PCI Express 3.0 Testing Approaches for PHY and Protocol Layers
Agenda

• Introduction to PCI Express 3.0
 – Trends and Challenges

• Physical Layer Testing Overview
 – Transmitter Design & Validation
 – Transmitter Compliance
 – Receiver & Summary of Tools for PCIe PHY Testing

• Protocol
 – Planning probe access
 – Time to confidence
 – Information density
• Applications

• Summary
PCI Express 3.0 Technology Timeline

<table>
<thead>
<tr>
<th>Year</th>
<th>2009</th>
<th>2010</th>
<th>2011</th>
<th>2012</th>
</tr>
</thead>
<tbody>
<tr>
<td>Base Spec</td>
<td>0.5 Release</td>
<td>0.7 Release</td>
<td>0.71 Release</td>
<td></td>
</tr>
<tr>
<td>CEM Spec</td>
<td>0.5 Release</td>
<td>0.7 Draft</td>
<td></td>
<td>0.7 Draft</td>
</tr>
<tr>
<td>Test Spec</td>
<td></td>
<td></td>
<td>0.3 Release</td>
<td></td>
</tr>
</tbody>
</table>

- **Silicon Phase**
 - Product Development
 - CEM Spec Development

- **Integration Phase**
 - PCI-SIG Tool Development

- **Deployment Phase**

Presentation Content based on
.9 Base Specification Draft and
.7 CEM Specification Draft

Tektronix Involved in PCIe EWG, CEM, and Serial Enabling Working Groups
PCI Express 3.0
Trends and Implications

Industry/Technology Trends
- Data transfer rates continue to increase: 2.5 → 5 → 8 GT/s
- 128b/130b encoding
- Backwards interoperability
- Energy efficiency (Lower mW/Gb/s)

Implications
- Greater system complexity increases the engineering challenge
- Higher data rate signals have less margin – requires de-embedding
- Crosstalk, skew, noise and attenuation more significant
- Link training and power management continue to be the most difficult challenges
High Speed Serial Test Challenges

System Integration
Digital Validation & Debug

Data Link Analysis
Digital validation & Debug

Signal Integrity
Eye and Jitter Analysis
Characterization & Validation

Receiver Test
Direct Synthesis

Compliance Testing

Transaction Layer

Data Link Layer

Logical Sub-block

Physical Layer

Electrical Sub-block

Complete Validation, Debug, Compliance Solutions!!
Agenda

• Introduction to PCI Express 3.0
 – Trends and Challenges

• Physical Layer Testing Overview
 – Transmitter Design & Validation
 – Transmitter Compliance
 – Receiver & Summary of Tools for PCIe PHY Testing

• Protocol
 – Planning probe access
 – Time to confidence
 – Information density

• Applications

• Summary
What’s New for PCI Express Gen 3.0

- Double bandwidth (8GT/s with 128b/130b) while using traditional circuit board (FR-4)
- Requires de-embedding measurements to Tx pins, specifies breakout and replica channels.
- Large channel losses require Tx and Rx equalization
 - Tx equalization- Defined pre-shoot and de-emphasis Presets
 - Rx equalization– behavioral CTLE & DFE
- New jitter separation algorithms
Transmitter Design & Validation

PCI Express
PCle 3.0 Base Spec Transmitter Voltage and Jitter Measurements

- Base Spec Measurements defined at the pins of the transmitter
- New Jitter Measurements are defined for PCle 3.0

