Tektronix

THS710A, THS720A, THS730A und THS720P TekScope [™] Benutzerhandbuch

070-9733-05

Diese Dokumentation bezieht sich auf Firmware– Version 1.13 und höher.

CE

Copyright[©] Tektronix, Inc. Alle Rechte vorbehalten.

Tektronix–Produkte sind durch erteilte und angemeldete US– und Auslandspatente geschützt. In dieser Dokumentation enthaltene Informationen ersetzen jene in früheren Veröffentlichungen. Veränderungen bei Preisen und Spezifikationen vorbehalten.

Printed in the U.S.A.

Tektronix, Inc., P.O. Box 1000, Wilsonville, OR 97070-1000

TEKTRONIX und TEK sind eingetragene Warenzeichen von Tektronix, Inc.

Tek Secure ist ein eingetragenes Warenzeichen von Tektronix, Inc.

TekTools, TekScope und IsolatedChannel sind Warenzeichen von Tektronix, Inc.

GEWÄHRLEISTUNG

Tektronix gewährleistet, daß dieses Produkt für einen Zeitraum von drei (3) Jahren ab dem Kaufdatum bei einem Tektronix–Vertragshändler frei von Werkstoff– und Fertigungsmängeln ist. Sollte ein solches Produkt sich während der Gewährleistungsfrist als defekt erweisen, so wird Tektronix nach eigenem Ermessen entweder das defekte Produkt ohne Teile– und Arbeitskostenbelastung reparieren oder das defekte Produkt durch ein neues ersetzen. Batterien sind aus dieser Gewährleistung ausgeschlossen.

Um die hier gewährleisteten Dienstleistungen zu beanspruchen, muß der Kunde Tektronix vor Ablauf der Gewährleistungsfrist über den Mangel unterrichten und für die Ausführung der Dienstleistung entsprechende Vorkehrungen treffen. Der Kunde ist für Verpackung und Versand des defekten Produkts an das von Tektronix designierte Service Center verantwortlich; Versandkosten sind im voraus zu bezahlen. Tektronix trägt die Kosten der Rücksendung an den Kunden, solange der Versand an einen Ort innerhalb des Landes, in dem sich das Tektronix Service Center befindet, stattfindet. Versandkosten, Zollgebühren, Steuerabgaben und sonstige Kosten, die mit einer Rücksendung an andere Standorte verbunden sind, sind die Verantwortlichkeit des Kunden.

Diese Gewährleistung gilt nicht für durch unsachgemäße Benutzung oder mangelhafte Wartung und Pflege entstandene Defekte, Versagen oder Schäden. Tektronix ist unter dieser Gewährleistung nicht dazu verpflichtet, a) Schäden zu reparieren, die durch Versuche anderer, d.h. nicht von der Firma Tektronix autorisiertem Personal, das Produkt zu installieren, zu reparieren oder zu warten, verursacht wurden; b) Schäden zu reparieren, die durch unsachgemäße Benutzung oder Anschluß an unpassende Geräte verursacht wurden; oder c) Wartungsarbeiten an einem Produkt vorzunehmen, das Modifizierungen oder Integration mit anderen Produkten unterzogen wurde, und solche Modifizierung oder Integration Zeitaufwand oder Schwierigkeitsgrad für die Wartung des Produkts erhöhen.

DIESE GEWÄHRLEISTUNG WIRD VON TEKTRONIX IN BEZUG AUF DIESES PRODUKT UND AN STELLE VON JEGLICHEN ANDEREN AUSDRÜCKLICHEN ODER STILLSCHWEIGENDEN GEWÄHRLEISTUNGEN GEGEBEN. DIE FIRMA TEKTRONIX UND DEREN LIEFERANTEN VERWEIGERN DIE ANERKENNUNG IMPLIZIERTER GEWÄHRLEISTUNGEN FÜR MARKTGÄNGIGKEIT ODER EIGNUNG ZU SPEZIELLEN ZWECKEN. BEI VERSTÖSSEN GEGEN DIESE GEWÄHRLEISTUNG IST DIE VERANTWORTLICHKEIT DER FIRMA TEKTRONIX, DEFEKTE PRODUKTE ZU REPARIEREN ODER ZU ERSETZEN, ALLEINIGER UND AUSSCHLIESSLICHER IN ANSPRUCH NEHMBARER RECHTSBEHELF DES KUNDEN. TEKTRONIX UND SEINE LIEFERANTEN HAFTEN NICHT FÜR INDIREKTE, BESONDERE, BEILÄUFIG ENTSTEHENDE ODER MITTELBARE SCHÄDEN, UNABHÄNGIG DAVON, OB DIE FIRMA TEKTRONIX ODER DER LIEFERANT IM VORHINEIN ÜBER DIE MÖGLICHKEIT SOLCHER SCHÄDEN INFORMIERT IST.

Inhaltsverzeichnis

Vorwort	v
Aufbau dieses Handbuchs	v
Konventionen	vi

Zu Beginn

Produktbeschreibung	1–1
Auswechseln der Batterie	1–5
Externe Spannungsversorgung	1–7
Verwendung des Geräteständers	1–8
Funktionsprüfung	1–9

Grundzüge der Betriebsweise

Funktionsüberblick	2–1
Erläuterung der Frontplatte	2-1
Verwendung des Oszilloskop–Modus	2-8
Verwendung des Meter–Modus	2–9
Kompensierung der Oszilloskop–Tastköpfe	2-10
Kompensierung des Signalpfads des Oszilloskops	2-11
Durchführung von schwebenden Messungen	2-12
Allgemeine Anwendungsbeispiele	2–15
Anzeige eines unbekannten Signals	2–16
Widerstandsmessungen	2–18
Messung der Frequenz eines Taktsignals	2-20
Laufzeitmessungen	2-22
Triggerung auf einen fehlenden Meßwertimpuls	2–24
Erkennung von schmalen Glitchimpulsen	2–26
Triggerung auf ein drittes Signal	2–28
Untersuchung einer Leitung für serielle Datenübertragung	2-30
Triggerung durch ein Videosignal	2–32
Anwendungsbeispiele zur Leistungsmessung	2–35
Prüfung eines Schalttransistor–Antriebsschaltkreises	2–36
Messung der augenblicklichen Verlustleistung in	
einem Schalttransistor	2–38
Überwachung von Spannungsspitzen und	
Spannungsausfällen	2–40

Ermittlung eines fehlenden Netzzyklus	2–42
Messung des Oberwellenstrom (THS720P)	2–44
Durchführung von Leistungsmessungen (THS720P)	2–46
Messung der Anlaufstromstärke von Motoren	2–48
Triggerung bei einer bestimmten Motorendrehzahl	2–50
Triggerung auf eine Signalform einer	
Motoransteuerung (THS720P)	2–52

Referenzteil

Vorwort zum Referenzteil	3–1
ACQUIRE (Erfassung)	3–3
AUTORANGE (automatische Bereichswahl)	3–8
CURSOR	3–11
DISPLAY/HARMONICS (Anzeige/Oberwellen)	3–13
HARD COPY (Ausdruck)	3–22
HOLD (Haltefunktion)	3–26
HORIZONTAL–Einstellungen	3–27
MEAS (automatische Meßfunktion)	3–31
METER–Modus	3–39
SAVE/RECALL (Speichern/Abrufen)	3–45
SCOPE–Modus	3–48
TRIGGER–Einstellungen	3–54
UTILITY (Dienstprogramm)	3–62
VERTICAL–Einstellungen	3–68

Anhänge

Anhang A: Technische Daten	A–1
Anhang B: Werksseitige Vorgabeeinstellung	B-1
Anhang C: Zubehör	C-1
Anhang D: LeistungsprüfungPrüfberichtVerfahrensweisen der Leistungsprüfung	D-1 D-2 D-4
Anhang E: Allgemeine Pflege und ReinigungAllgemeine PflegeReinigungAnhang F: Übersetzung des Anzeigetextes	E–1 E–1 E–1 F–1

Glossar und Index

Zusammenfassende Sicherheitshinweise

Beachten Sie die nachstehenden Sicherheitsvorkehrungen, um Verletzungen zu vermeiden und Schäden an diesem Produkt und an daran angeschlossenen Produkten zu verhindern.

Wartungsarbeiten sind ausschließlich von qualifiziertem Personal durchzuführen.

Verletzungsverhütung

Geeignetes Netzkabel verwenden. Zur Verhütung von Feuergefahr darf nur das für dieses Produkt spezifizierte Netzkabel verwendet werden.

Elektrische Überbelastung vermeiden. Zur Vermeidung von Verletzungen oder von Feuergefahr darf niemals eine Spannung an einen Eingang, einschließlich der gemeinsamen Eingänge, angelegt werden, die vom Erdpotential um mehr als die maximale Nennspannung des jeweiligen Eingangs abweicht.

Vermeidung eines elektrischen Schlags. Zur Vermeidung von Körperverletzungen oder sogar Lebensgefahr dürfen Tastköpfe und Prüfleitungen nicht an dieses Gerät angeschlossen bzw. von diesem Gerät entfernt werden, während sie mit der Spannungsquelle verbunden sind.

Nicht ohne Abdeckungen betreiben. Zur Vermeidung von Feuergefahr oder eines elektrischen Schlags darf dieses Produkt niemals bei abmontierter Abdeckung und/oder Frontplatte betrieben werden.

Nicht in einer explosiven Umgebung betreiben. Zur Vermeidung von Verletzungen und Feuergefahr darf dieses Produkt nicht in explosionsgefährdeter Umgebung betrieben werden.

Schadensverhütung

Geeignete Stromquelle verwenden. Das Gerät darf nur an eine Stromquelle angeschlossen werden, deren Spannung der des Gerätes entspricht.

Möglicherweise beschädigtes Gerät nicht betreiben. Wenn vermutet wird, daß das Gerät beschädigt ist, sollte es von qualifiziertem Wartungs– personal überprüft werden.

Symbole und Bezeichnungen

Bezeichnungen in diesem Handbuch. Die folgenden Bezeichnungen können in diesem Handbuch vorkommen:

WARNUNG. bezeichnet Bedingungen oder Handlungsweisen, die Verletzungen oder den Tod zur Folge haben können.

VORSICHT. bezeichnet Bedingungen oder Handlungsweisen, die Sachschäden an diesem Produkt oder an anderem Eigentum zur Folge haben können.

Bezeichnungen auf dem Produkt. Diese Bezeichnungen können auf dem Gerät erscheinen:

DANGER zeigt eine Verletzungsgefahr an, die unmittelbar beim Lesen der Bezeichnung besteht.

WARNING zeigt eine Verletzungsgefahr an, die nicht unmittelbar beim Lesen der Bezeichnung besteht.

CAUTION zeigt eine Gefahr für das Eigentum, einschließlich dieses Produktes, an.

Symbole auf dem Produkt. Das Produkt kann mit folgenden Symbolen versehen sein:

GEFAHR Hochspannung

Schutzleiteranschluß (Erde)

ACHTUNG siehe Benutzerhandbuch

doppelt isoliert

Zulassungen und Übereinstimmungen

CSA-zugelassener Wechselstromadapter. Die CSA–Zulassung bezieht sich auf die in Nordamerika eingesetzten Wechselstromadapter. Alle anderen gelieferten Wechselstromadapter sind jeweils für das Land, in dem sie eingesetzt werden, zugelassen.

Übereinstimmungen. Die Überspannungskategorie und die Sicherheitsklasse sind im Abschnitt Produktdaten nachzulesen.

Vorwort

In diesem Benutzerhandbuch werden die Funktionsmerkmale, die Betriebsweise sowie Anwendungen der TekScope–Instrumente THS710A, THS720A, THS730A und THS720P beschrieben.

Aufbau dieses Handbuchs

Der Aufbau dieses Handbuchs ist aus der nachstehenden Tabelle ersichtlich.

Für Informationen über:	siehe:
Übersicht	Produktbeschreibung, Seite 1–1
Nähere Beschreibung der Funktion- smerkmale des Gerätes	Referenzteil, Seite 3-1
	Eine genaue Beschreibung der Funktionstasten der Frontplatte ist in den einzelnen Abschnitten enthalten.
Übersetzung der auf der Frontplatte und in den Menüs verwendeten englischen Begriffe	Sprachenreferenzteil, Seite F–1
Anwendungsbeispiele	Allgemeine Anwendungsbeispiele auf Seite 2–15 und Anwendungsbeispiele zur Leistungsmessung auf Seite 2–35
Betriebsanleitung	Erläuterung der Frontplatte, Seite 2–1
Hinweise zum Batteriebetrieb	Auswechseln der Batterie, Seite 1–5
Hinweise zur Verwendung einer externen Spannungsquelle	Externe Spannungsquelle, Seite 1–7
Erstellung eines Ausdrucks	HARD COPY, Seite 3–22
Technische Daten	Technische Daten, Anhang, Seite A-1
Empfohlenes Zubehör	Zubehör, Anhang, Seite C–1

Konventionen

Die Gerätekonfigurationen sind im Tabellenformat dargestellt. In den Abschnitten *Grundzüge der Betriebsweise* und *Leistungsfähigkeit* sind spezielle Konfigurationen im Tabellenformat abgebildet, während ähnliche Tabellen im *Referenzteil* den vollständigen Inhalt des Menüsystems darstellen.

Die Überschrift jeder Tabelle enthält Symbole, die die zur Konfiguration des Gerätes verwendeten Bedienelemente und Menübefehle repräsentieren. Zur Einstellung einer bestimmten Konfiguration wird die Tabelle, wie unten dargestellt, von links nach rechts und anschließend von oben nach unten gelesen. Wenn keine Handlung erforderlich ist, enthält die Tabelle das Symbol "—".

Zu Beginn

Zu Beginn

Zusätzlich zu einer kurzen Produktbeschreibung werden in diesem Kapitel die folgenden Themen behandelt:

- Auswechseln der Batterie
- Verwendung einer externen Spannungsversorgung
- Verwendung des Geräteständers
- Durchführung einer schnellen Funktionsprüfung

Produktbeschreibung

Bei den TekScope–Instrumenten THS710A, THS720A, THS730A und THS720P handelt es sich um robuste Handgeräte, die als Zweikanal–Oszilloskop und als Digital–Multimeter (DMM) eingesetzt werden können.

Allgemeine Funktionsmerkmale

- Batterie– oder Netzbetrieb
- Hochauflösende, hochkontrastige Anzeige mit Temperaturausgleich für klare Erkennbarkeit innerhalb eines großen Temperaturbereichs
- Eingebauter Signal–, Daten– und Konfigurationsspeicher
- RS-232-Kommunikationsport zum Laden von Konfigurationseinstellungen, Übertragen von Signalwerten, Erstellen von Ausdrucken.
- Vollständig programmierbar über das RS–232–Kommunika– tionsport

Funktionsmerkmale im Oszilloskop-Modus

Das TekScope ist ein leistungsfähiges Zweikanal–Oszilloskop, das die folgenden Merkmale aufweist:

- automatische Bereichswahl zur schnellen Konfiguration des Geräts, ohne daß eine manuelle Einstellung erforderlich ist
- Bandbreite von 200 MHz (THS730A), 100 MHz (THS720A und THS720P) bzw. 60 MHz (THS710A) mit wählbarer Bandbreitenbegrenzung auf 20 MHz
- Abtastrate von 1 GS/s (THS730A), 500 MS/s (THS720A und THS720P) bzw. 250 MS/s (THS710A) und Aufzeichnungslänge von 2500 Punkten
- separate Digitalisierer f
 ür jeden Kanal (die Erfassung von Me
 ßdaten erfolgt auf beiden Kan
 älen stets gleichzeitig)
- Signal–Mittelwertbildung und Hüllkurvenerstellung mit Hardware–Spitzenwerterkennung
- Digitale–Echtzeit Digitalisierung (maximal fünfmal höher als die Bandbreite), Interpolierung sin (x)/x und Spitzenwerterfassung zur Einschränkung möglicher Pseudodarstellung
- einzeln isolierte Kanäle für verbesserte Sicherheit bei Messungen bis zu 1000 V_{EFF} und bei Schwebespannungen bis zu 600 V_{EFF} gegen Erde unter Verwendung der Tastköpfe P5102
- Cursors und 21 kontinuierlich aktualisierte, automatische Messungen
- gleichzeitiger Betrieb im Oszilloskop- und Meter-Modus an einem oder an separaten Signalen
- erweiterte Funktionen f
 ür Impuls-, Video-, externe und Motortriggerung (THS720P)
- Oberwellenanalyse und Leistungsmessung (THS720P)

Funktionsmerkmale im Meter-Modus

Das TekScope ist außerdem ein komplettes DMM, das die folgenden Funktionsmerkmale aufweist:

- Echt Effektiv VAC-, VDC-, Ω-, Kontinuitäts- und Diodenprüffunktionen
- automatische oder manuelle Bereichswahl
- Erfassung der Meßwerte über einen bestimmten Zeitraum hinweg
- Anzeige von Maximal–, Minimal–, Delta–Maximal–Minimal–, Relativ–Delta– und Durchschnittswertaufzeichnungen
- Balkendiagramm zur Veranschaulichung als "Analogmeßverfahren"
- einzeln isolierte Meßeingänge ermöglichen schwebende Messungen bis zu 600 V_{EFF}
- Überspannungsanzeige warnt den Bediener, wenn am Eingang eine übermäßige Spannung angelegt wird

Ein- und Ausgangsanschlüsse

Alle Ein– und Ausgangsanschlüsse befinden sich oben und an der Seite (siehe folgende Abbildung). Die maximal zulässigen Nennspannungen sind an der Rückseite des Geräts angegeben.

WARNUNG. Zur Vermeidung einer Stromschlaggefahr müssen die Abdeckungen über dem DC–Eingang und der Öffnung des I/O–Ports bei hoher Feuchtigkeit oder Nässe geschlossen sein.

seitliches Anschlußfeld

Auswechseln der Batterie

Bei Verwendung der aufladbaren Batterie ist das Gerät stets betriebsbereit.

Die Batterie kann ohne Verlust der gespeicherten Daten ausgewechselt werden. Sämtliche aktuellen und gespeicherten Einstellungsdaten, gespeicherten Signalwerte und Daten werden im batterieunabhängigen nichtflüchtigen Speicher gesichert. Um zu verhindern, daß gespeicherte Daten verlorengehen, vor dem Entfernen der Batterie den Schalter ON/STBY auf STBY setzen.

WARNUNG. Zur Vermeidung einer Stromschlaggefahr muß die Klappe des Batteriefachs bei hoher Feuchtigkeit oder Nässe geschlossen sein.

Betriebsdauer der Batterie

Bei vollständig geladener Batterie kann das TekScope ununterbrochen zwei Stunden lang eingesetzt werden. Die Betriebsdauer der Batterie kann mit der automatischen Ruhe–Abschaltung oder Hintergrundbeleuchtungsabschaltung verlängert werden. Eine Beschreibung dieser Merkmale ist auf Seite 3–65 enthalten.

Das TekScope schaltet sich automatisch aus, wenn die Batterie schwach wird. Ungefähr zehn Minuten zuvor erscheint auf der Anzeige eine Meldung, die auf den schwachen Zustand der Batterie hinweist.

Bei Nickel–Cadmium–Batterien besteht die Gefahr, daß sie an Kapazität verlieren, wenn sie vor dem Aufladen nicht zuerst vollständig entladen werden. Deshalb sollte die Batterie vor jedem Aufladen möglichst vollständig entladen werden.

Laden der Batterie

Die Batterie kann über eine externe Spannungsquelle geladen werden, während sie im Gerät installiert ist. Wahlweise kann die Batterie auch mit dem als Zubehör erhältlichen Batterieladegerät geladen werden.

HINWEIS. Die Batterie muß vor dem ersten Gebrauch geladen werden.

Die erforderlichen Ladezeiten sind in der folgenden Tabelle aufgeführt.

Lademethode	Typische Ladedauer
Batterie im TekScope	9 Stunden
Batterie im externen Ladegerät	1,5 Stunden

VORSICHT. Vor dem Abschalten der externen Spannungsversorgung den Schalter ON/STBY auf STBY einstellen, um zu verhindern, daß gespeicherte Daten verlorengehen, wenn im Gerät keine Batterie installiert ist.

Externe Spannungsversorgung

Wenn das Gerät über den Wechselstromadapter an ein externes Stromnetz angeschlossen wird, ergeben sich die folgenden Vorteile:

- Einsparung der Batterie f
 ür den tragbaren Einsatz zu einem sp
 äteren Zeitpunkt
- Aufladen der installierten Batterie
- längere Betriebsdauer; die Ruhe–Abschaltung und Hintergrundbeleuchtungsabschaltung werden automatisch deaktiviert, wenn das Gerät an eine externe Spannungsquelle angeschlossen ist
- Aufrechterhaltung der potentialfreien Meßfunktion der Oszilloskop–Kanäle und des DMMs

Die externe Spannungsquelle wird wie unten abgebildet angeschlossen.

Wenn eine Überspannung angelegt wird, schaltet sich der Gleichstromeingang DC INPUT ab. In solch einem Fall muß der Wechselstrom– bzw. Zigarettenanzünderadapter abgetrennt und anschließend wieder angeschlossen werden, um den Betrieb bei externer Spannungsversorgung wieder aufzunehmen.

VORSICHT. Keine externe Spannungsversorgung anschließen, wenn sich das Instrument in einem geschlossenen Gehäuse befindet, wie etwa im Tragkoffer. Es besteht die Gefahr der Überhitzung.

Verwendung des Geräteständers

Das Gerät kann mit Hilfe eines eingebauten, herausklappbaren Ständers als Tischgerät verwendet werden. Dieser Ständer wird mit der schwenkbaren Klappe festgestellt. Er kann um 180° gedreht werden, um das Aufhängen des TekScopes zu ermöglichen. Ferner ist es möglich, die schwenkbare Klappe wie abgebildet herauszuziehen, um das Gerät an eine Leitersprosse oder an die Oberkante einer Tür zu hängen.

Funktionsprüfung

Nach der Installation der Batterie bzw. nach dem Anschluß an eine externe Spannungsquelle kann die folgende schnelle Funktionsprüfung durchgeführt werden, um festzustellen, ob das TekScope ordnungsgemäß in Betrieb genommen werden kann.

- 1. Die ON/STBY-Taste drücken, um das Gerät einzuschalten.
- Nach einigen Sekunden sollte eine Anzeige mit der Meldung "Power–On self check PASSED" erscheinen. Die CLEAR MENU–Taste drücken.
- 3. Die SCOPE-Taste drücken.
- 4. Den Oszilloskop–Tastkopf an den BNC Eingang von Kanal 1 anschließen. Die Tastkopfspitze und den Bezugsleiter mit den Anschlüssen PROBE COMP an der rechten Seite des TekScopes verbinden.

5. Die **AUTORANGE**–Taste drücken. Nach einigen Sekunden sollte auf der Anzeige ein Rechtecksignal (ca. 1,2 kHz) sichtbar sein.

Schritt 4 und 5 können auf Wunsch für Kanal 2 des Oszilloskops wiederholt werden.

- 6. Die METER-Taste drücken.
- 7. Die VDC–Menütaste drücken.
- 8. Die AUTORANGE–Taste drücken.
- **9.** Die Meßleitungen an das TekScope anschließen und mit den Spitzen der Meßleitungen den Ausgang PROBE COMP wie unten dargestellt berühren.

10. Überprüfen, daß das TekScope einen durchschnittlichen Gleichspannungswert von 2,5 \pm 0,25 V mißt.

Grundzüge der Betriebsweise

Funktionsüberblick

In diesem Abschnitt werden die folgenden Themen behandelt:

- Erläuterung der Frontplatte
- Verwendung des Oszilloskop–Modus
- Verwendung des Meter–Modus
- Anschließen und Verwendung der Tastköpfe
- Durchführung von schwebenden Messungen

Das *Referenzkapitel* dieses Handbuchs enthält nähere Hinweise zu den einzelnen Bedienelementen.

Erläuterung der Frontplatte

Die am meisten verwendeten Funktionen werden über die Tasten der Frontplatte geregelt, während der Zugriff auf spezielle Funktionen über die Menüs erfolgt. Mit der automatischen Bereichsfunktion kann das TekScope im Oszilloskop– und im Meter–Modus automatisch eingestellt werden.

Das Menüsystem

Die Verwendung des Menüsystems ist auf den nächsten zwei Seiten näher erläutert.

- MENUS METER ACQUIRE) MEAS (CURSOR) HARMONICS SAVE/ RECALL (DISPLAY) UTILITY HORIZONTAL TRIGGER VERTICAL MENU MENU MENU
- **1.** Eine Taste der Frontplatte drücken, um das gewünschte Menü anzuzeigen.

2. Eine Menütaste drücken, um einen Menübefehl zu wählen. Wenn ein Pop-up-Menü angezeigt wird, die Menütaste so lange drücken, bis der gewünschte Befehl gewählt ist. Es ist u.U. erforderlich, die Select-Page-Taste zu drücken, um auf weitere Menübefehle zugreifen zu können.

3. Bei bestimmten Menüoptionen muß während der Einstellung ein numerischer Parameter eingegeben werden. Dieser Parameterwert wird mit der ⁺/– Wipptaste eingestellt und kann durch Drücken der TOGGLE–Taste auf seinen Vorgabewert zurückgestellt werden.

4. Wenn die OK–Menütaste angezeigt wird, muß sie gedrückt werden, um die getroffene Wahl zu bestätigen.

Die Menüsteuertasten

Mit den folgenden Menüsteuertasten lassen sich viele Funktionen des TekScope aufrufen. Einige Tasten haben im Oszilloskop– und im Meter–Modus unterschiedliche Wirkungen.

1. ACQUIRE.

- E Ruft die Betriebsarten der Datenerfassung auf.
- 🕥 Ruft den Rechnerbetrieb des Meßwerterfassers auf.
- **2.** SAVE/RECALL. Speichert Einstellungen, Signalformen oder DMM–Daten ab bzw. gibt sie wieder aus.

- **3.** MEASURE. Löst automatische Messungen von Signalformen oder Anzeigen des Meßwerterfassers aus.
- 4. DISPLAY.

Andert das Aussehen der Signalform und der Anzeige. Aktiviert Oberwellenmessungen (nur bei THS720P).

S Ändert das Aussehen der Anzeige des Meßwerterfassers.

- 5. CURSOR. Aktiviert die Cursor des Scope bzw. des Meßwerterfassers.
- 6. UTILITY. Aktiviert Hilfsfunktionen des Systems.
- 7. TRIGGER.

C Aktiviert die Triggerfunktionen

8. HORIZONTAL.

Andert die Horizontaldaten von Signalformen.

Stellt die Durchlaufrate der Anzeige des Meßwerterfassers ein.

9. VERTICAL.

🕑 Stellt Skala und Position der Signalform ein. Setzt die Eingabeparameter.

Stellt die Position der Anzeige des Meßwerterfassers ein. Vergrößert oder verkleinert die Anzeige des Meßwerterfassers (Zoom). Setzt die Voltskala. Ändert den Meßbereich. Ändert die Vertikalskala.

Die Funktionstasten

Mit den unten dargestellten Funktionstasten können Handlungen direkt eingeleitet werden, ohne daß die Verwendung von Menüs erforderlich ist.

- 1. HARD COPY. Veranlaßt einen Ausdruck über die RS–232–Verbindung.
- 2. HOLD. Veranlaßt, daß die Oszilloskop–Erfassung gestoppt/ zurückgesetzt wird bzw. daß die Meßanzeige festgehalten/ zurückgesetzt wird.
- **3**. AUTORANGE. Wählt die Autobereichsfunktion im Oszilloskopund im Meter-Modus.

2-7

- 4. CLEAR MENU. Löscht das Menü von der Anzeige.
- 5. TRIGGER LEVEL. 🖓 Ermöglicht die Einstellung des Triggerpegels.
- 6. SET LEVEL TO 50%. 🖸 Stellt den Triggerpegel auf die Mitte des Oszilloskop–Signals ein.
- 7. HORIZONTAL POSITION. C Stellt die horizontale Position des Oszilloskop–Signals ein.
- 8. MAG. ⊕ Dient zum Ein– und Ausschalten der horizontalen 10X–Vergrößerung.
- **9**. SEC/DIV. Stellt den horizontalen Skalierungsfaktor im Oszilloskopmodus bzw. beim Meßwerterfasser ein.
- **10.** VERTICAL POSITION. Stellt die vertikale Position der Oszilloskop–Signalform und der Anzeige des DMM–Meßwert– erfassers ein.
- **11.** WAVEFORM OFF. 🖓 Löscht die gewählten Oszilloskop-Signale von der Anzeige.
- **12.** VOLTS/DIV. Stellt den vertikalen Skalierungsfaktor im Oszilloskopmodus bzw. den Meßbereich ein.
- **13.** ON/STBY. Wählt zwischen "eingeschaltet" und Ruhemodus. Die Spannungsversorgung des Gerätes wird nicht unterbrochen.
- 14. CH 1, CH 2, MATH, REF A, REF B. D Zeigt Signalformen an und ruft angewählte Signalformen auf. Bei Oberwellenmessungen (THS720P) stellen CH1 und CH2 auch die Oberwellen der Spannungs- und Stromsignale dar; MATH dagegen ruft die Darstellung der Leistungsmessungen auf.
- 15. SCOPE. Wählt den Oszilloskop–Modus.
- 16. METER. Wählt den Meter–Modus.

