
High Speed Design Testing Solutions

- Advanced Tools for Compliance, Characterization and Debug

name title

Agenda

High-Speed Serial Test Challenges

- High-Speed Serial Test Simplified
 - Characterization
 - Debug
 - Compliance

Measurement Example: PCI Express®

Tektronix and the Digital Age

Next Generation

Networks

Wireless Everywhere

Enabled by Digital RF Technologies

2009-9-28

Video Explosion

Enabled by Digital Video Technologies

Accelerating Performance

Enabled by High Speed Serial Technologies

Pervasive **Electronics**

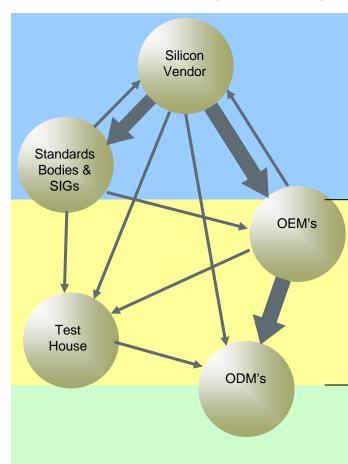
Enabled by Enabled by Embedded Systems Growing Wireless Technologies Users & Convergence

Digital World Drivers – Accelerating Performance

High-Speed Serial Trends and Implications

Industry/Technology/Market Trends

- Interfaces have moved from parallel to high-speed serial implementations
- Data transfer rates continue to increase: $3 \Rightarrow 6 \Rightarrow 10 \Rightarrow 12 \text{ Gb/s}$
- Industry standardization for plug-andplay interoperability
- Consumer electronics becoming a bigger driver


Implications for Test & Measurement

- Giga-bit data rates require higher performance instruments
- Industry standards are defining stringent measurement and analysis requirements
- Complete system testing of transmitter, receiver and transmission path or cable
- Requires broad product portfolio and more automation of compliance testing
- T&M role in standards bodies is key

Digital World Drivers – Accelerating Performance

HSS Industry Ecosystem – Standard Evolution

PC Segment Ecosystem

Phase 0

- ► 1st silicon development
- Standards definition
- ► Early test validation
- Adaptation of existing test tools

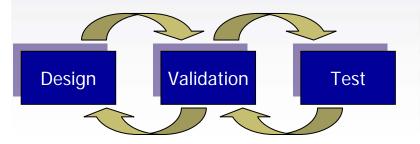
Phase 1

- Product development
- ► Test standardization and automated analysis
- ► Full compliance testing
- Performance traceability

Phase 2

- Mass deployment
- Simple test solution
- Dependent on upstream testing and compliance
- ► Go/No-go testing

Digital World Drivers – Accelerating Performance


Serial Data Design and Test Challenges

Engineering Test Challenges

Shorter development time

Aligned to market and new technologies

- Design correlation between simulation and test
- Gigabit data rates reduce design margins
- "Signal integrity" measurement and analysis
- Conformance to industry standards

Signal integrity is biggest of many design problems

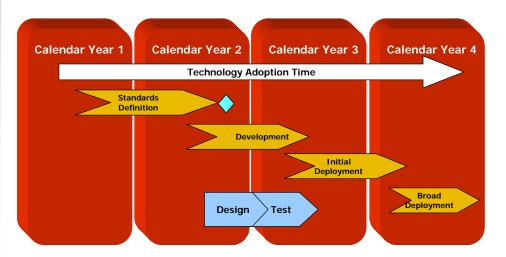
Signal integrity

Signal integrity

Signal integrity

45

Simulation/verification/test tools


Cost

Power/heat

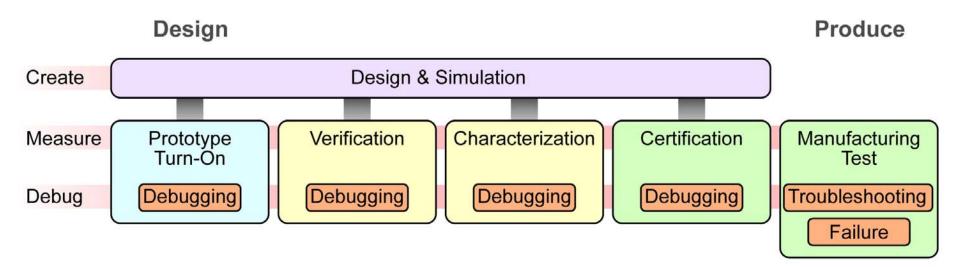
Standards

Interoperability/compatibility

7

"The speeds and layout techniques involved [in high speed serial] make debug almost impossible"