Table 4-3: 8.0 GT/s Tx Voltage and Jitter Parameters

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter Description</th>
<th>Value</th>
<th>Units</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>$V_{TX:8:NO-EC}$</td>
<td>Full swing Tx voltage with no TxEq</td>
<td>1200 (max)</td>
<td>mVPP</td>
<td>Note 1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>800 (min)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$V_{TX:8:NO-EC}$</td>
<td>Reduced swing Tx voltage with no TxEq</td>
<td>1200 (max)</td>
<td>mVPP</td>
<td>Note 1</td>
</tr>
<tr>
<td>$V_{TX:8:EOS-DE}$</td>
<td>Min swing during 8EOS for full swing</td>
<td>250 (min)</td>
<td>mVPP</td>
<td>Note 2</td>
</tr>
<tr>
<td>$V_{TX:8:EOS-RE}$</td>
<td>Min swing during 8EOS for reduced swing</td>
<td>232 (min)</td>
<td>mVPP</td>
<td>Note 2</td>
</tr>
<tr>
<td>$I_{TX:UJ}$</td>
<td>Tx uncorrelated total jitter</td>
<td>31.25 (max)</td>
<td>ps PP @ 10$^{-12}$</td>
<td></td>
</tr>
<tr>
<td>$I_{TX:UD:J}$</td>
<td>Tx uncorrelated deterministic jitter</td>
<td>12 (max)</td>
<td>ps PP</td>
<td></td>
</tr>
<tr>
<td>$I_{TX:PM:J}$</td>
<td>Total uncorrelated PWJ</td>
<td>24 (max)</td>
<td>ps PP @ 10$^{-12}$</td>
<td>Notes 3,4</td>
</tr>
<tr>
<td>$T_{TX:PP:U:J}$</td>
<td>Deterministic JDD uncorrelated PWJ</td>
<td>10 (max)</td>
<td>ps PP</td>
<td>Note 3,4</td>
</tr>
<tr>
<td>$I_{TX:CD}$</td>
<td>Data dependent jitter</td>
<td>15 (max)</td>
<td>ps PP</td>
<td>Note 4</td>
</tr>
<tr>
<td>$P_{21:TX}$</td>
<td>Pseudo package loss</td>
<td>-4.0 (min)</td>
<td>dB</td>
<td>Note 5</td>
</tr>
<tr>
<td>$V_{TX:BOOST-PA}$</td>
<td>Tx boost ratio for full swing</td>
<td>8.0 (min)</td>
<td>dB</td>
<td>Assumes ±1.5 dB tolerance from diagonal elements in Figure 4-6.</td>
</tr>
<tr>
<td>$V_{TX:BOOST-PA}$</td>
<td>Tx boost ratio for reduced swing</td>
<td>2.5 (min)</td>
<td>dB</td>
<td>Assumes ±1.0 dB tolerance from diagonal elements in Figure 4-6.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>4.5 (max)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$E_{TX:COEFF:RES}$</td>
<td>Tx coefficient resolution</td>
<td>1/24 (max)</td>
<td>N/A</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>1/83 (min)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
New PCIe 3.0 Jitter Measurements

- Uncorrelated Total Jitter and Uncorrelated Deterministic Jitter
 - Uncorrelated jitter is not mitigated by Tx or Rx equalization and represents timing margin that cannot be recovered with equalization.
 - Data Dependent Jitter is determined by averaging from a repeated compliance pattern
 - Uncorrelated Jitter derived after removing Data Dependent Jitter
 - Construct the bathtub curve in Q scale
 - Estimate Total Jitter with Q Scale extrapolation

Figure 4-10: Relation Between Data Edge PDFs and Recovered Data Clock

Figure 4-11: Derivation of $T_{TX,UTJ}$ and $T_{TX,UDJDD}$
New PCIe 3.0 Jitter Measurements (cont’d)

- Uncorrelated Total and Deterministic PWJ
 - Long lossy channels cause single pulses to be attenuated
 - ISI contributions need to be removed to determine PWJ
 - Calculate the edge to edge Jitter
 - Construct the bathtub curve in Q scale
 - Estimate Total Jitter with Q Scale extrapolation
Transmitter Characterization

- Tx measurements referenced to pins but can only access TP1
- Extract replica channel transfer function (S-Parameter)
- Acquire signals at TP1 then mathematically remove channel effects
De-embedding

Removal of signal impairment caused by selected known part of the circuit. Measurement setup often known – i.e., a fixture.

- When impacts does the test fixture add?
- What does the signal look like at the Tx, without the fixture?

