

数据中心的最新高速工业总线测试及SI仿真技术 Yu Ocean 2014.4

High-Speed Serial Test Trends and Implications

Industry/Technology Trends

- 100 GbE is becoming more relevant as data centers and communications networks ask for more bandwidth
- SAS 12G is needed by data centers for efficient transport of internet traffic (YouTube, Facebook, Smart Phone, etc)
- High-Speed FPGA's are increasing in complexity to support early designs above 28Gb/sec
- Proliferation of 10+ Gb/sec signaling in the communications network

Implications

- Closed data eyes requiring new techniques for transmitter and receiver equalization
- Higher data rate signals have less margin requires de-embedding
- Edge/Slew rate speeds are difficult to characterize
- New Jitter Separation Measurements are required
- Complex 8b/10b signaling difficult to verify in PHY

PCIe Gen3 Tx

Testing Challenges with PCI Express 3.0

Logic Protocol Analyzer

Oscilloscope Tx BERTScope Rx

PCIe Base vs CEM Testing

- What test point each type of testing addresses?
- How do we get to see the signal at the point of interest?

Tektronix[®]

System (Base Spec) Tx Testing

- Base Specification Measurements are defined at the pins of the transmitter
- Signal access at the pins is often not possible
- De-embedding is required to see what the signal looks like at the pins of the TX, without the added effects of the channel
- S-Parameters are acquired on the replica channel

Add-In Card (CEM Spec) Tx Testing

- CEM Specification Measurements are defined at the slicer of a receiver
- Signal access is not possible
- Embedding of the compliance channel and package, as well as application of the behavioral equalizer is required
- SigTest or custom software like DPOJET will perform the embedding and calculate measurements

Compliance Patterns

 Once in compliance mode, bursts of 100MHz clock can used to cycle through various settings of compliance patterns to perform, Jitter, voltage, timing measurements.

Data Rate	Preshoot	De-emphasis
2.5 GT/s,		-3.5 dB
5.0 GT/s,		-3.5 dB
5.0 GT/s,		-6.0 dB
8.0 GT/s,	P0 = 0.0	-6.0±1.5dB
8.0 GT/s,	P1 = 0.0	-3.5±1.5dB
8.0 GT/s,	P2 = 0.0	-4.4±1.5dB
8.0 GT/s,	P3 = 0.0	-2.5±1dB
8.0 GT/s,	P4 = 0.0	0.0dB
8.0 GT/s,	P5 = 1.9±1dB	0.0dB
8.0 GT/s,	P6 = 1.9±1dB	0.0dB
8.0 GT/s,	P7 = 1.9±1dB	-6.0±1.5dB
8.0 GT/s,	P8 = 1.9±1dB	-3.5±1dB
8.0 GT/s,	P9 = 1.9±1dB	0.0dB
8.0 GT/s,	P10 = 1.9±1dB	Test Max Boost Limit

Testing Challenges in Tx

- Meet the requirements for effective testing
 - \checkmark Compliance mode support, proper patterns and toggling mechanism
 - Correct Tx equalization settings and preset and Lane ID encoding in Tx compliance pattern
- Why so many presets? How to capture so many lanes?
 - \checkmark The answer is test automation, RF switch
- Measurement algorithms
 - ✓ Implemented in SigTest, or scope specific software
- How to achieve required confidence level and beyond?
 - \checkmark Length and number of waveforms (for Tx)

Introducing the NEW Opt PCE3

- TekExpress Automation for Tx Compliance with unique features including: <u>TekExpress PCI Express - (Untitled)</u>
 - Sets up the Scope and DUT for testing
 - Toggles thru and verifies the different Presets and Bit Rates
 - ✓ Tests multiple slots and lanes
 - \checkmark Acquires the data
 - Processed with PCI-SIG SigTest
 - ✓ Provides reporting

What's New in Option PCE3 Release 2?

- Supports a faster, Python-based sequencer
 - Much faster program launch with the test time reduced by ~50%
 - 64-bit only application (requires 70K C/D oscilloscopes with Win7 64-bit)
 - Will maintain earlier 32-bit release for 70K A/B oscilloscopes with WinXP 32-bit on www.tek.com
 - Smaller installer
- SigTest.exe (Command-Line) integration
 - Supports PCI-SIG recommended SigTest.exe testing
 - User can switch between DLL and Command-Line (.exe) modes
 - All result are populated in Tektronix result/report format in command line mode
- Support multiple versions of SigTest
 - User option to select required version and run
 - Broader AWG/AFG support for automatic DUT toggle (Min 2ch & 100MHz Burst mode)
 - AFG3252/C
 - AWG5002B/C, AWG5012B/C, AWG5014B/C
 - AWG7082B/C, AWG7122B/C
 - AWG70001A/2A

Automated DUT Control

AFG or AWG

System Board / Mother Board with Multiple Slots

System Test Fixtures

- Compliance Load Board (CLB)
 - Used for testing System Boards
 - All Tx / Rx Lanes and Ref Clk routed to SMP
 - Compliance Mode Toggle Switch
 - Various types of Edge Connectors to support different types of Slots on System Boards
 - Separate CLB's for Gen1/2/3

Compliance Load Board (CLB)

Add-In Card Test Fixture

- Compliance Base Board (CBB)
 - Used for Testing Add-In cards
 - All Tx / Rx Lanes are routed to SMP
 - Compliance Mode Toggle Switch
 - Low Jitter Clean Reference Clock
 - Separate CBB for Gen 1/2/3

Compliance Base Board (CBB)

TekExpress Automation for Tx Compliance - Setup

K TekExpress PCI Express -	(Untitled)* Options	8
Setup Status	DUT ID DUT001 Image: State of the s	Run Analysis on Live or Pre-Recorded Data
Results Acquisitions	Version Specification Device Type Gen3 - 3.0 V CEM V Add-In-Card V	Type of test / device selection
Reports 5 Preferences	Device Profile Data Rates Transmitter Equalization Link Analysis	Test selection
	✓ 2.5 Gb/s ✓ 3.5 dB ✓ 6 dB ✓ 8 Gb/s Presets Selected Presets for Signal Quality P0.P01.P02.P03.P04.P05.P05.P05.P09.P10. (For the Preset Tests go to "Test Selection") Voltage Swing SSC Cross Talk ● Full Swing On ● Cross Talk (Interleaved) ● Reduced Swing ● Off Non CrossTalk (Non Interleaved)	
	Link Width 16 Lanes Lanes Selected Test Lanes L0,L03,L07,L11,L15 Automated DUT Control Setup Signal Validation Prompt me if Signal Check Fails Perform Pattern Decoding	Automate DUT control
Status Ready		

TekExpress Automation for Tx Compliance – Test

TekExpress Automation for Tx Compliance – Reports

Overa	Preferences 💽						
Signa	al Test Preset Test						
D	escription	Details	Generation	Pass/Fail	Value	Margin	
• 🗆	Lane0			Pass			\mathbf{r}
	Unit Interval	Mean Unit Interval	8Gbps P07	🦁 Pass	125.0090 ps	L: 0.0465 ps H: 0.0235 ps	
	High Limit			🔮 Pass	125.0325		
	Low Limit			🔮 Pass	124.9625		
	🛨 Mask Hits(All Bits)	Mask Hits	8Gbps P07	Pass	0.0000 hits	H: 0.0000 hits	Ξ
	 Composit Eye Height 	Composit Eye Height	8Gbps P07	Pass	105.7689 mV	L: 71.7689 mV	
	 Transition Eye Diagram 	Min Transition Eye Height	8Gbps P07	Informative	107.2269 mV	N.A	
	 Transition Eye Diagram 	Min Transition Voltage	8Gbps P07	Pass	-0.1264 mV	L: 599.8736 mV	
	 Transition Eye Diagram 	Max Transition	8Gbps P07	Pass	0.1289 mV	H: 599.8711 mV	
	 Transition Eye Diagram 	Min Transition Top Margin	8Gbps P07	Pass	0.0259 mV	L: 0.0259 mV	
	 Transition Eye Diagram 	Min Transition Bottom Margin	8Gbps P07	Pass	-0.0314 mV	H: 0.0314 mV	
	 Transition Eye Diagram 	Transition Eye Mask Hits	8Gbps P07	Pass	0.0000 hits	H: 0.0000 hits	
	Non Transition Eye	Min Non Transition Eye Height	8Gbps P07	Informative	112.3181 mV	N.A	
	Non Transition Eye	Min Non Transition	8Gbps P07	Pass	-0.1274 mV	L: 599.8726 mV	

