Tektrnn/iX@

OSCILLOSCOPE
ANALYSIS AND

CONNECTIVITY
MADE EASY

Adding Live Oscilloscope Data to Popular Analysis Software
Includes Excel”, Visual Basic, MATLAB® and LabVIEW ™ Examples

Copyright © Tektronix Inc. All rights reserved. Licensed software products
are owned by Tektronix or its suppliers and are protected by United States
copyright laws and international treaty provisions. LabVIEW and
LabWindows™/CVI are trademarks of National Instruments Corporation.
Mathcad is a registered trademark of MathSoft, Inc. MATLAB is a registered
trademark of The MathWorks, Inc. Microsoft and Excel are trademarks and
Windows is a registered trademark of Microsoft Corporation.

Tektronix, Inc., P.O. Box 500, Beaverton, OR 97077

Tektronix and Tek are registered trademarks of Tektronix, Inc.

Note: Software on the CD is provided AS IS with no warranties of any
kind, specifically excluding WARRANTIES OF MERCHANTABILITY
AND FITNESS FOR A PARTICULAR PURPOSE. Tektronix, Inc.
assumes no liability of any kind for your use of this software.

Table of Contents

g 1 = 0 XI
What This BOOK IS ADOUL........cceuiirriiiicieieiesis sttt Xi
Who Should Read ThiS BOOK.............ciuiiiiiiriiiiiciii e Xi
How This BOOK iS Organized...........ccovciuieeiiiicicces st Xi
DOCUMENE CONVENTIONS.........vieeiiiieieicieiei sttt s Xii
CHAPTER 1: CONNECTIVITY BUILDING BLOCKScocounmmremerrnensesessssessesessssessesssssssessessens 1
ConnectiVity MadE EASIENcuiuiiiiiieiciric et 1
Built-in CoNNECiVity FEAIUIESc.ovieiieiieisce e 1
New Connectivity BUIlding BIOCKSc.cuiuiiiiriiiirieicicese s 3

TekVISA—A Standard Way t0 CONNECL..........cceuiirirceee s 4

MATLAB'S Instrument CONrol TOOIDOX............cuiueriuriiiiinieiieieineieeseeee e 9
PART 1: EXCEL AND VISUAL BASICcoosnirininisesnssssessssssessesssssssesssssssssssssssssessssssssssessens 1"
CHAPTER 2: THE TEKEXCEL TOOLBAR........ccocosunmmmminmnsressensssssssssssssssssssssssssssssssssessssssssssenss 13
INEFOAUCHION ..ttt s bbb 13

TOOIDAr PrEr@QUISIEEScvvieecici s 13

TOOIDAr FEAIUIES.......ceeiecec s 14
Adding the TekExcel TooIbar to EXCEI ..o s 14
CoNNECHNG t0 OSCIIOSCOPES......vveirieiriieiritiririeie sttt 15
Saving and Restoring SCOPE SEHtiNGS........c.veuriirririieiriee e 16

Save Settings from the SCOPE........cu s 17

Assign Stored Settings to the SCOPE........ccoiiriirricee e 20
Capturing and Graphing WavefOrmMS...........oirrireies s 21
Clearing the ACHIVE SREEL..........cirece s 24
Capturing and Graphing MEasUrEMENLS ..o 24

Capture Single MEASUIEMENL(S)cueveriereireiriereireeieisee ettt 24

Capture and Graph Repeated Measurement(s)..........ccoueuerierieieniesees s 27
Capturing Triggered WavefOormsS ... 31
Getting Help with the TEKEXCEl TOOIDANcovrieiiieirceriee s 34
TekEXCel TOOIDAr SOUICE COUEovvvieeeeieieiriiieeieiee st nes 35
ChapLEr 2 RBVIEWecviveiveiiee ettt ettt b bbbt bbb bee 35
CHAPTER 3: UNDERSTANDING THE TEKVISA ACTIVEX CONTROLcocorermnmmmmrsmssmssesens 37
0T [0 T o TSP 37
Background INFOrMAtIoNceuiriries e 37
TEIMINOIOGY ...ttt 38
Automated ACQUISIHIONcvviiiieice et e 38

Native GPIB Commands and QUETIESceuurieririiniieiinieieseisei s 39

TekVISA ActiveX Control Methods, Properties, and EVENLScccccevvvivicccnsscccceiens 39

CHAPTER 4. A SIMPLE PROGRAM TO GET WAVEFORMScococimmmmmnnrensssessssessssssessasens 41
INEFOAUCHION ..t 41
GPIB Commands for Waveform ACQUISIEION............cccceiirieiecesss et 41
WaVETOMM DALAcviieciicieice e 41
Waveform Pre@mbIe............coirices s 43
The TekVISA ActiveX Control and Waveform ACQUISIION............cccoueeieniieriieeseeeseeseeienas 43
The GetWaveform MEethodc.cciiiiccccee e 43
Other Methods of Waveform ACQUISIION ..o 43
GEttiNG STAMEA ... 44
What You Need 10 Get Started........cccoveeiiiicccsccee e 44
WHat YOU WIll DO ... 45
WHat YOU Will LEAM.....c.cviueviieisie ettt enee 47
The Get Waveform Example in EXCEl VBA ... 48
BUIIING the FOMM ... 48
GEHING HEIP .o 53
Changing Properties in the Properties WINAOW...........cccviirncseeseeeeseieeseies 54
Using the ObJECt BIOWSET (F2)cceuiiiieiriiririeisiceises e 57
Coding the EVENt PrOCEAUIESc.cueveiieiiieiecieiesee s 60
Running the GetWaveForm Program ... 69
Running the Program with the Jitter EXamplecooirinrcceeceseeesiis 71
USING VB INSEEAA OF VBA ... 74
CRAPLEr 4 REVIEW........eeiei b 76
CHAPTER 5. A MORE COMPLEX FOUR-PART PROGRAM..........ccnmmmmmmmmmmmnsssessssmssssasssssssssasens 77
INEFOAUCHION ..ot bbb sn s nes 77
What You Need 10 Get Started........cccoveviiiicccsrces e 77
WHat YOU WIll DO ... 78
WHat YOU Will LEAM.....c.cviveviieieie ettt bbb enes 80
The TekVISA Test Run Example in EXCEl VBA..........c.oo ettt 81
BUIIAING the FOMM ... 81
Changing Properties in the Properties WIndow.............ccoornninesceeesceseeseen, 81
The Current DEVICES LiSt BOX.........cuiueiieiriiririieiesie e 83
The Measurement Commands Frame............cocveriviiiiceeeseeeee e sees 84
The Waveform Data Frame..........ccoceieninceee e 87
The Send GPIB Commands Frameccoceieeniiiiieccesss et sesenes 93
Running the TekVISA Test RuUn Program............ccoeereinneseesee s 95
USING VB INSEEAA OF VBA ... 97
Chaper B REVIEW......eviiiicictete sttt sttt s et s e 98
CHAPTER 6: A MEASUREMENT CHARTING EXAMPLE. ... 99
0T [0 o TSSO 99
What You Need 10 Get Started..........coiereeceeeess s 99

WHEE YOU WIll DO ... 100

What YOU Wil LEAM ...ttt 103
The Chart Measurements Example in EXCEl VBA..........ccoovceeeiieiceece e 104
BUIAING the FOMM ..t 104
Changing Properties in the Properties WINAOW ..o 104
INIGANZALON ... 107
ChoO0SING MEASUIEMENIScvuiiiiiciicicisi bbb 109
DiSPIAYiNG RESUIESvveieieiecreieiisiecee ettt bbb 116
Running the Chart Measurements Program ..o 120
USING VB INStEAA Of VBA ..o 121
Chapter B REVIEW ...t 124
CHAPTER 7: A TRIGGERED WAVEFORM CAPTURE EXAMPLE...........cccoccnsmmmnensnnnsressenns 127
0T [0 o TP 127
GttiNg STAMEA.cecee s 127
What You Need t0 Get Stared ... 127
WHAE YOU Wil DO ..ottt 128
What YOU Will LEAIM ... 130
The Triggered Waveform Capture EXample in VB ..o 130
BUIAING the FOMM ... 130
GEHING HEID ... 141
REVIEWING the COUE.........oceeiiiieircie b 143
Running the Triggered Waveform Capture EXamplecccovvvnennieeniencese e 158
USING VBA INSIEAU OF VB ... 162
ChapEr 7 REVIEWecececececrieieee ettt ettt bbbttt st bbb s b ebee 163
PART 2: MATLAB AND LABWINDOWS/CVI AND LABVIEW.........ccocrerenmemmrsensensessssessesessans 165
CHAPTER 8: LIVE UPDATES TO MATLAB USING ICTcccoconmmrmnresesmssessesssssssessessssessessesens 167
INETOAUCTION ...t 167
What You Need 10 Get Started ..o 167
WHAE YOU Wil DOt 168
WHat YOU Wil LEAM ..ttt 168
The Instrument CONtrol TOOIDOX........cceuiiririiiiieieeer e 168
Configuring VISA RESOUITEScuovirririrrieisiieiniieiesee et 169
Communicating with VISA-GPIB ODJECES........c.ciieiiieirieeree s 169
Using the Instrument Control ASCII Communication TOOcccceierienniescnseeiseeens 170
Cleaning up Instrument Objects during Debuggingcoeeerieienieirneerreesee e 172
The Jitter Example with MATLAB ICT FUNCHONSccccviiiiiiccictee et 173
Creating the jJIitler2 FUNCHON ..o e 174
Testing Automatic Waveform ACQUISITION. ..o 182
Improved Jitter Example with @ GUI Interface..........cocceeeiviiiecccse e 184
Adding GUI Components t0 the SOIUtION ..o, 184
Performing an INeHM TEST........ccoiiiicie e 189

Modifying Auto-Generated FUNCHONScccoviiiceccces e 189

Testing the IMProved SOIULION. ... 204
Chaper 8 REVIEW.....cvcviiiieciete ettt sttt b s en s 206
CHAPTER 9: LABWINDOWS/CVI AND LABVIEWcovnirmirmnmmsnismssssssssssssssssssssssssssssss 207
YT [0 o TP 207
Tektronix PIUG-N-Play DIVEFS..........cccciiiiiccieieesi ettt esne 207
Overview 0Of LabWINAOWS/CV ..ot 208
Using Tektronix Plug-n-Play Drivers with LabWindows/CVI............cccovieninniirniennceseee, 209

LOAAING ThE DIIVET ... 209

BUIIAING the INtErFACE. ... 213

GEHING HEID -t 216

Modifying Auto-Generated FUNCHONSccociiriinincse s 217

RUNNING YOUT PTOGraM........ouiiiieiiceisitiis st 226
OVEIVIEW Of LADVIEW ..ot s 227
Using Tektronix Plug-n-Play Drivers with LADVIEW ... 228

LOAAING ThE DIIVET ...ttt 228

Viewing Drver FUNCHONS.c.cueuirricee e 230

GEHING HEID .o 231

Creating a QUICk DemO Programcoceiiiiriiiniieieinieeissieesises s 234

RUNNING YOUT PTOGraM......ciuiiiieiicieisiseis s 243
Using VISA Operations With LADVIEWcoiiriee e 244

Creating a Timed Measurement Program ... 244

RUNNING YOUT PTOGraM........ouiiiiieiicieisite st 252
Chapter G REVIEW......vviiicectete ettt ettt ettt b bbbttt b s s s s 253
APPENDIX A: COMMAND AND CONTROL REFERENCE.............ccocosummmmmmsenmesssssnsessesssssssessenses 255
g0 [V o TP ROT 255
Native GPIB Commands and QUETIES...........c.uuueiurreirieieireeiseisieisie s 255
TekVISA Active X Control Methods, Properties, and EVents ..., 263
MATLAB Instrument Control TooIDoX FUNCHONScoceuiiriciirceeeeees s 281
PP DAVER FUNCHONSvvvcveiicccces ettt b 287
VISA OPEIAtIONS......covieiiieeesicieisieie sttt 288
APPENDIX B: FAST LAN ACCESS TO YOUR OSCILLOSCORPE...........ccoosenmmnmmmmmsismnssssssessensns 291
INEFOAUCHION <.ttt es 291
VXI-11 and LAN Connectivity for OSCIllOSCOPES.cvvuruririieirieiericiesieis s 291
BENEfits OF LAN ACCESS.....cviviiiiieicicieiesis ettt 292
Deployment CONSIAEIAtIONScciueiiiiiiicrcre ettt bbb 293
VXI-11 LAN Server Installation and Configurationcccceeeeninieveceeeesecceee e 293
VXI-11 LAN Client ACCESS SEIUPvvverveeieisisiitecete s 294

TEKVISA INSEAlALON ... 294
ApPlICAtIoN EXAMPIESocveveieiiiiecieiessisse et 299

VisUal BaSIC EXAMPIE.....cviiiiiiiiieicieeceeiene sttt 299

MATLAB EXGMPIE.....cocviiiiiiiecctcs ettt 299

LabWindows/CVI EXAMPIE.......cciiiieiiieiieiscie s 299
LAbVIEW EXAMPIE ...ocviviiictctetee ettt ettt 300
C Program EXAMPIE.........ccciiiiicieees ettt e 300
Programming TIPScueuiueureieiriciei sttt 300
TIMEOUL SEHINGSvvveecce et 300
NON-TEKVISA VXI-1T CIENTS ..o 301
VXI-TT SEANAAIT ... 301
APPENDIX C: OTHER VB EXAMPLES...........cocoonrnrisssssesssssssssss s sssessssssssssssssssessssesens 303
oo [0 o TSRO 303
Alternate Methods for Getting Waveform Data Using the TekVISA Controlcccoovvvrienne. 303
Writing and Reading Binary/ASCII Waveform Example...........ccoornneninceecees 303
The USEr INTEIACE ...cvvviiecece s 305
HOW the Program WOIKS ..o 307
€O LISHNG ...t 309
APPENDIX D: USING THE WAVEFORM GENERATORcccoermmmmmmrensnresssssessssessssessssesesseens 321
0T [0 o ST 321
To Generate a Live WaveforMcccoiiicccee e 321
Set up YOUr Display MOGEccvviiiriierieescess e 321
Locate the Software and Examples for This BOOKccccoueurinniinniennceressccseeens 323
CONNECEtE CabIEcvveeei b 323
Start Up the Waveform GENETAOrccciiviieiiccecce et 324
Set Up the Oscilloscope and Calibrate the Sound Cardcoccevenviviccesseseeeeens 325
Generate the WavefOr...........ccvreces e 327
Copy and Paste the Waveform Data into EXCElccoirviirninncnncssceee s 327
Export the Waveform into a File Appropriate for EXCel ... 328
Import the Waveform into EXCEL.........cceiiiiiiicccc bbb 328
INDEX ... ccctecsssesesssesssssesssss s sse s s ss s sse s s s e s s e s e s sns e ssssssssnssesssnsnesssnsnensananens 331

List of Figures

Vi

Figure 1: A Copy Setup box prepares waveform data for Excel 2
Figure 2: TekVISA supports connectivity to programming

ENVIFONMENES ... 5
Figure 3: Range of connections made possible by TekVISA

COMPONENES ...ttt 7
Figure 4: The path to LAN connectivity...........cccooevrierninninenins 8
Figure 5: Tektronix VXI Plug-n-Play Drivers integrate with

popular test automation software such as LabVIEW 9
Figure 6: The TekExcel Toolbar in EXcel..........ccooveinivnninnns 13
Figure 7: How TekVISA ActiveX Controls interface with

Excel VBAANA VB ... 43
Figure 8: The form you will design for the GetWaveform

EXAMPIE .. 44
Figure 9: The Get Waveform form at runtime ... 45
Figure 10: Excel Clock Jitter example.........cccooevnirierninicenienn. 46
Figure 11: Get Waveform form before changing default

PIOPEILIESvviviiiieie ittt nes 52
Figure 12: Using the VBA Help facilityccocoevrerninnninnn 53
Figure 13: The redesigned form for Get Waveform 56
Figure 14: A object hierarchy from the Excel Object Model.......... 57
Figure 15: Using the Object Browser with Excel VBA.................... 58
Figure 16: Related online help from the Object Browser 59
Figure 17: The Clock Jitter example with the Get Waveform

program addedccceuerrnieree e 73

Figure 18: Visual Basic 6.0 version of Get Waveform program 74
Figure 19: The form you will design for the Test Run example..... 78

Figure 20: The Test Run form at runtime..........cccoooovevviccninnnnns 79
Figure 21: TekVISA Test Run form before changing default

captions and appearance of controls..........cccccevvieeeeerennen, 81
Figure 22: The redesigned form for TekVISA Test Run................ 81
Figure 23: The Current Devices list DOX.........cccorevrcnnierinnnne 82
Figure 24: The Measurement Commands framecccovvuenee 84
Figure 25: The Waveform Data framecccooeovvevninnninnns 88
Figure 26: The Send GPIB Commands frame.............c.ccccovrvnnnee 93
Figure 27: Visual Basic 6.0 version of the TekVISA Test Run

ST 10 =1 0 ST 96
Figure 28: The form you will design for the Chart

Measurements eXampleoccvrerniennereerees 100
Figure 29: The Chart Measurements form at runtime.................. 101
Figure 30: Chart Measurements plotted results..............c.ccc..... 102
Figure 31: Chart Measurements form before changing default

captions and appearance of controls...........cccccevvveveevevnan, 104
Figure 32: The redesigned form for Chart Measurements.......... 104

Figure 33: How the Excel model incorporates charts 117
Figure 34: Visual Basic 6.0 version of Chart Measurement

PIOGRAM ..eiececvcvete ettt r s 121
Figure 35: The form you will design for the Triggered

Waveform Capture example..........cocovvienniennennineennnens 128
Figure 36: The Triggered Waveform Capture form at runtime.....129
Figure 37: The Settings tab at design timeccccccovvenirncinee. 133
Figure 38: The TDS7000 Series Measurements tab at design

BB 136
Figure 39: The TDS8000 Series Measurements tab at design

BB e 137
Figure 40: The Data tab at design timeccooevvvccnicnnnee 139

Figure 41: Using the Object Browser with Visual Basic 6.0......... 141
Figure 42: The form module and code module in separate

Code WIndows Of VB........c.ocounirinieneeseeessieene 143
Figure 43: Triggered Waveform Capture example flow diagram .144
Figure 44: The VISA Configuration Utilitycccoovrinininnnne. 168
Figure 45: MATLAB's Instrument Control Toolbox ASCII

COMMUNICALION t00] ..o 171
Figure 46: How commands and queries are funneled through

MATLAB fUNCHONS......cocvevereiriiicrcicieers s 173

Figure 47: The first screen of the jitter2 function in MATLAB181
Figure 48: The plotted graph solutions for jitter2 in the MATLAB

Figure Windowcceuerrniniecceerneeee s 182
Figure 49: Building a GUI using the MATLAB guide utility........... 184
Figure 50: The MATLAB guide utility Property Inspector............. 185

Figure 51: First page of completed jitter3 example in MATLAB...203
Figure 52: The plotted graph solutions for jitter3 in the MATLAB

Figure WIndOWcceuerrriecreerneeeee s 205
Figure 53: Plug-n-play Driver Help file for TDS/CSA8000 Series
OSCIllOSCOPES ... s 207
Figure 54: The Measurement Capture program interface at
LabWindows/CVI design time..........ccovvevernecinniniriennn. 212
Figure 55: Adding controls to a LabWindows/CVI panel.............. 213
Figure 56: Dialog box for editing attributes of the Dial control in
LabWindOWS/CVI........ccoieiriiiieinirereseeiseeee e 213
Figure 57: Page from the LabWindows/CVI Help file 216
Figure 58: The LabWindows/CVI Code Windowccccceuue. 218

Figure 59: The LabWindows/CVI program while executing......... 226
Figure 60: Page from the LabVIEW Tutorial in the Help file......... 232

Figure 61: Sample context help for a PnP Driver functon............ 233
Figure 62: The Front Panel for the LabVIEW example................. 246
Figure 63: The Block Diagram for the LabVIEW example........... 252
Figure 64: The LabVIEW program while executing 253
Figure 65: LAN connectivity from PC applications to Tektronix
OSCIlIOSCOPEvveverrerrie sttt 292

vii

viii

Figure 66: VISA Configuration Windowccccccvvvvvcceiiinnns 296

Figure 67: TekVISA Remote Host dialog boXccocvrerernne. 298
Figure 68: Sample VISA program for LAN-based oscilloscope
ACCESS .vvrersireeesei it 300
Figure 69: Design-time form for the Writing and Reading
Binary/ASCIl Waveform exampleccccevvvreccennninnnen. 305
Figure 70: Runtime form for the Writing and Reading
Binary/ASCIl Waveform exampleccccevvvieccessnieienen 307

List of Tables

Table 1: Table of typographic conventions...........cccccevvvecicrennnn. Xii
Table 2: Quick review of exporting and importing oscilloscope

LA o 2
Table 3: Summary of TekExcel Toolbar buttons............c.ccceveeee. 14
Table 4: Some command and control terminologyc.ceene... 37
Table 5: Useful icons on the VBA Standard Toolbar 48
Table 6: Icons for VBA controls used in this bookcc.c....... 50
Table 7: Changes to make in the Properties window to Get

WaVETOMM ... 54
Table 8: Property changes to make outside of frames in

TEKVISA TESE RUN.....cvcviviecccee e 82
Table 9: Property changes to make in the Measurement

Commands frame..........ccoceeeniiieecesr e 83
Table 10: Measurements available in the Measurement

CommaNds frAMEcvveveriereeree s 84
Table 11: Property changes to make in the Waveform Data

fFAME oo 87
Table 12: Property changes to make in the Send GPIB

CommaNds fraMEcvveverirere s 92
Table 13: Changes to make in the Properties window to Chart

MEASUIEMENLS........cvcveviriiiiiercieeeieie et ereaes 104
Table 14: Useful icons on the VB Standard Toolbar.................... 130
Table 15: Icons for VB controls used in this example.................. 132
Table 16: Changes to make in the Properties window to the

Settings tahcecve e, 134
Table 17: Changes to make in the Properties window to the

TDS7000 Series Measurements tabcccovvevvireieinnnee 137
Table 18: Changes to make in the Properties window to the

TDS8000 Series Measurements tabcccovveerireerinnnen 138
Table 19: Changes to make in the Properties window to the

Datatab.....ccccciiiiiiccee s 139
Table 20: List of Initialization routines...........c.cccoeeververiereriennnn. 144
Table 21: Routines involved in listing devices and displaying

ChANNEIS ... 146
Table 22: Routines involved in listing measurements to capture.148
Table 23: Routines involving dialog box buttonsc........ 150
Table 24: Routines involved in setting registersc.cccoeeeeee.. 152
Table 25: Routines involved in handling trigger events................ 155
Table 26: Routines involved in getting measurement and

Waveform data.........cccooveeiennicee e 155
Table 27: Routines involved in displaying results in the grid 156
Table 28: Routines involved in saving data to disk...................... 156
Table 29: General purpose routingsccoecveveveveeeeereseennn, 157

Table 30: Icons for MATLAB guide toolbar controls used in this

DOOK. . e 184
Table 31: Changes to make in the Property Inspector to GUI

CONMIIOIS ...t 187
Table 32: Relevant attributes of controls that appear on the

Measurement Capture panel in LabWindows/CVI............... 214
Table 33: Relevant attributes of controls that appear on the

measuredemo.vi Front Panel in LabVIEW............cccccenenenes 247
Table 34: TDS7000 Series native GPIB commands used in

examples in this DOOK ..., 256
Table 35: TDS7000 Series native GPIB queries used in

examples in this DOOK ..., 261
Table 36: Methods, properties and events of the TekVISA

ACtIVEX CONMOL......oviiieiceiece e 263

Table 37: MATLAB Instrument Control Toolbox functions.......... 281
Table 38: TDS/CSA 8000 PnP driver functions used in

LabWindows/CVI and LabVIEW examples.........cccccvrrnnne 287
Table 39: VISA operations used in LabVIEW and LAN Server
EXAMPIES 1.veviviiiiiss s 288

Table 40: Changes to make in the Properties window to the

Writing and Reading Binary/ASCIl Waveform example........ 306
Table 41: Summary of functions in the Reading Binary/ASCII

Files eXample..........coovirrinees s 308

What This Book is About

Preface

What This Book is About

This book shows you how to use a variety of popular tools to build graphical
user interfaces to Tektronix Windows-based oscilloscopes. By using these
“soft front panels,” you can quickly and easily connect your oscilloscope,
whether locally or remotely, to the latest PC tools for analyzing waveform
and measurement data. In addition, this book explores the functionality of the
TekExcel Toolbar Add-In for Excel, which requires no additional
programming.

Who Should Read This Book

Whether you are a novice who has never built a graphical user interface
before or an experienced programmer, you will find this book helpful if you
are interested in increasing your productivity with Tektronix Windows-based
oscilloscopes. The examples cover programming environments ranging from
Excel Visual Basic for Applications (VBA) and Visual Basic 6.0 to
MATLAB, LabWindows/CVI, and LABVIEW. Familiarity with any or all of
these environments is helpful but not necessary in order to work most of the
examples.

How This Book is Organized

This book is divided into two parts. Each part includes multiple chapters and
is designed to impart new information in progressive steps.

e Part 1 covers the use of Excel with the TekExcel Toolbar
and the TekVISA ActiveX control, and also includes Visual
Basic 6.0 examples with the TekVISA ActiveX control.

e Part 2 describes the use of MATLAB with the Instrument
Control Toolbox, and the use of LabWindows/CVI and
LabView with Tektronix Plug-n-Play drivers.

e The appendices summarize the syntax of commands and
controls used in the book, discuss LAN connectivity, present
more complex examples, and describe the use of an optional
Waveform Generator program to generate live waveforms
for examples.

Oscilloscope Analysis and Connectivity Made Easy Xi

Document Conventions

A CD-ROM accompanies this book. The CD-ROM includes the text of the
book saved in PDF format, so you can use Adobe Acrobat Reader to access
the book on-line. Also on the CD are the programming examples discussed in

the book.

Document Conventions

This book makes use of certain notational conventions and typefaces in

distinctive ways, as summarized in Table 1.

Table 1: Table of typographic conventions

Typeface
boldface

italics

SampleName

Note:

Code

Menu >
Submenu

Xii

Meaning

Used to emphasize important
points and to denote exact
characters to type or buttons to
click in step-by-step
procedures.

Used to introduce terms and to
specify variables in syntax
descriptions.

Used to designate the name of
a function, statement, filename,
or similar construct in regular
body text.

Used to call attention to notes
or tips in text.

Used to designate blocks of
code.

Used to designate a series of
cascading menus.

The example here means: from
the Tools menu, choose
Macro.

Example
Connect your monitor to the
video port.

1. Click OK.

An industry-standard
communications protocol
called VXI-11

Attribute (type) = newvalue

You will employ a user-
defined function called
Acquire_Instrument.

Note: Start here.

sCHCommands =
"DESE 1;*ESE 1;*SRE 32"

1. Choose Tools > Macro.

Oscilloscope Analysis and Connectivity Made Easy

Connectivity Made Easier

Chapter 1:
Connectivity Building
Blocks

Connectivity Made Easier

The first connectivity book to accompany a Windows-based Tektronix
oscilloscope was entitled Oscilloscope Connectivity Made Easy. Since that
book was published, Tektronix has added a number of new building blocks to
make connectivity even more seamless and broad-based. These connectivity
building blocks provide a new layer of middleware for connecting your
Windows-based analysis programs to Tektronix embedded oscilloscope
software.

The previous book showed you how to copy and paste or export and import
data into three popular analysis programs: Excel, Mathcad, and MATLAB.
That book also showed you how to use a stand-alone application to feed
waveform data repeatedly into Excel or Mathcad.

This Oscilloscope Analysis and Connectivity Made Easy book gives you
even more routes to jump-start connectivity to your favorite analysis
program. You will:

e cxplore new levels of connectivity to Excel and MATLAB

e learn how to use Visual Basic to interact with your
oscilloscope in the Windows environment

e acquire the tools and expertise to interconnect with the
LabVIEW graphical programming environment

Built-in Connectivity Features

Because Excel and MATLAB are of special interest to our customers,
Tektronix has built simple point-and-click interfaces from its oscilloscopes to
these three programs. For example, Figure 1]shows the dialog box for
copying TDS5000/7000 Series Oscilloscope waveform data to be pasted into
Excel. The oscilloscope software also includes similar setup boxes for
exporting data in a format suitable for MATLAB.

Oscilloscope Analysis and Connectivity Made Easy 1

Built-in Connectivity Features

i Copy Setup
Images easurements |

Data destination “Waveform curve data range - Mumber of Samples
I S et € Samples from 1 ta IEDDD 5000

Source & Al

IChanneI 1 Yl

waveformn D etail Wwaveform Fast Acquisition

¥ Include waveform Data Ordsring
scale factars IBottom first, ratate S0 degree:j
Copy | ok I Cancel | Help |

Figure 1: A Copy Setup box prepares waveform data for Excel

quickly reviews how to pass oscilloscope data to Excel and
MATLAB. As shown in the table, you can use copy-and-paste or export-and-
import techniques to move information from your oscilloscope to these
programs.

Table 2: Quick review of exporting and importing oscilloscope data

Menu Selections / Commands

Using Using Using
Microsoft Microsoft MATLAB
Excel with Excel .txt File .dat File
Clipboard
To Copy / Export Edit > Copy File > Export File > Export
Data from Setup Setup Setup
TDS5000 and
TDS7000 Series
Oscilloscopes
To Copy / Export Edit > Copy File > Export
Data from Waveform Waveform
TDS/CSA8000 Series
Oscilloscopes
To Paste / Import Edit > Paste Data > Get Reference data
Data into External Data> filename as
Excel / MATLAB Import Text File 5rqyment of
or M-file function
call in Command
Right-click and Window
select
Refresh Data

2 Oscilloscope Analysis and Connectivity Made Easy

New Connectivity Building Blocks

New Connectivity Building Blocks

Now a number of new connectivity components have come on the scene.
These new connectivity tools support faster and more seamless transfer of
continuous live data into Excel and MATLAB. New connectivity building
blocks also support other popular programming environments: Visual Basic
as well as LabVIEW and LabWindows/CV]I, a Measurement Studio
component.

Tektronix latest connectivity solutions incorporate:

e TekExcel Toolbar, an add-in that supports easy data capture
into Microsoft Excel without any programming

o TekVISA ActiveX Control, a Visual Basic OCX control that
“wraps” and encapsulates the TekVISA library, enabling
rapid application development in Visual Basic 6.0 or Visual
Basic for Applications (VBA)—Excel’s behind-the-scenes
development environment

o TekVISA API, a standard application programming interface
(API) and common I/O library for connecting to and
controlling measurement devices such as oscilloscopes

o [nternal “virtual”GPIB, a software resource built into
TekVISA, that links the Windows processor to the
embedded processor in Tektronix Windows-based
oscilloscopes, permitting faster acquisitions than
conventional GPIB hardware links

e VXI Plug-n-Play Drivers, for Tektronix Windows-based
oscilloscopes, capable of connecting with LabWindows/CVI
and LabVIEW test automation software and other
programming environments

e Seamless connectivity with MATLAB via the Instrument
Control Toolbox, available from The MathWorks, Inc.

e VXI-11.2 Client/Server, technology for LAN connectivity

Oscilloscope Analysis and Connectivity Made Easy 3

New Connectivity Building Blocks

TekVISA—A Standard Way to Connect

TekVISA is the new Tektronix implementation of the industry-standard
library of common I/O operations known as VISA. VISA (Virtual Instrument
Software Architecture) was the brainchild of the VXIplug&play Systems
Alliance (http://www.vxipnp.org), a group formed to standardize the building
of instrumentation drivers. TekVISA’s set of operations, attributes, and
events supports connectivity between application development
environments—such as C++, Visual Basic, MATLAB, and LabVIEW—and
multiple kinds of resources including devices connected:

e via alocal GPIB connection
e viaalocal Serial (RS-232) connection

e via the Tektronix internal software connection known as
virtual GPIB

e viaa remote GPIB-LAN connection

e remotely via virtual GPIB, Tektronix VXI-11 client/server
technology, and an Ethernet LAN connection

shows the broad range of connectivity brought together through
TekVISA technology.

4 Oscilloscope Analysis and Connectivity Made Easy

http://www.vxipnp.org/

New Connectivity Building Blocks

Application Development Environments (ADE)

LabVIEW
C, C++ Visual Basic and MATLAB
Program Program LabWindows

\iErogram uses
PP | Instrument Driver API

Instrument Inst i i
Specific nstrumen i Program usesTekVISA API

Driver API

!

Y

TekVISA Input/Output Library API

i i } i

Virtual GPIB ASRL LAN
GPIB . (RS232 COM1, (VXI-11
(GPIB8) (GPIBO-GPIBS) Ccom2) Protocol)

[—

D)
(000 © ® 0 O ® -]
Test and Measurement
Instruments

Figure 2: TekVISA supports connectivity to programming environments

TekExcel Toolbar

The easiest way to get up and running with your Windows-based
oscilloscope is by making connections using the TekExcel Toolbar. This add-
in to Microsoft Excel works just like any other toolbar in that application.
When you click an icon, a dialog box pops up that allows you to pass
information back and forth between the Microsoft Excel application and your
Windows-based oscilloscope, without any programming modifications. If
you need no special customization beyond the built-in toolbar functions, the
TekExcel Toolbar will serve you well and get you going quickly, whether
you are transferring oscilloscope measurements or captured waveforms into
Excel. Chapter 2 introduces you to the use of this multi-purpose toolbar.

Oscilloscope Analysis and Connectivity Made Easy 5

New Connectivity Building Blocks

TekVISA ActiveX Control

The TekVISA ActiveX Control will make your job a lot easier if you are
familiar with Visual Basic or Excel’s Visual Basic for Applications. This
book explores some ways to use this powerful control to build fast
connections from VB or VBA to the acquisitions side of your oscilloscope.
With this tool, you can spend time using the programs that help you do your
job, instead of losing time building complicated specialized instrument
drivers out of sheer necessity, as was often required in the past. You can
simply drop this control onto a form and then quickly design an interface
with buttons and boxes to suit your needs.

If you just know a little bit about VB, the TekVISA ActiveX Control and the
sample programs that come with this book will arm you with enough
hands-on information to customize the examples given. Or, you can write
your own pop-up dialogs between your oscilloscope and Excel or Visual
Basic 6.0. Chapters 3 through 7, along with [Table 36]in Appendix A, cover
programming at this level using the TekVISA Control. Chapters 3 through 6
focus on using VBA with Excel spreadsheets, while Chapter 7 and Appendix
C concentrate on using Visual Basic 6.0.

TekVISA API

If you are an accomplished VB or C++ programmer, you can write programs
that call TekVISA operations directly, especially if you need more
fine-grained control. The TekVISA API software now comes standard on
Tektronix Windows-based oscilloscopes. The online TekVISA Programming
Manual includes a lookup reference section and a tutorial section with
programming examples. This subject matter is beyond the scope of this book.

Internal “Virtual” GPIB

TekVISA support for an internal resource called virtual GPIB means fast
connectivity between Windows and the embedded software side of your
oscilloscope. Virtual GPIB provides a software bridge to and from embedded
oscilloscope software, permitting direct internal access to the oscilloscope for
much faster and larger acquisitions than conventional GPIB ports. What is
more, this feature facilitates remote connections with other PCs over a
standard Ethernet LAN without the need for special GPIB-to-LAN hardware
adapters.

TekVISA also includes Asynchronous Serial (ASRL) and GPIB resources
that support more traditional connections to non-Windows-based
instruments.

VXI-11.2 Client /Server Connected by Local Area Network (LAN)

Tektronix VXI-11.2 Client/Server technology adds another important piece
to the connectivity picture. The VXI-11 Server-side component, combined
with TekVISA’s virtual GPIB, provides a software passageway for
connecting your Windows-based oscilloscope over an Ethernet LAN to
remote PCs. On each remote PC, you would install another copy of TekVISA
to make use of its built-in VXI-11 Client-side component.

6 Oscilloscope Analysis and Connectivity Made Easy

New Connectivity Building Blocks

You will need your own VXI-11 Client-side software if you want to connect

UNIX-based systems to your Windows-based oscilloscope.

Appendix B discusses the details of accessing the oscilloscope across a local
area network (LAN) from the programming environments discussed in this
book. Figure 3 shows the range of connections made possible by the various
TekVISA building block components. ocuses on the components
that make LAN connectivity possible.

Remote Remote Local
UNIX-based Controller Windows-based Controller Windows-based Controller
U_ser. User
Application Application
[[
User
Application VISA Library VISA Library
/ T]
VXI-11 [ASRL L B
Client Client
Windows-hased Ethernet |
Oscilloscope LAN GPIB-LAN
Adapter
Windows-side Eih Embedded Software side w/VXI-11
of Instrument thernet of Instrument GPIB
LAN hardware
User hRS(]232
inati VXI-11 ardware
Application —_—
RRIESS Server
i
VXI-11 : ——— [5ocoo o
Client || /oA Hbrary u F soszz g
———— (308338
- Virtual software IL@©© S @JJ ° 852298
ASRL { GPIB GPIB GPIB + ° glcooso
connection °© o |222 909
o=l OICIOIC)]
Non Windows-based
Instruments

Figure 3: Range of connections made possible by TekVISA components

Oscilloscope Analysis and Connectivity Made Easy

New Connectivity Building Blocks

Remote
Windows-based Controller

VISA'Library
|
VXI-11
Client
Windows-based Oscilloscope
Ethernet
LAN
Windows side
of Instrument VXI-11 /)

Server

(660 60000]

Virtual S%ﬂg:/ ;re Embedded Software side
GPIB connection of Instrument

Figure 4: The path to LAN connectivity

Tektronix Plug-n-Play Drivers with LabWindows/CVI and LabVIEW

Tektronix VXI Plug-n-Play drivers add another feature to the connectivity
landscape, enabling easy linkage with popular test automation software such
as LabVIEW (Figure 5} and LabWindows/CVI. VXI Plug-n-Play drivers for
Tektronix Windows-based oscilloscopes add a layer of middleware so you
can work in these graphical programming environments without spending a
lot of time getting data in or out of your test equipment. Chapter 9 and
38'in Appendix A focus on connectivity scenarios using these graphical

tools.

8 Oscilloscope Analysis and Connectivity Made Easy

New Connectivity Building Blocks

i LabVIEW [_]
| Mew VI [« |
NATIONAL INSTRUMENTS™
LabVIEW ——
| DaQ Solutions |

~Quick Tip: |
Ta increasze the point size of data symbols an chartz and graphs, increase the
line width of the plot. |

Search Examples |

LabWIEWw Tutorial |

Hest l | Exit |

[D nat show thiz window when launching

Figure 5: Tektronix VXI Plug-n-Play Drivers integrate with popular test automation
software such as LabVIEW

MATLAB's Instrument Control Toolbox

Anothr connectivity tool has emerged from The MathWorks, which now
offers an Instrument Control Toolbox with MATLAB. This toolbox makes
connectivity with Windows-based oscilloscopes such as the Tektronix TDS
Family possible without complicated programming. Chapter 8 shows you
how to import live waveforms into MATLAB using this new toolbox.

Oscilloscope Analysis and Connectivity Made Easy 9

New Connectivity Building Blocks

10 Oscilloscope Analysis and Connectivity Made Easy

PART 1. EXCEL AND VISUAL BASIC

CHAPTER 2: THE TEKEXCEL TOOLBAR

CHAPTER 3: UNDERSTANDING THE TEKVISA ACTIVEX CONTROLY7]
CHAPTER 4: A SIMPLE PROGRAM TO GET WAVEFORMS 1]
CHAPTER 5: A MORE COMPLEX FOUR-PART PROGRAM
CHAPTER 6: A MEASUREMENT CHARTING EXAMPLE ~ P9]

CHAPTER 7: A TRIGGERED DATA CAPTURE EXAMPLE

1

PART 1: EXCEL AND VISUAL BASIC

12 Oscilloscope Analysis and Connectivity Made Easy

Introduction

Chapter 2:
The TekExcel Toolbar

Using the TekExcel Toolbar with
Microsoft” Excel

Introduction

This chapter introduces you to the TekExcel Toolbar—a multi-purpose
toolbar that allows you to place data from your Windows-based oscilloscope
directly into an Excel document simply by clicking a few buttons. Easy
acquisition is the heart of the toolbar. You can make single or repeated
captures of data on a triggered, periodic, or timed basis, with the option of
also graphing the data. Figure 6 khows the TekExcel Toolbar, which includes
six button icons.

TekExcel Toolbar —E

P

Figure 6: The TekExcel Toolbar in Excel

No programming is required in order to use the TekExcel Toolbar; however,
the Visual Basic source code for the toolbar is available on the companion
CD for experienced VB programmers who wish to modify toolbar features
for their own use. In later chapters of this book, you will learn how to build
less complicated VBA programs that implement some of the functions built
into this toolbar.

Toolbar Prerequisites

You can use the TekExcel Toolbar with Microsoft Excelnrunning either on
your Tektronix Windows-based oscilloscope or on a separate PC connected
by a network to your oscilloscope. The oscilloscope and connected PC (if
any) must each have TekVISA installed on it in order to establish a
connection between Excel and your oscilloscope. See Appendix B for
information about configuring access to networked oscilloscopes.

1 The toolbar runs as an Add-In to Microsoft Excel 2000 and XP.

Oscilloscope Analysis and Connectivity Made Easy 13

Adding the TekExcel Toolbar to Excel

Toolbar Features

The TekExcel Toolbar enables rapid capture of oscilloscope data from within
Microsoft Excel worksheets. [Fable 3]describes the six buttons on the toolbar
that work with the TDS5000, 6000, and 7000. Some other instruments do not
offer all six buttons.

Table 3: Summary of TekExcel Toolbar buttons

Icon Button Name Meaning

A Connect Chooses the TekVISA-enabled oscilloscope with which
to connect.

Settings Saves oscilloscope settings to a file or Excel workbook,

and restores oscilloscope settings from a file or Excel
workbook. Settings saved into a workbook are
automatically loaded into the oscilloscope when the
workbook is opened.

g Waveform Captures waveform data into a worksheet and graphs
it.

= Measurement Captures and graphs single or periodic waveform
measurements.

= Trigger Capture Captures waveform data from an oscilloscope-defined

trigger, places it into a worksheet, and graphs it.

Note: The TDS5000, 6000, and 7000 support this
toolbar button. Other instruments do not.

R Help Launches the online help file for the TekExcel Toolbar.

The toolbar is easy to use. Click a button and a dialog box appears. Within
dialog boxes, you can select the type of data you want to capture and
automatically paste into Excel, along with an optional line chart.

If you let your mouse linger over a button, a tool tip will appear indicating
the button’s function. Clicking the Help button launches an online help file
for the TekExcel Toolbar (see page .

Adding the TekExcel Toolbar to Excel

The TekExcel Toolbar is an Excel Add-In. During toolbar installation, the
toolbar file (TekExceﬁI’ oolbar.xla) is normally placed in a subdirectory of the
main TekVISA files.

14

2 Assuming you are installing on the C: drive on a Windows 98 system, the toolbar is placed in
C:\VXIpnp\Win95\TEKvisa\ExcelToolbar\TekExcelToolbar.xla. On a Windows NT system, the toolbar is
placed in C:\VXIpnp\WinNT\TEKvisa\ExcelToolbar\TekExcelToolbar.xla.

Oscilloscope Analysis and Connectivity Made Easy

Connecting to Oscilloscopes

When you first install the TekExcel Toolbar, follow these steps to add it to
Excel:

Start up Excel and select Tools > Add-Ins... from the Excel menu bar.
The Add-Ins dialog box appears.

Select the check box next to TekExcel Toolbar in the list of choices. If the
TekExcel Toolbar does not appear in the list, click the Browse... button, navigate
to the appropriate directory, and select the TekExcelToolbar.xla file.

/x|

Add-Ins available:

[snalysis ToolPak - YBA
™ sutosave Add-in

[~ Conditional Sum Wizard Cancel
™ Euro Currency Tools

I Internet Assistant VBA
™ Lookup Wizard

™ M5 Query Add-in

[ODBC Add-in

I Repart Manager

[~ Salver add-in
OB T =lexce too lbar

Browse..

i}

Tekexcaltoolbar

Click OK.

The TekExcel Toolbar appears undocked in the Excel program.

EEAER:

Leave the toolbar undocked, or drag it up to the Excel Formatting Toolbar if you
want it to remain docked in a fixed position.
Connecting to Oscilloscopes

The Connect button on the TekExcel Toolbar allows you to select a
TekVISA-enabled oscilloscope with which to establish a connection.

To connect to a Tektronix Windows-based oscilloscope from within Excel:

1. Click the Connect button on the TekExcel Toolbar.

Oscilloscope Analysis and Connectivity Made Easy 15

Saving and Restoring Scope Settings

16

A dialog box similar to the following appears:

TekExcel Connection X|

Select Instrument

TCPIP::128.181.112.89., IN5TR O
' :Conlabsk : INSTR,
Cancel
Refresh
Idenftify

Version 1.014

ITDS 5104

2. By default, the first GPIB device encountered in the
instrument list is selected.

3. Leave the selection as is, or select another instrument with
which to connect and click OK.

The connection with the selected instrument is made. You may only
connect to one instrument at a time using the TekExcel Toolbar.

Note: Click the Refresh button to display any changes to the list
of connected devices since the last time you clicked the Connect
button.

Click the Identify button to display the instrument model number at
the bottom of the dialog box.

Saving and Restoring Scope Settings

The Settings button on the TekExcel Toolbar allows you to save
oscilloscope settings to a file or to an active Excel workbook, and restore
them later to the oscilloscope.

If you save settings to an active worksheet and then save and reopen the
associated Excel .xls file, the settings are automatically assigned to the
oscilloscope.

If you save settings to a file, you have the option of placing a descriptor in
the settings file. The file can take one of two forms:

Oscilloscope Analysis and Connectivity Made Easy

Saving and Restoring Scope Settings

Files with a .set extension are identical to settings saved
from within the oscilloscope.

Files with an .stg extension contain both the oscilloscope
settings and a descriptor that you specify when saving the
settings. Descriptors may be up to 256 characters in length
and can serve as useful reminders when you are storing
many different oscilloscope settings on disk. Descriptors
also provide an alternative to long file names as a way of
differentiating files.

Save Settings from the Scope

Display Current Settings from the Scope
To capture and display oscilloscope settings:

1.

Click the Settings button on the TekExcel Toolbar.
A dialog box labeled TekExcel Settings appears.

Click the Scope button in the upper-left pane labeled Get
Settings from.

Settings from the oscilloscope appear in a scrollable list box on the
lower-right pane.

Save Scope Settings to a Workbook
To save current oscilloscope settings to the Excel workbook:

1.

Click the Workbook button in the lower-left pane labeled
Send Settings to.

Oscilloscope settings are saved into an invisible worksheet in the
workbook named ExcelVISASettings. When you save your work
under Excel, this worksheet is stored inside your .xls file.

Oscilloscope Analysis and Connectivity Made Easy

17

Saving and Restoring Scope Settings

18

TekExcel Settings - TCPIP::ConlabZk:: INSTR
— (et Settings from —

____________ Scope | ACQUIRE :STOPAFTER SEQUENCE fl
STATE 1
NUMENY 10
o NUMAYG 16
REPET 1
FASTACC:STATE D
— Send Settings to — | APPLICATION:GPKNOB 1:ACTIVE 0
APPLICATION: GPKMOB 2 ACTIVE 0
Scope APPLICATION: WINDOW HEIGHT 236
WIDTH 540
APPLICATION:SCOPEAPP :STATE RUNNING
Workbook WINDOW FULLSCREEM
APPLICATION EXTAPP :STATE NOTRUNNI ™ |
File:

Note: To make the TekExcelSettings sheet visible:

Press Alt+F11 to open the Visual Basic for Applications editor.

Press Ctrl+G to open the Immediate Window.

Type the following line exactly as shown (the name is
case-sensitive):

Activeworkbook.Worksheets ("TekExcelSettings") .Visible =

True

Press Enter

A tab for the worksheet now appears, with the oscilloscope
settings stored in a single cell of the sheet. The worksheet
remains visible until you type the following line in the
Immediate Window and press Enter:

Activeworkbook.Worksheets ("TekExcelSettings") .Visible =

False

Save Scope Settings to a File
To save the current oscilloscope settings to a file:

1.

If desired, type in a descriptor for the current oscilloscope
settings in the edit box on the upper-right pane of the
TekExcel Settings window

Click the File button in the lower-left pane labeled Send
Settings to.

A Save Scope Settings box appears, as shown below.

Oscilloscope Analysis and Connectivity Made Easy

Saving and Restoring Scope Settings

Save Scope Settings 1‘ il
Savein | TestSettings =] ~EeEr

[#]020511_155847.set

File name:

=l Save |
LI Cancel

7|

Save as type [Frain setingsi* et

The default name of the file is a date/time representation in the
format yymmdd _hhmmss (using two-digit representations of
year/month/day hour/minute/second). For instance, the file name
010412 183303 represents April 12,2001 at 6:33:03 PM.

If the descriptor edit box:

e is empty, the default file type in the Save Scope
Settings box is .set.

e contains text, the default file type in the Save Scope
Settings box is .stg.

Regardless of the file type presented, you can still select a different
scope settings file type from the Save as type field in the Save Scope
Settings box.

3. Leave the file name and type as is, or change the name
and/or type to your preferences.

4. Click Save to save the file under the selected name and type.

A message appears at the bottom of the TekExcel Settings dialog box
confirming the location of the saved file.

Oscilloscope Analysis and Connectivity Made Easy 19

Saving and Restoring Scope Settings

TekExcel Settings - TCPIP::128.181.119.196 il
— Get Setfings from —
ACQUIRE STOPAFTER RUNSTOR i’
STATE 1
ee— | MODE SAMPLE
MUMENY 10
e NUMAYG 16
_l NUMSAMPLES 16000
REPET O
— Send Seftings to — | FASTACQISTATE O
APPLICATION GPKNGE LACTIVE 0
Seope | APPLICATION GPKNGE 2 ACTIVE O
APPLICATION WINDOW HEIGHT 236
WIDTH 640
Workbook | APPLICATION SCOPEAPP STATE RUNNING
WINDOW FULLSCREEN -
Scope setfings saved in: 020911_155735.5et

Assign Stored Settings to the Scope

Assign Settings from a Workbook

When you save your work under Excel, the TekExcelSettings worksheet is
stored inside your .xls file. When you open the Excel file later, the settings
saved in the workbook are automatically loaded into the oscilloscope by a
stored Excel macro. If for some reason this macro fails to execute, you can
assign settings stored in the workbook by taking the following steps:

1. Click the Settings button on the TekExcel Toolbar.
A TekExcel Settings box appears.
2. Click on the Get Settings from Workbook button.

3. Click on the Send Settings to Scope button.

Assign Settings from a File
To assign settings to the oscilloscope from those stored in a file:

1. Click the Settings button on the TekExcel Toolbar.
A TekExcel Settings box appears.
2. Click on Get Settings from File button.

An Scope Settings files box appears showing (.set) and (.stg) files.

20 Oscilloscope Analysis and Connectivity Made Easy

Capturing and Graphing Waveforms

Scope Setting files 2x|
Lookin: |3 Test Settings] +@EcEr

@OZUQII 155647 58t
@020911 15573552t
=]020911 160B805.5tg
[#1020911_160822:5tg
#1020918_084521.stg
#1020918_085100 stg
#]020918_085127.5et
[#]Big test.stg

test.set
@test‘stg
[#]test2.stg

File name: [=l open |
Files of type: [setings files (*set*stg) = Cancel

7

3. Select the desired file and click Open.

Settings appear in the TekExcel Settings box. The settings are
assigned to the oscilloscope. For settings stored in (.stg) files, the
descriptor also appears above the list box as shown:

TekExcel Settings - Rick's scope il
— et Settings from —

Big test #11799b.7
Scope | ACQUIRE STOPAFTER, SEQUENCE f’
STATE 0
Workbook | MODE SAMPLE
NUMENY 10
NUMAYG 16
NUMSAMPLES 16000
REPET 0
— Send Settings to — | FASTACQISTATEO
APPLICATION: GPKNOB 1:ACTIVE O
Scope | APPLICATION: GPKMNOB 2 ACTIVE O
APPLICATION WINDOW HEIGHT 236
WIDTH 540
Workbook | APPLICATION:SCOPEAPP STATE RUNNIMNG
WINDOW FULLSCREEN -

File:

Scope settings from file:C:\Test Setings\BigTest2.stg

Capturing and Graphing Waveforms

The Waveform button on the TekExcel Toolbar allows you to capture the
time and values of a single waveform sequence into the current worksheet,
beginning at a chosen cell location. You select the type of waveform (such as
Sample or Average—see page on the oscilloscope before the capture.

Waveform data from all selected channels is captured and placed into the
active sheet. The waveform capture is limited to 65000 rows of data, the
approximate number of rows in Excel spreadsheets.

You also have the option of charting the waveform data. You can have the
chart inserted into the active sheet or a separate sheet.

Oscilloscope Analysis and Connectivity Made Easy 21

Capturing and Graphing Waveforms

Note: If you want to capture triggered waveform data instead of a
single untriggered sequence, see the Trigger Capture button on page

For information about clearing the active sheet, see page
To capture waveforms into an Excel spreadsheet and, optionally, graph it:
1. Select the Waveforms button on the TekExcel Toolbar.

A dialog box similar to the following appears:

TekExcel Waveform Capture - TCPIP:Co il

— Active Channels

CHZ
CH3
CH4

Data 500
Refresh
_l Points:

— Start Display In:

ol

[¥ Generate Excel Graph

w

4
Flace Graph In:
4

% Active Sheet

I Cl " Mew Sheet

Clear aActive Sheet I

Close |

All active channels are displayed, along with the number of data
points in the waveform sample, derived from oscilloscope settings.

Note: You can click the Refresh button to display any
oscilloscope changes to the number of active channels, the
measurement source channel, or the number of data samples.

2. Select the channel(s) from which you want to capture data.
(Hold down the Ctrl key while clicking if you want to make
multiple selections.)

3. Select the starting cell in which to begin inserting the
waveform, or leave the default as is (A1).

You can specify the starting cell either by scrolling through the
column and row values, or by directly entering the row and column

22 Oscilloscope Analysis and Connectivity Made Easy

Capturing and Graphing Waveforms

values in the edit boxes under the Start Data Display heading.
Possible Excel starting cells range from A1l to AZ99. Starting cell
designations must take the A1l-style format rather than the R1C1-
style format (explained on page .

If you want to generate an Excel graph on completion of the
waveform capture, select the Generate Excel graph check
box to enable the graph placement option buttons, and click
Active Sheet or New Sheet, depending on where you want
the chart inserted.

Click OK to start the acquisition and display the data in the
active sheet starting at the designated cell.

A single time column is displayed and the data values from all
selected channels appear in successive columns (with a maximum of
65000 rows).

If you checked the box to graph the data, a stacked line graph
appears after the capture, either in the active sheet (as shown here) or
in a separate chart sheet. If necessary, you can modify this chart
using Excel.

_lslx]
J@ Fle Edit Wiew Insert Format Tools Data Window Help - Ellﬂ
DEEe gy taad|o > (@ s i 0dwwe -2 |
| A -0 - BsulE==@s%, da[E=[-0- A

Al j =‘

A B | € | D | e [F [&6 | H | =
1 Time CH1
= o124 o0
| 3 | - 001226 -4 40 L v R
| 4 | - 001 -3 A0
% Sep/11/02 - (071:58:35 PM)
|7
[g | Time(s)
0] 229 EEn 888, 388
11 3855865888858 ggggg
1 12] 5.00
|12 4.00 j § b
73 IR S W NS W N
|15 T op v U I I
T oV A .
A O A
KT i VAV Y A VA V ALY,
20| -8.00
| 21]
| 22] - 00116 -4.00
| 23| - 001156 -360
| 24 | - 001152 -390 o
[«[»[r]\sheet1 /sheetz /sheets / |« i HJJ
Ready 1 A B Y.

Oscilloscope Analysis and Connectivity Made Easy

23

Clearing the Active Sheet

24

Clearing the Active Sheet

The Clear Active Sheet button is available on the dialog box displayed when
you click the Waveform, Measurement, or Trigger Capture buttons on the
toolbar. Behavior is the same in all three cases.

To clear the active sheet (data and charts):

1.

Click the Clear Active Sheet button.
The following prompt message appears:

TekExcel Toolbar X|

This will clear all content {data and charts) from the active worksheet,
Do you wish to proceed?

Yesg s | Zancel |

Click Yes to clear all contents—data and charts.

This clears all data, all cell formulas, and all cell formatting from the
active worksheet cells. It also removes any embedded charts inside
the active worksheet.

If the active sheet is a separate chart sheet, select the sheet
labeled TekChart1, and click the Clear Active Sheet button.

The following prompt message appears:

Microsoft Excel il

The selected sheetis) will be permanently deleted.

+ To delete the selected sheets, click Ok,
+ To cancel the deletion, click Cancel.

OK I Cancel |

Click OK to clear the chart.

The TekChart1 chart sheet is removed.

Capturing and Graphing Measurements

The Measurement button on the TekExcel Toolbar allows you to capture
single or repeated timed measurement(s) and optionally graph them as well.

Capture Single Measurement(s)
To capture one or more single measurements:

1.

Select the Measurement button on the TekExcel Toolbar.

Oscilloscope Analysis and Connectivity Made Easy

Capturing and Graphing Measurements

A three-tabbed dialog box appears.
2. Choose the Selection tab.

All active channels are displayed. The current measurement source
channel is indicated by the appearance of the word Measure to the
right of the measurement channel (screen appearance is slightly
different for TDS/CSA8000 Series Oscilloscopes).

Note: You can click the Refresh button to display any
oscilloscope changes to the number of active channels or the
measurement source channel.

3. Select the Single Capture option button.

The Timing and Charting tab forms disappear and a Select All check
box appears on the Selection tab.

4. Click a measurement from the list box under the Select
Measurement(s) heading to select it. To select multiple
measurements, hold down the Ctrl key while highlighting the
measurements you want to select, or select the Select all
check box as shown to select all measurements available in

the list.

TekExcel Measurement Capture - TCPIP::Conlab il
Selection I'I'lming | charting |
" Single Capture @ Repeated Timed Captures
— Active Channels —————— | Select Measurement(s)
Select Al || apEA
BURZT
Reset || CYCLE AREA
CYCLE MEAM
CYCLE RMS
Refresh | L 500 FALL TIME |
Foints:
— Start Display In: ——————————— — Display In: Display By —
COanr < @ Active Sheet @ Columns
" Mew Sheet " Rows
ROWI 1 4 »
I a1
Clear Active Sheet I Start Close

Oscilloscope Analysis and Connectivity Made Easy 25

Capturing and Graphing Measurements

5.

Select the starting cell in which to begin inserting the
measurement(s), or leave the default as is (A1).

You can specify the starting cell either by scrolling through
the column and row values, or by directly entering the row
and column values in the edit boxes under the Start Data
Display heading. Possible Excel starting cells range from A1l
to AZ99. Starting cell designations must take the Al-style
format rather than the R1C1-style format (explained on page

Click Columns or Rows, depending on how you want the data arranged.

Usually captured measurements are placed in columns, because there
are over 65000 rows in an Excel worksheet, whereas data placed in
rows is subject to a 256-column limit in Excel worksheets. If you
choose the Select All check box, however, the Rows option button is
selected by default because these measurement snapshots are best
displayed vertically, with engineering units in a column to the right.

Click Active Sheet or New Sheet, depending on where you want the data

inserted.

Click Start.

26

Note: For information about clearing the active sheet, see page

Measurement heading(s) and current values, along with their units of
measure, are placed in the selected sheet starting at the designated
cell.

Oscilloscope Analysis and Connectivity Made Easy

Capturing and Graphing Measurements

-Islx
J Ele Edit wiew Insert Format Tools Data Window Help ;Iilll'
DEEa Ry teRd oo |@= & 458 v » 0.
| aria ~10 v BzUu E=E=HE|8%, 8 .
|aE -2 2
A J = ‘ 5 | c | TekExcel Measurement Capture - TCPIP::128.181.11 il b "
1 Selection I —
| 2] P -
3 | Amplitude 4 8300 ® Single Capfure Repeated Timed Captures
4 |Cycle Mean 2 4607 i Active Channels i Select Measurement(s)
AMPLITUDE
g Cycle Rms 3 4366 Seiect All || aRES
—— BURST
7 Reset || CYCLE AREA
g
o ER|
9 Data I 5000 hd
10 ml Paints: FALL TIME J
11 — Start Display In: — LCisplay In: Display By: —
12 ® Active Sheet " Columns
i Column
13 » 4D
e " Mew Shest @ Rows
= Row
" RIS
16 &3
|17
18
19 Clear Active Sheet | | Close |
20
21
22
23 -
M 4[> [pil\Sheet1 /Shestz / Sheeta / [<] 13|
Ready | [V7 A
Rstart|| | @ & B H . | Se| B | S B o |[E- R B 2sarm

Capture and Graph Repeated Measurement(s)
To capture multiple timed measurement(s):

1. Select the Measurement button on the TekExcel Toolbar.

A three-tabbed dialog box appears.

