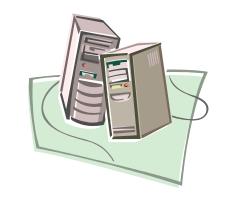
B-4

Ethernet / USB2.0インタフェースの評価手法

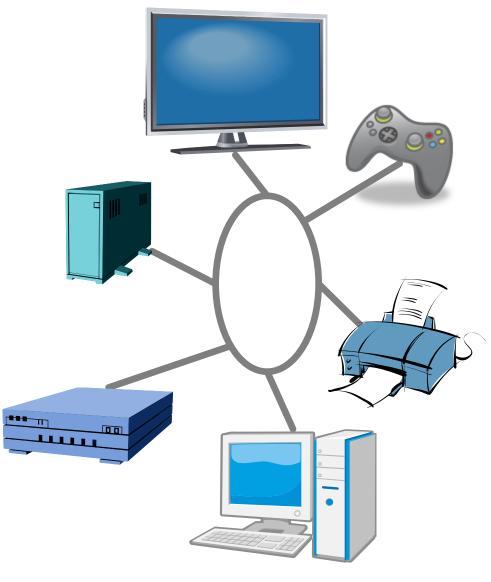
脇本 雄太

はじめに



今日のデジタル・コンシューマ市場の動向

- PC及びインターネットの普及
 - 各家庭で高速インターネットに接続が可能に
 - ADSLからFTTHへ
- 地上デジタル放送開始
 - 高画質映像データ
- タブレット端末、スマートフォンの普及
 - ユビキタス



市場の要求

- データの共有
 - ネットワークの構築
- 容易な接続
 - 面倒な設定なしで簡単に接続
- 高速データ通信
 - 大容量データの取り扱い
- 双方向通信サービス
 - Video on Demand

デジタル・コンシューマ市場で使用されている 主なデジタル・インタフェース

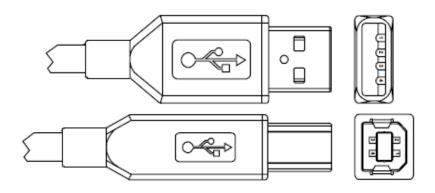
- USB
 - 元々はPCのインタフェース
 - 周辺機器との接続
- LAN
 - Ethernet
 - 接続が容易で安価なツイストペア線を使用した規格が普及
- HDMI
 - 映像、音声信号の伝送
 - 最新の規格ではEthernet接続も可能
- IEEE1394(FireWire, i.LINK)
 - デジタル・ビデオのインタフェースとして普及

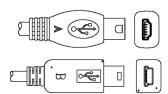
規格概要

USBの歴史

- 1995年:Intelによって仕様公開
- 1996年1月:USB-IFによってUSB1.0規格を発表
 - Compaq Computer, Digital, IBM, Intel, Microsoft, NEC
- 1998年9月:電気的仕様をより詳細に規格化しUSB1.1へ
- 2000年4月:USB2.0規格を発表
 - Hewlett-Packard、Lucent Technologies、Philipsが新たに参加
- 2001年12月:On-The-Go Supplement Revision1.0を発表
- 2008年11月:USB3.0仕様公開
- PCと周辺機器を接続する標準的なインタフェースの1つ
- 現在ではほとんどのPCに標準で装備
- PC用途に限らずデジタル・コンシューマ分野にも広がる

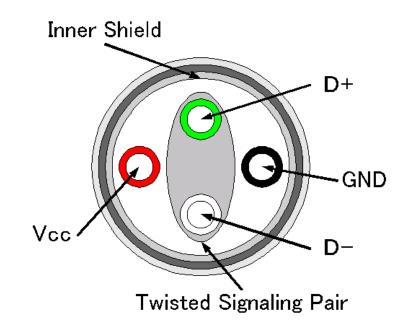
USB2.0とは


- Universal Serial Bus Revision2.0
- USB1.1にHi-Speedモードを追加
 - Low-Speed (LS) : 1.5Mbps
 - Full-Speed (FS) : 12Mbps
 - High-Speed (HS) : 480Mbps (USB2.0で新規に追加)
- USB1.1と後方互換性を確保
 - USB2.0機器とUSB1.1機器の混在が可能



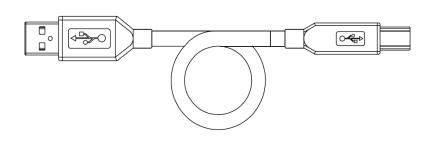
USBコネクタ

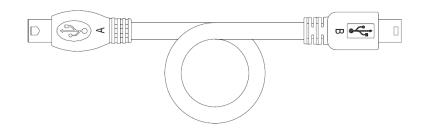
- Standard Connector
 - 標準的なコネクタ
- Mini Connector
 - 小型コネクタ
 - 薄型機器、携帯端末
- Micro Connector
 - ミニ・コネクタよりさらに薄く
 - 小型携帯端末