Measure the Fixture (with TDR, VNA, etc) and and capture the network’s parameters (e.g. as a S parameter touchstone file)

In the oscilloscope Import the S parameter file, view the waveform as it was at the source.
Probing and Signal Access

- Typically used when a signal needs to be measured and no SMA or RF connector is available

- Debug
 - Require a quick way to check that signals are present
 - Solder tips can be used for a more permanent connection for troubleshooting

- Validation and Compliance Testing
 - Chip to chip buses
Tektronix’ Solutions for PCIe 3.0 Base Spec Testing

Available Today

- Channel Embedding / De-embedding support with (Serial Data Link Analysis) Software
- TX Voltage $V_{TX-FS-NO-EQ}$ and $V_{TX-RS-NO-EQ}$ Measurements available today in DPOJET
- 20Ghz Real-Time Oscilloscope and Probes for Fifth Harmonic Capture

Tektronix DPOJ ET PCIe 3.0 SW
Transmitter Compliance
PCI Express
CEM Specification Add-In Card Transmitter Testing

- TX measurements based on one preset value (assumption is the best preset will be used for compliance)
- Measurements taken after RX Equalization using the Compliance Base Board
- Voltage Measurements on Both Transition and Non-Transition Bits at a BER of 10^{-6}
- Eye Width Measurements taken with a sample of at least 10^6 UI and Eye opening is computed at 10^{-6}

<table>
<thead>
<tr>
<th>Preset</th>
<th>Preset Number</th>
<th>de-emph (dB)</th>
<th>preshoot (dB)</th>
<th>c_1</th>
<th>c_{-1}</th>
<th>Va</th>
<th>Vb</th>
<th>Vc</th>
</tr>
</thead>
<tbody>
<tr>
<td>P4</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.000</td>
<td>0.000</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
</tr>
<tr>
<td>P1</td>
<td>0.0</td>
<td>-3.5 ±1 dB</td>
<td>0.0</td>
<td>-0.167</td>
<td>-0.166</td>
<td>0.0</td>
<td>1.00</td>
<td>0.666</td>
</tr>
<tr>
<td>P8</td>
<td>3.5 ±1 dB</td>
<td>0.0</td>
<td>-0.125</td>
<td>0.000</td>
<td>0.000</td>
<td>0.0</td>
<td>0.0</td>
<td>0.668</td>
</tr>
<tr>
<td>P7</td>
<td>3.5 ±1 dB</td>
<td>-3.5 ±1 dB</td>
<td>-0.200</td>
<td>0.000</td>
<td>0.000</td>
<td>0.0</td>
<td>0.0</td>
<td>0.750</td>
</tr>
<tr>
<td>P5</td>
<td>1.9 ±1 dB</td>
<td>0.0</td>
<td>-0.200</td>
<td>0.000</td>
<td>0.000</td>
<td>0.0</td>
<td>0.0</td>
<td>0.800</td>
</tr>
<tr>
<td>P6</td>
<td>2.5 ±1 dB</td>
<td>0.0</td>
<td>-0.100</td>
<td>0.000</td>
<td>0.000</td>
<td>0.0</td>
<td>0.0</td>
<td>0.750</td>
</tr>
<tr>
<td>P3</td>
<td>0.0</td>
<td>-2.5 ±1 dB</td>
<td>0.000</td>
<td>-0.125</td>
<td>-0.125</td>
<td>0.0</td>
<td>0.0</td>
<td>1.000</td>
</tr>
<tr>
<td>P2</td>
<td>0.0</td>
<td>-4.4 ±1.5 dB</td>
<td>0.000</td>
<td>-0.200</td>
<td>-0.200</td>
<td>0.0</td>
<td>0.0</td>
<td>1.000</td>
</tr>
<tr>
<td>P10</td>
<td>0.0</td>
<td>-9.5 ± 1.5 dB</td>
<td>0.000</td>
<td>-0.333</td>
<td>-0.333</td>
<td>0.0</td>
<td>0.0</td>
<td>1.000</td>
</tr>
</tbody>
</table>