Verwendung des Oszilloskop-Modus

Der Oszilloskop–Modus wird mit der SCOPE–Taste der Frontplatte aktiviert. Anschließend wird zur Erstellung einer brauchbaren Anzeige mit der AUTORANGE–Taste die vertikale und horizontale Einstellung sowie die Triggerung automatisch eingestellt.

Im Oszilloskop–Modus ist die Anzeige in vier Abschnitte unterteilt (siehe unten). Eine Beschreibung jedes Abschnittes ist unter *OSZILLOSKOP–Modus* auf Seite 3–48 enthalten.

2-9

Verwendung des Meter-Modus

Der Meter–Modus wird mit der METER–Taste der Frontplatte aktiviert. Zur Auswahl einer Meßfunktion muß eine der Menütasten und anschließend AUTORANGE gedrückt werden, um den Bereich automatisch einzustellen.

Im Meter–Modus ist die Anzeige in drei Abschnitte unterteilt (siehe unten). Eine Beschreibung jedes Abschnittes sowie weitere Hinweise über die Meßwerterfassung und Balkendiagramme sind unter *Meter–Modus* auf Seite 3–39 enthalten.

Kompensierung der Oszilloskop-Tastköpfe

Jeder Spannungstastkopf muß entsprechend seinem Kanaleingang kompensiert werden, um die Signalwiedergabetreue aufrechtzuerhalten.

1. Den Oszilloskop–Tastkopf anschließen und danach AUTO-RANGE drücken.

2. Die Form der angezeigten Signalabbildung überprüfen.

3. Falls erforderlich, die Kompensierung des Tastkopfes regulieren.

4. Diese Schritte für den zweiten Tastkopf und den Kanal wiederholen.

Kompensierung des Signalpfads des Oszilloskops

Die Kompensierung des Signalpfads optimiert die Genauigkeit des Oszilloskops für die jeweilige Umgebungstemperatur. Um maximale Genauigkeit zu erreichen, ist die Kompensierung des Signalpfads bei allen Änderungen der Umgebungstemperatur um 5° C oder mehr zu wiederholen.

- **1.** Alle Tastköpfe oder Kabel von den BNC–Eingangsanschlüssen der Kanäle 1 und 2 abziehen.
- 2. Die Taste UTILITY drücken.
- 3. Im Systemmenü den Befehl CAL wählen.
- 4. Die Taste Signal Path drücken.
- 5. Die Taste OK Compensate Signal Path drücken. Diese Prozedur ist erst nach etwa einer Minute abgeschlossen.

Durchführung von schwebenden Messungen

Dieser Abschnitt enthält wichtige Aspekte, die bei der Durchführung von schwebenden Messungen berücksichtigt werden sollten.

Bedeutung der Architektur

Bei der Durchführung von schwebenden Messungen unterscheidet sich das TekScope in seiner Architektur von den meisten anderen Oszilloskopen. Die Eingänge der Kanäle 1 und 2 sowie der DMM–Eingang sind vom Hauptgehäuse und voneinander isoliert. Aufgrund dieser Architektur können mit Kanal 1, Kanal 2 und dem DMM unabhängige schwebende Messungen durchgeführt werden.

Die Architektur vieler Handoszilloskope bzw. DMM–Produkte ist jedoch so aufgebaut (siehe unten), daß die Oszilloskopkanäle und der DMM–Kanal über einen gemeinsamen Bezugsleiter verfügen. Bei dieser Architektur müssen bei Mehrkanalmessungen alle Eingangssignale dieselbe Bezugsspannung aufweisen.

Architektur anderer Geräte

Die Architektur der meisten Tisch–Oszilloskope entspricht der oben abgebildeten Architektur, wobei das Gehäuse jedoch nicht isoliert ist. Sofern keine Differentialvorverstärker oder externen Signalentkoppler installiert sind, eignen sich Tisch–Oszilloskope nicht zur Durchführung von schwebenden Messungen.

Korrekter Anschluß der Bezugsleiter

Wenn beide Oszilloskopkanäle verwendet werden, muß der Bezugsleiter des Tastkopfes jedes Kanals direkt an den Schaltkreis angeschlossen werden. Diese Verbindungen sind erforderlich, da die Oszilloskopkanäle elektrisch isoliert sind, d.h. sie haben keine gemeinsame Gehäuseverbindung. Dabei sollte für jeden Tastkopf ein möglichst kurzer Bezugsleiter verwendet werden, um eine gute Signalwiedergabetreue zu gewährleisten. Wenn zusätzlich der DMM–Kanal verwendet wird, muß auch dessen gemeinsamer Leiter aus demselben Grund an den Schaltkreis angeschlossen werden.

Der Bezugsleiter des Tastkopfes stellt für den geprüften Schaltkreis eine höhere kapazitive Last als die Tastkopfspitze dar. Zur Durchführung einer schwebenden Messung zwischen zwei Knoten eines Schaltkreises wird der Bezugsleiter des Tastkopfes an den Knoten, der die geringere Impedanz bzw. die niedrigere Dynamik aufweist, angeschlossen.

Vorsicht bei Messungen von Hochspannungen!

Der Benutzer muß mit der Nennspannung der eingesetzten Tastköpfe vertraut sein und darf diese nicht überschreiten. Insbesondere sind zwei Nennspannungen zu beachten:

- die maximale Me
 ßspannung von der Tastkopfspitze zum Bezugsleiter des Tastkopfes
- die maximale Schwebespannung vom Bezugsleiter des Tastkopfes zur Masse

Diese zwei Nennspannungen hängen jeweils vom Tastkopf und von der Anwendung ab. Weitere Hinweise sind im Abschnitt *Technische Daten*, beginnend auf Seite A–1, enthalten.

WARNUNG. Zur Verhütung eines elektrischen Schocks darf am Oszilloskop–Eingang (BNC–Anschluß), an der Tastkopfspitze, am Bezugsleiter des Tastkopfes, am DMM–Eingangsanschluß und am DMM–Leiter weder die Meßnennspannung noch die Schwebenennspannung überschritten werden.

Allgemeine Anwendungsbeispiele

In diesem Abschnitt ist eine Reihe von allgemeinen Anwendungsbeispielen enthalten, die vereinfacht die Funktionsmerkmale des TekScopes veranschaulichen und dem Benutzer Anregungen zur Lösung individueller Testprobleme geben.

Die ersten zwei Beispiele befassen sich mit der grundsätzlichen Betriebsweise des Oszilloskop- und des Meter-Modus, während die restlichen Beispiele einen Überblick über Anwendungen in den folgenden Bereichen geben:

- Digitalschaltkreisprüfung
- Analogschaltkreisprüfung
- Videosignalprüfung

Anzeige eines unbekannten Signals

Wenn es erforderlich wird, ein in einem Schaltkreis vorhandenes Signal sichtbar zu machen, ohne daß die Signalamplitude, –frequenz und –form bekannt sind, kann das Signal mit dem TekScope schnell angezeigt werden.

METER () SCOPE				TOGGLE +
SCOPE	AUTO RANGE	—	_	_

Einstellung zur Anzeige eines unbekannten Signals

Die automatische Bereichsfunktion (AUTORANGE) führt die vertikale und die horizontale Einstellung sowie die Triggereinstellung automatisch durch, um eine brauchbare Anzeige zu erstellen. Bei Signalveränderungen wird die Einstellung entsprechend angepaßt.

Weitere Schritte

Wenn die Signalabbildung im Autorange–Modus nicht genau nach Wunsch angezeigt wird, kann die Einstellung leicht geändert werden. Es wird lediglich eine der unten aufgeführten Tasten gedrückt, um den Autorange–Modus zu deaktivieren und die Einstellung zu modifizieren:

- VOLTS/DIV
- SEC/DIV
- TRIGGER LEVEL
- SET TRIGGER LEVEL TO 50%

Widerstandsmessungen

Bei der Messung von Punkt–zu–Punkt–Widerständen in einem Schaltkreis kann mit dem TekScope eine Vielfalt von Widerstandswerten gemessen werden.

METER () SCOPE				TOGGLE +
METER	AUTO RANGE	Ω	_	—

Einstellung zur Messung von Widerständen

Weitere Schritte

Wenn eine störungsbehaftete Umgebung eine unbeständige Widerstandsmessung verursacht, sollten ein Mittelwert der Meßwerten mit der Average–Statistik errechnet werden. Weitere Hinweise sind auf Seite 3–37 enthalten.

Das TekScope kann als Kontinuitätsprüfgerät eingesetzt werden. Bei der folgenden Einstellung erzeugt es ein Tonsignal, wenn der gemessene Widerstand (typisch) 50 Ω oder weniger beträgt.

				TOGGLE +
METER	_))) (Durchgang)	_	_

Mit dem TekScope können auch Halbleiterübergänge geprüft werden. Mit der folgenden Einstellung wird der Spannungsabfall an der Sperrschicht gemessen. Die Leerspannung ist auf ca. 4 V begrenzt, um zu verhindern, daß Sperrübergänge beschädigt werden.

				TOGGLE +
METER	_	-⊳+ (Diode)	_	—

Messung der Frequenz eines Taktsignals

Wenn vermutet wird, daß die Frequenz eines TTL–Taktsignals außerhalb des Toleranzbereichs liegt, kann das TekScope an den Signalschaltkreis angeschlossen werden, um das Signal anzuzeigen und seine Frequenz zu messen.

METER () SCOPE				TOGGLE +
SCOPE	AUTO RANGE	_	_	_
	MEAS	Select Measmnt for Ch1	Frequency	
		OK Select Measrmnt	_	

Einstellung zur Messung der Taktfrequenz

Weitere Schritte

Mit der folgenden Einstellung können außerdem Spitze–Spitze– und Lastspielmessungen durchgeführt werden:

METER METER				TOGGLE +
SCOPE	MEAS	Select Page	_	—
		Select Measrmnt for Ch1	Positive Duty Cycle	
		OK Select Measrmt	_	
		Select Page (einmal drücken)		
		Select Measrmnt for Ch1	Pk-Pk	
		OK Select Measrmt	_	

Laufzeitmessungen

Wenn vermutet wird, daß die Speicher–Taktgebung eines Mikroprozessor–Schaltkreises nahe am Grenzwert liegt, kann das TekScope zur Messung der Laufzeit zwischen dem Chip–Select und dem Datenausgang des Speicherbausteins eingestellt werden.

METER METER				TOGGLE +
SCOPE	CH 1	—	_	—
	CH 2			
	AUTO RANGE ¹			
	CURSOR	Cursor Function	V Bars	Den ersten Cursor ein- stellen, TOGGLE drücken und anschließend den zweiten Cursor ein- stellen.

Einstellung zur Messung der Laufzeit

1 Falls erforderlich, kann die Anzeige der Laufzeitmessung mit der SEC/DIV–Wipptaste optimiert werden.

Einen Cursor auf die aktive Flanke des Chip–Select und den zweiten Cursor auf den Übergang des Datenausgangs setzen. Die Laufzeit am Cursor–Readout ablesen.

Weitere Schritte

Im oben aufgeführten Beispiel wird die Messung relativer Zeitwerte (Δ -Sekunden) zwischen zwei verschiedenen Signalabbildungen mit Cursorn durchgeführt. Wenn jedoch nur ein Signal gemessen wird, können die Δ -Spannung und die Δ -Sekunden mit der Funktion **Paired** Cursor gleichzeitig gemessen werden.

Triggerung auf einen fehlenden Meßwertimpuls

Beispiel: Ein 20 µs breiter, in die positive Richtung verlaufender TTL–Meßwertimpuls sollte mindestens einmal je Millisekunde eintreten. Der Schaltkreis funktioniert nicht ordnungsgemäß, und es wird vermutet, daß gelegentlich ein Impuls fehlt. Der fehlende Impuls kann mit Hilfe des TekScopes gefunden werden.

METER () SCOPE				TOGGLE +
SCOPE	AUTO RANGE	_	_	_
	TRIGGER	Trigger Type	Pulse	
	MENU	Trigger Source	Ch1	
		Polarity and Width	Negative	Breite auf 1 ms einstellen
		Trigger When	Greater Than Width	_
		Mode	Normal	

Einstellung zur Auffindung eines fehlenden Meßwertimpulses

Das TekScope triggert, wenn sich das Signal länger als 1 ms im Niedrig–Zustand befindet. In diesem Fall wurde ein Ereignis eines fehlenden Impulses gefunden.

Weitere Schritte

Diese Anwendung kann wie folgt erweitert werden:

- Wenn bei periodischer Impulsfolge (Periode von 1 ms) vermutet wird, daß gelegentlich ein zusätzlicher Impuls auftritt, ist die Breiteneinstellung auf 980 µs und das Untermenü Trigger When auf Less Than Width einzustellen. Bei dieser Konfiguration triggert das TekScope, wenn der Impulsabstand unter 980 µs abfällt, also wenn ein zusätzlicher Impuls auftritt.
- Die Ursache des Problems läßt sich mit Hilfe des zweiten Kanals feststellen. Da das TekScope Signale über beide Kanäle stets genau zur gleichen Zeit erfaßt, läßt sich zwischen der Ursache und dem Effekt eine Beziehung herstellen.

Erkennung von schmalen Glitchimpulsen

Beispiel: Ein Zeitablaufzähler–Schaltkreis wird mit einem rechteckförmigen Präzisionszeitgebersignal (1 kHz), das von einer anderen Quelle erzeugt wird, betrieben. Der Zähler läuft gelegentlich zu schnell, und es wird vermutet, daß Glitchimpulse im Zeitgebersignal das Problem verursachen. Das TekScope kann zur Erkennung dieser Glitchimpulse eingestellt werden.

				TOGGLE +
SCOPE	AUTO RANGE	_	_	_
	ACQUIRE	Acquire Mode	Envelope	

Einstellung zur Erkennung von schmalen Glitchimpulsen

Wenn das Zeitgebersignal einige Minuten lang beobachtet wird, zeigt das TekScope im Hüllkurven–Modus das rechteckförmige Zeitgebersignal (1 kHz) sowie zeitweise auftretende Glitchimpulse, die bis zu 8 ns schmal sein können.

Weitere Schritte

Bei der folgenden Einstellung kann auf den Glitchimpuls direkt getriggert werden:

METER METER				TOGGLE +
SCOPE	COPE TRIGGER	Trigger Type	Pulse	_
	MENU	Trigger Source	Ch1	
		Polarity and Width	Positive	Breite auf 500μs einstellen
	Trigger When	Less Than Width	_	
		Mode	Normal	

Eine Triggerung findet nur dann statt, wenn ein positiver Impuls, der schmäler als 500 μ s (die halbe Periode des Zeitgebersignals) ist, festgestellt wird.

Triggerung auf ein drittes Signal

Beispiel: Eine Metallbearbeitungsmaschine erzeugt je einen Indeximpuls pro Umdrehung ihrer Antriebswelle. Wenn der Indeximpuls an den externen Triggereingang des Tekscope angelegt wird, lassen sich die Ausgangssignale von zwei Meßwertgebern beobachten, während die Arbeitsdrehzahl der Maschine geändert wird.

METER METER				TOGGLE +
SCOPE	TRIGGER	Trigger Type	Edge	_
	MENU	Trigger Source	External	

Einstellung zur Verwendung des externen Triggers

Indeximpuls an die Meßeingänge anschließen, die jetzt als externe Triggereingänge fungieren. Wippschalter TRIGGER LEVEL so einstellen, daß das Gerät durch das Signal des Triggerimpulses stabil getriggert wird.

Weitere Schritte

Über den externen Triggereingang läßt sich auch die Netzfrequenz von 50 Hz oder 60 Hz als Trigger nutzen. Damit bleiben die beiden Kanaleingänge für die Abtastung von anderen Signalen frei, die auf die Netzfrequenz synchronisiert sind. Wenn möglichst nahe einem Nulldurchgang getriggert werden soll, ist der externe Triggerpegel auf 0,2 V zu setzen.

Untersuchung einer Leitung für serielle Datenübertragung

Beispiel: Es liegen vielleicht Probleme mit einer Leitung für serielle Datenübertragung vor, und die Ursache wird in ungenügender Signalqualität vermutet. Das TekScope läßt sich so einstellen, daß es eine Momentaufnahme des seriellen Datenstroms liefert, so daß sich die Signalpegel und die Schaltzeiten überprüfen lassen.

METER METER				TOGGLE +
SCOPE	AUTO RANGE	_	_	_
	ACQUIRE	Stop After	Single Acquisition Sequence	
	HOLD (RUN/STOP)	_	—	

Einstellung zur Erfassung eines Einzelimpulses

Bei jeder Betätigung der Taste **HOLD** (**RUN/STOP**) nimmt das Instrument eine Momentaufnahme des digitalen Datenstroms auf. Das Signal kann mit Hilfe der Cursoren oder durch automatische Messung ausgewertet oder zu späterer Auswertung abgespeichert werden.

Weitere Schritte

Bei Momentaufnahmen unter Verwendung beider Kanäle werden immer die beiden Signalformen gleichzeitig erfaßt. Im Anschluß daran lassen sich mit Hilfe der vertikalen Balkencursors genaue Zeitmessungen zwischen den beiden Signalen durchführen.

Triggerung durch ein Videosignal

Beispiel: Ein Videomonitor in einem geschlossenen Überwachungssystem, das nach der NTSC-Fernsehnorm arbeitet, zeigt eine schlechte Bildqualität. Das TekScope so einstellen, daß es ein ungeradzahliges Halbbild des in den Monitor eingehenden Videosignals anzeigt und entsprechend getriggert wird.

· ·	.	•			• •	•		•	_
•		•	•	•••	•	•	•	•	· _
		uiu	•					•	
· · ·					•••	•••	<u>. · .</u>	·. · ·	• •
<u> </u>	-	••	· ··.		· · .	•••	•••	. • •	
					-				

METER (SCOPE)				TOGGLE +
SCOPE	VERTICAL MENU	Probe Type	Voltage Probe	auf 1X einstellen
	AUTO RANGE	_	_	_
	DISPLAY	Diplay Style	Dot Accumulate	auf 100 ms einstellen
	TRIGGER MENU	Trigger Type	Video	_
		Trigger On	ungeradzahliges Halbbild	
		Video Class	NTSC	

Einstellung zur Triggerung auf ein ungeradzahliges Halbbild

Die **SEC/DIV**–Wipptaste ist auf **2 ms/div** einzustellen, um das ungeradzahlige Halbbild über ca. acht Skalenteile anzuzeigen. Die Anzeigeart der Punkteansammlung simuliert eine Analogoszilloskop– Anzeige des Videosignals.

Weitere Schritte

Eine Triggerung auf eine bestimmte Videozeile läßt sich mit den folgenden Einstellungen erreichen:

			NIL IN UNI NIL IN UNI II UNI NIL IN UNI NIL IN UNI II UNI NIL IN UNI	TOGGLE +
SCOPE	TRIGGER	Trigger Type	Video	—
	MENU	Trigger On	Odd Field	Zeilennummer eingeben

Die **SEC/DIV**–Wipptaste ist auf $10 \mu s/div$ einzustellen, um die Zeile über ca. sechs Skalenteile anzuzeigen.

Anwendungsbeispiele zur Leistungsmessung

In diesem Abschnitt ist eine Reihe von Anwendungsbeispielen in der Leistungsmessung enthalten, die vereinfacht die Funktionsmerkmale des TekScopes veranschaulichen und dem Benutzer Anregungen zur Lösung individueller Testprobleme geben.

Die beispiele geben einen Überblick über Anwendungen in den folgenden Bereichen:

- Leistungselektronikprüfung
- Prüfung der Netzspannungsqualität
- Motorprüfung

HINWEIS. Einige dieser Anwendungsbeispiele erfordern besondere Tastköpfe. Andere beziehen sich auf Merkmale, die nur im Gerät THS720P verfügbar sind.

Prüfung eines Schalttransistor-Antriebsschaltkreises

Beispiel: Der Gate–Ansteuerschaltkreis eines Feldeffekttransistors (FET) in einer schaltenden Spannungsquelle soll bewertet werden. Die Zeitgeberschaltung der Gate–Ansteuerung ist auf den Masseanschluß des Gehäuses bezogen. Das Gate–Ansteuersignal wird jedoch durch eine Transformatorkopplung an den FET, der an einen Gleichspannungsbus (–300 V) angeschlossen ist, übertragen. Das TekScope kann eingestellt werden, um das Gate–Ansteuersignal am Ausgang der Zeitgeberschaltung mit dem Signal am Gate des FET zu vergleichen.

METER METER				TOGGLE +
SCOPE	CH 1	_	_	_
	CH 2			
	AUTO RANGE			

Einstellung zur Prüfung des Transistor-Ansteuerschaltkreises

Zur Durchführung dieser schwierigen Messung sind keine besonderen Maßnahmen erforderlich. Aufgrund der isolierten Kanäle kann der an Kanal 1 angeschlossene Tastkopf auf die Masse des Gehäuses und der an Kanal 2 angeschlossene Tastkopf direkt auf den Gleichspannungsbus (–300 V) bezogen werden. Kanal 1 zeigt das direkt vom Treiber ausgesendete Gate–Ansteuersignal, und Kanal 2 zeigt das Signal wie es am Leistungs FET ankommt.

Weitere Schritte

Aufgrund ihrer Isolierung können die Kanäle sowohl auf Wechselals auch Gleichspannungen bezogen werden.

- Der Bezugsleiter des Tastkopfes P5102 kann (bis zur maximalen Nennspannung) an Wechselspannungsleitungen mit 50 Hz, 60 Hz und 400 Hz angeschlossen werden.
- Der Bezugsleiter des Tastkopfes P6117 bzw. P5102 kann (bis zur maximalen Nennspannung) an viele andere dynamische Signalen angeschlossen werden.

Da es möglich ist, das Gerät außer an die Masse auch an andere Bezugspunkte anzuschließen, können viele Messungen, die normalerweise ein Oszilloskop mit einem Differentialeingang erfordern würden, durchgeführt werden.

Messung der augenblicklichen Verlustleistung in einem Schalttransistor

Beispiel: Der Ausgangstransistor einer schaltenden Spannungsquelle ist heißer als er sein sollte, und die Spitzenverlustleistung soll überprüft werden. Das TekScope kann eingestellt werden, um die augenblickliche Verlustleistung des Transistors mit dem als Zubehör erhältlichen Stromtastkopf zu messen.

				TOGGLE +
SCOPE	CH 1	—	—	_
	CH 2	Probe Type	Current Probe	auf 100 mV/A einstellen
	AUTO RANGE	_	_	_
	MATH	Math Operation	$Ch1 \times Ch2$	
	CURSOR	Cursor Function	Paired	Cursor einstellen

Einstellung zur Messung der augenblicklichen Verlustleistung

Den Cursor entlang dem Leistungssignal (MATH) bewegen und die augenblickliche Leistung im Cursor–Readout (z.B. bei 5,63 W) ablesen.

Weitere Schritte

Die durchschnittliche Verlustleistung im Transistor (Mittelwert des Leistungssignals) läßt sich mit der folgenden Einstellung messen:

METER METER				TOGGLE +
SCOPE	MEAS	Select Measrmnt for MATH	Mean	_
		OK Select Measrmnt	_	

Mit dem XY–Anzeigeformat kann das I–V–Verhalten des Transistors angezeigt und mit dem sicheren Betriebsbereich verglichen werden. Nähere Hinweise über das XY–Anzeigeformat sind auf Seite 3–14 enthalten.

Überwachung von Spannungsspitzen und Spannungsausfällen

Beispiel: An elektronischen Anlagen, die unbeaufsichtigt an einem entfernt gelegenen Standort betrieben werden, treten von Zeit zu Zeit Störungen ein. Es soll festgestellt werden, ob diese Störungen durch eine kurzzeitige Qualitätsminderung der Speisespannung der elektrischen Anlagen verursacht wird. Das TekScope kann eingestellt werden, um die Netzspannung eine Woche lang zu überwachen und Spannungsspitzen bzw. Spannungsausfälle anzuzeigen.

				TOGGLE +
METER	_	VAC	_	_
	ACQUIRE	Acquire Mode	Peak Detect	

Einstellung zur Überwachung von Netzstörungen

Mit dem DMM–Meßwerterfasser können Meßwerte über längere Zeit hinweg festgehalten werden. Der Skalenendbereich wird mit der **VOLTS/DIV**–Wipptaste auf 400 V eingestellt. Die **SEC/DIV**–Wipptaste muß so justiert werden, daß ein horizontaler Skalenteil des Meßwerterfassers einem Tag entspricht.

Messungen, die ungefähr zehnmal pro Sekunde stattfinden, werden über einen Zeitraum von acht Tagen festgehalten.

Weitere Schritte

Die Darstellung des Meßwerterfassers kann positioniert und mit dem Zoom gedehnt werden, um so eine größere Auflösung zu erhalten (siehe weitere Angaben hierzu auf Seite 3–72).

Mit den Cursorn kann festgestellt werden, wann ein Spannungsausfall eingetreten ist (bei einer Genauigkeit von 24 Minuten).

METER METER				TOGGLE +
SCOPE	CURSOR	Cursor Function	Vertical	Cursor einstellen

Der Cursor an die Stelle der Spannungsstörung bewegen und die relative Zeit am Cursor–Readout ablesen (z.B. nach 5 Tagen, 7 Stunden, 12 Minuten). Die absolute Zeit und das Datum der Störung werden mit Hilfe der gegenwärtigen Uhrzeit und dieses Meßwertes ermittelt.

Ermittlung eines fehlenden Netzzyklus

Beispiel: Schalter im Speisenetz lassen gelegentlich einen spannungszyklus in der Anlage ausfallen, die untersucht wird. Das TekScope läßt sich so anschalten, daß es einen fehlenden Zyklus in den 50 Hz der Netzspannung anzeigt.

METER (SCOPE)				TOGGLE +
SCOPE	AUTO RANGE	_	_	_
	TRIGGER	Trigger Type	Pulse	
	MENU	Trigger Source	Ch1	
		Polarity and Width	Negative	Breite auf 25 ms einstellen
		Trigger When	Greater Than Width	_
		Mode	Normal	

Einstellung zur Ermittlung eines fehlenden Netzzyklus

Triggerschwelle auf +50 V einstellen. Das TekScope triggert, sobald die Spannung in einem oder in mehreren Zyklen unter den Schwellwert von 50 V_{Spitze} absinkt. Der Schwellwert kann auch auf jeden anderen Pegel eingestellt werden, der einem Spannungsausfall entspricht.

Weitere Schritte

Mit dem anderen Kanal lassen sich die Auswirkungen des fehlenden Zyklus auf die betreffende Anlage bestimmen:

- Kurzzeitige Einbrüche in internen Speisespannungen
- Funktionsstörungen in digitalen Schaltungen
- Schwankungen von Taktfrequenzen

Da die Meßwerte in den Kanälen 1 und 2 immer gleichzeitig erfaßt werden, läßt sich eine Ursache, die in einem Kanal erkennbar ist, der Wirkung zuordnen, die sich im anderen Kanal zeigt.

Messung des Oberwellenstrom (THS720P)

Beispiel: Ein Drehstromnetz speist eine Werkstatt, in der zahlreiche elektronische Geräte arbeiten. Das TekScope läßt sich so anschalten, daß es die Oberwellenströme anzeigt, die über den Nulleiter fließen.

METER (METER)				TOGGLE +
SCOPE	DISPLAY	Harmonics	On	_
		Show	All from	Einstellen auf F to 11
		THD Method	THD-F	_
		Probes	Ch 2 Probe	Einstellen auf 100 mV/A

Einstellung zur Messung des Oberwellenstrom

Das TekScope stellt die Oberwellenströme im Nulleiter in Form eines Balkendiagramms dar. Hier läßt sich prüfen, ob der hohe Anteil der dritten Oberwelle, der durch die nichtlineare Last verursacht wird, die Nennstromstärke des Nulleiters überschreitet.

Weitere Schritte

Der Maßstab der Darstellung kann auf die Oberwellen eingestellt werden, die jeweils von Bedeutung sind. Unter der Angabe Show im Menü Display kann die Darstellung nur der ungeraden, nur der geraden oder aller Oberwellen bis zur 31. einschließlich angewählt werden.

Durchführung von Leistungsmessungen (THS720P)

In einem Fertigungswerk hängt die Last an einer bestimmten Stichleitung vom Zustand eines Prozesses ab. Es soll die Leistung, die über diese Leitung aufgenommen wird, über mehrere Tage gemessen werden, um so die niedrigste und die höchste Last zu ermitteln.

Те	\mathbf{k}_{RANG}	_e :25ks/s A	verage IPIQ	d	
	Matl	า			
١	W =	956.4 w	PF =	0.84	
٩	VA =	1.137kva	DPF =	0.84	
٩	var=	614.3 var	θ =	33°	
[Average	Minimum	Maximum	
	W	846.5 w	591.5 w	1.123 _{kw}	
	VA	1.248kva	1.128kva	1.418kva	
	Var	813.6 VAR	301.7 VAR	1.288 _{kvar}	
	V	120.1 v	119.9 v	120.3 v	
	A	10.4 A	9.407 🗚	11.8 A	
Ch ² አይ	15 115	0V B⊌Ch2 2k₩	5А В⊮М	10ms Ch 1 /	128 V

METER METER				TOGGLE +
SCOPE	DISPLAY	Harmonics	On	_
		Probes	Current Probe CH 2	Eingestellt auf 100 mV/A
	MATH	—	—	_

Einstellungen zur Lastüberwachung

Das Instrument TekScope mißt ständig die Spannung und die Stromstärke und berechnet daraus die im Kasten dargestellte Laststatistik. Die statistischen Meßwerte für Mittelwert, Minimum und Maximum kennzeichnen dann die Leistungsaufnahme über diese Stichleitung.

