
Getting Started
with Oscilloscope
Automation in C#
 APPLICATION NOTE

2 | TEK.COM

APPLICATION NOTEGetting Started with Oscilloscope Automation in C#

Introduction
Most modern test and measurement instrumentation today

can be configured and controlled via a remote programable

interface that is accessible over physical interfaces such

as Ethernet, USB or GPIB. Even complex instruments like

oscilloscopes can be fully controlled and directed to perform

complex tests using only its programmable interface. In test

and measurement, often there is a need to perform a series

of tests, collect measurement data and repeat these actions

multiple times on one or more devices under test. When

performing repetitive testing and measurements, automation

of instrumentation is key for consistency of test methodology,

repeatability of measurement results, time savings and

reduction of the risk for human error. For these reasons, often

engineers choose to spend time to take advantage of the

remote programable interface capabilities of their instrument

and write test code to automate their test and measurement

applications. For many of these engineers, C# (pronounced C

Sharp) is the programming language of choice.

C# is a versatile and powerful programming language that

was developed by Microsoft as part of its .NET framework. It

is widely used for building a variety of applications, ranging

from desktop software to web applications and even mobile

apps. Using easily integrated third-party libraries, C# is an

excellent choice for automated test applications as well. Many

engineers in test and measurement choose to write their

automated test code in C# for many reasons, including:

• Excellent instrument communication support available
through the IVI VISA.NET library.

• Hundreds of useful libraries built in to the.NET Framework
make everyday code tasks easy and are well documented.

• Development performed using the powerful and easy to
use Visual Studio Integrated Development Environment.

• Free to use Visual Studio Community Edition available.

• IntelliSense in the Visual Studio code editor makes writing
code and working with new code libraries a breeze.

• .NET Winforms library makes writing programs with a GUI
easy.

• Clean syntax, similar to C/C++ that is familiar for many
people.

• Object oriented language encapsulates code into objects
making it more modular and reusable.

• Runtime memory manager automatically allocates and
deallocates memory, making manual memory management
unnecessary, avoiding memory leaks.

• Additional libraries readily available to extend the .NET
framework through the NuGet package manager that is
integrated into Visual Studio.

Getting Started
Recommended System Requirements
The follow list contains the recommend system requirements

for following along with this guide.

• Personal computer running Windows 10 or Windows 11

 – Core i5-2500 or newer processor

 – 8 GB of RAM or greater

 – > 15 GB of free disk space

Recommended Equipment
• Tektronix Oscilloscope

 – 2/4/5/6 Series MSO Mixed Signal Oscilloscope

 – 3 Series MDO Mixed Domain Oscilloscope

 – MSO/DPO5000 B Series Oscilloscope

 – DPO7000 C Series Oscilloscope

 – MSO/DPO70000 B C Series Performance Oscilloscope

 – MSO/DPO/DSA70000 D/DX Series Performance
Oscilloscope

 – DPO70000SX Series Performance Oscilloscope

http://tek.com
https://www.tek.com/en/products/oscilloscopes

TEK.COM | 3

APPLICATION NOTEGetting Started with Oscilloscope Automation in C#

Install the Development Environment
Before you can start automating oscilloscopes using C#, you will need to get your development environment setup. In this

guide we will be using Microsoft Visual Studio Community 2022 as our development environment, NI-VISA as our instrument

communications library and the IVI VISA.NET library for interfacing with VISA in C#.

Install Visual Studio
1. Download Visual Studio:

Go to http://visualstudio.com and download and install Visual Studio 2022. For this guide we will use Visual Studio Community

2022, Microsoft’s free to use version of Visual Studio, but Visual Studio Professional or Enterprise 2022 may be used as well.

Earlier versions of Visual Studio can also be used; however, the steps for setting up your project in these versions may vary

slightly from what is shown in this guide.

2. Install Visual Studio:

Double-click the installer for Visual Studio to run it. During setup, the Visual Studio Installer will ask you to choose the type of

Workload(s) you plan to use with Visual Studio. Select “.NET desktop development” then click the Install button to begin the

installation processes.