Source: EE Times survey


Agenda

High-Speed Serial Test Challenges

- High-Speed Serial Test Simplified
 - Characterization
 - Debug
 - Compliance
- Measurement Example: PCI Express

High Speed Design Process

Prototype Turn-on Establish prototype "vital signs" to assure safe and expected operation

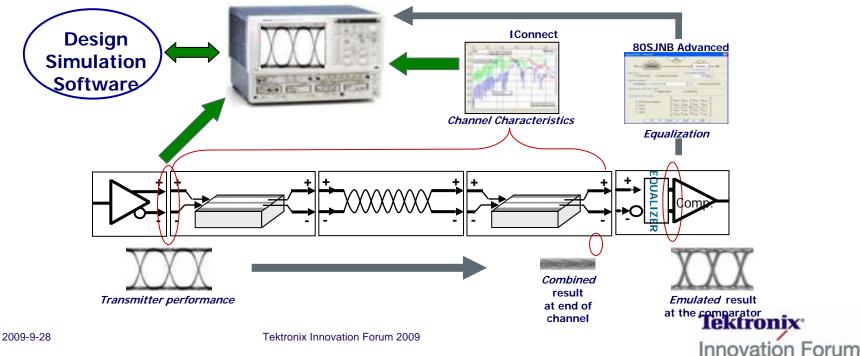
Verification Signal integrity and timing analysis, discovery of issues under nominal conditions

Debug Identify root cause of signal and system issues

Characterization Characterize circuit behavior under range of conditions; margin testing

Certification Testing for certification to an industry or internal standard

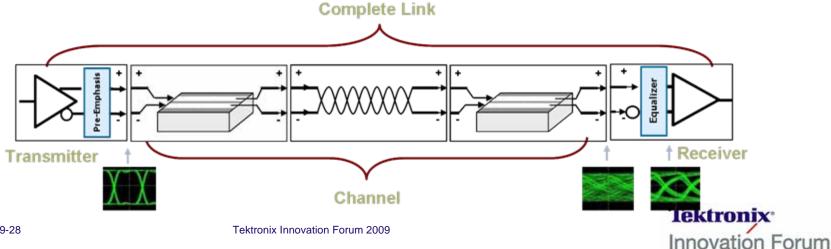
Manufacturing Test Testing to production requirements


Troubleshooting Isolating root cause of defective unit (verified design, broken product)

Failure Analysis Post-production analysis of defective unit to improve design

Design Characterization

- Quantify performance limits
- Precise understanding of circuit behavior under range of conditions
- Margin Analysis
 - Parameter variation: voltage, process, temperature
 - Correlate test results to simulation models and update models if necessary
 - Validate margins before handing off to manufacturing

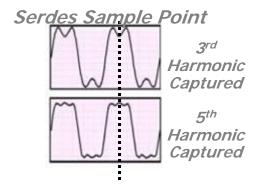


Trends in Physical Layer Testing

- Traditional methods
 - Basic amplitude and timing measurements
 - Mask and template testing
 - Histogram-based jitter measurements

| Text |

- Emerging requirements
 - Link analysis with equalization
 - S-Parameter-based de-embedding
 - Channel emulation (Compliance Interconnect Channel)
 - Jitter and noise separation



