==
VEKTREX
ELECTRONIC SYSTEMS, INC.

10225 BARNES CANYON RD., SUITE A213 * SAN DIEGO, CALIFORNIA 92121
(858) 558-8585 « FAX (858) 558-2552 « E-MAIL: vektrex@vektrex.com

Interchangeability
Using
VI Class Interfaces

Revision 1.0

21 March 2003

Interchangeability Using IVI Class Interfaces, Revision 1.0 21 March 2003

Table of Contents

1 INTRODUCTIONcoeeiiiiiiiiirtiessss s s e s s s s ssssssss s s s s s s s s s s nmssssssssssssnsssnnnnsssssssssssnnsnnnnnnns 3
1.1 IVI FOUNDATION AND THE GOALS OF IV 1. oo 3
1.2 TERMINOLOGY ...iiiiiiiiiiieieee ittt ettt ettt e ettt ettt ettt ettt ettt ettt ettt et e et eee et eeeeeeeeeeeeeeeeeeeeenennnnes 3
1.3 IVIDRIVER ARCHITECTURE ...ccitiiiuuiaeeeaeeeeeeautnaaeeeeaeeeeeesnnnasaeeeeeeeeessnnnnaeeaeaeeeennnns 4
1.4 IVI-C DRIVER ARCHITECTURE ...cetitiiiiiiieiieeeeeeeeeeeeteees 5
1.5 IVI-COM DRIVER ARCHITECTUREccituuiiiiiiiieiiiie ettt nre e 5

2 IVI SHARED COMPONENTS.......ccoceiiiiiiiirrnsrmnsssssss s s s s sssssssssssssssssssssnnnsssssssssssnennns 6
e T 7] =T 2 2 I I 6
2.2 CONFIGURATION SERVER ... iiiiiiiieiieeie et et e e e e e e e e e e e e e e e e e e e aaa s 6
2.3 VI SESSION FACTORY ...oeiiiiiieeeeeeeeeiiit e e e e e e e e et aa e e e e e e e e e e eetna e e e e e e e e e eeennnaaeeeeeeeas 7

3 USING CLASS-COMPLIANT IVI-COM DRIVERS........cooiiirreteecsnns e eesr s 9
3.1 IVI CONFIGURATION STORE ENTRIESuuiiiiiiiiieiiiiiee e 9
3.2 EXAMPLE: DEVELOP A VISUAL BASIC CLIENT ..euuiiiiiiiiii et ee et e e e e e e 10

3.2.1 Step1: Make the COM Object Available to the Project...........cccccveeeiiiiiiiiiniieen, 11
3.2.2 Step 2: Create an Instance of the IVI Session Factory Object.............ccccceeeeiennis 11
3.2.3 Step 3: The Form_Load ProCedure...........ccooeeeiieiiiiiiii e 12
3.24 Step4: Coding a FUNCHION.......cooiveiii e 13
3.2.5 Step 5: Tidying Up at the End of the Program ..o, 14
3.2.6 Step 6: Error HandliNgcoooiiiiiiiiieiee e 14
3.3 EXAMPLE: DEVELOPING A VISUAL CH+ CLIENT .eeiiiiiiiiiee e eeeeeeiiie e e e 14
3.3.1 Step 1: Creating the Project ... 15
3.3.2 Step 2: Design @ Dialog BOXuuuiiiiiiiiiiiiiiiiieee et 15
3.3.3 Step 3:TUrN ON COM....eeii et 16
3.3.4 Step 4: Import the COM COmMPONENEScccoeiiiiiiiiiieiee e 17
3.3.5 Step 5: Create an Instance of the Driver Object............cccuiiiiiiiiiiiiiiiiiieee 18
3.3.6 Step 6: UsiNg the DIiVEr........ccoooiiiiii e 20
3.3.7 Step 7: Error HaNAIiNGcooiiiiiiieie e 21
3.4 EXAMPLE: DEVELOPING AVB NET CLIENT ...cuuniiiiiiii e 22
3.4.1 Step1: Make the COM Object Available to the Project...........cccccveeeiiiiiiiinniieen, 22
3.4.2 Step 2: Declare Variablesooovvviiiiiiiiiiiiiiiiiieeieeeeeeeeeeeeeeeeeeeeeeee e 22
3.4.3 Step 3: Instantiate and Initialize the Driver............ccooooiiiiiieeeeeeeeee 23
3.44 Step4: Coding a FUNCHION........ooivuiii e 24
3.45 Step 5: Tidying Up at the End of the Programccooveeiiiiiiiiiiie e, 25
346 Step 6: Error HandliNgcooooiiiiiiiieiee e 25
3.5 VISUAL BASIC SCRIPT ...t e e e e e e e s 25
3.5.1 Driver Instantiation and Initialization.............cc.ccooiii i, 27
3.5.2 Fetch WavefOrm ...t 27
3.5.3 [Ty ro Tl o F= T o | 1o Vo TSP 28

Copyright Vektrex 2

Interchangeability Using IVI Class Interfaces, Revision 1.0 21 March 2003

1 Introduction

This white paper is provided by Vektrex to help end-users overcome the learning curve and
initial difficulties with using VI drivers. The focus of this paper is to:

1. Provide a brief overview of IVI and the VI architecture.
2. Provide examples of how to use interchangeable class interfaces from various client
environments.

Vektrex is a founding member of the IVI Foundation and is dedicated to providing the best
possible VI driver end-user experience.

1.1 IVI Foundation and the Goals of IVI

The IVl Foundation is an open consortium of companies chartered with promoting
interchangeability of instrumentation to preserve test programs in the face of rapidly changing
technology. The IVI Foundation consists of end-user test engineers, instrument suppliers and
system integrators with many years of experience with test systems. By defining a standard
instrument driver model that enables engineers to swap instruments with minimal or no software
changes, the IVl Foundation members believe that significant savings in time and money will
result.

The goals of IVI are hardware interchangeability, quality, and Architectural Interoperability™.
These goals can be further broken down into:

1. Hardware Interchangeability
a. To simplify the task of replacing an instrument from a system with a similar
instrument
b. To preserve test software when instruments become obsolete
c. To simplify test code reuse from design validation to production test
2. Quality
a. To improve driver quality
b. To establish guidelines for driver testing and verification
3. Architectural Interoperability™
a. To provide an architectural framework that allows users to easily integrate
software from multiple vendors
b. To provide standard access to driver capabilities such as initialization, range
checking and state caching
c. To simulate instruments and develop test system software when instruments are
not physically available
d. To provide consistent instrument control in popular programming environments

1.2 Terminology

To understand the VI architecture it is useful to review some of the terminology.

