# **Receiver Testing Methodologies**





#### Agenda

- High Speed Serial Test Challenges
  - Overview
  - Error Rate as an indicator of performance
  - Focus on Receiver Testing
  - Loopback
- Receiver Tolerance Testing
  - Stress Pattern Library
  - Pattern Generation and Calibration
  - Frame Error Rate Detection
- Compliance Testing
  - MOIs, CTS
  - Toolset
- Summary



### High Speed Serial Test Challenges







### High Speed Serial Interconnect: Loss

The faster the data rate and the longer the Interconnect, then the more loss in the signal





#### Receiver Performance measured with error rate

- Will the receiver work in real world conditions?
- What is the worst-case behavior?
- Send 1x10<sup>12</sup> bits and measure 1 bit error
  - BER = 1 error / 1x  $10^{12}$  bits =  $1 \times 10^{-12}$
- Mean time between errors
  - Needs to be meaningful (acceptable target BER)
  - Measured vs. Estimated
- Direct measurement test time example (5Gb/s)
  - Target BER of 1x10<sup>-6</sup> = <u>200 useconds</u>
  - Target BER of 1x10<sup>-12</sup> = <u>3.33 minutes</u>
  - Target BER of 1x10<sup>-15</sup> = <u>2.31 days</u>







#### **Receiver Testing**

- Limit, stress and compliance test your receiver design
- Stress your Receiver in absence of the transmitter and transmission lines
- Stress your receiver with a variety of limit stress and compliance test signals
- Signal Generation
  - Increasing data-rates for high speed serial data
  - Increasing bandwidth in RF

- Replication of "Real-World" signals
  - Replicate transmission effects
  - Generate signals including all noise, jitter and other imperfections *"known-good" and "known-bad" signals*



High Speed Serial Data



#### Standards define the requirements

In both design and manufacturing, requirements for receiver tests are standards-driven

All standards require Jitter Tolerance measurements for compliance

Types of devices tested:

- SerDes
- Transceivers
- Multi Media Sink devices
- Rx devices

| Standard        | Data Rate                | Jitter<br>Tolerance | Timing<br>Skew | Amplitude<br>Sensitivity | Emphasis |
|-----------------|--------------------------|---------------------|----------------|--------------------------|----------|
| SATA Gen 2      | 3 Gb/s                   | *                   | -              | *                        | -        |
| PCI Express 1.0 | 2.5 Gb/s                 | *                   | *              | *                        | *        |
| PCI Express 2.0 | 5 Gb/s                   | *                   | *              | *                        | *        |
| HDMI 1.3        | 0.75 Gb/s to<br>3.4 Gb/s | *                   | *              | *                        | -        |
| FC 4, 8 G       | 4.25 Gb/s to<br>8.5 Gb/s | *                   | *              | *                        | *        |
| DisplayPort     | 2.7 Gb/s                 | *                   | *              | *                        | *        |
| USB 3.0         | 5 Gb/s                   | *                   | -              | *                        | *        |



#### Loopback

- External verification of compliance pattern used with Loopback technique
- Internal operation
  - Rx signal detected at decision circuit
  - Retimed (SKPs consumed/inserted) for compensation of clock differences
  - No error correction
- Internal error counter implementation becoming more common
  - DisplayPort
  - USB 3.0





#### Agenda

- High Speed Serial Test Challenges
  - Overview
  - Focus on receiver testing
  - Error rate as an indicator
  - Loopback
- Receiver Tolerance Testing
  - Stress pattern library
  - Test configuration
  - Pattern generation and calibration
  - Frame error rate detection (Protocol aware method)
- Compliance Testing
  - MOIs, CTS,
  - Toolset
- Summary



| 10/17/2008

#### DisplayPort Example (from Compliance Test Specification 1.1)

#### 4.1 Sink Jitter Tolerance Test (Normative)

#### 4.1.1 Test Objective

The VESA DisplayPort Standard outlines a <u>minimum</u> Receiver Eye diagram which is measured at the receiver silicon component junction. This test is designed to provide an <u>impaired</u> stimulus which has been calibrated to the minimum TP3 connector electrical properties.

#### 4.1.2 Interoperability Statement

This test will test the receiver ability to sustain a 10E-9 BER under <u>most</u> <u>severe</u> signaling conditions permitted by the specification.