New Digital World Drivers – Accelerating Performance

Gigabit Data Rates Require High-Bandwidth Test

Serial Bus Data Rate	Fundamental Frequency	3 rd Harmonic	5 th Harmonic
2.5 Gb/s (PCI-Express)	1.25 GHz	3.75 GHz	6.25 GHz
3.0 Gbps (SATA II)	1.5GHz	4.5 GHz	7.5 GHz
3.125 Gbps (XAUI)	1.56 GHz	4.69 GHz	7.81 GHz
4.25 Gb/s (Fibre Channel)	2.125 GHz	6.375 GHz	10.625 GHz
4.8 Gb/s (FBD)	2.4 GHz	7.2 GHz	12.0 GHz
5.0 Gb/s (PCI-Express 2.0)	2.5 GHz	7.5 GHz	12.5 GHz
6.0 Gb/s (SATA III)	3.0 GHz	9.0 GHz	15.0 GHz
6.25 Gb/s (2x XAUI) (CEI)	3.125 GHz	9.375 GHz	15.625 GHz
6.4Gb/s (Front Side Bus)	3.2 GHz	9.6 GHz	16.0 GHz
8.0 Gb/s (Front Side Bus)	4.0 GHz	12.0 GHz	20.0 GHz
8.0 Gb/s (PCI-Express 3.0)	4.0 GHz	12.0 GHz	20.0 GHz

- GHz bandwidth performance ensures signal fidelity
- Provides critical accuracy for characterization and analysis
- Ensures complete testing of design margins
- Tektronix DSA72004B is only 20 GHz real-time scope to support next generation signal capture to the 5th harmonic

DUT Signal	Measurement System Bandwidth Required			
Rise/Fall time (20%-80%)	10% Accuracy	5% Accuracy	3% Accuracy	
50 ps	8.0 GHz	9.6 GHz	11.2 GHz	
40 ps	10.0 GHz	12.0 GHz	14.0 GHz	
30 ps	13.3 GHz	16.0 GHz	18.7 GHz	
20 ps	20 GHz	24 GHz	28 GHz	

2009-9-28

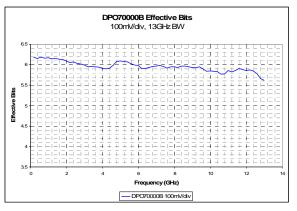
Highest Performance

Powerful Signal Acquisition

Introducing

World's Fastest Oscilloscopes Enhanced for Next Generation Serial Data Analysis

- NEW: Industry's Lowest Vertical Noise,
 Highest Number of Effective Bits (ENOB)
 and Flattest Frequency Response
 - More margin to allow your test to pass

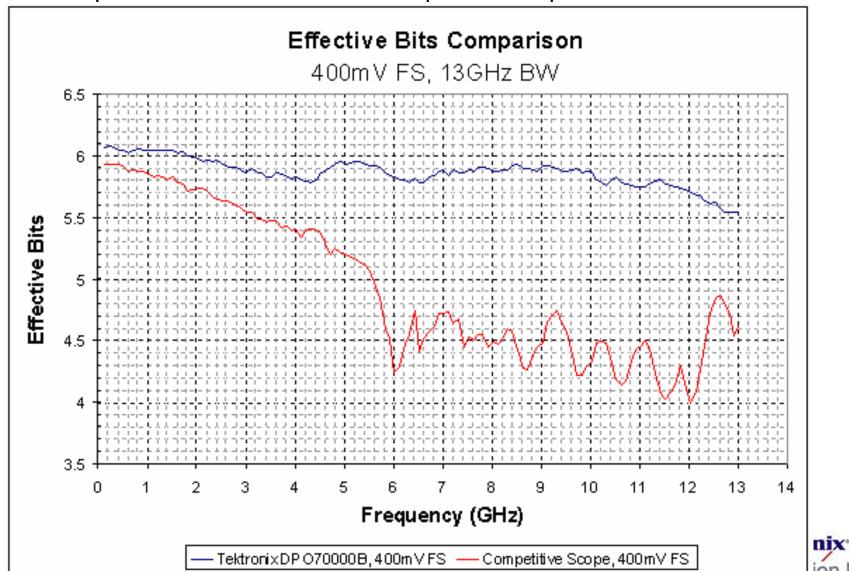

- Up to 20GHz and 50GS/s for 5th harmonic measurements for data rates up to 8Gb/s on all 4 channels
- Reduce debug time with industry's highest waveform capture rate >300,000 wfm/s
- Increase your measurement margin with industry's lowest jitter noise floor