Oscilloscope Analysis and Connectivity Made Easy

27

Capturing and Graphing Measurements

28

2. Choose options from the Selection tab (see

Measurement(s) on page 8}, the Timing tab (see page £9),
and the Charting tab (see page @

3. When you have made all your selections, click Start from
any of the tabs.

Measurement heading(s) and current values, along with their units of
measure, are placed in the selected sheet starting at the designated
cell. An optional chart may also appear in the active sheet as shown
here, or in a separate chart sheet:

E3 Microsoft Excel - BookS _ =]
J[@ Fle Edit View Insert Format Tools Data Window Help _ = l"
D2eESaRY|(s B o o @z A 8 S w00n -3,
| wia ~10 v|Bru[=E==E|s %, 83 L-o-A- |[AF e
j = ‘ 0.0000000480167
A | B [[[D [E [F 3

1 Fall Time Rise Time

2 0.00000004501671 0.0000000450444

3 0.000000000532333 0.0000000022 TekExcel Measurement Capture - Rick's scope 5]

4 0.0000000021333 0.0000000056 Selection |‘|’|m\ng | charting |

5 0.0000000021333 0.0000000032 _

& 00000000032 00000000032 " Single Capture @ Repeated Timed Captures

7 0.0000000032 0.0000000032 — Active Channels ————— — Select Measurementy(s)

5 PERICD
g | Select Al || pEAK-TO-PEAK
1 PGSITIVE CUTY

10 Reset || POSITIVE OVERSHC

11 POSITIVE PULSE W1

12 Data
< | 500
13 ﬂl Foints:

14 — Start Display In: —————————— — Display In: Display By: —

15 ® Active Sheet ® Columns
T Column
1o TN

ROOT MEAN SQUARY

7 " Mew Sheet Rows
LU Row
18 K N
| 19| al
20
21
|22 Clear Active Sheet | & oft F Start: I
23 —I
24
4 «[»[v]\sheet1 (Sheetz { Sheetd / 1« | JJ
Ready [[[NoM[[

il Start

& e o H 1 04:38.‘.| B Latestoraf..

RS L 11:31 AW

Inbox - M, ”@Microsof...

Select Measurement(s)
To select the measurement(s) to capture:

1. Choose the Selection tab.

All active channels are displayed.

Note: You can click the Refresh button to display any
oscilloscope changes to the number of active channels or the
measurement source channel.

2. Select the Repeated timed captures option button.

Oscilloscope Analysis and Connectivity Made Easy

Capturing and Graphing Measurements

3. Click a measurement from the list box under the Select
Measurement(s) heading to select it. To select multiple
measurements, hold down the Ctrl key while highlighting the
measurements you want to select.

4. Select the starting cell in which to begin inserting the
waveform, or leave the default as is (C1).

You can specify the starting cell either by scrolling through the
column and row values, or by directly entering the row and column
values in the edit boxes under the Start Data Display heading.
Possible Excel starting cells range from A1 to AZ99. Starting cell
designations must take the A1l-style format rather than the R1C1-
style format (explained on page .

5. Click Columns or Rows, depending on how you want the
data arranged.

Usually captured measurements are placed in columns, because there
are over 65000 rows in an Excel worksheet, whereas data placed in
rows is subject to a 256-column limit in Excel worksheets.

6. Click Active Sheet or New Sheet, depending on where you
want the data inserted.

Note: For information about clearing the active sheet, see page

Specify Timing
To specify timing of the capture:

1. Select the Timing tab.

2. If you want the measurement capture to begin as soon as you
click the Start button, choose the Immediately option button.

3. If you want to delay measurement capture until a specified
time:

a. Choose the Specified Time option button.

b. In the Day box, type or select the date to begin the
measurement capture.

c. In the Time box, type or select the hour and minute to
begin the capture.

4. In the Interval box, type or select a time value to specify the
interval between captures. Notice that this value adjusts the
Record Length value.

Oscilloscope Analysis and Connectivity Made Easy 29

Capturing and Graphing Measurements

TekExcel Measurement Capture - TCPIP::128.18 il
Selection Timing ICharting|

— Set Capture to Start:

In the Duration box, type or select a time value to specify the
duration of each capture. Notice that this value adjusts the
Record Length value.

If necessary, change the value in the Record Length text box
to change the record length of each capture. Notice that this
value adjusts the Duration value.

For example, suppose that a capture with a 2-second interval and a
I-minute duration displays a record length of 30. If you change the
capture to a 3-second interval, the record length changes to 20. If
instead, you keep the 2-second interval and change the record length
to 60, the duration changes from 1-minute to 2-minute.

" Specified Time

Day IW 4 | ;l
h::r:nem |O4:31PM LILI

— Specify Capture Properties:

Record Length I 45 4 | > |

Interval Ioo;oo:oz 4 | » |
hh:mm:ss
Duration Ioo:01:30 4 | [2 |
hh:mm:ss

Clear Active Sheet I Start I Close
Choose Charting Options
To specify charting options for the capture:
1. Select the Charting tab.
The No Chart option appears preselected as the default option.
2. If you want charting to take place at periodic intervals, click
the Periodically option button and choose 10, 20, 25, or 50 as
the percentage of completion interval for periodic chart
updates.
3. If you want charting to take place after all measurement

30

capturing completes, click the Upon Completion option
button.

Oscilloscope Analysis and Connectivity Made Easy

Capturing Triggered Waveforms

4. Click Active Sheet or New Sheet, depending on where you
want the chart inserted.

Note: For information about clearing the active sheet, see page

Capturing Triggered Waveforms

The Trigger Capture button on the TekExcel Toolbar allows you to capture
the time and values of a triggered waveform and/or measurement(s) into the
current worksheet, beginning at a chosen cell location. You select the type of
trigger event (such as Edge or Glitch), the type of waveform (such as Sample
or Average—see page 42), the active channels, and the measurement channel
on the oscilloscope before the capture. The toolbar dialog box allows you to
select one or more active channels from which to capture a waveform, and
one or more types of measurements to capture over the measurement
channel.

If you select the Waveform check box, waveform data from all selected
active channels is captured and placed into the active sheet when the trigger
event occurs. The waveform capture is limited to 65000 rows of data, the
approximate number of rows in Excel spreadsheets.

If you select the Measurement check box, measurement data from the
measurement channel is captured and placed into the active sheet (in a
column before any captured waveform data) when the triggered event occurs.

You have the option of performing a specified number of captures.

Note: If you want to capture a single untriggered waveform sequence
instead of triggered waveform data, see the Waveform button on page
If you want to capture untriggered measurement data, see the
Measurement button on page

For information about clearing the active sheet, see page

To capture triggered data into an Excel spreadsheet:

1. Select the Trigger Capture button on the TekExcel Toolbar.

Oscilloscope Analysis and Connectivity Made Easy 31

Capturing Triggered Waveforms

A dialog box similar to the following appears:

TekExcel Triggered Captures - Rick's 7k il
¥ waveform [Measurements
— Active Channels —————————— — Select Measurements
Select Al aREL
BLRST
feset || CYCLE AREA
CYCLE MEAN
CYCLE RMS
Refresh | Lz I 500 FALL TIME |
Paints:
— Start Display in: ————————— — Capture Untl...
Calumn
IA ‘l’l Numberof|1 ‘l’l
Captures:
Row I 1 4 I S I (reguired)
I a1
Clear Active Sheet | Start Cloze

All active channels are displayed, along with the number of data
points in the waveform sample, derived from oscilloscope settings.
The current measurement source channel is indicated by the
appearance of the word Measure to the right of the measurement
channel.

Note: You can click the Refresh button to display any
oscilloscope changes to the number of active channels, the
measurement source channel, or the number of data samples.

2. If you want to capture triggered waveform data from the
measurement source channel:
a. Select the Waveform check box.

b. Click to select one or more active channels in the list
box from which to capture the data.

3. If you want to capture triggered measurement data:
a. Select the Measurement check box.

b. Click to select one or more measurements in the list box
to capture over the Measurement channel.

4. Select the starting cell in which to begin inserting the data,
or leave the default as is (A1).

32 Oscilloscope Analysis and Connectivity Made Easy

Capturing Triggered Waveforms

You can specify the starting cell either by scrolling through the
column and row values, or by directly entering the row and column
values in the edit boxes under the Start Data Display heading.
Possible Excel starting cells range from A1 to AZ99. Starting cell
designations must take the A1-style format rather than the R1C1-
style format (explained on page .

5. Specify the number of captures to perform or leave the
default value of 1.

6. Click OK to start the acquisition and display the data in the
active sheet starting at the designated cell.

For measurement data, a time stamp for the triggered event appears
in the first row of a column, followed by the requested
measurement(s), with engineering unit(s) added if that box was
checked.

For waveform data, times for each data point appear in the first
column. The first row of subsequent columns contains a time stamp
for each capture of a triggered event. Below the time stamp,
waveform data values appear in successive rows (with a maximum
of 65000 rows). The number of columns of data varies depending on
the number of captures.

MR
J@ Fle Edt View Insert Format Tools Data Window Help ;lilil‘

DEEa SRy

PBRBRY o o (e AN B -0,

A 10 v|B U= 59 5%
[=|
A | B8 | T 1] E [F [G T ®H [1T T J T K [L 7]

1 1

2 433 PM

3 | CH1 Measurement

4| AMPLITUDE 48600 43600 43600 48600

5 AREA) 48 4253E -5 48 SEI0E-5 4830215

6 |BURST 37.4969E-6 37.4969E-6 37497366 I7AITES

; CYCLE AREA 6.M56E-6 6.1562E-6 6.1766E-6 QRN | - o Triggered Captures - TCPIPH1281818

a oH oH oH

0 4331 PM 396 PM 338 PM 3 [7 | Wavefor ¥ Mezsirement Data
| i_|CH1 Time — Active Channels ————————— — Select Measurements

2 -0.000013332 24 248 208 TS

3 0000019984 289 304 28 ot 2l PLITUDE

14 000008576 344 344 336

5 00000568 392 384 360

® -0.000013%6 403 41 4 Reset

7 -0.000019952 P P] ggtg EEQN

B 000001344 149 149 149
|8 | Data =
B 00000136 45 45 448 Refresh | o oints: I SIOED FALL TIME =
2 00000528 1464 1472 472

21 -0.00001332 464 464 472

2 -0.000013312 472 459 48 [~ Start Display in: —————— [~ Caplure Unfi...

2 -0.000019904 172 19 19 -

2 0000019856 18 18 188 A 4 | » | umber of|4_ P I > |
2 000008888 189 18 189 Caphures:

5 -0.0000188 439 439 436 Row [1 4 | > | frequired)

2 -0.00001872 436 504 433

28 -0.000019864 196 196 189 o sl

23 00000856 196 196 189

EQ 000008848 189 189 196

4[4[¥ [¥i]\Sheeti { Shestz { Sheeta /. | Clear tcthieShest | st |

Ready]

gRstart| | [& B | @O ®h] S Sic) 8] ma[Ev # CITREEE - LTy

Oscilloscope Analysis and Connectivity Made Easy 33

Getting Help with the TekExcel Toolbar

34

Getting Help with the TekExcel Toolbar

The Help button on the TekExcel Toolbar displays online help for the
toolbar. When you click this button, the following Help screen appears:

«» TekExcel Toolbar — |EI |£|

Fie Edit Bookmark ©Optons Help

Help IDpicsl Back | Erint | Options | €< | 3> |

Intreduction iI
The TekExcel Toolbar iz an Excel Add-in, enakling rapid capture of oscilloscope

data from within Microsoft Excel warksheets. Captured data may also be

automatically graphed.

The toolbar is easy to use. Simply click on a dialog box appears letting you make
selections for the type of waveform and measurement data you would like to
capture and automatically paste into Excel. Let your mouse linger aver a button and
a tool tip will appear indicating the button’s function. Or, click the Help button in the
toolbar far help on any of the buttons.

TekExcel Toolbar —E

4R T P

Select one of the links below to learn more about the six buttons on the TekExcel
Toolbar.

Connection Saves scope settings into a warkbook or file.

Settings Settings saved into a workbook are automatically loaded into the
scope when the workbook is opened.

Waveforms Captures waveform data into a worksheet on user action. Also

graphs captured data.

Measurernent Captures and graphs waveform measurements. Measurements
may be taken singly or taken at timed intervals.

Trigoer Capture Users may specify that waveform data and wavefarm
measurement acquisitions from a scope-defined trigger be
placed into a waorksheet.

Help Launches this online help file for the TekExcel Toolbar.

There are two additional general help topics:
Making the TekExcel Toolbar available to Excel
Source code information

You can navigate through the pages of this online help system using the
usual buttons and links available in Windows-based Help files.

Oscilloscope Analysis and Connectivity Made Easy

TekExcel Toolbar Source Code

TekExcel Toolbar Source Code

Tektronix used the TekVISA ActiveX control to build the TekExcel Toolbar
described in this chapter. The source code for this Add-In along with
explanatory text is available on the companion CD that accompanies this
book. You can also view the source code by loading the TekExcel Toolbar
and going to the Excel Visual Basic Editor (select Tools > Macro > Visual
Basic Editor or press Alt+F11).

The source code is a good place to look if you wish to build your own
specialized Excel Add-In or customize the TekExcel Toolbar. Before dealing
with the extra complexity of building an Add-In, however, look over the rest
of the chapters in the Excel part of this book. These chapters introduce you to
the TekVISA ActiveX control, and take you step-by-step through procedures
for using Excel VBA to build some simple dialog boxes for capturing
oscilloscope data and communicating with your oscilloscope.

Chapter 2 Review

To review what you learned in this chapter:

e You learned that you do not have to do any programming
to use the TekExcel Toolbar.

e You learned how to use the TekExcel Toolbar to establish a
connection between Excel and your oscilloscope and get or
set scope settings.

e You learned how to use the TekExcel Toolbar to acquire
measurement and waveform data from your oscilloscope
and optionally chart it.

e You learned that the TekExcel Toolbar source code is

available to you if you want to customize the functionality of
the toolbar or learn how to build your own.

Oscilloscope Analysis and Connectivity Made Easy 35

Chapter 2 Review

36 Oscilloscope Analysis and Connectivity Made Easy

Introduction

Chapter 3:
Understanding the TekVISA ActiveX

Control

Some background information about
oscilloscope controls and commands

Introduction

Chapter 2 examined the functionality of a toolbar that enables
point-and-click communication between your oscilloscope and Microsoft
Excel. If you want more detailed information on the workings of those
functions or want to create your own connectivity functions, read this

chapter.

Background Information

In this chapter, you will:

1.

2.

Review some general terminology.

Become familiar with the TekVISA ActiveX Control used to
build the TekExcel Toolbar Add-In. You will learn about
using this control to acquire and receive oscilloscope data
and pass it to Excel VBA and Visual Basic 6.0 automation
interfaces.

Review information about GPIB commands and queries
that are native to your oscilloscope.

Learn how some TekVISA ActiveX Control methods can be
used to send native GPIB commands and queries to the
oscilloscope from Excel or Visual Basic programs and
receive the results, if any.

Oscilloscope Analysis and Connectivity Made Easy 37

Terminology

Terminology

This chapter uses the same terminology as Chapter 1. In addition, you will
become familiar with a few new terms as shown in

Table 4: Some command and control terminology

Term

Automated
Acquisition

Waveform
Acquisition
program

TekVISA API

TekVISA ActiveX
Control

Native GPIB
commands and
queries

VXI Plug-n-Play
driver commands

VXI-11 LAN Server

Meaning

A set of application programming interfaces (APIs) to your
oscilloscope that let you automate the same functions you would
normally perform using the knobs and graphs on your
oscilloscope. Includes elements discussed below.

A Visual Basic program, either stand-alone or used in conjunction
with Excel, which uses the TekVISA Control and GPIB
commands to implement a direct waveform connection.

A set of resources, operations, attributes, and events that
conform to the VISA standard for building drivers for test and
measurement equipment.

A set of methods, properties, and events that encapsulate
portions of the TekVISA APl and provide an easy way to use VB
or VBA to get waveforms or to send GPIB commands and
queries to the oscilloscope and obtain query responses back
from the oscilloscope.

A set of GPIB commands and queries native to specific Tektronix
Windows-based oscilloscopes, that can be passed by certain
TekVISA ActiveX Control methods.

A set of driver commands for controlling specific Tektronix
Windows-based oscilloscopes. These commands conform to
VXIPlug&Play standards, and enable connectivity with
LabWindows/CVI and LabVIEW.

A software component that supports LAN-based instrument
communication using the VXI-11 communications protocol, a part
of the TekVISA software.

Automated Acquisition

To perform automated acquisition, you will add two kinds of elements to
your program:

e Native GPIB commands and queries based on ANSI/IEEE
standards that define the GPIB hardware interface, signals,
and common commands

o The TekVISA ActiveX Control based on the VISA standard
for building test and measurement system drivers

38 Oscilloscope Analysis and Connectivity Made Easy

Automated Acquisition

Native GPIB Commands and Queries

To use an analogy, native GPIB commands are like telephone numbers. You
have to specify things like the country code, area code, exchange, and the
extension. TekVISA ActiveX Control methods are more like speed
dialing—they provide shortcut ways to send telephone numbers or, in this
case, native GPIB commands.

In subsequent chapters, you will use some native GPIB commands and
queries to control waveform acquisition and measurement functions of your
instrument. These commands follow GPIB interface conventions.
and in Appendix A explain the subset of native GPIB commands
and queries used in this book.

e Commands modify instrument settings or tell the
oscilloscope to perform a specific action.

e Queries cause the oscilloscope to return data and
information about its status.

To learn more about the full set of native GPIB commands, see the Online
Programmer Guide for your Tektronix Oscilloscope Series.

TekVISA ActiveX Control Methods, Properties, and Events

The TekVISA ActiveX Control includes a simple set of Visual Basic methods,
properties, and events that overlay more detailed operations defined in the
TekVISA APL

Because these ActiveX Controls use in-process calls, they execute nearly as
fast as if you had coded to the TekVISA APl itself. As you saw from using
the TekExcel Toolbar—which was written in Visual Basic—this can mean
rapid application development without the usual loss of performance
associated with a more simplified, higher level interface.

In upcoming chapters, you will become more familiar with the TekVISA
ActiveX Control that provides a portal into your oscilloscope. You will learn
how to customize interfaces by accessing this control through its methods,
properties, and events:

o Some methods, such as Query, WriteString, and ReadString
involve more detailed programming that directly accesses
native GPIB commands.

e Other methods, such as GetWaveform, offer much higher-
level interfaces that consolidate multiple TekVISA
operations and involve fewer lines of code.

[Cable 36 in Appendix A summarizes the methods, properties, and events of
the TekVISA ActiveX Control used with Excel VBA and Visual Basic 6.0
examples.

Oscilloscope Analysis and Connectivity Made Easy 39

Automated Acquisition

40 Oscilloscope Analysis and Connectivity Made Easy

Introduction

Chapter 4. A Simple Program
To Get Waveforms

Using VBA to import real-time waveforms into
Excel

Introduction

You have looked at how to use the TekExcel Toolbar to import data quickly
into Microsoft Excel, and learned about the TekVISA ActiveX Control. In
this chapter, you will paste the TekVISA ActiveX Control onto a form and
build a simple user interface to transfer acquisition data from the oscilloscope
to your spreadsheet/worksheet. This will add a direct connection for
waveforms to Excel—a connection that automatically gets waveform data
out of the oscilloscope and inserts it into Excel.

If this application solves your waveform data acquisition needs as supplied,
you can use it “as is” with Excel. In that case, you may wish to load it from
the companion CD and immediately begin using it. However, if you think
you might want to customize the application, read on—because you will
explore the inner workings of the underlying VBA program in some detail.

GPIB Commands for Waveform Acquisition

Before writing the program, you will examine some relevant Native GPIB
commands that involve waveform acquisition. Then you will look at the
GetWaveform method exposed by the TekVISA ActiveX Control.

Waveform Data
Waveform data points are a collection of values that define a waveform. One
data value usually represents one data point in the waveform record.

You can get waveform data from the oscilloscope by using the CURVE?

query. Before you transfer waveform data, you must typically specify the
data format, record length, and waveform source.

Oscilloscope Analysis and Connectivity Made Easy 41

GPIB Commands for Waveform Acquisition

42

Waveform Data Formats

Acquired waveform data uses eight or more bits to represent each data point.
The number of bits used depends on the acquisition mode specified when
you acquired the data. For example, on Tektronix real-time Windows-based
oscilloscopes (such as TDS5000 and TDS7000 Series oscilloscopes), data
acquired in SAMple or ENVelope mode uses eight bits per waveform data
point. Data acquired in AVERage mode uses up to 14 bits per point.

You specify the format with the DATa:ENCdg command. The instrument can
transfer waveform data in either ASCII or binary format.

Binary data can be represented by integer or floating-point values. The range
of the values depends on the number of bytes specified. When the byte
number is one, signed integer data ranges from -128 to 127, and positive
integer values range from 0 to 255. When the byte number is two, the values
range from -32768 to 32767. When a MATH (or REF that came with a
MATRH) is involved, 32-bit floating-point values are used that are four bytes
in number.

The defined binary formats specify the order in which the bytes are
transferred.

e RIBinary specifies signed integer data-point representation
with the most significant byte transferred first. SRIbinary is
the same as RIBinary except that the byte order is swapped
so the least-significant byte is transferred first.

e RPBinary is positive integer data-point representation, with
the most significant byte transferred first. SFPbinary is the
same as RPBinary except that the byte order is swapped so
the least-significant byte is transferred first.

e FPBinary is single-precision floating-point representation of
data whose width is 4. SFPbinary is the same as FPBinary
except that the byte order is swapped so the least-significant
byte is transferred first.

Waveform Record Length

You can transfer multiple points for each waveform record. You can also
transfer a portion of the waveform or the entire record. When transferring
data from the instrument, you can specify the first and last data points in the
waveform record. Setting DATa:STARt to 1 and DATa:STOP to the record
length will always return the entire waveform.

Waveform Source

The DATa:SOUrce command specifies the waveform source when
transferring a waveform from the instrument. You can only transfer one
waveform at a time.

Oscilloscope Analysis and Connectivity Made Easy

The TekVISA ActiveX Control and Waveform Acquisition

Waveform Preamble

Each waveform that you transfer has an associated preamble that contains
information such as the horizontal scale, the vertical scale, and other settings
in effect when the waveform was created.

You can get preamble data from the oscilloscope by using the WFMOutpre?
query.

The TekVISA ActiveX Control and Waveform Acquisition

TekVISA provides a way to get waveforms without having to issue all the
GPIB commands just summarized. If you only want to get waveform data at
the current oscilloscope settings, without altering those settings
programmatically, you can use the method discussed next.

The GetWaveform Method

The TekVISA ActiveX Control provides a way to combine the equivalent of
dozens of native GPIB commands or multiple TekVISA API operations in a
single method called GetWaveform. This method gets a waveform at the
current oscilloscope settings, along with its sample interval and trigger
position. You can specify the channel from which to retrieve the waveform
and the desired screen resolution to use in displaying the waveform.

Note: If the waveform setting is MIN/MAX, this method gets double
the number of points and still displays the waveform correctly.

Other Methods of Waveform Acquisition

As shown in you can use ActiveX Control methods like WriteString
to send and receive native GPIB commands and queries (such as ACQuire
and CURVE?) to your oscilloscope, and methods like ReadString to receive
responses from the oscilloscope (such as waveform data in the form of an
array named wave in this example). Or, you could use the GetWaveform
method to do virtually the same thing.

Oscilloscope Analysis and Connectivity Made Easy 43

Getting Started

TekVISA Visual Basic
ActiveX Gontrol
. with TVCRef
native Writestring (ACQ:STATE:RUN)
GPIB oscilloscope | .Writestring (CURVE?)
command .Readstring (wave)
and query interface
I high-level with TVCRef
wavefrom data Call .GetWavefrom (source,wave, ...)
acquisition

-
]

Y

wavefrom data

Y

Visual Basic Visual Basic

~ | with objSheet
.Cells(r,c).Resize()

If IsArray (wave) then

'get length of array Y
.Cells(r,c).Value =wave : =
Other VB

Automation Programs
interface

Figure 7: How TekVISA ActiveX Controls interface with Excel VBA and VB

Getting Started

What You Need to Get Started

You can work this example either on a separate PC or on your Windows-
based oscilloscope, using either the Excel Visual Basic for Applications
Editor or Visual Basic 6.0. To get started, you will need the following:

e A Windows-based Tektronix oscilloscope (an external
monitor is recommended if you are working the example on
your oscilloscope)

e Excel 2000 or XP (or Visual Basic 6.0) installed on your
oscilloscope or on an attached external PC

e The TekVISA connectivity software described in Chapter 1
(see page 0r the location of the completed example)

44 Oscilloscope Analysis and Connectivity Made Easy

Getting Started

What You Will Do

In this chapter, you will learn how to use VBA (or VB) to build a program
with features similar to the one that runs when you click the Waveform icon
on the TekExcel Toolbar. This sample program illustrates how to capture raw
waveform data at the current oscilloscope settings and insert it into your
spreadsheet.

shows the design-time interface that you will create. As you can see,
the user interface consists of a VBA UserForm with one Frame on the left
and one unframed List Box on the right. A Label appears above the List Box.

The Frame groups these fields:
e three caption Labels
e three Labels being used to hold results
e two Command Buttons

Each caption Label appears to the left of each empty result Label.

& Microsoft Visual Basic - GetWaveForm.xls - [GetwaveForm_ xls - fimGetwWFM [UserForm]]

J% File Edit Wiew Insert Format Debug Run Tools Add-Ins Window Help _|ﬁ'|5||

[ME-dyEeno=]) e l|SEY 2|
E

Project - YBAProject

Get Waveform
”E é: R
=-&% ¥BAProject (GetWaveForm.xls)

E@ Microsaft Excel Objects e i

1| Shesetl (Shestl) SRR | SEEE
1 Sheet? (Sheet) s P S
] Sheetd (Sheat) I st @330 B
) Thiswarkbook S s poodpe S
=5 Forms
[FrmGetWER
12§ Modules

\&Q Modulel
Properties - frmGetwWFM

frmGetWFM UserForm =1

Framel Frame
frmGetWFM UserForm
Labeld Label

IstDevices ListBox

0 - fmBorderStylekh
Gek Waveform
Cycle 0 - FraCyelealForms
DrawEBuffer 32000
Enabled True
Faonk Tahaoma
FareCalor B =Hs000001 28
Height: 202.5
HelpZontextID 0
keepscrollBarsvisible) 3 - FrmScrallBarsBatt

Left 0 = < | Bl

Figure 8: The form you will design for the GetWaveform example

Oscilloscope Analysis and Connectivity Made Easy 45

Getting Started

This UserForm allows users to get the following information when they click
the Get Waveform button:

e the currently active TekVISA resource device being used for
the waveform transfer

e the current data point sample values of the waveform and
associated times (relative to the trigger point), displayed in
two columns in the spreadsheet

e the current record length of the waveform being retrieved
(calculated by subtracting the starting data point from the
ending data point)

e the current sample interval of the waveform being retrieved

e the current trigger position of the waveform being retrieved

shows the same UserForm at runtime after fields have been

populated with results.

FA Microsoft Excel - GetwWaveForm.xls [_ (O] x|
J File Edit Yiew Insert Format Tools Data Window Help _|E’|ﬂ|
JD@H|%&|K‘JYN')‘;|BIDD%-@_ levag|§ »
| da ol | 2 |F @ | EB &R =

E12 | =
A | B | ¢ | b | E [F [&6 | H | I7

1| Time Value =
| 2 1 0.004

| 3 | 2 0.0z

4 Show Form_| 3 o

| 5 | 4 0.02

6

7

? Devices

T — Waveform Data

W ASRLL:INSTR.

1 Record Length

| 12]

13 Interwval

BES

£ Trigger

| 16 |

17 I

E Get Waveform Clear |

19]

20

21|

| 22 | 21 0.004

|23 | 22 0016

| 24 | 23 0.004 -
[« [» [pi]'Sheet1 { Shestz £ Sheets / 4] | ﬂJJ
Ready | C M| 2

Figure 9: The Get Waveform form at runtime

46 Oscilloscope Analysis and Connectivity Made Easy

Getting Started

After sending waveforms to an empty spreadsheet as shown in you
will use the same program to send waveforms to the Excel clock jitter
example (from the Oscilloscope Connectivity Made Easy book.
This example has been provided in its completed form on the CD that

accompanies this book. (The spreadsheet is set up to receive data in the
format exported by TDS7000 Series Oscilloscopes.)

Ed Microsoft Excel - jitter.xls

J File Edit ¥iew Insert Format Tools Chart Window Help

DERagRy|s 2R | o-a-[@ = 4 202 maé < @) || ce -|B 2z u|==
Walue () axis =] =
A B [C [D] E [F I | KL] M N 3‘
| 1| Raw Measured| Derived Reconstructed Jitter =
| 2 | Waveform Timing| Clocks Timing
1 3 | Data From of| Of
| 4 | Input Dala| Oscilloscope Edges Edges
5
| 6 | symbal rate = 5000| Record Length 5000.00000 Points 005 -0.800 0.000817 0 0000621 4.053E-08
| 7 | threshaold = 0] Sample Interval 0.00002 5 -0.04925 -0.800 0.00241 9 0002421 -5757EO7
| & | hysteresis = 0.1 Trigger Point 2500.00000 Samples | -0.04996 -0.750 0.002620 10 0002621 5.647EO7
| 8 | Trigger Time 0.00002 s -0.04924 -0.760 0.002820 1 0.002821 5.286E-07
| 10| -0.04992 -0.760 0.003219 13 0.003220 1.706E-0B
| 11} Measured
| 12| Symbol Rate Eror 0.018042% fupus Warefors
L
| 14] Rrms Jitter 1.32092E-06 EEEEEE SR ENEEEREEEEEEEEEESEEESEEEEEEEEEEEEE
115]
|16
| 17 | Average Measured
|18] Symbol Rate 5000.902067
19
|20 TS 7 7R T T 7 TII7AZ S T7ETT
| 21| First Edge 0.000620925 Jitter
|22
[EZL 0.000000 0.020000 0.040000 0.060000 0.080000 0100000 0120000
24
= 5.000E-06
124 < O00E-06
% 3000606 l‘ : : —
] A 1
E3 e I A e T 1Ll
|25 | ononevan LR ,,‘i N\, M‘M
| 30 | -1.000E-06 - :] T T
El -2.000E-06 I i} T | 1 !
k7 -3.000E-06 i
| 33| -4 O00DE-06
|34
135 | -0.04942 -0.640 0.013218 B3 0.013219 -1.407E-08
R Nnag4 030 N 013415 Rl nn13d1e. -2 (ZNF17 d
144 [pi} sheet1 Sheetz 7 Sheets / f< P LUJ

Ready

1]) o | v o |

Figure 10: Excel Clock Jitter example

What You Will Learn

The purpose of this chapter is to illustrate some basic operations of the
TekVISA ActiveX Control and familiarize you with the interface. Once you
have gone through this chapter, you will know how to:

e add the TekVISA ActiveX Control to the list of available
controls in Excel, and use some of its properties and methods

e design and create a UserForm in Excel by dragging and
dropping controls onto the form

¢ modify controls on the form by changing properties in the
Properties window

e expand the VBA code blocks created by inserting controls

e add a button to run the VBA program that you just created
from your Excel spreadsheet

Oscilloscope Analysis and Connectivity Made Easy

47

The Get Waveform Example in Excel VBA

e insert and run the program in a blank spreadsheet

e insert and run the program with a spreadsheet that already
contains data and formulas

e find out the changes you will need to make if you want the
program to run in Visual Basic 6.0 instead of Excel VBA

The Get Waveform Example in Excel VBA

Building the Form

If you are already familiar with the Visual Basic for Applications design
environment, the step-by-step instructions below may seem elementary. If so,
you may wish to skip the instructions on how to build the UserForm and just
refer to n page nd on page or details on building
the user interface, then have a look at the code. Later chapters focus
primarily on the VBA code and assume you are already familiar with VBA’s
visual editing tools for constructing dialog interfaces.

Open VBA in Excel (Alt+F11)
To begin building the UserForm:

1. Open Excel and save the spreadsheet under the name
Getwaveform.xls.

2. To access the Visual Basic for Applications design
environment from within Excel, select Tools > Macro >
Visual Basic Editor or press ALT+F11.

Note: The keystroke combination ALT+F11 switches you back
and forth between the Excel spreadsheet and the Visual Basic
Editor.

Tools Data Window Help
% speling... F7 @| | g” i

AutoCorredt. .. | .
= B % , W EE
Look Up Reference. .. 3 BN

Share Warkbook. .. F | G| H
Track Changes 3

[erge Workbnaks, .

Pratection 4

Goal Seek...

SCenarios...

Auditing 4

Solver...

Macro p Macros,., Alk+F8
Add-Ins... & Record Mew Macra. .

Customize...
n | Visual Basic Editor Al+F11
Options. .. _ o

48 Oscilloscope Analysis and Connectivity Made Easy

The Get Waveform Example in Excel VBA

The Microsoft Visual Basic screen appears with the Project Explorer
window on the top left, the Properties window on the bottom left,
and space on the right for the Code window or Object Browser to

display.

@ Microzoft Visual Basic - Book1 - [Sheet1 [Code]]

” File Edit Miew Insert Format Debug Bun Tools Window Help = |E’|i|
[E-d|tmesoa], @ ¥HEY2|0)] |

x
{General) j (Declarations) j

= ' | !
&% vBAProject (Book1)] =
E-E5 Micro:

& Thiswarkbook
@ ¥BAProject (ExampleD.xls)
25 Microsoft Excel Objects

2=t

|5heet1 ‘Wirksheet ;I

Alphabetic ICategorized I
Sheet1

DisplayPageBreaks False
EnablefutoFiter False
EnableCalculation | True
EnableCutliining False
EnableFivotTable False
EnableSelection |0 - xIMoRestrictions

Mame Sheet1

Scrollarea

Skandardvidth .43 |
Wisible -1 - xisheetvisible x

=4l | s

3. If you do not see the Project Explorer or Properties window,
display them by selecting icons from the standard toolbar

(see [fable 5.

Table 5: Useful icons on the VBA Standard Toolbar

Icon Icon Name Select from

3 Insert UserForm Standard Toolbar

Object Browser Standard Toolbar
Project Explorer Standard Toolbar

Properties Standard Toolbar

Toolbox Standard Toolbar

%| B & o

Oscilloscope Analysis and Connectivity Made Easy 49

The Get Waveform Example in Excel VBA

50

Insert a UserForm
To begin building a UserForm:

Click the Insert UserForm icon on VBA’s Standard Toolbar:

A UserForm appears with the name UserForm1 preassigned

along with the Controls Toolbox for adding controls to the form.

Conlrolsl
kA abl BB ER
[l = [
e - P
(A= |

Cable 6[shows icons on the Controls Toolbox that are relevant to this
book.

Oscilloscope Analysis and Connectivity Made Easy

The Get Waveform Example in Excel VBA

Table 6: Icons for VBA controls used in this book

Icon Icon Name Select from
] Checkbox Controls Toolbox
| CommandButton Controls Toolbox
= Frame Controls Toolbox
A Label Controls Toolbox
Listbox Controls Toolbox
a Spin Button Controls Toolbox
ahl Textbox Controls Toolbox

Add the TekVISA ActiveX Control
To add the TekVISA ActiveX Control to the UserForm:

1. Select Tools > Additional Controls.
The Additional Controls dialog box appears.

2. Place an X in the box next to the TekVISA Control
(TveControl) and click OK.

Additional Controls

Available Cantrals:

O Triggertiade Contral ;I

O TriggerQcs Contral
[k T ++c Cantrol
O UsgerPrefsCiaf Contral

O VLI Formula One Workbook,
O WenlLabelCw! Cantrol

0O WerntScaleOcx Control

O WertZoomCw Contral

O VideaRenderCH Class

O Wiewer Control

Cancel

O Vizio Etended D ata — Showy—
O VigiokodelingE ngine Clasz -
. | _'I—I ’7 [~ Selected ltems Only
— Twc Control
Location C:i PR PYWIMISATERMISANBINSTVE OCK

Oscilloscope Analysis and Connectivity Made Easy 51

The Get Waveform Example in Excel VBA

52

The TekVISA Control icon e is added to the Controls Toolbox.

Contrals I

'k A bl EBEB

M &
r=r=

Tak
LUL-E)

N
4 —
a

*| L

L

(LR
|

3. Drag the TekVISA Control icon from the Controls Toolbox
onto the lower right quadrant of UserForm1 where it appears
as an icon at design time, but is invisible at runtime.

By adding the Control to your Userform, you have made all its
methods, properties, and events available to be called by your code.

Design the Form
To design the Get Waveform UserForm:

1. Insert a Frame into UserForm1 using one of the following
techniques:

Note: Frames are used to group and organize other controls.

a. Click the Frame in the Toolbox and then click in the
UserForm, or

b. Drag the Frame from the Toolbox to the UserForm, or

c¢. Double-click the Frame in the Toolbox, and then click in
the UserForm once for each Frame you want to create.

The Frame appears in its default size. VBA automatically gives
it the name Frame1.

Note: You can use similar techniques to insert other kinds of
controls in a UserForm or to insert controls inside a Frame.

2. Position the frame on the left side of the UserForm and, if
necessary, drag the sides or corners of the Frame to change
its size.

3. Drag a List Box onto the right side of UserForm1. VBA
automatically names it ListBox1.

Oscilloscope Analysis and Connectivity Made Easy

The Get Waveform Example in Excel VBA

4. Add two Command Buttons to the bottom of Frame1,
placing them side by side.

Note: To place a control within a frame, you can use any of
the techniques described in step 1. As an alternative, you can
give the frame focus by clicking it, and then cut or copy a
control elsewhere on the form and paste it into the frame.

5. Similarly, add six Labels to Frame1 and a seventh Label
above ListBox1, making sure that each control is placed as

shown in Figure 11

UszerForml

Figure 11: Get Waveform form before changing default properties

Getting Help

Labels are not just used for captions. Labels 4 through 6 will be used to hold
results—specifically, additional waveform values (record length, sample
interval, and trigger position) associated with the waveform data.

You can find out more about using Labels by taking a look at the Help
facility:

1. From the Microsoft Visual Basic menu bar, select Help >
Contents and Index > Microsoft Forms Design Reference >
Label Control.

2. Click Example and select Zoom Event Example to see usage
of Labels in a coded example.

As shown in the text explains that you can use a Label to
display the current value. Examples like these can be very useful
when you are writing VBA code.

Oscilloscope Analysis and Connectivity Made Easy 53

The Get Waveform Example in Excel VBA

Help Topics Back Options
Label Control
See Also Example Properties hethods
Everts

Dizsplays descriptive text.

Remarks

A Label contral on a form displays
descriptive text such as titles, captions,
pictures, or brief instructions. For example,
labels for an address book might include a
Label for a name, strest, or city. A Label

doesn't change as you mave from record to
record.

The default property for a Lahel is the
Caption propery.

The default event for 2 Label is the Click

7 opics Found K B

Click a topic, then click Display.

Style Property Example for MultiPage and T abStrip
yle Property Example for MultiPage and Tabs tip

Zoom Event Example

[

Has r

B Microsoft Forms Reference M= 3| B Visual Basic Example 1 =]

Zoom Event Example
Applies To

The following example uses the Zoom event to evaluate the
new value of the Zoom property and adds scroll bars to the
farm when appropriate. The example uses a Label to display
the current value. The user specifies the size for the form by
using the SpinButton and then clicks the CommandButton
to set the value in the Zoom property.

[
[|

To use this example, copy this sample code to the
Declarations portion of & form. Make sure that the form
contains:

+ A Label named Labell.

+ A SpinButton named SpinButtont.

+ A CommandButton named CommandButton?.

« Other controls placed near the edges of the form.

Private Sub CommandButtonl Click()
Zoom = SpinButtonl.Value
End Sub

Private 3ub SpinButtonl Spinbowni()
Lakell.Caption = SpinButtonl.Value
End Sub

Private Sub SpinButtonl Spinlp()
Lahell.Caption = SpinButtonl.Value
End Sub

Private Suh IlserForm Tnitializeil

Figure 12: Using the VBA Help facility

Changing Properties in the Properties Window

|l able 7

in

summarizes all the changes to make in the Properties window to

modify the UserForm from its appearance in Figure 11]to its final appearance

Oscilloscope Analysis and Connectivity Made Easy

The Get Waveform Example in Excel VBA

Table 7: Changes to make in the Properties window to Get Waveform

Control
UserForm1
tvc (TekVISA)
Frame1
Label1
Label2
Label3
Label4

Label5

Label6

Label7
Listbox1

CommandButton1

CommandButton2

Property
Caption
(Name)
Caption
Caption
Caption
Caption
(Name)
Caption
BackColor
Special Effect
(Name)
Caption
BackColor
Special Effect
(Name)
Caption
BackColor
Special Effect
Caption
(Name)
(Name)
Caption
(Name)

Caption

Change from
UserForm1

Tvel

Frame1

Label1

Label2

Label3

Label4

Label4

Button Face

Flat

Label5

Label5

Button Face

Flat

Label6

Label6

Button Face

Flat

Label7

Listbox1
CommandButton1
CommandButton1
CommandButton2

CommandButton2

Change to

Get Waveform

Tvel (no change needed)
Waveform Data
Record Length
Interval

Trigger

LbIRL

(no Caption)

Button Light Shadow
Sunken

Lblinterval

(no Caption)

Button Light Shadow
Sunken
LbITriggerPos

(no Caption)

Button Light Shadow
Sunken

Devices

IstDevices
cmdGetWaveform
Get Waveform
cmdClear

Clear

To make the code more meaningful, you will also rename some of the
controls that will correspond to variable names and subroutine names in the
VBA code logic you will write later. Changes to names are underlined in the
table, to help distinguish them from captions. To support good coding
practice, always name a control first before changing any of its other
properties, if you think you might want to associate it with a code block later.

Note: A control’s name corresponds to its subroutine name or
variable name in the code. A control’s caption appears on the
UserForm and affects how the form looks, but has nothing to do with

the code.

Oscilloscope Analysis and Connectivity Made Easy

55

The Get Waveform Example in Excel VBA

To use the Properties window to change the properties of controls:

1. In the Properties window, change the caption (not the name)
for UserForm1 to Get Waveform.

2. Change the caption for Frame1 to Waveform Data.

3. Change the caption for Label1 to Record Length.

Properties - Labell [x]
|Lahell Label ;I
Alphabetic | Categarized I
(Mame) Labell -
Accelerakor
AutoSize False

Backizolor [[] aHso00000FE:
Eackstyle 1 - fmBackstyleOpagque
EorderColor [l 2HS00000062:
EorderStyle |0 - FmBorderStyleMone

Lecord Length
Erabled True
Font Tahoma
ForeColor W =Hz00000128
Height 12
HeloCantextID 0 ﬂ

and resize Label1 by dragging the box handles if necessary.

]
{Fecord Length [
L]

Note: If you want a label to appear on two lines, change its Wrap
property to True.

4. Change the caption for Label2 to Interval and the caption for
Label3 to Trigger.

5. For Label4 through Label6, change the names to IbIRL,
Iblinterval, and IbITriggerPos, respectively, and delete their
captions so they do not appear on the form.

6. For Label4 through Label6, use drop-down lists in the
Properties window to change BackColor (the background
color) from Button Face to Button Light Shadow, and
SpecialEffect from Flat to Sunken.

56 Oscilloscope Analysis and Connectivity Made Easy

The Get Waveform Example in Excel VBA

Properties - IbIRL [X]
[IbIRL Label El
Alphabetic ICategDrized |
(Mame) IRl =
Accelerakor
AukoSize False
coccaor B -
BackStyle 1 Gopie System
et BB 2
o i [inactive Border
prHion [2pplication Workspace
ConkrolTipTesxt W Highlight
Enabled True! (M Highlight Text
Forit Tahoy
ForeCalor M & |B Botton Shadow b
Height 24 | B Disabled Text
HelpContextID 0 M Etton Text -
Left a0 "

MMouselcon {Mone)

MousePainter |0 - fraMousePointerDefault

Pickure ({Mone)

PicturePaosition | 7 - fraPickurePositionaboveCenter
SpecialEffect 2 - FmSpecialEffectSunken j

T=hTrdas 1

Note: The drop-down arrow may not be visible until you click
inside the rows for the BackColor and SpecialEffect properties.

7. Change the rest of the captions and sizes for controls as

shown in [Fable 7 ko that the form looks like

Figure 13: The redesigned form for Get Waveform

Using the Object Browser (F2)
In addition to using the online help discussed on page $3you can use the
Object Browser to learn more about the classes and members of Excel’s
built-in object model.

Oscilloscope Analysis and Connectivity Made Easy 57

The Get Waveform Example in Excel VBA

A Quick Overview of the Excel Object Model
hows a hierarchy of some relevant objects in the Excel Object
Model.

| Apphcation

L‘ Workbooks [wWorkbook] |
ﬂ Workzheets (Workszheet] |

— Charts [Chart) |

Figure 14: A object hierarchy from the Excel Object Model

The Application object is at the root of the hierarchy tree and has a number of
“active” properties such as ActiveSheet. Plural objects are collections that
hold other objects. For example, Workbooks is a container for Workbook
objects, which in turn contain Worksheet collections of Worksheet objects,
each of which contains Range objects.

Much of your code will focus on Range objects, which can reference a single
cell, a row or column, or an entire sheet. You can use the Range End
property to select contiguous cells until an empty cell is encountered. The
following examples demonstrate some ways you can reference ranges:

Application.Range (“A3")
Application.Worksheets (“Sheetl”) .Range (“A3")
Application.ActiveSheet.Range (“A3")

Range (“A3")

Range (“A1:D10")

Range (“Al”,”D10")

Range (“A1:A10, D1:D10, G1:G10”)

Range (“MyRange”)

[A1:D10] (Evaluate Method)

Range (ActiveCell, ActiveCell.End(xlDown)) .Select

You can use the Cells property to reference all cells within a worksheet or
range, or limit the reference by using this RIC1 row/column syntax:

cells (rowindex, columnindex)

For example, the following code assigns a formula to cell C2:

ActiveSheet.Cells(2,3) .Formula = “=SUM(D1:D10)"”

By pressing F2 or clicking the Object Browser icon on the Standard Toolbar,
you can browse to find out which methods, properties, and events to use with
such object components as Application, Worksheet, UserForm, Range, and
Cell, so you can make the correct calls and references in your code.

58 Oscilloscope Analysis and Connectivity Made Easy

The Get Waveform Example in Excel VBA

For example, to find out more about the Cells property:
1. Press F2 to bring up the Object Browser.
Select Excel from the upper drop-down list.

Type Cells in the lower drop-down list as the object to search for.

Press Enter.

You will see the screen shown in You can then click on
various library entries in the Search Results to see how the Cells
property relates to other members of the object model.

IEm:eI j 4| bl |_’.ﬁ| il
Icells j M
[Search Resulis
Library | Class | Member
. Excel 2 Application E& Cells =]
(% Excel & Range B3 Cells -
JI. Excel 2 wiorksheet e Cells d|
Classes Members of 'Range’
B QuenyTahle ﬂ E& Application ;l
1 QuernTables =& ApplyMarmes —
S e applyoutinestyes
21 RecentFile E5 Areas
2 RecentFiles =||=® AutoComplete hd
Class Range
hember of Excel

Figure 15: Using the Object Browser with Excel VBA

F1 From the Object Browser Is Your Friend
From the Object Browser, you can jump to a context-sensitive online help

topic.
For example:
1. Select a related class such as Range.

2. Press F1 (or right-click and select Help).

hows the resulting help screen.

Oscilloscope Analysis and Connectivity Made Easy 59

The Get Waveform Example in Excel VBA

E Microzoft Excel Yisual Basic | [O] x|
Help Topics Back Options

Range Object

Propettiss Methods

rFY
|Wulkhuuks Workbook] | j
L{Wurksheets Worksheet) |

Represents a cell, a row, a column, a selection of cells containing one or more
contiguous blocks of cells, or a 3-D range.

Using the Range Object

The following properties and methods for returning 2 Range object are described in
this section:

+ Range propery

+ Cells property

+ Range and Cells

= Offset property

+ Union method

Range Property

Use Range(arg), where arg names the range, to return @ Range ohject that
represents a single cell or a range of cells. The following exarmple places the value of
cell Al in cell Aa.

Worksheets ("3heetl™) .Range ("L5") .Value = _
Worksheets ("3heetl™) .Range ("41") .Value

| |

Figure 16: Related online help from the Object Browser

Within this help screen, you can click items in the hierarchy diagram
to jump to other related topics if necessary, or to see more of the
hierarchy tree.

Coding the Event Procedures
Mostly by acting on events, you will be coding what should happen when the
form is initialized and when the user clicks each button on the form.

As you type the code, you will notice some helpful features. For example,
when you type a period after a COM object such as the TekVISA ActiveX
Control, the VBA Intellisense feature opens a list that prompts you with
choices. Valid properties, methods, and events exposed by the COM object
as public are preceded by a green icon, like the first choice in the following

list:
Twel.3earchCriterion = 0 'search all dewvices
' get detected VISL devices
dev = TWCL.|
=@ AhoutBox
E& Address
EE Attribute

:W"‘ul'liil@ BaudRate
POPULEY e pesavailable
If ISEIKE@ Cancel
For !

l'@‘ CleatToSendState

_____ ~

60 Oscilloscope Analysis and Connectivity Made Easy

The Get Waveform Example in Excel VBA

Similarly, after you type an opening parenthesis, the Intellisense feature
prompts you with the syntax for arguments, and displays valid choices:

twol. GetWaveform |
GetWaveform (chan As CHANNEL, wim, xincy As Double, tigPos As Long, vUnits As String, hUnits As String |
@ CH2
E CH3
= CH4
E MATH1
E MATHZ —

E MATH3 vl

The Activate UserForm Routine

This is the main body of the code, because it executes immediately to assign
initial variables and prepare a UserForm before it is displayed. This routine
uses TekVISA calls to find all available device resources, then sets the active
device to be virtual GPIB, which is always GPIBS.

1. In the Project Explorer window, right-click the
frmGetWaveform icon in the Forms folder and select View
Code

=5 Farms
R FrmiGetavefarm

or press F7 to switch to the Code window for this project.
2. Type the following in the Code window:
Option Explicit

This statement causes VBA to ensure that a variable is defined
before you use it.

3. In the Project Explorer window, do one of the following to
switch to the UserForm:

a. Double-click the frmGetWaveform icon in the Forms
folder, or

b. Right-click the frmGetWaveform icon in the Forms
folder and select View Object, or

c. Press Shift+F7.

4. Double-click the right side of the UserForm, outside of the
frame.

VBA inserts the following code fragment into the Code window. It is
so named because Click is the default event for the UserForm object.

Private Sub UserForm Click ()

End Sub

Oscilloscope Analysis and Connectivity Made Easy 61

The Get Waveform Example in Excel VBA

5. Delete this code block, since you want to write a routine that
takes place when the form is activated, not when a user
clicks it.

6. Click the right drop-down menu to see a list of members
(methods, properties, and events) that are valid with
UserForm, and select Activate. The Activate event allows
you to initialize module-level variables before the UserForm
is first displayed.

Hy ate

A ddContral j
BeforelragCrer

BeforebropOrPaste

Click

ChilClick

Deactivate b
Etror

Intizlize L
WeyDowen
WeyPress

WKeyllp =
== | JJ

VBA inserts the following code block:

IUserFurm j Activate j
Y

Private Sub UserForm Activate ()

End Sub

7. Type the following code inside the UserForm_Activate
subroutine (TekVISA-related statements are highlighted in
boldface):

Dim i As Integer
Dim dev As Variant

Tvcl.SearchCriterion = 0 'search all devices
' get detected VISA devices
dev = Tvcl.FindList
' populate devices listbox
If IsArray(dev) Then

For i = LBound(dev) To UBound (dev)
lstDevices.AddItem dev (i)
Next
End If

When the UserForm is activated before it first displays, this code:
a. Declares a counter variable and a list array of devices.
b. Uses the SearchCriterion property of the TekVISA

ActiveX Control to set criteria to search for resource
devices detected on this instrument.

62 Oscilloscope Analysis and Connectivity Made Easy

The Get Waveform Example in Excel VBA

c. Uses the FindList property of the TekVISA ActiveX
Control to get the results of the search and store them in
a device list array.

d. Uses LBound and UBound functions to refer to the lower
and upper boundaries of the device list array while
iterating through the list.

e. Uses the Excel Addltem method to populate the
IstDevices list box with the Find list results, which will
appear on the form as available devices.

8. Type the following code next inside the UserForm_Activate
subroutine:

For i = 0 To lstDevices.ListCount - 1
If Left (lstDevices.List (i), 5) = "GPIB8" Then
' default to virtual GPIB device
lstDevices.ListIndex = i
Tvcl.Descriptor = lstDevices.Text
Exit For
End If
Next

This code:

a. Uses the Excel ListCount property to iterate through the
items in the IstDevices list box for an entry
corresponding to a virtual GPIB device (GPIBS).

b. Uses the Excel Listindex property to set the virtual GPIB
device as the currently selected item in the IstDevices list
box, so that it appears preselected on the form.

c. Uses the Descriptor property of the TekVISA ActiveX
Control to set the value in the Text property of the
IstDevices list box—in this case, the virtual GPIB device
string—as the active VISA resource.

The Clear Button Routine
Next you will initialize some variables. You know that the Clear command
button will clear fields, so you will write that initialization code also.

1. Type the following in the Code window, just below the
Option Explicit statement:

Dim rngHold As Range ' reference to worksheet range for
' clearing

This statement declares a variable of data type Range to hold the
worksheet range. Since this variable appears outside of any
subroutine, its scope is modular and it can be referenced from any
routine in the module. You will reference this range when you write

Oscilloscope Analysis and Connectivity Made Easy 63

The Get Waveform Example in Excel VBA

64

the code associated with the Clear command button, which must
clear the range between acquisitions.

Select emdClear from the left drop-down menu in the Code
window.

IcdeIear =] ICIick =
e ——————

cmdGetWaveform e g
Frame1

Label reference to worksheest r:
Label2
Label3
Labeld
Iblinterval
IbIRL
IbiTriggerPos
IstDevices

Tuc ~ -
== | _'l_I

The following code fragment for the cmdClear_Click subroutine
appears in the Code window. Click is the default event for command
button controls.

Private Sub cmdClear Click ()

End Sub
In this case, Click is the event you want to use in your code.

Type the following code inside the cmdClear_Click
subroutine:

If Not rngHold Is Nothing Then
rngHold.Clear
rngHold.ClearContents
rngHold.ClearFormats

End If

lblInterval.Caption = ""
1blRL.Caption = ""
1blTriggerPos.Caption = ""

When the Clear button is clicked, if waveform data is present, this
code:

a. uses Clear, ClearContents, and ClearFormats methods of an
Excel Range object to clear the spreadsheet columns where
waveform data appears (including all values, formulas, and
formatting)

b. uses the Caption property of an Excel Label control to clear the

captions of the result Labels (where additional waveform values
appear on the form)

Oscilloscope Analysis and Connectivity Made Easy

The Get Waveform Example in Excel VBA

The Get Waveform Button Routine

Next you will work on the logic that takes place when the user clicks the Get

Waveform button. This involves placing a call to the GetWaveform method

of the TekVISA ActiveX Control, which takes five arguments. You will also

learn to use the ScreenUpdating, Cursor, and ActiveSheet properties of the

Excel Application object, which represents the entire Excel application. In the

process, you will encounter some Excel fine points, such as xIWait and
xIDefault, which are preassigned mouse-pointer constants that can be
assigned to the Cursor property.

Note: You can use Application object shortcuts (for example,
ActiveSheet.Range) rather than fully-qualified references (for
example, Workbook.ActiveSheet.Range) whenever doing so is
unambiguous.

1. Press Shift+F7 to switch to the UserForm, and double-click
the Get Waveform button.

VBA inserts the following code block:

Private Sub cmdGetWaveform Click ()

End Sub

2. Type the following code inside the cmdGetWaveform_Click
subroutine code block:

Dim arrWF As Variant, xinc As Double, trigpos As Long
' variables for GetWaveform method

Dim arrLength As Long, i As Long

Dim t As Double

Dim tracker As Long

Dim blnProceed As Boolean

Dim msg As String

Dim ans As Integer

Dim hUnits As String, vUnits As String

On Error GoTo cmdGetWaveFormErr

This code declares:

a. Variables for three arguments passed by the
GetWaveform method of the TekVISA ActiveX Control,
including an array variable to hold the waveform values,
and variables to hold the sample interval (x-axis
increment) and trigger position.

b. An array variable to hold the waveform record length
and a variable for iteration through the array.

c. An interim variable t to hold the time value (relative to
the trigger point) associated with each data point sample
value.

d. A variable to track the rows in cells of the active
worksheet.

Oscilloscope Analysis and Connectivity Made Easy

65

The Get Waveform Example in Excel VBA

e. A Boolean variable to determine whether to proceed in

the case of large waveforms.

f. Variables to hold MsgBox messages and user answers.

g. Two variables for output parameters of the

GetWaveform method.

If clicking the GetWaveform button causes an error, control passes to

the cmdGetWaveformErr error routine.

3. Type the following code inside the cmdGetWaveform_Click

subroutine code block:

Call Tvcl.GetWaveform(CH1l, arrWF, xinc, trigpos,

vUnits, hUnits)

' test that an array has been returned

If IsArray(arrWF) Then
' get length of array

arrLength = UBound (arrWF) - LBound (arrWF)

1blRL.Caption = arrLength
End If
' show rest of waveform info
lblInterval.Caption = xinc
1blTriggerPos.Caption = trigpos

DoEvents

This code:

a. Calls the TekVISA Control with the GetWaveform
method, which accepts one argument (the channel from
which to get a waveform) and passes back five

arguments (see [[able 36|in Appendix A for more

information about this method).

b. Uses the IsArray function to test that a waveform array

has been returned .

¢. Calculates the record length by subtracting the starting
data point from the ending data point (+ 1) and stores it
in the Caption property of the IbIRL Label control, so that

it will appear on the form.

d. Stores the returned sample interval and trigger position
argument values in the Caption property of the Iblinterval
and IbITriggerPos Label controls, respectively, so that

they will appear on the form.

e. Uses the DoEvents function to pass control to the
operating system so it can repaint the screen, allowing
the user to see the updated fields on the form. Control is
returned after the operating system has finished

processing the events in its queue.

66 Oscilloscope Analysis and Connectivity Made Easy

The Get Waveform Example in Excel VBA

4. Type the following code inside the cmdGetWaveform_Click
subroutine code block:

' flag for large waveform sets
blnProceed = True
If arrLength > 10000 Then
msg = "Waveform includes " & arrLength & " values. "
msg = msg & "Do you wish these values to be displayed 2"
ans = MsgBox(msg, vbYesNo + vbDefaultButton2,
"Get Waveform")
If ans = vbNo Then blnProceed = False
End If

If blnProceed = False Then Exit Sub
This code:
a. Sets a Boolean flag to true.

b. If the record length exceeds 10,000, puts up a message
box with Get Waveform displayed in the title bar, asking
the user whether or not to display the values.

c. Uses the vbyesno and vbDefaultButton2 constants to set
the message box style to include Yes and No buttons,
with the second button (the No button) preselected as the
default.

d. Gets the user’s response and, if the user clicked the No
button, sets the flag to false and exits the subroutine.

5. Type the following code inside the cndGetWaveform_Click
subroutine code block:

' proceed to display the data
If (IsArray(arrWF) And blnProceed) Then
' set headers

ActiveSheet.Range ("Cl") .Value = "Time"
ActiveSheet.Range ("Cl") .Font.Bold = True
ActiveSheet.Range ("D1") .Value = "Value"
ActiveSheet.Range ("D1") .Font.Bold = True

tracker = 2

' let user know we are filling cells
Application.Cursor = xlWait

' stop screen repaints while filling cells
Application.ScreenUpdating = False

If a waveform array is present and the Boolean flag is set to true, this
code:

a. Assigns Time and Value headers to cells in range C1:C1
and D1:D1 of the active Excel sheet (the Range property
applies to single cells in this example).

Oscilloscope Analysis and Connectivity Made Easy 67

The Get Waveform Example in Excel VBA

b. Sets the row-tracking variable to 2 so the program will
start inserting values in the second row under the
headers.

c. Changes the mouse pointer cursor to an hourglass to let
the user know that the program is busy filling cells.

d. Turns off screen repainting to speed up execution while
processing waveform data.

6. Type the following code inside the cndGetWaveform_Click
subroutine code block:

For i = LBound(arrWF) To UBound (arrWF)

' calculate time
t = (i - trigpos) * xinc
ActiveSheet.Cells (tracker, 3) .Value
ActiveSheet.Cells (tracker, 4) .Value
tracker = tracker + 1

Next

' we are done reset cursor and screen painting

Application.Cursor = xlDefault

Application.ScreenUpdating = True

' set reference to range for the clear button

Set rngHold = ActiveSheet.Range("Cl", Cells(tracker, 4))

Else
MsgBox "Error encountered acquiring Waveform", vbOKOnly,
"Get Waveform"

arrWr (i)

End If
Exit Sub

This code:

a. Loops through the waveform array, calculating the time
value (relative to the trigger point) for each waveform
data point according to the formula

(data-point-index — trigger-position) * sample-interval

and assigning time and data point values to cells in columns C
and D of the active sheet for as many rows as needed.

Note: The Cells property uses R1C1-style references. For
example, cell C5 would be “C5” in A1 notation, but “R5C3”
in R1C1 notation.

b. Changes the cursor back to the default mouse pointer
arrow.

c. Turns on screen repainting again so that the screen will
refresh.

d. Sets the range reference for the Clear button to start with

C1 and end with the row in column D referenced by the
tracker variable.

68 Oscilloscope Analysis and Connectivity Made Easy

The Get Waveform Example in Excel VBA

e. Adds an Else clause, in case waveform acquisition fails,
that displays an error message in a message box with an
OK button and “Get Waveform” displayed in the title
bar.

7. Type the following code inside the cmdGetWaveform_Click
subroutine code block:

cmdGetWaveFormErr:

MsgBox "Error " & Err.Number & ": " & Err.Description,
vbOKOnly, "Get Waveform"

Application.Cursor = xlDefault

Application.ScreenUpdating = True

If an error occurs when the Get Waveform button is clicked, this
code:

a. Displays an error message that includes the error number
and its description, using a message box with an OK
button and “Get Waveform” displayed in the title bar.

b. Changes the cursor back to the default mouse pointer
arrow.

c. Turns on screen repainting again so that the screen will
refresh.