Table 4-13: Add-in Card Transmitter Path Compliance Eye Requirements at 8 GT/s
CEM Specification System Transmitter Testing

- Same methodology as Add-In Card Testing, but uses the dual port method (clock and data)
- Measurements taken after RX Equalization using the Compliance Load Board
- Voltage Measurements on Both Transition and Non-Transition Bits at a BER of 10^{-6}
- Eye Width Measurements taken with a sample of at least 10^6 UI and Eye opening is computed at 10^{-6}

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Min</th>
<th>Max</th>
<th>Unit</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>V_{TXS}</td>
<td>21</td>
<td>1200</td>
<td>mV</td>
<td>Notes 1, 2, 4</td>
</tr>
<tr>
<td>$V_{TXS,0}$</td>
<td>21</td>
<td>1200</td>
<td>mV</td>
<td>Notes 1, 2, 4</td>
</tr>
<tr>
<td>T_{TXS}</td>
<td>37.5</td>
<td></td>
<td>ps</td>
<td>Notes 1, 3, 4</td>
</tr>
</tbody>
</table>
Receiver Equalization

- PCIe Gen 3.0 uses Transmitter De-emphasis plus RX CTLE and Dfe
- What would the signal look like inside the receiver after equalization?

- Link analysis with Continuous Time Linear Equalizer (CTLE) or Decision Feedback (DFE) Equalizers
- Three DFE modes
 - Coefficients values adapted based on measured data-
 - Auto adapt taps
 - Coefficient values adapted based on existing taps-
 - Adapt from current taps
 - Do not adapt
- *Slicer controls and training sequence support*
Tektronix’ Solutions for PCIe 3.0 CEM Testing

Available Today

- Receiver Equalization support for CTLE and DFE with SDLA (Serial Data Link Analysis) Software
- Measurements available today in DPOJET
Summary of Tektronix Tools for PCIe Testing

TDR/TDT/IConnect for Serial Data Network Analysis
- 50 GHz TDR/TDT system and S-Parameter measurements, highly accurate impedance and loss measurements
- Up to 1M record length

Real-Time Oscilloscope and Analysis Tools
- Transmitter Validation, Debug, Compliance, and Receiver Calibration
- “Complete Link” – channel embedding/de-embedding, equalization (CTLE/DFE) with SDLA
- CEM and Base Spec Measurements with DPOJET and TekExpress
- TriMode Differential probes – 20GHz to the probe tip

Receiver Stress Generation
- Flexibility to support all signal impairments required for jitter tolerance testing
- Model real-world complexities of SSC profiles to avoid system interoperability issues
Digital Validation And Debug

Logic layer validation

Design > Verification > Compliance Test

Digital Validation And Debug

System Integration
Digital Validation & Debug

Data Link Analysis
Digital validation & Debug

Signal Integrity
Eye and Jitter Analysis
Characterization & Validation

Receiver Test
Direct Synthesis

Compliance Testing

Serial Data Network & Link Analysis

Transaction Layer

Data Link Layer

Physical Layer

Logical Sub-block

Electrical Sub-block

Tx + path + Rx

Tecktronix Innovation Forum 2010
Agenda

• Introduction to PCI Express 3.0
 – Trends and Challenges

• Physical Layer Testing Overview
 – Transmitter Design & Validation
 – Transmitter Compliance
 – Receiver & Summary of Tools for PCIe PHY Testing

• Protocol
 – Planning probe access
 – Time to confidence
 – Information density
• Applications

• Summary
Testing Challenges with PCI Express 3.0

Transaction Layer
- Creates Request/Completion Transactions
- Messaging
- TLP Flow Control

Data Link Layer
- Flow control information
- Data Integrity, Error Checking/Correction
- Calculates/Check TLP Sequence Number
- Calculate/Check CR

Physical Layer – Logical Sub Block
- Link Initialization and Training
- Distribution of packet information over multiple lanes
- Power management and link power state transitions

