Advancing Test in Coherent Transmission Systems

Daniel van der Weide

Optametra History

Complex Measurements Made Simple

What does a Coherent Lightwave Signal Analyzer do?

- Enables total calibration to make hardware "golden"
 - Analog front end path gains, phase angles
 - Frequency response
 - Path delays (skew)
- Removes laser frequency offset
- Removes laser phase fluctuations
- Presents resulting modulation field
 - Constellation
 - Eye Diagram
 - Q plot
 - EVM
- Can also model receiver function and even impairments
 - Remove CD, ISI, etc.; measure BER
 - Emulate a delay-line interferometer for differential signaling

Coherent Lightwave Signal Analyzer Architecture

- The optical signal analyzer uses burst-mode coherent detection it includes a local oscillator laser and a phase/polarization diverse hybrid
- Outputs from several photodetectors are digitized by high speed (e.g. 50 Gs/s)
 A/D converters for an interval of time and stored in RAM
- A microprocessor asynchronously reads the values from RAM and computes the required parameters of the signal
- All the information about the signal over the interval of time is known
 - electric field (in-phase & quadrature parts) in both polarization states
- In principle any signal parameter can be deduced by an appropriate algorithm

Tektronix

OM4000 Optical Modulation Analyzer Series

Complete and open solutions to complex measurement challenges in long-haul fiber-optic communications

- Advanced dual-polarization in-phase and quadrature receiver with integrated signal and reference tunable laser sources
- Open-architecture MATLAB-based computational engine offers powerful phase-recovery analyses with polarization, bit-error rates, and record/playback
- Graphical user interface controls frequently-used instrument functions:
 - Laser control
 - Modulation schemes
 - PRBS or user-generated data
- Works with all major real-time oscilloscopes
- Easily upgradable

Why do I need a Coherent Lightwave Signal Analyzer?

- Understand and optimize optical networks employing advanced modulation
 - Measure constellation parameters, quadrature and modulator bias values, symbol masks, EVM, signal and phase spectra, BER, Q vs. decision threshold
 - Save time, enable a wider range of users
- Transition from R&D to qualification and production environments
 - Enable automation
- Test equalization and phase recovery algorithms
 CD, PMD, ISI
- Understand effects of bandwidth limitations
 - At the transmitter, digitizer, and receiver

Measuring TX Constellation Imperfections: EVM

- Distance of a symbol point from the ideal location.
- Instantaneous or rms value
- Normalized to ideal symbol magnitude
- QAM EVM often normalized to largest symbol magnitude

Measuring TX Constellation Imperfections: Q-factor

- Counts errors as decision threshold is moved.
- Errors fitted to error function in "Q-space"
- → Plot, max-Q and optimum decision threshold

