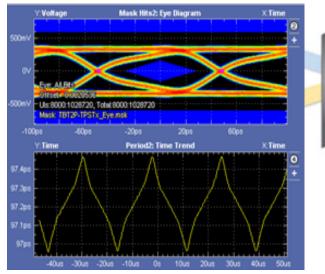
Tektronix Innovation Forum

Enabling Innovation in the Digital Age


Thunderbolt Physical Layer testing and technology overview

Presenter: John Calvin

- Thunderbolt" Cable -

Thunderbolt Controller

Mask Hits': Eye Disgram

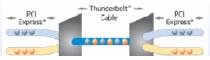
A Date

Voltage

Tektronix[®]

2 Tektronix Technology Innovation Forum

<section-header>


DispiayPort (on PC PCB) PC (Host) Peripheral (Device)

Thunderbolt technology have new chip system and wiring, which allow transfer of video display and information at 10Gigabit per second (Gbps) in both directions, all in one cable, Thunderbolt control component does not require an Intel processor, but runs on its own as a router switches between channels, the Thunderbolt channels to the PCI Express.

Thunderbolt Developers Network https://thunderbolttechnology.net/

🖉 Thunderbolt Technology Community - Windows Internet Explorer	
G V https://thunderbolttechnology.net/	Google
File Edit View Favorites Tools Help Share Browser WebEx	🦓 🔻
😭 🏟 💋 Thunderbolt Technology Community	🏠 🔻 🔊 🔹 🖶 🕇 🎦 Page 👻 🌉 🔻 🍈 Tools 👻
About Us Contact Us Legal Login	Google™ Custom Search ×
THUNDERBOLT Technology News	Products Developers Area
Performance, Flexibility Revolutionary I/O	
channel	+ Thunderbolt" + PCI

Dual protocol for data & display

Thunderbolt Overview

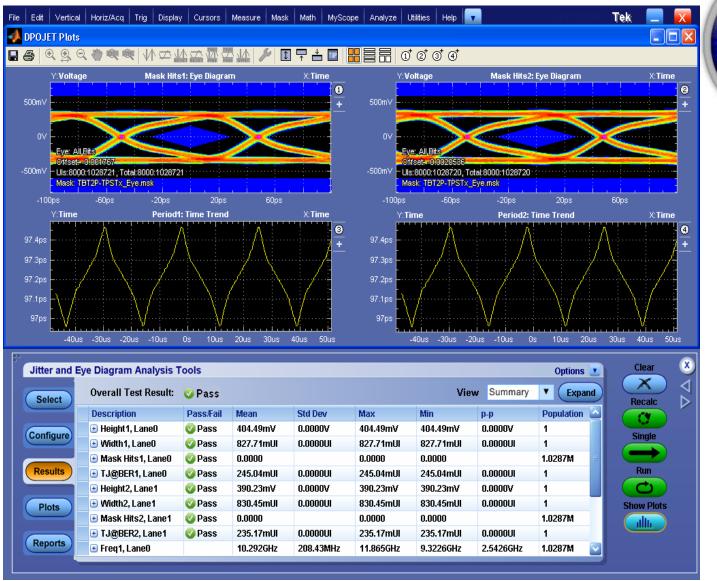
- Thunderbolt signaling is a dual NRZ (64/66b Encoded) 10.3125Gb/sec (Same as SFP+) differential Tx pairs and two differential Rx pairs.
- Instrument BW has been recommended at 16GHz by Intel. The connectors do not pass significant energy beyond 16GHz, and the noise content beyond 16G is regarded as a significant measurement liability.
- Tektronix recommends Instrument bandwidth to 20GHz to properly align De-Embed filters stop band performance into the 4'th signaling harmonic's null.
- Tektronix and GRL have partnered on test development and efforts towards enabling the Thunderbolt ecosystem with an test MOI which illustrates sanctioned methods of test for Transmitter, Receiver and Channel characterization.
- Intel Thunderbolt Overview with Intel's Jason Ziller: <u>http://www.youtube.com/watch?v=gk69pCcVSSQ</u>

5 Tektronix Technology Innovation Forum

Thunderbolt Transmitter Test Overview

 Thunderbolt from a physical layer validation has a very straight forward test configuration. All measurements are near end with Fixtures fully de-embedd. Thunderbolt conformance requires Displayport 1.2 conformance which is where things become more complex.