Weitere Schritte

Die Werte über dem Kasten geben Momentanwerte der Leistungsaufnahme an. Aus ihnen lassen sich kurzzeitige Schwankungen erkennen.

Die Laststatistik schließt alle Werte seit Beginn der Erfassung ein. Um sie zurückzusetzen, ist die Taste HOLD zweimal zu betätigen und die Erfassung neu zu starten.

Messung der Anlaufstromstärke von Motoren

Beispiel: Ein Überstromauslöser spricht an, wenn ein Motor anläuft. Mit dem TekScope läßt sich der Anlaufstromstoß des Motors messen, bevor der Überstromauslöser anspricht.

METER (METER)				TOGGLE +
SCOPE	CH 1	Probe Type	Current Probe	Einstellen auf 100 mV/A
	ACQUIRE	Stop After	Single Acquisition Sequence	—
	HOLD (RUN/STOP)	_	_	

Einstellung zur Messung von Stromspitzen

Wenn der Motor anläuft, erfaßt das Instrument den Stromstärkeverlauf und hält ihn in der Anzeige fest.

Weitere Schritte

Auf die folgende Weise läßt sich der Effektivwert des Anlaufstroms messen:

- Automatische Messungen f
 ür den Kanal 1 aufrufen und die Meßgrößen BrstW (Burstdauer) und RMS (Effektivwert) anwählen. Siehe weitere Angaben zu automatischen Messungen auf Seite 3–31.
- 2. Meßwerte für BrstW und RMS aufnehmen.
- **3.** Einstellung von SEC/DIV notieren.
- **4.** Effektivwert der Anlaufstromstärke (I_{eff}) mit einer der folgenden Formeln berechnen:

$$I_{eff} = RMS \times \sqrt{10 \times \frac{SEC/DIV}{BrstW}}$$
(MAG ist aus)
$$I_{eff} = RMS \times \sqrt{100 \times \frac{SEC/DIV}{BrstW}}$$
(MAG ist ein)

Triggerung bei einer bestimmten Motorendrehzahl

Beispiel: Der Einschaltstrom eines Motors mit 3600 U./Min. soll bei mehreren bestimmten Drehzahlwerten gemessen werden. Ein am Motor angebrachtes Tachometer erzeugt ein rechteckförmiges Niederspannungssignal mit 100 Impulsen je Umdrehung. Stellen Sie das TekScope so ein, daß bei 1200 U./Min. eine Triggerung ausgelöst wird und der Strom bei dieser Drehzahl gemessen werden kann.

METER (SCOPE)				TOGGLE +
SCOPE	CH 1	—	_	_
	CH 2	Probe Type	Current Probe	auf 100 mV/A einstellen
	HORIZON- TAL MENU	Trigger Position	50%	_
	TRIGGER	Trigger Type	Pulse	
MENU	Trigger Source	Ch1		
		Polarity and Width	Positive	Breite auf 250μs einstellen
		Trigger When	Equal To Width	auf ± 5% einstellen
		Mode	Normal	_
	CURSOR	Cursor Function	Paired	Cursor auf horizontale Rastermitte einstellen

Einstellung zur Triggerung bei 1200 U./Min.

Für jeden Kanal die entsprechende **VOLTS/DIV**–Einstellung vornehmen. **SEC/DIV** so einstellen, daß die Ablenkdauer in etwa der Motoreinschaltzeit entspricht. Wenn der Motor gestartet wird, wird in der Rastermitte der Punkt 1200 U./Min. angezeigt. Der Ankerstrom an diesem Punkt wird nun mit dem Cursor von Kanal 2 gemessen.

Weitere Schritte

Die Einstellung der Triggerimpulsbreite kann verändert werden, um das Signal während der Durchführung des Tests bei anderen Motorendrehzahlwerten zu triggern.

Triggerung auf eine Signalform einer Motoransteuerung (THS720P)

Beispiel: Es soll das Ausgangssignal einer Ansteuerung für einen drehzahlvariablen Wechselstrommotor analysiert werden. Das TekScope läßt sich so anschließen, daß es durch das Ausgangssignal der Motoransteuerung getriggert wird.

METER METER				TOGGLE +
SCOPE	AUTO RANGE	_	_	_
	TRIGGER MENU	Trigger Type	Motor	

Einstellung zur Triggerung durch den Motor

TRIGGER LEVEL so einstellen, daß die Anzeige stabil steht. Mit der Triggerung durch den Motor lassen sich auch komplexe Motorsteuersignale mit Pulsbreitenmodulation stabilisieren.

Weitere Schritte

Mit der Horizontalfunktion **MAG** läßt sich das Motorsteuersignal noch näher untersuchen.

Zur noch genaueren Auflösung eines bestimmten Impulses im Signalverlauf ist der betreffende Impuls zwischen vertikalen Cursors einzuschließen und die verzögerte Zeitbasis zu verwenden.

METER () SCOPE				TOGGLE +
SCOPE	CURSOR	Cursor Function	V Bars	Cursoren um den interes- sierenden Impuls setzen
	HORIZON- TAL MENU	Set Delay With Cursor V Bars	_	

Referenzteil

Vorwort zum Referenzteil

Dieses Kapitel enthält detaillierte Informationen über die Betriebsweise der TekScope THS710A, THS720A, THS730A und THS720P. Die hier behandelten Themen sind nach Tastenbezeichnung in alphabetischer Reihenfolge angeordnet.

Thema	Seite
Acquire	3–3
Autorange	3–8
Cursor	3–11
Display/Harmonics	3–13
Hard copy	3–22
Hold	3–26
Horizontal-Einstellungen	3–27
Measure	3–31
Meter-Modus	3–39
Save/Recall	3–45
Scope-Modus	3–48
Trigger-Einstellungen	3–54
Utility	3-62
Vertical-Einstellungen	3–68

ACQUIRE (Erfassung)

Mit der ACQUIRE-Taste werden die einzelnen Erfassungsparameter für den Oszilloskop- und den Meter-Modus eingestellt.

Erfassungsmenü im Oszilloskop-Modus

METER (SCOPE)				TOGGLE +
SCOPE	ACQUIRE	Acquire Mode	Sample Peak Detect	_
			Envelope Average	Anzahl der Erfassungen einstellen
		Stop After	HOLD Button Only	_
			Single Acquisi- tion Sequence	
		Force Trigger	_	

Wichtige Punkte

Erfassungsmodi. Es stehen vier Erfassungsmodi zur Verfügung: Sample (Abtastmodus), Peak Detect (Spitzenwerterkennung), Envelope (Hüllkurve) und Average (Mittelwert). Diese sind auf den nächsten zwei Seiten näher beschrieben.

Im Abtastmodus (Sample) wird je Intervall eine Signalabtastung durchgeführt.

Im Spitzenwerterkennungsmodus (Peak Detect) wird der niedrigste und der höchste Abtastwert zweier aufeinanderfolgender Intervalle verwendet.

Sample. Dieser Modus wird dann verwendet, wenn die Erfassung bei jeder SEC/DIV–Einstellung möglichst schnell durchgeführt werden soll. Sample ist der Vorgabemodus.

Peak Detect. In diesem Modus wird die Möglichkeit der Pseudodarstellung begrenzt. Ferner eignet sich Peak Detect zur Erkennung von Glitchimpulsen, die bis zu 8 ns schmal sein können.

Peak Detect funktioniert nur bei Signalabtastraten bis zu 25 MS/s. Bei Abtastraten von 50 MS/s und höher schaltet das TekScope automatisch in den Signalabtastungsmodus (Sample) um.

Hüllkurven- und Mittelwertmodus. Der Hüllkurven-Modus eignet sich zur Erfassung von Signalabweichungen über einen längeren Zeitraum hinweg, während der Mittelwertmodus einzelne bzw. unzusammenhängende Störspannungen im anzuzeigenden Signal reduziert.

Mit der ⁺/– Wipptaste wird eine bestimmte Anzahl von Erfassungen (N), die im Hüllkurven– bzw. Mittelwert–Signalbild enthalten sein sollen, eingestellt.

- Das Hüllkurvensignal wird gelöscht und anschließend nach N Erfassungen erneut gestartet.
- Das Mittelwertsignal ist ein Abbild der laufenden Mittelwertbildungen von N Erfassungen.
- Wenn der Befehl "Stop After Single Acquisition Sequence" gewählt wird, wird die Hüllkurven– bzw. Mittelwerterfassung nach N Erfassungen gestoppt.

Bei der Prüfung eines störungsbehafteten rechteckförmigen Signals, das aussetzende schmale Glitchimpulse enthält, ist das dargestellte Signalabbild je nach dem gewählten Erfassungsmodus unterschiedlich.

Einzelne Erfassungsfolge. Der Inhalt einer einzelnen Erfassungsfolge hängt vom Erfassungsmodus ab.

Erfassungsmodus	Einzelne Erfassungsfolge	
Signalabtastung (Sample) oder Spitzenwerterkennung (Peak Detect)	eine Erfassung jedes angezeigten Kanals	
Hüllkurve (Envelope) oder Mittelwert (Average)	N Erfassungen jedes angezeigten Kanals (der Wert N kann vom Anwender eingestellt werden)	

Erfassungsmenü im Meter-Modus

METER () SCOPE			
METER	ACQUIRE	Acquire Mode	Sample Peak Detect Average
		Rel Δ	On (Reset Δ) Off

Wichtige Punkte

Erfassungsmodi. Der Meßwerterfasser komprimiert eine Folge von Meßwerten zu einem Punkt und stellt eine Reihe dieser Punkte graphisch dar. Der Erfassungsmodus bestimmt, auf welche Weise der Graph errechnet wird:

- Im Sample–Modus wird f
 ür jeden Punkt der erste Me
 ßwert der Folge angezeigt.
- Peak Detect zeigt eine Spalte an, die den maximalen und den minimalen Meßwert der Folge darstellt.
- Average zeigt den Mittelwert aller während der Folge erfaßten Meßwerte an.

Rel-\Delta-Messungen. Mit Rel Δ wird ein neuer Basislinienwert für nachfolgende DMM–Messungen erfaßt. Rel Δ dient zur Speicherung des aktuellen DMM–Wertes und anschließenden Messung der relativen Abweichung von diesem Wert. Wenn Rel Δ ausgeschaltet wird, wird der Basislinienwert auf null zurückgesetzt.

AUTORANGE (automatische Bereichswahl)

Mit dieser Funktion werden die zur Abtastung eines Signals erforderlichen Konfigurationswerte automatisch eingestellt. Verändert sich das Signal, dann verändert sich auch die Konfiguration weiterhin, um das Signal verfolgen zu können. Autorange funktioniert unabhängig im Oszilloskop– und im Meter–Modus. Siehe weitere Angaben zu Autorange (THS720P) auf Seite 3–16.

Wenn die Autorange–Funktion zum ersten Mal gewählt wird, gelten die folgenden Voreinstellungen:

Oszilloskopmodus	Meter-Modus
Erfassungsmodus: Signalabtastung	keine
Erfassung stoppen: nur durch HOLD– Taste	
vertikale Kopplung: DC (sofern GND gewählt wurde)	
Bandbreite: voll	
Invertierung: aus	
horizontale Position: mittig	
horizontale Vergrößerung: aus	
Triggerquelle: niedrigster angezeigter Kanal	
Triggerart: Flanke	
Triggerkopplung: DC	
Triggerflanke: positiv	
Triggerholdoff: Minimalwert	
Anzeigeart: Vektoren	
Anzeigeformat: YT	

Unter den folgenden Bedingungen wird ein Zyklus automatischer Bereichswahl gestartet:

Oszilloskopmodus	Meter-Modus
Es sind zu viele bzw. zu wenige Signalperioden vorhanden, um eine deutliche Anzeige der niedrigeren Kanäle zu ermöglichen.	DMM–Meßwert überschreitet \pm 3600 Zählwerte bzw. fällt unter \pm 330 Zählwerte ab.
Die Signalamplitude ist im Vergleich zum ganzen Bildschirm zu groß bzw. zu klein, wenn nur ein Kanal angezeigt wird.	
Die Signalamplitude ist im Vergleich zum halben Bildschirm zu groß bzw. zu klein, wenn zwei Kanäle Kanal angezeigt werden.	

Mit der Autorange–Funktion werden die folgenden Einstellungen vorgenommen:

Oszilloskopmodus	Meter-Modus
vertikale VOLTS/DIV-Einstellung	Bereichseinstellung (nur an Bereiche
horizontale SEC/DIV-Einstellung	von 4 v oder noner)
Einstellung des Triggerpegels auf 50%	

Die Autorange–Funktion wird durch die folgenden Änderungen ausgeschaltet:

Oszilloskopmodus	Meter-Modus
Änderung des Befehls "Stop After Single Acquisition Sequence"	Änderung des Bereichs (VOLTS/DIV)
Änderung der VOLTS/DIV–Einstellung	
Änderung der SEC/DIV-Einstellung	
Änderung der Triggerart	
Änderung des Triggerpegels	
Änderung der Triggerkopplung	
Änderung des Triggerholdoff	
Änderung des Anzeigenformats in XY	
Änderung der Anzeigeart	

CURSOR

Mit der CURSOR–Taste wird das Cursormenü angezeigt. Im Oszilloskopmodus basiert die Cursorfunktion auf der 2500–Punkt– Aufzeichnung des gewählten Signals und im Meter–Modus auf der 250–Punkt–Aufzeichnung des Meßwerterfassers.

			NICLINUFII FICLINUFII III-IU-ALIJIA NICLINUFII II-IU-ALIJIA
SCOPE	CURSOR	Cursor Function	Off H Bars V Bars Paired
		Time Units	Seconds 1/seconds (Hz) Degrees
		Set 0° and 360° with V Bars	—
METER	CURSOR	Cursor Function	Off H Bars V Bars Paired

Wichtige Punkte

Cursorbewegung. Der aktive Cursor wird mit der ⁺/– Wipptaste bewegt. Der Aktiv–Status eines Cursors wird mit der TOGGLE–Taste geändert.

Feinabstimmung der Cursorbewegung. Mit der MAG–Taste kann ein Cursor an jedem Punkt des 2500–Punkt–Oszilloskopsignals plaziert werden.

Cursorfunktionen. Mit den horizontalen Cursorn (H Bars) wird Spannung und mit den vertikalen Cursorn (V Bars) Zeit, Frequenz oder Winkelgrad gemessen. Das Cursorpaar (Paired) mißt Spannung und Zeit, Spannung und Frequenz bzw. Spannung und Grad. **Phasenmessungen**. Vertikale Cursoren (V Bars) auf die Punkte setzen, die den Phasenlagen 0° bzw. 360° entsprechen, und die Taste **Set 0**° **and 360**° **with V Bars** drücken. Dann einen dieser Cursoren auf den gewünschten Meßpunkt setzen.

@ Readout. Bei den vertikalen Cursorn (V Bar) gibt der nach dem Symbol @angezeigte Wert die Position des aktiven Cursors im Verhältnis zum Triggerpunkt an. Bei Messungen von Phasenwinkeln bezieht sich die Angabe auf die als 0° bzw. 360° angegebenen Punkte. Bei den horizontalen Cursorn (H Bars) bzw. dem Cursorpaar (Paired) verweist dieser Wert auf die Position im Verhältnis zu null Volt.

DISPLAY/HARMONICS (Anzeige/Oberwellen)

Mit der **DISPLAY**–Taste wird die Darstellungsweise der Signal– abbildungen gewählt und die Abbildungsart geändert. Im TekScope THS720P aktiviert die Taste DISPLAY auch die Funktion der Oberwellenanzeige. Siehe eine Beschreibung hierzu auf Seite 3–16.

N ITL I NUFII II HU 411 JTI 4 METER) TOGGLE NITLIINUHI IIHU 4ILITI 4 NITLIINUHII SCOPE) NITLIINUHII IIHU 1IIJII 1 Off SCOPE DISPLAY Harmonics (nur THS720P) **Display Style** Vectors Dots Vector Accumu-Ansammlungszeit late **Dot Accumulate** einstellen **Display Contrast** Kontrast ____ einstellen Graticule Full Grid Cross Hair Frame Format YΤ XY

Anzeigemenü im Oszilloskopmodus

Wichtige Punkte

Abbildungsart (Style). Es stehen vier Signalabbildungsarten zur Verfügung:

- Vectors: Der auf der Anzeige zwischen nebeneinanderliegenden Abtastpunkten vorhandene Zwischenraum wird gefüllt. Weit auseinanderliegende Punkte werden mittels (sin x)/x–Interpolation verbunden.
- Dots: Nur die einzelnen Abtastpunkte werden angezeigt.
- Vector Accumulate: Die Vektoranzeige wird durch Nachleuchten verstärkt. Die Ansammlungszeit läßt sich mit der +/– Wipptaste einstellen.
- Dot Accumulate: Die Punktanzeige wird durch Nachleuchten verstärkt. Die Ansammlungszeit läßt sich mit der ⁺/– Wipptaste einstellen.

HINWEIS. Bei den Abbildungsarten Vector Accumulate und Dot Accumulate handelt es sich ausschließlich um Anzeigefunktionen. Bei Änderung der Einstellungen werden die angesammelten Meßdaten in den meisten Fällen gelöscht. Die angesammelten Signalwerte können nicht gespeichert werden.

XY–Format. Wenn Kanal 1 an der horizontalen und Kanal 2 an der vertikalen Achse angezeigt werden soll, wird als Anzeigeformat XY gewählt. Die Funktion der Bedienelemente ist dann wie folgt:

- Mit den Bedienelementen VOLTS/DIV und vertikale POSITION f
 ür Kanal 1 werden nun die horizontale Skala und Position eingestellt.
- Mit den Bedienelementen VOLTS/DIV und vertikale POSITION f
 ür Kanal 2 werden weiterhin die vertikale Skala und Position eingestellt.
- Die Bedienelemente SEC/DIV und horizontale POSITION beziehen sich auf die Zeitablenkung und den abgebildeten Teil des Signals.

HINWEIS. Aus dem oben dargestellten Beispiel einer XY–Anzeige ist die I–V–Charakteristik eines Leistungs–Schalt–MOSFET ersichtlich. Das an der vertikalen Achse angezeigte Stromsignal wird mit einem Stromtastkopf A6302 und einem Stromtastkopfverstärker AM503B von Tektronix gemessen.

Im XY–Anzeigeformat können die folgenden Funktionen nicht aktiviert werden:

- Rev bzw. Math waveforms
- Cursors
- Horizontal MAG
- Autorange (veranlaßt, daß das Anzeigeformat auf YT zurückgesetzt wird)

				TOGGLE +
SCOPE	DISPLAY	Harmonics	On	_
		Show	All from Odd from Even from	Oberwellen- gruppe einstellen
		Display Con- trast	_	Kontrast einstellen
		THD Method	THD-F THD-R	_
		Probes	Ch 1 Probe Ch 2 Probe	Umwandlungs- faktor oder Tastkopf- abschwächung einstellen

Anzeigemenü im Oberwellenmodus (THS720P)

Wichtige Punkte

Instrumenteneinstellungen. Nach der Umschaltung auf Harmonics wird das TekScope automatisch wie folgt konfiguriert. Bei einer Änderung der Einstellungen wird die Meßgenauigkeit nicht gewährleistet.

- DMM, REF A, REFB und die Cursoren sind unwirksam.
- Kanal 1 mißt Spannungen, Kanal 2 Ströme. Math liefert das Produkt Kn.1 × Kn. 2.
- Für die Kanäle gilt jeweils DC–Triggerkopplung, Invertierung aus und eine Begrenzung der Bandbreite auf 20 MHz.
- Triggereinstellungen: Flanke, Quelle Kn. 1, DC–Kopplung, positive Flanke, automatisch, minimaler Holdoff.
- Die Einstellungen vertikal, horizontal und f
 ür die Triggerung werden durch die Autorange–Funktion gesteuert.
- Für den Erfassungsmodus gilt Average 16.

THD-Berechnung. Durch die THD Methode wird spezifiziert, ob der Oberwellengehalt (Total Harmonics Distortion) auf den Grundwellenanteil (THD–F) oder den Effektivwert (THD–R) des Eingangssignals bezogen werden soll.

Oberwellenanzeige (THS720P)

Die Tasten CH1 und CH2 rufen die Anzeige der Oberwellenspannungen bzw. der Oberwellenströme auf. Die Oberwellenanzeige gliedert sich, siehe das folgende Beispiel, in fünf Teile. Die Bedeutung dieser Teile wird auf den drei folgenden Seiten erläutert.

Zur Ausgabe von Leistungsmeßwerten ist **MATH** zu drücken. Siehe weitere Angaben hierzu unter *Leistungsmessungen* auf Seite 3–20.

Statuszeile. Die Statuszeile oben im Display enthält Angaben zur Datenerfassung und zur Triggerung wie bei der Anzeige im Oszilloskopmodus. Siehe weitere Angaben hierzu auf Seite 3–49. Die Oberwellenanzeige gibt die jeweils angewählte Oberwelle an. Mit der Wipptaste ⁺/– lassen sich Werte der Leistungsmessung für eine höhere/niedrigere Oberwelle aufrufen.

Oberwellenmeßwerte. Die Anzeigezeilen über dem Rasterbereich enthalten Meßwerte des Oberwellengehalts des Signals und die gewählte Oberwelle.

Ch1 THD-R = 6.1 % RMS = 117.8 V 3rd Harmonic %Fund = 2.8 % Freq = 180 Hz hRMS = 3.29 V Phase = - 38 °

Oberwell- enmeßwerte	Erläuterung
THD-F oder THD-R	Gesamter Oberwellengehalt des Signals als Relativwert bezogen auf den Grundwellenanteil (THD–F) oder den Effektivwert (THD–R) des Eingangssignals
RMS	Effektivwert des Eingangssignals über einen Zyklus
%Fund	Amplitude der angewählten Oberwelle bezogen auf die Grundwelle
hRMS	Effektivwert der Spannung oder der Stromstärke der angewählten Oberwelle in V bzw. A
Freq	Frequenz der angewählten Oberwelle
Phase	Phase der angewählten Oberwelle gegen die Phase der Grundwelle

Meldungszeile. In der Meldungszeile erscheint eine Meldung wie etwa "Low Amplitude", wenn das Eingangssignal nicht den Bedingungen für genaue Messungen genügt. Es ist dann zunächst für ausreichende Bedingungen für eine gute Messung zu sorgen. **Meßwert–Readoutbereich**. Die Fläche rechts neben dem Rasterbereich enthält Meßwerte wie bei der Anzeige im Oszilloskopmodus. Siehe weitere Angaben hierzu auf Seite 3–53.

Anzeigezeilen für den Signalverlauf. Die Anzeigezeilen unter dem Rasterbereich enthalten spezifische Angaben zum Signalverlauf wie bei der Anzeige im Oszilloskopmodus. Siehe weitere Angaben hierzu auf Seite 3–51.

Rasterbereich. Der Rasterbereich enthält eine Darstellung der Oberwellenanteile als Balkendiagramm. Die Taste CH1 ist zu drücken, wenn die betreffenden Spannungen dargestellt werden sollen. Die Taste CH2 ruft eine Darstellung der Stromstärken auf.

Leistungsmessungen (THS720P)

Nach Betätigung der Taste **MATH** gibt das TekScope Momentanwerte der Leistungsmessung aus, die sich aus den gemessenen Spannungen und Stromstärken ergeben. Der Kasten enthält berechnete Leistungsdaten, die ab Beginn der Datenerfassung angesammelt wurden.

Math			
W =	26.23 w	PF =	0.56
VA =	47.07 va	DPF =	0.89
VAR=	39.09 var	θ =	28°
	Average	Minimum	Maximum
W	25.67 w	26.16mw	26.26 w
VA	46.2 va	4.719 va	47.33 va
VAR	38.39 VAR	4.719 VAR	39.37 VAR
V	117.9 v	117.7 v	118.3 v
A	392ma	39.94 _{ma}	400.5 _m

Leistungsmeßwerte	Erläuterung
W	Wirkleistung
VA	Scheinleistung
VAR	Blindleistung
PF	Wirkleistungsfaktor der Spannungs- und Stromsignale
DPF	Blindleistungsfaktor der Spannungs– und Stromsignale
θ	Phasendifferenz zwischen den Spannungs– und Stromsignalen

Siehe nähere Angaben zur Leistungsmessung und zu den Berechnungsverfahren auf Seite A–9.

Anzeigemenü im Meter-Modus

METER METER				TOGGLE +
METER	DISPLAY	Line Style	Thin Thick	_
		Display Contrast	—	Kontrast einstellen
		Graticule	Full Grid Cross Hair Frame	_

Wichtige Punkte

Linienart (Line Style) des Meßwerterfassers. Für einen Meßwerterfassungsgraphen, der drei Pixel hoch ist, sollte zur deutlicheren Erkennung die Option "Thick" gewählt werden. Die Vorgabeeinstellung (Thin) ist ein Pixel hoch.

HARD COPY (Ausdruck)

Sofern ein Drucker angeschlossen und entsprechend konfiguriert ist, kann ein Ausdruck der Anzeige generiert werden. Zum Start des Druckbetriebs muß die HARD COPY–Taste gedrückt werden. Wenn die Menüs nicht auf dem Ausdruck enthalten sein sollen, muß zuvor die Taste CLEAR MENU gedrückt werden. Geräteeinstellungen können während des Druckbetriebs nicht geändert werden.

Anschluß eines Druckers

Der Drucker wird mit dem RS–232–Kabel an den RS–232–Port an der Seite des TekScopes angeschlossen. Zum RS–232–Kabelsatz gehört auch ein Adapter für 9–polige RS–232–Anschlußstecker.

- Hinweise zur Einstellung des TekScopes f
 ür die RS–232–Kommunikation mit dem Drucker sind im Abschnitt RS–232–System auf Seite 3–64 enthalten.
- Hinweise zur Einstellung der Baudrate und anderer erforderlicher Parameter können dem Benutzerhandbuch des Druckers entnommen werden.
- Angaben über Kabel und Adapter für RS–232 sind dem Abschnitt Herstellung der Verbindung auf Seite 3–24 zu entnehmen.

Einstellungen vor dem Drucken

Der Drucker und das Seitenformat werden folgendermaßen gewählt:

METER METER			
SCOPE <i>oder</i> METER	UTILITY	System	Hard Copy
		Layout	Landscape Portrait
		Format	drei Seiten von Formaten
		Select Page	_
		OK Select Format	—

Die folgenden Drucker- und Dateiformate werden unterstützt:

- BMP (Microsoft Windows Datei)
- Deskjet (hochauflösender Drucker)
- DPU 411/II, HC 411 (Thermodrucker)
- DPU 412 (Thermodrucker)
- EPS Image (eingeschaltete Postscript–Bilddatei)
- Epson (9–Stift– und 24–Stift–Nadeldrucker)
- Interleaf .img (Bildobjektdatei)
- Laserjet (Laserdrucker)
- PCX (PC Paintbrush Monochrombilddatei)
- Thinkjet (Tintenstrahldrucker)
- TIFF (tag image file format Kennzeichnungsbilddateiformat)

Herstellung der Verbindung

Die Angaben der folgenden Tabelle sollen den Anschluß des TekScope an den PC oder den seriellen Drucker erleichtern. Für diese Geräte ist jeweils ein RS–232–Spezialkabel zu verwenden. Adapter, die zum TekScope nicht mitgeliefert wurden, sind bei allen Händlern für Computerzubehör erhältlich.

Nullmodem– Adapter RJ–45 an Buchse 9–polig (Standard)	Adapter RJ-45 an Stecker 9-polig ¹	Adapter 9–polig a Stecker 25–polig	Stecker an 2	Adapter 25-polig Buchsen	Buchse an Ileiste ³
Drucker HC 411 od		•			
Drucker Thinkjet mit Kabel 24542G und Adapter für Steckerleiste 9-polig		•			
Serielle Drucker all	•		•		
Sun workstations	•		•		
PC/AT oder Laptop mit 9–poligem Stecker		•			
PC mit 25-poligem	•		•	•	

¹ Teilenummer Tektronix 103–0334–XX (zum HC 411 mitgeliefert)

- ² Teilenummer Radio Shack 26–1388 oder gleichwertig
- ³ Teilenummer Radio Shack 26–1495 oder gleichwertig

Fehlersuche bei Problemen mit RS-232

Probleme, die in der Kommunikation zwischen dem TekScope und dem Personal Computer oder dem Drucker auftreten, lassen sich vielleicht auf die folgende Weise beheben.

- Wurden die jeweils richtigen Kabel und Adapter für RS–232 verwendet? Erfordert die betreffende Verbindung einen Anschluß über ein Nullmodem (Sende–/Empfangsdatenleitungen und Steuerleitungen sind gekreuzt) oder über ein einfaches Kabel?
- Sind die Kabel und Adapter f
 ür RS-232 gut und fest an das TekScope und das richtige Port des Personal Computers oder des Druckers angeschlossen? Ruft der Drucker bzw. das Computer-Programm das richtige Port auf? Programm bzw. Drucker nochmals starten.
- Entsprechen die Einstellungen am TekScope den Einstellungen, mit denen der Drucker bzw. das Computer–Programm arbeiten? Zunächst Set RS–232 Parameters = Default wählen (im RS–232–System des Utility–Menüs). Dann nur solche Menüoptionen ändern, die unbedingt geändert werden müssen, wie etwa die Baudrate. Programm bzw. Drucker nochmals starten.

