

你所不知道的直接数字合成

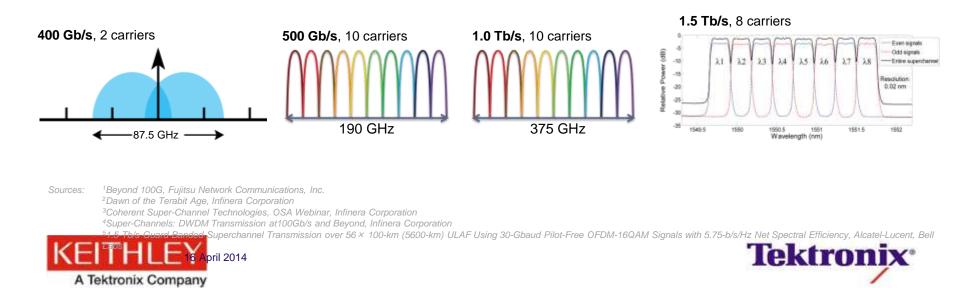
Zhang Xin

Agenda

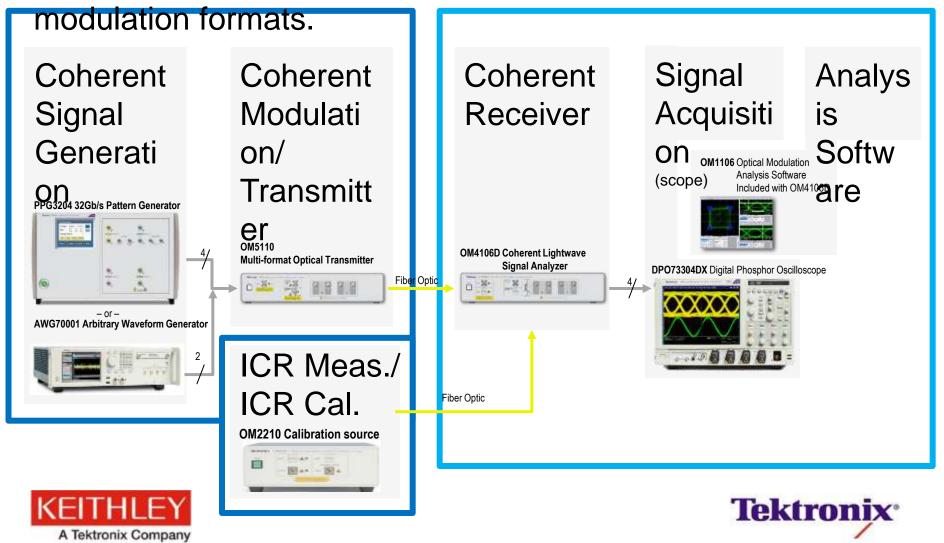
- Challenge for coherent 100G/400G
- Design and build reference coherent transmitter
- Considerations for ideal coherent receiver
- Summary

Challenges for 100G/400G

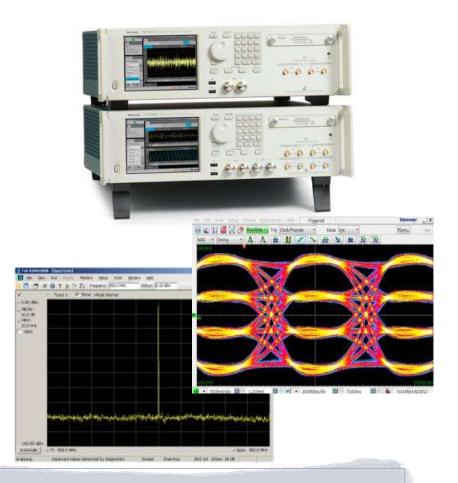
- Even as 100G coherent optical systems are being deployed, architecture for 400G systems and beyond are in development
- Current proposals vary considerably from the number of carriers, to the carrier spacing, to the modulation format used
- High accuracy complex modulation scheme more than QPSK
- The test and measurement system must have the flexibility to support any combination of system parameters



Example Industry Approaches to 400G and Beyond


- No industry consensus on how to build superchannels
- Vendors differ on characteristics as basic as carrier count and carrier spacing to what modulation format should be used

system rate	# of carriers	modulation format
400 Gb/s ¹	2	DP-16QAM
500 Gb/s ²	5	DP-QPSK
500 Gb/s ³	10	DP-QPSK
1.0 Tb/s⁴	10	DP-QPSK
1.5 Tb/s⁵	8	DP-16QAM


Coherent Optical T&M Platform

Tektronix offers complete end-to-end testing of coherent

AWG70000A Arbitrary Waveform Generators

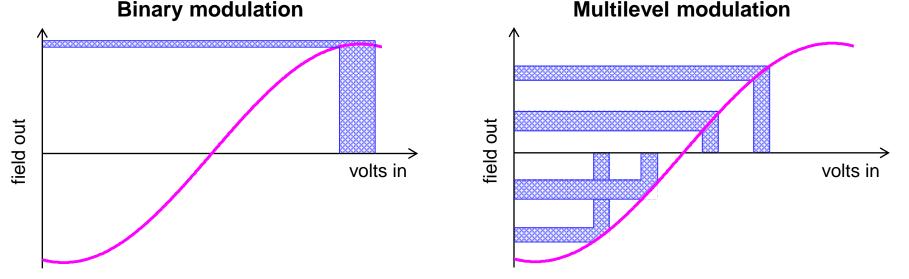
- Wideband RF signals at carrier up to 20GHz
- 10 bit Vertical Resolution
 - Allows for multi-level and signal compensation(PAM 4~16)
- 50 GS/s DAC
 - Can generate signal up to and above 32GBaud

"The sampling rate of 50 GS/s combined with the ability to synchronize two AWGs enabled us to generate 30-GBaud signals per optical carrier, with a data rate of 233 Gb/s, more than twice the previous record. The performance and signal purity of the AWG70000 more than met our requirements for this demanding experiment." – S. Chandrasekhar. Bell Labs

A Tektronix Company

OM5110 Tektronix Coherent Optical Modulator

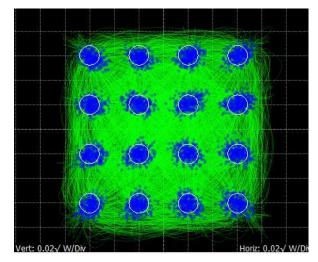
Power Laser 1	Signal Input < 30 mW Peak			
	FEAN C FC/APC			
MACEBLE LASER BASAGON, DO NOT VEW DWIEDTLY With OPTICAL INSTRUMENTS CLASS IN LASER PRODUCT EVISION OR INSTRUMENTS CASES IN LASER PRODUCT NE PAS OBSERVERA LAVE DIMOTRIJMENTS OPTIGLES	Modulated Signal Output	I Q		Q
	A FCIAPC	X	Y	

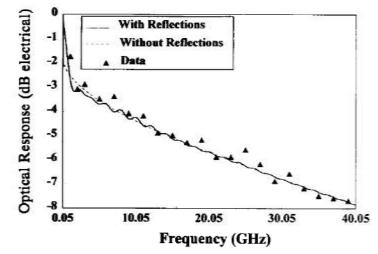

- 46 GBaud Coherent optical transmitter offers modulation of common complex modulation formats such as BPSK, DP-QPSK, PM-16QAM.
- Built-in C- or L-band lasers offer setup convenience. Instrument also supports use of external lasers.
- Instrument can be placed under control of Tektronix optical modulation analysis software and offers both manual and automatic bias control.

