Make your test easier by understanding what source measure unit is

Contents

- SMU instrument basics
- Measurement terminology
- Key Considerations for Selecting a SMU Instrument
- Applications

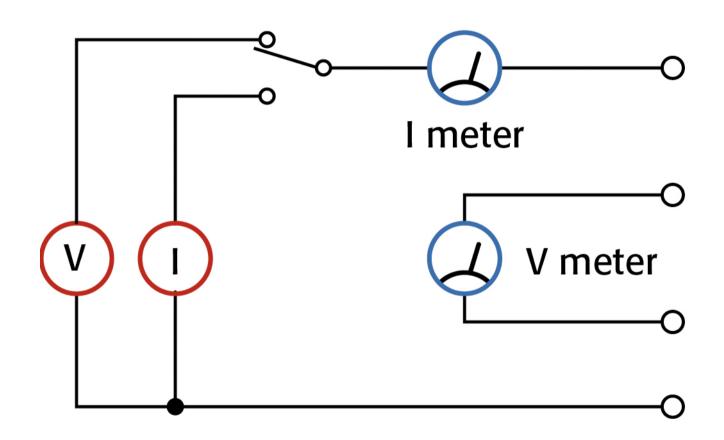
SMU Instrument Basics

SourceMeter® SMU Instruments

 SMUs are precision instruments which are used for sourcing current or voltage and simultaneously measuring current, voltage and/or resistance with high speed and accuracy.

Precision Power Source

Precision DMM



SourceMeter

Basic SMU Topology

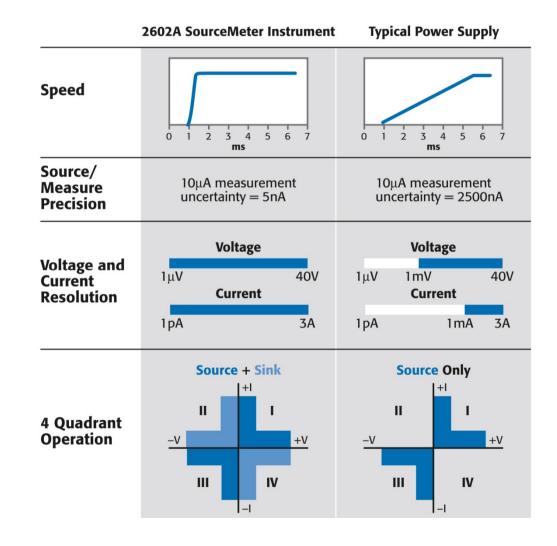
Why SMU?

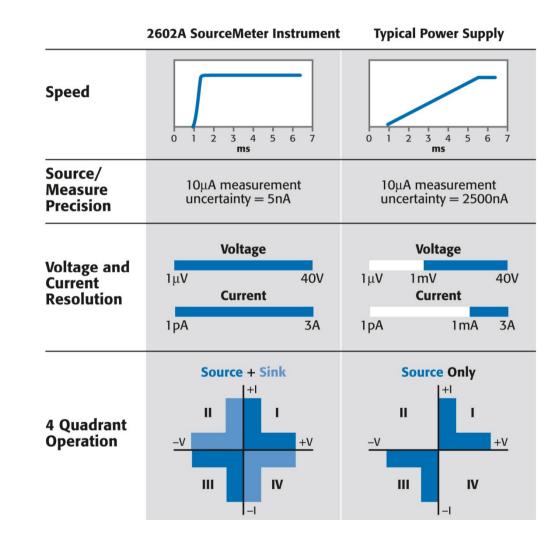
Energy is becoming "Greener"