Copyright Vektrex 3

Interchangeability Using IVI Class Interfaces, Revision 1.0 21 March 2003

¢ inherent capabilities — Capabilities that every driver must implement. These include
methods such as Initialize and Close and properties such as Description, Revision, and
Vendor.

¢ instrument class — A particular type of instrument (e.g., scope, DMM) that has a set of
behavior that is common amongst most instruments of that type. The IVI Foundation
has identified and documented this set of common behavior for various classes of
instruments such as scope, DMM, and power meter.

o Dbase class capabilities — Capabilities that are common to most instruments in a class
(e.g., edge-triggered acquisition on a scope);

o class extension capabilities — Capabilities that represent more specialized features of
an instrument class (e.g., TV or width trigger on a scope).

¢ instrument specific capabilities — Capabilities that have not been standardized by the
IVl Foundation and are unique to an instrument.

¢ |VI custom specific drivers - /VI custom specific drivers support only inherent
capabilities and instrument specific capabilities.

o |Vl class driver — A DLL that provides the class interface for IVI-C drivers.

¢ |VI class-compliant specific drivers - IVI class-compliant specific drivers contain
inherent capabilities, base class capabilities, as well as class extension capabilities that
the instrument supports. To achieve interchangeability, users program to an VI class
interface available through an IVI class-compliant specific driver or an VI class driver.

1.3 IVI Driver Architecture

The following diagram illustrates the generic IVI driver architecture. An IVI driver can present, to
the client test program, a class interface, an instrument specific interface, or both. If both
interfaces exist, a client test program can call the driver through the class or instrument specific
interface. To assure interchangeability, only the class interface should be used.

IVI drivers interact with IVl Shared Components such as the IVI Configuration Server and the VI
Session Factory. Please refer to section 2.0 for more information on the 1Vl Shared
Components. VI drivers communicate with the instrument through an 1/O layer, typically VISA.

Copyright Vektrex 4

Interchangeability Using IVI Class Interfaces, Revision 1.0 21 March 2003

Class Interfaces IVI Driver

IVI Shared 3
Components

Instrument Specific Interfaces

The IVl Foundation defines two driver architectures. Drivers can be written using the IVI-C or
the IVI-COM architectures. A brief comparison of the two architectures is presented in the next
two sections. However, this paper is focused on the IVI-COM architecture.

1.4 1VI-C Driver Architecture

The diagram below shows the generic VI driver architecture modified to show how IVI-C drivers
work. The modules inside the dashed box collectively represent the “IVI driver”. The IVI driver
in this example implements both a class and an instrument specific interface. To access the
instrument specific interface, the client program calls directly into the I1VI-C Class-Compliant
Specific Driver. To access the class interface, the client calls into the IVI Class Driver that will
in-turn call into the IVI-C Class-Compliant Specific Driver. The IVI Engine is a separate module
that handles simulation and state management.

3

A
IVI Class Driver
/

IVIShared ||Vl Engine 3 1
Components \‘ IVI-C Class-Compliant
! Specific Driver

1.5 IVI-COM Driver Architecture

The diagram below shows the generic VI driver architecture modified to show how IVI-COM
drivers work. The module inside the dashed box represents the “IVI driver”. The IVI driver in
this example implements both a class and an instrument specific interface. IVI-COM drivers are
different from IVI-C drivers in that both the class interface and the instrument specific interface
are encapsulated in one driver COM object. To client calls into either the class or instrument
specific interface as needed.

Copyright Vektrex 5

Interchangeability Using IVI Class Interfaces, Revision 1.0 21 March 2003

-

O Class Interface

4—» 3

IVl Shared
Components

- O—|[Instrument Specific
‘ Interface

2 VI Shared Components

IVl Shared Components are software components owned and licensed by the IVI Foundation.
The shared components enforce the VI driver architecture and simplify driver and client
application development. The most frequently used components by IVI-COM drivers are the
Type Library DLLs, the Configuration Server, and IVI Session Factory.

2.1 Type Library DLLs

A type library contains type information about objects. Developers create type libraries using the
Microsoft Interface Definition Language (MIDL) compiler. Type libraries contain information
about interfaces, structures, and enumerations and all their members. This information can be
obtained from the type libraries without actually referring to the object implementing these
features. This is important when developing COM clients because you usually don't know in
which directory - or computer - the implementation library resides. Early-bound COM clients use
type library information at compile-time to call methods directly.

The VI Foundation distributes type library DLLs for all the instrument classes. The various
client environments can take advantage of the IVI class interfaces by referencing or importing
these DLLs. The IVI Shared Components Installer installs the DLLs.

2.2 Configuration Server

The IVI Configuration Server is the run-time module responsible for providing system database
services to IVI applications. Specifically, it provides system initialization and configuration
information. The Configuration Server consists of the configuration store XML file and a COM
object containing methods and properties to access the XML file.

The IVI Configuration Server is used by other IVI Shared Components including IVI Session
Factory. Since a typical system intermixes instruments and drivers from multiple vendors, the
system configuration service needs to be accessed in a vendor independent fashion. The VI
Foundation provides the VI Configuration Server because the IVI architecture requires a single
Configuration Server be installed on any system; a single shared configuration service

Copyright Vektrex 6

Interchangeability Using IVI Class Interfaces, Revision 1.0 21 March 2003

implementation eliminates potential conflicts from divergent implementations. The IVI
Configuration Server consists of a single executable and one or more XML databases. The
physical database(s) are collectively known as the Configuration Store. APIs are available to
read and write data to the configuration store file. Information stored in the Configuration Store
creates associations between:

e Alogical name that refers to a particular driver/instrument combination (e.g.,
CompliantScope).

e A driver that communicates with an instrument. This is represented in the
configuration store by the driver’s progid in the form appname.objecttype, where
appname is the name of the application providing the object and objecttype is the
type or class of object (e.g., CompliantScope.CompliantScope). IVI-COM drivers do
not usually expose more than one object, so this repeated name will be common.
A resource descriptor for the instrument (e.g., GPIB0::30::INSTR).

o Default settings for driver parameters like caching, range checking, etc.

Alternate names for repeated capabilities (e.g., instead of using the supplied
ScopeChannell, refer to the channel as CH1 or ClockFrequency).

Both the driver (in order to resolve a logical name to resource descriptor mapping, for example)
and the IVI Session Factory can access the Configuration Server. An excerpt from the
Configuration Server's XML file is shown below. This section contains the VISA resource
descriptor (hardware asset) associated with the CompliantScope driver.