USB2.0標準ケーブル

- USB1.1ケーブルと同等
- 信号線 28AWG、ツイスト・ペア
- 電源線 20-28AWG
- シールド線
- 最長5m (26ns)
- LSケーブルにシールドを推奨

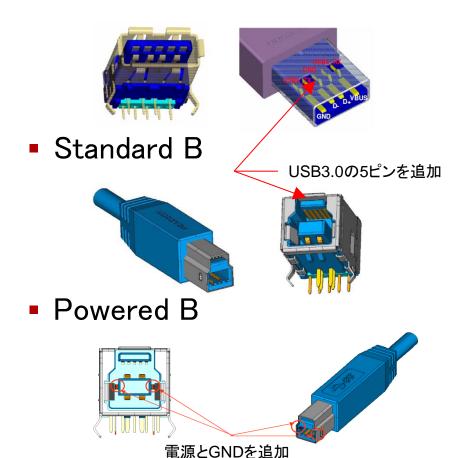


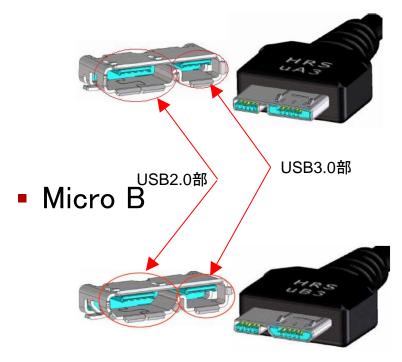




USBケーブルの種類

- 基本はA to B
 - Standard A Plug Standard B Plug
 - Standard A Plug Mini B Plug
 - Max Length: 26ns
- Mini A Plug
 - Mini A Plug Mini B Plug
 - Mini A Plug Standard B Plug
 - Max Length: 25ns or 4.5m
- Micro Connector
 - Micro A Plug Micro B Plug
 - Standard A Plug Micro B Plug
 - Max Length: 10ns or 2m
- 変換コネクタ
 - Standard A Receptacle Mini A Plug
 - Mini A Receptacle Standard A Plug
 - Standard A Receptacle Micro A Plug
 - Max Length: 1ns or 15cm

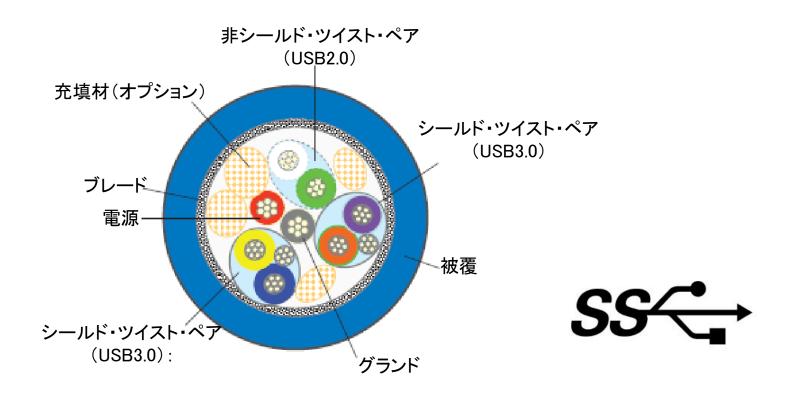




参考: USB3.0コネクタ

Standard-A

Micro A / AB

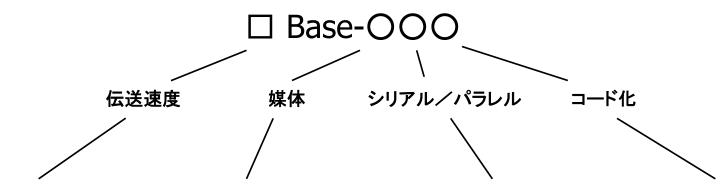

引用: Cables and Connectors, Yun Ling, Nov.17-18, 2008, SuperSpeed USB Developer Conference, San Jose, California http://www.usb.org/developers/presentations/

参考: USB3.0ケーブル

■ SuperSpeedは1本のケーブルにてUSB2.0と3.0のリンク

引用: Cables and Connectors, Yun Ling, Nov.17-18, 2008, SuperSpeed USB Developer Conference, San Jose, California http://www.usb.org/developers/presentations/

Ethernetの歴史


- 1980年: LANの標準化のためIEEE802委員会設置
 - 802.3WGによりCSMA/CD方式を推進
- 1990年:10BASE-T(IEEE802.3i)規格
 - 同軸の10BASE5と同じ10Mbps伝送速度をツイストペアで実現
- 1995年:100BASE-TX(Fast Ethernet、IEEE802.3u)規格
 - 光ファイバLAN(FDDI,100BASE-FX)と同じ100Mbps伝送速度を使いやすく、 安価で実現
 - カテゴリ5のツイストペア使用
- 1999年:1000BASE-T(Giga Ethernet、IEEE802.3ab)規格
 - 幹線向けLAN(ATM, HIPPI, FC)の構築、運用を容易化するためにEthernet を高速化
 - カテゴリ5のツイストペア使用
- 2006年6月:10GBASE-T(802.3an)
 - カテゴリ7のケーブルで100m
 - カテゴリ6で55~100m
- 2010年6月:40G/100G Ethernet規格化(802.3ba)