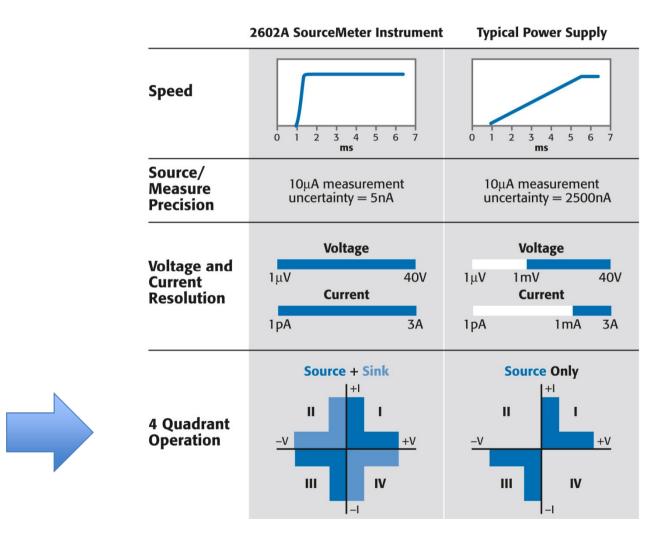
- Emerging technologies such as photovoltaic generation

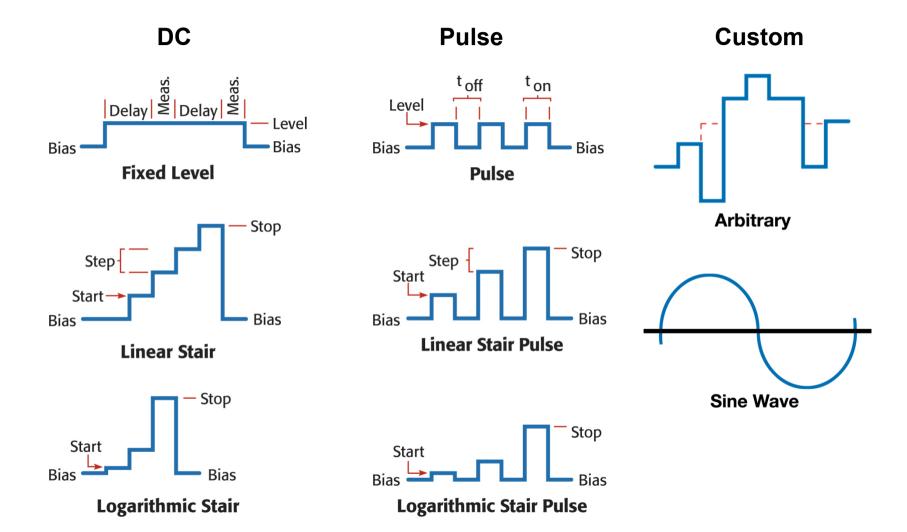
More advance features

- Small, but complex
- Lower power consumption
- Lower cost in manufacturing devices

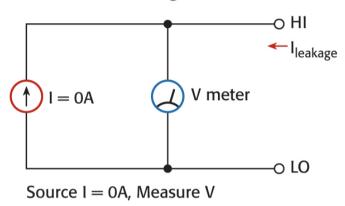

SMU is a perfect solution performing electrical measurement with accuracy and speed