Highest Performance for Emerging Technologies

- Enhanced Signal Integrity for Serial Data Measurements
 - Industry's best Effective Number of Bits (ENOB)
 - Flattest Frequency Response
 - Lowest noise floor
- Higher data rates = less available margin. Tek gives some of that margin back!
- New High Speed Serial Standards Require Test Instrumentation With Higher Signal Fidelity, Able to Capture a TRUE Representation of the Test Signal

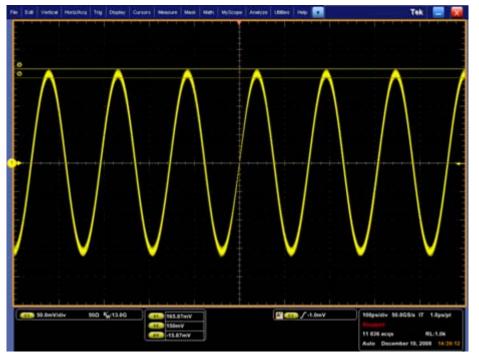
Maximize test margins through the industry's best signal integrity and signal fidelity

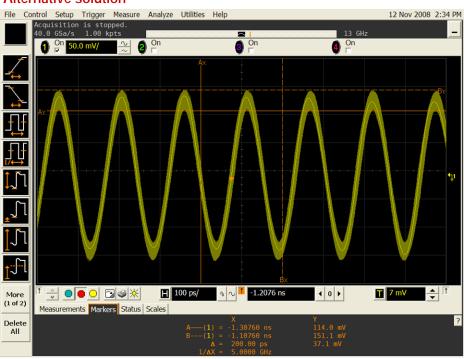


Enhanced Signal Integrity for
Data Measurements

Innovation Forum

The Industry's Best Signal Integrity with Less System Noise


Comparison of DPO70000B to Competitive Scope


Highest Performance

Industry's Lowest Noise Floor

Tektronix DSA70000B

Alternative solution

Higher data rates = less available margin

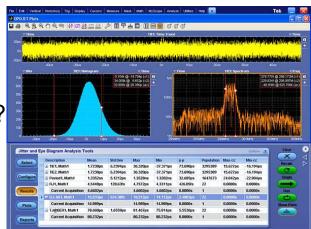
New High Speed Serial Standards Require Test Instrumentation With Higher Signal Fidelity, Able to Capture a TRUE Representation of the Test Signal 6.5GHz sine wave of identical source same settings used on both instruments Measured noise:

Tektronix = 15.9 mV pk-pk Alternative = 37 mV pk-pk

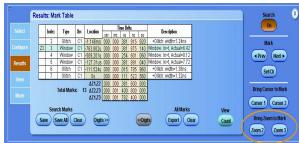
Agenda

High-Speed Serial Test Challenges

- High-Speed Serial Test Simplified
 - Characterization
 - Debug
 - Compliance


Measurement Example: PCI Express

Tektronix Innovation Forum 2009

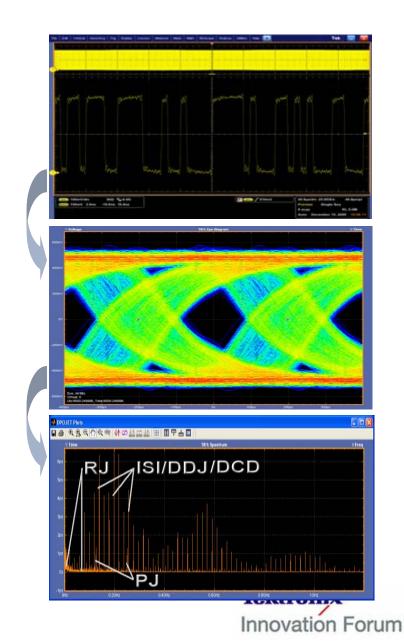


High Speed Serial Debug Tools

- Issues manifested in different layers of the protocol stack
 - Crosstalk, jitter, reflections, skew
 - Disparity, encoding or CRC errors
- Where do I start debugging? What tools are available?
- DPOJET Jitter and Eye Tools
 - Fast jitter measurements with 'One Button' Jitter Wizard
 - Compare timing, jitter, eye, amplitude measurements with user-definable clock recovery, filters, pass/fail limits, and reference levels
- PinPoint™ Triggering
 - HW Serial trigger for data rates up to 5 Gb/s
 - Over 1400 combinations of Sequence A-B triggers
- Advanced Search and Mark
 - Scan data for multiple events and mark each one
 - Quickly jump from event to event for more efficient navigation
 - Pass event timestamps into DPOJET and analyze only areas of interest