Figure 1: Select .NET desktop development in the Visual Studio installer

http://tek.com
http://visualstudio.com

4 | TEK.COM

APPLICATION NOTEGetting Started with Oscilloscope Automation in C#

3. When installation is complete, the installer will ask you to personalize Visual Studio. Since we will be developing in C#, it is

generally recommended you choose Visual C# from the Development Settings drop-down.

Figure 2: Personalize the theme used in Visual Studio

4. Once you have made your selections, click Start Visual Studio.

5. Visual Studio will take a few minutes to prepare itself for use. Once it is complete you will be presented with the Visual

Studio 2022 Getting Started window. Close this window for now by clicking the close button in the upper right corner before

proceeding to install NI-VISA.

Install VISA
Before we can begin writing programs to control instruments with C#, we need to install the VISA communications library on the

system in which we installed Visual Studio. You should install NI-VISA now.

Note: If you have not yet installed Visual Studio, it is recommended that you do so before proceeding to install NI-VISA. The

installer for NI-VISA will detect that Visual Studio is installed and will automatically make sure that the correct components are

selected and installed for use in code development.

In this guide we will be using NI-VISA 2023 Q2. Other versions of NI-VISA as early as version 17 will work but the setup

process may vary from what is shown in this guide and a separate installation of the IVI Compliance Package may be required

to gain support for the IVI VISA.NET application programming interface. NI-VISA 2023 Q2 contains all needed packages and

will be the only file you need to download and install.

Note: When downloading and installing NI-VISA, if there is an option between a Full version and a Run-time version, be sure to

get the Full version. The Full version has additional tools and libraries that are needed for code development.

 A complete guide on how to install VISA and use it for instrument control can be found in the E-book Getting Started Controlling

Instrument with VISA which can be downloaded from tek.com.

http://tek.com
tek.com

TEK.COM | 5

APPLICATION NOTEGetting Started with Oscilloscope Automation in C#

Developing Instrument Control Applications with C#
With Visual Studio and NI-VISA installed, you are now ready to begin developing programs to control instruments using C#.

For the next step in this guide, we will show you how to create a new C# project in Visual Studio, set it up to use the VISA

communications library and then write some code to perform some simple oscilloscope communication.

Creating a New C# Console Project for Instrument Control (Hello World)
The first example presented in just about every programming introduction is the classic “Hello World” program. This guide will be

no different and you will learn how to create the Instrument Control equivalent of the Hello World program by creating a program

that connects to an instrument, queries its ID string and then prints it to the screen. We will then guide you to modify this

program to perform some basic oscilloscope control where we will reset the instrument, turn on a measurement and then fetch

the measurement value and print it to the screen.

1. Launch Visual Studio and it will bring you to the Visual Studio Getting Started screen. On the Getting Started screen click the

option called “Create a new project.”

Figure 3: The Visual Studio Getting Started screen.

http://tek.com

6 | TEK.COM

APPLICATION NOTEGetting Started with Oscilloscope Automation in C#

2. From the Create a New Project Screen, scroll down the project template list and select the C# project called “Console App

(.NET Framework)” then click Next. You can also enter the template name into the Search box at the top of the screen to make

finding it quicker.

Figure 4: Select the type of project you want and click Next. Visual Studio will create a new project based on the selected template.

Note: The project list will contain a similar C# project that is just called “Console Project.” This is not the correct project and

selecting it will create a console project that uses .NET Core instead of .NET framework. The IVI VISA .NET library is built on

the .NET Framework, not .NET Core so it is important that you choose the .NET Framework based C# Console project.

http://tek.com

TEK.COM | 7

APPLICATION NOTEGetting Started with Oscilloscope Automation in C#

3. Give the project a name and select a file location to store the project in.

Figure 5: Enter the project’s name into the wizard. You can also change the location of the project here.

