大数据光网络测试技术及展望

刘剑 应用工程师
2014-04
OIF/ITU

Long Haul 100G

OIF CEI (19-28G)

10/40GbE

Blade Servers

40GbE

Backplane, chip

40/100GbE

Router

Central Office

100GbE To 40km

40/100GbE

CFP

CAUI/XLAIUI (10G)
CEI VSR (25G)

Roughly Speaking....

OIF:
• Very long distances (100’s km)
• Very short distances (CEI, mm)

40/100G Ethernet:
• Distances in between

10/40GbE

264x264

40/100GbE

100GbE

40GbE

To 40km

High Speed Networks & Standards

Ethernet

Ethernet
The top-to-bottom of 100G standards

<table>
<thead>
<tr>
<th>Distance</th>
<th>Standard</th>
<th>Modulation/signaling</th>
<th>Companies playing</th>
<th>Tek solution</th>
</tr>
</thead>
<tbody>
<tr>
<td>X,000 km</td>
<td>OIF, OTN, ITU <no set name></td>
<td>Complex optical</td>
<td>Alcatel, Ciena, Cisco, Huawei, Fujitsu</td>
<td>OM4000, MSO73304DX</td>
</tr>
<tr>
<td>10 to 40 km</td>
<td>Ethernet 100GBASE-LR4, -ER4</td>
<td>NRZ Single-Mode</td>
<td>Cisco, Finisar, Oclaro, JDSU, Juniper, ZTE</td>
<td>DSA8300+80C10C; BSA286CL, CRU286A</td>
</tr>
<tr>
<td>100 m to 2km</td>
<td>Ethernet</td>
<td>NRZ MM and SM</td>
<td>As above</td>
<td>DSA8300+80C15C; BSA286CL, CR286A</td>
</tr>
<tr>
<td>10 m</td>
<td>Ethernet</td>
<td>NRZ over cable or el. <-> opt. cable</td>
<td>Avago, Altera, Broadcom, Fujitsu, Cisco, Hitachi, Huawei, IBM, NEC, Xilinx, ZTE,</td>
<td>DSA8300+80E09B/10B+80A08; BSA286CL, CR286A,</td>
</tr>
<tr>
<td>Backplane < 1m</td>
<td>Ethernet, OIF CEI</td>
<td>NRZ, PAM4,</td>
<td>As above</td>
<td></td>
</tr>
<tr>
<td>Interconnect module to chip, chip to chip</td>
<td>OIF CEI Ethernet</td>
<td>NRZ</td>
<td>As above, + CEIVSR Sol. SW</td>
<td></td>
</tr>
</tbody>
</table>
100G Transceiver Size and Complexity
High Speed Networks & Standards

- Ethernet
- CAUI/XLAUI (10G)
- CEI VSR (25G)
- CFP
- 40/100GbE
- Router
- Backplane, chip
- Blade Servers
- 40GbE
- 10/40GbE
- OIF CEI (19-28G)
- OIF/ITU
 - Long Haul 100G

Coherent optical lives here

Roughly Speaking:
- OIF:
 - Very long distances (100’s km)
 - Very short distances (CEI, mm)
- 40/100G Ethernet:
 - Distances in between

Tektronix®
Optical Long-Haul Block Diagram
100GBase-ER4, LR4

Line Card

SER-DES
10x10G

10x10G

10:4 PHY

4x25G

Optical Transceiver

4:4 PHY

4:4 PHY

Tx Optics

4x25.8G

Rx Optics

4x25.8G

About 2” long
Optical Long-Haul Block Diagram
100GBase-ER4, LR4
100 (4 × 25) Gb/s Single-mode Solution