Running the GetWaveForm Program

The Show Form Routine
Now that you have created the form, the next step is to create a short routine
that displays it when the user clicks a button on the spreadsheet.

1. Expand the Modules folder in the Project Explorer window
and double-click Module1.

2. An empty page in the Code window appears.

3. Type the following:
Option Explicit

Sub btnShowForm ()
frmGetWaveform.Show vbModeless
End Sub

This code displays the GetWaveform form with the display style set
to the constant vbModeless, meaning that the form is not modal.
Since it is modeless, no applications are suspended when the form is
displayed, so the user need not respond to the form before using any
other part of the application.

Oscilloscope Analysis and Connectivity Made Easy 69

The Get Waveform Example in Excel VBA

To add a button to the spreadsheet so you can run the program you just
created:

1.

4.

70

Press Alt+F11 to switch from VBA to the Excel spreadsheet.

If the Excel Forms Toolbar is not visible, select View >
Toolbar > Forms to display it. You can dock the toolbar so
that it displays horizontally below the menu bar, or let it
float free as shown here:

Forms B3
An ab|

[

<l
®

Ell

|
1r

8 | i

As you can see, the Forms Toolbar on the Excel spreadsheet is
similar in appearance to VBA’s Control Toolbox. Some of the
control icons are identical, but these icons are meant to be associated
with macros of recorded actions, or with preexisting code modules
such as the ShowForm module you just created.

Double-click the Button icon and click in or near cell A4, the
spot in the spreadsheet where you want to insert it.

The Assign Macro dialog box appears.

Aszsign Macro HE
Macro Mame:
Buttonl_Click

ShowvaFarm

CE

Cancel |

[ew |
Record... |

Ll

Ll L

Macros in: all Open Workbooks

~Description

Select the ShowForm module as the macro name and click
OK.

Oscilloscope Analysis and Connectivity Made Easy

Running the Program with the Jitter Example

5. Right-click the button, select Edit Text, and change the
button caption from Button1 to Show Form.

6. Select File > Save to save the GetWaveform.xls spreadsheet,
along with the VBA program you just created.

7. Click away from the button if necessary to exit Design
mode, and then click the Show Form button to run the
program.

The GetWaveform dialog box appears.

Note: Even if you do not have a waveform source connected to
Channel 1 of your oscilloscope, you will still be able to pick up
enough noise to generate some data to see if your program
works.

8. Modify your oscilloscope settings to prepare for a waveform
transfer. Be sure to set the record length as part of this step.

9. Click the Get Waveform button.

You will see results similar to Figure 9on page §6] If an error
occurs, switch to VBA and choose Help > Contents and Index >
Visual Basic User Interface Help > Toolbars > Debug Toolbar for a
quick summary of the debugging features of VBA.

Running the Program with the Jitter Example

You have used the Get Waveform program to insert a waveform into an
empty spreadsheet. Now you will use it to insert a waveform into a
spreadsheet already filled with data and formulas.

You will use the jitter1.xls spreadsheet, the Excel Jitter example from the
Oscilloscope Connectivity Made Easy book.

Note: If you have the Oscilloscope Connectivity Made Easy book,
refer to it for instructions on setting up the Waveform Generator and
connecting a cable from your oscilloscope sound port to Channel 1.
These instructions also appear in Appendix D on page If you do
not want to use the Waveform Generator, you will still be able to
pick up enough random noise on Channel 1 to generate some data,
enough to verify that your program is making connections.

1. In the GetWaveform.xls spreadsheet, press Alt+F11 to switch
from the Excel spreadsheet to VBA.

2. Select frmGetWaveform in the Project Explorer window.

Oscilloscope Analysis and Connectivity Made Easy 71

Running the Program with the Jitter Example

72

10.

11.

Select File > Export File... and click Save to save the
frmGetWaveForm UserForm and VBA code.

Excel writes two files to disk, one with a .frm extension and one with
a .frx extension.

Select Module1 in the Project Explorer window.

Select File > Export File... and click Save to save the
ShowForm VBA code.

Excel writes a file to disk with a .bas extension.

Close the GetWaveform.xls spreadsheet and open the
jitter1.xls spreadsheet in Excel.

To disable automatic calculation, select Tools > Options and
click Manual on the Calculation tab.

This will keep you from having to wait while Excel recalculates the
entire spreadsheet numerous times while you are working.

Press Alt+F11 to switch from the Excel spreadsheet to VBA.

Select File > Import File... , select frmGetWaveForm.frm
and click Open to insert the frmGetWaveForm UserForm
and VBA code into the jitterfast.xls spreadsheet.

Select File > Import File... , select Module1.bas and click
Open to insert the Module1 VBA code (the ShowForm code)
into the jitterfast.xls spreadsheet.

Double-click the frmGetWaveform icon in the Project
Explorer window and change these lines in the Code
window:

ActiveSheet.Range ("Cl") .Value = "Time"

ActiveSheet.Range ("C1l") .Font.Bold = True

ActiveSheet.Range ("D1") .Value = "Value"
()

ActiveSheet .Range ("D1") .Font.Bold = True
tracker = 2

ActiveSheet.Cells (tracker, 3).Value
ActiveSheet.Cells (tracker, 4) .Value

t
arrWF (i)

' set reference to range for the clear button
Set rngHold = ActiveSheet.Range ("C1l", Cells(tracker, 4))

to these lines, so that the waveform data will be inserted in columns
H and I, starting at row 6:

ActiveSheet.Range ("H1") .Value = "Time"

ActiveSheet .Range ("H1") .Font.Bold = True

ActiveSheet.Range ("I .Value = "Value"
(.

1 ll)
ActiveSheet.Range ("I1") .Font.Bold = True

Oscilloscope Analysis and Connectivity Made Easy

Running the Program with the Jitter Example

tracker = 6

ActiveSheet.Cells (tracker, 8) .Value = t
ActiveSheet.Cells (tracker, 9) .Value = arrWF (i)

' set reference to range for the clear button
Set rngHold = ActiveSheet.Range ("H1", Cells (tracker, 9))

12. Press Alt+F11 to switch from VBA to the Excel spreadsheet.

13. Insert a Show Form button into the Jitterfast.xls spreadsheet
and assign the button to the ShowForm code as you did
earlier for the GetWaveform.xls spreadsheet.

Note: Instead of adding a form button, you may want to add a
custom menu item. Such menu items are typically added by
coding the Workbook object’s Open and BeforeClose events:

Private Sub Workbook BeforeClose (Cancel As Boolean)
Dim sMenuName As String

smenuName = "&JitterExample"

' Delete the menu before closing

On Error Resume Next
MenuBars (x1Worksheet) .Menus (sMenuName) .Delete
End Sub

Private Sub Workbook Open ()

1 .
Creates a new menu and adds menu items

Dim sMenuName As String
Dim sCaption As String
Dim SMacro As String

sMenuName = "&JitterExample"
sCaption = "Show Jitter Form'
sMacro = 'LaunchForm'

On Error Resume Next

Delete the menu if it already exists
MenuBars (x1Worksheet) .Menus (sMenuName) .Delete

Add the menu

MenuBars (x1Worksheet) .Menus (sMenuName) .Menultems
.Add Caption:=sCaption, OnAction:=sMacro

End with

End Sub

14. Save the spreadsheet, then click the Show Form button to
display the Get Waveform dialog box.

15. Click the Get Waveform button.
16. Press F9 to manually recalculate the spreadsheet.

The program inserts new waveform data into the form fields and new
waveform time and data point values into columns H and I of the
spreadsheet, starting at row 6.

Oscilloscope Analysis and Connectivity Made Easy 73

Using VB Instead of VBA

A screen similar to the one shown in Figure 17]displays.

EA Microsoft Excel - jitter1_xls
J Elle Edit Yiew Insert Formatk Tools Data ‘Window Help - |ﬁ'|i|
JDE’:EH{,E,|n-n-ﬁ,|ﬂluu%-@’jjnrial -1D-Bg|§?
|da o[2| F © | EBEB
L10 | = | =ROUMD((k10-Ka)*$C56,0)+L9
A E | g [=]] E | F [5 | H =
|1 Raw —
| 2 | ShowF orm | Wavefarm
| 2 | Data From
EN Input Data| | Oscilloscope
5
B B G et Waveform -0.05 -0.800
7 -0.04993 | -0.500
B h Devices -0.04996 | -0.780
g | — Waveform Data -0.049594 -0.760
KT ASRLLHINSTR. N N
%I Record Length 0.04997}-0.760
E Symhc Input Warel
| 13 | Inkerval .
14 grsizaEzs
i Trigger
| 16 ﬁ M /
17 Averag I—I
E = et \Waveform Clear |
|13
20 N i A R
A Jitter
| 22
ﬁ 1.000E+00
| 24 | Intermediate Range Calculations 9 000E-0H
| 25 | hax Edges 10000 &.000E-1
| 26| |vWaveforrn Range | §156: 5155005 | 7 O000E-D1
|27 | |Edge Range $K56: 51510005 | BOD0E-D1 -
(414 | ¥ Sheet1 J Sheetz [Sheetd (K | LlJJ
Ready Calculate | [[[UM | oz
Figure 17: The Clock Jitter example with the Get Waveform program added
Using VB Instead of VBA
If you want to work this exercise using Visual Basic 6.0, you will need to
create the form using that tool instead of Excel VBA. Refer to Chapter 7 for
an example of how to use Visual Basic 6.0 controls to design a form.
hows a VB 6.0 version of the Get Waveform example discussed
in this chapter. This program was saved under the project name
p_Ch4VB.vbp on the CD that accompanies this book. Notice that a list box
has been used to display the waveform data points in this example, since
there is no spreadsheet.
74 Oscilloscope Analysis and Connectivity Made Easy

Using VB Instead of VBA

. M= E3
—'wiaveform Data
Record Length |2ElElEl ggg i’
1.02
Interval ID-DDUUU2 L
n9s
Trigger Postion |1000 1 .

[Dizplay wave Form Values

;GetVJaveFonHE Clear |

|

Figure 18: Visual Basic 6.0 version of Get Waveform program

You will also have to make some changes to the code. Where you used the
VBA UserForm class with the Activate event, substitute the VB Form class
with the Load event. Therefore, instead of creating a UserForm_Activate()
subroutine, you will create a Form_Load() subroutine in VB 6.0 as shown
here:

Private Sub Form Load ()

Instead of using a spreadsheet to store the waveform data points, you will use
a list box named IstWF in the form itself. The GetWaveform routine is shown
here:

Private Sub cmdGetWaveForm Click ()
' declare variables
Dim arrWF As Variant 'array variable which will hold waveform values
Dim xinc As Double ' variable which will hold the x axis increment
Dim trigpos As Long ' variable which hold the timing trigger

' position
Dim i As Long ' counter variable
Dim hUnits As String, vUnits As String ' variables for returning

' unit types
On Error GoTo cmdGetWFMErr

'"CH1 is the OCX built-in constant specifying Channel 1
Call Tvcl.GetWaveform(CH1, arrWF, xinc, trigpos, vUnits, hUnits)

If IsArray(arrWF) Then ' check to be sure returned value is an
' array
1blRecLength.Caption = UBound (arrWF) - LBound(arrWF) + 1
Else
Exit Sub
End If

1blInterval.Caption = xinc
1blTrigPos.Caption = trigpos

If chkDisplayWF.Value = 1 Then ' if user wants values displayed,
' loop through the array
For i = LBound(arrWF) To UBound (arrWF)
1stWF.AddItem arrWF (i)
Next
End If

Oscilloscope Analysis and Connectivity Made Easy 75

Chapter 4 Review

You cannot load VB 6.0 forms into Excel VBA (or load VBA user forms into
VB 6.0). If you try to load a VB 6.0 form into Excel VBA, you will get this
message:

The form class contained in the specified file is not supported in Visual
Basic for Applications; the file can't be loaded.

However, you can cut and paste portions of the code between the two
programs, and then edit it to correct for differences in syntax.

Unlike VBA, which is interpreted code that only runs inside Microsoft Office
applications, Visual Basic 6.0 code can be compiled into a stand-alone
executable.

Chapter 4 Review
Now to review what you learned in Chapter 4:

e You can use Visual Basic for Applications (VBA), which is
included in Excel, to design your own forms and build your
own functions.

* You can add the TekVISA Control to VBA, and then drag it
onto your form just like any other ActiveX control.

e The Excel Help facility contains many useful examples, and
the Object Browser can help you understand the hierarchy of
objects in the Excel object model. The Excel help system
and the Object Browser are closely interwoven.

e The Excel Intellisense feature prompts you with valid
arguments and other choices when you type code in the
Code window

* You can use the Get Waveform program described in this

chapter to insert waveform data into an empty spreadsheet,
or into a spreadsheet that already contains data and formulas.

76 Oscilloscope Analysis and Connectivity Made Easy

Introduction

Chapter 5. A More Complex Four-Part
Program

Using VBA to get current resource, waveform,
measurement, and other query results

Introduction

You have looked at how to use the TekVISA ActiveX Control to build a
simple dialog box to get waveforms. Now you can go a step further and
become more familiar with the TekVISA ActiveX control.

This chapter uses Excel VBA to build a more complicated multifunction
dialog box than the previous chapter. As in Chapter 4, this four-part program
allows you to get the currently active resource device and obtain waveform
data. In addition, the program lets you send GPIB commands to capture
oscilloscope measurements, or send other kinds of GPIB commands and
queries and get back results.

The program you build in this chapter introduces more core properties and
methods of the TekVISA ActiveX Control. In addition, you may find some
practical applications for using this program, especially since you can
customize it yourself.

What You Need to Get Started

You can work this example either on a separate PC or on your Windows-
based oscilloscope, using either Excel’s built-in VBA or Visual Basic 6.0. To
get started, you will need the following:

e A Windows-based Tektronix oscilloscope (an external
monitor is recommended if you are working the example on
your oscilloscope)

e Excel 2000 or XP (or Visual Basic 6.0) installed on your
oscilloscope or on an external PC

e The TekVISA connectivity software described in Chapter 1
(see page or the location of the completed example)

Oscilloscope Analysis and Connectivity Made Easy 77

Introduction

78

What You Will Do
In this chapter, you will build a sample VBA program that

e issues native GPIB commands to capture immediate
measurement data

e issues other native GPIB commands and queries to control
the instrument

e captures raw waveform data

o finds resource devices recognized by TekVISA

Figure 19hows the design-time interface that you will create. As you can
see, the user interface is divided into parts to accomplish these tasks. The
VBA form consists of three frames and one unframed list box. This user
form allows you to interact with your oscilloscope in the following ways:

e the top left frame sends measurement commands and gets
results

e the lower left frame sends native GPIB commands and
queries and gets results, if any

e the top right frame gets waveform data at the current
settings, along with the record length, sample interval, and
trigger position

o the lower right list box shows currently available devices

(GPIB and serial resources on your instrument) that are
recognized by the TekVISA ActiveX Control

Oscilloscope Analysis and Connectivity Made Easy

Introduction

Microsoft Vizual Basic - Tek¥izaT estRBun.xls - [TekVisaTestRun.xls - mT ekVizaT estRun [UserForm]]

File Edit Wiew Insert Format Debug Run Tools Add-Ins window Help ;Iilzl
Ic

EERC IR I R A == .

Project - YBAPoject Ed

”E kYiza Test Run

v <M E C —
E@ ¥BAProject {TekYisaTestRun.xls) easuremen e

=15 Microsoft Excel Objects R [2 Rec Length: I—: Lo
Sheeti (Sheet1) [S —

Sheet2 (Sheet2)

Sheet3 (Sheet3)
ThisWarkbook,
E@Forms
H FriTekifisaTestRun | R Ll . Ackiveshest
-5 Modules R s Starking Row |/
& Module1 000 oo
D Clear I D
Properties - fmTek¥isaTestRun o IR L
: oot GekMWaveForm | O
|frmTek\|'isaTestRun UserForm R o o
Alphabetic | Categorized I
FrnTekvisaTestRun -
EiackiCalar [#HE000000F s,
EorderColor W &Ha00000128
Eiorderstyle 0 - fmBorderstyletone
—aption Tekiisa Test Run
Cycle 0 - FmCycledllForms
DrawBuffer 32000
Enabled True Toolbox 1
Fonk Tahoma
FareCalar M =Hs00000125 Carttrols |
Height 701
abl
HelpContextID 1] k A
0
KeepScrolBarsvisible |3 - fmScrollBarsBoth v & ,‘-‘ [j =
Left a oA A
= = 3 [
Mouselcon {Mone) i =l A
MousePoinker 0 - FmMousePointerDefaul: 851
Ficture (Mone)
FictureAlignment 2 - fmPictureAlignmentCenter JE—
Dich waSizeMade 1 - FrnPich e SizaMadartin LI 4 | j

Figure 19: The form you will design for the Test Run example

Figure 20 shows the same UserForm at runtime after fields have been
populated with results in all four quadrants of the form.

Oscilloscope Analysis and Connectivity Made Easy 79

Introduction

E3 Microsoft Excel - TekVisaT estRun.xls

J File Edit Wiew Insert Format Tools Data Window Help

DS HE|$wE o oA |jlwe 5@ 2| -0 -|B7U|=E==
bl 2 | Ml e | BEEEE e E a8,
F31 =l =

A | B | c | D [E __F T & T3
Time Value]

1.0000000004 -0.004

2.0000000004 0.012

Sty it I Tek¥iza Test Run x|

— Measurement C

AREA

Get IMM BURST

Measurement

CRMS
DELAY
FaLL

CAREA

form Data

Rec Length: Fggg

Activesheet
Starting Colurmn

Tnterval: F.nooooooom

Trigger Pos: F

&
A4l

-

3

FREQUEMCY]
['éf\t' ¥ Display Waveform Yalues Qf;x;sgh;‘ziv
o | .
;B
Results: I Get WaveForm I 4 _’IJ
— Send GPIB C d

| *mone Current Device:

ASELLGINSTR

Results EEKTRONIX,TDS?ID‘LD,CF:Q1 ACT

A:00.00,950
¥ Has Return Yalue Send Cammand I

TS
27.0000000004

Clear |

ToT2
0.004
|«] |

[N RN RN R T R R T N U R R PR PR DU I P U Y .

44> ¢ Sheetl

Sheetz

Sheet3

i

Ready) o o o o |
Figure 20: The Test Run form at runtime
What You Will Learn
The purpose of this chapter is to illustrate more operations of the TekVISA
ActiveX Control and familiarize you with more features of the OCX
interface. In this chapter, you will:
e build a form with more expanded functionality than the
previous example—including multiple frames, a text box,
and multiple check boxes, list boxes, command buttons, and
labels
e use TekVISA ActiveX Control operations to send native
GPIB measurement queries and other kinds of GPIB
commands and queries to your oscilloscope and get back
results
e review the TekVISA method used to get waveform data
e review the TekVISA properties used to find resource devices
e add a button to run this VBA program from your Excel
spreadsheet
¢ find out the changes you will need to make if you want the
program to run in Visual Basic 6.0 instead of Excel VBA
80 Oscilloscope Analysis and Connectivity Made Easy

The TekVISA Test Run Example in Excel VBA

The TekVISA Test Run Example in Excel VBA

Building the Form

This chapter focuses primarily on the VBA code and assumes you are
already familiar with VBA visual editing tools for constructing dialog
interfaces. For step-by-step instructions on designing a form for the VBA
design environment, refer to page #8.

To begin building the UserForm:

1. Open Excel and save the spreadsheet under the name
TestRun.xls.

2. Press ALT+F11 to access the Visual Basic for Applications
design environment from within Excel.

3. Insert a UserForm by clicking the Insert UserForm icon on
the VBA Standard Toolbar.

4. Rename the UserForm TekVISA Test Run.

5. Ifnecessary, follow the instructions on page 0 add the
TekVISA ActiveX Control to the Controls Toolbox.

6. Drag the TekVISA Control icon onto the lower right
quadrant of the Userform where it appears as an icon at
design time but is invisible at runtime.

7. Using your chosen method, insert three frames into the
Userform from left to right. VBA automatically names them
Frame1, Frame2, and Frame3.

8. Drag a label and a list box into the lower right-hand corner
of the Userform. VBA automatically names them Label1 and
ListBox1.

9. Similarly, drag the rest of the needed controls onto the form,
making sure that each control is placed as shown in
21.

Note: It is not necessary to drag the controls onto the form in the
exact order shown; however, doing so will help you verify that
you have changed all the properties correctly.

Changing Properties in the Properties Window

lable 8] [Fable 9 [[Fable 11)and [Fable 12 (which appear later in this chapter)
summarize all the changes to make in the Properties window to convert the
UserForm from its appearance in 0 its final appearance.

Oscilloscope Analysis and Connectivity Made Easy 81

The TekVISA Test Run Example in Excel VBA

UszerForm1

. —Framel-
) HE! Labellz
ol : - |- Labeld 08
| o | Labels Label1n
| CommandButtonl[- 1 Labels Labelt1
| 1 CheckBox2 .. Labells
CommandButtonZ
_ Labels Label? o a off CommandButton3

CommandButtond | CommandButbonS [- - oo

Figure 21: TekVISA Test Run form before changing default captions and
appearance of controls

After changing the name, captions, and other properties itemized in those
tables and resizing controls, the form will look like

.............. e © .. Activesheet |
| IR ¢ 10 Starting Calumn ;|
| et IMM i e— |
ol Measurement N g I |

Activesheet
Starting Row | (|

Figure 22: The redesigned form for TekVISA Test Run

82 Oscilloscope Analysis and Connectivity Made Easy

The TekVISA Test Run Example in Excel VBA

The Current Devices List Box

The Current Devices List Box Design
[able 8[summarizes the changes to make to the UserForm in areas not
enclosed by frames.

Table 8: Property changes to make outside of frames in TekVISA Test Run

Control Property Change from Change to
UserForm1 Caption UserForm1 TekVISA Test Run
Label1 Caption Label1 Current Device:
Listbox1 (Name) Listbox1 IstDevices

Figure 23 khows the portion of the form detailed in

Properties - IskDevices

- |- Current Device:

|IstDevices ListBiox

Alphabetic |Categoﬂzed|

IstDevices
[] eHs000000S:
EorderColor [l &HE0000006¢
EorderStyle |0 - frBorderStyle

Figure 23: The Current Devices list box

The UserForm Initialize Routine

This code executes immediately before the UserForm is first displayed. It
uses TekVISA calls to find all the available device resources automatically,
and is identical to the code explained in Chapter 4 beginning on page
Refer back to that explanation for a line-by-line discussion. The ActiveX
Control properties used in this subroutine are SearchCriterion, FindList, and
Descriptor.

1. Press F7 to switch to the Code window.

2. Type the following statement so VBA will ensure that
variables are defined before you use them:

Option Explicit

3. Add the following code, or copy and paste it from the Get
Waveform program:

Private Sub UserForm Initialize()
Dim dev As Variant ' array that holds devices detected by
' the OCX control
Dim i As Integer

lstRow.ListIndex = 0
Tvcl.SearchCriterion = 0 'search all devices
' get detected VISA devices
dev = Tvcl.FindList
' populate devices listbox
If IsArray(dev) Then
For i1 = LBound(dev) To UBound (dev)

Oscilloscope Analysis and Connectivity Made Easy 83

The TekVISA Test Run Example in Excel VBA

lstDevices.AddItem dev (i)
Next
End If

For 1 = 0 To lstDevices.ListCount - 1
If Left (lstDevices.List (i), 5) = "GPIB8" Then
' default to virtual GPIB device
lstDevices.ListIndex = i
Tvcl.Descriptor = lstDevices.Text
Exit For
End If
Next

End Sub

The Measurement Commands Frame

The Measurement Commands Frame Design
[able 9|shows the property changes to make in the Measurement Commands
frame.

Table 9: Property changes to make in the Measurement Commands frame

Control Property Change from Change to

Measurement Commands frame (top left)

Frame1 Caption Frame1 Measurement Commands
Label3 Caption Label3 Result
Label7 (Name) Label7 IbIDisplay

Caption Label7 (no Caption)

BackColor Button Face Button Light Shadow

Special Effect Flat Sunken
CommandButton1 (Name) CommandButton1 cmdMeasure

Caption CommandButton1 ~ Get IMM Measurement
Listbox2 (Name) Listbox2 IstMeasurement

Figure 24 shows the portion of the form detailed in

84 Oscilloscope Analysis and Connectivity Made Easy

The TekVISA Test Run Example in Excel VBA

‘roperties - Framel

|Frame 1 Frame

cmdMeasure CommandEutton
jFramel Frame

Label3 Label

IblDisplay Label
IstMeasurement ListBox

! ek IMM L
| Measurement T

0 - fmBorder StyleMone

Measurement Commands

Cycle 0 - fmCycleallForms

Enabled True e

Faont Tahoma T Result & :
ForeColor B sHsoooooize. 0 o fEL e

: T W |
Figure 24: The Measurement Commands frame

This frame groups the controls that allow the user to obtain any of the
immediate measurements summarized in |fable 10

Table 10: Measurements available in the Measurement Commands frame

AMPLITUDE HIGH PERIOD
AREA LOW PHASE

BURST MAXIMUM PK2PK

CAREA MINIMUM POVERSHOOT
CRMS NDUTY PWIDTH
DELAY NOVERSHOOT | RISE

FALL NWIDTH RMS
FREQUENCY | PDUTY PERIOD

Additions to the UserForm Initialize Routine
Next you will add the code that initializes the list box containing the
Measurement commands to choose from.

1. Add the following code to the UserForm_Initialize
subroutine, just after the subroutine declaration:

' add GPIB immediate measurement commands to the list box

With lstMeasurement
.AddItem "AMPLITUDE"
.AddItem "AREA"
.AddItem "BURST"
.AddItem "CAREA"
.AddItem "CRMS"
.AddItem "DELAY"
.AddItem "FALL"
.AddItem "FREQUENCY"
.AddItem "HIGH"
.AddItem "LOW"
.AddItem "MAXIMUM"
.AddItem "MINIMUM"
.AddItem "NDUTY"
.AddItem "NOVERSHOOT"
.AddItem "NWIDTH"
.AddItem "PDUTY"
.AddItem "PERIOD"
.AddItem "PHASE"
.AddItem "PK2PK"
.AddItem "POVERSHOOT"
.AddItem "PWIDTH"

Oscilloscope Analysis and Connectivity Made Easy 85

The TekVISA Test Run Example in Excel VBA

.AddItem "RISE"
.AddItem "RMS"

.ListIndex = 0

End With
When the UserForm is initialized before it first displays, this code:

a. Uses the Excel Addltem method to populate the
IstMeasurement list box with literal items to choose
from.

Note: In this case, the items correspond to measurement
commands that are valid with Tektronix TDS7000 Series
oscilloscopes. Your Windows-based oscilloscope may use a
slightly different command set.

b. Uses the Excel Listindex property to set the first row in
the list as the currently selected item in the list box, so
that it appears preselected on the form.

The Get Immediate Measurement Button Routine

Next you will tackle the logic invoked when a user selects a measurement
type from the list box, and then clicks the Get IMM Measurement button in
the Measurement Commands frame.

1. Press Shift+F7 to switch to the UserForm, and double-click
the Get IMM Measurement button.

VBA inserts the following code block:

Private Sub cmdMeasure Click()

End Sub

2. Type the following code inside the cmdMeasure_Click
subroutine code block.

Dim strID As String
Dim sl As String

sl = lstMeasurement.List (lstMeasurement.ListIndex)

1blDisplay.Caption = "" ' clear the label which will

' display the result

' construct the GPIB command

strID = "MEASUREMENT:IMMED:TYPE " & sl & "; VAL?; :HEADER OFF"
' send the command

Tvcl.WriteString striID
' read the result and display it

lblDisplay.Caption = Tvcl.ReadString

86 Oscilloscope Analysis and Connectivity Made Easy

The TekVISA Test Run Example in Excel VBA

When the Get IMM Measurement button is clicked, this code does
the following:

a. Declares a string variable to hold the GPIB measurement
command.

b. Uses the Caption property of an Excel Label control to
clear the caption of the result Label, where the result of
the measurement command will display.

c. Builds a string containing compound native GPIB
commands, with components separated by semicolons

)

1) The MEASUrement:IMMed:TYPE command sets the
measurement type. The runtime value returned by
the IstMeasurement list box’s Text property is
concatenated with this command string.

2) The VAL? query requests the oscilloscope to return
the value of the measurement specified by the
MEASUrement:IMMed:TYPe command, over the
currently selected channel.

3) The HEADER OFF command requests that query
results be returned without the header.

d. Uses the WriteString method of the TekVISA ActiveX
Control to send the measurement command string to the
instrument.

e. Uses the ReadString method of the TekVISA ActiveX
Control to read the result of the query sent with the
WriteString method

f. Assigns that result to the Caption property of the
IbIDisplay Label control, so that it will appear on the
form.

The Waveform Data Frame

The Waveform Data Frame Design

The Waveform Data frame allows immediate capture of waveform data at the
current instrument settings. A check box gives users the option of displaying
or omitting additional waveform values (record length, sample interval, and

trigger position). [Table 11 summarizes the property changes to make to
controls in the Waveform Data frame.

Oscilloscope Analysis and Connectivity Made Easy 87

The TekVISA Test Run Example in Excel VBA

88

Table 11: Property changes to make in the Waveform Data frame

Control Property Change from Change to

Waveform Data frame (top right)

Frame2 Caption Frame2 Waveform Data
Label4 Caption Label4 Record Length
Label5 Caption Label5 Interval
Label6 Caption Label6 Trigger Position
Label9 (Name) Label9 IbIRecLength
Caption Label9 (no Caption)
BackColor Button Face Button Light Shadow
Special Effect Flat Sunken
Label10 (Name) Label10 Iblinterval
Caption Label10 (no Caption)
BackColor Button Face Button Light Shadow
Special Effect Flat Sunken
Label11 (Name) Label11 IbITrigPos
Caption Label11 (no Caption)
BackColor Button Face Button Light Shadow
Special Effect Flat Sunken
Label12 Caption Label12 ActiveSheet Starting
Column
Label13 Caption Label13 ActiveSheet Starting Row
Listbox3 (Name) Listbox3 IstColumn
Listbox4 (Name) Listbox4 IstRow
CommandButton2 (Name) CommandButton2 ~ cmdClear
Caption CommandButton2 Clear
CommandButton3 (Name) CommandButton3 ~ cmdGetWaveform
Caption CommandButton3 Get Waveform
Checkbox2 (Name) Checkbox1 chkDisplayWF
Caption Checkbox1 Display Waveform Value
Value False True

Figure 25 kshows the portion of the form detailed in [Table 11

Oscilloscope Analysis and Connectivity Made Easy

The TekVISA Test Run Example in Excel VBA

Properties Wy
fraWFM Frame =]
Label4 Label -

\ Activesheet .
Iblinterval Label - Rec Length: I t Starking Column |
IblPromptCol Label

];PW////M//#////M’M////ATW//MMM’////////MM@Z
% WaveformData—————————————————————— %

IbIPromptRow Label I
IbIRecLength Label B P & T O L o oo
IbiTrigPos Labsl ~ JP 7o
IstColumn ListBox

:TriggerPDs:I |
IstRow ListEox I ee——

1]

(ControlTipTest . q Activeshest
(Cyrle 0 - FroCycleAllFarme . Dz 2y Wesiie i el Statting Row
Enabled True

Faonk Tahaoma

ForeColor B aHz000001 78

Height 174

HelpContextID 0

-
V' canSrrallRorcWicikla N - FroServallR :rrl\lnr—l

Figure 25: The Waveform Data frame

Additions to the UserForm Initialize Routine

Next you will add the code that initializes the column and row list boxes.
From these lists, the user chooses the starting column and row in which to
display waveform data points and associated times.

Note: You could also have implemented this feature with a spin box.
See the next chapter for an example that incorporates a spin box
control.

1. Add the following code to the UserForm_Initialize
subroutine:

' populate listboxes for Range specification of Waveform Data
For i = 1 To 52
If i <= 26 Then
lstColumn.AddItem Chr$ (i + 64)
Else
lstColumn.AddItem "A" & ChrsS (i + 38)
End If
Next
lstColumn.ListIndex = 2
For i = 1 To 500
lstRow.AddItem (i)
Next

When the UserForm is initialized before it first displays, this code
does the following:

a. Uses the Excel Addltem method in a loop that fills in the
IstColumn list box with the letters A through Z and AA
through AZ.

b. Uses the Excel Listindex property to set column C as the
currently selected item in the IstColumn list box, so that
it appears preselected on the form.

c. Uses the Excel Addltem method in a loop that fills in the
IstRow list box with the numbers 1 through 500.

Oscilloscope Analysis and Connectivity Made Easy 89

The TekVISA Test Run Example in Excel VBA

90

The Clear Button Routine

When the user clicks the Clear button in the Get Waveform frame, this code
clears the range of cells where waveform data points and times appear, and
clears the label captions where additional waveform values appear (if the
check box is checked). This code is very similar to the code explained in the
last chapter beginning on page p3.|Refer back to that explanation for a line-
by-line discussion.

1. Just below the Option Explicit statement entered earlier, type
the following to declare a module-scoped variable:

' module-scoped variable to hold reference to range specified
' by user
Dim HoldRange As Range

2. Type the following cmdClear_Click subroutine.

Private Sub cmdClear Click()
' clear controls that display waveform data
If Not HoldRange Is Nothing Then
HoldRange.Clear
HoldRange.ClearContents
HoldRange.ClearFormats
End If

1blRecLength.Caption = ""
lblInterval.Caption = ""
1blTrigPos.Caption = ""

End Sub

The Get Waveform Button Routine

Next you will work on the logic that executes when the user clicks the Get
Waveform button. This code is very similar to the code explained in Chapter
4 beginning on page §5.|Refer to that explanation for a line-by-line
discussion.

The main addition here is some logic that allows the user to check a box if
associated waveform fields (record length, interval, and trigger position)
should be displayed. This example also illustrates some other Excel features,
such as use of the Cells property and NumberFormat property of the Range
object.

1. Type the following portion of the cmdGetWaveForm_Click
subroutine, which initializes some variables, gets a
waveform, and stores associated waveform fields:

Private Sub cmdGetWaveForm Click ()
' declare variables
Dim arrWF As Variant 'array variable which will hold
' waveform values
Dim xinc As Double ' variable which will hold the x axis

' increment

Dim trigpos As Long ' variable which hold the timing trigger
' position

Dim i As Long, tracker As Long ' counter variables

Dim arrLength As Long
Dim StartRow As Long, StartCol As Long, ValCol As Long

Oscilloscope Analysis and Connectivity Made Easy

The TekVISA Test Run Example in Excel VBA

Dim HoldCol As String, hUnits As String, vUnits As String
Dim t As Double

Dim r As Range

On Error GoTo cmdGetWFMErr

'CH1 is the OCX built-in constant specifying Channel 1

Application.Cursor = xlWait
Call Tvcl.GetWaveform(CH1l, arrWF, xinc, trigpos, vUnits,

hUnits)
arrLength = UBound (arrWF) - LBound(arrWF) + 1
If IsArray(arrWF) Then ' check to be sure returned value is
' an array
1blRecLength.Caption = arrLength
Else
Exit Sub
End If

1blInterval.Caption = xinc
1blTrigPos.Caption = trigpos

2. Type the following logic that only executes if the user
selected the check box:

If chkDisplayWF.Value = True Then ' if user wants values
' displayed, loop through
' the array
' Check to see if range values are specified.
If lstColumn.ListIndex <> -1 Then
StartCol = lstColumn.ListIndex + 1
ValCol = StartCol + 1
Else
GoTo SkipDisplay
End If
If lstRow.ListIndex <> -1 Then
StartRow = lstRow.ListIndex + 1
Else
StartRow = 1
End If

This code does the following:

a. Checks the Value property of the chkDisplayWF check
box to see if the box was selected.

b. Checks the runtime Listindex property of the IstColumn
and IstRow list boxes to see if the user has selected items
(value not equal to -1).

c¢. If the check box was selected and items were selected,
this code:

1) Adds 1 to the selected column location (since the list
is 0-based) and saves it as ValCol.

2) Adds 1 to the selected row location (since the list is
0-based) and saves it as StartRow.

Oscilloscope Analysis and Connectivity Made Easy 9N

The TekVISA Test Run Example in Excel VBA

3. Type the next part of the cmdGetWaveForm_Click
subroutine:

' clear range reference
Set HoldRange = Nothing
' set up header info

ActiveSheet.Cells (StartRow, StartCol) .Value = "Time"
ActiveSheet.Cells (StartRow, StartCol) .Font.Bold = True
ActiveSheet.Cells (StartRow, ValCol) .Value = "Value"

ActiveSheet.Cells (StartRow, ValCol) .Font.Bold = True
tracker = StartRow + 1
' set number format to show all the decimal points

Set r = ActiveSheet.Range (Cells (tracker, StartCol),
Cells (tracker + arrLength, StartCol))
r.NumberFormat = "##### . $HH##HHHHHHHA"

Application.ScreenUpdating = False

For i = LBound(arrWF) To UBound (arrWF)
t = (i - trigpos) * xinc
ActiveSheet.Cells (tracker, StartCol) .Value = t
ActiveSheet.Cells (tracker, ValCol) .Value = arrWF (i)
tracker = tracker + 1

Next

Application.ScreenUpdating = True

Set HoldRange = ActiveSheet.Range (Cells (StartRow,

StartCol), Cells(tracker, ValCol))
End If

This code

a. Initializes the range reference, then stores the headings
in the spreadsheet, using the Cells property of the
ActiveSheet object to access cell locations.

Note: The Cells property uses R1C1-style (row/column)
references. For example, cell C5 would be “C5” in Al
notation, but “R5C3” in R1C1 notation.

b. Using the Cells property of the Range object, stores the
single-column range of cells that will hold wavepoint
data points in range variable r, then sets the
NumberFormat property of that Range object to display
all the decimal points.

c. Turns off screen updating, stores the waveform times
and data points in the active sheet, then turns screen
updating back on.

d. Assigns the two-column range holding the waveform
times and data points to range variable HoldRange,
which is accessed and cleared by the cmdClear_Click
subroutine.

92 Oscilloscope Analysis and Connectivity Made Easy

The TekVISA Test Run Example in Excel VBA

4. Type the last part of the cmdGetWaveForm_Click
subroutine, which handles exception cases by changing the
mouse pointer cursor from the hourglass back to the default

arrow pointer, and re-enabling screen updating:

SkipDisplay:
Application.Cursor
Application.ScreenUpdating = True

Exit Sub

x1Default

' rudimentary error trapping

cmdGetWFMErr:
Application.Cursor
Application.ScreenUpdating = True

MsgBox
End Sub

"Error:

The Send GPIB Commands Frame

The Send GPIB Commands Frame Design
The Send GPIB Commands frame allows the user to send any valid GPIB
command or query to the instrument. If the user types a GPIB query that

returns a value, the user must check a check box.

" & Err.Number & ",

x1Default

" & Err.Description

ble 12 [summarizes the

property changes to make to controls in the Send GPIB Commands frame.

Table 12: Property changes to make in the Send GPIB Commands frame

Control Property Change from Change to
Send GPIB Commands frame (bottom left)

Frame3 Caption Frame3 Send GPIB Commands

Textbox1 (Name) Textbox1 txtGPIB

Label2 Caption Label2 Result

Label8 (Name) Label8 IbIManualResults
Caption Label8 (no Caption)
BackColor Button Face Button Light Shadow
Special Effect Flat Sunken

CommandButton4 (Name) CommandButtond cmdSendCmd
Caption CommandButton4 Send Command

CommandButton5 (Name) CommandButton5 cmdClearMResults
Caption CommandButton5 Clear

Checkbox1 (Name) Checkbox1 chkHasReturn
Caption Checkbox1 Has Return Value

Oscilloscope Analysis and Connectivity Made Easy

93

The TekVISA Test Run Example in Excel VBA

94

Figure 26 shows the portion of the form detailed in fTable 12

Properties - Frame3
Frame3 Frame ;I
chkHasReturn CheckBox
cmdClearMResults CommandButton
cmdSendCmd CommandButton
[Frame3 Frame
Label2 Label
IbiIManualResults Label
ExEGPIB TexkBox

S ___EEE E SendCommandI Cbarl

L1

| T y—— [l e T i

Figure 26: The Send GPIB Commands frame

The Clear Button Routine

When the user clicks the Clear button in the Send GPIB Commands frame,
this routine clears the txtGPIB text box where GPIB commands and queries
are typed, and clears the IbIManualResults label caption where query results

appear (if the check box is selected).

1. Type the following cmdClearMResults_Click subroutine:

Private Sub cmdClearMResults Click ()
' clear GPIB command controls
txtGPIB.Text = ""
lblManualResults.Caption = ""

End Sub

The Send Command Button Routine

Your next task is to address the logic invoked when the user types a GPIB

command or query and then clicks the Send Command button.

1. Type the following cmdSendCmd_Click subroutine:

Private Sub cmdSendCmd Click ()
Dim strCmd As String, strResult As String
On Error GoTo cmdSendCmdErr

'send the user's GPIB command
strCmd = txtGPIB.Text
Tvcl.WriteString strCmd
' check to see if the user expects a return value
If chkHasReturn.Value = True Then
strResult = Tvcl.ReadString
1blManualResults.Caption = strResult

Else
lblManualResults.Caption = ""
End If
Exit Sub
cmdSendCmdErr :
MsgBox "Error: " & Err.Number & ", " & Err.Description
End Sub

Oscilloscope Analysis and Connectivity Made Easy

The TekVISA Test Run Example in Excel VBA

When the user clicks the Send Command button, this code does the
following:

a. Declares a string variable to hold the GPIB command or
query and another string variable to hold the query
result, if any.

b. Assigns the runtime value returned by the Text property
of the txtGPIB text box to the GPIB command string
variable.

c. Uses the WriteString method of the TekVISA ActiveX
Control to send the command string to the instrument.

d. Checks the runtime Value property of the chkHasReturn
check box to see if the user expects a result. If so, uses
the ReadString method of the TekVISA ActiveX Control
to read the result of the query sent with the WriteString
method.

f. Assigns that result to the Caption property of the
IbIManualResults Label control, so that it will appear on
the form.

g. If'the check box wasn’t selected, stores a blank string in
the Caption property of the IbIManualResults Label
control.

h. If clicking the WriteString button causes an error,
control passes to the cndSendCmdErr error routine,
which prints an error message.

Running the TekVISA Test Run Program

The Show Form Routine
Now that you have created the form, the next step is to create a short routine
that displays it when the user clicks a button on the spreadsheet.

1. Expand the Modules folder in the Project Explorer window
and double-click Module1.

2. An empty page in the Code window appears.
3. Type the following:

Option Explicit

Sub btnShowForm ()
frmTekVISATestRun.Show vbModeless
End Sub

Oscilloscope Analysis and Connectivity Made Easy 95

The TekVISA Test Run Example in Excel VBA

This code displays the TekVISA Test Run form with the display style
set to the constant vbModeless, meaning that the form is not modal.
Since it is modeless, no applications are suspended when the form is
displayed, so the user need not respond to the form before using any
other part of the application.

To add a button to the spreadsheet so you can run the program you just

created:

1.

2.

96

Press Alt+F11 to switch from VBA to the Excel spreadsheet.

If the Excel Forms Toolbar is not visible, select View >
Toolbar > Forms to display it.

Double-click the Button icon and click in or near cell A4, the
spot in the spreadsheet where you want to insert it.

The Assign Macro dialog box appears.

Select the ShowForm module as the macro name and click
OK.

Right-click the button, select Edit Text, and change the
button caption from Button1 to Show Form.

Select File > Save to save the TekVISA Test Run.xls
spreadsheet, along with the VBA program you just created.

Click away from the button if necessary to exit Design
mode, and then click the Show Form button to run the
program.

The TekVISA Test Run dialog box appears.

Note: Even if you do not have a waveform source connected to
Channel 1 of your oscilloscope, you will still be able to pick up
enough random noise to generate some data to verify that your
program works.

Modify your oscilloscope settings to prepare for a data
transfer. Be sure to set the record length as part of this step.

Click the buttons on the form.

You will see results similar to If an error occurs, switch to
VBA and debug the program.

Oscilloscope Analysis and Connectivity Made Easy

Using VB Instead of VBA

Using VB Instead of VBA

If you want to work this exercise using Visual Basic 6.0, you will need to
create the form using that tool instead of Excel VBA. Refer to Chapter 8 for
an example of how to use Visual Basic 6.0 controls to design a form.

hows a VB 6.0 version of the four-part TekVISA Test Run
example discussed in this chapter. This program was saved under the project
name p_CHS5VB.vbp on the CD that accompanies this book. Notice that a list
box has been used to display the waveform data points in this example, since
there is no spreadsheet.

. Demol M=l E3
— Measurement Command W aveform Data
BREA Record Lorth [0 0018 -
Gt [hihd | BURST 0.00144
Measurement CAREA Intereal ID' DOIE 0.00154
CRMS 0.00144
EE&?Y Trigger Fosition 0 ggg}gg
FREGUENCY 0.00156
EIDES [Display Wave Form Yalues 888} 153
MAXIMUM =i 000168
i Get WaveForm Clear | 0.00128
. [MEASUREMENT: IFIED:, ' .
Results: 120 ANANE .= 0.00152 =
Send GPIE commands Current Device: ASRLTIMSTR
Fesults
[~ Has Returm Value Send Command | Clear |

Figure 27: Visual Basic 6.0 version of the TekVISA Test Run program

You will also have to make some changes to the code. Where you used the
VBA UserForm class with the Initialize event, substitute the VB Form class
with the Load event. Therefore, instead of creating a UserForm_lInitialize()
subroutine, you will create a Form_Load() subroutine in VB 6.0 as shown
here:

Private Sub Form Load()

Instead of using a spreadsheet to store the waveform data points, you will use
a list box named IstWF in the form. The GetWaveform routine is shown here:

Private Sub cmdGetWaveForm Click ()
' declare variables
Dim arrWF As Variant 'array variable which will hold waveform values
Dim xinc As Double ' variable which will hold the x axis increment
Dim trigpos As Long ' variable which hold the timing trigger
' position
Dim i As Long ' counter variable
Dim vUnits As String, hUnits As String

On Error GoTo cmdGetWFMErr

'"CH1 is the OCX built-in constant specifying Channel 1

Oscilloscope Analysis and Connectivity Made Easy 97

Chapter 5 Review

98

Call Tvcl.GetWaveform(CH1, arrWF, xinc, trigpos, vUnits, hUnits)

If IsArray(arrWF) Then ' check to be sure returned value is an
' array
1blRecLength.Caption = UBound (arrWF) - LBound (arrWF) + 1
Else
Exit Sub
End If

lblInterval.Caption = xinc
1blTrigPos.Caption = trigpos

If chkDisplayWF.Value = vbChecked Then ' if user wants values
' displayed, loop through the array
For i = LBound(arrWF) To UBound (arrWF)
1stWF.AddItem arrWF (i)
Next
End If

Exit Sub

cmdGetWFMErT :
MsgBox "Error: " & Err.Number & ", " & Err.Description
End Sub

Chapter 5 Review
To review what you learned in Chapter 5:

e The TekVISA Control includes methods and properties that
allow you to find resources, get waveforms, send commands,
and get results.

e The Excel object model includes objects and properties that
allow you to access and insert values into cell ranges
programmatically.

e You can check Runtime properties of VBA controls to
determine user interaction with a VBA form

® You can use the TekVISA Test Run program designed in this
chapter to send a variety of commands and display the
results on a form, and to get waveforms and display them in
your spreadsheet or on the form itself (in the case of the VB
version).

Oscilloscope Analysis and Connectivity Made Easy

Introduction

Chapter 6:
A Measurement Charting Example

Using VBA to write a program that plots
measurement against time

Introduction

The purpose of this chapter is to demonstrate how to perform real-time
capture and charting in an Excel VBA or VB 6.0 application. In this chapter,
you will build a program that repeatedly gets measurements at specified
intervals for a specified length of time, and then plots those results in a chart.

The program builds on information learned in previous chapters, and
introduces some new controls and programming techniques. Most of the code
has to do with setting up the chart and controlling the timer control. Unlike
previous examples, the program includes several subroutines that are
triggered by calls from other routines, rather than by user actions or system
events.

Besides teaching you more about VBA programming, this example may
prove useful in your daily work, since you can easily customize it.

What You Need to Get Started

You can work this example either on a separate PC or on your Windows-
based oscilloscope, using either Excel’s built-in VBA or Visual Basic 6.0. To
get started, you will need the following:

e A Windows-based Tektronix oscilloscope (an external
monitor is recommended if you are working the example on
your oscilloscope)

e Excel 2000 or XP (or Visual Basic 6.0) installed on your
oscilloscope or on an external PC

e The TekVISA connectivity software described in Chapter 1
(see page 0r the location of the completed example)

Oscilloscope Analysis and Connectivity Made Easy 99

Introduction

What You Will Do
In this chapter, you will build a sample VBA program that

e issues native GPIB commands to capture immediate
measurement data

e sets the time interval for repeatedly capturing data
e sets the length of time for the data capture

e plots the results in an Excel spreadsheet and chart.

hows the design-time interface that you will create. As you can
see, the user interface includes some list boxes, check boxes, labels,
command buttons, and a frame that groups some new controls called spin
buttons. This user form allows you to interact with your oscilloscope in the
following ways:

e in the first list box, you can choose a measurement
command to send

e in the second list box, you can choose the time interval (for
example, every 30 seconds) for sending the measurement
command

e in the third list box, you can choose the duration (for
example, 2 seconds) for sending the measurement command

e in the labels next to the spin buttons, you can choose the
spreadsheet row and column location to begin inserting the
measurement data

e in the two check boxes, you can decide whether or not to
chart the results and whether or not to display the chart
results once after the duration of the measurement period has
expired or continuously as each measurement is taken

e the command buttons allow you to start and stop sending
the measurement command, and close the form

100 Oscilloscope Analysis and Connectivity Made Easy

Introduction

7 Microsoft Visual Basic - ChartMeasurements.xls - [ChartMeasurements.xls - frmMeasurement [UserForm)]

”Q Eile Edit %“iew Insert Format Debug Run Tools ‘Window Help ;liliﬂ
(@-| 0 oo, 0 nkd MR

= il | Heasurement Demo N
- owre 1 easuroment - - - B o NG
—— [OTYT M = | - Measurement - ;- : Second Infervals - - Durdtin (mn.) - - x

E:ﬁ vone] R I I™ Display At Completion S

M |T A abl EB - WG
= © [Starting Cal Selection ——
RTRREN
" I N | —

ies - fr :
[frmMeasuremen Userrarm [[| T | N

Alphabetic |Categ0rized I

(Mame) frmMeasurement [«
[aHsoo000r =

Start Measurementl Stop Measurement I Close I

BorderColor W :H5000001 28
Earderstyle 0 - FBarderstyle
(Capkion Measurement Der
Cvcle 0 - FCyclealForr
CrawBuffer 32000

Enabled True

Font Tahoma
ForeColor W =H5000001 26
Height: 155,25

HelpCantextID i}
KeepScrallBarsYisibl 3 - FrScrollBarsBe
Left 1]
Mousslcon {Mone) LI ‘|

| 2

Figure 28: The form you will design for the Chart Measurements example

hows the same UserForm at runtime after fields have been filled
in with results in all areas of the form.

Oscilloscope Analysis and Connectivity Made Easy 101

Introduction

E4 Microsoft Excel - ChartMeazurements. xls

J File Edit ‘Wiews Insert Format Tools Cata window Help

DEE & B& o o | Ao -2 2

J Arial

|daatl[[M 0 |F 6 |EBE
F7 | =]

A | B [¢ [o [E [F | 6 [H [I 3
1 —]|
2 | _Show Form |
=N
4 Measurement Demo x|
5 Measurement Second Inkervals Curation {rin.)
? : 3355 (20 secona [Display At Completion
_l BURST .5 (30 seconds)
= CRMS 1 25 145 caronds’ [T Chart Measurements
g DELAY 2 -_ , ,
5 FaLL 5 5 Starting Cell Selection
= HIGH 4 10 -
1 FREQUENCY 5 15 Colurm [ZI
12 MAXIMLIM & 20 I C1
W FIMIMIM 7 25 Fow I 1 ﬂ
. MNOUTY g 30 s
14 noversHooT =] o =] = =]
15
16 Recard Length:
17 ecord Length: 120 Start Measurement | Stop Measurenent Close
18
19 -
[4 /4 [» [mtsheet1 sheetz f Sheets / |4 |
Reacly |1 I o

Figure 29: The Chart Measurements form at runtime

hows the measurement data in the spreadsheet and the charted
results. The measurement data is plotted if the Chart Measurements check
box is selected on the form. The display doesn’t take place until data capture
has completed if the Display At Completion check box is selected.

102 Oscilloscope Analysis and Connectivity Made Easy

Introduction

DedsS aRY sRd o -~ @ adlil@edd 782

JEiIe Edit Wew Insert Format Tools Data Window Help

| -l RIEE SR s N A =
8 o =

B A B PERIO[E: D E F G H

| 2 _Show Form | 0.0004013

= 0.0004

|4 0.0007574

i PERIOD

| 7|

R 0.0035

ER

|10 0.003

= 0.0025

% 0.002

14 :

% 0.o015 , | H | I n 1 J‘

e | DA T T

B | o T Y

= RN

24 e e

Ready I e

Figure 30: Chart Measurements plotted results

What You Will Learn
In this chapter, you will:

e build a form with more expanded functionality than the

previous example—including the use of spin button controls

and a Close button
e learn how to use the Excel ChartObject
e learn how to add timing considerations to your solutions
e learn how to hide or show a frame on a form

e learn how to close a form

e review the use TekVISA ActiveX Control operations to send
native GPIB measurement commands and queries to your

oscilloscope and get back results

Oscilloscope Analysis and Connectivity Made Easy

103

The Chart Measurements Example in Excel VBA

104

e add a button to run this VBA program from your Excel
spreadsheet

e find out the changes you will need to make if you want the
program to run in Visual Basic 6.0 instead of Excel

The Chart Measurements Example in Excel VBA

Building the Form

This chapter focuses primarily on the VBA code and assumes you are
already familiar with VBA visual editing tools for constructing dialog
interfaces. For step-by-step instructions on designing a form for the VBA
design environment, refer to page

To begin building the UserForm:

1. Open Excel and save the spreadsheet under the name
ChartMeasurement.xls.

2. Press ALT+F11 to access the Visual Basic for Applications
design environment from within Excel.

3. Insert a UserForm by clicking the Insert UserForm icon on
the VBA Standard Toolbar.

4. Rename the UserForm Measurement Demo.

5. If necessary, follow the instructions on page §1 o add the
TekVISA ActiveX Control to the Controls Toolbox.

6. Drag the TekVISA Control icon onto the Userform.

7. Add controls to design the Userform, making sure that each
control is placed as shown in m Note the use of two
spin button controls inside Frame1.

Note: It is not necessary to drag the controls onto the form in the
exact order shown; however, doing so will help you verify that
you have changed all the properties correctly.

Changing Properties in the Properties Window

[able 13[summarizes all the changes to make in the Properties window to
convert the UserForm from its appearance in o its final
appearance.

Oscilloscope Analysis and Connectivity Made Easy

The Chart Measurements Example in Excel VBA

| CheckBox1

- [checkBoxz

-

- Label4 Label1n

ComrmandButtanl [CommandButtonz | CommandButton

Figure 31: Chart Measurements form before changing default captions and
appearance of controls

After changing the name, captions, and other properties itemized in the table
and resizing controls, the form will look like (the TekVISA control
icon is hidden behind one of the list boxes).

T ™ Display At Completion :

o [T chart Measurements

- — Starting Cell Selection ——

Record Length:

Figure 32: The redesigned form for Chart Measurements

Table 13: Changes to make in the Properties window to Chart Measurements

Control Property Change from Change to
UserForm1 Caption UserForm1 Measurement Demo
tve (TekVISA) (Name) Tvel Tvel (no change needed)
Label1 Caption Label1 Measurement
Label2 Caption Label2 Second Intervals
Label3 Caption Label3 Duration (min.)
Label4 Caption Label4 Record Length
Label10 (Name) Label10 IbIRL

Caption Label10 (no Caption)

Special Effect Flat Sunken
Listbox1 (Name) Listbox1 IstM
Listbox2 (Name) Listbox2 Istinterval

Oscilloscope Analysis and Connectivity Made Easy 105

Control

Listbox3

CommandButton1

CommandButton2

CommandButton3

Checkbox1

Checkbox2

Frame1

Label5

Label6
Label7

Label8

Label9

SpinButton1

SpinButton2

The Chart Measurements Example in Excel VBA

Property Change from

(Name) Listbox3

(Name) CommandButton1

Caption CommandButton1

(Name) CommandButton2

Caption CommandButton2

(Name) CommandButton3

Caption CommandButton3

(Name) Checkbox1

Caption Checkbox1

(Name) Checkbox2

Caption Checkbox2
Starting Cell Selection frame

Caption Frame1

Caption Label5

Caption Label6

(Name) Label7

Caption Label7

Special Effect Flat

(Name) Label8

Caption Label8

Special Effect Flat

(Name) Label9

Caption Label9

Special Effect Flat

ForeColor Black

(Name) SpinButton1

Max 100

Min 0

(Name) SpinButton2

Max 100

Min 0

Oscilloscope Analysis and Connectivity Made Easy

Change to
IstDuration
cmdStart

Start Measurement
cmdStop

Stop Measurement
cmdClose

Close
chkPaintOnce
Display At Completion
chkMakeChart

Chart Measurements

Starting Cell Selection
Column
Row

IbiCol

(no Caption)
Sunken
IbIRow

(no Caption)
Sunken
IbiCell

(no Caption)

Sunken

Blue (select from Palette)

spnCol
52

1

spnRow
300

The Chart Measurements Example in Excel VBA

Initialization

Module Level Variable Declarations
First you will define some variables that can be accessed by all the
subroutines in the code module:

1. Press F7 to switch to the Code window.

2. Type the following statement so VBA will ensure that
variables are defined before you use them:

Option Explicit

3. Type the following variable declarations, whose purposes
are well commented in the code:

Dim StopTimerCount As Long ' variable for holding when timer
' should stop

Dim tInterval As Double ' variable for holding user-specified
' capture interval

Dim strMeas As String ' variable for sending immediate
' measurement command to scope
Dim blnStopFlag As Boolean ' variable to flag whether the user
' wished to halt measurements
Dim RefChart As Chart ' reference variable for inserted chart

' Windows API function used to create a timed interval for
' measurement capture
Private Declare Function GetTickCount Lib "kernel32" () As Long

Since GetTickCount is a Windows API function, you need only
declare it before you can use it.

The UserForm Initialize Routine
This code executes immediately before the UserForm is first displayed. It
initializes spin controls, list boxes and result label captions.

1. Type the following statements to set default spin control
values and associated result label captions:

Private Sub UserForm Initialize()

Dim i As Integer

' initialize the spin control values and default cell
' for measurement capture

spnCol.Value = 3
1blCol.Caption =
spnRow.Value = 1
1blRow.Caption = "1"
1blCell.Caption = "C1"

non

2. Type the following code block to fill in the IstM list box.
This code is similar to the code explained in the last chapter
beginning on page §5] Refer back to that explanation for a
detailed discussion.

' populate the list box with immediate measurement GPIB
' commands
With 1lstM

Oscilloscope Analysis and Connectivity Made Easy 107

The Chart Measurements Example in Excel VBA

.AddItem "AREA"
.AddItem "BURST"
.AddItem "CRMS"
.AddItem "DELAY"
.AddItem "FALL"
.AddItem "HIGH"
.AddItem "FREQUENCY"
.AddItem "MAXIMUM"
.AddItem "MINIMUM"
.AddItem "NDUTY"
.AddItem "NOVERSHOOT"
.AddItem "NWIDTH"
.AddItem "PDUTY"
.AddItem "PERIOD"
.AddItem "PK2PK"
.AddItem "POVERSHOOT"
.AddItem "PWIDTH"
.AddItem "RISE"
.AddItem "RMS"
.ListIndex = 0

End With

3. Type the following code block to fill in the Istinterval list
box with values ranging from .25 to 100 minutes:

' populate the interval list box
With lstInterval

.AddItem ".25"

.AddItem ".50"

For i = 1 To 100

.AddItem i
Next
lstInterval.ListIndex = 1
End With

4. Type the following code block to fill in the IstDuration list
box with values ranging from 20 seconds to 120 seconds, in
5 second intervals. This code also preselects a duration of 3
minutes in the list box, and sets the default record length that
appears in the IbIRL result label caption to 120 records.

' populate the duration list box
With lstDuration
.AddItem ".3333 (20 seconds)"
.AddItem ".5 (30 seconds)"
.AddItem ".75 (45 seconds)"

.AddItem "1"
For 1 = 5 To 120 Step 5
.AddItem i

Next
End With
lstDuration.ListIndex = 3
1blRL.Caption = "120"

End Sub

108 Oscilloscope Analysis and Connectivity Made Easy

The Chart Measurements Example in Excel VBA

Choosing Measurements
These routines respond to events triggered by user actions, such as selecting
from a list box or clicking a command button.

Command Button Routines
First you will add the code that is invoked when the user clicks one of the
command buttons on the form.

1. Type the following code, which executes when the user
clicks the Start Measurement button:

Private Sub cmdStart Click ()

blnStopFlag = False
' build the GPIB command to send
strMeas = "MEASUREMENT:IMMED:TYPE " &
l1stM.List (1stM.ListIndex) &
";VAL?; :HEADER OFF"
Call CaptureMeasurements
End Sub

This code:
a. Initializes the Boolean stop flag to False.

b. Builds the measurement command to send (see similar
code on page @for details). In this case, you
concatenate the command string with the runtime value
returned by the list box’s List property. This
concatenated value corresponds to the measurement
command (see selected by the user from the
IstM list box.

