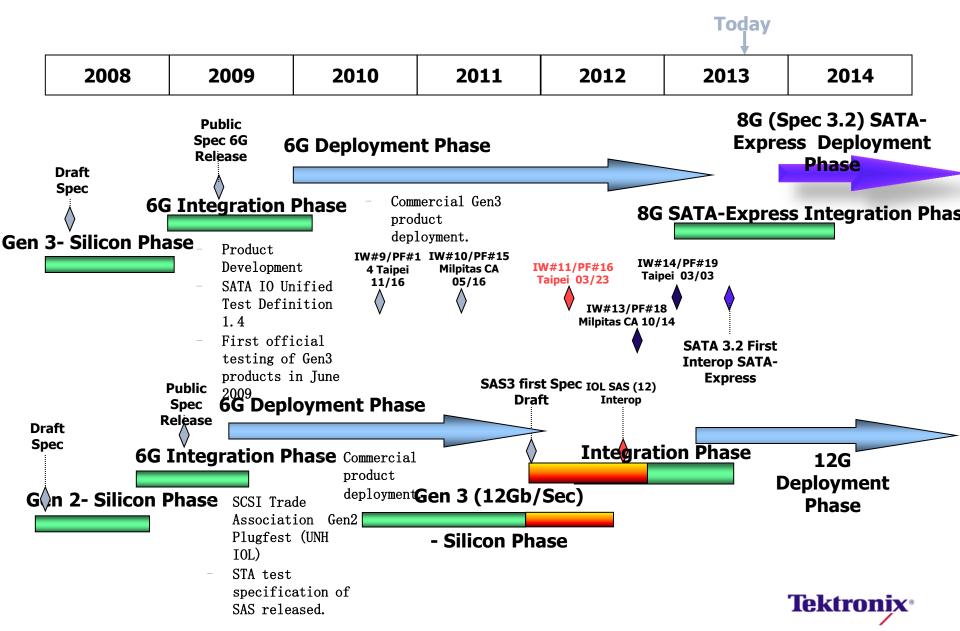

高速串行测试方案介绍

泰克华东区技术支持工程师 余洋

High-Speed Serial Data Test Solutions



Agenda

- Storage
- PCIe
- USB3
- DDR
- ThunderBolt
- HDMI
- MHL
- MIPI
- 10GBase-T
- SFP+
- 10G-KR

Storage Timelines and Solutions Development

SATA UTD 1.4 TSG/PHY/OOB Measurements

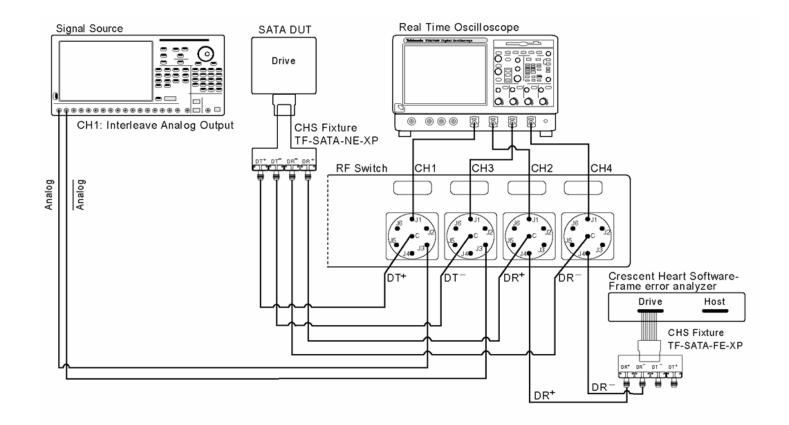
Drive : PHY-TSG-00B SATA Gen 3-UTD 1.4-All

Select	Test Name			
	Informative-df/dt Measurement			
	Informative-Eye diagrams			
	00B01-00B Signal Detection Threshold			
	00B02-UI During 00B Signaling			
	OOB03-COMINIT_RESET and COMWAKE Transmit Burst Length			
	OOB04-COMINIT_RESET Transmit Gap Length			
	OOB05-COMWAKE Transmit Gap Length			
	OOB06-COMWAKE Gap Detection Windows			
	OOB07-COMINIT Gap Detection Windows			
	PHY01-Unit Interval			
	PHY02-Frequency Long Term Stability			
	PHY03-Spread-Spectrum Modulation Frequency			
	PHY04-Spread-Spectrum Modulation Deviation			
	TSG01-Differential Output Voltage-Option 1			
	TSG01-Differential Output Voltage-Option 2			
	TSG02-Rise-Fall Time			
	TSG03-Differential Skew			
	TSG04-AC Common Mode Voltage			
	TSG05-Rise-Fall Imbalance			
	TSG06-Amplitude Imbalance			
	TSG09-TJ at Connector, Clock to Data, fBAUD-500			
	TSG10-DJ at Connector, Clock to Data, fBAUD-500			
	TSG11-TJ at Connector, Clock to Data, fBAUD-500			
	TSG12-DJ at Connector, Clock to Data, fBAUD-500			
	TSG13-Transmit Jitter			
	TSG14-TX Maximum Differential Voltage Amplitude			
	TSG15-TX Minimum Differential Voltage Amplitude			
	TSG16-Tx AC Common Mode Voltage			

SATA Gen 3-UTD 1.4-All	~
SATA Gen 2-UTD 1.2	~
SATA Gen 2-UTD 1.2-All	_
SATA Gen 2-UTD 1.3	_
SATA Gen 2-UTD 1.3-All	
SATA Gen 2-UTD 1.4	
SATA Gen 2-UTD 1.4-All	
SATA Gen 3-UTD 1.4	
SATA Gen 3-UTD 1.4-All	×

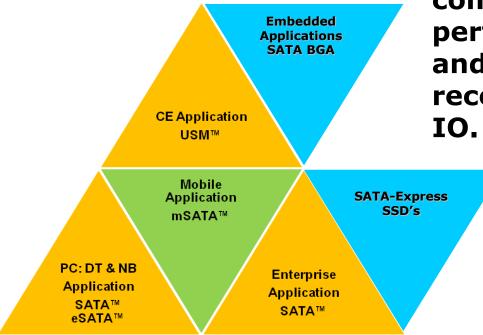
- Different test program and degrees of regression testing user selectable.
- Debug and diagnostic tools (Informative measurements)
- Updated SATA Gen3 measurements
 - New OOB patterns
 - TSG ECN additions

Tektronix


SATA/SAS TSB/PHY/OOB

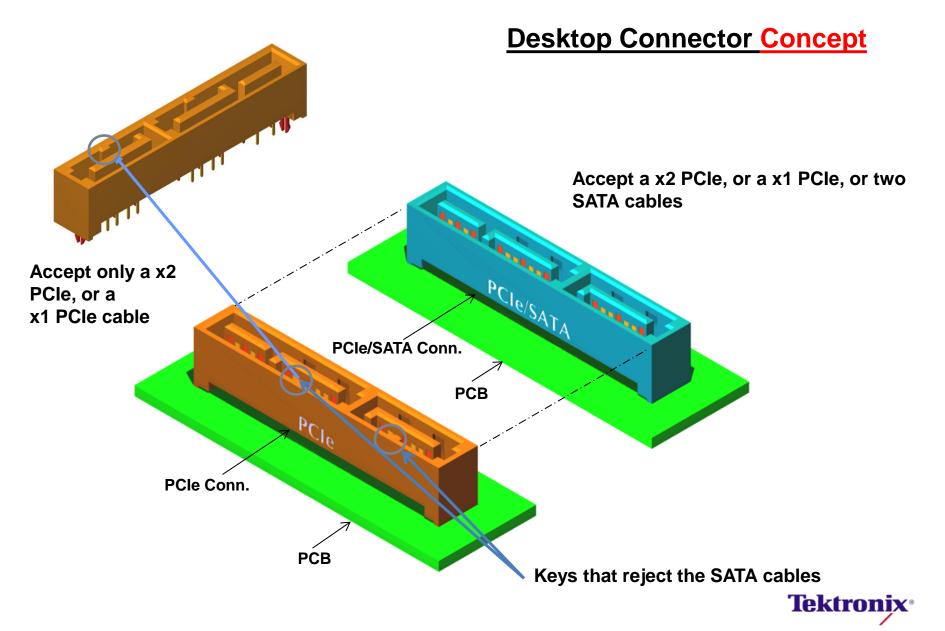
	Select Standard	Select Device	Select Test Suite		Version
○ Seria ⊙ SAS	IATA	④ Drive	 ● PHY-TSG-00B ○ Rx-Tx 	SAS 2.	0 💌
		Drive : PHY-TSG-OOB S/	AS 2.0		Configure
Select	Test Name	Informative		^	
	Test 5.3.1 - TX Physical Lin	•		_	Show MOI
	Test 5.3.2 - TX Common Mo				
	Test 5.3.3 - TX Common Mo				Show Schematic
	Test 5.3.4 - TX Peak-to-Peal	k Voltage			
	Test 5.3.5 - TX VMA and EQ				Select All
	Test 5.3.6 - TX Rise and Fall	Times		=	
	Test 5.3.7 - TX Random Jitte	r (RJ)			Select Required
	Test 5.3.8 - TX Total Jitter (T	J)			
	Test 5.3.9 - TX Waveform D	istortion Penalty (WDP)		~	Deselect All

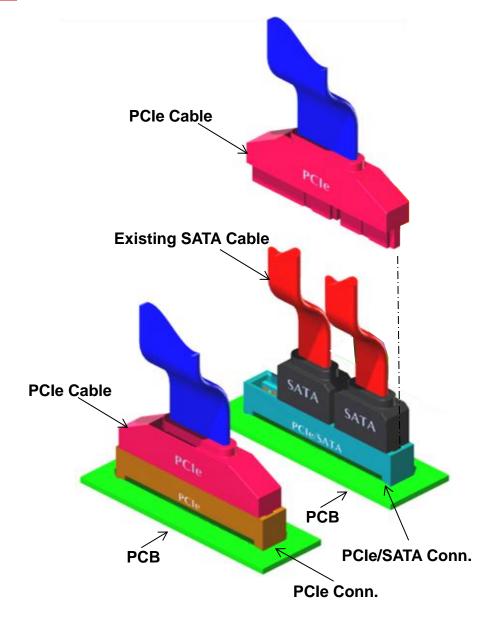
SATA/SAS TSG/PHY/OOB test connection



SATA/SAS: test Report

Test Name <u>Test 5.2.1-TX SSC Modulation Type</u>	Pattern Name	Interface Speed	Measurement Details	Low Limit	Measured Value	High Limit	Margin	Units	Test Resul
Test 5.2.1-TX SSC Modulation Type									
	HFTP	6.0Gb/s	Center-spread SAS	-NA-	SSC ON	-NA-	-NA-	-NA-	Pass
	HFTP	6.0Gb/s	SSC Modulation Frequency	>= 30	30.0000	<= 33	0,3		Pass
Test 5.2.2-TX SSC Modulation Frequency	HFTP	6.0Gb/s	Min SSC Modulation Frequency	>= 30	29.9992	<= 33	Informative	KHz	Informative
	HFTP	6.0Gb/s	Max SSC Modulation Frequency	>= 30	30.0011	<= 33	Informative		Informative
	HFTP	6.0Gb/s	Max Deviation	-NA-	-2199.6500	-NA-	-NA-		Informative
t 5.2.3-TX SSC Modulation Deviation and Balance	HFTP	6.0Gb/s	Min Deviation	-NA-	2200.0074	-NA-	-NA-	ppm	Informative
	HFTP HFTP	6.0Gb/s 6.0Gb/s	Avg Deviation Deviation asymmetry	>= -350	0.1787 0.3574	<= 350 <= 288	350.1787, 349.8213 287.6426	PP	Pass Pass
		0.000/5	Deviation asymmetry	-	0.3374	~= 200	207.0420		Fass
Test 5.2.4-TX SSC DFDT (Informative)	HFTP	6.0Gb/s	df/dt	>= -850	-380.3082	<= <mark>8</mark> 50	Informative	ppm/us	Informative
	HFTP	6.0Gb/s	Mean Period	> -100	-2.1050	< 100	Informative		Informative
est 5.3.1-TX Physical Link Rate Long Term Stability	HFTP	6.0Gb/s	Min Period	> -100	2200.0074	< 100	Informative	ppm	Informative
	HFTP	6.0Gb/s	Max Period	> -100	-2199.6501	< 100	Informative		Informative
Test 5.3.2-TX Common Mode RMS Voltage Limit	CJTPat-Gen 2	6.0Gb/s	Common-mode RMS voltage at IT (mV)- SAS 2.0	-	42.9927	< 30	12.9927	mV	Fail
			Common-mode spectrum (dBmV) at		00.5500		40.0500		-
	CJTPat-Gen 2	6.0Gb/s	100MHz-SAS 2.0 Common-mode spectrum (dBmV) at first	-	-33.5589	< 12.7	46.2589		Pass
Test 5.3.3-TX Common Mode Spectrum	CJTPat-Gen 2	6.0Gb/s	harmonic-SAS 2.0	-	16.7701	< 26	9.2299	mV	Pass
	CJTPat-Gen 2	6.0Gb/s	Common-mode spectrum (dBmV) at second harmonic-SAS 2.0	-	-9.8586	< 30	39.8586		Pass
Test 5.3.4-TX Peak-to-Peak Voltage	D30.3-Gen 2	6.0Gb/s	Peak to Peak voltage (mVppd)-SAS 2.0	> 850	1240.0000	< 1200	390,40	mV	Fail
Test 5.3.5-TX VMA and EQ	D30.3-Gen 2	6.0Gb/s	Transmitter equalization (dB)-SAS 2.0	> 2	2.0684	< 4	Informative	dB	Pass
	I								
Test 5.3.6-TX Rise and Fall Times	D10.2	6.0 Gb/s	Rise time in ps	>= 41.6	55.7616	-	14.1616	ps	Pass
	D10.2	6.0 Gb/s	Fall time in ps	>= 41.6	55.3999	-	13.7999		Pass
Test 5.0.7 TV Desiders I'lles (D.')	D24.3-Gen 2	6.0Gb/s	Rj before CIC	-	0.7069	<= 25	24.2931		Pass
Test 5.3.7-TX Random Jitter (RJ)	D24.3-Gen 2	6.0Gb/s	Rj after CIC	-	0.5321	<= 25	24.4679	ps	Pass


The SATA Ecosystem: Now


Today, SATA is expanding in specialized low power, compact and high performance areas with BGA and SATA-Express Solutions recently approved by SATA-IO.

