TDSET3 1000Base-T試験手順書

TSC資料 V1.0 2005年3月30日作成

Tektronix[®]

目次

1.	JigMatchの手順・・・Disturberの調整	3 page
	JigMatchの手順・・・ Test Fixtureの補正	5 page
2.	Test信号について	7 page
3.	Template test の手順	9 page
4.	Peak Voltage test の手順	18 page
5.	Droop test の手順	21 page
6.	Jitter test の手順	24 page
	Jitter test の手順 - Jitter Master Unfiltered	25 page
	Jitter test の手順 - Jitter Master Filtered	28 page
	Jitter test の手順 - Jitter Slave Unfiltered	33 page
	Jitter test の手順 - Jitter Slave Filtered	36 page
7.	Distortion test の手順	41 page
8.	Common Mode (CM) Voltage test の手順	45 page
9.	Return Loss test の手順	49 page

JigMatchの手順・・・Disturberの調整(1)

DisturberとしてAWGを使用する試験ではあらかじめクロック周波数と出力 電圧を調整する必要があります。この操作は必須です。

- J700にはDUTを接続しない
- AWG+にはAWGのCH1、AWG-に はAWGのCH2又は/CH1を接続
- J621, J630, J620, J623, J721, J723, J680, J781をショート
- 差動プローブをP19に接続

1 JigMatchの手順・・・ Disturberの調整(2)

- TDSのCドライブ、
 C:¥TekApplications¥TDSET3¥AWG
 Waveforms¥(信号別フォルダ)
 ¥(AWG機種別フォルダ)から使用するWFMファイルをAWGIこCopy
- Disturbing SignalをAWGから出力
- Template/Peak Voltage/Droopと Distortionで使用するDisturbing波形 は違うので要注意
- TDSET3にて各試験をSelect し Connectボタンを押すとJigMatchボタ ンが表示されます
- Measureボタンにて測定した値が Expected Valueに近づくようAWGの Amplitude、Clock Frequencyを調整
- Test Fixture Compensation終了後 にApplyボタンを押します

1 JigMatchの手順・・・ Test Fixtureの補正(1)

接続手順

- ▶ J490にDUTのTest portを接続
- ▶ 差動プローブをP9に接続
- DUTからのTest信号は Template/Peak Voltage/Droopの 場合はTest mode 1, Distortionの 場合はTest mode 4 の信号を出力

Step 1: Connect DUT to tes	t fixture TC2	elp	
	Expected Value	Last Measured Value	Mageura
DUT Amp	750mV		Inicas ul c

Measureボタンを押して測定

1 JigMatchの手順・・・ Test Fixtureの補正(2)

接続手順

- ▶ J700にDUTのTest portを接続
- AWG+にはAWGのCH1、AWG-に はAWGのCH2又は/CH1を接続
- AWGの出力はOFFしておく
- ▶ J621, J630, J623, J721, J723, J680, J781をショート
- ▶ 差動プローブをP18に接続

- ▶Measureボタンを押して測定
- ▶終了したらApplyボタンを押す

2 Test信号について(1)

- ▶ Test mode 1の信号 波形
- ▶ Template, Peak Voltage, Droop試験 で使用
- 測定ポイントは下表の通り

Test	Points
Template	A,B,C,D,F, and H
Droop	G and J (上図でF またはH から500ns後ろのポイント)
Peak Voltage	A,B,C, and D

2 Test信号について(2)

- Test mode 2 および Test mode 3の信号 波形
- ▶ Jitter試験で使用
- 周波数は62.5MHz (TX_TCLKの半分の 周波数)

- Test mode 4の信号 波形
- ▶ Distortion, Return Loss, Common Mode Voltage試験で 使用

3 Template test の手順(1)

<u>Template testの試験内容</u>

- Test mode 1の信号の6箇所(A, B, C, D, F, H)のTest pointの波形でテスト
- 電圧の正規化を行う

Test point Aに対してはPoint Aのピーク電圧で正規化

Test point Bに対してはPoint Aの(極性を負にした)ピーク電圧で正規化

Test point Cに対してはPoint Aのピーク電圧の半分で正規化

Test point Dに対してはPoint Aの(極性を負にした)ピーク電圧の半分で正規化

Test point F周辺に対してはPoint Fのピーク電圧で正規化

Test point H周辺に対してはPoint Hのピーク電圧で正規化

- マスク・テストではテンプレートにフィットさせるため、時間方向に移動可能
- Disturbing信号はリモート・トランスミッタをシミュレートするものでコンプライアンス・テストでは 必須
- 4つのTest Pairでそれぞれ行う

