

DQO Analysis of Motor Control Systems Using an Oscilloscope

WHITE PAPER

Direct quadrature zero (dq0) parameters are important variables in field-oriented control algorithms. These key parameters typically exist deep within the control systems, but during design optimization and debugging it is advantageous to make these parameters available for measurement in real time, and to correlate their values with other measurements such as torque output.

Previously, motor drive and inverter designers who needed to correlate dq0 parameters with torque used custom built software and hardware to measure these parameters. This custom approach introduces significant complexity and expense.

Tektronix has developed an alternative method for measuring dq0 components and the resultant drive vector for rotary sensor-based and sensorless systems. This technique is supported as an option in the Inverters, Motors and Drivers Analysis package (Option IMDA-DQ0) on 5 or 6 Series MSO oscilloscopes. It uses signal processing to compute d, q and 0 control parameters based on real-time measurements of drive system outputs. This enables motor designers to visualize the optimal torque generated for a given electrical input.

Vector Drives / Field-Oriented Control

Advanced drives for synchronous and AC induction motors usually employ vector drive techniques. Vector drives provide smoother operation, quicker acceleration, and superior torque control than simpler scalar drives. Vector drives use field-oriented control (FOC) and while they are versatile and efficient, they are also significantly more complex than scalar drives. **Figure 1** shows the PWM output waveforms generatred by a field-oriented control system.

A simplified block diagram of a field-oriented control system is shown in **Figure 2**. Within the control system, Clarke and Park transformations are used to convert the 3-phase voltages being applied to a motor to orthogonal D and Q vectors. These simplified vectors can easily be scaled and integrated to maintain a desired speed and torque. Reverse transforms may then be used to create the drive signals for pulse width modulation within the inverter.

Note that the control system also measures the position of the rotor. This may be done by using sensors such as hall sensors, resolvers, or a quadrature encoder interface

File Edit	Applicatio	ons Utility	Help																				
Waveform View	N																				Add New		
1 C	141	tion in 1	- 6a (A)	in the	A 1			the la		AL.		1 the	61	K. K	6 E			A law	AL 1	LAL LX	Cursors Callout	Table	2
														1.1							Measure Search	Plot Mor	e
					10						11				M TH	1				C C Lav			
RD -	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1000	Contraction of the local division of the loc	- a		100 M	Contra la	100		100 M	100		and a state	C. Constant		and a	100			ov	IMDA Meas 1: Power Valuta	Quality* Vbcib Vca:	
		A 101		L. 18	1 k		10 10 10	100			10	Sec. 10			h. a			Sec. 10	and the lat		IL-IN	IL-IN IL-U	V
and the second second		And in Lot			and the second		a la la cara	A. A. A	and a feat	and and	Ann	and the			and the second	a trans		and a feat	a la persona de	33 V	Vaars(V): 2.983	3.007 3.00	9
and and	-40 ms		30 ms	•	-20,005	and and d	-10 ms		· •	C Date of	e	10 ms		20 m	×		30 ms		-1 -1 -4 -10 ms	-44 V	TrPwr(W): 1.062	1.344 1.13	1
Rerizontal Zoom	Scale 400.00 u	vdv -		Vertical Zool	m 1619 10-	(1,00x zoom)	1							-		10 - 10 - 10		1		×	ApPwr(VAR): -370.6 m ApPwr(VA): 1.125	1.417 1.30	9 m
						TTTT	LILL	11111	TIT	ILIII	1111	1111								44 V	PF: 944.1 m Phase: -19.24 *	948.3 m 865.4 +18.50 * +30.1)m 2*
RIDEE	IIII	MM	MM	MM	uuu	uu	MUU	MAN	MAA	uw	ωu	ШU	In	MA	MIL	INT	AAAA	A		22 V	Freq:	160.5 Hz	
																		11.1	1.1.1.1.1.1	V V V V V V J2 J	Σ RePwr:	-1.476 VAR	
-25.2 ms																				-21.6 ms -44 V	Z ADPWL	3.049 9/4	
								AAAA			AAAA												
R2/1/1/1/																							
VVVVV																				-1 A			
R 3																					e de la companya de la company		
									-										A	A 00E.5			
D A																							
11111																				- 44 V 29 V			
RSULL	MM	ANA		LLL				1-1-1-1-1	-	-	0000			-	andrsinstr	STSTSTST'S	NESTSTATI		-	101 101 101 101 101 101 101 101 101 101			
																				1 1 1 1 1 1 12			
AAAA																				1.10 A			
ROUVIN																				71777777791			
																				/ V V V V V V-146 A			
																				7.401 V			
M PQ:H	Itered re	eff(meas	1)																	0 V			
																					la l		
T2 Vrms																							
																				6 V			
Ref 1 Re 11 V/div 50	0 mAidiv 11 V	3 Ref 4 //div 575 mi	A/div 11 V/div	Ref 6 550 mA/div	1.8502 V/div	745.6406										Add Add	Add	H	orizontal 0 ms/div 100 i	Trigger TS V OV	Acquisition Manual, Analyz	Previer	~
312.5 kS/s 31 Vab.wfm Ia	2.5 kS/s 312. wfm Vbc	.5 kS/s 312.5 k wfm lb.wfm	S/s 312.5 kS/s Vca.wfm	312.5 kS/s Ic.wfm	Static[low Meas 1	Power Qu Moas 1										Math Ref	Bus. DVM	AFG SE	312.5 k5/s 3.2 g 31.25 kpts 48	s/pt .7%	High Res: 16 bits 0 Acqs		

Figure 1. Vector or field-oriented control uses complex PWM waveforms.