80C10C-F1 Optical Module

<table>
<thead>
<tr>
<th>Performance Specifications</th>
<th>Standards Supported</th>
</tr>
</thead>
<tbody>
<tr>
<td>Single-mode</td>
<td>Standard</td>
</tr>
<tr>
<td>9μm core</td>
<td>Data Rate</td>
</tr>
<tr>
<td>Supported wavelengths</td>
<td>100GBASE-ER4</td>
</tr>
<tr>
<td>1310, 1550 ± 20 nm</td>
<td>25.781 Gb/s</td>
</tr>
<tr>
<td>Maximum Optical Bandwidth</td>
<td>100GBASE-LR4</td>
</tr>
<tr>
<td>70 GHz</td>
<td>25.781 Gb/s</td>
</tr>
<tr>
<td>Optical Reference Receivers</td>
<td>OTU-4</td>
</tr>
<tr>
<td>All 25 Gb/s standards</td>
<td>27.952 Gb/s</td>
</tr>
<tr>
<td>Sensitivity</td>
<td>OC-768/STM-256</td>
</tr>
<tr>
<td>-8 dBm</td>
<td>39.813 Gb/s</td>
</tr>
<tr>
<td>Buffered electrical data pick-off to support external clock recovery instrument</td>
<td>VSR-2000 G.693</td>
</tr>
<tr>
<td>Recommended Tektronix CR286A</td>
<td>39.813 Gb/s</td>
</tr>
<tr>
<td></td>
<td>40G NRZ G.959.1</td>
</tr>
<tr>
<td></td>
<td>(40GBASE-FR)</td>
</tr>
<tr>
<td></td>
<td>41.25 Gb/s</td>
</tr>
<tr>
<td></td>
<td>OTU3</td>
</tr>
<tr>
<td></td>
<td>43.018 Gb/s</td>
</tr>
<tr>
<td></td>
<td>VSR-2000 w/ FEC</td>
</tr>
<tr>
<td></td>
<td>43.018 Gb/s</td>
</tr>
<tr>
<td></td>
<td>4x10G LAN PHY OTU3</td>
</tr>
<tr>
<td></td>
<td>43.018 Gb/s</td>
</tr>
</tbody>
</table>
80C10C Optical Module
Unmatched Sensitivity for 100G (4 x 25G) Applications

OTU4 transceiver: 3.5 dBm, 1310nm, 27.95 Gb/s, 9μm SMF

New Tektronix 80C10C

Alternative Solution
Tektronix 80C15 Optical Sampling Module Highlights

80C15

- Single-Channel Optical Plug-in Module for DSA8300
- Unfiltered Optical Bandwidth >32GHz
- 62.5/125 µm **Multi-Mode** Fiber Input
- **Short-** and Long-Wavelength Support (800 -1600 nm)
- 200 kS/s Acquisition Rate
- **Jitter Floor** <150 fs RMS (with 82A04B)
- Optical Receiver Filters:
 - 32G Fibre Channel (28.05 Gb/s)
 - OTU-4 (4 x 27.95 Gb/s)
 - 100Gbase-LR4/ER4/SR4 (25.78 Gb/s)
 - 26G EDR Infiniband (25.78 Gb/s)
Coherent Optical Modulation

Why coherent modulation?
Demand for long-haul network bandwidth is growing at an exponential rate due to the increased consumption of video content on mobile devices, streaming media to the home, and the transformation of the internet. Coherent technology allows 40G and even 100G transmission over existing 10G infrastructure. This allows network operators to increase their network capacity with a relatively small capital investment.

What is coherent modulation?
Traditional 10G transmissions modulate the amplitude of the light, a.k.a. or on-off keying (OOK). Direct detection is used in the receiver.

![OOK](image)

On-Off Keying
1 bit/symbol

Coherent transmissions modulate the phase of the light, the simplest case is phase shift keying.

![PSK](image)

Phase Shift Keying
1 bit/symbol

By doubling the number of phase states, the bit/symbol rate is also doubled.

![QPSK](image)

Quadrature Phase Shift Keying
2 bits/symbol

Rotating the polarization of one QPSK signal, and combining it with a second QPSK signal, doubles the bit/symbol rate again.

![DP-QPSK](image)

Dual-Polarization QPSK
4 bits/symbol

Other formats are also used such as Differential QPSK (DQPSK), 8-PSK, and Quadrature Amplitude Modulation (QAM).

What are the benefits of coherent modulation?
- The channel bit-rate can be quadrupled (when using DP-QPSK), without increasing bandwidth, through existing fiber infrastructure.
- Linear digital filtering can now compensate for major sources of degradation such as Chromatic Dispersion (CD) and Polarization Mode Dispersion (PMD).
- 4.3dB improvement in noise tolerance compared to direct detection.

How is coherent modulation tested?

1. An Optical Modulation Analyzer (OMA), such as the OM4106D, converts the optical signal into a dual-polarization electric field.

2. A scope (RT or ET) digitizes the electric field.

3. The OM4106D software transforms the digitized electric field and displays the original tributary waveforms. The SW provides specialized visualization tools and measurements.