Enabling the New SATA Express Ecosystem

Enabling the New SATA Express Ecosystem

Desktop Cables Concept

- SATA devices will coexist with next generation PCIe devices
- SATA cost/performance benefits
- Requires a connector that supports both PCIe and SATA
 - Allows a single motherboard (backplane) connector to support both interfaces
- HDD-compatible form factors to be defined for PCIe devices
 - Enables system-level mechanical compatibility
 - Preserves high-capacity storage

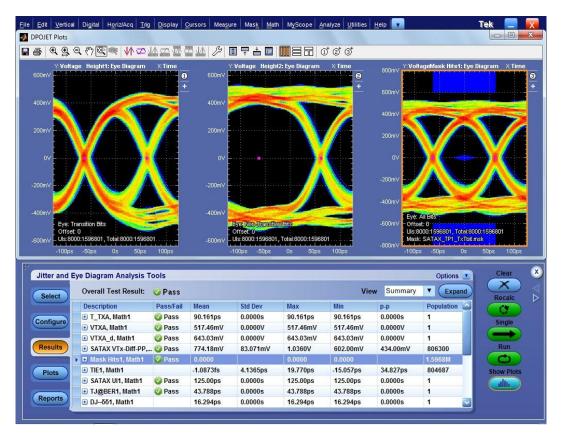
SATA-IO CabCon has been chartered to develop SATA compatible connectors and form factors for PCIe SSD/hybrid drives Tektronix*

SATA Express Signal Access

- Recommend Luxshare-ICT Dual Port SAS fixtures (SFF-8482)
- Similar dimensions but different pinout
- For device testing use plug fixture (TF-4R21) to mate with SATAe plug
 - Both ports accessible (29 pin)
- For cable testing use receptacle fixture (TF-4P22) to mate with SATAe receptacle
 - Only port A is accessible (22 pin)

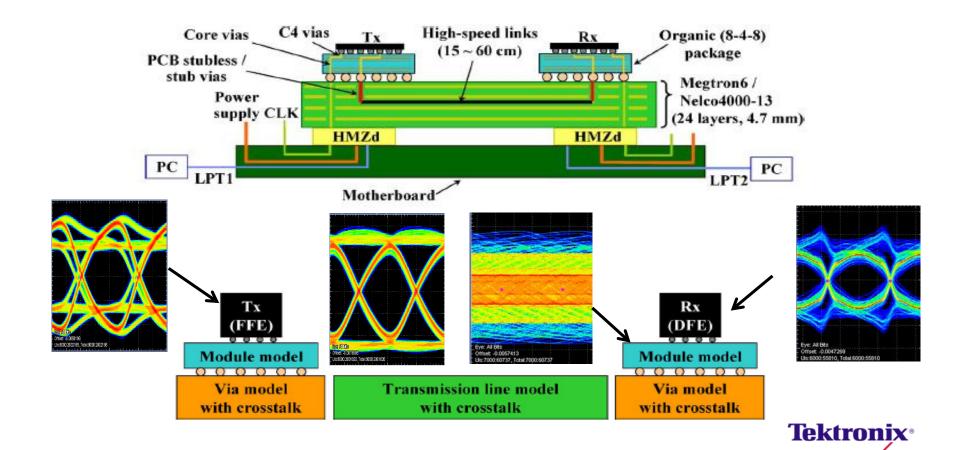
SAS Dual Port Plug Test Fixture

SAS Dual Port Receptacle Test Fixture



http://www.luxshare-ict.com/

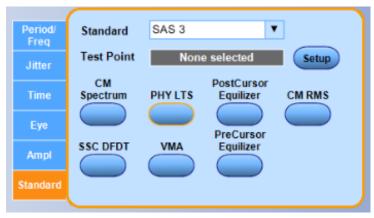
Tektronix Solutions for SATA Express Measurements


- DPOJET-based SATA Express setup (requires option PCE3)
- Support for Base/CEM spec measurements
- Supports all versions of PCI Express and includes SATA Express PLL configurations

Tektronix[®]

12G+ Design Problem: 1000mV, FFE, Crosstalk, DFE, 50mV

- Crosstalk and signal loss problems are the largest design challenge today.
- Significant advances in high tap count Decision Feedback Equalization are key to operating at 12G+.

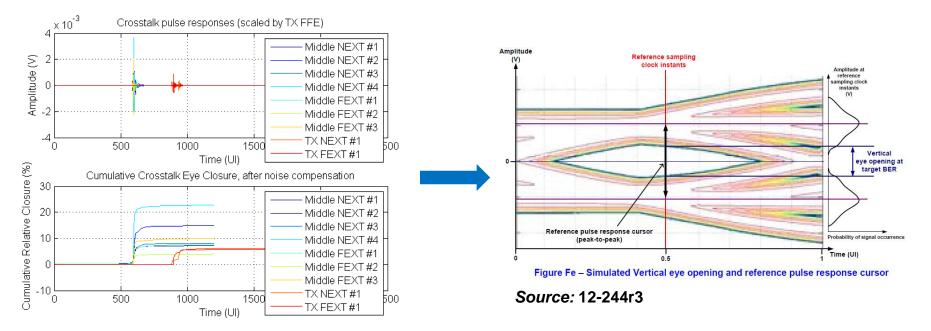


SAS-3 PHY Transmitter Solution

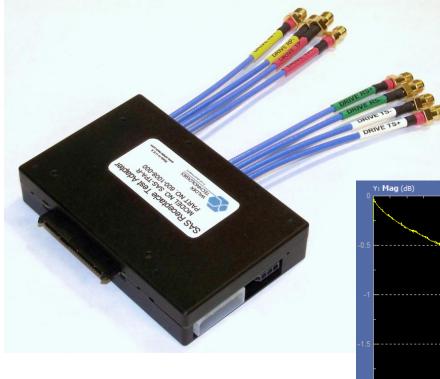
Group 1 – OOB <u>Sig</u>naling 5.1.1Maximum Noise During OOB Idle 5.1.2 **OOB Burst Amplitude** 5.1.3 **OOB Offset Delta OOB** Common Mode Delta 5.1.4Group 2 – Spread Spectrum Clocking (SSC) Requirements 5.2.1 SSC Modulation Type 5.2.2 SSC Modulation Frequency 5.2.3 SSC Modulation Deviation 5.2.4 SSC Balance 5.2.5 SSC DFDT Group 3 – NRZ Data Signaling Requirements 5.3.1 Physical Link Rate Long Term Stability 5.3.2 Common Mode RMS Voltage Limit 5.3.3 **Common Mode Spectrum** 5.3.4 Peak to Peak Voltage Voltage Modulation Amplitude (VMA) 5.3.5 5.3.6 Equalization 5.3.7 **Rise Time** 5.3.8 Fall Time 5.3.9 Random Jitter (RJ) 5.3.10 Total Jitter (TJ) 5.3.11 Waveform Distortion Penalty (WDP) 5.3.12 SAS3 EYEOPENING

- 5.3.13 Pre Cursor Equalization Ratio
- 5.3.14 Post Cursor Equalization Ratio
- 5.3.15 Transition Bit Voltage PK-PK (VHL)
- 5.3.16 Unit Interval

SAS-3 1.5/3/6/12 Gb/s Tx Test Software



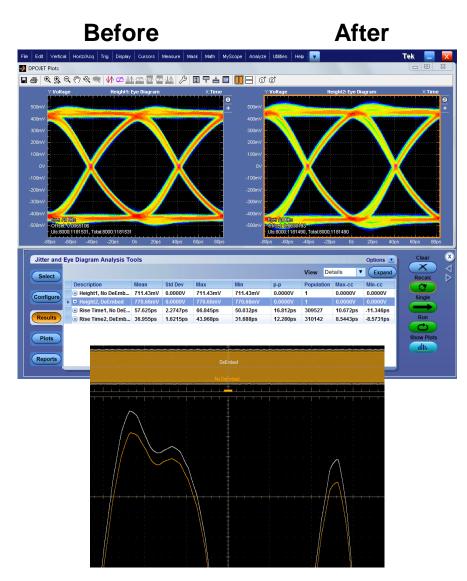
TekExpress SAS3-TSG Automation Softwa


NEW Measurement for Crosstalk/ISI Evaluation

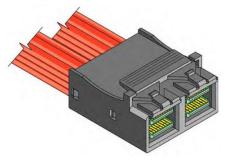
- SAS3_EYEOPENING* Measurement for accurate analysis of ISI and crosstalk effects
- Provides measure of relative vertical eye opening after reference equalization

*Note, this measurement is similar to the SAS-2 Waveform Distortion Penalty (WDP) measurement but also includes Tx EQ in addition to DFE. The code was provided and distributed through the T10 Technical Committee and permission has been granted for Tektronix to reuse.

SAS Receptacle Test Adapter


Sdd21 (1x Thru) => -3dB@26 GHz

Test Fixture De-embedding


- Why de-embed?
 - Tx measurements referenced to die (ET)
 - Improve margin with removal of fixture effects
- S-Parameters acquired from calibration fixture or model extraction
- Use inverse response to compensate for loss

	Before De-Embed	After De-Embed
Eye Height	711 mV	770 mV
Rise Time	57	37

Tektronix[•]

Mini-SAS HD Plug Test Adapters

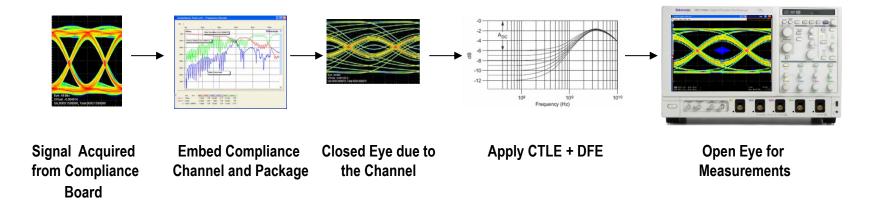
Mini SAS HD 8i cable plug connector

Color Coded and Imprinted High-Performance Markings **Mini-SAS HD Plug** (Large Colored = Channel Number) Connector (Short White = Transmitter Side) Configuration (Short Red = Positive Polarity) **Small Form-Factor** Housing (allows for 1x2 4X testing when using lefthand version TPA) 8 Position Low-16 SMAs for **Speed Connector High-Speed**

Testing

Tektronix[®]

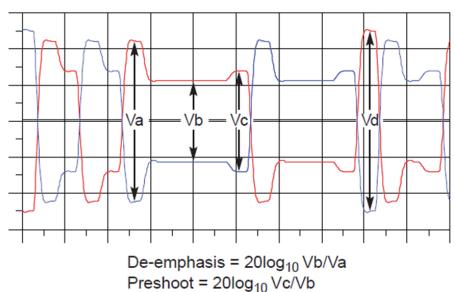
Recommended Equipment


The following components are required for performing SAS12 Tx measurements

- DPO/MSO70K(C/D) Series Oscilloscope with Opt. 2XL or higher
 - 12.5 GHz or higher recommended for 1.5, 3, or 6 Gb/s
 - 20 GHz or higher recommended for 12 Gb/s
- DPOJET Advanced (DJA) Prerequisite
- Option SAS3-TSG & SAS3-TSGW (required for WDP measurements)
- Test Fixtures:
 - <u>TF-SAS-TPA-R</u> SAS Gen3 Receptacle Adapter (drive form factor) or
 - <u>TF-SASHD-TPA-R</u> miniSASHD 12G SAS Receptacle (mini SAS HD 4i/x cables) or
 - Set of <u>TF-SASHD-TPAR-P</u> miniSASHD 12G SAS (Right Side) Plug and <u>TF-SASHD-TPAL-P</u> miniSASHD 12G SAS (Left Side) Plug (x8)
- PMCABLE1M or equivalent Phase Matched Cable Set (qty: 2)

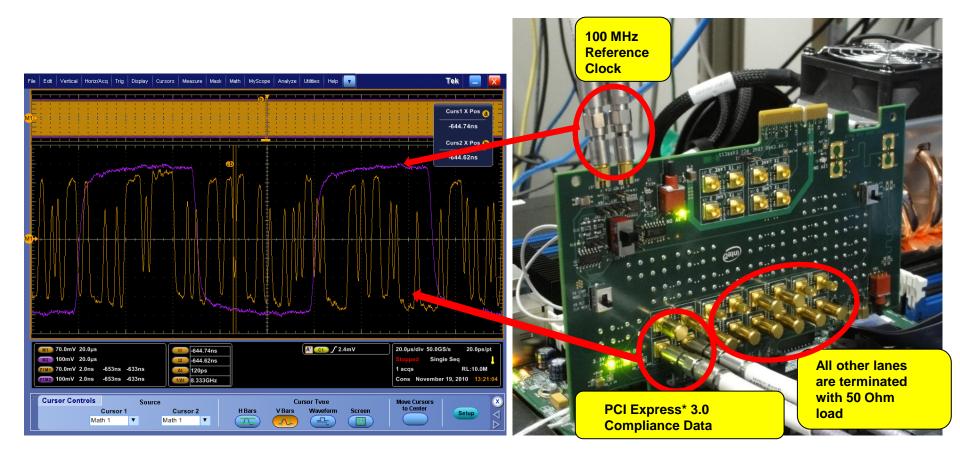
Add-In Card (CEM Spec) Tx Testing

- CEM Specification Measurements are defined at the slicer of a receiver
- Signal access is not possible
- Embedding of the compliance channel and package, as well as application of the behavioral equalizer is required
- SigTest or custom software like DPOJET will perform the embedding and calculate measurements

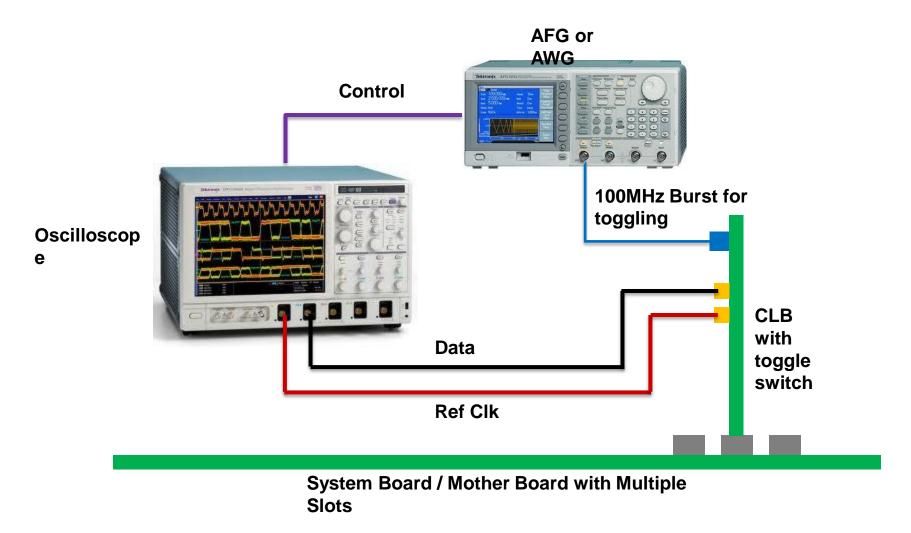


Compliance Patterns

 Once in compliance mode, bursts of 100MHz clock can used to cycle through various settings of compliance patterns to perform, Jitter, voltage, timing measurements.

