

テクトロニクス・イノベーションフォーラム2012

E3

メモリ・インターフェースの基板設計と シミュレーション事例

- 1. 基板設計とSIシミュレーション
- 2. 電源の安定化
- 3. 実測とシミュレーション比較

2012年 6月 13日

株式会社 トッパン NEC サーキット ソリューションズ

1. 基板設計とSIシミュレーション

🔸 DDRII/IIIのタイミングチャート例

メモリI/Fの場合,各信号が上記タイミングダイアグラムのように
 関連しあうため、マージンコントロールが必要となる。

1. 基板設計とSIシミュレーション

↓ ボード設計フロー概要

→シミュレーションの活用により、後戻り工数の削減

1. 基板設計とSIシミュレーション

- ♣ DDRのSI対応の流れ
 - PreSIM(基板設計:部品配置完了後)

 クロストーク影響の検証 ライン/スペースなどの設計ルールの検証・最適化
 デバイス設定の検証 ドライバICのバッファ能力最適化 ODT機能の検証・最適化
 配線トポロジーの検証 配線ルールの検証・最適化 ダンピング抵抗有無、終端抵抗有無の検証
 - 2. PostSIM(基板設計:配線完了後)
 - 1) DC/ACスペック検証
 - 電圧/タイミング検証により最適化
 - 2) クロストークの検証
 - 電圧/タイミング検証により最適化
 - 3) デバイス/基板等のばらつき検証
 - デバイスのMIN/MAX条件、基板のZ0ばらつき考慮等

1. 基板設計とSIシミュレーション

特性インピーダンスと電圧波形

制用

憲王

1. 基板設計とSIシミュレーション

4 近端/遠端クロストーク

6

1. 基板設計とSIシミュレーション

4 クロストーク解析事例 1

1. 基板設計とSIシミュレーション

1. 基板設計とSIシミュレーション

4 低コストを意識した高速伝送(ピンアサインの最適化)

1. 基板設計とSIシミュレーション

♣ PreSIM解析事例(ドライブ能力最適化事例)

ドライバICのバッファ能力を最適化しダンピング抵抗を削除

1. 基板設計とSIシミュレーション

♣ PreSIM解析事例(ODT設定最適化事例)

電圧スイングレベルが大きくスペックNG

ODT設定によりスペックOK

1. 基板設計とSIシミュレーション

4 PreSIM解析事例(最適化事例)

プルアップ終端を使うと電源の消費電流が上がる ↓ バッファ能力の調整が可能であれば最適化可能

1. 基板設計とSIシミュレーション

4 遅延/スキュー管理の注意点

伝搬時間は、基板の内層信号、外層信号によって異なる

同一配線長、終端オープン時の特性インピーダンス(Z0)波形

→配線の長さだけ合わせてもだめ!伝搬時間を考慮した設計が必要

1. 基板設計とSIシミュレーション

↓ DDRI/Ⅲ設計例(バイトレーンごと)

DQS, DQ, DM信号間はバイトレーンごとに等遅延 viaの位置や抵抗の位置や配線層ごとの線長をそろえる

1. 基板設計とSIシミュレーション

1. 基板設計とSIシミュレーション

↓ DDRのスキュー計測事例

基準信号と各信号間のタイミングマージンを管理

1. 基板設計とSIシミュレーション

- 🔺 SI対応 まとめ
 - 1. AC/DCノイズの発生原因に応じた最適な対策を検討する。 特にタイミングマージン、ノイズマージンに関して、チップ開発者と よく相談する。
 - 2. 戻り作業をなくすため、適切なタイミングでシミュレーションを活用し 基板設計の最適化を図る。
 - 3. 製品の信頼性を高めるためには、ばらつきを考慮したシミュレーションを 事前に実施することが有効。

₄ IRドロップ(DC電圧ドロップ)とスイッチングノイズ

プリント基板

電源ノイズ	ノイズ現象	協調設計による対策
DC電圧ドロップ	チップ端子で電圧が降下	電源経路の最適化(DC的に低インピーダンスにする)
スイッチングノイズ	チップの動作にあわせて電圧変動が発生	キャパシタンスの最適化による電圧変動の低減 (電源インピーダンスの低減と安定化)

↓ DDRインターフェースの規格

電源電圧(Vref)の波形例

出展:JEDEC Standard

DC電圧ドロップ値 = (電源側~負荷経路のDC抵抗) * 電流値

時間軸で電源ノイズの絶対量として解析

4 LSIによる同時スイッチングノイズ

SI ⇒ PI への影響

CMOSトランジスタにおいて信号の立上り、立下りのときに 各トランジスタが同時にONとなり、貫通電流が流れることがあります。

23

▲ LSI/PKG/PWBの電源インピーダンス解析事例

🔺 PI対応 まとめ

- 1. DC電圧ドロップ対策では、電源供給元からIC電源端子までの経路の DC抵抗を下げることが有効である。
- 2. スイッチングノイズ対策では、ノイズ源となるICの動作を可能な限り 最小とし、伝播経路となる電源経路にバイパスコンデンサを追加し、 低インピーダンス化を図る。
- 3. インプット電源インピーダンスの反共振と動作周波数と一致すると 大きな電源電圧変動が発生し、信号波形のジッタが増加することがある。