Measuring TX Constellation Imperfections: Phase Angle

Example: Modulator Bias Adjustment

Example: Adjusting Tributary Timing Skew

Measurements Available for QPSK Signals

Offline Home Setup Calibrate Alerts About					
Controls 4	🔇 AnalysisParameters 🚫 Matlab 🔄 4	X Const X PSphere Q QPlots X Cor	d ک	🕲 X-I Eye	⊲ ⊳
5000 Rec Len	Analysis Controls	Q(dB) = 18.25	Q(dB) = 18.74		
500000 Blk Size	Clock Frequency	10 7.62E-24	10 7.62E-24	Vert: 5.000E-003√ W/div	Horiz: 7.14 ps/div
Run-Stop	28.000 GHz Frequency	9 1.13E-19 8 6.22E-16	9 1.13E-19 8 6.22E-16	X-I Eye Measurement Value Measurement Value	*
Single	30.800 GHz Frequency Hi	7 1.28E-12	7 1.28E-12	Q factor (dB) 18.25 Eye Height 0.0197	tio
Record # 105 Block # 1/1	25.200 GHz Frequency Lo	6 9.87E-10 5 2.87E-7	6 9.87E-10	StdDev 0-Level 0.0011 StdDev 1-Level 0.0013	X Optio
Connected	20 TracePtsPerSym	5 2.87E-7 4 3.17E-5	5 2.87E-7 4 3.17E-5	🐼 X-Q Eye	4 0
		3 1.35E-3	3 1.35E-3		
Const Scale 3.000E-003	2 Pol QPSK Signal Type	2 2.28E-2	2 2.28E-2 1 1.59E-1	Vert: 5.000E-003v/ W/div	Horiz: 7, 14 ps/div
●O OO √W/div	OrthAnalysingSOPs		0 5E-1	X-Q Eye	*
	TwoStagePhaseEstimate	-1.5 0 1.5	-1.5 0 1.5	Measurement Value Measurement Value Q factor (dB) 18.74 Eve Height 0.0196	*
Eye Scale	ConstFineTrace	Re[zX] (√W) x 10^-2	lm[zX] (√W) x 10^-2	StdDev 0-Level 0.0012 StdDev 1-Level 0.0011	X Optio
5.000E-003 √ W/div	Power flat phase modulation	Max Line Q 10.00		⊗ Y-I Eye	4 Þ
√ W/div	Balanced Diff Detection	Q(dB) = 19.95	Q(dB) = 19.89		
		10 9 1.13E-19	10 9 1.13E-19		
		8 6.22E-16	8 6.22E-16		
	X-Q PRBS Gen 2^31 -1 ITU-T	7 1.28E-12 6 9.87E-10	7 1.28E-12 6 9.87E-10		
		5 2.87E-7	5	Vert: 5.000E-003√W/div Y-I Eye	Horiz: 7.14 ps/div
BlendTr - +	<u> </u>	4 3.17E-5	4 3.17E-5		×
BlendSym	BER = 0.000E+000	3 1.35E-3 2 2.28E-2	3 1.35E-3 2 2.28E-2	Y-Q Eye	4 Þ
	0 errors in 88468 bits.	1 1.59E-1	1		
	XRe 0 errors in 22117 symbols	0 L			
	XIm 0 errors in 22117 symbols	-1.5 0 1.5 Re[zY] (√W) x 10^-2	-1.5 0 1.5 lm[zY] (√W) x 10^-2		
	YRe 0 errors in 22117 symbols Ylm 0 errors in 22117 symbols			Vert: 5.000E-003√ W/div	Horiz: 7.14 ps/div
Reset BER	Tim 0 errors in 22117 symbols			Y-Q Eye	*

Tektronix®

Measurements Available for QAM Signals

20 G RZ DQPSK

One DC Module being Compensated. CD = 900 ps/nm

2 CD Modules CD = 1700 ps/nm

Data Acquisition and Processing Flow

Interaction Between GUI and MATLAB®

Flow Diagram (single pol case)

scope sample rate

symbol rate

Optametra Product Family

- OM4000 Optical Modulation Analyzer Series
- OM1106 Signal Analysis Software
 - Optional hardware support
- OM1206 Signal Analysis Test Set
 - Software portion of the OM4106
 - Includes tools for customer hybrid receiver calibration/ test
- OM2010 Tunable Laser Source
 - Provides additional laser sources

Coherent Receiver Impairments

- Bandwidth
- Group delay variation
- I-Q Crosstalk (hybrid phase angle error)
- CMRR
- Polarization crosstalk
- Channel gain imbalance
- Channel delay mismatch
- RF mismatch effect on group delay
- Frequency-domain crosstalk
- Nonlinearity

Coherent Receiver Testing

22 Sept. 2011 55W-27383-0

Tektronix[®]

Sources of Polarization Crosstalk

Effect of pol-crosstalk on Phase Angle

Apparent E_x is modified by E_y leakage

20 dB + 20dB: ±1.2° 15 dB +15dB: ±3.6°

Effect scales up if E_{Y} larger than E_{x}

Simple Hybrid Receiver Representation

$$V_{1} = R_{1}([b]\overline{E}_{LO})^{*} \bullet ([a]\overline{E}_{S}) = \hat{p}_{1} \bullet \overline{E}_{S}$$

$$V_{1} = \begin{bmatrix} \hat{p}_{1} \\ \hat{p}_{2} \\ \hat{p}_{3} \\ \hat{p}_{4} \end{bmatrix} = \begin{bmatrix} R_{Sxr} \\ E_{Sxr} \\ E_{Syr} \\ E_{Syr} \end{bmatrix} = \begin{bmatrix} H \end{bmatrix}^{-1} \begin{bmatrix} V_{1} \\ V_{2} \\ V_{3} \\ V_{4} \end{bmatrix}$$

