Tektronix

USB RSAシリーズ & Signal Vu-PC 操作ガイド ~応用編その1~

Tektronix RSAS074

10

Telatronix

SignalVu-PC V3.10.0030 以降対応

目次

- 応用編その1
 - 基本操作のおさらい
 - 標準機能
 - 1. トリガ機能
 - 2. スペクトログラム測定
 - 3. アナログ変調解析
 - チャネル電力 / 隣接チャネル電力比(ACPR) / 占有帯域幅(OBW)
 - オプション機能(一部)
 - ストリーミング記録と SV56 プレイバック機能
 - 補足資料

- 応用編その2
 - オプション機能
 - 6. SVM 汎用デジタル変調解析
 - 7. SV23/24/25 無線LAN解析
 - 参考: SV27 Bluetooth解析
 - 8. SVP RFパルス解析
 - 9. SVA オーディオ解析
 - 10. SVT セトリング時間解析
 - 11. SV54 信号識別/分類機能

基本操作のおさらい

スペクトラム・アナライザ 基本設定

T

測定画面の追加方法

標準搭載(オプションなしで使える)機能

Measurements: General Signal Viewing RF Measurements Analog Modulation GP Digital Modulation* Pulsed RF* Audio Analysis*	Available displays:	FREQ Frequency vs Time	Ø Phase vs Time	表示機角 Amplituc Phase vs Spectrun	能 ude vs Time, DPX, Frequency vs Time, vs Time, RF I&Q VS Time, Spectrogram, um, Time Overview	
Bluetooth Analysis* WLAN Analysis* 802.11ad Analysis* LTE Analysis* P25 Analysis* OFDM Analysis* Tracking Generator Return Loss* An GP Pu Au Blu WI 80 LT P2 OF	RF I&Q vs Spectro Time asurements: meral Signal Viewing Measurements alog Modulation Digital Modulation* lsed RF* idio Analysis* LAN Analysis* 2.11ad Analysis* E Analysis* 5 Analysis* 5 Analysis*	aram Time Overview Available displays CCDF C a Occupied Bandwidth	Chan Pwr and ACPR Phase Settling Pasurements:	tling MCPR	測定機能 CCDF, Chan Pwr and ACPR, MCPR, Occupied Bandwidth, SEM, Spurious	
Re	turn Loss*	Spurious Spurious An GP Pu Au Blu WI 80 LT P2 OF Tra Re	Measurements alog Modulation Digital Modulation* Ised RF* Idio Analysis* Jetooth Analysis* LAN Analysis* 12.11ad Analysis* 12.11ad Analysis* 12.11ad Analysis* 12.11ad Analysis* 12.11ad Analysis* 13.11ad Analysis* 14.11ad Analysis* 15.11ad Analysis* 15.11ad Analysis* 15.11ad Analysis* 16.11ad Analysis* 17.11ad Analysi	AMPL	M FM PM	ŝ

設定ウインドウについて

●アイコンをクリックすることで、画面下に 各測定・解析画面の設定ウインドウを 呼び出すことができます 取り込み停止中、 あるいは保存されたデータの解析時に 変更した設定を反映させるためには、 最後に●Replay ▼をクリックしてください

フォーカスされているウインドウ(上部分の帯が青くハイライト されているウインドウ、この図の場合はSpectrogram)の設定項目が ここに表示されます

データのセーブ

- 画面上部メニューバーより、File > Save As をクリック、あるいはアイコンを クリックします
- 以下の形式での保存が可能です。
 - Setup: 設定の保存。
 - Picture (PNG, JPG, BMP): 画面の保存。
 - Results export (CSV): 直前にクリックした 画面の測定結果をCSV形式で保存します。 この形式で保存されたファイルを、後から SignalVu-PCで解析することはできません。
 - Measurement settings export (TXT): 測定設定内容の保存。ASCIIファイルで変調 速度、フィルタなどの状態を保存。
 - Acquisition data with Setup(TIQ):
 取込データをバイナリ形式で設定データと 一緒に保存します。後からSignalVu-PCで 呼び出して解析が可能です。
 - Acquisition data export (CSV, MAT): 取込 データの保存。IQデータをCSV形式または Matlab形式で保存します。SignalVu-PC以 外のオフライン解析ソフトで解析する際に 使用します。