### Stressed Pattern Library: Putting it all together



Figure 4-4: Jitter Tolerance Testing Calibration Setup

|       | Table +2. Sitter Component Settings for Reduced Rate |       |         |       |  |  |  |  |  |  |
|-------|------------------------------------------------------|-------|---------|-------|--|--|--|--|--|--|
| f(Sj) | Tj(JTRBRrx)                                          | ISI   | RJ(RMS) | SJ    |  |  |  |  |  |  |
| [MHz] | [mUI]                                                | [mUI] | [mUI]   | [mUI] |  |  |  |  |  |  |
| 2     |                                                      | 570   | 7.9     | 981   |  |  |  |  |  |  |
| 10    | 778                                                  | 570   | 7.9     |       |  |  |  |  |  |  |
| 20    | 747                                                  | 570   | 7.9     | 80    |  |  |  |  |  |  |

#### Table 4-2: Jitter Component Settings for Reduced Rate



#### **Traditional Receiver Test Configuration**



Tektronix

### Direct Synthesis for thorough Receiver Testing





#### Pattern generation and calibration

AWG7122B (24GS/s)



ET-DP-TPA-P (Plug fixture)

DSA70804 (>8GHz, jitter calibration)



### Serial Data Waveform Synthesis using SerialXpress®

#### Standard Base Patterns Selections

- SATA
- SAS
- HDMI
- DisplayPort
- PCIe
- Fiber Channel

#### **Rise time setting**

Graphic simulations of Compiled Data

| <ul> <li>O Standard</li> <li>PCI-Express ♥</li> <li>Pattern: CompliancePat</li> <li>O From File</li> <li>Click CH+C to select multiple files</li> <li>Binary</li> <li>User Pattern:</li> <li>Editor</li> <li>Hex</li> <li>Signal</li> <li>Data Rate: 5.00000000 G ♥ Bis</li> <li>Amplitude: 1.000 ♥ Voits</li> <li>Bi10B</li> <li>Dispanty:</li> <li>RbseFall</li> <li>Rise Fall</li> <li>Rise Fall</li> <li>Time:</li> <li>O 1090 ● 2080</li> <li>D CD</li> <li>D DD</li> <li>D D</li> <li>D</li></ul> | ase Pattern Transmitter Channel/Cable Base Pattern                                                                                                 |                                                        | CompliancePat - Simulated Data Signal                  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------|--------------------------------------------------------|
| Signal     Encoding     Scheme:     NONE (NR2)     Ide State:     0.5       Amplitude:     1.000     0 voits     0 B10B     Disparity:     Pt       Idle State:     12800 n     0 secs     0     0.5       RiseFall     RiseFall     0.000     0 U     -1.5       RiseFall     0.5     -1.5     -2.0     10     20     30     40     50     60     70     80     90     11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Standard PCI-Express Circh Ctri+C to select multiple User Pattern                                                                                  | Pattern: CompliancePat v<br>files Binary<br>Editor Hex |                                                        |
| Rise:         200 p         © secs         ✓         200 p         © secs         ✓           -2         0         10         20         30         40         50         60         70         80         90         1           Time (in Samples)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Signal<br>Data Rate: 5.00000000 G ♀ B/s<br>Amplitude: 1.000 ♀ Volts<br>Idle State: 12.800 n ♀ secs<br>Rise/Fall<br>Rise/Fall Time: ○ 10/90 	 20/80 | Cheme: NONE (NR2)                                      | 0.5<br>-0.5<br>-1<br>-1.5                              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Rise: 200 p 🕥 secs 💌                                                                                                                               | Fail: Zuu p 👿 Secs M                                   | -20 10 20 30 40 50 60 70 80 90 11<br>Time (in Samples) |



### Direct Synthesis - SerialXpress®





- Extract Mixed Mode S-Parameters from a reference impairment or model them mathematically.
- Feed the s4p file into SerialXpress<sup>®</sup>, and get an exact numerical model of that response in a full digital form.
- ISI Direct settable input feature.
- ISI Scaling feature that allows for virtual cable length adjustment (what-if scenarios)