HOLD (Haltefunktion)

Mit der HOLD– (RUN/STOP–) Taste wird die Meßwerterfassung gestoppt und gestartet. Da der Oszilloskop– und der Meter–Modus über unabhängige Erfassungszustände verfügen, ist die Funktion der HOLD–Taste in diesen beiden Modi unterschiedlich.

\bigcirc

Haltefunktion im Oszilloskop-Modus

Im Meter–Modus hängt die Funktion der HOLD–Taste von der Wahl "Erfassung stoppen nach:" (Stop After) im Erfassungsmenü ab.

Einstellung des Erfassungsmenüs	Funktion der HOLD-Taste
Stop After HOLD Button Only	Beim ersten Tastendruck wird die Signalerfassung gestoppt.
	Beim zweiten Tastendruck wird die Signalerfassung erneut gestartet.
Stop After Single Acquisition Sequence	Bei jedem Tastendruck wird eine neue Erfassungsfolge eingeleitet. Die Erfassungsfolge wird automatisch gestoppt.

Haltefunktion im Meter-Modus

Wenn die HOLD–Taste im Meter–Modus einmal gedrückt wird, werden Meßwert, Meßwertstatistik (MIN, MAX und AVG) sowie die Meßwerterfassungsanzeige festgehalten.

Wenn die HOLD-Taste ein zweites Mal gedrückt wird, werden Datenerfassungsanzeige und Meßwertstatistik zurückgesetzt und die Meßwerterfassung anschließend erneut gestartet.

HORIZONTAL-Einstellungen

Mit den horizontalen Einstellungen können die Zeitablenkung, horizontale Position und horizontale Vergrößerung von Signalen verändert werden.

Horizontale Funktionen im Oszilloskopmodus

METER () (SCOPE)				TOGGLE +
SCOPE	HORIZON-	Time Base	Main	—
	TAL MENU		Delayed Runs After Main	Verzögerungs- zeit einstellen
		Trigger Position	Set to 10% Set to 50% Set to 90%	_
			% Pretrigger	%–Wert einstellen
		Display 'T' at Trig Pt	On Off	_
		Set Delay With Cursor V Bars	—	

Wichtige Punkte

SEC/DIV-Wipptaste. Wenn die Signalerfassung (mit der HOLD-Taste) gestoppt wird, wirken sich Änderungen, die an der Zeitablenkung vorgenommen werden, erst dann aus, wenn die Erfassung wieder gestartet wird.

Rollanzeige. Um eine rollende Anzeige ähnlich einem Bandschreiber zu erzielen, muß der automatische Triggermodus (Auto) gewählt und SEC/DIV auf 500 ms/div oder langsamer eingestellt werden.

POSITION–Wipptaste. Jedes der zwei Bezugssignale (Ref A und Ref B) kann unabhängig von den drei aktiven Signalen (Ch 1, Ch 2 und Math) positioniert werden. Auch kann die horizontale Position so eingestellt werden, daß alle Signale einander folgen. Nähere Hinweise hierzu sind im Abschnitt *Vertikalmenü für Ref A bzw. Ref B* auf Seite 3–71 enthalten.

MAG-Taste. Mit der MAG-Taste wird zwischen der Normalanzeige und der Vergrößerung hin- und hergeschaltet.

- Bei der Normalanzeige wird das 2500–Punkt–Signal um das Zehnfache komprimiert, um 250 Horizontalpunkte darzustellen.
- Bei der Vergrößerung wird die Horizontalskala um das Zehnfache erweitert und ein Signalpunkt je Pixel dargestellt.
- Der zu vergrößernde Abschnitt des Signals wird mit der POSITION–Wipptaste gewählt. Der Indikator der Horizontalposition zeigt die Stelle des vergrößerten Abschnittes innerhalb der vollständigen Signalaufzeichnung an.

Readout. Das Readout–Feld unterhalb des Rasters stellt den horizontalen Skalierungsfaktor dar. Die Anordnung dieses Feldes ist auf Seite 3–48 abgebildet.

Time Base (Zeitablenkung). Die Auswahlmöglichkeiten Main (Hauptzeitablenkung) und Delayed (verzögerte Zeitablenkung) stehen zur Verfügung. Die verzögerte Zeitablenkung wird nach dem Triggerereignis der Hauptzeitablenkung für die Dauer der voreingestellten Verzögerungszeit ausgeführt. Die Verzögerungszeit wird mit der ⁺/– Wipptaste direkt eingestellt.

Set Delay with Cursor V Bars (Einstellung der Verzögerung mit den vertikalen Cursoren). Mit den vertikalen Cursoren den gewünschten Bereich hinter dem Triggerpunkt eingrenzen. Taste Set Delay with Cursor V Bars drücken und verzögerte Zeitablenkung und Verzögerungszeit einstellen. So wird der Bereich zwischen den Cursorn höher aufgelöst.

Triggerposition. Der Prozentwert der Vortriggerung wird folgendermaßen gewählt:

- Set to 10%: Der Triggerpunkt wird nahe dem Beginn der Signalaufzeichnung plaziert.
- Set to 50%: Der Triggerpunkt wird an der Mitte der Signalaufzeichnung plaziert.
- Set to 90%: Der Triggerpunkt wird nahe dem Ende der Signalaufzeichnung plaziert.
- Die Vortriggerung kann auch mit der ⁺/– Wipptaste auf einen beliebigen Wert (0% bis 100%) eingestellt werden.

Display '**T**' at Trigger Point. Der Triggerpunkt am Signal wird mit dem T–Symbol gekennzeichnet. Dieses kann ein– und ausgeschaltet werden.

METER	HORIZONTAL MENU	—	_

Horizontale Funktionen im Meter-Modus

Wichtige Punkte

SEC/DIV-Wipptaste. Die Durchlaufgeschwindigkeit der Meßwerterfassungsaufzeichnung wird mit der SEC/DIV-Wipptaste eingestellt. Wenn die Durchlaufgeschwindigkeit verändert wird, werden die Daten in der Meßwerterfassungsanzeige gelöscht.

Weitere Bedienelemente. Die POSITION–Wipptaste und die MAG– Taste sind im Meter–Modus nicht aktiviert.

MEAS (automatische Meßfunktion)

Mit der MEAS–Taste wird die automatische Meßfunktion des TekScopes aktiviert. Im Oszilloskopmodus mißt das Gerät das gewählte 2500–Punkt–Signal, während die Messung im Meter– Modus in Form von Statistiken, die aus aufeinanderfolgenden Meßwerten errechnet werden, erfolgt.

Messungen im Oszilloskopmodus

METER SCOPE				TOGGLE +
SCOPE	MEAS	Select Meastmnt	sechs Seiten von Messungen	—
		Select Page	_	
		Remove Measrmnt	Measrmnt	Messung wählen
			All Measrmnts	_
		Gating & High- Low Setup	Measurement Gating	Off On
			High-Low Method	Histogram Min/Max
		OK Select Measrmnt	_	_
		OK Remove Measrmnt		

Wichtige Punkte

Wählen von Messungen. Am gewählten Signal können bis zu vier automatische Messungen durchgeführt werden. Diese können rechts vom Raster angezeigt werden. Die auf Seite 3–35 beginnende Tabelle enthält eine genauere Beschreibung der Messungen im Oszilloskopmodus.

Leistungsmessungen (THS720P). Siehe nähere Angaben zu Leistungsmessungen auf Seite 3–20.

High–Low Setup. Das TekScope stellt jeweils den 10%–, 50%– bzw. 90%–Pegel des gewählten Signals fest und errechnet daraus die Meßwerte. Es gibt zwei Methoden, diese Pegel zu bestimmen:

- Histogram: Die Werte werden statistisch eingestellt, d.h. die am häufigsten eintretenden Werte oberhalb bzw. unterhalb des Mittelpunktes (je nachdem, ob der hohe oder der niedrige Bezugspegel definiert wird) werden gefunden. Da bei der statistischen Methode kurzzeitige Aberrationen (Überschwingen, Nachschwingen, Störsignale) vernachlässigt werden, eignet sich diese Methode zur Messung von Digitalsignalen und –impulsen am besten.
- Min-Max: Bei diesem Verfahren werden der höchste und der niedrigste Wert der Signalaufzeichnung verwendet. Diese Methode eignet sich besonders zur Messung von Signalen, die an häufig auftretenden Meßwerten keine großen flachen Abschnitte aufweisen, z.B. Sinuskurven und dreieckförmige Signale.

Getorte Messungen. Durch Toreingrenzungen lassen sich Messungen auf den Teil des Signals beschränken, der zwischen den Cursors liegt. Nach dem Einschalten der getorten Messungen zeigt das Instrument Vertikalbalkencursors. Mit der Wipptaste ⁺/– und der Taste TOGGLE lassen sich die Cursors an die jeweils gewünschte Stelle setzen.

Im folgenden Beispiel schließen die Cursors den zweiten positiven Impuls ein, so daß das Instrument dessen Breite bestimmen kann.

Ohne Vorgabe einer getorten Messung ermittelt das Instrument Meßwerte über die ganze Breite der Signalaufzeichnung.

Messungen im Oszilloskopmodus, Definitionen

Bezeich	nung	Definition
	Ampl	Messung erfolgt am gesamten Signal.
		Amplitude = hoher Wert (100%) – Niedrigwert (0%)
FULF	BrstW	Burstdauer. Messung erfolgt am gesamten Signal.
	cMean	Der arithmetische Mittelwert während des ersten Signalzyklus.
307	cRMS	Die tatsächliche Effektivspannung während des ersten Signalzyklus.
Ł	Fall	Die von der abfallenden Flanke des ersten Signalimpulses für den Abfall von 90% auf 10% seiner Amplitude erforderliche Zeit.
_* _*	Freq	Kehrwert der Periode des ersten Signalzyklus, in Hertz (Hz) gemessen.
	High	Der Wert, der 100% entspricht. Wird entweder mit der Methode "Min/Max" oder "Histogram" errechnet und am gesamten Signal gemessen.
<u>. [], [.</u>	Low	Der Wert, der 0% entspricht. Wird entweder mit der Methode "Min/Max" oder "Histogram" errechnet und am gesamten Signal gemessen.
][].	Мах	Die maximale Amplitude. Die am gesamten Signal gemessene größte positive Spitzenspannung.
	Mean	Der aus dem gesamten Signal errechnete arithmetische Mittelwert.
11	Min	Die minimale Amplitude. Die am gesamten Signal gemessene größte negative Spitzenspannung.

Messungen im Oszilloskopmodus, Definitionen (Fortsetzung)

Bezeichnung	Definition
_ <u></u> ∗_∗ –Duty	Messung am ersten Signalzyklus
	negatives Tastverhältnis = $\frac{\text{negative Breite}}{\text{Periode}} \times 100\%$
-Over	Messung am gesamten Signal <i>negatives Überschwingen</i> = $\frac{Niedrigwert-Min.}{Amplitude} \times 100\%$
–Width	Messung des ersten negativen Signalimpulses. Die Zeit zwischen den bei 50% liegenden Amplitudenpunkten.
Pk-Pk	Messung am gesamten Signal.
	Amplitude = Max – Min
_∗⊦ Period	Die zur vollständigen Ausführung des ersten Signalzyklus erforderliche Zeit, in Sekunden gemessen.
_⊀∗ ⊢ +Duty	Messung des ersten Signalzyklus.
	positives Tastverhältnis = $\frac{\text{positive Breite}}{\text{Periode}} \times 100\%$
+Over	Messung am gesamten Signal.
	positive Überschwingung = $\frac{MaxHöchstwert}{Amplitude} \times 100\%$
∗ ∗ +Width	Messung des ersten positiven Signalimpulses. Die Zeit zwischen den bei 50% liegenden Amplitudenpunkten.
Rise	Die von der steigenden Flanke des ersten Signalimpulses für den Anstieg von 10% auf 90% seiner Amplitude erforderliche Zeit.
The RMS	Die tatsächliche Effektivspannung des gesamten Signals.

Messungen im Meter-Modus

METER METER				TOGGLE +
METER	MEAS	Select Statistic for DMM	Max Avg Min Rel ∆ Max – Min	_
		Select Page	—	
		Remove Statistic	Statistic	Statistische Werte wählen
			All Statistics	
		Beep New Max-Min	On Off	
		OK Select Statistic	—	
		OK Remove Statistic		

Wichtige Punkte

In der Statistik enthaltene Meßdaten. Die statistischen Werte werden aus allen Meßwerten, die seit der letzten Rücksetzung erfaßt wurden, errechnet. Somit können Daten, die nicht mehr in der Meßwerterfassungsaufzeichnung enthalten sind, dargestellt werden.

Readout. Das Readout–Feld der statistischen Werte ist in der oberen rechten Ecke der Anzeige abgebildet (siehe Seite 3–39).

Statistischer Wert	Definition
Мах	Der Maximalwert aller Meßwerte seit der letzten Rücksetzung.
Avg	Der arithmetische Mittelwert aller Meßwerte seit der letzten Rücksetzung.
Min	Der Minimalwert aller Meßwerte seit der letzten Rücksetzung.
Δ0	Der in der Berechnung von Rel Δ verwendete Basislinienwert. Dieser Wert wird nur dann aktualisiert, wenn die Funktion Rel Δ ein– bzw. ausgeschaltet wird.
Max–Min	Die seit der letzten Rücksetzung bestehende Differenz zwischen dem maximalen und dem minimalen Meßwert.

Auswahl der statistischen Werte. Es können drei der folgenden statistischen Werte gewählt werden.

Rücksetzbedingungen. Die errechneten statistischen Werte werden bei Änderung einer der folgenden Einstellungen auf null zurückgesetzt:

- Ausschalten der HOLD–Funktion
- Ändern der Meßfunktion (z.B. von V AC in V DC)
- Ändern des Tastkopfskalierungsfaktors
- Ändern des Wertes Rel∆
- Andern der Durchlaufgeschwindigkeit des Meßwerterfassers

Beep New Max/Min. Mit dieser Funktion kann ein Tonsignal, das bei jeder Aktualisierung des statistischen Max.– bzw. Min.–Wertes ertönt, aktiviert werden.

METER-Modus

Der Meter–Modus wird durch Drücken der METER–Taste aktiviert. Die Meßwerte und die statistischen Werte werden ca. dreimal je Sekunde aktualisiert.

METER	VAC	—	—
	VDC	—	—
	Ω	_	_
))) (Durchgang)	—	—
	-⊳⊁- (Diode)	_	_

Die Anzeige im Meter–Modus (siehe folgende Abbildung) ist in drei Abschnitte unterteilt. Der Inhalt jedes Abschnittes ist auf den folgenden zwei Seiten näher erläutert.

Statuszeile

Die Statuszeile am oberen Rand der Anzeige enthält Erfassungsdaten. Wenn am Eingang eine Überspannung angelegt wird, wird dies durch den Überbereichsindikator angezeigt.

Readout der Erfassungsdaten		Überbereichsanzeige
Tek Run	Pk Detect	Over Range

Die folgende Tabelle enthält Beispiele des Erfassungs-Readouts.

Erfassungs– Readout	Erläuterung	
AUTO Rânge	Erfassung bei eingeschalteter (Auto) oder ausges-	
Run	gestoppt (Hold)	
Hold		
Data: 7	gespeicherte Daten werden (von Adresse 7) zur Anzeige abgerufen, während die Erfassung im Hintergrund abläuft	
Sample	Erfassungsmodus des Meßwerterfassers	

Rasterbereich

Der Rasterbereich enthält die Meßwerterfassungsaufzeichnung, das Balkendiagramm und deren Skalierungsmarkierungen.

Meßwert-Readoutbereiche

Der Bereich oberhalb und zur rechten Seite des Rasters enthält die aktuellen Meßwerte, die statistischen sowie die Cursor–Readoutwerte.

Meßwerterfassungsanzeige

Der Meßwerterfasser zeichnet die über einen bestimmten Zeitraum erfaßten Werte auf und erstellt ein Kurvenbild ähnlich einem Streifenschreiber. Der Zeitraum kann auf einen Wert zwischen vier Minuten und acht Tagen eingestellt werden.

Das Kurvenbild des Meßwerterfassers wird nach links verschoben, d.h. die zuletzt erfaßten Meßdaten erscheinen stets an der rechten Seite des Rasters, während die ältesten Meßdaten an der linken Seite des Rasters verschwinden und gelöscht werden.

Rücksetzung. Das als Kurvenbild des Meßwerterfassers dargestellte Signal wird bei Änderung einer der folgenden Einstellungen gelöscht:

- Ausschalten der HOLD–Funktion
- Ändern der Meßfunktion (z.B. von V AC in V DC)
- Ändern des Tastkopfskalierungsfaktors
- Ändern des Wertes Rel∆
- Andern der Durchlaufgeschwindigkeit des Meßwerterfassers

Nullpegel. Wenn V DC gewählt wird, befindet sich der Nullpegel an der horizontalen Mittellinie des Rasters; bei allen anderen Meßfunktionen befindet sich der Nullpegel am unteren Rand des Rasters. Mit der vertikalen Wipptaste POSITION läßt sich der Nullpegel verschieben.

Bezugspegel. Wenn die Funktion Rel Δ eingeschaltet ist, erscheint der Rel Δ -Basislinienwert an der linken Seite des Rasters.

VOLTS/DIV-Wipptaste. Mit der VOLTS/DIV-Wipptaste werden der Meßbereich und die vertikale Skala des Meßwerterfasser-Kurvenbildes eingestellt. Wenn die vertikale Skala während der Meßwerterfassung verändert wird, wird eine vertikale Unterbrechung verursacht, d.h. alte Daten werden nicht entsprechend der aktuellen Einstellung neu skaliert. Wird die vertikale Skala jedoch geändert, während die HOLD-Funktion eingeschaltet ist, wird das gesamte Signal entsprechend der aktuellen Einstellung skaliert.

SEC/DIV-Wipptaste. Mit dieser Wipptaste wird die Durchlaufgeschwindigkeit des Meßwerterfasser–Kurvenbildes eingestellt. Wenn diese Geschwindigkeit geändert wird, werden die im Kurvenbild enthaltenen Meßdaten gelöscht.

Zoom. Das Kurvenbild des Meßwerterfassers kann bei der Funktion V DC um die Bildschirmmitte, bei allen anderen Funktionen vom unteren Bildschirmrand aus vertikal vergrößert werden. Mit dieser Zoom–Funktion kann die Vertikalauflösung als Meßgerät voll ausgenutzt werden.

Mit der vertikalen Wipptaste POSITION ist zunächst das Kurvenbild vertikal auf die gewünschte Höhe zu verschieben, in der dann Zoom aufgerufen wird. Dann den Zoom–Faktor mit dem Befehl Zoom des Vertikal–Menüs einstellen (siehe Seite 3–72). Bei einem Wechsel des Bereichs oder der Funktion gelten wieder die Standardvorgaben für die Größe und die Position des Kurvenbildes.

Balkendiagramm

Die schnelle Aktualisierungsrate des Balkendiagramms simuliert die Bewegungen eines Analogmeßgerätes. Das Balkendiagramm wird zur rechten Seite der Meßwerterfassungsanzeige angezeigt und verwendet die vertikale Achse der Meßwerterfassungsanzeige als Skala. Das Balkendiagramm erstreckt sich von null (bzw. vom Rel- Δ -Basislinienwert) bis zum aktuellen Meßwert. Es verfolgt die Meßwertrate und wird ca. zehnmal je Sekunde aktualisiert.

Darüberhinaus enthält das Balkendiagramm zwei unausgefüllte Segmente, die jeweils den aktuellen statistischen Minimal– und Maximalwert darstellen.

Weitere Informationen

Weitere Hinweise zu den Menüs und der Funktionsweise des Meßmodus sind in zahlreichen anderen Abschnitten dieses Kapitels enthalten. Beziehen Sie sich bitte auf die jeweiligen Abschnitte. Diese sind nach Tastenbezeichnung in alphabetischer Reihenfolge aufgeführt.

SAVE/RECALL (Speichern/Abrufen)

Mit der SAVE/RECALL–Taste werden die folgenden Größen gespeichert bzw. abgerufen:

- Einstellungen
- Oszilloskopsignale
- DMM–Meßdaten

Save/Recall-Menü im Oszilloskopmodus

METER () SCOPE			NILINUFII FILINUFII IIHU MILINA NILINUFII IIHU MILINA	TOGGLE +
SCOPE	SAVE/ RECALL	Save Current Setup	To Setup	Einstellung- sposition wählen
		Recall Saved Setup	Recall Factory Setup	—
			Recall Setup	Einstellung- sposition wählen
		Save selected wfm	To Waveform	Signalposition wählen
		Recall Saved Waveform	Load REFA From Wfrm	
			Load REFB From Wfrm	
		OK Save Setup	_	_
		OK Recall Setup		
		OK Recall Factory		
		OK Save Waveform		
		OK Recall Waveform		

Wichtige Punkte

Speichern und Abrufen von Einstellungen. Das TekScope speichert die vollständige Einstellung im nichtflüchtigen Speicher, unabhängig davon, ob es im Oszilloskop– oder im Meter–Modus betrieben wird. Wenn die Einstellung abgerufen wird, wird der Modus, in dem sie gespeichert wurde, aktiviert.

Abrufen der werksseitigen Vorgabeeinstellung. Diese Einstellung kann abgerufen werden, um eine bekannte Einstellung des TekScopes zu initialisieren. Die werksseitige Vorgabeeinstellung ist in *Anhang B* näher beschrieben.

Speichern eines Signals. Das zu speichernde Signal wird mit der CH1–, CH2– oder MATH–Taste gewählt. Die Signalposition und Skalierungsfaktoren werden zusammen mit jedem Signal gespeichert.

Abrufen eines Signals. Ein gespeichertes Signal kann zur Anzeige als Ref A oder Ref B abgerufen werden. Bei Abruf eines gespeicherten Signals überschreibt dieses das zuvor als Ref A bzw. Ref B vorhandene Signal.

Gleichzeitiges Speichern und Anzeigen eines Signals. Mit einem Vertikalmenü kann ein Signal gespeichert und gleichzeitig angezeigt werden. Nähere Hinweise zu dieser Funktion sind im Abschnitt *Vertikalmenü für Ref A bzw. Ref B* auf Seite 3–71 enthalten.

Abspeichern von Oberwellendaten (THS720P). Bei einer Abspeicherung von Signalen der Kanäle 1 oder 2 bei eingeschalteter Oberwellenanzeige werden gleichzeitig auch die Meßwerte und Balkendiagramme der Oberwellenmessung abgespeichert. Bei Abruf des Signals muß auch die Oberwellenanzeige eingeschaltet werden, damit die Meßwerte und Balkendiagramme der Oberwellenmessung wieder angezeigt werden.

Abspeichern von Daten der Leistungsmessung (THS720P). Bei einer Abspeicherung von Signalen MATH bei eingeschalteter Oberwellenanzeige werden gleichzeitig auch die Meßwerte der Leistungsmessung abgespeichert. Bei Abruf des Signals muß auch die Oberwellenanzeige eingeschaltet werden, damit die Meßwerte der Leistungsmessung wieder angezeigt werden.

METER METER				TOGGLE +
METER	SAVE/ RECALL	Save Current Setup	To Setup	Einstellung- sposition wählen
		Recall Saved Setup	Recall Factory Setup	—
			Recall Setup	Einstellung- sposition wählen
		Save DMM Data	To Data	DMM–Meßda- tenposition
		Recall DMM Data	Recall Data Clear Data From Screen	wählen
		OK Save Setup	_	_
		OK Recall Setup		
		OK Recall Factory		
		OK Save Data		
		OK Recall Data		
		OK Clear Data		

Save/Recall-Menü im Meter-Modus

Wichtige Punkte

Speichern und Abrufen von Einstellungen. Das TekScope speichert die vollständige Einstellung im nichtflüchtigen Speicher, unabhängig davon, ob es im Oszilloskop– oder im Meter–Modus betrieben wird.

Speichern von DMM–Meßdaten. Beim Speichern von DMM–Meßdaten werden der Meter–Modus, der Meßbereich, die aktuelle DMM– Meßwertanzeige, die statistischen Werte und das Kurvenbild des Meßwerterfassers gespeichert.

SCOPE-Modus

Der Oszilloskopmodus wird mit der SCOPE–Taste aktiviert. Wenn er bereits aktiviert ist, bewirkt diese Taste keine Aktion.

Die Anzeige im Oszilloskopmodus (siehe folgende Abbildung) ist in vier Abschnitte unterteilt. Der Inhalt jedes Abschnittes ist auf den folgenden fünf Seiten näher erläutert.

Statuszeile

Die Statuszeile am oberen Rand der Anzeige enthält Erfassungs- und Triggerdaten.

Die folgende Tabelle enthält Beispiele des Erfassungs–Readouts, das während der Messung angezeigt wird. Wenn die HOLD–Taste gedrückt wird, um die Erfassung zu stoppen, zeigt das Readout die seit dem letzten Stoppen erfaßte Signalanzahl.

Erfassungs- Readout	Erläuterung	
AUTO RANGE	Erfassung bei eingeschalteter (Auto:) oder ausges-	
Run:	Challeler (Run.) Autorange-Funktion	
25MS/s	aktuelle Abtastrate	
Pk Detect	Erfassungsmodus	

In der folgenden Tabelle wird die Bedeutung des Triggerstatusindikators erläutert.

Triggerstatus	Erläuterung
Auto	freilaufender Betrieb im automatischen Triggermodus
Trig?	wartet auf Triggerung im normalen Triggermodus
PrTrig	erfaßt neue Vortriggerungsmeßdaten

Die folgende Tabelle enthält Beispiele weiterer Readoutwerte, die manchmal auf der Statuszeile angezeigt werden.

Weitere Readoutwerte	Erläuterung
🔄 -3.253 VDC	DMM–Symbol und aktueller DMM–Meßwert
🕂 Delay: Ξ 1.014μs	Parameter und dessen aktueller Wert (nur wenn die +/- Wipptaste einem Parameter zugeordnet ist)
Ext Trig	Zeigt an, daß der DMM–Eingang als externer Triggereingang verwendet wird.

Rasterbereich

Der Rasterbereich enthält Signale und Positionsindikatoren.

Readoutzeilen des Signals

Die Readoutzeilen unterhalb des Rasters enthalten bestimmte Daten der angezeigten Signale. In der oberen Zeile werden die vertikalen Readoutwerte von Kanal 1 und Kanal 2 angezeigt. Die untere Zeile enthält die Readoutwerte des gewählten Signals, entweder Ref A, Ref B oder MATH.

Die folgende Tabelle enthält Beispiele der vertikalen Readoutsymbole.

Vertikale Readout- symbole	Erläuterung
612	gewähltes Signal
Ch 1	nicht gewähltes Signal
+	invertierter Kanal
ក	GND-Kopplung
\sim	AC-Kopplung
B _W	Bandbreitenbegrenzung eingeschaltet
B-8	Bezugssignal Ref B wird von Signalspeicheradresse 8 abgerufen

Die Signal–Readoutzeilen enthalten außerdem die Zeitablenkung sowie Triggerdaten.

Die folgende Tabelle erläutert die Angaben zur Zeitablenkung.

Angaben zur Zeitablenkung	Erläuterung
M	Hauptzeitablenkung
D	Verzögerte Zeitablenkung

Die folgende Tabelle enthält Beispiele von Triggerdaten.

Triggerdaten	Erläuterung
Ch 1	Triggerquelle
N	Triggerflanke
-148mV	Triggerpegel
л	Impulstriggerpolarität
>	Impulstriggerbedingung
990ns	Impulstriggerbreite
Even Field Line: 146	Videotriggerbedingung

Readoutbereich der Meßwerte

Der Bereich zur rechten Seite des Rasters enthält Cursor– und Messungs–Readoutwerte. Wenn die Anzeige eines Meßergebnisses ein Messungsbegleitsignal enthält, ist das Signal u.U. nicht stark genug, um eine genaue Messung durchzuführen.

Weitere Informationen

Weitere Hinweise zu den Menüs und der Funktionsweise des Oszilloskopmodus sind in zahlreichen anderen Abschnitten dieses Kapitels enthalten. Beziehen Sie sich bitte auf die jeweiligen Abschnitte. Diese sind nach Tastenbezeichnung in alphabetischer Reihenfolge aufgeführt.

TRIGGER-Einstellungen

Die Triggerung ist nur im Oszilloskopmodus möglich. Die unten abgebildeten Trigger–Bedienelemente sind im Meter–Modus nicht aktiv.

Es wird zwischen den folgenden Triggerarten unterschieden:

- Edge: Triggert auf der steigenden oder fallenden Flanke des Eingangssignals (siehe Seite 3–56).
- Pulse: Triggert auf bestimmte Ereignisse, die durch Zeitwerte gekennzeichnet werden können (siehe Seite 3–58).
- Video: Triggert bei einer spezifischen Zeile in Halbbild 1 oder Halbbild 2 oder bei allen Zeilen eines NTSC-, PAL- oder SECAM-Standardvideosignals (siehe Seite 3-60).
- Motor: Triggert (THS720P) bei bipolaren Signalen einer Motoransteuerung (siehe Seite 3–61).

Die Triggerart wird mit der äußerst linken Taste des Triggermenüs gewählt. Die restlichen Wahlmöglichkeiten des Triggermenüs hängen von der gewählten Triggerart ab.