8

データの呼び出し

- ファイル名を選択して、
 ダブルクリックもしくは"開く"を選択
- 出てきたウインドウから、
 "Data and setup"を選んで"OK"をクリック

RSAデモボード セットアップ手順

- デモボードとの接続
 - 1. 電源供給用 USBケーブルを USB2.0ポートに接続する (2つ)
 - 2. BNCケーブルで、 RF OutputとRF Inputを 接続する

- デモボードの設定方法
 - 1. 電源をONにする
 - 2. INT / EXT をINT にする
 - 3. FREERUNモードにする
 - ROWとCOLUMNの2つのボタンで ランプの点灯位置を変え、 出す信号を決定する (右写真ではCW信号が出力 されています)

1. トリガ機能

- トリガ、キャプチャ(取り込み)、表示、次のトリガ待ち
 を繰り返す
- 比較的繰り返し速度が遅い信号や不規則に繰り返す信号の 情報を得るのに有益

1. トリガ機能

- ・トリガ条件は、2種類から選ぶことができます
 - RF Input (RF入力パワー・トリガ):
 入力信号のパワーの立上り/立下りでトリガをかけることができます
 - External:
 外部トリガ信号の立上り/立下りに同期した取込みを行います 複数の測定器間で取込みタイミングを同期させる際に有効です

1. トリガ機能 操作手順 1/2

- 画面右上の Preset をクリックします
- (デモボードを使用する場合: "CW Pulse"ランプを点灯)
- 信号源に合わせて中心周波数・スパンを設定します (デモボードの場合:中心周波数2.445312GHz,スパン40MHz)
- ・ 画面上部の アイコンをクリックし、
 "DPX"と"Time Overview"画面を追加し、OKをクリックします
- ・ 画面上部の
 、
 アイコンをクリックすると、
 画面下部にTriggerメニューが出てきます
- Triggerメニュー左端の"Free Run"を、"Triggered"をクリックして変更します
- Eventタブにて、SourceがRF Input、SlopeがRiseになっていることを確認した後、 Level: の値を調整します。(デモボードの場合: -20dBm)
 →Time Overview画面にトリガ・レベルが横線で表示されます

Trigger	Event Advanced Actions
Free Run Tringered	Source: RF Input Rise
Force Trigger	Type: Power Fall Trigger BW: 40 MHz

1. トリガ機能 操作手順 2/2

- Time Overview画面(プロットエリアの縦軸:振幅、横軸:時間)で、
 Tのマークのところで信号のパワーが立ち上がっていることを確認します
- Time OverviewのAnalysis Lengthを変更します (デモ・ボードを使用する場合:300us)
 →取込み時間が変化します。
- TriggerメニューのAdvancedタブを開き、Trigger Positionの "Auto"のチェックを外し、50%から任意の値に変更します →Tのマークの位置が変わります。

参考: Time Overview Analysis (解析)時間長の操作

Time Overview の画面は "時間軸の一覧表示"です。信号の振幅 vs 時間表示や解析 (Analysis)の時間長などをまとめて表示しています

このプルダウン・メニューで Analysis時間長(BLUEバー)の長さをSpectrum時間長(REDバー)のデフォ ルト長の2倍以上にすると、スペクトログラムで時間軸ズーム・イ "Analysis"を選択することで、 Analysis時間長を設定できます ン(FFTオーバーラップ)ができるようになります Time Overview Time: -20.0 Analysis オフセット Analysis Analysis 時間長 -40.0 Offset: 0.000 s 他の画面で使用する解析の時間長(領 -60.0 enath: 域)を指定します。スペクトログラム表示 158.000 ms 画面や復調画面などの、他のすべての -80.0 黒背景プロット・エリアの黄線は、入力信号の xxx vs Timeの画面の時間長です IB/div: 10.0 dB "取込帯域幅全体でのパワー"vs時間表示です -100.0 -画面上部のBLUEバーで、その長さを 確認することができます -120.0 Autoscale Position: 0.000 s Scale: 158,000 ms 数値はフロントパネルやキーボードでの 入力の他に、マウスでのエッジドラグや "T"表示はトリガの位置を示します マウスのホイールも使用できます 下のPINKのバーは、各解析画面をクリックした際、 その画面で実際に計算に用いられる時間長(領域)を示します

