

Embedded Systems Electrical Engineering Student Lab

Introduction to SPI Communication

Materials:

- 2 Series Mixed Series Oscilloscope (MSO) 
- Arduino UNO
- Resistors (3)
- Breadboard
- Jumper wires

Procedure:

R = 10 kΩ

Figure 1. Pullup resistor wiring.

1. Serial Peripheral Interface (SPI) is a synchronous serial communication protocol typically

used for short-distance communication in embedded systems. It involves a controller or
master device that initiates communication and one or more peripheral or slave devices.
The controller generates a clock signal (SCLK) and uses a single data line for bi-directional
data transfer (sometimes called SDI/SDO, or simply data line). The controller uses the slave
select (SS) or chip select (CS) line to select the peripheral device by activating the signal
low. For this lab, the controller device will be an Arduino UNO. The 2 Series MSO will decode
the SPI signals sent by the Arduino by using three channel probes.

2. Create the wiring diagram in Figure 1. with the corresponding pull up resistors. Use the 5V

output on the Arduino UNO to supply voltage to the resistors. Connect the digital pins 10, 11
and 13 to the resistors. To observe and decode the message, connect channel 1 to the clock
(pin 13), channel 2 to the chip select (pin 11) and channel 3 to the data line (pin 10). Make sure
to ground the probes to one of the GND pins on the Arduino.

https://www.tek.com/en/products/oscilloscopes/2-series-mso-portable-oscilloscope

3. Write a script that sends a message with your name using SPI. To start, include the <SPI.h>
library to use the SPI communication on the Arduino. Make sure the CS pin is set high to
deactivate it. Once ready for transmission, set the CS pin low. Send over the message
character by character. Once the entire message is transmitted, set the CS pin back high to
stop the transmission. Send this message in a loop with a delay to decode easily in the next
step.

4. Activate channels 1-3 by pressing the colored channel buttons on the right panel on the 2
Series MSO. Add a bus channel by pressing the “Bus” button. On the bus menu, select SPI
under “Bus Type”. Follow the rest of the configuration settings shown in Figure 2. to set up
the bus. Exit the menu and double tap on the screen to bring up the “WAVEFORM VIEW”
menu. Select “Stacked” under “Display Mode” to see all three channels and the bus.

Figure 2. Bus configuration for SPI input.

5. Run the message script onto the Arduino and begin observing the waveforms on the

oscilloscope. To help catch the message, set the “Trigger” (located at the bottom right
corner of the screen) to “Trigger Type” and select “Bus”. Make sure the SPI bus is selected as
the source bus and select “SS Active” under the “Trigger On” option. This will have the
oscilloscope trigger when the Arduino sets the chip select low.

6. Record the decoded data in Table 1. The oscilloscope can decode the message in both

hexadecimal and binary. To switch to binary, go back to the bus configuration menu and
under “Decode Format” select “Binary”. Use an ASCII table to decode the message from
hexadecimal to characters and verify the message was transmitted correctly.

Data Type Data
Hexadecimal

Binary
Character

Table 1. Transmitted and decoded SPI data.

Instructor Notes:

Example code for SPI communication with Arduino UNO:
#include <SPI.h>
const int CS_PIN = 10; // Chip Select pin
void setup() {
 // Set the Chip Select pin as an output
 pinMode(CS_PIN, OUTPUT);
 // Ensure the Chip Select pin is high (inactive)
 digitalWrite(CS_PIN, HIGH);
 // Initialize SPI
 SPI.begin();
}
void loop() {
 // Message to send
 const char* message = "Tektronix";

 // Activate the Chip Select pin (set it low)
 digitalWrite(CS_PIN, LOW);

 // Send the message over SPI
 for (int i = 0; message[i] != '\0'; i++) {
 SPI.transfer(message[i]);
 }
 // Deactivate the CS pin (set it high)
 digitalWrite(CS_PIN, HIGH);

 // Wait for 1 second before sending the next message
 delay(1000);
}

Figure 3. Waveforms results from example code. The scope decodes the data channel into hexadecimal. The
message spells out “Tektronix”.

Find more valuable resources at TEK.COM

Copyright © Tektronix. All rights reserved. Tektronix products are covered by U.S. and foreign patents, issued and pending. Information in this publication supersedes that
in all previously published material. Specification and price change privileges reserved. TEKTRONIX and TEK are registered trademarks of Tektronix, Inc. All other
trade names referenced are the service marks, trademarks or registered trademarks of their respective companies.
0924 1KW-74101-0

http://www.tek.com/
http://www.tek.com/
http://www.tek.com/