	Edge oder Motor		Pulse	Video	
Source	Ch1, Ch2 oder External (nur bei Edge) wählen	Source	Ch 1 oder Ch 2 wählen	Source	Ch 1 oder Ch 2 wählen
Kn. 2)	DC DC	width	Positive 1	jer on	Odd Field ³ (Halbbild)
1 oder I	HF Reject	larity &	Negative ¹	Trig	Even Field ³ (Halbbild)
ing (Kn.	LF Manager Reject	Ро			Any Field ³ (Vollbild)
Coupl	Noise Rej (DC Low Sensitivity)		¹ Impulsbreite mit der +/– Wipptaste einstellen		Lines ³ Gewünschte Zeile mit der +/– Wipptaste einstellen
Slope	Positive	when	Less Than Width	Class	NTSC
	Negative	Trigger	Greater Than Width	Video	PAL SECAM
			Equal To _i⊢†µ⊥ Width ²		Custom Scan Rate ⁴ (Besondere Abtastrate)
			Not Equal To Width ²		⁴ Die Abtastrate mit
			² Toleranz einstellen		einstellen

Flankentriggerung

Mit der Flankentriggerung wird auf die steigende bzw. fallende Flanke des Eingangssignals an der Triggeransprechschwelle getriggert.

METER C SCOPE				TOGGLE +
SCOPE	TRIGGER	Trigger Type	Edge	—
	MENU	Trigger Source	Ch1 Ch2	
		Trigger Coupling (nur aus Quellen Ch1 oder Ch2)	DC HF Reject LF Reject Noise Reject	
		Trigger Slope	/ (steigende Flanke) \ (fallende Flanke)	
		Mode & Holdoff	Auto Normal	Holdoff einstellen

Wichtige Punkte

Normaler und automatischer Triggermodus. Der normale Triggermodus wird verwendet, wenn das Oszilloskop nur auf ein gültiges Triggerereignis triggern soll. Der automatische Triggermodus (Auto) wird verwendet, wenn die Erfassung in Abwesenheit eines gültigen Triggerereignisses im freilaufenden Betrieb stattfinden soll. Auto ist auch dann zu wählen, wenn ein nicht getriggertes rollendes Signal bei 500 ms/div oder bei langsamerer Zeitablenkung abgebildet werden soll.

Externer Trigger. Der externe Trigger löst die Triggerung durch ein Signal aus, das an die DMM–Eingänge angeschlossen ist. Die Kopplung ist hierbei immer DC. Der Triggerpegel ist einstellbar 0,2 V oder 2 V.

Holdoff. Mit der Holdoff–Funktion kann die Anzeige komplexer Signale stabilisiert werden. Nach dem Drücken der Menütaste "Mode & Holdoff" wird die Sperrzeit mit der ⁺/– Wipptaste auf einen Wert zwischen 500 ns und 10 s eingestellt.

Der Holdoff beginnt dann, wenn das TekScope ein Triggerereignis erkennt und das Triggersystem deaktiviert, bis die Erfassung vollständig abgeschlossen ist. Das Triggersystem bleibt während der jeder Erfassung folgenden Holdoffzeit deaktiviert.

Während der Holdoffzeit werden Trigger nicht erkannt.

HINWEIS. Zur Erzielung optimaler Ergebnisse sollte bei langen Holdoff–Einstellungen (10 ms und höher) der normale Triggermodus gewählt werden.

Impulstriggerung

Mit der Impulstriggerung werden bestimmte Ereignisse, die durch Zeitwerte gekennzeichnet werden können, eingegrenzt.

METER SCOPE			NICLINUFII NICLINUFII IHUUILINU NICLINUFII IHUUILINUFII	TOGGLE +
SCOPE	TRIGGER	Trigger Type	Pulse	—
	MENU	Trigger Source	Ch1 Ch2	
		Polarity & Width	Positive Negative	Breite einstellen
		Trigger When	Less Than Width	_
			Greater Than Width	
			Equal To Width	\pm % einstellen
			Not Equal To Width	
		Mode & Holdoff	Auto Normal	_

Wichtige Punkte

Triggerbedingungen. Eine Triggerung kann unter den folgenden Bedingungen ausgeführt werden:

- Less Than Width (kleiner als Breite): Triggert auf eine Impulsbreite, die kleiner als die Zeitansprechschwelle ist.
- Greater Than Width (größer als Breite): Triggert eine Impulsbreite, die größer als die Zeitansprechschwelle ist, an.

- Equal To Width (gleich Breite): Triggert auf einen Impuls, der mit der eingestellten Impulsbreite innerhalb einer gegebenen Toleranz übereinstimmt. Die Toleranz ist mit der ⁺/– Wipptaste als Prozentualwert einzustellen. Beispiel: Wenn die Impulsbreite auf 1 µs und die Toleranz auf ± 20% eingestellt sind, wird nur auf Impulsbreiten im Bereich von 800 ns bis 1,2 µs getriggert.
- Not Equal To Width (ungleich Breite): Triggert auf einen Impuls, der nicht mit der eingestellten Impulsbreite und Toleranz übereinstimmt. Die Toleranz ist mit der +/- Wipptaste einzustellen.

Triggerpositionen. Das T–Symbol zeigt an, an welcher Stelle die Triggerung unter den vier verschiedenen Triggerbedingungen stattfindet.

Videotriggerung

Diese Funktion wird zur Triggerung durch eine bestimmte Zeile im ungeradzahligen bzw. im geradzahligen Halbbild oder durch jede beliebige Zeilen eines NTSC–, PAL– oder SECAM–Standardvideosignals verwendet. Darüberhinaus kann auf standardmäßige Videosignale mit Abtastraten bis zu 65 kHz getriggert werden.

METER SCOPE				TOGGLE + -
SCOPE	TRIGGER	Trigger Type	Video	—
	MENU	Trigger Source	Ch1 Ch2	
		Trigger On	Odd Field Even Field Any Field	Zeilennummer eingeben
			Lines	_
		Video Class	NTSC PAL SECAM	_
			Custom Scan Rate	Abtastrate einstellen
		Mode & Holdoff	Auto Normal	Holdoff einstellen

Wichtige Punkte

Synchronimpulse. Wenn Video gewählt wird, wird stets auf in negativer Richtung verlaufende Synchronimpulse getriggert. Wenn das Videosignal positiv verlaufende Synchronimpulse enthält, muß es im Vertikalmenü umgekehrt werden. Weitere Hinweise zur Umkehrung eines Signals sind im Abschnitt *VERTICAL–Einstellungen* auf Seite 3–68 enthalten.

Motortriggerung (THS720P)

In der Triggerart Motor triggert das TekScope bei der steigenden oder der fallenden Flanke eines bipolaren Motoransteuerungssignals.

				TOGGLE +
SCOPE	TRIGGER	Trigger Type	Motor	
	MENU	Trigger Source	Ch1 Ch2	
		Trigger Coupling	DC AC	
		Trigger Slope	l (steigende Flanke) \ (fallende Flanke)	
		Mode & Holdoff	Auto Normal	Holdoff einstellen

Wichtige Punkte

Triggerpegel. Der Triggerpegel läßt sich für positive Flanken von 0,1 bis 5 Skalenteilen einstellen, für negative Flanken von -0,1 bis -5 Skalenteilen. Bei einem Wechsel der Flanke wechselt der Triggerpegel automatisch das Vorzeichen.

UTILITY (Dienstprogramm)

Es folgen einige Anwendungsbeispiele der sechs im Utility–Menü enthaltenen Menüzweige:

- Mit "Config" läßt sich die Firmware–Version anzeigen.
- Mit "Hard Copy" werden die Ausdruck–Parameter konfiguriert. Hinweise zur Einstellung und zum Ausdruck einer Aufzeichnung sind im Abschnitt HARD COPY auf Seite 3–22 enthalten.
- Mit "RS–232" wird die Kommunikation mit einem Gerät an einem entfernten Standort konfiguriert.
- Mit "Misc" wird die Bereitschafts- bzw. Hintergrundbeleuchtungsabschaltung eingestellt.
- Mit "Cal" wird der Signalweg kompensiert.
- Mit "Diag" werden interne Diagnoseprogramme ausgeführt.

Das Utility–Menü wird durch Drücken der UTILITY–Taste angezeigt. Dieses kann sowohl vom Oszilloskop– als auch vom Meter–Modus aus aufgerufen werden. Anschließend wird mit der äußerst linken Taste im Utility–Menü der Menüzweig gewählt. Die restlichen Wahlmöglichkeiten des Utility–Menüs hängen vom gewählten Menüzweig ab.

Config System (Konfigurationssystem)

SCOPE oder	UTILITY	System	Config
METER		Tek Secure Erase Memory	_
		Version	
		OK Erase Setup/Data	

Wichtige Punkte

Tek Secure. Nach der Erfassung vertraulicher Meßdaten kann der Befehl "Tek Secure" ausgeführt werden, bevor das TekScope wieder allgemein zugänglich ist. Mit "Tek Secure" wird folgendes erreicht:

- Die Signale (Oszilloskop und Meßwerterfasser) in allen Bezugsspeichern werden mit Nullwerten ersetzt.
- Die aktuelle Frontplatteneinstellung sowie alle gespeicherten Einstellungen werden auf die werksseitige Vorgabeeinstellung zurückgesetzt.
- Die Pr
 üfsummen aller Signal
 und Einstellungsspeicheradressen werden errechnet, um das erfolgreiche L
 öschen des Signals und der Einstellung zu best
 ätigen.
- Eine entsprechende Bestätigungs- bzw. Warnmeldung wird angezeigt, wenn die Prüfsummenrechnung erfolgreich bzw. erfolglos war.

RS-232–System

METER SCOPE			NITLINUFII FITLINUFII III-UUUIIJII NITLINUFII II-UUUJIJII	TOGGLE +	
SCOPE	UTILITY	System	RS-232	—	
<i>oder</i> METER		Baud Rate	_	Rate wählen	
		Flagging	Hard Flagging	On	
			Soft Flagging	Off	
		Misc	EOL	CR LF CR/LF LF/CR	
			Parity	None Even Odd	
				Stop Bits	1 2
			Delay	Verzögerung einstellen	
					Set RS232 Parameters to Defaults

Wichtige Punkte

Störungssuche am RS-232-System. Bei Schwierigkeiten mit der RS-232-Kommunikation können die folgenden Maßnahmen Abhilfe schaffen:

- Sicherstellen, daß das RS–232–Kabel am korrekten Computer– bzw. Druckerport angeschlossen ist.
- Die RS-232-Parameter auf die Vorgabeeinstellung zurücksetzen und anschließend die Baudrate entsprechend der des Computers bzw. Druckers einstellen. Bei den Vorgabeeinstellungen (mit Ausnahme der Baudrate) handelt es sich um die Standardeinstellungen der meisten Computer und Drucker.
| METER
METER | | | | TOGGLE + |
|----------------------|---------|------------------------|------|-----------------|
| SCOPE | UTILITY | System | Misc | — |
| <i>oder</i>
METER | | Power Off
Time-Out | — | Zeit einstellen |
| | | Backlight Time-
Out | — | Zeit einstellen |

Misc System (verschiedene Systemfunktionen)

Wichtige Punkte

Power Off Time-Out (Ruhesabschaltung). Mit dieser Funktion wird das TekScope bei Nichtgebrauch automatisch abgeschaltet. Die Verzögerungszeit der Ruheabschaltung wird mit der +/– Wipptaste auf einen Wert zwischen einer und 15 Minuten oder auf unendlich (Abschaltung deaktiviert) eingestellt.

Die Ruheabschaltung ist nur dann funktionsfähig, wenn das Gerät über die Batterie gespeist wird.

Backlight Time–Out (Hintergrundbeleuchtungsabschaltung). Mit dieser Taste wird die Abschaltverzögerung der Hintergrundbeleuchtung eingestellt. Mit dieser Funktion wird die Hintergrundbeleuchtung bei Nichtgebrauch des Gerätes nach einer bestimmten Zeit ausgeschaltet. Die Verzögerungszeit der Hintergrundbeleuchtungsabschaltung wird mit der +/– Wipptaste auf einen Wert zwischen einer und 15 Minuten oder auf unendlich (Abschaltung deaktiviert) eingestellt.

Die Hintergrundbeleuchtungsabschaltung ist nur dann funktionsfähig, wenn das Gerät über die Batterie gespeist wird.

METER METER			
SCOPE oder	UTILITY	System	Cal
METER		Signal Path	—
		Factory Scope	
		Factory DMM	
		OK Compensate Signal Paths	
		OK Factory Cal Scope	
		OK Factory Cal DMM	

Cal System (Kalibrierungssystem)

Wichtige Punkte

Signal Path Compensation (Signalwegkompensierung). Mit dieser Funktion wird die Genauigkeit des Oszilloskops bei der jeweiligen Umgebungstemperatur optimiert. Zur Erzielung maximaler Genauigkeit sollte der Signalweg erneut kompensiert werden, wenn sich die Umgebungstemperatur um 5° C oder mehr verändert.

Zur Kompensierung des Signalweges müssen Tastköpfe oder Kabel, die an den BNC–Eingang von Kanal 1 und Kanal 2 angeschlossen wurden, herausgezogen werden. Anschließend sind die Tasten **Signal Path** und **OK Compensate Signal Path** zu drücken, um den Vorgang zu bestätigen. Diese Prozedur dauert etwa eine Minute.

Factory Scope (werksseitiges Oszilloskop) und Factory DMM (werksseitiges DMM). Diese Funktionen werden vom Wartungspersonal zur Kalibrierung der internen Bezugsspannung für den Oszilloskop– und den DMM–Modus eingesetzt. Näheres über diese Verfahrensweisen erfahren Sie von Ihrer Tektronix–Verkaufsstelle bzw. –Vertretung.

Diag System (Diagnosesystem)

METER METER SCOPE			
SCOPE oder	UTILITY	System	Diag
METER		Execute	_
		Loop	Once Always Until Fail
		Error Log	_
		OK Run Test	
		OK Display Log	

Wichtige Punkte

Starten der Diagnose. Zur Abarbeitung der eingebauten Diagnoseprogramme müssen alle Kabel, Tastköpfe und Prüfleitungen von den Oszilloskop– und DMM–Eingängen abgetrennt werden. Anschließend **OK Run Test** drücken.

Stoppen der Diagnose. Zur Abarbeitung der Diagnoseprogramme stehen die folgenden Möglichkeiten zur Verfügung:

- Loop Once: Alle Diagnoseprogramme werden einmal ausgeführt und dann gestoppt.
- Loop Always: Die Diagnoseprogramme werden kontinuierlich ausgeführt. Die HOLD-Taste und anschließend CLEAR MENU drücken, um den Normalbetrieb wieder aufzunehmen.
- Loop Until Fail: Die Diagnoseprogramme werden so lange ausgeführt, bis am TekScope eine Störung eintritt bzw. bis die Stromversorgung aus- und wieder eingeschaltet wird.

Error Log (Fehlerbericht). Der Fehlerbericht enthält zusammenfassende Daten, die während der Lebensdauer des TekScopees erfaßt wurden, sowie Beschreibungen der 100 zuletzt eingetretenen Fehler. Der zuletzt eingetretene Fehler ist in der Auflistung an letzter Stelle aufgeführt. Zur Anzeige der folgenden Seiten des Fehlerberichts die +/– Wipptaste drücken.

VERTICAL-Einstellungen

Mit diesen Einstellungen können Signale angezeigt, die vertikale Skala und Position eingestellt und die Eingangsparameter konfiguriert werden. Im Instrument TekScope THS720P steuern die Vertikaleinstellungen auch die Anzeige von Oberwellen des Signals. Siehe eine Beschreibung dieser Meßart auf Seite 3–16.

Vertikale Funktionen im Oszilloskopmodus

Sämtliche vertikalen Funktionen wirken sich auf das gewählte Signal aus. Das CH 1–, CH 2–, MATH–, REF A– bzw. REF B–Signal wird durch Drücken der entsprechenden Taste gewählt.

Bei der Oberwellenanzeige (THS720P) lassen die Tasten CH1, CH2 und MATH die Oberwellenanteile der Spannungen, der Stromstärken bzw. der Leistungen des Meßsignals anzeigen.

Um ein Signal von der Anzeige zu löschen, wird dieses gewählt und anschließend die Taste WAVEFORM OFF gedrückt.

Das Vertikalmenü wird mit der MENU–Taste angezeigt. Der Inhalt dieses Menüs hängt jeweils vom gewählten Signal ab.

Vertikalmenü für Kanal 1 oder Kanal 2

Das Vertikalmenü enthält die folgenden Auswahlmöglichkeiten, sofern Kanal 1 bzw. Kanal 2 als Signal gewählt wird.

METER (SCOPE)				TOGGLE +
SCOPE	VERTICAL MENU	Coupling	DC AC GND	_
		Invert	Invert Off Invert On	
		Bandwidth	Full Bandwidth 20 MHz	
		Position	_	
		Probe Type	Current Probe	Umwandlungs- faktor einstellen
			Voltage Probe	Tastkop- fabschwächung einstellen

Wichtige Punkte

GND-Kopplung. Mit der GND-Kopplung wird ein Nullspannungssignal angezeigt. Auch wird der BNC Eingangsanschluß von den internen Schaltkreisen getrennt. Der Kanaleingang und der Bezugsleiter sind intern verbunden, um eine Nullbezugsspannung zu erstellen.

VOLTS/DIV–Wipptaste. Mit dieser Wipptaste wird die vertikale Empfindlichkeit geändert, während die Erfassung im Gange ist. Bei gestoppter Erfassung wird das Signal mit der Wipptaste in vertikaler Richtung skaliert.

Math Vertical Menu (Vertikalmenü des errechneten Signals)

Das Vertikalmenü enthält die folgenden Auswahlmöglichkeiten, wenn als Signal "Math" gewählt ist.

METER Scope			NICLINUFII NICLINUFII IIHUAILDIA NICLINUFII IIHUAILDIA	TOGGLE +
SCOPE	VERTICAL MENU	Math Operation	$\begin{array}{c} Ch1 + Ch2\\ Ch1 - Ch2\\ Ch2 - Ch1\\ Ch1 \times Ch2 \end{array}$	_

Wichtige Punkte

Einheiten des errechneten Signals. Die Funktion des errechneten Signals erkennt die folgenden Kombinationen von Einheiten:

Einheit, Kanal 1	Einheit, Kanal 2	Mathematische Operation	Resultierende mathema- tische Einheit
V	V	+ oder –	V
А	А	+ oder –	А
V	V	×	VV
А	А	×	АА
V	А	×	W
А	V	×	W

VOLTS/DIV–Wipptaste. Mit dieser Wipptaste wird das Signal in vertikaler Richtung skaliert. Die Empfindlichkeit von Kanal 1 und Kanal 2 wird mit dieser Wipptaste nicht beeinflußt.

Vertikalmenü für Ref A bzw. Ref B

Das Vertikalmenü enthält die folgenden Auswahlmöglichkeiten, wenn als Signal "Ref A" bzw. "Ref B" gewählt ist.

METER () SCOPE				TOGGLE +
SCOPE	VERTICAL	Save Ch1	To Waveform	Signalposition wählen
MENU	MENU	Save Ch2		
		Save MATH		
		Horizontal Position	Lock Ind	_
		OK Save Waveform	_	

Wichtige Punkte

Gleichzeitiges Speichern und Anzeigen eines Signals. Aus einer der oben abgebildeten Speicherquellen (Ch 1, Ch 2 oder Math) kann ein aktives Signal zur Anzeige an Ref A oder Ref B und auch an die mit der ⁺/– Wipptaste gewählte nichtflüchtige Speicheradresse kopiert werden.

Horizontal Position. Für die Bezugssignale kann die verriegelte (Lock) oder die unabhängige (Ind) Horizontalposition gewählt werden:

- Lock: Alle angezeigten Signale werden als Gruppe positioniert.
- Ind: Jedes Bezugssignal wird unabhängig positioniert. Die aktiven Signale (Ch 1, Ch 2, Math) werden weiterhin als Gruppe positioniert.

METER () () () () () () () () () ()			NILINUFI FILINUFI IHU III.JI4 NILINUFI IHU II.JI4	TOGGLE +
METER	VERTICAL MENU	Position	—	Position einstellen
		Zoom	Off 2X 5X 10X	_
		Noise Reject	None 60 Hz 50 Hz	
		Volts Scale	Volts	_
			dB	Bezugsspan- nung einstellen
			dBm into	Impedanz einstellen
		Probe Type	Current Probe	Umrechnungs- faktor einstellen
			Voltage Probe	

Vertikalfunktionen im Meter-Modus

Wichtige Punkte

Zoom. Mit der Zoom–Funktion läßt sich die Kurvenform des Meßwerterfassers vergrößert darstellen. Sie vergrößert die Kurvenform bei der Funktion V DC um die Bildschirmmitte, bei anderen Meter–Funktionen um den unteren Bildschirmrand. Zuvor kann die Kurvenform noch mit der Funktion Position oder mit Hilfe der ⁺/– Wipptaste verschoben werden, so daß die Vergrößerung gerade den interessierenden Bereich erfaßt.

Noise Reject (Rauschunterdrückung). Mit dieser Funktion kann die Wiederholbarkeit von Wechselstrommessungen, die Rauschimpulse (50 Hz oder 60 Hz) aufweisen, verbessert werden.

Volts Scale. Nach Aufruf von dB gibt das Instrument die aktuellen Meßwerte, Statistiken und Aufzeichnungsdaten in dB aus. Nach der Umschaltung auf dBm kann die Impedanz vorgegeben werden.

VOLTS/DIV–Wipptaste. Diese Wipptaste dient zur Änderung des Meßbereichs und der vertikalen Skale des Meßwerterfassers.

Wipptaste POSITION. Mit der vertikalen Wipptaste der POSITION kann die Kurvenform des Meßwerterfassers verschoben werden.

Anhänge

Anhang A: Technische Daten

Dieser Anhang enthält die technischen Daten der TekScope THS710A, THS720A, THS730A und THS720P für den Betrieb im Oszilloskop– und im DMM–Modus sowie allgemeine technische Daten. Alle Werte sind gewährleistet, sofern sie nicht mit der Bezeichnung "typisch" gekennzeichnet sind. Typische Werte werden zur Information angegeben, ihre Einhaltung aber nicht garantiert. Daten, die mit dem ✓–Symbol versehen sind, können gemäß *Anhang D: Leistungsprüfung* kontrolliert werden.

Alle technischen Daten gelten für alle die TekScope–Instrumente, sofern keine anderslautenden Anmerkungen gemacht wurden. Ferner wird bei allen technischen Daten vorausgesetzt, daß die MAG–Funktion ausgeschaltet ist, sofern keine anderslautenden Anmerkungen gemacht wurden. Die angegebenen Daten gelten nur, wenn die folgenden zwei Bedingungen erfüllt sind:

- Das TekScope muß mindestens zehn Minuten lang ununterbrochen bei Betriebstemperatur betrieben worden sein.
- Es muß die auf Seite 2–11 beschriebene Kompensierung des Signalpfads durchgeführt worden sein. Wenn sich die Betriebstemperatur um mehr als 5° C ändert, muß die Signalwegkompensierung (Compensate Signal Path) wiederholt werden.

Erfassungsmodus	Abtastung (normal), Spitzenwerterkennung, Hüllkurve und Mittelwert			
Erfassungsrate, typisch	bis zu 25 Signale je Sekunde (2 Kanäle, Abtasterfassungsmodus, MAG eingeschaltet, keine Messungen)			
Einzelfolge	Erfassungsmodus	Erfassung stoppen nach:		
	Abtastung, Spitzenwerterkennung	Einzelerfassung, ein Kanal bzw. zwei Kanäle gleichzeitig		
	Mittelwert, Hüllkurve	N Erfassungen, ein Kanal bzw. zwei Kanäle gleichzeitig, N ist von 2 bis 256 oder auf ∞ einstellbar		

Technische Daten, Oszilloskop

Erfassung

Eingänge			
Eingangskopplung	DC, AC oder GND		
Eingangsimpedanz, DC–gekoppelt	1 M Ω ±1% parallel mit 25 pF ±2 pF		
Maximalspannung	Überspannungskategorie	Maximalspannung	
zwischen Signal und gemeinsamem Leiter an BNC Fingang	CAT-II-Umgebung (siehe Seite A-19)	300 V _{EFF}	
	CAT-III-Umgebung (siehe Seite A-19)	150 V _{EFF}	
	Bei gleichförmigen Sinussignalen ist eine Leistungsminderung bei 20 dB/Dekade über 100 kHz auf 13 V _{Spitze} bei 3 MHz und höher erforderlich. Weitere Hinweise sind in der Beschreibung unter Überspannungskategorie auf Seite A–19 enthalten.		
Maximalspannung zwischen gemeinsa-	$600~V_{\rm EFF}$ (CAT II) oder 300 $V_{\rm EFF}$ (CAT III) bei Verwendung von geeigneten Steckverbindern oder Zubehörteilen.		
am BNC	30 V_{EFF} , 42,4 V_{Spitze} , bei Verwendung von blanken Steckverbindern oder Zubehörteilen.		
Maximalspannung, Kanal zu Kanal gemeinsame Leiter	30 V _{EFF} , 42,4 V _{Spitze} , bei Verwendung von blanken Steckverbin- dern oder Zubehörteilen.		
typische Gleichtaktun- terdrückung, Kanal zu Kanal	100:1 bei Frequenzen ≤ 50 MHz, gemessen am MATH–Signal Ch1 – Ch2, wobei das Prüfsignal zwischen dem Signal und dem gemeinsamen Leiter beider Kanäle angelegt wird und wobei die VOLTS/DIV– und Kopplungseinstellungen für jeden Kanal gleich sind.		
typisches Übersprechen, Kanal zu Kanal	\geq 100:1 bei 50 MHz, gemessen an einem Kanal, wobei das Prüfsignal zwischen dem Signal und dem gemeinsamen Leiter des anderen Kanals angelegt wird und wobei die VOLTS/DIV– und Kopplungseinstellungen für jeden Kanal gleich sind.		
typische Kapazität zwischen gemeinsa- mem Leiter und Gehäuse	55 pF		

Vertikaleinstellungen					
Anzahl der Kanäle	2	2			
Digitalisierer	8–Bit–Auflösun ermöglichen gle	g, separate Digita eichzeitige Abtast	alisierer für jeden tung	Kanal	
VOLTS/DIV-Bereich	5 mV/div bis 50	V/div an BNC Ei	ngang		
Polarität	normal und inve	ertiert			
Positionsbereich	±10 Skalenteile)			
✓ Analogbandbreite	THS710A	THS720A	THS720P	THS730A	
am BNC, DC-gekop- pelt (typisch bei 5 mV/ div; bei allen anderen Einstellungen garan- tiert)	60 MHz am BNC Eingang	100 MHz am BNC Eingang (90 MHz über 35° C)	100 MHz am BNC Eingang (90 MHz über 35° C)	200 MHz am BNC Eingang (180 MHz über 35° C)	
typische Spitzenwerter- kennungs– oder Hüllkurvenbandbreite (25 MS/s oder lang- samer)	THS710A	THS720A	THS720P	THS730A	
	50 MHz	75 MHz	75 MHz	85 MHz	
typische Analogband- breitengrenze	zwischen 20 MHz und Vollbandbreite wählbar				
typische untere Frequenzgrenze, AC-gekoppelt	\leq 10 Hz am BNC, bei Verwendung eines passiven 10X–Tastkopfes um das Zehnfache reduziert				
typische Anstiegszeit	THS710A	THS720A	THS720P	THS730A	
am BNC	5,8 ns	3,5 ns	3,5 ns	1,75 ns	
typisches Spitzenwer- terkennungs– oder Hüllkurvenimpulsver- halten	erfaßt mindestens 50% der Amplitude von Impulsen mit einer Breite von ≥ 8 ns (Breite von ≥ 20 ns bei 500 ns/div)				
DC-Verstärkungsge- nauigkeit	±2% im Abtast– bzw. Mittelwerterfassungsmodus				
Positionsgenauigkeit	±[0,4% x (Position x Volt/div) + (0,1 div x Volt/div)]				

Vertikaleinstellungen				
DC-Meßgenauig-	Meßart		Genauigkeit	
sungsmodus, aus ≥ 16 Signalen	Absolutspannungsmessungen		± [2% x Meßwert + (Position x Volt/div) + (0,1 div x Volt/div)]	
	Spannungsdifferenz zwischen zwei beliebigen Signalen, die mit den gleichen Einstellungen erfaßt wurden		± [2% x Meßwert + (0,05 div x Volt/div)]	
typische DC-Meßge- nauigkeit, Erfassung- smodus	± [2% x Meßw (0,15 div x Volt/	ert + (Position x ' div) + 0,6 mV]	Volt/div) +	
Horizontaleinstellunge	en			
Bereich,	THS710A	THS720A	THS720P	THS730A
Erfassungsrate	5 S/s bis 250 MS/s bei Folge 1,25, 2,5, 5	5 S/s bis 500 MS/s bei Folge 1,25, 2,5, 5	5 S/s bis 500 MS/s bei Folge 1,25, 2,5, 5	5 S/s bis 1 GS/s bei Folge 1,25, 2,5, 5
Aufzeichnungslänge	2500 Abtastung	en je Kanal	•	
SEC/DIV-Bereich	THS710A	THS720A	THS720P	THS730A
(einschließl. MAG)	10 ns/div bis 50 s/div	5 ns/div bis 50 s/div	5 ns/div bis 50 s/div	2 ns/div bis 50 s/div
 Genauigkeit, Abtastrate und Verzögerungszeit 	$\pm 200 \text{ ppm über ein Zeitinterall} \geq 1 \text{ ms}$			
Bereich, null bis 50 s Verzögerungszeit				

