

BEDIENERHANDBUCH

EA-PSI 10000 4U

Programmierbare DC-Netzgeräte

Bedienung, Fernsteuerung, Funktionsgenerator

INHALTSVERZEICHNIS

1.	Allgemeines				
1.1	Zu diesem Dokument	4	3.10	Rampen-Funktion	40
1.1.1	Vorwort	4	3.11	IU-Tabellenfunktion (XY-Tabelle)	40
1.1.2	Urheberschutz (Copyright)	4	3.11.1	Laden von IU-Tabellen über USB	41
1.1.3	Geltungsbereich	4	3.12	Einfache PV-Funktion (Photovoltaik)	42
1.1.4	Symbole und Hinweise	4	3.12.1	Einleitung	42
	,		3.12.2	Anwendung	42
2.	Bedienung und Verwendung (2)	3.13	FC-Tabellenfunktion (Brennstoffzelle)	43
2.1	Regelungsarten	5	3.13.1	Einleitung	43
2.1.1	Spannungsregelung / Konstantspannung	5	3.13.2	Anwendung	44
2.1.2	Stromregelung / Konstantstrom / Strombegrenzu	ing 5	3.14	Erweiterte PV-Funktion nach DIN EN 50530	45
2.1.3	Leistungsregelung / Konstantleistung / Leistungs	;-	3.14.1	Einleitung	45
	begrenzung	6	3.14.2	Unterschiede zur einfachen PV-Funktion	45
2.1.4	Innenwiderstandsregelung	6	3.14.3	Technologien und Technologieparameter	45
2.1.5	Istwertfilterung	7	3.14.4	Simulationsmodus	45
2.1.6	Schnellentladung	7	3.14.5	Tagesverlauf	46
2.1.7	STBY Nullstabilisierung	8	3.14.6	Schrittweise Konfiguration	48
2.2	Manuelle Bedienung (2)	9	3.14.7	Steuerung der Simulation	49
2.2.1	Konfiguration im Menü	9	3.14.8	Stopp-Kriterien	49
2.2.2	Einstellgrenzen (Limits)	18	3.14.9	Auswertungsmöglichkeiten	49
2.2.3	Bedienart wechseln	18	3.15	Fernsteuerung des Funktionsgenerators	50
2.2.4	Datenaufzeichnung auf USB-Stick (Logging)	19			
2.2.5	Das Schnellmenü	20	4.	Weitere Anwendungen (2)	
2.2.6	Nutzerprofile laden und speichern	21	4.1	Parallelschaltung als Master-Slave (MS)	51
2.2.7	Der Graph	22	4.1.1	Einschränkungen	51
2.3	Fernsteuerung	23	4.1.2	Verkabelung der DC-Ausgänge	51
2.3.1	Allgemeines	23	4.1.3	Verkabelung des Share-Bus'	52
2.3.2	Bedienorte	23	4.1.4	Verkabelung und Einrichtung des Master-Slaves-	
2.3.3	Fernsteuerung über digitale Schnittstelle	23		Busses	52
2.3.4	Fernsteuerung über Analogschnittstelle	25	4.1.5	Gemischte Systeme	53
			4.1.6	Konfiguration des Master-Slave-Betriebs	53
3.	Der Funktionsgenerator		4.1.7	Bedienung des Master-Slave-Systems	54
3.1	Einleitung	30	4.1.8	Alarm- und andere Problemsituationen	54
3.2	Allgemeines	30	4.2	SEMI F47	55
3.2.1	Aufbau	30	4.2.1	Einschränkungen	55
3.2.2	Auflösung	30	4.2.2	Einstellmöglichkeiten	55
3.2.3	Mögliche technische Komplikationen	31	4.2.3	Anwendung	55
3.2.4	Arbeitsweise	31	_		
3.3	Manuelle Bedienung	32	5.	Instandhaltung & Wartung (2)	
3.3.1	Auswahl und Steuerung einer Funktion	32	5.1	Firmware-Aktualisierungen	56
3.4	Sinus-Funktion	33			
3.5	Dreieck-Funktion	33			
3.6	Rechteck-Funktion	34			
3.7	Trapez-Funktion	34			
3.8	DIN 40839-Funktion	35			
3.9	Arbiträr-Funktion	35			
3.9.1	Laden und Speichern von Arbiträr-Funktionen	38			

Achtung! Der Teil dieser Anleitung der sich mit der Bedienung am Bedienteil befasst gilt nur für Geräte mit einer Firmware ab "KE: 3.10", "HMI: 4.09" und "DR: 1.0.2.20" oder höher.

1. Allgemeines

1.1 Zu diesem Dokument

1.1.1 Vorwort

Dieses Dokument bildet, zusammen mit einem separaten Installationshandbuch, die Gebrauchsdokumentation für die in «1.1.3 Geltungsbereich» gelisteten Gerätemodelle. Es erläutert manuelle Bedienung und andere Funktionalitäten.

1.1.2 Urheberschutz (Copyright)

Nachdruck, Vervielfältigung oder auszugsweise, zweckentfremdete Verwendung dieses Dokuments sind nicht gestattet und können bei Nichtbeachtung rechtliche Schritte nach sich ziehen.

1.1.3 Geltungsbereich

Dieses Dokument gilt für folgende Geräte, sowie für deren Abvarianten:

Modell
EA-PSI 10060-1000 4U
EA-PSI 10080-1000 4U
EA-PSI 10200-420 4U
EA-PSI 10360-240 4U

Modell
EA-PSI 10500-180 4U
EA-PSI 10750-120 4U
EA-PSI 10920-125 4U
EA-PSI 11000-80 4U

Modell
EA-PSI 11500-60 4U
EA-PSI 12000-40 4U

1.1.4 Symbole und Hinweise

Warn- und Sicherheitshinweise, sowie allgemeine Hinweise in diesem Dokument sind stets in einer umrandeten Box und mit einem Symbol versehen:

Hinweissymbol für allgemeine Sicherheitshinweise (Gebote und Verbote zur Schadensverhütung) oder für den Betrieb wichtige Informationen

Allgemeiner Hinweis

2. Bedienung und Verwendung (2)

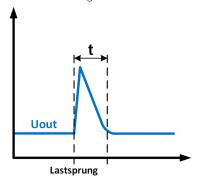
2.1 Regelungsarten

Ein Gerät wie dieses beinhaltet intern einen oder mehrere Regelkreise, die Spannung, Strom und Leistung durch Soll-Istwert-Vergleich auf die eingestellten Sollwerte regeln sollen. Die Regelkreise folgen dabei typischen Gesetzmäßigkeiten der Regelungstechnik. Jede Regelungsart hat ihre eigene Charakteristik, die nachfolgend grundlegend beschrieben wird. Wichtige Hinweise:

- Leerlauf, also Betrieb eines Netzgerätes ohne jegliche Last, ist keine normale und zu betrachtende Betriebsart und kann zu falschen Messergebnissen führen
- Der optimale Arbeitspunkt des Gerätes liegt zwischen 50% und 100% Spannung und Strom
- Es wird empfohlen, das Gerät nicht unter 10% Spannung und Strom zu betreiben, damit die technischen Daten wie Ripple und Ausregelungszeiten eingehalten werden können

2.1.1 Spannungsregelung / Konstantspannung

Spannungsregelung wird auch Konstantspannungsbetrieb (kurz: CV) genannt.


Die DC-Ausgangsspannung wird bei Netzgeräten konstant auf dem eingestellten Wert gehalten, sofern der in den Verbraucher fliessende Strom den eingestellten Strommaximalwert bzw. sofern die vom Verbraucher entnommene Leistung nach $P = U_{AUS} * I_{AUS}$ nicht den eingestellten Leistungsmaximalwert erreicht. Sollte einer dieser Fälle eintreten, so wechselt das Gerät automatisch in die Strombegrenzung bzw. Leistungsbegrenzung, je nach dem was zuerst zutrifft. Dabei kann die Ausgangsspannung nicht mehr konstant gehalten werden und sinkt auf einen Wert, der sich durch das ohmsche Gesetz ergibt.

Solange der DC-Ausgang eingeschaltet und Konstantspannungsbetrieb aktiv ist, wird der Zustand "CV-Betrieb aktiv" als Kürzel **CV** auf der grafischen Anzeige und auch als Signal auf der analogen Schnittstelle ausgegeben, kann aber auch als Status über die digitalen Schnittstellen ausgelesen werden.

2.1.1.1 Regelungsspitzen

Der Spannungsregler des Gerätes benötigt im CV-Modus nach einem Lastwechsel etwas Zeit, um die Ausgangsspannung wieder auf den eingestellten Wert auszuregeln. Technisch bedingt führt ein Lastsprung von einem kleinen Strom zu einem hohen (Belastung) zu einem kurzzeitigen Einbruch der Ausgangsspannung, sowie ein Lastsprung von einem hohen Strom zu einem niedrigen (Entlastung) zu einer kurzzeitigen Erhöhung der Ausgangsspannung. Die Dauer der Ausregelung kann über eine Umschaltung der Spannungsreglergeschwindigkeit beeinflusst werden. Siehe dazu «2.2.1.1 Untermenü "Einstellungen"». Gegenüber der Einstellung Normal (Standardwert) , verringert Schnell die Dauer und verkürzt den Einbruch, kann aber Überschwinger zur Folge haben. Langsam hingegen hat den gegenteiligen Effekt.

Verdeutlichungen:

Uout t Lastsprung

Beispiel Entlastung: die Ausgangsspannung steigt kurzzeitig über den eingestellten Wert. t = Ausregelzeit

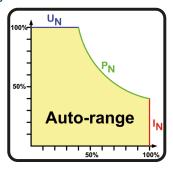
Beispiel Belastung: die Ausgangsspannung bricht kurzzeitig unter den eingestellten Wert ein. t = Ausregelzeit

2.1.2 Stromregelung / Konstantstrom / Strombegrenzung

Stromregelung wird auch Strombegrenzung oder Konstantstrombetrieb (kurz: CC) genannt.

Der DC-Ausgangsstrom wird bei Netzgeräten konstant auf dem eingestellten Wert gehalten, wenn der in den Verbraucher fließende Strom den eingestellten Stromsollwert erreicht. Der aus einem Netzgerät fließende Strom ergibt sich aus der eingestellten Ausgangsspannung und dem tatsächlichen Widerstand des Verbrauchers. Erreicht der Strom den eingestellten Wert, wechselt das Gerät automatisch in Konstantstrombetrieb. Wenn jedoch die vom Verbraucher entnommene Leistung den eingestellten Leistungssollwert erreicht, wechselt das Gerät automatisch in Leistungsbegrenzung und stellt Ausgangsspannung und Ausgangsstrom nach P = U * I ein.

Solange der DC-Ausgang eingeschaltet und Konstantstrombetrieb aktiv ist, wird der Zustand "CC-Betrieb aktiv" als Kürzel **CC** auf der grafischen Anzeige und auch als Signal auf der analogen Schnittstelle ausgegeben, kann aber auch als Status über die digitalen Schnittstellen ausgelesen werden.


2.1.2.1 Spannungsüberschwinger

In bestimmten Situationen können Spannungsüberschwinger auftreten, z. B. wenn das Gerät in der Strombegrenzung ist und die Spannung sich ungeregelt unter dem Sollwert befindet und wenn es dann schlagartig entlastet wird. Das kann durch ein sprunghaftes Heraufsetzen des Stromsollwertes bedingt sein, wodurch das Gerät CC verlässt, oder auch das Wegschalten der Last durch eine externe Trenneinheit. In beiden Fällen schwingt die Spannung über den gesetzten Sollwert für eine unbestimmte Zeit über. Die Höhe des Überschwingers sollte 1-2% vom Spannungsnennwert des Gerätes nicht überschreiten, die Dauer ist bestimmt von der Größe der Ausgangskapazität und deren momentanen Ladezustand.

2.1.3 Leistungsregelung / Konstantleistung / Leistungsbegrenzung

Leistungsregelung, auch Leistungsbegrenzung oder Konstantleistung (kurz: CP) genannt, hält die DC-Ausgangsleistung bei Netzgeräten konstant auf dem eingestellten Wert, wenn der in den Verbraucher fließende Strom in Zusammenhang mit der eingestellten Ausgangsspannung und dem Widerstand des Verbrauchers nach P = U * I bzw. P = U² / R_{LAST} die Maximalleistung erreicht. Die Leistungsbegrenzung regelt dann den Ausgangsstrom nach I = SQR(P / R_{LAST}) bei der eingestellten Ausgangsspannung ein.

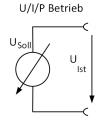
Die Leistungsbegrenzung arbeitet nach dem Auto-range-Prinzip, so dass bei geringer Ausgangsspannung hoher Strom oder bei hoher Ausgangsspannung geringer Strom fließen kann, um die Leistung im Bereich P_N (siehe Grafik rechts) konstant zu halten.

Konstantleistungsbetrieb wirkt auf den internen Stromsollwert ein. Das bedeutet, der als maximal eingestellte Strom kann unter Umständen nicht erreicht werden, wenn der Leistungssollwert nach I = P / U einen geringeren Strom ergibt und auf diesen begrenzt. Der vom Anwender eingestellte und auf dem Display angezeigte Stromsollwert ist stets nur eine obere Grenze.

Solange der DC-Ausgang eingeschaltet und Konstantleistungsbetrieb aktiv ist, wird der Zustand "CP-Betrieb aktiv" als Kürzel **CP** auf der grafischen Anzeige ausgegeben, kann aber auch als Status über die digitalen Schnittstellen ausgelesen werden.

2.1.3.1 Leistungsreduktion (Derating)

Alle Modelle in dieser Serie sind in erster Linie für 400 V AC-Versorgung konzipiert, können aber auch an 208 V Drehspannung (USA, Japan) betrieben werden. Das bedingt jedoch eine automatische Reduktion der verfügbaren DC-Leistung, damit der AC-Strom bei niedriger Versorgungsspannung nicht zu hoch wird. Konkret reduzieren alle Modelle hierbei auf 18 kW.


Die Umschaltung in den sogenannten "Derating-Modus" erfolgt einmal nach dem Einschalten des Gerätes, wobei eine Erkennung der gegenwärtig anliegenden AC-Spannung erfolgt. Das heißt, wenn geringe Spannung erkannt wurde, bleibt das Gerät so lange leistungsreduziert, wie es eingeschaltet ist, auch wenn die Spannung zwischenzeitlich wieder hochgesetzt würde, denn die Umschaltung erfolgt nicht dynamisch mitten im Betrieb. Die volle Nennleistung ist daher nur verfügbar wenn beim Start eine Netzspannungen ab 380 V anliegt.

Sobald ein Gerät im Derating arbeitet, wird dauerhaft ein Hinweis in der Anzeige eingeblendet. Dann sind alle auf die Leistung bezogenen Einstellwerte angepasst auf die reduzierte Leistung. Das gilt auch für Master-Slave-Betrieb von leistungsreduzierten Geräten.

2.1.4 Innenwiderstandsregelung

Innenwiderstandsregelung (kurz: **CR**) bei Netzgeräten ist eine Simulation eines imaginären, variablen Innenwiderstandes, der in Reihe zum Verbraucher liegt und nach dem ohmschen Gesetz einen Spannungsabfall bedingt, der die tatsächliche Ausgangsspannung von der eingestellten um den berechneten Betrag abweichen lässt. Das funktioniert in den Modi CC und CP genauso, jedoch weicht hier die tatsächliche Ausgangsspannung noch mehr von der eingestellten ab, weil diese beiden Modi die Spannung zusätzlich begrenzen. CR-Modus läuft eigentlich als CV-Modus, wird aber mit "CR" angezeigt, sobald der eingestellte Widerstand erreicht wurde.

Die Regelung der Ausgangsspannung anhand des Ausgangsstromes erfolgt rechnerisch durch den Mikrocontroller des Gerätes, ist aber nur unwesentlich langsamer als andere Regler im Gerät. Verdeutlichung:

$$U_{lst} = U_{Soll} - I_{lst} * R_{Soll} \begin{vmatrix} P_{Soll}, I_{Soll} \\ P_{Ri} = (U_{Soll} - U_{lst}) * I_{lst} \end{vmatrix}$$

Bei aktivierter Innenwiderstandsregelung (R-Modus) ist der Funktionsgenerator deaktiviert und der angezeigte Leistungsistwert exkludiert die simulierte Verlustleistung an Ri.

2.1.5 Istwertfilterung

Ab bestimmten Firmwares (hier: HMI 4.05 und KE 3.08) unterstützt das Gerät eine aktivier- und konfigurierbare Filterung der Istwerte, deren Zweck eine Glättung periodisch über analoge oder digitale Schnittstelle ausgelesener Istwerte ist. Die Filterung, sofern aktiviert, findet in der Form statt, dass das Gerät intern eine bestimmte, einstellbare Anzahl von Messungen der drei Istwerte von Spannung, Strom und Leistung im internen Speicher aufzeichnet und über diese einen Mittelwert bildet. Dieser wird dann als nächster aktueller Istwert auf allen Ausgabepunkten ausgegeben.

Der Benutzer kann zwischen den Modi Fixed (fest) und Moving (wandernd) wählen, die sich wie folgt unterscheiden.

- Fixed: die gewählte Anzahl von Messwerten wird zur Mittelwertbildung herangezogen, danach wird der Speicher gelöscht und neue x Messwerte erfasst
- Moving: der Mittelwert wird immer über die zuletzt erfassten x Messwerte gebildet, die im Speicher liegen, und wenn die nächste Messung erfolgt, rutschen Messwerte nach. In diesem Modus bleibt eine gewisse Anzahl an Messwerten im Speicher und wird dann über mehrere Mittelwertbildungen hinweg mit einbezogen.

Zusätzlich zum Modus kann der Benutzer die **Istwert-Filterpuffergrösse** oder genannt Filterstufe zwischen 2 und 24 wählen. Dabei gilt die Regel, dass das Gerät etwa alle 20 ms neue Istwerte (U, I, P) bereitstellen kann, wenn die Filterung nicht aktiviert ist. Die Stufe ist bei aktivierter Filterung ein Multiplikator. Demnach muss bei der höchsten Stufe 24 mit einer Zeit von 480 ms zwischen dem letzten und dem nächsten Satz an Istwerten gerechnet werden.

2.1.6 Schnellentladung

Die Modelle dieser Serie sind alle bidirektional und können dank der eingebauten Senke-Funktionalität die Ausgangsspannung im Quelle-Betrieb selbst sehr schnell abbauen, indem die Kapazitäten am Ausgang und eventuell an einer angeschlossenen, externen Quelle vorhanden durch einen hohen Senkestrom (bis zum eingestellten Sollwert) entladen werden. Auf diese Weise erfolgt das jedoch nur solange der DC-Ausgang eingeschaltet ist.

Nach dem Ausschalten arbeitet die Leistungsstufe nicht mehr als Senke, sondern eine kleinere, interne elektronische Last mit geringer Leistung wird aktiv, um die geräteeigene Ausgangspannung in unter 10 Sekunden auf unter 60 V zu entladen. Das ist eine Sicherheitsfunktionalität. Danach sinkt die Ausgangsspannung zwar weiter in Richtung 0 V, aber langsamer.

Das Feature **Schnellentladung** ist eine neue Funktionalität, die ab den Firmwares KE 3.10 und HMI 4.09 für alle 10000er Netzgeräteserien verfügbar ist. Ziel ist es hier, die Ausgangsspannung nach dem Ausschalten des DC-Ausganges gezielt schneller zu entladen. Das Feature kann wahlweise aktiviert werden (siehe Abschnitt *2.2.1.1*). Dazu gehören die drei Einstellwerte **Schnellentladestrom**, **Schnellentladespannung** und **Schnellentladedauer**. Der Spannungswert bestimmt dabei, bis wohin die Spannung durch den gesetzten Strom schnellentladen werden soll. Das Gerät überschreibt den normalen gesetzten Senke-Stromsollwert in dieser Situation mit dem Schnellentladestromwert und setzt den Leistungssollwert temporär auf das Maximum von 102% P_{Nepp}.

Da die Dauer der Entladung von der Startspannung, dem machbaren Senkestrom des Gerätes, sowie der Ausgangskapazität abhängt, ist nicht genau definiert, welches Modell wann mit der Entladung fertig ist. Daher kann die **Schnellentladedauer** den Zeitraum zum Einen ausreichend ausdehnen und zum Anderen auch eingrenzen. Das Maximum von 5 Sekunden sollte in jedem Fall zeitlich ausreichend sein, die Spannung selbst bis auf 0 V zu entladen, außer eine externe Quelle verhindert das.

Als Effekt bleibt der DC-Ausgang statusmäßig für die gesetzte **Schnellentladedauer** eingeschaltet, nachdem per manueller Betätigung der On/Off-taste oder per Befehl in der Fernsteuerung dem Gerät kommandiert wurde, den DC-Ausgang auszuschalten. Im Normalfall springt dann die Spannung bei entsprechend hoch gesetztem Schnellentladestrom in kurzer Zeit auf den gesetzten Wert der **Schnellentladespannung** und, sofern diese nicht 0 V ist, entlädt sich danach langsamer weiter wie sonst auch, wenn das Feature **Schnellentladung** deaktiviert ist.

Verdeutlichung:

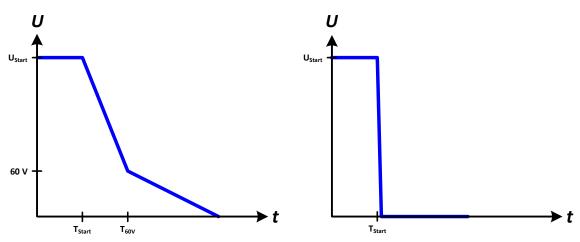


Bild 1 - Vergleich des Ausgangsspannungsverlaufs nach dem Ausschalten des DC-Ausganges ohne (links) und mit Schnellentladung (auf 0 V, rechts)

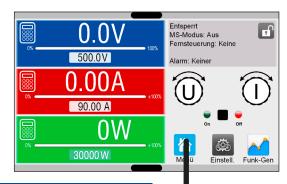
Dieses Feature ist softwarebasiert und funktioniert daher nicht in Situationen, wo der DC-Ausgang durch z. B. einen Gerätealarm ausgeschaltet wird. Das inkludiert das Ausschalten des Gerätes selbst.

2.1.7 STBY Nullstabilisierung

Dieses ab den Firmwares KE 3.10 und HMI 4.09 für alle Modelle der 10000er Serien verfügbare Feature ist standardmäßig deaktiviert und kann bei Bedarf im Einstellungsmenü (siehe Abschnitt 2.2.1.1) in der Gruppe **Allgemein** aktiviert werden. Es dient lediglich der Stabilisierung des Spannungsistwertes nach dem Ausschalten des DC-Ausgangs und nachdem die Spannung unter eine gewisse Schwelle (hier: 3 V, modellunabhängig) gesunken ist. **STBY** steht für das englische stand-by und meint den Zustand des ausgeschalteten DC-Ausgangs.

Technisch bedingt können der angezeigte Spannungsistwert und auch die tatsächliche Ausgangspannung schwanken bzw. leicht über 0 V liegen. Gründe dafür sind die getakteten Leistungsstufe, parasitäre Kapazitäten, sowie Messfehler. Dieses Feature, wenn aktiviert, überschreibt den Spannungsistwert mit 0 V, solange sich die am DC-Ausgang gemessene, tatsächliche Spannung unter der Schwelle von 3 V befindet. Da das Gerät auch bei ausgeschaltetem DC-Ausgang die vorhandene Spannung an diesem erfasst und somit auch die von angeschlossenen, externen Quellen messen würde, sind in dem Fall Istwertsprünge zwischen 3 V und 0 V in beide Richtungen zu erwarten und normal. Damit werden die Schwankungen um dem Nullpunkt herum unterdrückt.

2.2 Manuelle Bedienung (2)


2.2.1 Konfiguration im Menü

Das Menü dient zur Konfiguration aller Betriebsparameter, die nicht ständig benötigt werden. Es kann per Fingerberührung auf die Bedienfeld **Menü** erreicht werden, aber nur, wenn der DC-Ausgang **ausgeschaltet** ist, wie rechts in der Abbildung gezeigt.

Ist der DC-Ausgang hingegen eingeschaltet, werden statt einem Einstellmenü nur Statusinformationen angezeigt.

Die Navigation erfolgt in den Untermenüs mittels Fingerberührung, Werte werden mit einer eingeblendeten Zehnertastatur eingestellt.

Einige Einstellparameter sind selbsterklärend, andere nicht. Diese werden auf den nachfolgenden Seiten im Einzelnen erläutert.

