

An Introduction to GaN-on-Si Power Device Technology

廣鎵光電 研發中心 林恒光 5/21/2013

Outline

- Why GaN on Si for Power Device Application
- Epitaxial and Device Design Concepts
- Current Market & Technology Development Status

Why GaN on Si for Power Device Application

HUGA Prerequisites for a Good 廣 錄 光 電 (Semiconductor) Power Device

- Large forward and/or reverse blocking, small leakage current
- High on-state current, small on-state voltage
- Fast switching short turn-on and turn-off time
- Small control power large input impedence
- Withstanding of high voltage and high current during switching – Good SOA (Safe Operating Area)
- Positive temperature coefficient of on-state resistance
- Large dv/dt and di/dt ratings
- Normally off

Power Devices

= High current, High voltage, Low loss (P_{con}, P_{sw}), Reliable, Easy to control

Comparison of semiconductor material properties at room temperature

Property	Si	GaAs	4H-SiC	GaN	
Bandgap,E _g (eV)	1.12	1.42	3.25	3.4	
Dielectric constant \cdot ε	11.8	12.8	9.7	9	
Breakdown field Ec (MV/cm)	0.3	0.4	3	4	
Electron mobility μ (cm²N-s)	1500	8500	1000	1250	
Maximum velocity Vs (10 ⁷ cm/s)	1	1	2	3	
Thermal conductivity λ (W/cm-K)	1.5	0.5	4.9	2.3	
CFOM = $\lambda \ \varepsilon \ \mu V_s E_c^2 / (\lambda \ \varepsilon \ \mu V_s E_c^2)$ si	1	3.6	358	520 >	

High-speed High-power High-temperature

• Si : lowest cost, large volume, bad Trr characteristic at HT.

- SiC : so far high crystal quality, but high cost.
- GaN : low cost, highest CFOM value.

HUGA OPTOTECH INC. Advantage of High Breakdown and 廣錄光電 Low On-resistance

While the performance of Si power devices are approaching the theoretical limit of material, GaN and SiC have much room for both of reduction of specific resistance and improvement of breakdown voltage.

HUGA Advantage of Microwave High-Power 廣 錄 光 電 Application

HUGA © © W m Comparison of Best Power Device R&D Results

GaN & SiC Added Values

GaN power devices are expected to become the key to power saving and downsizing of the system by optimizing the surrounding circuit and components to take maximum advantage of GaN HEMTs that the gate charge can be reduced without increasing the on-resistance.

Advantage of Cost and Circuit Integration

Materials/ technology	Wafer size	Die area	Circuit integration	Cost	
SiC	Х	\bigtriangleup	Х	Х	√ : Best
GaN-on-Si	△→ √ (?)	\checkmark	√ (?)	\bigtriangleup	riangle : Middle
Si	\checkmark	Х	\checkmark	\checkmark	X : Poor

6-inch (and above) AlGaN/GaN wafer on Si (111) substrate is now technologically feasible, low cost and possible integration with Si-based circuits.

Advantage of Product Cost

Manufacturing Price of a 200V/12A Transistor Comparison Si, GaN & SiC

- We have used our proprietary reverse costing tool: CoSim+ to simulate the manufacturing price of the same device made with Si, GaN and SiC technologies.
- Manufacturing price is the result of the following operation:
 - Manufacturing cost + G&A (General & Administrative) + R&D expenses + Cost of Sales + Operational margin.
 - That is the sale price right at the facility door. The distribution costs (DigiKey...etc...) are not included here.
 - Manufacturing price + Distribution costs = B-to-B floor price

Toyota: Inverter Cost Comparison

Case Study Silicon vs. GaN HEV inverter cost breakdown

Source: CS Europe/Phillip Roussel - Yole Development

Epitaxial and Device Design Concepts

Difficulties of GaN-on-Si epitaxy:

- 1. Large-area epitaxial technology
- 2. Ga reaction with Si substrate
- 3. Large lattice mismatch (~17%)
- 4. Large thermal expansion coefficient difference (~54%)

Buffer Structure

Buffer Breakdown Behavior

HUGA OPTOTECH INC. Typical GaN-on-Si 2-DEG Epi Wafer 廣稼光電 Specification

è
<2%

Thickness Avg:4.66 μ m Thickness Std:0.064 μ m Wafer bow = 10 μ m

Spontaneous Polarization

Wurtzite (hcp)

Cation and anion centers do not overlap.

*u*_{0,ideal}=0.375

TABLE I. Structural parameters for AlN, GaN, and InN.

	a_0 (bohr)	c_0/a_0	и ₀
AlN	5.814	1.6190	0.380
GaN	6.040	1.6336	0.376
InN	6.660	1.6270	0.377

	AIN	-0.081 C/m ²
$P_{\rm SP} =$	GaN	-0.029 C/m ²
	InN	-0.032 C/m ²

Piezoelectric Polarization

Note: Polarization is oriented from negative to positive charge.

e.g., AlGaN coherently strained to GaN (AlGaN is under tensile stress)

When the AlGaN lattice is compressed in c direction:

- Bonding length c · u₀ is the same; angle α becomes even smaller.
- Negative charge move upward and positive charge moves downward.
- Direction of piezoelectric polarization is toward $[000\overline{1}]$, which is the same as P_{sp} .

