USB 3.0 Physical Layer Testing Sarah Boen

USB 3.0 Technology Timeline & Tektronix Involvement

Transmitter, Receiver, Channel

USB CTS Updates

- Draft .9 is available on the USB-IF site
- Updates not in .9 Specification
 - Tethered Devices (i.e Flash Drive) are tested with 11" Host Channel Only
 - Short cable is used for RX testing
 - Host channel is embedded for TX testing
 - Receiver Calibration Eye Height Limits: 145mV for Device and 180mV for Hosts
 - Receiver Jitter Tolerance Frequencies: 10Mhz, 20Mhz, and 33Mhz have been added
 - Updated Calibration Procedure

SuperSpeed Compliance

- PIL Lab
- USB Workshops
- Test Labs can provide pre-testing support and are currently being certified for USB testing
- Tektronix solutions are available in all locations!

USB 3.0 Key Considerations

- Receiver testing now required
 - Jitter tolerance
 - SSC, Asynchronous Ref Clocks can lead to interoperability issues
- Channel considerations
 - Need to consider transmission line effects
 - Software channel emulation for early designs
- New Challenges
 - 12" Long Host Channels
 - Closed Eye at Rx
 - Equalization
 - De-emphasis at Tx
 - Continuous Time Linear Equalizer (CTLE) at Rx
- Test strategy
 - Cost-effective tools
 - Flexible solutions

6 Physical Layer

Source: USB 3.0 Rev 1.0 Specification

Tektronix Solutions for USB 3.0 Transmitter Testing

- Comprehensive Solution Goes Beyond Compliance
 - All measurements accessible in DPOJET for debug
 - Support for multiple test points (i.e. at the silicon pins or compliance test point)
- Complete Toolset for Characterizing USB 3.0 Designs
 - Create custom CTLE and Channel Emulation or De-Embed Filters with SDLA (Serial Data Link Analysis)
- Automated
 - No need to be a USB 3.0 Expert
 - Automatically acquire all necessary waveforms for processing (CP0, CP1, LFPS) with AWG7K or AFG
- SigTest Integration
 - SigTest is completely integrated into TekExpress
 - No need to manually configure the scope and setup SigTest for processing
 - User flexibility to process the waveforms using Tektronix algorithms and SigTest to compare the results
- Comprehensive Reporting
 - Complete Test Report in .mht format with pass / fail and margin results
 - Plots include for quick visual inspection

Transmitter Solutions

- Comprehensive Solution Goes Beyond Compliance
 - No need to manually configure the scope and setup SigTest for processing
 - User flexibility to process the waveforms using Tektronix algorithms and SigTest to compare the results
- Complete Toolset for Characterizing USB 3.0 Designs
 - Create custom CTLE and Channel Emulation or De-Embed Filters with SDLA (Serial Data Link Analysis)
 - No need to be a USB 3.0 Expert
 - Automatically acquire all necessary waveforms for processing (CP0, CP1, LFPS) with AWG7K or AFG

USB 3.0 Test Fixtures

- Two options for USB 3.0 Test Fixtures
 - Tektronix supplied fixtures
 - Enables SW channel emulation for TX and RX testing
 - Published electrical specifications
 - Supports TX, RX, and Cable testing
 - Available from Tektronix
 - USB-IF supplied fixtures and cables (shown below)
 - Used for compliance testing
 - Enables SW channel emulation for TX only
 - Supports TX and RX testing
 - Available from the USB-IF

USB 3.0 Compliance Test Configuration

- USB 3.0 is a closed eye specification
 - Reference channel is embedded and CTLE is applied
- USB 3.0 Reference Channels
 - Host Reference Channel
 - 11" back panel is applied for device testing
 - Device Reference Channel
 - 5" device channel is applied for host testing
 - 3 Meter Reference Cable
 - Used for host and device (except captive devices) testing in addition to reference channels
- USB 3.0 Reference Equalizer
 - Attenuates the low frequency content of the signal to open the eye

Fixture and Channel De-Embedding

- Why de-embed- Improve Margin
 - Removes fixture effects that are not present in a real system
 - Remove the effects of the channel and connector for measurements defined at the TX pins
- De-Embedding Process
 - Characterize channel with TDR or Simulator to create Sparameters
 - Create de-embed filter with SDLA software

Channel Embedding

- Compliance Testing is done by embedding the Transmit Channel compliance channel, but many designers want versal serial Bus 3.0 specification, Revision 0.9 to validate other channel models
 - Understand transmitter margin given worst case channels
 - Model channel and cable combinations beyond compliance requirements
 - Create interconnect models with SDLA software to analyze channel effects

USB-IF Host & Device HW Channels

TP2

11 3/11 © 2011 Tektronix 55W-26800-0

Receiver Equalization

- Tektronix USB Solutions ships with the USB Specification defined CTLE Function
- Customizing CTLE functions and creating filters for use with Tektronix' USB Solution is easily achieved with SDLA (Serial Data Link Analysis Software)