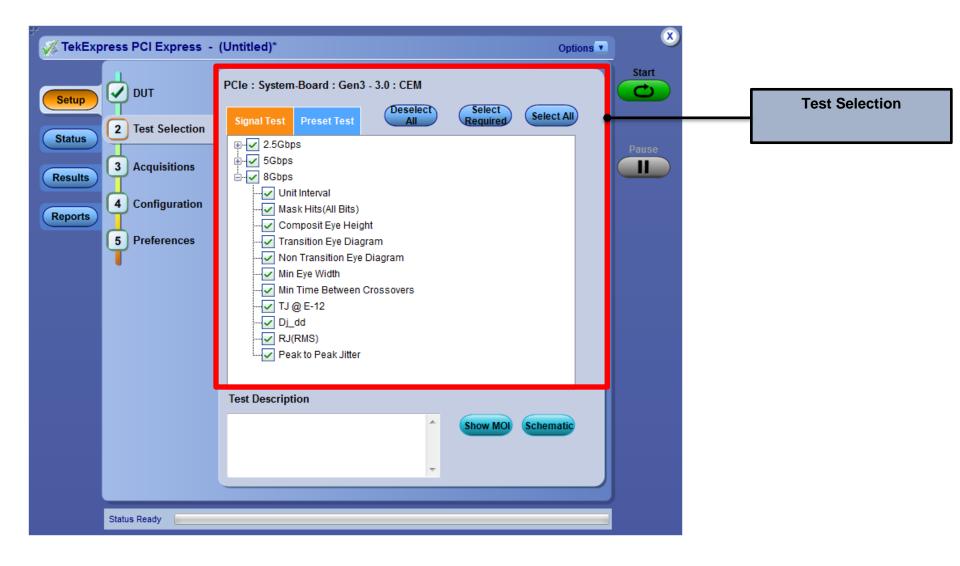

Data Rate	Preshoot	De-emphasis
2.5 GT/s,		-3.5 dB
5.0 GT/s,		-3.5 dB
5.0 GT/s,		-6.0 dB
8.0 GT/s,	P0 = 0.0	-6.0±1.5dB
8.0 GT/s,	P1 = 0.0	-3.5±1.5dB
8.0 GT/s,	P2 = 0.0	-4.4±1.5dB
8.0 GT/s,	P3 = 0.0	-2.5±1dB
8.0 GT/s,	P4 = 0.0	0.0dB
8.0 GT/s,	P5 = 1.9±1dB	0.0dB
8.0 GT/s,	P6 = 1.9±1dB	0.0dB
8.0 GT/s,	P7 = 1.9±1dB	-6.0±1.5dB
8.0 GT/s,	P8 = 1.9±1dB	-3.5±1dB
8.0 GT/s,	P9 = 1.9±1dB	0.0dB
8.0 GT/s,	P10 = 1.9±1dB	Test Max Boost Limit

Boost = 20log₁₀ Vd/Vb


Tektronix[®]

PCIE Dual-Port TX Measurement Example for System

Automated DUT Control



TekExpress Automation for Tx Compliance - Setup

KekExpress PCI Express -	(Untitled)* Options	
Setup 1 DUT Test Selection	DUT ID DUT001 Image: Slot Number 01 • Acquire live waveforms • Use pre-recorded waveform files SigTest Mode Compliance •	Start C Run Analysis on Live or Pre-Recorded Data
Results Acquisitions	Version Specification Device Type Gen3 - 3.0 ▼ CEM ▼ Add-In-Card ▼	Type of test / device selection
Reports 5 Preferences	Device Profile Data Rates Transmitter Equalization Link Analysis	Test selection
	✓ 2.5 Gb/s Setup ✓ 5 Gb/s ✓ 3.5 dB ✓ 6 dB ✓ 8 Gb/s Presets Selected Presets for Signal Quality P0.P01.P02.P03.P04.P05.P06.P07.P08.P09.P10. (For the Preset Tests go to "Test Selection")	
	Voltage Swing SSC Cross Talk • Full Swing • On • CrossTalk (Interleaved) • Reduced Swing • Off • Non CrossTalk (Non Interleaved)	
	Link Width 16 Lanes Lanes Selected Test Lanes Prompt me if Signal Check Fails Image: Signal Check Fails Image: Signal	Automate DUT control
	L0,L03,L07,L11,L15	
Status Ready		

TekExpress Automation for Tx Compliance – Test

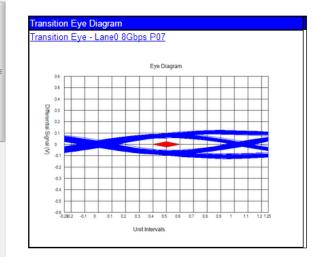
TekExpress Automation for Tx Compliance – Reports

Ove	Overall Test Result 🥝 Pass Preferen									
Sig	Signal Test Preset Test									
4	Description	Details	Generation	Pass/Fail	Value	Margin				
	- Lane0			🕑 Pass			<u> </u>			
	Unit Interval	Mean Unit Interval	8Gbps P07	🦁 Pass	125.0090 ps	L: 0.0465 ps H: 0.0235 ps				
	High Limit			🔮 Pass	125.0325					
	Low Limit			🔮 Pass	124.9625					
	🛨 Mask Hits(All Bits)	Mask Hits	8Gbps P07	Pass	0.0000 hits	H: 0.0000 hits	=			
	 	Composit Eye Height	8Gbps P07	Pass	105.7689 mV	L: 71.7689 mV				
	 Transition Eye Diagram 	Min Transition Eye Height	8Gbps P07	Informative	107.2269 mV	N.A				
	 Transition Eye Diagram 	Min Transition Voltage	8Gbps P07	Pass	-0.1264 mV	L: 599.8736 mV				
	Transition Eye Diagram Di	Max Transition	8Gbps P07	Pass	0.1289 mV	H: 599.8711 mV				
	 Transition Eye Diagram 	Min Transition Top Margin	8Gbps P07	Pass	0.0259 mV	L: 0.0259 mV				
		Min Transition Bottom Margin	8Gbps P07	Pass	-0.0314 mV	H: 0.0314 mV				
		Transition Eye Mask Hits	8Gbps P07	Pass	0.0000 hits	H: 0.0000 hits				
	Non Transition Eye	Min Non Transition Eye Height	8Gbps P07	Informative	112.3181 mV	N.A				
	Non Transition Eye	Min Non Transition	8Gbps P07	🐼 Pass	-0.1274 mV	L: 599.8726 mV				

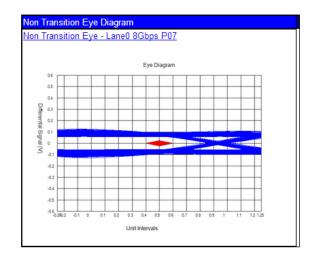
TekExpress Automation for Tx Compliance – Reports

Tektronix TekExpress PCI Express

Enabling Innovation


Add-In-Card Test Report

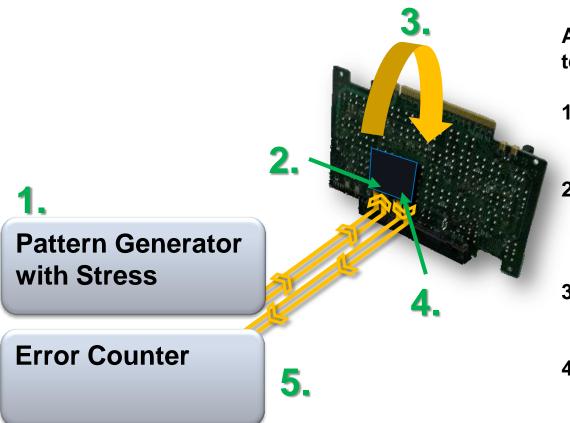
Setup Information	
	DPOJET Version : 6.0.1 Build 8
	Scope Model : DPO73304D
	Scope Serial Number : B241123
DUT ID : DUT001	SPC, FactoryCalibration : PASS;PASS
Date/Time : 2013-06-10 17:28:45	Scope F/W Version : 6.7.4 Build 3
Device Type : PCle	Probe1 Model : TCA292D
TekExpress Version : PCI Express:2.0.0.66 (Beta_Build) Framework:3.0.0.16_RevD	Probe1 Serial Number : N/A
Spec Version : Gen3 - 3.0	Probe2 Model : TCA292D
SigTest Version : 3_2_0	Probe2 Serial Number : N/A
Slot Number : 01	Probe3 Model : TCA292D
Overall Execution Time : 0:03:21	Probe3 Serial Number : N/A
Overall Test Result : Pass	Probe4 Model : TCA292D
	Probe4 Serial Number : N/A
	Signal Source Model : AFG3252
	Signal Source Serial Number : C010899
DUT Comment :DUT001	


Test Name:Summary Table	
Unit Interval	Pass
<u>Mask Hits(All Bits)</u>	Pass
Composit Eye Height	Pass
Transition Eye Diagram	Pass
Non Transition Eye Diagram	Pass
<u>Min Eye Width</u>	Informative
Min Time Between Crossovers	Informative
mhtml:file://X:\PCI Express\Reports\DUT081.mht#TJ @ E-12	Pass
<u>Dj_dd</u>	Informative
RJ(RMS)	Pass
Peak to Peak Jitter	Informative

[_Unit Interval									
	Measurement Details	Lane Name	DataRate	Equalization	Measured Value	Test Result	Margin	Low Limit	High Limit	Comments
	Mean Unit Interval	Lane0	8Gbps	P07	125.0090 ps	Pass	L: 0.0465 ps H: 0.0235 ps	124.9625	125.0325	

Back To Summary Table

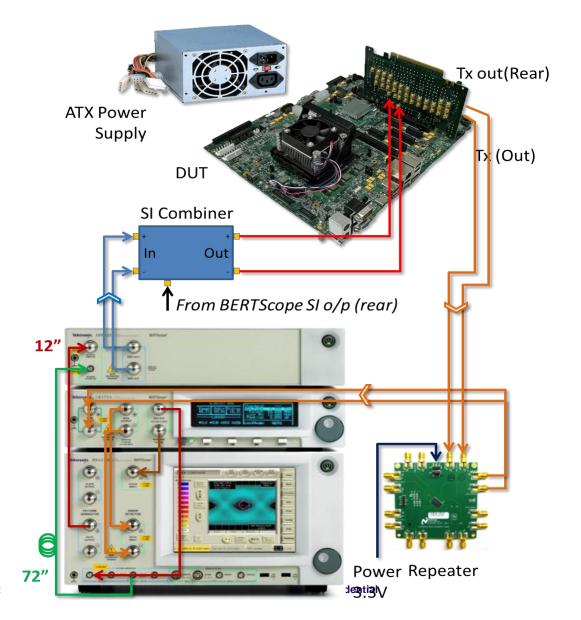
Back To Summary Table



Back To Summary Table

Ŧ

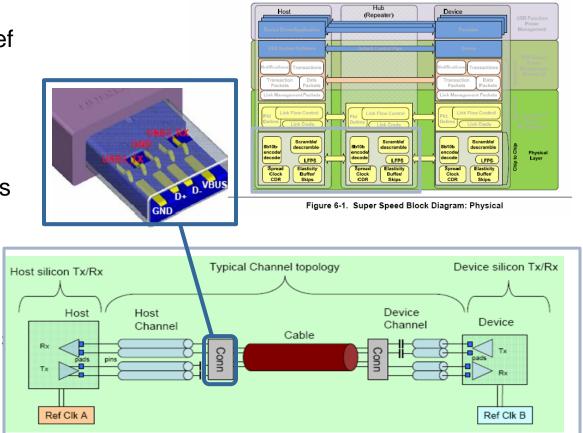
Basic Receiver Testing



At the simplest level, receiver testing is composed of:

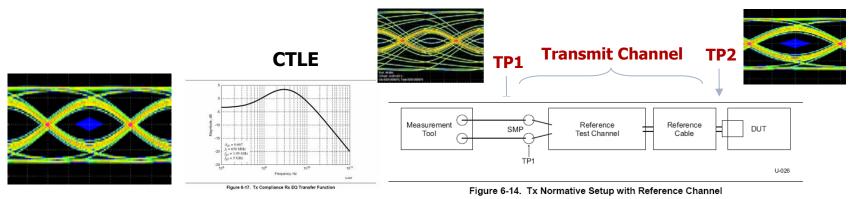
- 1. Send impaired signal to the receiver under test
- 2. The receiver decides whether the incoming bits are a one or a zero
- 3. The chip loops back the bit stream to the transmitter
- 4. The transmitter sends out exactly the bits it received
- 5. An error counter compares the bits to the expected signal and looks for mistakes (errors)

RX Measurement Example for Host



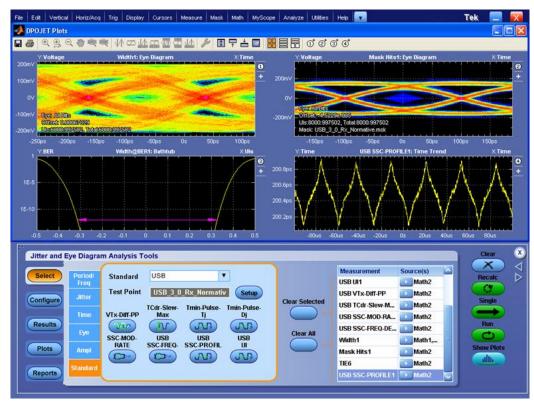
USB 3.0 Key Considerations

- Receiver Testing Now Required
 - Jitter tolerance
 - SSC, Asynchronous Ref Clocks can lead to interoperability issues
- Channel Considerations
 - Need to consider transmission line effects
 - Software channel emulation for early designs
- New Challenges
 - 12" Long Host Channel
 - Closed Eye at Rx
 - Equalization
 - De-emphasis at Tx
 - Continuous Time Linear Equalizer (CTLE) at Rx



Source: USB 3.0 Rev 1.0 Specification

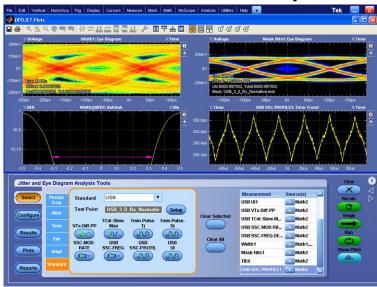
USB 3.0 Compliance Test Configuration


- USB 3.0 is a closed eye specification
 - Reference channel is embedded and CTLE is applied
- USB 3.0 Reference Channels
 - Host Reference Channel
 - 11" back panel is applied for device testing
 - Device Reference Channel
 - 5" device channel is applied for host testing
 - 3 Meter Reference Cable
 - Used for host and device (except captive devices) testing in addition to reference channels
- USB 3.0 Reference Equalizer
 - Attenuates the low frequency content of the signal to open the eye

USB 3.0 Transmitter Measurement Overview

- Voltage and Timing
 - Eye Height
 - Pk to Pk Differential Voltage
 - RJ
 - DJ
 - TJ
 - Slew Rate
- Low Frequency Periodic Signaling (LFPS)
 - Pk to Pk Differential Voltage
 - Rise / Fall Time
 - AC Common Mode
 - tBurst
 - tRepeat
 - tPeriod
- SSC
 - Modulation Rate
 - Deviation

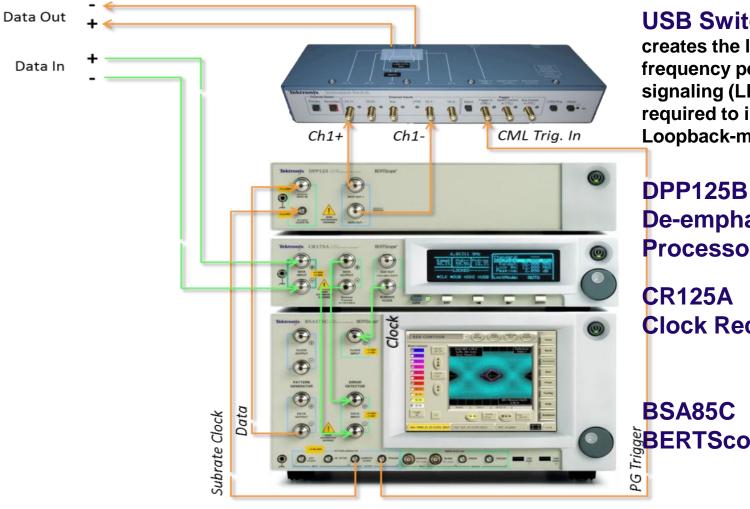
Tektronix[®]


Complete USB 3.0 Transmitter Solution

DPO/DSA70000 Series Oscilloscopes

- Go Beyond Compliance Testing
 - Debug Suite with DPOJET
 - SDLA for Channel Modeling
 - Tektronix Super Speed USB Fixtures
- Automation software for characterization and compliance
 - TekExpress with option USB-TX (includes option USB3)
- Recommended Scope
 - 12.5 GHz Real-Time Scope
 - 50 GS/s Sample Rate
 - P7313SMA Differential Probe (Optional)

TF-USB3-AB-KIT



Opt. USB-TX

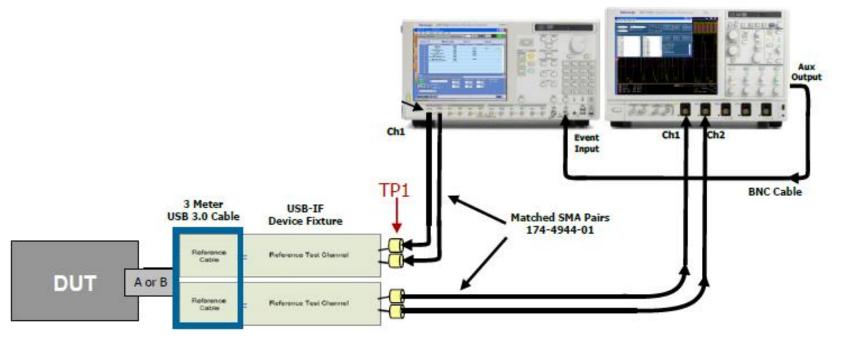
🎸 TekExpr	ess USB - (Untitled	I)*	Options
Setup Status Results Reports	1 DUT 2 Test Selection 3 Acquisitions 4 Configuration 5 Preferences	DUT ID DUT001 Acquire live waveforms Use pre-recorded waveform files Version: USB 3.0 SuperSpeed Electrical Test Spec: 0.9 Select DUT • Device • Host Test Mode Compliance • Device Profile Select Test Method • SIGTest (USB-IF) • DPOJET • Both Test Point Compliance (TP1) - Far End • • • • Spread Spectrum of Compliance (TP1) - Far End Filters for the link • De-Embed Tx_Device_TF_8G.fit • Embed Host_Channel_Back_Panel_3M_Cable_12.5G.fit • Embed Host_Channel_Back_Panel_3M_Cable_12.5G.fit	Pause
	Status Ready	Т	aktro