> ScaleはAcquisition(取込)の時間を示します (MDO4000のRF取込時間に相当)

参考: Time Overview Spectrum時間長の操作

注意: Spectrum 時間長

- •デフォルト(Auto)のSpectrum時間長は固定値ではなくRBW, FFTウィンドウで変わります。 RBWを狭くするとSpectrum計算時間長は長くなります
- •Spectrum時間長や時間領域を変更して、再計算表示するときは、Replayアイコンをクリックします
- •ここで設定したSpectrum時間長は、Spectrogramには反映されません。(Spectrogramウインドウのスペクトラムの時間分解能は、ここの設定にかかわらずデフォルト(Auto)のSpectrum時間長が適用されます)

参考: 振幅/周波数/位相 対 時間測定

- "General Signal Viewing"カテゴリから、振幅/周波数/位相/RF I&Qの
 時間変化プロット画面を呼び出すことができます
- "Amplitude vs Time"表示は、"Time Overview"の振幅対時間表示と 異なり、帯域制限をかけることもできます

2. スペクトログラム測定

▶ スペクトラムの時間変動を3D表示

 上図:スペクトログラムとマーカー表示 横軸:周波数、縦軸:時間
 色合い:振幅(赤:高レベル、青:低レベル)
 下図:マーカー点のスペクトラムを表示 スペクトログラム概念図

スペクトログラム画面の操作

※スケール設定を元に戻す場合は、スペクトログラム上で 右クリックをし、"Reset scale"を選びます

参考:スペクトログラム画面のズーム・イン機能のしくみ

• FFTオーバーラップによる時間軸ズーム・イン

2. スペクトログラム測定 操作手順 1/4

Time Overview

DPX Spectrum

Show +Peak Norma

• Preset をクリックします

Analysis

Offset

Length: 3.000 ms

dB/dvs

10.0 dB

Autoscale

dB/div:

RBW:

10.0 dB

300 kHz

Spectrum v

-20.0

0.06

-80.0

100.0

Trace1

-20.0

-40.0

-80.0

106.0

IN CP: 2 44532 GHz

Frequency 2.44532 GHz

p Position: -243.607 ut

- (デモボードを用いる場合、"SPECMON"ランプをONにします)
- 信号源に合わせて中心周波数とスパンを設定します
 (デモボードの場合:中心周波数2.445312GHz、スパン40MHz)
- ・ ロアイコンをクリックし、
 "DPX"、"Spectrogram"、"Time Overview"を追加し、"OK"をクリック
- Time Overviewウインドウで、Analysis Length(下図青丸の中)を設定します デモボードの場合:3ms

Scale: 3,480 m

n Snon: 40.00 MHz

10

Clear

- Time(did

371 US

300 kH

REUU:

3-D

Pos: 0.0 dv

Autoscale

dB/div:

RBW:

10.0 dB

300 kHz

Spectrogram

Spectrum

♥ Span: 40.00 MHz

Narkers Traces

12

+Pea

15/2015 13 41 64 017/27

Spectrums/line: 1

₽ CF: 2,44532 GHz

9.0

-20.0

40.0

-60.0

-100.0 - 44532 GHz

✓ Trace 1 ▼Show +Peak Norma

Ref Lev 0.00 dBm

2. スペクトログラム測定 操作手順 2/4

- 画面右上の ^{つStop} をクリックして、取込みを一度止めます
- Spectrogramウインドウ内のどこかを一回クリックします Windo
- ・画面上部のメニューから、Window > Tile Verticallyを 選択します
 - →Spectrogramウインドウが左側に大きく拡大されて 表示されます
- ・ 画面上もしくは下の
 や
 アイコンをクリックし、
 Spectrogram Settingsウインドウを出します

9	W	<u>/</u> indo	w	<u>H</u> elp
	ſ		Clo	ose View
	_	6	Ca	ascade
		\square	Ti	e Hori <u>z</u> ontally
	4	Ш	Ti	e <u>V</u> ertically
		Ô	<u>L</u> o	ck Windows
		д	<u>1</u> 9	Spectrum
			<u>2</u> 9	Spectrogram
		<u>.</u>	<u>3</u> [DPX Spectrum
		_		