3 Template test の手順(2)

<u>Template testの接続方法</u> Tektronix Oscilloscope Tektronix AWG J700にDUTのTest port を接続 AWG+にはAWGのCH1、 -lo-lo Test Fixture 000 AWG-にはAWGのCH2又 (TF-GBE) ______ 000 は/CH1を接続 CH1/CH2 CH1 差動プローブをP18に接 DUT 続 Jumperのショート: J680, J781 と以下のJumper To Oscilloscope Test Pair A: J621, J630 この並びは測定するTest Pairにより上側をショート、 測定しないTest PairのJumperは下側をショート J623, J721, J723 To DUT TC 5 Test Pair B: J622, J631 To Channel 1)🗑 🕄 J690 of AWG J620, J721, J723 - 00 3700 J780 To Channel 2 Test Pair C: J720, J730 J790 1781 •• of AWG J620, J623, J723 Test Pair D: J722, J731 D 🐽 この並びは測定する 接続図: disturbing信号有りの場合 J620, J623, J721 Test Pairによりショート

Tektronix[®]

3 Template test の手順(3)

3 Template test の手順(4)

- Selectメニューにて 測定ポイントを選択、 Select Allを選択す るとPeak Voltage testも一緒に行われ る
- Configureメニュー
 では以下を設定
- Source Data: Ch1-Ch4
- #Averages: 64-10,000 (Default:64)
- Disturbing Signal: Yes (無い場合No)
- Filter: プローブとオ シロの間に挿入す る測定用フィルタ (2MHz HPF、通常 はIntを選択)

Output: Ref1

<u>Template testの試験方法</u>

File Tests	Results Uti	lities Help			TDSET3	Ωe x
	_ Speed →		Select: 1000	BASE-T —		
Select		Template/Volt	Droop Jit/Distortio	n Return Los	s CM Voltage	Pup Tect
Deleot	1000-T	Template	Peak Volt			- null rest
Configure		A B	A B	Select All		Result
	100-TX					- Report -
Connect		C D	C D			Summary
View Wfm	10-T	F H				Detail
1000-T>Ter	mplate>A		Data>Ch1 Avg>64	Output>Ref1	Disturber>No	

3 Template test の手順(5)

<u>File T</u> ests <u>R</u> e	esults <u>U</u> tilities <u>H</u> elp	TDSET3 🔤 🛛
	Connect	
Select	Follow these instructions to connect your device, test fixture, test signal, etc. Click Help for more information.	Run Test
Configure	1. For effective disturbing signal removal JigMatch	Result
	2. Setup and turn on the test signal. Help	- Report -
	3. Attach the device under test. Help	Summary
View Wfm	4. To view the signal click on "View Wfm" button.	
1000-T>Templ	ate>A Data>Ch1 Avg>64 Output>Ref1 Disturber	/>Yes

- Connectボタンを押すと上図の表示になります。
- ▶ JigMatchは必ず行って下さい。前述「JigMatchの手順」参照してください。

3 Template test の手順(6)

- View Wfmボタン を押すとTest Mode1の波形が 表示されます。こ の波形がオシロで 表示される波形と 同じかどうか確認 します。
- 上がDisturbing
 SignalがYesの場
 合
- 下がDisturbing
 SignalがNoの場
 合です。
- 波形が正しく表示 されたらRun Test ボタンを押し、 Testを始めます。

3 Template test の手順(7)

 Run Testを行うとオシ ロでは右のような波形 が表示されます。

▶ Test Point A, B, C, D の波形

▶ Test Point F, Hの波 形

3 Template test の手順(8)

<u>File T</u> ests <u>R</u> esults <u>U</u> tilities <u>H</u> elp	TDSET3	<u>™ x</u>
Select Result Summary: 1000BASE-T Select Template Test: Point B Configure Template Test: Point D Template Test: Point F Template Test: Point H Connect Template Test: Point H View Wfm Clear Results Result Details Manua 1000-T>Jitter Master>Filtered Data	Report Configuration Device Details Port ID Pair ID Report File IFit IFit I Master CLK>Ch2 Clock Edge>Rising	Run Test Result Report Summary Detail