(QEI). Sensorless systems are also used in which the control system uses the back-emf of the motor to determine rotor position.

As **Figure 1** suggests, the D and Q values typically reside deep within a digital signal processing block, such as an FPGA, and may not be available for direct measurement. The IMDA-DQO software can expose these key parameters based on the sampled 3-phase output voltage or current, along with the angular position of the rotor. This allows engineers to see the effects of control system adjustments and view signal relationships quickly and easily.

DQ0 Measurement Theory

As noted above, the IMDA-DQ0 software, running on an oscilloscope uses sampled voltage or current and angular position information to compute d, q and 0 in real time. This section explains the theory behind these measurements.

Three-phase AC and DC machines can be modelled by rotating voltage and current equations. Equations 1 through 3 show V_R, V_S, and V_T as three-phase voltage functions of time, V_G is the corresponding gain, and ' ω ' is 2 * π * f, where 'f' is the nominal frequency.

$$\begin{split} v_R &= v_G \cos{(\omega t)} & \textit{Equation 1} \\ v_s &= v_G \cos{(\omega t - \frac{2\pi}{3})} & \textit{Equation 2} \\ v_T &= v_G \cos{(\omega t - \frac{4\pi}{3})} & \textit{Equation 3} \end{split}$$

When properly connected, the oscilloscope can measure each of these instantaneous voltage values throughout an

acquisition – typically on the order of 10 complete cycles, depending on the sample rate and available record length. Low pass filters may be applied to mitigate the effects of high-frequency distortion, voltage spikes, switching noise and EMI.

The oscilloscope can also measure the angular position of the rotor, using the output of a Hall effect transducer, QEI or resolver.

Given the voltage or current vectors, along with rotor angle, one can find d, q and 0. For conversion from voltage or current vectors to d-axis alignment the matrix equation (Equation 4) can be applied to convert from the 3-phase vector to a dq0 vector.

$$\begin{pmatrix} d(t) \\ q(t) \\ 0(t) \end{pmatrix} = \frac{2}{3} \begin{pmatrix} \cos(\theta) & \cos(\theta - \frac{2\pi}{3}) & \cos(\theta + \frac{2\pi}{3}) \\ \sin(\theta) & -\sin(\theta - \frac{2\pi}{3}) & -\sin(\theta + \frac{2\pi}{3}) \\ \frac{1}{2} & \frac{1}{2} & \frac{1}{2} \end{pmatrix} \begin{pmatrix} R(t) \\ S(t) \\ T(t) \end{pmatrix}$$
Equation 4

- $R, S, and T can represent either I_{R,S,T}(t) or V_{RN,SN,TN}(t)$.
- t is the sample time and goes from 0 to the acquired duration.
- θ is the electrical angle determined from Hall effect sensor, Quadrature Encoder Interface (QEI) or resolver on the output of the motor. An offset angle relative to the reference voltage or current may be used for sensorless systems.
- The resulting DQO is the rotating frame of reference, which represents the system with respect to the position of the rotor.

Figure 2. A simplified block diagram of a field-oriented control system showing how d and q are used to simplify the feedback in a 3-phase PWM motor drive.

Making Oscilloscope Measurements

Within the Inverters, Motors and Drives Analysis package for the 5 and 6 Series B MSOs, key electrical measurements are grouped under Electrical Analysis. Within the Electrical Analysis group is the Tektronix patented Direct Quadrature Zero (DQO) measurement.

Figure 3 shows an example of the source setup for DQO measurements. In addition to selecting the sources and wiring, one can also specify a low pass filter that can be applied to all sources, or only to the edge qualifier. As noted above, this is useful for reducing noise due to EMI pickup and switching noise.

In this example, a QEI encoder is used. For sensorless systems, it is possible to use the back-emf method with an offset angle and filtered electrical signals.

In field-oriented control, the goal is to control the D and Q values to achieve the requested torque. By controlling D and Q independently, one can achieve the Maximum Torque Per Ampere ratio (MTPA). **Figure 4** shows a phasor diagram available on the oscilloscope, with D and Q vectors overlaid on the 3-phase voltage vectors.