2.2.1.1 Untermenü "Einstellungen"

Das Untermenü kann man auch direkt erreichen, wenn man in der Hauptanzeige "Einstell." antippt.

Gruppe	Einstellung & Beschreibung
Sollwerte	U, I, P, R
	Einstellung aller Sollwerte über Zehnertastatur
Schutz	OVP, OCP, OPP
	Schutzgrenzen setzen
Limits	U-min, U-max usw.
	Einstellgrenzen setzen (mehr dazu in «2.2.2 Einstellgrenzen (Limits)»)
Nutzer-Events	UVD, OVD usw.
	Überwachungsgrenzen setzen, die benutzerdefinierte Ereignisse auslösen (mehr dazu in «3.5.2.1 Benutzerdefinierbare Ereignisse (Events)» im Installationshandbuch)
Allgemein	Fernsteuerung erlauben
	Ist die Fernsteuerung nicht erlaubt kann das Gerät weder über eine der digitalen, noch über die analoge Schnittstelle fernbedient werden. Der Status, dass die Fernsteuerung gesperrt ist, wird im Statusfeld der Hauptanzeige mit Lokal angezeigt. Siehe auch Abschnitt 1.9.6.1 im Installationshandbuch.
	Vorrang der Analogschnittstelle
	Aktiviert bzw. deaktiviert den Vorrang der analogen Schnittstelle in Bezug auf Übernahme der Fernsteuerung mit Pin REMOTE. Mehr dazu in «2.3.4.8 Vorrang der Analogschnittstelle».
	R-Modus aktivieren
	Aktiviert bzw. deaktiviert die Innenwiderstandsregelung. Bei aktiviertem R-Modus wird der Innenwiderstandswert in der Normalanzeige eingeblendet. Mehr dazu siehe «2.1.4 Innenwiderstandsregelung» in diesem Dokument, sowie «3.4.3 Sollwerte manuell einstellen» im Installationshandbuch.
	Spannungsreglergeschwindigkeit
	(Die Umschaltung funktioniert nur bei Geräten, die bereits mit Firmware KE/HMI 3.02 und DR 1.0.2.20 oder höher <u>ausgeliefert</u> wurden) Kann den internen Spannungsregler zwischen drei Geschwindigkeiten umschalten, welche die Ausregelung der Spannung beeinflussen. Siehe auch «2.1.1.1 Regelungsspitzen». • Langsam = Der Spannungsregler wird etwas langsamer, die Überschwinger geringer aber breiter
	 Normal = Der Spannungsregler ist normal schnell (Standardeinstellung) Schnell = Der Spannungsregler wird etwas schneller, die Überschwinger größer aber schmaler
	SEMI F47
	(Wird nur angezeigt, wenn das Gerät bereits mit Firmware KE 3.02 oder höher <u>ausgeliefert</u> wurde) Aktiviert bzw. deaktiviert eine Funktionalität namens SEMI F47, nach dem gleichnamigen Standard. Siehe «4.2 SEMI F47» für mehr Informationen.
	Istwert-Filtermodus
	Aktiviert mit Fixed oder Moving eine Filterfunktion für durch das Gerät am DC-Ausgang gemessene Istwerte (Spannung, Strom, Leistung), wie sie auch auf dem HMI angezeigt bzw. auf den Schnittstellen ausgegeben werden. Mehr dazu siehe <i>«2.1.5 Istwertfilterung»</i>
	Istwert-Filterpuffergröße
	Gehört zum Istwert-Filtermodus , siehe oben und <i>«2.1.5 Istwertfilterung»</i> . Einstellbereich: 224
	STBY Nullstabilisierung
	STBY Nullstabilisierung Aktiviert bzw. deaktiviert das in <i>«2.1.7 STBY Nullstabilisierung»</i> beschriebene Feature.

Gruppe **Einstellung & Beschreibung Allgemein** Schnellentladespannung Gehört zu **Schnellentladung**. Definiert die Spannungsschwelle in Volt, bis zu der die Schnellentladung aktiv sein soll. Einstellbereich: 0V...102% UNenn Schnellentladestrom Gehört zu Schnellentladung. Definiert den maximalen Senkestrom in Ampere, der bei der Schnellentladung aktiv sein soll. Einstellbereich: OA...102% INenn Schnellentladedauer Gehört zu Schnellentladung. Definiert die maximale Dauer in Millisekunden, für welche die Schnellentladung aktiv sein darf. Einstellbereich: 0ms...5000ms Analogschnittstelle Bereich Wählt den Spannungsbereich für die analogen Sollwerteingänge, Istwertausgänge und den Referenzspannungsausgang. • 0...5V = Der Bereich entspricht 0...100% Sollwert/Istwert, Referenzspannung 5 V 0...10V = Der Bereich entspricht 0...100% Sollwert/Istwert, Referenzspannung 10 V Siehe auch «2.3.4 Fernsteuerung über Analogschnittstelle». **REM-SB Pegel** Legt fest, wie der Eingang REM-SB an der eingebauten Analogschnittstelle logisch funktionieren soll, gemäß der in «2.3.4.3 Spezifikation der Analogschnittstelle» angegebenen Pegel. Siehe auch «2.3.4.7 Anwendungsbeispiele». • Normal = Pegel und Funktion wie in der Tabelle in Abschnitt 2.3.4.3 gelistet • Invertiert = Pegel und Funktion invertiert **REM-SB Verhalten** Legt fest, wie der Eingang REM-SB an der eingebauten Analogschnittstelle außerhalb einer analogen Fernsteuerung auf den Zustand des DC-Ausgangs wirken soll: • DC Aus = Der DC-Ausgang kann über den Pin nur ausgeschaltet werden DC Ein/Aus = Der DC-Ausgang kann über den Pin aus- und wieder eingeschaltet werden Pin 6 Pin 6 der Analogschnittstelle (siehe Abschnitt 2.3.4.3) signalisiert standardmäßig die Gerätealarme OT oder PF. Dieser Parameter erlaubt es, auch nur einen von beiden auf dem Pin auszugeben (3 mögliche Auswahlmöglichkeiten): • Alarm OT = Pin 6 signalisiert ausschließlich OT • Alarm PF = Pin 6 signalisiert ausschließlich PF Alarm OT+PF = Standardeinstellung, Pin 6 signalisiert PF oder OT Pin 14 Pin 14 der Analogschnittstelle (siehe Abschnitt 2.3.4.3) signalisiert standardmäßig nur den Gerätealarm OVP. Dieser Parameter erlaubt es, auch die Gerätealarme OCP und OPP auf dem Pin auszugeben (7 mögliche Kombinationen): • Alarm OVP = Pin 14 signalisiert ausschließlich OVP • Alarm OCP = Pin 14 signalisiert ausschließlich OCP • Alarm OPP = Pin 14 signalisiert ausschließlich OPP • Alarm OVP+OCP = Pin 14 signalisiert OVP oder OCP • Alarm OVP+OPP = Pin 14 signalisiert OVP oder OPP • Alarm OCP+OPP = Pin 14 signalisiert OCP oder OPP Alarm OVP+OCP+OPP = Pin 14 signalisiert einen der drei

Gruppe Einstellung & Beschreibung

Analogschnittstelle

Pin 15

Pin 15 der Analogschnittstelle (siehe Abschnitt 2.3.4.3) signalisiert standardmäßig nur die Regelungsart CV. Dieser Parameter erlaubt es, einen anderen Gerätestatus auf dem Pin 15 auszugeben:

- Regelungsart = Signalisierung der Regelungsart CV
- DC-Status = Signalisierung des Zustandes des DC-Ausgangs

DC-Ausgang

Zustand nach Power ON

Bestimmt, wie der Zustand des DC-Ausgang nach dem Einschalten des Gerätes sein soll.

- Aus = Der DC-Ausgang ist nach dem Einschalten des Gerätes immer aus
- Wiederherstellen = Der Zustand des DC-Ausgangs wird wiederhergestellt, so wie er beim letzten Ausschalten des Gerätes war

Diese Option ist gemäß Werkszustand oder nach Rücksetzen des Gerätes auf "Aus". Aktivierung auf eigene Gefahr und Risiko. Das Gerät schaltet den DC-Ausgang nach dem Hochfahren ggf. automatisch ein!

Zustand nach PF-Alarm

Bestimmt, wie der Zustand des DC-Ausgangs nach einem Power fail-Alarm verhalten soll:

- Aus = Der DC-Ausgang bleibt aus
- Auto = Der DC-Ausgang schaltet automatisch wieder ein, wenn er vor dem Auftreten des Alarm auch eingeschaltet war

Zustand nach Remote

Bestimmt, wie der Zustand des DC-Ausgangs nach manuellem oder per Befehl veranlasstem Beenden der Fernsteuerung sein soll.

- Aus = Nach dem Verlassen der Fernsteuerung immer aus
- Auto = Der Zustand wird beibehalten

Zustand nach OT-Alarm

Bestimmt, wie der Zustand des DC-Ausgangs nach einem Übertemperatur-Alarm und erfolgter Abkühlung sein soll:

- Aus = Der DC-Ausgang bleibt aus
- Auto = Der DC-Ausgang schaltet automatisch wieder ein, wenn er vor dem Auftreten des Alarm auch eingeschaltet war

Master-Slave

Modus

Mit Option **Master** oder **Slave** wird der Master-Slave-Modus (kurz: MS) aktiviert und gleichzeitig die Funktion des Gerätes im MS-Verbund festgelegt. Näheres zum MS-Modus siehe *«4.1 Parallelschaltung als Master-Slave (MS)»*.

Abschlusswiderstand

Aktiviert/deaktiviert den sog. Busabschluss (Terminierung) des digitalen Master-Slave-Busses über einen schaltbaren Widerstand. Terminierung sollte auf Bedarf erfolgen, z. b. wenn Probleme mit dem Bus auftreten.

Biaswiderstände

Zusätzlich zum Abschlusswiderstand (TERM) können noch Biaswiderstände eingeschaltet werden, die helfen den Bus zusätzlich zu stabilisieren, falls nötig. Tippen Sie auf das Informationssymbol auf dem Bildschirm für eine grafische Darstellung.

Beleuchtung aus nach 60s

Wenn aktiviert, schaltet sich die Hintergrundbeleuchtung aus, wenn 60 Sekunden lang keine Berührung des Bildschirms oder Tastenbetätigung oder Drehknopfbetätigung erfolgte. Diese Einstellung ist hauptsächlich für Slave-Einheiten gedacht, wenn deren Bildschirm nicht ständig an sein soll. Sie ist identisch zu der im Menü **HMI-Einstellungen**

Gruppe	Einstellung & Beschreibung
Master-Slave	System initialisieren
	Das Bedienfeld initialisiert das Master-Slave-System erneut, auch für den Fall, dass die automatische Erkennung aller Slave-Einheiten durch den Master einmal nicht funktionieren sollte und somit weniger Gesamtleistung zur Verfügung stehen würde.
USB-Logging	Trennzeichen-Format
	Legt das Trennzeichen-Format der CSV-Datei beim USB-Logging (siehe auch Abschnitt 2.2.4 in diesem Dokument, sowie Abschnitt 1.9.6.5 im Installationshandbuch) bzw. für das Einlesen bzw. Speichern von CSV-Dateien fest
	US = Das Trennzeichen ist ein Komma (US-Format)
	Standard = Das Trennzeichen ist ein Semikolon (deutsches bzw. europ. Format)
	Logging mit Einheit (V,A,W)
	Beim USB-Logging werden standardmäßig alle Werte in der CSV-Datei mit Einheit aufgezeichnet. Dies kann hier mit deaktiviert werden.
	USB-Logging
	Aktiviert/deaktiviert die Datenaufzeichnung (Logging) auf USB-Stick. Mehr siehe «2.2.4 Datenaufzeichnung auf USB-Stick (Logging)».
	Logging-Intervall
	Legt den zeitlichen Abstand zwischen zwei aufgezeichneten Datensätzen fest. Auswahl: 500ms, 1s, 2s, 5s
	Start/Stopp
	Definiert, wann das Logging starten bzw. stoppen soll.
	Manuell = Das Logging wird manuell über Bedienfeld im Schnellmenü gestartet
	Bei DC ein/aus = Das Logging startet und stoppt bei jedem Zustandswechsel am DC-Ausgang, egal wodurch verursacht und solange Logging aktiviert ist. Achtung: Es wird bei jedem Logging-Start eine neue Logdatei auf dem Stick erzeugt.
Reset / Neustart	Gerät zurücksetzen
	Setzt die meisten Einstellungen (HMI, Profile usw.) auf Standardwerte.
	Gerät neu starten
	Bewirkt einen Warmstart des Gerätes

2.2.1.2 Untermenü "Profile"

Siehe «2.2.6 Nutzerprofile laden und speichern».

2.2.1.3 Untermenü "Übersicht"

Dieses Untermenü zeigt eine Übersicht der aktuellen Sollwerte (U, I, P bzw. U, I, P, R), Gerätealarmschwellen, Event-Einstellungen, Einstellgrenzen, sowie eine Alarmhistorie (Anzahl aufgetretener Gerätealarme seit Einschalten des Gerätes) an.

2.2.1.4 Untermenü "Info HW, SW..."

Dieses Untermenü zeigt eine Übersicht gerätebezogener Daten wie Serienummer, Artikelnummer usw.

2.2.1.5 Untermenü "Funkt.Generator"

Siehe «3. Der Funktionsgenerator».

2.2.1.6 Untermenü "Kommunikation"

Hier werden Einstellungen zur digitalen Kommunikation über die eingebauten digitalen Schnittstellen (USB, Ethernet) bzw. die diversen, optional erhältlichen Schnittstellen-Module (Interfaces, kurz: IF) der IF-AB-Serie getroffen. Weiterhin kann das sog. "Kommunikations-Timeout" angepasst werden, das durch höhere Werte ermöglicht, dass fragmentierte, d. h. zerstückelte Nachrichten sicher beim Gerät ankommen und verarbeitet werden können Mehr dazu in der externen Dokumentation "Programming ModBus & SCPI". In der Gruppe **Protokolle** kann eins der beiden unterstützten Kommunikationsprotokolle deaktiviert werden. Der USB-Port benötigt keine Einstellungen.

Das Gerät hat bei Auslieferung oder nach einer Zurücksetzung folgende **Standard-Netzwerkparameter** für den eingebauten Ethernetport in der Gruppe **Ethernet (intern)**:

IF	Einstellung	Beschreibung
	DHCP	Das IF lässt sich von einem DHCP-Server eine IP und ggf. eine Subnetzmaske, sowie Gateway zuweisen. Falls kein DHCP-Server im Netzwerk ist, werden die aufgelisteten Netzwerkparameter gesetzt.
	IP-Adresse	Hier kann die IP-Adresse des Gerätes manuell festgelegt werden.
ern)	Subnetzmake	Hier kann eine Subnetzmaske manuell festgelegt werden.
(intern)	Gateway	Hier kann eine Gateway-Adresse manuell festgelegt werden, falls benötigt.
net	DNS-Adresse	Hier kann die Adresse eines Domain Name Servers festgelegt werden, falls benötigt.
Ethernet	Port	Port im Bereich 065535 wählen.
1 22		Standardport: 5025
		Reservierte Ports: 503 (ModBus TCP), 537
	Hostname	Beliebig wählbarer Hostname
	Domäne	Beliebig wählbare Domäne

Einstellungen zu den optionalen Schnittstellenmodulen (IF-AB-xxx)

IF	Einstellung	Beschreibung
	DHCP	Das IF lässt sich von einem DHCP-Server eine IP und ggf. eine Subnetzmaske, sowie Gateway zuweisen. Falls kein DHCP-Server im Netzwerk ist, werden die aufgelisteten Netzwerkparameter gesetzt.
Port)	IP-Adresse	Diese Option ist standardmäßig aktiviert. Hier kann die IP-Adresse des Gerätes manuell festgelegt werden.
& 2 Pc	Subnetzmake	Hier kann eine Subnetzmaske festgelegt werden, falls die Standardsubnetzmaske nicht passt
=	Gateway	Hier kann eine Gateway-Adresse festgelegt werden, falls benötigt.
S	DNS-Adresse	Hier kann die Adresse eines Domain Name Servers festgelegt werden, falls benötigt.
ModBus-T	Port	Port im Bereich 065535 wählen.
1 BB		Standardport: 5025
Š		Reservierte Ports: 503 (ModBus TCP), 537
I <	Hostname	Beliebig wählbarer Hostname (Standard: Client)
Ethernet	Domäne	Beliebig wählbare Domäne (Standard: Workgroup)
Et	Geschwindigkeit / Duplex Port 1	Manuelle Wahl der Übertragungsgeschwindigkeit (10MBit o. 100MBit) und Duplex- modus. Es wird empfohlen, Option Auto zu belassen und nur im Problemfall eine andere Einstellung zu wählen.
	Geschwindigkeit / Duplex Port 2	Unterschiedliche Einstellungen bei 2-Port-Modulen sind möglich, da diese einen Switch beinhalten.

IF	Einstellung	Beschreibung
	Hostname	Beliebig wählbarer Hostname (Standard: Client)
	Domäne	Beliebig wählbare Domäne (Standard: Workgroup)
Port)	Funktionsbeschreibung	Texteingabefeld zur Eingabe eines beliebigen Textes zum Profinet-Tag "Funktionsbeschreibung" (Function tag). Max. Länge: 32 Zeichen
(1 & 2	Standortbeschreibung	Texteingabefeld zur Eingabe eines beliebigen Textes zum Profinet-Tag "Standortbeschreibung" (Location tag). Max. Länge: 22 Zeichen
rofinet/10	Datum der Installation	Texteingabefeld zur Eingabe eines beliebigen Textes zum Profibus-Tag "Installationdatum" (Installation date). Max. Länge: 40 Zeichen
Profin	Beschreibung	Texteingabefeld zur Eingabe eines beliebigen Textes zur Beschreibung des Profibus- Slaves. Max. Länge: 54 Zeichen
-	Stationsname	Texteingabefeld zur Eingabe eines beliebigen Textes zur Beschreibung des Profinet- Stationsnamens. Max. Länge: 200 Zeichen

IF	Einstellung	Beschreibung
	Knoten-Adresse	Einstellung der Profibus- oder Knotenadresse im Bereich von 1125 per Direkteingabe des Wertes
	Funktions-Beschreibung	Texteingabefeld zur Eingabe eines beliebigen Textes zum Profibus-Tag "Funktionsbeschreibung" (Function tag). Max. Länge: 32 Zeichen
Snc	Standort-Beschreib.	Texteingabefeld zur Eingabe eines beliebigen Textes zum Profibus-Tag "Standortbeschreibung" (Location tag). Max. Länge: 22 Zeichen
Profibus	Datum der Installation	Texteingabefeld zur Eingabe eines beliebigen Textes zum Profibus-Tag "Installationdatum" (Installation date). Max. Länge: 40 Zeichen
	Beschreib.	Texteingabefeld zur Eingabe eines beliebigen Textes zur Beschreibung des Profibus- Slaves. Max. Länge: 54 Zeichen
	Hersteller-ID	Bei der internationalen Profibus-Organisation registrierte Herstellernummer
	Produkt-ID	Produkt-Kennnummer, wie z.B. auch im GSD zu finden

IF E	instellung	Beschreibung
В	audrate	Einstellung der CAN-Busgeschwindigkeit in den typischen Werten zwischen 10 kbps und 1Mbps. Standardwert: 500 kbps
II	D-Format	Wahl des CAN-ID-Formates zwischen Standard (11 Bit IDs, 0h7ffh) oder Extended (29 Bit IDs, 0h1fffffffh)
В	usabschluss	Ein- oder Ausschalten des elektronisch geschalteten, im Modul befindlichen Busab- schluss-Widerstandes. Standardeinstellung: aus
D	atenlänge	Festlegung der Nachrichtenlänge aller v <u>om Gerät gesendeten</u> Nachrichten (Antworten).
		Auto = Länge variiert je nach Objekt zwischen 3 und 8 Bytes
		Immer 8 Bytes = Länge ist immer 8 Bytes, mit Nullen aufgefüllt
В	asis-ID	Einstellung der CAN-Basis-ID (11 Bit oder 29 Bit, Hexadezimalformat). Standardwert: 0h
В	roadcast ID	Einstellung der CAN-Broadcast-ID (11 Bit oder 29 Bit, Hexadezimalformat). Standardwert: ${\bf 7ffh}$
В	asis-ID Zyklisches Lesen	Einstellung der CAN-Basis-ID (11 Bit oder 29 Bit, Hexadezimalformat) für das zyklische Lesen mehrerer Objektgrupen. Das Gerät sendet über diese IDs die Inhalte der Objektgruppen automatisch in dem festgelegten Intervall, solange aktiviert. Mehr dazu in der Programmieranleitung. Standardwert: 100h
CAN	asis-ID Zyklisches Senden	Einstellung der CAN-Basis-ID (11 Bit oder 29 Bit, Hexadezimalformat) für das zyklische Senden von Status und Sollwerten. Das Gerät empfängt über diese IDs die Inhalte zweier bestimmter Objektgruppen im kompakteren Format. Mehr dazu in der Programmieranleitung. Standardwert: 200h
L	ese-Timing: Status	Aktivierung/Deaktivierung und Zeiteinstellung zum automatischen Lesen des Status' über die eingestellte Basis-ID Zyklisches Lesen . Einstellbereich: 205000 ms. Standardwert: 0ms (deaktiviert).
L	ese-Timing: Sollwerte	Aktivierung/Deaktivierung und Zeiteinstellung zum automatischen Lesen der Sollwerte über die eingestellte Basis-ID Zyklisches Lesen + 2 . Einstellbereich: 205000 ms. Standardwert: 0ms (deaktiviert).
L	ese-Timing: Limits 1	Aktivierung/Deaktivierung und Zeiteinstellung zum automatischen Lesen der "Limits 1" (U, I) über die eingestellte Basis-ID Zyklisches Lesen + 3 . Einstellbereich: 205000 ms. Standardwert: 0ms (deaktiviert)
L	ese-Timing: Limits 2	Aktivierung/Deaktivierung und Zeiteinstellung zum automatischen Lesen der "Limits 2" (P, R) über die eingestellte Basis-ID Zyklisches Lesen + 4 . Einstellbereich: 205000 ms. Standardwert: 0ms (deaktiviert)
L	ese-Timing: Istwerte	Aktivierung/Deaktivierung und Zeiteinstellung zum automatischen Lesen der Istwerte über die eingestellte Basis-ID Zylisches Lesen + 1 . Einstellbereich: 205000 ms. Standardwert: 0ms (deaktiviert).
N	/lodulfirmware	Anzeige der Firmware des CAN-Moduls

IF	Einstellung	Beschreibung
CANopen		Einstellung der Busgeschwindigkeit für die CANopen-Schnittstelle. Auto = Automatische Erkennung der Busgeschwindigkeit LSS = Setzt die Bus-Baudrate und die Knotenadresse automatisch Feste Baudraten: 10kbps, 20kbps, 50kbps, 100kbps, 125kbps, 250kbps, 500kbps, 800kbps, 1Mbps
	Knoten-Adresse	Einstellung der CANopen-Knotenadresse im Bereich von 1127

IF	Einstellung	Beschreibung
3232	1	Die Baudrate ist einstellbar, weitere serielle Einstellungen sind wie folgt festgelegt: 8 Datenbits, 1 Stopbit, Parität = keine
8		Baudrateneinstellungen: 2400, 4800, 9600, 19200, 38400, 57600, 115200

Weitere, allgemeine Kommunikations-Einstellungen

Gruppe	Einstellung & Beschreibung
Timeouts	TCP Keep-Alive (intern) / TCP Keep-Alive (Slot)
	Aktiviert/deaktiviert die Netzwerkfunktionalität TCP keep-alive für den eingebauten Ethernet-Port und/oder einem im Slot installierten Ethernetmodul (IF-AB-ETHxx) und nutzt diese zur Aufrechterhaltung der Socketverbindung. Sofern keep-alive im Netzwerk unterstützt wird, deaktiviert das Gerät das einstellbare Ethernet-Timeout (siehe unten bei Timeout ETH).
	Timeout USB/RS232
	Stellt die Zeit (in Millisekunden) ein, die max. bei zwischen der Übertragung von zwei Bytes oder Blöcken von Bytes ablaufen darf. Mehr dazu in der externen Dokumentation "Programmieranleitung ModBus & SCPI". Standardwert: 5ms , Bereich: 5 ms65535 ms
	Timeout ETH (intern) / Timeout ETH (Slot)
	Findet während der eingestellten Zeit (in Sekunden) keine Befehls-Kommunikation mit dem Gerät statt, schließt sich die Socketverbindung von seitens des Gerätes. Das Timeout wird unwirksam, solange die zur jeweiligen Schnittstelle gehörige Option TCP Keep-Alive aktiviert ist und vom Netzwerk aktiv unterstützt wird. Einstellwert 0 deaktiviert das Timeout dauerhaft. Standardwert: 5s , Bereich: 0 / 5 s65535 s (0 = Timeout deaktiviert)
	Schnittstellenüberwachung / Timeout Schnittstellenüberwachung
	Aktiviert/deaktiviert die Schnittstellenüberwachung (siehe «2.3.3.3 Schnittstellenüberwachung»). Standardwerte: aus, 5s / Bereich: 1 s65535 s
Protokolle	Kommunikationsprotokolle
	Aktivieren / Deaktivieren der Kommunikationsprotokolle SCPI oder ModBus. Jeweils eins von beiden kann deaktiviert werden, wenn nicht benötigt.
	Einhaltung der ModBus Spezifikation
	Kann von Limitiert (Standardeinstellung) auf Voll umgeschaltet werden, damit das Gerät Nachrichten im ModBus RTU- oder ModBus TCP-Format sendet, die zu auf dem Markt erhältlichen Softwarebibliotheken kompatibel sind. Bei Limitiert wird das frühere, teils nicht kompatible Nachrichtenformat (siehe die separate Programmieranleitung) verwendet.