4. In the Framework drop-down, make sure .NET Framework 4.7.2 is selected then click the Create button to create the project.

http://tek.com

8 | TEK.COM

APPLICATION NOTEGetting Started with Oscilloscope Automation in C#

After Visual Studio creates the project, you will be presented with the full Visual Studio interface for editing the project. The main

code file for the project, “Program.cs” will be open in code editor and the Solution Explorer pane, which provides access to the

Properties, References and files in the project, can be accessed. Before we start adding code, we need to prepare our project by

adding a reference to VISA to our code.

Figure 6: The Visual Studio Integrated Development Environment.

http://tek.com

TEK.COM | 9

APPLICATION NOTEGetting Started with Oscilloscope Automation in C#

5. Our code will communicate with instruments by using the IVI VISA .NET library which was installed as part of the NI-VISA

installer. Before we can use this library in our code, we first need to add a reference to it in our project. To add the reference,

go into the Solution Explorer pane, right-click on References and select from the menu Add Reference…

Figure 7: Add a reference to VISA by right-click References in the Solution Explorer and selet Add Reference...

http://tek.com

10 | TEK.COM

APPLICATION NOTEGetting Started with Oscilloscope Automation in C#

6. In the Reference Manager window, under Assemblies, click on “Extensions”. Scroll through the list and find the assembly

named “Ivi.Visa Assembly” and click the checkbox next to it to select it. Click OK to add the reference to the project.

Figure 8: Add a reference to Ivi.Visa Assembly.

Question: Why did we add a reference to Ivi.Visa and not to NI-VISA?

Answer: The IVI VISA .NET library is a standardized .NET library for instrument control that is vendor agnostic. This means

that any program written to use the IVI VISA .NET library can be used with any vendor’s VISA implementation if that

implementation supports the IVI standard VISA .NET interface.

With the reference to the IVIVISA .NET library added, we are now ready to begin writing code.

http://tek.com

TEK.COM | 11

APPLICATION NOTEGetting Started with Oscilloscope Automation in C#

7. Go to the open Program.cs file in the code editor and at the top of the file you will see several “using” statements. After the

last using statement add a new line and enter

8. using Ivi.Visa;

Figure 9: Using statements reduces the amount of typing needed when writing code and help direct the code editor.

This line allows us to access the objects contained in the Ivi.Visa namespace without having to type the entire namespace each

time we declare or use one of these objects. This not only reduces the amount of typing, but it also helps the editor to make

autocomplete suggestions as you type.

9. Further down in the file you will see where the static method Main(string[] args) is declared and followed by a pair of ellipsis.

Between the ellipsis add the following code.

1. string visaRsrcAddr = "TCPIP::192.168.1.2::inst0::INSTR";

2. var scope = GlobalResourceManager.Open(visaRsrcAddr) as IMessageBasedSession;

3. using (scope)

4. {

5. scope.FormattedIO.WriteLine("*IDN?");

6. Console.WriteLine(scope.FormattedIO.ReadLine());

7.

8. Console.WriteLine("Press the Enter key to continue.");

9. Console.ReadLine();

10. }

The code we added will open a connection to the instrument using VISA, send the query command *IDN? to the instrument and

then readback the response from the instrument and print it to the console. The program will then prompt us to press the Enter

key to continue and then will wait until Enter is pressed.

The using statement around the scope object on line 3 in the code snippet above ensures that if any Exceptions are thrown by

our code when it runs, that the connection will still be properly closed before the program quits.

10. In the line where string visaRsrcAddr is declared and assigned, edit the string to match the VISA Resource Address of

your instrument.

http://tek.com

12 | TEK.COM

APPLICATION NOTEGetting Started with Oscilloscope Automation in C#

11. Now that we have added some code to the file, we are ready to run our program. Click the Run button in the menu bar or

press F5 to quickly compile and run our code. When the code runs you should see output in the console window that looks

similar to the following.

Figure 10: The output from our basic HelloScope example.

Note: If the code failed and threw an exception, the most common reason is because VISA was unable to connect to the

instrument. This is usually because the VISA Resource Address was entered incorrectly or because the instrument is no

longer connected or turned on.

http://tek.com

TEK.COM | 13

APPLICATION NOTEGetting Started with Oscilloscope Automation in C#

All right! Your program was able to connect to the instrument, send a command to query its ID and then read it back. This is

great, but overall, it isn’t a very useful application. Let add some more code to this example and actually do something with the

oscilloscope.