Source Test Suite


- PHY1.1 Transition Timing
- PHY1.2 Intra-Pair Skew
- PHY1.3 AC Common Mode RMS
- PHY1.4 AC Common Mode Peak
- PHY1.5 Eye Height
- PHY1.6 Eye Width
- PHY1.7 Max Differential Voltage
- PHY1.8 Total Jitter at 10-13 BER
- PHY1.9 Unit Interval
- PHY1.10 SSC Modulation Frequency

DUT Configuration

- 1. Bit Rates: (DP1.2) + 10.3125Gb/sec
- 2. Patterns: 81's80's, PRBS-9, PRBS-31
- 3. SSC (Spread Spectrum): On/Off

Thunderbolt Transmitter Testing Fully supported in Tektronix's current solutions

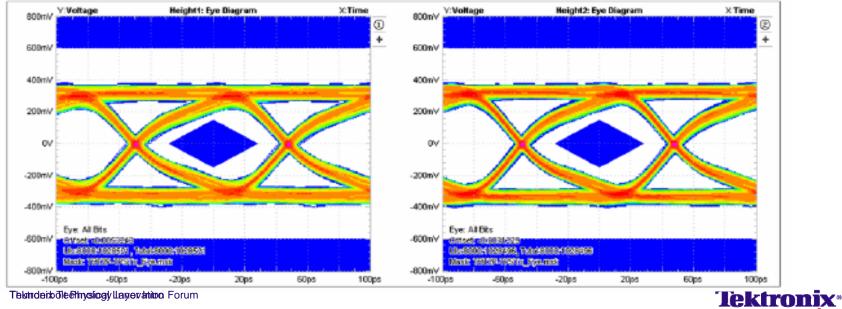
7 Tektronix Technology Innovation Forum

Thunderbolt Physical Layer Intro

Tektronix[®]

Thunderbolt

De-Embedded test results Thunderbolt Fixture De-Embed results


Measurement Results

•		Std Dev			p-p	Population	Max-cc	Min-cc
				370.29mV			V0000.0	V0000.0
Current Acquisition	370.29mV	V0000.0	370.29mV	370.29mV	0.0000V	1	V0000.0	V0000.0
Height2, Math3	405.59mV	V0000.0	405.59mV	405.59mV	0.0000V	1	0.0000V	V0000.0
Current Acquisition	405.59mV	0.0000V	405.59mV	405.59mV	0.0000V	1	0.0000V	V0000.0
TJ@BER1, Math1 🔇	19.175ps	0.0000s	19.175ps	19.175ps	0.0000s	1	0.0000s	0.0000s
Current Acquisition	1 <u>9.175</u> ps	0.0000s	19.175ps	19.175ps	0.0000s	1	0.0000s	0.0000s
TJ@BER2, Math3 🔇	17.304ps	0.0000s	17.304ps	17.304ps	0.0000s	1	0.0000s	0.0000s
Current Acquisition	17.304ps	0.0000s	17.304ps	17.304ps	0.0000s	1	0.0000s	0.0000s

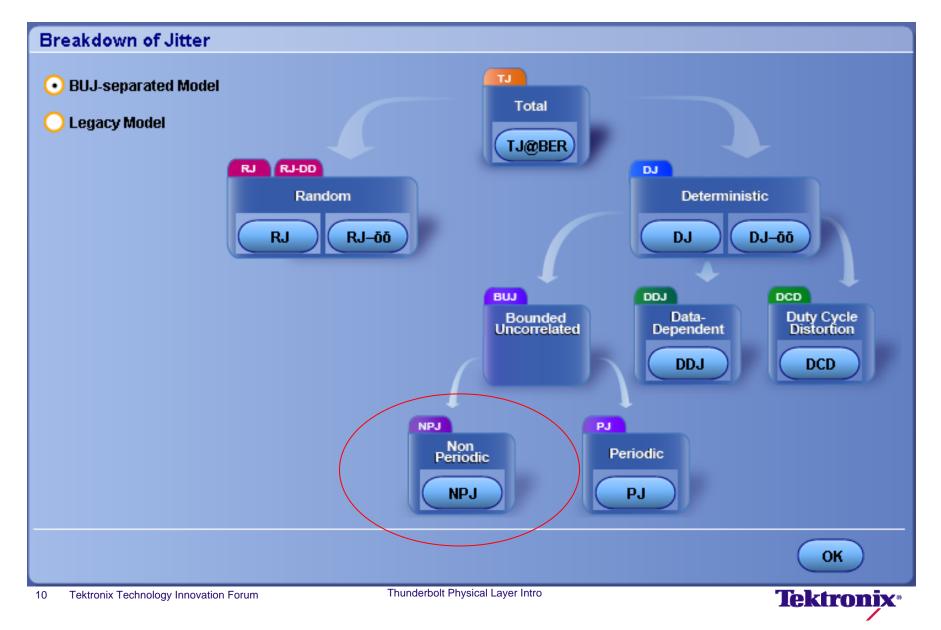
Pass/Fail Summary No pass/fail limits are currently selected.