2.2.1.7 Menü "HMI Einstellungen"

Diese Einstellungen beziehen sich ausschließlich auf die Bedieneinheit (HMI).

Gruppe	Einstellung & Beschreibung						
Sprache	Umschaltung der Sprache in der Anzeige (Standard: Englisch)						
Ton	Tastenton						
	Aktiviert bzw. deaktiviert die Tonausgabe bei Betätigung einer Taste oder eines Bedienfeldes in der Anzeige.						
	Alarmton						
	Aktiviert bzw. deaktiviert die zusätzliche akustische Signalisierung eines Gerätealarms oder benutzerdefinierten Ereignisses (Event), das auf Aktion = Alarm eingestellt wurde. Siehe auch «3.5 Alarme und Überwachung» im Installationshandbuch.						
Uhrzeit	Einstellen des Datums und Uhrzeit der internen, batteriegepufferten Uhr						
Beleuchtung	Beleuchtung aus nach 60s						
	Definiert, ob sich die Hintergrundbeleuchtung abschalten soll, wenn 60 s lange keine Eingabe über Touchscreen oder Drehknopf erfolgte. Sobald dann eine erfolgt, schaltet sich die Beleuchtung automatisch wieder ein. Weiterhin kann die Helligkeit der Hintergrundbeleuchtung eingestellt werden.						
Sperre	Siehe «3.4.5 Bedieneinheit (HMI) sperren» und «3.4.6 Einstellgrenzen (Limits) und Benutzerprofile sperren» im Installationshandbuch.						

2.2.2 Einstellgrenzen (Limits)

Die Einstellgrenzen gelten nur für die zugehörigen Sollwerte, gleichermaßen bei manueller Bedienung wie bei Fernsteuerung.

◀ Hauptmenü

Sollwerte

Limits

Nutzer-Events

Allgemein

Einstellungen

U-max:

l-min

R-max

〓

V00.00

81.60V

(PS) 0000.0A

(PS) 1020.0A

(PS) 30600W

(PS) 754.81Ω

Standardmäßig sind alle Sollwerte (U, I, P, R) von 0...102% einstellbar.

Der volle Bereich kann in einigen Fällen, besonders zum Schutz von Anwendungen gegen Überspannung, hinderlich sein. Daher können jeweils für Spannung (U), Strom (I) separat untere und obere Einstellgrenzen festgelegt werden, die den einstellbaren Bereich des jeweiligen Sollwertes verringern.

Für die Leistung (P) und den Widerstand (R) können nur obere Einstellgrenzen festgelegt werden.

► So konfigurieren Sie die Einstellgrenzen

Einstell.

3. Einstellen über die eingeblendete Zehnertastatur und Übernahme mit

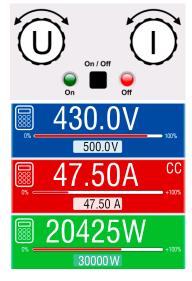
Enter

Die Einstellgrenzen sind an die Sollwerte gekoppelt. Das bedeutet, dass die obere Einstellgrenze (-max) des Sollwertes nicht kleiner bzw. die untere Einstellgrenze (-min) nicht höher eingestellt werden kann als der Sollwert momentan ist.

Beispiel: Wenn man die Einstellgrenze der Leistung (P-max) auf 6000 W einstellen möchte und der Leistungssollwert ist noch auf 8000 W eingestellt, dann müsste man den Leistungssollwert zuerst auf 6000 W oder geringer einstellen, um P-max auf 6000 W setzen zu können.

Bedienart wechseln 2.2.3

Generell wird bei manueller Bedienung des Gerätes zwischen drei Bedienarten (U/P, U/I, U/R) unterschieden, die an die Sollwerteingabe per Drehknopf oder Zehnertastatur gebunden sind. Diese Zuordnung kann bzw. muss gewechselt werden, wenn einer der vier Sollwerte verstellt werden soll, der momentan keinem Drehknopf zugewiesen ist.


▶ So wechseln Sie die Bedienart

- Sofern das Gerät nicht in Fernsteuerung oder das Bedienfeld gesperrt ist, gibt es zwei Möglichkeiten. Entweder Sie tippen auf die Abbildung des rechten Drehknopfes (siehe das Bild rechts), dann wechselt die Zuordnung des Drehknopfes zwischen I, P und R (angezeigt auf dem Drehknopf), oder
- 2. Sie tippen auf die farblich hinterlegten Felder mit den Soll-/Istwerten, wie rechts gezeigt. Wenn die Einheit des gewählten Sollwertes invertiert dargestellt wird, ist der Wert dem Drehknopf zugeordnet.

Je nach getroffener Wahl wird dem rechten Drehknopf ein anderer Sollwert zum Einstellen zugeordnet, während der linke Drehknopf immer die Spannung stellt.

Um den ständigen Wechsel der Zuordnung zu umgehen, können Sie, bei z.B. Zuordnung U/I gewählt, die Leistung auch durch Direkteingabe stellen.

Was das Gerät bei eingeschaltetem Ausgang dann als aktuelle Regelungsart einstellt, hängt nur von den Sollwerten ab. Mehr Informationen dazu finden Sie in «2.1 Regelungsarten».

2.2.4 Datenaufzeichnung auf USB-Stick (Logging)

Mittels eines handelsüblichen USB-Sticks (USB 3.0 geht, aber nicht alle Speichergrößen) können Daten vom Gerät aufgezeichnet werden. Für nähere Spezifikationen zum Stick und zu den Dateien lesen Sie bitte «1.9.6.5 USB-Port (Vorderseite)» Bedieneinheit (HMI) sperren.

Das durch das Logging erzeugten CSV-Dateien haben das gleiche Format wie jene, die von der App "Logging" in der Software EA Power Control erstellt werden, wenn stattdessen über den PC geloggt wird. Der Vorteil beim Logging auf Stick ist, dass das Gerät nicht mit dem PC verbunden sein muss. Die Funktion muss lediglich über das MENU aktiviert und konfiguriert werden.

2.2.4.1 Einschränkungen

Das Logging in dieser Form ist nicht verfügbar, wenn die PV-Funktion EN50530 geladen und benutzt wird.

2.2.4.2 Konfiguration

Siehe auch Abschnitt 2.2.1.6. Nach der Aktivierung der Funktion USB-Logging und Setzen des **Logging-Intervall** sowie des **Start/Stopp**-Verhaltens kann das Logging nach Verlassen des Einstellungsmenüs gestartet werden.

Weiterhin siehe auch Abschnitt 2.2.1.1. Für die durch das Logging erzeugte CSV-Dateien kann festgelegt werden, welches Trennzeichen-Format (deutsch/europäisch bzw. US) verwendet werden soll und ob Werte in den einzelnen Spalten mit oder ohne phys. Einheit aufgezeichnet werden. Letzteres zu deaktivieren vereinfacht die Verarbeitung der Log-Dateien in z. B. MS Excel.

2.2.4.3 Bedienung (Start/Stopp)

Wenn Einstellung **Start/Stopp** auf **Bei DC ein/aus** gesetzt ist startet das Logging beim Einschalten des DC-Ausgangs, was entweder durch manuelles Betätigen der Taste **On/Off** auf der Vorderseite des Gerätes oder Steuerung derselben Funktion über digitale oder analoge Schnittstelle erfolgen kann. Bei Einstellung **Manuell** kann das Logging nur im Schnellmenü (siehe das Bild rechts) gestartet und gestoppt werden.

Das Bedienfeld startet die Aufzeichnung und wird dann zu , womit die Aufzeichnung wieder gestoppt werden kann. Nach dem Start der Aufzeichnung erscheint in der Anzeige das Symbol Sollte es während des Log-Vorgangs zu einem Fehler kommen (Stick voll, Stick abgezogen), erscheint ein entsprechendes Symbol Mit jedem manuellen Stopp oder Ausschalten des DC-Ausgangs wird das Logging beendet und die aufgezeichnete Log-Datei geschlossen.

2.2.4.4 Das Dateiformat beim USB-Logging

Typ: Textdatei im europäischen bzw. US-amerikanischem CSV-Format (je nach Einstellung) Aufbau (Standardformat gezeigt):

4	Α	В	С	D	Е	F	G	Н	I	J	K	L	М
1	U set	U actual	Lset	I actual	P set	P actual	R set	R actual	R mode	Output/Input	Device mode	Error	Time
2	2,00V	11,92V	1,20A	1,20A	7344W	15W	N/A	N/A	OFF	ON	CC	NONE	00:00:00,942
3	2,00V	11,90V	1,20A	1,20A	7344W	15W	N/A	N/A	OFF	ON	CC	NONE	00:00:01,942
4	2,00V	11,89V	1,20A	1,20A	7344W	15W	N/A	N/A	OFF	ON	CC	NONE	00:00:02,942
5	2,00V	11,87V	1,20A	1,20A	7344W	15W	N/A	N/A	OFF	ON	CC	NONE	00:00:03,942

Legende:

U set / I set / P set / R set: Sollwerte U, I, P und R U actual / I actual / P actual / R actual: Istwerte

R mode: Widerstandsregelung (auch genannt ,UIR-Modus') ein-/ausgeschaltet

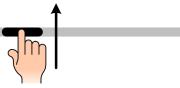
Output/Input: Status DC-Ausgang

Device mode: Aktuelle Regelungsart (siehe auch «2.1 Regelungsarten»)

Error: Gerätealarme

Time: Zeit ab Start des Logging

Hinweise:


- R set und R actual werden nur aufgezeichnet, wenn der UIR-Modus aktiv ist (siehe dazu Abschnitt 2.2.3)
- Im Unterschied zum Logging am PC erzeugt jeder neue Log-Vorgang beim USB-Logging eine weitere Datei, die am Ende des Dateinamens eine hochgezählte Nummer erhält; dabei werden bereits existierende Logdateien berücksichtigt

2.2.4.5 Besondere Hinweise und Einschränkungen

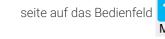
- Max. Dateigröße einer Aufzeichnungsdatei, bedingt durch FAT32: 4 GB
- Max. Anzahl von Aufzeichnungs-Dateien im Ordner HMI_FILES: 1024
- Wenn in den Einstellungen **Start/Stopp** auf **Bei DC ein/aus** gesetzt wurde, stoppt das Logging auch bei Alarmen oder Events mit **Aktion = Alarm**, weil diese den DC-Ausgang ausschalten
- Bei Einstellung **Start/Stopp** auf **Manuell** zeichnet das Gerät bei Alarmen weiter auf, damit so z. B. die Dauer von temporären Alarmen wie OT und PF ermittelt werden kann

2.2.5 Das Schnellmenü

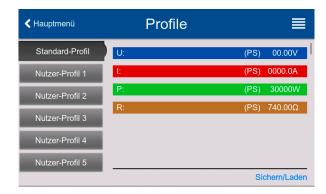
Das Gerät bietet ein Schnellmenü für den direkten Zugriff zu den wichtigsten Einstellungen. Es ist in der Hauptanzeige jederzeit durch Fingerwischen vom unteren Bildschirmrand nach oben oder Antippen der Leiste erreichbar:

Übersicht:

Durch Antippen wird die zugehörige Funktion aktiviert oder deaktiviert. Symbole mit Schwarz auf Weiß zeigen eine momentan aktivierte Funktion an:


Symbol	Gehört zu	Bedeutung oder Funktion
•	USB-Logging	USB-Logging läuft (das Symbol ist nur verfügbar, wenn USB-Logging im Menü Einstellungen aktiviert wurde)
M	Master-Slave	Master-Slave aktiviert, Gerät ist Master
S	Master-Slave	Master-Slave aktiviert, Gerät ist Slave
Aus	Master-Slave	Master-Slave nicht aktiviert
Ω	Widerstandsmodus	Widerstandsmodus = ein
1	НМІ	Alarmton = ein
(1)	НМІ	Tastenton = ein
	НМІ	Öffnet den Graphen
	Betriebsarten	Umschaltung der Spannungsreglergeschwindigkeit zwischen Lang- sam , Normal (Standard) und Schnell (siehe Abschnitt <i>2.1.2.1</i>)
*	НМІ	Helligkeit der Hintergrundbeleuchtung einstellen
Menü	НМІ	Öffnet das Hauptmenü

2.2.6 Nutzerprofile laden und speichern


Das Menü Profile dient zur Auswahl eines Profils zum Laden bzw. zum Wechsel zwischen einem Standard-Profil und 5 Nutzer-Profilen, Ein Profil ist eine Sammlung aller Einstellungen und aller Sollwerte. Bei Auslieferung des Gerätes bzw. nach einem Zurücksetzungsvorgang haben alle sechs Profile dieselben Einstellungen und die meisten Sollwerte sind auf 0. Werden vom Anwender dann Einstellungen getroffen und Werte verändert, so geschieht das in einem Arbeitsprofil, das auch über das Ausschalten hinweg gespeichert wird. Dieses Arbeitsprofil kann in eins der fünf Nutzerprofile gespeichert bzw. aus diesen fünf Nutzerprofilen oder aus dem Standardprofil heraus geladen werden. Das Standardprofil selbst kann nur geladen werden. Der Sinn von Profilen ist es, z. B. einen Satz von Sollwerten, Einstellgrenzen und Überwachungsgrenzen schnell zu laden, ohne diese alle jeweils immer neu einstellen zu müssen. Da sämtliche Einstellungen zum HMI mit im Profil gespeichert werden, also auch die Sprache, wäre beim Wechsel von einem Profil zum anderen auch ein Wechsel der Sprache des HMI möglich. Bei Aufruf der Menüseite Profile und Auswahl eines Profils können dessen wichtigsten Einstellungen, wie Sollwerte, Einstellgrenzen usw. betrachtet und auch verstellt werden.

► So speichern Sie die aktuellen Einstellungen (Arbeitsprofil) in ein Nutzerprofil

1. Bei ausgeschaltetem DC-Ausgang tippen Sie in der Hauptseite auf das Bedienfeld Menü

- 2. In der Hauptmenüseite tippen Sie auf Profile.
- 3. In der nun erscheinenden Auswahl (siehe das Beispiel rechts) wählen Sie zwischen Nutzer-Profil 1-5 aus, in welches Sie speichern wollen. Das gewählte Nutzerprofil wird daraufhin angezeigt. Sie können hier die Einstellungen und Werte noch einmal überprüfen.
- **4.** Betätigen Sie Bedienfeld **Sichern/Laden** und speichern Sie in der darauf folgenden Abfrage **Profil sichern?** mit **Sichern**.

Wird in einem Nutzer-Profil irgendeine Änderung vorgenommen, kann das Profil zunächst nicht geladen oder gesichert werden. Der Anwender muss die Änderung entweder mit "Änderungen sichern" übernehmen oder mit "Abbrechen" verwerfen.

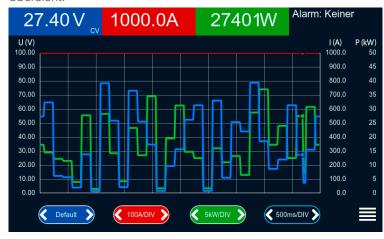
Das Laden eines Nutzer-Profils geht auf demselben Weg, nur dass man am Ende auf Laden unter Profil laden? tippen muss. Die Nutzer-Profile können auch auf einem USB-Stick gespeichert bzw. vom diesem geladen werden. Das geschieht über USB Import/Export.

► So editieren Sie ein Nutzerprofil

Bei ausgeschaltetem DC-Ausgang tippen Sie in der Hauptseite auf das Bedienfeld

- 2. In der Hauptmenüseite tippen Sie auf Profile.
- 3. In der nun erscheinenden Auswahl wählen Sie das Nutzer-Profil aus, welches Sie ändern wollen. Das gewählte Nutzerprofil wird daraufhin angezeigt.
- 4. Tippen Sie auf einen zu ändernden Wert und geben Sie einen neuen ein. Sobald einer der Werte verändert wurde, ändert sich das Bedienfeld Sichern/Laden in Änderungen sichern.
- 5. Wenn fertig, tippen Sie auf Änderungen sichern um das Profil zu speichern. In dem Moment ist es noch nicht aktiv.
- 6. Optional: um das soeben veränderte Profil zu nutzen, muss es in das Arbeitsprofil geladen werden, was wiederum durch Tippen auf Sichern/Laden und n der darauf folgenden Abfrage Profil laden? mit Laden.

2.2.7 Der Graph


Ab HMI-Firmware 2.02 verfügt das Gerät über eine nur bei Bedienung am HMI aufrufbare, visuelle Darstellung des Verlaufs von Spannung, Strom und Leistung, genannt Graph. Dieser stellt keine Aufzeichnungsfunktion dar. Zur Datenaufzeichnung im Hintergrund dient weiterhin das USB-Logging (siehe Abschnitt 2.2.4).

Der Graph kann im Normalbetrieb (keine Funktion läuft) per Schnellmenü gestartet werden, im Funktionsgeneratorbetrieb über einen das gleiche Bedienfeld. Nach dem Aufruf wird der Graph vollflächig dargestellt.

Nur eingeschränkter Status und Bedienmöglichkeiten im Graph-Bildschirm! Aus Sicherheitsgründen ist es jedoch jederzeit möglich, den DC-Ausgang per Taste On/Off auszuschalten.

Übersicht:

Bedienmöglichkeiten:

- Tippen auf die Graphfläche pausiert den Graphen bzw. erneutes Tippen startet ihn wieder
- Tippen auf die Mitte der drei rot/grün/blauen Bedienflächen deaktiviert bzw. aktiviert den zugehörigen Plot
- Tippen auf die Seiten (Pfeile link/rechts) der drei rot/grün/blauen Bedienflächen ändert die vertikale Auflösung
- Tippen auf die Seiten (Pfeile link/rechts) der schwarzen Bedienfläche ändert die zeitliche Auflösung
- Wischen auf den drei Skalen (Y-Achse) verschiebt diese
- Tippen auf das Menüsymbol (verlässt den Graphen jederzeit

2.3 Fernsteuerung

2.3.1 Allgemeines

Fernsteuerung ist grundsätzlich über eine der eingebauten Schnittstellen (analog, USB, Ethernet) oder über eins der optional erhältlichen digitalen Schnittstellen-Module möglich. Wichtig ist dabei, dass entweder nur die analoge oder eine der digitalen im Eingriff sein kann. Zu den digitalen zählt auch der Master-Slave-Bus.

Das bedeutet, wenn man zum Beispiel versuchen würde bei aktiver analoger Fernsteuerung (Pin REMOTE = LOW) auf Fernsteuerung per digitaler Schnittstelle umzuschalten, würde das Gerät auf der digitalen Schnittstelle einen Fehler zurückmelden. Im umgekehrten Fall würde die Umschaltung per Pin REMOTE einfach ignoriert. In beiden Fällen ist jedoch Monitoring, also das Überwachen des Status' oder Auslesen von Werten immer möglich.

2.3.2 Bedienorte

Bedienorte sind die Orte, von wo aus ein Gerät bedient wird. Grundsätzlich gibt es da zwei: am Gerät (manuelle Bedienung) und außerhalb (Fernsteuerung). Folgende Bedienorte sind definiert:

Bedienort laut Anzeige	Erläuterung
	Wird keiner der anderen Bedienorte im Statusfeld angezeigt, ist manuelle Bedienung aktiv und der Zugriff von der analogen bzw. digitalen Schnittstelle ist freigegeben.
Fernsteuerung: <interface_name></interface_name>	Fernsteuerung über eine der Schnittstellen ist aktiv
Lokal	Fernsteuerung ist gesperrt, Gerät kann nur manuell bedient werden

Fernsteuerung kann über die Einstellung **Fernsteuerung erlauben** (siehe *«2.2.1.1 Untermenü "Einstellungen"»*) erlaubt oder gesperrt werden. Im <u>gesperrten</u> Zustand ist im Statusfeld in der Anzeige oben rechts der Status **Lokal** zu lesen. Die Aktivierung der Sperre kann dienlich sein, wenn normalerweise eine Software oder eine Elektronik das Gerät ständig fernsteuert, man aber zwecks manueller Einstellung oder auch im Notfall daran hantieren muss, was bei Fernsteuerung sonst nicht möglich wäre.

Die Aktivierung der Sperre bzw. des Zustandes Lokal bewirkt folgendes:

- Falls Fernsteuerung über digitale Schnittstelle aktiv ist (z. B. **Fernsteuerung: USB**), wird die Fernsteuerung sofort beendet und muss später auf der PC-Seite, sobald **Lokal** nicht mehr aktiv ist, erneut übernommen werden
- Falls Fernsteuerung über analoge Schnittstelle aktiv ist (**Fernsteuerung: Analog**), wird die Fernsteuerung nur solange unterbrochen bis **Lokal** wieder beendet, sprich die Fernsteuerung wieder erlaubt wird, weil der Pin REMOTE an der Analogschnittstelle weiterhin das Signal "Fernsteuerung = ein" vorgibt, es sei denn dies wird während der Phase mit **Lokal** geändert

2.3.3 Fernsteuerung über digitale Schnittstelle

2.3.3.1 Schnittstellenwahl

Alle Modelle der Serie PSI 10000 unterstützen zusätzlich zur serienmäßig eingebauten USB- und Ethernetschnittstelle folgende optional erhältliche Schnittstellen-Module:

Kurzbezeichnung	Тур	Ports	Beschreibung*
IF-AB-CANO	CANopen	1	CANopen Slave mit Generic EDS
IF-AB-RS232	RS232	1	Standard RS232, seriell
IF-AB-PBUS	Profibus	1	Profibus DP-V1 Slave
IF-AB-PNET1P	ProfiNet	1	Profinet DP-V1 Slave
IF-AB-PNET2P	ProfiNet	2	Profinet DP-V1 Slave, mit Switch
IF-AB-CAN CAN		1	CAN 2.0 A / 2.0 B
IF-AB-ECT	EtherCAT	2	Einfacher EtherCAT-Slave mit CANopen over Ethernet (CoE)
IF-AB-MBUS	ModBus TCP	1	ModBus TCP Protokoll über Ethernet
IF-AB-MBUS2P	ModBus TCP	2	ModBus TCP Protokoll über Ethernet

^{*} Für technische Details zu den einzelnen Modulen siehe die separate Dokumentation "Programmieranleitung Modbus & SCPI"

2.3.3.2 Programmierung

Details zur Programmierung der Schnittstellen, die Kommunikationsprotokolle usw. sind in der externen Dokumentation "Programmieranleitung ModBus & SCPI" zu finden, die mit dem Gerät auf einem USB-Stick mitgeliefert wird bzw. als Download auf der Webseite des Geräteherstellers verfügbar ist.

2.3.3.3 Schnittstellenüberwachung

Die ab Firmware KE 2.06 verfügbare und ab Firmware HMI 2.08 auch am Bedienteil konfigurierbare Funktionalität "Schnittstellenüberwachung" dient zur Überwachung der digitalen Kommunikationsverbindung zwischen einer steuernden Einheit (PC, SPS usw.) und dem Gerät. Ziel der Überwachung ist es sicherzustellen, dass das Gerät bei einem Abbruch der Kommunikationsverbindung nicht undefiniert weiterarbeitet. Ein Abbruch kann entstehen, wenn eine Datenleitung physikalisch getrennt wird (Defekt, schlechter Kontakt, Kabel entfernt) oder die Schnittstelle im Gerät nicht mehr erwartungsgemäß funktioniert.