# Serial Data Jitter Generation using SerialXpress®

- Up to four SJ components with freq and phase settings
- Two Random jitter components with specific bandpass settings

| Base Pattern                                                            | Transmitter          | Channel/Cable |    |                 |   |              |  |
|-------------------------------------------------------------------------|----------------------|---------------|----|-----------------|---|--------------|--|
| - Periodic J                                                            | litter (Pk-Pk<br>Mag | )<br>nitude:  |    | Frequency (Hz): |   | Phase (°):   |  |
| Sine                                                                    | 0.090                | *             | UI | ✓ 2.000000 M    | * | 0.00         |  |
| Sine                                                                    | 0.000                | *             | UI | ✓ 10.000000 M   | * | 0.00         |  |
| Sine                                                                    | 0.000                | *             | UI | ✓ 10.000000 M   | * | 0.00         |  |
| Sine                                                                    | 0.000                | *             | UI | ✓ 10.000000 M   | * | 0.00         |  |
| Random Jitter (RMS)       Frequency-Low (Hz):       Freqency-High (Hz): |                      |               |    |                 |   |              |  |
| ✓ RJ1                                                                   | 0.013                | Ç UI          | *  | 100.000 K       |   | 1.35000000 G |  |
| 🔲 RJ2                                                                   | 0.000                | tu 🗘          | ~  | 100.000 K       |   | 1.35000000 G |  |
|                                                                         |                      |               |    |                 |   |              |  |



### SerialXpress® makes it easy

- Dial in specific amounts of ISI or import S-Parameter TouchStone files with patented ISI scaling capability
- SSC, Pre-emphasis and Noise can also be synthesized

| Base Pattern Transmitter<br>ISI 0.161<br>S-Parameter Filter | Channel/Cable |                                                                   |                                                                                              |
|-------------------------------------------------------------|---------------|-------------------------------------------------------------------|----------------------------------------------------------------------------------------------|
| Read from File: Inverse Filter ISI Scaling:                 | 1.000         | Spread:                                                           | Triangle ♥ Browse<br>Down ♥ Unequal Spread: 0.00 ♥ %<br>0.000 ♥ ppm                          |
|                                                             |               | df/dt<br>Minimum Duration<br>Location:<br>Frequency<br>Deviation: | n: 1.50 🔹 µs df/dt: [1400.000 🔹 ppm/µs<br>50 🔹 %<br>4000.000 🗣 ppm Modulation: 33.000 k 🗘 Hz |