3. 実測とシミュレーション比較

4 CPMについて(1)

CPMに表現されている項目(HSPICEフォーマット)

1.Chipのパッド配置・座標と及びグループ情報(CPP)

2.Chipの電源 - グランド間の等価回路、寄生成分 (PDN)

3.Chipの電源 - グランドに生じる電流の 過渡波形(pwl)

CPP : Chip Package Protocol

・チッブのSPICEノートと物理的なパット座 標との対応をつける。

・チップのバッド座標とバッケージの設計上 にあるポントバットとを位置あわせし接続さ せる。

これにより、チッブの等価モデルを形状ペース のシミュレーターで取り扱うことが可能となる。

3. 実測とシミュレーション比較

♣ CPMについて(2)

CPMに表現されている項目(HSPICEフォーマット)

CPM部分

1.Chipのパッド配置・座標と及びグループ情報(CPP) 2.Chipの電源ーグランド間の等価回路、寄生成分 (PDN) 3.Chipの電源ーグランドに生じる電流の過渡波形(pwl)

評価基板イメージ図

3. 実測とシミュレーション比較

↓ DDR3のデータ信号動作条件

3. 実測とシミュレーション比較

↓ DDR3の動作波形の確認

3. 実測とシミュレーション比較

↓ DDR3の動作波形の確認

Jitter and Eye Diagram Analysis Tools : Measurement Report		Tektronix Extrementer
Configuration • Setup Configuration		September 09, 2009 3:31:59 P
Oscilloscope Version DPOJET Version Status	4.3.3 Build 12 2.3.0 Build 3 Pass	
Measurement Configurat	ion	
Plot Images • Measurement Plot(s)		
1.8V Y.Voltage	Widtht: Eye Diagram	× Time
120		
11/2		

3. 実測とシミュレーション比較

波形計測用治具(リジッドフレキ基板)

3. 実測とシミュレーション比較

4 電源ノイズ測定箇所

3. 実測とシミュレーション比較

4 電源ノイズの測定条件

電源-GND間の 電圧波形を測定後 FFTにより 電源ノイズ成分を測定

使用測定器 テクトロニクス DSA72004B

3. 実測とシミュレーション比較

♣ DDR3インターフェース駆動時の電源ノイズ測定(3)

CPMにおける電流波形

3. 実測とシミュレーション比較

38

▲ **電源ノイズ測定結果とEMI測定結果** 1)ボード1(MS構造)

3. 実測とシミュレーション比較

4 電源インピーダンス測定

コンデンサパッド位置にて測定

TNCS

3. 実測とシミュレーション比較

↓ ボード単体の電源インピーダンスの実測とシミュレーション比較(1)

40

4-4. 電源インピーダンス

↓ ボード単体の電源インピーダンスの実測とシミュレーション比較(2)

TNCS

3. 実測とシミュレーション比較

▲ Chip+PKG+PCBの電源インピーダンスの実測とシミュレーション比較(2)

3. 実測とシミュレーション比較

➡ EMIシミュレーション条件

IC

44

3. 実測とシミュレーション比較

↓ EMI実測結果とシミュレーション比較

3. 実測とシミュレーション比較

↓ DDR3の動作モードと電源ノイズ実測結果 まとめ

- DDRインターフェースの動作モードによって、電源ノイズに含まれる 周波数成分が異なることを確認した。
 ⇒RPBSモードではレベルが小さく、広帯域にノイズが発生している。
- 2. データ信号の動作周波数である660MHzのEMIは、電源ノイズに含まれて いる周波数成分同様に、動作モードによってレベルが異なることを 確認した。

⇒EVENモードが最も大きく、PRBSモードでは小さくなっている。

3. チップパワーモデルに電流源波形が定義されていれば、電流源波形を 元に、EMIシミュレーションを実施することが可能となる。 ただし、動作モードを考慮した電流源波形を作成する必要がある。

今後とも トッパンNECサーキットソリューションズを お引き立て頂けます様 よろしくお願い申し上げます。

お問合せ先

(株)トッパンNECサーキットソリューションズ 設計部 〒108-8536 東京都港区芝浦3-19-26 トッパン芝浦ビル Tel:03-5419-9717 Fax:03-3457-6618 担当: 金子 (Email: toshiyuki.kaneko@tncsi.com)