- Run Testが終了すると上図のように結果が表示されます。
- SelectIこてTest Pointを単独で指定したときのみ、 Manual Fitボタンが有効になり、右図のようなPopupが 開き、← / →ボタンでRef波形を移動させることができま す。
- 波形がMaskにうまくフィットしたらOKを押します。Result がFailだったものがPassとなります。

3 Template test の手順(9)

Result Detailsボタン(上左)を押すと詳細な測定結果が表示されます(上右)。

Advancedボタン(上左)にてAdvance Report Configurationで"Use oscilloscope…"をチェック すると、オシロのExportの設定のカラーパレットの設定が反映されます。レポートのカラー表示

4 Peak Voltage test の手順(1)

<u>Peak Voltage testの試験内容</u>

- ▶ Test mode 1の信号の6箇所(A, B, C, D, F, H)のTest pointの波形でテスト
- Point A, Bの電圧の絶対値は670mV~820mVでA, B間の電圧の差は1%未満であること
- ▶ Point C, Dの電圧の絶対値は上記A, Bの電圧の平均値の半分に対して2%未満であること
- Disturbing信号はリモート・トランスミッタの信号をシミュレートするものでコンプライアンス・テ ストでは必須
- 4つのTest Pairでそれぞれ行う

<u>Peak Voltage testの接続方法</u>

Peak Voltage testの接続はTemplate testと同様。Template Testの手順(2)、(3)参照。

4 Peak Voltage test の手順(2)

<u>Peak Voltage testの試験方法</u>

- Selectメニューにて 測定ポイントを選択、 Select Allを選択す るとTemplate test も一緒に行われる
- Configureメニュー もTemplate testと 同様
- Source Data: Ch1-Ch4
- #Averages: 64-10,000 (Default:64)
- Disturbing Signal: Yes / No
- Filter: プローブとオ シロの間に挿入す る測定用フィルタ、 通常はIntを選択
- Output: Ref1

File Tests Results Uti	ilities Help TDS	SET3 🔤 🛛
Speed 7	Select: 1000BASE-T	
Select	Template/Volt Droop Jit/Distortion Return Loss CM Voltage	Pup Tect
1000-T	Template Peak Volt	nun rest
	A B A B Select All	Result
Configure		Benort
100-TX		neport
Connect		Summary
10-T		Detail
View Wfm		
	Data a Chi Ava a Ci Outart a Dafi. Disturbar a Na	
1000-T>Peak Volt>A	Data>Ch1 Avg>64 Output>Ref1 Disturber>No	

4 Peak Voltage test の手順(3)

Run Testを行うとオシロでは下のような表示になります。

5 Droop test の手順(1)

<u>Droop testの試験内容</u>

- ▶ Test mode 1の信号の6箇所(F, G, H, J)のTest pointの波形でテスト
- Point G (Fから500ns後ろ)の(極性を正にした)値がFの(極性を正にした)ピーク値の73.1% よりも大きいこと
- Point J (Hから500ns後ろ)の値がFのピーク値の73.1%よりも大きいこと

<u>Droop testの接続方法</u>

▶ Droop testの接続はTemplate testと同様。Template Testの手順(2)、(3)参照。

5 Droop test の手順(2)

- Selectメニューにて 測定ポイントを選択
- Configureメニュー
 では以下を設定
- Source Data: Ch1-Ch4
- #Averages: 64-10,000 (Default:64)
- Disturbing Signal: Yes / No
- Output: Ref1