12. Modify your code to look like the following.

1. using System;

2. using System.Collections.Generic;

3. using System.Linq;

4. using System.Text;

5. using System.Threading.Tasks;

6. using Ivi.Visa;

7.

8. namespace HelloScope

9. {

10. internal class Program

11. {

12. static void Main(string[] args)

13. {

14. // Edit this to match the VISA Resource Address of your instrument

15. string visaRsrcAddr = "TCPIP::192.168.1.2::inst0::INSTR";

16.

17. // Open a connection to the instrument located at the visaRsrcAddr string

18. // Cast the returned object as an IMessagedBasedSession. This is the interface of the

19. // IVI VISA library used to send and receive commands and data.

20. var scope = GlobalResourceManager.Open(visaRsrcAddr) as IMessageBasedSession;

21.

22. // using statement ensures that the connection will be closed even if an exception is thrown.

23. using (scope)

24. {

25. // Query instrument ID and print response to console

26. scope.FormattedIO.WriteLine("*IDN?");

27. Console.WriteLine(scope.FormattedIO.ReadLine());

28.

29. // Reset the instrument to default state and wait for it to complete

30. Console.Write("Resetting instrument...");

31. scope.FormattedIO.WriteLine("*RST");

32. scope.FormattedIO.WriteLine("*OPC?");

33. scope.RawIO.ReadString();

34. Console.WriteLine("Done!");

35.

36. // Perform an Autoset and wait for it to complete

37. Console.Write("Autoset instrument...");

38. scope.FormattedIO.WriteLine("AUTOSET EXECUTE");

39. scope.FormattedIO.WriteLine("*OPC?");

40. scope.RawIO.ReadString();

41. Console.WriteLine("Done!");

42.

43. // Add an amplitude measurement and stop acquiring

44. scope.FormattedIO.WriteLine("MEASU:ADDMEAS AMPLITUDE");

http://tek.com

14 | TEK.COM

APPLICATION NOTEGetting Started with Oscilloscope Automation in C#

45. scope.FormattedIO.WriteLine("ACQ:STATE STOP");

46. scope.FormattedIO.WriteLine("*OPC?");

47. scope.RawIO.ReadString();

48.

49. // Initiate a single acquisition and wait for it to complete

50. Console.Write("Performing Single Sequence...");

51. scope.FormattedIO.WriteLine("ACQ:STOPAFTER SEQUENCE");

52. scope.FormattedIO.WriteLine("ACQ:STATE RUN");

53. scope.FormattedIO.WriteLine("*OPC?");

54. scope.RawIO.ReadString();

55. Console.WriteLine("Done!\r\n");

56.

57. // Fetch the measurement result and print to console

58. scope.FormattedIO.WriteLine("MEASU:MEAS1:RESULTS:CURRENTACQ:MEAN?");

59. float ampl = float.Parse(scope.FormattedIO.ReadLine());

60. Console.WriteLine($"Signal Amplitude: {ampl} Volts\r\n");

61.

62. Console.WriteLine("Press the Enter key to continue.");

63. Console.ReadLine();

64. }

65. }

66. }

67. }

Now your code will do the following:

1. Connect to the oscilloscope

2. Query its ID and print it to the console

3. Reset the oscilloscope to its default state

4. Autoset the oscilloscope

5. Add an amplitude measurement

6. Acquire a single sequence

7. Fetch the measured amplitude value and print it to the console

Note: The example code listed above is designed for use with Tektronix 2/4/5/6 Series MSO Mixed Signal Oscilloscopes.

To make this code work with 3 Series MDO, MSO/DPO5000 B, DPO7000 C, MSO/DSA/DPO70000 B C D DX, DPO70000SX

Series Oscilloscopes, make the following changes.