Opt. USB3

BERTScope USB 3.0 RX Test Configuration

USB Switch

creates the lowfrequency periodic signaling (LFPS) required to initiate Loopback-mode

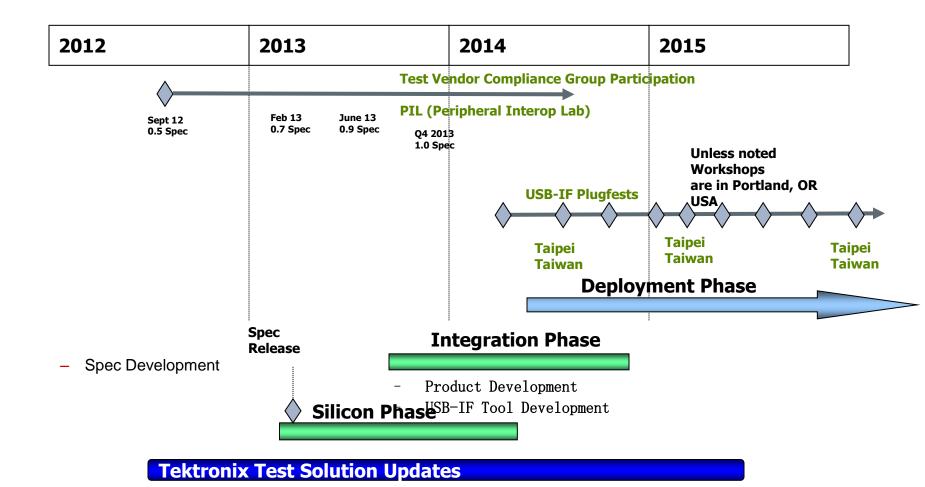

De-emphasis Processor **C**R125A **Clock Recovery**

BSA85C PG Trigger

AWG USB 3.0 RX/TX Test Configuration

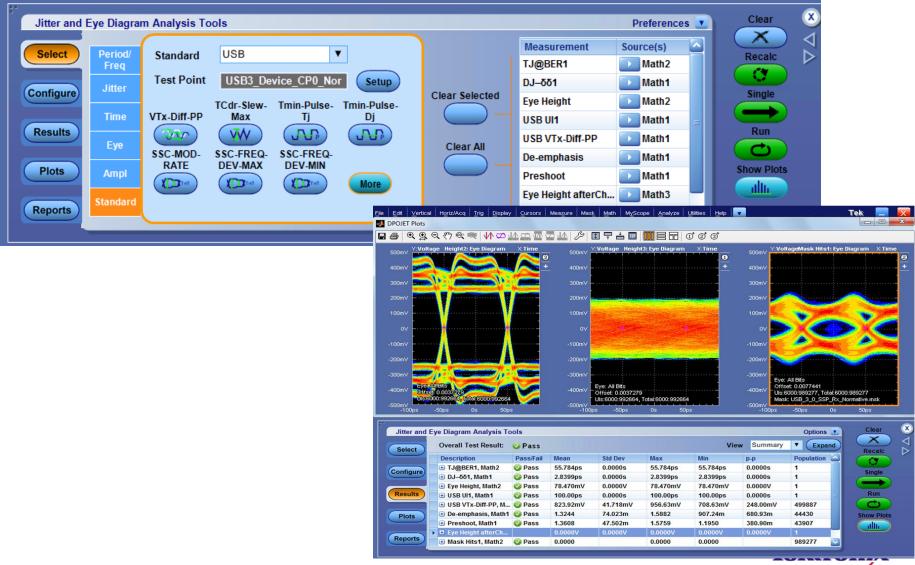
- Only test equipment setup with a common configuration for Receiver and Transmitter Testing
- All Signal Impairments including channel impairments generated by the AWG
- No need for external error detectors
 - Only Oscilloscope based bit or symbol error detection solution (Ellisys Protocol Analyzers also supported)

Tektronix[®]


Increasing Serial Data Bandwidth

- USB 2.0, 480 Mb/s (2000)
 - Shift from slower, wide, parallel buses to narrow, high speed serial bus
 - 40x faster data rate, support for new connectors & charging
- USB 3.0, 5 Gb/s (2008)
 - ~10x faster data rate over 3 meter cable
 - Faster edges, 'closed eye' architecture
- USB 3.0 Plus, 10 Gb/s (2013)
 - 2x faster data rate over 1 meter cable
 - 'Scaled' SuperSpeed implementation

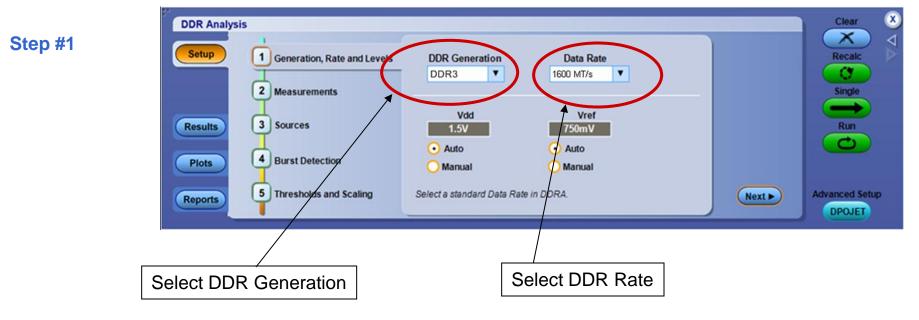
USB 3.0 SuperSpeedPlus Technology Timeline



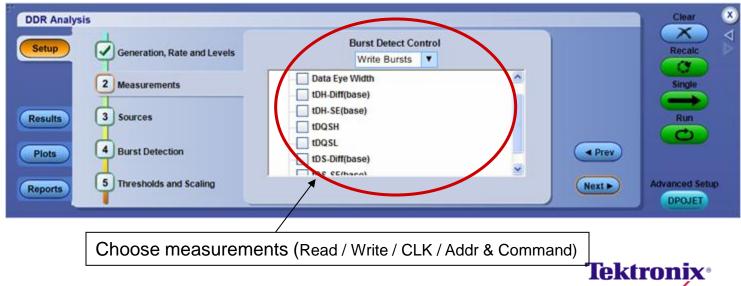
Transmitter, Receiver, Channel

Transmitter Validation Example - DPOJET

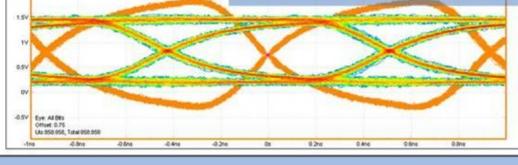
Recall DPOJET SSP setups


Memory Technology Overview

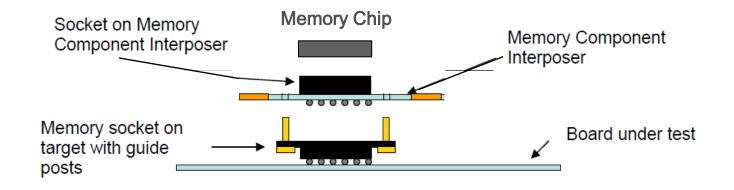
- DRAM Dominant Memory Technology
 - Computer system memory
 - Server, desktop, laptop
 - Dynamic, volatile memory, plug-in DIMM, SODIMM
 - Embedded systems
 - Cell phones, Ultra-Thin Notebooks, iPADs
 - Fixed memory configuration
 - DRAM driven by faster processors, faster data rates
 - DDR4 release on 26th Sep 2012 Maximum 3200 MT/s data rates transfer
 - LPDDR3-E planned can go unto 2133MT/s
 - DDR3L operates at 1.35V
 - DDR3U operates at 1.25V


- DRAM variants
 - DIMM based Speed and Performance
 - DDR, DDR2, DDR3 and DDR4
 - Low Power DDR
 - LPDDR, LPDDR2, LPDDR3, LPDDR3E, LPDDR4
 - Graphic DDR Optimized for Speed faster access
 - GDDR3, GDDR5 @ 5500 MT/s
 - Low Voltage DDR
 - DDR3L, DDR3U

Automated Test Setup

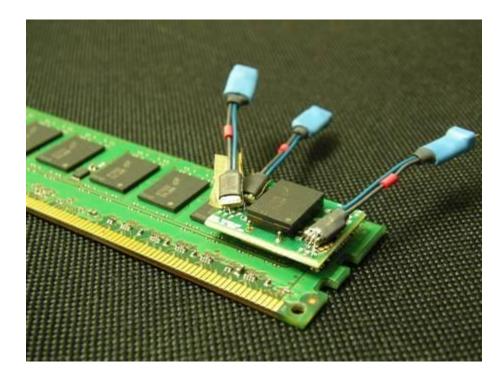


Effective Reporting / Archiving

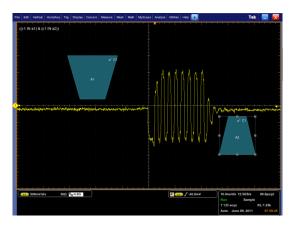

	Sitter an	iu cye biagram	Analysis	Tools : Measurement Report Ending Information
Measurement 100SH Source1 D0S(Reft) Value High Limit Low Limit Pass Fail Min 928 86ps 843 75ps Page	Osci DPO Statu	Configuration lloscope Versio JET Version	24 Par	October 16, 2009 10:17:54 6 Build 5 0 Build 41
Max 974.29ps 1.8150ns Pass	Index	Measurement	Source	Others
Pass/Fail Information	1	<u>Data Eye Height</u>	17	Bit Config => Bit Type: All Bits Clock Recovery => Method: Explicit Clock – Edge, Clock Source: Ref1, Clock Edge Both, Clock Multipler: 1, Clock Offset Selection Type: Manual, Clock Offset: 469 DAps, Recalculation Type: When required General => Measurement Range Limits: Off, Max: Tims, Min. 0s, Custom Source Name: DQ(Ref2), DQS(Ref
Measurement (DOSL Source1 DOS(Reft) Value High Limit Low Limit Pass Fail	2	Slew Rate Hold. Fall(DQ)	Ref2	Edges => From Level. High, To Level: Mid, Slew Rate Technique. DDRSlewrateTechnique Filters => F1: Spec: No Filter, F2: Spec: No Filter General => Measurement Range Limits: Off, Max: Ds, Min: Ds, Custom Source Name. DQ (ReQ).
Min 900.00ps 843.75ps Pass Max 940.44ps 1.8150ns Pass	3	Slew Rate Hold- Rise(DO)	ReQ	Edges => From Level Low, To Level Mid, Slew Rate Technique: DDRSlewrateTechnique Filters => F1: Spec: No Filt F2: Spec: No Filter General => Measurement Range Limits: Off, Max: Tms, Min. 0s, Custom Source Name: DD(ReQ)
timages	4	Slew Rate. Setup Fall(DQ)	Re ²	Edges => From Level. Mid, To Level. Low, Slew Rate Technique: DDRSlewrateTechnique Filters => F1: Spec: No Filt F2: Spec: No Filter General => Measurement Range Limits: Off, Max: Ds, Min: Ds, Custom Source Name: DO(ReQ)
Measurement Plot(s)	5	Slew Rate. Setup Rise(DQ)	ReQ	Edges => From Level. Mid, To Level. High, Slew Rate Technique. DDRStewrateTechnique Filters => F1. Spec: No Filter, F2. Spec: No Filter General => Measurement Range Limits: Off, Max. 1ms, Min: Ds, Custom Source Name. D((Ref2)
	6	(DS.Diff(base)	Ref1,Ref2	Edges => Clock Edge: Both, Data Edge: Both Fritters => F1: Spec: No Fritter, F2: Spec: No Fritter General => Measurement Range Limits: On: Max: 928ps: Mir: Ds: Custern Source Name: DOS(Ref1): DO(Ref2)
2V 15V 1V 05V	×			Measurement Range Limits: On, Max: 938ps, Min: Ds, Custom Source Name: DQS(Reft), DQ(Ref2)

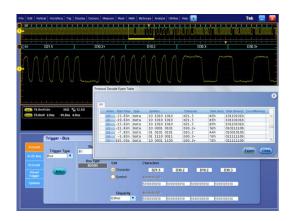
Tekt ronix Inno 44

Installation Process



BGA Chip Interposer for Oscilloscopes

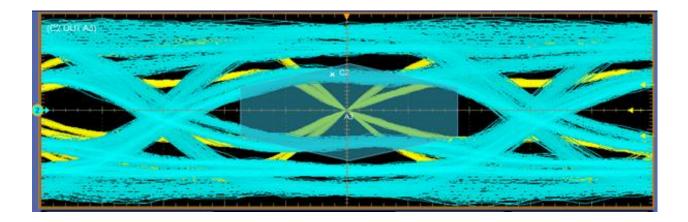



Tektronix

- Available in socket and solder-in versions
 - Socket design allows for multiple chip exchanges
 - Solder-in best for single use
- Recommended probes: P7500 Series
 - P7504, P7506, P7508, P7513A
 - 020-3022-00 TriMode solder tips for Nexus Interposer

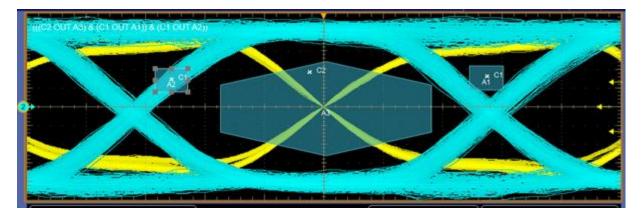
Visual Trigger and Serial Decode

- Next generation designs have less margin and additional analysis must be done to pinpoint in on pattern dependent issues
 - NEW! Visual Trigger qualifies hard to define trigger events
 - 8 customizable shapes for capture of real signal behaviors
- Electrical and Logic layer are merging and requires simultaneous analog and protocol views
 - NEW! 8b/10b Serial Decode
 - Trigger or Search on decoded traffic
 - Compare to analog views to speed up time to answer



Triggering Techniques for Debugging DRAM

- Challenge: Dual-Rank System
 - Need to Isolate & Measure a Single Rank
 - Difficult to isolate data bursts from one rank only

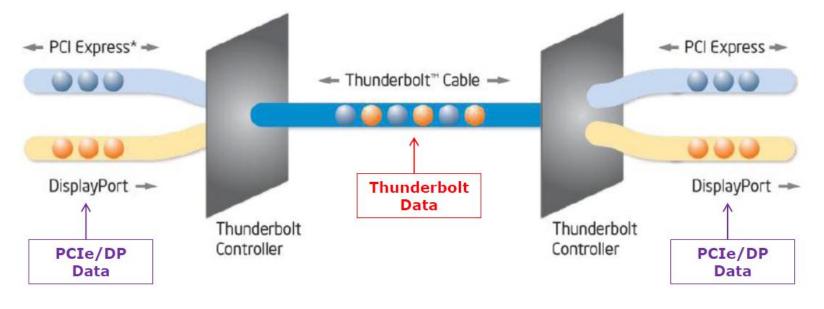


Tekt

ronix Conf **Triggering Techniques for Debugging DRAM**

- 'Visual' Trigger Used to Qualify One Rank
 - Visual area ("keep-out" region) used to exclude low-amplitude signals
 - Eliminates lower-amplitude data bursts from rank 2

"After" gating with visual trigger



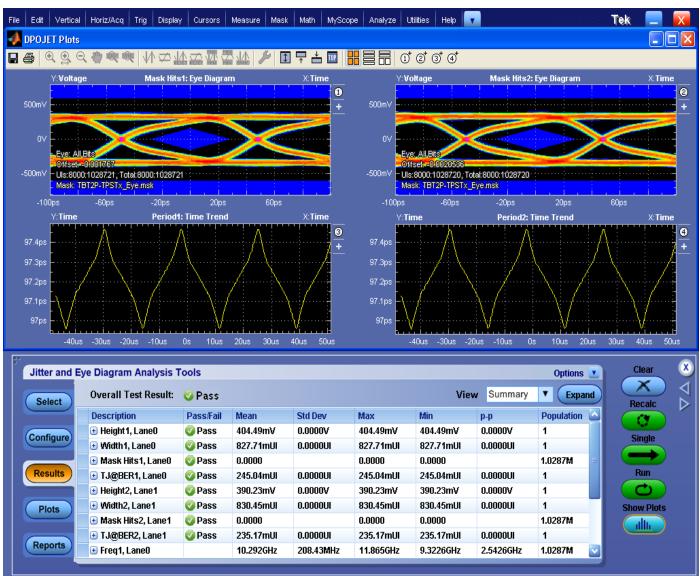
Thunderbolt Overview

- High Speed Data Bus for PC's
 - Brought to market by Intel/Apple in 2011
 - Interoperable with DisplayPort
- Thunderbolt signaling is dual NRZ (64/66b Encoded)
 - 10.3125 Gb/s data rate
 - It utilizes SFP+ technology with 2 diff Tx and Rx pairs.