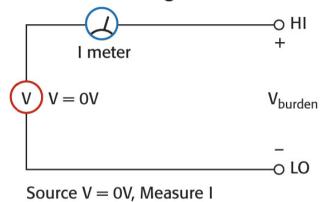

SMUs compared to Power Supplies


SMUs compared to Power Supplies

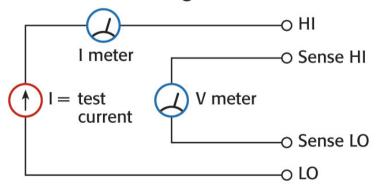

SMUs compared to Power Supplies

Built-in Sweeps

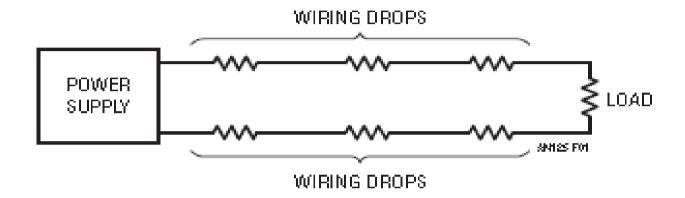




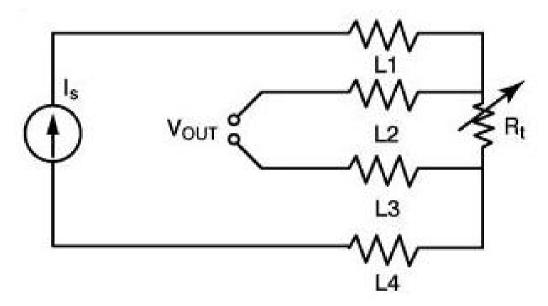
SMUs compared to DMMs


Voltmeter Configuration

Ammeter Configuration


Ohmmeter Configuration

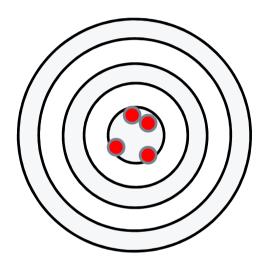
Remote Sensing

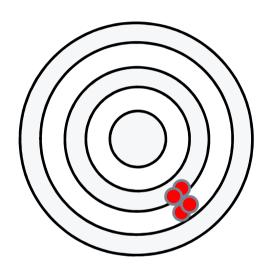


- Wires and connectors have resistance
- Prominent when smaller wires with longer distances
- Devices with small operation voltage can be critical error

Remote Sensing

- Apply current and measure voltage drop across DUT
- Can eliminate line resistance worries
- Called remote sensing or 4 wire sensing


- Accuracy
- Repeatability
- Resolution
- Sensitivity
- A/D Converter Integration Time (NPLC)



Accuracy

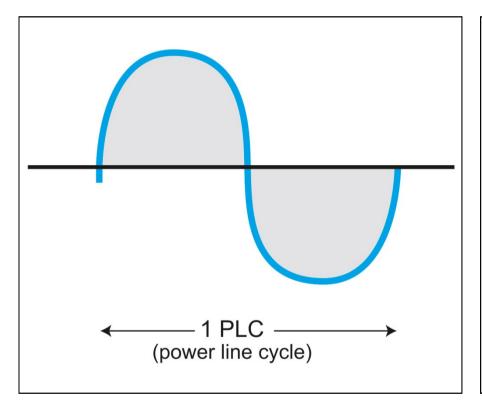
The closeness of agreement between the result of a measurement and it's true value or accepted *standard* value.

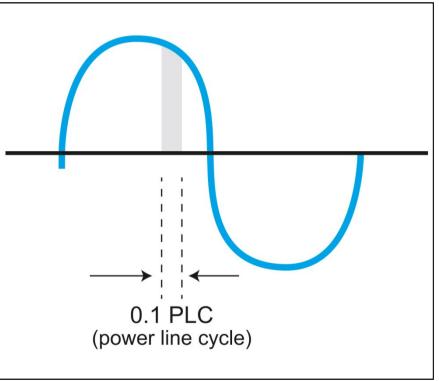
The closeness of agreement between *successive* measurements carried out under the same conditions.

Resolution

The smallest *portion* of the signal that can be observed.

Sensitivity


The smallest *change* in the signal that can be detected.

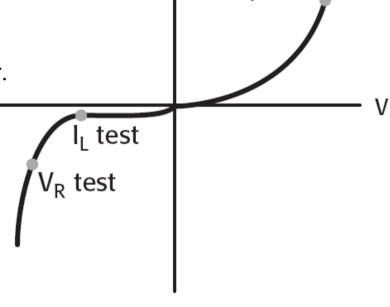


A/D Converter Integration Time (NPLC)