Replace the line

scope.FormattedIO.WriteLine("MEASU:ADDMEAS AMPLITUDE");

with

scope.FormattedIO.WriteLine("MEASU:IMM:TYPE AMPLITUDE");

and replace the line

scope.FormattedIO.WriteLine("MEASU:MEAS1:RESULTS:CURRENTACQ:MEAN?");

with

scope.FormattedIO.WriteLine("MEASU:IMM:VAL?");

http://tek.com
https://www.tek.com/en/products/oscilloscopes

TEK.COM | 15

APPLICATION NOTEGetting Started with Oscilloscope Automation in C#

Notice that the code includes the lines

scope.FormattedIO.WriteLine("*OPC?");

scope.RawIO.ReadString();

after several of the operations. This is the Operation Complete query command and it is used to keep the code synchronized

with the oscilloscope operations. Certain long running oscilloscope operations like performing a reset, autoset or acquiring a

single sequence will cause the oscilloscope to lower the Operation Complete Flag in the oscilloscope status and raise it when the

operation has completed. The *OPC? command is a blocking command that will not return a response until the OPC flag is set

high. By querying *OPC? we can block our code from continuing until the command returns a response.

Once you have finished editing your code, click the Run button to compile and run the code. If everything is successful, the

output of your program should look like the following.

Figure 11: The output from our longer HelloScope example.

Congratulations! You have successfully written a program using C# that connects to and instrument, controls it and reads back

data from it. You are now ready to start developing your own advanced instrument control applications.

Pulling Examples from GitHub
To aid in learning to write programs to control Tektronix instruments, Tektronix has made available many example programs

on the Tektronix GitHub in the Programmatic Control Examples repository. This repository can be found at https://github.com/

tektronix/Programmatic-Control-Examples. For the next example we will pull the code from the Tektronix GitHub at the URL

above. Use the following step to get a copy of this repository on to your computer.

1. Go to the Tektronix Programmatic-Control-Examples repository at the URL above.

2. Clone the repository using Git or download it as a ZIP file and extract it to your PC. You can find the information needed to

clone or download the repository by clicking on the green <> Code button on the web page of the repo.

http://tek.com
https://github.com/tektronix/Programmatic-Control-Examples
https://github.com/tektronix/Programmatic-Control-Examples

16 | TEK.COM

APPLICATION NOTEGetting Started with Oscilloscope Automation in C#

Figure 12: Cloning or downloading the GitHub repository can
be accessed from the Green <> Code button on the repo’s
main page.

Curve Query C# Windows Forms
Example
For this example, rather than starting from scratch, we will be

pulling the code from the Tektronix GitHub repository. If you

have not completed the steps above in Pulling Examples from

GitHub, please do so now.

This example demonstrates how to create an automated test

and measurement application with a graphical user interface

that will fetch a waveform from an oscilloscope and display

it on the user interface. This example uses the C# Windows

Forms (.NET Framework) project type in Visual Studio to

create a program with a Windows Forms GUI, the IVI VISA

.NET library for communications and the OxyPlot graphing

library for displaying the waveform data on the user interface.

OxyPlot is installed in the project using the built-in NuGet

package manager in Visual Studio and the library will be

downloaded automatically when you compile the project.

Note: This project is designed to work with Tektronix

2/4/5/6 Series MSO Mixed Signal Oscilloscopes, 3 Series

MDO Mixed Domain Oscilloscopes and Tektronix MSO/

DPO5000 B, DPO7000 C, MSO/DPO70000 B C, MSO/DPO/

DSA70000 D DX and DPO70000SX Series Oscilloscopes. It

may work with other Tektronix Oscilloscope Series as well

(MDO/MSO/DPO3000/4000, 3 Series MDO, etc.), but has

not been tested.

1. After you have cloned, or downloaded as a ZIP and

extracted, the Tektronix Programmatic-Control-

Examples repo to your computer, open the folder

containing the files in Windows Explorer and use the

search bar in Windows Explorer to find the folder named

“CSharpCurveQueryWinforms”.

2. Inside the CSharpCurveQueryWinforms folder, open the file

“CurveQueryWinforms.sln” in Visual Studio.