- <HardwareAssets
- <IviHardwarefsset iId="p18">
<MName=CompliantScope.Hardware </Name=>
<Description>CompliantScope hardware asset description</Description:
<DataComponents />
<I0OResourceDescriptor >GPIB0::13::INSTR </ I0OResourcelescriptor=
<f{IwviHardwarefsset:>
+ «<IviHardwareAsset id="p19"=>
</HardwarelAssets>
- <DriverSessions =
- «<IviDriverSession id="p20"=
<Name=CompliantScope.DriverSession </Name >
<Description =CompliantScope driver session description</Description=
<DataComponents /=
<IviHardwareAsset idref="p18" /=
<lviSoftwareModuleRef idref="p2" /=

2.3 VI Session Factory

The IVI Session Factory provides the client application a simple mechanism to instantiate I1VI-
COM driver objects. The VI Session Factory works with the Configuration Server to provide
interchangeability without modifying the client program source code. This is achieved by asking
the IVI Session Factory to create a driver instance using a logical name. The Configuration
Server uses the Configuration Store XML file to make the connection between the logical name
and a driver. The IVI Session Factory uses this information to create the driver. If another
instrument/driver is required, the Configuration Store XML file is changed by the driver user to
map the existing logical name to a new driver. No changes to the client application are required.
The following Visual Basic code fragment shows how a client can use the IVl Session Factory.
IviSessionFactory and IviScope are added to the project’s references. Note there are no

Copyright Vektrex 7

Interchangeability Using IVI Class Interfaces, Revision 1.0 21 March 2003

references to a particular driver in the code. The link between the logical name
“CompliantScope” and the driver is made in the Configuration Store XML file.

Dim SessionFactory As New lviSessionFactory

Dim CompliantScope As llviScope

Private Sub Form_Load()
Set myScope = myFactory.CreateDriver("CompliantScope”)
myScope.Initialize "CompliantScope”, True, True, "simulate = true"

The IVI Session Factory follows the well-known factory design pattern. The factory completely
abstracts the creation and initialization of the product (in this case the driver object) from the
client. This indirection enables the client to focus on its discrete role in the application without
concerning itself with the details of how the product is created. Thus, as the product
implementation changes over time, the client remains unchanged.

Copyright Vektrex 8

Interchangeability Using IVI Class Interfaces, Revision 1.0

21 March 2003

3 Using Class-Compliant IVI-COM Drivers

A key benefit of IVI drivers is the ability to achieve instrument interchangeability by having client
programs use the VI class interfaces. This section describes how to use a class-compliant IVI-
COM oscilloscope driver from the following environments: Visual Basic, Visual C++, VB .NET,
and Visual Basic Scripting. Each example provides the necessary steps to use the driver in that
particular environment. The same example is shown for each environment in order to compare
and contrast the environments. The examples consist of:

1.

Client environment settings
a. This includes the steps necessary to include the appropriate dlls and type
libraries
Scope initialization
a. The scope is set to the following values:

Range: 5V Pk-Pk
Offset: OV
Probe attenuation: 1

iv. Channel 1 is enabled for a measurement
v. Vertical DC coupling
vi. Acquisition type is set to normal
vii. Acquisition time period is 1 ms
viii. Acquisition minimum number of points is 1000
ix. Acquisition start time is 0
X. The trigger is on channel1
xi. The trigger is on a positive slope
xii. The trigger level is 0

3. A measurement is done using the FetchWaveform method
4. The results are displayed
5. Error handling is discussed

The examples assume a signal source provides a 1KHz sine wave with amplitude of 2.5 V. The
programming steps for the signal source are not discussed.

All the following examples use the generic IVI Scope class programming interfaces. In every
example, except scripting, the IVl Session Factory shared component instantiates the driver and
returns a reference to the scope class interface. The VI Session Factory uses driver session
information from the Configuration Store to instantiate the actual driver object. The
Configuration Store contains all the necessary information to instantiate and initialize the driver.
Section 3.1 illustrates the entries in the Configuration Store.

3.1 VI Configuration Store Entries

The figure below shows some of the entries in the Configuration Store that the examples use.
The ConfigurationStore.xml file is typically located in the ...\program files\ivi\data folder. The file
populates when an VI driver installs. Some of the entries to note are the hardware asset
description (which is set to GPIB0::13::INSTR) and the channel and measurement mappings.
As the file is currently populated, channels are referred to as Channel1 and Channel2 and
measurements are referred to as Measurement1 and Measurement2. If any of these
parameters need to be changed, it is possible to edit this file with an XML editor. For our
examples, we will use all the default values in the file.

Copyright Vektrex 9

Interchangeability Using IVI Class Interfaces, Revision 1.0

21 March 2003

-} D:\Program Files\IVI\Data\IviConfigurationStore.xml

File Edit View Favorites Tools Help

]

Qﬁack - \J - Iﬂ Ig -_h ‘ /__)Search ‘w:\\'(Favarites @Mediﬁ €3| i‘ :_', _l @ @ ‘3

Address I D:\Program Files\IVI\Data\IviConfigurationStore. xml

Bl |Links 2

<Description=CompliantScope hardware asset description</Description=
«<DataComponents /=
<IOResourceDescriptor>GPIB0::13::INSTR </IOResourceDescriptor>
</IviHardwareAsset=
</HardwareAssets=
- <DriverSessions>
- <IviDriverSession id="p8">
<Mame>CompliantScope.DriverSession </Name >
<Description=CompliantScope driver session description</Description=
<DataComponents /=
<IviHardwarefsset idref="p?" />
<IviSoftwareModuleRef idref="p2" />
- <VirtualNamesz
- <IvivirtualName id="p9">
<Mame>Channell </Name >
<MapTo>=Channell</MapTo>
<\irtualRanges />
</TvivirtualName =
- <IvivirtualName id="p10">
<Mame>=Channel2</Name>
<MapTo>Channel2</MapTo>
<VirtualRanges />
</ IvivirtualName =
- <IvivirtualName id="p11">
<Name>Measurementl</Namex
<MapTo=Measurementl</MapTo>
<\irtualRanges /=
</ IvivirtualName >
- <IvivirtualName id="p12">
<Mame:>=Measurement2</Name>
<MapTo>=Measurement2</MapTo=>
<VirtualRanges /=
</ IvivirtualName =
</VirtualNames=
<SoftwareModuleName=CompliantScope.Software </SoftwareModuleMame >
<Cache>1</Cache=
<DriverSetup />
<InterchangeCheck=0</InterchangeCheck:=>
<QueryInstrStatus =1 </QueryInstrStatus =
<RangeCheck=0</RangeCheck:>
<RecordCoercions=0</RecordCoercions=
<Simulate =0</Simulate >
</IviDriverSession=
</Driversessions =
<Sessions />
- <lLogicalNames>
- <IviLogicalName id="p13"=>
<Name>=CompliantScope</Name:>
<Description=CompliantScope logical name description</Description=
<IviDriverSession idref="p8" /=
< Twil nnicralName=

=

il

|.€| Done

[[[[Jwycompuer

3.2 Example: Develop a Visual Basic Client

This section describes the steps required to access an IVI-COM class-compliant driver from
Visual Basic. The discussion centers on an IVI-COM class-compliant specific oscilloscope

driver.