PCIe Decoder (Opt SR-PCIe)

- Decodes and displays PCIe data using characters and names that are familiar from the standard, such as:
 - SKP
 - Electrical Idle
 - EIEOS
- Easily configured through "Bus Setup" under "Vertical" menu with a variety of user-adjustable settings
- Results table shows time-correlated listing of events time-correlated with waveform view
- Integrated search with marks
- Triggering up to 6.25Gbs (Gen1 & Gen2 only)

PCIe Decoder (Opt SR-PCIe) Decoding of PCIe Gen3 compliance pattern Tx preset encoding

Decode results show correct value of "87h" or "1000b" (as shown in Results Table) for Transmitter Preset **P8** (-3.5dB de-emphasis with +3.5dB preshoot) on Lane 0

le <u>E</u> dit	vertical	H <u>o</u> riz/A	cq <u>I</u> ng <u>L</u>	lisplay	<u>C</u> ursors Me	a <u>s</u> ure Mas <u>k</u>	<u>M</u> ath MyScope	<u>Analyze</u> <u>U</u> tilities	Help V		DP	073304D	Tek	_ ۱
	and a sum because it	l					and some states of the		l I. I. I	ALCON DESIGN ACCORDANCES	la de la composición			
													-	
	· · · ·				Juniority	hanaa	the states of th			a service a				
1 Castrantil		and the second states		والمحارثة والمحارثة	~	1121120120	THE REAL PROPERTY OF	งกิจจองการการการ	MMMMM	1	hhh.	ماديادرا.»ري- _{او} المريع	ШAL,	Madalahan
						nnnn		in a provide second		1 Contraction of the second se	V V V		WY W	
- · ·														
	A				MARINA IN									
	warmen 1 Sund	***	and the second	althing a surger	~(hare octoper to prove a constant	handerhelsery	. Hynner an ar		and the state of t	NΝ	& verserer
BIE	h/FFb/00b	006/004	006/006/0	06/006/0	06//556/556	556 556 556	556 556 876 006				THEOPOON		876 0	оьУооьУс
و التقريب			YoonYoonYo											
!														
C1	44.2mV/d	iv	50Ω ^Β ώ:	12.5G	Z1C2 4	4.2mV 4.0ns	-3.24ns 36.8n	s 🛛 🔼 💽	📄 Width		20.0µs/	div 50.00	SS/s	20.0
C1 C2	44.2mV/d 44.2mV/d	iv iv	50Ω ^B ώ: 50Ω ^B ώ:	12.5G 12.5G	Z1C2 4 Z1M1 8	4.2mV 4.0ns 8.4mV 4.0ns	-3.24ns 36.8ns	s A' Ct	📄 Width		20.0µs/ Preview	/div 50.00	S/s Single	20.0) Seq
C1 C2 M1	44.2mV/d 44.2mV/d 88.4mV 2	iv iv 20.0µs	50Ω ^B _W : 50Ω ^B _W :	12.5G 12.5G	(Z1C2) 4 (Z1M1) 8	4.2mV 4.0ns 8.4mV 4.0ns	-3.24ns 36.8ns -3.24ns 36.8ns	s A' Ca	D Width		20.0µs/ Previev 0 acqs	/div 50.00	S/s Single	20.0) Seq RL:10.
C1 C2 M1 Z1C1	44.2mV/d 44.2mV/d 88.4mV 2 44.2mV 4	iv iv 20.0µs 1.0ns	50Ω ^B W: 50Ω ^B W: -3.24ns 36	12.5G 12.5G 5.8ns	<mark>21C2</mark> 4 21M1 8	4.2mV 4.0ns 8.4mV 4.0ns	-3.24ns 36.8n: -3.24ns 36.8n:	s s	D Width		20.0µs/ Preview 0 acqs Man	/div 50.00 w S	S/s Single : or 11, 2	20.0) Seq RL:10. 2013 10
C1 C2 M1 Z1C1 sults Tab	44.2mV/d 44.2mV/d 88.4mV 2 44.2mV 4	iv iv 20.0µs 4.0ns	50Ω ^B W: 50Ω ^B W: -3.24ns 36	12.5G 12.5G 5.8ns	21C2 4 21M1 8	4.2mV 4.0ns 8.4mV 4.0ns	-3.24ns 36.8ns -3.24ns 36.8ns	s A' C	- Width		20.0µs, Previev 0 acqs Man	/div 50.00	S/s bingle : br 11, 2	20.0) Seq RL:10. 2013 10
C1 C2 M1 Z1C1 sults Tab	44.2mV/d 44.2mV/d 88.4mV 2 44.2mV 4 ble Marks	iv iv 20.0µs 4.0ns	50Ω ଔγ: 50Ω ଔγ: -3.24ns 3€	12.5G 12.5G 5.8ns	21C2 4 21M1 8	4.2mV 4.0ns 8.4mV 4.0ns	-3.24ns 36.8ns -3.24ns 36.8ns	s s	Nidth 📄		20.0µs/ Preview 0 acqs Man	/div 50.00	SS/s Single S	20.0) Seq RL:10. 013 10
C1 C2 M1 Z1C1 Sults Tab	44.2mV/d 44.2mV/d 88.4mV 2 44.2mV 4 ble Marks lex Sta	iv iv 20.0µs 4.0ns	50Ω Β _W 50Ω Β _W -3.24ns 30	12.5G 12.5G 5.8ns	ZIC2 4 ZINI 8 Type	4.2mV 4.0ns 8.4mV 4.0ns Symbol	-3.24ns 36.8ns -3.24ns 36.8ns	S A' Cr	Data (hex)	Data (binary)	20.0µs/ Preview 0 acqs Man Descram	/div 50.00 w S Decembe	SS/s Bingle S er 11, 2	20.0) Seq RL:10. 013 10 Dock
C1 C2 M1 Z1C1 Sults Tab 31 Ind 10, 10,	44.2mV/d 44.2mV/d 88.4mV 2 44.2mV 4 ble Marks lex Sta 4009 10 4010 11	iv iv 20.0µs 4.0ns rt Time 	50Ω B _W : 50Ω B _W : -3.24ns 36	12.5G 12.5G 5.8ns	Z1C2 4 Z1M1 8 Z1M1 8 Type Control Control	4.2mV 4.0ns 8.4mV 4.0ns Symbol 1010 1010 1010 1010	-3.24ns 36.8ns -3.24ns 36.8ns Character Symbol	S A' Cr	Data (hex) 55h 55h	Data (binary) 01010101b 01010101b	20.0µs/ Previev 0 acqs Man Descram	/div 50.00 w S Decembe	S/s Single S er 11, 2	20.0 Seq RL:10. 0013 10 Dock
C1 C2 M1 Z1C1 Z1C1 Sults Tab 31 Ind 10 10 10	44.2mV/d 44.2mV/d 88.4mV 2 44.2mV 4 44.2mV 4 ble Marks lex Stat 4009 10 4010 11 4011 12	iv iv 20.0µs 4.0ns rt Time . 26n . 26n . 26n	50Ω B _W : 50Ω B _W : -3.24ns 3€	12.5G 12.5G 5.8ns Rate	Z1C2 4 Z1M1 8 Z1M1 8 Control Control Control	4.2mV 4.0ns 8.4mV 4.0ns 5ymbol 1010 1010 1010 1010 1010 1010	-3.24ns 36.8ns -3.24ns 36.8ns Character Symbol	S A' Co	Data (hex) 55h 55h 55h	Data (binary) 01010101b 01010101b 01010101b	20.0µs/ Previev 0 acqs Man Descram	(div 50.00 w S Decembe	S/s Single S or 11, 2	20.0p
C1 C2 M1 Z1C1 Sults Tab 31 10 10 10 10 10	44.2mV/d 44.2mV/d 88.4mV 2 44.2mV 4 60e Marks 102 4009 10 4010 11 4011 12 4012 13	iv iv 20.0µs 4.0ns .26n .26n .26n .26n .26n	50Ω B _W : 50Ω B _W : -3.24ns 3€	12.5G 12.5G 5.8ns Rate	Z1C2 4 ZIM1 8 ZIM1 8 Control Control Control Control	4.2mV 4.0ns 8.4mV 4.0ns 5ymbol 1010 1010 1010 1010 1010 1010 1010 1010	-3.24ns 36.8ns -3.24ns 36.8ns Character Symbol	Character KCode	Width Data (hex) 55h 55h 55h 55h	Data (binary) 01010101b 01010101b 01010101b 01010101b	20.0µs, Previev 0 acqs Man Descram	ldiv 50.00 v S Decembe	S/s Single 3 Sr 11, 2	20.0) Seq RL:10. 013 10 Dock