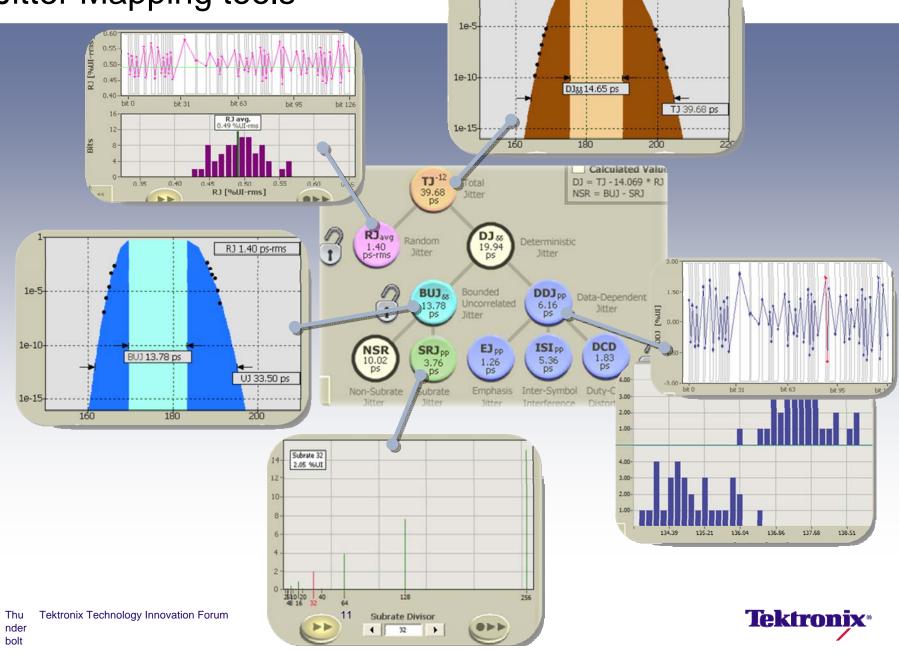
Plot Images

Measurement Plot(s)

8 Tektrideitoolle@hyslicgly Llagervanitoo Forum

Thunderbolt Jitter Analysis BUJ


- Interconnect and board layout technology is advancing and the greatest area of focus is in reducing the insertion loss and Signal-to-Crosstalk ratio. Packaging parasitics cannot be ignored here either and important from both a modeling and measurement needs.
- The implications of complex channel interaction as well as SERDES multiplexing method, can be observed and identified in an output signal by examining the type and amount of Bounded Uncorrelated Jitter or BUJ.
- There is a strong Cause—and-Effect relationship between Crosstalk (NEXT) and BUJ which in most systems get's classified as Random if special steps are not observed.


Symbol	Description
Input swing	Inner eye voltage
AC-CM_rms	AC Common Mode Voltage rms
AC-CM_pk_pk	AC Common Mode Voltage pp
BUJ	Bounded Uncorrelated Jitter
DDJ	Data Dependent Jitter
RJ	Random Jitter
נד	Total Jitter