For more information on how to choose an RT or ET scope, see the Choosing an Oscilloscope for Coherent Modulation Analysis technical brief.
Optical Long-Haul Block Diagram
Coherent Optical

Line Card
- SER-DES
- 10:4 PHY
- 10x10G
- 4x32G

Optical Transceiver
- 4:4 PHY
- QPSK/QAM Coherent Modulator
- Coherent Rx and A/D
- Scope + SW
- 4x25G

Tx + AWG
- OM5110
 - Multi-format Optical Transmitter
- AWG70000-Series
 - Arbitrary Waveform Generator

Scope + Rx
- DPO70000-Series
 - Digital Phosphor Oscilloscope
- OM4000-Series
 - Optical Modulation Analyzer

10
Signal Generation: PPG-Series

PPG benefits for coherent optical

- Up to 4 channels in a single instrument – necessary for dual polarization for I and Q.
- Data rate up to **40 Gbps** covers all 100G test requirements.
- Very fast risetimes.
- Simple to set-up and use.
- Multi-level signals (such as 16QAM) can be created using external devices.
Signal Generation: AWG

AWG benefits for coherent optical

- Ability to customize waveform to compensate for system losses.
- Ability to create impairments.
- Easier to create arbitrary multi-level signals than PPG.
- Single-channel instrument supports sample rate up to 50GS/s
Equalized OM5110 optical output

- 32 Gbaud 16-QAM optical signal
- EVM = 6.5%

BER = 0.000E+000
0 errors in 11,695,544 bits.
X-I : 0 errors in 5,847,772 bits
X-Q : 0 errors in 5,847,772 bits
Coherent Detection: OM4106D

- 33GHz optical modulation analyzer supports all common coherent optical modulation.
- Supports both real-time and equivalent-time scopes.
- Provides built-in local oscillator and support external LO.
- Dynamic Matlab interface provides unique and streamlined flexibility and customization.
- Capable of analyzing multi-carrier systems such as 400G and 1Tb/s.
Coherent Optical Modulation Overview

Customer’s DUT would typically replace either the transmitter or receiver

ICR Meas./ICR Cal.
High Speed Networks & Standards

Ethernet

- **CAUI/XLAUI (10G)**
- **CEI VSR (25G)**

Backplane, chip

OIF CEI (19-28G)

OIF/ITU

- **Long Haul 100G**

Roughly Speaking...

OIF:
- Very long distances (100’s km)
- Very short distances (CEI, mm)

40/100G Ethernet:
- Distances in between
CEI-28G-VSR Technology Evolution

CEI-25G-LR Technology Evolution

CEI-28G-VSR Technology Evolution

- CEI-28G-VSR - This clause details the requirements for the CEI-28G-VSR very short reach high speed chip-module electrical I/O of nominal baud rates of 19.60 Gsym/s to 28.05 Gsym/s.
- The industry is transitioning from 10x10G to a more efficient 4x25 electrical interconnect.
- The first standard body in the move to 25 Gb/s signaling is the OIF CEI, with the VSR, SR, and LR (very short reach, short reach, long reach) standards
- Under development is the Ethernet’s 802.3bm 100GBASE-KR4 backplane standard, as well as the Ethernet interconnect standard, 802.bj CAUI4.
- The electrical I/O is based on high speed, low voltage logic, and connections are point-to-point balanced differential pairs.
CEI-VSR Test Challenges – Bandwidth Requirements

- “K” Vs 2.4mm Connector
 - 2.4mm connector upto 50 GHz bandwidth
 - Longer interconnect, e.g. cables are very harmful to signal integrity

- Scope BW Requirements
 - For characterization of important components e.g. silicon, Tektronix recommends a higher bandwidth interconnect, e.g. 50 GHz.
 - Using a connector/cable system interconnect with just 40 GHz of BW might be interpreted as allowable by standards; however it is marginal.

- Extra challenges abound when transferring these signals on printed circuit boards, even for short distances. The Implementation Agreement for Optical Internetworking Forum Common Electrical Interface (OIF CEI) 3.0 specifies the tests and limits for these devices

- The parameters can take a full day when characterized manually, and the recalculation of factors and CTLE values adds to the time the designer spends on testing.
CEI-VSR Test Challenges – De-embedding

- 25+ Gb/s standards, exhibit two main applications where de-embedding can be considered:
 - De-embedding of the fixture – e.g. the test board
 - De-embedding of the interconnect between the oscilloscope and the fixture

- Sampling oscilloscopes offer higher resolution, and de-embedding is more practical. De-embedding turns loss into noise, thus minimizing the amount of de-embedding is also important.

- In case of de-embedding, it is critical to acquire high quality network description (S-parameters) of the signal under test.

- Focus needs to be on effort to minimizing the length and loss of the interconnect, its quality and repeatability. Only after this has been accomplished, applying de-embedding helps generate realistic results.
CEI-VSR Test Challenges – Clock Recovery

- Typically the DUT’s – the Serial Data transmission devices themselves - operate with the clock recovery circuit (CR) in the receiver (RX). The measurement device (e.g. oscilloscope) therefore also need CR.