Challenges upgrading from QPSK to QAM

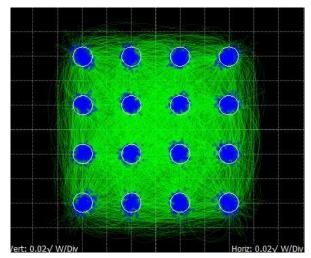
- For 20 years external optical modulators (typically LiNbO₃ Mach-Zehnder) have successfully generated **binary** signals
 - OOK, BPSK and QPSK are all examples of binary modulation
- Drive amplifiers operated with output stage in saturation
 - gives clean 2-level signal even if frequency response of linear stages is not flat
- Mach-Zehnder has natural sine-shaped response
 - hides ISI in drive signal, impact of non-flat frequency response of modulator

With multilevel modulation response of amp + modulator no longer hidden

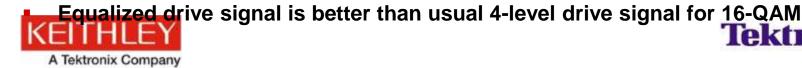




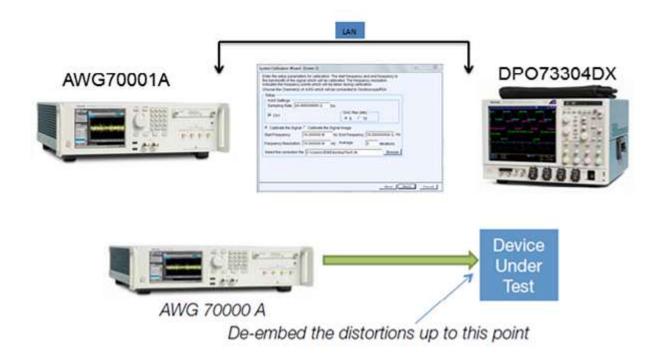
Challenges upgrading from QPSK to QAM


- Lithium niobate modulator has structure in its frequency response at low frequencies
 - skin loss in microstrip electrode
 - phase matching of backward travelling wave component
- Example (right) is for z-cut Ti-diffused waveguide [Gopalakrishnan et al., JLT, vol. 12, 1994, p. 1807-1819]
- 28 Gbaud 16-QAM optical signals
 - Examples use clean (<4% EVM) electrical signal

Without equalization: EVM = 9%



With equalization: EVM = 6.4%



ektroni

Pre-compensation in RFXpress for Coherent Modulation and transmission

- Calibration is performed using RFXpress from Tektronix
- SignalVu/OUI software running on DPO73304DX is used to measure the EVM

Using RFXpress design waveform

Setup Hopping Power Ramping I/Q Impairments Base data: PRBS - 15	Distortion Addition Multi-Path Interferen	constellation distortions timing skew, axis angle I/Q imbalance
Single Carrier Baseband Offset	Hz Amplitude:	1.00 Vrms
SK, QPSK, QAM, offset mats, user defined nstellation + more	po	RBS (including olynomial definition) specific pattern
Modulation Modulation: QAM 16	Coding: Symbol rat	e: 32.00000000 G 💽 Hz
Filter/Window	• Window:	None
Alpha/B*T: 0.25	symbols rect	angular pulse pe, raised cosine, traised cosine +

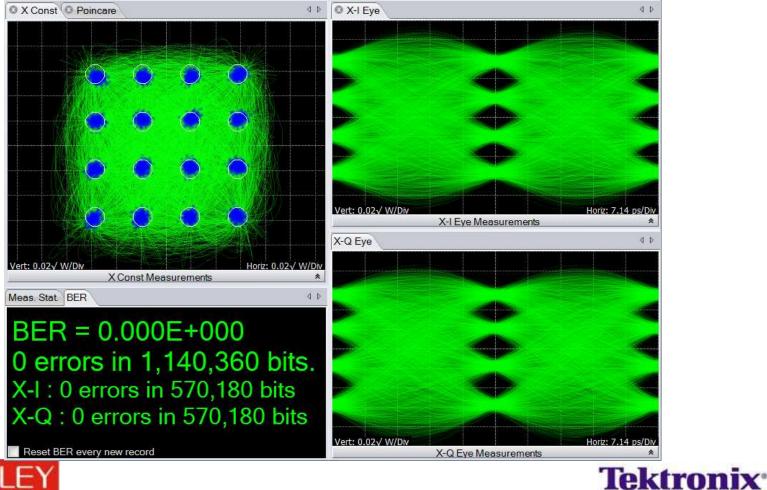
Using RFXpress design waveform

- Apply correction, either from the file supplied by Tektronix or user's own calibration
 - Corrections for multiple hardware elements can be applied in turn, e.g. first AWG then optical transmitter

Waveform!	List		4 X		15	- 277		- 1
Name	Length	Samp. Rate	Format	Carriers:	Single Carrier	•	Numb	
Wavefor_			1				- 11	
Wevelor	51.3 k	50.00 GS/s				•		0
				Delete Delete All Rename Apply Calibrati Send to Enviror	on nment plug-in Wav	eform List		9

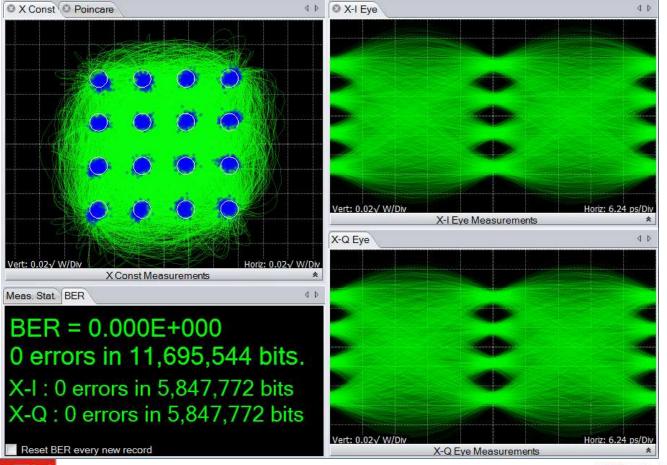
Using RFXpress design waveform

- RFXpress included calibration wizard, to obtain calibration of AWG + following hardware
- Connects directly to AWG & oscilloscope, sends test waveforms, acquire results, and process them to give calibration file
- RFXpress is used to create baseband 32Gbaud QSPK signal
- 2. RFXpress 'RF' Calibration used to create the correction coefficients.
- Signal is connected to scope to find roll off point and correction coefficients are send back to RFXpress
- 4. RFXpress is used again to recreate the signal with correction coefficients/precompensation applied
- 5. Final waveform is downloaded to AWG70001A for transmission



