## What is an SMU Instrument, and How Do You Decide Which One is Right for Your Application?

**KEITHLEY** 



Lishan Weng Keithley Instruments, Inc.

## **SMU Instrument Basics**









### SMUs compared to Power Supplies







### SMUs compared to Power Supplies







### SMUs compared to Power Supplies









### SMUs compared to DMMs





#### Source I = 0A, Measure V



Source V = 0V, Measure I

#### **Ohmmeter Configuration**



# Measurement Terminology







- Accuracy
- Repeatability
- Resolution
- Sensitivity
- A/D Converter Integration Time (NPLC)



measurement and it's true value or accepted standard value.

measurements carried out under the same conditions.





### **Measurement Terminology**



## Resolution

The smallest *portion* of the signal that can be observed.

# Sensitivity

The smallest *change* in the signal that can be detected.





### A/D Converter Integration Time (NPLC)



## Key Considerations for Selecting a SMU Instrument





## Key Considerations for Selecting a SMU Instrument

- System-level Speed / Throughput
- Source Resolution vs. Stability
- Measure Settling Time, Offset Error, Noise
- Cabling and Connections





#### **Example: Diode / LED Test**



5/7/2012



## System-level Throughput Considerations

- Must consider and optimize all elements of speed:
  - Trigger In Time
  - Range Change Time
  - Function Change Time
  - Source Settling Time
  - A/D Converter (NPLC)
  - Measurement Speed
  - Trigger Out Time
  - Program Execution Time





(more is better!)

|                               | 1 NPLC | 0.1 NPLC | 0.01 NPLC | 0.001 NPLC | 0.00048 NPLC |
|-------------------------------|--------|----------|-----------|------------|--------------|
| Non-Keithey<br>SMU instrument | 6.1    | 8.1      | 8.2       | 8.2        | 8.2          |
| Keithley 2600A Series         | 13.3   | 33.2     | 37.8      | 38.2       | N/A          |

Most accurate

© 2012 Keithley Instruments, Inc.

Least accurate

>



(more is better!)

|                               | 1 NPLC | 0.1 NPLC | 0.01 NPLC | 0.001 NPLC | 0.00048 NPLC |
|-------------------------------|--------|----------|-----------|------------|--------------|
| Non-Keithey<br>SMU instrument | 6.1    | 8.1      | 8.2       | 8.2        | 8.2          |
| Keithley 2600A Series         | 13.3   | 33.2     | 37.8      | 38.2       | N/A          |

Most accurate

© 2012 Keithley Instruments, Inc.

Least accurate

>



(more is better!)

|                               | 1 NPLC | 0.1 NPLC | 0.01 NPLC | 0.001 NPLC | 0.00048 NPLC |
|-------------------------------|--------|----------|-----------|------------|--------------|
| Non-Keithey<br>SMU instrument | 6.1    | 8.1      | 8.2       | 8.2        | 8.2          |
| Keithley 2600A Series         | 13.3   | 33.2     | 37.8      | 38.2       | N/A          |

Most accurate

© 2012 Keithley Instruments, Inc.

Least accurate

>



(more is better!)

|                               | 1 NPLC | 0.1 NPLC | 0.01 NPLC | 0.001 NPLC | 0.00048 NPLC |
|-------------------------------|--------|----------|-----------|------------|--------------|
| Non-Keithey<br>SMU instrument | 6.1    | 8.1      | 8.2       | 8.2        | 8.2          |
| Keithley 2600A Series         | 13.3   | 33.2     | 37.8      | 38.2       | N/A          |

Most accurate

A SourceMeter running at 0.1 NPLC A/D conversion time is 4x faster and much more accurate than a SMU instrument running at 0.00048 NPLC

Least accurate



### Keithley TSP® Technology

#### The SourceMeter<sup>®</sup> SMU Instrument has embedded intelligence!



#### Example TSP script:

for Voltage = 1,10 do smua.source.levelv = Voltage delay(1) Current = smua.measure.i() Resistance = Voltage / Current print ("Resistance=",Resistance) End

Keithley Model 2600A Series SourceMeter



## Source Programming Resolution vs. Stability

Spec sheet (Programming Resolution):

|                                         | Programming Resolution<br>20 V range |
|-----------------------------------------|--------------------------------------|
| Non-Keithey 6.5 Digit<br>SMU instrument | 10 uV                                |
| Keithley Model 2400                     | 500 uV                               |

#### Actual Output (Stability):

| Source Value =<br>10.001V               | Source Readback Displayed<br>Value (pk-pk variation) | Actual Measured Value of Source<br>Output (pk-pk variation) |
|-----------------------------------------|------------------------------------------------------|-------------------------------------------------------------|
| Non-Keithey 6.5 Digit<br>SMU instrument | 0.0 uV                                               | 438.7 uV                                                    |
| Keithley Model 2400                     | 30.0 uV                                              | 42.9 uV                                                     |