- T&M CR: Internal or External?
 The advantage of an external clock recovery include higher flexibility (e.g. the same CRU can be used with an oscilloscope or with a BERT), and higher functionality – such as access to the analog PLL control voltage for troubleshooting of clock problems.

- In case of real time oscilloscope the clock recovery can be implemented in software.

- The clock recovery is required by standards and emulates the behavior of the physical receiver.

- CR may not be necessary in cases of simple tests of devices that do not include a re-timer.
OIF CEI-28G-VSR Topology and test overview

An overview of OIF’s typical 28G CFP2 Host, Channel and CFP2 Module Endpoint. The OIF 28G-VSR spec is the fundamental building block for 100GE, OTN, 32GFC and IB EDR.
DUT Interconnect conclusion...

“Remote Head Manifesto”:

- At 25 Gb/s, 60 cm (ca. 2’) of best cable nearly doubles the rise-time
- De-embedding probably already used to remove the PCB; also very sensitive to connector repeatability

➤ Use the remote head!

and

➤ Use 2.4 mm or 1.85 mm connectors (check the rise-times)

Cables to CRU:

o.k. if longer

Minimize interconnect
Option CEI-VSR - Compliance and Debug Solution

- Automated Tests
 - One-button selection of critical H2M & M2H Tests reduces testing time

- Integrated Debugging
 - Popular 80SJNB-based interface enables deeper debug of timing root cause analysis without moving to a different instrument/measurement setup

- CTLE Filters
 - Option CEI-VSR determining the optimal value of CTLE peaking, which is required by the CEI 28G Very Short Reach for the Host-to-Module interface. The best CTLE filter is chosen from the given set of filters and used for performing the measurement.

- J2 & J9 Measurements
 - Rely on off-the-shelf products to perform this complex measurement rather than developing custom lab setup reducing testing time and complexity

- Documentation/Reporting

- Signal Validation
Option CEI-VSR – Automation Part

- Operates on Tektronix DSA8300 Series Oscilloscopes
- Automate setup & quickly generate reports
- Meets Compliance needs of CEI-28G-VSR
- PRBS9 for all measurements and 8180 support in addition for Transition time measurement.
- VEC – Vertical Eye Closure as Informative Test under H2M
Tektronix CEI-VSR – Debug Part

- Performs advanced jitter and noise analysis (RJ, DDJ, PJ, DCD, TJ@BER, and RN, DDN(high) and DDN(low), TN@BER, vertical and horizontal eye opening at BER
- Acquires complete pattern waveform at 100 Samples/UI
Rx/Tx testing for Industrial HSSD at 100G

Key Value Propositions

- BSA286C:
 - Support for rates through 29G offer 3% margin over standard base spec's.
 - <300pSec RMS Rj allows following the J2 and J9 jitter intercepts with margin.

- DSA8300: ~100fSec Jitter measurements.
Tektronix LE320/LE160
32 & 16Gbps Linear Equalizer Product Introduction

- Compact two channel 32Gbps 9 Fixed Tap linear equalizer design in a “remote module” configuration
- +/-20dB tap controls offer flexible pre-emphais or channel de-embed capabilities.
- User (and PI) configurable filter properties allows flexible parametric equalization
- Electronically switchable frequency dependent filter capability permits DDJ tolerance testing and testing against known reference channel models
- Front-end signal path (CTLE) for Sampling or BERT Instruments

[Image of Tektronix LE320/LE160 device]
LE320 9 Tap model of a CEI reference channel.
Configuration Options for De-Embed and Embed Blocks

- Two S2P files
- S4P file
- Lossless T Line
- RLC Models
- Two S1P files
- Mixed mode to single ended

Or Two Transfer function files
Or Two FIR files

Probe/Scope Spars

S4P file

Lossless T Line

Two S1P files

KEITHLEY
A Tektronix Company
Jitter & Noise Analysis of 26G Optical Signals with 80SJNB

Detailed signal insight with 80SJNB Analysis Tool (available as SW option with DSA8300)

Complete Jitter and Noise decomposition of optical waveforms, including
✓ Bounded Uncorrelated Jitter
✓ Crosstalk Noise
✓ J2, J9 Jitter per IEEE 802.3ba

Perform serial data link analysis with built-in signal processing capabilities.
40GBASE_KR install base reuse

- 2 PHY to be defined
 - PAM
 - For re-use of 40GBASE_KR install base
 - Lower bandwidth
 - more bit per baud
 - NRZ
 - Higher efficiency
 - Improved channel characteristics
PatternPro Advanced BERT Solutions