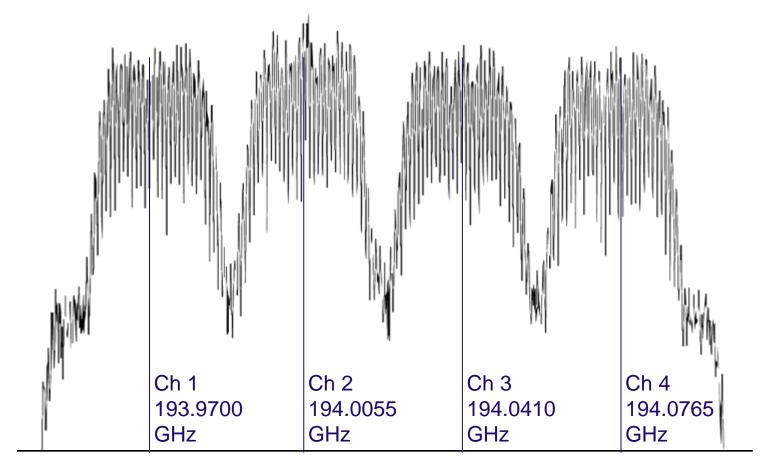
ystem Calibration Wizard (Screen 1)		0
Welcome to the AWG calibration wizard. U the generated signal to get a clean signal.		file which can be applied on
You can perform following types of calibra 1. RF calibration, which requires only an A		um analyzer.
2. IF calibration, which requires an AWG, a changes the frequency range generated b		
 IQ calibration, which requires an AWG, upconverts the frequency range generate For IQ and IF calibration, the correction file 	d by the AWG to the carrier frequenc	у.
including the mixer and/or upconverter.		
This wizard guides you through the setup Calibration type	Calibrate using	
RF CIF CIQ	Californie Osnig	SA
Direct (No upconversion to RF)		

Examples of equalized OM5110 transmitter output


- 28 Gbaud 16-QAM optical signal
- EVM = 5.8%

Examples of equalized OM5110 transmitter output

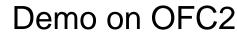
- 32 Gbaud 16-QAM optical signal
- EVM = 6.5%

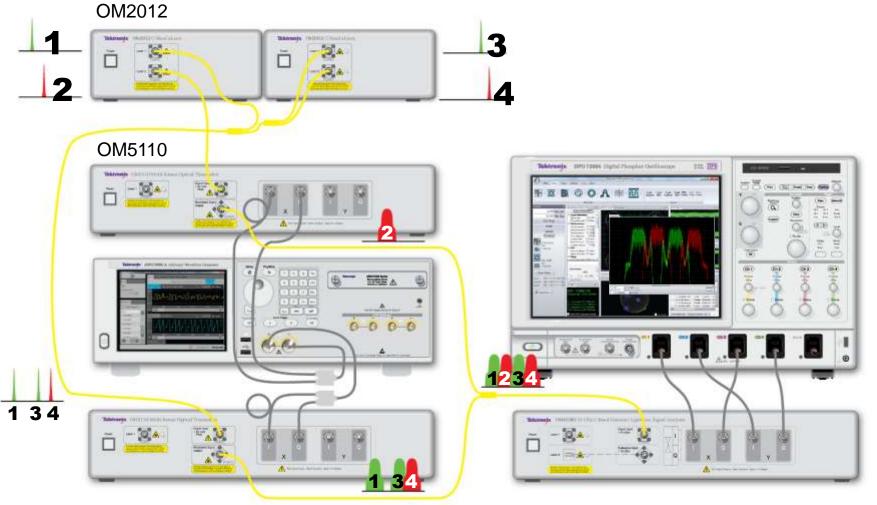


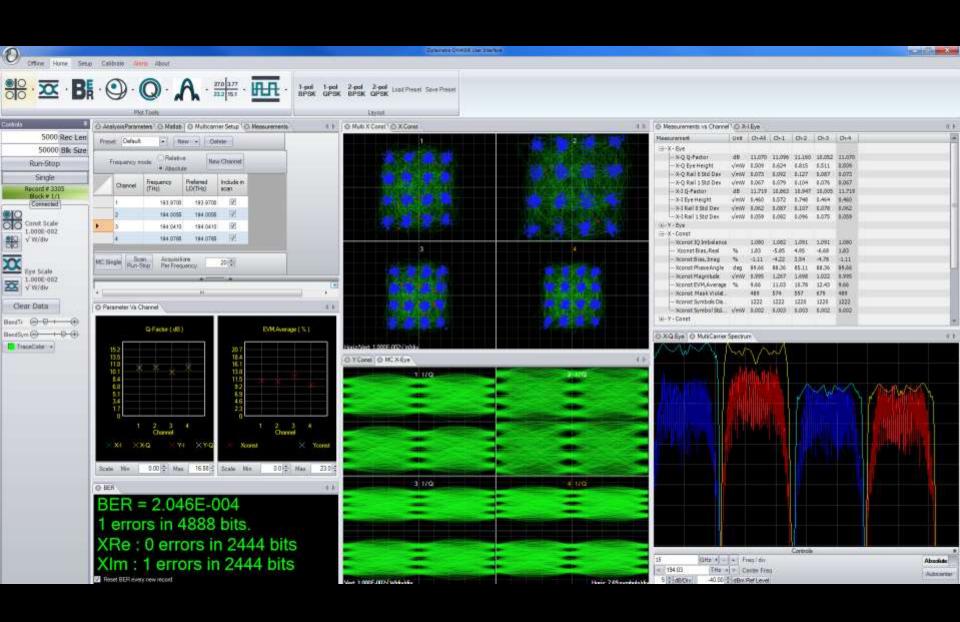
Tektronix[®]

400G Multi-Carrier Super-Channel

Example: Spectrum of 4-Carrier Super-Channel






400G Multi-Carrier Super-Channels

OM4106D 33 GHz Coherent Lightwave Signal Analyzer

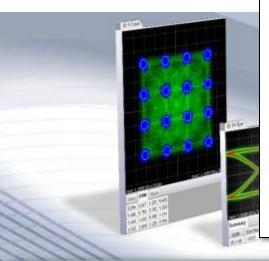
Complete and open solutions to complex measurement challenges in long-haul fiber-optic communications

 Advanced dual-polarization in-phase and quadrature receiver with integrated signal and reference tunable laser sources

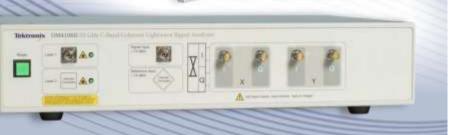
- Open-architecture MATLAB-based computational engine offers :
 - powerful phase-recovery analyze
 - polarization, bit-error rates
 - record/playback