Physical Layer – Electrical Sub Block
- Transmitter Signal Quality and Ref Clock Testing
- Receiver Testing
- Interconnect Testing
- PLL Loop BW
Challenges Selecting Tools for PCI Express 3.0

- Planning probe access
 - Accessing PCIe3 signals
 - Assessing probing impact
 - Probing flexibility

- Time to confidence
 - Automating setup
 - Recovery options
 - Powerful triggering
 - Wide acquisition window

- Information density
 - Four (4) different data visualizations that provide views dedicated to different types of investigations:
 - Summary statistics window
 - Transaction window
 - Listing window
 - Waveform window

- Applications
 - Transaction Window – Intro
 - Transaction Window – Normal Traffic
 - Transaction Window – Transaction Error
 - Transaction Window – Physical Layer
 - Summary Profile Window
Challenges Selecting Tools for PCI Express 3.0

• Planning probe access
 – How access PCIe3 signals?
 • Is there a probe design guide available showing a variety of probing access?
 • Does it include mechanical KOV (Keep Out Volume) info?
 • Are PCB CAD symbols available for their midbus footprints?
 • Is probing available for legacy PCIe2 midbus footprints?
 • Is there a probe available that I can solder-down as a last resort?
 – How assess the probing impact?
 • How is the PCIe3 signal recovered without breaking the link?
 • What is the maximum PCIe3 channel length supported?
 • Are electrical load models of all probes available for computer simulation?
 – How flexible is the probing?
 • How long are the probe cables?
 • Can I reconfigure my PCIe3 probe channels if there are layout errors?
Primary Debug Challenges When Implementing PCIe 3.0

Probing Access
- Midbus vs interposer vs solder-down
- Need to compensate for Tx de-emphasis
- Need to compensate for channel loss
- Need to compensate for reflections

Link training
- Multi-lane systems: x1, x4, x8, x16
- Dynamic speed negotiations:
 - 2.5 GTs → 5 GTs → 8 GTs
 - 2.5 GTs → 8 GTs
- Dynamic link width changes:
 - x16 → x8 → x4 → x1

Active State Power Management (ASPM)
- Power Management: Electrical Idle Entry and Exit for power savings (L0 → L0s → L0)
- Dynamic link width and link speed changes depending on data bandwidth requirements

Total System Visibility
- Critical cross bus dependencies increase with speed
- Flow Control
- Time-correlated visibility across multiple buses
- Signal access across the entire system

Link training and power management continue to be the most difficult challenges!
Challenges Selecting Tools for PCI Express 3.0

- Planning probe access
 - Accessing PCIe3 signals
 - Assessing probing impact
 - Probing flexibility
- Time to confidence
 - Automating setup
 - Recovery options
 - Powerful triggering
 - Wide acquisition window
- Information density
 - Four (4) different data visualizations that provide views dedicated to different types of investigations:
 - Summary statistics window
 - Transaction window
 - Listing window
 - Waveform window
- Applications
 - Transaction Window – Intro
 - Transaction Window – Normal Traffic
 - Transaction Window – Transaction Error
 - Transaction Window – Physical Layer
 - Summary Profile Window
Challenges Selecting Tools for PCI Express 3.0

- **Time to confidence**
 - Does the analyzer automatically configure?
 - Are there real-time statistics that show bus utilization, link width, etc. so that I can get an overall indication of the link health?
 - Does the GUI show the health of each lane?
 - Are there front-panel LEDs that show me the status of the link?
 - What options do I have if I can’t get the analyzer to automatically configure?
 - Is there an option to use my oscilloscope so that I can see whether my signal meets the input requirements or whether the probe is inoperable?
PCIe3 Setup Window

Additional key hardware settings (filtering, triggering) easily accessed

Auto-training, auto-tracking as well as manual modes

Configuration screen reflects front-panel LED lane status

Module “wires” itself automatically based on observing signals yet allows user to adjust wiring