Data Visualization with DPOJET

Deep memory capture

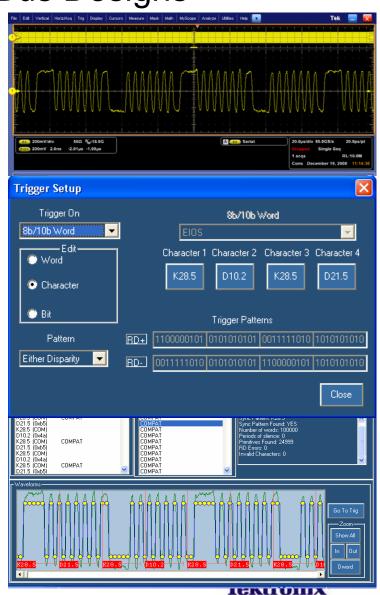

- Long records needed for low frequency events (SSC, periodic jitter, low speed clocks)
- Frequency window related to time capture
 - 1 SSC cycle (33kHz) => Need 30us time record

Eye Diagram Analysis

- Quick visual indicator of voltage and timing performance
- Related to Bit Error Rate (BER)

Jitter Decomposition

- Knowledge of jitter types and sources aids in debug
- Common jitter sources
 - Power supply coupling
 - PLL (tracking or overshoot)
 - Limited channel bandwidth and reflections (ISI)
 - Driver imbalance (Rise/fall time asymmetry)

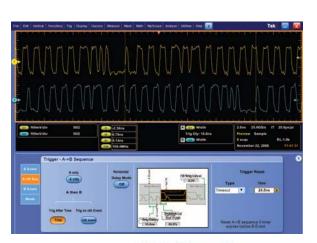

Triggering for High Speed Serial Bus Designs

Hardware-based triggering up to 5 Gb/s

- Serial pattern triggering captures a specified pattern with a length up to 64 bits long or 40 bits long for 8b/10b encoded serial data.
- De-embeds clock data in serial buses
- Serial Lane Skew Violation Trigger triggers on out-oftolerance time skew between any two lanes.

Efficient debugging for fast root cause isolation

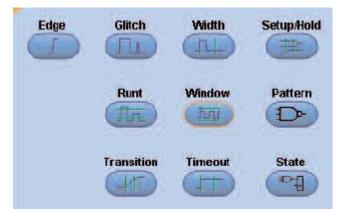
 Triggering support for the fastest serial busses including SATA, XAUI, Infiniband, PCI Express and others that transmit data and clock signals through differential techniques.

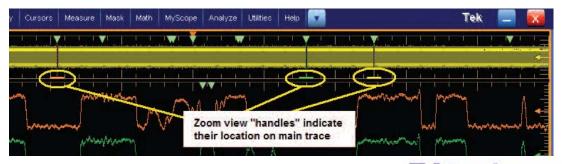

Serial Pattern Trigger Applications

- USB 3.0 5.0 Gb/s Loopback Error preamble decode
 - USB Rx designs include Bit Error Rate Test (BERT) commands
 - Unique characters enable error count and reporting
 - Error count request returns BERT Count (BCNT)

Table 6-18, BCNT

Symbol Number	Encoded Values	Description
0	K28.3	BERC
0	K28.3	BERC
EC<0:7>	DCODE	Error count (not scrambled)
EC<0:7>	DCODE	Error count (not scrambled)


- System error detection and debug
 - System reported K28.6 upon failure
 - Only occurred once every few minutes
- Validation of encoding latency
 - Specific word is encoded into the data to be easily recognizable in the decoded serial data stream
 - Data propagates through and is checked at output for delay