Multi-channel Multi-level Instruments

100G & 400G Applications

Analysis and Control Software
JTOL J2/J9 Bathtub Contour Analysis

Highest Performance Analog Inputs and Outputs

Accessory Modules Components and Cables
Combiner Kits Amplifier Modules Equalized Cables

KEITHLEY
A Tektronix Company

Tektronix®
PPG & PED Product overview

- **Model**
 PPG1600/3000/3200/4000 up to 40Gbps, 1, 2, and 4-channel pattern generators
- **PED 320x and 400x** 32G and 40G error detectors
- Multi-channel versions feature aligned data across channels
- Fast rise/fall times (as low as 9ps depending upon model)
PAM4 on PPG3202

25 Gb/s

28 Gb/s

32 Gb/s
High Speed Networks & Standards

OIF/ITU

Long Haul
100G

10/40GbE

40/100GbE

Blade Servers

CFP

CAUI/XLAUI (10G)
CEI VSR (25G)

Central Office

100GbE To 40km

Router

Backplane, chip

10/40GbE

KEITHLEY
A Tektronix Company

City

Roughly Speaking....
OIF:
• Very long distances (100’s km)
• Very short distances (CEI, mm)
40/100G Ethernet:
• Distances in between

OIF CEI (19-28G)
10Gigabit Ethernet Interface Evolution

MSA Form Factors

- **XENPAK** Transceiver
- **X2** Transceiver
- **XFP** Transceiver
- **SFP+** Transceiver
- **SFP+ direct attach**
- **QSFP**

10GBE Standards

- IEEE 802.3ae SR/LR/ER/LX4
- IEEE 802.3ak CX4
- IEEE 802.3an 10GBASE-T
- IEEE 802.3aq LRM
- SFF-8431 SFP+

- 2002
- 2004
- 2006
- 2008
- 2010

Next Big Thing:
SFF-8431 SFP+, QSFP+

Source: Ethernet Alliance

16 April 2004
40GBASE-CR4 technology overview

The clause 85 of IEEE 802.3 specification details out 40GBASE-CR4 PMD. The 40GBASE-CR4 is a low-swing AC coupled differential interface. AC coupling at the receiver allows for interoperability between components operating from different supply voltages. Low-swing differential signaling provides noise immunity and improved electromagnetic interference (EMI).

The 40GBASE-CR4 signal paths are point-to-point connections. For 40GBASE-CR4, there are four differential paths in each direction for a total of eight pairs, or sixteen connections. 40GBASE-CR4 is a 40 Gigabit Ethernet technology. It uses 4 lanes to achieve the required data rate (4 * 10.3125 Gbps). The channel between transmitter and receiver is four lanes of shielded balanced copper cabling. Length of the signal path in 40GBASE-CR4 can range from 0.5 m to 7 m.
SFF-8431 SFP+/SFF-8635 QSFP+ Technology overview

- SFP+ is a next-generation hot-pluggable, small footprint, serial-to-serial multi-rate optical transceiver for 8.5GbE to 11.1GbE Datacom and Storage Area Networks (SAN) applications.
- SFF-8635 QSFP+ 10 Gb/s 4X Pluggable Transceiver Solution (QSFP10)
- SFP+ technology moved the clock and data recovery units out of the module and onto the line card – Reducing size drastically
- As a result, the modules are smaller, consume less power, allow increased port density, and are less expensive compared to XFP.
- High density capable Up to 48 ports in a rack
- Low power per port - Host Port power < 1 W and Low Latency
SFP-TX Host Transmitter Measurements