Überwacht wird dabei immer nur die digitale Schnittstelle, über die das Gerät gesteuert wird. Das bedeutet auch, dass diese Überwachung inaktiv wird, solange ein Gerät sich nicht in Fernsteuerung befindet. Die Überwachung kann nur funktionieren, wenn innerhalb einer definierbaren Zeitspanne mindestens einmal mit dem Gerät kommuniziert wird. Dazu wird vom Anwender ein Timeout eingestellt, das vom Gerät jedesmal zurückgesetzt wird, wenn eine Nachricht eingeht. Läuft das Zeitfenster jedoch ab, ist als Reaktion des Gerätes folgendes definiert:

- Die Fernsteuerung wird beendet
- Der DC-Ausgang, sofern eingeschaltet, wird entweder ausgeschaltet oder bleibt eingeschaltet, wie mit der Einstellung DC-Ausgang -> Zustand nach Remote festgelegt (siehe Abschnitt 2.2.1.1)

Hinweise zur Benutzung:

- Das Timeout der Schnittstellenüberwachung kann jederzeit geändert werden; der geänderte Wert wird erst wirksam, nachdem die Zeit des aktuellen Timeouts abgelaufen ist
- Die Schnittstellenüberwachung deaktiviert <u>nicht</u> das Ethernet-Timeout (siehe Abschnitt 2.2.1.6), somit können sich beide Timeouts überschneiden

2.3.4 Fernsteuerung über Analogschnittstelle

2.3.4.1 Allgemeines

Die fest eingebaute, galvanisch getrennte, 15-polige analoge Schnittstelle (unten meist kurz als **AS** referenziert) befindet sich auf der Rückseite des Gerätes und bietet folgende Möglichkeiten:

- Fernsteuerung von Strom, Spannung, Leistung und Innenwiderstand
- Fernüberwachung Status (CC/CP, CV, DC-Ausgang)
- Fernüberwachung Alarme (OT, OVP, OCP, OPP, PF)
- Fernüberwachung der Istwerte
- Ferngesteuertes Ein-/Ausschalten des DC-Ausganges

Das Stellen der Sollwerte über analoge Schnittstelle geschieht **immer zusammen**. Das heißt, man kann nicht z. B. die Spannung über die AS vorgeben und Strom und Leistung am Gerät mittels Drehknopf einstellen oder umgekehrt. Der OVP-Sollwert, sowie weitere Überwachungsgrenzen und Alarmschwellen können über die AS nicht ferngestellt werden und sind daher vor Gebrauch der AS am Gerät auf die gegebene Situation anzupassen. Die analogen Sollwerte können über eine externe Spannung eingespeist oder durch die am Pin 3 ausgegebene Referenzspannung erzeugt werden. Sobald die Fernsteuerung über analoge Schnittstelle aktiviert wurde, zeigt die Anzeige vorn am Gerät die Sollwerte an, die hinten über die analoge Schnittstelle vorgegeben werden.

Die AS kann mit den gängigen Spannungsbereichen 0...5 V oder 0...10 V betrieben werden. Die Wahl des Spannungsbereiches findet im Geräte-Setup statt, siehe *«2.2.1 Konfiguration im Menü»*. Die am Pin 3 (VREF) herausgegebene Referenzspannung wird mit angepasst. Es gilt somit folgendes:

0-5V: Referenzspannung = 5 V, 0...5 V Sollwert (VSEL, CSEL, PSEL, RSEL) entsprechen 0...100% Nennwert, 0...100% Istwert entsprechen 0...5 V an den Istwertausgängen (CMON, VMON).

0-10V: Referenzspannung = 10 V, 0...10 V Sollwert (VSEL, CSEL, PSEL, RSEL) entsprechen 0...100% Nennwert, 0...100% Istwert entsprechen 0...10 V an den Istwertausgängen (CMON, VMON).

Die Vorgabe von Sollwerten wird außerdem stets auf die jeweilig zugehörige Einstellgrenze (Limit) U-max, I-max usw. begrenzt, was die Vorgabe von zu hohen Stellwerten an den DC-Ausgang verhindern soll. Siehe dazu auch «2.2.2 Einstellgrenzen (Limits)».

Bevor Sie beginnen: Unbedingt lesen, wichtig!

Nach dem Einschalten des Gerätes, während der Startphase, zeigt die AS unbestimmte Zustände an den digitalen Ausgängen, die bis zum Erreichen der Betriebsbereitschaft ignoriert werden müssen.

- Fernsteuerung des Gerätes erfordert die Umschaltung auf Fernsteuerbetrieb mit Pin REMOTE (5). Einzige Ausnahme ist der Pin REM-SB, der auch einzeln betrieben werden kann
- Bevor die Steuerung verbunden wird, welche die analoge Schnittstelle bedienen soll, ist zu prüfen, dass die Steuerung keine höheren Spannungen als spezifiziert (Tabelle in Abschnitt 2.3.4.3) auf die Pins geben kann
- Die Sollwerteingänge VSEL, CSEL, PSEL bzw. RSEL, falls der R-Modus aktiviert ist, dürfen bei Fernsteuerung über die analoge Schnittstelle nicht unbeschaltet bleiben, da sonst schwebend (floating). Sollwerte, die nicht variabel sein müssen, können auf einen festen Stellwert gelegt werden (Brücke nach VREF oder anders)

2.3.4.2 Quittieren von Alarmmeldungen

Tritt während der Fernsteuerung über analoge Schnittstelle ein Gerätealarm auf, schaltet der DC-Ausgang genauso aus wie bei manueller Bedienung. Daraufhin vom Gerät ausgegebene Alarmmeldungen (siehe Abschnitt 3.5 im Installationshandbuch) erscheinen immer in der Anzeige, die meisten davon können aber auch als Signal auf der analogen Schnittstelle ausgegeben werden (siehe die Tabelle unten). Welche genau, das ist im Setup-Menü (siehe «2.2.1.1 Untermenü "Einstellungen"») konfigurierbar.

Die Alarme MSS, OVP, OCP und OPP gelten als zu quittierende Fehler (siehe auch *«3.5.2 Gerätealarme und Events handhaben»* im Installationshandbuch). Sie können durch Aus- und Wiedereinschalten des DC-Ausgangs per Pin REM-SB quittiert werden, also eine HIGH-LOW-HIGH-Flanke (mind. 50ms für LOW) bei gewählter Standardeinstellung für den logischen Pegel des Pins REM-SB.

Dasselbe wird bei den Alarmen PF und OT erforderlich, wenn die zugehörigen Einstellungen **Zustand nach OT-Alarm** bzw. **Zustand nach PF-Alarm** in der Gruppe **DC-Ausgang** des Einstellungsmenüs auf **Aus** gestellt ist. Dann soll der DC-Ausgang zunächst aus bleiben, auch wenn Pin REM-SB seinen Pegel beibehalten hat und weiterhin "ein" anfordert.

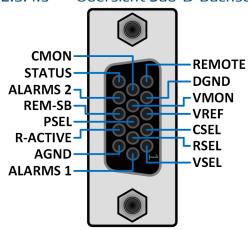
Ein **Sonderfall** ist der nur beim 60 V-Modell zusätzlich mögliche Alarm SOVP (Safety OVP). Dieser kann nicht quittiert werden, sondern erfordert das Aus- und Wiedereinschalten des Gerätes. Das Auftreten eines SOVP-Alarms kann auch über analoge Schnittstelle erfasst werden, aber nur wenn für Pin 6 die Alarmausgabe PF (einzeln oder zusammen mit OT) und für Pin 14 für die Alarmausgabe eine Kombi gewählt wurde, die OVP enthält. Der Alarm SOVP wird durch gleichzeitige Signalisierung von PF und OVP angezeigt.

Spezifikation der Analogschnittstelle 2.3.4.3

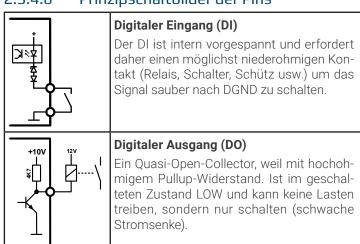
Pin	Name	Typ (1	Bezeichnung	Standardpegel	Elektrische Eigenschaften		
1	VSEL	Al	Sollwert Spannung	010 V bzw. 05 V entspre- chen 0100% von U _{Nenn}	Genauigkeit 0-5 V Bereich: < 0,4% (5		
2	CSEL	Al	Sollwert Strom	010 V bzw. 05 V entspre- chen 0100% von I _{Nenn}	Genauigkeit 0-10 V Bereich: < 0,2% ⁽⁵ Eingangsimpedanz R _i >40 k100 k		
3	VREF	AO	Referenzspannung	10 V oder 5 V	Genauigkeit < 0,2% bei I _{max} = +5 mA Kurzschlussfest gegen AGND		
4	DGND	POT	Digitale Masse		Für Steuer- und Meldesignale		
5	REMOTE	DI	Umschaltung zwischen manueller und externer Steuerung	Extern = LOW, U _{Low} <1 V Manuell = HIGH, U _{High} >4 V Manuell, wenn Pin unbeschaltet	Spannungsbereich = 030 V I _{Max} = -1 mA bei 5 V U _{LOW nach HIGH typ.} = 3 V Empf. Sender: Open collector gegen DGND		
6	ALARMS 1	DO	Übertemperaturalarm / Power fail	Alarm = HIGH, U _{High} > 4 V Kein Alarm = LOW, U _{Low} <1 V	Quasi-Open-Collector mit Pull-up gegen Vcc ⁽²⁾ Bei 5 V am Pin fließen max. +1 mA I _{Max} = -10 mA bei U _{CE} = 0,3 V U _{Max} = 30 V Kurzschlussfest gegen DGND		
7	RSEL	Al	Sollwert Widerstand	010 V bzw. 05 V entspre- chen 0100% von R _{Max}	Genauigkeit 0-5 V Bereich: < 0,4% ⁽⁵ Genauigkeit 0-10 V Bereich: < 0,2% ⁽⁵		
8	PSEL	Al	Sollwert Leistung	010 V bzw. 05 V entspre- chen 0100% von P _{Nenn}	Eingangsimpedanz R _i >40 k100 k		
9	VMON	AO	Istwert Spannung	010 V bzw. 05 V entspre- chen 0100% von U _{Nenn}	Genauigkeit 0-5 V Bereich: < 0,4% ⁽⁵ Genauigkeit 0-10 V Bereich: < 0,2% ⁽⁵		
10	CMON	AO	Istwert Strom	010 V bzw. 05 V entspre- chen 0100% von I _{Nenn}	bei I _{Max} = +2 mA Kurzschlussfest gegen AGND		
11	AGND	POT	Analoge Masse		Für xSEL, xMON und VREF		
12	R-ACTIVE	DI	Widerstandsregelung ein / aus	Ein = LOW, U _{Low} <1 V Aus = HIGH, U _{High} >4 V Aus, wenn Pin unbeschaltet	Spannungsbereich = 030 V I _{Max} = -1 mA bei 5 V U _{LOW nach HIGH typ.} = 3 V Empf. Sender: Open collector gegen DGND		
13	REM-SB	DI	DC-Ausgang aus (DC-Ausgang ein) (Alarm quittieren ⁽⁴)	Aus = LOW, U _{Low} <1 V Ein = HIGH, U _{High} >4 V Ein, wenn Pin unbeschaltet	Spannungsbereich = 030 V I _{Max} = +1 mA bei 5 V Empf. Sender: Open-Collector gegen DGND		
14	ALARMS 2	DO	Überspannung Überstrom Überleistung	Alarm = HIGH, U _{High} > 4 V Kein Alarm = LOW, U _{Low} <1 V	Quasi-Open-Collector mit Pull-up gegen Vcc (2 Bei 5 V am Pin fließen max. +1 mA		
15	STATUS (3	DO	Spannungsregelung aktiv	$CV = LOW, U_{Low} < 1 V$ $CC/CP/CR = HIGH, U_{High} > 4 V$	I _{max} = -10 mA bei U _{ce} = 0,3 V, U _{max} = 030 V Kurzschlussfest gegen DGND		
15	STATUS	טט	DC-Ausgang	$Aus = LOW, U_{Low} < 1 V$ $Ein = HIGH, U_{High} > 4 V$			

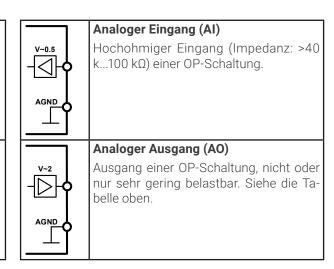
⁽¹ AI = Analoger Eingang, AO = Analoger Ausgang, DI = Digitaler Eingang, DO = Digitaler Ausgang, POT = Potential

Auflösung 2.3.4.4


Intern wird die analoge Schnittstelle digital verarbeitet. Das bedingt eine bestimmte, maximal stellbare Auflösung. Diese ist für alle Sollwerte (VSEL usw.) und Istwerte (VMON/CMON) gleich und beträgt 26214 für 0...100%, zumindest bei Verwendung des 10 V-Bereiches. Bei gewähltem 5 V-Bereich halbiert sich diese Auflösung. Durch Toleranzen am analogen Eingang kann sich die resultierende Auflösung zusätzlich leicht verringern.

⁽² Interne Vcc ca. 10 V


⁽³ Nur eins von beiden Signalen möglich, siehe Abschnitt 2.2.1.1


⁽⁴ Nur während Fernsteuerung)
(5 Der Fehler eines analogen Pins addiert sich zum allgemeinen Fehler des zugehörigen Wertes am DC-Ausgang des Gerätes

2.3.4.5 Übersicht Sub-D-Buchse

2.3.4.6 Prinzipschaltbilder der Pins

2.3.4.7 Anwendungsbeispiele

a) DC-Ausgang ein- oder ausschalten über Pin REM-SB

Ein digitaler Ausgang, z. B. von einer SPS, kann diesen Eingang unter Umständen nicht sauber ansteuern, da eventuell nicht niederohmig genug. Prüfen Sie die Spezifikation der steuernden Applikation. Siehe auch die Prinzipschaltbilder oben.

Pin REM-SB wird bei Fernsteuerung zum Ein- und Ausschalten des DC-Ausgangs des Gerätes genutzt. Er funktioniert aber auch ohne aktivierte Fernsteuerung. Dann kann er zum Einen das manuelle oder digital ferngesteuerte Einschalten des DC-Ausgangs blockieren und zum Anderen ein- oder ausschalten, jedoch nicht allein. Siehe unten bei **Fernsteuerung wurde nicht aktiviert**.

Pin REM-SB kann nicht im Sinne eines Not-Aus' verwendet werden, um im Gefahrenfall den DC-Ausgang sicher abzuschalten! Dafür wäre ein externes Not-Aus-System erforderlich.

REM-SB

Es wird empfohlen, einen niederohmigen Kontakt wie einen Schalter, ein Relais oder Transistor zum Schalten des Pins gegen Masse (DGND) zu benutzen.

Folgende Situationen können auftreten:

· Fernsteuerung wurde aktiviert

Wenn Fernsteuerung über Pin REMOTE aktiviert ist, gibt nur REM-SB den Zustand des DC-Ausgangs des Gerätes gemäß der Tabelle in Abschnitt 2.3.4.3 vor. Die logische Funktion und somit die Standardpegel können durch eine Einstellung im Setup-Menü des Gerät invertiert werden. Siehe Abschnitt 2.2.1.1.

Wird der Pin nicht beschaltet bzw. der angeschlossene Kontakt ist offen, ist der Pin auf HIGH. Bei Einstellung "Analogschnittstelle -> REM-SB Pegel" auf "Normal" entspricht das der Vorgabe "DC-Ausgang einschalten". Das heißt, sobald mit Pin REMOTE auf Fernsteuerung umgeschaltet wird, schaltet auch der DC-Ausgang ein!

· Fernsteuerung wurde nicht aktiviert

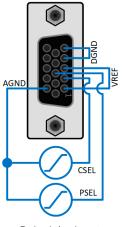
In diesem Modus stellt der Pin eine Art **Freigabe** der Taste "On/Off" am Bedienfeld des Gerätes bzw. des Befehls "DC-Ausgang ein/aus" (bei digitaler Fernsteuerung) dar. Daraus ergeben sich folgende mögliche Situationen:

DC- Ausgang	+	Pegel an Pin REM- SB	+	Parameter "REM-SB Pegel"	→	Verhalten
	_	HIGH	+	Normal		Der DC-Ausgang ist nicht gesperrt. Er kann mit Taste On/Off oder Befehl (dig. Fernsteuerung) eingeschaltet werden.
	┸	LOW	+	Invertiert		
ist aus		HIGH	+	Invertiert		Der DC-Ausgang ist gesperrt. Er kann nicht mit Taste On/Off oder Befehl (dig. Fernsteuerung) eingeschaltet werden. Bei Versuch wird das Gerät
	+	LOW	+	Normal	→	(dig. Fernsteuerung) eingeschaltet werden. Bei Versuch wird das Gerät nicht reagieren, jedoch eine Fehlermeldung (digitale Schnittstelle oder Anzeige) ausgegeben.

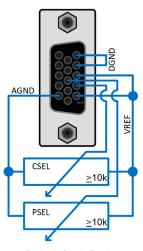
Ist der DC-Ausgang bereits eingeschaltet, bewirkt der Pin die Abschaltung dessen bzw. später erneutes Einschalten, ähnlich wie bei aktivierter Fernsteuerung:

DC- Ausgang		Pegel an Pin REM- SB	+	Parameter "REM-SB Pegel"	→	Verhalten
	+	HIGH	+	Normal		Der DC-Ausgang bleibt eingeschaltet. Er kann mit der Taste On/Off am Bedienfeld oder per digitalem Befehl ein- oder ausgeschaltet werden
ist ein		LOW	+	Invertiert	7	, , , , , , , , , , , , , , , , , , , ,
ist ein		HIGH	+	Invertiert		Der DC-Ausgang wird ausgeschaltet und bleibt gesperrt, solange der Pin den Zustand behält. Erneutes Einschalten durch Wechsel des Zustandes des Pins.
	+	LOW	+	Normal		

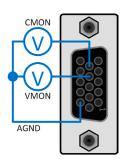
b) Fernsteuerung von Strom und Leistung


Erfordert aktivierte Fernsteuerung (Pin REMOTE = LOW).

Über je ein Potentiometer werden die Sollwerte PSEL und CSEL aus beispielsweise der Referenzspannung VREF erzeugt. Das Netzgerät kann somit wahlweise in Strombegrenzung oder Leistungsbegrenzung arbeiten. Gemäß der Vorgabe von max. 5 mA Belastung für den Ausgang VREF sollten hier Potentiometer von mindestens 10 kOhm benutzt werden.


Der Spannungssollwert wird hier fest auf VREF (≜100%) gelegt und beeinflusst somit Konstantstrom- oder Konstantleistungsbetrieb nicht. Bei Einspeisung der Steuerspannungen von einer externen Spannungsquelle wäre die Wahl des Eingangsspannungsbereiches für Sollwerte (0...5 V oder 0...10 V) zu beachten.

Bei Benutzung des 0...5 V Bereiches für 0...100% Sollwert halbiert sich die effektive Auflösung.


Beispiel mit ext. Spannungsquelle

Beispiel mit Potis

c) Istwerte erfassen

Über die AS werden die Istwerte des DC-Ausgangs mittels 0...10 V oder 0...5 V als Strom- bzw. Spannungsmonitor abgebildet. Zur Erfassung dienen handelsübliche Multimeter oder ein analoger Eingang einer SPS.

2.3.4.8 Vorrang der Analogschnittstelle

Eine neue, ab den Firmwares KE 3.10 und HMI 4.09 für alle 10000er Serien mit Analogschnittstelle verfügbare Funktionalität kann wahlweise die Analogschnittstelle bei der Übernahme der Fernsteuerung priorisieren. Bisher war und ist die Regel, dass sich die analoge und die digitalen Schnittstellen nicht gegenseitig überstimmen können, was die Fernsteuerung angeht. Das heißt, wenn man bisher ein Gerät per analoger Fernsteuerung steuern wollte, welches sich momentan in Fernsteuerung durch eine der digitalen Schnittstellen befand, dass man die Fernsteuerung über einen Befehl, gesendet über die verwendete digitale Schnittstelle, explizit verlassen musste.

Mit diesem auf Bedarf aktivierbaren Feature (siehe Abschnitt 2.2.1.1) kann die analoge Schnittstelle jederzeit die Fernsteuerung übernehmen, mit Ausnahme des Zustands **Lokal**. Im Moment des Umschaltens werden die an den Pins der Analogschnittstelle vorgegebenen Sollwerte und der Zustand des DC-Ausgangs sofort wirksam. Das Deaktivieren der analogen Fernsteuerung (Pin: REMOTE) würde aber das Gerät nicht in den vorherigen Zustand der digitalen Fernsteuerung zurückversetzen bzw. vormals gesetzte Sollwerte wiederherstellen. Diese Situation behält immer den letzten Satz an Sollwerten bzw., in Bezug auf den Zustand des DC-Ausgangs das, was mit dem Parameter **Zustand nach Remote** (siehe Abschnitt 2.2.1.1) definiert wurde.

3. Der Funktionsgenerator

3.1 Einleitung

Der eingebaute **Funktionsgenerator** (kurz: **FG**) ist in der Lage, verschiedenförmige Kurven zu erzeugen und diese auf entweder die Spannung (U) oder den Strom (I) anzuwenden.

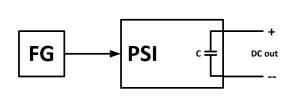
Die Standard-Funktionen basieren auf einem variablen **Arbiträrgenerator.** Bei manueller Bedienung können die Funktionen einzeln ausgewählt, konfiguriert und bedient werden. Bei Fernsteuerung werden diese dann durch mehrere Sequenzpunkten mit jeweils 8 Parametern konfiguriert und umgesetzt.

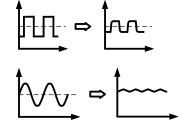
Andere Funktionen, wie Photovoltaiksimulation, basieren auf einem **XY-Generator**, der mit einer in das Gerät geladenen oder durch das Gerät berechneten Tabelle (4096 Werte) arbeitet.

Es sind folgende Funktionen manuell aufruf-, konfigurier- und steuerbar:

Funktion	Kurzerläuterung
Sinus	Sinus-Signalgenerierung mit einstellbarer Amplitude, Offset und Frequenz
Dreieck	Dreieck-Signalgenerierung mit einstellbarer Amplitude, Offset, Anstiegs- und Abfallzeit
Rechteck	Rechteck-Signalgenerierung mit einstellbarer Amplitude, Offset und Puls-Pausen-Verhältnis
Trapez	Trapez-Signalgenerierung mit einstellbarer Amplitude, Offset, Anstiegszeit, Pulszeit, Abfallzeit, Pausenzeit
DIN 40839	Emulierte KFZ-Motorstartkurve nach DIN 40839 / EN ISO 7637, unterteilt in 5 Kurvensegmente (Sequenzpunkte) mit jeweils Startspannung, Endspannung und Zeit
Arbiträr	Generierung eines Ablaufs von bis zu 99 beliebig konfigurierbaren Kurvenpunkten mit jeweils Startwert (AC/DC), Endwert (AC/DC), Startfrequenz, Endfrequenz, Phasenwinkel und Dauer
Rampe	Generierung einer linear ansteigenden oder abfallenden Rampe mit Startwert, Endwert, Zeit vor und nach der Rampe
XY-Tabelle	XY-Generator, von USB-Stick ladbare Stromkurve (Tabelle, CSV)
PV-Tabelle (PS) PV EN50530	Funktionen zur Simulation von Solarpaneelen (PV-Funktion) oder Brennstoffzellen (FC-Funktion), mit Berechnung anhand von Parametern (auch nach DIN EN 50530)
FC-Tabelle (PS)	

Bei aktiviertem Widerstandsmodus (CR) ist der Zugang zum Funktionsgenerator gesperrt.


3.2 Allgemeines


3.2.1 Aufbau

Das Netzgerät an sich ist kein Funktionsgenerator und darf daher nicht als solcher betrachtet werden. Seine Leistungsstufen sind dem Generator nur nachgeschaltet. Dabei bleiben die typischen Eigenschaften einer Quelle von Spannung und Strom in Bezug auf Anstiegszeiten und Kondensatorentladung erhalten. Während der FG bei einer Sinusfunktion in der Lage ist 1000 Hz oder mehr zu generieren, wird das Netzgerät dem niemals folgen können.