Intuitive graphical user interface

A Tektronix Company

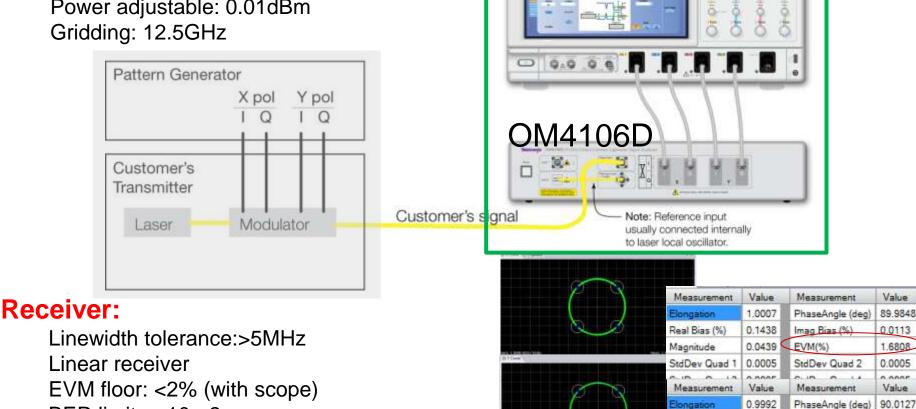


Tektronix OM4000 series 'ICR' compliance with OIF


- Only the T&M vendor in OIF member list
- First instrumentation ICR in the world

NEC NeoPhotonics Nokia Siemens Networks NTT Corporation Oclaro Opnext Picometrix PMC Sierra QLogic Corporation Semtech SHF Communication Technologies Sumitomo Electric Industries Sumitomo Osaka Cement TE Connectivity IA # OIF-DPC-RX-01.1 IA for Integrated Intradyne Coherent Receivers

Tektronix Telcordia Technologies Tellabs TeraXion Texas Instruments Iain Robertson Time Warner Cable TriQuint Semiconductor u2t Photonics AG Verizon Vitesse Semiconductor Xilinx Xtera Communications Yamaichi Electronics Ltd. ZTE Corporation



Example Real Time Scope Configuration

Note: Ethernet connections not shown. All instruments assumed to be connected to same network.

Local Laser:

Wavelength Range: C+L Output power:14.5dBm Power adjustable: 0.01dBm Gridding: 12.5GHz

DSA/DPO70k-Series

0.1101

1.4228

0.0004

....

Real Bias (%)

StdDev Quad 1

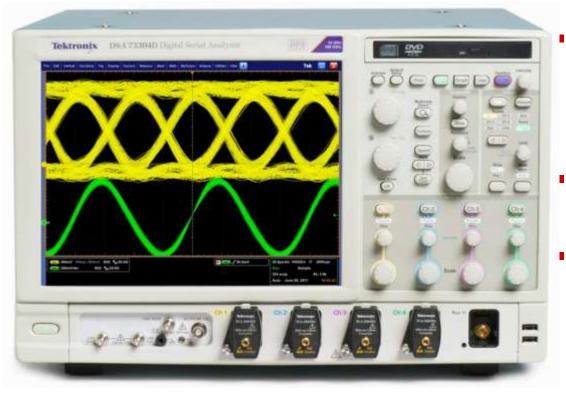
Magnitude

0.0457

0.0004

.

0.0438


Imag Bias (%)

StdDev Quad 2

EVM(%)

BER limit : >10e-2 KAnalysis sample : >1M pts

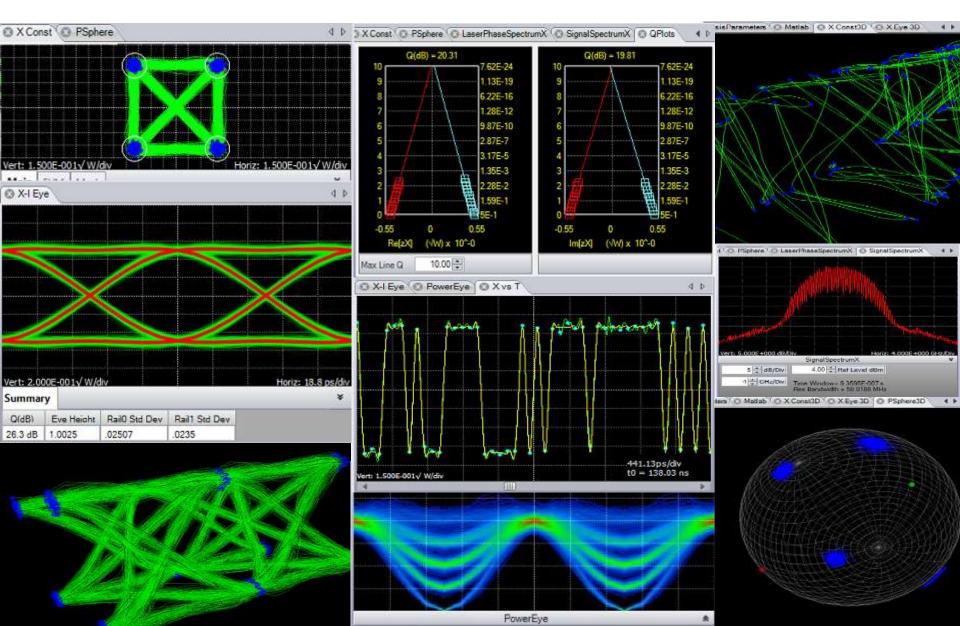
Introducing the DPO/DSA70000DX Series

Industry leading combination of **33** GHz bandwidth and **100** GS/sec sample rate

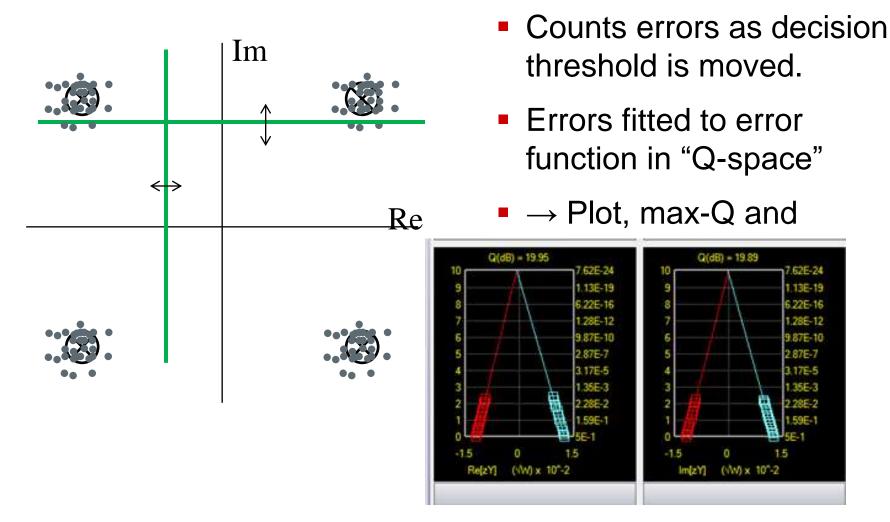
- 6.25mV/div the most accurate vertical resolution
- Most flat frequency response ±0.5dB