<u>Droop testの試験方法</u>

5 Droop test の手順(3)

Run Testを行うとオシロでは下のような表示になります。

<u>Jitter testの試験内容</u>

- 1000Base-TにおいてMaster-Slaveの関係は2つのステーション間のネゴシエーションにより 決定されます。MASTER PHYは自分のLocal Clockを送信に使用し、SLAVE PHYはMASTER から受け取った信号を元にClock Recoverを行い、そのClockを送信に使用します。
- Jitter Master Unfiltered test: Master TX_TCLKのJitter(p-p)を測定、1.4ns未満であることを 確認する(DUTはTest Mode 2)
- Jitter Master Filtered test: Master TX_TCLKのJitter(p-p) + Jtxout(p-p)を測定、0.3ns未満 であることを確認する(DUTは①Master動作でNormal Mode、オシロで測定したTX_TCLKを カットオフ周波数5kHzのHPFで処理②Test Mode 2でJtxoutをtest portから測定)
- Jitter Slave Unfiltered test: Slave TX_TCLKのJitter(p-p)を測定、1.4ns未満であることを確認する(DUTはSlave動作でNormal Mode)
- Jitter Slave Filtered test: Slave TX_TCLKのJitter(p-p) + Jtxout(p-p)を測定、同時に測定したMaster TX_TCLKのJitter(p-p)を引いた値が0.4ns以下であることを確認する(DUTは① Slave動作でNormal Mode、オシロで測定したTX_TCLKをカットオフ周波数32kHzのHPFで処理、MasterのTX_TCLKは5kHzのHPFで処理②Test Mode 3でJtxoutをtest portから測定)

6 Jitter test の手順(2) - Jitter Master Unfiltered

<u>Jitter Master Unfiltered testの接続方法</u>

Tektronix Oscilloscope DUTをTest Mode 2に設 Link partner - 0 定 0000 0 \cap DUTのtest portとJ501と 0° 000 をEthernet Cableで接続 0 0 0 悹 ۲ 5. Test J580とLink partnerとを channel 接続 spool TX_TCLK DUTのTX_TCLKをアク ティブ・プローブでプロー DUT ビング TC 3 To Link Partner A P13 To DUT B P14 J501 C P15 1522 D P16

6 Jitter test の手順(3) - Jitter Master Unfiltered

- Selectメニューにて Unfilteredを選択
- ▶ Configureメニュー
- Master CLK: Ch1-Ch4 (Active Probe)
- Hysteresis: 5-30% (Default:5%) Clock
 Edgeのノイズを振幅 の何%まで無視する かの設定)
- Clock Edge: Rising / Falling
- TX_TCLK: Yes
- Meas Type: Histogram (TIEでは 測定方法、測定値が 違う上、100msのデー タも取れません)
- Record Length: 最大 に設定します。(Meas Type: TIEの場合)

<u>Jitter Master Unfiltered testの試験方法</u>

6 Jitter test の手順(4) - Jitter Master Unfiltered

- Run Testを行うとオ シロでは右上のよう な表示になります。
- 右下はTIEを選択した場合で、100,000 エッジ以上のデータを取ります。但し、 Unfiltered Testでは100ms以上、1s以下のジッタのデータが必要で、TIEでは100ms以上のデータを取ることはできません。
- Master Unfiltered Pk-Pk Jitterの値が 1.4ns未満であるか どうかでPass/Failを 判定します。

6 Jitter test の手順(5) - Jitter Master Filtered

<u>Jitter Master Filtered testの接続方法(Step1 : Master TX_TCLKのJitter)</u>

Tektronix Oscilloscope

DUTをNormal mode、 Link partner Master に 設定 0 Link partner/tNormal mode、Slaveに設定 aaa 0 0 0 0 6 DUTのtest portとJ501と Test をEthernet Cableで接続 channel spool J580とLink partnerとを TX_TCLK 接続 **** DUTのTX_TCLKをアク DUT ティブ・プローブでプロー ビング TC 3 To Link Partner A P13 To DUT B P14 J501 C P15 D P16 1523

6 Jitter test の手順(6) - Jitter Master Filtered

<u>Jitter Master Filtered testの試験方法(Step1:Master TX_TCLKのJitter)</u>

- Selectメニューにて
 Filteredを選択
- ▶ Configureメニュー
- Data: Ch1-Ch4 (Differential Probe)
- Master CLK: Ch1-Ch4 (Active Probe)
- Hysteresis: 5-30% (Default:5%) Clock
 Edgeのノイズを振幅 の何%まで無視する かの設定)
- Clock Edge: Rising / Falling
- TX_TCLK: Yes
- Record Length: 最大 に設定します。

6 Jitter test の手順(7) - Jitter Master Filtered

- ▶ Run Testを行うと下図のようなダイアログ・ボックスが表示されます。
- OKボタンをクリックするとテストがスタートし、Master TX_TCLKのJitter(p-p)(Master Filtered Pk-Pk Jitter)を測定します。
- ▶ Filtered Testでは少なくとも100,000エッジのデータを取る必要があるので、TDSはopt.3M 以上のメモリ・オプションが必要です。
- ▶ 5kHzのフィルタ処理を行ったTIEジッタのPlotが画面に表示されます。