Verdeutlichung:

Wirkung des Netzgerätes auf Funktionen:

Der am DC-Ausgang resultierende Kurvenverlauf hängt dabei stark von Frequenz bzw. Periode, generierter Signalform, Amplitude und der Ausgangskapazität ab. Die Auswirkungen der Leistungsstufen können nur teilweise kompensiert werden. So kann eine zusätzliche Last (fest & ohmsch oder elektronisch & variabel) zu der eigentlichen am DC-Ausgang die Abfallzeit beim Signalverlauf signifikant verbessern.

3.2.2 Auflösung

Bei den Funktionen, die vom Arbiträrgenerator erzeugt werden, kann das Gerät zwischen 0...100% Sollwert max. 52428 Schritte berechnen und setzen. Bei sehr geringen Amplituden und langen Zeiten werden während eines Werteanstiegs oder -abfalls u. U. nur wenige oder gar keine sich ändernden Werte berechnet und deshalb nacheinander mehrere gleiche Werte gesetzt, was zu einem gewissen Treppeneffekt führen kann.

3.2.3 Mögliche technische Komplikationen

Der Betrieb von Schaltnetzteilen als Spannungsquelle kann bei Anwendung einer Funktion auf den Sollwert der Spannung zur Beschädigung des Gerätes führen, da die dort am Ausgang befindlichen Kapazitäten ständig umgeladen werden, was bei Dauerbetrieb zu starker Erhitzung führt.

3.2.4 Arbeitsweise

Zum Verständnis, wie der Funktionsgenerator arbeitet und wie die eingestellten Werte aufeinander einwirken, muss folgendes beachtet werden:

Das Gerät arbeitet auch im Funktionsgeneratormodus stets mit den drei Sollwerten U, I und P.

Auf <u>einen</u> der beiden Sollwerte U und I kann die gewählte Funktion angewendet werden, die anderen beiden Sollwerte sind dann konstant und wirken begrenzend. Das bedeutet, wenn man beispielsweise eine Spannung von 30 V am DC-Ausgang einstellt, eine Last anschließt und die Sinus-Funktion auf den Strom anwenden will und als Amplitude 300 A festgelegt hat mit Offset 400 A, sollte der Funktionsgenerator einen Sinusverlauf der Stromes zwischen 100 A (min.) und 700 A (max.) erzeugen, der eine Ausgangsleistung zwischen 3000 W (min.) und 21000 W (max.) zur Folge hätte. Die Leistung wird aber stets auf den eingestellten Wert begrenzt. Würde sie nun beispielsweise auf 18000 W begrenzt, würde der Strom rechnerisch auf 600 A begrenzt sein und würde man ihn über eine Stromzange auf einem Oszilloskop darstellen, würde er bei 600 A gekappt werden und nie die gewollten 700 A erreichen.

Master-Slave-Systeme haben zusätzliche Gegebenheiten:

Am Ende der Konfiguration aller Standardfunktionen sind die sogenannten "U/I/P-Limits" einzustellen. Diese Werte werden in Master-Slave-Systemen als globale Sollwerte an alle Slaves übertragen. Es wird empfohlen, diese sorgfältig und passend einzustellen, so dass die Slaves den Kurvenablauf nicht negativ beeinträchtigen können.

3.3 Manuelle Bedienung

3.3.1 Auswahl und Steuerung einer Funktion

Über den Touchscreen kann eine der in Abschnitt 3.1 genannten Funktionen aufgerufen werden, konfiguriert und gesteuert werden. Auswahl und Konfiguration sind nur bei ausgeschaltetem DC-Ausgang möglich.

► So konfigurieren Sie eine Funktion

1. Bei ausgeschaltetem DC-Ausgang tippen Sie auf das Bedien-

- 2. Im Menü wählen Sie links die gewünschte Funktion. Bei manchen muss noch gewählt werden, auf welchen Sollwert man die Funktion anwenden möchte, Spannung oder Strom.
- 3. Stellen Sie nun die Werte wie gewünscht ein und gehen Sie 📑 Weiter
- 4. Als nächster Schritt ist es noch erforderlich, die sogenannten statischen Sollwerte für Spannung und Leistung bzw. Strom und Leistung einzustellen. Die ist besonders für den Master-Slave-Betrieb wichtig, weil die Slaves diese Grenzwerte übermittelt bekommen. Diese Werte sind vor dem Start und nach dem Stopp der Funktion wirksam.

Die Grenzwerte für U, I und P wirken nach dem Erreichen des Hauptbildschirms sofort auf die Last bzw. externe Quelle, weil der DC-Ausgang nach dem Laden der Funktion automatisch eingeschaltet wird, um die Startsituation herzustellen. Das ist hilfreich, wenn eine Funktion nicht bei 0 V bzw. 0 A starten soll. Ist jedoch gewünscht, dass die Funktion bei 0 startet, müsste der statische Sollwert auf 0 gesetzt werden, was aber bei einem Master-Auxiliary-System nicht sein darf, da die Auxiliary-Einheiten dann einen Sollwert von 0 hätten. Das Einschalten des DC-Ausgangs nach dem Laden der Funktion kann durch Aktivieren des Schalters "DC-Ausgang nur bei laufender Funktion einschalten" unterbunden werden.

✓ Status

Sinus

Trapez

DIN 40839

5. Verlassen der Konfiguration und Wechsel in den Funktionsgenerator-Bildschirm mit 🗜 Weiter

Funktionsgenerator

Parameterkonfiguration

1Hz

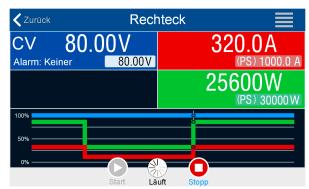
0.00V

0.00V

Spannung

Strom

Frequenz (f):


Amplitude (A):

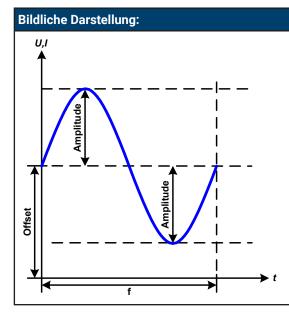
DC-Offset (O):

Die einzelnen Parameter der Funktionen sind weiter unten beschrieben. Nachdem die Einstellungen getroffen sind wird die Funktion geladen, der DC-Ausgang eingeschaltet und dann kann gestartet werden. Bevor und während die Funktion läuft, sind die globalen Grenzwerte sowie funktionsbezogene Werte einstellbar.

► So starten und stoppen Sie eine Funktion

- 1. Sie können die Funktion starten, indem Sie entweder auf tippen oder, sofern der DC-Ausgana das Bedienfeld momentan aus ist, die Taste On/Off betätigen.
- 2. Stoppen können Sie den Funktion entweder mit dem Beoder der Taste On/Off, jedoch gibt es hier dienfeld unterschiedliches Verhalten:

- a) Bedienfeld : Funktion stoppt lediglich, der DC-Ausgang bleibt an, mit statischen Werten.
- b) Taste On/Off: Funktion stoppt und der DC-Ausgang wird ausgeschaltet.



Bei Gerätealarmen (Power fail, Übertemperatur usw.), Schutzfunktionen (OPP, OCP) oder Events mit Aktion= Alarm stoppt der Funktionsablauf automatisch, der DC-Ausgang wird ausgeschaltet und der Alarm gemeldet.

3.4 Sinus-Funktion

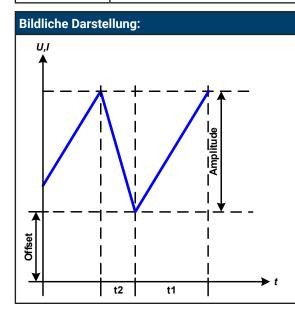
Folgende Parameter können für die Sinus-Funktion konfiguriert werden:

Parameter	Einstellbereich	Erläuterung
Frequenz (f)	1Hz10000Hz	Statische Frequenz des zu generierenden Sinussignals
Amplitude (A)	0(Nennwert von U, I - Offset)	Amplitude des zu generierenden Signals
Offset (0)		Offset, bezogen auf den Nulldurchgang der mathematischen Sinuskurve, kann niemals kleiner sein als die Amplitude

Anwendung und Resultat:

Es wird ein sinusförmiges Signal erzeugt und auf z. B. die Ausgangsspannung angewendet. Bei konstanter Last würden die Ausgangsspannung und somit auch der Ausgangsstrom des Netzgerätes sinusförmig verlaufen.

Für die Berechnung der sich aus dem Verlauf maximal ergebenden Leistung muss die eingestellte Stromamplitude zunächst mit dem Offset addiert werden.


Beispiel: Sie stellen bei einer Ausgangsspannung von 100 V und $\sin(I)$ die Amplitude auf 30 A ein, bei einem Offset von 50 A. Die sich ergebende max. Leistung bei Erreichen des höchsten Punktes der Sinuskurve wäre dann (30 A + 50 A) * 100 V = 8000 W.

Das Gerät müsste demnach mindestens auf 8000 W Leistung eingestellt werden, damit die Kurve sauber läuft.

3.5 Dreieck-Funktion

Folgende Parameter können für die Dreieck-Funktion konfiguriert werden:

Parameter	Einstellbereich	Erläuterung
Amplitude (A)	0(Nennwert von U, I - Offset)	Amplitude des zu generierenden Signals
Offset (0)	0(Nennwert von U, I - Amplitude)	Offset, bezogen auf den Fußpunkt des Dreiecks
Zeit t1	0.1ms36000000ms	Anstiegszeit Δt der ansteigenden Flanke des Dreiecksignals
Zeit t2	0.1ms36000000ms	Abfallzeit ∆t der abfallenden Flanke des Dreiecksignals

Anwendung und Resultat:

Es wird ein dreieckförmiges Signal mit dem Ausgangsstrom oder der Ausgangsspannung erzeugt. Die Zeiten der ansteigenden und abfallenden Flanke sind getrennt einstellbar.

Der Offset verschiebt das Signal auf der Y-Achse.

Die Summe der Zeiten t1 und t2 ergibt die Periodendauer und deren Kehrwert eine Frequenz.

Wollte man beispielsweise eine Frequenz von 10 Hz erreichen, ergäbe sich bei T = 1/f eine Periode von 100 ms. Diese 100 ms kann man nun beliebig auf t1 und t2 aufteilen. Z. B. mit 50 ms:50 ms (gleichschenkliges Dreieck) oder 99,9 ms:0,1 ms (Dreieck mit rechtem Winkel, auch Sägezahn genannt).

3.6 Rechteck-Funktion

Folgende Parameter können für die Rechteck-Funktion konfiguriert werden:

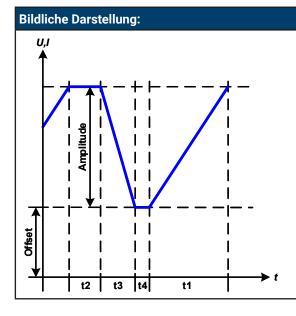
Parameter	Einstellbereich	Erläuterung
Amplitude (A)	0(Nennwert von U, I - Offset)	Amplitude des zu generierenden Signals
Offset (0)	0(Nennwert von U, I - Amplitude)	Offset, bezogen auf den Fußpunkt des Rechtecks
Zeit t1	0.1ms36000000ms	Zeit (Puls) des oberen Wertes (Amplitude) des Rechtecksignals
Zeit t2	0.1ms36000000ms	Zeit (Pause) des unteren Wertes (Offset) des Rechtecksignals

Bildliche Darstellung: U,I **Philidus** *

Anwendung und Resultat:

Es wird ein rechteckförmiges Signal für den Ausgangsstrom oder die Ausgangsspannung erzeugt. Die Zeiten t1 und t2 bestimmen dabei, wie lange jeweils der Wert der Amplitude (zugehörig zu t1) und der Pause (Amplitude = 0, nur Offset effektiv, zugehörig zu t2) wirkt.

Der Offset verschiebt das Signal auf der Y-Achse.


Mit den Zeiten t1 und t2 ist das sogenannte Puls-Pausen-Verhältnis oder Tastverhältnis (engl. *duty cycle*) einstellbar. Die Summe der Zeiten t1 und t2 ergibt die Periodendauer und deren Kehrwert die Frequenz.

Wollte man beispielsweise ein Rechtecksignal auf den Strom mit 25 Hz und einem Duty cycle von 80% erreichen, müsste die Summe von t1 und t2, also die Periode, mit T = 1/f = 1/25 Hz = 40 ms berechnet werden. Für den Puls ergäben sich dann bei 80% Duty cycle t1 = 40 ms*0,8 = 32 ms. Die Zeit t2 wäre dann mit 8 ms zu setzen.

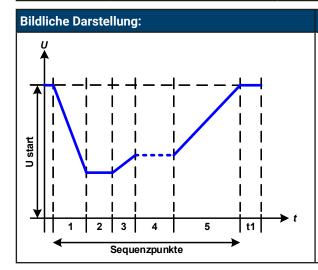
3.7 Trapez-Funktion

Folgende Parameter können für die Trapez-Funktion konfiguriert werden:

Parameter	Einstellbereich	Erläuterung
Amplitude (A)	0(Nennwert von U, I - Offset)	Amplitude des zu generierenden Signals
Offset (0)	0(Nennwert von U, I - Amplitude)	Offset, bezogen auf den Fußpunkt des Trapezes
Zeit t1	0.1ms36000000ms	Zeit der ansteigenden Flanke des Trapezsignals
Zeit t2	0.1ms36000000ms	Zeit des High-Wertes (Haltezeit) des Trapezsignals
Zeit t3	0.1ms36000000ms	Zeit der abfallenden Flanke des Trapezsignals
Zeit t4	0.1ms36000000ms	Zeit des Low-Wertes (Offset) des Trapezsignals

Anwendung und Resultat:

Hiermit kann ein trapezförmiges Signal auf Spannung oder Strom angewendet werden. Bei dem Trapez können die Winkel unterschiedlich sein durch die getrennt einstellbaren Anstiegs- und Abfallzeiten.


Hier bilden sich die Periodendauer und die Wiederholfrequenz aus vier Zeiten. Bei entsprechenden Einstellungen ergeben sich statt eines Trapezes zwei Dreieck- oder zwei Rechteckimpulse. Diese Funktion ist somit recht universal.

3.8 DIN 40839-Funktion

Diese Funktion ist an den durch DIN 40839 / EN ISO 7637 definierten Kurvenverlauf (Prüfimpuls 4) angelehnt und wird nur auf die Spannung angewendet. Sie soll den Verlauf der Autobatteriespannung beim Start eines Automotors nachbilden. Die Kurve ist in 5 Sequenzpunkte eingeteilt (siehe die Abbildung unten), die jeweils die gleichen Parameter haben. Die Standardwerte aus der Norm sind für die fünf Punkte bereits als Standardwert eingetragen.

Folgende Parameter können für die DIN40839-Funktion konfiguriert werden:

Parameter	Einstellbereich	Seq.	Erläuterung
Start	0V U _{Nenn}	1-5	Anfangsspannungswert des Teilabschnitts (Sequenzpunkt) der Kurve
Ende	0V U _{Nenn}	1-5	Endspannungswert des Teilabschnitts (Sequenzpunkt) der Kurve
Zeit	0.1ms36000000ms	1-5	Zeit für die abfallende oder ansteigende Rampe
Sequenzzyklen	0999	-	Anzahl der Abläufe der Kurve (0 = ∞)
Zeit t1	0.1ms36000000ms	-	Zeit nach Ablauf der Kurve, bevor wiederholt wird (Zyklen <> 1)
U(Start/Ende)	0V U _{Nenn}	-	Spannungswert am DC-Ausgang bevor die Kurve gestartet wird und danach
I/P	OAI _{Nenn} /OWP _{Nenn}	-	Globale Sollwerte für Strom und Leistung

Anwendung und Resultat:

Die Funktion eignet sich nicht für den alleinigen Betrieb des Netzgerätes, sondern nur im Verbund mit einer kompatiblen elektronischen Last, z. B. aus der Serie ELR 9000. Dabei sorgt die Last als Senke für den schnellen Abfall der Ausgangsspannung des Netzgeräts, damit der Ausgangsspannungsverlauf dem durch die DIN-Kurve geforderten entspricht.

Die Kurve entspricht dem Prüfimpuls 4 der Norm. Bei entsprechender Einstellung können auch andere Prüfimpulse nachgebildet werden. Soll die Kurve in Sequenzpunkt 4 einen Sinus enthalten, so müsste sie alternativ mit dem Arbiträrgenerator erzeugt werden.

3.9 Arbiträr-Funktion

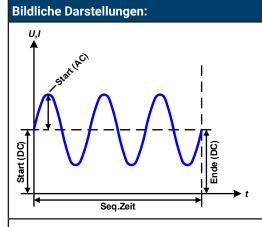
Die Arbiträr-Funktion (arbiträr = beliebig) bietet dem Anwender einen erweiterten Spielraum. Es sind je 99 Kurvenabschnitte (hier: Sequenzpunkte) für die Zuordnung zum Strom oder zur Spannung verfügbar, die alle dieselben Parameter haben, aber beliebig konfiguriert werden können, um komplexe Funktionsabläufe "zusammenzubauen". Von den 99 verfügbaren Sequenzpunkten kann eine beliebige Anzahl nacheinander ablaufen. Das ergibt einen Sequenzpunktblock. Der Block kann dann noch 1...999 mal oder unendlich oft wiederholt werden. Das der Ablauf der Funktion entweder die Spannung oder dem Strom zugewiesen wird, ist eine gemischte Zuordnung zu beiden nicht möglich.

Die Arbiträrkurve kann einen linearen Verlauf (DC) mit einer Sinuskurve (AC) überlagern, deren Amplitude und Frequenz zwischen Anfangswert und Endwert ausgebildet werden. Wenn Startfrequenz und Endfrequenz auf 0 Hz gesetzt sind, wird der AC-Anteil unwirksam und nur der DC-Anteil wird generiert. Für jeden Sequenzpunkt ist eine Zeit definierbar, innerhalb welcher der Kurvenabschnitt (Sequenzpunkt) von Start bis Ende generiert wird.

Folgende Parameter können für jeden Sequenzpunkt der Arbiträr-Funktion konfiguriert werden:

Parameter	Einstellbereich	Erläuterung
AC-Start	050% Nennwert von I oder U	Start- bzw. Endamplitude des sinusförmigen AC-Anteils
AC-Ende		
DC-Start	AC-Start((Nennwert U oder I) - AC-Start)	Startpunkt des DC-Anteils
DC-Ende	AC-Ende((Nennwert U oder I) - DC-Ende)	Endpunkt des DC-Anteils
Startfrequenz	0Hz10000Hz	Anfangs- und Endfrequenz des sinusförmigen Anteils
Endfrequenz		
Winkel	0°359°	Anfangswinkel des sinusförmigen Anteils
Zeit	0.1 ms36000000ms	Zeit für die gewählte Sequenzpunkt

Die Sequenzpunktzeit ("Zeit") und die Startfrequenz/Endfrequenz stehen in einem Zusammenhang. Es besteht ein Minimum $\Delta f/s$ von 9,3. Also würde z.B. eine Einstellung mit Startfrequenz = 1 Hz, Endfrequenz = 11 Hz und Zeit = 5 s nicht akzeptiert, weil das $\Delta f/s$ dann nur 2 wäre. Bei Zeit = 1 s passt es wieder oder man müsste bei Zeit = 5 s mindestens eine Endfrequenz = 51 Hz einstellen.

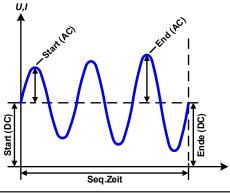


Die Amplitudenänderung zwischen Start und Ende steht im Zusammenhang mit der Sequenzpunktzeit. Man kann nicht eine beliebig kleine Änderung über eine beliebig große Zeit hinweg erzeugen. In so einem Fall lehnt das Gerät unpassende Einstellungen mit einer Meldung ab.

Wenn diese Einstellungen für den gerade gewählten Sequenzpunkt gesetzt wurden, können noch weitere konfiguriert werden. Weiter unten sind noch globale Einstellungen für den Gesamt-Ablauf der Arbiträr-Funktion:

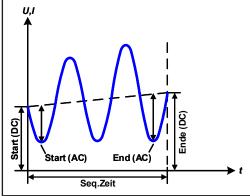
Parameter	Einstellbereich	Erläuterung
Sequenzzyklen	0 / 1999	Anzahl der Abläufe des Sequenzpunktblocks (0 = unendlich)
Startsequenz	1Endsequenz	Erster Sequenzpunkt des Blocks
Endsequenz	Startsequenz99	Letzter Sequenzpunkt des Blocks

Nach Betätigung von 🖟 Weiter müssen noch globale Sollwerte (U/I/P-Limits) für den Funktionsablauf definiert werden.



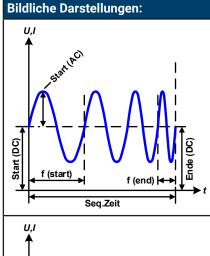
Anwendungen und Resultate:

Beispiel 1: Betrachtung 1 Ablaufs 1 Sequenzpunktes:


Die Werte von DC-Start und DC-Ende sind gleich, die AC-Werte (Amplitude) auch. Mit einer Freguenz ungleich Null, wobei Startfreguenz = Endfreguenz, ergibt sich ein sinusförmiger Verlauf des Sollwertes mit einer bestimmten Amplitude, Frequenz und Y-Verschiebung, auch Offset genannt.

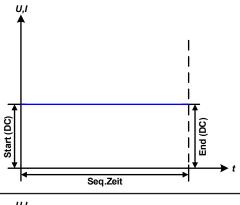
Die Anzahl der Sinusperioden pro Seguenzpunktablauf hängt von der Zeit und der Frequenz ab. Wäre die Sequenzpunktzeit beispielsweise 1 s und die Frequenz 1 Hz, entstünde genau 1 Sinuswelle. Wäre bei gleicher Frequenz die Zeit nur 0,5 s, entstünde nur eine Sinushalbwelle.

Beispiel 2: Betrachtung 1 Ablaufs 1 Seguenzpunktes:

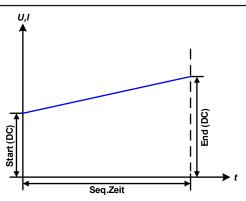

Die Werte von DC-Start und DC-Ende sind gleich, die AC-Werte (Amplitude) jedoch nicht. Der Endwert ist größer als der Startwert, daher wird die Amplitude mit jeder neu angefangenen Sinushalbwelle kontinuierlich zwischen Anfang und Ende der Sequenz größer. Dies wird jedoch nur dann sichtbar, wenn die Sequenzzeit zusammen mit der Frequenz zulässt, dass während des Ablaufs einer Sequenz mehrere Sinuswellen erzeugt werden können. Bei f=1 Hz und Seq.Zeit=3 s ergäbe das z. B. drei ganze Wellen (bei Winkel=0°), umgekehrt genauso bei f=3 Hz und Seq.Zeit=1 s.

Beispiel 3: Betrachtung 1 Ablaufs 1 Sequenzpunktes:

Die Werte von DC-Start und DC-Ende sind nicht gleich, die AC-Werte (Amplitude) auch nicht. Der Endwert ist jeweils größer als der Startwert, daher steigt der Offset zwischen Start (DC) und Ende (DC) linear an, ebenso die Amplitude mit jeder neu angefangenen Sinushalbwelle.


Zusätzlich startet die erste Sinuswelle mit der negativen Halbwelle, weil der Winkel auf 180° gesetzt wurde. Der Startwinkel kann zwischen 0° und 359° beliebig in 1°-Schritten verschoben werden.

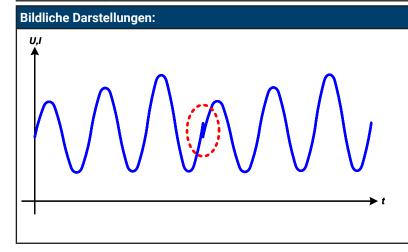
Anwendungen und Resultate:


Beispiel 4: Betrachtung 1 Ablaufs 1 Sequenzpunktes:

Ähnlich Beispiel 1, hier jedoch mit anderer Endfrequenz. Die ist hier größer als die Startfrequenz. Das wirkt sich auf die Periode einer Sinuswelle aus, die mit jeder neu angefangenen Sinuswelle kleiner wird, über den Zeitraum des Sequenzablaufs mit Sequenzzeit x.