# SSC Modulation Deviation Requirements:

Started simple and rapidly became a dissertation problem

Typical "good" SSC profile acquired from a SATA device





#### SSC Modulation Deviation Requirements: Of what value is a perfect SSC modulation in the area of stress testing?





#### Future test requirements

Parameterized SSC df/dt impairments, along with precision jitter impairments



### Custom SSC







# Built-In Self Test - Loopback Negotiation

| ĮVC į | WG7102 SATA-G2-RSG-Com          | pliance.awg     |          |                      |                        |            |                    | - 7 🛛 |
|-------|---------------------------------|-----------------|----------|----------------------|------------------------|------------|--------------------|-------|
| File  | Edit View Settings Tools        | System Help     |          |                      |                        |            |                    | I     |
| Wav   | Sampling Rate: 18.000 000 GS/s  | Status: Stopped | F        | Run Mode: Sequence   | Force<br>Trigger Event | All Output | s On/Off           | Run   |
|       | WaveformList                    | 🔀 S             | equence  |                      |                        |            |                    | X     |
| 2     | User Defined Predefined         |                 |          | Total Time : ???     |                        | Current :  | 1 Running:         |       |
| 2     | Waveform Name                   | ^               | Index No | Ch 1 Waveform        | Wait                   | Repeat     | Event Jump To Go 1 | 0     |
| -     | -align_32                       |                 | 1        | IDLE-12x             | i                      | 100        |                    | -     |
|       | ≚ -align_32-6x                  |                 | 2        | crst01+-6x           | 1                      |            |                    |       |
|       | crst01+                         |                 | 3        | IDLE-12x             | 1                      | 20         |                    |       |
| th ag | ≚ crst01+-6x                    |                 | 4        | cwke01+#-6x          | 1                      |            |                    |       |
| Jen.  | cwke01+                         |                 | 5        | IDLE-12x             | 1                      | 5          |                    |       |
| 8     | cwke01+#                        |                 | 6        | D10_2_710-6x         | 1                      |            |                    |       |
|       | cwke01+#-6x                     |                 | 1        | -align_32-6x         | 1                      | 8          |                    |       |
|       | D10_2_710                       |                 | 8        | -sync_256_al2-6x     | 1                      | 65536      |                    |       |
|       | D10_2_710-6x                    |                 | 9        | -sync_256_al2-6x     | 1                      | 64         |                    |       |
| \$    | _HF_10o                         |                 | 10       | -r_rdy32-6x          | 1                      |            | BIST-L initiator   |       |
| avef  | -HF_10o-cs                      |                 | 11       | -r_ip32-6x           | 1                      |            | sequence           |       |
| Ĩ     | -HF_10o-cs-6x                   |                 | 12       | -r_ok32-6x           | 1                      |            |                    |       |
|       | _HF_MF_960-                     |                 | 13       | -sync_32-6x          | 1                      | 4          |                    |       |
|       | ≚ -HF-1280-6×                   |                 | 14       | -sync_256_al2-6x     | 1                      |            |                    |       |
|       | -HF-32DWORD-6x                  |                 | 15       | -x_rdy32-6x          | 1                      |            |                    |       |
|       | -HF-MF-1280                     |                 | 16       | -SOF-16x             | 1                      |            |                    |       |
| Set   | -HF-MF-32                       |                 | 17       | -wtr_3230-6x         |                        |            |                    |       |
| tting | idle_710                        |                 | 18       | -sync_326x           | 1                      | 3          |                    |       |
| 8     | TIDLE-12x                       |                 | 19       | -sync_32al6x         | 1                      |            |                    |       |
|       | idle-analog                     |                 | 20       | -HF-32DWORD-6x       |                        | 7          |                    |       |
|       | ≚idle-analog-6x                 |                 | 21       | -HF-1280-6x          |                        | Infinite   |                    |       |
|       | MFTP-Rj-Cal                     |                 | 22       | SFCP-10MHz-0.45_UITJ |                        | Infinite   | 10, 33 and 62MHz   |       |
|       | ∑_r_ip32.6x                     |                 | 23       | SFCP-33MHz-0.45_UITJ |                        | Infinite   | .45UI test vectors |       |
|       | ∑ -r_ok32-6x                    |                 | 24       | SFCP-62MHz-0.45_UITJ | 1                      | Infinite   |                    |       |
|       | ∑-r_rdy32-6x                    |                 | 25       | SFCP-0ERR-Clean      | 1                      | Infinite   | Discussedia dast   |       |
|       | SFCP-0ERR-Clean                 |                 | 26       | SFCP-1ERR-Clean      | 1                      | Infinite   | Diagnostic test    |       |
|       | SFCP-10MHz-0.45_UITJ            |                 | 27       | MFTP-Rj-Cal          | 1                      | Infinite   | vectors            |       |
|       | SFCP-1ERR-Clean                 | × 1             | 28       |                      |                        | •          |                    |       |
|       | <                               | X               | 29       |                      |                        |            |                    | ~     |
|       | Remote Command: SOUR1:VOLT 0.66 | \$5             |          |                      |                        |            |                    |       |



# Frame Error Detection

- Clock skew management between host and device
- Requires Align primitives to not trigger error

| Serial Bus      | Bit Error Detector    | Internal Error<br>Detector | Frame Error<br>Detector |
|-----------------|-----------------------|----------------------------|-------------------------|
| PCI Express 2.0 | X                     |                            |                         |
| PCI Express 3.0 | <b>X</b> <sup>1</sup> |                            |                         |
| SATA Gen 2      |                       |                            | X                       |
| SATA Gen 3      |                       |                            | Х                       |
| DisplayPort     |                       | X                          |                         |
| USB 3.0         |                       | X                          | Х                       |
| HDMI 1.3        |                       |                            |                         |

<sup>1</sup> Estimate

1

10/17/2008



#### Agenda

- High Speed Serial Test Challenges
  - Overview
  - Focus on Receiver Testing
  - Error Rate as an indicator
  - Loopback
- Receiver Tolerance Testing
  - Stress Pattern Library
  - Pattern Generation and Calibration
  - Frame Error Rate Detection (Protocol aware method)
- Compliance Testing
  - Methods of Implementation
  - Toolset
- Summary



#### SATA: Receiver Signaling Group of tests or RSG Testing.

- The Serial ATA Consortium is the first standards body to mandate silicon level support features to facilitate Receiver Testing into it's Gen-2 base specification.
- OEM's such as Dell and HP require integrators list certification to enter their supply chain.
- RSG testing is not optional.
- Tektronix has been at the forefront of the receiver test initiatives, and has consistently been the first to review and first to gain certification of it's test methods or MOI's.