Additional key hardware settings (filtering, triggering) easily accessed

Auto-training, auto-tracking as well as manual modes

Configuration screen reflects front-panel LED lane status

Module “wires” itself automatically based on observing signals yet allows user to adjust wiring
Challenges Selecting Tools for PCI Express 3.0

- Planning probe access
 - Accessing PCIe3 signals
 - Assessing probing impact
 - Probing flexibility

- Time to confidence
 - Automating setup
 - Recovery options
 - Powerful triggering
 - Wide acquisition window

- Information density
 - Four (4) different data visualizations that provide views dedicated to different types of investigations:
 - Summary statistics window
 - Transaction window
 - Listing window
 - Waveform window

- Applications
 - Transaction Window – Intro
 - Transaction Window – Normal Traffic
 - Transaction Window – Transaction Error
 - Transaction Window – Physical Layer
 - Summary Profile Window
Challenges Selecting Tools for PCI Express 3.0

• Information density
 – How powerful is the triggering?
 • Can I trigger on ordered sets or packet types?
 • Can I trigger on errors, e.g., loss of framing, illegal sync characters?
 – How wide is the acquisition time window?
 • Can I control what gets stored?
 • How fast can I access and move around within the acquisition record?
 – What information do each of the data windows provide?
 • **Summary Profile** (Statistics) - Acquisition summary statistics based view of protocol elements (distribution of protocol elements across acquisition)
 • **Transaction** - *Link* based behavior of protocol elements (transactions, packets, fields, ordered sets)
 • **Listing** - *Lane* based behavior of protocol elements (symbols, tokens, ordered sets, DLLPs, TLPs)
 • **Waveform** - *Time* based view of the data on each lane
 – Can I correlate data from my PCIe3 bus with other buses (e.g., DDR3) and see it all on a single display?
PCIe3 Trigger Window

Packet level triggering
8 states
8 packet recognizers
4 symbol sequence recognizers
4 counter/timers
4 event flags
Real-time filtering

Pre-defined trigger templates (trigger on any field within packet)
Summary Profile Window (1/2)

"At a glance" review of sparklines (divides acqmem into 100 slices or centiles) provides key information such as health and behavior of bus.

- LTSSM view
- Real-time statistics view (utilizes module acquisition HW)
- Region markers
- 1st occurrence hyperlink
- Each protocol element represented with its statistics
- Trace elements view
- Summary statistics
- 1 or more Links

<table>
<thead>
<tr>
<th>Protocol Element</th>
<th>In Viewfinder</th>
<th>In Total</th>
<th>Overview</th>
</tr>
</thead>
<tbody>
<tr>
<td>TLPs</td>
<td>Up 1264 Dn 1254</td>
<td>Up 9270 Dn 10621</td>
<td></td>
</tr>
<tr>
<td>MRd</td>
<td>Up 342 Dn 47</td>
<td>Up 433 Dn 532</td>
<td></td>
</tr>
<tr>
<td>MWr</td>
<td>Up 87 Dn 146</td>
<td>Up 1426 Dn 876</td>
<td></td>
</tr>
<tr>
<td>J/ORD</td>
<td>Up 490 Dn 346</td>
<td>Up 4956 Dn 4567</td>
<td></td>
</tr>
<tr>
<td>J/OWin</td>
<td>Up 213 Dn 250</td>
<td>Up 2250 Dn 2412</td>
<td></td>
</tr>
</tbody>
</table>
Visually see training occur by recognizing patterns. For example, can see electrical idle (gap in SKP) followed by training (TS1 & TS2).
Transaction Window (1/3)

Transaction stitching shows packets participating in transaction – or incomplete transactions as errors – mouse over shows time – arrowheads/squares filled or not based upon completion.