Note: This code uses the List property rather than the Text
property because Text is not reliably assigned in Microsoft
Office MSForm library list boxes, even if Listindex <> -1,
indicating that a selection has been made.

c. Calls the CaptureMeasurements subroutine (on page
to send the measurement command to the
oscilloscope and get the results.

2. Type the following code that sets the stop flag to True when
the user clicks the Stop Measurement button:

Private Sub cmdStop Click()
blnStopFlag = True

End Sub

Oscilloscope Analysis and Connectivity Made Easy 109

The Chart Measurements Example in Excel VBA

110

3. Type the following code, which unloads the form (removes
it from memory and reclaims all memory associated with the
form) when the user clicks the Close button:

Private Sub cmdClose Click ()
Unload frmMeasurement
End Sub

Capture Measurements Routine

After the user clicks the Start Measurement button, this routine sends the
measurement command selected by the user to the oscilloscope. It also uses a
Timer function to calculate the interval selected by the user.

1. Type the following variable declarations, which are
explained by program comments:

Private Sub CaptureMeasurements ()
' This routine sends measurement commands and uses the
' GetTickCount Windows API function to calculate the interval
' by the user

Dim ret As Variant ' gets return value from TekVISA control
Dim rl As Range, r2 As Range, r3 As Range ' Range variables
' variables used to hold return values from the GetTickCount
' function and to calculate whether user-specified interval

' has elapsed

Dim StartTime As Long

Dim EndTime As Long

Dim DiffTime As Long

'variable to hold interval in milliseconds

Dim interval As Long

'variable to track the number of captures

Dim tracker As Long

'variables for use in specifying ranges

Dim RefCol As Long

Dim RefRow As Long, StartRow As Long

' variable to hold user choice on drawing a chart
Dim blnDrawChart As Boolean

'variable to hold user choice on single or multiple painting
'of screen

Dim blnPaintOnce As Boolean

2. Type the first logic of this routine, which disables screen
updating and changes the cursor to an hourglass symbol if
the user selected the Display at Completion check box:

' turn off screen updating if we are painting the active sheet
' only once
If chkPaintOnce.Value = True Then
Application.Cursor = x1lWait
Application.ScreenUpdating = False
blnPaintOnce = True
End If

3. Type the next code segment, which saves the runtime value
of the Chart Measurements check box. If that value is true
and the Display at Completion check box is false, the
program calls the InsertChart subroutine (on page to
insert an empty chart into the active sheet.

Oscilloscope Analysis and Connectivity Made Easy

The Chart Measurements Example in Excel VBA

blnDrawChart = chkMakeChart.Value

' determine whether to insert chart before we begin

' measurement captures

If blnDrawChart = True And blnPaintOnce = False Then
Call InsertChart

End If

4. Type the next code segment:

'bind range to user specified starting cell
Set rl = ActiveSheet.Range (1lblCell.Caption)
' assign measurement selection to starting cell and make bold
rl.Value = 1lstM.List (1stM.ListIndex)
rl.Font.Bold = True
' get row and column values for use in loop below
StartRow = rl.Row
RefRow = rl.Row
RefCol = rl.Column

This code:

a. Gets the runtime value of the Caption property of the
IbiCell label, which contains the starting spreadsheet cell
location selected by the user.

b. Returns a Range object with the user-selected location
as an absolute cell value in the active worksheet.

c. Assigns that result to r1, a variable of data type Range.

d. Sets the cell location in r1 to the runtime value selected
in the IstM list box (for example, if the user selected the
“Period” measurement command, that name is stored as
a header).

e. Sets the Font property to Bold for the cell location stored
inril.

f. Assigns the number of the first row in the first area in
Range r1 to counter variables StartRow and RefRow.

g. Assigns the number of the first column in the first area
in Range r1 to a counter variable named RefCol.

5. Type the next code segment:

' The GetTickCount function returns the number of

' milliseconds elapsed since midnight. The second specified
' by user must be multiplied by 1000 for use below

interval = tInterval * 1000

StartTime = GetTickCount () ' get out first startng time
tracker = 0

Oscilloscope Analysis and Connectivity Made Easy 111

The Chart Measurements Example in Excel VBA

This code:

a. Multiplies the user-specified capture interval (obtained
from the CalcRecordLength routine on page by
1000 since the GetTickCount function deals in
milliseconds, and stores the result in the interval
variable.

b. Saves the output from the GetTickCount function in the
StartTime counter variable.

¢. Initializes the counter variable that tracks the number of
data captures performed.

6. Type the next code segment:

Do While tracker < StopTimerCount
If blnStopFlag Then GoTo StopFlag ' exit but leave form
' open if user flags a stop
EndTime = GetTickCount
DiffTime = EndTime - StartTime

If DiffTime >= interval Then ' time to get a measurement
' send command
Tvcl.WriteString strMeas
' get results and format them
ret = Tvcl.ReadString
ret = Format (ret, "#.#####H##")
increment the row for assigning measurement value
RefRow = RefRow + 1
Set r2 = ActiveSheet.Cells (RefRow, RefCol)
r2.Value = ret
If blnDrawChart = True And blnPaintOnce = False Then
' bind a new Range variable to all currently
' captured measurements
Set r3 = ActiveSheet.Range (Cells (StartRow, RefCol),
Cells (RefRow, RefCol))

Call DrawChart (r3) ' update the chart
End If
StartTime = EndTime ' assign the EndTime as the new
' StartTime for a new interval
tracker = tracker + 1 ' increment the tracking
' variable
End If

' make sure Windows messages are processed so stop

' request by user (cmdStop Click event) can be captured
DoEvents

Loop

' Build chart at end if requested by user

If blnDrawChart = True And blnPaintOnce = True Then
Call InsertChart
Set r3 = ActiveSheet.Range (Cells (StartRow, RefCol),

Cells (RefRow, RefCol))

Call DrawChart (r3)

End If

' make sure to set cursor and screen updating back

Application.Cursor = xlDefault

Application.ScreenUpdating = True

' ensure we draw everything

Unload frmMeasurement

StopFlag:
Exit Sub

112 Oscilloscope Analysis and Connectivity Made Easy

The Chart Measurements Example in Excel VBA

While the counter that tracks the number of data captures is less than
the value of StopTimerCount (set in the CalcRecordLength routine
on page , this code executes a DO loop that:

a. Jumps to the end of the CaptureMeasurements routine if
the Stop Measurement button was clicked (which sets
the stop flag to True).

b. Gets the current time from the GetTickCount function,
decrements the starting time from it and saves the
difference.

c. Ifthe difference is greater than or equal to the value of
interval, the program.

1) Sends the measurement command selected by the
user, gets the query result, formats it with the correct
number of decimal points, and stores it in the ret
variable.

2) Increments the row value by 1 and uses it to obtain
an R1Cl1-style cell value, returned by the Cells
property of the active sheet.

3) Converts the R1Cl-style value to an Al-style value
by storing it in intermediate Range variable r2.

4) Assigns the query returned value in ret to the cell in
r2.

5) If the Chart Measurements check box is selected
and the Display on Completion check box is cleared:

a) Gets the Range object containing data captured
so far.

b) Saves it in Range variable r3.

¢) Passes it to the DrawChart routine (on page
to do an interim update of the chart display.

d. Assigns the EndTime value returned by the
GetTickCount function as the new starting time for a
new interval.

e. Increments the tracker counter that tracks the number of
data captures.

f. Uses the DoEvents function to pass control to the
operating system, to make sure Windows messages are
processed so the program can detect whether the user
clicked the Stop Measurements button.

Oscilloscope Analysis and Connectivity Made Easy 113

The Chart Measurements Example in Excel VBA

114

g. After the time interval has elapsed, if both check boxes
were selected:

1) Calls the InsertChart routine (on page to insert
an empty chart into the active sheet.

2) Gets the Range object containing all the data
captured.

3) Saves it in Range variable r3.

4) Passes it to the DrawChart routine (on page to
plot all the captured measurements.

h. Sets the cursor back to the default mouse pointer arrow
and re-enables screen updating to ensure that the chart
appears on the screen.

i. Unloads the form, which removes it from memory and
reclaims all memory associated with the form.

Type the last code segment, which provides a code block
that is called by the VBA runtime for error handling when an
error occurs:

CaptureMSErr:
MsgBox "Error " & Err.Number & ": " & Err.Description
Application.Cursor = xlDefault
Application.ScreenUpdating = True

End Sub

List Box Routines
Now you will add the code that is invoked when the user makes a selection
from one of the list boxes on the form.

Type the following code, which calls the CalcRecordLength
function (on page when the user selects a data capture
time duration from the IstDuration list box:

Private Sub lstDuration Click()
CalcRecordLength
End Sub

Type the following code, which calls the CalcRecordLength
function when the user selects a time interval between data
captures from the Istinterval list box:

Private Sub lstInterval Click()
CalcRecordLength
End Sub

Oscilloscope Analysis and Connectivity Made Easy

The Chart Measurements Example in Excel VBA

3. Type the following code, which calls the CalcRecordLength
function when the user selects a measurement command
from the IstM list box:

Private Sub 1stM Click ()
CalcRecordLength
End Sub

Calculate Record Length Routine
Next you will look at the logic used to calculate the record length of the
captured data, based on user selections from list boxes.

1. Type the following code, which initializes variables and tests
to see if the user has selected anything from the Istinterval or
IstDuration list boxes:

Private Sub CalcRecordLength ()
Dim rLength As Long
Dim duration As Double
Dim strD As String
' routine which calculates the appropriate interval for the
' timer and calculates the number of times the timer will
' fire; called in control events which change the interval
' and duration of the measurements

' items not selected in list boxes
If lstInterval.ListIndex = -1 Then Exit Sub
If lstDuration.ListIndex = -1 Then Exit Sub

2. Type the next code segment:

' code below uses the List property rather than the
' Text property because Text is not reliably assigned in
' MSForm listboxes even if ListIndex <> -1

tInterval = Val (lstInterval.List (lstInterval.ListIndex))
strD = lstDuration.Text
' calculate the record length; need to accommodate
' subminute durations
Select Case strD
Case ".3333 (20 seconds)"
duration = 20

Case ".5 (30 seconds)"
duration = 30
Case ".75 (45 seconds)"
duration = 45
Case Else
duration =

CLng (lstDuration.List (lstDuration.ListIndex)) * 60
End Select

This code:

a. Assigns the numeric value of the currently selected entry
in the Istinterval list box to a variable named tinterval.

Oscilloscope Analysis and Connectivity Made Easy 115

The Chart Measurements Example in Excel VBA

116

b. Assigns the text in the currently selected entry in the
IstDuration list box to a variable evaluated in subsequent
CASE statements.

c. Handles special cases where the duration is less than a
minute.

d. For all other cases, calculates the record length by
converting and rounding up the currently selected entry
in the IstDuration list box to a long integer value,
multiplying the value times 60 seconds, and storing the
result in a variable named duration.

3. Type the following:

rLength = CLng(duration / tInterval)

StopTimerCount = rLength ' assign value to variable used
' by CaptureMeasurements routine
1blRL.Caption = rLength ' display record length
End Sub
This code:

a. Divides the duration by the time interval, converts and
rounds up the result to a long integer, and stores the
result as the record length.

b. Uses the result as the upper limit that ends the DO loop
in the CaptureMeasurements routine on page

c. Assigns the result to the Caption property of the IbIRL
Label control, so that it will appear on the form.

Displaying Results
This set of routines handles the display of measurement results in spreadsheet
cells and in an Excel chart.

Check Box Routine

This routine evaluates whether the user selected the Chart Measurements
check box, and hides or shows the related frame on the form based on the
result.

1. Type the following code, which sets the Visible property of
the fraCellSelection frame, based on the value of the
chkMakeGraph check box:

Private Sub chkMakeGraph Click()
If chkMakeGraph.Value = True Then
fraCellSelection.Visible = True
Else
fraCellSelection.Visible = False
End If

End Sub

Oscilloscope Analysis and Connectivity Made Easy

The Chart Measurements Example in Excel VBA

Spin Button Routines
The next few code blocks handle the spin buttons from which the user selects
starting spreadsheet row and column values.

1. Type the following:

Private Sub spnCol SpinDown ()
' user may choose columns from A to AZ
Dim i As Integer
i = spnCol.Value
If 1 <= 26 Then
1blCol.Caption = Chr$ (i + 64)
Else
1blCol.Caption = "A" & Chr$(i + 38)
End If
BuildCell
End Sub

When the user selects a column value from the spnCol spin button by
clicking the lower button, this code

a. converts the selected column value to an alphabetic character
between A and AZ

b. assigns the result to the Caption property of the IblCol label
control, so that it appears on the form

c. calls the BuildCell subroutine, which uses this column component
to build a row/column cell value

2. Type the following similar code, which executes when the
user selects a column value by clicking the upper button of
the spnCol control:

Private Sub spnCol SpinUp ()
' user may choose columns from A to AZ
Dim i As Integer
i = spnCol.Value
If i <= 26 Then
1blCol.Caption = Chr$ (i + 64)
Else
1blCol.Caption = "A" & Chr$(i + 38)
End If
BuildCell
End Sub

3. Type the following:

Private Sub spnRow_SpinDown ()
' row values specified by the Min and Max range properties
' of the spnRow control
1blRow.Caption = spnRow.Value
Call BuildCell
End Sub

Oscilloscope Analysis and Connectivity Made Easy 117

The Chart Measurements Example in Excel VBA

118

When the user selects a row value from the spnRow spin button by
clicking the lower button, this code

a. assigns the selected row value to the Caption property of the
IbIRow label control, so that it appears on the form

b. calls the BuildCell subroutine, which uses this row component to
build a row/column cell value

4. Type the following similar code, which executes when the
user selects a row value by clicking the upper button of the
spnRow control:

Private Sub spnRow_ SpinUp ()

' row values specified by the Min and Max range properties of
' the spnRow control

1blRow.Caption = spnRow.Value

Call BuildCell
End Sub

5. Type the following code, which concatenates the row and
column captions to form the caption of the IbICell label,
where the starting cell value appears on the form:

Private Sub BuildCell ()
'Concatenate label captions to specify starting cell
1blCell.Caption = 1blCol.Caption & 1lblRow.Caption
End Sub

Insert Chart Routine
This routine is called into play when the user decides to chart the captured
measurement results.

hows how charts are incorporated in the Excel object model. A
chart can appear as its own sheet or on a worksheet. A ChartObjects
collection on a worksheet is made up of ChartObject objects, each of which
represents an embedded chart on a specified sheet and acts as a container for
a Chart object. You can use properties and methods for the ChartObject
object to control the appearance and size of an embedded chart on a sheet.

| Application
\—{ Workbooks [(Workbook] |
Charts [Chart) |

Workzheets [(Worksheet] |

ChartObjects [ChartObject) |
Border |
Chart |

Interior |

Figure 33: How the Excel model incorporates charts

Oscilloscope Analysis and Connectivity Made Easy

The Chart Measurements Example in Excel VBA

1. Type the following:

Sub InsertChart ()
' this code inserts a chart into the activesheet
Dim ws As Worksheet
Dim cos As ChartObjects
Dim co As ChartObject
Dim ¢ As Chart
Set ws = ActiveSheet
Set cos = ws.ChartObjects
Set co = cos.Add(Left:=20, Top:=50, Width:=400,
Height:=250)
Set RefChart = co.Chart
RefChart.ChartType = xlLineStacked
End Sub

This code:

a. Declares array variables that represent parts of the Excel
object model, including a Worksheet object, a
ChartObjects collection, a ChartObject object, and a
Chart object.

b. Assigns the active sheet in the active workbook to the
Worksheet variable named ws.

c. Assigns the ChartObjects collection on the active
worksheet to the variable named cos.

d. Uses the Add method with the ChartObjects collection to
return a ChartObject named co, which is an empty
embedded chart whose location and size are specified in
points and are relative to the Al cell position (note the
use of named arguments syntax with the assignment
symbol :=).

e. Uses the Chart property to return the Chart contained in
the ChartObject named co, and creates an object
reference by assigning the returned Chart to the variable
RefChart.

f. Sets the ChartType property of the referenced chart to
the Excel constant xILineStacked, which makes it a
stacked line chart.

Draw Chart Routine

This code draws the plotted measurements chart, either in its entirety or by
updating it in stages, depending on whether the Display at Completion check
box was selected.

Oscilloscope Analysis and Connectivity Made Easy 119

The Chart Measurements Example in Excel VBA

Type the following:
Sub DrawChart (r As Range)

' Update the chart
RefChart.SetSourceData Source:=r, PlotBy:=xl1Columns

End Sub

This code uses named argument syntax with the SetSourceData
method to:

a. Set the source data range of the referenced chart to the
range passed to the DrawChart routine, and

b. Specify that the chart will be plotted by column.

Running the Chart Measurements Program

The Show Form Routine
Now that you have created the form, it is time to create a short routine that
displays it when the user clicks a button on the spreadsheet.

1.

Expand the Modules folder in the Project Explorer window
and double-click Module1.

An empty page in the Code window appears.

Type the following:
Option Explicit

Sub btnShowForm ()
frmMeasurement . Show vbModeless
End Sub

This code displays the Measurement form with the display style set
to the constant vbModeless, meaning that the form is not modal.
Since it is modeless, no applications are suspended when the form is
displayed, so the user need not respond to the form before using any
other part of the application.

To add a button to the spreadsheet to run this program:

1.

120

Press Alt+F11 to switch from VBA to the Excel spreadsheet.

If the Excel Forms Toolbar is not visible, select View >
Toolbar > Forms to display it.

Double-click the Button icon and click in or near cell A4, the
spot in the spreadsheet where you want to insert it.

The Assign Macro dialog box appears.

Select the ShowForm module as the macro name and click
OK.

Oscilloscope Analysis and Connectivity Made Easy

Using VB Instead of VBA

5. Right-click the button, select Edit Text, and change the
button caption from Button1 to Show Form.

6. Select File > Save to save the Measurement.xls spreadsheet,
along with the VBA program you just created.

7. Click away from the button if necessary to exit Design
mode, and then click the Show Form button to run the
program.

The Measurement Demo dialog box appears.

Note: Even if you do not have a waveform source connected to
Channel 1 of your oscilloscope, you will still be able to pick up
enough random noise to generate some data to verify that your
program works.

8. Click the buttons on the form.

You will see results similar to Figure 29 Jand Figure 30} If an error occurs,
switch to VBA and debug the program

Using VB Instead of VBA

If you want to work this exercise using Visual Basic 6.0, you will need to
create the form using that tool instead of Excel VBA. Refer to Chapter 7 for
an example of how to use Visual Basic 6.0 controls to design a form.

hows a VB 6.0 version of the Chart Measurement program

discussed in this chapter. This program was saved under the project name
p_CH6VB.vbp on the CD that accompanies this book.

Oscilloscope Analysis and Connectivity Made Easy 121

Using VB Instead of VBA

. Demo2 _ (O] x|
 Meazurement Commands
Measurement: Duration [Minutes): Measurements:
Second Intervals: B0 2 ggggigi i
25 - 1 a 0005276 i
0005035
1 3 0008504
2 4 005248
3 5 0005328
4 I 0005168
FiecordLength: 5 LI 7 LI .00055E8 i
240 Start Meazurement | | topMeasulementI Clear
¥ Display Acquired Measurements
J.0008 0.0008
Jriutdrdorone
J.0004 0.0004
J.0002 0.0002
J.0000 0.0000

Figure 34: Visual Basic 6.0 version of Chart Measurement program

This version of the program differs from the VBA version in a number of
ways:

e Where you used the VBA UserForm class with the Initialize
event, substitute the VB Form class with the Load event.
Therefore, instead of creating a UserForm_lInitialize()
subroutine, you will create a Form_Load() subroutine in VB
6.0 as shown here:

Private Sub Form Load ()

e This version of the program uses combo boxes instead of list
boxes to hold duration and interval information. In this
example, the record length is recalculated if the user changes
values inside the combo box by clicking or entering a new
value:

Private Sub cboDuration Click ()
CalcRecordLength
End Sub

Private Sub cboDuration KeyPress (KeyAscii As Integer)
If KeyAscii = 13 Then CalcRecordLength
End Sub

Private Sub cboDuration LostFocus ()
CalcRecordLength
End Sub

Private Sub cboMeasurement Click ()
CalcRecordLength
End Sub

Private Sub cboTimerInterval Click()

CalcRecordLength
End Sub

122 Oscilloscope Analysis and Connectivity Made Easy

Using VB Instead of VBA

Private Sub cboTimerInterval KeyPress (KeyAscii As Integer)
If KeyAscii = 13 Then CalcRecordLength
End Sub

Private Sub cboTimerInterval LostFocus ()
CalcRecordLength
End Sub

o Instead of using a spreadsheet to store the measurement data
point results, this version uses a list box named IstResults to
display the data in the form itself:

Private Sub timMEAS_ Timer ()
Dim r

If NotifyCount >= StopTimerCount Then
timMEAS.Enabled = False
DrawChart

Exit Sub
End If

Tvcl.WriteString strID

r = Tvcl.ReadString

r = Format (r, "#.#######")

If chkShowData.Value = 1 Then
lstResults.AddItem r

End If

arr (NotifyCount, 0) = r

NotifyCount = NotifyCount + 1

Call DrawChart
DoEvents

End Sub

e The Clear button is used to clear this list (as well as the
related chart):

Private Sub cmdClear Click ()
Call cmdStop Click
lstResults.Clear
ReDim arr (0, 0)

arr (0, 0) = 0
DrawChart
End Sub

e The form also contains an MSChart control (included with
Visual Basic) for charting captured measurements:

Private Sub Form Load ()
Dim i As Long

Dim axisID As VtChAxisId
timMEAS.Enabled = False

axisID = VtChAxisIdX
With TVCChart

.chartType = VtChChartType2dLine

.Plot.Axis (axisID) .AxisScale.Type = VtChScaleTypeLinear

.Plot .Axis (axisID) .AxisScale.Hide = True

.Plot .Axis (axisID) .AxisGrid.MajorPen.Style =
VtPenStyleNull

.Plot.Axis (axisID) .AxisGrid.MinorPen.Style =
VtPenStyleNull

Oscilloscope Analysis and Connectivity Made Easy 123

Chapter 6 Review

End With

Private Sub DrawChart ()
TVCChart .Repaint = False
TVCChart.ChartData = arr
TVCChart .Repaint = True

End Sub

e This chart control requires related code to handle a
2-dimensional array:

Option Explicit

Dim arr () ' array for holding measurement values that are

' charted, chart requires a two-dimensional array
Dim NotifyCount As Long ' counter variable for tracking

' measurements

Private Sub cmdMeasure Click ()
Dim arrnum As Long
If StopTimerCount = 0 Then
MsgBox "Please reenter interval and duration data",
vbOKOnly, "TekVISA Demo"
Exit Sub
End If
NotifyCount = 0
arrnum = StopTimerCount

ReDim arr (arrnum, O0)

strID = "MEASUREMENT:IMMED:TYPE " & cboMeasurement.Text &
"; VAL?; :HEADER OFF"

timMEAS.Enabled = True

End Sub

Chapter 6 Review
To review what you learned in Chapter 6:
® You can use the Chart Measurement program designed in
this chapter to capture measurements at a desired frequency
and plot those results in an Excel chart or on the form itself
(in the case of the VB version).
* You can make other VB programs available to your program
by adding them as Additional Controls or References from
the VBA Tools menu.

e Youcan

e make frames within a form visible or invisible
depending on code logic

e close a form by unloading it when the user clicks a
Close button

124 Oscilloscope Analysis and Connectivity Made Easy

Chapter 6 Review

e allow users to choose items from label controls
associated with spin buttons

In Chapter 7, you will find out how to build a program that logs on a
triggered program event.

Oscilloscope Analysis and Connectivity Made Easy 125

Chapter 6 Review

126 Oscilloscope Analysis and Connectivity Made Easy

Introduction

Chapter 7:
A Triggered Waveform Capture Example

Using VB to write a program that gets waveforms
and measurements on a triggered event

Introduction

The extended example presented in this chapter shows how to capture
waveform and measurement data from oscilloscopes when a trigger is
defined and then executed. It includes code for use with Tektronix TDS7000
and TDS/CSA8000 and similar Windows-based oscilloscopes. In addition to
capturing data, the program shows how to display the data on a grid and save
it to a file on disk.

The example is written in Visual Basic 6.0 (included in Microsoft Visual
Studio) rather than Excel VBA, because VB can accommodate larger
waveforms and because VB programs run independently as separately
compiled executables rather than as interpreted add-ons to Excel. If you do
not have VB 6.0 but do have Excel, refer to the source code for the Trigger
Capture button on the TekExcel Toolbar. That code presents many features
that are similar to those discussed here.

Getting Started

What You Need to Get Started

You can work this example either on a separate PC or on your Windows-
based oscilloscope, using Visual Basic 6.0. To get started, you will need the
following:

e A Windows-based Tektronix oscilloscope (an external
monitor is recommended if you are working the example on
your oscilloscope)

e Visual Basic 6.0 installed on your oscilloscope or on an
external PC

e The TekVISA connectivity software described in Chapter 1
(see page 0r the location of the completed example)

Oscilloscope Analysis and Connectivity Made Easy 127

Getting Started

128

What You Will Do

In this chapter, you will review how to use Visual Basic 6.0 controls and
learn to build a program similar to the one that runs when you click the
Trigger Capture icon on the TekExcel Toolbar. This sample program
illustrates how to capture triggered waveform and measurement data at the
current oscilloscope settings, display it on a grid, and save it to a file.

hows the design-time interface that you will create. The user
interface consists of a VB Form with four tabs. Depending on whether you
are connecting to a TDS/CSA8000 or to a TDS7000 Series oscilloscope or
similar model, either the second or the third tab displays measurement data at
runtime.

e The Settings tab allows the user to specify the VISA device
to connect to, indicate channel sources for waveform
captures, set display and save options, and specify whether

measurement data should be included (see

e Ifthe user elects to capture measurement data, a
Measurement tab appears so the user can select
measurement(s) to be captured. Either the second or the third
tab displays measurement data at runtime, depending on the
oscilloscope type. For most TDS Series real-time
oscilloscopes, a list of measurements appears (see
38). For TDS/CSA8000 sampling oscilloscopes, a list of

eight possible measurements appears (see Figure 39).

e Ifthe user chooses to display data, processing results appear

on the Data tab (see Figure 40).

Oscilloscope Analysis and Connectivity Made Easy

Getting Started

w5, p_Trig - Microsoft Visual B asic [design]

Eile Edit Wiew Project Format Debug Run Query Diagram Tools Add-Ins window Help

(B-a-Bed 2ano]y |HFaYR2IAR

e

[-|Y@J‘EE§¢§|E@W@%|

Project - p_Trig O] x| Trig - frmTC [Form)
A gered Waveform Capture
E‘@ p_Trig {p_Trig.vbp) Measurements gz Measurements Data
A Ia_b| =5 Forms o — Channel Selection
B FrmTe (FrmTC Frm) = .
o _ Select from active channels
L—I = =15 Modules IstDevices
- Sample Hode
¥ & Refresh Devices |
EE ER Agsigh Device | Sample Mode
al s UProperties i C i =]
00
_ o |frmTE Form =1
= Alphabetic |Categorized | ol - Captues————— Ird \[’)\r‘e;veform Refresh Ehannelsl
o # of Caphures aa
y (Mame) frmTiC - PRy TR — Meazurement Selected Channels
Appearance 1-3D M r Data —
B~ AutoRedraw False 5
ave to
m | [Backcolor [&Hs000000F I Fie o
Borderstyle 1 - Fixed Single . . el |
= Triggered Wavel r g'risgla-"' in
ClipCaontrals True
T CantrolBox True
. Dir awMode 13-CopyPen | o s
20| Jorawstyle 0- solid o0 :
. Drawtiidth L[] e e
EE
e Enabled True
W FillColor M &Hoooooooo - |
EEQ = Caption
Returns/sets the text displaved in an
~ [EE object's title bar or below an object’s

Figure 35: The form you will design for the Triggered Waveform Capture example

This Form allows users to:

view all connected local and remote TekVISA resource
devices and assign one to be used for the triggered capture

view active channels on the assigned device (and their
different timebases on TDS/CSA8000 sampling
oscilloscopes) and select one or more of them to be used for
waveform captures

identify the measurement channel for collecting
measurements on TDS7000 real-time oscilloscopes

display active measurement types and active
measurements for TDS/CSA8000 sampling oscilloscopes
and select one or more of them to be used for measurement
capture

view the captured results on a row/column grid

Oscilloscope Analysis and Connectivity Made Easy

129

The Triggered Waveform Capture Example in VB

130

Settings

. Triggered Waweform Capture

Meazurements

Data

Figure 36 shows the first tab of the Form at runtime after fields have been
populated with results from a TDS/CSA8000 Series oscilloscope.

~ Devices

GFIES:1:INSTR

Azzign Device |

Refresh Devices

|

r Chatinel Selection

Select from active channels

i A AIN
: e hAGT
= CHZ
L MAIN
L MAGT

[|

~ Captures I~ B\n‘aveform Refresh Channelsl
of Captures ata
IE— W Bd::asurement Selected Channels
CH1-MAIN
. CH1-MaG1
= X
3 Tl= CHZ-MAIN —— |
4 . .
- Dizplay in
z —I r Ginid
Record Size: 500 oK | Cancel | Cloze |

Figure 36: The Triggered Waveform Capture form at runtime

What You Will Learn
The purpose of this chapter is to illustrate some basic operations of the

TekVISA ActiveX Control with respect to triggered events. Once you have
gone through this chapter, you will know how to:

See page or more about running this program.

e add the TekVISA ActiveX Control to the list of available
ActiveX controls in Visual Basic 6.0, and use some of its
properties and methods

e design and create a Form in Visual Basic 6.0 by dragging
and dropping controls

¢ modify controls on the Form by changing properties in the
Properties window

e understand the workings of the Triggered Waveform Capture
program, so you can modify it if needed or use it as a
template for other programs

Building the Form
This chapter focuses primarily on the VB code and assumes you are already
familiar with visual editing tools for constructing dialog interfaces.

The Triggered Waveform Capture Example in VB

Table 5|shows some useful icons on VB’s Standard Toolbar.

Oscilloscope Analysis and Connectivity Made Easy

The Triggered Waveform Capture Example in VB

Table 14: Useful icons on the VB Standard Toolbar

Icon Icon Name Select from

-ﬂ Insert Form Standard Toolbar
£ Object Browser Standard Toolbar
B Project Explorer ~ Standard Toolbar
Properties Standard Toolbar
E Toolbox Standard Toolbar

To begin building the Form:

ot

Open a new Standard EXE project in Visual Basic 6.0.

The Microsoft Visual Basic screen appears with the Project Explorer
window, the Properties window, and space for the Code window or
Object Browser to display. You will also see a blank form.

2. If you do not see the Project Explorer or Properties window,
display them by selecting icons from the Standard Toolbar

(see [rable 5}.

3. Ifyou do not see a blank form, insert one by clicking the
Insert Form icon on the VB Standard Toolbar.

4. Click Save Project As and save the form as frmTC.frm and
the project as p_Trig.vbp.

5. Rename the Form Triggered Waveform Capture.

6. If necessary, add the TekVISA ActiveX Control to the
Toolbox. To do this:

a. Select Project > Components...
The Components dialog box appears.

b. Place a v in the box next to TekVISA Control and click
OK.

Oscilloscope Analysis and Connectivity Made Easy 131

The Triggered Waveform Capture Example in VB

132

Components

Contrals | Designer&l Inhgertable Dbiectsl

vialog Control
Microsoft FlexGrid Control 6,0 {3P3) . e
Micrasoft Tabbed Dialog Contral 6.0 {SP3) = = =
Microsoft Windows Common Contraols 6.0 (SP4) - | ope
[omn Ti: oo
TekvISa Contral -] 28
5 f
s]

Browse. .. |

¥ Selected Trems Cnly
—Microsoft Common Dialog Control 6,0 (SP3)
Location: CHWINDOWS,SYSTEMCOMDLGS2, OCK

ITI Cancel | Applly |

The TekVISA Control icon is added to the Toolbox.
Drag the TekVISA Control icon from the Toolbox onto the

Form, where it appears as an icon at design time, but is
invisible at runtime.

VISA

By adding this Control to the Form, you have made all its methods
and properties available to be called by your code.

In addition to the TekVISA Control, this example employs several
Visual Basic custom controls:

e the Microsoft Tabbed Dialog control
e the Microsoft Common Dialog control
e the MSFlexGrid

e the TreeView control included in the Microsoft
Windows Common Controls

All of these custom controls are included with Visual Basic 6.0 and
need to be checked as well.

Repeat steps 6 and 7 for all of the Visual Basic custom
controls that will be used in this example.

Oscilloscope Analysis and Connectivity Made Easy

The Triggered Waveform Capture Example in VB

[able 6[shows icons on the Toolbox for VB controls that are relevant to this
example.

Table 15: Icons for VB controls used in this example

Icon Icon Name Select from
] Checkbox Toolbox
EE Combobox Toolbox
| CommandButton Toolbox
CommonDialog Toolbox
EI Frame Toolbox
A Label Toolbox
=F Listbox Toolbox
MSFlexGrid Toolbox
e SSTab Toolbox
b TekVISA Toolbox
158 TreeView Toolbox

The Settings Tab

Add controls to design the Settings tab of the form, making sure that each

control is placed as shown in

Note: It is not necessary to drag the controls onto the form in the
exact order shown; however, doing so will help you verify that you
have changed all the properties correctly.

Oscilloscope Analysis and Connectivity Made Easy 133

The Triggered Waveform Capture Example in VB

134

. Project] - kmTC [Form) M=
O O .
. Triggered Waveform Capture
Settings Measurements Measurements Data
" EVICES WISA| [~ Channel Selection

Select fram active channels

= = Sample Mode
Azgign Device | fv S ample Mode

fe S ample Node

Fiefresh Devices | Sample Mode
O Caplues———— i “Wavefarm Refiesh Channelsl
of Captures Data

r M easurement Selected Channels
Data

lstDevices

choMumCaptures

r Save ta

Fil Clear |

Dizplay in
r Grid

Figure 37: The Settings tab at design time

[able 16 [summarizes all the changes to make in the Properties window to
convert the Settings tab to its final appearance.

Note: When working with the SSTabTVC tab, click the icon, draw a
box the size of the set of tabs you want, then adjust the Tabs and
TabsPerRow properties to create 4 tabs. For each tab, the Caption
and Tab properties vary. For example, Tab 0 is the Settings tab.

&5 Properties - ssTab__. [H=] E3

|ssTabT¥C 55Tab =
Categorized I
Tab i =
ey [@
- TabIndex 3

TabMaxWwidth 0
TabOriertation |0 - ssTabOrients
- - | |Tabs 4
= | [TabsPerRow 4

Oscilloscope Analysis and Connectivity Made Easy

The Triggered Waveform Capture Example in VB

Note: When working with the properties of the IbIRS label

- RBecod Size: - :'I u

the drop-down arrow (|) for the BackColor property will not be
visible until you click inside that row.

JIbIRS Label |
alphabetic Categorizedl

E Appearance -
Appearance |1 - 30

Backstyle 1 - Opaque
BorderStvle |1 - Fixed Sing
Capkion

ForeColor [l &HOOFFOC

Changes to names are underlined in the table, to help distinguish them from
captions. A control’s name corresponds to its subroutine name or variable
name in the code. A control’s caption appears on the Form and affects how
the form looks, but has nothing to do with the code.

Table 16: Changes to make in the Properties window to the Settings tab

Control Property Change to

Triggered Waveform Capture form

Form (Name) frmTC
Caption Triggered Waveform
Capture
tvc (TekVISA) (Name) Tvel (no change needed)
CommonDialog (Name) digTvC
Label Caption Record Size:
(Name) IbIRS
Label Caption (no Caption)

BackColor Button Light Shadow
BorderStyle Fixed Single

CommandButton (Name) cmdOK
Caption OK

CommandButton (Name) cmdCancel
Caption Cancel

CommandButton (Name) cmdClose
Caption Close

Oscilloscope Analysis and Connectivity Made Easy 135

The Triggered Waveform Capture Example in VB

Control Property Change to
Settings Tab (First Tab)
SSTab (Name) SSTabTVC
Caption Settings
Tabs 4
TabsPerRow 4
Checkbox (Name) chkWFM
Caption Waveform Data
Value 1 (checked)
Checkbox (Name) chkM
Caption Measurement Data
Checkbox (Name) chkSave
Caption Save to File
Checkbox (Name) chkDisplay
Caption Display in Grid
Devices Frame (Top Left)
Frame (Name) fraDevice
Caption Devices
CommandButton (Name) cmdRefreshDevices
Caption Refresh Devices
CommandButton (Name) cmdAssignDevices
Caption Assign Device
Listbox (Name) IstDevices

Captures Frame

Frame Caption Captures

Label Caption # of Captures

Combobox (Name) cboNumCaptures

Channel Selection Frame
Frame Caption Channel Selection
Label Caption Select from active
channels

TreeView (Name) m

CommandButton (Name) cmdRefreshChannels
Caption Refresh Channels

136 Oscilloscope Analysis and Connectivity Made Easy

The Triggered Waveform Capture Example in VB

Control Property Change to
Label Caption Selected Channels
Listbox (Name) IstCH
CommandButton (Name) cmdClearCH
Caption Clear
The Measurements Tabs

Depending on whether you are connecting to a TDS7000 Series oscilloscope
or similar real-time model, or to a TDS/CSA8000 sampling oscilloscope,
either the second or the third tab displays measurement data at runtime.
Therefore, two tabs must be created at design time to account for these
differences.

Add controls to design the TDS7000 Series Measurements tab of the form,
making sure that each control is placed as shown in

iy, p_Trnig - Microzoft ¥izual Basic [design]

Eile Edit Yiew Project Format Debug Rum Query Diagram Tools Add-Ins ‘Window Help
[B-a-BledsBesn oo, @ « ¥eeS2T
I ||-|@¢EEE¢E|E@W@&-‘

| B4) R
&, p_Trig - hmTC (Form) M= E3
General | -
. Triggered Waveform Capture E2
ih —
Atings Measurements Measurements [Tek | Data
_ VISA

Select Measurements

B/ W 0wl s

2
4
=]
=
=

==
Eg

=L
i)
oo
g -
4
o
2
[
()
=~
[
o
=
5]
o
[}
=]
o
i)

o e e =
= Al | ®l -

Figure 38: The TDS7000 Series Measurements tab at design time

F

[able 17 [summarizes all the changes to make in the Properties window to
convert the TDS7000 Series Measurements tab to its final appearance.

Oscilloscope Analysis and Connectivity Made Easy 137

The Triggered Waveform Capture Example in VB

Table 17: Changes to make in the Properties window to the TDS7000 Series
Measurements tab

Control Property Change to
Measurements Tab (Second Tab - 7000 Version)

SSTab Caption Measurements

Label Caption Select Measurements

Listbox1 (Name) IstMeas

Label Caption 7000

Add controls to design the TDS8000Series Measurements tab of the form,
making sure that each control is placed as shown in

‘g, p_Tnig - Microzoft ¥izual Basic [design]

File Edit Yiew Project Format Debug Rum Query Diagram Tools Add-Ins ‘Window Help
B - ! o —
B-a-BcE s2es oo, |« HEagR2d
I -|@¢EEE¢E|E@W%‘
| B4) R
&. p_Trig - mTC (Form) M= E
General | -
. Triggered Waveform Capture E2
: !:ttings Measurements Meazurements Data
Select: TYPE: WFM SOURCE: DISPLAY STATE ‘o=
™ Measurel I
am g
®. Ll
=]
O
Bl
e L
OLE I'JEi
i — Refresh Setup Info |
Jﬁ;‘ﬁ -] L]
2 " Record Size: - I . 0K, | Cancel | Claze |_
. T -
R | B
—

Figure 39: The TDS8000 Series Measurements tab at design time

[able 18 [summarizes all the changes to make in the Properties window to
convert the TDS8000 Series Measurements tab to its final appearance.

138 Oscilloscope Analysis and Connectivity Made Easy

The Triggered Waveform Capture Example in VB

Table 18: Changes to make in the Properties window to the TDS8000 Series

Measurements tab

Control Property

Change to

Measurements Tab (Third Tab - 8000 Version)

SSTab Caption
Label Caption
Label Caption
Checkbox (Name)
Caption
Label Caption
Caption
BackColor
BorderStyle

CommandButton (Name)

Caption

The Data Tab

Measurements
Select

TYPE: WFM SOURCE:
DISPLAY STATE

chkMeas(0)

Measure 1
IbIMDesc(0)

(no Caption)

Button Light Shadow
Fixed Single
cmdShowMeas

Refresh Setup Info

The Data tab holds an MSFlexGrid control. Add controls to design this tab of
the form, making sure that each control is placed as shown in

Oscilloscope Analysis and Connectivity Made Easy

139

The Triggered Waveform Capture Example in VB

140

‘g, p_Tnig - Microzoft ¥izual Basic [design]

File Edit Yiew Project Format Debug Rum Query Diagram Tools Add-Ins Window Help

B-a-BE@sBb o) MR

[-|@‘EE§“—E|E@W@%‘

=R
% p_Trig - mTC (Form)
General |

Meazurements

—
|| !:ttings

-
. Triggered Waveform Capture E2

=] B3

Measurements Data

WISA

Clear Gnd |

Figure 40: The Data tab at design time

[able 19 jsummarizes all the changes to make in the Properties window to
convert the Data tab to its final appearance.

Table 19: Changes to make in the Properties window to the Data tab

Control Property Change to
Data Tab (Third Tab)

SSTab Caption Data

MSFlexGrid (Name) grdData
FixedCols 0
FixedRows 1
Rows 2

Label (Name) IbIStatus
Caption (no Caption)
BackColor Button Face
BorderStyle Fixed Single

CommandButton (Name) cmdClear
Caption Clear Grid

Oscilloscope Analysis and Connectivity Made Easy

The Triggered Waveform Capture Example in VB

Getting Help
You can find out more about using various controls by taking a look at the
Help facility. For example, to find out more about the Label control:

1. From the Microsoft Visual Basic menu bar, select Help >
Contents... > MSDN Library > Visual Studio 6.0
Documentation > Visual Basic Documentation > Reference
> Language Reference > Objects > L > Label Control.

2. Other approaches might be to:

e sclect Help > Index... and scroll down
alphabetically to find Label Control

e select Help > Search... and type Label Control as
the words to search for

Using the Object Browser (F2)

In addition to using online help, you can use the Object Browser to learn
more about the classes and members of Visual Basic’s core and custom
components.

By pressing F2 or clicking the Object Browser icon on the Standard Toolbar,
you can browse to find out which methods, properties, and events to use with
object components, so you can make the correct calls and references in your
code.

For example, to find out more about the TekVISA TVC control:
1. Press F2 to bring up the Object Browser.
Select <All Libraries> from the upper drop-down list.
Type tvc in the lower drop-down list as the object to search for.
Press Enter.

You will see the screen shown in You can then click
various library entries in the Search Results to see how the TVC
control relates to other components of the project.

Oscilloscope Analysis and Connectivity Made Easy 141

The Triggered Waveform Capture Example in VB

s Object Browser |- (O] x|
TYCLib = <|'|}ii|
MSForms rs
p_Trig e “ v
[(stdole Members of Tve'
- anouBox .
=vE EE Address
ZvBa = 5 Aftribute
= VYBRUN hd EH BaudRate
=F ASRL_STOP_BIT % Byteshvailable
2 ATTRIBUTE_TYPE & ClearToSendState
=F ByteOrderingType & Componentyersion
=7 CHAMMEL EE DataBits
=F CHANMEL_SK EE' DataCarrierDetectState
=F IEEEASCIType EE DataSetReadyState
=F |[EEEBinanType & DataTerminalReadyState
=2F TIMEBASE_ZK 5 Descriptor
BliTue il=% DeviceClear
2F VI_BOoL 5 Devicebame
2F VI_STATE & EnableExceptions LI
Library TWCLih
TekWISA Control

Figure 41: Using the Object Browser with Visual Basic 6.0

From the Object Browser, you can immediately jump to a context-
sensitive online help topic by pressing the F1 function key (or right-
click and select Help).

The VB Intellisense Feature

As you type the code, you will notice some helpful features. For example,
when you type a period after a COM object such as the TekVISA ActiveX
Control, VB’s Intellisense feature opens a list that prompts you with choices.
Valid properties, methods, and events exposed by the COM object as public
are preceded by a green icon, like the top choice in the following list:

Twel.3earchCriterion = 0 'search &ll devices
' get detected WISL devices
dev = TVC1.|

=B AhoutBoy
e Address
— Fillﬁ' Aftribute
. . B BaudRate
POPULEt o guto cavailable
If ISErrE@ Cancel
Forl'@ ClearToSendState

..... -

142 Oscilloscope Analysis and Connectivity Made Easy

The Triggered Waveform Capture Example in VB

Similarly, after you type an opening parenthesis, the Intellisense feature
prompts you with the syntax for arguments, and displays valid choices:

twol. GetWlaveform |
GetWaveformichan As CHANNEL , wit, xinct As Doubie, trlgPos As Long, vUinits As String, hUnits As String) |
@ CH2
E CH3
= CH4
E MATH1
E MATHZ —

E MATH3 vl

Reviewing the Code

This example permits the user to specify which measurements to capture and
which channel waveforms to capture when a trigger event occurs. It also
allows the user to display the captured data in a grid.

Triggered data is typically captured by the TekVISA Control’s
ServiceRequest event. First the oscilloscope’s status and event registers are
cleared, then event and status bits are set to await a triggered event. Once a
trigger occurs, the register bits are changed and a ServiceRequest event is
raised in the TekVISA Control. This coding example illustrates the use of
TekVISA ActiveX Control calls and GPIB command strings to set up and
capture these events.

Note: Because of the length of this exercise, step-by-step instructions
for entering code and detailed line-by-line explanations are not given
here. Instead, this chapter summarizes routines in tables and focuses
on core routines for controlling the oscilloscope. All source code, of
course, is included on the companion CD that accompanies this
book.

Code Organization
The code is contained in two modules:

e a form module
e astandard code module

The form module is named frmTC.frm and the code module is named
modTrig.bas. Mostly by acting on events, the code on the form describes
what should happen when the form is initialized and when the user clicks
each button on the form.

Most code is held in the code module. Code on the form handles simple user
events and calls procedures held in the code module.

hows the two modules in separate Code Windows in VB.

Oscilloscope Analysis and Connectivity Made Easy 143

The Triggered Waveform Capture Example in VB

‘w5, p_Trig - Microsoft ¥isual Basic [design]

File Edit Yiew Project Format Debug Rum Query Diagram Tools Add-Ins Window Help
-G -2l 2ad o o) | | HEaE2IL -
[||-|@¢EE§¢E|E@€€E%‘

B EE
_G — p_Trig - fmTC [Code) H=]E3
ENEral
—I Jenkm =l Jciiek =l
il : =
A I_ chkMeas -
abl chkSave —
o chkWFM =1L
U] cmdAssignDevices |
cmdCancel
Wi & cmdClear
cmdClearCH
EE EE cmdClose
— cmdOk
aLE = cmdRefreshChannels
i cmdRefreshDevices 4
= Trivate Sub CHRN CITER(]
[:' Call CheckTabhVisibhility (frwTC.chkll, LrmTC.ssTahTV)
Bl
= “<p_Tng - modTrig [Code]
I(General} ﬂ I(I]eclaratiuns) j
= Option Explicit 3
e Pubhlic Type MeasurelData ' TDT for holding GPIE
S e sDhisplayName Az String ' dieplay name in frmTc
S| =2GPIE Az 3tring ' gelection status
______ sUnit A=z 3tring
FF NS blnSelected Az Boolean
- End Tvpe
o Ti‘— Pubhlic arrMeas (0 To 21) As MeasureData 'array of wmeasurements
za [. . _
Pulblic Const AppNamwe = "Capture on Trigoger Demo™ ' constant for use in
= Eg Public nScopeType As Intedger ' integer wariskhle for
Pulhlic sScopeType As String ' string wariable for o
vI
= 1| | H o4

Figure 42: The form module and code module in separate Code Windows of VB

The flow diagram in Figure 43 khows how key modules in the program
interact with one another and the oscilloscope. TekVISA ActiveX Control
methods and events appear shaded in the diagram.

144 Oscilloscope Analysis and Connectivity Made Easy

The Triggered Waveform Capture Example in VB

. TVC. Save Data
frmTC. Save to file? ; N -
cmdOK_Click ReadToFile Routines

Y
modTrig. modTrig.
GetAcquisition SRQHandler . L Display Results
or , Routines
GetAcquisition8000 SRQHandler8000
A A
Measurements Get Waveform
? Data?
Y Y V0
frmTC. GetWaveform
TVC. TVC. VG or
WriteString ReadString ServiceRequest GetWaveform8000
Scope T
commands Re%g?: s SRQ
and queries
Y | | Y

Embedded Scope Software

Figure 43: Triggered Waveform Capture example flow diagram

Initialization Routines

These preliminary routines load the form, initialize the combo box for
number of captures and the list box for TDS7000 measurements, and format
the tree view control for selecting channel(s). [Cable 20 [summarizes

Initialization routines.

Table 20: List of Initialization routines

Main()

This starting routine loads the form and calls
PopulateNumCaptures to populate the number of
captures choices.

PopulateNumCaptures (c As
ComboBox)

Populates the number of captures choices in the
combo box.

Form_Load()

Executes when the Triggered Waveforms Capture form
is initially loaded. Calls FormatTV and
PopulateMeasArray routines to initialize the tree view
and list box.

Oscilloscope Analysis and Connectivity Made Easy

145

The Triggered Waveform Capture Example in VB

146

FormatTV (tv as TreeView) Formats the tree view control.

PopulateMeasArray() » |nitializes array values for display name and GPIB
commands (see MeasureData data type)

= Populates the array for actual GPIB measurement
commands.

= Populates the array for units (V-volts;S-
seconds;VS-voltseconds;P-percentage; HZ hertz)

= Populates the IstMeas list box

Type MeasureData Data type for holding GPIB measurements on the 7000
sDisplayName As String = display name in frmTc.IstMeas
sGPIB As String = GPIB command
sUnit As String = measurement unit
binSelected As Boolean = selection status
End Type

List Devices And Display Channels Routines

Before a triggered event can be captured, the user must specify a device. The
interface provides three buttons on the Settings tab (the first tab) for working
with devices and their active channels: cmdRefreshDevices,
cmdAssignDevices, and cmdRefreshChannels. In addition, the user can
choose one or more active channels from the tree view control, and select the
number of captures from the combo box.

e The cmdRefreshDevices_Click event routine calls the
GetDevices routine, which queries the FindList property of
the TekVISA control and lists connected devices. These
could be local devices or remote systems. The results are
displayed in the IstDevices list box.

e The cmdAssignDevices_Click event routine makes the
currently selected device the active choice and displays all
associated active channels in the TV1 tree view.

e The cmdRefresh Channels_Click event routine:

e (Calls the DisplayChannels procedure; checks to see
if this is a TDS/CSA8000 Series oscilloscope; if so,
calls the DisplayChannels8000 routine

e Uses the tree view control to display hierarchical
data. A tree view control is comprised of nodes.
Nodes can have parent, child, and sibling
relationships with other nodes. In the case of the
TDS7000, the control channel is indicated by a child
node. In the case of the TDS/CSA8000, timebases
(Main, Magl, Mag2) can be displayed for each
channel.

Oscilloscope Analysis and Connectivity Made Easy

The Triggered Waveform Capture Example in VB

e The TV1_NodeClick event executes when the user chooses
channel(s) to capture from the TV1 tree view. It places
chosen channel(s) in the IstCH list box.

e The cboNumCaptures_Click event executes when the user
chooses the number of captures to perform from the
cboNumCaptures combo box.

Cable 21 jsummarizes the routines involved in listing devices, displaying
channels, and selecting the number of captures.

Table 21: Routines involved in listing devices and displaying channels

cmdRefreshDevices_Click()

Executes when the Refresh Devices button is
clicked on the Settings tab. Calls the GetDevices
routine.

Get Devices (t As
TVCLib.Tvc, Ist As ListBox

Queries the FindList property of the TVC control and
lists connected devices. These could be local or remote
devices.

cmdAssignDevices_Click()

Executes when the Assign Device button is clicked
on the Settings tab. Calls GetScopeType and
DisplayChannels routines.

cmdRefreshChannels_Click()

Executes when the Refresh Channels button is
clicked on the Settings tab. Calls the DisplayChannels
routine.

TV1_NodeClick (ByVal Node
As MSComctiLib.Node)

Executes when a tree view node is selected on the
Settings tab. Chooses channels for capture and places
chosen channels in the IstCH list box.

DisplayChannels (tv As
TreeView)

Detects which channels are open and which channel is
the active measurement channel. The SELECT? GPIB
command on 7000 Series oscilloscopes returns a
semicolon-separated string with 13 values: 4 channel,
4 math, 4 reference and 1 indicating the measurement
channel at the end of the string. If the channel is active,
anumeral "1" is returned. If it is inactive a numeral "0"
is returned. This routine parses the
semicolon-separated string and uses the values to
build nodes that populate the tree view control. It also
displays the waveform record length in the label
caption at the bottom left part of the Settings tab.

A separate routine is called for TDS/CSA8000 Series
oscilloscopes.

Oscilloscope Analysis and Connectivity Made Easy

147

The Triggered Waveform Capture Example in VB

DisplayChannels8000 (tv As | Very similar to the DisplayChannels routine except it
TreeView) also tests for MAG1 and MAG2 timebase views in
TDS/CSA8000 Series oscilloscopes; these are added
as child nodes to the active channels.

cmdClearCH_Click() Executes when the Clear button is clicked on the
Settings tab. Clears the IstCH list box.
cboNumCaptures_Click() Executes when the # of Captures combo box is

selected on the Settings tab. Stores the number of
captures to perform.

List Measurements Routines
If the chkM check box on the Settings tab is selected, one of two
measurement tabs is chosen:

e The second tab lists possible measurements for the
TDS7000 and similar scopes. Information about these
measurements ia held in an array of a user-defined type
called MeasureData, which holds

e the DisplayName of the meaurement

e its GPIB command equivalent

e itsunit value (such as seconds, volts, or percent)
e whether it is selected

The routine to populate this array and the list box is
PopulateMeasArray, which is called when the form is loaded (see

Table 20].

e The third tab holds measurements for TDS/CSA8000
scopes. Eight measurements are possible. These are set up by
the user on the oscilloscope. Unlike the TDS7000 and
similar models, each timebase (Main, Magl, Mag2) for each
of eight channels can be identified as the source channel for
measurement. In addition, 8 math measurements are
possible. This means 32 sources are possible (3 timebases on
8 channels plus 8 math channels).

Information about these measurements appears in the chkMeas
control array held by the third tab of the SStab control. This tab is
initially populated with the beginning array elements (a single check
box and a single label) just for positioning purposes. When the code
queries the oscilloscope at runtime for the active measurements that
have been set up, the code finishes populating the array on the form.

148 Oscilloscope Analysis and Connectivity Made Easy

The Triggered Waveform Capture Example in VB

The Refresh8000Meas routine chooses which of two routines to call
by reading the upperbound of the chkMeas control array: It either
calls the Build8000Controls routine to load the controls, or the
cmdshowMeas_Click event (for the command button labeled Refresh
Setup Info) to query the TDS/CSA8000 oscilloscope for information
on which of the 8 possible measurements are set up.

[able 22 jsummarizes the routines involved in listing the measurements to

capture.

Table 22: Routines involved in listing measurements to capture

chkM_Click() Executes when the Measurement Data check box
is selected on the Settings tab.
Refresh8000Meas() Loads the display on the 8000 measurement tab or

requeries setup measurements on the oscilloscope.

Build8000Controls()

Loads a control array for use with 8000 scopes

cmdShowMeas_Click()

Executes when the Refresh Setup Info button is
clicked on the Measurements tab (8000 version).

Wait for Trigger Routine

After all selections have been made on the Settings tab and Measurements
tab, the user clicks the OK button. The cmdOK_Click routine clears status and
event registers and, depending on the oscilloscope type, calls one of two
routines: GetAcquisition or GetAcquisition8000.

Here are extracts from the relevant code:

Private Sub cmdOK Click ()

Dim i As Integer

Select Case nScopeType

Case Is < 8000

If blnMEAS Then

(code omitted)

Next
End If

If blnSaveToFile Then

(code omitted)

End If

ntracker = 0

tvcRef.WriteString "DESE 0; *ESE 0; *SRE 0; *CLS"

Call GetAcquisition

If blnShowInGrid Then

(code omitted)

End If

Oscilloscope Analysis and Connectivity Made Easy

149

The Triggered Waveform Capture Example in VB

Case Is >= 8000
If blnSaveToFile Then

(code omitted)

End If

ntracker = 0

tvcRef.WriteString "DESE 0; *ESE 0; *SRE 0; *CLS"
Call GetAcquisition8000

If blnShowInGrid Then

(code omitted)

End If
Call SRQHandler8000
End Select
End Sub

In this routine:

¢ Different blocks of code execute depending on whether the
user chooses to

e capture measurement data (bInMEAS = TRUE)

e have the captured data displayed (bInShowInGrid =
TRUE)

e have the data saved to disk (bInSaveToFile = TRUE)

e The four native GPIB commands (DESE, *ESE, *SRE, and
*CLS) disable Service Requests to avoid getting irrelevant
ones. The *CLS command clears the event registers.

e Depending on the type of oscilloscope, this routine calls
either GetAcquisition or GetAcquisition8000 (see page | 51].

e Ifthe oscilloscope is a TDS/CSAS8000, this routine then calls
the SRQHandler8000 routine directly, rather than waiting for
an oscilloscope trigger to fire the ServiceRequest event
handler.

You can use this method of simulating a trigger event to test your
code, then move the SRQHandler8000 call to the ServiceRequest
handler when working with live data.

[able 23 [summarizes the routines involved when the OK button and other
dialog box buttons are clicked.

150 Oscilloscope Analysis and Connectivity Made Easy

The Triggered Waveform Capture Example in VB

Table 23: Routines involving dialog box buttons

oscilloscope type.

calls the GetAcquisition routine.

routine.

as well.

cmdOK_Click() Executes when the OK button is clicked on the
Triggered Waveform Capture form. Checks the

= [fitis a 7000 or similar model, reinitializes the
selection status of entries in the listMeas list box,
clears event registers to await a trigger event, and

= [fitis an 8000, clears event registers to await a
trigger event and calls the GetAcquisition8000

Based on items checked, other fields are reinitialized

acquisition or other activity in progress.

cmdCancel_Click() Executes when the Cancel button is clicked on the
Triggered Waveform Capture form. Cancels the

box.

cmdClose_Click() Executes when the Close button is clicked on the
Triggered Waveform Capture form. Closes the dialog

Set Registers Routines

The two routines that set up registers to await a trigger event are the

GetAcquisition routine and the GetAcquisition8000 routine.

After setting up registers, they await a trigger event. When an oscilloscope

trigger fires a ServiceRequest event in the TekVISA control, the

ServiceRequest event handler calls one of two event handling routines:

SRQHandler or SRQHandler8000.

Here is the GetAcquisition code:

Sub GetAcquisition ()

'This code sets the registers in preparation for a trigger
' activates a ServiceRequest event in the TVC control. See
' programmer's guide for the TDS series scopes.

Dim sCHCommands As String

sCHCommands = "DESE 1;*ESE 1;*SRE 32"
If tvcRef Is Nothing Then Set tvcRef = frmTC.Tvcl

With tvcRef
.WriteString "TRIGGER:A:MODE NORMAL"
.WriteString "ACQUIRE:STATE OFF"
.WriteString "ACQUIRE:STOPAFTER SEQUENCE"
.WriteString sCHCommands
.WriteString "*CLS"
.WriteString "ACQUIRE:STATE RUN"
.WriteString "*OPC"

End With

End Sub

Oscilloscope Analysis and Connectivity Made Easy

which
the GPIB

151

The Triggered Waveform Capture Example in VB

162

The native GPIB commands in this routine do the following:

The TRIGGER:A:MODE NORMAL command sets the trigger
mode to normal rather than forcing a trigger.

The ACQUIRE:STATE OFF command stops acquisitions and
is equivalent to pressing the front-panel STOP button.

The ACQUIRE:STOPAFTER SEQUENCE command tells
the oscilloscope to stop acquisition after acquiring a single
sequence.

The DESE (Device Event Status Enable) and *ESE (Event
Status Enable) commands set registers to await an Operation
Complete (OPC) event (bit 1) in the event queue. This event
is summarized in the Event Status Bit (ESB) of the Status
Byte Register.

Note: Setting the DESE register and the ESE register to the same
values allows only those codes to be entered into the event queue
and summarized on the ESB bit (bit 5) of the Status Byte
Register. (See the on-line help for your oscilloscope for a full
description of registers.)

The *SRE (Service Request Enable) command sets the Event
Status Bit (bit 5) to await a Service Request (SRQ).

The *CLS command clears the event registers.

The ACQUIRE:STATE RUN command starts acquisitions
and is equivalent to pressing the front-panel RUN button,
unless the STOPAFTER mode is set to SEQUENCE, in
which case this command is equivalent to pressing the front-
panel SINGLE button.

The *OPC command generates the Operation Complete
message in the Standard Event Status Register (SESR) and
generates a Service Request (SRQ) when all pending
operations complete. This allows you to synchronize
operation of the oscilloscope with your application program.