Ethernet規格

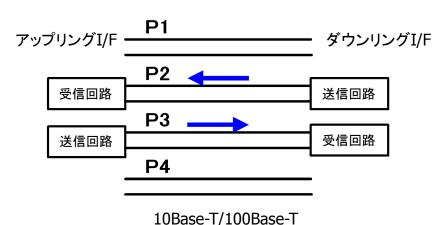
■ Ethernetインターフェイスの識別

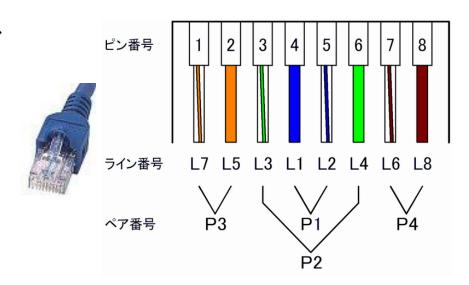
1	1Mbps	
10	10Mbps	
100	100Mbps	
1000	1Gbps	
10G	10Gbps	

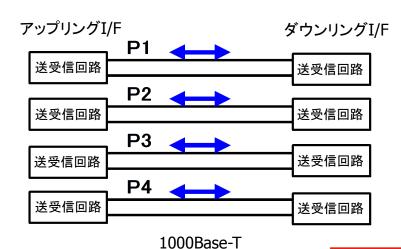
Т	ツイストペア	
Е	1550nm光	
L	1310nm光	
S	850nm光	
С	シールドケーブル	
2	195m(max)同軸	
5	500m(max)同軸	
36	3600m(max)同軸	

無し	シリアル
2	2ペア・パラレル
4	4ペア・パラレル

無し	コード化なし
Χ	4B5B、8B10B
R	64B66B
W	SONET


現在は安価なツイスト・ペア・ケーブルを使用した規格が多く使用されている



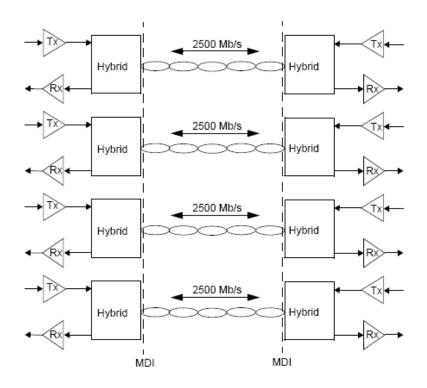


Ethernetツイスト・ペア・ケーブル

- 4対のシールド無しツイストペア
 - コネクタはRJ-45を使用
- 使用ピン
 - 10BASE-T / 100BASE-TX
 - P2、P3使用
 - 送信、受信独立
 - 1000BASE-T
 - P1~P4全て使用
 - 送受信同時

Ethernetケーブルのカテゴリ

ケーブルカテゴリと規格への対応


	周波数帯域規定	10BASE-T	100BASE-TX	1000BASE-T	10GBASE-T
カテゴリ3	16MHz	0	×	×	×
カテゴリ5	100MHz	0	0	0	×
カテゴリ5e	100MHz (350MHzまで保証) 伝播遅延、遅延スキュー、 リターン・ロスなど項目追加	0	0	0	×
カテゴリ6	250MHz	0	0	0	O(55m)
カテゴリ6a	500MHz	0	0	0	0
カテゴリ7	600MHz	0	0	0	0

参考:10Gbase-T

- UTP / STPケーブル
 - カテゴリー6、6a、7
 - 但しCat6は55mまで
- 128DSQ変調
- 16PAM
- LPCD
 - Low Density parity Check

コンプライアンス

USBロゴ

- 認定はUSB-IF (Implementers Forum)にて行われる
 - Compliance Test(認証試験)に合格
 - Integrators List
- 規格に準拠していることの証明
 - Certified Logo

USBコンプライアンス・テスト

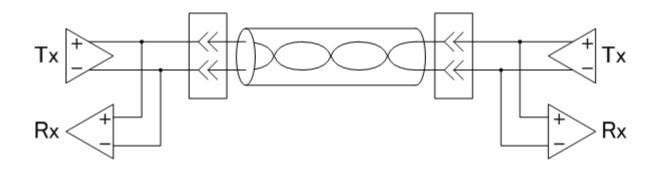
- ロゴ・ライセンス取得の為にUSB-IFが定めたテスト
 - 製品やパッケージにUSBロゴを使用する場合は必ず合格しなければならない
- ロゴ認証を取得するには
 - セルフテスト不可
 - Test Lab
 - アリオン株式会社 http://www.allion.co.jp
 - 株式会社エクスカル http://www.xxcal.co.jp/