6 Jitter test の手順(8) - Jitter Master Filtered

<u>Jitter Master Filtered testの試験方法(Step2:Jtxout test portのjitter)</u>

 途中、ダイアログ・ボックスが表示されたらその指示に従い、テスト・フィクスチャTC2の J490にDUTを、差動プローブを接続します。

Test Pair A: P9

Test Pair B: P10

Test Pair C: P11

Test Pair D: P12

 DUTをTest mode2に設定したらダイアログ・ ボックスのOKボタンをクリックします。

To Oscilloscope

6 Jitter test の手順(9) - Jitter Master Filtered

- TX_TCLKに対するデータのJitter(Jtxout)が計算され、TIEのPlotとして表示されます。(下図 オレンジの波形)
- Step1で測定したMaster Filtered Pk-Pk Jitter(下図緑の波形)にJtxoutが加算され、その値が0.3ns未満であるかどうかでPass/Failを判定します。

6 Jitter test の手順(10) - Jitter Slave Unfiltered

<u>Jitter Slave Unfiltered testの接続方法</u>

- DUTをNormal mode、 Slaveに設定
- Link partnerはNormal mode、Masterに設定
- DUTのtest portとJ501とを Ethernet Cableで接続
- J580とLink partnerとを接続
- DUTのTX_TCLKとLink partnerのTX_TCLKをそれ ぞれアクティブ・プローブで プロービング

6 Jitter test の手順(11) - Jitter Slave Unfiltered

- Selectメニューにて Unfilteredを選択
- ▶ Configureメニュー
- Master CLK, Slave CLK: Ch1-Ch4 (Active Probe)
- Hysteresis: 5-30% (Default:5%) Clock Edge のノイズを振幅の何%ま で無視するかの設定)
- Clock Edge: Rising / Falling
- TX_TCLK: Yes
- Meas Type: Histogram (TIEでは測定方法、測定 値が違う上、100msの データも取れません)
- Record Length: 最大に設 定します。(Meas Type: TIEの場合)

<u>Jitter Slave Unfiltered testの試験方法</u>

6 Jitter test の手順(12) - Jitter Slave Unfiltered

- Run Testを行うとオシ ロでは右上のような 表示になります。
- 右下はTIEを選択した 場合で、100,000エッジ以上のデータを取ります。但し、
 Unfiltered Testでは100ms以上、1s以下のジッタのデータが必要で、TIEでは100ms以上のデータを取ることはできません。
- Slave Unfiltered Pk-Pk Jitterの値が1.4ns 未満であるかどうか でPass/Failを判定し ます。

6 Jitter test の手順(13) - Jitter Slave Filtered

<u>Jitter Slave Filtered testの接続方法(Step1 : Master/Slave TX_TCLKのJitter)</u>

- DUTをNormal mode、 Slaveに設定
- Link partnerはNormal mode、Masterに設定
- DUTのtest portとJ501
 とをEthernet Cableで
 接続
- J580とLink partnerとを 接続
- DUTのTX_TCLKをアク ティブ・プローブでプ ロービング
- Link partnerの TX_TCLKをアクティブ・ プローブでプロービング

6 Jitter test の手順(14) - Jitter Slave Filtered

<u>Jitter Slave Filtered testの試験方法(Step1:Master/Slave TX_TCLKのJitter)</u>

- Selectメニューにて
 Filteredを選択
- ▶ Configureメニュー
- Data: Ch1-Ch4 (Differential Probe)
- Master CLK, Slave CLK: Ch1-Ch4 (Active Probe)
- Hysteresis: 5-30% (Default:5%) Clock
 Edgeのノイズを振幅の 何%まで無視するかの 設定)
- Clock Edge: Rising
- TX_TCLK: Yes

37

 Record Length: 最大に 設定します。

Tektronix[®]

6 Jitter test の手順(15) - Jitter Slave Filtered

- ▶ Run Testを行うと下図のようなダイアログ・ボックスが表示されます。
- OKボタンをクリックするとテストがスタートし、Master TX_TCLKのJitter(p-p) (Master Filtered Pk-Pk Jitter)とSlave TX_TCLKのJitter(p-p) (Slave Filtered Pk-Pk Jitter)を測定し ます。
- ▶ Filtered Testでは少なくとも100,000エッジのデータを取る必要があるので、TDSは opt.3M以上のメモリ・オプションが必要です。
- Masterは5kHz、Slaveは32kHzのHPF処理を行い、TIEジッタのPlotを画面に表示します。