Interner Trigger			
Triggerempfindlich- keit, Flankentriggerung (THS710A, THS720A und THS720P)	Kopplung	Empfindlichkeit	
	DC (Gleichstrom)	0,35 Skalenteile von DC bis 50 MHz, zunehmend auf 1 Skalenteil bei 100 MHz (90 MHz über 35° C)	
✓ Triggerempfindlich-	Kopplung	Empfindlichkeit	
keit, Flankentriggerung (THS730A)	DC (Gleichstrom)	0,35 Skalenteile von DC bis 50 MHz, zunehmend auf 1,5 Skalenteil bei 200 MHz (180 MHz über 35° C)	
typische Triggeremp- findlichkeit, Flankentrig- gerung	Kopplung	Empfindlichkeit	
	NOISE REJ (Rauschunterdrückung)	3,5 mal DC-gekoppelte Grenzwerte	
	HF REJ (HF–Unterdrückung)	1,5 mal DC–gekoppelte Grenzwerte von DC bis 30 kHz, Signale über 30 kHz werden gedämpft	
	LF REJ (NF–Unterdrückung)	1,5 mal DC–gekoppelte Gren- zwerte bei Frequenzen über 1 kHz, Signale unter 1 kHz werden gedämpft	
Triggerpegelbereich	± 4 Skalenteile vom Bildschirm–Mittelpunkt		
Triggerpegelbereich Motor (THS720P)	0,1 bis 5 Skalenteile ab Bildschirmmitte, Polarität hängt von Flankenwahl ab		
typische Triggerpegel- genauigkeit	\pm 0,2 Skalenteile bei Signalen mit Anstiegs– und Abfallzeiten \geq 20 ns		
SET LEVEL TO 50% (Pegeleinstellung auf 50%), typisch	bei Eingangssignalen \geq 50 Hz		

Interner Trigger			
typischer Breitenbe- reich, Impulstriggerung	99 ns bis 1 s mit Auflösung von 33 ns bzw. ca. 1% der Einstellung (wobei jeweils der größere Wert zutrifft)		
typische Breitentole- ranz, Impulstriggerung	5%, 10%, 15% oder 20%		
typische Empfindlichkeit, Videotriggerung	Bildaustast–Synchronsignal mit negativer Synchronimpulsamplitude von 0,6 bis 2,5 Skalenteile		
Signalformate und Zeilenraten, Videotriggerung	TV Sendesysteme	NTSC, PAL und SECAM	
	Halbbild	Triggert durch die angewählte Zeile im ungeradzahligen bzw. im geradzahligen Halbbild oder durch jede beliebige Zeile	
	Vollbild	Triggert durch die angewählte oder jede beliebige Zeile	
	Zeilenraten	15 kHz bis 65 kHz, in fünf Bereichen	
Holdoff	495 ns bis 10 s		

Externer Trigger	
Externer Trigger, maximale Eingangsspannung	600 V _{EFF} bei CAT II, 300 V _{EFF} bei CAT III (siehe Seite A–19)
Kopplung des externen Triggers	nur DC
Externe Triggerpegel	einstellbar + 0,2 V oder + 2 V
Empfindlichkeit des externen Triggers	500 mV _{Spitze-Spitze} von DC bis 1 MHz, zunehmend auf 1 V _{Spitze-Spitze} bei 5 MHz, bei Zentrierung des Signals beim gewählten Triggerpegel
	Mit dem Triggerpegel + 2 V TTL-kompatibel
Messungen	
Cursor	Spannungsdifferenz zwischen Cursorn (ΔV) Zeitdifferenz zwischen Cursorn (ΔT) Kehrwert von ΔT in Hertz (1/ ΔT) Phasendifferenz zwischen Cursorn (ΔW inkelgrade)
automatische Messungen	Amplitude, Burstbreite, Zyklusmittelwert, Zykluseffektivwert, Abfallzeit, Frequenz, Höchstwert, geringster Wert, Max., Mittelwert, Min., negatives Tastverhältnis, negative Überschwin- gung, negative Breite, Spitze–Spitze, Periode, positives Tastverhältnis, positive Überschwingung, positive Breite, Anstiegszeit und Effektivwert

Oberwellenanteile von Spannungen und Strömen (THS720P)				
Anzahl der Oberwellen	31 erste Oberwellen von Signalen mit einer Grundfrequenz zwischen 30 Hz und 450 Hz			
Genauigkeit der Oberwellenamplituden	Die nachfolgend angegebenen Genauigkeiten sind Prozentsätze der Grundwellenamplitude und gelten nur bei Scheitelamplituden von \geq 4 Skalenteilen und \geq 16 Mittelwerten			
	Grundwelle	2 – 11	12 – 21	22 - 31
	±2,5%	±2,5%	±4%	±4%
Genauigkeit der	Grundwelle	2 – 11	12 – 21	22 - 31
Oberwellenphasen	_	±4 °	±8 °	±8 °
Messung THD-F	Gesamter Oberwellengehalt, bezogen auf die Grundwellen- amplitude $THD - F = \frac{\sqrt{V_{EFF}^2 - V_f^2}}{V_f} oder \frac{\sqrt{A_{EFF}^2 - A_f^2}}{A_f}$			
Genauigkeit THD-F	±4%			
Messung THD-R	Gesamter Oberwellengehalt, bezogen auf den Effektivwert der Amplitude $THD - R = \frac{\sqrt{V_{EFF}^2 - V_f^2}}{V_{EFF}}$ oder $\frac{\sqrt{A_{EFF}^2 - A_f^2}}{A_{EFF}}$			
Genauigkeit THD-R	<u>+</u> 4%			
Frequenzgenauigkeit	±0,2% vom Meßwert			

Leistungsmessungen	(THS720P)
Messung der Wirkleistung	$W = \frac{1}{n} \times \sum_{n} V_n \times A_n$
	gemessen über eine ganze Zahl von Zyklen, die n Abtastpunkte enthalten
Messung der Scheinleistung	$VA = V_{EFF} \times A_{EFF}$
Messung der Blindleistung	$VAR = \sqrt{(VA)^2 - W^2}$
Genauigkeit der Leistungsmessung	±4% an den BNC-Eingängen (ohne Meßunsicherheit der Tastköpfe)
PF-Messung	Leistungsfaktor (PF) = $\frac{Wirkleistung}{Scheinleistung} = \frac{W}{VA}$
θ Messung	θ ist die Phasendifferenz zwischen den Grundwellenkomponen- ten der Spannung und der Stromstärke. Ein positiver Winkel bedeutet, daß die Spannung gegenüber dem Strom voreilt. Bei einem negativen Winkel eilt der Strom gegenüber der Spannung vor.
DPF-Messung	Blindleistungsfaktor (DPF) = $\cos \theta$
Genauigkeit der Leis- tungsfaktormessung	±0,05

Mit Tastkopf P6117				
Analogbandbreite, DC-gekoppelt	THS710A	THS720A	THS720P	THS730A
	60 MHz	100 MHz (90 MHz über 35° C)	100 MHz (90 MHz über 35° C)	200 MHz (180 MHz über 35° C)
Tastkopfabschwächung	10X			
Maximalspannung	Überspannungskategorie		Maximalspannung	
zwischen Tastkopfspitze und Bezugsprüfleitung	CAT–II–Umgebung (siehe Seite A–19)		300 V _{EFF}	
	CAT-III-Umgebung (siehe Seite A-19)		150 V _{EFF}	
	Bei gleichförmigen Sinussignalen ist eine Leistungsminderung bei 20 dB/Dekade über 900 kHz auf 13 V _{Spitze} bei 27 MHz und höher erforderlich. Weitere Hinweise sind in der Beschreibung unter Überspannungskategorie auf Seite A–19 enthalten.			
Maximalspannung zwischen Bezugsleiter und Masse mittels Tastkopf P6117	30 V _{EFF} , 42,4 V _{Spitze}			
Maximalspannung, Kanal zu Kanal Bezugsleiter mittels Tastkopf P6117	30 V _{EFF} , 42,4 V	Spitze		

Mit Tastkopf P5102				
Analogbandbreite, DC-gekoppelt	THS710A	THS720A	THS720P	THS730A
	60 MHz	100 MHz (90 MHz über 35° C)	100 MHz (90 MHz über 35° C)	100 MHz
Tastkopfabschwächung	10X			
Maximalspannung	Überspannungskategorie		Maximalspannung	
zwischen Tastkopfspitze und Bezugsprüfleitung, DC-gekoppelt	CAT–II–Umgebung (siehe Seite A–19)		1000 V _{EFF}	
	CAT-III-Umgebung (siehe Seite A-19)		600 V _{EFF}	
Maximalspannung	Überspannungskategorie		Maximalspannung	
zwischen Tastkopfspitze und	CAT-II-Umgebung		±1000 V _{DC}	
AC-gekoppelt	CAT-III-Umgebung		±600 V _{DC}	
Maximalspannung zwischen Bezugsprüfleitung und Masse	Überspannungskategorie		Maximalspannung	
	CAT-II-Umgebung		600 V _{EFF}	
	CAT-III-Umgebung		300 V _{EFF}	

Technische Daten, DMM

Allgemeine Daten			
Auflösung	3 ³ ⁄ ₄ –stellig, 4000 Zählwerte Vollmeßwert, sofern nicht anders vermerkt		
Eingangswiderstand, Wechsel- oder Gleichspannung	$10 \text{ M}\Omega \pm 10\%$		
typische Eingangska- pazität, Wechsel– oder Gleichspannung	≤100 pF		
Maximalspannung	Überspannungskategorie	Maximalspannung	
zwischen DMM– und COM–Eingang	CAT-I-Umgebung (siehe Seite A-19)	640 V _{EFF} (880 V _{DC})	
	CAT-II-Umgebung (siehe Seite A-19)	600 V _{EFF}	
	CAT-III-Umgebung (siehe Seite A-19)	300 V _{EFF}	
Maximalspannung	Überspannungskategorie	Maximalspannung	
zwischen DMM– bzw. COM–Eingang und Masse	CAT-I-Umgebung (siehe Seite A-19)	640 V _{EFF} (880 V _{DC})	
	CAT-II-Umgebung (siehe Seite A-19)	600 V _{EFF}	
	CAT-III-Umgebung (siehe Seite A-19)	300 V _{EFF}	
Gleichspannung			
Bereiche und Auflösung	Bereich	Auflösung	
	400,0 mV	0,1 mV	
	4,000 V	1 mV	
	40,00 V	10 mV	
	400,0 V	100 mV	
	880 V	1 V	

Gleichspannung			
🛩 Genauigkeit	\pm (0,5% des Meßwertes + 5 Zählwerte)		
typische Unterdrückung, Normalmodus	unterdrückt AC–Signale um >60 dB bei 50 oder 60 Hz (vom Anwender wählbar)		
typische Gleichtaktun- terdrückung	unterdrückt AC–Signale um >100 dB bei 50 oder 60 Hz (vom Anwender wählbar)		
Wechselspannung			
Umwandlungsart	Bei AC–Umwandlungen handelt es sich um echte Effektivwerte. Die AC–Messung basiert auf den AC– und DC–Komponenten des Signals (siehe unten):		
	AC-Messung = EFF (AC+DC) -	DC	
Bereiche und	Bereich	Auflösung	
Auflösung	400,0 mV	0,1 mV	
	4,000 V	1 mV	
	40,00 V	10 mV	
	400,0 V	100 mV	
	640 V	1 V	
✓ Genauigkeit (40 Hz bis 500 Hz)	Eingangssignal	Maximale Abweichung	
	Sinuswellen ohne DC–Kompo- nente	± (2% des Meßwertes + 5 Zählwerte)	
	nichtsinusförmiges Signal mit Scheitelfaktor bis zu 3 und ohne DC–Komponente	± (4% des Meßwertes + 5 Zählwerte)	
typische Gleichtakt- unterdrückung	unterdrückt AC–Signale um >60 dB bei Gleichspannung, 50 oder 60 Hz		

Ω/Widerstand		
Bereiche und Auflösung	Bereich	Auflösung
	400,0 Ω	0,1 Ω
	4,000 kΩ	1Ω
	40,00 kΩ	10 Ω
	400,0 kΩ	100 Ω
	4,000 MΩ	1 kΩ
	40,00 MΩ	10 kΩ
🛩 Genauigkeit	Bereich	max. Abweichung
	alle weiteren Bereiche	± (0,5% des Meßwertes + 2 Zählwerte)
	40 MΩ	\pm (2% des Meßwertes + 5 Zählwerte) bei relativer Luftfeuchtigkeit \leq 60%
typische Vorspannung für Vollbereich–Wider- standsmessungen	Bereich	Vollbereich-Vorspannung
	400,0 Ω	350 mV
olandomeoodingen	4,000 kΩ	200 mV
	40,00 kΩ	350 mV
	400,0 kΩ	350 mV
	4,000 MΩ	400 mV
	40,00 MΩ	1,10 V
typischer Leerlauf	Bereich	Leerlauf
	400,0 Ω	4,8 V
	alle anderen Bereiche	\leq 1,2 V

Technische Daten, DMM (Fortsetzung)

Technische Daten,	DMM	(Fortsetzuna)
		(i of toothang)

Durchgangsprüfung	
typische Meldung	ein Tonsignal wird erzeugt, wenn der gemessene Widerstand unter 50 $\boldsymbol{\Omega}$ liegt
typischer Leerlauf	4 V
typischer Prüfstrom	1 mA
Diodenprüfung	
Bereich	null bis 2 V, mißt Vorwärtsspannungsabfall des Halbleiterübergangs
typische Spannungsgenauigkeit	±25%
typischer Leerlauf	4 V
typischer Prüfstrom	1 mA
Meßwerterfasser	
horizontaler Skalenbereich	30 s/div bis 24 Std./div (4 Minuten bis 8 Tage, volle Breite)
vertikaler Zoom- Bereich	2X, 5X oder 10X

Allgemeine Daten

Anzeige	
Anzeigeart	120 mm Diagonale Flüssigkristall
Anzeigeauflösung	320 Pixel horizontal x 240 Pixel vertikal
Anzeigekontrast	einstellbar, temperaturausgeglichen
typische Intensität der Hintergrund- beleuchtung	35 cd/m ²

Allgemeine	Daten	(Fortsetzung	J)
------------	-------	--------------	----

RS-232-Schnittstelle			
Gerätetyp	DTE, am Steckverbinder	DTE, am Steckverbinder RJ-45	
Pinbelegung	Signal	Pinnummer am 9–poligen Null- modemadapter	Pinnummer am Steckverbinder RJ–45
	RTS out	1	8
	TXD out	2	6
	RXD in	3	5
	GND	5	4
	DTR out	6	3
	CTS in	7	7
	RTS out	8	8
	DSR in (nicht belegt)	4	2
	DSR in (nicht belegt)	7	1
Tastkopf-Kompensati	onsausgang		
typische Ausgangsspannung	5,0 V auf eine Last \geq 1 M Ω		
typische Frequenz	1,2 kHz		

Allgemeine Daten	(Fortsetzung)
-------------------------	---------------

Spannungsquelle				
Batterie	auswechselbare Ni-Cd-	auswechselbare Ni-Cd-Batterie		
typische Betriebsdauer der Batterie	ungefähr zwei Stunden b kontinuierlichem Betrieb	ungefähr zwei Stunden bei vollständig geladener Batterie und bei kontinuierlichem Betrieb		
typische Anzeige bei schwacher Batterie- spannung	Meldung erscheint zum e Gerät automatisch absch	Meldung erscheint zum ersten Mal ca. zehn Minuten bevor das Gerät automatisch abschaltet		
Batteriesparfunktion	Bereitschafts– und Hintergrundbeleuchtungs–Abschaltung verlängern die Lebensdauer der Batterie. Abschaltzeitbereiche von 1 bis 15 Min. oder deaktiviert.			
typische Batterieladezeit	bei eingeschaltetem TekScope	9 Stunden		
	bei ausgeschaltetem TekScope	9 Stunden		
	im externen Ladegerät	1,5 Stunden		
externe Spannungsquelle	12 V DC Nennspannung, Mitte positiv; mit Eingang von 10 V DC bis 15 V DC betriebsfähig			
	Wenn eine Spannung >15 V DC angelegt wird, schaltet sich der Gleichstromeingang DC INPUT automatisch ab. In solch einem Fall muß die Überspannung abgetrennt und eine Spannung im zulässigen Bereich angeschlossen werden.			
typische Speichererhaltung	Sämtliche gespeicherten Daten werden auf unbestimmte Zeit aufrecht erhalten, auch dann, wenn die Batterie entfernt und die externe Spannungsversorgung ausgeschaltet ist.			
Sicherung	Dieses Gerät enthält keine vom Benutzer auswechselbare Sicherungen.			

Allgemeine Daten (Fortsetzung)

Umgebungsbedingungen			
Temperatur	im Betrieb	–10° C bis +50° C	
	außer Betrieb	–20° C bis +60° C	
Luftfeuchtigkeit	bis +40° C	≤ 95% relative Luftfeuchtigkeit	
	+41° C bis +50° C	≤ 75% relative Luftfeuchtigkeit	
Höhenlage	im Betrieb	2000 m	
	außer Betrieb	15000 m	
regellose Vibration	im Betrieb	2,66 g _{EFF} von 5 Hz bis 500 Hz, 10 Minuten je Achse	
	außer Betrieb	3,48 g _{EFF} von 5 Hz bis 500 Hz, 10 Minuten je Achse	
typische Fallfestigkeit	übersteht Fall aus 0,76 m Höhe mit nur äußerlichen Schäden		
Feuchtbeständigkeit	entspricht IEC529, IP43, wenn der DC–Eingang und das I/O–Port durch Stopfen und das Batteriefach durch seinen Deckel verschlossen sind		
Mechanische Daten			
Größe	Höhe	217 mm	
	Breite	177 mm	
	Tiefe	50,8 mm	
Gewicht	mit eingebauter Batterie	1,5 kg	
	mit sämtlichem stan- dardmäßigen Zubehör in weicher Tragetasche	3,4 kg	
	Versandgewicht für Inlandlieferung	4,1 kg	

Zulassungen und Prüfungen			
Zulassungen	UL3111–1 und CA EN61010–1 /A2	UL3111–1 und CAN/CSA–C222.2 Nr. 1010.1–92, entspricht EN61010–1 /A2	
Überspannungs- kategorie	Kategorie	Beispiele	
	CAT III	Eine typische CAT–III–Umgebung wäre das Stromsystem in einem Gebäude bzw. Fertigungswerk. Diese Umgebung bietet mäßigen Schutz vor Blitz- schlägen, ist jedoch gegen Schaltüber- spannung und andere, hohe Span- nungsimpulse verursachende Störein- wirkungen anfällig.	
	CAT II	Eine typische CAT–II– Umgebung wäre das 120/240–V–Stromsystem in einem Labor bzw. Büro. Diese Umgebung bietet relativ guten Schutz vor externen Hochspannungsstörungen.	
	CATI	Typische CAT–I–Umgebungen wären Schaltkreise im Innern von elektrischen oder elektronischen Geräten, die über das Netz oder eine Batterie mit Strom versorgt werden.	

Allgemeine Daten (Fortsetzung)

Allgemeine Daten (Fortsetzung)

Zulassungen und Prüfungen			
EC–Konformitäts- erklärung	Das Gerät erfüllt die Bestimmungen der Direktive 89/338/EWG in bezug auf elektromagnetische Kompatibilität und der Niederspan- nungsdirektive 73/23/EWG in bezug auf die Produktsicherheit, mit Ergänzungen durch 93/68/EWG. Die Einhaltung dieser Bestimmungen wurde anhand der folgenden technischen Daten gemäß dem offiziellen Journal der Europäischen Gemeinschaft belegt:		
	EN !	55011, Klasse A:	Strahlungs– und Leitemissionen ¹³
	EN	50081–1, Emissionen: EN 60555–2	Stromoberschwingungen
	EN	50082–1, Immunität: IEC 801–2 IEC 801–3 IEC 801–4 IEC 801–5	elektrostatische Entladung HF–Störstrahlungen ² kurzzeitige Abweichungen Spannungsstöße ³
	EN 61010–1, Sicherheit		
	1	Von Tektronix gelieferte F angeschloßenen Ende de sind	Ferrit–Kugeln, die an das Gerät es RS–232–Kabels erforderlich
	2	Leitungskriterien: Erhöhu nungen \leq 5,0 div Skalen volle Bandbreite); sonst k \leq 1,0 div Skalenteile	ng bei Spitze–Spitze–Störspan- iteile (Abtasterfassungsmodus, pei Spitze–Spitze–Störspannungen
	3	Bei Betrieb des Gerätes gelieferten Wechselstrom	über einen von Tektronix nadapter
Justierungsintervall			

Das empfohlene Justierungsintervall ist ein Jahr.

Anhang B: WerksseitigeVorgabeeinstellung

Die folgende Tabelle enthält eine Auflistung der einzelnen Funktionen des TekScopes, die durch Rücksetzen auf die werksseitigen Vorgaben eingestellt werden.

Funktion	Werksseitige Vorgabeeinstellung
Anzeige der Istzeit	500 ms
Anzeige des Triggersymbols "T"	eingeschaltet
Anzeigeart	Vektoren
Anzeigeformat	YT
Anzeigekontrast	50%
Cursor-Zeiteinheiten	Sekunden
Cursorfunktion	aus
dB-Bezugsspannung	1 V
dBm in Impedanz	50 Ω
DMM-Funktion	Gleichspannung
DMM–Modus – Autorange	aus
DMM–Modus – Oszilloskop ein/aus	aus
Erfassung stoppen nach	nur nach Drücken der HOLD-Taste
Erfassungmodus	Abtastmodus
erfaßte Anzahl von Hüllkurven	8
erfaßte Anzahl von Mittelwerten	16
Flankentriggerkopplung	DC
Flankentriggerpegel	0,0 V
Flankentriggerquelle	Kanal 1
Flankentriggersteigung	steigend
gespeicherte Einstellungen	unverändert

Funktion	Werksseitige Vorgabeeinstellung
gespeicherte Signale	unverändert
Hauptzeitablenkung time/div	500 μs/div
horizontal – Haupttriggerposition	50%
horizontal – MAG (Vergrößerung)	aus
horizontal – Zeitablenkung	nur Hauptzeit
Kanalwahl	Kanal 1 eingeschaltet, alle weiteren Kanäle ausgeschaltet
MATH–Signalfunktion	CH1 + CH2
Messung der Hoch-Tief-Einstellung	Histogramm
Oberwellen (THS720P)	aus
Oszilloskop–/DMM–Modus	Oszilloskopmodus
Oszilloskopmodus – Autorange	aus
Oszilloskopmodus – Meter ein/aus	ein
Position des Cursors H Bar 1	-3,2 Skalenteile von der Mitte
Position des Cursors H Bar 2	+3,2 Skalenteile von der Mitte
Position des Cursors V Bar 1	-2 Skalenteile von der Mitte
Position des Cursors V Bar 2	+2 Skalenteile von der Mitte
Position, Meßdatenerfasser	0 V
Rasterart, Anzeige	voll
Rate, Meßdatenerfasser	30 s/div
Trigger Holdoff	Minimum (495 ns)
Triggermodus	Auto
Triggerung	Flanke
vertikale Bandbreite (alle Kanäle)	voll
vertikale Kopplung (alle Kanäle)	DC
vertikale Position (alle Kanäle)	0 div

Funktion	Werksseitige Vorgabeeinstellung
vertikale Volt/div (alle Kanäle)	100 mV/div
verzögerte Zeitablenkung time/div	50 μs/div
Verzögerungszeit, verzögerter Betrieb nach Hauptzeit	200 ns
Volt-Skala	V
Zoom, Meßdatenerfasser	aus
Anhang C: Zubehör

Standardzubehör

Passive 10X–Tastköpfe P6117 (THS730A, THS720A und THS710A)

Die passiven 10x–Tastköpfe P6117 verfügen über eine Bandbreite
von 200 MHz und eine Nennspannung gemäß CAT II von
300 V _{EFF} . Diese Tastköpfe eignen sich für schwebende
Messungen bis zu 30 V _{EFF} .

Passive 10X-Tastköpfe P5102 (THS720P)

Die passiven 10x–Tastköpfe P5102 verfügen über eine Bandbreite von 100 MHz und eine Nennspannung gemäß CAT II von 1000 Vrgg Diese Tastköpfe eignen sich für schwebende
von 1000 v _{EFF} . Diese lastkopie eignen sich für schwebende
Messungen bis zu 600 V _{EFF} .

Meßleitungssatz

Das als Standardzubehör gelieferte Meßleitungspaar (012–1482–00) ist mit scharfen Prüfspitzen, zwei aufschraub-
baren Tauchspitzen zum Greifen von Testpunkten und kleinen Leitern sowie mit zwei aufschraubbaren isolierten Krokodilklem- men zum Greifen von Anschlußklemmen und größeren Leitern ausgestattet.

Batterie

\frown	Das TekScope wird mit einer hochleistungsfähigen (4,8 V, 2,8 A·h)
	wiederaufladbaren Batterie geliefert. Siehe THS7BAT, Seite C-3

Netzadapter

Mit dem Netzadapter kann das TekScope mit Wechselspannung betrieben werden, wobei auch die eingebaute Batterie geladen wird. (Nordamerika 119–4812–XX, Europa 119–4813–XX, Craßbritagnien 110, 4922, XX, Japan 110, 4922, XX)
betrieben werden, wobei auch die eingebaute Batteri wird. (Nordamerika 119–4812–XX, Europa 119–4813 Großbritannien 119–4922–XX, Japan 119–4923–XX.

Standardzubehör (Fortsetzung)

RS-232-Kabel und -Adapter		
° °	Dieser RS–232–Kabelsatz (012–1533–00) enthält ein 2 m langes Kabel, das an beiden Enden mit RJ–45–Anschlüssen versehen ist. Der Kabelsatz enthält außerdem einen Adapter (103–0403–00) für den Anschluß an PCs.	
Weiche Tragetasche		
Tektronjx	Die weiche Tragetasche (016–1399–01) schützt das TekScope während der Aufbewahrung. Sie ist mit Fächern für Tastköpfe, eine Ersatzbatterie, Netzadapter und das Benutzerhandbuch ausgestattet.	
Handbuch		
	Das TekScope–Gerät wird mit einem Benutzerhandbuch (070–9733–XX) und einem Referenzhandbuch (070–9743–XX) geliefert.	

Sonderzubehör

Passive 10X-Tastköpfe P5102 (THS730A, THS720A und THS710A)

Die passiven 10x–Tastköpfe P5102 verfügen über eine Bandbreite von 100 MHz und eine Nennspannung gemäß CAT II von 1000 V_{EFF} . Diese Tastköpfe eignen sich für schwebende Messungen bis zu 600 V_{EFF} .

Luxus-Meßleitungssatz

Das Luxus–Meßleitungspaar (ALTDX1) ist mit einer ummantelten Bananenkontaktbuchse, die mit einer Reihe von Testkomponenten kompatibel ist, ausgestattet. Der Luxusbausatz enthält zwei scharfe Prüfspitzen, zwei Tauchspitzen zum Greifen von Komponentenleitungen, eine Tauchspitze zum Greifen von Testpunkten und kleinen Leitern sowie eine weitere Tauchspitze mit Krokodilklemmen zum Greifen von Anschlußklemmen und größeren Leitern. Die Kabel sind mit wärmebeständiger Silikonisolierung versehen.

Batterieladegerät THS7CHG

Die Batterie wird mit dem Ladegerät in 1,5 Stunden wieder aufgeladen. Das Ladegerät kann über das Stromnetz oder mit 12 V aus einem Auto–Zigarettenanzünder betrieben werden.

Aufladbare Ersatzbatterie THS7BAT

Eine hoch	eistungsfähige (4,8 V, 2,8 A·h) aufladbare Ersatzbatte-
rie sorgt fü	r den langzeitigen Betrieb, wenn der Anschluß an das
Stromnetz	nicht möglich ist.

Adapter BNC-Bananenstecker

Sonderzubehör (Fortsetzung)

Zigarettenanzünder-Adapter Der Zigarettenanzünder-Adapter (174–1734–00) ermöglicht den Betrieb des TekScope bzw. das Laden der internen Batterie über den Zigarettenanzünder eines Pkws. Thermaldrucker HC 411 Bei dem HC 411 handelt es sich um einen leichten, tragbaren Thermaldrucker, der über das Wechselstromnetz oder eine

Bei dem HC 411 handelt es sich um einen leichten, tragbaren Thermaldrucker, der über das Wechselstromnetz oder eine Batterie betrieben werden kann und auf 112 mm breites Papier ausdruckt. Zusätzliches Papier ist in Packungen von jeweils fünf Rollen unter der Bestellnummer 006–7850–00 erhältlich.

Transportkoffer THS7HCA

(-	
	_

Der Transportkoffer bietet optimalen Schutz für das TekScope. Im Transportkoffer ist Platz für das TekScope, Spannungstastköpfe, Meßleitungen, Stromtastköpfe, Netzadapter, Batterieladegerät, Ersatzbatterie und Handbücher.