C1 C2 M1 Z1C1 Sults Tab 31 10 100 100 100 100	44.2mV/d 44.2mV/d 88.4mV 2 44.2mV 4 44.2mV 4 ble Marks lex Stat 4009 10 4010 11 4011 12 4012 13 4013 14	iv iv 20.0µs 4.0ns t Time 2.26n 26n 26n 26n 26n	50Ω B _W : 50Ω B _W : -3.24ns 3€	12.5G 12.5G 5.8ns Rate	ZIC2 4 ZINI 8 Type Control Control Control Control	4.2mV 4.0ns 8.4mV 4.0ns 5ymbol 1010 1010 1010 1010 1010 1010 1010 1010 1010 1010	-3.24ns 36.8ns -3.24ns 36.8ns Character Symbol	Character KCode	Width Data (hex) 55h 55h 55h 55h 55h 55h 55h 55h 55h	Data (binary) 01010101b 01010101b 01010101b 01010101b 01010101	20.0µs/ Preview 0 acqs Man Descram	ldiv 50.00 v S Decembe	S/s Bingle : Pr 11, 2	20.0) Seq RL:10. 013 10 Dock
C1 C2 M1 Z1C1 Sults Tab 31 10 100 100 100 100 100 100 100 100 1	44.2mV/d 44.2mV/d 88.4mV 2 44.2mV 4 44.2mV 4 ble Marks lex Stat 4009 10 4010 11 4011 12 4012 13 4013 14 4013 15	iv iv 20.0µs 4.0ns t Time . 26n . 26n . 26n . 26n . 26n . 26n . 26n . 27n	50Ω B _W : 50Ω B _W : -3.24ns 3€	12.5G 12.5G 5.8ns Rate	ZIC2 4 ZINI 8 ZINI 8 Control Control Control Control Control	4.2mV 4.0ns 8.4mV 4.0ns 5.000 1010 1010 1010 1010 1010 1010 1010 1010 1010 1010 1010 1010 1010 1010	-3.24ns 36.8ns -3.24ns 36.8ns Character Symbol	Character KCode	Width Data (hex) 55h 55h 55h 55h 55h 55h 87h	Data (binary) 01010101b 01010101b 01010101b 01010101b 01010101	20.0µs/ Preview 0 acqs Man Descram 	ldiv 50.00 v S Decembe	S/s Single S or 11, 2	20.0p Seq RL:10. 013 10 Optic
C1 C2 M1 Z1C1 sults Tab B1 Ind 100 100 100 100 100 100 100 10	44.2mV/d 44.2mV/d 88.4mV 2 44.2mV 4 44.2mV 4 ble Marks ble Marks 10 4009 10 4010 11 4011 12 4012 13 4013 14 4013 14	iv iv 20.0µs 4.0ns • .26n • .26n • .26n • .26n • .26n • .26n • .26n • .26n • .26n	50Ω Β _W . 50Ω Β _W . -3.24ns 3€	12.5G 12.5G 5.8ns Rate	ZIC2 4 ZIMI 8 ZIMI 8 Control Control Control Control Control Control	4.2mV 4.0ns 8.4mV 4.0ns 5ymbol 1010 1010 1010 1010 1010 1010 1010 1010 1010 1010 1010 1010 1010 1010	-3.24ns 36.8ns -3.24ns 36.8ns	S A' Cr	Width Data (hex) 55h 55h 55h 55h 55h 55h 55h 87h	Data (binary) 01010101b 01010101b 01010101b 01010101b 01010101	20.0µs, Preview 0 acqs Man Descram 	div 50.00 v S Decembe	S/s Single : er 11, 2	20.0) Seq RL:10. 013 10 Dock
C1 C2 M1 Z1C1 21C1 31 10 100 100 100 100 100 100 100 100	44.2mV/d 44.2mV/d 88.4mV 2 44.2mV 4 44.2mV 4 44.2mV 4 ble Marks lex Stat 4009 10 4010 11 4011 12 4012 13 4013 14 4014 15	iv iv 20.0µs 4.0ns .26n .26n .26n .26n .26n .26n .26n .26n	50Ω ^B / _W : 50Ω ^B / _W : -3.24ns 36	12.5G 12.5G 5.8ns Rate	ZIC2 4 ZINT 8 ZINT 8 Type Control Control Control Control Control Control	4.2mV 4.0ns 8.4mV 4.0ns 1010 1010 1010 1010 1010 1010 1010 1010 1010 1010 1010 1010 1010 0001	-3.24ns 36.8ns -3.24ns 36.8ns	Character KCode	Width Data (hex) 55h 55h 55h 55h 55h 55h 95h 90h	Data (binary) 01010101b 01010101b 01010101b 01010101b 10000111b	20.0µs/ Preview 0 acqs Man Descram	div 50.00 v S Decembe	S/s Single S or 11, 2	20.0p Seq RL:10. 013 10 Dock Optic Exp Cc Set
C1 C2 M1 Z1C1 Ssults Tab Ssults Tab State C1 C2 M1 Z1C1 C1 C2 M1 Z1C1 C1 C2 M1 Z1C1 C2 Ssults Tab C1 C2 M1 Z1C1 C2 Ssults Tab C1 C2 C2 M1 Z1C1 C2 Ssults Tab C2 C2 M1 Z1C1 C2 Ssults Tab C2 C2 Ssults Tab C2 C2 Ssults Tab C2 C2 Ssults Tab C2 C2 Ssults Tab C2 C2 Ssults Tab C2 C2 Ssults Tab C2 C2 Ssults Tab C2 C2 Ssults Tab C2 C2 Ssults Tab C2 C2 C2 Ssults Tab C2 C2 C2 Ssults Tab C2 C2 Ssults Tab C2 C2 Ssults Tab C2 C2 Ssults Tab C2 C2 Ssults Tab C2 C2 C2 Ssults Tab C2 C2 C2 C2 C2 C2 C2 C2 C2 C2	44.2mV/d 44.2mV/d 88.4mV 2 44.2mV 4 44.2mV 4 ble Marks 44.2mV 4 ble Marks 4009 10 4010 11 4011 12 4012 13 4013 14 4014 15	iv iv 20.0µs 1.0ns t Time . 26n . 26n . 26n . 26n . 27n	50Ω ^B _W : 50Ω ^B _W : -3.24ns 3€	12.5G 12.5G 5.8ns Rate	ZIC2 4 ZIMI 8 ZIMI 8 ZIMI 8 Control Control Control Control Control Control	4.2mV 4.0ns 8.4mV 4.0ns 8.4mV 4.0ns 1010 1010 1010 1010 1010 1010 1010 1010 1010 1010 1010 1010 1010 1010 1010 0001	-3.24ns 36.8ns -3.24ns 36.8ns Character Symbol	S A' Cr	Width Data (hex) 55h 55h 55h 55h 55h 55h 60h	Data (binary) 01010101b 01010101b 01010101b 01010101b 01010101b 01010101b 01010111b 00000000bb	20.0µs, Preview 0 acqs Man Descram 	div 50.00 v S Decembe	SS/s ingle : r 11, 2 - - - - - - - - - - - - -	20.0p Seq RL:10. 013 10 Dock Ex Co Sett
C1 C2 M1 Z1C1 esults Tab B1 Ind 100 100 100 100 100 100 100 100 100 10	44.2mV/d 44.2mV/d 88.4mV 2 44.2mV 4 44.2mV 4 ble Marks ble Marks 102 4010 11 4011 12 4012 13 4013 14 4013 14 4015 16	iv iv 20.0µs 4.0ns • 10ns • 26n • 26n • 26n • 26n • 26n • 26n • 27n	50Ω Β _W : 50Ω Β _W : -3.24ns 3€	12.5G 12.5G 5.8ns Rate	ZIC2 4 ZIMI 8 ZIMI 8 Control Control Control Control Control Control Control	4.2mV 4.0ns 8.4mV 4.0ns 1010 1010 1010 1010 1010 1010 1010 1010 1010 1010 1010 1010 1010 0001	-3.24ns 36.8ns -3.24ns 36.8ns	S A' Cr	Width Data (hex) 55h 55h 55h 55h 55h 55h 60h	Data (binary) 01010101b 01010101b 01010101b 01010101b 01010101b 0101011b 00000111b	20.0µs/ Preview 0 acqs Man Descram 	Idiv 50.00 V S December bled (hex)	SS/s ingle : ar 11, 2	20.0) Seq RL:10. 013 10 Dock Ex Optic

