
An Introduction to GaN-on-Si Power 
Device Technology
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Why GaN on Si for Power Device 
Application
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Prerequisites for a Good 
(Semiconductor) Power Device

• Large forward and/or reverse blocking, small leakage current
• High on-state current, small on-state voltage
• Fast switching – short turn-on and turn-off time
• Small control power – large input impedence
• Withstanding of high voltage and high current during switching 

– Good SOA (Safe Operating Area)
• Positive temperature coefficient of on-state resistance
• Large dv/dt and di/dt ratings
• Normally off

Power Devices 
= High current, High voltage, Low loss (Pcon, Psw),

Reliable, Easy to control
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Materials Property Comparison

High-speed
High-power
High-temperature

Comparison of semiconductor material properties at room temperature
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Advantage of High Breakdown and 
Low On-resistance 



7

Advantage of Fast Switching Speed
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Advantage of High-Temperature 
Application
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Advantage of Microwave High-Power 
Application
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Comparison of Best Power Device R&D Results
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GaN & SiC Added Values
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Advantage of Enhanced System Efficiency
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Advantage of Enhanced System Efficiency
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Advantage of Cost and Circuit Integration

6-inch (and above) AlGaN/GaN wafer on Si (111) substrate is 
now technologically feasible, low cost and possible integration 
with Si-based circuits.

Materials/ 
technology

Wafer size Die area Circuit 
integration

Cost

SiC X � X X

GaN-on-Si �→√ (?) √ √ (?) �

Si √ X √ √

√ : Best

� : Middle

X  : Poor
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Advantage of Product Cost



16Source: CS Europe/Phillip Roussel – Y ole D ev elopm en t

Toyota: Inverter Cost Comparison



Epitaxial and Device Design 
Concepts
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Growth of GaN on Si Substrate
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Difficulties of GaN-on-Si epitaxy:
1. Large-area epitaxial technology
2. Ga reaction with Si substrate
3. Large lattice mismatch (~17% )
4. Large thermal expansion 

coefficient difference (~54%) 

Si substrate

Buffer layers
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Buffer Structure

AlGaN

GaN 

GaN(AlGaN) & 
Interlayer

Compositional 
graded layer

AlN seed layer
(111) Si 

substrate
1.Thick substrate 

2. Selective area growth

1. HT/LT AlN buffer (MOCVD)

2. PVD AlN buffer ( or Al2O3, Ga2O3…etc)

1.AlGaN step or linear graded layer

2. AlGaN/AlN SL

LT-AlN interlayer

LT-GaN inetrlayer

SiN interlayer

C, Fe…etc doping



Buffer Breakdown Behavior

Si substrate
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Typical GaN-on-Si 2-DEG Epi Wafer 
Specification

Items Huga

Mobility ~1300 cm2/V·s

Sheet concentration ~1 ���� 1013 cm-2

FWHM of GaN(002) ~590 arcsec

FWHM of GaN(102) ~850 arcsec

Roughness ~0.5nm

Bowing < 20 um

Crack area 2mm from edge

Thickness of GaN&buffer 4~7 um

AlGaN Composition U% Edge to center <2%

Buffer Vbr                         
(Pad width=160um)

>1000V

Buffer leakage current    
(@600V, Pad width=160um)

~3E-9A

Thickness Avg:4.66µm
Thickness Std:0.064µm
Wafer bow�10µm

Thickness Mapping

AFM OM

Al comp.: 28.86%

Comp. Std: 0.688

PL Composition 
Mapping



Wurtzite (hcp)

Spontaneous Polarization

Cation and anion centers 
do not overlap.

Spontaneous 
polarization

u0 = red/

u0,ideal=0.375

AIN -0.081 C/m2

GaN -0.029 C/m2

InN -0.032 C/m2

PSP =



Note: Polarization is oriented from negative to positive charge.

e.g., 
AlGaN coherently strained 
to GaN (AlGaN is under 
tensile stress)

Cation-terminated surface

αc � u0

When the AlGaN lattice is compressed in c 
direction: 

Bonding length c � u0 is the same; angle 
α becomes even smaller.

Negative charge move upward and 
positive charge moves downward.

Direction of piezoelectric polarization is  
toward           , which is the same as Psp.

Ga or Al
N        

stress

Piezoelectric Polarization



AlGaN/GaN Heterojunction

e.g., 
AlGaN coherently strained 
to GaN (AlGaN is under 
tensile stress)

Polarization direction:

For AlGaN:
Both PSP and PPE are toward

direction.

Cation-terminated surface



Polarization-Induced Electrostatic 
Charge and 2DEG

Induced positive electrostatic charge σ at the AlGaN 
layer of the AlGaN/GaN interface is

e.g., For AlGaN/GaN heterostructure with cation-terminated surface

where the determination of PSP and PPE are mentioned 
earlier.



e.g., For AlGaN/GaN heterostructure with cation-terminated surface

w/o polarization and 
heterojunction, 
no interface 2deg 
is generated.

GaN effective conduction band density of 
states 1.2 x 1018 cm-3 compared to GaAs
4.7�1017 cm-3 at 300 K

Polarization-Induced Electrostatic 
Charge and 2DEG



AlGaN thickness and composition effect on Ns: 

Polarization-Induced Electrostatic 
Charge and 2DEG
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AlGaN/GaN Heterojunction

Si/Sapphire/SiC substrates

13 2
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Current Market & Technology 
Development Status 



GaN-related Power Device Application



GaN-related Power Device Application

GaN-on-GaN
GaN-on-Si
GaN-on-SiC



Source: CS Europe/Phillip Roussel/ Yole Development

Product Type and Market

Power ICPower modulePower discrete



GaN  vs SiC Market Growth 
Prediction Comparison



Source: CS Europe/Phillip Roussel/ Yole Development

Competitors and Development 
Roadmap



Schottky Barrier Diode (SBD)
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cathodean
od

e

….

Si substrate

AlGaN/GaN 2deg epi

Anode
Cathode

Finger spacing

For IF=8A at VF ����2V and 
VR=600V, we typically have

Total finger length= 50~150mm
Finger spacing= 15~30 um
Finger width ����10um
Finger metal thickness ���� 2um
…

TLM
Rsh = 400~500 ohm/sq
ρc ~ 1E5 ohm-cm2
Rc ~ 1 ohm-mm
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Schottky Barrier Diode (SBD)
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Hybrid E-mode FET (Cascode) 
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D-mode GaN FET
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Hybrid E-mode FET (Cascode) 
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Recessed gate 

P-GaN capped JFET

Fluorine-plasma treatment 

Lg= 0.25µm, 
Lsg = 4.45 µm, 
Lgd = 2.7 µm.

E-mode FETs
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What Huga Do?

Huga
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(2-terminal devices)

(3-terminal devices)

HFET

HEMT

: Devices that Huga is developing 

What Huga Do?



Huga’s 6” GaN-on-Si Device Wafer

D-mode HFETSBD

IF = 8 A  ( @  VF �2 V)
VR = 6 0 0 V

ID = 1 0 ~ 1 2 A
VD ( o f f -s t a t e ) = 6 0 0 V
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Summary

• GaN is promising material for power device application.  
GaN-on-Si solution is an excellent option for balancing 
the requirement of performance and cost.

• Performance of GaN-on-Si power devices is similar to that 
of SiC power devices and much better than that of Si 
power devices. Plus, cost of GaN-on-Si power devices is 
in between.

• Though 600V GaN-on-Si power device products started   
appearing in the market recently, I believe it will take some 
time to have end users willing to widely apply them into 
various modules/systems.   
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Thank you !
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