Stromzangen A621 und A622

	Zwei Stromzangen von Tektronix ermöglichen die Durchführung von Strom– und Leistungsmessungen mit dem TekScope. Bei diesen festzuklemmenden Stromzangen ist kein Trennen
	notwendig, um das Gerät in den Stromkreis einzuführen. Beide
	Stromzangen sind mit BNC–Anschlußsteckern für die
	Oszilloskopkanäle und mit Bananenbuchsen–Sicherheitsadaptern
~	für die DMM–Kanäle versehen.
	A621: nur Wechselstrom, maximal 2.000 A, 5 Hz bis 50 kHz, Ausgang wählbar – 1, 10 oder 100 mV/A.
	A622: Wechsel– oder Gleichstrom, maximal 100 A, Gleichstrom bis 100 kHz, Ausgang wählbar – 10 oder 100 mV/A.

Sonderzubehör (Fortsetzung)

Stromzangen A605 und A610

Diese Sammelschienen–Stromzangen sind zur Messung von Strom im DMM–Modus mit Bananensteckanschlüssen ausgestattet.

A605: nur Wechselstrom, maximal 500 A, 48 Hz bis 1 kHz, 1 mV/A

A610: Wechsel– oder Gleichstrom, maximal 500 A, Gleichstrom bis 400 Hz, 1 mV/A

Worterkenner-Triggertastköpfe P6408

Bei dem P6408 handelt es sich um einen 16–Bit–Worterkenner– Tastkopf für TTL–Logik mit Taktraten bis zu 20 MHz. Dieser Tastkopf wird ausschließlich zur Erkennung von Triggerereignissen und nicht zur Anzeige von Logiksignalen verwendet.

Software WaveStar WSTR31

Bei WaveStar handelt es sich um eine Anwendung unter Windows, durch die das TekScope mit einem PC verbunden werden kann. Signale und Einstellungen können somit ein- und ausgelesen werden. Die erfaßten Daten können zur weiteren Analyse in Kalkulationstabellen, zur Dokument-Integration in Textverarbeitungsprogramme und zur Erstellung von Ausdrucken an Drucker und Aufzeichnungsgeräte exportiert werden.

Handbücher

Das Englische Programmiererhandbuch (070–9751–XX) enthält Hinweise über den ferngesteuerten Betrieb.
Das Englische Wartungshandbuch (070–9752–XX) enthält Informationen zur Wartung und Reparatur auf Modul–Ebene.

Anhang D: Leistungsprüfung

Dieser Anhang enthält die Verfahrensweisen zur Leistungsprüfung der mit dem *V*-Symbol gekennzeichneten technischen Daten. Zur Durchführung dieser Verfahrensweisen ist folgende oder eine geeignete entsprechende Ausrüstung erforderlich.

Beschreibung	Mindestanforderun- gen	Beispiele	
Gleichspannungsquelle	60 mV bis 800 V, ± 0,1% Genauigkeit	Universal–Kalibrierungs- gerät Wavetek 9100 mit Oszilloskopkalibrierung- smodul (Option 250)	
Wechselspannungs- quelle	300 mV bis 640 V, \pm 0,5% Genauigkeit bei 500 Hz	Mehrprodukt–Kalibrier- ungsgerät Fluke 5500A mit Oszilloskopkalibrier- ungsoption (Option 5500A–SC)	
geeichter Widerstand	360 Ω bis 36 M Ω , ± 0,1% Genauigkeit		
Konstantpegel– Sinusgenerator	50 kHz bis 200 MHz, ± 3% Amplitudenge- nauigkeit		
Zeitmarkengenerator	Periode von 10 ms, ± 50 ppm Genauigkeit		
Bananen–Bananenkabel (zwei erforderlich)	abgeschirmte Bananen- buchsen an beiden Enden	Tektronix Luxus– Meßleitungssatz (ALTDX1)	
BNC–Kabel, 50 Ω	BNC-Stecker an BNC- Stecker, \approx 1 m lang	Tektronix Teilenummer 012–0482–XX	
Durchgangsabschluß 50 Ω	BNC-Stecker und -Buchsenanschlüsse	Tektronix Teilenummer 011–0049–XX	
doppelter Bananen– BNC–Adapter	Bananenstecker an BNC-Buchse	Tektronix Teilenummer 103–0090–XX	

Prüfbericht

Serien- nummer	Verfahren durchgeführt von:	Datum

Prüfung	bestanden	nicht bestanden
Eigentest		

Oszilloskopprü	fungen	Untere Grenze	Prüfergebnis	Obere Grenze
DC-Meßge-	5 mV/div	34,05 mV		35,95 mV
nauigkeit, Kanal 1	500 mV/div	3,405 V		3,595 V
	2 V/div	13,62 V		14,38 V
	10 V/div	68,1 V		71,9 V
DC-Meßge-	5 mV/div	34,05 mV		35,95 mV
nauigkeit, Kanal 2	500 mV/div	3,405 V		3,595 V
	2 V/div	13,62 V		14,38 V
	10 V/div	68,1 V		71,9 V
Bandbreite, Kana	11	425 mV		_
Bandbreite, Kana	12	425 mV		_
Genauigkeit, Abtastrate und Verzögerungszeit		-4 Skalenteile		+4 Skalenteile
Flankentriggerempfindlichkeit, Kanal 1		stabile Triggerung		_
Flankentriggerem Kanal 2	pfindlichkeit,	stabile Triggerung		_

DMM-Prüfur	DMM-Prüfungen		Prüfergebnis	Obere Grenze
Genauigkeit, Gleichspan-	400–mV–Bereich, 60–mV–Eingang	59,2 mV		60,8 mV
nung	400–mV–Bereich, 360–mV–Eingang	357,7 mV		362,3 mV
	4-V-Bereich	3,577 V		3,623 V
	40-V-Bereich	35,77 V		36,23 V
	400-V-Bereich	357,7 V		362,3 V
	880-V-Bereich	783 V		801 V
Genauigkeit,	400-mV-Bereich	352,3 mV		367,7 mV
wechsel- spannung	4–V–Bereich, 600–mV–Eingang	0,583 V		0,617 V
	4–V–Bereich, 3,6–V–Eingang	3,523 V		3,677 V
	40-V-Bereich	35,23 V		36,77 V
	400-V-Bereich	352,3 V		367,7 V
	640–V–Bereich	559 V		593 V
Genauigkeit,	400-Ω-Bereich	358,0 Ω		362,0 Ω
Widerstand	4-kΩ-Bereich	3,580 kΩ		3,620 kΩ
	40-k Ω -Bereich, 6-k Ω -Eingang	5,95 k Ω		6,05 kΩ
	40-k Ω -Bereich, 36-k Ω -Eingang	35,80 kΩ		36,20 kΩ
	400-kΩ-Bereich	358,0 k Ω		362,0 kΩ
	4-MΩ-Bereich	3,580 MΩ		3,620 MΩ
	40-MΩ-Bereich	35,23 MΩ		36,77 MΩ

Verfahrensweisen der Leistungsprüfung

Vor Beginn der Durchführung dieser Verfahren müssen zwei Voraussetzungen erfüllt sein:

- Das TekScope muß mindestens zehn Minuten lang ununterbrochen bei Umgebungstemperaturen von 18° C bis 28° C und bei einer relativen Luftfeuchtigkeit von unter 60% betrieben worden sein.
- Die auf Seite 2–11 beschriebene Signalwegkompensierung muß durchgeführt werden. Wenn sich die Betriebstemperatur um mehr als 5° C ändert, muß die Signalwegkompensierung erneut durchgeführt werden.

Die zur Durchführung des gesamten Verfahrens erforderliche Zeit beträgt ca. eine Stunde.

WARNUNG. Bei einigen Verfahren treten gefährliche Spannungen auf. Die Ausgänge der Spannungsquelle müssen vor der Herstellung bzw. Änderung von Verbindungen stets auf 0 V eingestellt werden, um die Gefahr eines elektrischen Schocks zu verhindern.

Eigentest

Dieses Verfahren prüft mit Hilfe interner Routinen, ob das TekScope funktioniert und die internen Eigentests besteht. Prüfgeräte und –verbindungen sind nicht erforderlich. Der Eigentest wird mit der folgenden Einstellung eingeleitet:

SCOPE	UTILITY	System	Diag
		Loop	Once
		Execute	_
		OK Run Test	

Nach Ausführung des Eigentests wird das Ergebnis in einem Dialogfeld angezeigt. Der Betrieb wird durch Drücken der Taste **CLEAR MENU** wieder aufgenommen.

Prüfung der Gleichspannungsmeßgenauigkeit

- 1. Den Ausgangspegel der Gleichspannungsquelle auf 0 V einstellen.
- 2. Das TekScope wie folgt einstellen:

METER SCOPE			NILINUFII NILINUFII IIHUAILINA NILINUFII IIHUAILINA	TOGGLE +
SCOPE	SAVE/ RECALL	Recall Saved Setup	Recall Factory Setup	_
		OK Recall Factory	—	
	CH 1	_		
	VERTICAL MENU	Probe Type	Voltage Probe	auf 1X einstellen
	ACQUIRE	Acquire Mode	Average	auf 16 einstellen
	MEAS	Select Measrmnt	Mean*	_
		OK Select Measrmnt	—	

- * Zur Anzeige dieser Auswahl ist es u.U. erforderlich "Select Page" zu drücken.
- 3. Das TekScope wie unten abgebildet an die Gleichspannungsquelle anschließen.

0

D-7

- **4.** Für jede unten aufgeführte VOLTS/DIV–Einstellung die folgenden Schritte ausführen:
 - a. Den Ausgangspegel der Gleichspannungsquelle auf die in der Tabelle aufgeführte positive Spannung einstellen und anschließend den mittleren Meßwert als V_{pos} aufzeichnen.
 - **b.** Die Polarität der Gleichspannungsquelle umkehren und anschließend den mittleren Meßwert als V_{neg} aufzeichnen.
 - c. Die Differenz wie folgt errechnen: $V_{Diff} = V_{pos} V_{neg}$. Anschließend V_{Diff} mit den in der Tabelle angegebenen Genauigkeitsgrenzwerten vergleichen.

VOLTS/DIV– Einstellung	Ausgangspegel der Gleichspannungs- quelle	Genauigkeitsgren- zwerte V _{Diff}
5 mV/div	+17,5 mV, –17,5 mV	34,05 mV bis 35,95 mV
500 mV/div	+1,75 V, –1,75 V	3,405 V bis 3,595 V
2 V/div	+7,00 V, -7,00 V	13,62 V bis 14,38 V
10 V/div	+35,0 V, -35,0 V	68,1 V bis 71,9 V

- 5. Den Ausgangspegel der Gleichspannungsquelle auf **0** V einstellen.
- **6.** Zur Prüfung von Kanal 2 Schritt 2 wiederholen, jedoch CH1 mit CH2 ersetzen.
- 7. CH1 und WAVEFORM OFF drücken, um das Signal des Kanals 1 von der Anzeige zu löschen.
- 8. Schritte 3 bis 5 wiederholen, jedoch CH1 mit CH2 ersetzen, um die Prüfung für Kanal 2 vollständig durchzuführen.

Prüfung der Bandbreite von Kanal 1

1. Das TekScope wie folgt einstellen:

METER SCOPE				TOGGLE +
SCOPE	SAVE/ RECALL	Recall Saved Setup	Recall Factory Setup	_
		OK Recall Factory	_	
	ACQUIRE	Acquire Mode	Average	auf 16 einstellen
	TRIGGER	Trigger Coupling	Noise Reject	_
	MEAS	Gating & High- Low Setup	High-Low Method	Min/Max
		Select Measrmnt	Pk-Pk*	_
		OK Select Measrmnt	_	

- * Zur Anzeige dieser Auswahl ist es u.U. erforderlich "Select Page" zu drücken.
- **2.** Das TekScope wie unten abgebildet an den Konstantpegel–Sinusgenerator anschließen.

- 3. VOLTS/DIV am TekScope auf 100 mV/div einstellen.
- 4. SEC/DIV am TekScope auf 10 µs/div einstellen.
- 5. Die Frequenz des Konstantpegel–Sinusgenerators auf 50 kHz einstellen.
- Den Ausgangspegel des Konstantpegel–Sinusgenerators so einstellen, daß der Spitze–Spitze–Meßwert zwischen 599 mV und 601 mV liegt.
- 7. Die Frequenz des Konstantpegel–Sinusgenerators bei Prüfung eines THS730A auf 200 MHz, eines THS720A oder THS720P auf 100 MHz und eines THS710A auf 60 MHz einstellen.
- 8. MAG drücken.
- 9. SEC/DIV am TekScope auf 10 ns/div einstellen.
- 10. Sicherstellen, daß der Spitze–Spitze–Meßwert \geq 425 mV ist.
- 11. MAG drücken.
- **12.** Zur Messung der Bandbreite von Kanal 2 mit der nächsten Prüfung fortfahren.

Prüfung der Bandbreite von Kanal 2

1. Zuerst die Bandbreite von Kanal 1 mit der vorhergehenden Prüfung messen. Anschließend zur Prüfung der Bandbreite von Kanal 2 die folgenden zusätzlichen Schritte durchführen:

METER SCOPE				TOGGLE +
SCOPE	CH 1	—	—	—
	WAVE- FORM OFF			
	CH 2			
	TRIGGER	Trigger Source	Ch2	
	MEAS	Gating & High- Low Setup	High-Low Method	Min/Max
		Select Measrmnt	Pk-Pk*	_
		OK Select Measrmnt	_	

- * Zur Anzeige dieser Auswahl ist es u.U. erforderlich "Select Page" zu drücken.
- 2. Das TekScope wie unten abgebildet an den Konstantpegel–Sinusgenerator anschließen.

- 3. VOLTS/DIV am TekScope auf 100 mV/div einstellen.
- 4. SEC/DIV am TekScope auf 10 µs/div einstellen.
- 5. Die Frequenz des Konstantpegel–Sinusgenerators auf 50 kHz einstellen.
- Den Ausgangspegel des Konstantpegel–Sinusgenerators so einstellen, daß der Spitze–Spitze– Meßwert zwischen 599 mV und 601 mV liegt.
- 7. Die Frequenz des Konstantpegel–Sinusgenerators bei Prüfung eines THS730A auf 200 MHz, eines THS720A oder THS720P auf 100 MHz und eines THS710A auf 60 MHz einstellen.
- 8. MAG drücken.
- 9. SEC/DIV am TekScope auf 10 ns/div einstellen.
- 10. Sicherstellen, daß der Spitze–Spitze–Meßwert \geq 425 mV ist.

Prüfung der Abtastrate und Verzögerungszeitgenauigkeit

1. Das TekScope wie folgt einstellen:

METER () SCOPE				TOGGLE +
SCOPE	SAVE/ RECALL	Recall Saved Setup	Recall Factory Setup	_
		OK Recall Factory	—	
	VERTICAL MENU	Probe Type	Voltage Probe	auf 1X einstellen

2. Das TekScope wie unten abgebildet an den Zeitmarkengenerator anschließen.

- 3. Die Zeit des Zeitmarkengenerators auf 10 ms einstellen.
- 4. VOLTS/DIV am TekScope auf 500 mV/div einstellen.
- **5.** Das Prüfsignal mit der vertikalen POSITION–Wipptaste auf dem Bildschirm zentrieren.

6. SET LEVEL TO 50% drücken.

- 7. MAG drücken.
- 8. Die Einstellung des TekScopes wie folgt ändern:

METER SCOPE				TOGGLE +
SCOPE	HORIZON- TAL MENU	Time Base	Delayed Runs After Main	—
	CLEAR MENU	_	_	

9. Die verzögerte Zeitablenkung SEC/DIV auf 50 ms/div einstellen.

10. Die Einstellung des TekScopes wie folgt ändern:

METER (SCOPE)				TOGGLE +
SCOPE	Horizon- Tal Menu	Time Base	Delayed Runs After Main	Verzögerungs- zeit auf 10 ms einstellen
	CLEAR MENU	_	—	—

- **11.** Die verzögerte Zeitablenkung SEC/DIV auf **500 ns/div** einstellen.
- 12. Sicherstellen, daß die steigende Flanke des Markierers die mittlere horizontale Rasterzeile innerhalb von ± 4 Skalenteilen des mittleren Rasters überquert.

HINWEIS. Eine Abweichung von der Rastermitte um ein Skalenteil entspricht einer Zeitbasisabweichung von 50 ppm.

Prüfung der Flankentriggerempfindlichkeit von Kanal 1

1. Das TekScope wie folgt einstellen:

METER (SCOPE)				TOGGLE +
SCOPE	SAVE/ RECALL	Recall Saved Setup	Recall Factory Setup	_
		OK Recall Factory	—	
	ACQUIRE	Acquire Mode	Average	auf 16 einstellen
	TRIGGER	Trigger Mode	Normal	_
	MEAS	Gating & High- Low Setup	High-Low Method	Min/Max
		Select Measrmnt	Ampl*	_
		OK Select Measrmnt	—	

* Zur Anzeige dieser Auswahl ist es u.U. erforderlich "Select Page" zu drücken.

2. Das TekScope wie unten abgebildet an den Konstantpegel–Sinusgenerator anschließen.

- **3.** Die Frequenz des Konstantpegel–Sinusgenerators bei Prüfung eines THS730A auf **200 MHz**, bei Prüfung eines THS710A, THS720A oder THS720P auf **100 MHz** einstellen.
- 4. VOLTS/DIV am TekScope auf 500 mV/div einstellen.
- 5. MAG drücken.
- 6. SEC/DIV am TekScope auf 10 ns/div einstellen.
- Den Ausgangspegel des Konstantpegel–Sinusgenerators auf ca.
 50 mV_{Spitze–Spitze} einstellen, so daß die gemessene Amplitude ungefähr 500 mV beträgt. (Die gemessene Amplitude kann etwas von 500 mV abweichen.)
- 8. SET LEVEL TO 50% drücken. Den Triggerpegel TRIGGER LEVEL nach Bedarf einstellen und anschließend prüfen, daß die Triggerung stabil ist.
- 9. Die Einstellung des TekScopes wie folgt ändern:

			NICLINUFTI NICLINUFTI INURITA NICLINUFTI INURITA
SCOPE	TRIGGER	Trigger Slope	\ (abfallende Flanke)

- **10. SET LEVEL TO 50%** drücken. Den Triggerpegel **TRIGGER LEVEL** nach Bedarf einstellen und anschließend prüfen, daß die Triggerung stabil ist.
- 11. Die Einstellung des TekScopes wie folgt ändern:

SCOPE	TRIGGER	Trigger Slope	/ (steigende Flanke)

12. Zur Messung der Flankentriggerempfindlichkeit von Kanal 2 mit der nächsten Prüfung fortfahren.

Prüfung der Flankentriggerempfindlichkeit von Kanal 2

1. Zuerst die Flankentriggerempfindlichkeit von Kanal 1 mit der vorhergehenden Prüfung messen. Anschließend zur Prüfung der Flankentriggerempfindlichkeit von Kanal 2 die folgenden zusätzlichen Schritte durchführen:

METER SCOPE				TOGGLE +
SCOPE	CH 1	—	—	—
	WAVE- FORM OFF			
	CH 2			
	TRIGGER	Trigger Source	Ch2	
	MEAS	Gating & High- Low Setup	High-Low Method	Min/Max
		Select Measrmnt	Ampl*	_
		OK Select Measrmnt	_	

2. Das TekScope wie unten abgebildet an den Konstantpegel–Sinusgenerator anschließen.

- **3.** Die Frequenz des Konstantpegel–Sinusgenerators bei Prüfung eines THS730A auf **200 MHz**, bei Prüfung eines THS710A, THS720A oder THS720P auf **100 MHz** einstellen.
- 4. VOLTS/DIV am TekScope auf 500 mV/div einstellen.
- Den Ausgangspegel des Konstantpegel–Sinusgenerators auf ca.
 50 mV_{Spitze–Spitze} einstellen, so daß die gemessene Amplitude ungefähr 500 mV beträgt. (Die gemessene Amplitude kann etwas von 500 mV abweichen.)
- SET LEVEL TO 50% drücken. Den Triggerpegel TRIGGER LEVEL nach Bedarf einstellen und anschließend prüfen, daß die Triggerung stabil ist.
- 7. Die Einstellung des TekScopes wie folgt ändern:

SCOPE	TRIGGER	Trigger Slope	(abfallende Flanke)

8. SET LEVEL TO 50% drücken. Den Triggerpegel TRIGGER LEVEL nach Bedarf einstellen und anschließend prüfen, daß die Triggerung stabil ist.

Prüfung der Gleichspannungsgenauigkeit

- 1. Den Ausgangspegel der Gleichspannungsquelle auf **0** V einstellen.
- 2. Das TekScope wie folgt einstellen:

3. Das TekScope wie unten abgebildet an die Gleichspannungsquelle anschließen.

4. Den Ausgang der Gleichspannungsquelle für jeden Bereich auf den in der folgenden Tabelle enthaltenen Wert einstellen und anschließend den Meßwert mit den Genauigkeitsgrenzwerten vergleichen.

Bereich	Ausgangspegel der Gleichspannungs- quelle	Genauigkeitsgrenz- werte
400 mV	60 mV	59.2 mV to 60.8 mV
400 mV	360 mV	357.7 mV to 362.3 mV
4 V	3.6 V	3.577 V to 3.623 V
40 V	36 V	35.77 V to 36.23 V
400 V	360 V	357.7 V to 362.3 V
880 V	792 V	783 V to 801 V

5. Den Ausgangspegel der Gleichspannungsquelle auf **0** V einstellen.

Prüfung der Wechselspannungsgenauigkeit

- 1. Den Ausgangspegel der Wechselspannungsquelle auf **0** V einstellen.
- 2. Das TekScope wie folgt einstellen:

3. Das TekScope wie unten abgebildet an die Wechselspannungsquelle anschließen.

- **4.** Die Ausgangsfrequenz der Wechselspannungsquelle auf **500 Hz** einstellen.
- 5. Den Ausgang der Wechselspannungsquelle für jeden Bereich auf den in der folgenden Tabelle enthaltenen Wert einstellen und anschließend den Meßwert mit den Genauigkeitsgrenzwerten vergleichen.

Bereich	Ausgangspegel der Wechselspannungs- quelle	Genauigkeitsgrenz- werte
400 mV	360 mV	352.3 mV to 367,7 mV
4 V	600 mV	0.583 V bis 0,617 V
4 V	3,6 V	3.523 V bis 3,677 V
40 V	36 V	35.23 V bis 36,77 V
400 V	360 V	352.3 V bis 367,7 V
640 V	576 V	559 V bis 593 V

6. Den Ausgangspegel der Wechselspannungsquelle auf 0 V einstellen.

Prüfung der Widerstandsgenauigkeit

1. Das TekScope wie folgt einstellen:

2. Das TekScope wie unten abgebildet an das Widerstandsnormal anschließen.

3. Den Ausgang des Widerstandsnormals für jeden Bereich auf den in der folgenden Tabelle enthaltenen Wert einstellen und anschließend den Meßwert mit den Genauigkeitsgrenzen vergleichen.

Bereich	Ausgangspegel des Widerstandsnormals	Genaugikeitsgrenz- werte
400 Ω	360 Ω	358,0 Ω bis 362,0 Ω
4 kΩ	3,6 kΩ	3,580 k $oldsymbol{\Omega}$ bis 3,620 k $oldsymbol{\Omega}$
40 kΩ	6 kΩ	5,95 k Ω bis 6,05 k Ω
40 kΩ	36 kΩ	35,80 k Ω bis 36,20 k Ω
400 kΩ	360 kΩ	358,0 k Ω bis 362,0 k Ω
4 MΩ	3,6 MΩ	3,580 MΩ bis 3,620 MΩ
40 MΩ*	36 MΩ*	35,23 M Ω bis 36,77 M Ω

* Die angegebenen Grenzwerte gelten nur bei einer relativen Luftfeuchtigkeit von \leq 60%.

Die Leistungsprüfung ist hiermit abgeschlossen.

Anhang E: Allgemeine Pflege und Reinigung

Allgemeine Pflege

Das TekScope ist stets vor Witterungseinflüssen zu schützen. Es ist nicht wasserdicht.

Das Gerät nicht an einem Ort aufbewahren oder ablegen, an dem die LCD–Anzeige über längere Zeit hinweg direkter Sonneneinstrahlung ausgesetzt ist.

VORSICHT. Das TekScope darf keinem Spray, keiner Flüssigkeit und keinem Lösungsmittel ausgesetzt werden, um Schäden zu vermeiden.

Reinigung

Das TekScope sollte so oft wie es die Einsatzbedingungen erfordern überprüft werden. Das Äußere des Gerätes wird wie folgt gereinigt:

- **1.** Losen Staub mit einem flusenfreien Tuch abwischen. Darauf achten, daß der transparente Kunststoff–Filter der Anzeige nicht zerkratzt wird.
- 2. Zum Reinigen des Gerätes ein weiches Stoff– oder Papiertuch mit Wasser befeuchten. Mit einer 75% igen Isopropylalkohollösung kann eine wirksamere Reinigung erzielt werden.

VORSICHT. Damit die Oberfläche des TekScopees nicht beschädigt wird, dürfen keine scheuernden oder chemischen Reinigungsmittel verwendet werden.

Anhang F: Übersetzung des Anzeigetextes

Die folgende Tabelle enthält eine Übersetzung der auf der Frontplatte und in den Menüs des TekScopes verwendeten Wörter und Meldungen vom Englischen ins Deutsche.