Ethernetコンプライアンス・テスト

- セルフ・コンプライアンス
 - USBのようなロゴ発行は無い
- UNH-IOLによるテスト・サービス
 - University of New Hampshire Inter Operability Laboratory
 - 各種インタフェースの相互接続性テストのサービス提供

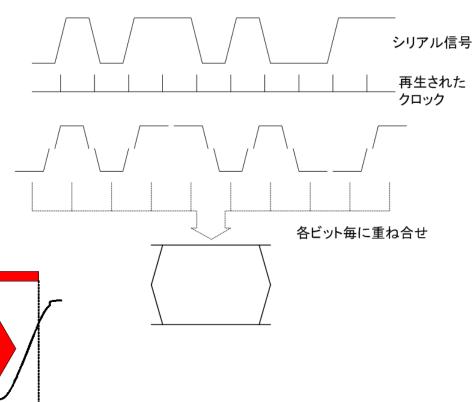
コンプライアンス・テストの重要性

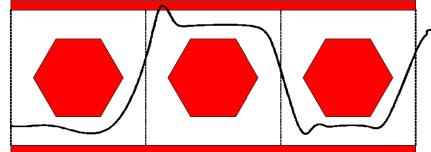
- 規格団体等で定められたテスト
 - USB-IF, UNH-IOL
 - 各規格に準拠したテスト
- 物理層の評価に有効なテスト
 - 規格を満足しているか
 - プロトコル、相互接続と合わせて物理層の評価が重要に


物理層の評価

USB2.0(High Speed)物理層

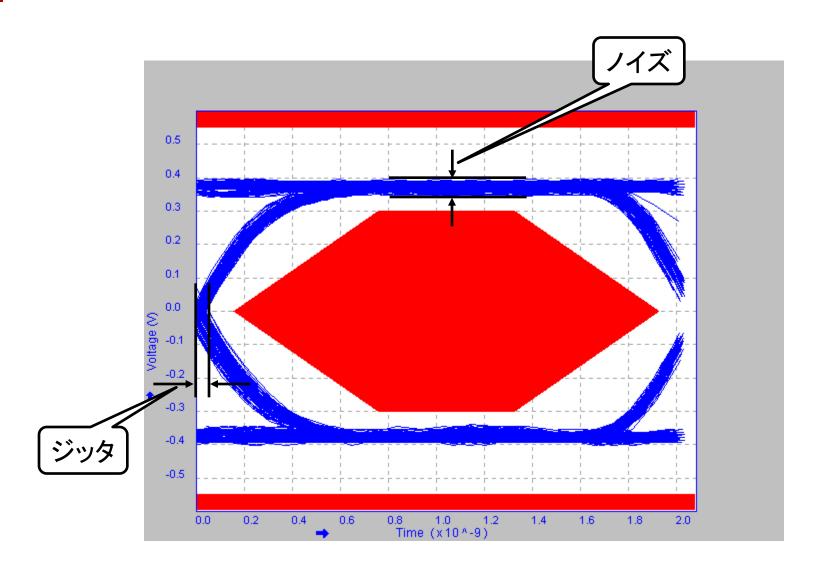
- 信号線は4線
 - 差動データライン2線(D+, D-)、Vbus、GND
- 差動半二重伝送
- DC結合
- NRZI(Non Return to Zero Invert)エンコード
 - データ0の場合は信号レベルを反転、データ1の場合は継続
 - ビット・スタッフィング



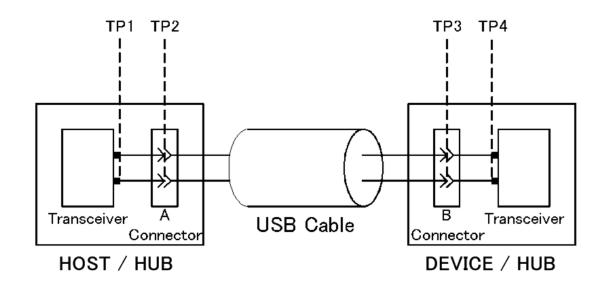


アイ・ダイアグラム測定

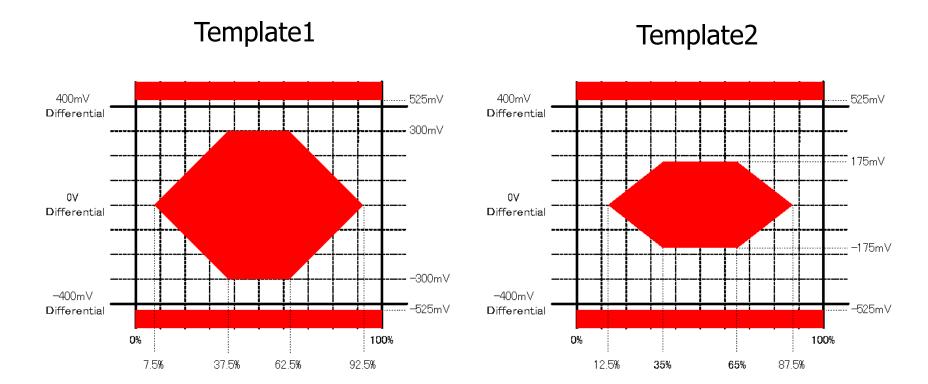
- デジタル・データ通信の信号品質評価
- ノイズ、ジッタ
- テンプレートの適用