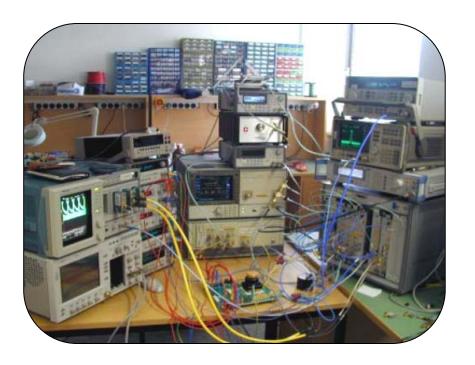
ASM Features Increase Waveform Analysis Productivity

- Pinpoint Trigger Palette of Search Methods
 - Uses Pinpoint triggers to find events
 - Send and receive settings with Pinpoint
 - Performs 8 search methods simultaneously
 - Stop on Found' performs as a pseudo-trigger
- Fast, Efficient Navigation Controls
 - Jump between 'Marks' in long records
 - Add descriptions to each event Mark
 - Bring Cursors to Marks
- Results Table summarizes events
 - Precision Time stamp of each event Mark
 - Describe trigger event of each Mark
 - Select and jump to the event on any line
 - Export data to .CSV file
- Compare results with MultiView Zoom Display
 - Display multiple events in MultiView Zoom
 - Bring Zoom to Mark

Agenda

High-Speed Serial Test Challenges

- High-Speed Serial Test Simplified
 - Characterization
 - Debug
 - Compliance


Measurement Example: PCI Express

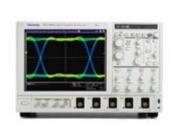
Tektronix Innovation Forum 2009

Compliance Testing – An *Industry* Productivity Issue

- Greater speed means greater design complexity, necessitating...
- Greater test complexity
 - More instruments, configurations, and setup time
- More tests
 - Highly specialized e.g., SSC modulation analysis, advanced receiver testing.
- Requires highly experienced, senior users
- Can require days to perform standards compliance tests

"Banner specs are no longer the gating issue. The latest equipment provides ample raw performance. What's needed is greater ease of use and automation."

- Customer feedback

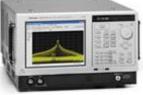


PCI Express Solutions

- Transmitter Signal Quality and Ref Clock **Testing**
 - 4Ch Real Time Oscilloscopes
 - High BW SMA Differential Probes
 - Jitter and Eye Analysis Tools

- Receiver Testing
 - Arbitrary Waveform Generators
 - Jitter Synthesis Tools

A new approach for easy, thorough and repeatable receiver testing



20GHz DSA

only Real-time Oscilloscope **System Electrical Validation** & Debug Solution for PCI 3.0 RefClk

- Interconnect Testing
 - Sampling Oscilloscopes
 - TDR Heads

TDNA SW

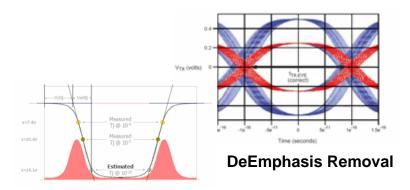
S Parameters

Digital Validation and Debug

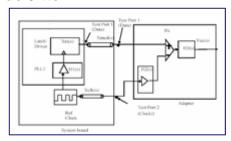
Logic Analyzers and PCIe Serial Analyzers

Only Logic Analysis Debug & Validation Solution for PCle 1 and 2.0

Tektronix Innovation Forum 2009


PCI Express 1.1/2.0 Testing

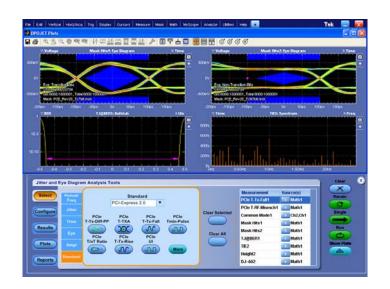
Gen 1 Testing


- DeEmphasis removal
- Eye height of transition/non-transition bits
- Common mode measurements
- 1st Order PLL, median-max jitter

Gen 2 Testing

- Measurement Channel De-convolution
- 2nd Order PLL, Dual-Dirac Jitter @ 10⁻¹² BER
- Signal Quality Eye and Jitter Testing
 - 1 Million UI Capture (10Million Samples)
 - Dual-Dirac Jitter @ 10⁻¹² BER
- Receiver Test
- Loop BW Test