Jitter Analysis Advances BUJ is now core to DPOJET real time jitter analysis

Comprehensive Jitter Mapping tools

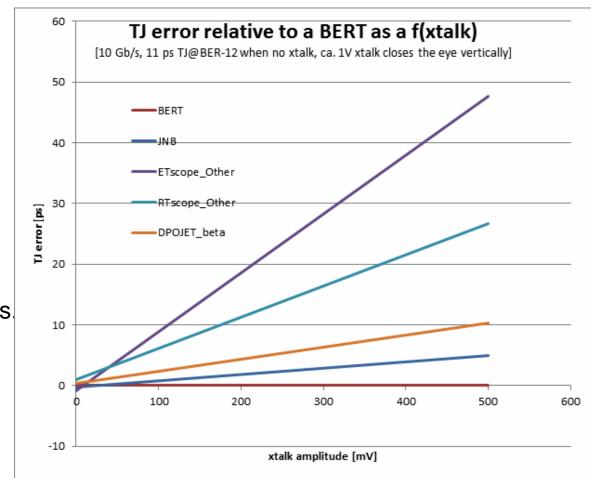
RJ\$\$

1.78 ps -rms

Jitter Analysis Advances BUJ in Thunderbolt example

New-BUJ Dect	omposition	Legacy Beco	mposition		
TJ@BER1, Math1	10.105ps	TJ@BER1, Math1	11.159ps	G √ 42.0mV	4.0µs/div 50.0GS/s 20.0ps/pt
RJ1, Math1	506.04fs	RJ1, Math1	694.31fs		Stopped Single Seq 1 acqs RL:2.0M
PJ1, Math1	3.6968ps	PJ1, Math1	2.8264ps		Man September 02, 2011 17:51:00
DJ1, Math1	3.6968ps	DJ1, Math1	2.8264ps	-11.2ps	
NPJ1, Math1	881.89fs	TIE2, Math1	-25.694fs	12) 88.8ps	
TIE2, Math1	55.789fs	Rise Slew Rate1, Math1	9.2843V/ns	100ps 10.0GHz	
Rise Slew Rate1, Math1	9.2627V/ns		<u> </u>		
TJ@BER1, Math1	9.9087ps	TJ@BER1, Math1	10.315ps	1 √ 42.0mV	4.0µs/div 50.0GS/s 20.0ps/pt Stopped Single Seq
RJ1, Math1	556.41fs	RJ1, Math1	680.95fs		1 acqs RL:2.0M
PJ1, Math1	2.6685ps	PJ1, Math1	1.7365ps		Man September 02, 2011 17:47:09
DJ1, Math1	2.6685ps	DJ1, Math1	1.7365ps	-11.2ps	
NPJ1, Math1	592.92fs	TIE2, Math1	44.029fs	88.8ps 100ps	
TIE2, Math1	89.108fs	Rise Slew Rate1, Math1	9.3228V/ns	10.0GHz	
Rise Slew Rate1, Math1	9.2542V/ns				

12 Tektronix Technology Innovation Forum


Jitter Analysis Advances

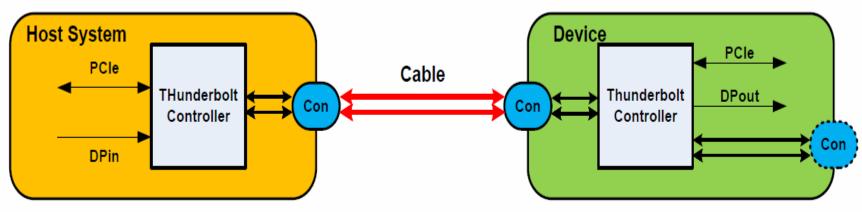
Results of the BUJ-aware jitter analysis algorithm

 Setup: DUT: victim pattern: 0011, aggressor pattern PRBS7, amplitude of both aggressor and victim 500 mV

Oscilloscopes: RL of 2MS (RTOs), BW>=18GHz BERT RX: 12 hrs All plots are linear interp. from several points

- Both ET and RT Tek scopes run the new, BUJ-able analysis
- Note: longer RL improves, longer aggres, worsens, the results given here.