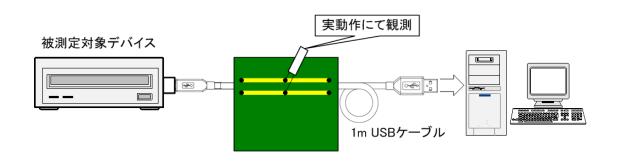
アイ・ダイアグラム測定例

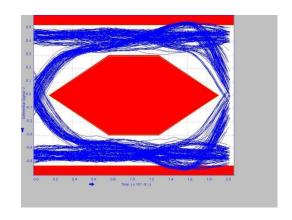


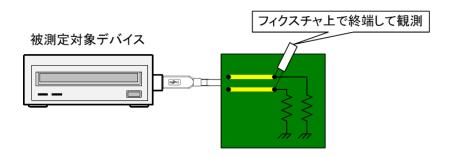
測定ポイント

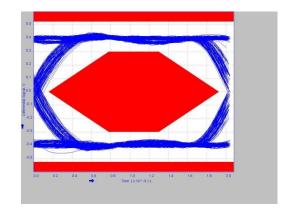

- アイ・ダイアグラムの評価は測定ポイントが重要
 - 近端と遠端で波形が変わる
- USBコンプライアンスでは基本は近端で測定
 - HostおよびHubのDownstream Port はTP2
 - DeviceおよびHubのUpstream PortはTP3
 - ケーブル付のDeviceおよびHubのUpstream PortはTP2

テンプレート

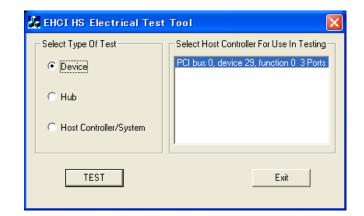






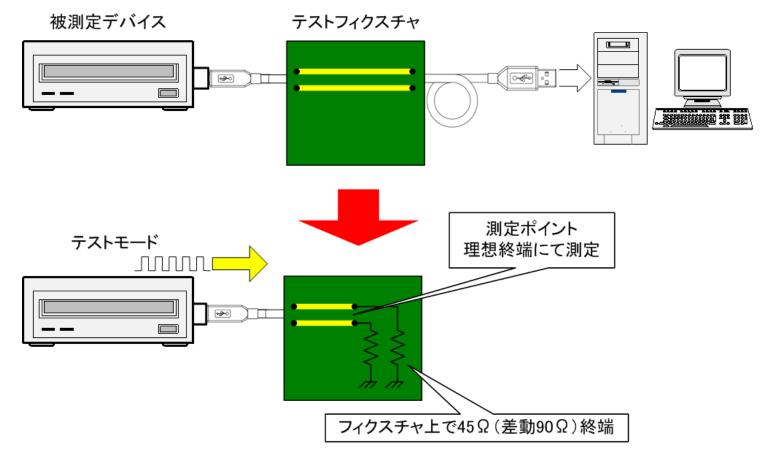

波形品質評価は理想終端で

■ 反射の影響を少なく



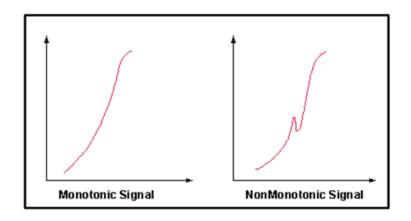
テストモードのサポート

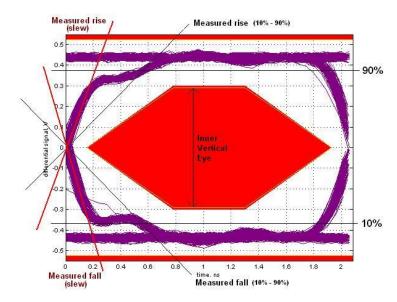
- USB2.0規格で定められたテストの為のモード
 - Test Packet
 - Test J, Test K, Test SE0_NAK
 - Test Force Enable
- テストモードに設定するには
 - Device, Hub
 - ・ USB-IFよりソフトウェアを提供
 - HS Electrical Test Tool
 - http://www.usb.org/developers/tools/
 - Host
 - · OSがWindowsの場合
 - HS Electrical Test Toolにて可能
 - OSが非Windowsの場合
 - 各ベンダー様にてTest Modeに設定する必要有