# Actual Source Performance: Programming Resolution vs. Stability



**KEITHLEY** 

## Open Circuit Offset Current at 200V: 10nA Range





#### **Comparing Specifications and Performance**

#### Spec table:

| SMU                | Lowest range            | Total accuracy*             | Resolution |
|--------------------|-------------------------|-----------------------------|------------|
| Non-Keithley       | 10nA                    | 土(0.10% +<br>50pA)          | 10fA       |
| *Keithley 2636A Ga | in accuracy (%) + Offse | et accuracy 15% +<br>120fA) | 1fA        |







#### Coax Cable

**Triax Cable** 







Coax Cable







## SourceMeter<sup>®</sup> Source Measurement Unit (SMU) Instruments

#### Industry Leading I-V Characterization & Test Tools



| Feature          | High Power SourceMeter<br>Instruments (2651A, 2430)                                     | Low Current SourceMeter<br>Instruments (2635A/36A, 237, 6430)                        | Series 2600A System<br>SourceMeter Instruments                                          | Series 2400 Bench<br>SourceMeter Instruments |
|------------------|-----------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|----------------------------------------------|
| # of Channels    | 1<br>(Optional Expansion to 32)                                                         | 1 − 2<br>(Optional Expansion to 64)                                                  | 1 − 2<br>(Optional Expansion to 64)                                                     | 1                                            |
| Current Max/Min  | 50A pulse / 1pA                                                                         | 10A pulse / 10aA                                                                     | 10A pulse / 1fA                                                                         | 5A / 10pA                                    |
| Voltage Max/Min  | 100V / 1uV                                                                              | 1100V / 1uV                                                                          | 200V / 1uV                                                                              | 1100V / 1uV                                  |
| DC Power         | 1100 - 2000W (pulse)                                                                    | 2 - 30W per channel                                                                  | 30 – 40W per channel                                                                    | 20 – 110W                                    |
| Max readings/sec | 38,500<br>1uSec / pt., 18-bit Digitizer                                                 | 20,000                                                                               | 20,000                                                                                  | 2,000                                        |
| Interfaces       | GPIB, LAN (LXI), RS-232,<br>Digital I/O, TSP-Link <sup>®</sup><br>Channel Expansion Bus | GPIB, LAN (LXI), RS-232, Digital I/O,<br>TSP-Link <sup>®</sup> Channel Expansion Bus | GPIB, LAN (LXI), RS-232,<br>Digital I/O, TSP-Link <sup>®</sup><br>Channel Expansion Bus | GPIB, RS-232, Digital I/O                    |
| Connectors       | Screw Terminal, Banana                                                                  | Triax                                                                                | Screw Terminal, Adaptors<br>for Banana or Triax                                         | Banana                                       |



### Keithley is the Leader in SMU Instruments

- 20 patents issued for SMU-specific technology
- Numerous industry awards, including *R&D*100, Test of Time, Best in Test, Best Electronic Design, and more
- Thousands and thousands of customers
- Serving Semiconductor, Electronic Components, Optoelectronics, Automotive, Mil/Aero, Medical, Research & Education, and many more industries







Model 237 High-Voltage SMU



Series 2600A System SourceMeter Instruments



Model 4200-SCS Semiconductor Characterization System



S500 and S530 Parametric Test Systems



## SMU Instrument Reference Library

#### www.keithley.com

- Choosing the Optimal Source Measurement Unit (SMU) Instrument for Your Test and Measurement Application
- Rapidly Expanding Array of Test Applications Continues to Drive Source Measurement Unit Instrument Technology
- Precision Sourcing and Measurement Techniques for Applications from Semiconductor Research and Development to High Throughput Component Test

#### www.keithley.com/knowledgecenter

• Low Level Measurements Handbook: Precision DC Current, Voltage, and Resistance Measurements (Sixth Edition)

www.keithley.com/events/semconfs/webseminars www.keithley.com/products/onlinedemo

## **Contact Keithley for Further Information**

| Worldwide Headquarters<br>Within USA: 1-888-KEITHLEY<br>Outside USA: +1-440-248-0400      | Europe:<br>Germany: (+49) 89 849 307 40<br>Great Britain: (+44) 118 929 7500                                            |
|-------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------|
| Email: <u>applications@keithley.com</u><br>Additional offices:<br><u>www.keithley.com</u> | Asia:<br>China: (+86) 10-8447- 5556<br>Japan: (+81) 3-5733-7555<br>Korea: (+82) 2-574-7778<br>Taiwan: (+886) 3-572-9077 |
|                                                                                           |                                                                                                                         |