Thunderbolt

Tektronix[®]

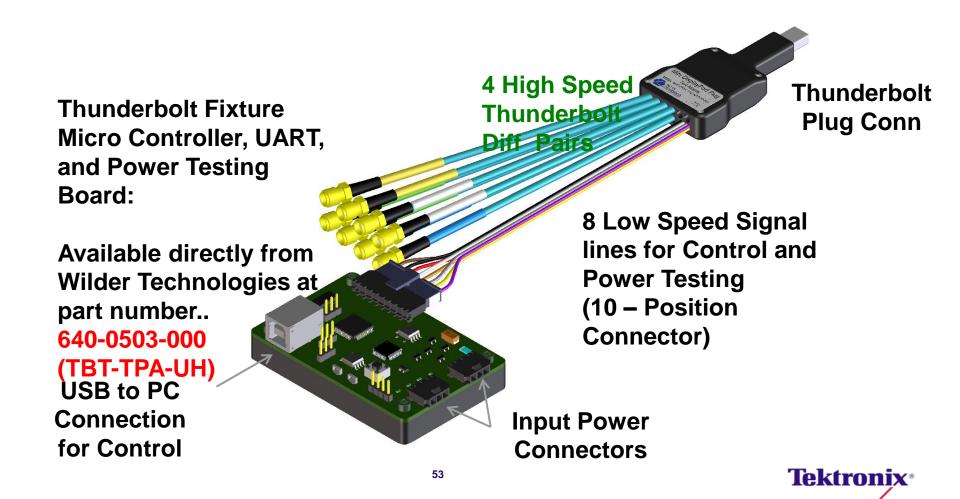
Thunderbolt Transmitter Test Overview

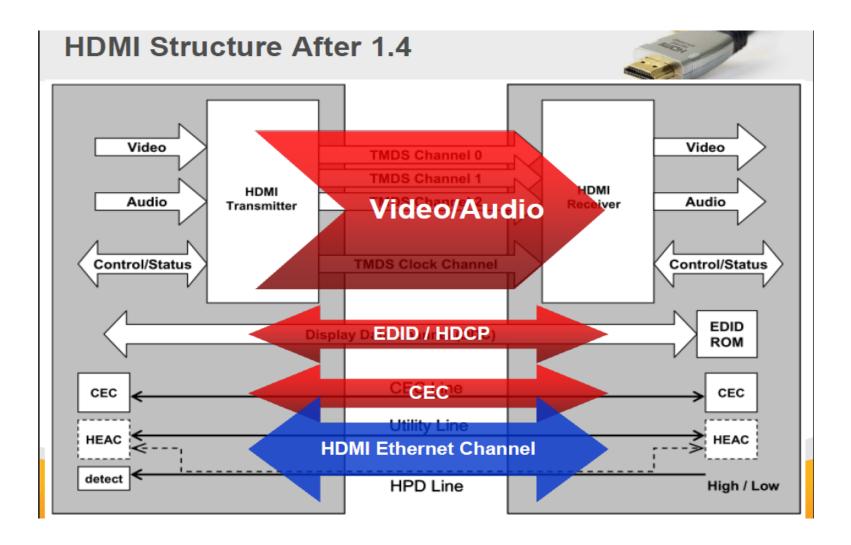

- All measurements are near end with Fixtures fully de-embed.
- Requires DisplayPort 1.2 conformance testing
- Source Test Suite
- PHY1.1 Transition Timing
- PHY1.2 Intra-Pair Skew
- PHY1.3 AC Common Mode RMS
- PHY1.4 AC Common Mode Peak
- PHY1.5 Eye Height
- PHY1.6 Eye Width
- PHY1.7 Max Differential Voltage
- PHY1.8 Total Jitter at 10-12 BER
- PHY1.9 Unit Interval
- PHY1.10 SSC Modulation Frequency

DUT Configuration

- 1. Bit Rates: (DP1.2) + 10.3125Gb/sec
- 2. Patterns: 8 1's8 0's, PRBS-9, PRBS-11 and PRBS-31
- 3. SSC (Spread Spectrum): On/Off

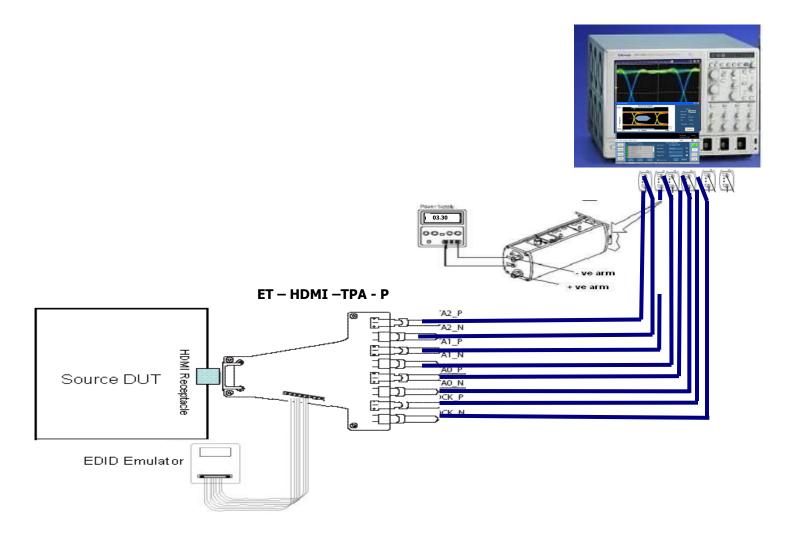
Thunderbolt Transmitter Testing Fully supported in Tektronix's current solutions



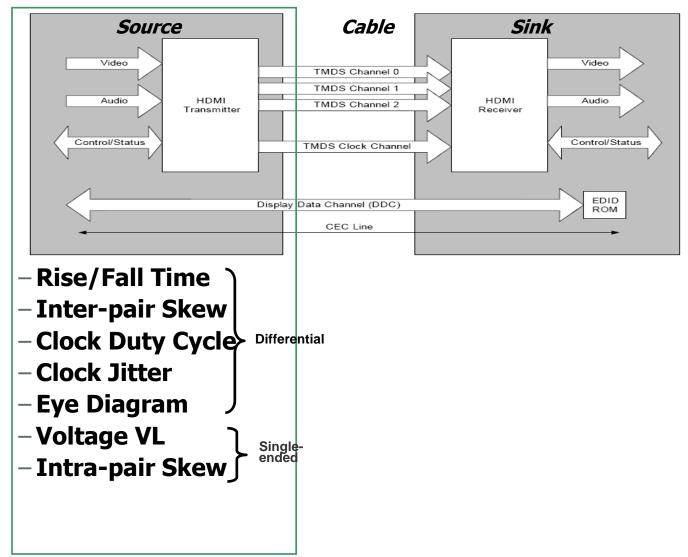

Tektronix[®]

Thunderbolt Test Connectivity

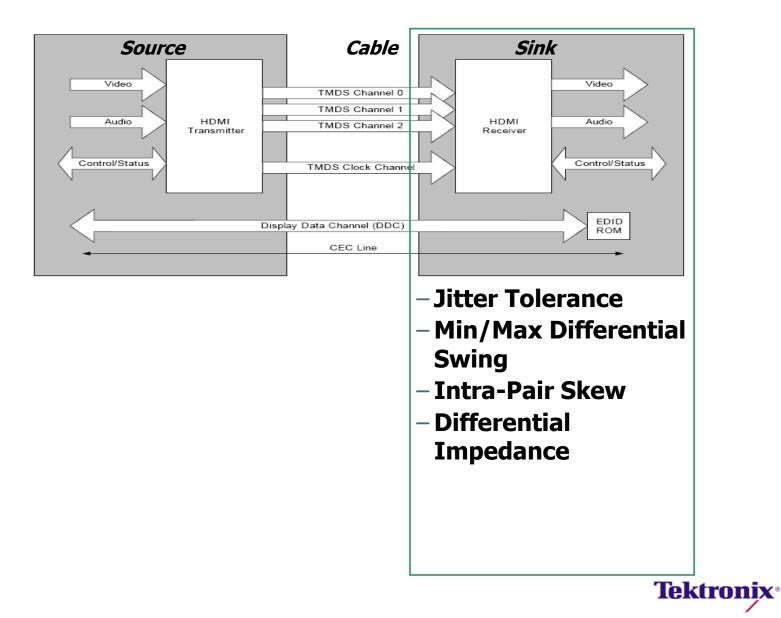
 The Digital Port Micro is responsible for Test Pattern and general state control, as well as error polling in the DUT.



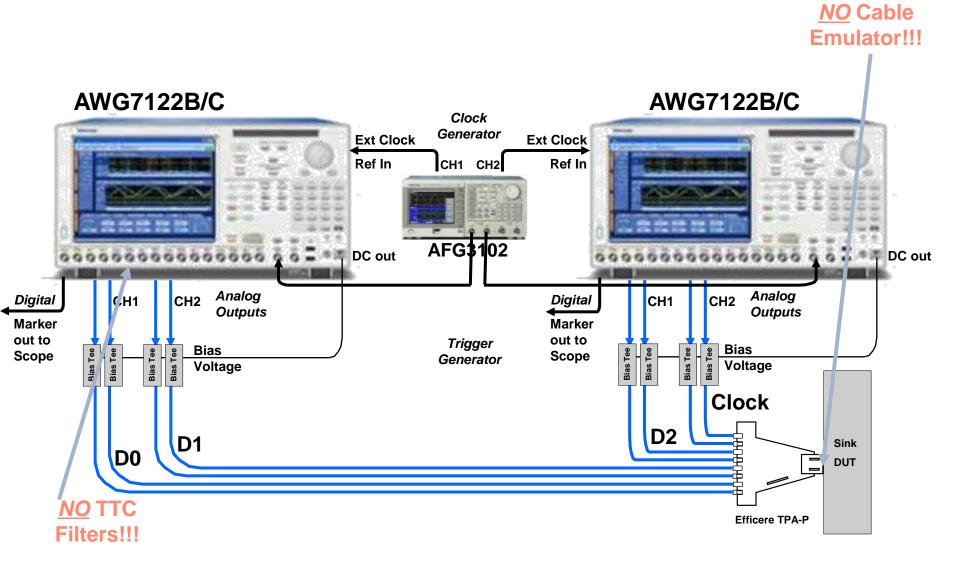
HDMI Basics



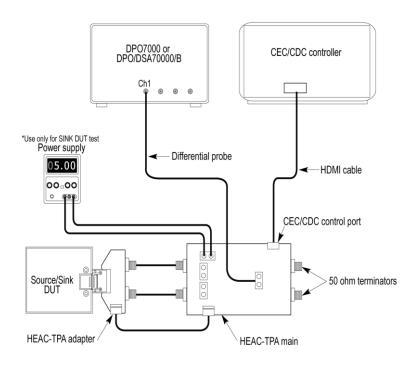
HDMI 测试方案-源端

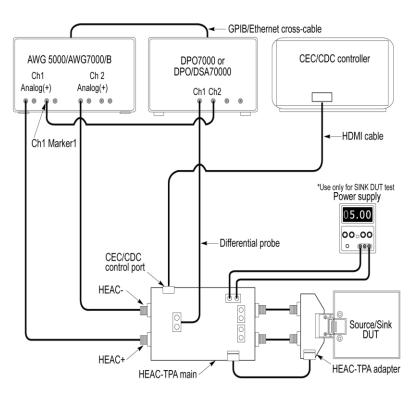

Tektronix[®]

HDMI Source Testing



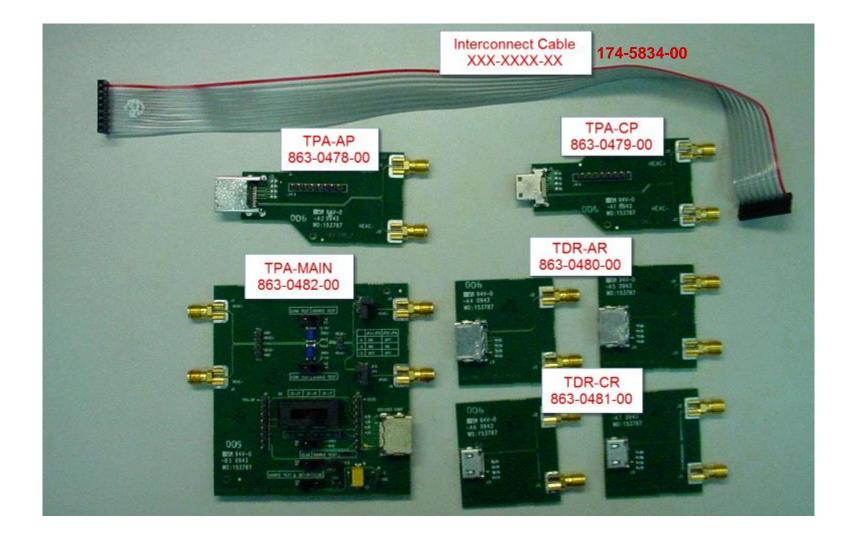
HDMI Sink Testing




HDMI 测试方案-接收端(TV/Monitor)

Tektronix[®]

HDMI 1.4 HEAC Solution Configuration



Tx Test Setup

Rx Test Setup

Tektronix HDMI 1.4a Test Solutions HEAC Fixtures

Tektronix HDMI 1.4a Test Solutions

HEAC Software

🚿 TekEx	press HEAC Automated Solution						
<u>F</u> ile <u>V</u> ie	w <u>T</u> ools <u>H</u> elp						
		Run Stop					
Select	Acquire Analyze Report						
	Select Device	Version					
	.C-Transmitter	CTS 1.4					
⊙ HEA	C-Receiver	DUT IP Address					
		255.255.255.255 ✓ Auto Detect MAC Address					
	HEAC-Receiver : D	ifferential-Rx CTS 1.4	Test Description				
Select	TestName	This optional test verifies the receiver A					
Select ☑	Receiver Performance - Nominal Respo	capability to respond to nominal amplitude, clock frequency and					
	5.16 Receiver Performance - Amplitude						
	5.16 Receiver Performance - Clock Fred	uency	Configure				
	5.16 Receiver Performance - Common r						
	5.16 Receiver Performance - Signal Sou		Show Schematic				
	5.16 Receiver Performance - Worst Cas						
			SelectAll				
			DeselectAl				
TekExpress	launched successfully.		Tektronix				

Proposed HDMI 2.0 features-Not finalized

- Uses same Cat 2 Cable and HDMI 1.4b connector
- Support 4K 2K 4:4:4 60 Hz 594Mhz
- Support 4K 2K 4:2:0 297Mhz
- Direct Attach device support
- Low level Bit error rate testing
- Scrambling is likely to be introduced for rates >340Mcps.