Beispiel 5: Betrachtung 1 Ablaufs 1 Sequenzpunktes:

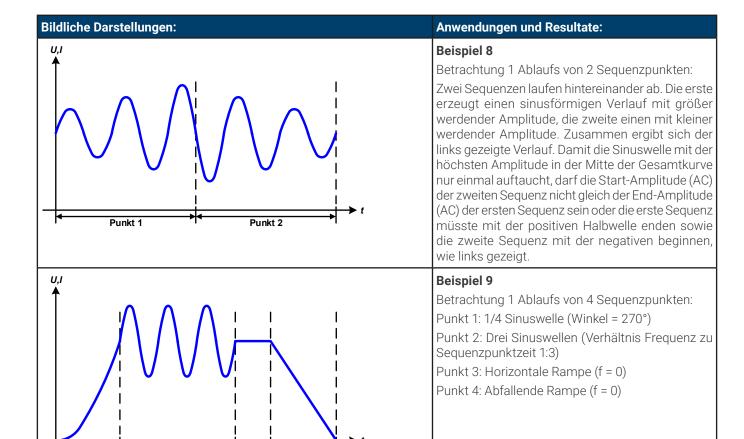
Ähnlich Beispiel 1, jedoch mit einer Start- und Endfrequenz von 0 Hz. Ohne einen Frequenzwert wird kein Sinusanteil (AC) erzeugt und ist es wirkt nur die Einstellung der DC-Werte. Erzeugt wird eine Rampe mit horizontalem Verlauf.


Beispiel 6: Betrachtung 1 Ablaufs 1 Sequenzpunktes:

Ähnlich Beispiel 3, jedoch mit einer Start- und Endfrequenz von 0 Hz. Ohne einen Frequenzwert wird kein Sinusanteil (AC) erzeugt und es wirkt nur die Einstellung der DC-Werte. Diese sind hier bei Start und Ende ungleich. Generiert wird eine Rampe mit ansteigendem Verlauf.

Durch Aneinanderreihung mehrerer unterschiedlich konfigurierter Sequenzpunkte können komplexe Abläufe erzeugt werden. Dabei kann durch geschickte Konfiguration der Arbiträrgenerator die anderen Funktionen wie Dreieck, Sinus, Rechteck oder Trapez nachbilden und somit z. B. eine Sequenz aus Rechteck-Funktionen mit unterschiedlichen Amplituden bzw. Duty Cycles pro Sequenz erzeugen.

Durch die Zuordnung zu U oder I sind die jeweils 99 verfügbaren Sequenzpunkte entweder nur auf den Strom oder die Spannung anwendbar und nicht vermischbar.



Anwendungen und Resultate:

Beispiel 7

Betrachtung 2er Abläufe 1 Sequenzpunktes:

Ein Sequenzpunkt, konfiguriert wie in Beispiel 3, läuft ab. Da die Einstellungen vorgeben, dass der End-Offset (DC) größer ist als der Start-Offset, springt der Anfangswert des zweiten Ablaufs auf denselben Anfangswert zurück wie beim ersten Ablauf, ganz gleich wo der erzeugte Wert der Sinuswelle am Ende des ersten Ablaufs war. Das erzeugt eine gewisse Verzerrung im Gesamtablauf (rote Markierung) und kann nur mit dementsprechend sorgsam gewählten Einstellwerten kompensiert werden.

3.9.1 Laden und Speichern von Arbiträr-Funktionen

Punkt 2

Punkt 1

Die manuell am Gerät konfigurierbaren 99 Sequenzpunkte der Arbiträrfunktion, die auf Spannung U oder Strom I anwendbar ist, können über die USB-Schnittstelle auf der Vorderseite des Gerätes auf einen USB-Stick (FAT32-formatiert) gespeichert oder von diesem geladen werden. Dabei gilt, dass beim Speichern immer alle 99 Sequenzpunkte in eine Textdatei vom Typ CSV gespeichert werden, beim Laden umgekehrt genauso.

Für das Laden einer Sequenztabelle für den Arbiträr-Generator gelten folgende Anforderungen

- Die Tabelle muss 99 Zeilen (100 sind wegen Kompatibilität zu früheren Firmwares auch zulässig) mit jeweils 8 aufeinanderfolgenden Spalten enthalten und darf keine Lücken aufweisen
- Das zu verwendende Spaltentrennzeichen (Semikolon, Komma) wird über die Einstellung "USB Trennzeichen-Format" festgelegt und bestimmt auch das Dezimaltrennzeichen (Komma, Punkt)
- Die Datei muss im Ordner HMI_FILES liegen, der im Wurzelverzeichnis (root) des USB-Sticks sein muss
- Der Dateiname muss immer mit WAVE_U oder WAVE_I beginnen (Groß-/Kleinschreibung egal)
- Alle Werte in jeder Spalte und Zeile müssen den Vorgaben entsprechen (siehe unten)
- Die Spalten der Tabelle haben eine bestimmte Reihenfolge, die nicht geändert werden darf

Für die Sequenzpunkttabelle mit den 99 Zeilen ist, in Anlehnung an die Einstellparameter, welche bei der manuellen Bedienung für den Arbiträrgenerator festgelegt werden können, folgender Aufbau vorgegeben (Spaltenbenennung wie bei Excel):

Spalte	Entspricht HMI-Parameter	Wertebereich			
А	AC-Start	Siehe die Tabelle in <i>«3.9 Arbiträr-Funktion»</i>			
В	AC-Ende	Siehe die Tabelle in <i>«3.9 Arbiträr-Funktion»</i>			
С	Startfrequenz	010000 Hz			
D	Endfrequenz	010000 Hz			
Е	Winkel	0359°			
F	DC-Start	Siehe die Tabelle in <i>«3.9 Arbiträr-Funktion»</i>			
G	DC-Ende	Siehe die Tabelle in <i>«3.9 Arbiträr-Funktion»</i>			
Н	Zeit	10036.000.000.000 (36 Mrd. μs)			

Beispiel-CSV:

	Α	В	С	D	Е	F	G	Н
1	20,00	30,00	5	5	90	50,00	50,00	50000000
2	30,00	20,00	5	5	90	50,00	50,00	30000000
3	0,00	0,00	0	0	0	0,00	0,00	1000
4	0,00	0,00	0	0	0	0,00	0,00	1000
5	0,00	0,00	0	0	0	0,00	0,00	1000
6	0,00	0,00	0	0	0	0,00	0,00	1000

In dem Beispiel sind nur die ersten zwei Sequenzpunkte konfiguriert, die anderen stehen alle auf Standardwerten. Die Tabelle könnte für das Modell PSI 10500-180 über eine WAVE_U für die Spannung oder eine WAVE_I für den Strom geladen werden, weil sie für beide passt. Die Benennung ist jedoch durch einen Filter eindeutig gemacht, das heißt man kann nicht Arbiträr --> U im Funktionsgeneratormenü wählen und dann eine WAVE_I laden. Diese würde gar nicht erst aufgelistet.

► So laden Sie eine Sequenzpunkttabelle von einem USB-Stick

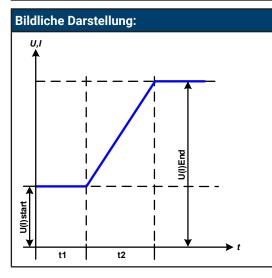
- 1. Stecken Sie den USB-Stick noch nicht ein bzw. ziehen. Sie ihn zunächst heraus.
- 2. Bei ausgeschaltetem DC-Ausgang öffnen Sie das Menü des Funktionsgenerators aus der Hauptanzeige heraus

scheint die Anzeige wie rechts abgebildet.

4. Tippen Sie unten rechts auf Die gewählte Datei wird nun überprüft und, sofern in Ordnung, geladen. Bei Formatfehlern wird eine entsprechende Meldung angezeigt. Dann muss die Datei korrigiert und der Vorgang wiederholt werden

So speichern Sie die Sequenzpunkttabelle vom Gerät auf einen USB-Stick

- Stecken Sie den USB-Stick noch nicht ein bzw. ziehen Sie ihn zunächst heraus.
- 2. Öffnen Sie das Funktionsauswahlmenü des Funktionsgenerators aus der Hauptanzeige heraus mit wählen Sie Gruppe Arbiträr.



- 3. Wischen Sie herunter bis zu Sequenzkonfiguration und tippen Sie auf Import/Export, dann auf Sichern. Sie werden aufgefordert, den USB-Stick einzustecken. Das Gerät sucht daraufhin nach dem Ordner HMI_FILES auf dem Speicherstick und nach eventuell schon vorhandenen WAVE_U- bzw. WAVE_I-Dateien und listet gefundene auf. Soll eine vorhandene Datei mit den zu speichernden Daten überschrieben werden, wählen Sie diese aus, ansonsten wählen Sie keine aus. Es wird dann eine erzeugt.
- **4.** Speichern, egal ob neu oder überschreibend, erfolgt dann mit

3.10 Rampen-Funktion

Folgende Parameter können für die Rampen-Funktion konfiguriert werden:

Parameter	Einstellbereich	Erläuterung
Start / Ende	0Nennwert von U, I	Start- und Endwert der Rampe
Zeit t1	0.1ms36000000ms	Zeit vor der ansteigenden bzw. abfallenden Flanke der Rampe
Zeit t2	0.1ms36000000ms	Anstiegs-/Abfallzeit der Rampe

Anwendung und Resultat:

Diese Funktion generiert eine ansteigende oder abfallende Rampe zwischen Startwert und Endwert über die Zeit t2. Die andere Zeit t1 dient zur Festlegung einer Verzögerung, bevor die Rampe startet.

Die Funktion läuft einmal ab und bleibt dann am Endwert stehen. Um eine sich wiederholende Rampe zu erreichen, müsste die Trapezfunktion benutzt werden (siehe Abschnitt 3.7).

Wichtig ist hier noch die Betrachtung des statischen Sollwertes von I bzw. U, der den Startwert vor der Erzeugung der Rampe definiert. Es wird empfohlen, den statischen Wert gleich dem Wert **Start** einzustellen, es sei denn die Last soll vor dem Beginn der Rampenzeit Zeit (t1) noch nicht mit Spannung bzw. Strom versorgt werden. Hier müsste man dann den statischen Wert auf 0 einstellen.

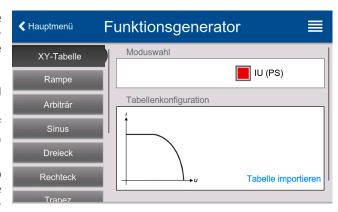
3.11 IU-Tabellenfunktion (XY-Tabelle)

Die IU-Funktion bietet dem Anwender die Möglichkeit, in Abhängigkeit von der DC-Ausgangsspannung einen bestimmten DC-Strom zu setzen. Dazu muss eine Tabelle geladen werden, die genau 4096 Werte enthält, welche sich auf den gemessenen Ausgangsstrom oder die gemessene Ausgangsspannung im Bereich 0...125% Nennwert aufteilen, wenngleich durch die obere Grenze von 102% Stromnennwert nur ca. 3342 Werte aus der Tabelle effektiv werden können.

Die XY-Tabelle kann entweder von einem USB-Stick über die frontseitige USB-Buchse des Gerätes oder per Fernsteuerung (ModBus-Protokoll oder SCPI) in das Gerät geladen und dann angewendet werden. Es gilt:

IU-Funktion: I = f(U) -> das Gerät arbeitet im CC-Modus mit einer Last, die im CV-Modus arbeitet

Beim Laden einer Tabelle vom USB-Stick werden nur Textdateien vom Typ CSV (*.csv) akzeptiert. Die Tabelle wird beim Laden auf Plausibilität überprüft (Werte nicht zu groß, Anzahl der Werte korrekt) und eventuelle Fehler gemeldet und dann die Tabelle nicht geladen.



Die 4096 Einträge innerhalb der zu ladenden Tabelle werden nur auf korrekten Wert und Anzahl hin untersucht. Würde man alle Werte in einem Diagramm darstellen, ergäbe sich eine bestimmte Kurve, die auch sehr starke Sprünge des Stromes vom einem Wert zum nächsten enthalten könnte. Das kann zu Komplikationen für die angeschlossene Last führen, wenn z. B. der interne Spannungsmesswert des Netzgerätes leicht schwankt und dazu führt, dass ständig zwischen zwei Stromwerten aus der Tabelle hin- und hergependelt wird, wo im ärgsten Fall der eine 0 A ist und der andere Maximalstrom.

3.11.1 Laden von IU-Tabellen über USB

Die sogenannten IU-Tabellen können über die USB-Schnittstelle auf der Vorderseite des Gerätes von einem USB-Stick (FAT32-formatiert) geladen werden. Um dies tun zu können, muss die zu ladende Datei bestimmten Vorgaben entsprechen:

- Der Dateiname startet immer mit IU (Groß-/Kleinschreibung egal)
- Die Datei muss eine Textdatei vom Typ CSV sein und darf nur eine Spalte mit genau 4096 realen Werten (ohne Lücken) enthalten
- Keiner der 4096 Werte darf den Nennwert überschreiten, also wenn es z. B. ein 420 A-Modell ist und es wird eine IU-Tabelle geladen, darf darin kein Wert größer als 420 sein (Einstellgrenzen gelten hier nicht)

- Die Datei muss im Ordner HMI_FILES liegen, der im Wurzelverzeichnis (root) des USB-Sticks sein muss

Werden die oben genannten Bedingungen nicht eingehalten, meldet das Gerät das mittels entsprechender Fehlermeldungen und akzeptiert die Datei nicht. Ein Stick kann natürlich mehrere U-Tabellen enthalten, aus denen eine ausgewählt werden kann.

► So laden Sie eine IU-Tabelle von einem USB-Stick

- 1. Bei ausgeschaltetem DC-Ausgang öffnen Sie das Funktionsauswahlmenü aus der Hauptanzeige heraus durch Tippen auf und wählen Sie Gruppe XY-Tabelle.
- 2. Stecken Sie den USB-Stick ein, falls noch nicht geschehen, dann betätigen Sie **Tabelle importieren** und sobald die Auswahl erscheint, wählen Sie eine der gelisteten Dateien und laden Sie sie mit Falls die Datei nicht akzeptiert wird, entspricht sie nicht den Anforderungen. Dann korrigieren und wiederholen.
- 3. Im nächsten Fenster, das Sie mit 🕞 Weiter erreichen, können Sie noch die globalen Sollwerte anpassen.
- **4.** Laden Sie die Funktion mit , um sie danach zu starten und zu bedienen wie gewohnt. Siehe dazu auch «3.3.1 Auswahl und Steuerung einer Funktion»).

3.12 Einfache PV-Funktion (Photovoltaik)3.12.1 Einleitung

Diese Funktion nutzt den internen XY-Generator, um mit einer aus vier Einstellwerten berechneten IU-Tabelle das Netzgerät dazu zu bringen, ein Solarpanel mit bestimmten Eigenschaften zu simulieren. Dem sind natürliche Grenzen gesetzt. Das bedeutet, nicht jede Eigenschaft des Panels kann nachgebildet werden, wie z. B. die weiche Kennlinie.

Während die Funktion läuft, kann ein Wert **Einstrahlung** variiert werden, um verschiedene Lichtverhältnisse zu simulieren.

Die wichtigsten Charakteristiken einer Solarzelle sind:

- der Kurzschlussstrom (hier: I_{SC}), maximaler Strom bei fast 0 V
- die Leerlaufspannung (U_L, hier: U_{oc}), die schon bei geringer Lichteinwirkung ihren fast maximalen Wert erreicht
- der "Maximum Power Point" (MPP), an dem die Solarzelle die maximale Leistung abgeben kann

Die Spannung im MPP (hier: U_{MPP}) liegt typisch etwa 20% unter U_{OC} , der Strom im MPP (hier: I_{MPP}) etwa 5% unter I_{SC} . Falls keine genauen Werte vorhanden sind, können U_{MPP} und I_{MPP} dementsprechend eingestellt werden. Das Gerät begrenzt dabei die Einstellung des I_{MPP} nach oben hin auf den Wert von I_{SC} . Ebenso ist das bei U_{OC} und U_{MPP} .

◀ Hauptmenü

PV-Tabelle (PS)

XY-Tabelle

Rampe

Arbiträr

Funktionsgenerator

Parameterkonfiguration

Uoc (Leerlaufspannung):

Umpp (max. power point):

Impp (max, power point):

Isc (Kurzschlussstrom):

〓

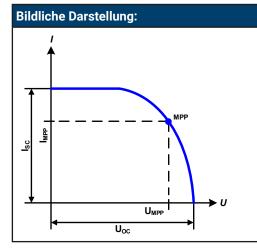
0.0V

0.0A

0.0V

0.0A

Weiter

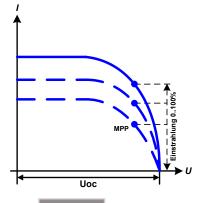

Import/Export

Der MPP (maximum power point) wird in der PV-Funktion, die auf einem XY-Generator mit IU-Charakteristik beruht, durch die beiden Einstellwerte **Umpp** und **Impp** definiert (siehe die bildliche Darstellung unten), die man aus dem Datenblatt des zu simulierenden Solarpanels entnehmen kann und hier angeben muss.

Folgende Parameter können für die PV-Funktion konfiguriert werden:

Parameter Einstellbereich		Erläuterung	
Uoc UmppNennwert U		Leerlaufspannung (open circuit voltage)	
Isc ImppNennwert I		Kurzschlussstrom (short-circuit current)	
Umpp OVUoc		DC-Ausgangsspannung im MPP	
Impp	0AIsc	DC-Ausgangsstrom im MPP	

Anwendung und Resultat:

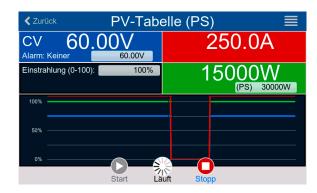

Stellen Sie die vier Parameter auf gewünschte Werte ein. Ob die IU-Kurve bzw. die Leistungskurve des Panels sinnvoll resultieren, kann z. B. mit EA Power Control (nur bei freigeschalteter Funktionsgenerator-App) überprüft werden, indem man die gleichenParameter dort eingibt und sich die berechnete Kurve anzeigen lässt.

In der laufenden Simulation kann der Anwender anhand von Istwerten (Spannung, Strom, Leistung) feststellen, wo die Arbeitswerte des Netzgerätes bzw. des simulierten Solarpanels sind. Dazu kann ein Wert **Einstrahlung** (siehe das Bild weiter unten) zwischen 0% und 100% in 1%-Schritten eingestellt werden, der die Lichtsituation in der Umgebung des Solarpanels zwischen totaler Dunkelheit (0%) und minimaler Lichtfülle (100%) darstellt, die das Solarpanel benötigt um die max. Leistung zu liefern.

Die Veränderung verschiebt den MPP und die Kurve auf der Y-Achse. Siehe die Abbildung rechts. Der Wert **Einstrahlung** ist dabei ein Faktor für I_{MPP} . Die Kurve an sich wird dabei nicht verändert oder neu berechnet.

► So konfigurieren Sie die PV-Tabelle

- 1. Im Funktionsgenerator-Auswahlmenü wischen Sie die Auswahl links hoch bis **PV-Tabelle** erscheint und tippen dieses an.
- 2. Stellen Sie die vier Parameter gemäß den zu simulierenden Daten ein.
- **3.** Legen Sie unbedingt noch die globalen Grenzwerte für Spannung und Strom im Bildschirm fest, den Sie mit erreichen. Die Spannung (U) sollte mindestens so hoch wie U_{oc} eingestellt sein.


4. Nachdem Sie die Werte für das zu generierende Signal eingestellt haben tippen Sie auf zu laden. Im Gegensatz zu anderen Funktionen wird hier der DC-Ausgang nicht automatisch eingeschaltet, weil die Funktion sonst sofort laufen würde. Daher muss man den DC-Ausgang separat einschalten, um die Funktion zu starten.

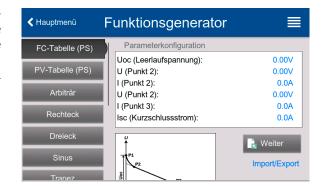
Beim Laden wird die interne XY-Tabelle als IU-Funktion berechnet. Danach ist die Funktion bzw. Simulation startbereit.

Man kann nach der Berechnung und Laden der Funktion auch wieder auf die PV-Konfigurationsseite zurückgehen und die berechnete Tabelle mit Import/Export auf USB-Stick speichern. Ein in der daraufhin erscheinenden Abfrage befindliches Bedienfeld ist nun nicht mehr gesperrt. Die so gespeicherte PV-Tabelle kann z. B. zu Zwecken der Analyse oder Visualisierung in Excel o. ä. verwendet werden.

► So arbeiten Sie mit der PV-Tabellenfunktion

- Mit angeschlossenem Verbraucher, z. B. einem Solar-Wechselrichter, starten Sie die Funktion, indem der DC-Ausgang eingeschaltet wird.
- 2. Verändern Sie den Wert **Einstrahlung** mit einem der beiden Drehknopf oder per Direkteingabe zwischen 100% (Standardwert) und 0%, um verschiedene Lichtverhältnisse zu simulieren. Die Istwerte auf dem Bildschirm zeigen an, wo sich der Arbeitspunkt befindet.
- **3.** Stoppen Sie jederzeit mit dem Stopp-Bedienfeld oder durch Ausschalten des DC-Ausgangs.

3.13 FC-Tabellenfunktion (Brennstoffzelle)


3.13.1 Einleitung

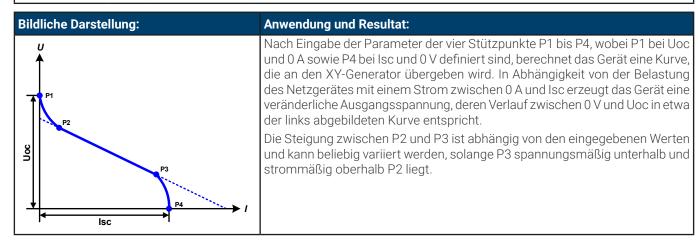
Die Funktion "FC-Tabelle" (fuel cell) dient zur Simulation einer Brennstoffzelle und deren Charakteristik. Dies wird durch einstellbare Parameter erreicht, die mehrere Punkte auf der typischen Kennlinie einer Brennstoffzelle darstellen.

Der Anwender muss für vier Stützpunkte der FC-Kurve Werte angeben. Diese bilden sich aus drei Spannungs- und drei Stromwerten. Daraus wird die Kennlinie berechnet.

Generell gelten folgende Regeln während der Eingabe:

- $\bigcup_{OC} > \bigcup_{Punkt2} > \bigcup_{Punkt3} > \bigcup_{Punkt4}$
- $|_{SC} > |_{Punkt3} > |_{Punkt2} > |_{Punkt1}$
- Nullwerte werden nicht akzeptiert

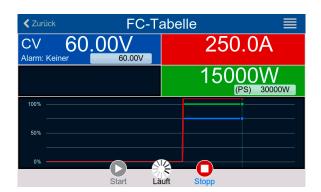
Das bedeutet, dass die Spannung von Uoc bis U_{Punkt4} abnehmen und der Strom hingegen ansteigen muss. Sollten die genannten Regeln nicht eingehalten werden, erscheint eine Fehlermeldung und die eingegebenen Werte werden auf 0 zurückgesetzt.


3.13.2 Anwendung

Folgende Parameter können für die FC-Tabellenfunktion konfiguriert werden:

Parameter	Einstellbereich	Erläuterung	
Punkt 1: Uoc	0V U _{Nenn}	Leerlaufspannung (open circuit voltage)	
Punkte 2+3: U	0V U _{Nenn}	Spannung und Strom der beiden Punkte P2 und P3 im U-I-Koordinatensyste	
Punkte 2+3: I	0AI _{Nenn}	Sie repräsentieren zwei Stützpunkte auf der zu errechnenden Kennlinie	
Punkt 4: Isc	0AI _{Nenn}	DC-Ausgangsstrom bei Kurzschluss	
U	0V U _{Nenn}	Globale Spannungsgrenze, sollte ≥Uoc sein	
Р	0WP _{Nenn}	Globales Leistungslimit, darf nicht 0 sein, damit die Funktion ablaufen kann	

Durch die frei einstellbaren Parameter kann es vorkommen, dass die Kurve nicht korrekt berechnet werden kann. Das würde durch eine Fehlermeldung angezeigt. In dem Fall wären die eingegebenen Parameter zu prüfen und zu korrigieren.


► So konfigurieren Sie die FC-Tabelle

- 1. Im Funktionsgenerator-Auswahlmenü tippen Sie auf FC-Tabelle.
- 2. Stellen Sie die Parameter der vier Stützpunkte gemäß den zu simulierenden Daten ein.
- 3. Legen Sie unbedingt noch die globalen Grenzwerte für Spannung und Leistung in nächsten Bildschirm fest, den Sie durch Berühren von Reiter erreichen.
- 4. Nachdem Sie die Werte eingestellt haben, tippen Sie auf 🕏 Weiter

Man kann nach der Berechnung und Laden der Funktion auch wieder auf die FC-Konfigurationsseite zurückgehen und die berechnete Tabelle auf USB-Stick speichern über Import/Export. Ein in der daraufhin erscheinenden Abfrage befindliches Bedienfeld ist nun nicht mehr gesperrt. Die so gespeicherte FC-Tabelle kann z. B. zu Zwecken der Analyse oder Visualisierung in Excel o.ä. verwendet werden.