- **Toolbar**
 - (Search, filter, display management)

- **Status bar & access to “Summary Profile Window”**

- **BEV**
 - (Bird’s Eye View)

- **Config Links**

- **Flow control credit tracking**

- **Packet pane to view fields (can simultaneously open multiple packets)**

- **Each row of the Packet View pane represents a single packet**

- **PHY layer info**
 - (shows sub-packet info such as ordered sets – view in more detail in Listing Window)
Transaction Window (2/3)

- **ToolBar** (Search, filter, display management)
- **Status bar** & access to “Summary Profile Window”
- **PHY layer info** (shows sub-packet info such as ordered sets – view in more detail in Listing Window)
- **Config Links**
- **BEV** (Bird’s Eye View)
- **Color-coding** to distinguish normal traffic from error conditions
- **Flow control credit tracking**
- **Packet pane to view fields** (can simultaneously open multiple packets)

Transaction stitching shows packets participating in transaction.
Listing Window

![Listing Window](image-url)

Packet & Symbol View (disassembly of lane data on each link including TLPs, DLLPs, ordered sets and symbols)

Table Example

<table>
<thead>
<tr>
<th>Packet Details</th>
<th>Sample 1</th>
<th>Sample 2</th>
<th>Sample 3</th>
<th>Sample 4</th>
<th>Sample 5</th>
<th>Sample 6</th>
<th>Sample 7</th>
<th>Sample 8</th>
<th>Sample 9</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lane ID</td>
<td>Link No. 1, 2</td>
<td>Link No. 3, 4</td>
<td>Link No. 5, 6</td>
<td>Link No. 7, 8</td>
<td>Link No. 9, 10</td>
<td>Link No. 11, 12</td>
<td>Link No. 13, 14</td>
<td>Link No. 15, 16</td>
<td>Link No. 17, 18</td>
</tr>
<tr>
<td>Data / Ctrl ID</td>
<td>1, 2, 3, 4</td>
<td>5, 6, 7, 8</td>
<td>9, 10, 11, 12</td>
<td>13, 14, 15, 16</td>
<td>17, 18, 19, 20</td>
<td>21, 22, 23, 24</td>
<td>25, 26, 27, 28</td>
<td>29, 30, 31, 32</td>
<td>33, 34, 35, 36</td>
</tr>
<tr>
<td>Data / Ctrl ID</td>
<td>37, 38, 39</td>
<td>40, 41, 42</td>
<td>43, 44, 45</td>
<td>46, 47, 48</td>
<td>49, 50, 51</td>
<td>52, 53, 54</td>
<td>55, 56, 57</td>
<td>58, 59, 60</td>
<td>61, 62, 63</td>
</tr>
<tr>
<td>Data / Ctrl ID</td>
<td>64, 65, 66</td>
<td>67, 68, 69</td>
<td>70, 71, 72</td>
<td>73, 74, 75</td>
<td>76, 77, 78</td>
<td>79, 80, 81</td>
<td>82, 83, 84</td>
<td>85, 86, 87</td>
<td>88, 89, 90</td>
</tr>
</tbody>
</table>

Measurements | Trigger
Waveform Window

Waveform symbolic decode (lane alignment disabled for accurate time correlation)
Challenges Selecting Tools for PCI Express 3.0

• Planning probe access
 • Accessing PCIe3 signals
 • Assessing probing impact
 • Probing flexibility
• Time to confidence
 • Automating setup
 • Recovery options
 • Powerful triggering
 • Wide acquisition window
• Information density
 • Four (4) different data visualizations that provide views dedicated to different types of investigations:
 • Summary statistics window
 • Transaction window
 • Listing window
 • Waveform window
• Applications
 • Transaction Window – Intro
 • Transaction Window – Normal Traffic
 • Transaction Window – Transaction Error
 • Transaction Window – Physical Layer
 • Summary Profile Window
PCI Express 3.0 Acquisition Solutions

- 8.0 GTs, 5GTs, and 2.5GTs acquisition rates for PCIe3/2/1
- Sync to L0s within 4 FTS PCIe3 packets or 12 FTS PCIe2 packets
- Automatic configuration of link training speed changes and link width
 - Track 2.5 GTs to 5.0 GTs to 8.0 GTs data rate changes without dropping parts of transactions or critical packets
 - Dynamically track changes in link width
 - Front-panel LEDs that show link rate and link status for both Upstream/Downstream links
- Powerful trigger state machine spans all layers of the protocol
 - 8 states
 - 8 packet recognizers
 - 4 symbol sequence recognizers
 - 4 counter/timers
 - 4 event flags
 - Conditional storage
- 8 GB memory/module (16 GB memory, x16 link) with 160 Msymbols/lane record length
- Two acquisition modules available:
 - 16 differential inputs, x8 (2 required for x16)
 - 8 differential inputs, x4
Tektronix PCIe3 Probes – With Active Equalization