6 Jitter test の手順(16) - Jitter Slave Filtered

<u>Jitter Slave Filtered testの試験方法(Step2:Jtxout test portのjitter)</u>

 途中、ダイアログ・ボックスが表示されたらその指示に従い、テスト・フィクスチャTC2の J490にDUTを、差動プローブを接続します。

Test Pair A: P9

Test Pair B: P10

Test Pair C: P11

Test Pair D: P12

 DUTをTest mode3に設定したらダイアログ・ ボックスのOKボタンをクリックします。

To Oscilloscope

Tektronix[®]

6 Jitter test の手順(15) - Jitter Slave Filtered

- TX_TCLKIC対するデータのJitter(Jtxout)が計算され、TIEのPlotとして表示されます。(下図 赤の波形)
- Step1で測定したSlave Filtered Pk-Pk Jitter(下図緑の波形)からMaster Filtered Pk-Pk Jitter(下図オレンジの波形)が差し引かれ、Step2で測定したJtxoutが加算され、その値が 0.4ns未満であるかどうかでPass/Failを判定します。

7 Distortion test の手順(1)

<u>Distortion testの試験内容</u>

Test mode 4の信号でテスト

波形ピーク値が17レベル、2047シンボルの擬似ランダムノイズ波形

- 取り込んだ波形データはTX_TCLKの位相に対して時間相関が取られ、ディスタービング信号 成分が除去され、正規化されます。(TX_TCLK無しの場合はデータからクロックを抽出)
- ▶ 理想波形との比較を行います。波形の違いはエラー(歪)として取り扱われます。
- ▶ エラー・プロットを表示し、最大誤差を決定します。(最大誤差は10mV未満であること)
- ディスタービング信号は初期の設計段階でのみ不要。規格ではディスタービング信号の印加は必須です。

<u>注意事項</u>

- ▶ 最大誤差10mVを測定する為、SPCやProbe Calが適切に行われていなければなりません。
- ▶ TX_TCLK無しの場合、TX_TCLKが測定時に安定していなければ正しい測定が出来ません。

<u>Distortion testの接続方法</u>

▶ Distortion testの接続はTemplate testと同様。Template Testの手順(2)、(3)参照。

7 Distortion test の手順(2)

- Selectメニューにて Distortionを選択
- ▶ Configureメニュー
- Source Data: Ch1-Ch4
- TX_TCLK: Ch1-Ch4
- #Averages: 64-10,000 (Default:64)
- Disturbing Signal: Yes
 (Noは初期設計時のみ)
- TX_TCLK: Yes / No
- Output: Ref1
- Hi Resolution: 2-75 (Default:64) 設定値が 大きいほうが測定値は小 さくなります)
- LP Filter: No (150MHz の帯域をもったLPFでノイ ズ除去、Yesは初期設計 時のみ使用可です)

<u>Distortion testの試験方法</u>

Tektronix•

7 Distortion test の手順(3)

- Run Testを行うと右上 のような波形がオシロ で表示されるかどうか 訊かれます。同じよう な波形であればOKボ タンをクリックし、先に 進みます。OKでない 場合、プローブの極性、 トリガレベルの微調整 を行ってみてください。
- 試験がPassすると右 下のように緑色で ERROR PLOTが表示 されます。
- 試験がFailした場合、
 ERROR PLOTは赤色
 で表示されます。

7 Distortion test の手順(4)

R	esult Details: 1	000BASE-T			×
	Spec Range	Measured Value	Pass/Fail	Remarks	Locate Hits
	Peak Distortion < 10.0mV	- 7.789mV	Pass	RMS = 2.144mV SNR = 50.36dB Peak Distortion at symbol 1403 = -7.789mV Peak Distortion at symbol 1132 = -7.746mV Peak Distortion at symbol 2011 = -7.116mV TX_TCLK Freq = 125.0058MHZ TX_TCLK ppm = 0.004663% [46.625 ppm] DC Offset Measured = -12.574mV	Flash Hits Show Seg
	•				Close