物理層の信号品質評価

- PCを使用して被測定デバイスをTest Packetモードに設定
- 信号観測時はフィクスチャ上で理想終端



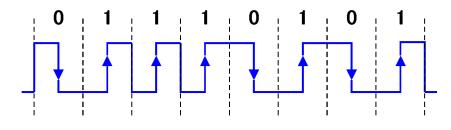


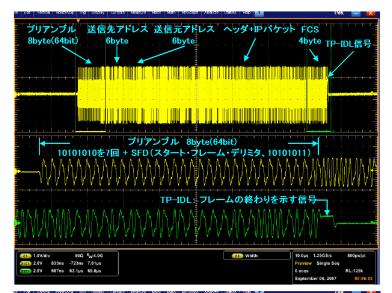
その他の信号品質評価

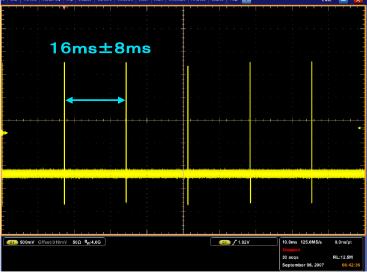
- Monotonic Transition
 - データが変化する時は単調的 に推移すること
 - インピーダンス不整合
 - 差動間スキュー

- Rise / Fall Time
 - 10%-90%にて500ps以上
 - 速すぎてはいけない
 - コンプライアンス・テストではスルーレートで測定

USB-IF Webより引用:

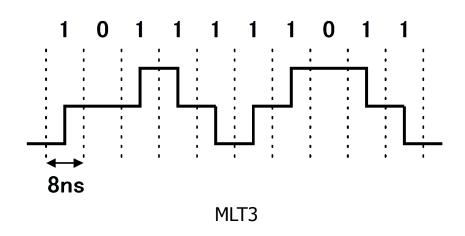

http://compliance.usb.org/index.asp?UpdateFile=Electrical&Format=Standard#7




Ethernet(10BASE-T)物理層

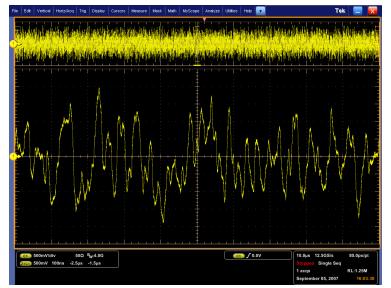
- マンチェスタ符号
 - デジタル・ビット毎にクロックが変化
 - 0と1ではクロック反転
- バースト信号出力
 - フレーム送出時に信号出力
 - サイズは64~1518byte
 - フレーム間は無信号
- フレーム先頭にプリアンブルを出力
- リンクパルス
 - 装置間が接続されているか確認
 - NLP(ノーマル・リンク・パルス)
 - 伝送速度の自動選択
 - FLP(ファスト・リンク・パルス)

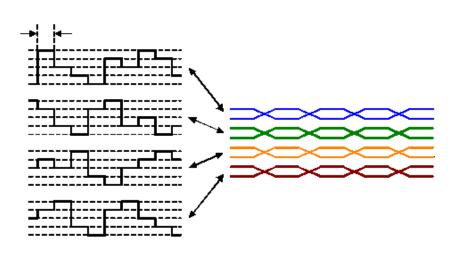
マンチェスタ符号



Ethernet(100BASE-TX)物理層

- カテゴリ5のUTPケーブルで100Mbpsを実現
 - MLT3 (Multi Level Transmission-3)
 - 電圧は、-V → 0V → +V → 0V → -V の順に変化
 - 伝送ビットが1なら電圧が変化、0なら変化しない
 - 4B5Bコーディング
 - スクランブラ
- フレーム間にアイドル信号を挿入
 - 連続信号方式(⇔バースト信号方式:10Base-T)





Ethernet(1000BASE-T)物理層

- カテゴリ5のUTPケーブルで1Gbpsを実現
 - 8B/1Q4符号
 - 8bitの2値(Binary)信号を5値(Quinary)信号4組に変換
 - PAM5 (Pulse Amplitude Modulation、5値)
 - 4組のツイストペアを双方向で同時連続通信
 - 8ns毎に信号が変位
- マスター/スレーブ・タイミング
 - スレーブ側の装置のクロックはマスターに同期

物理層の信号品質評価(10BASE-T)

- テスト信号を用意する必要有
 - ランダムパターン
 - ALL 0 または 1
 - リンク・パルス
- TPM(Twist Pair Model)適用
- 負荷を適用

被測定対象

The insertion loss of the twisted-pair model when measured with a 100 Ω source and 100 Ω load shall be between 9.70 dB and 10.45 dB at 10 MHz, and between 6.50 dB and 7.05 dB at 5 MHz.