3. After the project loads in Visual Studio, go to the Solution

Explorer pane and double-click on the file named

“CurveQueryMain.cs”. This will load the Windows Forms

graphical user interface for this example program inside

the visual editor.

4. In the visual editor, on the main form, double-click on the

button labeled “Get Waveform”. This will open the code

editor and go directly to the method that contains the code

that will run when you click on the Get Waveform button.

Inside this method you will find the code that connects to

the instrument, fetches the waveform data, processes it,

and then displays it on screen.

5. Click the Run button in Visual Studio to compile and run

the code.

6. When the program has loaded, enter the VISA Resource

Name of your instrument into the text box labeled VISA

Resource Name and select a channel to fetch.

7. On the oscilloscope to which you will connect, make sure

it has acquired a waveform on the channel you selected

earlier then click the Get Waveform button in the Curve

Query Example GUI.

The program will connect to the instrument, query its ID and

then fetch the waveform data from the channel and display it

on screen.

http://tek.com
https://github.com/tektronix

TEK.COM | 17

APPLICATION NOTEGetting Started with Oscilloscope Automation in C#

Figure 13: The Curve Query Example will fetch waveform data
from the oscilloscope and display it on screen.

Taking the Next Steps
It is common for developers to copy and paste code from

examples; this not only saves time but also helps them learn

along the way. Browse the code examples on the Tektronix

Github for finished solutions and inspiration!

C# is an excellent language for building automated test

and measurement applications. Instrument communication

support through the IVI VISA.NET library makes controlling

and instrument through its remote programable interface

a breeze. The Visual Studio integrated development

environment is user-friendly and offers powerful functionality

that makes it easier to write and debug code in C#. With

its clean syntax and extensive library support, C# enables

engineers to write code that is both efficient and maintainable.

http://tek.com

Contact Information:
 Australia 1 800 709 465

Austria* 00800 2255 4835

Balkans, Israel, South Africa and other ISE Countries +41 52 675 3777

Belgium* 00800 2255 4835

Brazil +55 (11) 3530-8901

Canada 1 800 833 9200

Central East Europe / Baltics +41 52 675 3777

Central Europe / Greece +41 52 675 3777

Denmark +45 80 88 1401

Finland +41 52 675 3777

France* 00800 2255 4835

Germany* 00800 2255 4835

Hong Kong 400 820 5835

India 000 800 650 1835

Indonesia 007 803 601 5249

Italy 00800 2255 4835

Japan 81 (3) 6714 3086

Luxembourg +41 52 675 3777

Malaysia 1 800 22 55835

Mexico, Central/South America and Caribbean 52 (55) 88 69 35 25

Middle East, Asia, and North Africa +41 52 675 3777

The Netherlands* 00800 2255 4835

New Zealand 0800 800 238

Norway 800 16098

People’s Republic of China 400 820 5835

Philippines 1 800 1601 0077

Poland +41 52 675 3777

Portugal 80 08 12370

Republic of Korea +82 2 565 1455

Russia / CIS +7 (495) 6647564

Singapore 800 6011 473

South Africa +41 52 675 3777

Spain* 00800 2255 4835

Sweden* 00800 2255 4835

Switzerland* 00800 2255 4835

Taiwan 886 (2) 2656 6688

Thailand 1 800 011 931

United Kingdom / Ireland* 00800 2255 4835

USA 1 800 833 9200

Vietnam 12060128

* European toll-free number. If not

accessible, call: +41 52 675 3777
Rev. 02.2022

Find more valuable resources at TEK.COM

Copyright © Tektronix. All rights reserved. Tektronix products are covered by U.S. and foreign patents, issued and pending. Information in this publication supersedes that
in all previously published material. Specification and price change privileges reserved. TEKTRONIX and TEK are registered trademarks of Tektronix, Inc. All other trade names
referenced are the service marks, trademarks or registered trademarks of their respective companies.

7/2423 SBG 61W-74018-0

http://www.tek.com
http://www.tek.com