Copyright Vektrex

10

Interchangeability Using IVI Class Interfaces, Revision 1.0 21 March 2003

3.2.1 Step1: Make the COM Object Available to the Project

After creating a new project, select References from the Project Menu. A dialog similar to that
shown below will appear. This box contains a list of the registered COM objects on the
computer. Select the IviScope and lviSessionFactory type libraries and then click OK.

References - compliantScope.vbp

Available References: OK

Visual Basic For Applications ﬂ Cancel
Visual Basic runtime objects and procedures

Visual Basic objects and procedures
OLE Automation Browse...
IviScope 3.0 Type Librar

Al

M| TviSessionFactory 1.0 Type Library ﬂ

[] 1AS Helper COM Component 1.0 Type Library

[] 145 RADIUS Protocal 1.0 Type Library Priority

[[] Access20000esigner 1.0 Type Library Help
[] Access97Designer 1.0 Type Library ﬂ

[] Acrobat Distiller

[[] AcrolEHelper 1.0 Type Library
[] Active DS Type Library

HIA-:tiVE Setun Control Library | _Ij
4 3

—IviSessionFactory 1.0 Type Library

Location: D:'Program Files\IVI\Bin\IviSessionFactory. dll
Language: Standard

3.2.2 Step 2: Create an Instance of the IVl Session Factory Object

At the top of the Visual Basic Code window type in the two lines shown in the diagram below.
Visual Basic’s Intellisense will step you through the statements. The New keyword will create an
object of type IviSessionFactory. A variable of type llviScope is also declared.

M Projectl - Form1 (Code)

I FetchWaveform

Dim SessionFactory As New IviSessionFactory
Dim CompliantScope As IIviScope

Copyright Vektrex 11

Interchangeability Using IVI Class Interfaces, Revision 1.0 21 March 2003

3.2.3 Step 3: The Form_Load Procedure

When a Visual Basic program runs, the Form_Load procedure executes first, so this is an ideal
place to instantiate and call the driver’s Initialize function. The diagram below shows the code
that instantiates and initializes the driver. The example code shows the driver running in
simulation. If the actual hardware is available, “simulate=true” is not necessary. Note the literal
used to both create and initialize the driver is “CompliantScope.” The IVI Session Factory and
the initialize method use the Configuration Store to find the necessary information. Information
about instantiating the driver is retrieved from the Configuration Store by the VI Session
Factory. Information about the hardware asset is retrieved from the Configuration Store by the
Initialize method.

Private Sub Form Load /()

Cn Error GoTo handler

'Create the driver using IVI Session Factory and get a reference to the IIviScope interface
Set CompliantScope = SessionFactory.CreateDriver ("CompliantScope™)

'Imitialize the driver, Set Id(Query and Reset to true

CompliantScope.Initialize "CompliantScope™, True, True, "simulate=true"™

Exit Sub

handler:
Handle Errors
Resume Next
End Sub

Copyright Vektrex 12

Interchangeability Using IVI Class Interfaces, Revision 1.0 21 March 2003

3.2.4 Step 4: Coding a Function

The diagram below shows a complete Visual Basic subroutine that fetches a waveform from the

scope. Intellisense helps the developer at each step, including listing options for any
enumerated types. This code assumes the Visual Basic form contains a button named

FetchWaveform for the user to press and a text box named Waveform that displays the return
value. This code also shows how the subroutine performs error handling — if an error occurs, the

subroutine calls an error handler.

Private Sub FetchWaveform Click()
Dim WaveFormArray() As Double)
Dim InitialX As Double
Dim XIncrement As Double
Dim i As Long
Cn Error GoTo handler

'Configure channell including enabling the channel, Range = 5, Offset = 0, Probelttenuation = 1
CompliantScope.Channels.Item("Channell™) .Configure 5, 0, IviScopeVerticalCouplingDC, 1, True

'Set the acquisition type to normal
CompliantScope.Acquisition.Type = IviScopefcquisitionTypeNormal

'Configure the acgquisition record, TimePerRecord = Ims, MinNumPts = 1000, AcguisitionStartTime =
CompliantScope.Acquisition.ConfigureRecord 0.001, 1000, O

CompliantScope.Trigger.Type = IviScopeTriggerEdge
CompliantScope.Trigger.Source = "Channell™
CompliantScope.Trigger.Edge.S5lope = IviScopeTriggerSlopePositive
CompliantScope.Trigger.Level = 0

'Start the acquisition for each enabled channel
CompliantScope.Measurements.Initiate

'Fetch the waveform if the acguisition is complete
If CompliantScope.Measurements.Status = IviScopelcgComplete Then

'Fetch the waveform on channell

CompliantScope.Measurements.Item("Measurementl™) .FetchWaveform WaveFormarray, InitialX, XIncrement

Waveform.Text = ""
For i = 0 To UBound (WaveFormaArray)

If (i <> 0) Then

Waveform.Text = Waveform.Text & " "

End If

Waveform.Text = Waveform.Text & Round (WaveFormArray(i), 4)
HNext

End If

Exit Sub

handler:
Handle Errors
Resume Next

e ool

Copyright Vektrex

13

Interchangeability Using IVI Class Interfaces, Revision 1.0 21 March 2003

Clicking the FetchWaveform button produces the following sequence in the text box:

_loix

IEI 00157 0.0314 0.0471 0.0628 0.0785 0.0342 01033 01256 014

Fetchiw aveform E xit

3.2.5 Step 5: Tidying Up at the End of the Program

The code snippet below runs when the user clicks Exit on the form. Exiting the program causes
the driver’'s Close function to run, which releases the references and stops the program.

Private 5ub Exit Click()
On Error GoTo handler

CompliantScope.Close

Set CompliantScope = Nothing
Unload Me

Exit 5Sub

handler:
Handle Errors
Rezume Next
End Sub

3.2.6 Step 6: Error Handling

If an error occurs inside the COM object, information about what happened is passed back to
Visual Basic inside an error object. This simple error handler causes a dialog box to appear with
the error number and description. When the user clears the dialog box, program execution
continues.