The World's Most Accurate Oscilloscope

Full Automatically Measurements over 50+ items


- Optical Field
 - Wavelength range
 - Polarization ER
 - Laser phase noise
 - PDL/ PMD/ CD
- Electrical Field
 - Quadrature phase angle
 - Constellation bias.
 - Eye crossing points
 - Std. dev. by quadrant
 - I/Q skew
 - Total skew
- System
 - Q-factor
 - EVM, noise-loaded BER
- Time Domain
 KEITHLEY

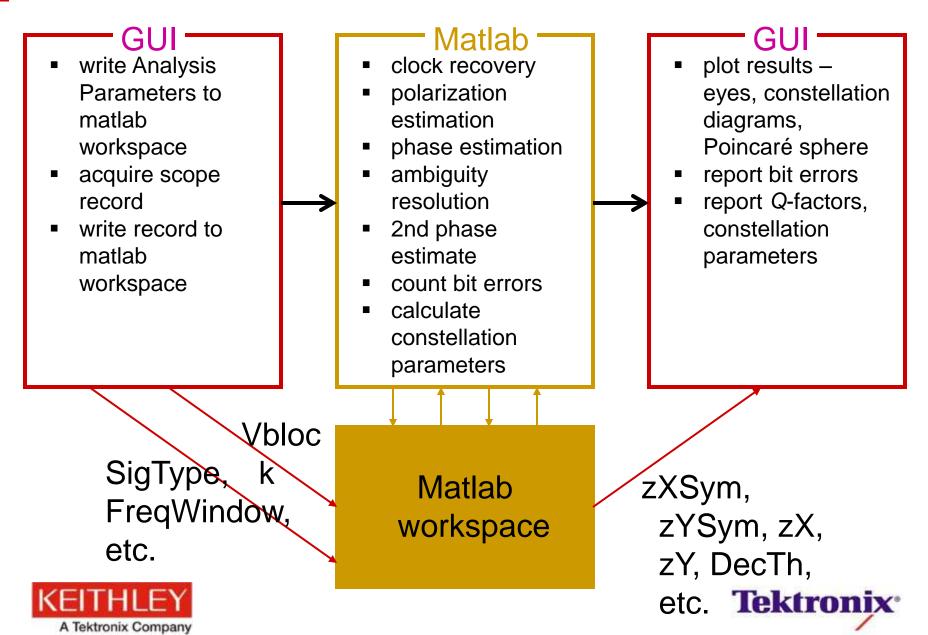
A	Tektronix	Comp	an


Measurement	Value	Mean	Min	Max	StdDev	Unit	Count	
X - Eye								
+ ··· Y - Eye								
🖃 X - Const								
Xconst IQ Imbalance	0.962	1.001	0.939	1.051	0.036		1611	
···· Xconst Bias, Real	1.02	-0.89	-4.60	1.70	1.31	%	1611	
Xconst Bias, Imag	-3.23	-1.17	-4.08	2.71	1.07	%	1611	
Xconst PhaseAngle	90.76	90.00	88.60	91.64	0.48	deg	1611	
Xconst Magnitude	0.725	0.715	0.587	0.739	0.027	√mW	1611	
Xconst EVM, Average	12.03	11.73	10.62	16.49	0.56	%	1611	
Xconst Mask Violat	31	34	10	210	14		1611	
···· Xconst Symbols Dis	1379	1379	1379	1380	0		1611	
Xconst Symbol Std	0.002	0.002	0.001	0.003	0.000	√mW	1611	
- Y - Const								
Yconst IQ Imbalance	0.997	1.000	0.972	1.018	0.010		1611	
Yconst Bias, Real	0.81	0.51	-0.70	1.86	0.37	%	1611	
Yconst Bias, Imag	-0.87	-0.15	-1.77	1.32	0.62	%	1611	
Yconst PhaseAngle	90.25	90.00	88.78	91.36	0.40	deg	1611	
Yconst Magnitude	0.810	0.809	0.671	0.829	0.029	√mW	1611	
···· Yconst EVM, Average	9.39	8.68	7.41	14.73	0.73	%	1611	
Yconst Mask Violat	4	3	0	87	5		1611	
····· Yconst Symbols Dis	1379	1379	1379	1380	0		1611	
Yconst Symbol Std	0.002	0.002	0.001	0.003	0.000	√mW	1611	
🖃 X - Trans								
····· X-Q Crossing Point	47.71	48.04	45.67	50.17	0.88	%	1611	
···· X-Q Skew	-2.12	-2.58	-3.39	-1.66	0.39	ps	1611	
X-Q Risetime	24.41	24.02	22.85	25.26	0.58	ps	1611	
····· X-Q Falltime	23.48	23.33	22.49	24.13	0.22	ps	1611	
X-Q Overshoot	-1.88	-1.64	-3.81	0.09	0.58	%	1611	
···· X-Q Undershoot	-1.60	-0.72	-2.02	0.62	0.42	%	1611	
···· X-I Crossing Point	49.96	49.24	45.99	53.08	2.01	%	1611	
···· X-I Skew	-2.65	-2.57	-3.40	-1.72	0.39	ps	1611	
···· X-I Risetime	23.40	23.92	22.64	25.42	0.69	ps	1611	

Clear Statistics

Comprehensive Diagrams

Exclusive: Measuring TX Constellation Imperfections: Q-factor



Open All Algorithms for Power User with Matlab[™]


Interaction Between GUI and Matlab

Example Industry Approaches to 400G and Beyond

- No industry consensus on how to build super-channels – no one architecture fits all requirements.
- Vendors differ on characteristics as basic as carrier count and carrier spacing to what modulation format should be used.

system rate	# of carriers	modulation format
400 Gb/s1	2	DP-16QAM
500 Gb/s ²	5	DP-QPSK
500 Gb/s ³	10	DP-QPSK
1.0 Tb/s⁴	10	DP-QPSK
1.5 Tb/s⁵	8	DP-16QAM

Sources: ¹Beyond 100G, copyright 2012, Fujitsu Network Communications, Inc.