Slot Interposer Probes
- Available in x16, x8, x4, x1 link widths
- Probe cover
- Bracket for SUT end point card provides mechanical stabilization and reliable connection
- 6’ probe cable
- Ships in antistatic, foam-lined, plastic case

Midbus Probes
- Available in x8 or x4 link widths (2 for x16)
- Rugged probe head with contacts contained in retention module
- Retention module securely attaches to PCB (0.031" to 0.250") using back mounting plate with screws
- Midbus probe also available for legacy PCIe2 x16 midbus footprint
- 6’ probe cable
- Ships in antistatic, foam-lined, plastic case

Solder-down Probes
- High-performance solder-down probing of one (1) PCIe3 differential pair
- Supports 8 GT/s
- Compatible with P7500 Series TriMode probing leadsets that can be shared with oscilloscope
- 6’ probe cable
- Ships in antistatic, foam-lined, plastic case
Midbus footprint (PCB land pattern) support

- **TLA7SAxx PCIe3 Module**
 - P67SA16 x8 midbus probe
 - P67SA08 x4 midbus probe

- **TLA7Sxx PCIe2 Module**
 - P6716 x8 midbus probe
 - P6708 x4 midbus probe

5 GT/s

- **P67SA16G2 PCIe Gen2 midbus probe head**
 - P67SAxx Series PCIe Gen3 midbus probe with 16 diff inputs

8 GT/s

5 GT/s
TLA Mainframe Solutions

- **TLA7012** 2-module mainframe
 - Shown with 2 TLA7SA16 modules for x16 PCIe3 link
 - Mainframe with integrated 15” display and PC controller
 - Connects to PC via GbE for running TLA Application Software

- **TLA7016** 6-module mainframe
 - Shown with 2 TLA7SA16 modules for x16 PCIe3 link
 - Mainframe with GbE controller
 - Connects to PC via GbE for running TLA Application Software
 - Up to 8 frames interconnected via TekLink

- **TLA7016** 6-module mainframe
 - Shown with 2 TLA7SA16 modules for x16 PCIe3 link & 4 TLA7BB4 modules for 2 channels DDR3-1600
PCI Express Test Summary

- Tektronix is heavily involved in PCI Express Standards Development
 - Electrical Working Group (EWG) for Base Specification Development
 - Card Electromechanical Group (CEM) for CEM Specification Development
 - Serial Enabling Group (SEG) for Compliance Program
- PCI Express 3.0 specification is at 0.7 (.9 draft)
 - Expect Rev 0.9 spec. in Q2 2010
- Physical layer testing
 - De-embedding important for accurate measurements
 - Minimum 12 GHz bandwidth scope for validation
 - DPOJET for measurement automation and test reporting
 - SDLA for measurement-based link analysis
- Protocol validation and debug
 - TLA7000 series mainframes and TLA7SAxx serial acquisition modules
 - Flexible probing and triggering
 - Data visualization
 - Cross-bus analysis
Proven Expertise in High Speed Serial Data Design & Test

High-Speed Serial Data Test Solutions

PCIe 3.0 & 2.0 Digital Validation & Debug

- System Integration
 - Digital Validation & Debug
- Data Link Analysis
 - Digital validation & Debug
- Receiver Test
 - Margin Testing
- Compliance Test

PCIe 3.0 & 2.0 Physical Layer Testing

- Signal Integrity
 - Eye and Jitter Analysis
 - Characterization & Validation
- Serial Data Network & Link Analysis

Most Complete Serial Data Test Coverage