Friwvate 3Jub Handle Errors(]
M=y = "Error Number = " + Stré (Err.Number) + Chr#{10) + Chr§{l0) + Err.Description
MsgBox Msg, , "Error!'™

End Sub

3.3 Example: Developing a Visual C++ Client

This section describes the steps required to access a class-compliant IVI-COM driver from a
Visual C++ MFC application. To illustrate this process we will build a simple project.

Copyright Vektrex 14

Interchangeability Using IVI Class Interfaces, Revision 1.0 21 March 2003

3.3.1 Step 1: Creating the Project

Use Visual C++ to create a new MFC application (exe). A simple dialog-based program will
demonstrate the concepts.

MFC AppWizard - Step 4 of 4 x|

Appwiizard creates the following claszes far pou;

CCompliantS copeCApp

CCompliantScopeChig

Clazs name: Header file:

IEEDmpIiantS copeld, IEnmpIiantS copeC.h

Baze clazz: | mplernentation file;

IE‘Winﬁ.pp II:-:umpIiantS copel.cp

¢ Back | HEwt > | Einizh I Cancel

3.3.2 Step 2: Design a Dialog Box

Design a dialog box with a button to fetch the waveform and an edit box to display the results.
Include an exit button to exit the program.

&Complianiﬁcnpe(il

Fectch avefarm E it

Copyright Vektrex 15

Interchangeability Using IVI Class Interfaces, Revision 1.0

21 March 2003

3.3.3 Step 3: Turn on COM

Add a call to AfxOlelnit in the CCompliantScopeCApp class’s Initinstance function, as shown

below.

1

A A S S A
S CCompliantScopeCApp initialization

BOOL CCompliantScopeCApp: InitlInstance!)

AfmOlelnit(); ~ Initialize COM
AfwEnableControlContainer():

<« Standard initialization

<« If wou are not uszing thesse feature= and wish to reduce the =ize
< of wour final executable. vou should remove from the following
¢ the specific initialization routines yvou do not neesd.

#ifdef _AFEDLL

EnablelddControls(); <« Call this when using MFC in a shared DLL
telze

EnableidControl=Static(): ¢ Call this when linking to HFC =tatically
#endif

ClompliantScopeCDlg dlg:
n_pHainWind = &dlg:

int nEesponse = dlg.DoModali):
1f (nREesponse == IDOK)

S TODD: Place code here to handle when the dialog i=
¢ dismizsed with 0K

b
else if (nResponse == IDCANCEL)

s TODD: Place code here to handle when the dialog i=s
S di=mizzed with Cancel

¥

<« Since the dialog has been clo=zed, return FALSE =o that we exit the
application. rather than start the application's message punp.
return FALSE:

Copyright Vektrex

16

Interchangeability Using IVI Class Interfaces, Revision 1.0 21 March 2003

3.3.4 Step 4: Import the COM Components

Import the components using the #import command and the DLL names in the main header file
(CompliantScopeC.h, in this example). Note the IVI DLLs need no path information since they
are in locations known to C++, due to path information installed by the IVI Shared Components
installer.

#if _MSC VER » 1000
#pragmna once
#endif -~ _MSC_VER » 1000

#ifndef _ AFXWIN_H
#error include 'stdafx. h' before including this file for PCH
#endif

#include "resource.h" <7 maln =ymnbols

Binport "IviDriverTypelib.dll" no_nanespace
#import "IviScopeTypelib.dll" no namnespace
#fimport "IviSessionFactory.dll" no_namespace

S S S
s CCompliantScopeCApp:

< See CompliantScopeC . cpp for the inplementation of this cla==s

e

cla=z=s CCompliantScopeCApp @ public CUinApp

public:
CCompliantScopeCAppi()

< Orerrides
s ClassWizard generated wirtual function overrides
S AR _VIRTUAL(CCompl iantScopeCApp)
public:
wvirtual BOOL InitInstancel):
Ao PAFE WIRTUAL

s Inplemnentation

S {AFE _HSG(CComnpliantScopeChpp)
#s HOTE — the ClassWizard will add and remove member functions here.
o4 DO HOT EDIT what wou =ee in these blocks of generated code |
S VAR MSG
DECLARE_MESSAGE MAP()

Copyright Vektrex 17

Interchangeability Using IVI Class Interfaces, Revision 1.0 21 March 2003

3.3.5 Step 5: Create an Instance of the Driver Object

The driver uses smart pointers to communicate with the instrument. These C++ classes perform
a similar function for the drivers as the CString class does for the handling of strings (hiding the
allocations, de-allocations, etc). Appropriate smart pointers are available to the project following
the #import statements of Step 4. When an IVI-COM object is instantiated, it returns a pointer
to the default interface. For the VI Session Factory object, that interface is llviSessionFactory
and the smart pointer corresponding to that interface is llviSessionFactoryPtr. For the scope
class-compliant interface, the smart pointer is liviScopePtr. The developer should add member
variables to the CCompliantScopeCDlg class to hold the pointers, as shown below. The
CCompliantScopeCDIg.h file contains this class definition.

S« Implementation
protected:
HICOH m_hlcon;

< Generated messzage map functions
SOl {AFE HSG(ClompliantScopeCDhla)
wirtual BOOL OnInitDialog():

afx m=sg void OnPaint():

afx_msg HCURSOR CnQusrvDraglcond);
afx m=g woid OnDoublecliclkedButtoni):
afx m=g woid nButtonStop():

afx_m=g woid OnButtonFetchWaveform():
afx_m=g void OnlUpdateWawveform():

afx msg woid OnExitButton():

A/ 2 PAFE HSG

DECLARE HESSAGE HAF()

IIviSessionFactoryFtr SeszionFactory;

IIviScopePtry CompliantScope:

Copyright Vektrex 18

Interchangeability Using IVI Class Interfaces, Revision 1.0 21 March 2003

Since the Compliant Scope pointer provides access the driver object, the code to create and

initialize the instance can be inserted into the OnlnitDialog function. The example code shows

the driver running in simulation. If the actual hardware is available, “simulate=true” is not

necessary. Note the literal used to both create and initialize the driver is “CompliantScope.” The
IVI Session Factory and the initialize method use the Configuration Store to find the necessary

information. Information about instantiating the driver is retrieved from the Configuration Store

by the IVI Session Factory. Information about the hardware asset is retrieved from the
Configuration Store by the Initialize method