Tektronix

USB 3.0 Transmitter Measurement Overview

- Voltage and Timing
 - Eye Height
 - Pk to Pk Differential Voltage
 - RJ
 - DJ
 - TJ
 - Slew Rate
- Low Frequency Periodic Signaling (LFPS)
 - Pk to Pk Differential Voltage
 - Rise / Fall Time
 - AC Common Mode
 - tBurst
 - tRepeat
 - tPeriod
- SSC
 - Modulation Rate
 - Deviation

File Edit Vertical Horiz/Acq Trig Display Cursors Measure Mask Math MyScope Analyze Utilities Help

Tek

Voltage and Timing

• Voltage, Eye Height, Jitter

LFPS TX Measurements

- LFPS signaling is critical for establishing link communication
- LFPS TX test verify common mode, voltage, tPeriod, tBurst, tRepeat
- Channel is not embedded for LFPS tests

SSC Measurements

- Both Maximum and Minimum Frequency Deviation must be considered
 - Assume nominal UI of 200ps
 - Limits are +0/-4000ppm and +0/-5000ppm, plus +/- 300ppm for ref clock accuracy
- Compliance Channel is not embedded for SSC measurements

LFPS RX Test

- Required Compliance Test to verify that the DUT RX will respond to LFPS signaling
- Test is ran across four different settings

tPeriod	VTX-DIFF-PP-LFPS	Duty Cycle
50ns	800mV	50%
50ns	1000mV	40%
50ns	1000mV	60%
50ns	1200mV	50%

LFPS RX Test

- AWG generates spec compliant LFPS signaling
- Validate LFPS response with RT Scope

USB 3.0 Droop / Drop Test

- New Test Fixture Available from USB-IF
 - Provides 150mA / 900mA load
 - Previous fixture provides 100mA / 500mA load
- Amount of power drawn is changed from 500mA to 900mA for high power devices
- Fixture is orderable at: http://www.usb.org/developers/estoreinfo/USB_product_order_form.pdf

USB 3.0 Compliance and Automation

- Complete Automation of USB 3.0 Measurements with TekExpress
- No need to learn technology specific software applications- TekExpress is a Common Framework from Serial Applications including SATA, USB, DisplayPort, HDMI, and Ethernet
- TekExpress utilizes DPOJET USB 3.0 Specific algorithms making it easy to move from compliance to DPOJET for debug

TekExpress USB 3.0 Automated Solution

- Supports testing for USB 3.0 Hosts and Devices
- Automatically selects the correct channel emulation filter when software is selected
- Easily select measurements of interest for test execution
- Supports all compliance and LFPS TX measurements
- User choice of algorithm execution- SigTest or DPOJET
- Automates DUT toggling to acquire CP0, CP1, and LFPS Patterns

Complete USB 3.0 Transmitter Solution

DPO/DSA70000 Series Oscilloscopes

- Go Beyond Compliance Testing
 - Debug Suite with DPOJET
 - SDLA for Channel Modeling
 - Tektronix Super Speed USB Fixtures
- Automation software for characterization and compliance
 - TekExpress with option USB-TX (includes option USB3)
- Recommended Scope
 - 12.5 GHz Real-Time Scope
 - 50GS/s Sample Rate
 - P7313SMA Differential Probe (Optional)

TF-USB3-AB-KIT

Opt. USB-TX TekExpress USB Automated Solution (Evaluation Version) (PIL Certification Test) Tools Held DUT ID My SS USB Host Contoller Select Acquire Analyze Report DUT Type Channel Definition USB 3.0 SuperSpeed Host O Hardware Software **Electrical Test Sor** Test Point Location Channel Filter File Type Compliance (TP1) with CTLE USB3 Cable Device CTLE.flt v Test Me USB-IF 3.1.14 Probing Locatio Host Connector DPOJET Host - Compliance (TP1) with CTLE at Host Connector, Software Channel Configure Select Test Name D L Ty de Show MOI Eye Height - Transmitter Eye Mask Mask Hits Show Schemat Rj-Tx random jitter-Dual Dirac TCDR Slew Max-Maximum Slew Rate Select All TJ-Tx total jitter-Dual Dirac at 10E-12 BER UI-Unit Interval Select Required VTx-Diff-PP-Differential PP Tx voltage swing Width@BER Deselect All TekExpress launched successfully

Opt. USB3

USB 3.0 Receiver Testing

USB 3.0 Receiver Testing Overview

- A jitter tolerance test is required for certification, though debug and characterization capabilities are needed to ensure that receivers will work in real world conditions
 - Send specific test data patterns to the device-under-test (DUT) through a known channel (fixtures and cables)
 - Add a specific "recipe" of stresses and de-emphasis
 - Command the DUT into loopback mode
 - Return "echoed" data to a BERT
 - Detected errors are inferred to be a result of bad DUT receiver decisions