► So arbeiten Sie mit der FC-Tabellenfunktion

- Mit angeschlossenem Verbraucher, z. B. einem DC-DC-Wandler als typische Last für eine Brennstoffzelle, starten Sie die Funktion indem der DC-Ausgang eingeschaltet wird.
- 2. Die Ausgangsspannung stellt sich in Abhängigkeit vom Ausgangsstrom ein, der durch die angelegte Last definiert wird, und nimmt mit steigendem Strom ab. Ohne Last geht die Spannung auf den Wert Uoc.
- **3.** Stoppen Sie jederzeit mit dem Stopp-Bedienfeld oder durch Ausschalten des DC-Ausgangs.

3.14 Erweiterte PV-Funktion nach DIN EN 50530

3.14.1 Einleitung

Die manuell bedien- sowie fernsteuerbare, erweiterte PV-Tabellenfunktion nach DIN EN 50530 basiert ebenso auf dem XY-Generator wie die einfache PV-Funktion aus 3.12. Sie bietet allerdings wesentlich mehr einstellbare Parameter für einen angepassteren Solarwechselrichtertest und dessen Bewertung. Welche zusätzlichen Parameter zur Verfügung stehen wird unten erläutert. Das Zusammenspiel der Parameter in der zu berechnenden PV-Kurve wird in der Normschrift zur DIN EN 50530 u. A. mit Formeln näher beschrieben. Weitergehende Informationen sind dort zu finden. Hier wird nur auf die Konfiguration der Funktion und die Bedienung der Simulation eingegangen.

3.14.2 Unterschiede zur einfachen PV-Funktion

Bei der erweiterten PV-Funktion sind grundsätzlich einige Dinge anders bzw. zusätzlich zur einfachen Funktion:

- Es wird zwischen einer einmal ablaufenden Simulation und einem automatisch ablaufenden Tagesverlauf unterschieden, welcher aus bis zu 100.000 ladbaren Stützpunkten gestaltet werden kann
- Es stehen zwei feste und eine variable Panel-Technologie zur Auswahl
- Es sind mehr Parameter zur Laufzeit variabel
- Es können Verlaufsdaten aufgezeichnet und gespeichert (USB-Stick) bzw. abgerufen werden (dig. Schnittstelle)

3.14.3 Technologien und Technologieparameter

Als Teil der Konfiguration der erweiterten PV-Funktion muss gewählt werden, welche Panel-Technologie simuliert werden soll. Die Technologien **cSI** und **Dünnschicht** (thin film) sind invariabel in den Technologie-Parametern, die Technologie **Manuell** ist in allen Parametern variabel, jedoch nur innerhalb bestimmter Grenzen. Dies lässt die Anpassung der Simulation auf weitere Technologien zu bzw. wenn die festen Parameterwerte von **cSi** oder **Dünnschicht** nach **Manuell** kopiert werden, können diese in **Manuell** letztendlich doch variiert werden.

Der Vorteil der invariablen Technologien ist, dass die Technologieparameter automatisch gemäß Norm gesetzt werden. Zur Berechnung der PV-Kurve/Tabelle verwendete Technologieparameter und deren Standardwerte:

Kürzel	Name	Manuell	cSI	Dünnschicht	Einheit
FFu	Füllfaktor Spannung	>01 (0,8)	0,8	0,72	-
FFi	Füllfaktor Strom	> 01 (0,9)	0,9	0,8	-
Cu	Korrekturfaktor für U _{oc} (1	> 01 (0,08593)	0,08593	0,08419	-
Cr	Korrekturfaktor für U _{oc} (1	> 01 (0,000109)	0,000109	0,0001476	m²/W
Cg	Korrekturfaktor für U _{oc} (1	> 01 (0,002514)	0,002514	0,001252	W/m²
alpha	Temperaturkoeffizient für I _{SC} (2	> 01 (0,0004)	0,0004	0,0002	1/°C
beta	Temperaturkoeffizient für U _{oc} (1	-1 < 0 (-0,004)	-0,004	-0,002	1/°C

⁽¹ Uoc = Leerlaufspannung eines Solarmoduls

3.14.4 Simulationsmodus

Neben der zu simulierenden Panel-Technologie muss als Teil der Konfiguration noch ein Simulationsmodus gewählt werden. Es gibt vier Auswahlmöglichkeiten:

Modus	Beschreibung
U/I	Steuerbare Simulation. In Abhängigkeit vom gewählten Eingabemodus, sind zur Laufzeit sind entweder die Leerlaufspannung U_{oc} (in V) und der Kurzschlussstrom I_{sc} (in A) oder Spannung/Strom des MPP des simulierten Solarmoduls variabel. Der Zwecks dieses Modus' ist es, den MPP in verschiedene Richtungen verschieben zu können.
E/T	Steuerbare Simulation. Zur Laufzeit sind die Einstrahlung (E, in W/m²) und die Oberflächentemperatur (T, in °C) des simulierten Panels veränderlich. Das wirkt sich letztendlich auch auf den MPP aus. Der Zwecks dieses Modus' ist, die Auswirkung der Umgebungs- bzw. Oberflächentemperatur und des Lichteinfalls auf die Leistungsfähigkeit eines Solarmoduls zu ermitteln.
TAG U/I	Automatisch ablaufende Simulation. Ein Tagesverlauf aus bis zu 100.000 Stützpunkten, bestehend aus Vorgaben für U_{MPP} , I_{MPP} und Zeit.
TAG E/T	Automatisch ablaufende Simulation. Ein Tagesverlauf aus bis zu 100.000 Stützpunkten, bestehend aus Vorgaben für Bestrahlungsstärke, Temperatur und Zeit.

⁽² Isc = Kurzschlussstrom (max. Strom) eines Solarmoduls

3.14.5 Tagesverlauf

Der sogenannte Tagesverlauf ist eine aus bis zu 100.000 Stützpunkten bestehende Kurve, welche über die sich ergebende Zeit automatisch abläuft. Für jeden auf dieser Kurve angefahrenen Punkt wird die PV-Tabelle bzw. PV-Kurve neu berechnet.

Jeder Stützpunkt besteht aus 3 Werten, wobei einer die Verweildauer des Punktes definiert. Bei langen Zeitwerten kann die Kurve durch eine zusätzlich aktivierbare Interpolation unterstützt werden. Diese berechnet und setzt Zwischenpunkte. Es muss demnach bei der Konfiguration berücksichtigt werden, ob der Tagesverlauf mit oder ohne Interpolation ablaufen soll.

Die Stützpunktdaten müssen in das Gerät geladen werden, entweder über eine CSV-Datei auf USB-Stick oder über eine digitale Schnittstelle. Formate der am HMI zu ladenden CSV-Datei mit den Tagesverlaufdaten:

• Für Modus TAG E/T (erforderliches Dateinamenformat: PV_DAY_ET_<beliebig>.csv)

4	Α	В	С	D
1	1	100	25	300000
2	2	101	25	2000
3	3	102	25	2000
4	4	103	25	2000
5	5	104	25	2000
6	6	105	25	2000
7	7	106	25	2000
8	8	107	25	2000
9	9	108	25	2000

Spalte A = **Index**

Eine aufsteigende Nummer von 1 bis 100000 (der erste nicht gefüllte Index lässt den Test stoppen)

Spalte B = Einstrahlung (E) in W/m²

Zulässiger Bereich: 0...1500

Spalte C = **Oberflächentemperatur** (T) in °C

Zulässiger Bereich: -40...80

Spalte D = **Verweildauer** in Millisekunden (ms)

Zulässiger Bereich: 500...1.800.000

Achtung! Die Werte in den Spalten B und C sind reale Werte und müssen zu dem verwendeten Gerät passen, ansonsten würde das Laden der Datei abgelehnt.

1	А	В	С	D
1	1	63.5	120.3	500
2	2	63.6	121.1	500
3	3	63.7	121.9	500
4	4	63.8	122.7	500
5	5	63.9	123.5	500
6	6	64	124.3	500
7	7	64.1	125.1	500
8	8	64.2	125.9	500
9	9	64.3	126.7	500

Spalte A = Index

Eine aufsteigende Nummer von 1 bis 100000 (der erste nicht gefüllte Index lässt den Test stoppen)

Spalte B = **Spannung U_{MPP}** in V

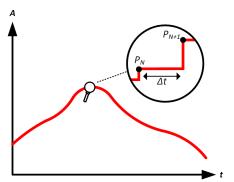
Zulässiger Bereich: 0...Nennspannung des Gerätes

Spalte C = **Strom** I_{MPP} in A

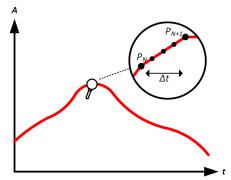
Zulässiger Bereich: 0...Nennstrom des Gerätes

Spalte D = **Verweildauer** in Millisekunden (ms)

Zulässiger Bereich: 500...1.800.000


Die Darstellung der gebrochenen Zahlen hinsichtlich des Dezimaltrennzeichens ist abhängig von der Software, mit welcher die Tabelle erstellt wird und muss zu der Einstellung "USB Trennzeichen-Format" in den allgemeinen Einstellungen des Gerätes passen, ansonsten würde das Laden der Datei abgelehnt. Ein deutsches Excel verwendet Kommas als Dezimaltrennzeichen und Semikolons als Spaltentrennzeichen (in Excel nicht sichtbar) - das würde zur Wahl "USB Trennzeichen-Format = Standard" passen.

3.14.5.1 Interpolation


Die Interpolation oder Berechnung von Zwischenwerten ist eine aktivierbare Option für die Simulationsmodi **TAG U/I** und **TAG E/T**. Die Berechnung wirkt immer auf den zeitlichen Abstand von zwei aufeinanderfolgenden Stützpunkten der Tagesverlaufkurve. Die Verweildauer jedes Stützpunktes ist definierbar zwischen 0,5 und 1800 Sekunden (siehe oben, Format der Tagestrend-Datendatei). Während bei Verwendung des Minimalwertes von 500 ms keine Zwischenpunkte berechnet werden, gilt für eine höhere Verweildauer folgendes:

- Die Anzahl der Zwischenwerte wird aus der Verweildauer berechnet und möglichst gleichmäßig verteilt, wobei jeder Zwischenpunkt eine eigene Verweildauer zwischen 500 ms und 999 ms haben kann.
- Die Zwischenwerte berücksichtigen selbstverständlich auch die Steigung zwischen dem aktuellen und dem folgenden Stützpunkt und somit erhält jeder Zwischenwert eine entsprechende Wertänderung.

Verdeutlichung:

Ohne Interpolation - die Kurve ergibt Treppenstufen

Mit Interpolation - Die Kurve bleibt linear

Ein Beispiel: Die Verweildauer des 3450. Stützpunktes ist 3 Minuten, also 180 Sekunden. Es werden 180 / 0,5 - 1 = 359 Zwischenpunkte à 0,5 s Dauer gesetzt bis der 3451. Stützpunkt erreicht wird. Es wird Modus DAY U/I gefahren und die Spannung ändert sich vom 3450. Stützpunkt zum 3451. Stützpunkt von 75 V auf 80 V, der Strom ändert sich von 18 A auf 19 A. Demnach ergibt sich rein rechnerisch ein Δ U/ Δ t von 27,7 mV/s und ein Δ I/ Δ t von 5,5 mA/s. In Abhängigkeit vom Gerätemodell sind solch geringe Steigungen nicht immer umsetzbar. Das Gerät würde trotzdem versuchen, beim ersten Zwischenwert eine Spannung von 75,0138 V und einen Strom von 18,0027 A zu setzen usw.

3.14.5.2 Datenaufzeichnung

In allen Simulationsmodi können Datensätze aufgezeichnet und entweder nach der Simulation auf USB-Stick gespeichert bzw. über digitale Schnittstelle ausgelesen werden. Letztere erlaubt es auch, die Daten bereits zur Laufzeit abzurufen.

Solange die Datenaufzeichnung läuft werden in einem festen Abstand von 100 ms Werte in einen Puffer geschrieben, der 576.000 Indexe enthalten kann. Das ergibt eine max. Aufzeichnungszeit von 16 Stunden. Mit jedem Aufzeichnungsschritt wird der Index um 1 erhöht. Bei Erreichen des Maximums wird der Index zurückgesetzt und der Puffer wieder von vorn überschrieben. Jeder Index enthält 6 Werte.

In den Konfigurationsmenüs am HMI ist beim Start des Funktionsgenerators die Option zum Speichern auf USB zunächst gesperrt. Erst nach Rückkehr von einem Simulationsdurchlauf kann eine Datei gespeichert werden, die x Zeilen mit je 6 Werten und einem Indexzähler enthält. Die Anzahl der Zeilen ergibt sich aus dem aktuellen Index. Im Gegensatz zur Fernsteuerung, wo man immer jeden der 576.000 Indexe anwählen und auslesen kann, orientiert sich das HMI am Indexzähler und speichert genau diese Anzahl Datensätze auf den USB-Stick. Jeder erneute Start der Simulation setzt bei manueller Bedienung am HMI den Indexzähler auf 1 zurück.

Aufbau der CSV-Datei bei Speicherung auf USB-Stick (Beispielwerte mit Einheit):

1	Α	В	С	D	E	F	G
1	Index	U actual	I actual	P actual	Umpp	Impp	Pmpp
2	1	0,29V	0,000A	0,0W	0,00V	0,000A	0,0W
3	2	0,29V	0,000A	0,0W	0,00V	0,000A	0,0W
4	3	0,29V	0,000A	0,0W	0,00V	0,000A	0,0W
5	4	0,29V	0,000A	0,0W	0,00V	0,000A	0,0W
6	5	0,30V	0,000A	0,0W	0,00V	0,000A	0,0W
7	6	0,28V	0,000A	0,0W	0,00V	0,000A	0,0W
8	7	0,28V	0,000A	0,0W	0,00V	0,000A	0,0W
9	8	0,28V	0,000A	0,0W	0,00V	0,000A	0,0W

Index = Aufsteigende Nummer

Uactual = Istwert der Spannung am DC-Ausgang

lactual = Istwert der Strom am DC-Ausgang

Pactual = Istwert der Leistung am DC-Ausgang

Umpp / Impp / Pmpp = Spannung, Strom und Leistung im MPP laut der aktuell berechneten Kurve

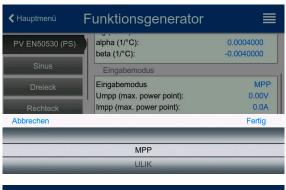
Ob die Werte mit oder ohne phys. Einheit aufgezeichnet werden sollen, kann über den globalen Parameter "Logging mit Einheit (V, A, W)" in den allgemeinen Einstellungen im MENU gewählt werden, sowie über Parameter "USB Trennzeichen-Format" auch das Trennzeichen- und Dezimalzeichenformat der CSV-Datei.

3.14.6 Schrittweise Konfiguration

Startpunkt

Im Menü **Funktionsgenerator** finden Sie die PV-Funktionen. Wählen Sie hier Gruppe **PV EN50530**.

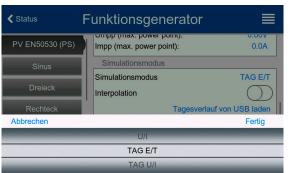
Schritt 1: Wahl der Technologie


Die erweiterte PV-Funktion erzwingt die Auswahl einer zu simulierenden Panel-Technologie. Falls **cSI** oder **Dünnschicht** nicht passen bzw. Sie sich nicht sicher sind, wählen Sie **Manuell**.

Bei Wahl Dünnschicht oder cSI geht es weiter bei Schritt 2.

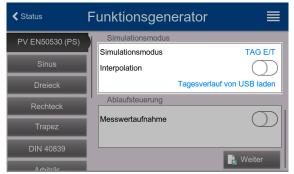
Schritt 1-1: Technologieparameter setzen

Bei gewählter Technologie Manuell können alle angezeigten Parameter variiert werden (antippen und Wert eingeben), sind jedoch nach Rücksetzen des Gerätes auf Standardwerten, die der Technologie cSI entsprechen. Sie müssen also nicht unbedingt verändert werden. Siehe die Übersicht in Abschnitt 3.14.3. Bei Wahl einer anderen Technologie werden die vordefinierten Parameterwerte angezeigt und auch gesetzt, sind aber dann nicht veränderlich. Es wird empfohlen, die Werte sorgfältig zu wählen, weil die daraus berechnete Kurve u. U. nicht wie erwartet funktionieren könnte.



Schritt 2: Eingabemodus und Grundparameter des Solarmoduls

Die Wahl des Eingabemodus zwischen MPP (U_{MPP} und I_{MPP} sind einstellbar) und ULIK (U_{OC} und I_{SC} sind einstellbar) entscheidet, welche zwei Parameter vorgegeben werden müssen. Die jeweils anderen beiden werden durch Faktoren errechnet.


 \mathbf{U}_{oc} und \mathbf{I}_{sc} sind Grenzwerte die üblicherweise aus den technischen Daten des zu simulierenden Solarmoduls entnommen werden. Je zwei Parameter stehen über die Füllfaktoren im Zusammenhang:

 $U_{MPP} = U_{OC} \times FFu / I_{MPP} = I_{SC} \times FFi$

Schritt 3: Simulationsmodus wählen

Für eine Beschreibung der verfügbaren Modi siehe Abschnitt 3.14.4. Bei Wahl E/T oder U/I geht es weiter zu **Schritt 4**, bei einem Tagestrend-Modus ist ein Zwischenschritt nötig.

Schritt 3-1: Tagesverlauf-Daten laden

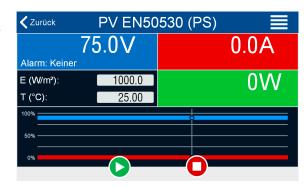
Bei gewähltem Simulationsmodus TAG ET oder TAG UI müssen über das Bedienfeld **Tagesverlauf von USB laden** (siehe das Bild links) von einem USB-Stick und aus einer CSV-Datei mit bestimmter Benennung (siehe Abschnitt 1.9.6.5 im Installationshandbuch) und bestimmten Format (siehe Abschnitt 3.14.5) Tagesverlauf-Stützpunkte (1-100.000) in das Gerät geladen werden.

Außerdem kann wahlweise die Interpolation (siehe Abschnitt 3.14.5.1) aktiviert werden.

Schritt 4: Rest

Hier kann als vorletztes noch die Messwertaufnahme aktiviert werden, deren Messwerte später nach Ende der Simulation und Rückkehr in diesen Bildschirm mit Bedienfeld Messergebnisse auf USB sichern auf einen USB-Stick als CSV-Datei gespeichert werden können. Siehe dazu Abschnitt 3.14.5.2.

🗼 Weiter Gehen Sie danach mit in den nächsten Bildschirm, wo globale Grenzwerte für Spannung und Strom angepasst werden können. Die bereits gesetzten Werte sind schon passend für die Simulation.


Die Konfiguration wird mit Bedienfeld Russeller abgeschlossen. Der Funktionsgenerator wechselt dann in den Steuerungsmodus.

Steuerung der Simulation 3.14.7

Nach dem Laden der Funktionsparameter wechselt der FG in die Steuerungsoberfläche. Die Funktion kann dann mit Taste On/Off oder

Bedienfeld gestartet werden.

Gemäß des gewählten Simulationsmodus' sind im schwarz hinterlegten Feld zwei Simulationsparameter **per Direkteingabe** veränderlich. Dies geht nicht per Drehknopf, weil das Gerät sonst für jeden Schritt des Drehknopfes die PV-Kurve neu berechnen müsste. Das Beispielbild rechts zeigt den Bildschirm für Simulationsmodus E/T.

Bei einem der beiden Tagesverlauf-Modi würden hingegen keine einstellbaren Parameter angezeigt, da diese Modi nach dem Start automatisch ablaufen und auch stoppen, wenn die Summe der Verweildauern aller aufeinanderfolgenden Stützpunkte erreicht wurde. Die Modi E/T und U/I hingegen stoppen nur durch Interaktion des Benutzers bzw. durch einen Gerätealarm.

3.14.8 Stopp-Kriterien

Die Simulation kann durch verschiedene Umstände ungewollt stoppen:

- 1. Ein Gerätealarm ist aufgetreten, der den DC-Ausgang abschaltet (PF, OVP, OCP, OPP)
- 2. Ein Benutzer-Ereignis ist aufgetreten, dessen gewählte Aktion den DC-Ausgang abgeschaltet hat

Situation 2 kann durch sorgfältige Konfiguration des Gerätes an sich, außerhalb vom Funktionsgenerator vermieden werden. Mit dem Stopp der Simulation in allen drei Situationen stoppt auch die Datenaufzeichnung.

3.14.9 Auswertungsmöglichkeiten

Nach Stopp der Simulation, aus welchem der genannten Gründe auch immer, können zwecks Auswertung des Tests Messwerte auf USB-Stick gespeichert oder alternativ über digitale Schnittstelle ausgelesen werden, sofern die Messwertaufzeichnung in der Konfiguration aktiviert wurde. Nachträgliches Starten der Aufzeichnung zur Laufzeit ist bei manueller Bedienung nicht möglich, bei Fernsteuerung hingegen schon. Beim Speichern auf USB-Stick werden immer alle aktuell vorhandenen Datensätze gespeichert, über digitale Schnittstelle hat man die Wahl, wieviele man auslesen will. Letzteres bestimmt auch die Dauer des Auslesevorgangs.

Die Daten können zur weiteren Betrachtung, Auswertung und Bestimmung von Eigenschaften des angeschlossenen (Solar-) Wechselrichters herangezogen werden. Siehe dazu die Normschrift.

3.14.9.1 Die PV-Kurve speichern

Die letzte in der Simulation berechnete PV-Kurve kann nach deren Stopp über eine digitale Schnittstelle ausgelesen oder auf USB-Stick gespeichert werden. Das kann zur Überprüfung der eingegebenen Parameter dienen. Bei den Modi TAG E/T und TAG U/I macht das Ganze weniger Sinn, weil die PV-Kurve bei jedem Stützpunkt neu berechnet wird und man immer nur die zum letzten Punkt gehörige hätte.

Man erhält durch das Auslesen bis zu 4096 Stromwerte. Die Visualisierung der Tabellendaten in einem XY-Diagramm in z. B. Excel zeigt die berechnete Form auf.

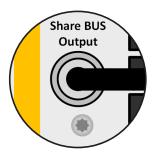
3.15 Fernsteuerung des Funktionsgenerators

Der Funktionsgenerator ist fernsteuerbar, allerdings geschehen Fernkonfiguration und -steuerung von Funktionen mittels einzelner Befehle prinzipiell anders als bei manueller Bedienung. Die auf USB-Stick mitgelieferte Dokumentation "Programmieranleitung ModBus & SCPI" erläutert die Vorgehensweise.

Folgendes gilt generell:

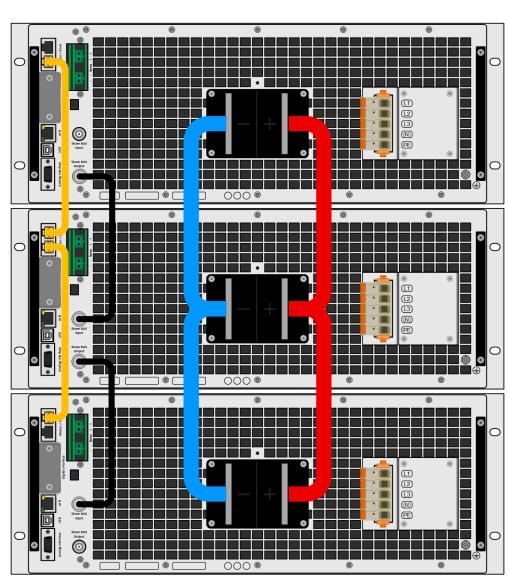
- Der Funktionsgenerator ist nicht bzw. nur bedingt über die analoge Schnittstelle fernbedienbar; der einzige effektive Einfluss kann vom Pin REM-SB kommen, wenn dieser den DC-Ausgang aus- oder einschaltet, wodurch die Funktion dann auch stoppt oder neu startet.
- Der Funktionsgenerator ist nicht verfügbar, solange der sog. Widerstands-Betrieb (R-Modus) aktiviert ist

4. Weitere Anwendungen (2)


4.1 Parallelschaltung als Master-Slave (MS)

Mehrere Geräte gleicher Art können zu einer Parallelschaltung verbunden werden, um eine höhere Gesamtleistung zu erzielen. Für die Parallelschaltung werden üblicherweise alle Einheiten an ihren DC-Ausgängen, dem Share-Bus und dem Master-Slave-Bus verbunden. Der Geräteverbund kann dann wie ein System, wie ein größeres Gerät mit mehr Leistung betrachtet und behandelt werden.