Englisch	Deutsch
Acqs (Acquisitions)	Erfassungen
ACQUIRE	ERFASSEN
All Measrmnts (All Measurements)	alle Meßwerte
All Other Waveforms	alle weiteren Signale
Always	immer
Any Field	beliebiges Halbbild
Auto (Automatic)	automatisch
AUTORANGE	automatische Bereichswahl
Average	Mittelwert
Backlight Time Out	Hintergrundbeleuchtungsabschaltung
Bandwidth	Bandbreite
Baud Rate	Baudrate
Beep New Max-Min (Beep for New Maximum or Minimum)	Tonsignal bei neuem Maximal– oder Minimalwert
Best for Pulses	optimal für Impulse
BrstW (Burst Width)	Burstbreite
Cal (Calibrate)	kalibrieren
CH 1 (Channel 1)	Kanal 1
Clear Data From Screen	Daten vom Bildschirm löschen
CLEAR MENU	MENÜ LÖSCHEN
cMean (Cycle Mean)	Zyklusmittelwert

Englisch	Deutsch
Config (Configure)	konfigurieren
(continuity)	Durchgang
Coupling	Kopplung
cRMS (Cycle Root Mean Square)	Zyklus-Effektivwert
Cross Hair	Fadenkreuz
Custom Scan Rate	Besondere Abtastrate
Degrees	Grad
Delayed	verzögert
Diag (Diagnostic)	Diagnose
-▷+ (diode)	Diode
DISPLAY	ANZEIGE
Display 'T' at Trig Pt	'T' am Triggerpunkt anzeigen
Display Contrast	Kontrast anzeigen
DMM (Digital Multimeter)	DMM (Digitalmultimeter)
DPF (Displacement Power Factor)	Blindleistungsfaktor
Dot Accumulate	Punktdrucker
Dot Matrix Printer	Punktansammlung
Dots	Punkte
Edge	Flanke
Envelope	Hüllkurve
Equal To Width	gleich Breite
Erase Setup/Data	Einstellung/Meßdaten löschen
Error Log	Fehlerbericht
Execute	ausführen
Ext. (External)	Extern
Fall Time	Abfallzeit

Englisch	Deutsch
Field	Halbbild
Force Trigger	Triggerung erzwingen
Format	Format
Frame	Vollbild
Frequency	Frequenz
Full	voll
Full Bandwidth	volle Bandbreite
Function	Funktion
GND (Ground)	Masse
Graticule	Raster
Greater Than Width	größer als Breite
Grid	Gitter
H Bars (Horizontal Bars)	horizontaler Strichcursor
HARD COPY	AUSDRUCK
Hard Flagging	permanente Kennzeichnung
Harmonics	Oberwellen
HF REJ (High-Frequency Reject)	Hochfrequenzunterdrückung
High	Höchstwert
High-Low Setup	Einstellung des Höchst– und Niedrigstwertes
Histogram	Histogramm
HOLD	HALTEN
HOLD button only	nur durch Drücken der HOLD-Taste
Holdoff	Holdoff
HORIZONTAL	HORIZONTAL
Ind (Independent)	unabhängig

Englisch	Deutsch
Ink Jet Printer	Tintenstrahldrucker
Invert	umkehren
Landscape	Querformat
Laser Printer	Laserdrucker
Less Than Width	kleiner als Breite
LF REJ (Low-Frequency Reject)	Niederfrequenzunterdrückung
Lines	Zeilen
Load REFA From Wfrm (Load Reference A from Waveform)	Bezugswert A vom Signal laden
Lock	verriegeln
Loop	Schleife
Low	niedrig
MAG (Magnify)	VERGRÖSSERN
Main	Haupt-
MATH	ERRECHNET
Max (Maximum)	Maximum
Mean	Mittelwert
MEAS (Measure)	MESSEN
MENU	MENÜ
METER	METER
Min (Minimum)	Minimum
Min–Max	MinMax.
Misc (Miscellaneous)	verschiedenes
Mode	Modus
Motor	Motor
Negative	negativ
Englisch	Deutsch
-----------------------------	--------------------------
-Duty (Negative Duty Cycle)	negatives Tastverhältnis
-Over (Negative Overshoot)	negative Überschwingung
-Width (Negative Width)	negative Breite
NOISE REJ (Noise Reject)	Rauschunterdrückung
Norm (Normal)	normal
Not Equal To Width	ungleich Breite
Off	ausgeschaltet
ОК	ОК
On	eingeschaltet
ON/STBY (On/Standby)	EIN/BEREIT
Once	einmal
Paired	paarig
Period	Periode
PF (Power Factor)	Leistungsfaktor
PkDetect (Peak Detect)	Spitzenerkennung
Polarity & Width	Polarität und Breite
Portrait	Hochformat
POSITION	POSITION
Positive	positiv
+Duty (Positive Duty Cycle)	positives Tastverhältnis
+Over (Positive Overshoot)	positive Überschwingung
+Width (Positive Width)	positive Breite
Power Off Time-out	Ruheabschaltung
Pulse	Impuls
Pretrigger	Vortriggerung
Recall DMM Data	DMM–Meßdaten abrufen

Englisch	Deutsch
Recall Factory Setup	werksseitige Vorgaben abrufen
Recall Saved Setup	gespeicherte Einstellung abrufen
Recall Waveform	Signal abrufen
REF A (Reference A)	Bezugssignal A
Rel	Rel
Remove Measrmnt (Remove Measurement)	Meßwert löschen
Remove Statistic	Statistik löschen
Rise Time	Anstiegszeit
Run	ausführen
RUN/STOP	BETRIEB/STOPP
Sample	Abtastung
Save Ch1 (Save Channel 1)	Meßwerte von Kanal 1 speichern
Save Current Setup	aktuelle Einstellung speichern
Save DMM Data	DMM–Meßdaten speichern
Save Waveform	Signal speichern
SAVE/RECALL	SPEICHERN/ABRUFEN
Saved Data	gespeicherte Meßdaten
SCOPE (Oscilloscope)	OSZILLOSKOP
SEC/DIV	SEK/SKALENTEIL
Seconds	Sekunden
Select Fromat	Format wählen
Select Measrmnt (Select Measure- ment)	Messung wählen
Select Page	Seite wählen
Select Statistic	Statistik wählen
SET LEVEL TO 50%	PEGEL AUF 50% EINSTELLEN

Englisch	Deutsch
Set RS-232 Parameters to Default Values	RS–232–Parameter auf Vorgabewerte einstellen
Set to 10%	auf 10% einstellen
Show All	alle zeigen
Show Even	geradzahlig zeigen
Show Odd	ungeradzahlig zeigen
Signal Path	Signalweg
Single Acquisition Sequence	einzelne Erfassungsfolge
Slope	Steigung
Soft Flagging	vorübergehende Kennzeichnung
Source	Quelle
Stop	Stopp
Stop After HOLD Button	Stoppen nach Drücken der HOLD- Taste
Style	Ausführung
System	System
Tek Secure Erase Memory	mit "Tek Secure" Speicher löschen
THD (Total Harmonic Distortion)	gesamter Oberwellengehalt
THD-F (with respect to fundamental)	THD-F (gegen Grundwelle)
THD Method	THD-Verfahren
THD-R (with respect to RMS)	THD-R (gegen Effektivwert)
Thermal Printer	Thermodrucker
Time Base	Zeitablenkung
Time Units	Zeiteinheiten
To Data	an Meßdaten
To Setup	an Einstellung
To Waveform	an Signal

Englisch	Deutsch
TOGGLE	UMSCHALTEN
TRIGGER	TRIGGER
TRIGGER LEVEL	TRIGGERPEGEL
Trigger On	Triggerung eingeschaltet
Trigger Position	Triggerposition
Trigger When	Triggerung wenn
Until Fail	bis Störung eintritt
UTILITY	DIENSTPROGRAMM
V Bars (Vertical Bars)	vertikaler Strichcursor
VAC (Volts, Alternating Current)	V AC (Wechselspannung)
VDC (Volts, Direct Current)	V DC (Gleichspannung)
Vector Accumulate	Vektoransammlung
Vectors	Vektoren
Version	Version
VERTICAL	VERTIKAL
Video	Video
Video Class	Video-Klasse
VOLTS/DIV	VOLT/SKALENTEIL
Volts Scale	Voltskala
WAVEFORM OFF	SIGNAL AUSGESCHALTET
Zoom	Zoom

Glossar und Index

Glossar

Abtasterfassungsmodus

Ein Modus, in dem das Oszilloskop einen Aufzeichnungspunkt erstellt, indem es die erste Abtastung jedes Erfassungsintervalls speichert. Dies ist der Vorgabemodus des Erfassungssystems.

Abtastintervall

Das Zeitintervall zwischen aufeinanderfolgenden Abtastungen einer Zeitablenkung. Bei der Echtzeit–Digitalisierung ist das Abtastintervall der Kehrwert der Abtastrate.

Abtastung

Das Verfahren der Erfassung eines Analogeingangssignals, z.B. eines Spannungswertes, zu einem diskreten Zeitpunkt und der konstanten Aufrechterhaltung des Signals zur Quantisierung.

AC–Kopplung

Ein Modus, in dem die Gleichstromkomponente eines Signals blockiert wird, während die dynamische (Wechselstrom–) Komponente des Signals übertragen wird. Dieser Modus eignet sich zur Beobachtung eines Wechselstromsignals, das normalerweise auf einem Gleichstromsignal verläuft.

Aktiver Cursor

Der Cursor, der sich bei Justierung der ⁺/– Wipptaste bewegt. Die Position des aktiven Cursors ist im @–Readout auf der Anzeige dargestellt.

Anzeige

Bildschirm oder LCD- (Flüssigkristall-) Anzeige.

Aufzeichnungslänge

Die spezifizierte Anzahl von Abtastpunkten eines Signals.

Ausdruck

Eine elektronische Kopie der Anzeige in einem Drucker– oder Plotterformat.

Automatische Bereichswahl (Autorange)

Eine DMM–Funktion, in der der Bereich zur Messung eines Eingangssignals automatisch auf die optimale Größe eingestellt wird. Ferner eine Oszilloskopfunktion, die automatisch ein stabiles Signal in einer brauchbaren Größe erzeugt. In beiden Fällen wird die Einstellung des Gerätes bei Veränderungen des Signals kontinuierlich verändert.

Automatischer Triggermodus

Ein Triggermodus, in dem das Oszilloskop automatisch eine Erfassung ausführt, wenn es kein triggerungsfähiges Ereignis vorfindet.

Bereitschaftsmodus (Standby – STBY)

Der Ruhezustand des Gerätes bei Nichtgebrauch. Einige Schaltkreise sind auch dann aktiv, wenn sich das Gerät im Bereitschaftsmodus befindet.

Bezugsleiter

Der in einer Meßanwendung an die Bezugsspannung angeschlossene Oszilloskopleiter. Da die Kanäle isoliert sind, brauchen der gemeinsame Meßleiter und die Oszilloskop–Bezugsleiter nicht an dieselbe Bezugsspannung angeschlossen zu sein.

Bezugssignal

Ein zur Anzeige gewähltes gespeichertes Signal. Es können zwei Bezugssignale (Ref A und Ref B) angezeigt werden.

Blindleistungsfaktor (DPF)

Cosinus des Phasenwinkels zwischen Stromstärke und Spannung in der Grundwelle.

Cursor

Paarweise angeordnete Markierungssymbole, die zur Durchführung von Messungen zwischen zwei Signalpositionen eingesetzt werden. Das Oszilloskop zeigt die (als Spannung, Zeit oder Winkel ausgedrückten) Werte der Position des aktiven Cursors sowie des Abstandes zwischen den beiden Cursorn an.

Cursorpaar

Zwei fadenkreuzförmige Cursor, die bei Justierung ihrer horizontalen Position die vertikalen Werte eines Signals automatisch erfassen. Das Oszilloskop zeigt den zwischen dem Cursorpaar gemessenen Spannungs– und Zeitwert an.

Dämpfung

Das Ausmaß, um das die Amplitude eines Signals reduziert wird, wenn es durch ein Dämpfungsgerät wie z.B. einen Tastkopf oder Abschwächer geleitet wird (d.h. das Verhältnis der Eingangsmessung zur Ausgangsmessung). Beispiel: ein 10X–Tastkopf dämpft oder reduziert die Eingangsspannung eines Signals um das Zehnfache.

DC-Kopplung

Ein Modus, in dem sowohl Wechsel– als auch Gleichstromsignalkomponenten an den Schaltkreis übertragen werden. Für das Trigger– und das vertikale System verfügbar.

Digital-Echtzeit-Digitalisierung

Eine Digitalisierungsmethode, bei der das Eingangssignal mit einer Abtastfrequenz der vier– bis fünffachen Oszilloskopbandbreite abgetastet wird. Alle Frequenzkomponenten des Eingangssignals werden, kombiniert mit (sinx)/x–Interpolation, bis zur vollen Bandbreite genau angezeigt.

Digitalisierung

Das Verfahren der Umwandlung eines kontinuierlichen Analogsignals, wie beispielsweise einer Signalkurve, in eine Reihe diskreter Zahlen, die die Signalamplitude zu einem gegebenen Zeitpunkt darstellen.

Diodenprüfung

Ein Test, mit dem die Polarität überprüft und der Vorwärtsspannungsabfall eines Halbleiterübergangs gemessen wird.

Durchgang

Ein Test, mit dem die elektrische Leitfähigkeit zwischen zwei Punkten geprüft wird.

Erfassung

Das Verfahren, in dem Signale über die Eingangskanäle abgetastet, in Digitalwerte umgewandelt, die Ergebnisse in Datenpunkte verarbeitet und die Datenpunkte in Form einer Signalaufzeichnung erstellt werden. Die Signalaufzeichnung wird im Speicher abgelegt.

Externer Trigger

Triggerung durch ein externes Eingangssignal, das in einer spezifizierten Richtung (Triggerflanke) einen spezifizierten Spannungspegel überschreitet.

Flankentriggerung

Die Triggerung, die eintritt, wenn das Oszilloskop feststellt, daß die Quelle in der angegebenen Richtung einen bestimmten Spannungspegel (Triggeranstieg) überschreitet.

Gemeinsamer Leiter

Die Meßleitung, die in einer Meßanwendung an die Bezugsspannung angeschlossen ist. Da die Kanäle isoliert sind, brauchen der gemeinsame Meßleiter und die Oszilloskop– Bezugsleiter nicht an dieselbe Bezugsspannung angeschlossen zu sein.

Gewähltes Signal

Das Signal, an dem alle Messungen durchgeführt werden und das von der vertikalen Position und von Skaleneinstellungen beeinflußt ist.

GND-Kopplung (Massekopplung)

Kopplung, bei der das Eingangssignal vom vertikalen System getrennt wird.

Hintergrundbeleuchtung

Die Beleuchtung hinter der Flüssigkristallanzeige.

Holdoff

Ein bestimmter Zeitraum, der nach einem Triggersignal verstreichen muß, bevor der Triggerschaltkreis ein weiteres Triggersignal empfängt. Der Holdoff trägt zur Erstellung einer stabilen Anzeige bei.

Horizontale Strichcursor

Die zwei horizontalen Striche, die zur Messung der Spannungsparameter eines Signals positioniert werden. Das Oszilloskop zeigt den Wert des aktiven (beweglichen) Cursors im Verhältnis zur Masse sowie den Spannungswert zwischen den Strichen an.

Hüllkurven-Erfassungsmodus

Ein Modus, in dem das Oszilloskop ein Signal, das die maximalen Abweichungen mehrerer Erfassungen enthält, erfaßt und anzeigt.

Impulstriggerung

Triggerung an Ereignissen, die zeitlich gekennzeichnet werden können. Das Oszilloskop triggert, wenn eine Eingangsimpulsbreite auf vordefinierte Zeitkriterien trifft.

Isolierte Kanäle

Die Architektur der Oszilloskop– und DMM–Eingänge, die unabhängige schwebende Messungen ermöglicht. Jeder Eingang kann eine andere Bezugsspannung haben.

Leistungsfaktor (PF)

Das Verhältnis der Wirkleistung (in W) zur Scheinleistung (in VA).

Menü

Eine Reihe von Bezeichnungen, die auf der Anzeige zur Kennzeichnung der Funktionen der Menütasten dargestellt werden. Der Inhalt eines Menüs hängt von der jeweils gedrückten Menütaste ab.

Menütasten

Die Tastenreihe unter der Anzeige, die zur Auswahl der Menübefehle verwendet werden.

Mittelwert–Erfassungsmodus

Ein Modus, in dem das Oszilloskop ein Signal, das aus dem Mittelwert mehrerer Erfassungen gebildet wurde, erfaßt und anzeigt. Störungen werden somit reduziert. Das Oszilloskop erfaßt Meßdaten genauso wie im Abtastmodus und bildet dann eine bestimmte Anzahl von Mittelwerten.

Motortriggerung

Triggerung durch die steigende oder fallende Flanke eines bipolaren Signals einer Motoransteuerung.

Normaler Triggermodus

Ein Modus, in dem das Oszilloskop nur dann eine Signalaufzeichnung erfaßt, wenn ein gültiges Triggerereignis eintritt, d.h. es wartet auf ein gültiges Triggerereignis, bevor es Signalmeßdaten erfaßt.

Oberwellen

Spannungs– oder Stromsignale mit Frequenzanteilen, die einem ganzen Vielfachen der Grundfrequenz (Grundwelle) entsprechen. Periodische Signale lassen sich als Summe der Frequenzanteile der Grundwelle und der Oberwellen darstellen.

Oberwellengehalt (THD)

Das als Prozentwert angegebene Verhältnis der Oberwellenanteile eines Signals zum Effektivwert der Grundwelle oder des gesamten Eingangssignals.

Pixel

Ein sichtbarer Punkt auf der Anzeige. Die Anzeige ist 320 Pixel breit und 240 Pixel hoch.

Pop-up-Menü

Ein Untermenü, das vorübergehend in einem Teil des Signalanzeigebereichs dargestellt wird und die weiteren mit der Menüauswahl verbundenen Wahlmöglichkeiten anzeigt. Durch wiederholtes Drücken der Menütaste unterhalb des Pop–up– Menüs können die einzelnen Wahlmöglichkeiten gewählt werden.

Pseudodarstellung

Eine falsche Darstellung eines Signals, die auf unzureichende Abtastung hoher Frequenzen oder schneller Übergänge zurückzuführen ist. Dieser Zustand tritt dann ein, wenn ein Oszilloskop Signale mit einer effektiven Abtastrate, die zur Nachvollziehung des Eingangssignals jedoch zu langsam ist, in Digitalwerte umwandelt. Das auf dem Oszilloskop abgebildete Signal hat u.U. eine niedrigere Frequenz als das tatsächliche Eingangssignal.

Rollmodus

Ein Erfassungsmodus, der sich besonders für langsame horizontale Skaleneinstellungen eignet. Er ermöglicht die Betrachtung des Signals, während es punktweise erfaßt wird. Das Signal scheint über die Anzeige zu rollen.

RS-232

Der serielle Kommunikationsport, über den ein Druckgerät, Computer, Datengerät oder eine Steuerung angeschlossen werden kann.

Schwebende Messung

Spannungsmessungen, bei denen die Bezugsspannung nicht der Masse entspricht. Unabhängige schwebende Messungen können über die zwei Oszilloskopeingänge und den DMM–Eingang durchgeführt werden.

Signalwegkompensierung (Signal Path Compensation – SPC)

Die Fähigkeit des Oszilloskops, den elektrischen Versatz der durch Veränderungen der Umgebungstemperatur und Komponentenalterung verursachten Vertikal–, Horizontal– und Triggerverstärker zu minimieren. Dieses Verfahren sollte dann ausgeführt werden, wenn die Umgebungstemperatur seit der letzten Kompensierung um mehr als 5° C abweicht oder bevor kritische Messungen durchgeführt werden.

Tek Secure

Eine Funktion, die alle Signale und Einstellungen aus dem Speicher löscht (Einstellungsspeicher werden auf die werksseitigen Vorgabewerte zurückgesetzt). Anschließend werden die Speicheradressen überprüft, um den Löschvorgang zu bestätigen. Diese Funktion ist dann von Vorteil, wenn das Oszilloskop zur Erfassung von vertraulichen Meßdaten verwendet wird.

Vertikale Strichcursor

Die zwei vertikalen Striche, die zur Messung des Zeitparameters eines Signals positioniert werden. Das Oszilloskop zeigt den Wert des aktiven (beweglichen) Cursors im Verhältnis zur Triggerung sowie den Zeitwert zwischen den Strichen an.

Videotriggerung

Triggerung auf den Synchronimpuls eines Bildaustast–Synchronsignals.

Vortriggerung

Der spezifizierte Teil der Signalaufzeichnung, in dem die vor dem Triggerereignis erfaßten Meßdaten enthalten sind.

Wipptaste

Eine Taste mit zwei Positionen. Dient zur Einstellung von Funktionen wie z.B. Volts/Div und Triggerpegel.

+/- Wipptaste

Die an der Frontplatte befindliche Allzweck–Wipptaste, mit dem die Parameter eingestellt werden können. Der jeweils der +/– Wipptaste zugeordnete Parameter hängt von der gewählten Einstellung ab.

XY–Format

Ein Anzeigeformat, das den Spannungspegel zweier Signalaufzeichnungen Punkt für Punkt vergleicht. Dieses Format eignet sich für die Analyse des Phasenverhältnisses zwischen zwei Signalen.

YT-Format

Das konventionelle Oszilloskopformat. Es zeigt die sich über die Zeit (horizontale Achse) veränderliche Spannung einer Signalaufzeichnung (vertikale Achse).

Zeitablenkung

Die Parameter, mit denen die Attribute der Zeit– und der Horizontalachse einer Signalaufzeichnung definiert werden. Die Zeitablenkung bestimmt wann und wie lange Aufzeichnungspunkte erfaßt werden. Glossar

Index

Α

Abfallzeitmessung, 3–35 Abschaltung, 3–65 ACQUIRE–Taste, 3–3 Amplitudenmessung, 3–35 Anschlüsse, 1–4 Anstiegszeitmessung, 3–36 Anwendungen Anzeige unbekannter Signale, 2 - 16Leistungsmessung, 2-46 Leistungsqualität, 2–40 Messung der Diodenübergänge, 2 - 19Messung der Frequenz, 2–20 Messung der Kontinuität, 2–19 Messung der Laufzeit, 2–22 Messung der Leistung, 2–38 Messung des Widerstandes, 2-18 Prüfung des Schalttransistors, 2 - 36Triggerung der Motorendrehzahl, 2 - 50Triggerung des Videobildes, 2–32 Triggerung fehlender Impulse, 2 - 24Anzeigeinhalt Meßmodus, 3-39 Oszilloskopmodus, 3–48 automatische Messungen, 3-31 AUTORANGE Ausschalten, 3–10 Einschalten, 3–8 Taste, 2–6

В

Balkendiagramm, 3–44 Bandbreitengrenze, 3–69 Batterie Batterieanzeige, 1–6 externes Ladegerät, C–3 Kapazität, 1–6 Laden, 1–6 batterie, Auswechsein, 1–5 Batterieanzeige, 1–6 Beschreibung, C–1 Bezugssignale, 3–71

С

CLEAR–MENU–Taste, 2–7 Cursor Anwendungsbeispiel, 2–22 Meßanzeige, 3–12, 3–41 Verwendung, 3–11 CURSOR–Taste, 3–11

D

dB bzw. dBm, Skala des DMMs, 3–73 Δ0–Statistik, 3–38 Diagnose, 3–67 Diodenprüfung, 2–19 DISPLAY–Taste, 3–13 Drucken, 3–22

E

Effektivwertmessung, 3–36 Eigendiagnose, 3-67 Eingänge, 1–4 Eingangsspannungen, A–2, A–10, A-11, A-12 Einstellungen speichern und abrufen, 3-45 werksseitige Vorgabeeinstellung, Beschreibung, B-1 einzelne Erfassungsfolge, 3-6, 3-26 Erfassung Modus, 3-3Status, 3-40, 3-49 errechnetes Signal Anwendungsbeispiel, 2–38 Funktionen, 3-70 zulässige Einheiten, 3-70 externe Stromversorgung, Verwendung, 1-7externer Stromanschluß, Position des Anschlusses. 1-4 Externer Trigger, 3–56

F

Flankentrigger, Anwendung, 3–56 Frequenzmessung, 3–35 Frontplatte, 2–1, 2–6 Funktionsmerkmale automatische Messung, 2–20 Cursor, 2–22 Impulstrigger, 2–24, 2–26, 2–50 isolierte Kanäle, 2–12, 2–36 Leistungssignal, 2–38 Meßwerterfasser, 2–40 Oszilloskop–Modus, 1–2 Punktansammlung, 2–32 Überblick, 1–1 Funktionsprüfung, 1–9

G

gespeicherte Daten, Aufrechterhaltung, 1–5 gewähltes Signal, Auswahl, 3–68

Η

Handbuchkonventionen, vi HARD–COPY–Taste, 3–22 herausklappbarer Ständer, 1–8 Hochspannung, Warnung, 2–14 HOLD–Taste, 3–26 HORIZONTAL–MENÜ–Taste, 3–27 Hüllkurve, 3–3

Impulstrigger Anwendungsbeispiele, 2–24, 2–26, 2–50 Verwendung, 3–58 Intensität, Anzeige, 3–13 isolierte Kanäle Anwendungsbeispiel, 2–36 Beschreibung, 2–12

Κ

Kontinuität, 2–19 Kontrast, Anzeige, 3–13 Konventionen, vi Kopplung Trigger, 3–56 vertikal, 3–69

L

Leistungsmessungen, 2–46, 3–20, A–9 P6117, C–1 Speichern und Abrufen, 3–46 Leistungsprüfung, D–1

Μ

MAG-Taste, 3-28 Maximaler statistischer Wert, 3–38, 3 - 44Maximalwertmessungen, 3–35 MEAS-Taste, 3-31 Menüs Anzeige, 3–13 automatische Messfunktion, 3-31 Cursor, 3–11 Diestprogramm, 3–62 Erfassen, 3-3 horizontal, 3-27 Meßmodus, 3–39 Oberwellen, 3-16 speichern und abrufen, 3-45 Trigger, 3–54 vertikal, 3-68 Verwendung, 2–1 Meßanwendungen, Leistungsmessung, 2–46

Meßanzeige Cursor, 3–12 DMM-Meßwert, 3-41, 3-50 Meßwert, 3–53 Signalabbild, 3–51 Trigger, 3–52 Zeitablenkung, 3–52 Meßgerät Bereich, 3–43 Luxusprüfleitungen, C-3 Prüfleitungen, C–1 Rauschunterdrükung, 3–73 Meßgrößendefinitionen, getorte Messungen, 3-34 Messung der Burstbreite, 3–35 Messung des hohen Wertes, 3–35 Messung des Motoranlaufstroms, 2 - 48Messung von Leistungen, 2–38 Messung von Oberwellenströmen, 2 - 44Messungsanwendung Diodenübergang, 2–19 Frequenz, 2–20 Kontinuität, 2–19 Laufzeit, 2–22 Leistung, 2–38 Meßwerterfasser, 2–40 Motorstrom, 2–50 potentialfrei, 2-12, 2-36 Widerstand, 2–18 Messungsbegleitsignal, 3–53 Messungsdefinition Meßmodus, 3–38 Oszilloskopmodus, 3–35 Meßwert, 3–50, 3–53 Meßwerterfasser Anwendungsbeispiel, 2–40 Anzeige, 3–42 Durchlaufgeschwindikgkeit, 3–30 Speichern und Abrufen, 3–47

Meter–Modus, Funktionsmerkmale, 1–3 METER–Taste, 3–39 Minimalwertmessung, 3–35 Minimalwertstatistik, 3–38, 3–44 Mittelwertbildung, 3–3 Mittelwertmessung, 3–35 Mittelwertstatistik, 3–38 Motortriggerung, 3–61

Ν

negative Breite, Messung, 3–36 negatives Impulsspiel, Messung, 3–36 negatives Überschwingen, Messung, 3–36 nichtflüchtiger Speicher beim Auswechseln der Batterie, 1–5 Datenspeicherung im, 3–46

0

Oberwellen Anzeige, 3–17 Einstellungen, 3–16 Menü, 3–16 Messung, 3–18 Speichern und Abrufen, 3–46 Statuszeile, 3–18 Oberwellengehalt, Berechnungsverfahren, 3–17, A–8 ON/STBY Taste, 2–7 Verwendung, 1–5, 1–6 Oszilloskop–Modus, 1–2

Ρ

P5102 Beschreibung, C-1, C-3 Kompensierung, 2–10 technische Daten, A-11 P6117 Beschreibung, C-1 Kompensierung, 2–10, 3–43 technische Daten, A-10 Periodenmessung, 3–36 Phase, 3–12 Pinbelegung, A–16 Position, 3–73 der Bezugssignale, 3-71 horizontal, 3-28 Trigger, 3–29 vertikal, 3-68 positive Breite, Messung, 3-36 positives Impulsspiel, Messung, 3 - 36positives Überschwingen, Messung, 3–36 potentialfreie Messung Anwendungsbeispiel, 2–36 Überblick, 2–12 Produktbeschreibung allgemein, 1-1 Meßgerät, 1–3 Oszilloskop, 1–2 technische Daten, A-1 Zubehör, C-1 Prüfung auf fehlende Netzspannungszyklen, 2–42 Prüfung der seriellen Datenübertragungsstrecke, 2-30 Punkte, 3–13

R

Raster, 3–13 RelA, 3–7 Rollmodus, 3–28 RS-232 Adapter, C–2 Ausdruck, 3–22 Einstellung, 3–64 Kabel, C–2 Portanschluß, 1–4 Störungssuche, 3–64 Rücksetzen Meßwerterfasser, 3–42 Statistiken, 3–38 Ruheabschaltung, 3–65 RUN/STOP–Taste, 3–26

S

SAVE/RECALL-Taste, 3-45 SCOPE-Taste, 3-48 SEC/DIV-Wipptaste Meßmodus, 3–30 Oszilloskopmodus, 3–28 SET LEVEL TO 50%, Taste, 2-7 Signal wählen, Anzeige, 3–50 Signalabbilder, Speichern und Abrufen, 3-45 Signalabtastung, 3–3 Signalwegkompensierung, 2–11, 3-66 Sperre, 3–57 Spitzenwerterkennung, 3–3 Spitze-Spitze-Messung, 3-36 Statistiken Auswahl, 3–37 Meßanzeige, Standort, 3–41 Neueinstellung, 3–26 statistische Max/Min–Werte, 3–38 Status, 3–49

Stromtastkopf Beschreibung, C–4 Skalierungsfaktor, 3–69 Verwendung, 2–38, 2–50, 3–15 Synchronisationsimpulse, 3–60

Τ

T–Symbol, 3–27, 3–29 Tasten, Verwendung, 2–1, 2–6 Tastkopf, Beschreibung A605, A610, C-5 A621, A622, C-4 P5102, C-1, C-3 P6117, C-1 P6408, C-5 Tastkopfkompensator Position, 1–4 Verwendung, 2–10 technische Daten, A-1, A-10 Tek Secure, 3–63 THD, Berechnungsverfahren, 3–17, A-8durch Netzfrequenz, 2–29 durch Videosignal, 2–32 TOGGLE-Taste, 3-11 Tonsignal, 3–38 Toreingrenzung von Messungen, 3 - 34TRIGGER–MENU–Taste, 3–54 Triggerarten, 3–54 Triggerpegel, 2–29 Triggerposition, 3–29 Triggerstatus, 3–49 Triggerung an bestimmter Frequenz, 2-50 an fehlenden Impulsen, 2–24 an Glitschimpulsen, 2–27 an Videodatei, 2–32 Anzeige, 3–52 Auto-Modus, 3-56

Einstellung der Flanke, 3–56 Einstellung der Koppling, 3–56 Einstellung der Sperre, 3–57 Einstellung der Vortriggerung, 3 - 29Einstellung des Pegels, 3-54 Flankentrigger, 3–56 Impulstrigger, 3–58 Normal-Modus, 3-56 Triggerung an externes Signal, 2 - 28Feststellung von Glitschimpulsen, 2–26 Triggerung an Motoransteuersignal, 2–52 Triggerung an Videosignal, 2–32

U

Überbereichsanzeige, 3–40 UTILITY–Taste, 3–62

V

Vektoren, 3–13 Verlust gespeicherter Daten, 1–5 VERTICAL–MENU–Taste, 3–68 Meter–Modus, Verwendung, 2–9 Oszilloskop–Modus, Verwendung, 2–8 verzögerte Zeitablenkung, 3–29 Videotriggerung Anwendungsbeispiele, 2–32 Verwendung, 3–60 VOLTS/DIV–Wipptaste errechnetes Signal, 3–70 Kanäle, 3–69 Meßmodus, 3–43 Vortriggerung, 3–29

W

WAVEFORM–OFF–Taste, 3–68 werksseitige Einstellung Aufruf, 3–46 genaue Beschreibung, B–1 Widerstand, 2–18

Х

XY-Anzeige, 3-14

Ζ

Zeitablenkung, 3–29 Position, 3–43 Zoom, 3–43, 3–73 ausschalten, 3–10 einschalten, 3–8 Zubehör, C–1 Zykluseffektivwertmessung, 3–35 Zyklusmittelwertmessung, 3–35