The TDS/CSAS8000 Series is a sampling oscilloscope and uses slightly
different native GPIB codes. For the 8000 Series, The STOPAFTER GPIB
command set requires more definition. You must specify the stopafter mode,

the stopafter condition, and the sample count before a stopafter condition is
met, as shown in the following code:

Sub GetAcquisition8000 ()

Dim sCHCommands As String
Dim nCH As Integer

Oscilloscope Analysis and Connectivity Made Easy

The Triggered Waveform Capture Example in VB

sCHCommands = "DESE 1;*ESE 1;*SRE 32"
If tvcRef Is Nothing Then Set tvcRef = frmTC.Tvcl

With tvcRef
.WriteString "ACQUIRE:
.WriteString "ACQUIRE:
.WriteString "ACQUIRE:
.WriteString "ACQUIRE:
.WriteString "ACQUIRE:

.WriteString "*CLS"

STATE OFF"
STOPAFTER:CONDITION ACQWFS"
STOPAFTER:COUNT 20"
STOPAFTER:MODE CONDITION"
DATA CLEAR"

.WriteString sCHCommands

.WriteString "ACQUIRE:STATE RUN"

.WriteString "*OPC"
End With

End Sub

[Cable 24 jsummarizes the routines involved in setting registers.

Table 24: Routines involved in setting registers

GetAcquisition ()

Sets the 7000 oscilloscope registers in preparation for
a trigger, which activates a ServiceRequest event in
the TVC control. See the GPIB programmer's guide for
TDS7000 Series oscilloscopes and similar models.

ParseQueryResults (s1 As
String, QType As String) As
String

Reads different acquisition parameter data from the
TDS7000 oscilloscope, including the trigger source
channel. The return value indicates PULSE, EDGE, or
LOGIC. Although this is not used in this example, it is
included as sample code for applications that wish to
control trigger parameters more closely.

GetAcquisition8000()

Sets the TDS/CSA8000 oscilloscope registers in
preparation for a trigger, which activates a
ServiceRequest event in the TVC control. See the
GPIB programmer's guide for TDS/CSA8000
oscilloscopes.

Trigger Event Handling Routines

The SRQHandler and SRQHandler8000 event handlers are triggered by the
event being raised by the TVC control after it recognizes a trigger from the
oscilloscope. These handlers must contend with four major options. Did the

user choose to:

e capture waveform data?

e capture measurement data?

e have the captured data displayed?

e have the data saved to disk?

Oscilloscope Analysis and Connectivity Made Easy

153

The Triggered Waveform Capture Example in VB

154

These choices are not mutually exclusive; any or all are possible. These four
choices are held in global Boolean variables declared in the code module:

Public blnWFM As Boolean
Public blnMEAS As Boolean
Public blnShowInGrid As Boolean
Public blnSaveToFile As Boolean

The two event handler routines test whether measurement and waveform data
are requested. Within these two major tests, other tests are made to find out
whether to display captured data in the grid and/or store the data to disk.

Note: The user sets up the acquisition mode on the oscilloscope. The
GetWaveform or GetWaveform8K method of the TekVISA control
sets the data format to the fastest format (BINARY), and also issues
HEADER OFF commands as needed, so only the argument itself is
returned on query responses.

Here are extracts from the relevant code in SRQHANDLER:

Public Sub SRQHandler ()
(code omitted)

' stop other service requests
tvcRef.WriteString "DESE 0; *ESE 0; *SRE 0; *CLS"

(code omitted)

If blnMEAS Then ' build measurement data first
'call routine which builds the GPIB command for
'retrieving measurements
Call BuildCMDString
tvcRef.WriteString strCMD
sRet = tvcRef.ReadString
If blnSaveToFile And sFileName = "" Then

(code omitted)

If blnShowInGrid Then ' user wishes to display
' measurement data in grid

(code omitted)

frmTC.1lblStatus = "Acquiring data..."

frmTC.Refresh
DoEvents
If bInWFM Then ' get waveform data

(code omitted)

'get the waveform for the first channel

Call tvcRef.GetWaveform(nCH, wfm, xinc, trigpos, vUnits,
hUnits)

' get the record length

reclength = 0

sQry = "HORIZONTAL:RECORDLENGTH?"

tvcRef.WriteString sQry

reclength = CLng(tvcRef.ReadString)

(code omitted)

Oscilloscope Analysis and Connectivity Made Easy

The Triggered Waveform Capture Example in VB

If blnShowInGrid Then
(code omitted)

frmTC.1lblStatus = ""

frmTC.Refresh

DoEvents

ntracker = ntracker + 1

' reset the registers for another trigger
Call GetAcquisition

(code omitted)

End Sub
Note that:

e The handler routine first disables service requests on the
oscilloscope.

e [fthe user chooses to retrieve measurement data, a GPIB
query command is built, sent to the oscilloscope using the
TekVISA WriteString method, and the response is read using
the TekVISA ReadString method.

¢ Depending on user selections, the response is displayed
and/or saved to disk. You can examine the relevant code by
opening the program included on the companion disk.

e If'the user chooses to retrieve waveform data, the handler
employs the TekVISAGetWaveform method and sends a
HORIZONTAL:RECORDLENGTH? GPIB query to retrieve
waveform data and the information to display it properly.

The SRQHANDLERB8000 routine is similar to the SRQHANDLER routine
with a slightly different TekVISA control call to get a waveform:

tvcRef .GetWaveform8K nCH, nTB, wfm, xinc, xoffset, vUnits, hUnits

The GetWaveform8K method includes an extra parameter to identify the
channel timebase of the waveform you are interested in retrieving.

Cable 25 jsummarizes the routines involved in handling trigger events.

Oscilloscope Analysis and Connectivity Made Easy 155

The Triggered Waveform Capture Example in VB

Table 25: Routines involved in handling trigger events

Tvc1_ServiceRequest()

Executes when a Service Request needs handling by
the oscilloscope. This is the trigger event handler. It
calls the SRQ Handler routines.

SRQHandler()

Handles a call from the TVC control's Service Request
event on 7000 and similar scopes. Captures and
displays waveforms from user-selected channels as
well as user-specified measurements from the active
measurement channel when a trigger occurs and
service request bits are changed in the oscilloscope.

SRQHandler8000()

Handles a call from the TVC control's Service Request
event on 8000 scopes. Captures and displays
waveforms from user-selected channels as well as
user-specified measurements from the active
measurement channel when a trigger occurs and
service request bits are changed in the oscilloscope.

Get Measurement and Waveform Data Routines

Most of these routines are called from the SRQHandler and
SRQHandler8000 routines to perform helper tasks. summarizes the
routines involved in getting measurement and waveform data.

Table 26: Routines involved in getting measurement and waveform data

chkWFM_Click()

Executes when the Waveform Data check box is
selected on the Settings tab. Sets a boolean value.

BuildCMDString()

Builds the command string for taking measurements
from the 7000 oscilloscope. Concatenates user choices
for measurements. Called by the SRQHandler routine.

GetChannelint (pass As
String) As Integer

Returns integer for the chosen channel for use in
TVC.GetWaveform method calls.

BuildCMDString8000()

Builds the measurement command string for the 8000
oscilloscope by going through the control array. Called
by the SRQHandler8000 routine.

GetChannelint8K (s1 As
String) As Integer

Returns integer for the chosen channel for use in
TVC.GetWaveform8000 method calls.

GetTimeBaselnt (s1 As
String) As Integer

Returns an integer value for timebase, which is
required on the 8000 scopes.

156

Oscilloscope Analysis and Connectivity Made Easy

Display Results in Grid Routines

The Triggered Waveform Capture Example in VB

The Data tab holds an MSFlexGrid control for displaying processing results.
[able 27 [summarizes the routines involved in displaying results on this grid.

Table 27: Routines involved in displaying results in the grid

chkDisplay_Click()

Executes when the Display in Grid check box is
selected on the Settings tab. Sets a Boolean value.

DisplayMeasData (sRet As
String, nRow As Long, nCol
As Long, binFirst As
Boolean, g As
MSFlexGridLib.MSFlexGrid)
As Integer

Displays 7000 measurement data in the grid on the
Data tab. Called from SRQHandler routine if the check
box was selected.

DisplayMeasData8000 (sRet
As String, nRow As Long,
nCol As Long, binFirst As
Boolean, g As
MSFlexGridLib.MSFlexGrid)
As Integer

Displays 8000 measurement data in the grid on the
Data tab. Called from SRQHandler8000 routine if the
check box was selected.

cmdClear_Click()

Executes when the Clear Grid button is clicked on
the Data tab.

Save Data to Disk Routines

These routines perform helper tasks associated with saving data in a file.
[able 28 [summarizes the routines involved in saving data to disk.

Table 28: Routines involved in saving data to disk

chkSave_Click()

Executes when the Save in File check box is
selected on the Settings tab. Sets a boolean value.

HandleSaveDialog()

Uses the MS CommonDialog control to open a file
(using the timestamp as the default name) for saving
captured data to disk. Called from the SRQHandler and
SRQHandler8000 routine if the check box was
selected.

Note: For saving data directly to disk, you may use
the ReadToDisk method of the TekVISA ActiveX
control. See its use in Appendix C.

ConcatinBuffer (ByRef As
String)

Uses CopyMemory (Alias for RttMoveMemory) API call
to speed up string concatenation when building a string
to write to disk.

Oscilloscope Analysis and Connectivity Made Easy

157

The Triggered Waveform Capture Example in VB

158

Other General Purpose Routines
[able 29 [summarizes other general purpose routines used in this example.

Table 29: General purpose routines

GetScopeType (t As Assigns values to the global variables specifying the
TVCLibTvc, sst As type of oscilloscope to which the application is currently

TabDIg.SStab) As Boolean

connected. Calls CheckTabVisibility routine to make
the appropriate Measurement tab visible.

CheckTabVisibility (chkM As | Makes the appropriate tabs visible based on the
VB.CheCkBOX, ssTabTVC AS osci”oscope type

TabDIg.SSTab)

RemovelLF (s1 As String) As | Removes the linefeed character from returned GPIB

String

commands.

GetEUnit (s1 as String, u As | Returns a semicolon-separated string. The string to the
String) As String left of the semi colon represents the measurements

numeric value. The string to the right of the semicolon
represents the engineering unit.

Multiplies the numeric value by a factor of 1000
depending on the engineering unit detected (eg.
milliseconds (ms), microsoeconds (us),
nanoseconds(ns))

Running the Triggered Waveform Capture Example
To run the program:

1.

Select File > Save to save the VBA program you just
created.

If you have the necessary hardware, follow the steps in the
Oscilloscope Connectivity Made Easy book (and in
Appendix D on page f this book) to connect the cable
and start the waveform generator. You can adjust the
amplitude and frequency of the waveform generated by your
sound card by moving the slider bars on the Jitter
Adjustment tab of the waveform generator program.

Note: Even if you do not have a waveform source connected to
Channel 1 of your oscilloscope, you will still be able to pick up
enough noise to generate some data to see if your program
works. After clicking OK in this example, select one of the
trigger setup options from the Trig menu of your TDS7000
Series oscilloscope, then select Force Trigger.

Select Run > Start or press the F5 function key to run the
program.

Oscilloscope Analysis and Connectivity Made Easy

The Triggered Waveform Capture Example in VB

The Triggered Waveform Capture dialog box appears, with a list of
devices available for connection displayed in the top left frame on
the Settings tab.

4. Ifnecessary, click Refresh Devices.

5. Select a device to connect to and click Assign Device. The
device can be:

a. GPIB8, which corresponds to the software virtual GPIB
connection inside your oscilloscope, between your
Windows-based VB program and the embedded
oscilloscope software.

b. Another GPIB device corresponding to a remote
oscilloscope networked to your system via the VXI-11
Server Control. If this server is loaded on the
oscilloscope, the following icon will appear in the
system tray in the lower right corner of the oscilloscope
screen (or external monitor).

End

6. On your oscilloscope interface, physically select one or
more source channels and a record size for capturing
waveform data, and a measurement channel (control
channel) for capturing measurement data. Also select the
trigger type and any other relevant trigger settings.

7. If you are connected to a TDS/CSA8000 sampling
oscilloscope, select one or more timebases (Main, Mag1,
Mag2) on your oscilloscope to make them active and
available for use.

8. If necessary click Refresh Channels to update the tree view
display.

9. In the tree view display, select the active channel(s) (and
timebase(s) if any) that you want to use for this capture.

10. Select the number of captures to perform or leave the default
as is.

11. Leave the checkmark beside Waveform Data and select the
check boxes beside Measurement Data and Save to File and
Display in Grid if you want all the options enabled;
otherwise, clear any that you do not want enabled.

You have now made all necessary selections from the Settings tab.

Oscilloscope Analysis and Connectivity Made Easy 159

The Triggered Waveform Capture Example in VB

160

For example, suppose you are running VB on a TDS7000 with CH1,
CH2, and CH3 activated; CH1 selected as the measurement channel;
and a record size of 5000 selected on your oscilloscope. If you
choose GPIBS, sclect 1 as the # of captures, select the check boxes
next to Measurement Data and Save to File, and select CH2 and CH3
for waveform captures, the example will look like this:

iw. Triggered Waveform Capture | %]
Settings teasurements Data
- Devices — Channel Selection
Select from active channels

GPIB10:1: NS TR

- CH
: - CONTROL

Azzign Device

Refresh Devices | i CH3

- Captures v foyeta Refresh Channels |
of Captures Data

I_ Measurement Selected Channels

L ~ Data

< CH1
CH2

Save to
Vv 2
Fils Clear |

- Dizplay in
_I r Grid

Record Size: I 5000 0K | Cancel | Cloze |

Similarly, suppose you are running VB on a system attached to a
networked TDS/CSA8000 oscilloscope with all three times bases
(Main, Magnification1 and Magnification2) activated for CH1 and
CH2, and a record size of 500 selected on your oscilloscope. If you
choose GPIB10, select 2 as the # of captures, select the check boxes
next to Measurement Data and Display in Grid, and select Main on
CH1 and Mag1 on CH2 for waveform capture, the example will look
like this:

LS RE SO PR)

i, Triggered Waveform Capture [_[O]
Settings teasurements Data
 Device — Select Channels

|GF'IBS::'I::INSTF| Fefresh Devices |

- CH -

GPIBTT:1:INSTR : :
GPIEE:1-INSTR | Assidn Devics |

Refrezh Channels |

wan =l

Selected Channels

— Capturez ~ W aveform

of Captures [required) Data CHMAIN

-~ Measurement CHZ-MaGE1

2 3 [rata

1 -

; Save to

3 J | File: Clexar |

4 . .

S = g

Record Size: 500 oK | Cancel | Cloze |

Oscilloscope Analysis and Connectivity Made Easy

The Triggered Waveform Capture Example in VB

12. From the Measurements tab, sclect the measurements you
want to capture and display. (Hold down the Ctrl key while
clicking if you want to make multiple selections.)

For example,

if you are running VB on a TDS7000 and want to

capture and display the AMPLITUDE, AREA, CYCLE AREA, CYCLE
MEAN, CYCLE RMS, and FALL TIME of the signal on the
measurement channel, the example will look like this:

Tri

Settings

7000

red Waveform Capture

Select Measurements

FREQUEMCY
& WOLTAGE
MIM YOLTAGE
MEGATIVE DUTY

MEGATIVE OVERSHOOT
NEGATIVE PULSE WIDTHﬂ

IS [=] E3

Measurements Data

Recard Size:

I 5000

Ok | Cancel | Close |

If you are running VB on a system attached to a networked TDS8000
or CSA8000 instrument and want to capture and display the
MAXIMUM and FALL time on CH2 MAIN and CMEAN on CH1 MAIN,
the example will look like this:

. Triggered Waveform Capture

Settings
Select:
W Measure 1

W Measure 2

™ Measure 3

™ Measure &
™ Meazure B
™ Measure 7

™ Measure 8

Measurements Data

TYPE: WFM SOURCE: DISPLAY STATE
IMAXIMUM : CH2 MAIN : STATE ON

IFALL: CH2MAIN : STATE ON

IFIISE 1 CH2 MAIN : STATE ON

ICMEI—\N :CHY MaAIN : STATE ON

IUNDEFINED 1 CH1 MalN - STATE OFF

IUNDEFINED :CH1.MaIN - STATE OFF

IUNDEFINED :CH1.MaIN - STATE OFF

IUNDEFINED :CH1.MAIN : 0

Refresh Setup Info |

Record Size:

500

Ok | Cancel | Cloze |

Oscilloscope Analysis and Connectivity Made Easy

161

Using VBA Instead of VB

13. Click OK to start the triggered data capture.

14. If necessary, force the trigger (see page or press a
trigger button if the trigger type was glitch.

You will see results similar to the following on the Data tab, with
measurements displayed for each triggered capture (2 captures in this
case), followed by time and data values for each triggered waveform

capture:

. Triggered Waveform Capture

I = E3

Settings I eazurements
| |
AMPLITUDE[V) 12400
AREA[mi's] 1.4956E-3;
CYCLE AEARN] miv] 369.47459E-3 351.3189E-3
CYCLE RMS[mt) 718.2074E-31 TFZAB174E-A
Time CH1
0.000008 024
0000016 -0.26
0000024 1
0000032 1.08
0.00004 1.02
0000048 1.04
Clear Grid |
Record Size: 500 Ok | Cancel | Cloze |

If an error occurs, choose select Help > Index... and type the
keywords Debug Toolbar to find a quick summary of the debugging
features of VB available on the Debug Toolbar.

Using VBA Instead of VB

If you want to work this exercise using Excel VBA instead of Visual Basic
6.0, you will need to create a similar form using that tool instead of VB 6.0.
Refer to the discussion of the Trigger Capture button on the Excel TekExcel
Toolbar in Chapter 2 and see the corresponding Toolbar source code for an
example of how to use Excel controls to design a triggered data capture form.
That example uses a spreadsheet rather than a grid to store the waveform data
points and measurement data.

Note: Unlike VB 6.0 code, which can be compiled into a stand-alone
executable, VBA is interpreted code that only runs inside Microsoft
Office applications. Restrictions on spreadsheet size and speed of
interpreted code will limit waveform data size and the execution
speed of your program.

162

Oscilloscope Analysis and Connectivity Made Easy

Chapter 7 Review

Chapter 7 Review
To review what you learned in Chapter 7:

* You can use Visual Basic 6.0, which is part of the Microsoft
Visual Studio, to design your own forms and build your own
functions.

® You can add the TekVISA Control to VB, and then drag it
onto your form just like any other ActiveX control.

e The VB Help facility contains many useful examples, and
the Object Browser can help you understand the hierarchy of
objects in the VB object model. The VB help system and the
Object Browser are closely interwoven.

e The VB Intellisense feature prompts you with valid
arguments and other choices when you type code in the
Code window.

* You can use the Triggered Waveform Capture program
described in this chapter to capture waveform data and
measurement data, display it on a grid, and save it to a file
on disk.

Oscilloscope Analysis and Connectivity Made Easy 163

Chapter 7 Review

164 Oscilloscope Analysis and Connectivity Made Easy

PART 2: MATLAB AND
LABWINDOWS/CVI AND LABVIEW

CHAPTER 8: LIVE UPDATES TO MATLAB USING ICT

CHAPTER 9: LABWINDOWS/CVI AND LABVIEW

Oscilloscope Analysis and Connectivity Made Easy

165

PART 2: MATLAB AND
LABWINDOWS/CVI AND LABVIEW

166 Oscilloscope Analysis and Connectivity Made Easy

Introduction

Chapter 8:
Live Updates to MATLAB using ICT

Introduction

In this chapter, you will learn how to control Tektronix Windows-based
oscilloscopes from an existing MATLAB program by using

e the MATLAB Instrument Control Toolbox
e the VISA standard

e native GPIB instrument control commands and queries

What You Need to Get Started
You can work this example either on a separate PC or on your Windows-
based oscilloscope. To get started, you will need the following:

e A Windows-based Tektronix oscilloscope (an external
monitor is recommended if you are working the example on
your oscilloscope)

e TekVISA installed on the oscilloscope

e Release 12.1 of MATLAB (Version 6.1) and the Instrument
Control Toolbox (Version 1.1) installed on your oscilloscope
or on an external PC. (This release includes MATLAB ICT
support for Tektronix oscilloscopes)

If MATLAB is running on an external PC:

e TekVISA or another vendor’s implementation of
VISA must be installed on the same external PC as
MATLAB

¢ a GPIB interface card (ISA, PCI or USB) must be
installed on your oscilloscope

e The Waveform Generator program from the companion CD
to this book (see page @for the locations of this program
and the completed examples)

e A signal generator cable

Oscilloscope Analysis and Connectivity Made Easy 167

The Instrument Control Toolbox

168

What You Will Do

In this chapter, you will get an NRZ waveform directly from the oscilloscope
and use it in an existing MATLAB program. Unlike previous chapters, you
will not be using Visual Basic. Instead, you will use GPIB commands and
queries, the VISA standard, and the MATLAB Instrument Control Toolbox
functions to:

e Obtain a waveform directly from your oscilloscope using
MATLAB’s VISA-GPIB interface

e Calculate jitter and plot it

What You Will Learn
Once you have gone through this chapter, you will know:

e How to use MATLAB Instrument Control Toolbox functions
to connect to and control Tektronix Windows-based
oscilloscopes

e How to route native GPIB commands and queries through
MATLAB Instrument Control Toolbox functions

e How to access VISA objects through MATLAB Instrument
Control Toolbox functions

e The main Instrument Control Toolbox functions to use for
Tektronix oscilloscope data connectivity

The Instrument Control Toolbox

The Instrument Control Toolbox is a collection of MATLAB M-file
functions built on the MATLAB Technical Computing Environment. The
Instrument Control Toolbox includes adaptors for the GPIB interface
(IEEE-488) and the VISA standard. Using these adaptors, the toolbox
provides a framework from MATLAB for communicating with instruments
that support these standard interfaces, such as Tektronix Windows-based
oscilloscopes.

n Appendix A summarizes the MATLAB Instrument Control
Toolbox functions used in this chapter. To learn more about the full set of
MATLAB Instrument Control Toolbox functions, refer to the Instrument
Control Toolbox User’s Guide for Use with MATLAB, published by The
MathWorks, Inc. Their website is http:/www.mathworks.com|

Note: To access help, type help instrument at the MATLAB
command line. To view help for any function or property, type
instrhelp name, substituting a name of an ICT function or property
for name.

Oscilloscope Analysis and Connectivity Made Easy

http://www.mathworks.com/

The Instrument Control Toolbox

Configuring VISA Resources

As discussed in Chapter 1, virtual GPIB is an internal software path on some
Tektronix oscilloscopes between Windows-based software such as
MATLAB and the oscilloscope software. The jitter2.m function used in this
example assigns the primary address of virtual GPIB (GPIBS) to the VISA-
GPIB object it creates. If you are running MATLAB on a connected PC
rather than on the oscilloscope itself, you will need to change the GPIB
descriptor and possibly the vendor code to something else.

To determine the correct primary address of the VISA-GPIB object to use,
run the VISA Configuration Utility shown in

4 VISA Configuration - 0] x|
— WISA Resources

Find | GPIBS:1:INSTR
ASRL1:INSTR

— Remate Host
Host Mame Interface Wisa Name

&dd

Hemove |

Ready Status: [2 resources found.

Yiza Libran: % 1.07 Tektronix

Figure 44: The VISA Configuration Utility

Communicating with VISA-GPIB Objects

Before looking at a more complicated example, here are the basic steps for
communicating with a VISA-GPIB object (MATLAB’s terminology for a
VISA resource) using the Instrument Control Toolbox:

Note: In code examples in this chapter:
e Native GPIB commands are shown in boldface.

e Instrument Control Toolbox (ICT) functions are shown in
boldface italics.

1. Create a VISA-GPIB instrument object to virtual GPIB
(assuming you are running TekVISA on your oscilloscope):

g = visa('tek', 'GPIB8::1::INSTR');
2. Configure some property values:

% Make sure the size of the InputBuffer - in bytes - is
% sufficient.
set (g, 'InputBufferSize',2000000) ;

Oscilloscope Analysis and Connectivity Made Easy 169

The Instrument Control Toolbox

3. Connect to the instrument:
fopen (g) ;
4. Write and read some data:

% Issue a GPIB query

idn = query(g, ‘'*IDN?’)

% Issue a GPIB command
fprintf (g, 'DATA:SOURCE chl’);

5. Disconnect and clean up:

fclose(g) ;
delete(g)

The usage of these Instrument Control Toolbox functions is explained more
fully later in this chapter.

Using the Instrument Control ASCIl Communication Tool
The Instrument Control Toolbox also has a special communication tool that
you can use to communicate with instruments. To use this tool:

1. Type instrcomm in the Command Window.

The following screen appears.

. Inztrument Control Configuration Tool

2. Select VISA-GPIB and click Next.

170 Oscilloscope Analysis and Connectivity Made Easy

The Instrument Control Toolbox

The following screen appears.

“} Instrument Control Configuration Tool - Create a ¥ISA-GPIB Object

3. Make the appropriate selections for your configuration and
click Next.

The following screen appears.

“} Instrument Control Configuration Tool - Create a ¥ISA-GPIB Object

4. Select the desired check box and click Create.

The Instrument Control ASCII Communication Tool is created.

Figure 45hows this tool, which provides a graphical user interface
for writing native GPIB instrument control commands and queries

and reading responses.

Oscilloscope Analysis and Connectivity Made Easy 171

The Instrument Control Toolbox

<} Instrument Control ASCIl Communication Tool - Communicating with ¥ISA-GPIBS-1

- Communication State—————— | - Comrmand YWritten to the Instrurment
to instrument Format I%Sln ~] Clear Commandsl
Start | recording Command: |Entera command here, e.g. *IDN? LI
rValuesSent Yyrite | Read | @UEnRY | Elush it |
. 1]
Total I ~Data Read from the Instrument
Current IiD — I%c vl Clear Data |
“ValuesReceived | | D
Total: I':'
Current; ID

Help | Clase |

Figure 45: MATLAB'’s Instrument Control Toolbox ASCIl communication tool

5. Click Connect and then type a GPIB command or query and
click the appropriate button.

A screen similar to the following appears.

<} Instrument Control ASCII Communication Tool - Communi = |EI |i|

~Communication State ~Command \Written to the Instrument

Disconnect | frarm instrument Format: I%S"-n vl CIearCDmmandsl

Start recording Command: I*IDN'? :l
~ValuesSent —
Wyrite | Read | Query I Flush Input |
Total: —Data Read from the Instrument
Current:

Format: I%c v| Clear Data |

Data:

~MaluesReceived
TEKTROMIATDST104,0,CF91.1CT Fyi1.2.1
Total: g

Current: 34

Il

Help Close

Cleaning up Instrument Objects during Debugging

Once you have identified and opened a VISA-GPIB instrument, you can use
the instrfind Instrument Control Toolbox function to find out how many
objects are in memory and which one’s status is currently open. (Only one
can be open at a time.)

172 Oscilloscope Analysis and Connectivity Made Easy

The Jitter Example with MATLAB ICT Functions

For example, during debugging, you could create and save the following
MATLAB function as an M file:

% caution - closes, deletes and clears all instruments
if ~isempty (instrfind)

fclose(instrfind) ;

delete (instrfind) ;

end

This function closes and deletes all instrument objects from memory.

As an alternative, you could use the instrreset ICT function, which performs
the equivalent of the preceding block of code. Type this function from the
Command Window to clean up the workspace whenever the function you are
debugging includes an instrument object that has an abnormal closure or is
interrupted without fully executing.

The Jitter Example with MATLAB ICT Functions

The MATLAB example you will work with is an updated version of the
MATLAB lJitter example that appeared in the Oscilloscope Connectivity
Made Easy book. If you have that book, consult it to learn more about how
the program works, or study the code comments in the example itself on the
CD that accompanies this book. You will add a direct waveform connection
to this program so that it accepts live waveform data from your oscilloscope.

For the purposes of this exercise, the logic and details of the provided Jitter
example are irrelevant. The important point is to change the program so that
it accepts live data rather than reading data from a file.

In the modified example that you will create, native GPIB commands and
queries are written to VISA instrument objects through the Instrument
Control Toolbox interface. Figure 46]shows how GPIB commands and
queries are funneled to and from a VISA-GPIB object using Instrument
Control Toolbox fprintf and query functions.

Oscilloscope Analysis and Connectivity Made Easy 173

The Jitter Example with MATLAB ICT Functions

Native GPIB
oscilloscope commands

Native GPIB
oscilloscope queries/

responses
fprintf —
(command) response = query (native-query)
v

VISA
Instrument
object

funnels
to/from

funnels to —»

using
ICT
functions

Instrument
Control
Toolbox

MATLAB Portals to/from Oscilloscope
Figure 46: How commands and queries are funneled through MATLAB functions

See Table 34|and [lable 35|for more information about native GPIB
commands and queries, and [[able 37 [for more details about Instrument
Control Toolbox functions.

Creating the jitter2 Function
Next you will add a direct waveform connection to a clock jitter problem.
The new function will communicate directly with the oscilloscope.

The function automatically acquires a waveform by funneling native GPIB
commands and queries (shown in boldface) through Instrument Control

Toolbox functions (shown in boldface italics) to the identified VISA
resource device on the oscilloscope.

174 Oscilloscope Analysis and Connectivity Made Easy

The Jitter Example with MATLAB ICT Functions

To create the jitter2.m function:
1. Startup MATLAB 6.1.

2. From the Current Directory Browser in the lower left pane,
browse and select the path to the working folder where you
have stored the clock jitter solution files.

3. From the Command Window, select File > New >
M-file to start a new file in the MATLAB Editor/Debugger.

4. Type the following (omit the comments if desired):

function rmsJitter = jitter2 (symbolRate, threshold, hysteresis)
% Modified version of jitterl to acquire data directly from the
scope

o\

o°

o°

calling syntax
rmsjitter = jitter2(5000,0,0.1)
or rmsjitter = jitter2
in the latter case default parameter values are used.

o o

o°

% use default values if function is called without arguments
if nargin < 1

symbolRate = 5000;

threshold = 0;

hysteresis = 0.1;

end

o°

This function calculates the RMS jitter in a waveform.
Jitter is the difference between the actual time an edge
occurs and the time where it should have been based on the
supplied sample rate.

o° o

o\°

strCh = 'chl';
% change the value below to test for different record lengths
recordLen = 400000;
Use inside the scope with TekVISA (board 8, primary address 1)
= visa('tek', '"GPIB8::1::INSTR');
if running MATLAB on a connected PC, change vendor code
and/or GPIB descriptor as necessary e.g.
g = visa('ni', 'GPIB0::1::INSTR');
g = visa('agilent',6 'GPIBO::1::INSTR');

o°

o0 o o° of Q

o°

Make sure the size of the InputBuffer - in bytes - is
% sufficient.
set (g, 'InputBufferSize',recordLen*2) ;

This code:

a. Sets default values for the three arguments to the
function (symbol rate, threshold, and hysteresis), if these
arguments were not entered at the command line.

b. Sets channel 1 (ch1) as the data source from which to
obtain and return a waveform and sampling rate.

c. Sets the record length of the waveform to be acquired to
400,000 data points.

Oscilloscope Analysis and Connectivity Made Easy 175

The Jitter Example with MATLAB ICT Functions

176

d. Uses the VISA Instrument Control Toolbox function to
create a VISA-GPIB object corresponding to TekVISA
virtual GPIB (board 8, primary address 1).

Note: If you are running MATLAB on a connected PC rather
than on the oscilloscope itself, you will need to change the
GPIB descriptor and possibly the vendor code to something

else (see page [69].

e. Assigns that VISA-GPIB object to the variable g.

f. Uses the ICT Set function to set the ICT InputBufferSize
property to twice the size of the record length. This
software input buffer is used later during an fscanf read
operation, which will terminate when the amount of data
stored in the buffer equals this value.

Type the following:

fopen (g) ;

The fopen Instrument Control Toolbox function connects to the
instrument by opening the TekVISA virtual GPIB resource device.

Type the following:

idn = query(g, '*IDN?');

fprintf (g, '"HEADER OFF') ;

fprintf(g, ['DATA:SOURCE ' strChl]) ;
fprintf (g, 'DATA:ENCDG SRIBINARY') ;
fprintf(g, 'DATA WIDTH 2);

fprintf (g, 'ACQUIRE:STATE OFF') ;
fprintf (g, 'ACQUIRE: MODE NORMALSAMPLE') ;
fprintf (g, 'ACQUIRE: STOPAFTER SEQUENCE') ;
fprintf (g, 'ACQUIRE:STATE RUN') ;

The native GPIB *IDN? query is funneled through the ICT query
function. This query returns the oscilloscope identification code.

The TDS7000 native GPIB commands in this set are funneled
through the ICT fprintf function and perform the following tasks:

a. The HEADER OFF command turns verbose mode off, causing
the oscilloscope to omit headers on query responses, so that only
the argument is returned.

b. The DATA:SOURCE command sets the data source to channel 1.

c. The DATA ENCDG:SRIBINARY command sets the data format
to binary using signed integer data-point representation, with the
least significant byte transferred first.

Oscilloscope Analysis and Connectivity Made Easy

The Jitter Example with MATLAB ICT Functions

d. The DATA:WIDTH command sets the number of bytes to transfer
to two bytes per data point.

e. The ACQUIRE:STATE OFF command stops acquisitions and is
equivalent to pressing the front-panel STOP button.

f. The ACQUIRE:MODE NORMALSAMPLE command sets the
acquisition mode to sample and is equivalent to selecting
Horizontal/Acquisition from the Horiz/Acq menu and then
choosing Sample from the Acquisition Mode group box.

g. The ACQUIRE:STOPAFTER SEQUENCE command tells the
oscilloscope to acquire a single sequence rather than continuous
data.

h. The ACQUIRE:STATE RUN command starts acquisitions and is
equivalent to pressing the front-panel RUN button, unless the
STOPAFTER mode is set to SEQUENCE, in which case this
command is equivalent to pressing the front-panel SINGLE
button.

7. Type the following:

while query(g, 'BUSY?','%s','%e'); end;
horizLen = gquery (g, 'HORIZONTAL:RECORD?','%s','%e');

The two native GPIB queries here (BUSY? and
HORIZONTAL:RECORD?) are funneled through the ICT query
function and behave as follows:

a. The WHILE loop executes as long as the oscilloscope is busy
processing ACQUIRE:STATE RUN, which helps synchronize the
operation of the oscilloscope with this program.

b. After the acquisition, the HORIZONTAL:RECORD? query
returns the current horizontal record length, which is converted
from a string to a floating-point number and stored in the
variable horizLen.

8. Type the following:

fprintf(g, 'DATA:START %d', 1);
fprintf (g, 'DATA:STOP %d', recordLen) ;
fprintf (g, 'CURVE?"') ;

These three native GPIB commands (DATA:START, DATA:STOP,
and CURVE?) do the following:

a. Set the start data point for waveform transfer to 1.

b. Set the stop data point to the record length that you selected for
this transfer.

Oscilloscope Analysis and Connectivity Made Easy 177

The Jitter Example with MATLAB ICT Functions

178

10.

c. Read a complete waveform from channel 1 into the input buffer
of the specified VISA resource device using the CURVE? query.
In binary format, the waveform is formatted as:

#<a><bbb><data><newline>
where:

a = the number of b bytes

bbb = the number of bytes to transfer

data = the waveform curve data

newline = a single-byte new-line character at the end

Type the following:

dummy stringl fscanf (g, '%s',2)

dummy string2 = fscanf(g, '%s',str2num(dummy stringl(2)))
recordLen2Transfer = min (recordLen, horizLen) ;

[waveform raw,count] = fread(g,recordLen2Transfer, 'intlé6');
dummy string3 = fscanf(g, '%s',1);

These statements use Instrument Control Toolbox functions to read
data bytes from the input buffer and store them as follows:

a. The first fscanf ICT function reads the first two bytes of the
waveform (#, a and bbb above), converts them to a string and
stores them in dummy_string1.

b. The second fscanf ICT function reads the number of values
specified in the second byte of dummy_string1. Since this
number (converted from a string) corresponds to «, the function
reads the correct number of bytes to transfer, which corresponds
to bbb, converts it to a string, and stores it in dummy_string2.

c. The next statement determines the lesser of the requested record
length and the length of the record actually acquired, and stores
the result in RecordLen2Transfer.

d. The fread ICT function reads the number of bytes of binary
waveform data specified in RecordLen2Transfer. Using Int16
precision, the function reads 16 bits for each value and interprets
each value as an integer. The waveform data values are stored in
waveform_raw.

e. The next fscanf ICT function reads the 8-bit terminator character
and stores it in dummy_string3.

Type the following:

% get the sampling interval
sampleInterval = query(g, 'WFMOUTPRE:XINCR?','%s', '%e');

Oscilloscope Analysis and Connectivity Made Easy

The Jitter Example with MATLAB ICT Functions

This code funnels a native GPIB query (WFMOUTPRE:XINCR?)
through the ICT query function. This query:

a. Gets the horizontal point spacing (XINCR—also known
as the X increment or sampling interval) for the
waveform from the active device.

b. Converts it from a string to a number and stores it in
samplingInterval.

11. Type the following:

% Scale the data

yunit = guery (g, 'WFMOUTPRE:YUNIT?') ;
ymult = query(g, 'WFMOUTPRE:YMULT?','%s','%
yoff = query(g, 'WFMOUTPRE:YOFF?','%s', '%e');
yzero = query(g, 'WFMOUTPRE:YZERO?','%s','%

This code funnels four native GPIB queries (WFMOUTPRE:YUNIT?,
WFMOUTPRE:MULT?, WFMOUTPRE:YOFF?, and
WFMOUTPRE:YZERO?) through the ICT query function: These
queries:

a. Return the vertical unit of measurement (YUNIT) (also
called the Y unit), which is stored in yunit, to be used for
labeling the waveform plot.

b. Return the vertical scale factor (YMULT) per digitizing
level (also called the Y multiple), which is converted
from a string to a floating-point number and stored in
ymult.

c. Return the vertical offset (YOFF) in digitized levels (also
called the Y offset), which is converted from a string to a
floating-point number and stored in yoff.

d. Return the vertical offset (YZERO) in units of Y (also
called Y zero), which is converted from a string to a
floating-point number and stored in yzero.

12. Type the following:

% scale the data to the correct values
waveform = ymult* (waveform raw - yoff) - yzero;

This calculation uses matrix multiplication to scale the waveform
data to the correct values by subtracting the vertical offset in units of
Y from each element in the raw waveform data array less the Y
offset, and multiplying the result by the vertical scale factor. The
resulting array is stored in waveform.

Oscilloscope Analysis and Connectivity Made Easy 179

The Jitter Example with MATLAB ICT Functions

13. Type the following:

o

% find the edges in the supplied waveform

measuredTime =

measureEdgeTiming2 (waveform, threshold, hysteresis,
sampleInterval) ;

% preallocate space for the clocks array

clocks=zeros (1, length (measuredTime)) ;

% derive the clocks based on the supplied symbol rate
for index = 2:length (measuredTime) ;
clocks (index) = (round (symbolRate * (measuredTime (index) -
measuredTime (index - 1)))) + clocks (index-1) ;
end

% fit the derived clocks and the measured time to a straight
line
coef = polyfit(clocks, measuredTime, 1) ;

o°

o°

coef (2) is the intercept (a) in the form y = a + bx
coef (1) is the slope (b) in the form y = a + bx

= coef (2) ;

= coef (1) ;

o°

oo

measuredAverageSymbolRate = 1/b;
measuredSymbolRateError = (measuredAverageSymbolRate -
symbolRate) /symbolRate;

subplot(2,1,1);
plot (waveform) ;
title = (['symbol rate error: ',
num2str (measuredSymbolRateError * 100), '%$']);
xlabel ('samples') ;
% provide the label in units acquired from the scope
% strtok is needed to remove double quotes
ylabel (['waveform amplitude, ' strtok(yunit,'"')]);

This code:

a. Calls the supplied measureEdgeTiming2 function
(which must be located in the same directory as the
jitter2 function).

b. Calculates remaining steps of the clock jitter algorithm.

c. Plots the waveform. Notice that the strtok MATLAB
function strips the double quotes from the string value in
yunit, so that measurement unit values will display
correctly on the plot.

14. Type these lines, which calculate and plot the jitter:

reconstructedTime = a + (clocks .* b);

o\°

jitter is the difference between the measured time and the
% reconstructed time.
jitter = reconstructedTime - measuredTime;

% see the MATLAB function reference for 'norm'
rmsJitter = norm(jitter)/sqgrt (length(jitter)) ;

subplot (2,1,2) ;
plot (reconstructedTime, jitter) ;

180 Oscilloscope Analysis and Connectivity Made Easy

The Jitter Example with MATLAB ICT Functions

title = (['RMS jitter: ', num2str (rmsJitter*le6, ' \mus'l);
xlabel ('time in seconds') ;
ylabel ('jitter in \mus') ;

[

% force the x-axis limits to be tight so that both plots line
% up
set (gca, 'XLim', [0 count*sampleInterval])

15. Type the following lines at the very end of the jitter2
function to disconnect from the instrument:

% close the instrument object
fclose(q) ;
delete(q) ;

These Instrument Control Toolbox functions do the following:

a. The fclose ICT function closes the connection to the active VISA
resource device and sets the Status property to closed.

b. The delete ICT function removes the VISA-GPIB object from
memory.

16. Click the Save to Disk icon from the toolbar, type jitter2.m
and click OK.

Figure 47 shows the first page of the completed jitter2 function.

Oscilloscope Analysis and Connectivity Made Easy 181

The Jitter Example with MATLAB ICT Functions

B} UMy Documents' MATLABIC T, OConnectivity'release7_184jitter2.m - |EI|5|
File Edit Yew Text Debug Breakpoints “Web Window Help
DEESG s 2Roc|(#hH| QR ADE RE| s - x|
1 function rmsJitter = jitterd (symbolRate, threshold, hysteresis) =
2 % JITTERZ.M - Modified wersion of jitterl to acguire dats directly from the scope
3 % calling syntax
4 % rmsjitter = jitteri (5000,0,0.1)
g % or rmsjitter = jitterl
3 % in the latter case default parsmeter wvalues are used.
7
g % Tektronix, Inc. 2001
9 % Version 7/18/2001
10
11|=| 4if nargin < 1
12|-| synbolrate = 5000;
13]-| threshold = 0; |
14|=| hysteresi= = 0.1;
13(=| end
16
17 % This function calculates the BMS jitter in a waveform.
18 % Jitter is the difference hetween the actual time an edge occurs and the
19 % time where it should hawve heen based on the supplied sample rate.
20 % The waveform is accquired directly from the scope
21
22| strch = 'chl';
23 % change the walues below to test for different record lengths
24/=| recordbLen = 400000;
25 % Use inside the scope with Tek VIZ3A (board 8, priwmary address 1)
26 %g = visal'tek', '"SPIBB::1::INSTR');
27 % [(if running MATLAE on a connected PC, change wvendor code and/or GFPIE
28 % descriptor as necessary e.g.
29 £ g = visal'ni', 'GPIEO::1::INSTR');
30(- g = wvisal'sgilent', 'GPIEOD::Z::INSTR');
31
3z % Make sure the size of the InputBuffer - in bytes - is sufficient.
33|-| =etig, 'InputBufferfieze',recordlen*i);
34
35|-| fopenig);
36|-| 4idn = queryi(g, '*IDN?');
37|~| fprintf(g, 'HEADER CFF');
38|—| fprintfig,['DATA:SOURCE ' strch]);
39— fprintf (g, 'DATA:ENCDG SRIBINARY; ') ; -
4| | »
Ready
Figure 47: The first screen of the jitter2 function in MATLAB
Testing Automatic Waveform Acquisition
If you have the necessary hardware, follow the steps in the Oscilloscope
Connectivity Made Easy book (and in Appendix D on page of this book)
to connect the cable and start the waveform generator. Change the amplitude
and frequency of the waveform generated by your sound card by moving the
slider bars to the maximum amount on the Jitter Adjustment tab of the
waveform generator program.
Note: Even if you do not have a waveform source connected to
Channel 1 of your oscilloscope, you will still be able to pick up
enough random noise to generate some data to verify that your
program has connectivity. Even though the jitter calculation and plot
will not work correctly, you will be able to produce a waveform plot
in such a case.
182 Oscilloscope Analysis and Connectivity Made Easy

The Jitter Example with MATLAB ICT Functions

Next you will automatically acquire waveform data from your oscilloscope
into MATLAB by calling the jitter2 function:

1. Inthe Command Window, type
rmsjitter = jitter2 (5000, 0, .1)

or simply
rmsjitter = jitter2

MATLAB runs the jitter2 function, assigns the returned result as the
value of rmsjitter, and displays the answer in the Command Window
(since the line does not end with a semi-colon (;)).

MATLAB also displays two plotted graph solutions in the Figure
Window. The first plot is the acquired waveform and the second is
the clock jitter. The acquired waveform should resemble the one
shown on your oscilloscope.

<) Figure No. 1 =10l x|

File Edit Yiew Insert Tools Window Help

I ERY Y2 -

symbaol rate error: 0.044144 %
04 T T T T T T T T T

0.2 “

0
| |
I

0.2 |

way efarm amplitude, '

04 1] I
0 0.5 1 15 2 25 3 35 4 4.5 A

zamples +
w1t RIS jitter: 141.4632 ps

=

(o=

Jitterin s
o

'
ma

_4 1 | | 1 | | 1 | |
0 0.0z 0.04 0.08 0.08 0.1 012 0.14 0.18 018 0.2
time in secands

Figure 48: The plotted graph solutions for jitter2 in the MATLAB Figure Window

Oscilloscope Analysis and Connectivity Made Easy 183

Improved Jitter Example with a GUI Interface

Improved Jitter Example with a GUI Interface

In this section, to make the previous solution more interactive, you will
modify the jitter2 example to use the MATLAB Graphical User Interface
(GUI). This GUI allows interactive execution of MATLAB scripts, change of
parameters and communication with instruments while providing powerful
numerical computation and visualization.

For more information about using this GUL, consult the MATLAB User’s
Guide, the MATLAB online manual, and MATLAB’s Creating Graphical
User Interfaces books.

Adding GUI Components to the Solution

By adding these components to your solution, you will enable users to type
input parameters into a form and click buttons to activate portions of the
code. Follow these steps to build a GUI:

From the Command Window, select File > New > GUI or type guide to run
MATLAB’s GUI utility.

A file opens in the Figure Window with a canvas (grid) where you
can place graphical user interface objects and axes objects.

A toolbar with GUI objects appears on the left side of the window.
[able 30 [shows icons on the MATLAB guide toolbar that are
relevant to this example.

(A
]
=

= |m| g |2 |®|E

Select the Static Text tool from the toolbar and place labels for various GUI

components (Symbol Rate, Record Length, Threshold, and Hysteresis) on the
right side of the canvas, as shown in

184 Oscilloscope Analysis and Connectivity Made Easy

Improved Jitter Example with a GUI Interface

Table 30: Icons for MATLAB guide toolbar controls used in this book

Icon Icon Name Select from
= Static Text guide toolbar
[eofr Edit Text guide toolbar

El Push Button guide toolbar

m’ Popup Menu guide toolbar
4 | Checkbox guide toolbar

ﬁ Axes guide toolbar

«} jitter3.fig =10 x|
File Edit Layout Tools Help
DEd| =22 BB Y|
l— &0 100 l:0 Z0on 250 200 250 400 | 250 £00 S50 &
k Select | | | | | | | h |
Push Button | | | | | | |
_ iU Symbol Rete
& Toggle Button || S+ 5000 -
—- | |
@ Radio Button Record Length
0ar I—
b4 Checkbox 21 | 2DDDDID
—————————————— | T}
T Edit Text et
P — | 0
" 0o) \ \)
[Static Test |12 0. 0.2 04 0.6 05 0 a1
mm Slider f 0
[1 Frame o |
&
Listhox | | | | | | | |TekaISA - Scope]
[— 10
== Popup Menu ||o connEcT |
MA}{ES " Expart Inztrument I
™ osr [~ wiareform Export
= — t t
Start | Stop |
oa \ \) \
o] oo 02 04 il & 10] S'NG'—IE |
‘ ‘ ‘ ‘ ‘ Close I
-
1 »

Figure 49: Building a GUI using the MATLAB guide utility

Oscilloscope Analysis and Connectivity Made Easy 185

Improved Jitter Example with a GUI Interface

B3 Property Inspector — o] x|
[ecfT wicontral (0.1

— max 1.0 -]
— hlin 0.0

[+— Position [B1.511.31217 1.375]

- SelectionHighlight =|on

+— SliderStep [0.01 0.1]

- Giring E]o

— Style | edit

— Tag editHysteresis

— ToaltipString

— UlContextblenu :|<N0ne>

— Units :lu:haracters

— UserData Elnull

— Value ﬂI[U-U]

L visible =|on |

Figure 50: The MATLAB guide utility Property Inspector

To change the default label for each of these controls, double-click the label or
right-click and select Property Inspector (see from the context menu
of the label, then change the String property from the default text to the desired
text.

The labels will now read Symbol Rate, Record Length, Threshold,
and Hysteresis.

Select the Edit Text control from the toolbar and place the edit boxes under the
four labels created in the previous steps.

Using the Property Inspector, change the Tag property for each of these edit
boxes to the code names shown in

able 31 These are the names that will be used to refer to these edit boxes in
automatically generated code.

Using the Property Inspector, change the String property for each of these edit
boxes to the initial values shown Figure 49Jand Table 31}

Select the PopUp Menu control from the toolbar and create a popup menu as

shown in Figure 49

Using the Property Inspector, click the little box next to the String property for
the popup menu control:

and type the following on separate lines:
TekVISA - Scope

NI VISA - PC
Agilent VISA - PC

186 Oscilloscope Analysis and Connectivity Made Easy

Improved Jitter Example with a GUI Interface

Using the Property Inspector, change the Value property for the pop-up menu
control to [1.0].

This makes the first selection, TekVISA - Scope, the default selection
in the menu.

Select the Push Button control from the toolbar and create six buttons, sized and

positioned as shown in

Select the Checkbox control from the toolbar and create a check box as shown in

Using the Property Inspector, change the Tag property for each of these controls
to the code names shown in [[able 31] These are the names that will be used to
refer to these controls in automatically generated code.

Using the Property Inspector, change the String property for each of these
controls to the initial values shown in Figure 49 [and [Cable 31| These are the
labels that will appear on these controls in the GUL

Select the Axes control and place two Axes objects on the left side of the canvas
as shown in Leave their properties unchanged.

Double-click the canvas or right-click it and select Property Inspector from the
context menu, then change the Tag property for the whole figure to the value
shown in This is the name that will be used to refer to the whole figure
in automatically generated code.

Note: Tag properties are shown underlined in Mte help
distinguish them from String properties.

Oscilloscope Analysis and Connectivity Made Easy 187

Improved Jitter Example with a GUI Interface

Table 31: Changes to make in the Property Inspector to GUI controls

GUI Control Property Change to
StaticText String Symbol Rate
StaticText String Record Length
StaticText String Threshold
StaticText String Hysteresis
EditText Tag editSymbolRate
String 5000
EditText Tag editRecordLength
String 200000
EditText Tag editThreshold
String 0
EditText Tag editHysteresis
String 0.1
PopupMenu Tag popupmenuSelector
String TekVISA - Scope
NI VISA - PC
Agilent - PC
Value no change from default [1.0]
PushButton Tag pushbuttonCONNECT
String CONNECT
PushButton Tag pushbuttonExportinstrument
String Exportinstrument
Checkbox Tag checkboxWaveformExport
String Waveform Export
PushButton Tag pushbuttonStart
String Start
PushButton Tag pushbuttonStop
String Stop
PushButton Tag pushbuttonSINGLE
String SINGLE
PushButton Tag pushbuttonClose
String Close
Axes String no change
Axes String no change
Figure Tag figJitter3

188 Oscilloscope Analysis and Connectivity Made Easy

Improved Jitter Example with a GUI Interface

Save the GUI under the name jitter3.

This creates the jitter3.fig and jitter3.m files. The FIG-file contains
the GUI layout and graphical data that implements the graphical
view. The M-file provides the functionality that implements the
application model.

Note: Instead of adhering to the sequential programming model
used in jitter2, the jitter3 example conforms to the event-based
paradigm common to GUI-based applications, where user
actions trigger event-driven callback functions.

Notice that appropriate Callback property values for the various GUI controls are
automatically generated and displayed in the Property Inspector window.

Note also that the jitter3.m file automatically opens in the MATLAB
Editor/Debugger with initialization code and partial callback code stubs already

generated.

Performing an Interim Test
To see the finished user interface and test it:

1.

Select Tools > Activate Figure from the Guide menu.

The interface does not respond to buttons yet, but you will be able to
change input parameters.

Experiment with changing the values of parameters in the
edit boxes.

Modifying Auto-Generated Functions

Now you are ready to edit the generated code and callback functions that
implement initialization and respond to user events (such as clicking on
buttons).

The jitter3 Function

The jitter3 function handles both initialization of the GUI and its callback
functions. This function is called whenever you type jitter3 in the Command
Window.

If the call has no arguments, the jitter3.fig file is opened for
user input, and all handles are stored with the application
figure.

If jitter3 is called with arguments, the function dispatches the
appropriate callback function. (You can scroll down the
jitter3.m file to see the default implementation of callback
functions.)

Oscilloscope Analysis and Connectivity Made Easy 189

Improved Jitter Example with a GUI Interface

190

From the GUI you created, MATLAB automatically generates the following
commented code, which accepts a variable number of arguments. Note the
use of the MATLAB NARGIN and NARGOUT functions to get the number of
arguments.

function varargout = jitter3 (varargin)
jitter3 Application M-file for jitter3.fig
FIG = jitter3 launch jitter3 GUI.
jitter3 ('callback name', ...) invoke the named callback.

o° o

o\°

o°

Last Modified by GUIDE v2.0 24-Apr-2001 16:59:06
if nargin == 0 % LAUNCH GUI
fig = openfig(mfilename, 'reuse') ;

% Use system color scheme for figure:
set (fig, 'Color',get (0, 'defaultUicontrolBackgroundColor')) ;
% Generate a structure of handles to pass to callbacks, and store
it.
handles = guihandles(fig) ;
guidata (fig, handles) ;

if nargout > 0
varargout{1l} = fig;

end

elseif ischar(varargin{l}) % INVOKE NAMED SUBFUNCTION OR CALLBACK

try

[varargout{1l:nargout}] = feval (varargin{:}); % FEVAL switchyard
catch

disp(lasterr) ;
end

end

o°

| ABOUT CALLBACKS:

GUIDE automatically appends subfunction prototypes to this file, and
sets objects' callback properties to call them through the FEVAL
switchyard above. This comment describes that mechanism.

o o o oe

o°

Each callback subfunction declaration has the following form:
<SUBFUNCTION NAME>(H, EVENTDATA, HANDLES, VARARGIN)

o° o

o°

The subfunction name is composed using the object's Tag and the
callback type separated by ' ', e.g. 'slider2 Callback',

'figJitter3 CloseRequestFcn', 'axisl ButtondownFcn'.

o o o

o°

H is the callback object's handle (obtained using GCBO) .

o°

o°

EVENTDATA is empty, but reserved for future use.

o°

o°

HANDLES is a structure containing handles of components in GUI using
tags as fieldnames, e.g. handles.figJditter3, handles.slider2. This
structure is created at GUI startup using GUIHANDLES and stored in
the figure's application data using GUIDATA. A copy of the structure
is passed to each callback. You can store additional information in
this structure at GUI startup, and you can change the structure
during callbacks. Call guidata(h, handles) after changing your

copy to replace the stored original so that subsequent callbacks see
the updates. Type "help guihandles" and "help guidata" for more
information.

o o° o° o° o° o o

o°

o\°

o\°

Oscilloscope Analysis and Connectivity Made Easy

Improved Jitter Example with a GUI Interface

| VARARGIN contains any extra arguments you have passed to the
| callback. Specify the extra arguments by editing the callback
%| property in the inspector. By default, GUIDE sets the property to:
| <MFILENAME> ('<SUBFUNCTION NAME>', gcbo, [], guidata (gcbo))
| Add any extra arguments after the last argument, before the final
| closing parenthesis.

As described in the code comments:
o fig references the FIG-file created for jitter3.

e handles is a locally defined variable that references the
structure of GUI controls in jitter3. These handle components
use Tag names as field modifiers, such as
handles.editThreshold and handles.pushbuttonStart.

You do not need to make any changes to this automatically generated code
block.

The Parameter Edit Text Box Functions
From the GUI you created, MATLAB automatically generates the following
code stubs for the Edit Text boxes:

function varargout = editSymbolRate Callback (h, eventdata,
handles, varargin)
% Stub for Callback of the uicontrol handles.editSymbolRate.

function varargout = editRecordLength Callback (h, eventdata,
handles, varargin)
% Stub for Callback of the uicontrol handles.editRecordLength.

function varargout = editThreshold Callback (h, eventdata,
handles, varargin)
% Stub for Callback of the uicontrol handles.editThreshold.

function varargout = editHysteresis Callback (h, eventdata,
handles, varargin)
% Stub for Callback of the uicontrol handles.editHysteresis.

This code is called when the user enters text in one of the Edit Text boxes on
the user interface. You need to update these callback functions so that
application parameters are updated when the user changes values on the user
interface. To do this, you will use two new predefined functions:

e The setappdata MATLAB function sets the name and value
for application-defined data associated with the handles
structure. Once this function stores the application data,
other callbacks can access it.

Oscilloscope Analysis and Connectivity Made Easy 191

Improved Jitter Example with a GUI Interface

192

The get MATLAB function returns object properties and
their values. In this case, it returns the String property of
elements identified by handle h, which are qualified by their
tag names.

Complete the callback functions as follows:

1.

Insert the following line after the code stub for the Symbol
Rate Edit Text box:

setappdata (handles.figditter3, 'SymbolRate', ...
str2num(get (h, 'String'))) ;

This code sets the SymbolRate variable to the numeric equivalent of
a String property value obtained from the Symbol Rate Edit Text box
identified by handle h.

Insert the following line after the code stub for the Record
Length Edit Text box:

setappdata (handles.figJditter3, 'RecordLength', ...
str2num(get (h, 'String'))) ;

This code sets the RecordLength variable to the numeric equivalent
of a String property value obtained from the Record Length Edit
Text box identified by handle h.

Insert the following line after the code stub for the
Threshold Edit Text box:

setappdata (handles.figditter3, 'Threshold', ...
str2num(get (h, 'String'))) ;

This code sets the Threshold variable to the numeric equivalent of a
String property value obtained from the Threshold Edit Text box
identified by handle h.

Insert the following line after the code stub for the
Hysteresis Edit Text box:

setappdata (handles.figditter3, 'Hysteresis', ...
str2num(get (h, 'String'))) ;

This code sets the Hysteresis variable to the numeric equivalent of a
String property value obtained from the Hysteresis Edit Text box
identified by handle h.

The VISA Selector Popup Menu Function

The jitter3.m function does not automatically connect to the oscilloscope. The
user must first select the VISA vendor (Tek, NI, or Agilent) from a popup

menu and then click the CONNECT button.

Oscilloscope Analysis and Connectivity Made Easy

Improved Jitter Example with a GUI Interface

From the GUI you created, MATLAB automatically generates the following
code stub for the popup menu used to select a VISA vendor:

function varargout = popupmenuSelector Callback (h, eventdata,
handles, varargin)
% Stub for Callback of the uicontrol handles.popupmenuSelector.

Complete this callback function as follows:

1. Insert the following lines after the code stub:

setappdata (handles.figditter3, 'Connection',get (h, 'Value')) ;

This code sets the Connection variable to the Value property value
obtained from the popup menu identified by handle h, where:

1 = TekVISA - Scope
2=NIVISA -PC
3 = Agilent - PC

The CONNECT Button Function
From the GUI you created, MATLAB automatically generates the following
code stub for the CONNECT button:

function varargout = pushbuttonCONNECT Callback (h, eventdata,
handles, varargin)
% Stub for Callback of the uicontrol handles.pushbuttonCONNECT.

This code is called when a user clicks the CONNECT button on the user
interface. Complete the callback function as follows:

1. Insert the following lines after the code stub:

o°

Read the parameters from edit boxes (String property) on the
user interface and set the application data associated with
the figure window so that it is accessible from any callback

o\°

o\°

% function

symbolRate = str2num(get (handles.editSymbolRate, 'String')) ;
setappdata (handles.figditter3, 'SymbolRate', symbolRate) ;
recordLen str2num (get (handles.editRecordLength, 'String')) ;

threshold str2num (get (handles.editThreshold, 'String')) ;

setappdata (handles.figditter3, 'Threshold', threshold) ;

hysteresis = str2num(get (handles.editHysteresis, 'String'));

setappdata (handles.figditter3, 'Hysteresis', hysteresis) ;

conn = get (handles.popupmenuSelector, 'Value') ;

setappdata (handles.figditter3, 'Connection', conn) ;

strCh = 'chl';

g = open_instrument (conn, strCh, symbolRate, recordLen, ...
threshold, hysteresis)

% store the instrument object as application data so that other

callbacks can access it

setappdata (handles.figditter3, 'instr',g)

% Turn the CONNECT button enable property off so that it can't

% be pressed again

set (h, 'Enable', 'off"') ;

set (handles.editRecordLength, 'Enable', 'off");

set (handles.popupmenuSelector, 'Enable', 'off ") ;

(
setappdata (handles.figditter3, 'RecordLength', recordLen) ;
(

o\°

Oscilloscope Analysis and Connectivity Made Easy 193

Improved Jitter Example with a GUI Interface

194

This function:

a. Reads parameters from the Edit Text box objects and
popup menu object in the GUI using the Get MATLAB
function, instead of getting the parameters from a
function call or local assignment (as was done in the
jitter2.m example).

b. Converts the parameters to numbers, since they are
stored as string data.

c. Passes the parameters to the open_instrument function
(on page to open a VISA object and set up the
instrument, and returns the resulting VISA object as g.

d. Uses the setappdata MATLAB function to store the
parameter information with the application Figure
Window. The same is done for the VISA object g.
Otherwise, this data would not be accessible from other
callbacks, such as those for the SINGLE and Close
buttons.

e. Uses the set MATLAB function to turn the Enable
property off for the CONNECT button, the Record
Length Edit Text box, and the VISA selection pop-up
menu. Disabling these controls prevents the user from
accessing them while connected.

The Open Instrument Function

Next you will write the open_instrument function. Rather than coding this
function inline, you will call it separately to improve readability and facilitate
code reuse and modification.