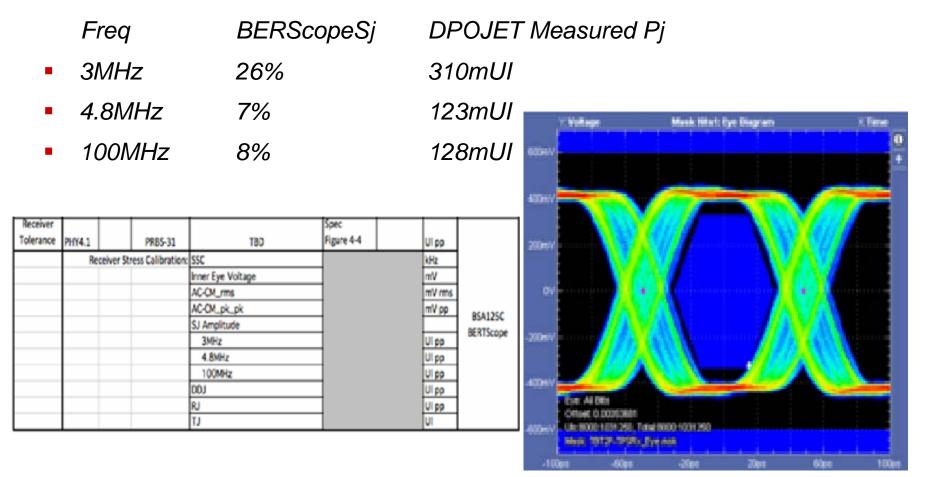
13


Current (.5 TBT Spec Version) Measurement Summary

Test Suite	Test ID	Setup	Pattern	Measurement	Min	Max	Units	Instrument
	PHY1.1	Setup 1	8 '1's, 8'0's	TSOUT-RISE, TTX-FALL (10-90%)			ps	
	PHY1.2	Setup 1	015,005	LSOUT-SKEW-INTRA_PAIR			ps	
Sustam/	PHY1.3	Coture 2	PRBS-9	VSOUT-AC-CM_rms			mV	
System/ Device	PHY1.4	Setup 2	PKB5-9	VSOUT-AC-CM_pk_pk			mV	≥ 16GHz
	PHY1.5			Eye Height (2 x Y1)			mV	70000 Series
Transmitter	PHY1.6]		Eye Width@10e-12 BER (2 x X1)			UI	Real Time
	PHY1.7	Coture 2	PRBS-31	Max Diff Voltage (2 x Y2)			mV	Oscilloscope
	PHY1.8	Setup 3	PR85-31	Total Jitter@BER (1UI - Eye Width)			UI	
	PHY1.9	1		Unit Interval			ps	
	PHY1.10	1		SSC Modulation Frequency			kHz	
	PHY2.1		8 '1's, 8'0's ??	Tx - Differential Return Loss				
System/				.01 to 2 GHz			dB	
Device				2 to 6 GHz			dB	DSA8000
Tx/Rx	PHY2.2		N/A	Rx - Differential Return Loss				Sampling
Return Loss				.01 to 2 GHz			dB	Oscilloscope
				2 to 6 GHz			dB	
CM-								
OutRush								
Current	PHY3.1		TBD	TBD				TBD
Receiver								
Tolerance	PHY4.1		PRBS-31	TBD			UI pp	
	Re	ceiver Str	ress Calibration:	SSC			kHz	
				Inner Eye Voltage			mV	
				AC-CM_rms			mV rms	
				AC-CM_pk_pk			mV pp	
				SJ Amplitude				BSA125C
				3MHz			UI pp	BERTScope
				4.8MHz			UI pp	
				100MHz			UI pp	
				DDJ			Ulpp	
				RJ			Ulpp	
				TJ			UI	

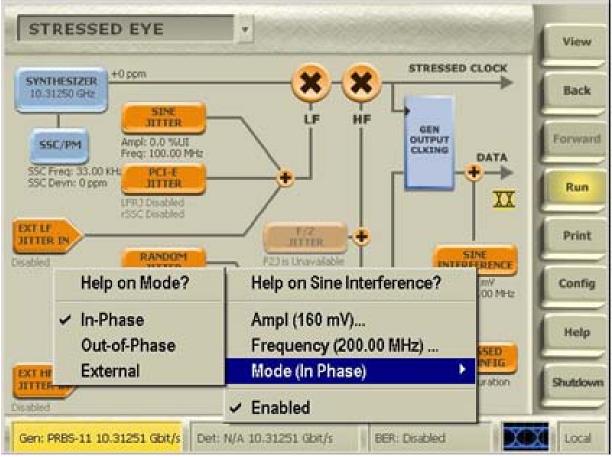
Reference: Thunderbolt Interconnect Specification Rev0.5

Thunderbolt Transmitter Testing


- One of the key benefits of the Thunderbolt design is an architecture which alleviates needs to perform "Far End" signal integrity analysis as found in other standards such as USB3, SAS, or PCIE.
- The absence of link negotiation and having to deal with the uncertainty of an unknown cable (Channel) and a unknown receiver (Disk Drive for instance) greatly simplifies and improves the link integrity.
 - The Tx system has to manage a fairly simple contract to deliver bits to the connector point with a 1E-12 BER certainty.
 - The Active Cable (which does it's own smart link negotiation on power up) has an independent contract to deliver bits from one end to the other with a 1E-12 BER certainty.
 - The Rx system has to manage the receipt of the signals to a certainty 1E-12 BER.
- The three independent contracts are designed to work together as a system, but complex system level link negotiation is not required.

15 Tektronix Technology Innovation Forum

Thunderbolt Receiver: Stressed Pattern Calibration


 The Receiver test pattern used in Thunderbolt is a PRBS-31, however the calibration is performed on a PRBS-11 pattern.