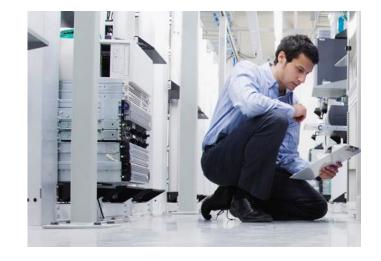
Rise time Needs

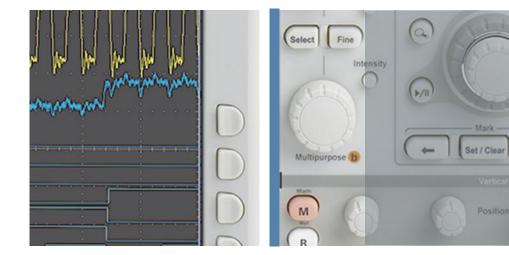
Table 4-24 Source AC Characteristics at TP1		Table 4-30 TP7 Direct Attach AC Characteristics at 6Gbps				
Item	Value	ltem Value				
Rise time / fall time (20%-80%)	<u>if attached Sink supports < 340MHz</u> 75psec ≤ Rise time / fall time <u>if attached Sink supports ≥ 340MHz and transmitted</u> <u>TMDS Character Rate ≥ 340MHz</u> 42.5osec ≤ Data Rise time / Data fall time 75psec ≤ Clock Rise time / Clock fall time	Rise time / fall time (20%-80%)	if attached Sink supports ≥ 340MHz and transmitted TMDS Character Rate ≥ 340MHz 42.5osec ≤ Data Rise time / Data fall time 75psec ≤ Clock Rise time / Clock fall time			

- HDMI 1.4b, should be capable of measuring 75 psec, but no word about the System Rise time.
- HDMI 2.0 should be capable of measuring 42.5 psec, but no word about System Rise time.
- The Error contribution of RT measurement due to System and DUT generally not accounted when we refer to specification

What is the system bandwidth needed to measure 42.5 (20-80%) psec or less DUT Rise time

- System bandwidth should be around (42.5/1.5) 28psec
- Scope bandwidth of 16 Ghz and 16 Ghz DSP enhanced probe has System Rise time of about 23 psec. It can measure the DUT Rise time of 42.5 psec with error of 1%. And can measure DUT Rise time of 37 psec with error of 7%.
- We can indicate Pass or fail confidently only when the System band. width is close to 16 Ghz scope.
- Is it fact for all scope vender ??
 - Spec says it should not be less than 42.5psec.
 - Max Rise time is limited by Eye diagram slope.
 - Both scope and Probe rise time cannot be less or equal to the DUT rise time because it can measure the signal rise time accurately only if DUT RT is slower than system rise time by 1.5 X times.
- How it is handled in HDMI 1.4b today???
 - We recommend 8Ghz scope and 13 Ghz probe, then system rise time is 38 psec which is close 2X faster than 75 psec




Conclusion

- 16GHz BW scope will give 1% error and hence is recommended for HDMI 2.0 testing.
- HDMI 2.0 RT/FT (20%-80%) data signals is 42.5ps

HDMI 2.0 Source Testing-Advanced information

Source Testing 1.4b Vs 2.0

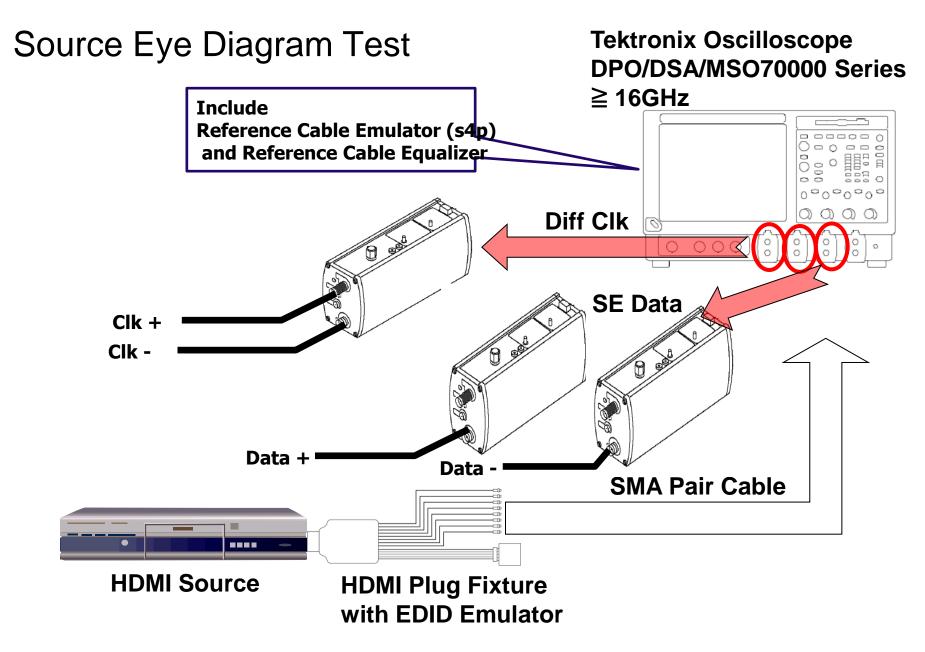
Eye Diagram test is changed

Rest of the tests is same

1.4b CTS test is a pre-requsite for HDMI 2.0

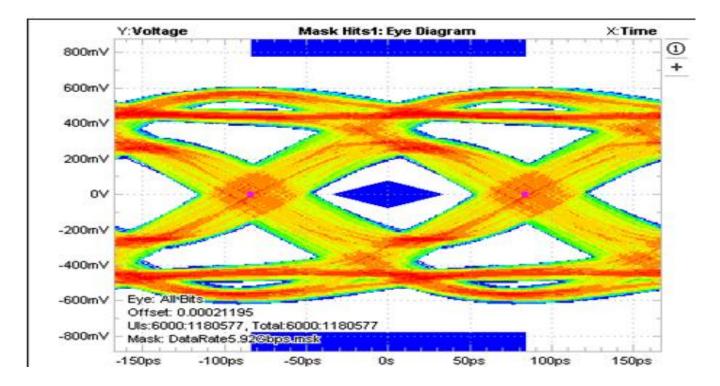
Min 8GHz scope to 16GHz scope

Fixtures and Probes



Likely Source Electrical tests

Test ID HF1-1: Source TMDS Electrical – 340-600Mcsc – V₁ Test ID HF1-2: Source TMDS Electrical – 340-600Mcsc – T_{RISE}, T_{FALL} Test ID HF1-3: Source TMDS Electrical – 340-600Mcsc – Inter-Pair Skew Test ID HF1-4: Source TMDS Electrical – 340-600Mcsc – Intra-Pair Skew Test ID HF1-5: Source TMDS Electrical – 340-600Mcsc – Differential Voltage Test ID HF1-6: Source TMDS Electrical – 340-600Mcsc – Clock Duty Cycle Test ID HF1-7: Source TMDS Electrical – 340-600Mcsc – Clock Jitter Test ID HF1-8: Source TMDS Electrical – 340-600Mcsc – Data Eye Diagram Test ID HF1-9: Source TMDS Electrical – 340-600Mcsc – Differential Impedance


Tektronix

TP2 Source Eye for HDMI 2.0 6G signal

Single End Input eye rendered at Tek lab

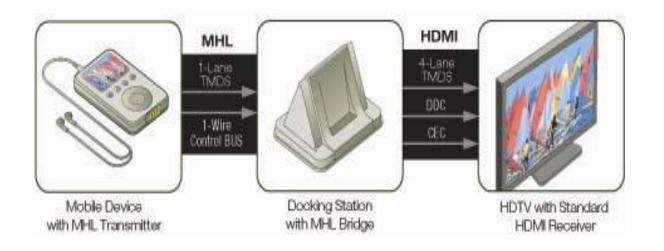
HDMI 2.0 Tx Compliance Software

TekExpress HDM - (Untitle	d)	Options
Setup 1 DUT 2 Test Selection 3 Acquisitions 4 Preferences	DUT ID DUT001 Device HDM Physical Layer Solution Suite Source Acquire live waveforms Use pre-recorded waveform files View Compliance Device Profile Termination Internal View (V) 3.3 TBit 0.0	Pauso
Stafus Ready	Attenuation (X) 2.5 ▼ Attenuation (X) 2.5 ▼ Attenuation (X) 2.5 ▼ Number of Lanes to Test 3 Lanes ▼ Selected Test Lanes Setup ClockD0D1	

	st Status Log View			
	st Name	Acquisition	Acquire Status	Analysis Statu
	Clock 1.2 TMDS TRise TFall	Short Record-length for Rise Fall	To be started	
	1.5 TMDS ClockDutyCycle	Short Record-length for Rise Fall Short Record-length for Clock	To be started	
	1.5 TMDS ClockDutyCycle	Duty Cycle	To be started	
	1.6 TMDS Clock Jitter	Short Record-length for Clock Jitter	To be started	
	1.1 TMDS V Low	Short Record-length for VLow	To be started	
	1.4 TMDS Intra-Pair Skew	Short Record-length for Intra-Pair Skew	To be started	
۲	D0			
	1.2 TMDS TRise TFall	Short Record-length for Rise Fall	To be started	-
	1.3 TMDS Inter-Pair Skew	Short Record-length for Inter-Pair Skew	To be started	
	1.1 TMDS V Low	Short Record-length for VLow	To be started	
	1.4 TMDS Intra-Pair Skew	Short Record-length for Intra-Pair Skew	To be started	
	1.7 TMDS DataEyeDiagram	Short Record-length for Data Eye Diagram	To be started	
	D1			
	1.2 TMDS TRise TFall	Short Record-length for Rise Fall	To be started	
	1.3 TMDS Inter-Pair Skew	Short Record-length for Inter-Pair Skew	To be started	
	1.1 TMDS V Low	Short Record-length for VLow	To be started	
	1.4 TMDS Intra-Pair Skew	Short Record-length for Intra-Pair Skew	To be started	
	1 7 TMDS DataEveDiaoram	Short Decord length for Data Eve		

	HDM Physical Layer Solution : Source : CTS 2.0	Start
Status Results Reports 2 Test Selection 3 Acquisitions 4 Preferences	n	Pause
	Test Description	
	TMDS Rise Time and Fall Time measurement ^ Show MOI Schematic	

ver	all Test Result 🙆 Fai	E					Preferences	
Т	est Name	Details	TBit Value		Units	Pass/Fail	Margin	
	Clock				1	🐼 Fail		1
	 1.2 TMDS TRise TFall 	Clock Rise Time	168.3498 ps	38.7089	ps	😮 Fail	-36.2911	
	 1.2 TMDS TRise TFall 	Clock Fall Time	168.3498 ps	38.1015	ps	🐼 Fail	-36.8985	
	1.5 TMD S ClockDutyCycle	Maximum Duty Cycle	168.3498 ps	50.01	%	🥝 Pass	-9.99	
	1.5 TMD S ClockDutyCycle	Minimum Duty Cycle	168.3498 ps	49.99	%	🎯 Pass	9.99	
	1.6 TMDS Clock Jitter	TMDS Clock Jitter	168.3498 ps	40.1239	ps	🥝 Pass	-1.9635	
	1.6 TMDS Clock Jitter	TMDS VSwing	168.3498 ps	64.7812	mV	😵 Fail	-335.22 & 1135.22	
	1.1 TMDS V Low	TMDS VLow for	168.3498 ps	3.2822	v	😮 Fail	0.9822 &	
	1.1 TMDS V Low	TMDS VLow for	168.3498 ps	3.1738	v	😆 Fail	0.8738 &	
	1.4 TMDS Intra-Pair Skew	TMDS Intra-Pair Skew for Clock	168.3498 ps	9.7096	ps	🥑 Pass	-15.5429	
E	DO					🕴 Fail		
	 1.2 TMDS TRise TFall 	D0 Rise Time	168.3498 ps	60.6379	ps	🥑 Pass	18.1379	
	1.2 TMDS TRise	D0 Fall	168.3498	58.5778	ps	Pass	16.0778	
	1.1 TMDS V Low	TMDS VLow for	168.3498 ps	3.1720	v	😮 Fail	0.8720 &	~



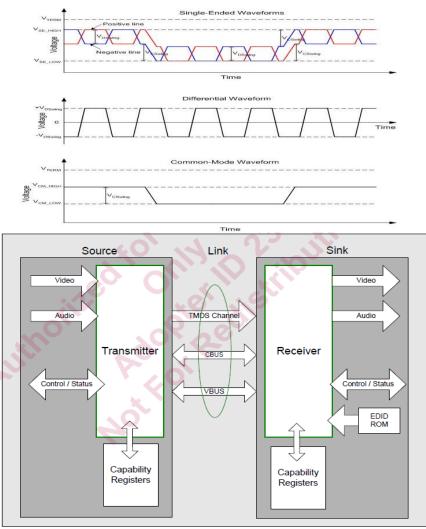
Tektronix HDMI Protocol Analyzer

🐼 TEK-PGY HDM	II/MHL Protocol Analy	ysis solution - Beta					Ab	out 💦 🕐	$\odot \otimes$
	Mode	Dis	splays			List Of Tests		RO	n
Select	t HDMI / Imag		ge Viewer 👘 📈 📈			urce Protocol Tests 7-16 Legal Codes 7-17 Basic Protocol	<u>^</u>	Sing	
Configure		🔽 Pro	tocol Viewer			7-18 Extended Control Period	Ę –	Repet	titive
	MHL	🔽 Bus	Viewer		🕀 🧮 Sou	7-19 Packet Types urce video		No A	Acq
View		Ve Eve	nt Viewer			urce audio 7-28 IEC 60958/IEC 61937			
		and a second	a Packet Viewer		ē	7-29 ACR 7-30 Audio Sample Packet Jit	tor	Analy	ze
Capture					ē	7-31 Audio InfoFrame		Ехро	n
		Clear A	I Select All			7-32 Audio Sample Packet La urce interoperability with DVI	yout	Repo	ort
Version :0.8.0									
-									
Sector Poly HDM	II/MHL Protocol Analy						Ab		$\odot \otimes$
Clark	<u>Signal Sou</u>	urce	Video Format			Audio Sample Frequency:	32 kHz 💉	Ru	
Select	 Oscilloscope 		Pixel Encoding:	RGB	~			Sing	gle
	O Wfm Files	OP/A/V Binary File	Bits Per Pixel:	24	🗙 Bits			Repet	titive
Configure	<u>Signal Assig</u>	<u>inment</u>	Format:	3D-Side by	Side 💌	Channel Inversion		No A	Acq
View	Clock CH1	×	(2)-720x48	10 @ 60 Hz	~				
	Data 0 CH2	*	Source_CN:	Not Specified	t 🗸	Invert Data 0		Analy	ze
Capture	Data 1 CH3	~	Non CEA	🔽 AVI Sup	oortod	Invert Data 2		Ехро	n
	Data 2 CH4	~	Format	AVI SUD	Jorteu			Repo	ort
							the second s		

Tektronix[®]

MHL Introduction

- Mobile HD Link (MHL) technology is a low pin count HD audio and video interface that connects portable electronics devices such as mobile phones, digital cameras, camcorders and portable media players, to HDTVs.
- The technology allows mobile devices to output digital 1080 Full HD resolution via the existing mobile connector without the real estate and cost of another dedicated video connector.
- Together with an MHL-to-HDMI bridge, the MHL-enabled mobile device becomes a fully compliant HDMI source and can connect to the television's standard HDMI input port.
 Tektronix*


MHL Introduction

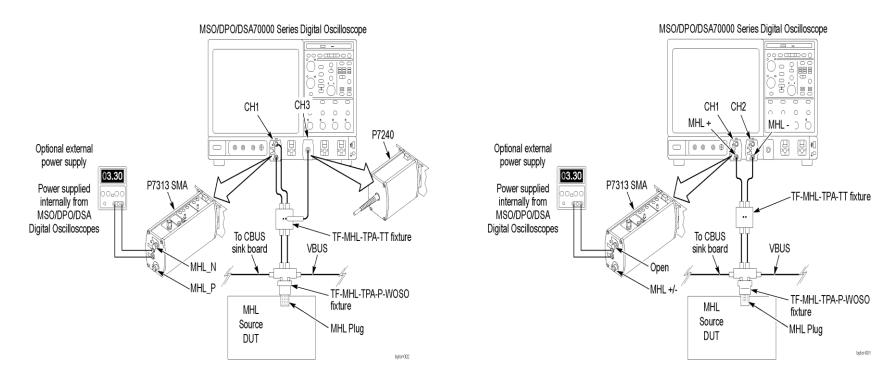
- MHL Consortium was formed in Sept 2009 with the following founding members:
 - NOKIA
 - SAMSUNG
 - Silicon Image
 - Sony
 - Toshiba
- The Specification 1.1 version was announced in Q12011, Specification 1.2 in Dec 2011, Specification 2.0 in Feb 2012 and Specification 2.1 NOW.