1. Type the following lines at the end of the jitter3.m file after
the code stubs for callback functions:

% function to open the instrument and set up the measurement
function g = open_instrument (conn,strCh, symbolRate, ...
recordLen, threshold, hysteresis)

% Use inside the scope with Tek VISA (conn=1),
% externally with NI visa (conn=2)
% or Agilent VISA (conn=3)

switch conn

case 1,

g = visa('tek', 'GPIB8::1::INSTR');

disp('g = visa(''tek'', ''GPIB8::1::INSTR'') ;")
case 2,

g = visa('ni', 'GPIB0::1::INSTR"');

disp('g = visa(''ni'',''GPIBO::1::INSTR''") ;')
case 3,

g = visa('agilent', 'GPIBO::1::INSTR');

disp('g = visa(''agilent'', ''GPIBO::1::INSTR'') ;")
end

disp('Instrument object is created')

Oscilloscope Analysis and Connectivity Made Easy

Improved Jitter Example with a GUI Interface

o

% set the instrument object properties

set (g, 'InputBufferSize', recordLen*2) ;

% open the instrument object for reading and writing
fopen (g) ;

% send commands to set up the instrument
fprintf(g, 'HEADER OFF');

fprintf(g, ['DATA:SOURCE ' strCh]) ;
fprintf(g, 'DATA:ENCDG SRIBINARY;WIDTH 2');
fprintf(g, 'ACQUIRE: STATE OFF');

fprintf(g, 'ACQUIRE:MODE NORMALSAMPLE') ;
fprintf(g, 'ACQUIRE: STOPAFTER SEQUENCE') ;

% end of open instrument

Notice that some of this code is borrowed directly from the jitter2.m
script. This function:

a. Creates and opens a VISA object based on the vendor
value selected in the VISA selector pop-up menu.

b. Uses the disp MATLAB function to display instrument
object summary information.

c. Sets up the instrument, but does not acquire any data yet.

The Close Button Function
From the GUI you created, MATLAB automatically generates the following
code stub for the Close button:

function varargout = pushbuttonClose Callback (h, eventdata,
handles, varargin)
% Stub for Callback of the uicontrol handles.pushbuttonClose.

This code is called when a user clicks the Close button on the user interface.
Complete the callback function as follows:

1. Insert the following lines after the code stub:

CONNECT button was never pressed)
getappdata (handles.figJitter3, 'instr');
f isempty(g)
disp('No instrument object')
else
fclose(g)
delete(g)
disp('Instrument object is closed and deleted')
end
close (handles.figditter3)

% get the instrument object and delete it unless it is empty
(

g
i

This code:

a. Uses the getappdata MATLAB function to access the
instrument object made available by the setappdata
function.

b. Checks to see whether instrument object g is empty and
quits without errors if the connection was never made

Oscilloscope Analysis and Connectivity Made Easy 195

Improved Jitter Example with a GUI Interface

c¢. Uses fclose and delete ICT functions to close and
deallocate memory for the instrument object.

d. Uses the disp MATLAB function to immediately display
information about the instrument object.

e. Uses the close MATLAB function to close the Figure
Window.

2. To test execution, activate the user interface by selecting
Tools > Activate Figure from the Guide menu.

3. Click the Close button in the Figure Window to ensure that
no error messages are generated.

The Close button should close the GUI without errors.

4. Type instrfind in the Command Window to ensure that no
instrument objects are left in the workspace.

The function should return an empty matrix.

The SINGLE Button Function
From the GUI you created, MATLAB automatically generates the following
code stub for the SINGLE button:

function varargout = pushbuttonSINGLE Callback (h, eventdata,
handles, varargin)
% Stub for Callback of the uicontrol handles.pushbuttonSINGLE.

This code is called when a user clicks the SINGLE button on the user
interface. Complete the callback function as follows:

1. Insert the following lines after the code stub:

% disable the button while processing the acquisition

set (h, 'Enable', 'off") ;

% store application data with the main figure object

% it is updated by edit box callbacks

g = getappdata (handles.figJitter3, 'instr');

recordLen = getappdata (handles.figditter3, 'RecordLength') ;

symbolRate = getappdata (handles.figJditter3, 'SymbolRate') ;

threshold = getappdata (handles.figJitter3, 'Threshold');

hysteresis = getappdata (handles.figJitter3, 'Hysteresis');

exportWaveform = getappdata(handles.figJditter3,

'ExportWaveform') ;

% call the function that communicates with the instrument

acquire instrument (handles, g, symbolRate, recordLen, ...
threshold, hysteresis, exportWaveform)

% enable the button

set (h, 'Enable', 'on') ;

196 Oscilloscope Analysis and Connectivity Made Easy

Improved Jitter Example with a GUI Interface

This code:

a. Uses the set MATLAB function to turn the Enable
property off for the SINGLE button. Disabling this
button prevents the user from clicking it during the
acquisition.

b. Uses the getappdata MATLAB function to access the
instrument object, record length, symbol rate, threshold,
hysteresis, and waveform export check box status. These
parameters were made available by the setappdata
MATLAB function in the open_instrument function (on

page .

c. Passes these parameters to the acquire_instrument
function (on page to acquire a single waveform
sequence.

d. Re-enables the SINGLE button after the acquisition.

The Start Button Function
From the GUI you created, MATLAB automatically generates the following
code stub for the Start button:

function varargout = pushbuttonStart Callback(h, eventdata,
handles, varargin)
% Stub for Callback of the uicontrol handles.pushbuttonStart.

This code is called when a user clicks the Start button on the user interface.
Complete the callback function as follows:

1. Insert the following lines after the code stub:

o\°

set the application data interrupted to 0

it will be changed only by pressing STOP button.

this variable will be checked inside the while loop in
acquire instrument

interrupted = 0;

setappdata (handles.figJditter3, 'interrupted', interrupted) ;
set (h, 'Enable', 'off") ;

o°

o°

g = getappdata (handles.figJitter3, 'instr');

recordLen = getappdata (handles.figJitter3, 'RecordLength') ;
symbolRate = getappdata (handles.figJditter3, 'SymbolRate') ;
threshold = getappdata (handles.figditter3, 'Threshold!') ;
hysteresis = getappdata (handles.figJitter3, 'Hysteresis');
exportWaveform = getappdata (handles.figJditter3,
'ExportWaveform') ;

% Change the scope to perform continuous measurements
fprintf (g, 'ACQUIRE: STOPAFTER RUNSTOP') ;

% call the acquisition function

acquire instrument (handles, g, symbolRate, recordLen, ...
threshold, hysteresis, exportWaveform)

Oscilloscope Analysis and Connectivity Made Easy 197

Improved Jitter Example with a GUI Interface

198

% Enable the button when finished (STOP button pressed and
% acquire_ instrument finished)

set (h, 'Enable', 'on') ;

This code:

a. Zeroes an interrupted state variable that is used to
determine whether a continuous RUN acquisition has
been interrupted by a user clicking the Stop button.

b. Uses the setappdata MATLAB function to set the name
and value for the interrupted state variable and associate
it with the figure object, so that other callbacks can
access it.

c. Uses the set ICT function to turn the Enable property off
for the Start button. Disabling this button prevents the
user from clicking it during the acquisition.

d. Uses the fprintf function to send an
ACQUIRE:STOPAFTER RUNSTOP native GPIB
command, which tells the oscilloscope to acquire
continuous data rather than a single sequence
(ACQUIRE:STOPAFTER SEQUENCE).

e. Uses the getappdata MATLAB function to access the
instrument object, record length, symbol rate, threshold,
hysteresis, and waveform export check box status. These
parameters were made available by the setappdata
MATLAB function in the open_instrument function (on

page .

f. Passes these parameters to the acquire_instrument
function (on page to acquire a continuous
waveform sequence until the Stop button is clicked.

g. Re-enables the Start button after the acquisition is
stopped by a user clicking the Stop button.

The Stop Button Function
From the GUI you created, MATLAB automatically generates the following
code stub for the Stop button:

function varargout = pushbuttonStop Callback (h, eventdata, ...
handles, varargin)
% Stub for Callback of the uicontrol handles.pushbuttonStop.

Oscilloscope Analysis and Connectivity Made Easy

Improved Jitter Example with a GUI Interface

This code is called when the Stop button is clicked on the user interface.
Complete the callback function as follows:

1. Insert the following lines after the code stub:

setappdata (handles.figJditter3, 'interrupted', 1);

This code uses the setappdata MATLAB function to set the value
for the interrupted state variable to 1, signifying that a continuous

RUN acquisition has been interrupted by a user clicking the Stop

button.

The Acquire Instrument Function

Next you will write the acquire_instrument function and add it to the end of
the jitter3.m function. Rather than coding this function inline, you will create
and call it separately to improve readability and facilitate code reuse and
modification.

1. Type the following lines at the end of the jitter3.m file after
the open_instrument function. Cut and paste from the
jitter2.m file where possible to avoid retyping duplicate code:

function acquire instrument (handles,g, symbolRate,recordlLen, ...
threshold, hysteresis, exportWaveform)

% function to perform a measurement and read the waveform data

fprintf(g, 'ACQUIRE: STATE RUN') ;

o°

set this variable to 0 despite what value is stored as an
application data. This enables both SINGLE and STOP/RUN
functionality

interrupted = 0;

o°

o°

o

% perform the main loop

while (~interrupted)

while query(g, 'BUSY?','%s','%e'); end;

horizLen = query (g, '"HORIZONTAL:RECORD?', '%s',6 '%e');

fprintf(g, ['DATA:START ' num2str(1l)]);

fprintf(g, ['DATA:STOP ' num2str (recordLen)]) ;

fprintf(g, 'CURVE? ') ;

dummy stringl = fscanf(g, '%s',2);

dummy string2 = fscanf(g, '%s',str2num(dummy stringl(2)));
recordLen2Transfer = min(recordLen,horizLen) ;
[waveform raw count] = fread(g,recordLen2Transfer, 'intl6');
% read the termination character

dummy string3 = fscanf(g, '%s',1):;

% get the sampling interval

sampleInterval = query (g, 'WFMOUTPRE:XINCR?', '%s',6 '%e');

% Scale the data

yunit = query(g, 'WFMOUTPRE:YUNIT?') ;

ymult = query(g, 'WFMOUTPRE:YMULT?', '%s', '%e');
yoff = query(g, 'WFMOUTPRE:YOFF?', '%s',6 '%e');
yzero = query(g, 'WFMOUTPRE:YZERO?', '%s', '%e');

o

% check that all parameters were read from the device

if ~(isempty(waveform raw) | isempty (ymult) |
isempty (yoff) | isempty (yzero))
% scale the data to the correct values
waveform = ymult* (waveform raw - yoff) - yzero;

Oscilloscope Analysis and Connectivity Made Easy 199

Improved Jitter Example with a GUI Interface

% determine whether waveform contains any edges
otherwise skip the jitter analysis

o°

if max(waveform) > threshold + hysteresis &

3
S

min (waveform) < threshold - hysteresis
find the edges in the supplied waveform

measuredTime = measureEdgeTiming2 (waveform,

2
S

threshold, hysteresis, sampleInterval) ;

preallocate space for the clocks array

clocks=zeros (1, length (measuredTime)) ;

B3
S
o

S

derive the clocks based on the supplied symbol
rate

for index = 2:length(measuredTime) ;

clocks (index) = (round(symbolRate *
(measuredTime (index) -
measuredTime (index - 1))))
+ clocks (index-1) ;

end

coef = polyfit (clocks,

fit the derived clocks and the measured time to a
straight line
measuredTime, 1) ;

coef (2) is the intercept (a) in the form

y = a + bx
coef (1) is the slope (b) in the form y = a + bx
= coef (2) ;
= coef (1) ;

measuredAverageSymbolRate = 1/b;
measuredSymbolRateError =

reconstructedTime = a + (clocks

o

<
o
<

(measuredAverageSymbolRate - symbolRate)
/symbolRate;

.* D) ;

jitter is the difference between the measured
time and the reconstructed time.

jitter = reconstructedTime - measuredTime;

[
<

see the MATLAB function reference for 'norm'

rmsJitter = norm(jitter)/sqrt (length(jitter)) ;

set (handles.figJditter3, 'HandleVisibility'

,'on');

axes (handles.axesl)
plot (waveform)
title = (['symbol rate error: ',

num2str(measuredSymbolRateError * 100,

1S)
< ;

xlabel ('samples') ;

ylabel (['waveform amplitude,

strtok (yunit, '"'")1);

set (handles.axesl, 'XLim', [0 count])

axes (handles.axes?2)
plot (reconstructedTime, jitter) ;
title = (['RMS jitter: ',

num2str(rmsJ1tter*le6) ' \mus']) ;

xlabel ('time in seconds') ;
ylabel ('jitter in \mus');

o
S
o

S

set (handles.axes2, 'XLim',

o
]

set axis manually, otherwise the autoscaling
overrides the setting

[0 count*sampleIntervall)
calculate and plot jitter histogram

[hs,y]l=hist (jitter,30) ;
hold on

o
]

scale the histogram

hg hist =

200

barh (y, hs*reconstructedTime (end) /max (hs) *0.3,1) ;

Oscilloscope Analysis and Connectivity Made Easy

Improved Jitter Example with a GUI Interface

hold off

set (hg_hist, 'FaceAlpha',0.4)

set (hg hist, 'EdgeAlpha', 0)

set (handles.figJitter3, 'HandleVisibility', 'off!') ;

else
set (handles.figJitter3, 'HandleVisibility', 'on') ;
axes (handles.axesl)
plot (waveform)
xlabel ('samples') ;
ylabel (['waveform amplitude, ' strtok(yunit,'"')]);
axes (handles.axes?2)
title('RMS jitter not calculated - no edges
detected. ') ;
set (handles.figJitter3, 'HandleVisibility', 'off!') ;
end
% export waveforms to MATLAB workspace
if exportWaveform
assignin('base', 'waveform', waveform) ;
assignin('base', 'measuredTime', measuredTime) ;

assignin('base', 'reconstructedTime',
reconstructedTime) ;

assignin('base', 'jitter',jitter) ;

assignin('base', 'clocks',clocks) ;

assignin('base','b',b);
assignin('base', 'measuredAverageSymbolRate',
measuredAverageSymbolRate) ;
assignin('base', 'sampleInterval', sampleInterval) ;
end
drawnow;
% check whether the user has pressed on Stop button
interrupted = getappdata (handles.figJitter3,
'interrupted') ;

(

(
assignin('base','a',a);

(

(

else
set (handles.figJitter3, 'HandleVisibility', 'on') ;
axes (handles.axesl)
title('Data incorrectly received from the scope')
set (handles.figJditter3, 'HandleVisibility', 'off!') ;
end
end % while interrupted
% end of acquire_instrument

Again, much of this code is borrowed from jitter2.m. However, this
function implements more features and checks for error conditions so
it fails more gracefully. In particular, this code:

a. Sets up a loop (based on the variable interrupted) that
adds the capability to get either a SINGLE acquisition
(when the user clicks the SINGLE button), or a
continuous RUN acquisition (when the user clicks the
Start button).

b. Uses the isempty MATLAB function to make sure all
the parameters were read from the device before scaling
the data. If not, uses the set MATLAB function to turn
the HandleVisibility property on for handles on the Figure
Window to help prevent overplotting of the previous
plot, so that the message “Data incorrectly received
from the scope” can be displayed in the title instead of
plotting the waveform. Then the property is turned back
off.

Oscilloscope Analysis and Connectivity Made Easy 201

Improved Jitter Example with a GUI Interface

c. Uses the min and max MATLAB functions to determine
whether to skip the jitter analysis if no edges were found
in the waveform (which would be the case if you are not
using the Waveform Generator program or another
connected source to generate the signal). If none were
found, displays the message “RMS jitter not calculated -
no edges detected.”

d. Activates axes in a different way before plotting.
Because axes already exist, instead of using the subplot
function as in the jitter2.m example, this function calls
the axes MATLAB function with axis handle arguments
(handles.axes1 and handles.axes?2), after which regular
plotting commands are used.

e. Gets the count of the number of values read when
performing the fread of the waveform, and uses this
count to help calculate and manually set the XLim
property that appears on the Jitter plot’s x axis.

f. Calculates and plots a histogram of the jitter using hist
and barh MATLAB functions, since this form of graph
is frequently used to determine the cause of jitter. It is
plotted on the vertical axis and uses a new feature
introduced in MATLAB 6.0 that enables transparently
overlayed waveforms.

g. Checks the value of the exportWaveform variable to see
if the Waveform Export check box (on page was
selected. If so, uses the assignin MATLAB function to
export all the waveform variables to the MATLAB
workspace (which is referred to as the base).

h. Uses the drawnow MATLAB function to update the plot.

i. Checks the current state of the application data
‘interrupted’ associated with handles.figJitter3 to see if
the user has clicked the Stop button yet, in which case
control returns to the Start button function (on page
. Otherwise, acquisition and processing continues.

The Waveform Export Check Box Function

The Jitter3.m program allows users to export waveforms and many other
parameters to MATLAB workspace for further analysis and visualization.
From the GUI you created, MATLAB automatically generates the following
code stub for the Waveform Export check box:

%
S Se————— o ——=—===—==q=

function varargout = checkboxWaveformExport (h, eventdata, ...
handles, varargin)
% Stub for Callback of the uicontrol handles.checkboxWaveformExport.

202 Oscilloscope Analysis and Connectivity Made Easy

Improved Jitter Example with a GUI Interface

This code is called when the user selects the Waveform Export check box on
the user interface. Complete the callback function as follows:

1. Insert the following lines after the code stub:

setappdata (handles.figditter3, 'ExportWaveform', get (h, 'Value')) ;

This function sets the ExportWaveform variable to the Value property
value obtained from the check box identified by handle h.

The Export Instrument Button Function

The Jitter3.m program also includes an Export Instrument button. This
feature exports the instrument object, which enables users to have interactive
access from the MATLAB prompt to the current connection to the
oscilloscope instrument, while the jitter3.m program remains open.

From the GUI you created, MATLAB automatically generates the following
code stub for the Export Instrument button:

function varargout = pushbuttonExportInstrument Callback (h,

eventdata, handles, varargin)
% Stub for Callback of the uicontrol
% handles.pushbuttonExportInstrument.

This code is called when the Export Instrument button is clicked on the user
interface. Complete the callback function as follows:

1. Insert the following lines after the code stub:

g = getappdata(handles.figJitter3, 'instr');
assignin('base', 'instr',g);
disp ('Instrument object exported to workspace as instr')

This code:

a. Uses the getappdata MATLAB function to access the
instrument object made available by the setappdata
function.

b. Uses the assignin MATLAB function to export the
instrument object to the MATLAB workspace.

c. Uses the disp function to display the message
“Instrument object exported to workspace as instr.” in
the MATLAB command window. Users can access the
object on the MATLAB command line by typing the
variable name instr with any ICT function.

2. Click the Save to Disk icon from the toolbar, type jitter3.m
and click OK.

Figure 51}hows the first page of the completed jitter3 function.

Oscilloscope Analysis and Connectivity Made Easy 203

Improved Jitter Example with a GUI Interface

MATLAB Editor/Debugger - [jitter3. m - C:\phyllis\Charm\040501\kalev's Files\jitter3.m]

[#] File Edit Yiew Debug Tools Window Help =18 =]
Ded| /&R &R | & & 60Ee e 2 | se) =

function varargout = jitterd (wvarargin)
JITTERS Application M-file for jitterid.fig
FIZ = JITTER3 launch jitterd GUI.
JITTERZ ('callback name', ...) invoke the nawed callback.

EU

o

&

Last Modified by GUIDE wZ.0 05-Apr-zZ001 16:32:15
if nargin == 0 % LATUNCH GUI

fig = openfigimfilename, 'reuse');

% Uze system color scheme for figure:

set (fig, 'Color' ,get (0, 'defaunltUicontrolBackgroundColor'))

handles = guihandlesifig):
guidatalfiy, handles):;

% initialize and set up the measurement
open instrument (fig, handles)

if nargout > 0
wvarargout{l} = fig:
end

elseif ischar (varargin{l}) % INVOEE IAMED SUEFUNCTION OF CALLEACE

Lry

[varargout{l:nargout}] = fewval(varargin{:}): % FEVAL switchyard
catch

dizspilasterr):
end

end

1 |

¥ Generate & structure of handles to pass to callbacks, and store it

il

[jitterz.m - c:x...|

Ready Line 155 9:23 PM
A

Figure 51: First page of completed jitter3 example in MATLAB

Testing the Improved Solution
To test the completed GUI:

1. Close all Figure Windows before running the jitter3
application.

2. In the Command Window, type
jitter3

The jitter3.fig file is opened for user input.

3. Select TekVISA - Scope from the pop-up menu in the Figure
Window.

4. Click the CONNECT button in the Figure Window.

204 Oscilloscope Analysis and Connectivity Made Easy

Improved Jitter Example with a GUI Interface

5. Click the SINGLE button in the Figure Window to acquire
waveform data using the default input values.

MATLAB gets a waveform and updates both plotted graph solutions
along with the information displayed in their titles in the Figure

Window, as shown in Figure 52,

6. Select the Waveform Export check box.

7. Change the values in the edit boxes for Symbol Rate,
Record Length, Threshold, and Hysteresis.

8. Click the Start button in the Figure Window to acquire
waveform data using the new values.

MATLAB gets a waveform of the specified length continuously, and
updates both plotted graph solutions at regular intervals, along with
the information displayed in their titles in the Figure Window.

9. Click the Stop button in the Figure Window to stop data
acquisition.

Data acquisition stops, and the waveform and associated parameters
are exported since the check box was selected.

10. In the Command Window, type whos to verify that the
following variables are accessible from the MATLAB
workspace:
waveform
measuredtime
jitter
clocks
a
b
measuredAverageSymbolRate
samplelnterval

11. Click the Export Instrument button in the Figure Window to
export the instrument object to the MATLAB workspace.

The message “Instrument object exported to workspace as instr”
appears on the MATLAB command line.

12. In the Command Window, type the following to verify that
the instrument object is accessible from the MATLAB
workspace:
instr

MATLAB displays the instrument properties.

Oscilloscope Analysis and Connectivity Made Easy 205

Chapter 8 Review

<) Jitter3 o 3

wavetorm amplitude,

iitter in s

symbol rate error: 000701 24 %

2
Symbal Rate

. , [~ 5000

| Fecord Length
i ‘ | 200000

Threshold
_1 IT

al \ \ , \ \ \ \ L L Husteresis

] 0z 04 08 0.5 1 12 14 16 13 2 I 01

samples «10

10 RMS jitter: 4 9505e-006 p= ITEk"-.-"|5.":". - Scope j

B0 EET |
1F Ewpart Instrumentl

o M [waveform Expart

Ak Startl Stnpl

| SINGLE |

] .oz 0.04 Q.06 0.05 0.1 012 014 016 Close |

time in seconds

2

206

Figure 52: The plotted graph solutions for jitter3 in the MATLAB Figure Window

Chapter 8 Review
To review what you learned in Chapter 9:

e You can use the Instrument Control Toolbox included in
MATLAB 6.1 to communicate between Tektronix
Windows-based oscilloscopes and MATLAB programs.

* You can use the guide utility, which is included in
MATLAB 6.1, to design your own graphical user interfaces
and add them to MATLAB functions.

e You can use the jitter2 and jitter3 programs described in this
chapter as templates for inserting waveform data into other
MATLAB programs, with or without a GUI interface.

e You can use the jitter3 program as a useful and timesaving
way to open an instrument and export it to the MATLAB
workspace, regardless of the type of analysis being
performed.

Oscilloscope Analysis and Connectivity Made Easy

Introduction

Chapter 9:
LabWindows/CVI and
LabVIEW

Using Tektronix Plug-n-Play Drivers with
LabWindows/CVI and LabVIEW

Introduction

New Plug-n-Play drivers from Tektronix enable communication between
your Windows-based oscilloscope and popular programming environments.
Now you can easily incorporate these Plug-n-Play driver functions into
programs that you build using LabWindows/CVI and LabVIEW, two popular
test-automation packages from National Instruments.

Although this chapter focuses on oscilloscope connectivity in the
LabWindows/CVI and LabVIEW environments, you can also use these PnP
drivers in other environments such as Visual Basic 6.0, Visual C++ 6.0, and
HP-VEE.

Caution: Tektronix recommends that you use LabVIEW and
LabWindows/CVI on an external PC to control your Tektronix
Windows-based oscilloscopes. However, if you want to run
LabVIEW and LabWindows/CVI directly on your oscilloscope, first
call a Tektronix Technical Support Representative for assistance.

Tektronix Plug-n-Play Drivers

Tektronix VXI Plug-n-Play compatible drivers can be used on a PC to
control your oscilloscope. The driver for controlling each type of
oscilloscope includes a function panel (.fp), header (.h), source (.c), Dynamic
Link Library (DLL), and help (.hlp) file.

Each driver consists of a number of functions that mirror the knobs and
controls on your oscilloscope and the menu selections on your oscilloscope
software. These software functions can set up, communicate with, acquire
data from, and otherwise control features of your oscilloscope. You can call
the run-time functions from the test programs you write.

Use the Installation program on your product software CD to install the Plug-
n-Play driver files on your PC. To find out more about using the Plug-n-Play

Oscilloscope Analysis and Connectivity Made Easy 207

Overview of LabWindows/CVI

driver functions, consult the online Plug-n-Play driver Function Reference
Help file for your oscilloscope Series. shows a sample page from
the Function Reference Help file for the TDS/CSA 8000 Series
Oscilloscope.You can invoke this Windows online help or a PDF version of
it from the Start meEIu by selecting Start > Programs >VXlpnp and choosing
the desired version.

& TDS/CS5A [_ O] x|
File Edit Bockmark Options Help
Help Topics Back Prrint Options % ¥

task. Measure functions are identified by the extended prefix, tkid=8000_meas

The figure belowy lists all the TDSICSAB000 measure functions by class. Click on & function class for a
list of relsted functions or routines

Lo - Initiali 22 Func

Cofigme Pactin Chss

Measure Functio

Utility Fuarctic

KN M
Figure 53: Plug-n-play Driver Help file for TDS/CSA8000 Series oscilloscopes

Overview of LabWindows/CVI

LabWindows/CVl is an interactive ANSI C environment developed by
National Instruments. The LabWindows/CVI/CVI environment allows you to
create virtual instruments on personal computers that communicate with real
instruments via communications interfaces. Widely used for developing data
acquisition and instrument control software, LabWindows/CVI comes with a
complete set of I/O and instrumentation libraries, user interface tools, and
mathematical analysis libraries.

208

3 Assuming you are installing on the C: drive on a Windows 98 system, the tktds8k.hlp file is located in
C:\VXIpnp\Win95\Tktds8k\. On a Windows NT system, the tktds8k.hip file is located in
C:\VXIpnp\WinNT\Tktds8k\. You can invoke the help file from that directory.

Oscilloscope Analysis and Connectivity Made Easy

Using Tektronix Plug-n-Play Drivers with LabWindows/CV/|

Using Tektronix Plug-n-Play Drivers with LabWindows/CVI

This simple example demonstrates how to use the Tektronix tktds8k Plug-n-
Play driver functions within LabWindows/CVI to control the TDS/CSA8000
sampling oscilloscope from a PC running LabWindows/CVI 5.5 and
connected by a GPIB cable to the GPIB slot on the back of the
TDS/CSA8000 oscilloscope. The concepts described here apply to drivers
for any Tektronix Windows-based oscilloscope.

This section assumes you are already familiar with the LabWindows/CVI
C coding environment and have worked with instrument drivers before.

lable 38 [summarizes the TDS/CSA 8000 PnP driver functions used in this
book.

To work this example, you will first need to load the PnP driver for your
oscilloscope.

Loading the Driver

To install the Plug-n-Play driver, you must unzip the tktds8k PnP driver and
run the setup.exe program. This program places a folder named VXIpnp in
your root directory.

After installing the driver, there are two ways to incorporate a Tektronix
Plug-n-Play driver into your LabWindows/CVI program.

Note: It is not necessary to install TekVISA on your PC to work this
example, since LabWindows/CVI comes with its own NI-VISA
implementation already installed. Installing TekVISA will overwrite
your NI-VISA implementation. The Plug-n-Play drivers are layered
to work with either VISA implementation.

Load from the Instrument Menu
One way to load a Tektronix plug-n-play driver into LabWindows/CVI is
from the Instrument menu:

1. Inside the LabWindows/CVI environment, choose
Instrument > Load...

2. Browse to the disk location where plug-n-play drivers have
been installed, and select the instrument driver file (with an
fp extension) for the oscilloscope you are working on. Elor
the TDS/CSA 8000 oscilloscope, this file is tktds8k.fp.

4 Assuming you are installing on the C: drive on a Windows 98 system, the driver is placed in
C:\VXIpnp\Win95\Tktds8k\. On a Windows NT system, the driver is placed in
C:\VXIpnp\WinNT\Tktds8k\. The VXIpnp folder is created only if it does not already exist.

Oscilloscope Analysis and Connectivity Made Easy 209

Using Tektronix Plug-n-Play Drivers with LabWindows/CV/|

LabWindows/CVI compiles the driver source code and makes the
driver library and its functions available under the Instrument menu.

File Edit Wiew Buld Run

Mame C15 17TDs 8000 Series Osclloscope..,
Demol.uir =

T

Demol.c =

Load...
Unload...
Edit...

3. To view the driver library functions, select the driver library
from the Instrument menu (in this case, you would select

TDS 8000 Series Oscilloscope...)

As you can see, a large number of Plug-n-Play functions are
available for you to select and incorporate into your
LabWindows/CVI program.

21 Select Function Panel

Instrument: TDS 8000 Series Oscilloscope |

=l

Functian Windaw

SetwfmDatabaseEnabled SetWim Database Enabled |
SetwimDatabaseSource Set'Wim Database Source

SettimPeadoutDisplayState SetWimReadout Display State Select |
TDRPresst TODR Preset

ToggleFreeFun Toggle Free Fun

auto ConnectTodll Auto Connect To All Found

autoConnectToFirst Auto Connect To First Found

claose Clase

error_message Error Message

error_iueH Error Quei Cancel |
. reset Reszet

revision_guery Revision Query Help... |
self_test Self Test

sleep Delay in Seconds j

¥ Function Mames ¥ Alphabetize

[V Elatten ME

To see how to select a function, choose the init function and click Select.

210 Oscilloscope Analysis and Connectivity Made Easy

Using Tektronix Plug-n-Play Drivers with LabWindows/CV/|

A graphical screen similar to the following appears, prompting you
for fields to complete the syntax:

= TDS 8000 Series Oscilloscope - Initialize

File Code View Instrument Library Tools ¥indow Options Help
Alele| 2lxls oles| ~|g
thtds8lk_in
|0 Query Feset Device
Do Cuery Reset Device
Skip Cuery Don't Feset
Instrument Handle Status

tktds8k _init ("GPIBS::1::INSTR", IMNIT DO_QUERY, INIT DO_RESEH
1:

'n

Right-click the graphical screen to get help with the syntax of the function.

A Function help screen appears similar to the following:

2 Function Help

Function Mame: init

The initialize command opens a communication cheannel to the =
instrument. It returns a handle which is used to identify the
communications channel for all other driver functions.

Prototyps -----—-------———------
Wiltatus tktdsBk _init (ViRsre Resource_Name,
WViBoolean ID_Query,

WViBoolean Reset_Device,
ViPSession Instrument_Handle];

Instrument Help... Dione |

Click on one of the controls in the graphical screen and press F1 to get help with
an individual field.

Oscilloscope Analysis and Connectivity Made Easy 211

Using Tektronix Plug-n-Play Drivers with LabWindows/CV/|

A Control help screen appears similar to the following:

& Control Help

Contral Mame: 1D Cuery
Data Type: WiBoolean

Use this switch to perform or not to perform an ID query of the +
instrument. ID guery verifies that the model code and
manufacture ID of the instrument being connected to matches the
model code and manufacture ID in the source code for this
driver.

WValues:
INIT_DO_QUERY = 1
INIT_SEIP_QUERY = 0

Function Helg... Done |

Open from the File Menu

Another way to incorporate a Tektronix Plug-n-Play driver into your
LabWindows/CVI program is to open it from the File menu:

1. Inside the LabWindows/CVI environment, choose File >
Open > Function Tree (*.fp)...

B <1> e:\Demo1\Demol ¢ _ O] x]
J|-W Edit View Build Run Instrument Library Tools Window Options
New :

Source (c).. Cl+O

Open Quoted Text Ctr+U Include (*.h)...

User Interface (™.uir)...
Save Cil+S — Project (*.prj)...

Save As... Eunction Tree (*.fp)...
Save Copy As...
Close Ctri+W

2. Browse to the disk location where plug-n-play drivers have
been installed, select the instrument driver file (with an .fp
extension) for the oscilloscope you are working on, and add
it to your LabWindows/CVI project. For the TDS/CSA 8000
oscilloscope, this file is tktds8k.fp.

LabWindows/CVI compiles the driver source code and automatically
adds the driver into the LabWindows/CVI design environment.

212 Oscilloscope Analysis and Connectivity Made Easy

Using Tektronix Plug-n-Play Drivers with LabWindows/CV/|

Note: If you wish, open the driver source and include files and
add them to your project, so you can view driver function
parameters more easily while developing. In the case of the
TDS/CSAB8000 oscilloscope, these source files are tktds8k.c
(located in the same subdirectory as the help file) and tktds8k.h
(located in the \include subdirectory).

Building the Interface

This Measurement Capture example uses a timer control to periodically
capture a specified measurement and place the value in a list box. The timer
interval may be adjusted by a dial control. Because the target oscilloscope in
this example is a TDS/CSA8000 oscilloscope, the example lists its eight
possible measurements in the left-hand list box (Meas1 to Meas8). The
values of the measurement selected in the left-hand list box are placed in the
right-hand list box at the interval specified in the dial control. Measurements
are made until the user clicks the Stop button or until 1000 measurements
have been taken. shows the Measurement Capture interface at

design time.
Measurement Capture
Second Intervals Measurements heasurement Walues
sog 300 T & =]
4.00
1.00 J
ks
0.50 5.00
ﬂD.ED
=l [

Untitled Contral
: 5tart| §t0p| Exitl

Status:

Figure 54: The Measurement Capture program interface at LabWindows/CVI design
time

To design this interface:

1. Select File > New > User Interface to create a new user
interface file with a blank panel.

2. Insert controls onto the panel by making selections from the
Create menu, as shown in

Oscilloscope Analysis and Connectivity Made Easy 213

Using Tektronix Plug-n-Play Drivers with LabWindows/CV/|

B c:\Demo\Demotir ___ _ __ _______________ EEH|
Eile Edit!iew Amange Code Run Library Tools Window Options

'%714'
|

T Al#] Panel
i o0

Menu Bar...
sting R
Text Message o)
Text Box
Command Button
Toggle Button
LED 4
J Binary Switch
Ring
List Box
Decoration
Graph
Picture
Timer

e i M
ol A0 0 10 00 00 w00

Canvas
Table

Figure 55: Adding controls to a LabWindows/CVI panel

3. Double-click each control to access the edit attributes dialog
menu for that control.

A dialog box appears for editing its attributes, as shown in

i Edit Numeric Dial
~Source Code Connection

Quick EditWindow

ConstantNere: [ENERIEN

Callback Eunction: -

Unfitled Caontral

~Cantral Settings .00
Default Valus 0.00 & DDQS.UU
Deta Type Seowle | ’

4000 10.00

Control Mode Hiot

™ Initially Dimmed g&l

I Initially Hidden _l_'l
4 »
Bange Values..

~Label Appearance
Format and Precision
Labkel: Urtitled Control

~Contral Appearance [Lakel Raised

Show/Hide Parts... ¥ Size To Text
_ Tedsye. | Lobel Sye..

Ok Cancel |

Figure 56: Dialog box for editing attributes of the Dial control in LabWindows/CVI

214 Oscilloscope Analysis and Connectivity Made Easy

[able 32 |shows the relevant attributes of controls that appear on the
Measurement Capture panel in LabWindows/CVI. Constant names are

Using Tektronix Plug-n-Play Drivers with LabWindows/CV/|

underlined in the table to help distinguish them from labels, which appear on
the panel and affect how the panel looks, but are not typically referenced in

the code. Most of the attributes shown in the table are ones you must change
from their default values.

Table 32: Relevant attributes of controls that appear on the Measurement Capture
panel in LabWindows/CVI

Control

Panel

Numeric Dial

Timer

Button

Button

Attribute
Panel Title

Callback
Function

Constant
Name

Label

Callback
Function

Constant
Name

Range Values
Minimum
Maximum
Increment

Label

Callback
Function

Constant
Name

Interval
Enabled
Label

Callback
Function

Constant
Name

Label

Callback
Function

Constant
Name

Oscilloscope Analysis and Connectivity Made Easy

Change to

Measurement Capture

HandlePanel
PNLMEAS

Second Intervals

Timerinterval

TINTERVAL

.50
5
.25

Untitled Control
(no change)

ProcessTimer
TIMER

.50

False (Unchecked)
_Start

cmdStart

CMDSTART

_Stop
cmdStop

CMDSTOP

215

Using Tektronix Plug-n-Play Drivers with LabWindows/CV/|

Control Attribute Change to

Button Label _Exit
Callback cmdExit
Function
Constant CMDEXIT
Name

List Box Label Measurements
Constant LSTMEAS
Name
Control Mode Normal
Visible Lines 8

List Box Label Measurement Values
Constant LSTVALUES
Name
Control Mode Normal
Visible Lines 8

String Label Status:
Constant LBLSTATUS
Name
Control Mode Normal

Getting Help

To find out more about designing and coding programs in LabWindows/CV],
consult the Help file. The section on the User Interface Library is particularly
useful, as shown in

216 Oscilloscope Analysis and Connectivity Made Easy

< LabWindows/CVIl Online Help

Using Tektronix Plug-n-Play Drivers with LabWindows/CV/|

Eile Edit Bookmark Options Help
Help Topics Back. | Erint | < | » |
a |€Zg o4 | Using Callback Functions to Respond to User Interface Events

- [Contents Page =
- [E] Release Notes

[Sample Programs
- [£ Tools Library (toolsl
- [£] Glossary
@ ActiveX Automation
@ Advanced Analysis |
@ Analysis Library
@ ANSI C Library
@ DataSocket Library
@ DDE Library
@ Formatting and IO L
@ GPIB Library
@ IVl Instrument Drive
@& RS-232 Library
@ TCP Library
=10 User Interface Libra
o Overview
- [£] Graphical Use

[Developing ar
=@ Creating a Gri
=0 Using a Grapt

T T = WO WO =S SO = N = OO = WO = O T ==

-
-
-
-
-
-
-
f--
-
f--
-
=

M

=@ Common Use
#- & Panels

=@ Controls

#- & Menu Bars
=@ Events

@ Printing

- @ Multithreading
- @ Attributes

@ Functions

The tutorial in the Getting Started with LabWindows/CVWi manual presents examples of
callback functions. Many of the sample prograrms that come with LabWindows/CWI
illustrate callback functions, too. The following diagram and exarmple pseudo-code
illustrates the callback function concept

[|

Source {.c) Fila
main {)
User Interface Resource (ulr)
Panel
evanl info Cortral 1
N | -
IE l Callback Function
evant info Control 2
. I - i
m l Callback Function
avant info -l Panal
T| Galback Function

Callback Function Concept

panel handle = LoadPanel{...]:
DIisplayPanel (pansl_handle, ...j:
menu_handle = LoadMenuBar(...):
RunlUserInterface ()

int CVICALLBACE FanelResponse (int handle, int event, wvoid
*callbackdata, int eventdatal, int eventdataZ)
i
switch (event) {
case EVENT PANEL SIZIE :
/% Code that responds to the panel %/
/% heing resizged L
hreak;
case EVENT PANEL MOVE :
/* Code that responds to the pansl */
/% heing moved)
break:

. 8 | Iriling | ihrane >
| r »

K

Figure 57: Page from the LabWindows/CVI Help file

The LabWindows/CVI manual also includes a helpful tutorial entitled
Getting Started with LabWindows/CVI.

Modifying Auto-Generated Functions
Most programmers choose to automatically generate the callback functions in
the LabWindows/CVI user interface design environment. To auto-generate

skeleton code for your interface:

1. Select Code > Generate > All Code...

Oscilloscope Analysis and Connectivity Made Easy

217

Using Tektronix Plug-n-Play Drivers with LabWindows/CV/|

c:\DemoT\Demo1. uir _ o] x]
File Edit Create View Amange Run Library Tools Window Options
&[5 Al SetTargetFile.. |
B Generste | AllCode..
Second Intervals Measurements Mee View »
2pp 300 = . .
- Preferences > Main Function...
i J All Callbacks
050 500
ﬂU.SU
_ .. | Panel Callback
Untitled Contral
Start gmp| Exit Control Callbacks Chl+G
- Menu Callbacks...
Status: | |
4l [

2. From the pop-up dialog box, select the function that will
close the user interface (the ecmdExit function in this case)
and click OK.

The LabWindows/CVI UIR Code Generator generates a main
function, a panel callback function, and callback functions for each
of the hot controls with assigned callback function names.

Now you are ready to edit the generated functions that implement
initialization and respond to user events (such as clicking on
buttons).

3. Add the definitions shown in boldface to the auto-generated
include statements and declarations:

#include "Tktds8k.h"
#include <formatio.h>
#include <ansi c.h>
#include <cvirte.h>
#include <userint.h>
#include "Demol.h"

#define TRUE 1
#define FALSE 0

static int pnlmeas;
double rTimerInterval;
int ret, counter = 0;
ViStatus status;
ViSession ID;

int StartFlag = FALSE;

218 Oscilloscope Analysis and Connectivity Made Easy

Using Tektronix Plug-n-Play Drivers with LabWindows/CV/|

The first page of the program in the Code Window appears as shown

in Figure 58

B <1> e:\Demo1\Demol.c - [O] x|
Eile Edit View Build Run Instrument Library Tools Window Options

][e e Y R o S) B e

Hinclude “Tktds8k.h"
Hinclude <formatio.h>
Hinclude <ansi_c.h>
Hinclude <cvirte.h>
Hinclude <userint.h>
Hinclude “Demol.h™

-

#define TRUE 1
fidefine FALSE @

static int pnlmeas;
double rTimerInterval;
int ret, counter = 0;
Uistatus status;
UiSession ID;

int StartFlag = FALSE;

int main (int argc, char xargu[])
{ // standard code generated by Labllindows
if (InitCUIRTE (@, argu, 8) == Q)
return -1; /= out of memory =/
if ((pnlmeas = LoadPanel (®, “Demol.uir”, PNLMEAS)) < 0)
return -1;
DisplayPanel (pnlmeas);
RunUserlInterface ();
DiscardPanel (pnlmeas);
return 0;

}

1887201 | 97 | | | |Ins|E® suspended | 4| | Llél
Figure 58: The LabWindows/CVI Code Window

The Main Function
From the GUI you created, LabWindows/CVI automatically generates the
following commented code, which accepts a variable number of arguments:

int main (int argc, char *argv[])
{ // standard code generated by LabWindows
if (InitCVIRTE (0, argv, 0) == 0)
return -1; /* out of memory */
if ((pnlmeas = LoadPanel (0, "Demol.uir", PNLMEAS)) < 0)
return -1;
DisplayPanel (pnlmeas) ;

RunUserInterface () ;
DiscardPanel (pnlmeas);
return 0;

Oscilloscope Analysis and Connectivity Made Easy 219

Using Tektronix Plug-n-Play Drivers with LabWindows/CV/|

220

The main function calls the LabWindows/CVI routines to
e Load the Panel and bind it to the constant name PNLMEAS
e Display the Panel
e Launch the process for running the user interface
e Discard the Panel after the user closes it.

You do not need to make any changes to this automatically generated code
block.

The Panel Handler Function

The HandlePanel callback function executes when the Panel user interface
gets focus. Complete the automatically generated skeleton code for the Panel
user interface by adding the lines shown in boldface:

int CVICALLBACK HandlePanel (int panel, int event, void *callbackData,
int eventDatal, int eventDatal)

{ char buf[128];
char hold[30];
char *item = "Meas ";
int i;

switch (event)
{
case EVENT GOT_FOCUS:
// clear measurement panel
ret = ClearListCtrl (pnlmeas, PNLMEAS LSTMEAS) ;
// populate list box with measurements for TDS/CSA8000
for(i = 1; i <= 8; i++)({
Fmt (hold, "%s<%i", 1i);
buf[0] = '\O';
strcat (buf, item);
strcat (buf, hold);
ret = InsertListItem (pnlmeas, PNLMEAS LSTMEAS,
-1, buf, counter);

// set index value to Measl
ret = SetCtrlIndex(pnlmeas,PNLMEAS LSTMEAS, 0);
break;
case EVENT LOST FOCUS:

break;
case EVENT CLOSE:

break;

}

return O;

The HandlePanel event function:
e Executes when the Panel gets focus
e (lears the LSTMEAS list box

e Populates the LSTMEAS list box and sets the index to point
to the first measurement

Oscilloscope Analysis and Connectivity Made Easy

Using Tektronix Plug-n-Play Drivers with LabWindows/CV/|

The Start Button Function

The cmdSTART code is called when a user clicks the Start button on the user
interface. Complete the automatically generated skeleton code for the Start
button by adding the lines shown in boldface:

int CVICALLBACK cmdSTART (int panel, int control, int event,
void *callbackData, int eventData1, int eventData2)

{ char InstDesc[128];
char buf[256];
char *intro = "Connected to: ";
int n;

switch (event)

{
case EVENT_COMMIT:
/l reset counter variable
counter = 0;
/[indicate to user we are connecting to scope
ret = SetCtrlVal(pnlmeas, PNLMEAS_LBLSTATUS,
"Connecting to first scope found...");
/I clear measurement values list box
ret = ClearListCtrl(pnimeas, PNLMEAS_LSTVALUES);
/I connect
status = tktds8k_autoConnectToFirst (&ID);
if (status >= VI_SUCCESS)

{
/I display instrument description to user once connected
ret = tktds8k_GetlnstrDesc (ID, InstDesc);
buf[0]="0";
strcat(buf, intro);
strcat(buf,InstDesc);
/[enable timer and change StartFlag
ret = SetCtrlVal(pnlmeas, PNLMEAS_LBLSTATUS, buf);
ret = SetCtrlAttribute(pnimeas,PNLMEAS_TIMER,

ATTR_ENABLED,TRUE);

StartFlag = TRUE;

}

else

{
MessagePopup("Tektronix",

"Could not connect to the Scope.");
ret = SetCtrlVal(pnimeas, PNLMEAS_LBLSTATUS,
"Not connected to scope...");
}
break;
}
return O;
}
The cmdSTART function

e Resets the counter variable

Oscilloscope Analysis and Connectivity Made Easy 221

Using Tektronix Plug-n-Play Drivers with LabWindows/CV/|

e Uses the autoConnectToFirst function in the TDS/CSA8000
plug-n-play driver library to automatically connect to the
first GPIB device encountered (the next section describes
how to insert a driver function into your code)

e Uses the GetInstrDesc function in the TDS/CSA8000 plug-
n-play driver library to retrieve the instrument description
for display in the LBLSTATUS status label

e Sets the StartFlag to TRUE

e Changes the Enabled attribute of the Timer control to TRUE.

Inserting a PnP Driver Function into LabWindows/CVI Code
To insert a TDS/CSA8000 plug-n-play driver function into the
LabWindows/CVI source code:

1. Position the cursor in the code where you want to insert the
function.

2. From the Instrument menu, select TDS 8000 Series
Oscilloscope...

3. From the Select Function Panel dialog, select the driver
function you want to insert and click Select.

4. From your code window, select Code > Insert Function Call.

222 Oscilloscope Analysis and Connectivity Made Easy

Using Tektronix Plug-n-Play Drivers with LabWindows/CV/|

A <1> e:\Demo1\Demol.c - ol x|

File Edit View Build Run Instrument Library Tools Window Options Help

m] == A N RENEAR S

&10 =

Ry

[

switeh (event)

{
case EUENT_COMMIT:
// reset counter variable
counter = 0;
// indicate to user we are connecting to scope
ret = SetCtrlUal(pnlmeas, PNLHMEAS_LBLSTATUS, “Connecting to first :
// clear measurement values list box
ret = ClearListCtrl(pnlmeas, PNLMEAS_LSTUALUES);
/7 connect

SALITEIEE & TDS 8000 Series Oscilloscope - Auto Connect To First... J8l[=1F3

if (s:l?tu Eile!iew Instrument Library Tools Window Options Help
/7 1P 4% RunFunctionPanel ShiftrF5 Ji
buf[@]=[=— Declare Variable... Cul+D
strecat(Clear Interactive Declarations
strecat(
// enab
ret = S Select UIR Constant... Enter:
ret = $ Select Variable... Ctrl+A
StartFl
) break; Insert Function Call Ctrl+l
return @. Set Target File... Ctrl+F

View Variable Value Shift+F7

int CUICBLLBQCK Handl Add Watch Expression Ctrl+F7 _I
int eventData

{ char buf[128]; [Status
char hold[30]; | =
char xitem = "Mea|[— e
int 1; tktdsfk_autofonnectToFirst (): -
switch (event) B A ﬂ
153/201 | 22c)s 2 SR |y

The driver function is inserted into your code at the current cursor
position.

The Dial Control Function

The TimerInterval code is called when a user makes a selection from the Dial
control on the user interface. Complete the automatically generated skeleton
code for the Dial control by adding the lines shown in boldface:

int CVICALLBACK TimerInterval (int panel, int control, int event,
void *callbackData, int eventDatal, int eventData2)

switch (event)

{

case EVENT COMMIT:
// read interval from dial control and assign to timer
// control
ret = GetCtrlval (pnlmeas, PNLMEAS TINTERVAL,

&rTimerInterval) ;
ret = SetCtrlAttribute (pnlmeas, PNLMEAS TIMER,
ATTR INTERVAL,rTimerInterval) ;

break;

}

return O;

Oscilloscope Analysis and Connectivity Made Easy 223

Using Tektronix Plug-n-Play Drivers with LabWindows/CV/|

224

The TimerlInterval event function uses LabWindows/CVI User Interface
Library functions to:

e Retrieve the interval value from the Dial control

e Assign that value to the Timer control.

The Timer Control Function
From the GUI you created, LabWindows/CVI automatically generates the
following skeleton code for the Timer control:

int CVICALLBACK ProcessTimer (int panel, int control, int event,
void *callbackData, int eventDatal, int eventData2)

switch (event)

{

case EVENT COMMIT:

break;

}

return O;

The ProcessTimer code is called whenever a Timer control event takes place
(after the time interval counts down and the timer “ticks”). Complete the
callback function by changing and expanding the code block as follows:

int CVICALLBACK ProcessTimer (int panel, int control, int event,
void *callbackData, int eventDatal, int eventData2)

{ ViChar buf [128];
ViInt32 gMeasType;
VidReal64 dMeasValue;
char hold([30];
int index;

if ((StartFlag == TRUE) && (event == EVENT TIMER TICK)) {
// get index of currently selected item
ret = GetCtrlIndex (pnlmeas, PNLMEAS LSTMEAS, &index) ;
switch (index) {
case 0:
// get measurement value
tktds8k GetMeasValue (ID, tktds8k MEAS 1, &dMeasValue);
break;
case 1:
tktds8k GetMeasValue (ID, tktds8k MEAS 2, &dMeasValue) ;
break;
case 2
tktds8k GetMeasValue (ID, tktds8k MEAS 3, &dMeasValue);
break;
case 3
tktds8k GetMeasValue (ID, tktds8k MEAS 4, &dMeasValue);
break;
case 4
tktds8k GetMeasValue (ID, tktds8k MEAS 5, &dMeasValue) ;
break;
case 5
tktds8k GetMeasValue (ID, tktds8k MEAS 6, &dMeasValue);
break;
case 6
tktds8k GetMeasValue (ID, tktds8k MEAS 7, &dMeasValue);
break;

Oscilloscope Analysis and Connectivity Made Easy

Using Tektronix Plug-n-Play Drivers with LabWindows/CV/|

case 7
tktds8k GetMeasValue (ID, tktds8k MEAS 8, &dMeasValue);
break;
default:
break;

// format floating point value to 12 levels of precision

Fmt (hold, "%$s<%f [pl2]", dMeasValue) ;
//clear string buffer
buf [0] = '"\0';

strcpy (buf, hold) ;
// insert into list box
ret = InsertListItem (pnlmeas, PNLMEAS LSTVALUES,
-1, buf, index);

counter++;

// turn off after 1000 acquisitions

if (counter >= 1000) {
StartFlag = FALSE;
ret = SetCtrlAttribute (pnlmeas, PNLMEAS TIMER,

ATTR_ENABLED,FALSE);
1
1

else { StartFlag = FALSE;

}

return O;

The ProcessTimer event function:
e Retrieves the current index of the LSTMEAS list box

e Uses it to make sure the appropriate constant is used in
calling the GetMeasValue function in the TDS/CSA8000
plug-n-play driver library.

e Formats and adds returned values to the LSTVALUES list
box.

The Stop Button Function

The cmdStop code is called when a user clicks the Stop button on the user
interface. Complete the automatically generated skeleton code for the Stop
button by adding the lines shown in boldface:

int CVICALLBACK cmdStop (int panel, int control, int event,
void *callbackData, int eventDatal, int eventData2)

switch (event)

{

case EVENT COMMIT:
// disable timer
ret = SetCtrlAttribute (pnlmeas, PNLMEAS TIMER,

ATTR_ENABLED,FALSE);

StartFlag = FALSE;
break;

}

return O;

Oscilloscope Analysis and Connectivity Made Easy 225

Using Tektronix Plug-n-Play Drivers with LabWindows/CV/|

226

The cmdSTOP function:
e Sets the Enabled attribute of the Timer control to FALSE

e Changes the StartFlag to FALSE.

The Exit Button Function
From the GUI you created, LabWindows/CVI automatically generates the
following code block for the Exit button:

int CVICALLBACK cmdExit (int panel, int control, int event,
void *callbackData, int eventData1, int eventData2)

{
switch (event)
{
case EVENT_COMMIT:
tktds8k_close (ID);
QuitUserlInterface (0);
break;
}
return O;
}

The cmdExit code is called when a user clicks the Exit button on the user
interface. This event function exits the program by calling the
LabWindows/CVI QuitUserInterface function. You do not need to make any
changes to this automatically generated code block.

Running Your Program
To build and run the completed program:

1. Select Build > Create Debuggable Executable or press
Ctrl+M to build an executable program.

2. Select Run > Execute Demo1_dbg.exe or press Ctrl+F5 to
run your program.

The Measurement Capture panel is opened for user input, with the
left list box already populated with the measurement types selected
on your oscilloscope.

3. Click the Start button.

The message Connecting to first scope found... appears in the Status
box. LabWindows/CVI connects to the first TDS/CSA 8000
oscilloscope encountered and displays the connection descriptor in
the Status box.

4. Select one of the eight measurements from the
Measurements list box.

Oscilloscope Analysis and Connectivity Made Easy

Overview of LabVIEW

The program retrieves the corresponding measurement set up on
your oscilloscope and displays values in the Measurement Values

list box at half-second (.5) intervals, as shown in
5. Click the Stop button.

6. Experiment with changing the Dial control and the
Measurements list box to other settings, and then click the
Start and Stop button again for each experiment.

Even if you do not click Stop, the program will stop capturing and
displaying measurements after 1000 captures.

7. When you are finished testing, click the Exit button to close

the panel.
3 Measurement Capture =lolx]
Second Intervals kMeasurement Values

2 00 3.00 0000007392326 |
: 0000034532814
4.00 0.000023814954
1.00 0000005707328
,150/ 5 00 0000018106748
0.000005994374
ﬂD.ED 0.000001136772

0.000005995258 Rd|

§tar1| §tDp| Exit |

Status: Connected to: GRIBD:T:MNSTR

Figure 59: The LabWindows/CVI program while executing

Overview of LabVIEW

LabVIEW (Laboratory Virtual Instrument Engineering Workbench) is an
engineering development environment based on graphical programming.
LabVIEW uses graphical symbols rather than textual language to describe
programming actions.

LabVIEW is designed to build a Virtual Instrument (vi). A Virtual Instrument
is a virtual test and measurement instrument executing on a PC via
LabVIEW software. The program is integrated for communication with
hardware such as GPIB and serial devices, and also has built-in libraries for
using software standards such as VISA.

When building a LabVIEW virtual instrument, you work in two main areas:
¢ The Front Panel window (form designer)

e The Block Diagram window (data and logic flow designer)

Oscilloscope Analysis and Connectivity Made Easy 227

Using Tektronix Plug-n-Play Drivers with LabVIEW

228

The Front Panel contains the user interface of your Virtual Instrument. The
Block Diagram contains the graphical code for your Virtual Instrument.

Action in one area affects the other. Changing an attribute on a Front Panel
control such as a list box, for instance, affects the properties displayed in the
Block Diagram. Similarly, a control can be added to the Block Diagram and
it will appear on the Front Panel. The usual sequence is to add visible control
elements to the Front Panel and then work on the I/O and logic flow in the
Block Diagram.

Using Tektronix Plug-n-Play Drivers with LabVIEW

This section demonstrates how to use the Tektronix tktds8k Plug-n-Play
driver to control the TDS/CSA8000 sampling oscilloscope from a PC
running LabVIEW, equipped with a GPIB card, and connected by a GPIB
cable to the GPIB slot on the back of the TDS/CSA8000 oscilloscope.

Fable 38 [summarizes the TDS/CSA 8000 PnP driver functions used in this
book.

Loading the Driver
To incorporate a Tektronix Plug-n-Play driver into your LabVIEW program:

Note: It is not necessary to install TekVISA on your PC to work this
example, since LabVIEW comes with its own NI-VISA
implementation already installed. Installing TekVISA will overwrite
your NI-VISA implementation. The Plug-n-Play drivers are layered
to work with either VISA implementation.

Though this information uses the TDS8000 driver as an example, you can
follow similar steps for the TDS5000, TDS6000, and TDS7000 instruments.

Do not perform steps 1 through 7 involved in loading the driver into
LabView if you have the versions of the Tektronix Scope Application listed
below. You can check the version number from the Help -> About TekScope
menu item. The Plug-n-Play drivers shipped with these versions already
include customized LabVIEW wrappers and importing the driver will
overwrite these wrappers.

TDS5000 — Greater than version 1.0.7,
TDS6000 — Version 2.2.0 or greater,
TDS7000 — Version 2.2.0 or greater,
TDS/CSA8000 — Version 1.4.2 or greater.

1. Unzip the tktds8k PnP driver and run the setup.exe
program.

This program places a folder named VXlpnp in your root directory.

Oscilloscope Analysis and Connectivity Made Easy

Using Tektronix Plug-n-Play Drivers with LabVIEW

Launch the LabView application and create a new vi.

Choose Tools > Instrumentation > Import CVI Instrument Driver...

& Untitled 1 =l B3

Fil= Edit Operate QK Browze ‘wWindow Help

©D Measurement & Automation Explorer... 'r_l [0

Insturnentation Instrurnent Driver Metwork. ...

[ata Acquisition 3 Import C41 Instrument Driver. .
Update Vxlplugkplay Drivers. .

Compare 3

Source Code Control 3

W Revizion Hiztory Chel+y

Uszer Mame. ..

Build Application or Shared Library (DLL)...
V| Library Manager...
Edit 1 Library...

‘web Publishing Tool...

Advanced 3
Options. ..

o oy

After a short pause the Select a CVI Function Panel dialog appears
asking to locate tktds8k.fp.

2. Browse to the disk location where the Plug-n-Play driver
was installed and select the instrument driver file (Vﬁth an .fp
extension) for the oscilloscope you are working on.

Select the tktds8k.fp file and click Open.

The CVI Function Panel Converter dialog opens.

|B= CVI Function Panel Converter x|

Select a Destination Directory or VI Library:

C:"Program Files'National Instrumentsh Browse... |
Instrument Prefix:

[thtds8k

Select Function FPanel ltems to Frocess:

{Double-click on an item to toggle selection.)

/Initialize -

Auto Connect To First Found
v Auto Connect To All Found .
Optluns...l

-

Rename...l SelectAIIl DeselectAIIl Cancel |

Leave the Destination Directory as is and click Select All followed by OK.

5 Assuming you are installing on the C: drive on a Windows 98 system, the driver is placed in
C:\VXIpnp\Win95\Tktds8k\. On a Windows NT system, the driver is placed in
C:\VXIpnp\WinNT\Tktds8k\.

Oscilloscope Analysis and Connectivity Made Easy 229

Using Tektronix Plug-n-Play Drivers with LabVIEW

The Select A Library dialog asks to locate the tktds8k_32.DLL file.

Browse to find the tktds8k_32.DLL file located in C:VXlpnp\Winnt\Bin\, select the
file and click Open.

LabVIEW begins converting the driver files. This takes about 5
minutes, after which you are returned to the Front Panel of the open
vi. LabVIEW makes the driver library and its functions available in
the Instrument I/O subpalette on the Functions palette.

Viewing Driver Functions
You are now ready to explore the Tktds8k driver files.

1. Go to the Block Diagram view of your “Untitled” vi.

Show the Functions palette and open the Instrument 1/O subpalette.

x|

Instrument /O

M 23] ¥ [me]

S
= [
2]

N/

W
.
=

H

-

[
s

43
&

4
]
]

i) o
g0 =g
:
=t
Z;

4

=
tE
L[l

=

L]
EE-

Open the Instrument Library subpalette.

x|
BTl e I

Instrument Drivers

Tnst Lik: b

—
(455 || [SERIAL] M| [VTS ATH
= = =

.
VISA 7L &4
g

2. Open the tktds8k subpalette.

xl
Bl o
tktds8k

HP 34401 b] H
Bk

230 Oscilloscope Analysis and Connectivity Made Easy

Using Tektronix Plug-n-Play Drivers with LabVIEW

Inside is a list of folders containing individual vi’s that can be
dropped onto your Block Diagram to configure and control the
TDS/CSA8000 oscilloscope.