•	Amplitude Scale	Spectrogram	Freq & Span BW Trace Amplitude	e Scale Time & Freq Scale Prefs	
	タブに移り	Securgs	Height (3-D only)		Color (Power)
	Color(Powor)		Scale: 100.00 dB	3-D Waterfall	Color: Temperature V
			Position: 0.00 dBm	Northeast 🗸	Max: 0.00 dBm
	Min: を-80dBmに			Reset Scale	
	設定します	Restore Defaults	Autoscale	Resol state	Min: -80.00 dBm

• Settingsウインドウの × アイコンをクリック、ウインドウを閉じます

2. スペクトログラム測定 操作手順 3/4

- Spectrumウインドウをクリックした後、 プロットエリア上で右クリックをします
- Add markerをクリックします。
 - 表示されている全画面にマーカが追加され、
 - Spectrum画面には新たに赤色のトレースが追加されます 0
- 画面下のマーカ・ツールバーのDefineをクリックします
- Define Markersウインドウで、MRマーカのAttach to: 設定を • Trace 1からSpectrogramに変更します Define Markers
 - Spectrumウインドウのマーカが 黄色いトレース上から赤色のトレース上に 移ります
- Spectrumウインドウの тысе 1 \checkmark Show \mathcal{O} チェックを外します
 - 。 黄色いトレースが消え、赤色の Spectrogramトレースのみの表示になります

Spectrum

Show Off

Trace 1

2. スペクトログラム測定 操作手順 4/4

- Spectrogramウインドウ上でマーカをドラッグして動かします
 - Spectrum表示画面では、Spectrogramウインドウのマーカの位置の時間での スペクトラムを表示します
- SpectrogramウインドウのTime/divの値を小さくしていきます
 - 。 拡大表示されます

3. アナログ変調解析

AM: Amplitude Modulation FM: Frequency Modulation PM: Phase Modulation 3. アナログ変調解析

3. アナログ変調解析 操作手順 1/2

- Preset をクリックします (デモボードを用いる場合、 "AM"もしくは"FM"のどちらかを点灯)
- 信号源に合わせて中心周波数と スパンを設定します (デモ・ボードの場合: 中心周波数2.445312GHz, スパン1MHz)

	Select Displays	- - >
Choose any combination	below, or use an Application Preset.	Application Presets
Measurements:	Available displays:	
General Signal Viewing Analog Modulation GP Digital Modulation RF Measurements OFDM Analysis Audio Analysis Bluetooth Analysis P25 Analysis Pulsed RF WLAN Analysis	FM PM	
Selected displays:		Add
An Spectrum		Remove
	ок	Cancel

- ・ 「アイコンをクリックし、"Analog Modulation"カテゴリ内から AM/FM/PMのうち解析したいものを追加します (デモボードを用いる場合、AMを選択した場合AMを、 FMを選択した場合FMをお選びください)
- AM/FM/PMウインドウをクリックした後、☆アイコンをクリックします

•	Pametersタブの	FM Settings	Parameters Traces Scale Prefs
	"Measurement BW"の値を		
	設定します		Burst detect threshold: -100 dBc
	(デモボードを用いる場合:		
	1MHz(AM/FMどちらでも))	Restore	Measurement BW: 1.000 MHz
		Deradics	

3. アナログ変調解析 操作手順 2/2

- 画面上部の が アイコンをクリックし、Analysis Timeタブの "Analysis Length"の値を設定します(デモボードの場合: 10ms)
 - Analysis Lengthは、Time Overview画面からのみでなく、
 このAnalysis設定ウインドウから設定することもできます

Analysis	Analysis Time Spectrum Time Frequency Units
	Analysis Offset: -5.714 us 🛛 Auto
	Analysis Length: 10.000 ms
	Actual: 10.000 ms