²Dawn of the Terabit Age , copyright 2011, Infinera Corporation

³Coherent Super-Channel Technologies, OSA Webinar , copyright 2011, Infinera Corporation

⁴Super-Channels: DWDM Transmission at100Gb/s and Beyond, copyright 2012, Infinera Corporation

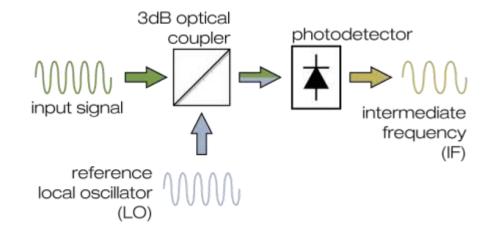
-Guard-Banded Superchannel Transmission over 56 × 100-km (5600-km) ULAF Using 30-Gbaud Pilot-Free OFDM-16QAM Signals with 5.75-b/s/Hz Net Spectral Efficiency, Alcatel-Lucent, Bell

A Tektronix Company

Example Industry Approaches to 400G and Beyond

system rate	# of carriers	modulation format	system bandwidth	req'd scope bandwidth
400 Gb/s1	2	DP-16QAM	87.5 GHz	44 GHz
500 Gb/s ²	5	DP-QPSK	190 GHz	95 GHz
500 Gb/s ³	10	DP-QPSK	190 GHz	95 GHz
1.0 Tb/s ⁴	10	DP-QPSK	375 GHz	188 GHz
1.5 Tb/s⁵	8	DP-16QAM	260 GHz	130 GHz

Tektronix recently announced a 70GHz real-time oscilloscope(ATI Technology),


but current oscilloscopes still do not have sufficient bandwidth to capture an entire super-channel with a single acquisition.

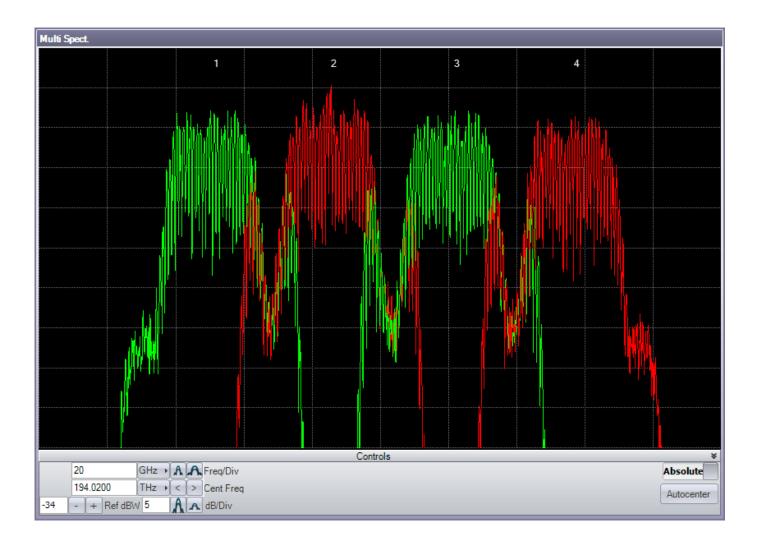
Acquiring Super-Channels – Local Oscillator Tuning

- Coherent detection works by combining the input signal with a local oscillator.
- The local oscillator frequency determines the center of the frequency range that is detected.
- By sweeping the local oscillator, different frequency ranges can be captured in sequence.

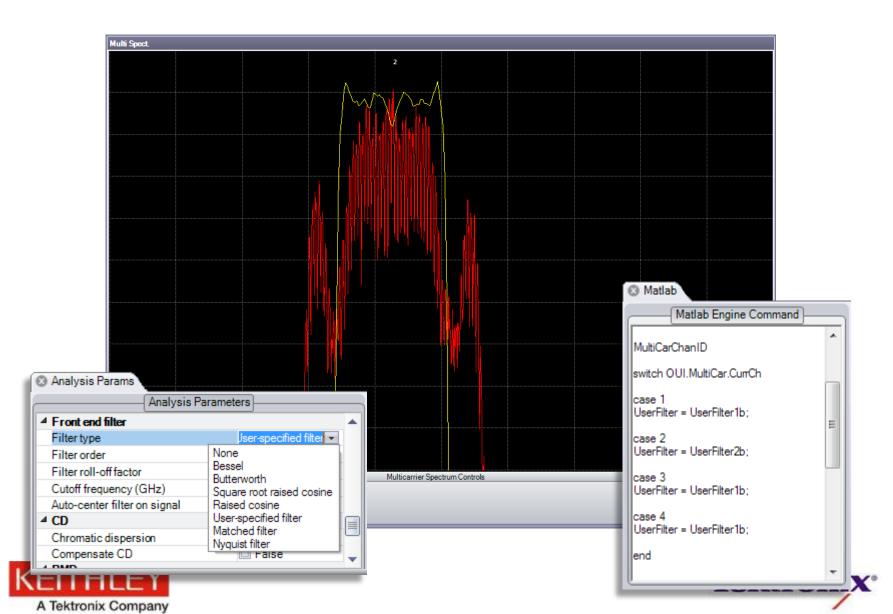
Acquiring Super-Channels – Configuration

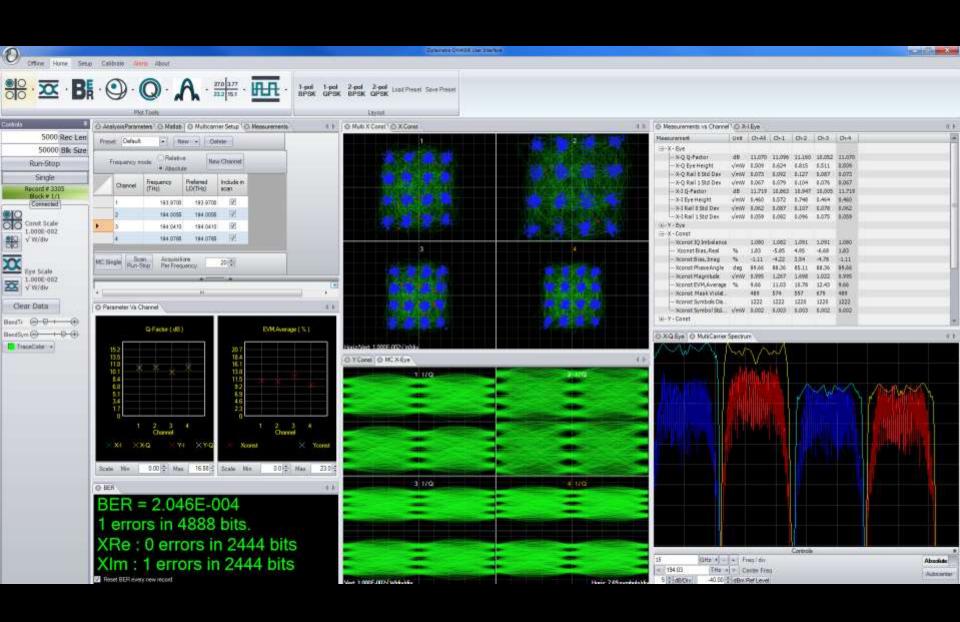
Multic	arrier chann		ListOptio		d Channel
	Channel	Frequency (THz)	Preferred LO(THz)	-	Include in scan
	1	193.9700	193.9	700	V
•	2	194.0055	194.0)055	V
	3	194.0410	194.0	410	V
	4	194.0765	194.0)765	V
Sca	n Scan	Acquisitio per freque			1