<table>
<thead>
<tr>
<th>SL No.</th>
<th>Measurements</th>
<th>Signal Type</th>
<th>Min</th>
<th>Target</th>
<th>Max</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Host Transmitter output electrical Specifications:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>Single Ended Output Voltage Range</td>
<td>PRBS31</td>
<td>-0.3</td>
<td>4</td>
<td></td>
<td>V</td>
</tr>
<tr>
<td>2</td>
<td>Output AC Common Mode voltage (RMS)</td>
<td>PRBS31</td>
<td></td>
<td>15</td>
<td></td>
<td>mV(RMS)</td>
</tr>
<tr>
<td></td>
<td>Host Transmitter Jitter and Eye Mask specifications</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Crosstalk source rise/fall time (20%-80%) (Tr, Tf)</td>
<td>8180</td>
<td></td>
<td>34</td>
<td></td>
<td>ps</td>
</tr>
<tr>
<td>4</td>
<td>Crosstalk source amplitude (p-p differential)</td>
<td>8180</td>
<td></td>
<td>1000</td>
<td></td>
<td>mV</td>
</tr>
<tr>
<td>5</td>
<td>Signal rise/fall time (20%-80%) (Tr, Tf)</td>
<td>8180</td>
<td></td>
<td>34</td>
<td></td>
<td>ps</td>
</tr>
<tr>
<td>6</td>
<td>Total Jitter (p-p) (Tj)</td>
<td>PRBS31</td>
<td></td>
<td>0.28</td>
<td></td>
<td>UI(p-p)</td>
</tr>
<tr>
<td>7</td>
<td>Data Dependent Jitter (p-p) (DDJ)</td>
<td>PRBS9</td>
<td></td>
<td>0.1</td>
<td></td>
<td>UI(p-p)</td>
</tr>
<tr>
<td>8</td>
<td>Data Dependent Pulse Width Shrinkage (p-p) (DDPWS)</td>
<td>PRBS9</td>
<td></td>
<td>0.055</td>
<td></td>
<td>UI(p-p)</td>
</tr>
<tr>
<td>9</td>
<td>Uncorrelated Jitter (RMS) (UJ)</td>
<td>PRBS9</td>
<td></td>
<td>0.023</td>
<td></td>
<td>UI(p-p)</td>
</tr>
<tr>
<td>10</td>
<td>Transmitter Qsq</td>
<td>8180</td>
<td></td>
<td>50</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>Eye mask hit ratio(Mask hit ratio of 5×10-5)</td>
<td>PRBS31</td>
<td></td>
<td>(X_1=0.12)UI, (X_2=0.33)UI, (Y_1=95)mV, (Y_2=350)mV</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Host Transmitter output specifications for Cu (SFP+ host supporting direct)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>Voltage Modulation Amplitude (p-p)</td>
<td>8180</td>
<td></td>
<td>300</td>
<td></td>
<td>mV</td>
</tr>
<tr>
<td>13</td>
<td>Transmitter Qsq Output AC Common Mode voltage</td>
<td>8180</td>
<td></td>
<td>63.1</td>
<td></td>
<td>mV(RMS)</td>
</tr>
<tr>
<td>14</td>
<td>Output AC Common Mode Voltage</td>
<td>PRBS31</td>
<td></td>
<td>12</td>
<td></td>
<td>mV(RMS)</td>
</tr>
<tr>
<td>15</td>
<td>Host Output TWDPc</td>
<td>PRBS9</td>
<td></td>
<td>10.7</td>
<td></td>
<td>dBe</td>
</tr>
</tbody>
</table>
Uncorrelated Jitter - UJ

- Uncorrelated Jitter is the deviation/TIE of each rising and falling edge on the input signal from its ideal location.
- Rising and falling edges are obtained from patterns with longest runs of 1s and 0s in order to maintain uniformity on the edges. If deviations are measured on all edges then deviations will be inconsistent and hence resulting in errors.
- Then standard deviation of computed TIE of rising and falling edges.
Data Dependent Pulse Width Shrinkage (DDPWS) is the Difference between Unit interval and Minimum pulse width.

- If the waveform contains PRBS7, 9, 11, then it is the average of all minimum pulse width for each pattern it contains.
- If the waveform is PRBS15, 20, 23 and 31, then it is the minimum pulse width across entire waveform.

DDPWS is computed as follows:

- DDPWS = Unit Interval – Minimum Pulse Width
TWDPc Measurement Definitions

- **TWDPc**
 - **Transmitter Waveform Dispersion Penalty for Copper**
 - *Defined as a measure of the deterministic dispersion penalty due to a particular transmitter with reference to the emulated multi-mode fibers and a well-characterized receiver.*
 - The fiber optics concept has been extended to quantify channel performance of high speed copper links “10GSFP+Cu”
 - Critical for performance
 - Requires a special algorithm
 - ClariPhy has IP rights for this algorithm

- **Test Specification Requirements for TWDPc**
 - 7 measurement samples per unit interval
 - Causes worst-case 0.24 dB TWDPc over 30 measurements
Tek SFP-TX – Automation Part

- Operates on Tektronix DPO/DSA70000C/D Series Oscilloscopes
- Automate setup & quickly generate reports
- Meets Compliance needs of SFF-8431/SFF-8635
- User defined mode supports PRBS7, PRBS11, PRBS15, PRBS20 & PRBS23 in addition to patterns supported in Compliance mode including PRBS9, PRBS31 and 8180.
QSFP+ SFP+ Fixture