- AM/FM/PMウインドウ左下の"Autoscale"を押し、スケールをあわせます。
- それぞれ変調パラメータを確認できます

4. チャネル電力 / 隣接チャネル電力比 / 占有帯域幅

- RFトランスミッタの測定では、各国や地域ごとの規格によって、 以下をはじめとするパラメータの限度値が定められています
 - 。 チャネル電力
 - 隣接チャネル電力比 (ACPR, Adjacent Channel Power Ratio)
 - 。 占有帯域幅 (OBW, Occupied Bandwidth)
 - 。 スプリアス※
- SignalVu-PCでは、専用のウインドウを用いてそれぞれの測定ができます
 ※スプリアス測定画面は、操作ガイド基本編"3. EMI Peak測定"にて紹介しています

4. チャネル電力 / 隣接チャネル電力比 測定画面

4. 占有帯域幅 測定画面

X

4.チャネル電力 / 隣接チャネル電力比 / 占有帯域幅 操作手順

- Preset をクリックします
 - デモボードを用いる場合、
 "QPSK2"を点灯します
 → W-CDMAを模擬した信号が出ます
- 信号源に合わせて中心周波数、
 基準レベルを設定します
 - デモボードの場合、
 中心周波数: 2.445312 GHz、
 基準レベル: -10 dBm
- 「「アイコンをクリックし、
 "RF Measurements"カテゴリから、
 "<u>Chan Pwr and ACPR</u>"と
 "<u>Occupied Bandwidth</u>"を選択し、
 "OK"ボタンをクリックします
 (※"Spectrum"アイコンはRemoveします)

4.チャネル電力 / 隣接チャネル電力比 / 占有帯域幅 操作手順

- "Channel Power and ACPR" ウインドウをクリックした後、 〇 アイコンを クリックします
- SettingsウインドウのMeasurement Paramsタブにて、 Average (平均化) と Channel Filter の設定を確認します
 - Channel Filterは、準拠する規格による指定がなければ"None"にします
 デモボード信号を用いる場合、Channel Filter設定は以下の画像の通りにします

Chan Power & ACPR Settings	Freq & RBW Measurement Params Channels Scale Prefs		Channel Filter: Root-raised Cosine 🖌
	Average: Off	Channel Filter: Root-raised Cosine 🖌 Filter Parameter: 0.22	Filter Parameter: 0.22
Standard Presets		Symbol/Chip Rate: 3.84 MHz	Symbol/Chip Rate: 3.84 MHz

- SettingsウインドウのChannelsタブに移り、
 "Number of adjacent Pairs"の値に"2"と入力し、Enterキーを押します
- "Channel Bandwidth"にチャネル幅を、"Channel Spacing"にチャネル間隔を 入力します(デモボードの場合: Bandwidth 3.84MHz、Spacing 5MHz)

35

4.チャネル電力 / 隣接チャネル電力比 / 占有帯域幅 操作手順

- "Parameters"タブをクリック、設定を確認し、Measurement BWを変更します
 - 。デモボード信号の場合は、10 MHzに設定します

Occupied BW	Freq & RBW Parameters Scale Prefs	
	Occupied BW % Power: 99.0 %	Max Hold spectral data
	x dB level: -26.0 dB	Count:
Restore Defaults	Measurement BW: 10.00 MHz	Average results 10

オプション機能(一部)

5. ストリーミング記録&SV56 プレイバック機能

- USB RSAシリーズ本体からPCに送られたデジタル・生データを PCのSSDに連続記録します(ストリーミング記録、標準機能)
- 記録された生データをSignalVu-PC本体で再生できます (プレイバック機能、オプションSV56が必要です) プレイバック中は、記録時に表示していなかった測定ウインドウを 新たに追加して測定することも可能です

5. ストリーミング記録(FreeRun状態) 手順

(標準機能)

- 信号源は何でも構いません。測定中に設定を行います
- 画面上部の
 「 アイコンをクリックすると、Recording設定ウインドウが開きます
- "Record Setup"タブをクリックします
- Location: (ファイル保存場所) とBase filename: (基本ファイル名) を設定します
- Data structure: が"Formatted"になっていることを確認します
- 続いて"Record"タブをクリックします
- Files per run:に、連続保存するファイル数を入力します
- Record Time:にチェックが入っていることを確認し、数値と単位(sec/usec) を設定します
- Record to disk: で"Record now"になっていることを確認し、Startをクリックします

Recording	Record Setup Record Playback	Record Setup Record Playback
	Location:	Record to disk: Files per run:
	C:¥SignalVu-PC Files	Record now 1
	Base filename:	
	SAVED	Start Record Time: 10 msec
	Data structure:	File Size:
	Formatted	Available Disk Space:

