc., telecom, Datacom products

PC (GPIB/LAN) Optical 2602/2612/2636 Spectrum **Dual-C SMUs** analyzer 2602/2612/2636 Optical power **Dual-C SMUs** meter GPIB/LAN cable etc. Source 2602/2612/2636 DUT **Dual-C SMUs Fiber** <u>Fixture</u>

2510

TEC

26** SMU:

- 4-quadrant voltage/current source and measure instruments
- 10A pulse to 0.1fA and 200V to 100nV
- TSP (Test Script Processing) technology

6485/6487 Picoammeter/Source

- •10fA (10x10-15A) sensitivity
- •<200µV voltage burden
- •Bipolar 500V floating source
- Displays resistance

Display: wearable, touchable,

Display

LCD: Liquid crystal display

ITO

LCD

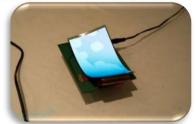
OLED

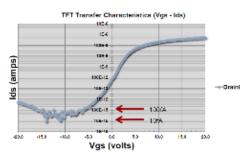
- TFT: Thing film Transistor
- liquid crystal molecular
- Backlight (light source)
- OLED: Organic Light Emitting Diode
 - "Sandwich" structure: organic semiconductor between two electrodes
 - Each pixel is LED/LEDs

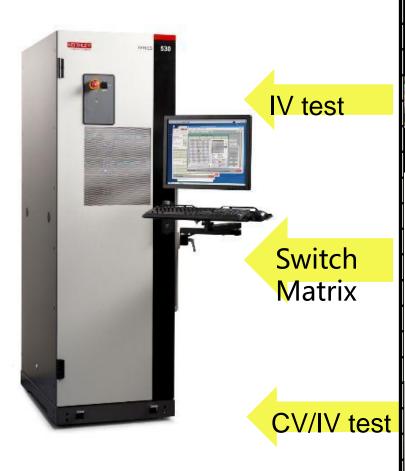
LTPS

AMOLED

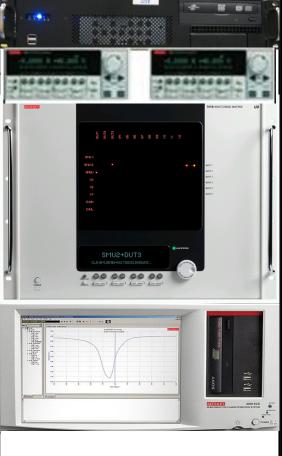
IGZO


PMOLED





Keithley solution for Display



S500/S530:

S500/S530 system for TEG test in Display manufacture

New Material and Nano-technology

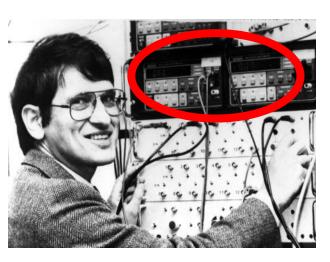
PART 4:
Signal, Data
storage/sorting

Power semiconductor devices

PART 5:

Power management

PART 3:


MEMS and Semiconductor Sensors

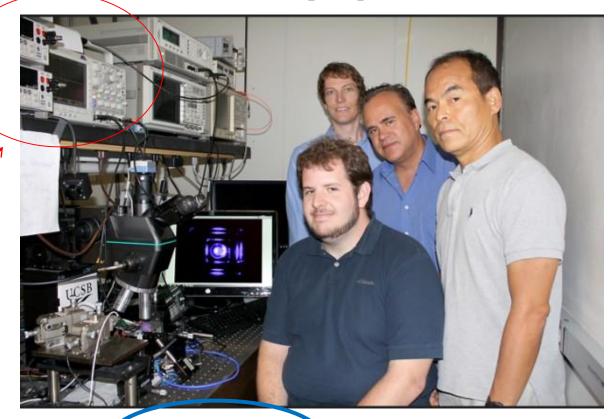
PART 6:
Opto-electronics

Researchers use Our Sensitive Instruments to Make Great Scientific Discoveries

Dr. Klaus von Klitzing 1985 Nobel Prize in Physics Quantized Hall effect

Dr. K. Alexander Muller and Dr. J. Georg Bednorz 1987 Nobel Prize in Physics Superconductivity in ceramic materials

Dr. Konstantin Novoselov 2010 Nobel Prize in Physics Graphene (two dimensional material)



And They Need All Our of Equipment

Typical University/ Research Lab

- SourceMeters
- Scopes
- Power Supplies
- DMMs
- Other Equipment

2014 Physics Nobel Laureate for the development of the **Blue LED**

Shuji Nakamura) and his research group at UCSB.

Credit: UC Santa Barbara

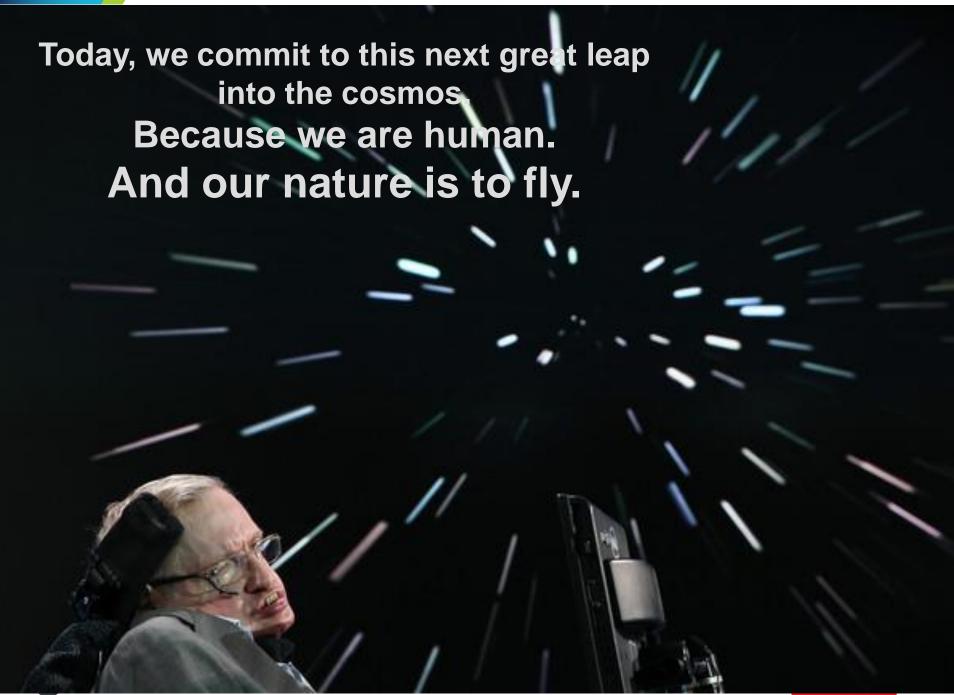
Team that invented Violet Nonpolar **Vertical-Cavity Laser Technology**

Need More Sensitivity: The Most World's Most Sensitive Meter

Sensitivity:

0.000000000000001A (10⁻¹⁸A, 1aA)

= 6.241 electrons/second


Note: Q of $1e^{-} = 1.6X10^{-19}$ C $1A = 6.2 \times 10^{18}$ electron/second

Our Key Advantage:

□ the world's most sensitive current measurement instrument

Te//ronix®