ektronix[®]

Reference: PCI Express Base Spec, Rev 3.0 (10-NOV-2010), Section 4.2.3.2 Encoding of Presets, p.225.

PCI Express Tx Test with RF Switch

Cable and RF Switch De-embed

File	Edit	Vertical	H <u>o</u> riz/Acq	Ing	<u>D</u> isplay	<u>C</u> ursors	Mea <u>s</u> ure	Mas <u>k</u>	Math MySe	cope <u>A</u> na	lyze <u>U</u> ti	lities <u>H</u> elp				Tek	E
			TekExp	oress P	CIExp	oress -	(PCIE_DU	IT)*						Options		× 100	
MI			Setup Status Results		IUT est Seli Icquisiti	ection ions	DUTID C Acquir SigTest M Version Gen3 - 3	OUTOO1 e live wa lode Us	veforms er Defined	QUse	ore-record	ded wavefor Device T System	Slot Number m files ype -Board	01	Start O Pome	>	
		40.0 40.0 100+	Reports	4 c 5 P	onfigur	nces	Device F Data Rate 2.5 Gb 5 Gb/s 8 Gb/s Voltage S		nk Analy: 2.5 Gb/ 5 Gb/s	sis	De-I	Embed					X /pt 11:22
	Jitte Sele Confi Rest	ect gur ults		Status F	leady	U.S.	Full Selected Link Widt Selected L0,L03,L	m S S Tie D	8 Gb/s		V De-f	Embed C bed Tx_Test_Em Test Equaliz	able_de-en bedD1_SigTi ation	nbed.fit SigTest est_50G-s4p Optimize	Cancel	Browse	
	Rep	orts	standard	_	_	_				-		-					

Comparison of De-embedding: System

System Board (P7)	With de-embed	Without de- embed	Diff
SigTest Measurement	Switch & extra cable effects removed	Switch and cable effects present	
Max Peak to Peak Jitter	42.614ps	41.619ps	2.39%
Minimum eye width	81.566ps	82.443ps	-1.06%
Deterministic Jitter d-d	31.261ps	31.653ps	-1.24%
Random Jitter	0.865ps	0.775ps	11.61%
Composit Eye height	0.132V	0.129V	2.33%
Min Transition Eye Height	0.165V	0.152V	8.55%
Min Non-transition Eye Height	0.141V	0.134V	5.22%

Testing Beyond Compliance

- What happens if a measurement fails Compliance ?
- Could it be the channel?
 - Measurements can be taken before the channel to evaluate results
 - Different channel models can be created using SDLA Visualizer
- How does the optimized RX setting compare to other settings?
 - Easily compare the results of multiple Equalization settings
- Does deeper analysis of the waveform need to be done?
 - PCIe specific measurements can be taken in Tektronix' measurement system DPOJET
 - Determine if data dependent, uncorrelated or pulse width jitter is in spec
 - Measurements filters and settings can be adjusted to get to root cause, but remember you must pass SigTest to be certified for compliance
- Is the TX compliant?
 - NEW PCIe 3.0 base spec measurements are available to verify Tx compliance

PCIe Gen3 Rx Solution

Essentials of Rx Testing

- PCIe 3.0 introduced formal Rx testing
- Based on stress testing of the DUT in loopback
 - Looped back data must be the same as stressed data
- DUT must support loopback initialization and **training**
- Impairments in stress must be controlled and repeatable
- DUT must receive stressed signals without errors (errors below specified ratio 10⁻¹²)

Basic Receiver Testing

At the simplest level, receiver testing is composed of:

- 1. Send impaired signal to the receiver under test
- 2. The receiver decides whether the incoming bits are a one or a zero
- 3. The chip loops back the bit stream to the transmitter
- 4. The transmitter sends out exactly the bits it received
- 5. An error counter compares the bits to the expected signal and looks for mistakes (errors)

Stress Composition

Components of a PCIe3 Receiver Test Solution

- BERTScope C Model
 - PG, stressed eye sources, ED
- New! DPP125C Option ECM
 - Eye opener, Clock doubler/Multiplier
- New! BSAITS125
 - CM/DM interference
 - ISI for Gen2 & Gen3
 - Option EXP for variable ISI
- New! CR125A Opt PCIE8G
 - PLL analysis for Gen1/2/3
- New! BSAPCI3 SW
 - Auto calibration, Link training, and test
- Cables, adapters, compliance boards
- DSA/DPO/MSO70K Series Oscilloscope
 - Stressed Eye Calibration

DPP125C with Option ECM

- Integrated reference clock multiplication to PCIe compliant 2.5 GHz, 5 GHz, and 8 GHz.
- Integrated eye opener functionality for testing DUTs with long channels.
- New microcontroller to provide more processing power.
- RS-232 interface enhancement to speed-up PCIe receiver equalization link training.
- SW to accommodate channel de-embedding and ISI fine adjustments.

BSAITS125 Interference Test Set

- Programmable, variable ISI for automated testing and precision setting
- Built-in compliant PCIe2 and PCIe3 Medium and Long ISI channels
- Integrated PCIe3 CM and DM interference combiner
- Integrated PCIe3 Base Spec CM interference calibration
- Continuously Variable, Expanded ISI for automated testing of multiple standards with Option EXP

BSAPCI3 PCIe 3.0 Automation SW

- Automated calibration, link training, loopback initiation, and testing.
- BER Map feature for TxEQ optimization.
- Reduces the time and minimizes the skill-set required to perform the calibration and testing.
- Increases the reliability and accuracy by removing inconsistencies with manual calibration.

Automated Link Equalization

 Loopback results: automation software provides complete equalization request log

12	Initiate L					
	Reg# Preset	Pre-cursor	Cursor	Post-cursor	Valid	P
- Pauline	128	0x6	0x2E	0xB	x	Ľ
and the second s	129	0x6	0x2D	0xC	x	L
100	130	0x6	0x2C	0xD	×	1
	131	0x6	0x28	0xE	x	1
	132	0x6	0x2A	0xf [#]	x	L
a state of the sta	133	0x7	0x38	0x0	x	1
	134	0x7	0x37	0x1	x	l
	135	0x7	0x36	0x2	x	L
	136	0x7	0x35	0x3	x	1
	137	0x7	0x34	0x4	x	ŀ
	138	0x7	0x33	0x5	x	ľ
	1		<	Back	Next > Cancel	-

 DUT 1 makes many equalization setting requests

 DUT 2 requests only one equalization preset

Automatic Calibration

- Due to complex test setup and variations in DUTs and test equipment just dialing up the settings on the signal source is not sufficient
- Stress must be measured and adjusted
- Automatic calibration is used to achieve the right amount of stress
- Margin testing complements the compliance testing
 - Help understand your device's margins.
 - How much additional stress does it tolerate?