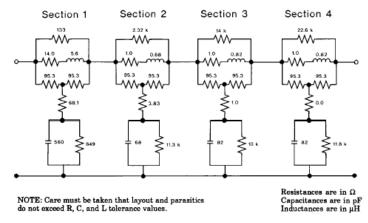
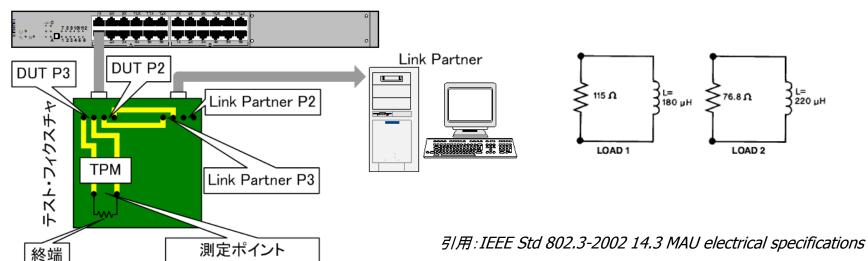
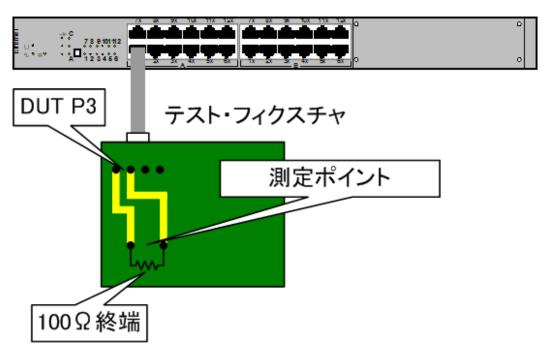



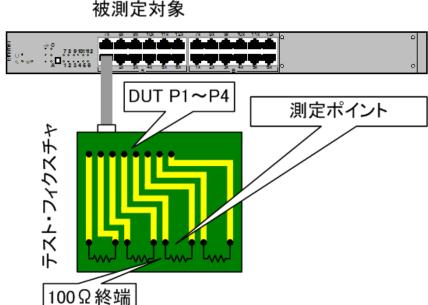
Figure 14-7 - Twisted-pair model



物理層の信号品質評価(100BASE-TX)

- スクランブル・アイドルで測定
 - オート・ネゴシエーションの場合はリンク・パートナーを使用
- 100Ω終端

被測定対象



物理層の信号品質評価(1000BASE-T)

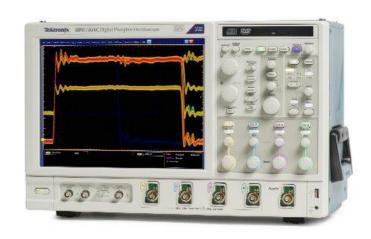
- テストモード
 - Test Mode 1~4
 - 各ベンダー様にてTest Modeに 設定する必要有
- 100Ω終端
- 4ペアすべて測定

被測定対象

評価に最適な測定器のご紹介

USB2.0/Ethernetの評価に最適なオシロスコープ DPO/MSO5000シリーズ

	DPO5204型 MSO5204型	DPO5104型 MSO5104型	DPO5054型 MSO5054型	DPO5034型 MSO5034型
周波数帯域	2GHz	1GHz	500MHz	350MHz
最高リアルタイム サンプルレート	10GS/s(1/2使用時) 5GS/s(3/4ch使用時)		5GS/s	
レコード長(標準)	25M(1/2ch使用時) 12.5M(3/4ch使用時)		12.5M	
レコード長 (最大オプション)	250M(1/2ch使用時) 125M(3/4ch使用時)		125M	


※USB2.0 High Speedの信号を観測するには2GHz以上の周波数帯域が必要

USB2.0/Ethernetの評価に最適なオシロスコープ DPO7000Cシリーズ

	DPO7354C型	DPO7254C型	DPO7104C型	DPO7054C型	
周波数带域	3.5GHz	2.5GHz	1GHz	500MHz	
最高リアルタイム サンプルレート	40GS/s(1ch使用時) 20GS/s(2ch使用時) 10GS/s(3/4ch時)		20GS/s(1ch使用時) 10GS/s(2ch使用時) 5GS/s(3/4ch時)		
レコード長(標準)	50M(1ch使用時) 25M(2ch時) 12.5M(3/4ch時)				
レコード長 (最大オプション)	250M(500M(1ch使用時) 250M(2ch時) 125M(3/4ch時)		200M(1ch使用時) 100M(2ch時) 50M(3/4ch時)	