Key Considerations for Selecting a SMU Instrument

Key Considerations for Selecting a SMU Instrument

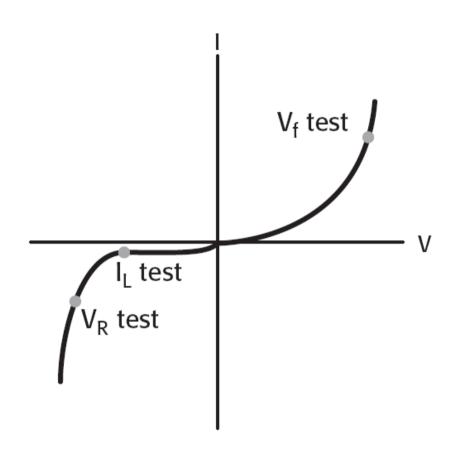
- System-level Speed / Throughput
- Source Resolution vs. Stability
- Measure Settling Time, Offset Error, Noise
- Cabling and Connections



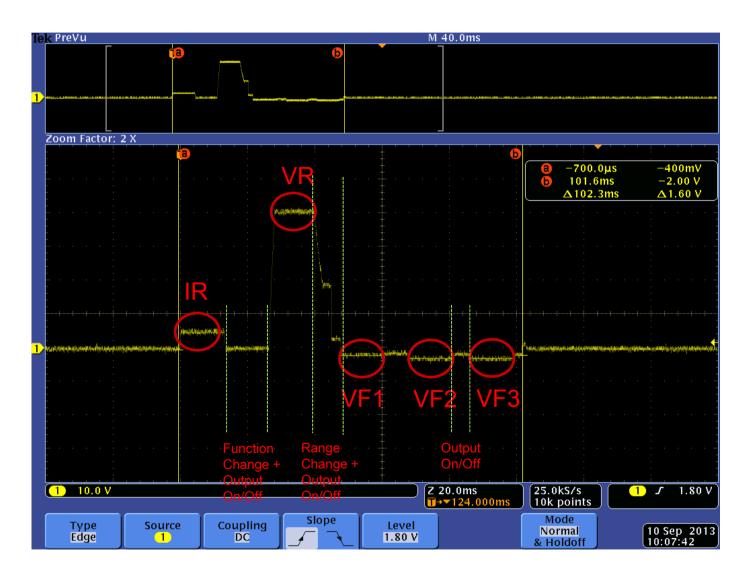
System-level Speed / Throughput

Example: Diode / LED Test

- Three Measurements
 - V_f Forward Voltage
 - V_R Reverse Breakdown Voltage
 - I_I Reverse Leakage Current
- Measurements are compared against upper and lower limits for each parameter.


V_f test

System-level Throughput Considerations


- Must consider and optimize all elements of speed:
 - Trigger In Time
 - Range Change Time
 - Function Change Time
 - Source Settling Time
 - A/D Converter (NPLC)
 - Measurement Speed
 - Trigger Out Time
 - Program Execution Time

System-level Throughput Considerations

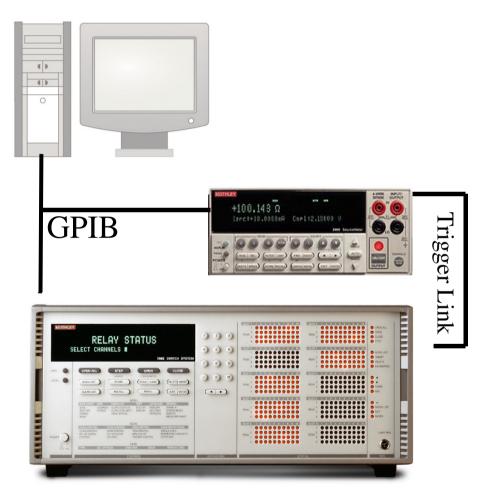
Test Throughput: Actual Parts per Second

(more is better!)

	1 NPLC	0.1 NPLC	0.01 NPLC	0.001 NPLC	0.00048 NPLC
Non-Keithey SMU instrument	6.1	8.1	8.2	8.2	8.2
Keithley 2600A Series	13.3	33.2	37.8	38.2	N/A

Most accurate

Least accurate


A SourceMeter running at 0.1 NPLC A/D conversion time is 4x faster and much more accurate than a SMU instrument running at 0.00048 NPLC

Keithley TSP® Technology

It is now...