BOOL CCompliantScopeCDlg: OnlnitDialogi)
{
HEESULT hr:
Chialog: :OnInitDialogi):
<+ Set the icon for this dialog. The framework does this sutomatically
<7 when the application's main window i= not a dialog
Setlcon({m_hlcon. TRUE): A7 Set big icon
Setlcon(m_hIcon, FALSE): A4 Set =mall icon
s TODD: Add extra initialization hers
hr = SessionFactory.Createlnstance(_ uuidof{IviSessionFactory)):
if (SUCCEEDED(hr))
{
tryv
CompliantScope = SessionFactory—:»Createlriver("CompliantScope"):
CompliantScope—rInitialize("CompliantScope”. VARIANT FALSE, VARIANT FALSE., "simulate=trus"):
catch {_com_esrror er)
BSTR Desc:
er. ErrorInfofi-:GetDescription(éDesc):
CString ErrorString(Desc):

Af wMes=ageBox (ErrorString)
exit{({int)er Error{)):

else

Af wMes=zageBox("Failed to create =session factory instance!"):
exit(hr):

return TRUE; ~ return TREUE unles=s you =et the focus to a control

Copyright Vektrex

19

Interchangeability Using IVI Class Interfaces, Revision 1.0 21 March 2003

3.3.6 Step 6: Using the Driver

Our simple program needs to call two driver functions: one when the user clicks

FetchWaveform, and another when the user clicks Exit. The member variable m_Waveform is
associated with the dialog box’s edit control. The following figure displays the code for the

FetchWaveform button.

vold CCompliantScopeCDlg: OnButtonFetchWaveforn!)

double InitialX, Elncrement
SAFEARRAY #*WaveFormdrray:

try

A-5et the acquisition type to normal
CompliantScope—rAcquisition—:Type = IviScopedcquisitionTypeNormal :

CompliantScope-rAcquisition—>»ConfigureRecord(001, 1000, 0%;
CompliantScope—:Trigger—:Type = IwviScopeTriggerEdge:
CompliantScope—:Trigger—:Source = “"Channell”;
CompliantScope-:Trigger-:Edge-:5Slope = IviScopeTriggerSlopePositive;
CompliantScope—:Trigger-:Lewvel = 0

ssStart the acguisition for sach smnabled channel
CompliantScope—rHeasurenents—>Initiate():

~sFetch the waweform if the acqui=sition i= complete
if {(CompliantScope—:Measurements—:Status() == IviScopeicgComplete)

long LBound. UBound:
double Values:

long ArravIndex[1]:
char StringValus[10]:;

s+Fetch the waveform on channell
HRESULT hr:

SafedrrayGet LBound(VaveFormirray, 1. &LBound):
SafebrrayGetUBound{VaveFormnirray, 1, &UBound):

n_WaweForm . Emptv ()
for (long 1 = LBound; i <= UBound; i++)

ArrayIndex[0] = 1i:

SafedrrayGetElenent (VaveFormirray, ArravIndewx, &Walue):
_gowt(Valus, &, StringV¥alus):

if (i I= 0) m_WaveForm += " "

n_WawveForm += StringValue;

Safebrrayvlestroy(WaveFormArray)
TpdateData(FALSE) ;
H

catch {_com_srror er)

BSTE Desc:

er . ErrorInfol)—:GetDescription{&lesc)
CS5tring ErrorString(Desc).;

Af gMessageBox (ErrorString)
CompliantScope—»Close()

exit({intler Error{)):

ssConfigure channell including enabling the channel, Range = &, Offzet = 0, Probedttenuation = 1

CompliantScope—»Channels—>Item["Channell"]-:Configure(t. 0, IviScopeVerticalCouplingDC, 1, VARIANT TRU|

SoConfigure the acquisition record. TimePerRecord = 1lmns, HinHumPts = 1000, AcguisitionStartTime = 0

hr = CompliantScope-:Measurements—:Item["Heasurenentl"]-:FetchWaveforn(éWaveFornArray.

&InitialX,

Copyright Vektrex

20

Interchangeability Using IVI Class Interfaces, Revision 1.0 21 March 2003

The following figure displays the code for the Exit button.

wold CCompliantScopeCDlg: OnExitButtonf)

{
S TODD: Add wour control notification handler code heres
CompliantScope—:Close() ;
CCZompliantScopeCDlg: (OnidK() ;

h

Intellisense provides the developer real-time driver help as they type the code. Upon clicking
FetchWaveform, the following is displayed:

&Complia ntScopeC il

0 1.5708e-002 31415002 4.7121e-002 62825002 7.8527e-002 9.4225e-002 01033

FectochW aveform E xit

3.3.7 Step 7: Error Handling

This example illustrates standard C++ error handling using try/catch blocks. If an exception

occurs in the driver, the driver throws an exception, and standard COM error handling functions

can interrogate the |IErrorinfo object.

Copyright Vektrex

21

Interchangeability Using IVI Class Interfaces, Revision 1.0

21 March 2003

3.4 Example: Developing a VB .NET Client

This example describes the steps required to access an IVI-COM class-compliant driver from
VB .NET. The discussion centers on an IVI-COM class-compliant specific oscilloscope driver.

3.4.1 Step1: Make the COM Object Available to the Project

After creating a new project, select References from the Project Menu. A dialog similar to that

shown below will appear. Click the COM tab. The ensuing dialog lists the registered COM

objects on the computer. Select the IviScope and lviSessionFactory components and click

OK.

NET COM | Projects |

Component Mame

| TypeLib ver... | Path | =]

IviEventServer 1.0 Type Libra... 1.0
IviEventServerDLL 1.0 Type L... 1.0
IviFgen 3.0 Type Library 3.0
IviPwrMeter 1.0 Type Library 1.0
IviRFSigGen 1.0 Type Library 1.0
IviRFSigGen 1.1 Type Library 1.1

IviScope 3.0 Type Library
IviScriptAdapter 1.0 Type Libr... 1.0

IvisessionFactory 1.0 Type Li...

D:'\Program Files\IVI'\Bin\IviE. ..
D:VProgram Files\IVI'\Bin\IviE. . .
D:\Program Files\IVIBin\IviF. .
D:\Program Files\IVI\Bin\IviP... __|
D:'\Program Files\IVI\Bin'IviRf...
D:\Program Files\IVI\Bin'TviRf...
D:\Program Files\IVIhin{IVIS. ..
D:\Program Files\IVI\Bin\Ivisc. ..
D:\Program Files'T! i

es\IVI\Bi

IviSpecAn 1.0 Type Library 1.0 D:\Program Files\IVI'\Bin\Ivis. . .
IviSwtch 3.0 Type Library 3.0 D:\Program Files\IVIBin\Ivis. ..
iwssn Control |ihrary 1.0 M WY THMT \Swatem 3 2 hivssn. dll ll
Selected Components:
Component Mame | Type | Source |
IviScope 3.0 Type Library COomM D:YProgram Files\IVI\bin\IVISC. ..