5. SV56 プレイバック機能(FreeRun状態) 手順

(SV56xx-SVPC 追加機能が必要です)

- 画面上部の 🔲 アイコンをクリックします
- 画面下部のRecordingメニューから、"Playback"タブをクリックします
- Location: の"…"をクリックし、出てきたウインドウの右下にあるプルダウン・メニューから"ADC sample data (R3F)"を選んだ後、先ほどRecordで保存した.r3fファイルを選び、ファイルを開きます
- "Play"をクリックします

参考: 生データ(.r3f)とIQデータ(.tiq, .mat)の違い

	生データ(.r3f)	IQデータ (.tiq, .mat)
各データの内容	112MS/sでサンプリングされ たデジタル・データ	それぞれ最大56MS/sで サンプリングされた I/Qデータ [単位:電圧]
サンプル・レート	112MS/sで固定	スパン幅によって可変
データの取り扱い	ー度IQデータへの変換 作業が必要	汎用IQデータとしてMATLAB などで呼び出して使用可能
記録可能時間	PC内蔵SSDの容量次第 (1秒あたり224MB)	最大1秒間
ヘッダの内容(共通)	中心周波数、基準レベル、サ アラインメントの有無、トリ	ンプル・レート、 ガ情報など
ヘッダの内 容(.r3f)	RF入力チャンネルの 振幅/位相補正データ	

参考: USB-RSA データ処理ブロック図と保存形式の違い

補足資料 目次

- 1. DPXスペクトログラム(.TIQファイル)の保存
- 2. 保存したDPXスペクトログラム(.TIQファイル)の呼出
- 3. リプレイ機能
- 4. DPXスペクトログラム csv形式での保存 (全体)
- 5. DPXスペクトログラム csv形式での保存 (一部)

1. DPXスペクトログラム(.TIQファイル)の保存

- 1. 画面右上のStopアイコンをクリックして、取込を停止します
- 2. 画面上部メニューバーから、File > Save As をクリックします
- 保存形式の選択で、Acq data with setup (TIQ)を選択し、ファイル名を入力、 "Save"をクリックします
- 4. 次に出てくる画面で、下画面のようにセッティングを行います

2.保存したDPXスペクトログラム(.TIQファイル)の呼出

- 1. 画面上部の アイコン
 をクリック、もしくはメ
 ニューバーからFile > Recall
 を選択
- 2. ファイル形式から、Acq data with setup (TIQ)を選択
- ファイル名を選択して、ダ ブルクリックもしくは"開く (O)"を選択
- 4. 出てきたウインドウか ら、"Data and setup"を選ん で"OK"をクリック

		開く				×
- ()	1 🕨 🚺	Q_Sample_by_Katori → Wireless	۷ Ċ	Wirelessの検索		Q,
整理▼ 新	新しいフォルダー				:≕ - □	0
	^	名前	更	新日時	種類	^
ן ש PC וש אייריק ו		👧 Bluetooth_Hopping.tiq	20)14/04/17 17:07	TIQ ファイ	ιL
● タワンロ・ ● デコト	-1-	<u> 8</u> Bluetooth_Hopping_part.tiq	20	014/04/17 20:35	TIQ ファイ	IL I
「「「 アスクト」		🌆 Bluetooth_Hopping_part2.tiq	20	014/04/18 19:02	TIQ ファイ	IL I
<u> </u> ドキュメント ≥ ビクチャ > ビ=+		💹 MDO_2.4GHz_100MHz_edit.tiq	20	014/04/10 10:09	TIQ 771	IL
		👧 MDO_2.4GHz_200MHz_edit.tiq	20)14/04/22 10:57	TIQ ファイ	16
■ ビデイ ■ ミューベ	du.	👧 RSA_WLAN_165MHz_AIR.tiq	20)14/04/01 10:09	TIQ 771	16
	k (C)	👧 RSA306_802.11a.tiq	20)14/11/09 0:20	TIQ 771	1L
skatori	i (¥¥alobi	👧 RSA306_802.11n.tiq	20	014/11/08 1:56	TIQ 771	16
🚽 skatori (¥¥glob; 🚽 global (¥¥globa 💷 workarps (¥¥ak		RSA5106A_MobileRooter_Full.tiq	20)13/12/19 12:00	TIQ ファイ	16
		RSA5106A_MobileRooter1.tiq	20)13/12/18 18:13	TIQ ファイ	16
TekFile	es (¥¥alol	RSA6120B_MobileRooter1.tiq	20	013/11/27 15:07	TIQ ファイ	IL T
mbd (A	¥¥qlobal.t	💹 test_802.11b.tiq	20	014/08/05 13:46	TIQ ファイ	1L Y
フ	1ア1	、ル名選択	/ フラ	ァイル	·形王	じ選
	アイ 🛛 Reca	イル名選択 I Acquisition Data	/ フ:	ァイル	·形式	代選
	アイ N Reca	レ名選択 I Acquisition Data Data and setup	ノ フラ	アイル	·形I 3	じ選
	アイ <u>N Reca</u> (レ名選択 I Acquisition Data Data and setup Data only	/ フ:	ァイル 	·形士	じ選