<table>
<thead>
<tr>
<th>Transmitter Test Recommended Accessories – Probes & Fixtures</th>
</tr>
</thead>
<tbody>
<tr>
<td>Probing</td>
</tr>
<tr>
<td>SMA Cables</td>
</tr>
<tr>
<td>Fixturing</td>
</tr>
<tr>
<td>TF-SFP-TPA-HCB-P</td>
</tr>
<tr>
<td>TF-SFP-TPA-MCB-R</td>
</tr>
<tr>
<td>TF-SFP-TPA-PR</td>
</tr>
<tr>
<td>TF-SFP-TPA-HCB-PK</td>
</tr>
<tr>
<td>TF-SFP-TPA-MCB-RK</td>
</tr>
<tr>
<td>TF-SFP-TPA-PRK</td>
</tr>
<tr>
<td>TF-QSFP-TPA-HCB-P</td>
</tr>
<tr>
<td>TF-QSFP-TPA-MCB-R</td>
</tr>
<tr>
<td>TF-QSFP-TPA-PR</td>
</tr>
<tr>
<td>TF-DC-BLOCK-KIT</td>
</tr>
</tbody>
</table>

[Image of QSFP+ SFP+ Fixture]
40G-CR4 Compliance and Debug Solution

<table>
<thead>
<tr>
<th>Oscilloscope Required</th>
<th>Software Required</th>
<th>Accessories</th>
<th>Test Fixture</th>
</tr>
</thead>
<tbody>
<tr>
<td>DPO/DSA/MSO71604C</td>
<td>40G-CR4 & DJA*1</td>
<td>TF-DC-BLOCK-K</td>
<td>TF-QSFP-TPA-HCB-P</td>
</tr>
<tr>
<td>DPO/DSA/MSO72004C</td>
<td></td>
<td>QSFP+ Host Compliance</td>
<td>Board Plug</td>
</tr>
<tr>
<td>DPO/DSA72504D</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DPO/DSA73304D</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*1 - Prerequisite for 40G-CR4

![Digital Oscilloscope](image1)

![QSFP+ HCB & MCB](image2)

![QSFP+ HCB & MCB](image3)

![SFP+ HCB & MCB](image4)
16 GFC Single/Multi-mode Solution

80C14 Optical Module

<table>
<thead>
<tr>
<th>Performance Specifications</th>
<th>Standards Supported</th>
</tr>
</thead>
<tbody>
<tr>
<td>Single and multi-mode</td>
<td>Standard</td>
</tr>
<tr>
<td>9, 50, 62.5μm core</td>
<td>8 GFC (old)</td>
</tr>
<tr>
<td>Supported wavelengths</td>
<td>8.500 Gb/s</td>
</tr>
<tr>
<td>700 – 1650 nm</td>
<td>OC192/STM64</td>
</tr>
<tr>
<td>Maximum Optical Bandwidth</td>
<td>9.953 Gb/s</td>
</tr>
<tr>
<td>14 GHz</td>
<td>10GBase-W</td>
</tr>
<tr>
<td>Optical Reference Receivers</td>
<td>9.953 Gb/s</td>
</tr>
<tr>
<td>All 10 Gb/s standards + 8 and 16 GFC</td>
<td>10GBase-R</td>
</tr>
<tr>
<td>Sensitivity</td>
<td>10.31 Gb/s</td>
</tr>
<tr>
<td>-12 dBm at 850nm (-15 dBm at 1310 nm)</td>
<td>40GBase-LR4</td>
</tr>
<tr>
<td>Buffered electrical data pick-off to support external clock</td>
<td>9.953 Gb/s</td>
</tr>
<tr>
<td>recovery instrument</td>
<td>10G EPON</td>
</tr>
<tr>
<td>Recommended Tektronix CR175A or CR286A</td>
<td>9.953 Gb/s</td>
</tr>
<tr>
<td>Recommended Tektronix CR175A or CR286A</td>
<td>100GBase-SR10</td>
</tr>
<tr>
<td>Recommended Tektronix CR175A or CR286A</td>
<td>10.31 Gb/s</td>
</tr>
<tr>
<td>Recommended Tektronix CR175A or CR286A</td>
<td>10GFC</td>
</tr>
<tr>
<td>Recommended Tektronix CR175A or CR286A</td>
<td>10.51 Gb/s</td>
</tr>
<tr>
<td>G.975 FEC</td>
<td>10.66 Gb/s</td>
</tr>
<tr>
<td>G.709 FEC</td>
<td>10.71 Gb/s</td>
</tr>
<tr>
<td>10GBE FEC</td>
<td>11.10 Gb/s</td>
</tr>
<tr>
<td>10 GFC FEC</td>
<td>11.317 Gb/s</td>
</tr>
<tr>
<td>12.5 Gb/s FEC</td>
<td>12.50 Gb/s</td>
</tr>
<tr>
<td>16 GFC</td>
<td>14.025 Gb/s</td>
</tr>
<tr>
<td>Infiniband FDR</td>
<td>14.063 Gb/s</td>
</tr>
</tbody>
</table>
80C14 Optical Module
Unmatched Sensitivity for 16G Fibre Channel