Configure Trigger Model of 2410

```
Send 2410 ("ARM: COUN 1")
                                             Scan once per initialization
Send 2410 ("ARM: SOUR IMM")
                                             Immediately proceed to Trig Layer
Send 2410 ("ARM:DIR ACC")
                                             Wait for Arm source (IMM)
Send 2410 ("TRIG:COUN 7")
                                             Seven measurements per scan
                                             Wait for Trig source (Trigger Link)
Send 2410 ("TRIG:SOUR TLINK")
Send 2410 ("TRIG:DIR ACC")
                                             Don't skip first trigger
Send 2410 ("TRIG:OLIN 1")
                                             Define output trigger line
Send 2410 ("TRIG:ILIN 2")
                                             Define input trigger line
Send 2410 ("TRIG:OUTP SENS")
                                             Output trigger after measurement
Send 2410 ("TRIG:DEL 0")
                                             Set trigger delay
```

Configure Trigger Model of 7002

```
Send 7002 ("ARM:LAY2:COUN 1")
                                             Scan once per initialization
Send 7002 ("ARM:LAY2:SOUR IMM")
                                             Immediately proceed to Trig Layer
Send 7002 ("ARM:LAY2:TCON:DIR ACC")
                                             Wait for Arm source (IMM)
Send 7002 ("TRIG:COUN 7")
                                             Seven measurements per scan
Send 7002 ("TRIG:SOUR TLINK")
                                             Wait for Trig source (Trigger Link)
Send 7002 ("TRIG:TCON:PROT ASYN")
                                             Allow asynchronous triggering
                                             Skip first trigger to start scan
Send 7002 ("TRIG:TCON:DIR SOUR")
Send 7002 ("TRIG:TCON:ASYN:OLIN 2")
                                             Define output trigger line
Send 7002 ("TRIG:TCON:ASYN:ILIN 1")
                                             Define input trigger line
Send 7002 ("TRIG:DEL 0")
                                            Set trigger delay
```

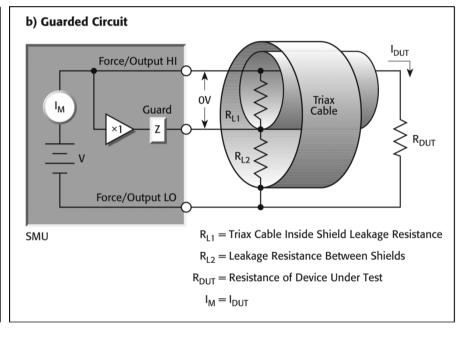
Configure scan list

```
Send 7002 ("ABORT; OPEN ALL")
                                            Abort operation and open all relays
Send 7002 ("ROUT:CLOSE (@1!1,2!1)")
                                            Close channels for 1st bridgewire test
Send 7002 ("MEM: SAVE M1")
                                            Save channels in 1st memory location
Send 7002 ("OPEN ALL")
                                           ' Open all relays
Send 7002 ("ROUT:CLOSE (@1!3,2!3)")
                                           'Close channels for 2nd bridgewire test
Send 7002 ("MEM: SAVE M2")
                                            Save channels in 2nd memory location
Send 7002 ("OPEN ALL")
                                            Open all relays
Send 7002 ("ROUT:CLOSE (@1!2,2!2)")
                                          'Close channels to test housing contact
Send 7002 ("MEM: SAVE M3")
                                            Save channels in 3rd memory location
Send 7002 ("OPEN ALL")
                                            Open all relays
Send 7002 ("ROUT:CLOSE (@1!1,2!1)")
                                           ' Close channels for 1st shunt bar test
Send 7002 ("MEM: SAVE M4")
                                            Save channels in 4th memory location
Send 7002 ("OPEN ALL")
                                            Open all relays
Send 7002 ("ROUT:CLOSE (@1!3,2!3)")
                                           ' Close channels for 2nd shunt bar test
Send 7002 ("MEM:SAVE M5")
                                            Save channels in 5th memory location
Send 7002 ("OPEN ALL")
                                            Open all relays
Send 7002 ("ROUT:CLOSE (@1!1,2!2,3!2)")
                                            Close channels for 1st insulation test
Send 7002 ("MEM: SAVE M6")
                                             Save channels in 6th memory location
Send 7002 ("OPEN ALL")
                                            Open all relays
Send 7002 ("ROUT:CLOSE (@1!2,2!3,3!1)")
                                           ' Close channels for 2nd insulation test
Send 7002 ("MEM:SAVE M7")
                                            Save channels in 7th memory location
                                           ' Open all relays
Send 7002 ("OPEN ALL")
Send 7002 ("ROUT:SCAN (@M1,M2,M3,M4,M5,M6,M7)") 'Scan through memory locations
```