3.リプレイ機能(続き)

4. DPXスペクトログラム csv形式での保存(全体)

- 1. 画面上部メニューバーから、File > Save Asを選択
- ファイル形式選択から、Acq data export (CSV)を選択し、 ファイル名を入力、"Save"をクリック
- 3. 出てきたメニューから、以下のように選択し、"Save"をクリックします
- 4. DPXスペクトログラムの各時刻でのスペクトラムが数値データで 出力されます

※周波数軸情報は出力されません

File Contents	
Data types	Data records
○ IQ records	O Current acquisition
DPX spectra	 Current frame
\bigcirc Both IQ and DPX	○ Selected acquisitions/frames
Acquisitions must be stopped to save DPX Spectra.	 All in history
Data length	
Entire record	Don't show this dialog
 Analysis length only 	
	Save Cancel

5. DPXスペクトログラム csv形式での保存(一部)

- 1. DPXスペクトログラムの全体ではなく、一部を切り出してcsv保存することもできます
- DPXスペクトログラム画面上の青矢印(左下図)、もしくはリプレイ・ツールバーの
 Define をクリックして出てくるリプレイ設定画面から、セーブしたい範囲を 指定します。
- 画面上部メニューバーからFile > Save AsをクリックしてSave画面を出し、 ファイル形式選択から、Acq data export (CSV)を選択し、ファイル名を入力、 "Save"をクリックします
- 4. 出てきたメニューから、右下図のように選択し、"Save"をクリックします

オプション機能は、応用編その2をご参照ください

- 応用編その1
 - 基本操作のおさらい
 - 標準機能
 - 1. トリガ機能
 - 2. スペクトログラム測定
 - 3. アナログ変調解析
 - チャネル電力 / 隣接チャネル電力比(ACPR) / 占有帯域幅(OBW)
 - オプション機能(一部)
 - ストリーミング記録と
 SV56 プレイバック機能
 - 補足資料

- 応用編その2
 - オプション機能
 - 6. SVM 汎用デジタル変調解析
 - 7. SV23/24/25 無線LAN解析
 - 参考: SV27 Bluetooth解析
 - 8. SVP RFパルス解析
 - 9. SVA オーディオ解析
 - 10. SVT セトリング時間解析
 - 11. SV54 信号識別/分類機能

お客様コールセンターのご案内

操作に関するご不明点、疑問点などございましたら、 以下フリーダイヤルまでお気軽にお問い合わせください。

------Tektronix/Keithley お客様コールセンター------電話番号:0120-441-046(フリーダイヤルヨッ!良いオシロ) 営業時間:平日9:00~12:00、13:00~18:00

上記フリーダイヤルで、以下すべてお受けしております

 1:修理・校正
 2:製品及び技術的な質問
 3:購入及び価格・納期
 4:営業担当へのコンタクト

Tektronix

A Tektronix Company

www.tektronix.com/ja www.keithley.jp/

<u>@tektronix_jp</u>

Facebook http://www.facebook.com/tektronix.jp

本テキストの無断複製・転載を禁じます 株式会社TFF テクトロニクス/ケースレーインスツルメンツ Copyright © Tektronix, Keithley Instruments. All rights reserved.