Dual-Dirac Jitter

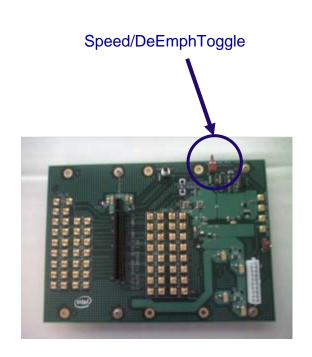


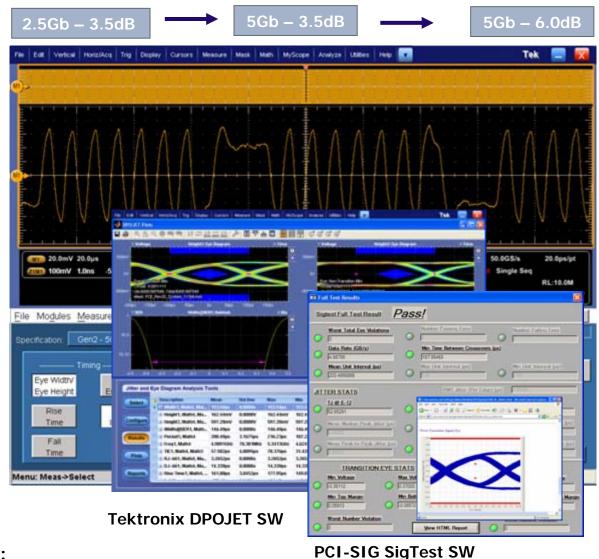
Dual Port – 4Ch Capture

Serial Bus Data Rate	Fundamental Frequency	3 rd Harmonic	5 th Harmonic		
2.5 Gb/s (PCI Express 1.1)	1.25GHz	3.75GHz	6.25GHz		
3.0 Gb/s (SATA Gen 2)	1.5GHz	4.5GHz	7.5GHz		
5.0 Gb/s (PCI-Express 2.0)	2.5GHz	7.5GHz	12.5GHz		
6.0 Gb/s (SATA Gen 3)	3.0GHz	9.0GHz	15 GHz		
8.0 Gb/s (PCI Express 3.0)	4.0GHz	12GHz	20 GHz		
ieki i					

Debug and Validation of PCI Express

- DPOJET and Option PCE
 - Measurement and setup library for PCIe Rev 1.1/2.0 and preliminary Rev 3.0
 - Measurements, limits and masks for three compliance test points
 - Base Spec Transmitter test point
 - System test point (using Compliance Load Board or CLB)
 - Add-In Card test point (using Compliance Base Board or CBB)
- Integrated analysis for easy validation and fast debug
 - Accurate Jitter Decomposition and TJ(BER) Estimation with Selectable Jitter Models Support
 - Analyze jitter with plots: Eye Diagram,
 CDF Bathtub, Spectrum, Histogram, and
 Trend
 - Software Clock Recovery including PCIe
 Golden PLL and custom PLL settings

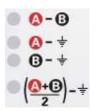


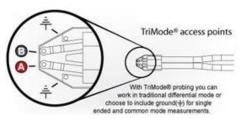


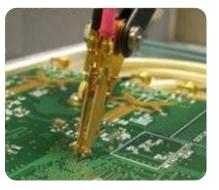
PCI Express 2.0 CEM Specification

PCI-E Electrical Compliance Testing

PCI-SIG Compliance Procedures:

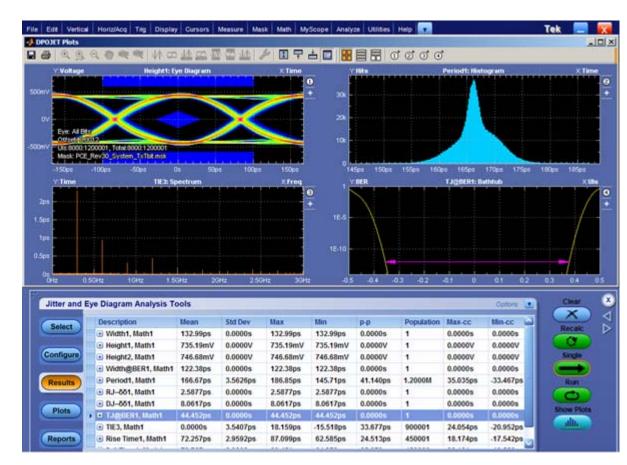

http://www.pcisig.com/specifications/pciexpress/compliance/compliance_library#electrical20