Thunderbolt Receiver: AC Common Calibration

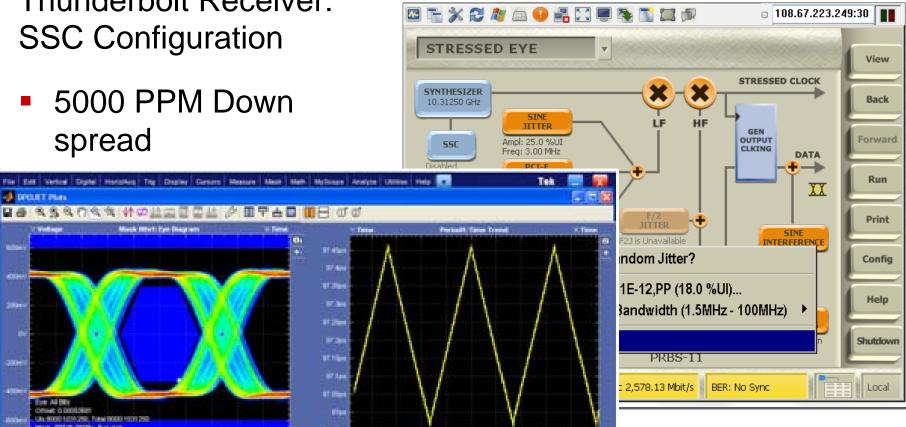
 200MHz AC Common Mode noise is part of the Thunderbolt impairment profile.

Thunderbolt Receiver: **SSC** Configuration

5000 PPM Down spread

Mark Hart Line Dispose

🐙 DOCUME Plan

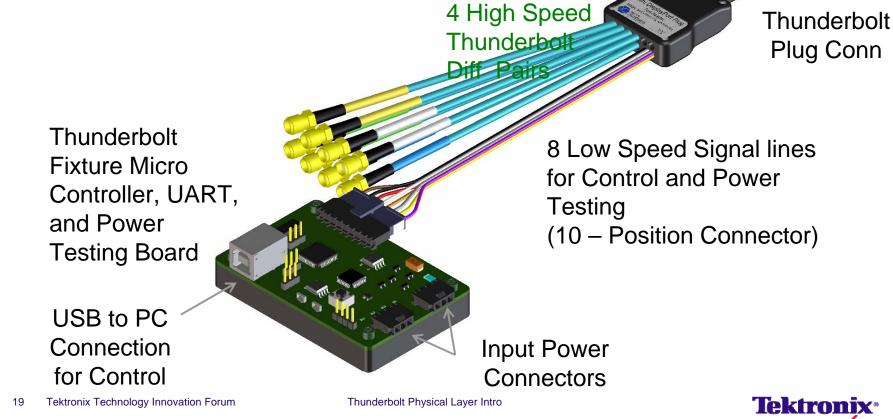

200er

1000

THE ALL DRY Official D Dootlow P

LAN ROOT 1824 258, Tana 8080 1921 252 man Title Teller, for mit

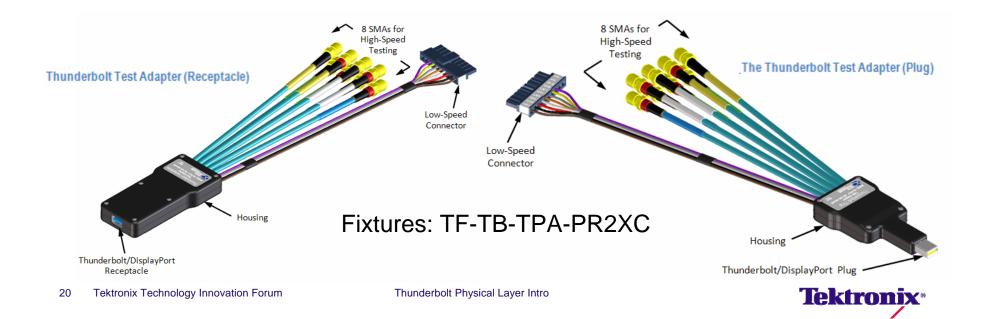
Works


Select 1							View De	tels 🔬 🔻	Laperal	×
	Ownerspann	these in the	Bed Dev	they :	15m	60	Projectation	then or	mater in	a
and the second second	a LABOURS, Laneb	415,73mill	8.00003	415,72468	415,73mill	0.000018	1	8.000018	6.80000.8	-
an agenet	a fregh Laneb	10.316648	100.68004	10.910040	8.8292644	1.000504	1.031200	923.598948	4.002208	and the second s
_	g Periodi, Lanel	1.00000.8	62.52168	1.000118	303.00mi.8	102,79400	1.010401	205.75668	-211.836	
ana da a	IS DJ1. Land?	322.66mm8	8.00003	322.60%8	322.60mill	0.000003	1	8.00003	6.300003	Aur
-	a DJ-501, Lanet	287.34mill	8.00003	297,34mi8	297.34mi.8	0.000018	1	8.000018	6.500003	C
Planta III	at RJ1, Lanet	1.4566m2b	8.00003	8.4566milt	8.4566m08	0.000018	1	8.000018	6.500003	Hum Pi
	2 RJ-501, Lanet	1.45660031	8.00003	8.4566mi8	8.4506mi8	0.000018	1	5.00003	6.800003	1
	T IVE Land	167, New Y	a provide	Mil. Plants	Bill (Stand B	L.martin		100000	A REAL PROPERTY AND	-
sports)	1 00/1 Lane0	6.80000.8	8.00003	0.000068	8.000003	0.000068	1	8.000018	6.00000.0	