Example


- 4 Carrier Super-Channel
- Center frequencies spaced at 35.5 GHz:

Channel 1:	193.9700 GHz
Channel 2:	194.0055 GHz
Channel 3:	194.0410 GHz
Channel 4:	194.0765 GHz

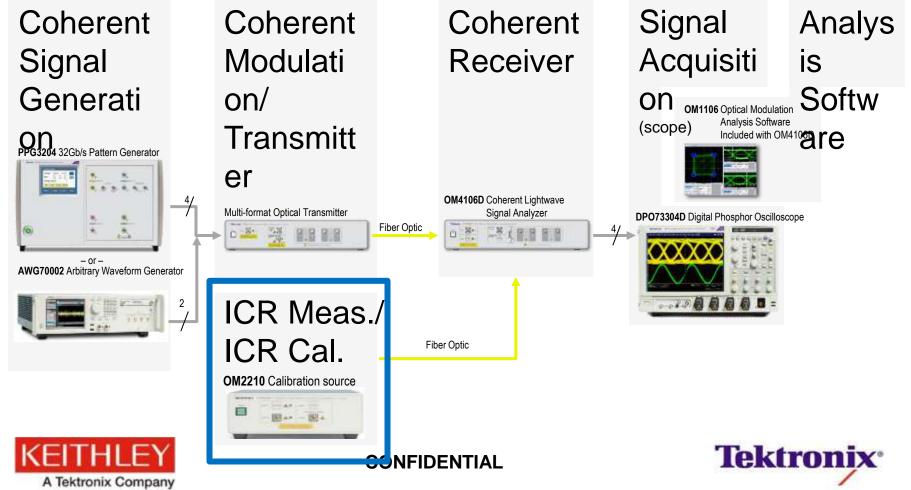

Acquiring Super-Channels – Captured Spectrum



Acquiring Super-Channels – Digital Channel Filtering

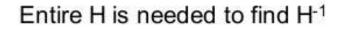
Tektronix Multi-Carrier Support – Option MCS for 400G/1T Integrated Measurement Results

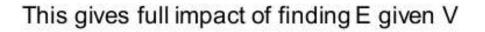
- Integrated measurement results can be viewed for each channel side-by-side
- Eye diagrams, constellation diagrams, and optical spectrum plots can be viewed individually by channel or with all channels superimposed for easy comparison


easurement	Unit	Ch-All	Ch-1	Ch-2	Ch-3	Ch-4	
- X - Eye							
X-Q Q-Factor	dB	11.937	11.937	10.703	11.721	11.448	
···· X-Q Eye Height	√mW	1.614	1.614	1.975	1.390	1.252	
X-Q Rail 0 Std Dev	√mW	0.216	0.216	0.311	0.195	0.166	
···· X-Q Rail 1 Std Dev	√mW	0.207	0.207	0.275	0.160	0.163	
···· X-I Q-Factor	dB	12.148	12.148	10.740	11.528	11.878	
···· X-I Eye Height	√mW	1.443	1.443	1.823	1.242	1.147	
···· X-I Rail 0 Std Dev	√mW	0.180	0.180	0.294	0.163	0.149	
X-I Rail 1 Std Dev	√mW	0.190	0.190	0.236	0.179	0.149	
÷ ···Y - Eye							
- X - Const							
···· Xconst IQ Imbalance		1.091	1.091	1.094	1.093	1.095	
···· Xconst Bias, Real	%	2.48	2.48	-6.05	1.97	2.32	
Xconst Bias, Imag	%	1.42	1.42	5.28	0.97	0.57	
···· Xconst PhaseAngle	deg	89.30	89.30	89.70	89.64	89.54	
Xconst Magnitude	√mW	3.231	3.231	4.209	2.801	2.558	
Xconst EVM, Average	%	6.93	6.93	7.72	7.52	7.35	
···· Xconst Mask Violat		41	41	66	45	45	
···· Xconst Symbols Dis		1,234	1,234	1,234	1,234	1,234	
Xconst Symbol Std	√mW	0.006	0.006	0.008	0.005	0.005	
±Y - Const							
±…X - Trans							
+ Y - Trans							
±Pow - Trans							
- XY Measurements							
Sig Freq Offset	MHz	674.2	674.2	-199.6	306.0	55.2	
···· Signal Baud Rate	GHz	25.99	25.99	25.99	25.99	25.99	
···· PER	dB						
····· PDL	dB						
PMD							

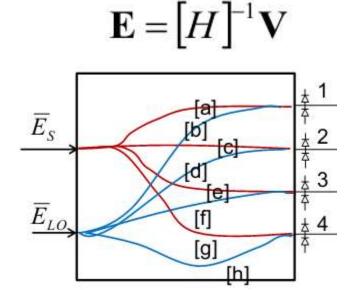
Coherent Optical System

Tektronix offers complete end-to-end testing of coherent modulation formats.

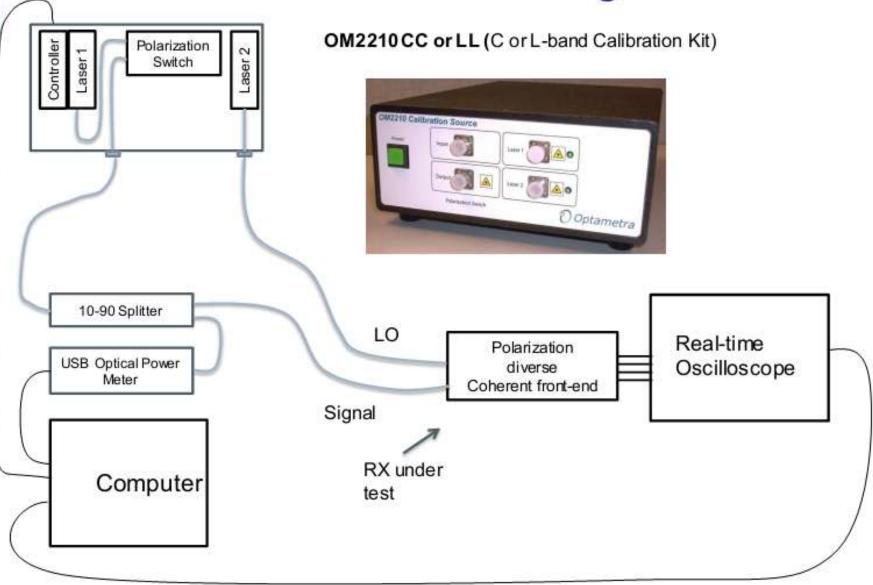



Optical hybrid calibration

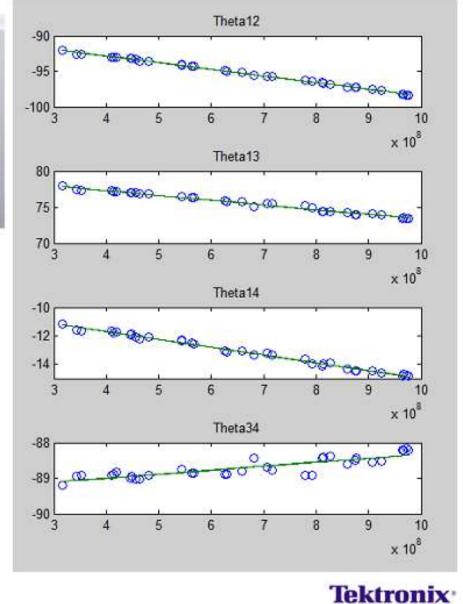
$$\mathbf{V} = \begin{bmatrix} H \end{bmatrix} \mathbf{E}$$