IMDA MEAS 1	0									
DQ0	>									
SOURCE SETUP										
Source Settings Configuration										
Global Local Input Output										
Input Wiring Connection										
3 Phase-4 Wire (3V3I) # Line-to-Neutral										
Voltage Source Current Source Ed	dge Qualifier									
VaN Ref 1 v la Ref 2 v F	Ref 2 🔹									
VbN Ref 3 * Ib Ref 4 *										
VcN Ref 5 * Ic Ref 6 *										
Low Pass Filter Cutoff Frequency(Fc)										
1st Order 👻 200 Hz										
Apply LPF on Edge Qualifier All Sources Only										
Calculate electrical theta using sensor input										
Source Pu	ulses per otation(PPR)									
Ph A Ref 7_D3 *	1.25 k									
Ph B Ref 7_D4 ¥										
Index Z 🔽 G	ear Ratio									
Index Z Ref 7_D5 🔹	1									
CONFIGURE	>									

Figure 3. Configuring the oscilloscope for D00 measurements on a system using a quadrature encoder interface (0EI).

Figure 4. D00 Phasor plot showing D vector, Q vector and the resultant vector (R) with motor speed and direction feedback provided by a quadrature encoder sensor.

At any point in time, the d-axis is along the south to north axis of the rotor and represents the rotor flux direction. The q-axis is 90 degrees ahead of the d-axis. D represents the rotor flux axis and Q represents the torque axis. Since perpendicular magnetic flux from the stator and rotor produce torque, it is desirable to have the stator and rotor flux at a 90 degree angle relative to one another. That is, it is desirable to have the stator flux or resultant stator current along the q-axis.

Traditionally, D and Q have been viewed as constant values, whereas with this approach, one can visualize the ripple on D and Q, using the time domain math waveforms (as shown in **Figure 4**). This is another indicator of the input stability.

In addition to D and Q, the analysis software also shows the resultant vector (R). R is calculated by computing the hypotenuse of the D and Q vectors at each sample point of D and Q. The R vector starts at 0 degrees. In this example, this is determined by the QEI index pulse (Z). The incremental angle is computed by the QEI based on the encoder's pulses per revolution (PPR). By observing the R vector rotation one can see whether the control system is driving the motor smoothly. One can also observe the number of commutations – note the six distortion points in the R vector plot in **Figure 4**, corresponding to six commutation steps.

Time plots of D, Q, O and R are shown in the lower right of **Figure 4**. Using the oscilloscope's cursors feature, these values can be seen simultaneously as measurements in time and as a rotating frame on the phasor diagram.

Conclusion

D, Q, O, and R are key variables in field-oriented control systems that are common in vector motor drives. Even so, they can be difficult to observe in real time. The new technique described in this paper, allows engineers to expose these variables and correlate them with electrical and mechanical parameters on their oscilloscope. This provides valuable insight as a drive system or inverter is being brought up and optimized.

Contact Information:

Australia 1800 709 465 Austria* 00800 2255 4835 Balkans, Israel, South Africa and other ISE Countries +41 52 675 3777 Belgium* 00800 2255 4835 Brazil +55 (11) 3530-8901 Canada 1800 833 9200 Central East Europe / Baltics +41 52 675 3777 Central Europe / Greece +41 52 675 3777 Denmark +45 80 88 1401 Finland +41 52 675 3777 France* 00800 2255 4835 Germany* 00800 2255 4835 Hong Kong 400 820 5835 India 000 800 650 1835 Indonesia 007 803 601 5249 Italy 00800 2255 4835 Japan 81(3)6714 3086 Luxembourg +41 52 675 3777 Malaysia 1800 22 55835 Mexico, Central/South America and Caribbean 52 (55) 88 69 35 25 Middle East, Asia, and North Africa +41 52 675 3777 The Netherlands* 00800 2255 4835 New Zealand 0800 800 238 Norway 800 16098 People's Republic of China 400 820 5835 Philippines 1 800 1601 0077 Poland +41 52 675 3777 Portugal 80 08 12370 Republic of Korea +82 2 565 1455 Russia / CIS +7 (495) 6647564 Singapore 800 6011 473 South Africa +41 52 675 3777 Spain* 00800 2255 4835 Sweden* 00800 2255 4835 Switzerland* 00800 2255 4835 Taiwan 886 (2) 2656 6688 Thailand 1800 011 931 United Kingdom / Ireland* 00800 2255 4835 USA 1800 833 9200 Vietnam 12060128

> * European toll-free number. If not accessible, call: +41 52 675 3777 Rev. 02.2022

> > X

Find more valuable resources at tek.com

Copyright © Tektronix, Inc. All rights reserved. Tektronix products are covered by U.S. and foreign patents, issued and pending. Information in this publication supersedes that in all previously published material. Specification and price change privileges reserved. TEKTRONIX and TEK are registered trademarks of Tektronix, Inc. PCI Express, PCIE, and PCI-SIG are registered trademarks and/or service marks of PCI-SIG. All other third-party trademarks are the property of their respective owners.