Keithley TSP® Technology

As to be !!


```
90tsplink.reset()
92|smua = node[2].smua
                                  --2602 set to node 2
94mem pattern1 = ("1031,1914,1924","1032,1914,1924","1033,1914,1924","1034,1914,1924","1035,1914,1924","1036,1914,1924")
96|smua.source.output = smua.OUTPUT ON --Enable source
98 for i = 1, 6 do
      channel.exclusiveclose(mem pattern1[i])
      LEDTest ()
      ReturnData()
107smua.source.output = smua.OUTPUT OFF
```

Cable and Connection Considerations

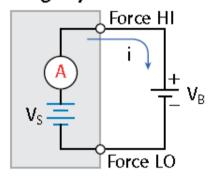
Coax Cable

A) Unguarded Circuit Force/Output HI Guard X1 Z Force/Output LO R_L = Coax Cable Leakage Resistance I_L = Leakage Current R_{DUT} = Resistance of Device Under Test I_M = I_{DUT} + I_L

Triax Cable

Applications

Tektronix®

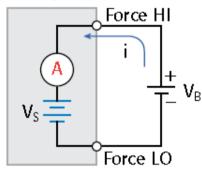


KEITHLEY
A Tektronix Company

Application1 – Battery Discharge Test using 2450 SourceMeter

Simplified circuit diagram

Charge Cycle

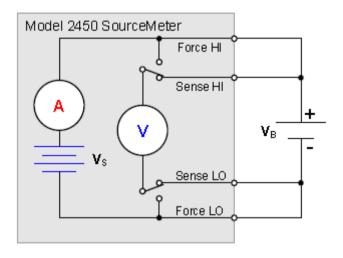


2450 SourceMeter

SourceMeter in Source Mode

V_S > V_B
SourceMeter functions
as Power Supply
Charge Current (i) is Positive

Discharge Cycle

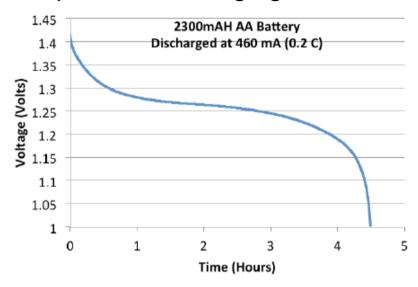


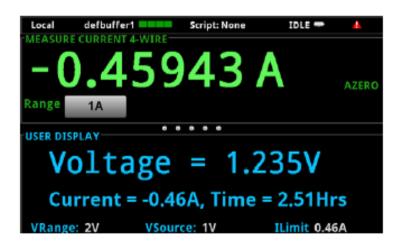
2450 SourceMeter

SourceMeter in Sink Mode

 $V_S < V_B$ SourceMeter functions
as Electronic Load
Discharge Current (i) is Negative