$$V_{1} \\ V_{2} \\ V_{3} \\ V_{4} \end{bmatrix} \begin{bmatrix} h_{11} & h_{12} & h_{13} & h_{14} \\ h_{21} & h_{22} & h_{23} & h_{23} \\ h_{31} & h_{32} & h_{33} & h_{34} \\ h_{41} & h_{42} & h_{43} & h_{44} \end{bmatrix} \begin{bmatrix} E_{xr} \\ E_{xi} \\ E_{yr} \\ E_{yi} \end{bmatrix}$$

Apply E1 and E2, find all hybrid parameters E1·E2 = 0 (new coordinate system) Rotate back to hybrid system

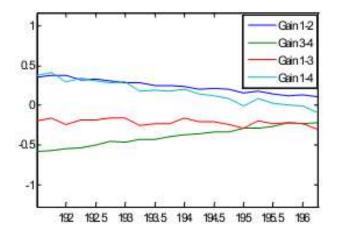


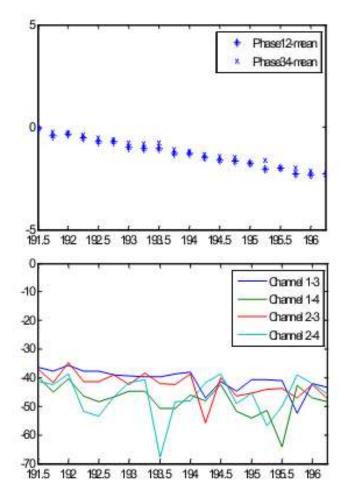
Receiver Testing Detail


4-Channel Skew Measurement

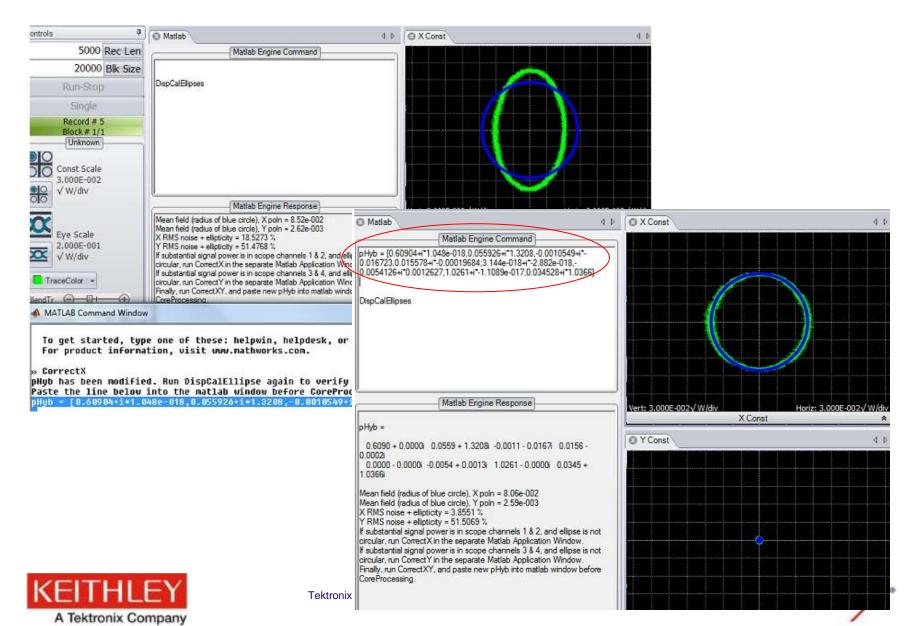
hannel Delays	Frequency Re	inge		Close
Picosécon	Min (MHz)	Step (MHz)	Max (MHz)	
1120	5.96 400.00	100.00	1,100.00	
1-3	8 40 Progress			
14 1	5 26	Calination Successful		
		Re	calculate Delays	

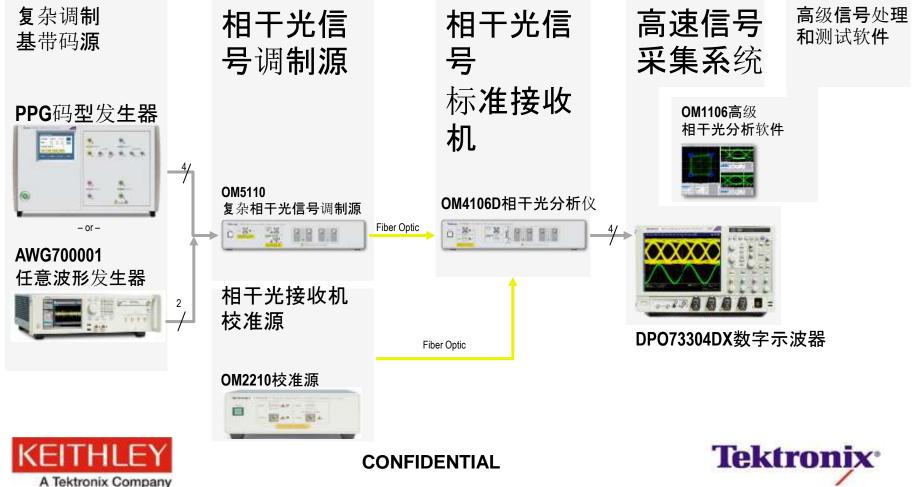
- User sets up heterodyne Frequency Sweep Range
- Relative phase plotted vs. frequency
- Average slope provides the Channel Delay


```
Status =
```


```
ChDelay: [0 -2.5981e-011 -1.8396e-011 -1.5257e-011]
HinFreq: 3.1548e+008
MaxFreq: 9.7618e+008
rmsErrDeg12: 0.0983
maxErrDeg12: 0.2504
rmsErrDeg13: 0.1741
maxErrDeg13: 0.4614
rmsErrDeg34: 0.407
maxErrDeg34: 0.3690
```


Example RX Measurement Results


Quadrature phase vs. wavelength Gain vs. wavelength Crosstalk vs. wavelength



Customized ICR testing with Hybrid Cal

Tektronix Coherent Optical T&M Platform

Tektronix offers complete end-to-end testing of coherent modulation formats.

Thanks!