Stressed Eye Calibration Setup

• Three required calibrations are fully automated

Detailed cabling diagrams are provided for each calib

···· **tektronix**·

A Tektronix Company

Add-In Card: Receiver Stressed Eye Testing

Tektronix

A Tektronix Company
Rx Testing Summary

- Certainly the most complex type of testing
 - Due to complexity of equipment and procedures
- Extensive correlation studies in PCI-SIG have helped to streamline solutions
 - Similar stress signals
 - Guided calibration and test execution
 - Good correlation on the latest workshop
- Link Equalization detail and BER test matrix go beyond compliance testing and give visibility into DUT behavior and margins
- Successful Rx compliance and margin test gives you the confidence that the device passes when you get to the workshop

Beyond Compliance: BERTScope Analysis Tools

- Besides being a BERT, the BERTScope's "Scope" functionality brings benefits that complement those of the Tektronix scopes
- Analysis tools are full featured and easy to use

KEITHLEY A Tektronix Company

- Frees up the scope for other tasks
- Eye diagram for quick diagnosis of synchronization and BER failure issues
- Debug challenging signal integrity problems
 - Error Location Analysis
 - Pattern Capture
 - Jitter Map
 - BER Contour
 Tektronix

PCIe Gen3 Protocol

PCI Express Protocol Test Solution

Software

- Module setup & trigger
- PCIe decoders
 - Data windows:
 - Summary Profile
 - Transaction with BEV Flow control
 - Listing
 - Waveform

- 8, 5, 2.5 GTs
- x8 & x4
- 8 State Triggering
- 8 GB memory – 16 GB for x16
- OpenEYE
- FastSYNC

Probes

- x8 & x4 midbus
- x16, x8, x4, x1 slot interposers with Lane Converters
- Solder-down probe
- All probes rated to 8 GTs
- 6' probe cables
- ScopePHY

Mainframes

- 2 module portable mainframe with integrated 15" display & PC controller
- 6 module benchtop with GbE controller (requires PC)
- Single GUI & frame for system level debug of multi-buses

Tektronix[®]

PCI Express Protocol Test Result

- Automatic display of Transaction Window with Listing Window
- Errors with timestamps and link direction
- Expanded Training sets with all of the TS data
- Default columns in Listing window

gure

Acquire

Review Summary

Validate

Gen4 Update

- Key attributes/requirements of PCIe 4.0
 - 16 GT/s, using scrambling, same as 8 GT/s, no encoding change
 - Maintains compatibility w/ PCIe installed base
 - Connector enhanced electrically (no mechanical changes)
 - Limited channel: ~12", 1 connector; repeater for longer reach
- Uniform measurement methodology applied across all data rates
- New 'SRIS' independent RefClk modes
 - SRIS Separate RefClk Independent SSC Architecture
- Rev 0.3 Base spec just introduced in PCI-SIG (June 2013)
 - Rev 0.9 no earlier than 1H/2015
 - Rev 1.0 no earlier than 2H/2015

Gen4 Update

- Tx Jitter Analysis solution available today with PCE3.
- Tx EQ CEM and Embedded will have limited change. Base might require Sampling solution.
- Rx Similar approach at 16Gb/s.

PCI SIG

Latest Gen4 Update @ PCIe DevCon on Tue/Wed, June 25-26

PCI **Transmitter Jitter Spec**

- PCIe 4.0 uses same jitter parameters as PCIe 3.0
 - ✓ T_{TX-UPW-TJ}, T_{TX-UPW-DJDD}, T_{TX-DDJ}, T_{TX-UTJ} and T_{TX-UDJDD}
 - ✓ Jitter will need to scale approximately with bitrate
 - De-embedding approach will likely remain the same
- PCIe 1.x and PCIe 2.x jitter parameters will be recast into the same form as the PCIe 3.0 parameters
 - Backward compatibility will be guaranteed
 - ✓ Some PCle 1.x/2.x parameters will be effectively tightened
 - ✓ Example: PCle 2.x T_{MIN-PULSE} parameter will be converted into TTX-UPW-TJ and TTX-UPW-DJDD Convight © 2012, PCASIG, All Rights Reserve

PCI-SIG Developers Conference

PCI>>

Transmitter Equalization

- Max PCIe 4.0 channel IL remains approx the same s for PCIe 3.0
- Plan is to retain same equalization presets
 - Training will require that only a subset of the presets be used (P7 and P8)
- Equalization coefficient range and resolution also are intended to remain unchanged
- EIEOS signaling will likely change such that no TxEQ is applied during the EIEOS interval

Copyright © 2012, PCFSIG, All Rights Reserved

PCI-SIG Developers Conference

Copyright @ 2012, PCHSIG, All Rights Reserve

SATA and SAS Industry Timeline

A Tektronix Company

SATA3 Tx & Rx Solution

The SATA Ecosystem: Now

Today, SATA is expanding in specialized low power, compact and high performance areas with BGA, small form factor, direct attach (M.2) and SATA-Express Solutions recently approved by SATA-IO.

NEW SATA 3.2 Specification

SATA Express:

- Includes both SATA and PCIe signaling
- Hosts supports both SATA or PCIe storage device.
- With PCIe transfer rates of up to 2 GB/s (2 lanes of PCIe 3.0), compared with today's SATA technology at 0.6 GB/s.

• M.2:

- SATA revision 3.2 also incorporates the M.2 form factor, enabling small formfactor M.2 SATA SSDs suitable for thin devices such as tablets and notebooks.
- Additional features of the SATA-IO Revision 3.2 Specification include:
 - microSSD-standard for embedded solid state drives (SSDs) that enables developers to produce single-chip SATA implementations for embedded storage applications.
 - <u>Universal Storage Module (USM)</u> enables removable and expandable storage for consumer electronic devices. SATA revision 3.2 introduces USM Slim, which reduces module thickness, allowing smaller removable storage solutions.
 - <u>DevSleep</u> the lowest level of power management yet, where the drive is almost completely shut down, meeting the requirements of new always on, always connected mobile devices such as Ultrabooks[™].

What's new with SATA testing?

 UHost: A SATA host that provides for attachment of a Gen1i/Gen2i/Gen3i endpoint device directly to the mating connection of the Uhost... (i.e. a "no cable" solution)

• TSG-04

- Incorporate ECN066 which affects the Pass/Fail criteria
- Vcm,acTX measured at a maximum of 50 mVp-p (Gen2i, Gen2m), 100 mVp-p (Gen1u, Gen2u, Gen3u) and 120 mVp-p (Gen3i).

• TSG-13

 The Total Jitter is measured with LBP. Measurements with all other patterns (HFTP, MFTP, and LFTP) are Informative.

TSG-15

- For a Gen3u UHost PUT, the Gen3i CIC channel is not used and the measurement is made directly into the lab load.
- CIC included for Gen3u Uhost calibration but not included for testing

SATA Transmitter Tests

UTD 1.4.2	UTD 1.4.3	UTD 1.5	
Normative	Normative	Normative	
Normative	Normative	Normative	🛛 🖵 рну
Normative	Normative	Normative	
Normative	Normative	Normative	
Normative	Normative	Normative	
Normative	Informative	Informative	
Normative	Informative	Informative	
Normative	Normative	Normative/Update	
Obsolete	Obsolete	Obsolete	
Normative	Normative	Normative	
Normative	Normative	Normative/Update	
Normative	Normative	Normative	
Normative	Normative	Normative/Update	
Normative	Normative	Obsolete	
Normative	Normative	Normative	≻OOB
Normative	Normative	Normative	
Normative	Normative	Normative	
Normative	Normative	Normative	
	UTD 1.4.2 Normative Normative Normative Normative Normative Normative Normative Obsolete Obsolete Obsolete Obsolete Obsolete Obsolete Normative Normative Normative Normative Normative Normative Normative Normative Normative Normative Normative Normative Normative Normative Normative Normative	UTD 1.4.2UTD 1.4.3NormativeNormativeNormativeNormativeNormativeNormativeNormativeNormativeNormativeInformativeNormativeInformativeNormativeInformativeNormativeObsoleteObsoleteObsoleteObsoleteObsoleteObsoleteObsoleteObsoleteObsoleteNormativ	UTD 1.4.2UTD 1.4.3UTD 1.5NormativeNormativeNormativeNormativeNormativeNormativeNormativeNormativeNormativeNormativeNormativeNormativeNormativeNormativeNormativeNormativeInformativeInformativeNormativeInformativeInformativeNormativeNormativeInformativeNormativeNormativeNormativeNormativeNormativeNormative/UpdateObsoleteObsoleteObsoleteObsoleteObsoleteObsoleteObsoleteObsoleteObsoleteObsoleteObsoleteObsoleteNormative </th