AIGaN/GaN Heterojunction

Cation-terminated surface

Polarization direction:

e.g., Al/Ga $\mathbf{P}_{pz} \mathbf{P}_{sp}$ AIGaN coherently strained to GaN (AIGaN is under Al/Ga tensile stress) Al/Ga $\mathbf{P}_{\text{SP}} = P_{\text{SP}}\mathbf{z}$ $\mathbf{P}_{\text{PE}} = P_{\text{PE}}\mathbf{z}$ $P_{\text{PE}} = 2\frac{a - a_0}{a_0} \left(e_{31} - e_{33}\frac{C_{13}}{C_{33}}\right)$ Al/Ga N [0001] AlGaN [1100] [1120] Both \mathbf{P}_{SP} and \mathbf{P}_{PE} are toward [0001] direction. For AlGaN: $[e_{31} - e_{33}(C_{13}/C_{33})] < 0 \quad \frac{a - a_0}{-} > 0$ a_0

Polarization-Induced Electrostatic Charge and 2DEG

e.g., For AIGaN/GaN heterostructure with cation-terminated surface

Induced positive electrostatic charge σ at the AlGaN layer of the AlGaN/GaN interface is

 $\sigma = P(top) - P(bottom)$

 $= \{P_{SP}(top) + P_{PE}(top)\} - \{P_{SP}(bottom) + P_{PE}(bottom)\}.$

where the determination of $P_{\rm SP}$ and $P_{\rm PE}$ are mentioned earlier.

Polarization-Induced Electrostatic Charge and 2DEG

e.g., For AIGaN/GaN heterostructure with cation-terminated surface

Polarization-Induced Electrostatic Charge and 2DEG

AIGaN thickness and composition effect on Ns:

AlGaN/GaN Heterojunction

GaN HEMT is a device utilizing two-dimensional electron gas generated at the interface of GaN and n-AlGaN by the difference of the lattice parameter. This working mechanism allows GaN HEMT to suppress gate capacitance and to achieve high-speed switching with low power loss.

Current Market & Technology Development Status

GaN-related Power Device Application

HUGA OPTOTECH INC.

Product Type and Market

- Power IC: power management IC: mainly voltage regulators (POL) and drivers .
- Power modules: IGBT, diode or MOSFET modules, IPM .
- . Power discretes: MOSFET, rectifier, IGBT, Bipolar....

Power discrete Power module

Copyrights © Yole Développement SA. All rights reserved

GaN vs SiC Market Growth **Prediction Comparison**

GaN & SiC device market projection comparison to 2015

Executive Summary

HUGGG COMPACT COMPACT

2010

2012

2013

2014+

Schottky Barrier Diode (SBD)

...

TLM Rsh = 400~500 ohm/sq ρc ~ 1E5 ohm-cm2 Rc ~ 1 ohm-mm

For IF=8A at VF < 2V and VR=600V, we typically have

Total finger length= 50~150mm Finger spacing= 15~30 um Finger width >10um Finger metal thickness > 2um

Schottky Barrier Diode (SBD)

Symbol	Parameter (25C unless otherwise noted)	GaN Schottky (T-company)	Si P-N	SiC Schottky	Unit
VF	Forward Voltage	1.3	2.1	1.45 / 1.88	V
IF	Forward Current	6	8	6	А
IR	Reverse Leakage Current (@600V)	30	<100	< 50	uA
VBR	Breakdown voltage (@100uA)	800	650	950 / 770	V
VRRM	Repetitive Peak Reverse Voltage	600	600	600	V
IFSM	Non-repetitive Peak Surge Current	30	80	70	А
trr	Reverse Recovery Time	12	18	17 / 3.7	ns
Qrr	Reverse Recovery Charge	5	25	1.3 / 0.5	n C

Hybrid E-mode FET (Cascode)

Hybrid E-mode FET (Cascode)

Symbol	Parameter (25C unless otherwise noted)	GaN Hybrid E-mode FET	Si MOSFET	Unit
VDSS	Drain-Source Voltage	600	600	V
ID	Continuous Drain Current	12	12	А
IDSS	Saturation Drain Current	100	35	nA
RDSON	Static Drain-Source On-Resistance	0.15	0.6	Ω
VBR	Breakdown voltage (@250uA)	>900	660	V
VTH	Threshold Voltage	>2V	4	V
Ciss	Cgs+Cgd	780	1660	
Qg	Total Gate Charge	7	40	n C
trr	Reverse Recovery Time	30	150	ns
Qrr	Reverse Recovery Charge	12.5	640	n C

E-mode FETs

an AlGaN/GaN Heterostructure with a p-GaN Buffer Laver," (Samsung)

What Huga Do?

Summary

- GaN is promising material for power device application. GaN-on-Si solution is an excellent option for balancing the requirement of performance and cost.
- Performance of GaN-on-Si power devices is similar to that of SiC power devices and much better than that of Si power devices. Plus, cost of GaN-on-Si power devices is in between.
- Though 600V GaN-on-Si power device products started appearing in the market recently, I believe it will take some time to have end users willing to widely apply them into various modules/systems.

Thank you !

廣鎵光電 研發中心 林恒光 hk.lin@hugaopto.com.tw