A large number of Plug-n-Play functions, grouped by category, are
available for you to select and incorporate into your LabVIEW
program.

x|
ﬁ}llezl J

tktds8k Initialize.vi =
£ Auto Initialize
1 Acquisition
= Horizontal
SVertical
| & Trigger
o Mask
> Cursors

5 Displa
1 Measurement
> ¥Waveform Database =l

3. To select one of the vi’s, simply double-click it.

The pointer tool turns into a hand to indicate that a selection has been
made.

4. Click on the Block Diagram to “drop” the vi.

EE Untitled 1 Diagram * _l— _ID ll
File Edit Operate Tools Browse Window Help ‘
©|E|I.,u|l?|uﬁ | 13pt Application Fork |v||$mvl|.”u:vl|f§'jvl o fe
[

x

TRTOSER

e

tkkdsdk Close, vi

4] Iﬂj

Getting Help
To find out more about designing and coding programs in LabVIEW, consult
the Help file. The tutorial section of the Help file is particularly useful, as

shown in the sample page in

Oscilloscope Analysis and Connectivity Made Easy 231

Using Tektronix Plug-n-Play Drivers with LabVIEW

& Lab¥IEW Tutorial H=l E3
File Edt Bookmark Optionz Help
Help Topicz Back | FErrint | <4 | > |
W |& |# | |The LabvIEW Environment
@ LabWIEW Help block diagram windows, the toolbar, and the free-floating palettes, which vou can place ;l

- [E] Conwentions

- 2] Related Docume
@ Glogzany

-0 Tutarial

[E] LabvIEW Tut
Z] The Compute
5] Wirtual Ingtrum)
[Z] Frant Panel
----- [Z] Block Diagran]
leon and Cor
5] Subils

2]/ The LabVIE
3 Mavigating an|
3 Basic Concep|
3 Learning Lab
- Activiies
-8 Search Examples
- Quick Tips

]--Q Getting Started
- LabvIEW Erviron
|- %I and Function B
- Building the Front
/- Buiding the Block]
]--@ Debugging Wl
|-§@ Creating Vis and
]--Q Loops and Case
]--@ Grouping Data U
/- Local and Global
-8 Graphs and Chart
]--Q Graphics and Soul
7@ File 1/0

/- Documenting and
]--@ Configuring Vs
]--Q Programmatically
- Metworking in Laty
- Active

-8 Calling Code from
]--Q Faormulaz and Equ|
- Instrument Driver
- LabVIEW Profess
-8 Important Informal
]--Q Technical Suppar

[y 0 o OO s IO s IO s DO O OO o O oy IO O O O s OO oy IO e O s OO s OO O e OO s OO IO O e O O e B |

anywhere on the screen,

Click the items on the images below to see what they are.

{i»! Untitled 1 Diagram [_ (O] x|

Fil= Edit Operate Toolz Browse ‘window Help

O [@] ©[1][2] [val@|or [130t Appication Fort

(2]

EE Contiols] Controls Palette

o ou build a front panel by placing controls
'1/} Q Cioee and indicators frorm the Controls palette.
Each palette icon represents a subpalette,
which contains controls you place on the front
panel.

& control is a front panel object that the
user ranipulates to interact with the vI,
Simple exarmples of contrals are buttons,
slides, dials, and text boxes,

1 Ma S
Jli‘.‘éé 'i@ ;p:'};;
M

an indicator is a front panel object that
displays data to the user. Examples of
indicators are graphs, thermometers, and
gauges.

When you place a control or indicator on the
front panel, a corresponding terminal is
placed on the block diagram.

Functions Palette

You build the block diagram using the
terrninals from the front panel contrals and
indicators and the WIs, functions, and
structures from the Functions palette, Each
palette icon represents a subpalette, which
contains WIs and functions you place on the
block diagram.

-
=
1=
1=

-

The structures, functions, and WIs—
collectively known as nodes—on the
Functions palette provide the functionality of
your VI,

gEl
=l
=]

[
[G |
Ev
=0

&5 yvou add nodes to the block diagram, you
wire them to each other and to the terminals
from the front panel objects using the Wiring
tool, found on the Tools palette, & complete
block diagrarn appears similar to a flawchart.

.iﬂﬂ
1
F

B
i

B
@Jrﬁ;ﬁaﬁ
(g

|

232

Figure 60: Page from the LabVIEW Tutorial in the Help file

Oscilloscope Analysis and Connectivity Made Easy

Using Tektronix Plug-n-Play Drivers with LabVIEW

You can right-click any icon in a Block Diagram and select Help to get more

information:

<» LabVIEW Help

File Edit Bookmark Options Help

Help Topics Back |

| Contents |€% 1ndex| & gearchl

-

&t Numeric Funetion

- [E] Mumeric Functit

- [E] Absolute Yalue

.. B Add

-] Add Array Elem
El Compound Aritt

.. Bl Decrement

- [E] Divide

. [E] Enum Constant

- [E] Expression Nod
[Increment

8 Multiply

- [E] Multiply Array E

[Nggate

- [l Numeric Constz
[E Quotient & Rem

£ JURUE R | I SO
4| I—i b

Increment

#dds 1 to the input value. If the input is an
enumeration, the function wraps the output.

& MNote This function is polymarphic, The
connector pane displays the default data
types for this function.

Click the parameters for more information.

® |>]

% can be a scalar number, array or ii
cluster of numbers, array of clusters of
numbers, and so on. Refer to the
Polyrmorphic Vis and Functions section
in Chapter 5, Buwilding the Block Diagram
, of the LabvIEW User Manual for more
information about one-input arithmetic
functions.

x+1 is the result of x+1. LI

To get the name of a particular function on a Block Diagram, press Ctrl-H to
bring up context help, and hover the mouse over the function in question. For
example, you can obtain context help for each vi in the PnP driver, as shown

in Figure 61

I+ Untitled 1 Diagram *

Eile Edit Operate Tools Browse

=10l

Aindow Help

[2]@] @[n][2] [z

oft ,?pt Application Fonk |+ || ;m"l

THTOSBR

v ﬁ
Initializ e

>l Context Help

=
&

=10l x|

resource name

id query

reset device
error in (o error)

instrument handle aut [
status
== &rrar ouk

tktds8k Initialize.vi

The initialize command opens a communication channel to the
inskrument, It returns a handle which is used ko identify the
cornmunications channel For all other driver Functions,

=&[7] 4]

o
Ll

B

1]

oy

Figure 61: Sample context help for a PnP Driver functon

Oscilloscope Analysis and Connectivity Made Easy

233

Using Tektronix Plug-n-Play Drivers with LabVIEW

Creating a Quick Demo Program
In this section, you will create a simple vi that causes the TDS/CSA8000
oscilloscope to

e perform a Default Setup

e select a channel

e take a measurement

e display a measurement value

Add the Initialize vi
To begin:

1. Open a new vi and save it as Tktds8k Plug & Play Demo.
(You can use the vi from the previous section if it is still
open.)

Go to the Block Diagram view of this vi.

Show the Functions palette and navigate through the Instrument I/O subpalettes
to the Tktds8k subpalette.

Find tktds8k Initialize.vi, double-click it and drop it onto the Block Diagram (you
may have already performed this step from the previous section).

Select Tools > Options, select the check box next to Show subVI names when
dropped, and click OK.

From the Tools palette, select Connect Wires (the wiring tool).

Right-click the resource name terminal of the Initialize vi and create a control
(by selecting create > control).

Right-click the ID Query terminal and create a Boolean constant set to True.
Right-click the Reset Device terminal and create a Boolean constant set to True.
Right-click the Instrument Handle Out terminal and create an indicator.

Right-click the Error Out terminal and create an indicator.

234 Oscilloscope Analysis and Connectivity Made Easy

Using Tektronix Plug-n-Play Drivers with LabVIEW

At this point, your Block Diagram will look like this:

ks Tktds8k Plug & Play Demo.¥i Diagram *

Eile Edit Operate Tools Browse wWindow Help

O] x]
m@ @ III @ ME‘D’H 13pt Application Font |vl
[

instrument handle out
E50UFCE NAME

kkdsglk Inikialize, vi

B [

and your Front Panel will look like this:

ks Tktds8k Plug & Play Demo.vi * i |
-

Eile Edit Operate Tools Browse Window Help E
m @ III 13pt Application Faort |vl ;*:"I 7|]:v| c:;v| !1 [

2. In the resource name control on the Front Panel, make sure
the GPIB resource name reads GPIB8::1::INSTR.

3. Click the vi Run button (or select Operate > Run or press

Ctrl-R) as a test to see if communications with the
TDS/CSA8000 oscilloscope are working properly.

Oscilloscope Analysis and Connectivity Made Easy 235

Using Tektronix Plug-n-Play Drivers with LabVIEW

You should see the TDS/CSA8000 perform a reset, the Front Panel
instrument handle out indicator should display a response as shown
here, and the error cluster should not be indicating an error:

{f>! Tktds8k Plug & Play Demo.¥i *

File Edit Operate Tools Browse Window Help

=10l

|::> I@I ©|E | 13pt Application Fonk

[fe | -][#5-]

resource name

[GPIEL:: 1 INSTR [

instrument handle out

SEBL AR v

4

'y

errar out

stakus code
40

SOUrce

i

-
14

Note: If you receive an error at this point, launch the debugger
by selection Tools > Measurement & Automation Explorer and
follow the instructions for debugging GPIB issues. Do not
proceed with the demo until you successfully receive the
appropriate instrument handle out response and a code 0 in the

error cluster.

Place More Driver vi's and Wire Them

If the vi is communicating with the oscilloscope properly, continue with

these steps:

1. Configure the TDS/CSAS8000 oscilloscope for data

acquisition:

a. Connect a signal source to either an optical or electrical
module on the oscilloscope.

b. Connect a trigger source to the Trigger Direct Input on
the front of the oscilloscope.

c. Perform a test acquisition to ensure that the oscilloscope

is properly set up.

Disconnect the error cluster from the Initialize vi and move it to the right. You

will use it again in a later step.

Your Block Diagram will look similar to the following:

236

Oscilloscope Analysis and Connectivity Made Easy

Using Tektronix Plug-n-Play Drivers with LabVIEW

i+ Tktds8k Plug & Play Demo.vi Diagram * i] |
File Edit Operate Tools Browse Window Help
[#= @ n Lo i5 of [130t Application Fort. |+ |2~ 1[Ga~][20+] 55
[
kkds gk Initialize, wi
THTOSBE »
kbdsak Close. vi R Error out

Closs E
=
Kl DY

2. Follow the steps on page o navigate through Instrument
I/O subpalettes of the Functions palette to the list of tktds8k
functions:

I tktds8k x|

tktds8k Initialize.vi =
2 Auto Initialize
& Acquisition
= Horizontal
S Vertical
™ Trigger
= Mask
S Cursors -

C1Displar
S Measurement
> ¥aveform Database =

3. Navigate through subpalettes as necessary:

x|
| E_!

™ Configure Functions
S MeasureMent Functions

Oscilloscope Analysis and Connectivity Made Easy 237

Using Tektronix Plug-n-Play Drivers with LabVIEW

%]

tktds8k Get Measurement Unit]
tktds8k Get Measurement Val

=

to place the following driver vi’s onto the Block Diagram:

tktds8k Set Channel Displayed.vi

tktds8k Set Vertical Parameters.vi

tktds8k Start or Stop Acquisitions.vi
tktds8k Set Measurement Source1 Wfm.vi
tktds8k Set Measurement Type.vi

tktds8k Set Measurement Displayed.vi
tktds8k Get Measurement Value.vi
tktds8k Close.vi

4. Duplicate the Start or Stop acquisitions vi, as this vi will be
used twice.

238 Oscilloscope Analysis and Connectivity Made Easy

Using Tektronix Plug-n-Play Drivers with LabVIEW

5. Arrange the vi’s in columnar format in the following
sequence:

i»! Tktds8k Plug & Play Demo.vi Diagram *

File Edit Operate Tools Browse Window Help

@ @ m ’E ba|F o ,?pt.ﬁ.pplication Fant: |v||;mv'

=10 x|
=151 Y
=

EktdsBk Initialize, vi

Sonfia kktdssk Set Channel Displayed. vi]

THT&

i kkrdsgk Set Yertical Parameters. vl
THTDSBK

ﬁib Fktdsak Start or Stop Acguisitions il

TETDSAH
Fkkdsak Set Measurement Sourcel Wim.vi
anfig

fkkds@k Set Measurement Type. vil

|ktdsgk Set Measurement Displayved.vi]

kkrdsak Skark or Stop Acquisitions. i

[TRTESER Fkrdsak Get Measurement Yalue, vil -

Heasure

[THTOSEH
kbdsgk Close, vi ':” =rror out
Clase

Oscilloscope Analysis and Connectivity Made Easy 239

Using Tektronix Plug-n-Play Drivers with LabVIEW

6. Using the Connect Wire tool on the Tools palette, thread
wires between each vi on the Block Diagram pertaining to
instrument handle out input and output terminals and error
infout input and output terminals as shown:

EE Tktdssk Plug & Play Demo.vi Diagram * | |

_|ol x|

File Edit Operate Tools Browse Window Help ‘
©[m][@]]bal@]or [130t applcation Font |+ |[5o~ |[Ta ~][#5~] =
[

{THTDSER ¥
Im!ia‘lizvz =

kkds8k Initialize . vi

THTDE
by

kkkds@lk Set Channel Displayed. vi]

| Gonbig [

E THTDE
by

| Config [

kkkds@l Set Yertical Parameters. vil

Fkkds@k Stark or Stop Acquisitions. i

Fkbds@lk Set Measurement Sourcel Wil

fkidsgk Set Measurement Type.vil

Hetdsgk Set Measurement Displayved.vi]

kkkdssk Skart or Stop Acquisitions. vil

Fkkds@k Get Measurement Yalue, vil

kkdsgk Close, vi

o Ty

Configure vi's from the Block Diagram
In the next steps, you will configure vi’s by wiring numeric values, controls,

and Booleans to various vi terminals:

1. Right-click the channel terminal of the Set Channel Display
vi and create a control.

2. Right-click the display terminal of the Set Channel
Displayed vi and create a constant. Set this value to ON.

Wire the Channel control from the Channel Displayed vi to the channel terminal
of the Set Vertical Parameters vi.

240 Oscilloscope Analysis and Connectivity Made Easy

Using Tektronix Plug-n-Play Drivers with LabVIEW

Right click the scale terminal of the Set Vertical Parameters vi and create a
constant. Change the value of this constant to 0.10. After you have completed the
vi, you may need to adjust this value to achieve the scale you prefer.

Right-click the acquisition state terminal of the Start or Stop Acquisitions vi
and create a Boolean constant. Set this value to True.

Right-click the measurement number terminal of the Set Measurement Source1
Wfm vi and create a constant. Set this value to meas 1.

Use the wiring tool to connect the WFM terminal to the Channel
control created in Step 1.

Right-click the measurement number terminal of the Set Measurement Type vi
and create a constant. Set this value to meas 1.

Right-click the measurement type terminal of the Set Measurement Type vi and
create a control.

Right-click the measurement number terminal of the Set Measurement
Displayed vi and create a constant. Set this value to meas 1.

Right-click the display terminal of the Set Measurement Displayed vi and create
a constant. Set this value to 1 ON.

Right-click the acquisition state terminal of the Start or Stop Acquisitions vi
and create a Boolean constant. Set this value to False.

Right-click the measurement number terminal of the Get Measurement Value vi
and create a constant. Set this value to meas 1.

3. Right-click the value terminal of the Get Measurement
Value vi and create an indicator.

Oscilloscope Analysis and Connectivity Made Easy 241

Using Tektronix Plug-n-Play Drivers with LabVIEW

The Run button of the Tktds8k Plug & Play.Demo vi should change
to a non-broken arrow, indicating the you now have a working
program. If it does not, compare your Block Diagram to the

following one to search for errors (or select Windows > Show Error
List):

EE Tktdssk Plug & Play Demo.vi Diagranm

File Edit Operate Tools Browse Window Help

©[m][@] [wal@]or [130t pplcation Fort |~ [v]

ol
5] ‘
=

e —— nstrument handle out
ESOUNCE NAME

s THTDSBH

¥ In-z - kkds8k Initialize . vi

152
Iy=cns kktdsak Set Channel Displayed. vi]

0.10 I kkbdsak Set Wertical Parameters. il

Fkkds@k Stark or Stop Acquisitions. i

2 _ fktdsak Set Measurement Sourcel W, vil
wnifig
easurement bvpe| Meas 1 v TFTSir]
h—-ﬂ L Pt -
fkidsgk Set Measurement Type.vil

[TETDSBK
[krdsak Set Measurement Displaved. vi

TETOSBE

kkkdssk Skart or Stop Acquisitions. vil

_T"I!’“Ji"""E Fkkds@k Get Measurement Yalue, vil =

|| Hencure

kkdsgk Close, vi

q

Configure vi's from the Front Panel
Next you will switch to the Front Panel view and make final changes.

1. On the Front Panel, right-click the Value indicator, access

the Format & Precision dialog, and set digits of precision to
3.

242 Oscilloscope Analysis and Connectivity Made Easy

Using Tektronix Plug-n-Play Drivers with LabVIEW

The Front Panel will look like this:

ks Tktds8k Plug & Play Demo.vi =1l

File Edit Operate Tools Browse ‘Window Help

=
|2 | @] @ 1] | 130t Application Fort |« || 8 | S5a ~ || 25+ | [

Running Your Program
To run your demo program:

1. Seclect the Operate Value tool, click the Channel control, and
select a channel.

Possible values are 0 through 7, where:

0=ch.1
1=ch.2
2=ch.3
7=ch.8

2. Click the Measurement Type control and select a
measurement type.

3. Click the Run button on the Front Panel menu bar (or select
Operate > Run or press Ctrl-R).

The TDS/CSA8000 executes a Default Setup command, selects the
channel indicated in the Channel Select control, sets the chosen
measurement type, and then activates acquisition. The oscilloscope
takes a measurement and sends it to the Front Panel.

Since the program will only execute once, it will allow only one
measurement to be taken at a time.

Oscilloscope Analysis and Connectivity Made Easy 243

Using VISA Operations with LabVIEW

244

Using VISA Operations with LabVIEW

This simple example demonstrates how to use LabVIEW’s built-in VISA
communications interface to make timed measurements from a PC connected
by GPIB cable to a TDS7000 oscilloscope. The concepts described here
apply to drivers for any Tektronix Windows-based oscilloscope.

This section assumes you have some familiarity with the LabVIEW
environment and have perhaps worked with instrument drivers before.

A brief description of VISA operations used in this example appears in
39 in Appendix A

Note: It is not necessary to install TekVISA on your PC to work this
example, since LabVIEW comes with its own NI-VISA
implementation already installed. Installing TekVISA will overwrite
your NI-VISA implementation.

Creating a Timed Measurement Program

This simple Timed Measurement program targets the TDS7000 oscilloscope.
The user identifies one of eight possible measurements in a list box. At a
time interval (in seconds) specified by the user with a Dial control, the
program takes measurements (preset by the user on the oscilloscope) from
the device connected through the Instrument Resource Name control and
places them on a strip chart (Waveform Graph). A Stop button controls the
running of the Virtual Instrument. The chart updates with each new
measurement until the Stop button is clicked.

The Front Panel

To build the Front Panel for this program, place controls and indicators from
the Controls palette as follows, navigating to subpalettes as necessary to
make selections:

1. Construct a panel comprised of a list box with a label
captioned Measurement to Take:

B x|
Sl SN

2. Using the Edit Text tool on the Tools palette, add the
following items to the list box: Meas1, Meas2,...Meas8.

3. Set the Selection Mode of the list box to 1.

4. Add a Dial control to the panel by selecting it from the
Numeric Palette.

Oscilloscope Analysis and Connectivity Made Easy

Using VISA Operations with LabVIEW

5. Using the Edit Text tool, specify the range of the dial as 0.5
to 5.

6. Add a Waveform Graph to the panel.

i Graph X|

= = sy

i ‘E ‘E s
T dn| b wm|
S

7. Set the Update Mode to StripChart.

8. Add a VISA Resource Name control to the panel choices
(under the I/O palette).

x|
LT RN [

9 = |)

"@'&’@’

x|

1 o
1S5A Resource Name
o] I'IT;|

o] o

Oscilloscope Analysis and Connectivity Made Easy 245

Using VISA Operations with LabVIEW

9. Select the Allow Undefined Names attribute.

 measureDemo.vi *

£ © [[130t Avolisation Font [=-]/5=-]-]

oA x| §vrsfiv] B1v1]

o

10. Add a Boolean Stop button to the panel, and set its
Mechanical Action to Latch When Released.

The interface will look similar to

P measureDemo.vi *

GPIBI:1:]

-

Figure 62: The Front Panel for the LabVIEW example

246 Oscilloscope Analysis and Connectivity Made Easy

Using VISA Operations with LabVIEW

[able 33 [summarizes the relevant controls and their attributes.

Table 33: Relevant attributes of controls that appear on the measuredemo.vi Front

Panel in LabVIEW

Control

List Box

Dial

Waveform Chart

Instrument
Resource Name

Boolean Button

The Block Diagram

Attribute
Label

Selection
Mode

ltems

Label

Range Values
Minimum
Maximum
Label

Update Mode
Label

Allow
Undefined
Names

Label

Mechanical
Action

Change to
Measurement to Take:
1

Meas1
Meas2
Meas3
Meas4
Meas5
Meas6
Meas7
Meas8

Time Between
Measurements (s)

0.5
5

Measurement History:
StripChart

Instrument Resource
Name

Enabled

Stop
Latch When Released

When you place a control or indicator on the Front Panel, a corresponding
rectangular terminal is placed on the Block Diagram. You will already see
double-rectangle terminals on the Block Diagram for the

e Instrument Resource Name control

e List box labeled Measurement to Take:

e Dial control labeled Time Between Measurements (s)

¢ Waveform chart named Measurement History:

e Boolean button named Stop

Oscilloscope Analysis and Connectivity Made Easy

247

Using VISA Operations with LabVIEW

To build the rest of the Block Diagram for this program, place nodes
(structures, functions and vi’s) from the Functions palette as follows,
navigating to subpalettes as necessary to make selections:

1. Place a While-Loop structure in the diagram so that it
encloses other nodes inside a black lined box as shown.

.E measurelemo.yi Diagram *

ol x|
Eile Edit Operate Tools Browse ‘Window Help
[@ 1 [@]ba @ o [13 Application Fort |~][5~ [~][5~] S
=
ime bebween measurements (5)
[rstrumnent Resource Marme
Stop] [rzw]
A
-]
B
4 iy

From the Instrument /O > VISA subpalette of the Functions
palette, select and place VISA Write and VISA Read
functions inside the While-Loop structure and a VISA Write
function to the left of the While-Loop structure.

EE Instrument 170 = |
s K

VISA

InstrLik

(=1

(EFEE M e

[=] [=]

BB gvisa
VISA Wiite

L4154 LA _¢_ M
-
[=H el ()| 2T
EEEIH L4154 LA LA
STB | | TRG
el l| P o1 | P o | P T

3. From the Instrument I/O > VISA > VISA Advanced
subpalette of the Functions palette, select and place VISA

Open and VISA Close functions to the left and right of the
While-Loop structure as shown.

248 Oscilloscope Analysis and Connectivity Made Easy

Using VISA Operations with LabVIEW

E measureDemo.vi Diagram * - | E|| il

File Edit Operate Tools Browse Window Help

@ i@ @ ba|iF o ’?ptnpplicationFont |"|;m"|

]

=
ime between measurements (s)
Instrument Resource Mame
]] EEE] EE]
ab ab s =
w3 e =E| R
asurement To Take: easUrement History:

4. Using the Connect Wire tool from the Tools palette, wire the
VISA Open function to the Instrument Resource Name
control on the left side and to the While-Loop structure,
which is then wired to the VISA Close function on the right
side as shown on the diagram.

E measureDemo.vi Diagram * - | E|| il

File Edit Cperate Tools Browse Window Help

[®@/[@n Lo 15 of [130t Appication Fort |~ | [25<]

][]

ime between measurements (s)

[nstrument Resource Mame

easurement To Take:

This opens the VISA session outside the While loop and closes it
after exiting the loop.

Oscilloscope Analysis and Connectivity Made Easy 249

Using VISA Operations with LabVIEW

5. Build the rest of the diagram to conform to this logic:

a. Increment the Measurement to Take: value because List
Box counting starts at 0 and oscilloscope measurements
start at 1.

b. Multiply the Time between Measurements (s) value by
1000 to convert to milliseconds.

c. Feed the time into a Wait vi in the While loop (selected
from the Time & Dialog palette), which sets the
minimum time for each loop iteration.

[Ed:

-]
B
Error| (g A"

d. Wire a string constant containing HEADER OFF into the
VISA Write function outside the While loop. This is a
native GPIB command to turn off headers, so query
responses return only data.

e. Use the Format Into String function (selected from the
String palette) to insert the measurement number into the
format string MEASU:MEAS%d:VALUE? This native
GPIB query, which asks for the measurement value, will
be wired to the VISA Write function in the While loop.

250 Oscilloscope Analysis and Connectivity Made Easy

Using VISA Operations with LabVIEW

E measureDemo.vi Diagram * - ||:||1|
File Edit Operate Tools Browse Window Help

[#]@ @ 1| [@] bal@ of [130t Application Fort |~][5~][<Ga <][£5~]

ime between measurements (s)

o 1

iz [
Elly abic =
L =E| R

IMEASU:MEASYsd: VALLE? |

Inskrument Resource Mame

(=]

easurement Histary:

f. Write the query to the instrument using the VISA Write
function.

g. The response will be read by the VISA Read function. To
make sure it reads the whole response, create a constant
at the Byte Count terminal of the VISA Read function
and set the maximum number of characters (bytes) to
read as 100.

h. Convert the response from a string into a double using
the Fract/Exp String To Number function selected from
the String > String/Number Conversion palette.

i. Feed the value into the Waveform Chart indicator named
Measurement History:.

j. Wire the Stop button to the conditional terminal of the
While loop.

k. Add a Simple Error Handler (selected from the Time &
Dialog palette) to the right of the VISA Close function
and wire the sequence of Error In and Error Out
terminals of the VISA functions to deal with any errors
that occur.

Oscilloscope Analysis and Connectivity Made Easy 251

Using VISA Operations with LabVIEW

The interface will look similar to

B measureDemo.vi Diagram * o]
Flle Edit Operate Tools Browse Window Help

@ @[Lo | (of [130t Application Fant [~ [3+][Ga ~][5+

ime: bebween measurements (s)
B

1000.00

nstrument Resource Mame
170

Figure 63: The Block Diagram for the LabVIEW example

Running Your Program
To run the completed program from within LabVIEW:

1. From the Front Panel of the measureDemo.vi program,
select a measurement value from the Measurement to Take:
list box (the range of values is Meas1 through Meas8).

2. Click the Run button on the Front Panel menu bar (or select
Operate > Run or press Ctrl-R).

LabVIEW connects to your TDS/CSA 7000 oscilloscope, which
activates acquisition. The program retrieves the corresponding
measurement set up on your oscilloscope and charts values in the
Measurement Values strip chart at half-second (.5) intervals, as

shown in Figure 64

3. Click the Stop button.

4. Experiment with changing the Dial control and the
Measurement to Take: list box to other settings, and then
click the Run and Stop buttons again for each experiment.
To clear the data from the chart, right-click on it and select
Data Operations > Clear Chart.

252 Oscilloscope Analysis and Connectivity Made Easy

Chapter 9 Review

b measureDemo.¥i

Eile Edit Operate Tools Browse ‘Window Help

Figure 64: The LabVIEW program while executing

Chapter 9 Review
To review what you learned in Chapter 9:

* You discovered that you can use a Tektronix VXI-compatible
Plug-n-Play driver to access and control your oscilloscope
via popular programming environments such as
LabWindows/CVI and LabVIEW.

e You learned how to incorporate:

e Plug-n-Play driver functions into a
LabWindows/CVI program.

e Plug-n-Play driver functions into a LabVIEW
program.

e VISA commands into a LabVIEW program.

Oscilloscope Analysis and Connectivity Made Easy 253

Chapter 9 Review

254 Oscilloscope Analysis and Connectivity Made Easy

Introduction

Appendix A: Command and Control
Reference

Introduction

This appendix is not exhaustive and covers only those GPIB commands and
interfaces relevant to the chapters in this book.

Native GPIB Commands and Queries

[Cable 34 Jand Table 35 fexplain the subset of TDS7000 Series native GPIB
commands and queries used in examples in this book:

e Commands modify instrument settings or tell the
oscilloscope to perform a specific action.

e Queries cause the oscilloscope to return data and
information about its status.

You can abbreviate commands and queries by including only the command
portions shown in capital letters (for example, ACQ:MOD). To learn more
about the full set of native GPIB commands, see the Online Programmer
Guide for your Series of Tektronix Windows-based oscilloscopes.

Oscilloscope Analysis and Connectivity Made Easy 255

Native GPIB Commands and Queries

Table 34: TDS7000 Series native GPIB commands used in examples in this book

Command

ACQuire:MODe

ACQuire:STATE

ACQuire:STOPAfter

256

Meaning

Sets the acquisition mode of the oscilloscope. This determines
how the final value of the acquisition interval is generated from
the many data samples, and affects all live waveforms. This
command is equivalent to selecting Horizontal/Acquisition from
the Horiz/Acq menu and then choosing the desired mode from
the Acquisition Mode group box.

ACQuire:MODe{SAMple|PEAKdetect|HIRes|AVErage|
ENVelope}

where

SAMple (the default mode) means that the displayed data
point value is simply the first sampled value taken during the
acquisition interval. In this mode, all waveform data has 8 bits
of precision.

PEAKdetect means that the displayed waveform shows the
high-low range of the samples taken from a single waveform
acquisition.

HIRes means that the displayed waveform is the average of all
the samples taken from a single waveform acquisition.

AVErage mode means that the displayed waveform is the
average of the specified number of waveform acquisitions,
where the number is specified using the ACQuire:NUMAVg
command.

ENVelope mode means that the displayed waveform is an
envelope of many individual waveform acquisitions, where the
number of acquisitions is set or queried using the
ACQuire:NUMENv command.

Starts acquisitions (ON or RUN or non-zero) or stops
acquisitions (OFF or STOP or 0). Sending this command is
equivalent to pressing the front-panel RUN/STOP button,
unless the STOPAFTER mode is set to SEQUENCE, in which
case this command is equivalent to pressing SINGLE from the
front panel.

ACQuire:STATE{OFF|ON|RUN|STOP|<integer>}

Sets whether the oscilloscope performs continuous
acquisitions (RUNSTop) or acquires a single sequence
(SEQuence).

ACQuire:STOPAfter {RUNSTop|SEQuence}

Oscilloscope Analysis and Connectivity Made Easy

Native GPIB Commands and Queries

Command Meaning

DATa:ENCdg Sets the data format included in the preamble of outgoing
waveform data. Causes corresponding WFMOutpre values to
be updated and vice versa.

DATa:ENCdg
{ASCIi|FAStest|RIBinary|RPBinary|FPBinary|SRIbinary|
SRPbinary|SFPbinary}

where

ASCli = ASCII representation of signed integer data point,
positive integer data point, or single-precision binary floating-
point representation. Default is positive integer.

FAStest = requests that the data be sent in the fastest
accurate manner with respect to the first waveform specified in
the DATA:SOUrce list.

RIBinary (the default argument) = signed integer data-point
representation with the most-significant byte transferred first.
The range is from -128 through 127. Center screen is 0.

RPBinary = positive integer data-point representation, with the
most-significant byte transferred first. The range is from 0
through 255. Center screen is 127.

FPBinary = single-precision floating-point representation of
data whose width is 4. The range is from -3.4 x 1038 to 3.4 x
1038. Center screen is 0.

SRIbinary = same as RIBinary except that the byte order is
swapped so the least-significant byte is transferred first.

SRPbinary = same as RPBinary except that the byte order is
swapped so the least-significant byte is transferred first.

SFPbinary = same as FPbinary except that the byte order is
swapped so the least-significant byte is transferred first.

DATa:SOUrce Sets the location of the waveform data transferred from the
oscilloscope by the CURVe? query. The source data is always
transferred in the following predefined order regardless of the
order specified: CH1 through CH4, MATH1 through MATH3,
then REF1 through REF4.

DATa:SOUrce <wfm>[<,><wfm>]...
where

wfm = the location of the waveform data to be transferred
from the oscilloscope

Example:
DATA:SOURCE REF2, CH2, MATH1, CH1

means that four waveforms will be transferred in the next
CURVe? query in the following order:
CH1, CH2, MATH1 and then REF2.

Oscilloscope Analysis and Connectivity Made Easy 257

Native GPIB Commands and Queries

258

Command

DATA:STARt

DATa:STOP

DESE

Meaning

Sets the starting data point for waveform transfer when using
the CURVe? query.

DATa:STARt <integer>
where

integer = the first data point that will be transferred, ranging
from 1 to the record length. Data will be transferred from
integer to DATa:STOP or the record length, whichever is less.

Example:
DATA:START 10

means that the waveform transfer will begin with data point 10.

Sets the ending data point for waveform transfer when using
the CURVe? query. If you always want to transfer complete
waveforms, set DATa:STARt to 1 and DATa:STOP to the
maximum record length.

DATa:STOP <integer>
where

integer = the last data point that will be transferred, ranging
from 1 to the record length.

Example:
DATA:STOP 15000

specifies that the waveform transfer will stop at data point
15000.

Sets bits in the Device Event Status Enable Register
(DESER), a mask that determines whether events are reported
to the Standard Event Status Register (SESR) and entered
into the event queue.

DESE <integer>
where

integer = a value ranging from 1 through 255. Bit 1 represents
the Operation Complete (OPC) event.

Example:
DESE 1

sets the DESER to binary 00000001, which enables the OPC
bit.

Oscilloscope Analysis and Connectivity Made Easy

Native GPIB Commands and Queries

Command Meaning

*ESE Sets bits in the Event Status Enable Register (ESER), which
prevents events from being reported to the Status Byte
Register (STB).
*ESE <integer>
where
integer = a value ranging from 0 through 255.

Example:
*ESE 1

sets the ESER to binary 00000001, which enables the OPC
bit.

Note: Setting the DESER and the ESER to the same values
allows only those codes to be entered into the event queue
and summarized on the ESB bit (bit 5) of the Status Byte
Register.

HEADer This command causes the oscilloscope to either include
headers (ON or non-zero) or omit headers (OFF or 0) on query
responses. If omitted, only the argument is returned.

HEADer {OFF|ON|<integer>}
Example:

Query BUSY?
Response with HEADER OFF 1
Response with HEADER ON :BUSY 1

MEASUrement: This command sets the immediate measurement type.
IIMEEREE MEASUrement:IMMed:TYPE <type>

where <type> is one of the following:
{AMPlitude|AREa|BURst|CARea|CRMs|DELay|FALL|
FREQuency|HIGH|LOW|MAXimum|MINImum|NDUty|
NOVershoot|NWIdth|PDUty|PERIod|PHAse|PK2Pk|
POVershoot|PWIdth|RISe|[RMS}

Example:
MEASUREMENT:IMMED:TYPE FREQ

defines the immediate measurement to be a frequency
measurement.

*OPC Generates the operation complete message in the Standard
Event Status Register (SESR) on completion of all pending
operations. This allows you to synchronize the operation of the
oscilloscope with your application program.

*OPC

Oscilloscope Analysis and Connectivity Made Easy 259

Native GPIB Commands and Queries

260

Command

TRIGger:A:MODe

*SRE

WFMOutpre:
BYT_Nr

WFMOutpre:
BYT_Or

Meaning

Sets the A trigger mode.
TRIGger:A:MODe {AUTO|NORMAL}
where:

AUTO = generates a trigger if one is not detected within a
specified time period.

NORMAL = waits for a valid trigger event.
Example:
TRIG:A:MOD NORM

means that a valid trigger event must occur before a trigger is
generated on the A trigger.

Sets the bits in the Service Request Enable Register (SRER).
This controls which bits in the Status Byte Register (SBR)
enable a Service Request.

*SRE <integer>
where

integer = a value ranging from 0 through 255. Bit 1 represents
the Operation Complete (OPC) event.

Example:
*SRE 32

sets the SRER to binary 00100000, turning on the Event
Status Bit (ESB).

This command sets the number of bytes of binary integer data
to transfer in the outgoing waveform. If set to 1, all bytes are
single data points. If set to 2, there are two bytes per data
point.

WFMOutpre:BYT_Nr <integer>
where

integer = the number of bytes per data point. Can be 1, 2, 4 or
8. A value of 1 or 2 indicates channel data; 4 indicates math
data; 8 indicates pixel map (DPO) data.

This command sets which outgoing byte of binary waveform
data is transmitted first during a waveform data transfer.

WFMOutpre:BYT_Or {LSB|MSB}
where:

LSB = least significant byte first (compatible with Intel CPUs)
MSB= most significant byte first

Example:
WFMOUTPRE:BYT_OR LSB

sets the byte order to least significant byte first.

Oscilloscope Analysis and Connectivity Made Easy

Native GPIB Commands and Queries

Table 35: TDS7000 Series native GPIB queries used in examples in this book

Query Meaning

BUSY? Returns the status of the oscilloscope. This query allows you to
synchronize the operation of the oscilloscope with your
application, where:

0 means that the oscilloscope is not busy processing a
command whose execution time is extensive.

1 means that the oscilloscope is busy processing one of these
commands:

ACQuire:STATE ON
ACQuire:STATE RUN
HARDCopy STARt

Example:

This query might return 1, indicating that the oscilloscope is
currently busy.

CURve? Transfers waveform data from the instrument specified by the
DATa:SOUrce command. The DATa:STARt and DATa:STOP
commands specify the first and last data points. The
oscilloscope will stop reading when there is no more data or the
specified record length is reached. Under these circumstances,
the DATa:STOP command is ignored.

In binary format, the waveform is formatted as:
#<a><bbb><data><newline>, where

a = the number of b bytes. For example, if bbb =500, then a =3.

bbb = the number of bytes to transfer. If data width is 1, all
bytes on the bus are single data points. If data width is 2, all
bytes on the bus are 2-byte pairs.

data = the curve data

newline = a single-byte new-line character at the end of the

data
HORizontal: Returns the current horizontal record length. This is equivalent
RECOrdlength? to selecting Position/Scale from the Horiz/Acq menu and then

returning the Rec Length field.
Example:

This query might return 5000, indicating that the horizontal
record length is 5000 data points.

*IDN? Returns the oscilloscope identification code.
Example:

This query might return :TEKTRONIX,TDS7104,0,CF:91.1CT
FV:01.00.912, indicating the oscilloscope model number,
configured number, and firmware version number.

Oscilloscope Analysis and Connectivity Made Easy 261

Native GPIB Commands and Queries

262

Query

MEASUrement:
IMMed:VAL?

MEASU:MEAS<x>:
VALUE?

WFMOutpre:
PT OFF?

WFMOutpre:
XINCR?

WFMOutpre:
YMULT?

Meaning

Returns the value of the measurement specified by the
MEASUrement:IMMed:TYPe command.

Example:

This query might return 9.9000E+37 as the value of a command
of type FREQUENCY.

Returns the value calculated for the measurement specified by
<x>, which ranges from 1 through 8. This command is
equivalent to selecting Display Statistics from the Measure
menu and then choosing Value from the drop-down list to
display all measurement values on-screen.

Example:
MEASUrement:MEAS1:VALue?

This query might return :MEASUREMENT:MEAS1:VALue
2.8740E-06.

Returns the trigger point relative to DATa:STARt for the
waveform specified by the DATa:SOUrce command. This value
is the point immediately following the actual trigger.

Example:

This query might return 251, specifying that the trigger actually
occurred between points 250 and 251.

Returns the horizontal point spacing in units of
WFMOutpre:XUNit for the waveform specified by the
DATa:SOUrce command. This value typically corresponds to
the sampling interval.

Example:

This query might return 10.00E-6, indicating that the horizontal
sampling interval was 10 ms/point (500 ms/div)

Returns the vertical scale factor per digitizing level in units of
WFMOutpre:YUN:it for the waveform specified by the
DATa:SOUrce command. This scale factor must take the
location of the binary point implied by the number of bytes per
data point into consideration.

For instance, if the binary field DATA WIDTH for the first
ordered waveform is 1, a curve data point was 10, and the scale
factor was 0.02, that data point would be sent as 2560.
However, if the DATA WIDTH were set to 2, the scale factor
would be sent as 0.02/256 = 781.25E-3.

Example:

This query might return 4.000E-3, indicating that the vertical
scale for the corresponding waveform was 100 mV/div.

Oscilloscope Analysis and Connectivity Made Easy

Query

WFMOutpre:
YOFF?

WFMOutpre:
YZERO?

TekVISA Active X Control Methods, Properties, and Events

Meaning

Returns the vertical offset in digitized levels for the waveform
specified by the DATa:SOUrce command.

Example:

This query might return -50.000E+0, indicating that the position
indicator for the waveform was 50 digitizing levels (2 divisions)
below center screen.

Returns the vertical offset in units of WFMOutpre:YUN:it for the
waveform specified by the DATa:SOUrce command.

Example:

This query might return -100.0E-3, indicating that vertical offset
was set to -100 mV.

TekVISA Active X Control Methods, Properties, and Events

[Cable 36]shows methods, properties, and events of the TekVISA ActiveX
Control, some of which are used in Excel VBA and Visual Basic 6.0
examples in this book. For context-sensitive help, select the object and press
F1in VBA or Visual Basic.

Table 36: Methods, properties and events of the TekVISA ActiveX Control

Method
AboutBox

Attribute
(attribute_name)

Attribute
(attribute_name) =
newvalue

Definition
Returns version and copyright information about the TekVISA
ActiveX Control.
Parameters: none

Example:

Tvc1.AboutBox

Gets or sets the specified native TekVISA API parameter (see
following table), which corresponds to a state of an attribute for
the specified resource (session, event, or find list). For more

information about TekVISA attributes, see the online TekVISA
Programmer Manual.

Input parameters:

aftribute_name is a constant expression identifying the
attribute for which the state is to be retrieved or set

newvalue as long; the new state value to set the attribute to
Returns: a variant that contains the resulting value.
Examples:

Value = Tvc1.Attribute (VI_ATTR_TMO_VALUE)

Tvc1 Attribute(VI_ATTR_TMO_VALUE) = 5000

Oscilloscope Analysis and Connectivity Made Easy 263

TekVISA Active X Control Methods, Properties, and Events

Method Definition

Native TekVISA Attribute Name Data Type Read/Write Supported
Property Descriptors

VI_ATTR_ASRL_AVAIL_NUM Long RO ASRL
VI_ATTR_ASRL_BAUD Long RW ASRL
VI_ATTR_ASRL_CTS_STATE Integer RO ASRL
VI_ATTR_ASRL_DATA BITS Integer RW ASRL
VI_ATTR_ASRL_DCD_STATE Integer RO ASRL
VI_ATTR_ASRL_DSR_STATE Integer RO ASRL
VI_ATTR_ASRL_DTR_STATE Integer RW ASRL
VI_ATTR_ASRL_END_IN Integer RW ASRL
VI_ATTR_ASRL_END_OUT Integer RW ASRL
VI_ATTR_ASRL_FLOW_CNTRL Integer RW ASRL
VI_ATTR_ASRL_PARITY Integer RW ASRL
VI_ATTR_ASRL_REPLACE_CHAR Char RW ASRL
VI_ATTR_ASRL_RI_STATE Integer RO ASRL
VI_ATTR_ASRL_RTS_STATE Integer RW ASRL
VI_ATTR_ASRL_STOP_BITS Integer RW ASRL
VI_ATTR_ASRL_XOFF_CHAR Char RW ASRL
VI_ATTR_ASRL_XON_CHAR Char RW ASRL
VI_ATTR_BUFFER String RO AIIINSTR
VI_ATTR_EVENT_TYPE Long RO All
VI_ATTR_FILE_APPEND_EN Boolean RW AIIINSTR
VI_ATTR_GPIB_PRIMARY_ADDR Integer RO GPIB
VI_ATTR_GPIB_READDR_EN Boolean RW GPIB
VI_ATTR_GPIB_SECONDARY_ADDR Integer RO GPIB
VI_ATTR_GPIB_UNADDR_EN Boolean RW GPIB
VI_ATTR_INTF_INST_NAME String RO All
VI_ATTR_INTF_NUM Integer RO All
VI_ATTR_INTF_TYPE Integer RO All
VI_ATTR_IO_PROT Integer RW AIIINSTR
VI_ATTR_JOB_ID Long RO AIIINSTR
VI_ATTR_MAX_QUEUE_LENGTH Long RW AIIINSTR
VI_ATTR_OPER_NAME String RO AIlINSTR
VI_ATTR_RD_BUF_OPER_MODE Integer RW AIIINSTR
VI_ATTR_RET_COUNT Long RO AIlINSTR

264 Oscilloscope Analysis and Connectivity Made Easy

TekVISA Active X Control Methods, Properties, and Events

Method Definition

Native TekVISA Attribute Name Data Type Read/Write Supported
Property Descriptors

VI_ATTR_RM_SESSION Long RO AIIINSTR
VI_ATTR_RSRC_IMPL_VERSION Long RO All
VI_ATTR_RSRC_LOCK_STATE Long RO All
VI_ATTR_RSRC_MANF_ID Integer RO All
VI_ATTR_RSRC_MANF_NAME String RO All
VI_ATTR_RSRC_NAME String RO All
VI_ATTR_RSRC_SPEC_VERSION Long RO All
VI_ATTR_SEND_END_EN Boolean RW AIlINSTR
VI_ATTR_STATUS Long RO All
VI_ATTR_SUPPRESS_END_EN Boolean RW AIlINSTR
VI_ATTR_TCPIP_ADDR String RO TCPIP
VI_ATTR_TCPIP_HOSTNAME String RO TCPIP
VI_ATTR_TERMCHAR Char RW AIIINSTR
VI_ATTR_TERMCHAR_EN Boolean RW AIIINSTR
VI_ATTR_TMO_VALUE Long RW AIlINSTR
VI_ATTR_USER_DATA Long RW All
VI_ATTR_WR_BUF_OPER_MODE Integer RW AIlINSTR

Oscilloscope Analysis and Connectivity Made Easy 265

TekVISA Active X Control Methods, Properties, and Events

266

Method

DeviceClear

GetWaveform
(channel, wfm, xincr,
trigPos, vUnits,
hUnits)

Definition

Sends a device clear command to the instrument which
performs an |IEEE 488.1-style clear of the device.

Parameters: none

Example:
Tvc1.DeviceClear

Obtains the current waveform at the current settings, along
with its sample interval, trigger position, and vertical and
horizontal engineering units, from the specified channel.

This query uses 1-byte binary encoding and places returned
data into a structure array readable by the TekVISA ActiveX
Control. For more granular control of GPIB queries, see the
ReadlEEEBIock and ReadList methods.

Input parameters:

channel asChannel; the channel from which to get a waveform
(CH1, CH2, CH3, CH4, MATH1, MATH2, MATH3, MATH4)

Output parameters:

wfm as Variant; the variable to receive the waveform as an
array of variants. Array is returned with Y-axis values
calculated in floating point format

xincr as Double; the variable to receive the sample time
interval (X-increment between Y-axis values)

trigPos as long; the variable to receive the waveform trigger
position

vUnits as String; the variable to receive the vertical
engineering units, for example, “V”.

hUnits as String; the variable to receive the horizontal units, for
example, “s”.

Example:

Dim arrWF

Dim n as Long, trigpos as Long

Dim xinc as Double

Dim vUnits as String, hUnits as String
Dim t as Double

Call Tve1.GetWaveform (CH1, arrWF, xinc, trigpos, vUnits,
hUnits)

For n = LBound(arrWF) To UBound(arrWF)
‘ calculate time value
t = (n - trigpos) * xinc
Debug.Printt & “ “ & arrWF(n)

Next

Oscilloscope Analysis and Connectivity Made Easy

Method

GetWaveform8K
(channel, timebase,
wfm, xincr, xoffset,
vUnits, hUnits)

TekVISA Active X Control Methods, Properties, and Events

Definition

Obtains the current waveform at the current settings on a
TDS/CSAB8000 Series oscilloscope, along with its sample
interval, horizontal offset, and vertical and horizontal
engineering units from the specified channel and timebase.
The time value for each sample point can be calculated using
the following function:

Time[index] = (index-xoffset)*xincr

Input parameters:

channel as CHANNEL_8K; the channel from which to get a
waveform (CH1_8K, CH2_8K, CH3_8K, CH4_8K, CH5_8K,
CH6_8K, CH7_8K, MATH1, MATH2, MATH3, MATH4,
MATH5, MATH6, MATH7, MATHS).

timebase as TIMEBASE_8K; the timebase from which to get a
waveform (MAIN, MAG1, or MAG2).

Output parameters:

wfm as Variant; the variable to receive the waveform. Array is
returned with Y-axis values calculated in floating point format.

xincr as Double; the variable to receive the sample interval
(X-increment between Y-axis values)

xoffset as Double; the variable to receive the X-offset (the
horizontal offset in digitized levels)

vUnits as String; the variable to receive the vertical units (for
example, V")

hUnits as String; the variable to receive the horizontal units (for
example, “ns”)

Example:

Dim arrWF

Dim n as Long

Dim xinc as Double, xoff as Double
Dim vUnits as String, hUnits as String
Dim t as Double

Call Tve1.GetWaveform8K (CH1_8K, MAIN. arrWF, xinc, xoff,
vUnits, hUnits)

For n = LBound(arrWF) To UBound(arrWF)

“ calculate time value

t=n*xinc

Debug.Printt & *, “ & arrWF(n)
Next

Oscilloscope Analysis and Connectivity Made Easy 267

TekVISA Active X Control Methods, Properties, and Events

268

Method
Lock

result = Query
(native-query)

array =
ReadByteArray
(maxElements)

Definition

Places a lock on the selected instrument resource, which
prevents other sessions from acquiring an exclusive lock. If no
lock has been taken, this method will take the lock and return.
If another TVC instance or VISA session owns the lock, then
this method will block until that lock is released. Locks can be
nested and released by calls to the Unlock() method.

Parameters: none

Example:

‘ Locking ensures atomic operations won't be interrupted
Tve1.Lock

Tve1.WriteString “*idn?”

Output = Tvc1.ReadString

Tvc1.Unlock

Sends a native query command to the oscilloscope and reads
the results.

Input parameters:
native-query as String; the GPIB native query to send

Returns: result as String; the query result from the oscilloscope

Example:
IbIDisplay.Caption = Tvc1.Query(**IDN?")

Returns a byte array of data from a GPIB native query
command.

Input parameters:

maxElements as long; the maximum number of elements to
read in the byte array

Returns: a Variant that contains the array being read

Example:

TVC1.WriteString CURVE?
Arr = Tvc1.ReadByteArray (max)

Oscilloscope Analysis and Connectivity Made Easy

Method

block =
ReadlEEEBIlock
(DataType,
ByteOrder,
maxElements)

TekVISA Active X Control Methods, Properties, and Events

Definition

Reads the instrument buffer in a specified |IEEE format. This
method is typically used in Curve queries with binary encoding.
The elements of the returned Variant array have the type
specified in the DataType argument, unless the
YModelEnabled property is set to True, in which case, each
element in the array is a floating-point value whose value is
determined by the following equation:

Variant[l] = (Element[l] — YOffset)*YMult + YZero

where YOffset, YMult, and YZero are all floating-point
properties. The intent is to allow you to calculate the vertical
data in a single operation, simply by setting the
YModelEnabled, YOffset, YMult, and YZero properties
appropriately before reading the binary block.

Input parameters:

DataType as IEEEBinaryType; the data type of the block being
read. The legal values are:

BinaryType_I2- Two-Byte Integer
BinaryType_l4 — Four-Byte Integer
BinaryType_R4 — Four-Byte Float
BinaryType_R8 - Eight-Byte Float
BinaryType_UI1 - Unsigned char
BinaryType_I1 - Signed char

byteOrder as ByteOrderingType; the byte order of the block
being read. Values are ByteOrderingType_Normal and
ByteOrderingType_Reversed.

maxElements as Long; the maximum number of elements in
the block being read

Returns: a Variant that contains the data block being read

Example:

Private Sub ReadlEEEBIock_Click()
Dim wfm As Variant
Dim str As String
Tve1. WriteString "*rst"
Tve1.WriteString "autoset exe"
Tve1.WriteString "header off"
Tve1.YModelEnabled = True
Tvel.YMult = Tve1.Query("WFMOutpre:YMULT?")
Tve1.YOffset = Tve1.Query("WFMOUTPRE:YOFF?")
Tvc1.YZero = Tvel.Query("WFMOUTPRE:YZERO?")
Tvc1.WriteString "WFMOUTPRE:ENCDG BIN"
Tvc1.WriteString "WFMOUTPRE:BN_FMT RI"
Tvc1.WriteString "DATA:ENCDG RIBINARY;WIDTH 1"
Tve1.WriteString "Data:Start 1"
Tve1.WriteString "Data:Stop 500"
Tve1.WriteString "Curve?"

Oscilloscope Analysis and Connectivity Made Easy 269

TekVISA Active X Control Methods, Properties, and Events

270

Method

list = ReadList
(dataType,
listSeparator)

Definition

‘Read #3500 that is prepended to the data

str = Tvc1.ReadPartialString(5)

wfm = Tvc1.ReadIEEEBIock(BinaryType_UI1,
ByteOrderingType_Normal, 500)

End Sub

Returns an array of variants in ASCII format. Typically used in
GPIB queries that return multiple values such as concatenated
queries or CURVE? queries. The elements of the returned
Variant array have the type specified in the DataType
argument, unless the YModelEnabled property is set to True,
in which case, each element in the array is a floating-point
value whose value is determined by the following equation:

Variant[l] = (Element[l] — YOffset)*YMult + YZero

where YOffset, YMult, and YZero are all floating-point
properties. The intent is to allow you to calculate the vertical
data in a single operation, simply by setting the
YModelEnabled, YOffset, YMult, and YZero properties
appropriately before reading the data.

Input parameters:

dataType as IEEEASCIIType; the data type of the list being
read. Legal values are

ASClIType_BSTR
ASClIType_I1
ASClIType_I2
ASClIType_l4
ASClIType_R4
ASClIType_R8
ASClIType_Ul1

listSeparator as String; the character used to separate
elements in the list. For GPIB commands, the separator is a
semicolon. For CURVE? queries, it is a comma.

Returns: a variant that contains the data list being read

Example:

Private Sub Command1_Click()
‘ example with concatenated query
Dim cmd As String
Dim arr
cmd = "HEADER OFF;:MEASU:MEAS1:VALUE?;
:MEASU:MEAS2:VALUE?;:MEASU:MEAS3:VALUE?"
Tve1.WriteString cmd
arr = Tvc1.ReadList(ASClIType_BSTR, ";")
If IsArray(arr) Then
Print arr(1)
Print arr(2)
Print arr(3)
End If
End Sub

See also example on page EJ

Oscilloscope Analysis and Connectivity Made Easy

TekVISA Active X Control Methods, Properties, and Events

Method Definition
string =] Reads the specified number of characters from the current
ReadPartialString instrument’s buffer. Often used when reading a byte stream
(length) returned from a CURVE? query. The format of the stream

header is #[n][bytenumbers]. For instance, reading the first six
characters returned from a CURVE? query might read"#45000.
The number 4 indicates the number of characters to read to
get the numbers of bytes being returned. In this instance, it is
5000. This function eases the parsing of such byte streams.

Input parameters:
length as Long; the length of the partial string to read

Returns: a string that contains the partial data being read.

Example:
Private Sub ReadlEEEBIock_Click()
Dim wfm As Variant
Dim str As String
Tve1. WriteString "*rst"
Tvc1.WriteString "autoset exe"
Tve1.WriteString "header off"
Tvc1.YModelEnabled = True
Tvel.YMult = Tve1.Query("WFMOutpre:YMULT?")
Tve1.YOffset = Tve1.Query("WFMOUTPRE:YOFF?")
Tvc1.YZero = Tvel.Query("WFMOUTPRE:YZERO?")
Tvc1.WriteString "WFMOUTPRE:ENCDG BIN"
Tvc1.WriteString "WFMOUTPRE:BN_FMT RI"
Tvc1.WriteString "DATA:ENCDG RIBINARY;WIDTH 1"
Tve1. WriteString "Data:Start 1"
Tvc1.WriteString "Data:Stop 500"
Tve1.WriteString "Curve?"
‘Read #3500 that is prepended to the data
str = Tvc1.ReadPartialString(5)
wfm = Tvc1.ReadlEEEBIock(BinaryType_Ul1,
ByteOrderingType_Normal, 500)
End Sub

result = ReadString Reads the entire string that is pending in the current
instrument. Typically used to read the results of a query sent
with the WriteString method.

Input parameters: none

Returns: result as String; the query result from the oscilloscope

Example:

Tvc1.WriteString(**IDN?”)
IbIDisplay.Caption = Tvc1.ReadString

Oscilloscope Analysis and Connectivity Made Easy 271

TekVISA Active X Control Methods, Properties, and Events

272

Method

ReadtoFile (filename,
length, refcount)

StatusDescriptor
(status)

Unlock

Definition

Reads data and stores the result in the specified file. If the
FileAppendEnabled property is set to True, the data is
appended to the specified file (if it exists); otherwise, the file is
created and written.

Input parameters:

filename as String; the full path name of the file to which to
write the data

length as Long; the maximum number of characters to read

Output parameters:
refcount as Long; the number of bytes written to the file

Example:
Dim sFileName As String
Dim flen as Long

SFileName = “C:\MyData.dat”
TVC1.WriteString "CURVE?"
TVC1.FileAppendEnabled = True

Do

.ReadToFile sFileName, 1024, flen
Loop While flen = 1024
TVC1.FileAppendEnabled = False

Returns a string with a description of the error specified by the
status argument.

Input parameters:

status as Long; the error argument for which a readable
description is desired

Example:
Private Sub Command1_Click()
On Error GoTo Err
Tve1. WriteString "*idn?"
output = Tvc1.ReadString
Err:
MsgBox Tvc1.StatusDescriptor(Tve1.Status), voOKOnly
End Sub

Removes a lock on the resource specified in the TVC instance.
Parameters: none

Example:

‘ Locking ensures atomic operations won't be interrupted
Tve1.Lock

Tve1.WriteString “*idn?”

Output = Tvc1.ReadString

Tve1.Unlock

Oscilloscope Analysis and Connectivity Made Easy

Method

WriteByteArray
(buffer)

WriteFromFile
(filename, length,
refcount)

WriteString (cmd)

TekVISA Active X Control Methods, Properties, and Events

Definition

Similar to the WriteString method but sends a Variant array
buffer rather than a String to the specified device.
Input parameters:

buffer as Variant; the byte array holding the Character data
(typically a GPIB command or query) to send to the
oscilloscope

Example:

Tve1.WriteByteArray (buff)

Reads data from the specified file and writes it to the current
device.

Input parameters:

filename as String; the full path name of the file to read

length as Long; the maximum number of characters to write to
the device

Output parameters:

refcount as Long, the number of bytes written to the device

Examples:

Dim sFileName as String

Dim flen as Long

Dim refcount as Long

sFileName = “C:\Mysettings.set”

flen = FileLen(sFileName)
Tve1.WriteFromFile sFileName, flen, refcount)

‘Read Previous *LRN to restore instrument state
Dim RetCnt As Long
Tve1.WriteFromPFile “C:\Restor01.txt”, 1000000, RetCnt

Sends a string (typically a GPIB command or query) to the
currently open oscilloscope.

Input parameters:
cmd as String; the command or query to send
Example:

Tve1. WriteString(“*IDN?”)
IbIDisplay.Caption = Tvc1.ReadString

Oscilloscope Analysis and Connectivity Made Easy 273

TekVISA Active X Control Methods, Properties, and Events

274

Property

Address*

Attribute

BaudRate
BytesAvailable
ClearToSendState
ComponentVersion
DataBits
DataCarrierDetectState
DataSetReadyState
DataTerminalReadyState
Descriptor*

DeviceName
EnableExceptions*
Endin

EndOut
FileAppendEnabled*
FindList*

FlowControl
HardwarelnterfaceName
HardwarelnterfaceNumber
HardwarelnterfaceType
Hostname*

Index*
InstrumentManufacturer*
InstrumentModel*
LockState
MaximumQueuelLength
Name*

Parent*

Parity

PrimaryAddress
RENState
RepeatedAddressingEnabled
ReplacementCharacter
RequestToSendState
ResourceName
RingindicatorState
SearchCriterion*
SecondaryAddress
SendEndEnabled
SessionType
SoftwareManufactureriD
SpecVersion

Status*

StopBits

Tag*
TerminationCharacter
TerminationCharacterEnabled
Timeout
UnaddressingEnabled
XOFFCharacter
XONCharacter
YModelEnabled*

YMult*

YOffset*

YZero*

Definition

Most of these properties map one-to-one with
TekVISA attributes. For example, the Tmeout
property encapsulates the VI_ATTR_TMO_VALUE
attribute. For context-sensitive help with these
properties, select the property and press F1 in
Visual Basic or VBA. For more information about
TekVISA attributes, see the online TekVISA
Programmer Manual.

Details about properties that do not map to TekVISA
attributes (marked with an asterisk) appear next in
this table in alphabetical order.

Oscilloscope Analysis and Connectivity Made Easy

Property
Address

Descriptor

Descriptor = address

EnableExceptions

EnableExceptions = state

FileAppendEnabled
FileAppendEnabled = state

Oscilloscope Analysis and Connectivity Made Easy

TekVISA Active X Control Methods, Properties, and Events

Definition

Read Only. Encapsulates the
VI_ATTR_TCPIP_ADDR attribute. Reads the
TCP/IP address of the active instrument. This string
is formatted in dot notation (for example,
10.0.0.1).