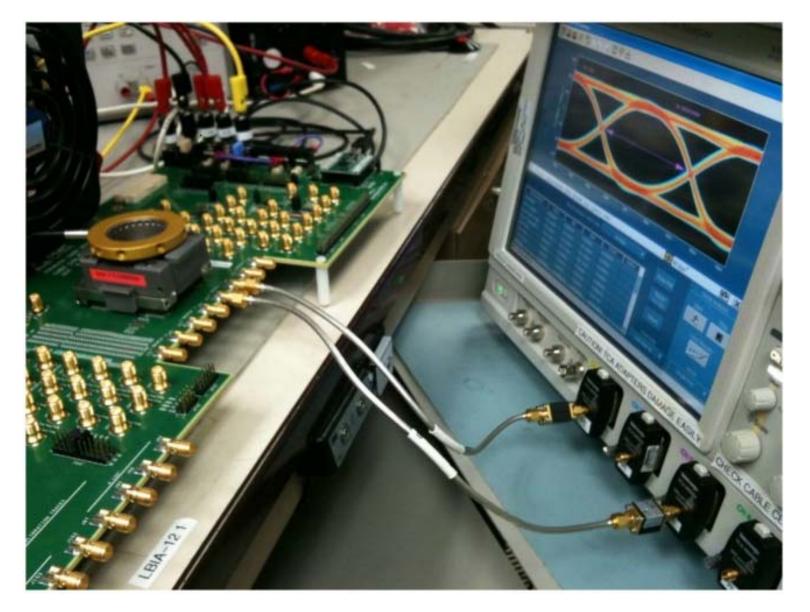
18 Tektronix Technology Innovation Forum

Thunderbolt Digital Port Micro Controller

 The Digital Port Micro is responsible for Test Pattern and general state control, as well as error polling in the DUT. For hosts this is not essential but for devices (disk arrays) it is.


Instrument Considerations

Phase 0 (Thunderbolt Silicon/System Designers):


- 30+G Real Time Oscilloscope to Tx Characterization and Rx Calibration
- BertScope: 12G stimulus and error detector for Receiver Testing/Cable Testing.

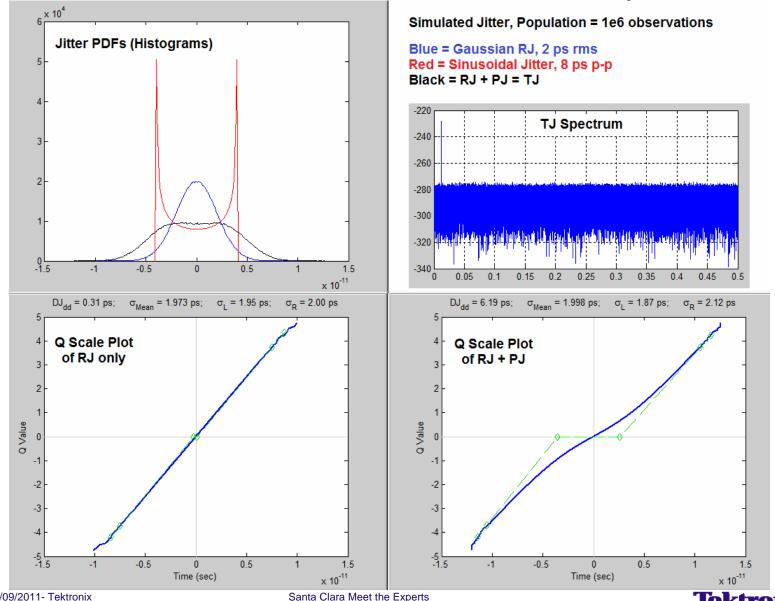
Phase 1-2 (ODM/OEM):

- 20 GHz Real Time Instrumentation (De-Embed Stop Band set to 4'th harmonic)
- 12.5G BertScope for receiver testing.