USB 3.0 Compliance Receiver Tolerance Test Overview

- Seven Test Points
- SSC Clocking is enabled
- BER Test is performed at 10⁻¹⁰
- De-Emphasis Level is set to -3dB
- Amplitude at the end of the compliance channel: 180mV Hosts and 145mV Devices
- Each SJ term in the table below is tested one at a time after the device is in loopback mode

Frequency	SJ	RJ
500kHz	400ps	2.42ps RMS
1MHz	200ps	2.42ps RMS
2MHz	100ps	2.42ps RMS
4.9MHz	40ps	2.42ps RMS
10MHz	40ps	2.42ps RMS
20MHz	40ps	2.42ps RMS
33MHz	40ps	2.42ps RMS
50MHz	40ps	2.42ps RMS

Generic USB 3.0 RX Test Configuration

USB 3.0 Calibration

Host Calibration Setup

Device Calibration Setup

- Calibration Procedure
 - Connect signal source directly to scope
 - Calibrate de-emphasis to 3.0 dB + 5/-0% dB using CP0 with SSC off and CTLE off
 - Connect signal source through the compliance channel
 - Measured peak to peak TJ
 - Calibrate RJ(2.42 +/- 10% ps RMS/30.8 +/- 10% ps peak to peak at a BER of 10-10) with CP1 at the end of the channel applying CTLE and JTF
 - Calibrate SJ using CP0 until measured peak to peak TJ increases by that amount. Apply CTLE and set JTF at 50Khz.
 - Expected Tj with jitter off should be less than 100 ps. If this threshold is exceeded, replace the channel fixture(s) and/or cable(s).

USB 3 Loopback Negotiation

- RX Detect
 - SuperSpeed Link Partner is Availability is determined
- Polling.LFPS
 - DUT and Generator Send LFPS and establishes LFPS Handshake
- Polling.RxEQ
 - DUT and Generator send TSEQ in order to establish DUT RX Equalization Settings
- Polling.Active
 - DUT and Generator send 8 TS1
- Polling.Configuration
 - Generator instructs DUT to loopback by setting the loopback bit in the TS2 training sequence
- Polling.ldle
 - DUT directed to Loopback

Two Solutions for USB 3.0 Receiver Testing BERTScope BSA85C and AWG7122C

- Tektronix has the right solution to meet your needs
 - Both provide fully automated Receiver Compliance and Jitter Tolerance Testing
 - Both offer advanced impairments to debug problems caused by SSC or other anomalies
 - Both support a wide range of HSS Standards
 - Both support asynchronous clocking (SKP order set rejection)

BERTScope

- Performance that you need up to 26Gb/s for next generations standards including DisplayPort 1.2, SATA/SAS, 10G KR, PCI Express 3.0
- Impairments can be changed on the fly to see the effect of increasing or reducing jitter
- Debug and analysis tools enable quick identification of RX errors
- True BER measurements

Arbitrary Waveform Generator

- Common platform for MIPI, HDMI, USB 3.0, and SATA
- Only solution available that provides a common setup between transmitter and receiver testing without the need of RF switches and additional setup complexity
- Easily apply sparameter models to verify designs under different channel conditions without the need of physical ISI channels
- Generate SJ > 1Ghz to debug elusive problems caused by other system clocks

BERTScope USB 3.0 RX Test Configuration

AWG USB 3.0 RX/TX Test Configuration

- Only test equipment setup with a common configuration for Receiver and Transmitter Testing
- All Signal Impairments including channel impairments generated by the AWG
- No need for external error detectors
 - Only Oscilloscope based bit or symbol error detection solution (Ellisys Protocol Analyzers also supported)

Tektronix[®]

Tektronix USB 3.0 Summary

- Complete
 - Solutions available today for USB3.0 Transmitter, Cable, Channel, and Receiver Testing
- More than a Compliance Solution
 - Solutions to meet debugging, characterization, and compliance needs
 - Receiver stresses that go beyond compliance
- Increased Productivity
 - Fully automated transmitter and receiver test solutions
 - Analysis tools integrated on the BERTScope enable the isolation and root cause determination of receiver errors

Performance

- 26Gb/s BERTScope provides coverage for next generation testing needs Low noise floor enables measurements of small data eyes for compliance testing and receiver calibration
- Only 6.25Gb/s hardware serial trigger to capture protocol events that are causing failures or interoperability problems

Expertise

- Actively engaged in the USB Working Groups
- Regional support by Tektronix Application Engineering Experts

Taking Alexandra Antonio Tandara Internation 1980.	
	0 00
	0000000
	00 0000
Constant of Consta	
	8 8811
00000000	00000.0.0

Resources

- Access to Specifications
 - Rev 1.0, <u>http://www.usb.org/developers/docs/</u>
- Tektronix USB Electrical PHY Tools and MOI's
 - <u>www.tektronix.com/usb</u>
 - <u>www.tektronix.com/software</u>

PS202USB 3.0 Rx testing with BERTScope V1.0