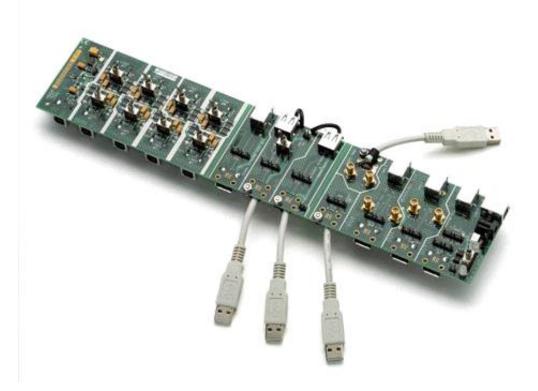
USB/Ethernetの検証に最適なプローブ

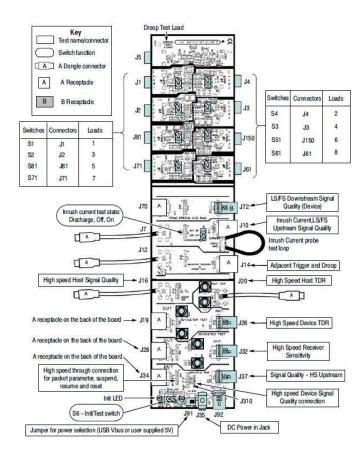
- P6248型 / TDP1500型 差動プローブ
 - 周波数帯域:1.5GHz
 - 高いCMRR:60dB@1MHz、30dB@1GHz
 - 差動電圧信号を直接オシロスコープで観測
- P6245型 / TAP1500型 FETプローブ
 - 周波数帯域:1.5GHz
 - 低容量:1pF以下
- TCP202型 / TCP0030型 電流プローブ
 - 周波数帯域:50MHz(TCP202型)
 - 120MHz(TCP0030型)
 - 電流値を直接オシロスコープで観測

USB2.0/Ethernetの評価に最適な信号発生器 AWG5000Cシリーズ

	AWG5014C型	AWG5012C型	AWG5002C型	
チャンネル数	4ch	2ch		
サンプルレート	10MS/s~	10MS/s~600MS/s		
分解能	14bit			
波形メモリ長	16Mポイント(標準) / 32Mポイント(オプション)			
マーカ出力	8ch(1chにつき2出力)) 4ch(1chにつき2出力))		

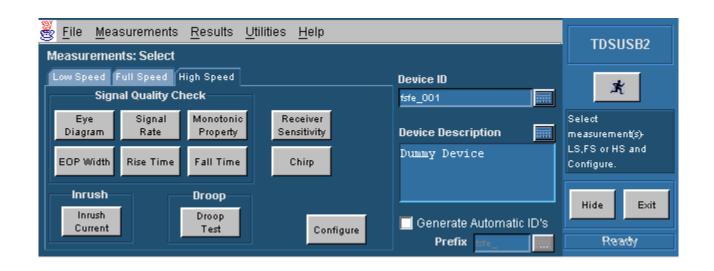
- USB2.0
 - レシーバ、スケルチ・テスト
- Ethernet
 - リターン・ロス
 - ディスタービング・シグナル





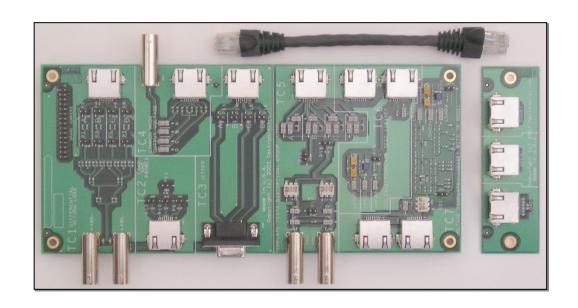
USBテスト・フィクスチャ

- 信号のプロービング
- すべての転送レート(LS、FS、HS)に対応
- Host、Hub、Device測定に対応



TDSUSB2コンプライアンス・テスト・ソフトウェア

- コンプライアンス・テストの自動化
 - DPO7000C、DPO/DSA/MSO70000C及びMSO/DPO5000シリーズに対応
 - ボタン一つで自動測定
- USB-IFのTest Procedureに完全準拠



Ethernetテストフィクスチャ

- 信号のプロービング
- 10BASE-T、100BASE-TX、1000BASE-Tに対応
- リターン・ロス測定
- 1000BASE-Tのディスタービング・シグナルに対応
- TMP

TDSET3イーサネット・コンプライアンス・テスト・ソフトウェア

- コンプライアンス・テストの自動化
 - DPO7000C、DPO/DSA/MSO70000C及びMSO/DPO5000シリーズに対応
 - ボタン一つで自動測定
- UNH-IOLのテストに完全準拠

参考文献

- Universal Serial Bus Specification Revision2.0 (USB-IF)
- High-speed Electrical Test Procedure (USB-IF)
- USB2.0 Electrical Test Specification (USB-IF)
- UBS2.0 Specification Engineering Change Notice(ENC)
 #1:Mini-B connector (USB-IF)
- Universal Serial Bus Micro-USB Cables and Connectors Specification (USB-IF)
- Cable and Connectors / Yun Ling
- IEEE Std 802.3-2002
- ANSI X3.263–1995

まとめ

- コンプライアンス・テスト
 - 規格に準拠していることの証明
- 物理層の評価
 - Txは理想終端にて観測
 - テスト・フィクスチャを使用
 - テスト用の信号を用意
 - ・ テストモードをサポート

本テキストの無断複製・転載を禁じます。テクトロニクス/ケースレーインスツルメンツ Copyright © Tektronix, Keithley Instruments. All rights reserved.

www.tektronix.com/ja www.keithley.jp/

Twitter <u>@tektronix jp</u>
Facebook http://www.facebook.com/tektronix.jp