$$\overline{E}_{LO} \bullet \begin{bmatrix} I \\ I \\ I \\ I \\ I \\ I \end{bmatrix} \begin{bmatrix} I \\ I \\ I \\ I \\ I \\ I \end{bmatrix} \begin{bmatrix} I \\ I \\ I \\ I \\ I \\ I \end{bmatrix} \begin{bmatrix} I \\ I \\ I \\ I \\ I \\ I \\ I \end{bmatrix} = \begin{bmatrix} Re\{\hat{p}_{1x}\} \\ Im\{\hat{p}_{1x}\} \\ Re\{\hat{p}_{2x}\} \\ Im\{\hat{p}_{2x}\} \\ Re\{\hat{p}_{2x}\} \\ Im\{\hat{p}_{2x}\} \\ Re\{\hat{p}_{3x}\} \\ Re\{\hat{p}_{3x}\} \\ Re\{\hat{p}_{3x}\} \\ Re\{\hat{p}_{4x}\} \\ Im\{\hat{p}_{4x}\} \\ Re\{\hat{p}_{4x}\} \\ Im\{\hat{p}_{4x}\} \\ Re\{\hat{p}_{4x}\} \\ Im\{\hat{p}_{4x}\} \\ Re\{\hat{p}_{4x}\} \\ Re\{\hat{p}_{4y}\} \\ Im\{\hat{p}_{4y}\} \\ Im\{\hat{p}_{4y}\} \\ Re\{\hat{p}_{4y}\} \\ Im\{\hat{p}_{4y}\} \\ Re\{\hat{p}_{4y}\} \\ Re\{\hat{p}_{4x}\} \\ Re\{\hat{p}_{4x}\} \\ Re\{\hat{p}_{4x}\} \\ Re\{\hat{p}_{4x}\} \\ Re\{\hat{p}_{4x}\} \\ Re\{\hat{p}_{4y}\} \\ Re\{\hat{$$

Optical Hybrid Calibration

 $\mathbf{V} = [H]\mathbf{E}$

 $\mathbf{E} = [H]^{-1} \mathbf{V}$

- Apply Ex or Ey, measure phase angle
 - How to set Ex? Ey?
 - What about crosstalk effect on angle?

Or

- Apply E1 and E2, find all hybrid parameters
 - $E1 \cdot E2 = 0$ (new coordinate system)
 - Rotate back to hybrid system
- Entire H is needed to find H-1
- This gives full impact of finding E given V

Hybrid Phase Angle, Gain, and Crosstalk

- Excites RX under test with heterodyne signal
- Two orthogonal polarizations
- Computer takes data from scope and calculates hybrid parameters
- Tunable laser permits full-band testing

Receiver Testing Detail

28 Sept. 2011 55W-27383-0

Tektronix[®]

Calibration Kit Options

OM4106B/ OM3105B-603 C-band Calibration Source and Software. Includes 2 lasers. Use this option when C-band receiver has no Optametra sources.

OM4106B/ OM3105B-604 L-band Calibration Source and Software. Includes 2 lasers. Use this option when L-band receiver has no Optametra sources.

OM4106B/ OM3105B-601 C-band Calibration Source and Software. Includes 1 laser. Use this option when C-band receiver has an Optametra Reference Laser.

OM4106B/ OM3105B-602 L-band Calibration Source and Software. Includes 1 laser Use this option when L-band receiver has an Optametra Reference Laser.

OM4106B/ OM3105B-600 Calibration Source and Software. Includes no lasers. Use this option when receiver has 2 Optametra sources for Reference and Signal.

Kit also includes optical power splitter and USB optical power meter not shown. A real time sampling scope is required for calibration (not provided).

C+L Calibration Kit

OM4106B/ OM3105B-605 C or L-band Calibration Source and Software. Includes 2 lasers combined to make a C+L source. Use this option when receiver has a similar Optametra C+L Reference.

Typical Coherent Receiver Calibration test set up (below). Computer and Real-time oscilloscope are not part of the kit. Receiver purchased separately.

Conclusions

- Coherent Lightwave Signal Analyzers can quantify quality of transmitter signal
- Optametra also offers tools for receiver characterization
- Heterodyne analysis can be used to extract a simple hybrid matrix describing the analog receiver front end
- Measuring integrated receiver properties allows inclusion of optical and electrical cross-talk effects