Transmitter Test Patterns

HFTP (High Frequency Test Pattern)

0101010101 0101010101

MFTP (Mid Frequency Test Pattern)

0011001100 1100110011

D24.3 D24.3

LFTP (Low Frequency Test Pattern)

0111100011 1000011100

D30.3

D30.3

LBP (Lone Bit Pattern)

	Trans	missio	on Orde	er 🔸							
	D12	.0(0Ch)-	n)- D11.4(8Bh)+		D12.0(0Ch)-		1	D11.3(6Bh)+			
	0011	0110	1111	0100	0010	0011	0110	1111	0100	0011	+
	3	6	F	4	2	3	6	F	4	3	
_											
_	D12	.0(0Ch)+	- 1	D11.4(8	Bh)-	D12	.0(0Ch)-	+ 1	D11.3(6	Bh)-	
+	D12	0(0Ch)+	0011	D11.4(8	Bh)-	D12	.0(0Ch)-	0011	D11.3(6	Bh)-	

Test Pattern Generation

- BIST-TSA: Self generated transmission of pattern (required)
 - T: Transmit only (no Rx required)
 - S: Scramble Bypass
 - A: ALIGN Bypass
- BIST-L: Far End Retimed Loopback (required)
 - Signal generator sends in pattern DUT retransmit same pattern

SATA Receiver Testing

SATA Receiver Test Report

JITTER TOLERANCE	View		
Stress Control Ditter Tolerance Margin 10,000% DBER Fail ANo Sync ◆CLK Err ◆DAT Err ◆Pass	Back		
Annon 1,000% Intree: 1,000% 100% 100%	orward		
BOUNDED PRBS JITTER SJ (UI%) 10% -	Run		
Disabled 1.00% -	Print		
PCL-E option is not present 0.10% 0.0010 0.010 0.100 1.00 100.00 SINCE SJ (MHz) SJ (MHz) SJ (MHz)	Config	Chart Test	Templ. Print
BER Thresh: 1.00E-12 Status; Test Pass Elapsed Time: 01:20:21	Help DLERANCE	Setup Mode	Files Report View
Limit: 1,200 sec Duration Test Margin: 0.0% Relax Time: 1 sec Baseline SJ Amplitude: 0.0% Config: None	Jitt	ter Tolerance Margin	Back
Gen: User 1,500.00 Mbit/s Det: User 1,500.00 Mbit/s BER: 0.00E+00	Iz T-S3 Local 10 27% 2 10 27% 2	SJ Bits Errors BER 27% 1.80E+12 0 0.00E+00 27% 1.80E+12 0 0.00E+00	PASSED Forward
	3 33.00 27% 2 4 62.00 27% 2	27% 1.80E+12 0 0.00E+00 27% 1.80E+12 0 0.00E+00	PASSED Run
			Print
			Config
			Help
KEITHIEY	hresh: 1.00E-12 Sta 1,200 sec Duration Te Ba:	atus: Test Pass Elapsed T ast Margin: 0.0% Relax Tim sseline SJ Amplitude: 0.0% Config: No	ime: 01:20:21 e: 1 sec Dhe Shutdown
A Tektronix Company			

SAS3 -- Challenge to 12Gbps

12G+ Design Problem: 1000mV, FFE, Crosstalk, DFE, 50mV

- Crosstalk and signal loss problems are the largest design challenge today.
- Significant advances in high tap count Decision Feedback Equalization are key to operating at 12G+.

Measurement for Crosstalk/ISI Evaluation

- SAS3_EYEOPENING* Measurement for accurate analysis of ISI and crosstalk effects
- Provides measure of relative vertical eye opening after reference equalization

*Note, this measurement is similar to the SAS-2 Waveform Distortion Penalty (WDP) measurement but also includes Tx EQ in addition to Rx DFE. The code was provided and distributed through the T10 Technical Committee and permission has been granted for Tektronix to reuse.

SAS3_EYEOPENING provides 4 different metrics

- 1. Relative Vertical Eye Opening: A direct indication of how much margin there is after equalization
 - Takes into account un-compensable ISI and crosstalk
 - ISI and crosstalk broken down in report
- 2. Main Cursor Amplitude: A direct indication of the amplitude after equalization
 - Assumes 800 mVppd max. TX launch amplitude, unless data is captured
- 3. Maximal FFE correction: A direct indication of how much FFE correction is required by the transmitter
 - Max(abs(Cpre/Ccntr,Cpost/Ccntr))
- 4. Maximal DFE correction: A direct indication of how much DFE correction is required by the receiver
 - Max(abs(DFE/Main))

A Note about SAS Test Points

Table 3 — 1.5 Gbps	, 3 Gbps, and 6 Gbp	os compliance points
--------------------	---------------------	----------------------

Compliance point	Туре	Description		
ІТ	intra-enclosure (i.e., internal)	The signal from a transmitter device (see 3.1.110), as measured at probe points in a test load attached with an internal connector.		
ITs ª	intra-enclosure (i.e., internal)	The location of a transmitter device where S-parameters are measured and where the TxRx connection begins. This location is at the transmitter device side of the internal connector with a test load or a TxRx connection attached with an internal connector.		
IR	intra-enclosure (i.e., internal)	The signal going to a receiver device (see 3.1.77), as measured at probe points in a test load attached with an internal connector.		
ст	inter-enclosure (i.e., cabinet)	The signal from a transmitter device, as measured at probe points in a test load attached with an external connector.		
CT _S a	inter-enclosure (i.e., cabinet)	The location of a transmitter device where S-parameters are measured and where the TxRx connection begins. This location is at the transmitter device side of the external connector with a test load or a TxRx connection attached with an external connector.		
CR	inter-enclosure (i.e., cabinet)	The signal going to a receiver device, as measured at probe points in a test load attached with an external connector.		
^a Because the trained 1.5 Gbps, 3 Gbps, and 6 Gbps transmitter device S-parameter specifications do not include the mated connector, transmitter device S-parameter measurement points are at the IT _S compliance point and CT _S compliance point. 1.5 Gbps, 3 Gbps, and 6 Gbps receiver device S-parameter measurement points are at the IR compliance point and CR compliance point.				

A Tektronix Company

SAS-3 PHY Transmitter Solution

Group 1	L – OOB Signaling
5.1.1	Maximum Noise During OOB Idle
5.1.2	OOB Burst Amplitude
5.1.3	OOB Offset Delta
5.1.4	OOB Common Mode Delta
Group 2	2 – Spread Spectrum Clocking (SSC) Requirements
5.2.1	SSC Modulation Type
5.2.2	SSC Modulation Frequency
5.2.3	SSC Modulation Deviation
5.2.4	SSC Balance
5.2.5	SSC DFDT
Group 3	8 – NRZ Data Signaling Requirements
5.3.1	Physical Link Rate Long Term Stability
5.3.2	Common Mode RMS Voltage Limit
5.3.3	Common Mode Spectrum
5.3.4	Peak to Peak Voltage
5.3.5	Voltage Modulation Amplitude (VMA)
5.3.6	Equalization
5.3.7	Rise Time
5.3.8	Fall Time
5.3.9	Random Jitter (RJ)
5.3.10	Total Jitter (TJ)
5.3.11	Waveform Distortion Penalty (WDP)
5.3.12	SAS3_EYEOPENING
5.3.13	Pre Cursor Equalization Ratio
5.3.14	Post Cursor Equalization Ratio
5.3.15	Transition Bit Voltage PK-PK (VHL)
5.3.16	Unit Interval

SAS-3 1.5/3/6/12 Gb/s Tx Test Software

TekExpress SAS3-TSG Automation Software

A Tektronix Company

SAS-3 PHY Transmitter Solution

Option SAS3-TSG

- Automated transmitter validation for 1.5, 3, 6 and 12 Gb/s SAS physical layer specification
- Integrated SAS3_EYEOPENING and WDP* measurements for accurate analysis of ISI and crosstalk effects and relative vertical eye opening after reference equalization
- Easily reconfigure existing measurements to create user-specified test parameters or test limits
- Multiple plots and measurement configurations provides a quick comparison of the same acquired data with different settings
- Simultaneous two lane testing of primary and secondary ports
- Detailed test reports with screenshots, setup details, and pass/fail limits

* Requires Option SAS3-TSGW

Beyond Compliance

- How much margin is there in my design?
- How many DFE/FFE taps are needed to meet the system budget?
- What is longest channel (cable/backplane) the system can tolerate?
- How does process/voltage/temperature affect device performance?