16GFC SW transceiver: -11dBm, 850nm, 14.025Gb/s, 50um MMF
155 Mb/s to 100 Gb/s Optical Compliance Testing
DSA8300 ALL-IN-ONE Solution

Tektronix DSA8300 All-In-One System
+ 80C12B Optical Module (155 Mb/s to 11.3 Gb/s)
+ 80C10C-F1 Optical Module (25.7 Gb/s to 44.5 Gb/s)
+ 80C15 Optical Module (MM, 25.78 Gb/s to 28.05 Gb/s)
+ 2 slots available to acquire 4 electrical signals

The Only ALL-IN-ONE Solution with:

- All major ORRs from 155 Mb/s thru 44.5 Gb/s
- Highest repeatability & best sensitivity
- SMF and MMF support to 12G
- Up to 3x throughput advantage vs. alternative
- 425 fs _RMS_ native jitter
- 100 fs _RMS_ jitter when equipped with 82A04B
- Integrated clock recovery trigger pickoff
- Clock recovery available via Tektronix CR286 (to 28.6 Gb/s), or third party (to 44.5 Gb/s)
Tektronix Performance Solutions
By Application and Customer End Product

<table>
<thead>
<tr>
<th>End Product</th>
<th>Interface PHY</th>
<th>Transmission Test</th>
<th>Receiver Test</th>
</tr>
</thead>
<tbody>
<tr>
<td>SerDes</td>
<td>Electrical</td>
<td>DSA8300 w/80E10B & 82A04B (Golden Eye)</td>
<td>BSA286C</td>
</tr>
<tr>
<td></td>
<td></td>
<td>MSO70000DX (Debug)</td>
<td>PSPL PatternPro (full line of Picosecond Products, OEM+new)</td>
</tr>
<tr>
<td>Transceiver/Cable</td>
<td>Electrical</td>
<td>DSA8300 w/80E10B (Compliance & TDR)</td>
<td>BSA286C</td>
</tr>
<tr>
<td></td>
<td></td>
<td>MSO70000DX (Debug)</td>
<td>PSPL PatternPro</td>
</tr>
<tr>
<td>Transceiver/Cable</td>
<td>Optical</td>
<td>DSA8300 w/80C10C, 80C14 (NRZ-Serial)</td>
<td>BSA286C (NRZ-Serial Signaling) PSPL PatternPro</td>
</tr>
<tr>
<td></td>
<td></td>
<td>OM4000 w/DPO73304DX (Modulation Check)</td>
<td>AWG70000 or PPG320X w/OM5510 (QPSK, PAM-based Modulation)</td>
</tr>
<tr>
<td>Line Card/System</td>
<td>Electrical</td>
<td>DSA8300 w/80E10B (Compliance & TDR)</td>
<td>BSA286C</td>
</tr>
<tr>
<td></td>
<td></td>
<td>MSO70000DX (Debug)</td>
<td>PSPL PatternPro</td>
</tr>
<tr>
<td>Line Card/System</td>
<td>Optical</td>
<td>DSA8300 w/80C10C, 80C14 (NRZ-Serial)</td>
<td>BSA286C (NRZ-Serial) PSPL PatternPro</td>
</tr>
<tr>
<td></td>
<td></td>
<td>OM4000 w/DPO73304DX (Modulation)</td>
<td>AWG70000 or PPG320X w/OM5510 (QPSK, PAM-based Modulation)</td>
</tr>
</tbody>
</table>
Tektronix 100G Comprehensive Testing Solutions

- **DSA8300 Sampling Oscilloscope**
 - >70GHz Bandwidth
 - <100 fsec jitter noise
 - Pass/Fail at high throughput
 - BUJ-Based Jitter Analysis

- **BSA286C Bit Error Rate Tester**
 - 28.6 Gb/sec Data Rate
 - Low intrinsic jitter
 - Stressed, calibrated PRBS31 patterns
 - Error location & Jitter Analysis

- **PatternPro BERT Instruments**
 - 32 Gb/sec Data Rate
 - Up to 4 synchronized channels (PG + ED)
 - Low intrinsic jitter
 - Stressed, calibrated PRBS31 patterns

- **OM4000 Coherent Lightwave Analyzer**
 - DP-QPSK Analysis
 - Constellation Mapping to BER
 - Works with RT or ET Scopes
Thanks!