The Consortium released CTS 1.1 version in June 2011, CTS 1.2 in Jan 2012, CTS 2.0 in Sept 2012 and CTS 2.1 is just announced.

COMPLETE TEKTRONIX SOLUTION APPROVED in CTS1.1 , CTS 1.2 , CTS 2.0 and CTS 2.1 solution

 Tektronix is a Contributor adopter and actively involved in defining the CTS 2.1.

Source: MHL 1.2 specification document



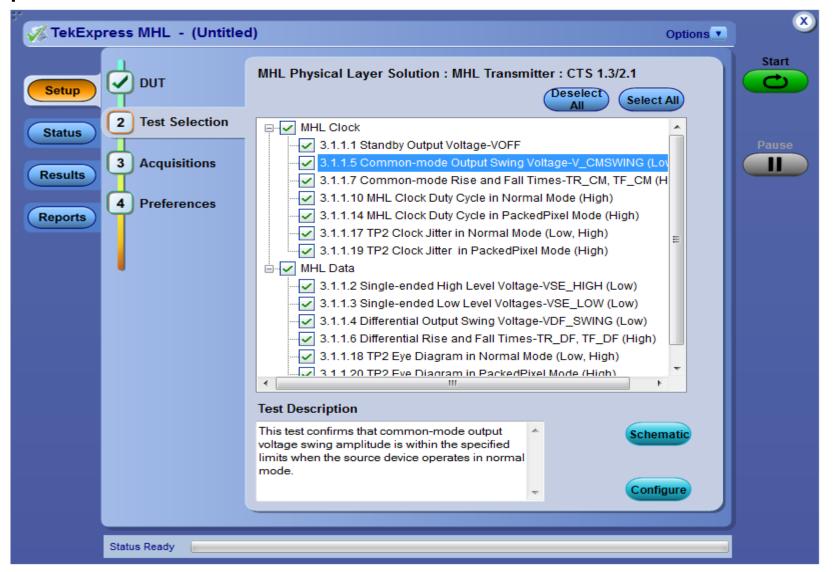
Tektronix MHL 2.1 Tx Solution with Direct Attach test support

💞 TekExp	ress MHL - (Untitle	d)*	Options
Catura		DUT ID DUT001	Start
Setup	Test Selection	Device MHL Physical Layer Solution	
Results	3 Acquisitions	Suite MHL Transmitter • Acquire live waveforms • Use pre-recorded	Version CTS 1.3/2.1 Pause waveform files
Reports	4 Preferences	View Compliance	
		Device Profile	
		Pixel Mode	Termination Source
		Both V Direct Attach	Internal T
		24 Bits	VTerm
		Low Data Rate (Gbps) 0.75	Min (V) 3.135
		High Data Rate (Gbps) 2.22	Max (V) 3.465
			Compensation Factor
		Packed Pixel	MHL+ 1.2
		High Data Rate (Gbps) 2.97	MHL- 1.2
			Cincel Threadedd
			Signal Threshold Min(mv) 250
	Status Ready		

Tektronix[®]

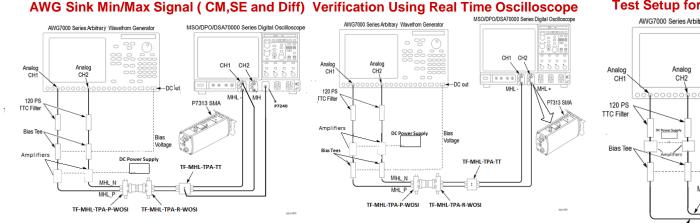
Tektronix MHL Tx Setup

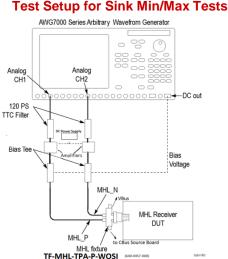
MHL Differential and CM Test Setup 7 tests

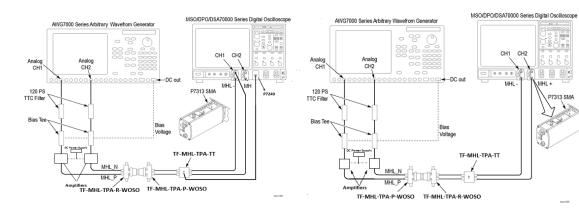

Single Ended and Intra Pair Skew Test Setup 3Tests

Also same setup is used for MHL Protocol Testing

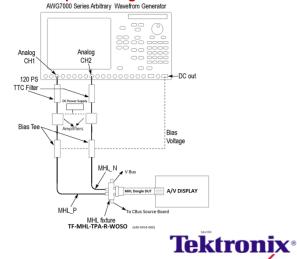
** C-Bus Sink and Source Board is needed for hand shaking and is available from Simplay Labs


MHL 2.1 Compliance Software for Automated Tx Tests: Option MHD



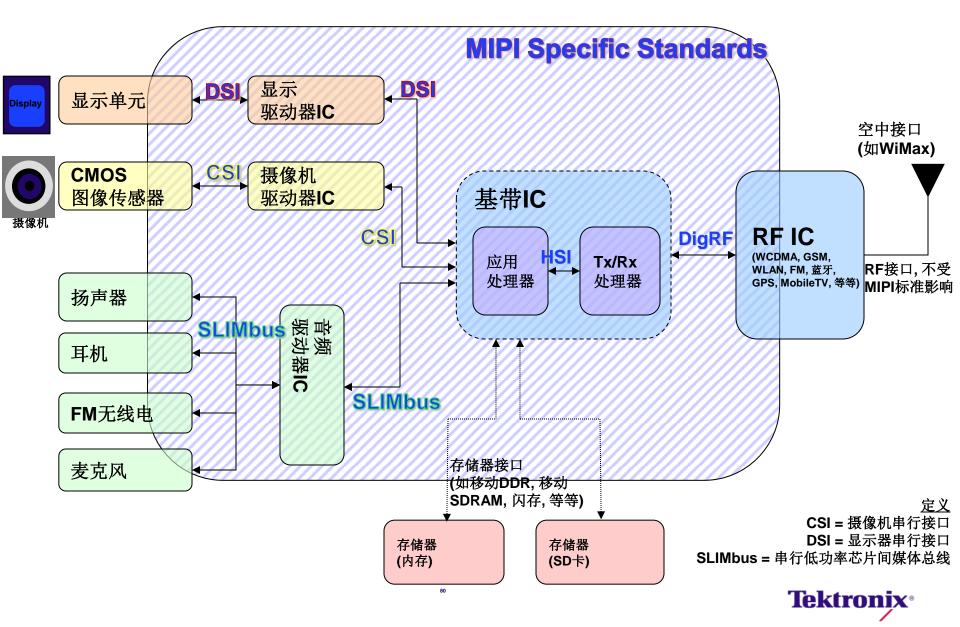

Tektronix MHL Solution Setup: Simple and Easy Sink and Dongle Min/Max Testing -2

Setup based on Direct Synthesis Capability of AWG7122C Series



AWG Dongle Min/Max Signal (CM,SE and Diff) Verification Using Real Time Oscilloscope

Test Setup for Dongle Min/Max Tests


Tektronix MHL Protocol Analyzer

🐼 TEK-PGY MHL	Protocol Analysis solution	- Beta		About	2 🔿 😣
	Mode	<u>Displays</u>	List Of Tests		Run
Select		Image Viewer Protocol Viewer	 Source Protocol Tests Legal Codes Basic Protocol 		Single Repetitive
Configure	MHL	Bus Viewer	 Packet Types Source video Video Formats Test 		No Acq
View		Viewer	Video Quantization Ranges		Analyze
Capture		Data Packet Viewer	 Source audio Audio Test Audio Clock Generation 		Export
Version :0.8.0		Clear All Select All	Audio InfoFrame	×	Report

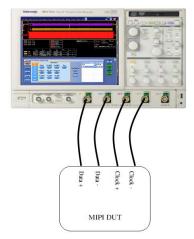
🚳 TEK-PGY MHI	L Protocol Analysis solution - Beta				About	2 🔿 😣
	Signal Source	Video Format		Audio Sample Frequency:	32 kHz 💌	Run
Select	💿 Oscilloscope	Pixel Encoding:	RGB			Single
	O Wfm Files OP/A/V Binary File	Bits Per Pixel:	24 💌 Bits			Repetitive
Configure	Signal Assignment Source Type	Format:	Standard			No Acq
View	View OData +Ve and Data -Ve		Dp @ 60 Hz 🛛 💉			Analyza
	OCommon Mode Clock and Data	Source_CN:	Not Specified 🛛 💌			Analyze
Capture	Data + CH1 💙 Data - CH2 🌱	Non CEA Format	VI Supported			Export Report
Version :0.8.0						

MIPI标准概述 移动终端方框图实例

D-PHY Tx测试解决方案 – 续

■ 示波器

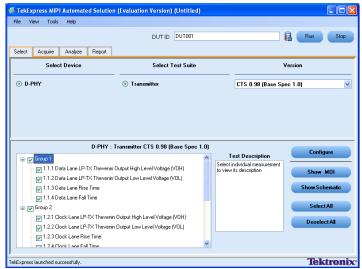
- 推荐: DPO7354或DPO/DSA/MSO70404/B


- 用来测量规范+/-5%误差范围内的上升时间(150ps)
- 如果不考虑上升时间的测试,可以使用DPO7254

探头

- 探头考虑因素
 - 同时测量单端性能和差分性能
 - 动态范围必须>1.2V
 - 探头衰减要达到最小
 - 1X最好, 2.5X或5X也行

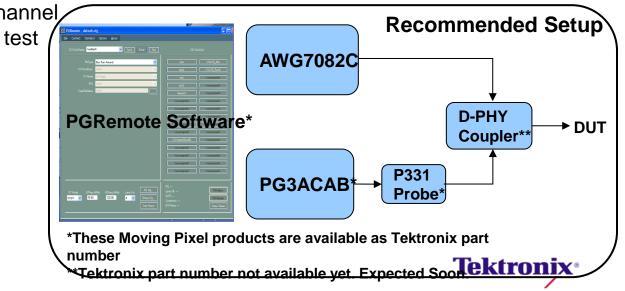
- 推荐:


- DPO7000采用四只TAP3500; MSO/DPO/DSA70000/B采用四只P7240
- (Ch1: D+), (Ch2: D-), (Ch3: Clk+), (Ch4: Clk-)
- TAP2500也适合低数据速率的DUT
- 也可以使用:
 - 焊接式探头
 - DPO7000采用TDP3500, 70000系列采用 P73xx
 - (Ch1: D+, Gnd), (Ch2: D-, Gnd), (Ch3: Clk+ &Clk-)

Tektronix

New Opt.D-PHYTX

- Opt.D-PHYTX : D-PHY Automated Solution
 - TekExpress option for Fully-Automated testing
 - Automation similar to Opt.USB-TX
 - Provides Conformance and Characterization Testing
 - Based on D-PHY Base Spec v1.0 and UNH's Conformance Test Suite v0.98.
 - Runs on DPO7000, DPO/DSA/MSO70000/B Series oscilloscopes
- Opt.TEKEXP is Pre-Requisite
- Differentiation
 - Un-parallel Automation (Auto-Cursors/ Regions)
 - For Conformance testing to Latest CTS (v0.98)
 - Based on Latest Base spec (v1.0)
- Value proposition
 - Custom-limits/ Limits-Editing on the fly
 - Test Reports
 - Zoom-in waveform captures at the Cursors/ Regions
 - Pass/Fail Summary with Margin details
 - Tek 3.5GHz scope is the minimal configuration for accurate testing
 - i.e. unlike Agilent 4G scope at entry-level

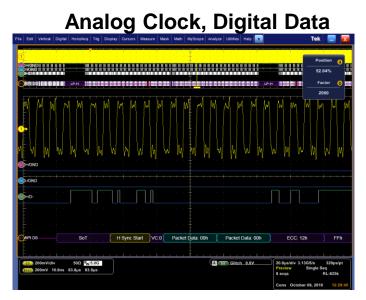


D-PHY Rx : Test Solution Overview

Simple, Quick, Easy and Re-usable

- 100% Coverage to Rx CTS
 - Meets all the requirements in UNH-IOL CTS document (v0.98)
- Quick and Easy setup
 - No complex VXI system, just stand alone instruments, and a probe.
- Cost effective solution
 - 70% Lower list price vs Competition
- Re-usable for Protocol tests
 - PG3A is the Only 4 channel solution for CSI &DSI test

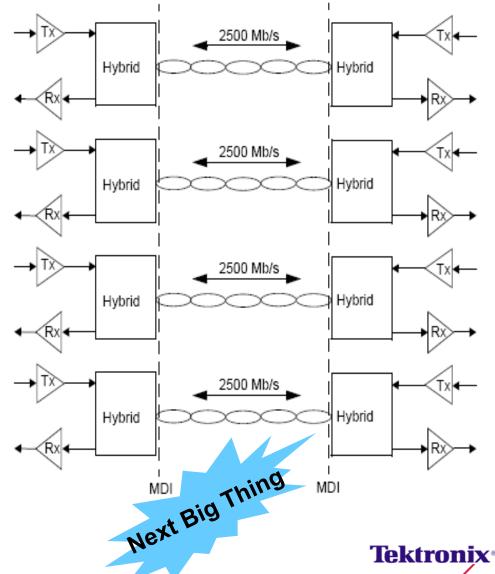
- PG3A Pattern Generator
 - Controls clock and signaling to establish link with DUT
 - Adjusts voltage levels, packet type, etc to stress test receiver
- AWG7082C Generator
 - Adds jitter and interference to the D-PHY signals



D-PHY Decode: Opt.SR-DPHY for DSI/ CSI-2 Decode Simultaneous Acquisition

- Probe using Analog, Digital or Mixed Channels
- Simultaneous probing of DSI &CSI using MSO channels
- Working on multi-lane support, using high performance MSO digital channels
- Supported on all 7KC, 70KC and MSO70K scopes. (Win7-OS only)
 - Option key bit #25
- Software installed as part of TekScope firmware v6.1.2.4 or later.
 - Browse to TekScope Menu --> Vertical --> Bus Setup --> Select Bus Type as Serial-- > Select MIPI DSI or CSI from the drop down list.