Flexible Link Analysis Tools

- DFE/FFE modeling
 - Reference equalizer vs. vendor-specific (IBIS-AMI)
 - Equalization key differentiator for PHY vendors
- Enhanced de-embedding
 - Full four-port network characterization
- Channel emulation for margin analysis

Recommended Equipment

The following components are required for performing SAS12 Tx measurements

- DPO/MSO70000C/D/DX Series Oscilloscope with Opt. 2XL or higher
 - 12.5 GHz or higher recommended for 1.5, 3, or 6 Gb/s
 - 20 GHz or higher recommended for 12 Gb/s
- DPOJET Advanced (DJA) Prerequisite
- Option SAS3-TSG & SAS3-TSGW (required for WDP measurements)
- Test Fixtures:
 - <u>TF-SAS-TPA-R</u> SAS Gen3 Receptacle Adapter (drive form factor) or
 - <u>TF-SASHD-TPA-R</u> miniSASHD 12G SAS Receptacle (mini SAS HD 4i/x cables) or
 - Set of <u>TF-SASHD-TPAR-P</u> miniSASHD 12G SAS (Right Side) Plug and <u>TF-SASHD-TPAL-P</u> miniSASHD 12G SAS (Left Side) Plug (x8)
- PMCABLE1M or equivalent Phase Matched Cable Set (qty: 2)

SAS 12 Gb/s Rx Test Setup

- Similar to SAS 6 Gb/s Rx configuration
- Rx calibration -> CJTPAT -> BER test
- Tektronix Method of Implementation (MOI) provides complete Rx Test procedure

SAS 12 Gb/s Rx MOI

SAS 12G Rx Equipment

Trained Link for Jitter Tolerance Test

- Complete Rx test exercises both CDR and Tx/Rx EQ capabilities
- Current options for training link
 - Iterate possible Tx/Rx EQ states and apply from 'best' optimized eye
 - Directly apply Preset based on typical configuration for worst case channel

Stressed Pattern Calibration – Putting it Together

Rx Results (BERTScope)

Automated Scan from 10 Hz to 100 MHz

DATA T-MHz

T-SJ

2

10

12

14

16

18

20

22

24

28

SAS 12 Gb/s spec requires 97, 240 kHz & 2.06, 3.6 and 15 MHz

SJ Bits Errors BER Status ThreshVX DelavPS 0.1 4.52 6E+08 0.00E+00 PASSED 0 267.531 0 266.451 01 21 6F+08 0 0.00E+00.PASSED 0 0.1 0.00E+00 PASSED 266.451 1.42 6F+08 0 0 0.1 1.04 6E+08 0.00E+00 PASSED -2 266.451 0 266.451 0.1 0.9 6F+08 0 0.00E+00 PASSED 0 0.1 0.74 6E+08 0 0.00E+00 PASSED 0 266.451 0.1 0.00E+00 PASSED -2 266.451 0.64 6F+08 0 266.451 0.1 0.56 6F+08 0 0.00E+00 PASSED 0 0.1 0.54 6E+08 0.00E+00 PASSED 266.451 0 01 0.52 6F+08 0 0.00E+00 PASSED 0 266.451 0.1 0.00E+00 PASSED 266.451 0.48 6F+08 0 0 0.1 0.42 6F+08 0.00E+00 PASSED 266 451 0 0 267.531 0.1 0.46 6F+08 0 0.00E+00 PASSED 0 0.46 6E+08 0 0.00E+00 PASSED 0 266.451 0.46 6E+08 0.00E+00 PASSED 266.451 0 0 266.451 0 46 6F+08 0.00E+00.PASSED 0 0 6E+08 0.42 Ω 0.00E+00 PASSED Ω 266.451 0.42 6E+08 0 0.00E+00 PASSED 266.451 0 0.00E+00 PASSED 266.451 0.44 6F+08 0 0 0.44 6E+08 0 0.00E+00 PASSED 0 266.451 0.00E+00 PASSED 266.451 0.44 6F+08 0 0 0.00E+00.PASSED 266 451 0 46 6F+08 0 0 0.44 6E+08 0 0.00E+00 PASSED 0 266.451 0.46 6E+08 0 0.00E+00 PASSED 0 267.531 6E+08 0.00E+00 PASSED 266.451 0.46 0 0 267.531 0 46 6F+08 0 0.00E+00 PASSED -2 0.00E+00 PASSED 267.531 0.48 6F+08 0 1 0.48 6F+08 0 0.00E+00 PASSED 266.451 0 267.531 0.46 6F+08 0 0.00E+00 PASSED -2 0.00E+00 PASSED 0.48 6E+08 0 0 266.451 0.46 0.00E+00 PASSED 266.451 6F+08 0 0 0.44 6F+08 0 0.00E+00 PASSED -1 267.531 0.42 6E+08 0.00E+00 PASSED -3 267.531 0 0.00E+00 PASSED 0 42 6F+08 0 266 451 0 0.00E+00 PASSED 266.451 0.42 6F+08 0 0 0.46 6F+08 0.00E+00 PASSED 266.451 0 0 267.531 0.46 6E+08 0 0.00E+00 PASSED -2 0.48 6E+08 0 0.00E+00 PASSED 0 266.451 0.46 6E+08 0 0.00E+00 PASSED 267.531 -1 0.00E+00 PASSED 266.451 0 48 6F+08 0 0 267.531 0.48 6F+08 0 0.00E+00 PASSED -2 0.48 6E+08 0 0.00E+00 PASSED 0 266.451 266.451 0.5 6F+08 0 0.00E+00 PASSED 0 0.52 6F+08 0 0.00E+00 PASSED -2 267.531 0.52 6F+08 0.00F+00 PASSED 266.451 0 0 0.00E+00 PASSED 267.531 0.52 6F+08 0 -1 0.00E+00 PASSED 0.54 6E+08 0 Ω 267.531 0.52 6E+08 0.00E+00 PASSED 266.451 LIMIT 0.54 6E+08 0 0.00E+00 REACHED 266.451 0 **Tektronix**[®]

A Tektronix Company

USB3 – from 5Gpbs to 10Gbps

Increasing Serial Data Bandwidth

- USB 2.0, 480 Mb/s (2000)
 - Shift from slower, wide, parallel buses to narrow, high speed serial bus
 - 40x faster data rate, support for new connectors & charging

• USB 3.0, 5 Gb/s (2008)

- ~10x faster data rate over 3 meter cable
- Faster edges, 'closed eye' architecture
- USB 3.1, 5/10 Gb/s (2013)
 - 2x faster data rate over 1 meter cable
 - 'Scaled' SuperSpeed implementation

Interoperability Challenge

- **Goal**: Any certified host works with any certified hub or device
- Short Channel
 - 1" host PCB route
 - 1/4 " device PCB route
 - Direct plug