PCI Express 2.0 Base Specification

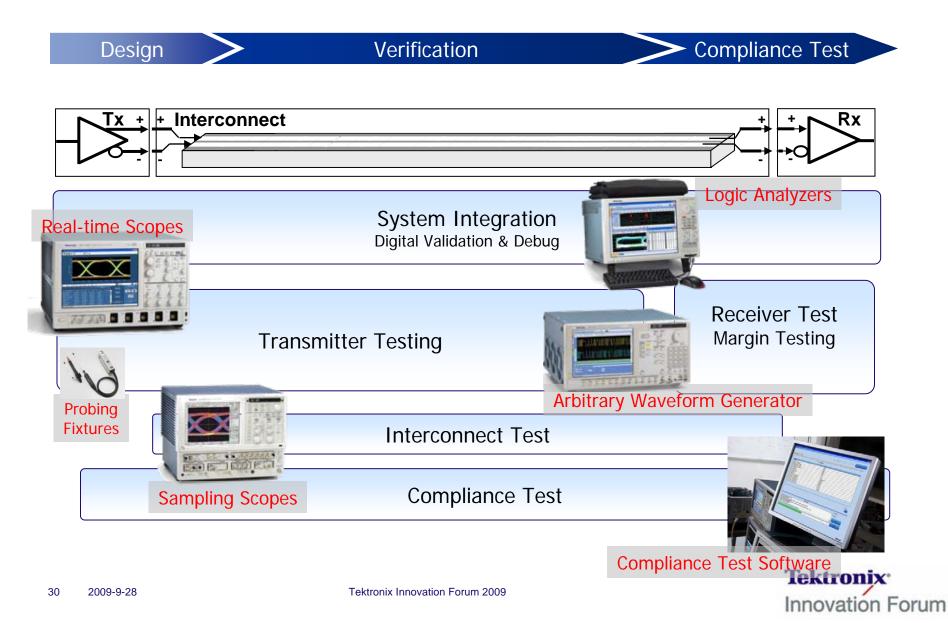
Common Mode Measurements

- Typically used when a signal needs to be measured and no SMA or RF connector is available
- Debug
 - Require a quick way to check that signals are present
 - Handheld probing offers the best versatility
 - Solder tips can be used for a more permanent connection for troubleshooting
- Validation and Compliance Testing
 - Chip to chip buses
 - Small solder tips are ideal for attaching to small features and give a permanent hands free connection to the signal
 - Fixtured probes can be used when soldering to a board is problematic


World's Highest Performing Solution For Next Generation Serial Technologies

A Perfect Combination -- DSA72004B 20 GHz Real-Time Digital Serial Analyzer + P7520 20 GHz Probe

PCI Express 3.0 Electrical Testing


only Real-time Oscilloscope System Electrical Validation & Debug Solution for PCI 3.0

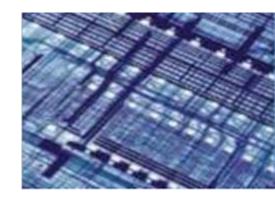
- DSA72004BReal-TimeOscilloscope
- DPOJET Jitter and Eye Tools Software
- P7500 TriMode[™]
 Differential Probes
- AWG7122B Arbitrary
 Waveform Generator

High-Speed Serial Data Test Solutions

Serial Data Debug and Validation Summary

- Pressures of cost, design and layout simplicity have made advances in bit-rates even more complex
- The incredible complexity of systems today mandate a list of measurements for compliance which regularly number in the hundreds of tests.
- A generation of measurement tools has followed the evolution of serial architectures, giving you better tools for accelerated testing and to help you with serial measurement and compliance challenges.

Additional Resources


http://www.tektronix.com/serial_data

Enabling Innovation in the Digital World

Accelerating Performance

Enabled by High-speed Serial Technologies