Probe using Mixed Channels



Digital Clock, Analog Data

Tektronix

10GBASE-T - Overview

- 10GBASE-T provides 10 gigabit/second connections over unshielded or shielded twisted pair cables, over distances up to 100 m.
 2.5Gbps per lane (A, B, C & D)
- Baseband 16-level PAM signaling with a modulation rate of 800 Msymbols per second is used on each of the wire pairs.
- Supports full duplex operation only
- Compatibility of Auto Negotiation enabled to also operate 10/100/1000 BASE-T
- Supports a BER of less than or equal to 10E-12 on all supported distances and Classes
- Provides a cost advantage over fiber

XGbT – 10GBASE-T 发送端测试

	Measurement	Test Mode	XGbT Features / Notes	Does XGbT cover this measurement?
1	Maximum output droop	Sub clause 55.5.3.1, Test Mode 6	Flexibility to test beyond compliance – XGbT provides the flexibility to perform testing beyond what is specified in IEEE standard 802.3an-2006. It helps users to analyze their PHY in addition to compliance tests.	Yes
2	Transmitter timing jitter – Master	Sub clause 55.5.3.3, Test Mode 2	Measure Jitter down to just few picoseconds. Software Filters are designed and applied on the acquired data automatically while performing measurements.	Yes
3	Transmit clock frequency	Sub clause 55.5.3.5,Test Mode 2	Exact value PPM for measured clock frequency is provided	Yes
4.	Transmitter timing jitter – Slave	Sub clause 55.5.3.3, Test Mode 1 ans Mode 3	Measure Jitter down to just few picoseconds. Software filters are designed and applied on the acquired data automatically while performing measurements.	Yes
5	Transmitter linearity	Sub clause 55.5.3.2, Test Mode 4. Tones 1-5	Spectral Features of the scope are used to perform the measurement, a methodology that is unique to Tektronix and approved by UNH-IOL	Yes
6	Transmitter power spectral density (PSD) and power level	Sub clause 55.5.3.4, Test Mode 5	Spectral Features of the scope are used to perform the measurement, a methodology that is unique to Tektronix and approved by UNH-IOL	Yes
7.	Return Loss	Sub clause 55.8.2.1, Test Mode 5	Return Loss is not part of XGbT solution for now, however it will finally be released in next version. For time gap arrangement please request product line for Return Loss utility	Yes**

Transmitter Power Spectral Density (PSD) and Power Level

发送端功率谱密度及功率值

- 目的:确保发送端功率谱密度和功率 值满足规范要求。
- 功率值应在3.2dBm~5.2dBm范围内
 功率谱密度曲线应介于规范要求的
 上下限曲线之间。
- 需进入Test Mode 5
- IEEE 标准 802.3an-2006, 55.5.3.4条
 目。
- Test Mode 5:

正常操作模式

TF-XGbT Test Fixture

 The XGbT test fixture provides easy access to the 10GBASE-T Electrical signals to perform conformance testing and device characterization as described in of IEEE 802.3an-2006 sub-clause 55.5.3 & 55.8.2.1. This fixture is used with the Tektronix's XGbT- 10GBASE-T Automation Solution to provide fast and accurate design debugging and validation. XGbT fixture covers all seven measurements including Jitter Slave and MDI Return Loss

Fig 1: XGbT Test Fixture main board

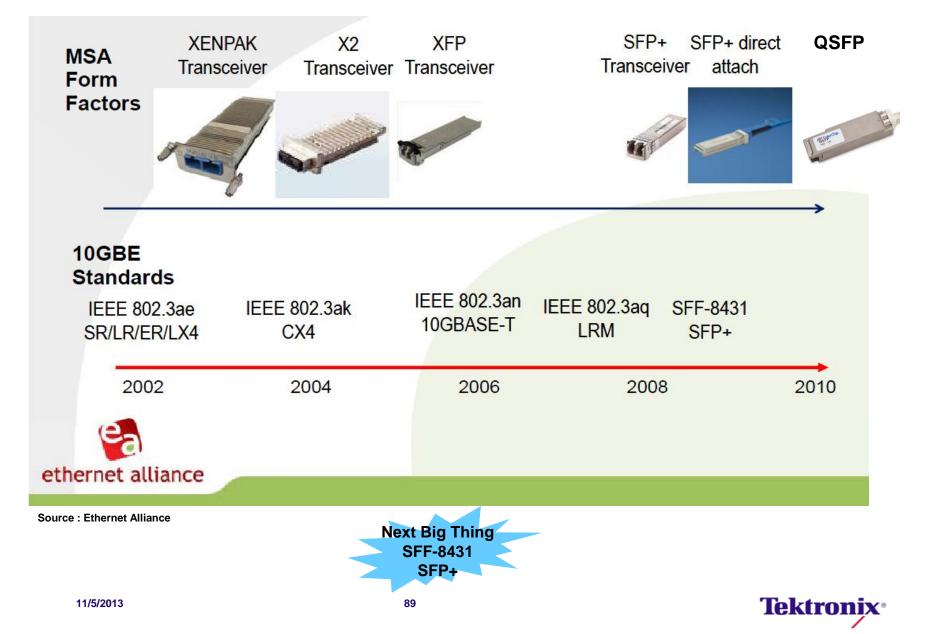
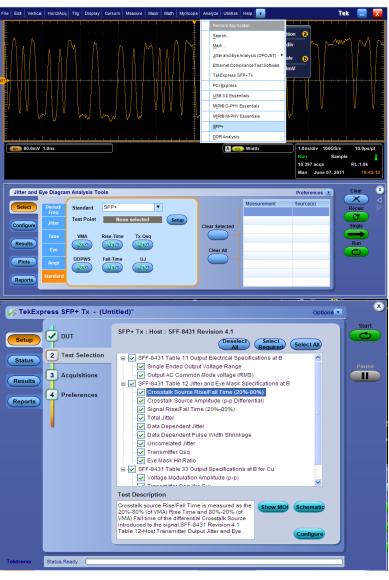
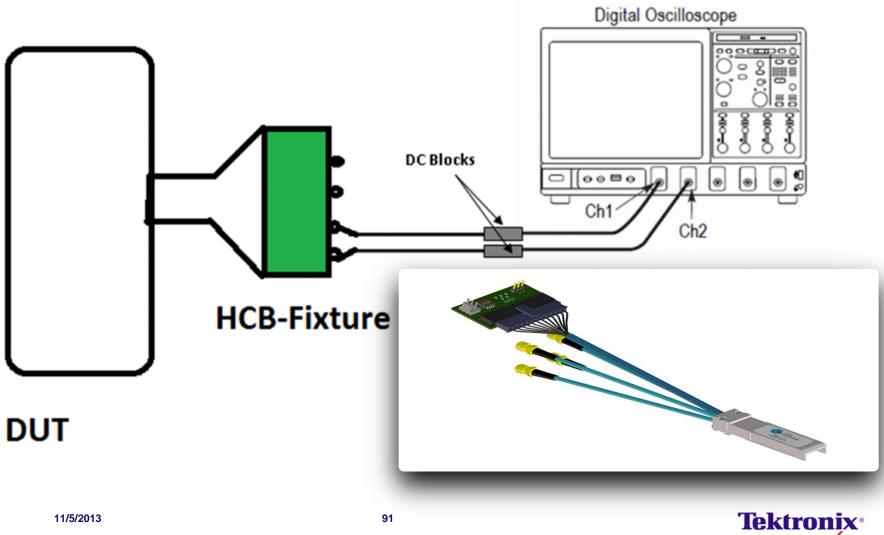

Fig 2: Calibration Board

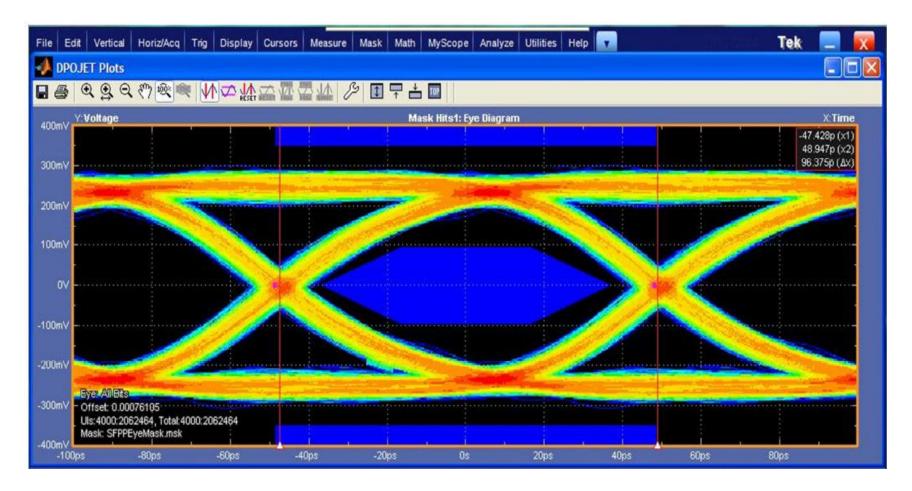
Figure 3: RJ45 Shielded Patch cord



10Gigabit Ethernet Interface Evolution

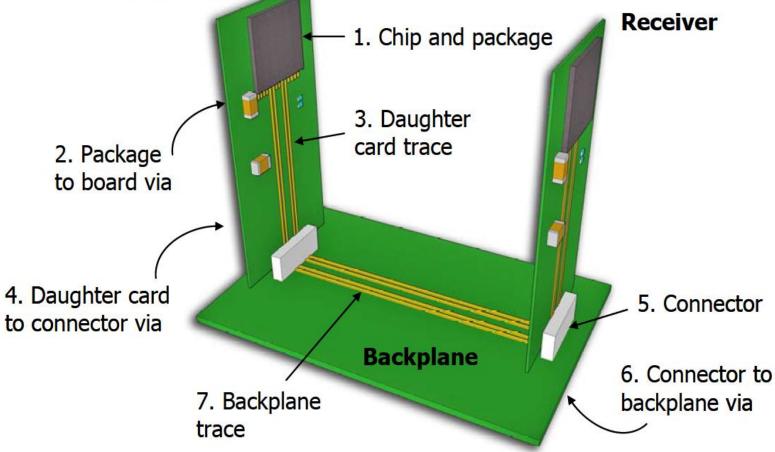

Tektronix SFP-TX – Automation & DPOJET Option

SL		Signal Type	Limit			
No.	Measuremnts	Recommended	Min	Target	Max	Units
Host Transmitter output electrical Specifications:						
1	Single Ended Output Voltage Range	PRBS31	-0.3		4	۷
2	Output AC Common Mode voltage (RMS)	PRBS31			15	mV(RMS)
Host Transmitter Jitter and Eye Mask specifications						
3	Crosstalk source rise/fall time (20%-80%) (Tr, Tf)	8180		34		ps
4	Crosstalk source amplitude (p-p differential)	8180		1000		mV
5	Signal rise/fall time (20%-80%) (Tr, Tf)	8180	34			ps
6	Total Jitter (p-p) (Tj)	PRBS31			0.28	UI(p-p)
7	Data Dependent Jitter (p-p) (DDJ)	PRBS9			0.1	UI(p-p)
8	Data Dependent Pulse Width Shrinkage (p-p) (DDPWS)	PRBS9			0.055	UI(p-p)
9	Uncorrelated Jitter (RMS) (UJ)	PRBS9			0.023	UI(p-p)
10	Transmitter Qsq	8180	50			
11	Eye mask hit ratio(Mask hit ratio of 5×10-5) PRBS31			I, X2=0.33UI, Y1=95mV, Y2=350mV		
Host	Host Transmitter output specifications for Cu (SFP+ host supporting direct					
12	Voltage Modulation Amplitude (p-p)	8180	300			mV
13	Transmitter Qsq Output AC Common Mode voltage	8180	63.1			
14	Output AC Common Mode Voltage	PRBS31			12	mV(RMS)
15	Host Output TWDPc	PRBS9			10.7	dBe

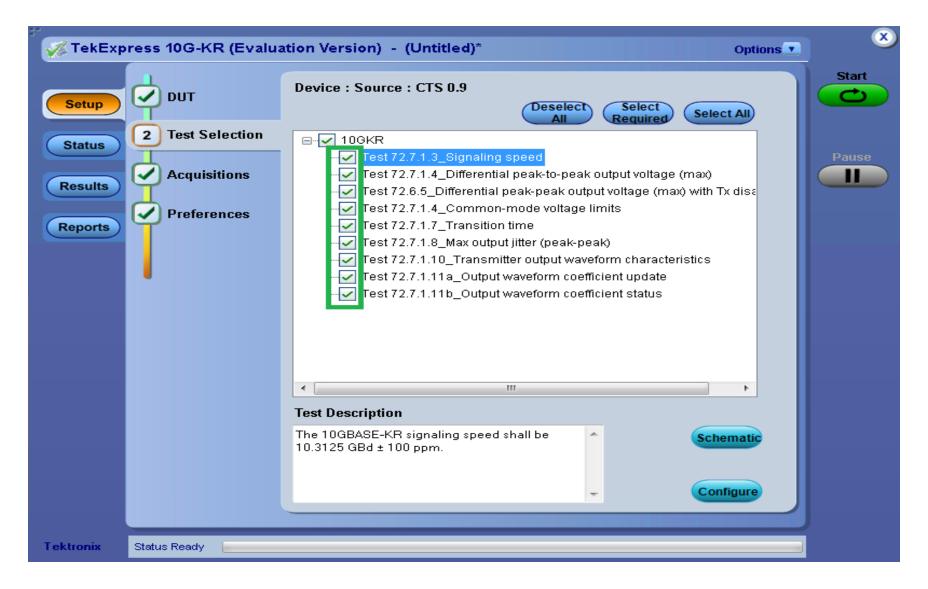


Tektronix[®]

SFP test connection



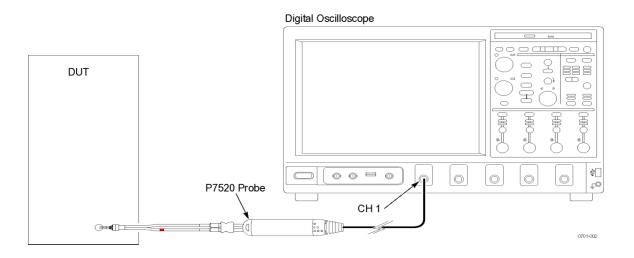
SFP Eye Mask hit ratio :less than 5E10-5

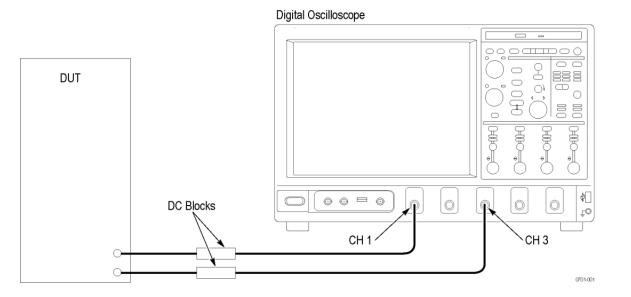



10G-KR Typical Backplane Ethernet Transmitter 1. Chip and package Received

Tektronix[®]

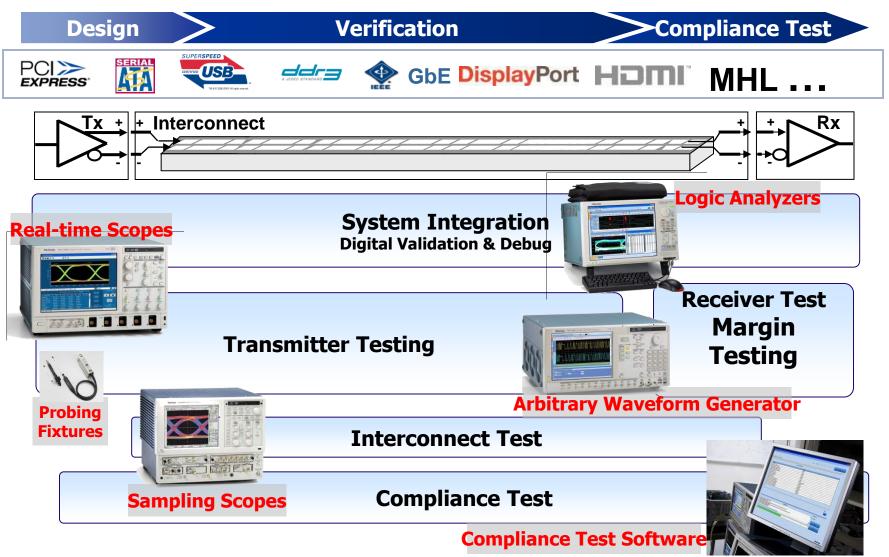
10G-KR自动化测试软件





94

Tektronix


Testing connection for 10G-KR

High-Speed Serial Data Test Solutions...