IvisSessionFactory 1.0 Type Library COM

D:'Program Files\IVI\Bin\IviSess. ..

QK Cancel

Browse,..

Xl

Remove |

Help

3.4.2 Step 2: Declare Variables

At the top of the Visual Basic Code window type in the two lines shown in the diagram below.

Visual Basic’s Intellisense will step you through the statements. Declare variables of type

lviSessionFactory and llviScope.

Dim SessionFactory b= IVISESSICNFACTORYLib.IviSessionFactory
Dim CompliantScope As IviScopelib.IIviScope

Private Sub Forml Load(ByVal sender Rs System.Cbject, ByVal e &s

Copyright Vektrex

22

Interchangeability Using IVI Class Interfaces, Revision 1.0 21 March 2003

3.4.3 Step 3: Instantiate and Initialize the Driver

When VB .NET initializes an application, it calls the New subroutine. This is the appropriate
location to add code that instantiates and initializes the driver.

The example code (below) shows the driver running in simulation. If the actual hardware is
available, “simulate=true” is not necessary. Note the literal used to both create and initialize the
driver is “CompliantScope”. The IVI Session Factory and the initialize method use the
Configuration Store to find the necessary information. Information about instantiating the driver
is retrieved from the Configuration Store by the IVI Session Factory. Information about the
hardware asset is retrieved from the Configuration Store by the Initialize method

The error handling in this subroutine is different from the type used in the Visual Basic example.
Please refer to Step 6 for more information on error handling.

Public Sub New()
MyEBase.New ()

'Thi=s call is required by the Windows Form Designer.
InitializeComponent ()

'Add any initialization after the InitializeComponent() call

Try
SessionFactory = Hew IVISESSIONFACTCORYLib.IviSessionFactory()
CompliantScope = SessionFactory.CreateDriver ("CompliantScope™)

CompliantScope.Initialize ("CompliantScope™, False, False, "simulate=true"™)

Catch ex As Exception
M=gBox (ex.ToString)
Exit Sub

End Try

End Sub

Copyright Vektrex 23

Interchangeability Using IVI Class Interfaces, Revision 1.0 21 March 2003

3.4.4 Step 4: Coding a Function

The diagram below shows a complete Visual Basic .NET subroutine that fetches a waveform
from the scope. Intellisense will help the developer code the driver by listing options for any
enumerated types. This code assumes the Visual Basic .NET form contains a FetchWaveform
button and a text box named Waveform to display the return value. This code also shows how
the subroutine performs error handling. The error handling is similar to C++ error handling with
try/catch blocks. VB .NET supports both Visual Basic 6.0 type error handling (i.e., “on error goto
...”) and C++ type error handling.

VB .NET requires full namespace resolution. This can be seen in how enumerations are treated
— an enumeration requires a namespace, enumeration name, and enumeration value. An
example of this is:

IviScopelLib.IviScopeTriggerSlopeEnum.IviScopeTriggerSlopePositive

Private Sub FetchWaveformButton Click (ByVal sender As System.Object, ByVal e As System.EventArgs) Handles FetchWave

Dim WaveFormArray() As Double

Dim i As Long

Dim InitialX, XIncrement As Double

Try
'Configure channell including enabling the channel, Range = 5, Offset = 0, ProbelAttenuation = 1
CompliantScope.Channels.Item("Channell™) .Configure (5, 0, IviScopelLib.IviScopeVerticalCouplingEnum.IviScopeV|

'Set the acquisition type to normal
CompliantScope.Acquisition.Type = IviScopelib.IviScopelcqguisitionTypeEnum. IviScopehAcquisitionTypeNormal
'Configure the acquisition record, TimePerRecord = 1ms, MinNumPts = 1000, AcquisitionStartTime = 0

CompliantScope.Acquisition.ConfigureRecord (0.001, 1000, 0O)

CompliantScope.Trigger.Type = IviScopeLib.IviScopeTriggerTypeEnum.IviScopeTriggerEdge
CompliantScope.Trigger.Source = "Channell™

CompliantScope.Trigger.Edge.Slope = IviScopelib.IviScopeTriggerSlopeEnum. IviScopeTriggerSlopePositive
CompliantScope.Trigger.Level = 0

'Start the acquisition for each enabled channel
CompliantScope .Measurements.Initiate (

'"Fetch the waveform if the acgquisition is complete
If CompliantScope.Measurements.S5tatus = IviScopelLib.IviScopefhcquisitionStatusEnum. IviScopeAcgComnplete Then

'Fetch the waveform on channell
CompliantScope.Measurements.Item("Measurementl™) .FetchWaveform(WaveFormArray, InitialX, XIncrement)
Waveform.Text = ""
For i = 0 To UBound (WaveFormArray)

If (i <> 0) Then

Waveform.Text = Waveform.Text & " "

End If

Waveform.Text = Waveform.Text & Decimal.Round (WaveFormirray (i), 4)
Hext

End If

Catch ex A= Exception
M=gBox (ex.ToString)

End Try

End Sub

Copyright Vektrex 24

Interchangeability Using IVI Class Interfaces, Revision 1.0 21 March 2003

When the user clicks FetchWaveform the following is displayed in the text box:

=T

II} 0.0157 0.0314 0.0471 0.0628 00785 0.0942 0.1099 0.1256 O.

Fetchlt/aveform Exit

3.4.5 Step 5: Tidying Up at the End of the Program

When the user clicks Exit, the driver's Close function executes and the references are
released.

Private Sub ExitButton Click(ByVal sender Rs System.Cbject, ByVal e &s System.EventArgs) Handles ExitButton.Click
Try
CompliantScope.Close (
SessionFactory = Nothing
Catch ex As Exception
M=gBox (ex.ToString)
End Try
Dispose (True)
End Sub

3.4.6 Step 6: Error Handling

This example uses C++ type error handling; specifically, it uses try/catch blocks. The error
handling code in the various subroutines catch the error and display a message box with the
actual error string.

3.5 Visual Basic Script

IVI-COM drivers developed with Vektrex’s VIVID Driver Development toolkit support Visual
Basic Script as a client environment. The actual lines of VB Scirpt code look very similar to
Visual Basic. However, there are some differences:

1. VB Script is “late-binding,” so no compile time error checking is done and there is no
concept of Intellisense

VB Script has limited user interface capabilities

Enumerations are not directly supported

Error handling is more limited in VB Script than in Visual Basic

All data types are variants

oo

Copyright Vektrex 25

Interchangeability Using IVI Class Interfaces, Revision 1.0 21 March 2003

Armed with this knowledge it is very straightforward to write client applications in VB Script. The
following script implements the same fetch waveform as the previous examples. Since there are
no sophisticated user interfaces, the script just runs once, executing the fetch waveform
function.