- ▶ Result画面にてResult Detailボタンを押すと上のようなポップアップ画面が表示されます。
- Remarksの項目中で TX_TCLK Freqの値が125MHzから大きく外れ、TX_TCLK ppmの値がう 数百ppmを大きく上回るような場合はTX_TCLKがSpectrum Spread Clockingで動いている可 能性があります。この場合、Distortion試験では正しい値が取れません。
- ▶ TX_TCLK ppmの値が数十ppmの範囲内で試験できるようにDUTの設定を行って下さい。

8 Common Mode (CM) Voltage test の手順(1)

<u>Common Mode Voltage testの試験内容</u>

Test mode 4の信号でテスト

波形ピーク値が17レベル、2047シンボルの擬似ランダムノイズ波形

- ▶ MDIの差動出力をそれぞれ47.5 Ωで終端し、その中点を49.9 Ω(50 Ω)で終端、中点の電圧 (コモンモード電圧)をオシロスコープにて直接測定します。プローブは使用しません。
- テストフィクスチャTC4では47.5Ωの終端抵抗のペアが4つのTest Pair A, B, C, Dの分だけあり、それぞれについてTestします。
- HistogramのPk-Pk測定により波形のpk-pkの値が測定され、50mV未満であることがチェック されます。

8 Common Mode (CM) Voltage test の手順(2)

Tektronix Oscilloscope <u>Common Mode Voltage testの接続方法</u> DUTをTest Mode 4に設定 00 TC4のJ500にDUTのTest portを接続 000 5 12 BNCケーブルをJ400とオシロスコープの 測定チャンネルに接続 DUT Test Pairにより以下のようにJumperを ショート Test Fixture (TF-GBE) Test Pair A: 1420 Test Pair B: J430 1430 1420 3440 1431 To Oscilloscope J400 Test Pair C: J431 Test Pair D: J440 To DUT J500 TC 4

I 14

8 Common Mode (CM) Voltage test の手順(3)

<u>Common Mode Voltage testの試験方法</u>

- Selectメニューにて CM Voltageを選択
- ▶ Configureメニュー
- Source Data: Ch1-Ch4
- ▶ #Averages: 64 (固定)

File Tests Results Utilities Help	TDSET3	₩ X
Select Select 1000-T Configure 100-TX Connect View Wfm 10-TX	Select: 1000BASE-T Droop Jit/Distortion Return Loss (CM Voltage)	Result Report Summary Detail
1000-T>CM Voltage	Data>Ch1	

8 Common Mode (CM) Voltage test の手順(3)

▶ Run Testを行うと上図のような波形がオシロスコープで表示されます。

<u>Return Loss testの試験内容</u>

- リターンロスはインピーダンスの不整合により発生する反射波の度合いを表します。この値が 大きいと反射が小さく、信号伝送品質が優れていることになります。リターンロスはVSWRと関 連した値となります。
- MDI (Medium Dependent Interface : RJ45コネクタ~PHYの手前) に入射した信号に対し て反射する信号は以下の通りである必要があります。
- ▶ 1MHz ~ 40MHz: 16dB以上減衰すること
- ▶ 40MHz ~100MHz: 10 20*log(f/80) 以上減衰すること
- MDIに接続するケーブルの差動インピーダンスは100Ω±15%(85Ω、100Ω、115Ω)で行うこと
- TestIc先立ちCalibrationを行う必要があります。
- ▶ 4つのTest Pairでそれぞれ行います。

9 Return Loss test の手順(2)

<u>Return Loss test (Calibration)の接続方法</u>

- J200とReturn Loss Calibration基板とを Short RJ45 cableで接続 します (CAT5 cable)
- TC1のJ290, J291を AWGのCH1, CH2(/CH1) にそれぞれ接続、AWG のMarker1をオシロの AUX INIに接続します
- Test Pairにより下記をプ ローブ
- Test Pair A: P1(J240), P2(J230)
- Test Pair B: P3(J241), P4(J231)
- Test Pair C: P5(J242), P6(J232)
- Test Pair D: P7(J243), P8(J233)

9 Return Loss test の手順(3)

<u>Return Loss test (Calibration)の実施方法</u>

- TDSのCドライブ、C:¥TekApplications¥TDSET3¥AWG Waveforms¥1000BaseT Return Loss¥(AWG機種別フォルダ)から使用するWFMファイルをAWGにCopy
- AWGから信号を出力(Test Mode4 相当の波形、Amplitude: 2Vpp, Clock:250MHzであることを確認)
- Selectメニューで1000Base-T、Return Lossを選択します。
- ConnectメニューにてNew Calをクリック
- ▶ Return Loss Calibration基板のOPEN(J702)とTC1のJ200とをCAT5 cableで接続
- ▶ 右上図Openボタンをクリックします