#### Tek RSG Method of Implementation





|         |          |                |             | DUT: [DUT001       | Run Stop        |
|---------|----------|----------------|-------------|--------------------|-----------------|
| elect   | Acquire  | Analyze        | Report      |                    |                 |
|         | Select   | Device         |             | Select Test Suite  | Version         |
| C       | Cable    |                |             | O PHY-TSG-00B      | CATA Con 2      |
| œ       | Drive    |                |             | RSG-RMT            | SATA den 2      |
| C       | Host     |                |             | O Bx-Tx            |                 |
|         |          |                |             |                    | Less            |
|         |          |                |             |                    |                 |
|         |          |                | Drive : I   | RSG-RMT SATA Gen 2 |                 |
| 5 elect | t TestNa | ame            |             |                    | Configure       |
|         | BMT - Be | eceiver Margir | n Tiest     |                    |                 |
|         | RSG-02   | · Gen2 (3.0Gb  | /S) Receive | r Signaling Group  | Show MOI        |
|         |          |                |             |                    |                 |
|         |          |                |             |                    | Show Schematic  |
|         |          |                |             |                    |                 |
|         |          |                |             |                    | Select All      |
|         |          |                |             |                    | Select Required |
|         |          |                |             |                    | Deselect All    |
|         |          |                |             |                    | Tektronix       |
|         | _        |                |             |                    | Taktro          |

The RSG/RMT product is broken into two different capabilities

- 1. RSG tracks the SATA MOI Receiver Signaling Group MOI
  - This configuration injects a SATA UTD 1.3 conformant set of four stressed signals into the device and monitors the error counter for an interval of 20 minutes. It automatically cycles through the four stressed signals (5, 10, 33 and 62 MHz), at the 20 minute points for an elapsed test time of roughly 1.5 Hours.
- 2. RMT Receiver Margin Test.
  - Successively apply a monotonically increasing impaired jitter profile from lower to increasing jitter magnitude and detect the point when the DUT starts to pass framing errors.
  - When Errors are detected, terminate the test at that frequency, and step to the next frequency in the test list.



#### Configuration for Drive : RSG-RMT SATA Gen 2

| Parameter                                     | Value                                |
|-----------------------------------------------|--------------------------------------|
| Real Time Scope                               | DSA72004 ( GPIB0::01::INSTR )        |
| Signal Source                                 | AWG7102 ( GPIB0::04::INSTR )         |
| RF Switch                                     | MODEL SYSTEM 46 ( GPIB0::07::INSTR ) |
| Frame Error Counter                           | CHS SATA-II Probe ( HostPC: USB )    |
| BIST-L Initialization by                      | Auto                                 |
| Set scope scale, resolution and sampling rate | Automatically                        |
| BIST-L validation required                    | First time only                      |
| Horizontal scale (us/div)                     | 10                                   |
| Resolution (ps/pt)                            | 20                                   |
| Verify Frame Error Counter operation          | No                                   |
|                                               | Delen A                              |

#### Configuration for RSG-02 - Gen2 (3.0Gb/S) Receiver Signaling Group

| Acquire Analyze Limits Comments            |                    |  |  |  |  |
|--------------------------------------------|--------------------|--|--|--|--|
| Parameter                                  | Value              |  |  |  |  |
| 5MHz-0.45UI                                | Include            |  |  |  |  |
| 10MHz-0.45UI                               | Include            |  |  |  |  |
| 33MHz-0.45UI                               | Include<br>Include |  |  |  |  |
| 62MHz-0.45UI                               |                    |  |  |  |  |
| Test Duration for each frequency (Seconds) | 900                |  |  |  |  |
|                                            |                    |  |  |  |  |
|                                            |                    |  |  |  |  |
| Compliance Mode Compliance Settings        |                    |  |  |  |  |