The example code shows the driver running in simulation. If the actual hardware is available,
“simulate=true” is not necessary. Note the literal used to initialize the driver is
“CompliantScope.” While initializing the driver, information about the hardware asset is retrieved
from the Configuration Store.

Oon Error resume next

" VB Script does not support enums so set variables with enum values so the code is readable
IviScopeVerticalCouplingDdC = 1

IviscopeacgquisitionTypeNormal = 0

IviscopeTriggerslopePositive = 1

IviscopeTriggeredge = 1

IviScopeAcqgComplete 1

dim waveFormarray(1000)
set Driver = Createobject("CompliantScope.Compliantscope")
Set CompliantScope = Driver.qQueryInterface("IIviscope™)

" Initialize the driver, Set Idquery and Reset to true
compliantscope.Initialize "CcompliantScope”, True, True, "simulate=true”

" Configure channell 1nc1uding enabWing the channel, RrRange = 5, Offset = 0, Probeattenuation =1
compliantscope.Channels. Item("Channell™).configure 5, 0, IviScopeverticalCouplingDC, 1, True

" Set the acquisition type to normal
compliantscope. Acquisition. Type = IviscopeAcquisitionTypenNormal

" Configure the acquisition record, TimePerRecord = 1ms, MinNumPts = 1000, AcquisitionstartTime = 0
Compliantscope. Acquisition. Configurerecord .001, 1000, O

CompliantScope. Trigger. Type = IviScopeTriggerEdge
Compliantscope. Trigger. source = "Channell”

CompliantScope. Trigger.Edge.Slope = IviScopeTriggerslopePositive
CompliantScope.Trigger.Level = 0

' start the acquisition for each enabled channel
compliantsScope.Measurements. Initiate

" Fetch the waveform if the acquisition is complete
If CompliantScope.Measurements.Status = IviScopeAcgComplete Then

" Fetch the waveform on channell
comp1iantscope.Measurements.Item(”Measurementl”).Fetchwaveform waveFormarray, Initialx, XIncrement
wWaveform = ™"
For i = 0 To UBound(WaveFormArray)

If (i <= 0) Then

waveform = waveform & ",

End If

waveform = waveform & Round(waveFormarray(i), 4)
Next

End If

MsgBox (waveform)

Copyright Vektrex 26

Interchangeability Using IVI Class Interfaces, Revision 1.0 21 March 2003

3.5.1 Driver Instantiation and Initialization

There is no compile-time knowledge in VB Script, so the VI Session Factory is not entirely

necessary. VB Script requires the class and server name of the object to be created. Since
these values can be parameterized, the IVI Session Factory is not necessary. The following
script code instantiates and initializes the compliant scope driver.

Set Driver = Createobject("Compliantscope.Compliantscope™)
Set CompliantScope = Driver.qQueryInterface("IIviscope")

Initialize the driver, Set Idquery and Reset To true
Compliantscope.Initialize "Compliantscope”, True, True, "simulate=true"

3.5.2 Fetch Waveform

The script code that actually sets up the instrument and fetches a result looks similar to the
Visual Basic code.

" Configure channell inc1uding enab11n9 the channel, Range = 5, offset = 0, Probeattenuation =1
CompliantScope.Channels. Item{ Channell™).configure 5, 0, IviScopeverticalCouplingDc, 1, True

" set the acquisition type to normal
CompliantScope. Acquisition. Type = IviScopeAcquisitionTypeNormal

" configure the acquisition record, TimePerRecord = 1ms, MinNumPts = 1000, AcquisitionsStartTime = O
CompliantScope. Acquisition.Configurerecord .001, 1000, O

CompliantScope.Trigger. Type = IviScopeTriggerkdge
Ccompliantscope. Trigger. Source = "Channell”
CcompliantScope.Trigger.Edge.Slope = IviScopeTriggersloperPositive
CompliantScope.Trigger.Level = 0

" start the acquisition for each enabled channel
Compliantscope.Measurements. Initiate

" Fetch the waveform if the acquisition is complete
If compliantScope.measurements.Status = IviScopeacgComplete Then

" Fetch the waveform on channell
Comp1iantscope.Measurements.Item(”Measurementl”).Fetchwaveform waveFormarray, Initialx, XIncrement
waveform = ""
For i = 0 To UBound(WaveFormArray)

If (i <= 0) Then

waveform = waveform & ",

End If

waveform = waveform & Round(waveFormarray(i), 4)
NextT

end If

MsgBox (wWaveform)

The one difference is that a message box displays the retrieved values.

VBScript

0, 0.0157, 0.0314, 0.0471, 0.0628, 0.0785, 0.0842, 0,1099, 0.1256, 0.1413, 0.157, 0.1727, 0.1883, 0.204, 0.2196, 0.2353, 0.2509, 0.2685, 0.2821, 0.2977, 0.3133,
0.3289, 0.3445, 0.36, 0.3756, 0.3911, 0,4068, 0.4221, 0.4376, 0.453, 0.4685, 0.4839, 0.4993, 0.5147, 0,53, 0.5454, 0.5607, 0.576, 0.5912, 0.6085, 0.6217, 0.6369,
0.6521, 0.6673, 0.6324, 0.6875, 0.7125, 0.7276, 0.7426, 0.7576, 0.7725, 0.7375, 0.8024, 0.8172, 0.832, 0.8468, 0.8616, 0.8763, 0.891, 0.9057, 0.9203, 0.9348, 0.949
0.964, 0.9784, 02929, 1.0073, 1.0216, 1.0359, 1.0502, 1.0644, 1.0786, 1.0928, 1.1069, 1.121, 1.135, 11489, 1.1629, 1.1768, 1.1906, 1.2044, 1.2181, 1.2318, 1,2455
1.2591, 1.2726, 1.28561, 1.2995, 1.3129, 1.3263, 1.3396, 1.3528, 1.366, 1.3791, 1.3922, 1.4052, 1.4182, 1.4311, 1.4439, 1.4567

X

%

]

Copyright Vektrex

27

Interchangeability Using IVI Class Interfaces, Revision 1.0 21 March 2003

3.5.3 Error Handling

VB Script supports a very simple form of VB error handling. The VB Script error handling (“on
error resume next’) just executes the next line in the script after the error. VB Script does
contain error functions (Err.Number) that can be checked after each call to determine whether
an error occurred.

Copyright Vektrex 28