- Long channel
 - 4" host PCB route
 - 4" device PCB route
 - 1m cable

Why USB 3.1 is more challenging

	Gen1	Gen2
Data Rate	5 Gb/s	10 Gb/s
Encoding	8b/10b	128b/132b
Target Channel	3m + Host/Device channels (-17dB, 2.5 GHz)	1m + board ref channels (-20dB, 5 GHz)
LTSSM	LFPS, TSEQ, TS1, TS2	LFPSPlus, SCD, TSEQ, TS1, TS2,
Reference Tx EQ	De-emphasis	3-tap (Preshoot/De-emphasis)
Reference Rx EQ	CTLE	CTLE + 1-tap DFE
JTF Bandwidth	4.9 MHz	7.5 MHz
Eye Height (TP1)	100 mV	70 mV
TJ@BER	132 ps (0.66 UI)	71 ps (0.714 UI)
KEITHLEY		Tektronix [•]

A Tektronix Company
USB 3.1 Transmitter Measurement Overview

Spec Reference	Parameter	
Table 6-16	SSC Modulation Rate SSC Deviation	Y Time USB SSC PROFILE1: Time Trend X Time
Table 6-17	Unit Interval including SSC Maximum Slew Rate (5 GT/s) SSC df/dt (10 GT/s)	
Table 6-17	Differential p-p Tx Voltage Swing Low-power Differential p-p Tx Voltage Swing De-emphasized Output Voltage Ratio (5 GT/s)	Y. VoltagetMask Hitel: Eye Diagram X Time
Table 6-18	Tx Min Pulse Deterministic Min Pulse Transmitter DC Common Mode Voltage Tx AC Common Mode Voltage Active	
Table 6-19	Transmitter Eye RJ/DJ/TJ - Dual Dirac at 10–12 BER	- (CP9)*
Table 6-28	LFPS Common Mode Voltage LFPS Differential Voltage LFPS Rise Time LFPS Fall Time LFPS Duty Cycle LFPS tPeriod LFPS tPeriod-SSP (10 GT/s)	Eyk ALBEs Offset 0.0077441 Uis:6000:069277, Tohir 6000:989277 Meac: USB_3_0_35F_RX_HomeBry_msk
Table 6-29	LFPS tBurst LFPS tRepeat	
Table 6-31	LFPS tRepeat-0 (10 GT/s) LFPS tRepeat-1 (10 GT/s)	
Table 6-32	LFPS Pulse Width Modulation (10 GT/s) tLFPS-0 (10 GT/s) tLFPS-1 (10 GT/s)	
A Tektronix		Tektronix [®]

Example Host Test Setup

SDLA is critical for USB 3.1

A Tektronix Company

• Find optimum Eye height vs. Rx EQ

	completed.			_
User	On Equalizer: CTLE Tp10 Tp10	Clock Recovery	On Equalizer: FFE / DFE Off	Run F
Thru	CTLE Type	Bit Rate: O Auto Detect Nominal	FFE/DFE Type Adapt Taps	PCIE OU
Config		10 Gb/s	Auto	Resu
Taps		PLL Type: 🔘 1 💿 2	0 FFE Taps 1 DFE Taps	CTL
TrainSen	ADC f _z f _{p1} f _{p2}	7.5 PLL BW MHz	1 Sample/bit 0.03 Amplitude	Plot
Freelog	0.5 A _{DC} 1.5 f _{p1} GHz	0.7 PLL Damp	1 Ref Tap 0 Threshold	ОК
Entit Log	0.75 f, GHz 5.0 f, GHz	0 Clk Delay ps	Use TrainSeg Autoset V	
U				

USB 3.1 Recommended Transmitter Solution

- ≥ 20 GHz BW, 100 GS/sec preferred
- >10M minimum record length allows capture of 1M UI at 100 GS/sec, no interpolation.
- DPOJET for advanced jitter/eye analysis (Option DJA)
- SDLA for channel embedding and cycling through 7 CTLE/1 DFE settings (Option SDLA64)
- TekExpress automation software for USB 3.1 gen1/gen2 physical layer validation (Option USBSSP-TX)

lvezel lest fesalt 😛 Ses	144 C		Profession, 1
Testine	Passing	Value	Sherpte
C URBERT	(Cites)	2014152	STATES & GENERAL
VTs Diff PP Offerents 199 Ts tolkape same	(Cher	211.115 av	2012/21/09/14/00/2012
1 KDR, Serv, Res Man man Daw Sale	(j) Para	4.901 ma/s	5.269 (861)
3 Mask Htt	Q 780	0.000	0.308
a DJ. To determinate: Jitter Sul Orac	C Parts	28.212 ge	3230 ² H
Eine resight- Transmitter Type Stank	Q 780	151.340un#	00,746 ety 5 1,006 ti
- WARNARES	Q 2001	126.158.06	18.154 ps
Referentian Steriotal Druc	Q Page	5.386 pp	182 m
3 153C/Hapter Res	Q Part	MAR BUILDER	36534E3 ppm & 254,838 ppm
TSSC-Papeler-Res.	() Parts	46.145 gpm (Ma)	253,255 ppm & 348,245 ppm
TSSC-Decides Int	() then	4415 sppt (fbs)	SSK-301 gpm & 1,758 Vojet
# TSSC-lives.des-dise	Q Pass	4117 upp (Res	112,851 gpm & 2317 ligger
= 155C Med Sale- 53C Vestulator role	@ Pars	21.364 MB	1.54541-8-1.026-446
- TSSC-USB Profile	Q Pest	206.449.ps	208.448 ga
= 13.7s total atter-boat Dirac at ME-12967	Q 785	46,905 pm	35.05 pt

For instrument bandwidth, consider factors such as edge rate, reflections, SNR (de-embedding), and launch characteristics.

Receiver Testing

A Tektronix Company

- Jitter Tolerance (JTOL) with swept jitter profile, reference channel
 - Verify CDR tracking and ISI compensation
- Link optimization/training critical
 - No back channel negotiation
- Return "echoed" data to a BERT (loopback)
- Detected errors are inferred to be a result of bad DUT receiver decisions

USB3.0 Transmitter Compliance Test Setup

USB3 Rx

USB3_Tx

CTI F

SSRX+

Tektronix

- USB-IF or Tektronix fixtures can be used
 - Test configuration is the same
- Compliance channel and 3 meter cable are emulated in software

Α

- Compliance sparameters were used to dreate channel filters CTLE is applied to open the eye, → then compliance measurements are taken

Compliance channel and Cable are applied in software, resulting in a closed eye

Host

DUT

DSA70000

USB 3.0 Receiver Test Configuration

USB Switch*

creates the low-frequency periodic signaling (LFPS) required to initiate Loopback-mode

DPP125C De-emphasis Processor

CR125A Clock Recovery

BSA125C* BERTScope

* Updates needed for USB 3.1 10 Gb/s

SDLA – Embed / De-Embed Simulation / Equalization

Why use Link Analysis Applications?

Maximize Margins

Compensate for margin loss due to test fixtures, cables, probes or other artifacts of the measurement setup

- <u>Remove Reflections</u>
 Simulate probing at the ideal test point and remove reflections due to non-ideal probe locations
- Open Closed Eyes

Apply receiver equalization to compensate for channel loss before analysis

Compliance Test

Validating DUT for standards that require de-embedding, channel embedding, and equalization

Open Closed Eyes Apply Receiver Equalization

- In the past, acquired signals could be measured directly, even at the far end
 - Increasing data rates require some level of equalization to compensate for channel loss at the transmitter and/or receiver
- Standards, for example, PCI Express 3.0 specify a reference equalizer that must be used during compliance testing
- PCI Express uses a CTLE + 1 Tap DFE
 - CTLE parameters and DFE tap value are optimized to produce the largest eye area based on the transmitted signal and channel

Tektronix

Remove Reflections Virtual Probing at Ideal Test Point

- Reflections may be present when probing at non-ideal locations, which are not present at the ideal test point
 - White is original acquired signal with the reflection.
 - Purple is the deembedded result showing reflection removal.

Waveform at probing point (White, Measured waveform with obvious reflection)

Controller

Target Point (Virtual)

Waveform at controller side. removing reflection (Purple, Removing reflection by SDLA)

Probing Point #3Tektronix*

Thanks!