Der Share-Bus wiederum dient zur dynamischen Ausregelung der Spannung am DC-Ausgang der Geräte, d. h. im CV-Betrieb, besonders wenn am Mastergerät der Funktionsgenerator genutzt werden soll. Es müssen zumindest die DC-Minus-Anschlüsse aller über Share-Bus verschalteten Geräte verbunden sein, damit der Share-Bus sauber regeln kann.


Prinzipdarstellung ohne Last:

Share-Bus-Verbindung

Master-Slave-Bus

4.1.1 Einschränkungen

Gegenüber dem Normalbetrieb eines Einzelgerätes hat Master-Slave-Betrieb folgende Einschränkungen:

- Das MS-System reagiert auf Alarmsituationen zum Teil anders (siehe unten bei Abschnitt 4.1.8)
- Die Share-Bus-Verbindung hilft dem System, die Spannung aller beteiligter Geräte so schnell wie möglich auszuregeln, trotzdem ist eine Parallelschaltung nicht so dynamisch wie ein Einzelgerät
- Verbindung zu identischen Modellen aus anderen Serien wird unterstützt, ist aber beschränkt auf die Serien PS 10000, deren Modelle als kostengünstigere Slave-Einheiten dienen können

4.1.2 Verkabelung der DC-Ausgänge

Der DC-Ausgang jedes beteiligten Gerätes wird mit dem des nächsten Gerätes polrichtig verbunden usw. Dabei sind möglichst kurze Kabel oder Kupferschienen mit ausreichendem Querschnitt (=niederinduktiv) zu benutzen. Der Querschnitt richtet sich nach dem Gesamtstrom der Parallelschaltung. Das gilt genauso bei Verwendung von mehreren Geräteblöcken, also z. B. einem Block aus Netzgeräten und einem aus elektronischen Lasten, wenn diese später mal zu einem Zwei-Quadranten-Betrieb zusammengeschaltet werden sollen. Die Blöcke sollten dann möglichst dicht bei einander stehen.

4.1.3 Verkabelung des Share-Bus'

Der Share-Bus wird über handelsübliche BNC-Leitungen (koaxiales Kabel, Typ 50Ω) mit z. B. 0,5 m Länge von Gerät zu Gerät verbunden. Die beiden Anschlüsse sind durchverbunden und stellen keinen dedizierten Eingang und Ausgang dar. Die Beschriftung dient lediglich der Orientierung.

- Es können max. 64 Geräte über den Share-Bus verbunden werden.
- Wird der Share-Bus zu einem anderen, eingeschalteten Gerät verbunden während Master-Slave noch nicht aktiviert wurde (Einstellung: Slave oder Master), tritt ein SF-Alarm auf

4.1.4 Verkabelung und Einrichtung des Master-Slaves-Busses

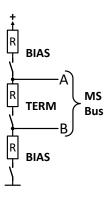
Der Master-Slave-Bus ist fest im Gerät integriert und muss vor der Benutzung per Netzwerkkabel (≥CAT3, Patchkabel) verbunden und dann manuell (empfohlen) oder per Fernsteuerung konfiguriert werden. Folgendes ist dabei gegeben:

- Maximal 64 Geräte können über den Bus zusammengeschaltet werden: 1 Master, bis zu 63 Slaves
- Nur Verbindung zu Geräten gleicher Art, also Netzgerät zu Netzgerät; unterschiedliche Leistungsklassen sind zulässig und unterstützt, z. B. ein 15 kW 3U mit einem 30 kW 4U um auf 45 kW zu kommen, setzt aber auf allen Geräten die Mindestfirmwareversion KE/HMI 3.02 voraus
- Eine Verknüpfung von unterschiedlichen Serien innerhalb eines MS-Systems ist bedingt möglich. Es gilt:
 - Es können Modelle der PS 10000 Serien als Slave in Verbindung mit Modellen der PSI 10000 Serie als Master verwendet werden, umgekehrt nicht
- Geräte an den Enden des Busses müssen terminiert werden (siehe unten)

Der Master-Slave-Bus darf nicht über Crossover-Kabel verbunden werden!

Für den späteren Betrieb des MS-Systems gilt dann:

- Am Master werden die Istwerte aller Geräte aufsummiert und angezeigt bzw. sind per Fernsteuerung auslesbar
- Die Einstellbereiche der Sollwerte, Einstellgrenzen (Limits), Schutzgrenzen (OVP usw.), sowie von Benutzerereignissen werden beim Master an die Anzahl der initialisierten Slaves angepasst. Wenn also z. B. fünf Einheiten mit je 30 kW Leistung zu einem 150 kW-System zusammengeschaltet werden, kann am Master 0...150 kW als Leistungssollwert eingestellt werden (manuell oder bei Fernsteuerung)
- Die Slaves sind nicht bedienbar, solange wie vom Master gesteuert
- Slaves, die nach noch nicht durch den Master initialisiert wurden, melden den Alarm **MSS** in der Anzeige. Derselbe Alarm wird bei Fehlern auf dem MS-Bus ausgegeben


► So stellen Sie die Master-Slave-Verbindung her

- 1. Alle zu verbindenden Geräte ausschalten und mittels Netzwerkkabel (CAT3 oder besser, nicht im Lieferumfang des Gerätes enthalten) untereinander verbinden. Dabei ist es egal, welcher der beiden Master-Slave-Busanschlüsse (RJ45, Rückseite) zum jeweils nächsten Gerät verbunden wird.
- 2. Je nach gewünschter Konfiguration nun auch die Geräte DC-seitig verbinden. Die beiden Geräte am Anfang und am Ende des Busses müssen immer terminiert werden, der Master benötigt eine separate Einstellung, siehe die Tabelle unten.

Die Terminierung erfolgt mittels elektronischer Schalter, die im Einstellungsmenü des Gerätes in Gruppe **Master-Slave** zugänglich sind. Das kann als Teil der Konfiguration der einzelnen Geräte und Wahl von Master- oder Slave-Modus erfolgen, sollte aber vorher schon erledigt werden, da beim Master durch Setzen des Modus' **Master** sofort eine Businitialisierung erfolgt. In der Menügruppe **Master-Slave** können die beiden BIAS-Widerstände (siehe die Grafik rechts) und der Abschlusswiderstand je Gerät separat geschaltet werden.

Übersichtsmatrix, was bei welchem Gerät am Bus zu setzen wäre:

Position des Gerätes	Terminierungseinstellung(en)
Master (am Ende des Buses)	BIAS + TERM
Master (mittig im Bus)	BIAS
Slave (am Ende des Buses)	TERM
Slave (mittig im Bus)	-

4.1.5 Gemischte Systeme

Unter gemischten Systemen wird hier folgendes verstanden:

- Unterschiedliche Leistungsklassen, wie z. B. 5 kW, 15 kW und 30 kW in einem Verbund (erfordert mind. Firmware KE 3.02)
- Unterschiedliche Serien wie, hier konkret, PS 10000 mit PSI 10000 im Verbund (erfordert mind. Firmware KE 3.02)

Die Kombinationen beider Mischsysteme ist zulässig und unterstützt. Die Verwendung eines "PS" als Slave für ein "PSI"-Master war früher nicht möglich, weil ein PS keinen Widerstandsmodus hatte, ein PSI schon. Heutzutage wird das umgangen, indem ein PS auch ganz normal den Widerstandsmodus nutzen kann. Andersherum kann ein PS nicht Master eines PSI sein.

Empfehlung: wenn man Geräte mit unterschiedlicher Ausstattung im Master-Slave-Verbund nutzen möchte, macht es Sinn, immer eins mit der höchstens Ausstattung als Master zu verwenden.

Bei der Kombination unterschiedlicher Leistungsklassen ist noch zu beachten dass, je nach dem welches Gerät der Master ist, die sich ergebende Gesamtleistung, wie am Master nach der Initialisierung des Busses angezeigt, geringer als erwartet sein kann. In so einem Fall gilt, dass möglichst immer eins von den Geräten mit der höchsten Nennleistung als Master definiert werden sollte.

Beispiel: ein 3 kW-Modell als Master eines 30 kW-Modells ergibt bei Firmware KE 3.02 nur 28 kW Systemleistung, also weniger als ein Einzelgerät. Wechselt man auf das 30 kW als Master ergeben sich 33 kW Gesamtleistung.

4.1.6 Konfiguration des Master-Slave-Betriebs

Nun muss das Master-Slave-System noch auf jedem Gerät für Master bzw. Slave konfiguriert werden. Als Reihenfolge empfiehlt es sich, zuerst alle Slave-Geräte zu konfigurieren und dann das Master-Gerät.

► Schritt 1: So konfigurieren Sie die Slave-Geräte

 Bei ausgeschaltetem DC-Ausgang tippen Sie in der Hauptanzeige auf links hoch bis Gruppe Master-Slave erscheint. Antippen.

und wischen dann in der Gruppenauswahl

- 2. Durch Tippen auf die Einstellung **Modus** rechts erscheint eine Auswahl. Durch Wahl von **Slave**, sofern nicht bereits gesetzt, aktivieren Sie den Master-Slave-Modus und legen gleichzeitig das Gerät als Slave-Gerät fest. Zusätzlich kann hier noch die Terminierung erfolgen, sofern für das gerade konfigurierte Gerät nötig.
- 3. Verlassen Sie das Einstellmenü.

Das Slave-Gerät ist hiermit fertig konfiguriert. Für jedes weitere Slave-Gerät genauso wiederholen.

► Schritt 2: So konfigurieren Sie das Master-Gerät

 Bei ausgeschaltetem DC-Ausgang tippen Sie in der Hauptanzeige auf bis zu Master-Slave.

und rollen dann in der Auswahl links runter

2. Durch Tippen auf die Einstellung **Modus** rechts erscheint eine Auswahl. Durch Wahl von **Master**, sofern nicht bereits gesetzt, aktivieren Sie den Master-Slave-Modus und legen gleichzeitig das Gerät als Master-Gerät fest und aktiviert die Terminierung durch die BIAS-Widerstände, wie für den Master erforderlich.

► Schritt 3: Master initialisieren

Durch den Wechsel auf Modus **Master** wird sofort eine Initialisierung des MS-Systems gestartet und das Ergebnis im selben Fenster angezeigt. Sollte die Initialisierung nicht erfolgreich sein, was sich an der Anzahl der Slaves bzw. an der Gesamtleistung erkennen lässt, kann man die Initialisierung hier auch wiederholen:

 $\begin{array}{ccc} \text{Initialization state} & \text{Initialisiert} \\ \text{Anzahl der Slaves:} & 1 \\ \\ \text{Systemspannung} & 80.00V \\ \\ \text{Systemstrom} & 2000.0A \\ \\ \text{Systemleistung} & 60.00kW \\ \\ \text{Systemwiderstand} & 5.0000\Omega \\ \\ \\ \text{System Initialisieren} \\ \end{array}$

Betätigung von **System initialisieren** wiederholt die Initialisierung, falls nicht alle Slaves erkannt wurden, das System umkonfiguriert wurde, wenn z. B. ein Verdrahtungsfehler am digitalen MS-Bus vorliegt oder noch nicht alle Slave-Geräte als **Slave** konfiguriert wurden. Das Fenster listet auf, wieviele Slaves gefunden wurden, sowie die sich aus dem Verbund ergebende Gesamtleistung, Gesamtstrom und Gesamtwiderstand. Im Fall, dass gar kein Slave-Gerät gefunden wurde, wird das MS-System mit nur dem Master verwendet.

Die Initialisierung des Masters und des Master-Slave-Systems wird, solange der Master-Slave-Modus aktiviert ist, nach dem Netzeinschalten des Mastergerätes jedesmal automatisch ausgeführt. Die Initialisierung kann über das Menü "Einstellungen" des Mastergerätes, in Gruppe "Master-Slave" jederzeit wiederholt werden.

4.1.7 Bedienung des Master-Slave-Systems

Nach erfolgreicher Initialisierung des Masters und aller Slaves zeigen diese ihren Status in der Anzeige an. Der Master zeigt **MS-Modus: Master (n SI)** im Statusfeld, die Slaves entsprechend **MS-Modus: Slave**, sowie **Fern: Slave n**, so lange wie sie vom Master ferngesteuert werden.

Die Slaves sind dann nicht manuell bedienbar und auch nicht per analoger oder digitaler Schnittstelle fernsteuerbar. Sie könnten jedoch, falls nötig, über diese Schnittstellen überwacht werden (Monitoring), durch Auslesen der Istwerte und des Status'. Nach der Initialisierung und Rückkehr aus dem Menü zeigt der Master nun die Ist- und Sollwerte des Gesamtsystems an. Je nach Anzahl der Geräte vervielfacht sich der Einstellbereich für Strom und Leistung, wogegen sich der Widerstandsbereich verkleinert. Es gilt dann:

- Der Master ist bedienbar wie ein Einzelgerät
- Der Master gibt die eingestellten Sollwerte usw. an die Slaves weiter und steuert diese
- Der Master ist über seine analoge oder eine seiner digitalen Schnittstellen fernsteuerbar
- Sämtliche Einstellungen zu den Sollwerten U, I, P und R, sowie alle darauf bezogenen Werte wie Überwachung, Einstellgrenzen usw. werden am Master an die neuen Gesamtwerte angepasst
- Bei allen initialisierten Slaves werden Einstellgrenzen (U_{Min}, I_{Max} etc.), Überwachungsgrenzen (OVP, OPP ect.) und Event-Einstellungen (UCD, OVD) auf Standardwerte zurückgesetzt, damit diese nicht die Steuerung durch den Master stören. Werden diese Grenzen später am Master angepasst, werden sie 1:1 an die Slaves übertragen.
- Beim späteren Master-Slave-Betrieb können Slaves durch ungleichmäßige Lastverteilung und unterschiedlich schnelle Reaktion der Geräte anstelle des Masters unerwartete Alarme wie OCP, OVP oder Events usw. auslösen

Um alle diese Werte nach dem Verlassen des MS-Betriebs schnell wieder herstellen zu können, wird die Verwendung von Nutzerprofilen empfohlen (siehe «2.2.6 Nutzerprofile laden und speichern»)

- Wenn ein oder mehrere Slaves einen Gerätealarm melden, so wird dies am Master angezeigt und muss auch dort bestätigt werden, damit das System weiterarbeiten kann. Da ein Alarm immer alle DC-Ausgänge des Systems abschaltet und der Master diese nur nach einem Alarm PF oder OT automatisch wieder einschalten kann, was zudem abhängig von Einstellparametern ist, kann unter Umständen der Eingriff des Betreibers des Gerätes oder einer Fernsteuerungssoftware erforderlich werden.
- Verbindungsabbruch zu einem oder mehreren Slaves führt aus Sicherheitsgründen auch zur Abschaltung aller DC-Ausgänge und der Master meldet diesen Zustand als "Master-Slave-Sicherheitsmodus". Dann muss das MS-System durch Betätigung des Bedienfeldes "Initialisieren" neu initialisiert werden, mit oder ohne den/die Slaves, die den Verbindungsabbruch verursachten. Das gilt ebenso für Fernsteuerung.
- Alle Geräte, auch die Slaves, können über den Pin REM-SB der analogen Schnittstelle DC-seitig ausgeschaltet werden. Das kann als eine Art Notfallabschaltung (kein Not-Aus!) dienen, die üblicherweise, über einen Kontakt gesteuert, zu allen beteiligten Geräten parallel verdrahtet wird.

4.1.8 Alarm- und andere Problemsituationen

Beim Master-Slave-Betrieb können, durch die Verbindung mehrerer Geräte und deren Zusammenarbeit, zusätzliche Problemsituationen entstehen, die beim Betrieb einzelner Geräte nicht auftreten würden. Es wurden für solche Fälle folgende Festlegungen getroffen:

- Wenn der Master die Verbindung zu irgendeinem der Slaves verliert, wird immer ein MSS-Alarm (Master-Slave Sicherheitsmodus) ausgelöst, der zur Abschaltung des DC-Ausgangs des Masters und einem Pop-up in der Anzeige führt. Alle Slaves fallen zurück in den Einzelbetrieb und schalten auch ihren DC-Ausgang aus. Der MSS-Alarm kann gelöscht werden, indem der Master-Slave-Betrieb erneut initialisiert wird. Das kann direkt im Pop-up-Fenster des MSS-Alarms oder im Menü des Masters oder per Fernsteuerung geschehen. Alternativ kann zum Löschen des Alarms auch der MS-Modus deaktiviert werden.
- Falls ein oder mehrere Slave-Geräte AC-seitig ausfallen (ausgeschaltet am Netzschalter, Stromausfall, auch bei Netzunterspannung) werden sie nach der Wiederkehr nicht automatisch wieder als Slaves eingebunden. Die Initialisierung des MS-System muss dann vom Anwender explizit wiederholt werden.
- Falls das Master-Gerät AC-seitig ausfällt (ausgeschaltet am Netzschalter, Stromausfall) und später wiederkommt, initialisiert es automatisch das MS-System neu und bindet alle erkannten Slaves ein. In diesem Fall kann der MS-Betrieb automatisch fortgeführt werden, wenn z. B. eine Software das Master-Gerät überwacht und steuert.
- Falls mehrere Master-Geräte oder gar keines definiert wurde, kann das Master-Slave-System nicht initialisiert werden.

In Situationen, wo ein oder mehrere Geräte einen Gerätealarm wie OVP o. ä. erzeugen, gilt Folgendes:

- Jeder Gerätealarm eines Slaves wird auf dem Display des Slaves und auf dem des Masters angezeigt.
- Bei gleichzeitig auftretenden Alarmen mehrerer Slaves zeigt der Master nur den zuletzt aufgetretenen Alarm an. Hier könnten die konkret anliegenden Alarme dann nur bei den Slaves selbst erfasst werden, z. B. durch das Auslesen der Alarmhistorie über eine Software.
- Alle Geräte im MS-System überwachen ihre eigenen Werte hinsichtlich Überstrom (OCP) und anderer Schwellen und melden Alarme an den Master. Es kann daher auch vorkommen, hauptsächlich wenn durch irgendeinen Grund der Strom zwischen den Geräten nicht gleichmäßig aufgeteilt ist, dass ein Gerät bereits OCP meldet, auch wenn die globale OCP-Schwelle des MS-Systems noch gar nicht erreicht wurde. Das Gleiche gilt für OPP.

4.2 SEMI F47

SEMI F47, wobei das SEMI von semiconductor, dem englischen Wort für Halbleiter kommt, ist eine Spezifikation die es erfordert, dass das Gerät bei einer bestimmten Netzspannungsschwankung von max. 1,7 s Dauer und einer Unterspannung von max. -50% Nenn-AC-Spannung ohne Unterbrechung weiterarbeiten kann. Ab Firmware KE 3.02 und HMI 3.02 ist diese Funktionalität in 10000er Netzgeräteserien implementiert, kann jedoch nicht durch ein Update installiert werden.

Der nach SEMI F47 definierte Spannungseinbruch erfolgt in ansteigenden Stufen:

Stufe	Dauer bei 50 Hz	Dauer bei 60 Hz	Dauer
50%	10 Perioden	12 Perioden	0,2 s
70%	25 Perioden	30 Perioden	0,5 s
80%	50 Perioden	60 Perioden	1 s

4.2.1 Einschränkungen

- Die Funktionalität wird automatisch deaktiviert und gleichzeitig gesperrt, sollte das Gerät bei ohnehin niedriger Netzspannung von z. B. 208 V statt 400 V (L-L) starten, wodurch es die geforderten 1,7 s nicht mehr überbrücken könnte. SEMI F47 funktioniert daher nicht im sog. Derating-Betrieb.
- Die Funktionalität bedingt zwecks Aufrechterhaltung der eingestellten Werte eine gewisse Maximalleistung, die geringer ist als die Nennleistung des Gerätes; es ist somit auch eine Art von Leistungsreduktion, die aber durch Ein-/Ausschalten von SEMI F47 mit aktiviert bzw. deaktiviert wird und nicht netzspannungsabhängig ist

4.2.2 Einstellmöglichkeiten

SEMI F47 kann manuell am HMI (siehe Abschnitt 2.2.1.1) oder per Fernsteuerung über digitale Schnittstelle ein- oder ausgeschaltet werden, sofern nicht durch einen bestimmten Umstand blockiert.

4.2.3 Anwendung

SEMI F47 kann jederzeit aktiviert werden, sofern nicht durch die netzspannungsbedingte Leistungsreduzierung (siehe Abschnitt 2.1.3.1) blockiert. Ab den Firmwareversionen KE 3.10 und HMI 4.09 ist die Aktivierung um den Modus **Dynamisch** erweitert worden. Wird SEMI F47 nur aktiviert, wie vorher auch, erscheint nach dem Verlassen des Menüs auf der Anzeige eine Meldung und die für SEMI F47 definierte Maximalleistung wird sofort übernommen, sowie der aktuell gesetzte Leistungssollwert, sollte er höher sein als die neue Maximalleistung, entsprechend heruntergesetzt. Umgekehrt erfolgt die Anpassung der maximal einstellbaren Leistung ebenso, nur der Sollwert bleibt in dieser Situation unverändert. Da die Aktivierung von SEMI F47 über das Ausschalten des Gerätes hinaus gespeichert wird, kann das Gerät direkt im Modus SEMI F47 hochfahren und würde dann die o. g. Meldung einmal nach jedem Hochfahren anzeigen, was deaktiviert werden kann. Bei Wahl des neuen Modus' **Dynamisch** wird die Nennleistung des Gerätes nicht dauerhaft reduziert, im Gegensatz zum Modus **Aktiviert**, sondern nur temporär, für die Dauer des Spannungseinbruchs.

Tritt später Netzunterspannung auf, entscheidet deren Dauer oder momentaner AC-Spannungswert darüber, ob das Gerät ohne Ausschalten des DC-Ausgangs weiterarbeitet oder ob es den DC-Ausgang abschaltet und Alarm **PF** meldet. Ohne aktiviertes SEMI F47 kommt der **PF**-Alarm sofort, mit aktiviertem SEMI F47 frühestens nach 2 Sekunden. Ist die Netzunterspannung von einer geringeren Dauer und ausreichender Spannungshöhe erfolgt keine Reaktion des Gerätes. Das Auftreten wird dann auch nicht anderweitig registriert.

5. Instandhaltung & Wartung (2)

5.1 Firmware-Aktualisierungen

Firmware-Updates sollten nur dann durchgeführt werden, wenn damit Fehler in der bisherigen Firmware des Gerätes behoben werden können!

Die Firmwares der Bedieneinheit HMI, der Kommunikationseinheit KE und des digitalen Reglers DR können über die rückseitige USB-Schnittstelle aktualisiert werden. Dazu wird die Software EA Power Control benötigt, die mit dem Gerät mitgeliefert wird, welche aber auch als Download von der Herstellerwebseite erhältlich ist, zusammen mit einer Firmware-Datei.

Es wird jedoch davor gewarnt, Updates bedenkenlos zu installieren. Jedes Update birgt das Risiko, das Gerät oder ganze Prüfsysteme vorerst unbenutzbar zu machen. Daher wird empfohlen, nur dann Updates zu installieren, wenn...

- damit ein am Gerät bestehendes Problem direkt behoben werden kann, insbesondere wenn das von uns im Rahmen der Unterstützung zur Problembehebung vorgeschlagen wurde.
- neue Funktionen in der Firmware-Historie aufgelistet sind, die genutzt werden möchten. In diesem Fall geschieht die Aktualisierung des Gerätes auf eigene Gefahr!

Außerdem gilt im Zusammenhang mit Firmware-Aktualisierung folgendes zu beachten:

- Simple Änderungen in Firmwares können für den Endanwender zeitaufwendige Änderungen von Steuerungs-Applikationen mit sich bringen. Es wird empfohlen, die Firmware-Historie in Hinsicht auf Änderungen genauestens durchzulesen
- Bei neuen Funktionen ist eine aktualisierte Dokumentation (Handbuch und/oder Programmieranleitung, sowie LabView VIs) teils erst viel später verfügbar

EA Elektro-Automatik GmbH

Helmholtzstr. 31-37 41747 Viersen

Telefon: +49 (0) 2162 3785 - 0 Fax: +49 (0) 2162 16230 ea1974@elektroautomatik.com

www.elektroautomatik.com www.tek.com