9 Return Loss test の手順(4)

Tek	.		St	οŗ	pp	ed	8	Bir	Iġ	le	Se	q							30)0	A	cq	s																						
		Ī	'	T	1	!	'		T	1	:	ť	1	1	'	!	'	1		'	:		1	'	'	!	'	1	'	!	Γ				ľ	'	'	'	!	'	1	'	'		
	··· ·																																												
R1→						:					:					:					:		_			:				-									:						
																																							:						
																																											•		
																														M A	1 A	U.U UX	ιµ:	s 1 7	.2: 1.5	5G 325	isz /	s.		81	JU	ps	/pt		
	Re	ef 1	1		1	Q.	Oc	₿			:	10	1.0	M	Hz	:					:					:				:	_	_							:						

- ▶ Calibrationが完了すると"Done"という文字がOpenボタンの下に現れます
- ▶ 上記のような波形がReturn Loss Open Calibrationの結果として表示されます

9 Return Loss test の手順(5)

Tek		St	0	эp	ed		Siı	ng	le	Se	9q				3	00	A	CQ	S													03	З.	Jul	9	g .	12	:31	8::	27		2	
			•	· ·		· ·	· ·	- T 			· ·	•	•		· ·			• • •		•			•	•			 		-						•	•	· ·	•			•		
Ric																						•		.				-		•	•	•) .		•	•	•	-		•	•	•	
	Ref				0.	.00					10	Mi	Hz												M A	11 A1	0.0 มห)µs	1	.25 1.5	5G 25	: S/ 	v		8.	00) Ip:	s/p	····· 🖓 · · · · ·				

- ▶ 次にReturn Loss Calibration基板のSHORT(J703)とTC1のJ200とをCAT5 cableで接続
- ConnectメニューのCalibrationの中からShortボタンをクリックします
- ▶ Calibrationが完了すると"Done"という文字がShortボタンの下に現れます
- ▶ 上記のような波形がReturn Loss Short Calibrationの結果として表示されます

9 Return Loss test の手順(6)

- ▶ 次にReturn Loss Calibration基板のLOAD(J704)とTC1のJ200とをCAT5 cableで接続
- ConnectメニューのCalibrationの中からLoadボタンをクリックします
- ▶ Calibrationが完了すると"Done"という文字がShortボタンの下に現れます
- ▶ 上記のような波形がReturn Loss Load Calibrationの結果として表示されます
- ▶ 3つのCalibrationが終了したらApply Calをクリックします
- ▶ 再Calを行う場合はNew Calをクリックしてから前述のCalを再度実行します

9 Return Loss test の手順(7)

<u>Return Loss test の接続方法</u>

- DUTをTest Mode 4に設 定します
- ▶ J200とDUTを接続します
- TC1のJ290, J291をAWG のCH1, CH2(/CH1)に、 AWGのMarker1をオシロ のAUX INに接続します
- Test Pairにより下記をプ ローブ
- Test Pair A: P1(J240), P2(J230)
- Test Pair B: P3(J241), P4(J231)
- Test Pair C: P5(J242), P6(J232)
- Test Pair D: P7(J243), P8(J233)

9 Return Loss test の手順(8)

- Selectメニューにて Return Lossを選択
- ▶ Configureメニュー
- Sources Probe: P1/P2: Ch1-Ch4
- AWG Series: AWG4xx AWG2021 AWG5xx AWG6xx AWG7xx
- Pair ID: Test Pair A, B, C, D
- Load: 100 Ω 又は 85,100,115 Ω
- #Averages: 100-10,000 (Default:100)
- Smooth(0-10) (Default:7) Return Loss波形を 平滑化、値は任意

9 Return Loss test の手順(9)

- AWGから信号を出力します。(Test Mode4 相当の波形、Amplitude: 2Vpp, Clock:250MHz であることを確認)
- ▶ Run Testを行うと上図のような波形がオシロスコープで表示されます。
- 表示される周波数帯域は0-100MHzで、85/100/115ohmのいずれの波形においてもマスクに かかった場合Failとなります。