Connections

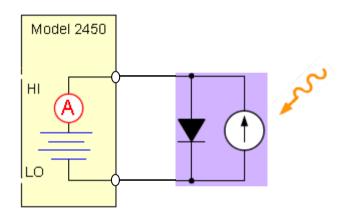


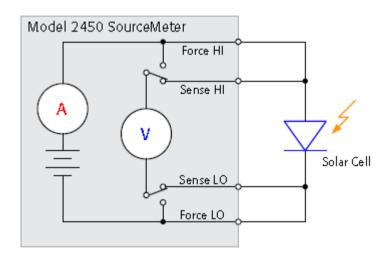


Application1 – Battery Discharge Test

Examples of Discharging an AA Battery

2450 Screen supports measured load Current, battery voltage, elapsed Time on screen etc.

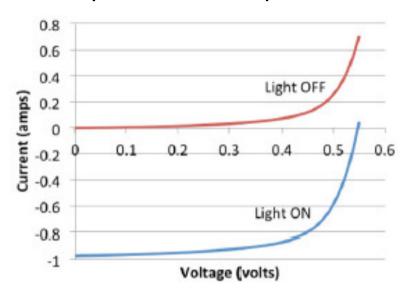



Application2 – Photovoltaic Test using 2450 SourceMeter

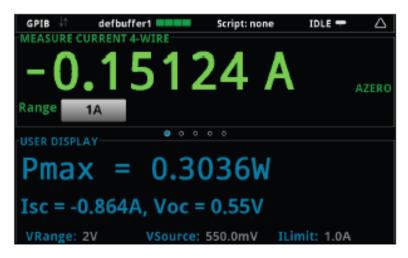
Simplified circuit diagram

An illuminated solar cell will cause a current to flow when a load is connected to its terminals.

Connections

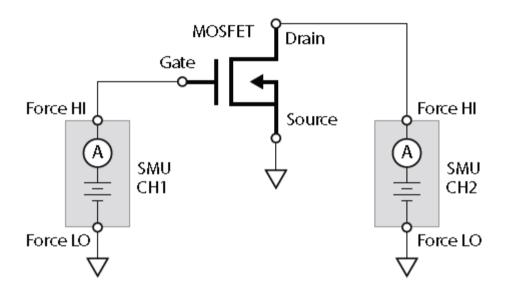


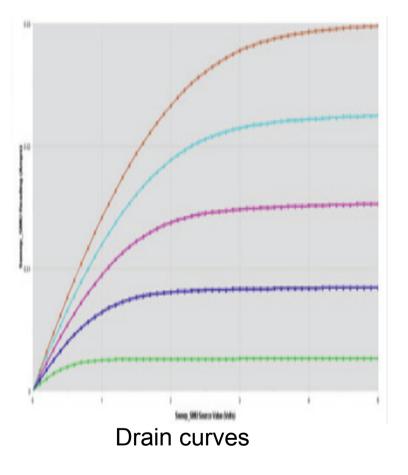
Application2 – Photovoltaic Test using 2450 SourceMeter


Examples of test output

Condition

- Voltage sweep from 0V to 0.55V in 56 steps


2450 Screen supports circuit current, Maximum power, open circuit voltage Etc.

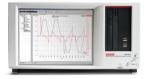


Application3 – MOSFET Test

- Using 2 SMUs to Gate and Drain
- Measuring drain current curves (Vds-Id)
- SMU CH1 steps gate voltage
- SMU CH2 sweeps drain voltage and measure current

Keithley is the Leader in SMU Instruments

- 20 patents issued for SMU-specific technology
- Numerous industry awards, including R&D100, Test of Time, Best in Test, Best Electronic Design, and more
- Thousands and thousands of customers
- Serving Semiconductor, Electronic Components,
 Optoelectronics, Automotive, Mil/Aero, Medical,
 Research & Education, and many more industries



Series 2600B System SourceMeter Instruments

265x High Power SourceMeter Instruments

Model 4200-SCS
Semiconductor Characterization System

S500 and S530 Parametric Test Systems

SMU Instrument Reference Library

www.keithley.com

- Choosing the Optimal Source Measurement Unit (SMU) Instrument for Your Test and Measurement Application
- Rapidly Expanding Array of Test Applications Continues to Drive Source Measurement Unit Instrument Technology
- Precision Sourcing and Measurement Techniques for Applications from Semiconductor Research and Development to High Throughput Component Test

www.keithley.com/knowledgecenter

Low Level Measurements Handbook: Precision DC Current,
 Voltage, and Resistance Measurements (Sixth Edition)

www.keithley.com/events/semconfs/webseminars www.keithley.com/products/onlinedemo

Thank You!