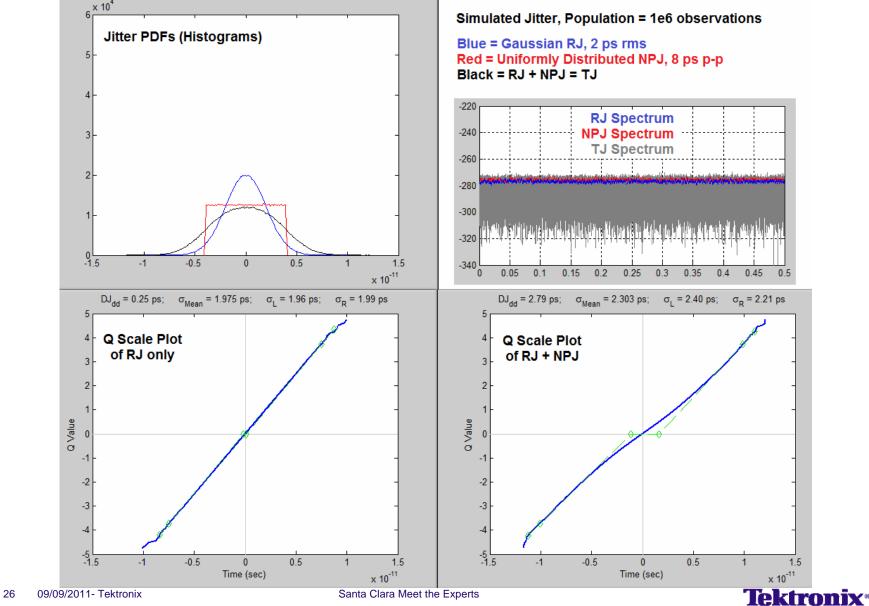
Phase 0 (Silicon Designer) Configuration

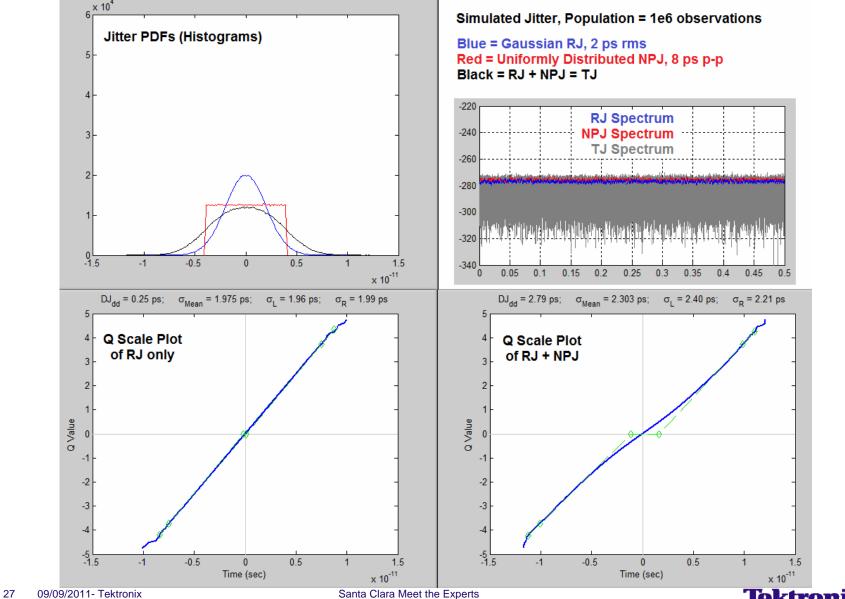
Complete Thunderbolt Instrument Portfolio

Receiver Tests/Active Cable Tests Receiver silicon and system margin testing. Tj, Rj, DDJ, BUJ, AC-CM	BSA125C with JMAP and SSC and HW Options DPPS125 and CR125A provide support for future bit-rates (12-26G) with a unique portfolio of Scope and Bert combined features. Fixtures:TF-TB-TPA-PR2XC	
Channel Tests Return Loss (HF,LF) . (SDD11,SDD22) Common Mode Return Loss (SCC22) Mode Conversion (SCC12) Channel Insertion Loss (SDD21) Near End Crosstalk (NEXT)	DSA8300 80E10 TDR Sampling Module for DSA8300 Sampling Scope S-Parameter Analysis Software 80SICON Software for DSA8300 Fixtures: TF-TB-TPA-PR2XC	
TransmitterTests AC Parametric measurements Jitter Eye Opening AC Common Mode Data Dependant Pulse Width Shrinkage	DSA72004D DPOJET Jitter Analysis software TCA-292D Coax Adapters 4 per scope ThunderBolt MOI Fixtures: TF-TB-TPA-PR2XC	



Backup Material on BUJ


Jitter Analysis Advances Tek Patented Random and Deterministic separation


25 09/09/2011- Tektronix Santa Clara Meet the Experts

Tektronix[®]

Jitter Analysis Advances Q-Scale transformations and BUJ

Jitter Analysis Advances Q-Scale transformations and BUJ

Tektronix[®]