C User Defined Mode Restore Apply Close



10/17/2008

| elect Acquire Analyze Report                     |                                             |                                        |                                |                                         |                |
|--------------------------------------------------|---------------------------------------------|----------------------------------------|--------------------------------|-----------------------------------------|----------------|
|                                                  | Drive : F                                   | ISG-RMT SATA Gen 1                     |                                |                                         | View ScoreCard |
| Tektronix                                        |                                             |                                        |                                |                                         | <u>^</u>       |
| Enabling Innovation                              |                                             |                                        |                                |                                         |                |
|                                                  |                                             | RSG/RMT Test Report                    |                                |                                         |                |
| UUT ID:DUT001                                    | Device Type:                                | Drive                                  |                                | Version: SATA                           | en 1           |
| Date/Time:7/26/2007 13:23                        | Overall Execution Time                      | ::2Min                                 | UUT Con                        | npliant for RSG Test : <mark>Ilo</mark> |                |
|                                                  |                                             |                                        |                                | Overall Test Result : <mark>PASS</mark> |                |
|                                                  | Test Details                                |                                        |                                |                                         |                |
| Test Name                                        | Frame Error<br>Freq (MHz) Jitter (UI) Count | Frame Error<br>Rate Test Limit         | Compliance<br>Test result Mode | Test Execution<br>Time                  | Comment        |
| RSG-01 - Gen1 (1.5Gb/S) Receiver Signaling Group | 10 0.45 0<br>33 0.45 0                      | 0 0.00E+00 0 LE 0<br>0 0.00E+00 0 LE 0 | Pass No                        | 2Min                                    |                |
| ×                                                | 62 0.45 0                                   | 0 0.00E+00 0 LE 0                      |                                |                                         |                |
|                                                  |                                             |                                        |                                |                                         |                |
|                                                  |                                             |                                        |                                |                                         |                |
|                                                  |                                             |                                        |                                |                                         | ~              |



#### The RSG/RMT product is broken into two different capabilities

- 1. RSG tracks the SATA MOI Receiver Signaling Group MOI
  - This configuration injects a SATA UTD 1.3 conformant set of four stressed signals into the device and monitors the error counter for an interval of 20 minutes. It automatically cycles through the four stressed signals (5, 10, 33 and 62 MHz), at the 20 minute points for an elapsed test time of roughly 1.5 Hours.

#### 2. RMT Receiver Margin Test.

- Successively apply a monotonically increasing impaired jitter profile from lower to increasing jitter magnitude and detect the point when the DUT starts to pass framing errors.
- When Errors are detected, terminate the test at that frequency, and step to the next frequency in the test list.



#### Configuration for Drive : RSG-RMT SATA Gen 2

| Parameter                                     | Value                                |  |
|-----------------------------------------------|--------------------------------------|--|
| Real Time Scope                               | DSA72004 ( GPIB0::01::INSTR )        |  |
| Signal Source                                 | AWG7102 ( GPIB0::04::INSTR )         |  |
| RF Switch                                     | MODEL SYSTEM 46 ( GPIB0::07::INSTR ) |  |
| Frame Error Counter                           | CHS SATA-II Probe ( HostPC: USB )    |  |
| BIST-L Initialization by                      | Auto                                 |  |
| Set scope scale, resolution and sampling rate | Automatically                        |  |
| BIST-L validation required                    | First time only                      |  |
| Horizontal scale (us/div)                     | 10                                   |  |
| Resolution (ps/pt)                            | 20                                   |  |
| Verify Frame Error Counter operation          | No                                   |  |
|                                               | Delau à                              |  |

#### **Configuration for RMT - Receiver Margin Test**

| Acquire Analyze Limits Comments  |       |
|----------------------------------|-------|
| Parameter                        | Value |
| Start Frequency (MHz)            | 1     |
| End Frequency (MHz)              | 100   |
| Incremental Step Frequency (MHz) | 1     |
| Start UI Jitter (UI)             | 0.1   |
| End UI Jitter (UI)               | 1.9   |
| Incremental Step Jitter (UI)     | 0.01  |

🧧 Compliance Mode

**Compliance Settings** 

💿 User Defined Mode

Restore





Close

Apply

### **Receiver Margin Testing Jitter Tolerance Curve**



10/17/2008



#### Agenda

- High Speed Serial Test Challenges
  - Overview
  - Focus on Receiver Testing
  - Error Rate as an indicator
  - Loopback
- Receiver Tolerance Testing
  - Stress Pattern Library
  - Pattern Generation and Calibration
  - Frame Error Rate Detection (Protocol aware method)
- Compliance Testing
  - MOIs, CTS,
  - Toolset
- Summary



### High Speed Serial Test Challenges







### Summary

- AWG7000B is a one box solution for high performance complex jitter generation
- SerialXpress® advanced jitter generation software is a powerful, easy to use to synthesize high speed serial patterns for Rx testing
- TekExpress® RSG/RMT provides a comprehensive automation system to greatly simply the receiver test's required by the SATA –IO.
  - Automatic Frame Error detector and instrument interaction.
  - AWG Digital setups fully encapsulate the Jitter profile with no external SSC, ISI, SJ generators.
- Provisions to share and propagate setups electronically is a revolutionary step forward in the receiver test industry.