Example:
Print Tvc1.Address

Read/write. Gets or sets the VISA descriptor whose
type is string.

Property value:

address as string; the new instrument address value
to set the descriptor to

Example:

instr = Tvc1.Descriptor
Tvc1.Descriptor = “GPIB8::1::INSTR "

Read/Write. Gets or sets the EnableExceptions
property, which enables or disables exceptions in
the TekVISA ActiveX Control. This property is
enabled by default. If it is disabled, no exceptions wil
be generated on errors; however, the Status
property will still contain the status of the previous
command.

Property values:

state as Boolean; the state of the EnableExceptions
property (True or False), which whether exceptions

will be generated on errors in the TekVISA ActiveX

Control.

Example:
Tvc1.EnableExceptions = False

Read/Write. Encapsulates the
VI_ATTR_FILE_APPEND_EN attribute. Gets or sets
the property that specifies whether the ReadToFile
method will append or overwrite (truncate) when
opening a file.

Property values:

state as Boolean; the state of the
FileAppendEnabled property (True or False), which
determines how the ReadToFile method executes.

Example:

‘ Write Instrument ID to logfile

Dim RetCnt As Long

Tvc1.FileAppendEnabled = True
Tvc1.WriteString “*idn?”

Tvc1.ReadToFile “C:\logfile.txt”, 10000, RetCnt

275

TekVISA Active X Control Methods, Properties, and Events

Property
FindList

Hostname

Index

Index = number

InstrumentManufacturer

InstrumentModel

276

Definition

Read only. Gets the results of a search to detect
VISA devices, based on the SearchCriterion
property. Returns an array of strings listing
detectable instrument descriptors on the network.
The array’s lower bound index is 1.

Example:

Tvc1.SearchCriterion = 0

dev = Tve1.FindList

For | = LBound(dev) To UBound(dev)
Desc = dev(i)

Next |

Read Only. Encapsulates the
VI_ATTR_TCPIP_HOSTNAME attribute. Gets the
TCP/IP host name of the device (for example,
myhost). If no host name is available, this property
returns an empty string.

Example:
Tvc1.Descriptor =“TCPIP0::128.181.242.26::INSTR”

HostName = Tvc1.Hostname

Read/Write. Gets or sets the number (integer)
identifying a control in a control array.

Property value:

number as integer; number corresponding to a
control in a control array

Examples:
indx = Tvc1.Index

Tvel.Index = 1

Read Only. Returns the manufacturer of the
instrument.

Example:
Print Tvc1.InstrumentManufacturer
Example Output: “TEKTRONIX”

Read Only. Returns model description of the
instrument.

Example:
Print Tve1.InstrumentModel

Example Output: “TDS7104”

Oscilloscope Analysis and Connectivity Made Easy

Property

Name

Parent

SearchCriterion

SearchCriterion = instrtype

Status

Oscilloscope Analysis and Connectivity Made Easy

TekVISA Active X Control Methods, Properties, and Events

Definition

Read Only. Returns the name (string) of the
TekVISA ActiveX Control as it was set in design
time

Example:
TVCName = Tvc1.Name

Read only. Returns an object reference to the
container on which the TekVISA ActiveX Control is
located.

Example:

Dim ref as Object
Set ref = Tvc1.Parent
Print ref. Name

Example Output: “Form1”

Read/write. Gets or sets the type of instruments to
search for on the network. The SearchCriterion
property affects the values returned by the FindList
property.

Property values:

instrtype as integer; the new instrument type value
to set the search criterion to

where:

0 - All Instr Devices

1 - ASRL Instr Devices
2 — GPIB Instr Devices
3 — VXl Instr Devices

Example:

Tvc1.SearchCriterion = 0
dev = Tvc1.FindList

Read Only. Returns the ViStatus value associated
with the last VISA command.

Example:

Private Sub Command1_Click()
On Error GoTo Err
Tvc1.WriteString “*idn?”
output = Tvc1.ReadString
Err:
MsgBox Tvc1StatusDescriptor(Tvc1.Status),
vbOKOnly
End Sub

277

TekVISA Active X Control Methods, Properties, and Events

278

Property

Tag
Tag = string

YModelEnabled
YModelEnabled = state

Definition

Read/Write. Gets or stores extra data needed by
your program.

Example:
Tvc1.Tag = tagString

Read/Write. Gets or sets the YModelEnabled
property, which enables or disables the automatic
calculation of the Tektronix scope vertical mode1 for
subsequent ReadlEEEBIock or ReadList methods. If
the YModelEnabled property is True, the returned
array elements from either of those methods will be
floating-point values calculated based on the
following equation:

Variant[l] = (Element[l] - YOffset)*YMult + YZero

where YOffset, YMult, and YZero are all floating-
point properties. The intent is to allow you to
calculate the vertical data in a single operation,
simply by setting the YModelEnabled, YOffset,
YMult, and YZero properties appropriately before
reading the data.

Property values:

state as Boolean; the state of the YModelEnabled
property (True or False), which determines how the
ReadlEEEBIock or ReadList method executes.

Examples:
Tve1.YModelEnabled = True

See ReadlEEEBIock method example on page EL'

Oscilloscope Analysis and Connectivity Made Easy

TekVISA Active X Control Methods, Properties, and Events

Property Definition

YMult This property sets the YMult property. If the
YModelEnabled property is True, the YMult property
is used for automatic calculation of the Tektronix
scope vertical mode1 for subsequent
ReadlEEEBIock or ReadList methods.

When the YModelEnabled property is True, the
returned array elements from either of those
methods will be floating-point values calculated
based on the following equation:

Variant[l] = (Element[l] — YOffset)*YMult + YZero

where YOffset, YMult, and YZero are all floating-
point properties. By setting the YModelEnabled,
YOffset, YMult, and YZero properties before the
read, you enable data to be read and converted to a
usable form in a single operation.

Property value:

ymultiple as Double; the vertical scale factor per
digitizing level (also called the Y multiple)

Examples:
Tve1.YMult = Tve1.Query("WFMOutpre:YMULT?"

See ReadlEEEBIock method example on page

YMult = ymultiple

YOffset This property sets the YOffset property. If the

YOffset = yoffset YModeIE.nabIed property is True, the YOffset
property is used for automatic calculation of the
Tektronix scope vertical mode1 for subsequent
ReadlEEEBIock or ReadList methods.

When the YModelEnabled property is True, the
returned array elements from either of those
methods will be floating-point values calculated
based on the following equation:

Variant[l] = (Element[l] — YOffset)*YMult + YZero

where YOffset, YMult, and YZero are all floating-
point properties. By setting the YModelEnabled,
YOffset, YMult, and YZero properties before the
read, you enable data to be read and converted to a
usable form in a single operation.

Property value:

yoffset as Double; the vertical offset in digitized
levels (also called the Y offset)

Examples:
Tvc1.YOffset = Tve1.Query("WFMOutpre:YOFF?"

See ReadlEEEBIock method example on page

Oscilloscope Analysis and Connectivity Made Easy 279

TekVISA Active X Control Methods, Properties, and Events

Property
YZero

YZero = yzero

Event

Definition

This property sets the YZero property. If the
YModelEnabled property is True, the YZero property
is used for automatic calculation of the Tektronix
scope vertical mode1 for subsequent
ReadlEEEBIock or ReadList methods.

When the YModelEnabled property is True, the
returned array elements from either of those
methods will be floating-point values calculated
based on the following equation:

Variant[l] = (Element[l] — YOffset)*YMult + YZero

where YOffset, YMult, and YZero are all floating-
point properties. By setting the YModelEnabled,
YOffset, YMult, and YZero properties before the
read, you enable data to be read and converted to a
usable form in a single operation.

Property value:
yzero as Double; vertical offset in units of Y (also
called Y zero)

Examples:
Tvc1.YZero = Tvel.Query("WFMOutpre:YZERO?")

See ReadlEEEBIock method example on page }El

Definition

ServiceRequest() Sent as notification that a service request was received from the
device. This event is called whenever an SRQ occurs on a GPIB
device. SRQs are enabled by default on GPIB devices.

Example:

Private Sub Tvc1_ServiceRequest()

“Your code goes here

End Sub

280

Oscilloscope Analysis and Connectivity Made Easy

MATLAB Instrument Control Toolbox Functions

MATLAB Instrument Control Toolbox Functions

[able 37 [shows the subset of functions of the MATLAB Instrument Control
Toolbox used in Chapter 9 of this book. Optional syntax fields appear
enclosed in angle brackets <[ike this>.

Table 37: MATLAB Instrument Control Toolbox functions

Function

delete (obj)

obj

disp (obj)

fclose (obj)

fopen (obj)

Definition
Removes instrument objects from memory.

Input parameters:
objis an instrument object or array of instrument objects

Example:
delete (g)
Displays instrument object summary information.

Input parameters:
obj is an instrument object or array of instrument objects

Examples:

g
disp (9)

g = visa (‘tek’, ‘GPIB8::1::INSTR’)

Does the following:

= Disconnects an instrument object obj from the instrument
= Sets the Status property to closed

= Sets the RecordStatus property to off

Input parameters:
obj is an instrument object or array of instrument objects

Example:

fclose (g)

Does the following:

= Connects an instrument object obj to the instrument

= Flushes any data in the input or output buffer and makes
them read-only

= Sets the Status property to open

= Zeros out the BytesAvailable, ValuesReceived, ValuesSent,
and BytesToOutput properties

Input parameters:
obj is an instrument object or array of instrument objects

Example:
fopen ()

Oscilloscope Analysis and Connectivity Made Easy 281

MATLAB Instrument Control Toolbox Functions

Function
fprintf (obj, ‘cmd’)

fprintf
(obj, <‘format’,>
‘emd’ <,‘'mode’>)

data = fread
(obj, size
<,‘precision’>)
[data <,count>
<,msg>] = fread
(obj, size

<, ‘precision’>)

282

Definition

Writes text to the instrument. The write is terminated when the
specified text (and any terminator) is written, a timeout occurs, or
the output buffer is filled.

Input parameters:
obj is an instrument object or array of instrument objects

format is an optional string specifying a C language conversion
specification; if omitted, the default format is %s\n

cmd is the string written to the instrument

mode optiionally specifies whether data is written
synchronously(the default) or asynchronously;
valid values = sync and async.

Examples:

fprintf (g, ‘HEADER OFF’)

fprintf (g, ‘%s’, *IDN?’)

fprintf (g, ‘ACQUIRE:STATE OFF’, ‘async’)
fprintf (g, ‘%s’, ‘ACQUIRE:STATE RUN’, ‘async’)

Reads binary data from the instrument.

Input parameters:

objis an instrument object or array of instrument objects
size specifies the number of values to read

precision is an optional string specifying the number of bits read
for each value, and the interpretation of the bits as character,
integer, or floating-point values. If omitted, the default precision is
‘uchar’ (8-bit unsigned character).

Returns:

The binary data read from the instrument and, optionally, the
number of values read and a warning message if unsuccessful

Return parameters:
data is the binary data read from the instrument
count is the optional number of values read

msg is an optional warning message if the read was
unsuccessful

Examples:

data = fread (g, recordSize)

data = fread (g, length, ‘float32’)

[waveform, cnt] = fread (g, recordLen, ‘int16’)
[terminator, cnt, warnmsg] = fread (g, 1, ‘char’)

Oscilloscope Analysis and Connectivity Made Easy

Function

data = fscanf
(obj <,‘format’>
<,size>)

[data <,count>
<,msg>] = fscanf
(obj <,‘format’>
<,size>)

get (obj)

out = get (obj
<,‘PropertyName’>)

MATLAB Instrument Control Toolbox Functions

Definition

Reads response data from the instrument connected to obj and
formats it as text (by default).

Input parameters:
objis an instrument object or array of instrument objects

format is an optional string specifying a C language conversion
specification; if omitted, data is converted to text using the %c
format

size is an optional field specifying the number of values to read;
otherwise the read is terminated when a terminator is read, a
timeout occurs, or the input buffer is filled.

Returns:

The data read from the instrument and, optionally, the number of
values read and a warning message if unsuccessful

Return parameters:

data is the data read from the instrument

count is the optional number of values read

msg is an optional warning message if the read was
unsuccessful

Examples:

idn = fscanf (g)

measure = fscanf (g, ‘%e’)

data = fscanf (g, ‘%¢’, 6)
[waveform, cnt] = fscanf (g)
[data, cnt, warnmsg] = fscanf (g)

Displays or returns all instrument object properties or, optionally,
only the current value of a specified PropertyName.

Input parameters:
obj is an instrument object or array of instrument objects

PropertyName is a string for an optionally-specified property
name of the instrument

Returns:

All base and object-specific property names and their current
values for instrument obj , or the current property value for a
specified PropertyName

Return parameters:

out is a structure of property names and values, a cell array of
property values, or a single property value

Examples:

get (9)

props = get (g)

visatype = get (g, ‘Type’)

Oscilloscope Analysis and Connectivity Made Easy 283

MATLAB Instrument Control Toolbox Functions

284

Function

instrhelp name

instrreset

data = query
(obj, ‘cmd’

<, ‘wformat’™>
<, ‘rformat’>)

[data <,count>
<,msg>] = query
(obj, ‘cmd’

<, ‘wformat’>

<, ‘rformat’>)

Definition

Displays help for the named Instrument Control Toolbox function
or property on the MATLAB command line.

Examples:

instrhelp fread

instrhelp visa

Disconnects and deletes all instrument objects.

Example:
instrreset

Writes text to the instrument and reads data from the instrument.
Input parameters:

objis an instrument object

cmd is the string written to the instrument

wformat is an optional string specifying a C language conversion
specification; if omitted, the default format for written data is %s\n

rformat is an optional string specifying a C language conversion
specification; if omitted, data read from the instrument is
converted to text using the %c format

Returns:

The data read from the instrument and, optionally, the number of
values read and a warning message if unsuccessful

Return parameters:
data is the data read from the instrument
count is the optional number of values read

msg is an optional warning message if the read was
unsuccessful

Examples:

while query(g,'BUSY?','%s','%e"); end;
horizLen = query(g,HORIZONTAL:RECORD?','%s','%€");

Oscilloscope Analysis and Connectivity Made Easy

Function

set (obj)

set (obj,
‘PropertyName’)

props = set (obj)

props = set (obj,
‘PropertyName’)

set (obj
<,‘PropertyName’,
PropertyValue,...>)

set (obj, PN, PV)
set (obj, S)

MATLAB Instrument Control Toolbox Functions

Definition
Does one of the following:
= Displays all configurable instrument object properties
= Displays all possible values of a specified PropertyName

= Returns all configurable instrument properties to props

= Returns all possible values of a specified PropertyName to

props

= Configures one or more properties of obj to specified
value(s) in a single command

Input parameters:
obj is an instrument object or array of instrument objects

PropertyName is a string for an optionally-specified property
name of the instrument

PropertyValue is a property value supported by the optional
property name

PN is a cell array of property names

PVis a cell array of property values

S is a structure with property names and property values.
Returns:

All configurable properties for instrument obj , or all possible
values for a specified PropertyName

Return parameters:

props is a structure array of property names for obj, or a cell
array of possible values for PropertyName

Examples:

set (g)

properties = set (g)

modevalues = set (g, ‘EOSMode’)
set (g, ‘InputBufferSize’, recordLen*2)

Oscilloscope Analysis and Connectivity Made Easy

285

MATLAB Instrument Control Toolbox Functions

286

Function

obj = visa
(‘vendor’,
‘rsrcname’
<,’PropertyName’,
PropertyValue,...>)

Definition

Creates a VISA object, optionally with specified property name(s)
and value(s).

Input parameters:
vendor is a string for a VISA vendor where

tek = Tektronix Corporation VISA
ni = National Instruments VISA
agilent = Agilent VISA

rsrcname is a string for a VISA instrument resource name.
visa-gpib instruments use this syntax:
GPIB<board>::primary_address<::secondary_address>::INSTR

visa-serial instruments use this syntax:
ASRL<port>::INSTR

PropertyName is a string for an optional property name of the
VISA object

PropertyValue is a property value supported by the optional
property name

Return parameters:

obj is the VISA object created
Examples:

g = visa (‘tek’, ‘GPIB8::1::INSTR’)
h = visa (‘tek’, ‘ASRL1::INSTR’)

Oscilloscope Analysis and Connectivity Made Easy

PnP Driver Functions

PnP Driver Functions

[able 38 [summarizes the TDS/CSA 8000 PnP driver functions used in this

book.

Table 38: TDS/CSA 8000 PnP driver functions used in LabWindows/CVI and

LabVIEW examples

Command

tktds8k_autoConnectToFirst(
instrument)

tktds8k_getinstrDesc
(instrument, descriptor)

tktds8k_getMeasValue
(instrument, measurement#,
measurementValue)

Oscilloscope Analysis and Connectivity Made Easy

Meaning
Connects to first tktds8k instrument found.

Output parameter:

Address of VISA instrument handle used to access
instrument specific data. Initialized by this routine.
Example:

status = tktds8k_autoConnectToFirst (&ID);

Gets instrument descriptor string of the instrument.

Input parameters:

instrument is an instrument handle used to access
the descriptor

Output parameters:

description is the returned instrument descriptor
string

Example:
ret = tktds8k_GetlnstrDesc (ID, InstDesc);

Gets a measurement value from the instrument.

Input parameters:

instrument is an instrument handle used to access
the instrument

measurement# is the measurement number from
which to get a measurement value

Output parameters:

measurementValue is the address of the value for
the type of measurement set up in measurement

Example:

tktds8k_GetMeasValue (ID, tktds8k_MEAS_1,
&dMeasValue);

287

VISA Operations

288

VISA Operations

[able 39 summarizes the VISA operations used in this book. For more
information about the Tektronix implementation of the VISA standard (the
TekVISA API), consult the online TekVISA Programmer Manual.

Table 39: VISA operations used in LabVIEW and LAN Server examples

Operations

viClose (v/)

viOpen

(sesn, rsrcName,
accessMode,
timeout, vi)

viOpenDefaultRM
(sesn)

Meaning

Closes the session to this virtual instrument (and the Default
Resource Manager).

Input parameter:

viis a unique logical identifier to a session, event, or find list.
Example:

viClose(vi);

Opens a session to the specified resource.

Input parameter:

sesn is the Resource Manager session (should always be the
Default Resource Manager for VISA returned from
viOpenDefaultRM()).

rsrcName is a unique symbolic name of a resource.

accessMode Specifies the mode(s) by which the resource is to
be accessed: VI_EXCLUSIVE_LOCK and/or
VI_LOAD_CONFIG. If the latter value is not used, the session
uses the default values provided by VISA.

Output parameter:

timeout specifies the absolute time period (in milliseconds) that
the resource waits to get unlocked (If the accessMode
requests a lock) before this operation returns an error;
otherwise, this parameter is ignored.

viis a unique logical identifier reference to a session.

Example:

viOpen(rm, "GPIB9::1::INSTR", VI_EXCLUSIVE_LOCK,
10000, &vi);

Returns a session to the Default Resource Manager.

Output parameter:

sesn is a Unique logical identifier to a Default Resource
Manager session.

Example:
viOpenDefaultRM(&rm);

Oscilloscope Analysis and Connectivity Made Easy

VISA Operations

Operations Meaning
viRead (vi, buf, Reads data synchronously from a device into the specified
count, retCount) buffer.

Input parameter:
vi is a unique logical identifier to a session.
count is the number of bytes to be read.

Output parameter:

buf represents the location of a buffer to receive data from
device.

retCount represents the location of an integer that will be set to
the number of bytes actually transferred.

Example:

viRead(vi, buffer, 256, &retCnt);
buffer[retCnt] = \0’; // ensures null terminator in string

viWrite(vi, buf, Writes data synchronously to a device from the specified
count, retCount) buffer.

Input parameter:
vi is a unique logical identifier to a session.

count is the number of bytes to be written.

Output parameter:

buf represents the location of a data block to be sent to the
device.

retCount represents the location of an integer that will be set to
the number of bytes actually transferred.

Example:
viWrite(vi, "*idn?", 5, &retCnt);

Oscilloscope Analysis and Connectivity Made Easy 289

VISA Operations

290 Oscilloscope Analysis and Connectivity Made Easy

Introduction

Appendix B: Fast LAN Access to Your
Oscilloscope

Introduction

Other parts of this book have introduced ways to access your Tektronix
oscilloscope through end-user and programming applications running
directly on the oscilloscope PC. This appendix discusses how to access the
oscilloscope across a local area network (LAN) through all of these same
applications and programming environments.

VXI-11 and LAN Connectivity for Oscilloscopes

LAN connectivity to your oscilloscope is supported through an industry-
standard communications protocol called VXI-11. Developed by the VXIbus
Consortium, the VXI-11 standard specifies an instrument protocol for
TCP/IP computer networks. It supports writing and reading data to and from
instruments in a manner similar to the VISA API standard, only across a
network and with a smaller set of functions. VXI-11 function calls are issued
over client-server connections using the Open Network Computing Remote
Procedure Call (ONC RPC) protocol.

TekVISA provides virtually transparent network access to your
oscilloscope by including VXI-11 client and server software components.
The VXI-11 LAN Server is installed on your Tektronix oscilloscope as part
of the TekVISA software installation. The VXI-11 LAN Client is included as
just another VISA instrument resource type on any client PC with TekVISA
software installed on it. Any existing VISA-based application may use
TekVISA to access a remote oscilloscope running the LAN Server.

Your VISA-based applications can issue GPIB commands across the LAN
link in the same way that they issue commands locally on the oscilloscope
PC. This is possible because the LAN Server uses the same virtual GPIB
interface to access the embedded oscilloscope software as is used locally.

The diagram in hows how the above software components fit
together to provide LAN-based oscilloscope connectivity.

Oscilloscope Analysis and Connectivity Made Easy 291

Benefits of LAN Access

Remote Windows-based Controller

Visual Basic | | MATLAB Lag;’('f‘” C, C++
Program PR Program
|
[
VXI-11
Client
Windows-based Oscilloscope
Ethernet
LAN
Windows side
of Instrument VXI-11
Server
//Ks//.”/ o%"o%"o%‘oc’
/W s aaaa
@0 0 0@ @ ® -
Virtual scgt;:l ;re Embedded Software side
GPIB connection of Instrument

Figure 65: LAN connectivity from PC applications to Tektronix oscilloscope

Benefits of LAN Access
There are several benefits to LAN-based access to your oscilloscope:

e Long-distance Connectivity: Your oscilloscope can be accessed
from any point on the network, whether it is across a room or in
another building.

¢ High-speed Access: The built-in 10/100-BaseT Ethernet port in a
Tektronix oscilloscope enables you to achieve data transfer speeds
up to 3 times that of conventional GPIB connections when used in
conjunction with the LAN Server (approximately 3.5 megabytes per
second over a typical 100-BaseT network).

292 Oscilloscope Analysis and Connectivity Made Easy

Deployment Considerations

¢ Improved Cost/Convenience: Inexpensive Ethernet cabling more
casily connects oscilloscopes to your organization's existing network
infrastructure than does limited, single point-to-point connections
with bulky GPIB bus cables.

Deployment Considerations

To realize the full benefits of LAN-based oscilloscope access, keep in mind
the following considerations:

e Network Performance: Actual oscilloscope data transfer
performance across a LAN will depend on your network’s physical
type and composition of hubs, switches, and routers. It may be
necessary to upgrade network components in order to achieve
optimal LAN access speeds.

e Network Security: As with any other computing resource attached to
a network, take security precautions as appropriate to protect your
LAN-enabled oscilloscope against unauthorized use.

Caution: If your organization's LAN is connected to external
networks such as the Internet, use of a properly configured
network firewall is strongly recommended. The VXI-11 protocol
and VXI-11 LAN Server do not include any security
mechanisms.

The vast majority of businesses and other organizations with Internet
access already have network firewalls established. However, you
may want to contact network security personnel to verify that your
firewall blocks external access to the RPC port mapper service
(TCP/IP port 111). VXI-11 clients use this network software service
to connect to the VXI-11 LAN Server.

VXI-11 LAN Server Installation and Configuration

Installation of the VXI-11 LAN Server is beyond the scope of this appendix.
Documentation for this may be found with your TekVISA software on the
product software CD for your Tektronix oscilloscope. The LAN Server may
only be configured on the oscilloscope PC.

Once installed, the LAN Server must either be manually activated or
configured for automatic startup after system power-up on the oscilloscope
PC. The VXI-11 Server Control program, however, runs automatically after
system power-up. If not running, it may be started manually via the

Start > Programs > TekVISA > VXI-11 Server Control menu item.

Oscilloscope Analysis and Connectivity Made Easy 293

VXI-11 LAN Client Access Setup

294

When the Server Control program is running, the following icon will appear
in the system tray in the lower right corner of the screen on the oscilloscope
PC:

End

To change the LAN Server's activation status or other properties, right-click
the Server Control icon to bring up the pop-up menu below:

About Wl-11 Server Contral...

Stant WX1-11 Server
St Yl Senver
Server Statuz

Server Properties

E xit

If the LAN Server is already running, the Start VXI-11 Server menu item will
be disabled; otherwise, this menu item will be enabled, and the Stop VXI-11
Server menu item will be disabled. Select Start VXI-11 Server to activate the
server if necessary.

If you would like the LAN Server to start automatically at system boot, you
can configure it to do so by selecting the Server Properties item on the pop-
up menu. This following dialog box will appear:

V1-11 Server Properties

Start zerver automaticall
|— Iy

at spstem powerup C |
ance

Locatian
ITDSEEIE# Grd G11

After installation of the TekVISA software, the LAN Server will not be
configured for automatic startup (as a security precaution). To configure
automatic startup, select the check box labeled “Start server automatically at
system powerup” so that it is enabled. Clear this check box if you would like
to disable automatic startup.

Information on other features of the VXI-11 Server Control program can be
found in documentation included with the TekVISA installation software.

VXI-11 LAN Client Access Setup

TekVISA Installation
VISA applications that communicate with Tektronix instrumentation should
use TekVISA, the Tektronix version of VISA. You should install and

Oscilloscope Analysis and Connectivity Made Easy

VXI-11 LAN Client Access Setup

configure TekVISA on each PC that communicates with Tektronix
instrumentation using the VISA standard.

The software installation includes a utility to help you configure TekVISA
resources. The VISA configuration utility allows you to detect GPIB and
serial (ASRL) resource assignments, and to add or remove remote hosts
(such as VXI-11 LAN Servers connected by Ethernet LAN or an AD007
GPIB-LAN adapter and associated GPIB hardware).

To install TekVISA software on a PC connected to your Windows-based
oscilloscope, follow these steps:

Note. If you have already installed TekVISA from an earlier version
of the Tektronix Software Solutions CD, please reinstall TekVISA
from the most recent CD.

1. Insert the product software CD for your Series of Tektronix
oscilloscope into the CD-ROM drive. Select Start > Run,
browse the CD to the TekVISA folder, and run setup.exe.

2. Follow the instructions in the installation wizard.

Included with the TekVISA installation is the VISA configuration utility,
which lets you find resource assignments and add or remove network hosts
(instruments). Once an instrument is added to the TekVISA configuration,
you can communicate with it by using a TekVISA-compliant instrument
driver.

To run the VISA configuration utility, select Start > Programs > TekVISA >
TekVISA Configuration. Windows opens the VISA Configuration window,
shown in The configuration program then searches the network
for installed resources. This may take a few minutes depending on the
number of resources loaded and the network load.

Oscilloscope Analysis and Connectivity Made Easy 295

VXI-11 LAN Client Access Setup

296

@I TekVISA Resource Manager Configuration

i~ TekVISA Resourc

Find |

WISA Descriptor

| Descriptor Alias Local Lock | Local Shared Lock. ‘ Hostname Information M

TCRIP::

TCPIP::

TCPIP::

TCPIP::

128.181.240.134 1 INSTR.

128.181.240.135:INSTR,

128.181.240,136INSTR.

128.181.240,139:IMNSTR

TCPIP::128,181.240,94 INSTR

308r4.cse.tek.com
s0ar5.cse.tek.com
soarb.cse.tek.com
soard.cse.tek.com

soarg11.cse tek.com

N NS
N NN NS

TCPIP:: 128, 181244, 31 INSTR. dhcp244-3.cse.tek.com TDS18
TCPIP::126.181. 244,45 :gpb0,8: INSTR Testing dhep244-45.cse.tek com
T TCPIP::128.181.244.67 1 INSTR GPIBO::1::INSTR dhep244-67.cse.tek.com TDS5054 Grid 611
Call Monitar TCPIP:; 128, 181246 20 INSTR dhcp24e-2.cse.tek.com 7104 ADV LAB ;I
—Remote Ho:
Add | Hostname |

Remaove

Status: Ready

WISA Librang: W 1.96 Tektronix
4

Figure 66: VISA Configuration Window

The VISA Configuration window has the following features:

= TekVISA Resources List Box. Lists all resources that VISA can
currently find.

* Find Button. Rescans the VISA resources and is useful for verifying
the presence of new instruments.

* Preferences Button. Brings up the TekVISA Resource Manager
Preferences dialog box. This dialog box defines the actions that
occur when the find button is pressed and can define other conditions
when a find may occur.

Oscilloscope Analysis and Connectivity Made Easy

VXI-11 LAN Client Access Setup

TekVisa Resource Manager Preferences il
—Lookup Frequency 0K
¥ Scan on Statup
.. —
Local Devices IFind Button Only LI
IF Discowvery IFind Button Only LI ST
Host List Search IFind Button Only LI
Lacation Info IFind Buttan Only ﬂ
— TCRIF Discowvens Wait Time —Auta Save
3 Save Discovered
Heleliss (202 TCFIF Resources in
HostMarme list.
Total (secs) |10 - Save

TCFIP Scan Wait Time

Address (millisecs) |100

= Call Monitor Button. The call monitor button brings up the call
monitor dialog. This dialog displays the TekVISA or TVC calls as
they are performed.

TekWISA Call Monitor

0.0000s

0.0000s

0.0000s

0.0000s

0.0000s

0.0053s:

wiClose(0x1134950)

SwiFindMext(0x11343c8, "TCRIF:128.181 . 2401 39 IMSTR
0.0502s:
0.0000s:

viDpen(Ox«12f684, "TCFIF:128.181.240 139 INSTRY, 0, 0, 01 2fha 4)
viGetattribute(0x1134950, VI_AT TRE_INTF_INST_MNAME, 0x10d4849a(

SwiGetAttribute(0:1134950, WVI_AT TR_INTF_TYPE, 0x10d433alk))
0.0000s:
0.0054s:

viGetattribute(0x1134950, VI_AT TRE_INTF_MNLUIM, 01 0d449%9(0))
wiClose(0x1134950)

cwiFindMesxt(0x11343cs, "TCRIF:128.181 240 34:INMETR
0.0434s:
0.0000s:

viDpen(Ox«12f684, "TCFIP:128.181. 240 942 NMSTR", 0, 0, 0x1 2f584)
viGetattribute(0x1134950, VI _AT TRE_INTF_INST_MNAME, 0x10d4aa8(

swiGetAttribute(0:1134950, WVI_AT TR_INTF_TYPFE. 0x10d4bas(k)
0.0000s:
0.0053s:

viGGetattribute(0x1134950,VI_AT TRE_INTF_MLUIKM, 0 Oddbaaid))
wiClose(0x1134950)

SviFindMesxt{0x11343cs, "TCPIF:1 28,181,244 32 IMSTRY

Oscilloscope Analysis and Connectivity Made Easy 297

VXI-11 LAN Client Access Setup

= Remote Hosts List Box. Lists the current name or IP address (such
as 10.0.0.1) or range of IP addresses of possible remote hosts (that is,
the oscilloscope you wish to control remotely).

= Add Button. Displays the Add Remote Host Dialog for adding a
remote interface.

= Remove Button. Removes the host selected in the Remote Hosts list
box and displays a dialog box before removing the host.

= Status. The status box displays helpful information about the last
operation performed. The Busy / Ready indicator next to it shows
when the utility is busy.

To search for new instruments, click Find. The VISA configuration utility
rescans the VISA resources to find any new instruments.

To add a remote host (configure a VXI-11 client), follow these steps:

1. Click Add. The Add Remote Host dialog appears

(Figure 67].
Enter Hostname il

0].4

Hosthame: Il

Cancel

Figure 67: TekVISA Remote Host dialog box

e Hostname. Is a host name, an IP address or regular
expression defining a range of IP addresses.

In the Add Remote Host dialog, enter the correct host name (or IP address or
range of IP addresses) of the new interface. These names and addresses will be
searched for corresponding VXI-11 servers and devices.

To delete a remote host item, perform these steps:
1. Select the host name to remove in the Remote Hosts list box.

Click Remove. The host name disappears from the Remote Hosts box and the
TekVISA Resources List Box.

298 Oscilloscope Analysis and Connectivity Made Easy

Application Examples

Application Examples

Visual Basic Example

As described earlier, Visual Basic programs use the TekVISA ActiveX
Control (TVC) to access the oscilloscope locally. You can access the
oscilloscope remotely as well with this same control component by setting
the VISA instrument descriptor appropriately.

Assume that, the VISA Configuration utility has already found several VXI-
11 devices. These devices are denoted with TCPIP VISA descriptors. After
creating an instance of the TVC control called Tvc1, you would then set the
VISA instrument descriptor as follows:

Tvcl.Descriptor = “TCPIP::128.181.244.67::INSTR”

All other details of using the TVC control to access the oscilloscope in
Visual Basic are the same as discussed earlier.

MATLAB Example

Let us continue to use the previous example of a remote oscilloscope. You
may have noticed that the descriptor “TCPIP::128.181.244.67::INSTR” has
an alias of “GPIBO0::1::INSTR”. Currently MATLAB doesn’t accept TCPIP
descriptors directly. However, it will recognize and open TCPIP descriptors
that are aliased as GPIB descriptors. Within MATLAB, you would create a
VISA-GPIB instrument object to access the oscilloscope as follows:

g = visa('tek', 'GPIB0::1::INSTR');

As you can see, this is not much different from examples of local
oscilloscope access presented earlier in this book. All other details of
working with the oscilloscope in MATLAB remain the same.

LabWindows/CVI Example

In the Chapter 9 description of using LabWindows/CV1 with the VXI Plug-n-
Play drivers, a code example is presented using the
tktds8k_autoConnectToFirst function call from the VXI Plug-n-Play APL
This works fine if the program is run directly on the oscilloscope PC.
However, if the program is to be used remotely over the LAN, another
function call must be used instead to reliably specify the correct remote
oscilloscope.

ViStatus status;
ViSession ID;

status = tktdSSk_init("TCPIP::128.181.244.67::INSTR", VI_TRUE, VI_TRUE,
&ID) ;

The preceding code shows a call example for the tktds8k_init function. This
function call should replace any call to tktds8k_autoConnectToFirst. The
oscilloscope is identified in this case with the "
TCPIP::128.181.244.67::INSTR" character string. Modify this identifier as

Oscilloscope Analysis and Connectivity Made Easy 299

Programming Tips

300

needed to reflect the correct configuration on your PC for the remote
oscilloscope as shown by the VISA Configuration utility.

LabVIEW Example

In the Chapter 9, description of using LabVIEW with the VXI Plug-n-Play
drivers, the tktds8k Plug & Play Demo.vi example shows how to access the
oscilloscope locally. The figure on page 235 shows the Front Panel for this
application and includes the oscilloscope resource name.

Running this demo program on a remote PC is straightforward. Simply
change the " TCPIP::128.181.244.67::INSTR" resource name to whatever
resource name has been assigned to your remote oscilloscope via the VISA
Configuration utility.

C Program Example

For oscilloscope users with knowledge of C or C++ programming, a simple
C program using VISA function calls is presented in This example

uses a remote oscilloscope configured for access on the local PC as GPIB9.

#include <visa.h>
#include <stdio.h>

int main (int argc, char* argv[])

{

ViSession rm, vi;
ViChar buffer[256] ;
ViUuInt32 retCnt;
viOpenDefaultRM (&rm) ;
if (viOpen(rm, "TCPIP::128.181.244.67::INSTR", VI EXCLUSIVE LOCK,
10000, &vi)
== VI_SUCCESS)

viWrite (vi, "*idn?", 5, &retCnt) ;
viRead (vi, buffer, 256, &retCnt) ;

printf ("device: %s\n", buffer);

viClose (vi) ;

}

viClose (rm) ;
Figure 68: Sample VISA program for LAN-based oscilloscope access

The online TekVISA Programming Manual presents more detailed
information on writing VISA-based programs in C or C++. A brief
description of VISA operations used in this example appears in n
Appendix A.

Programming Tips

Timeout Settings
When creating VISA programs to access the oscilloscope remotely, you need
to take into consideration the effects of network delays. Since using the

Oscilloscope Analysis and Connectivity Made Easy

VXI-11 Standard

network may decrease bandwidth and increase latency, you need to use
larger timeout settings in VISA function calls than you would for programs
running locally.

Non-TekVISA VXI-11 Clients

You can use another vendor's VISA software to connect to your oscilloscope
via the Tektronix VXI-11 LAN Server, provided that the vendor has
implemented VXI-11 support. National Instruments, for example, supports
VXI-11 client-side access with recent releases of NI-VISA (version 2.5 and
later). In such cases, you would not use Tektronix's VisaConfig utility to
configure the client PC.

With NI-VISA, you would also use the TCPIP resource type in a program to
remotely access the oscilloscope. The previous C example and LabView
example would also work with NI-VISA.

VXI-11 Standard

The VXIbus Consortium, Inc. developed the VXI-11 standard. The
standard’s full name is VXI-11, TCP/IP Instrument Protocol Specification.
You can obtain copies of the specification document from the VXIbus
Consortium at the following website: http://www.vxi.org/specifications.htm. |

Although this book section has focused on accessing Tektronix oscilloscopes
from remote Windows-based workstations, you can access the oscilloscope
across a LAN from computers running another operating system (OS) such
as UNIX or Linux. You can use any OS that supports the TCP/IP and ONC
RPC protocols to run or create VXI-11 client programs to access the LAN
Server.

You need some familiarity with RPC programming to create custom VXI-11
client applications. You also need C programming language knowledge to
use most RPC software tools and libraries. The specification document
mentioned above describes additional details specific to the VXI-11 protocol.

Oscilloscope Analysis and Connectivity Made Easy 301

http://www.vxi.org/specifications.htm.

VXI-11 Standard

302 Oscilloscope Analysis and Connectivity Made Easy

photo of cover goes on this page Introduction

Appendix C: Other VB Examples

Introduction

This appendix presents another Visual Basic programming example that may
prove useful to you as a utility or template to insert into your own programs.
This and other examples are available on the CD that accompanies this book.

Alternate Methods for Getting Waveform Data Using the TekVISA Control

The TekVISA ActiveX control exposes a number of methods for capturing
waveform data from TekVISA enabled oscilloscopes. The easiest methods to
use are GetWaveform and GetWaveform8K. These methods were employed
in the examples in Part 1. For applications requiring more granular control of
capturing waveform data, the TekVISA ActiveX exposes other methods
including ReadList, ReadPartialString, and ReadToFile. The following
example deals with two of these alternate methods.

Writing and Reading Binary/ASCIl Waveform Example
This example illustrates how to

e Use the TekVisa ActiveX control’s ReadList or ReadToFile
method to read the results of a GPIB CURVE? query in
either ASCII or binary format, and then write the waveform
data to disk

e Read the waveform data from disk and reconstruct X-axis
and Y-axis values

The example only captures data from Channel 1 and only targets the
TDS7000 oscilloscope, but it is conceptually useful for other types of data
and for scopes such as the TDS/CSA8000 with a somewhat different GPIB
command set.

The GPIB command set for the TDS7000 oscilloscope allows you to specify
the :

e encoding format of the data (ASCII or binary)
e sample size returned

e byte width of the waveform data.

Oscilloscope Analysis and Connectivity Made Easy 303

Writing and Reading Binary/ASCII Waveform Example

304

If binary data is returned, you can designate more waveform attributes
including the

e Dbyte format (signed integers, unsigned integers, or floating
point)

e byte ordering (least significant bit or most significant bit)
The general file format used with both ASCII and binary files is to insert

e header information at the beginning of the file in a
semicolon-separated string

e alinefeed character
e the data returned by a GPIB CURVE? query

In the case of ASCII data, the values returned from the CURVE? query
depend on the method used (either ReadList or ReadToFile):

e The ReadList method of the TekVISA ActiveX control
places separated values (such as semicolon-separated and
comma-separated values) into a Variant array. This array can
then be “walked” to retrieve values. Return values are
semicolon-separated if used with a concatenated GPIB
command such as
HEADER:OFF;WFMOUTPRE:YOFF?;YMULT?;YZERO?
Return values from a CURVE? GPIB query are comma-
separated.

When reading data returned from a CURVE? query with the
ReadList command, you can use several associated properties of the
TekVISA ActiveX control so that Y-axis values are calculated.
These properties are YModelEnabled, YMult, YOffset, and YZero. If
you set YmodelEnabled to True and then assign values to the
YMult,YOffset, and YZero properties, the TVC control will perform
the calculations for you. You can then save the calculated Y-axis
values to disk. You only need to reconstruct timing values when
reading the file from disk.

The header format for an ASCII file using the ReadList method with
YModelEnabled is in the format:

[record length];[trigger position];[x increment]

e Asan alternative, you may use the ReadToFile method to
write data to disk. In this case, you must place more values
into the header command so Y values can be calculated
when the data is read from disk. (See the code for how this is
accomplished.)

The header format for files using the ReadToFile method is :

Oscilloscope Analysis and Connectivity Made Easy

Writing and Reading Binary/ASCII Waveform Example

[record length];[trigger position];[x increment];[yoffset];[ymult];[yzero]

The User Interface

hows the Visual Basic form created for this example, and
40 lists the changes made in the Properties window. shows the
form as it looks at runtime.

e When the user clicks the Write ASCII button, a query for an
ASCII-formatted waveform is sent to the oscilloscope.
Depending on which option button is selected, one of two
methods (ReadList or ReadToFile) is used to read the
response and write it to disk.

e When the user clicks the Write Binary button, a query for a
binary-formatted waveform is sent to the oscilloscope. The
response is read using the ReadToFile method and written to
disk.

o When the user clicks the Read ASCII button, an ASCII
waveform is read from disk and displayed in the list box.
This routine limits display to waveforms of 50000 records or
fewer.

e When the user clicks the Read Binary button, a binary
waveform is read from disk. Depending on which option
button is selected, the data is either converted to ASCII and
displayed in the list box or written to disk in ASCII format.

. Test Wnting and Reading Binary/Asci 'Waveform Files

- [1stD . —Write 4501 Data——— ~Read Data
* Usze ReadList method Fead Ascii |
" |Jze ReadT oFile method Read Binary |
Wit A |
& Dizplay in LigtBox

Wwrite Binar \wirite Binany ta
o _wiesinay 0000 s

Figure 69: Design-time form for the Writing and Reading Binary/ASCIl Waveform
example

Oscilloscope Analysis and Connectivity Made Easy 305

Writing and Reading Binary/ASCII Waveform Example

306

Table 40: Changes to make in the Properties window to the Writing and Reading
Binary/ASCIl Waveform example

Control Property Change to
Form (Name) frmTest
Caption Test Writing and Reading
Binary/Ascii Waveform
Files
tvc (TekVISA) (Name) Tvel (no change needed)
CommonDialog (Name) digTVvC
Listbox (Name) IstD
CommandButton (Name) cmdWriteBinary
Caption Write Binary
CommandButton (Name) cmdClear
Label (Name) IbIStatus
Caption (no Caption)
BackColor Button Face
ForeColor Button Text (Palette blue)

BorderStyle Fixed Single

Write Ascii Data Frame

Frame (Name) fraWrite
Caption Write Ascii Data
OptionButton (Name) optReadList
Caption Use ReadList method
Value True (Selected)
OptionButton (Name) optReadToFile
Caption Use ReadToFile method
CommandButton (Name) cmdWriteAscii
Caption Write Ascii
Read Data Frame
Frame (Name) fraRead
Caption Read Data
CommandButton (Name) cmdReadAscii
Caption Read Ascii
CommandButton (Name) cmdReadBinary
Caption Read Binary
OptionButton (Name) optListBox
Caption Display in Listbox

Oscilloscope Analysis and Connectivity Made Easy

Writing and Reading Binary/ASCII Waveform Example

Control Property Change to

Value True (Selected)
OptionButton (Name) optWriteBtoA

Caption Write Binary to Ascii File

. Test Wnting and Reading Binary/Asci 'Waveform Files

-000001 -512 ﬂ Wiite ASCI Data———— ~Read Data
- Q0000033596,-. 512 .
- 0000009992 - 512 * Use ReadList method

- 0000009988, 512

33383333345?;2 7~ Usze ReadT oFile methad Read Binary |
-0000009976,-.512

-0000009972.-.512 rite: Ascii |
-0000009363.-.512

- 0000009364, - 512
-000000996,-.512

& Dizplay in LigtBox

- 0000009956, - 512 o
- 0000009952, 512 ‘wirite Binary | ~ it Binary to
- 0000009348, 512 ASLI File

- 0000009344, - 512

- 000000934, 512 Clear |

- 0000009936, - 512

- 0000009932, 512 d|

Seconds: 0268 Reclength: 5000 FileLength: 34KE

Figure 70: Runtime form for the Writing and Reading Binary/ASCIl Waveform
example

How the Program Works
[able 41 jsummarizes the routines used to implement this example.

Writing ASCII Data
This example uses either the ReadList or ReadToFile method for writing
ASCII data to disk. The relevant routines to examine for writing ASCII

waveform data are cmdWriteAscii_Click() event (page and the
HandleSaveDialog (page and ConcatlnBuffer (page procedures.

These routines illustrate the different header information required when using
ReadList and ReadToFile. Files with the extra header information required
by the ReadToFile method have an “AF” prefix. Files with only X-Axis
information have an “A” prefix.

Reading ASCII Data

Routines illustrating how to read the two different types of header files in
ASCII files and use them to construct waveform data are the
cmdReadAscii_Click() event (page , and the GetAsciiData (page and
HandleOpenDialog (page functions.

Writing Binary Data
The ReadToFile method is used to write binary data to a file. The relevant
routines for writing binary data are the cmdWriteBinary_Click event (page

and the HandleSaveDialog (page routine.

Oscilloscope Analysis and Connectivity Made Easy 307

Writing and Reading Binary/ASCII Waveform Example

308

Reading Binary Data

The relevant routines for reading binary data from disk are the
ﬂ

cmdReadBinary_Click() event (page

) and the GetBinaryData (page

and HandleOpenDialog (page functions.

Table 41: Summary of functions in the Reading Binary/ASCII Files example

cmdWriteAscii_Click()

Executes when the Write ASCII button is clicked.
Depending on the option button selected, this routine uses
either the ReadList or ReadToFile method of the TekVISA
Control to handle values returned from a CURVE? query.
Setting the YModelEnabled Property to True when using
the ReadList method means that X-axis information needs
to be stored in a file header. Using the ReadToFile method
requires both X-Axis and Y-Axis data to be saved in the file
header. Values are stored in up to 12 orders of precision.

ConcatinBuffer(ByRef s1 As
String)

Standard string concatenation in Visual Basic is slow. This
routine increases string concatenation speed dramatically
by using the CopyMemory (Alias for RtiMoveMemory)
Windows API function. Used when walking through the
array returned by the ReadList method of the TekVISA
ActiveX control.

cmdReadAscii_Click()

Executes when the Read ASCII button is clicked. Calls
the GetAsciiData routine which returns a two-dimensional
array containing time and value measurements. Walks
through the array and displays results in the list box.

GetAsciiData()

Calls the HandleDialogOpen function, which returns the
contents of the file in a single string. The routine parses
the string. If the filename has an “AF” prefix, the routine
assumes that both X-Axis and Y-Axis data needs to be
constructed. It parses the file header accordingly. If the file
has an “A” prefix, it assumes that only the X-Axis data
needs to be constructed. It builds a two-dimensional array
and returns it to cmdReadAscii_Click(), the calling
procedure.

cmdWriteBinary_Click()

Executes when the Write Binary button is clicked.
Stores X-Axis and Y-Axis values in the header file,
executes a CURVE? query, and uses the ReadToFile
method to handle returned values.

cmdReadBinary_Click()

Executes when the Read Binary button is clicked. Calls
the GetBinary Data routine, which returns a two-
dimensional array holding time and value measurements.
Depending on the option button selected, either displays
returned data in a list box or writes the data to an ASCII
file for examination by a text reader.

GetBinaryData()

Calls the HandleDialogOpen routine, which returns the
entire file in a byte array. The header portion of the array is
parsed and used to reconstruct X-axis and Y-Axis values.
These values are placed in a two-dimensional array and
returned to cmdReadBinary_Click(), the calling procedure.

HandleSaveDialog(ftype As

Uses the MS Common dialog control to open a file

Oscilloscope Analysis and Connectivity Made Easy

Writing and Reading Binary/ASCII Waveform Example

String)

(timestamp default) for saving captured data to disk. The
ftype parameter is used to add an appropriate prefix to the
file (“A” for ASCII file needing only X-axis reconstruction,
“AF” for an ASCII file needing both X- and Y-axis
reconstruction, and “B” for a binary file).

HandleOpenDialog(ftype As
String)

Uses the MS Common dialog control to open a file
(timestamp default) for reading stored waveform data from
disk. The ftype parameter may have a value of either “A”
or “B” indicating whether it is an ASCII or binary file.

Form_Load()

Executes when the Form is loaded. Code positions the
form on the screen.

RemoveLF(s1 As String) As
String

Called to remove trailing linefeed character on data
returned from the oscilloscope.

cmdClear_Click()

Executes when the Clear button is clicked. Clears the list
box and status label at the bottom of the form.

Code Listing

Declarations

Option Explicit

Dim sFileName As String
Dim sAsciiFile As String
Dim bArr() As Byte

Dim tracker As Long

Dim CancelFlag As Boolean

Private Declare Sub CopyMemory Lib "kernel32" Alias "RtlMoveMemory"

(Destination As Any,

Clear Button Routine

Source As Any,
Private Declare Function GetTickCount Lib "kernel32" ()

ByVal Length As Long)
As Long

Private Sub cmdClear Click()

lstD.Clear
lblStatus.Caption = ""
End Sub

Public Function RemoveLF (sl As String)

As String

If Right(sl, 1) = vbLf Then

RemoveLF = Left (sl,

Else
RemovelLF = sl
End If
End Function

Get ASCII Data Routine

Len(sl) - 1)

Private Function GetAsciiData()

Dim sRet As String

Dim arrHoldHeader () As String,

Dim arrRet ()
Dim i As Long
Dim nLFPos As Long

Dim sHeader As String,
Dim sLength As String,
nTrigPos As Long

t As Double,

Dim nLength As Long,
Dim rXINCR As Double,

arrHoldData () As String

sData As String

sTrigPos As String, sXINCR As String

rHoldV As Double

Dim yoffset As Double, ymult As Double,
Dim msgl As String, msg2 As String
Dim sHoldM As String

On Error GoTo GetAsciiDataErr
msgl = "Error in application file format."

Oscilloscope Analysis and Connectivity Made Easy

yzero As Double

309

Writing and Reading Binary/ASCII Waveform Example

310

CancelFlag = False
sRet = HandleOpenDialog ("A")
If CancelFlag Then Exit Function

nLFPos = InStr (sRet, vbLf)
If nLFPos <> 0 Then

' get the header and data

sHeader = Left (sRet, nLFPos - 1)

sData = Right (sRet, Len(sRet) - nLFPos)

' place header and data into arrays
arrHoldHeader = Split (sHeader, ";")
arrHoldData = Split(sData, ",")

If Left (sAsciiFile, 2) = "AF" Then
For i = LBound(arrHoldHeader) To UBound (arrHoldHeader)
sHoldM = arrHoldHeader (i)
If Not sHoldM = "" Then
Select Case i
Case 0
nLength = CLng(arrHoldHeader (1))
Case 1
nTrigPos = CLng(arrHoldHeader (i))
Case 2
rXINCR = CDbl (arrHoldHeader (1))
Case 3
yoffset = CDbl (arrHoldHeader (1))
Case 4
ymult = CDbl (arrHoldHeader (i))

Case 5
yzero = CDbl (arrHoldHeader (1))
End Select
End If
Next
' dimension a two dimensional array and return
ReDim arrRet (0 To nLength - 1, 1 To 2)
For i = LBound(arrHoldData) To UBound (arrHoldData)
t = (i - nTrigPos) * rXINCR
arrRet (i, 1) = Format (t, "#.###H#H#H##44HHH#")
'calculate y value
rHoldV = yzero + ((arrHoldData (i) - yoffset) * ymult)
arrRet (i, 2) = Format (CDbl (rHoldV) ,6 "#.#######4H##E#")
Next
GetAsciiData = arrRet
Exit Function

Else
' get the header info
sLength = arrHoldHeader (0)
If IsNumeric (sLength) Then
nLength = CLng(sLength)
End If
sTrigPos = arrHoldHeader (1)

If IsNumeric (sTrigPos) Then
nTrigPos = CLng(sTrigPos)
End If

sXINCR = arrHoldHeader (2)
If IsNumeric (sXINCR) Then

rXINCR = CDbl (sXINCR)
End If

' dimension a two dimensional array and return
ReDim arrRet (0 To nLength - 1, 1 To 2)
For i = LBound(arrHoldData) To UBound (arrHoldData)

t = (i - nTrigPos) * rXINCR
arrRet (i, 1) = Format (t, "#.H####H###4HHH##")
arrRet (i, 2) = Format (CDbl (arrHoldData(i)),

. HEHFHEHEHERS")
Next

Oscilloscope Analysis and Connectivity Made Easy

Writing and Reading Binary/ASCII Waveform Example

GetAsciiData =
Exit Function

arrRet

End If

Else
MsgBox msgl, vbOKOnly
GetAsciiData = ""
Exit Function

End If

Exit Function
GetAsciiDataErr:
MsgBox "Error " & Err.Number & ":
GetAsciiData = ""
End Function

Get Binary Data Routine

Private Function GetBinaryData ()

" & Err.Description

IEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEREEEEEEEEEREEREEEEEEREEEEEEEEEEEESEEEEESES]

' This routine parses the binary file

' calculates x and y axis values

(returned as a byte array),

' It returns a two-dimensional array of x,y pairs

' the file format it parses is:
' [record lengthl]; [trigger position];

' [x increment] ; [yoffset]; [ymult] ; [yzero]

'carriage return character
'values in 2 byte increments

Thhkhhhhhhhhhhhhhhhhdhdddddhddddddddbdddddddddddbdbdbdbdbdbddbdbdbddbdbdbdbddbdbdbddhbdbddddh

Dim arr() As Byte

Dim holdl () As Byte, hold2() As Byte
Dim nCRpos As Long

Dim i As Long, nStart As Long

Dim arrPass () As Double

Dim sMData As String, arrM() As String,

nHoldV As Long
reclength As Long,
yoffset As Double,

Dim

Dim nTracki As Long
Dim sRecbytes As String,
Dim sBytes As String, nBytes As Long

Dim msg As String, temp As String

On Error GoTo GetBinaryDataErr

CancelFlag = False
arr = HandleOpenDialog("B")
If CancelFlag =

sHoldM As String,

trigpos As Long, xinc As Double,
ymult As Double,

yzero As Double

nRecBytes As Integer

True Then Exit Function

' locate the linefeed character separating the header from the data

For i = LBound(arr) To UBound (arr)
If arr(i) = 13 Then
nCRpos = i
Exit For
End If
Next
If nCRpos = 0 Then

MsgBox "Error in file format"
Exit Function
End If

'place the semicolon-separated header information in a byte array

holdl = LeftB(arr, nCRpos - 1)

'use the Split function to place the byte array into a string array

sMData = StrConv (holdl, vbUnicode)
' assign array elements to variables
arrM = Split(sMData, ";")

Oscilloscope Analysis and Connectivity Made Easy

31

Writing and Reading Binary/ASCII Waveform Example

For i = LBound(arrM) To UBound (arrM)
sHoldM = arrM(i)
If Not sHoldM = "" Then
Select Case i
Case 0
reclength = CLng(arrM(i))
Case 1
trigpos = CLng(arrM(i))
Case 2
xinc = CDbl (arrM(i))
Case 3
yoffset = CDbl (arrM(i))
Case 4
ymult = CDbl (arrM(i))
Case 5
yzero = CDbl (arrM(i))
End Select
End If
Next

' place the binary yvalue data into a byte array
hold2 = RightB(arr, UBound(arr) - nCRpos)

' get number of bytes in waveform prefix (# [numx]xxx..)
sRecbytes = MidB (hold2, 2, 1)

' convert to string

temp = StrConv (sRecbytes, vbUnicode)

' convert to integer

nRecBytes = CInt (temp)

' locate start of data; used as starting point in for loop below
nStart = 3 + nRecBytes

' retrieve number of bytes

sBytes = MidB (hold2, 3, nRecBytes)

' convert to string

temp = StrConv (sBytes, vbUnicode)

nBytes = CLng(temp) ' hold reported length in header

' dimension the array
ReDim arrPass (1l To 2, 1 To nBytes) As Double
nTracki = 1

For i = nStart To UBound (hold2)
If nTracki > nBytes Then Exit For
If hold2(i) = 10 Then Exit For

If hold2(i) > 127 Then

nHoldV = hold2(i) - 256
Else
nHoldV = hold2 (i)
End If
arrPass (1, nTracki) = ((nTracki - 1) - trigpos) * xinc
arrPass (2, nTracki) = yzero + ((nHoldv - yoffset) * ymult)

nTracki = nTracki + 1
Next

GetBinaryData = arrPass
Exit Function

GetBinaryDataErr:
msg = "Error " & Err.Number & ": " & Err.Description
MsgBox msg

End Function

Read ASCII Button Routine

Private Sub cmdReadAscii Click ()

312 Oscilloscope Analysis and Connectivity Made Easy

Writing and Reading Binary/ASCII Waveform Example

Dim sRet
Dim i As Long
Dim msgl As String

On Error GoTo cmdReadAsciiErr
If optListBox.Value = True Then
lstD.Clear

sRet = GetAsciiData

If CancelFlag Then Exit Sub
If Not IsArray(sRet) Then Exit Sub

For i = LBound(sRet, 1) To UBound(sRet, 1)

1stD.AddItem sRet (i, 1) & "," & sRet (i, 2)
Next
Else
msgl = "This option not available for reading ASCII files"
MsgBox msgl, vbOKOnly
Exit Sub
End If
Exit Sub
cmdReadAsciiErr:
MsgBox "Error " & Err.Number & ": " & Err.Description
End Sub
Read Binary Button Routine

Private Sub cmdReadBinary Click ()

Dim arr

Dim i As Long

Dim nLength As Long
Dim fnum As Integer
Dim shold As String
Dim msg as String

msg = "Record length limited to 50000 or less for list box display"
On Error GoTo cmdReadBinaryErr

arr = GetBinaryData

If CancelFlag Then Exit Sub

If Not IsArray(arr) Then
MsgBox "Error in reading data."
Exit Sub

End If

nLength = UBound(arr, 2)

If optListBox.Value = True Then
If nLength > 50000 Then
MsgBox msg
Exit Sub
End If
' display array in list box
For i = LBound(arr, 2) To nLength
lstD.AddItem arr(1l, i) & "," & arr(2, i)
Next

Else ' we are writing the binary data to an ASCII file
Call HandleSaveDialog ("BtoA")
fnum = FreeFile

Open sFileName For Append As #fnum

For i = LBound(arr, 2) To nLength

Oscilloscope Analysis and Connectivity Made Easy 313

Writing and Reading Binary/ASCII Waveform Example

314

shold = arr(1, i) & "," & arr(2, i)
Print #fnum, shold
Next
Close #fnum
End If
Exit Sub
cmdReadBinaryErr:
MsgBox "Error " & Err.Number & ": " & Err.Description
Close
End Sub

Write ASCII Button Routine

Private Sub cmdWriteAscii Click ()
Dim shold As String, sXData As String, sWrite As String
Dim nsize As Long, fnum As Integer
Dim i As Long
Dim wfm, mData
Dim rl As Long, buflength As Long
Dim 1b As Long, ub As Long
Dim start As Long, finish As Long, diff As Long
Dim flen As Long
Const sep = ", "

'This routine writes ASCII data with two different header formats,
'depending upon the

'method used to write data to disk; if using ReadList with

' YModelEnabled only the XAxis

'information is stored in the header. This file format is:

' [record length]; [trigger position]; [x increment]
'linefeed character
'calculated value, calculated value, ...nRecordLength

'If using the ReadToFile method, both YAxis and XAxis information
' must be stored in the
' header file. This header format is:

' the file format is:
' [record length]; [trigger position]; [x increment] ; [yoffset]; [ymult];
' [yzero]
'linefeed character
'calculated value, calculated value, ...nRecordLength

On Error GoTo cmdWriteASCIIErr

Const HOFF As String = "HEADER OFF;:"
With Tvel
.DeviceClear
.Lock
.WriteString "DATA:SOURCE CH1"
' set the data encoding
.WriteString "WFMOUTPRE:ENCDG ASC"
.WriteString "WFMOUTPRE:BYT NR 2"

'get the Yaxis properties for floating point conversion
.WriteString HOFF & "WFMOUTPRE:YOFF?;YMULT?;YZERO?"
mData = .ReadList (ASCIIType BSTR, ";")

If Not IsArray(mData) Then
MsgBox "Error in creating array.", vbOKOnly
Exit Sub

End If

' set starting and end points point
.WriteString "DATA:START 0"

' get recordlength
.WriteString HOFF & "HORIZONTAL:RECORDLENGTH?"
rl = CLng(.ReadString)

Oscilloscope Analysis and Connectivity Made Easy

Writing and Reading Binary/ASCII Waveform Example

' set data stop
.WriteString "DATA:STOP " & rl

' retrieve trigger position and x increment values
.WriteString "WFMOUTPRE:PT OFF?;XINCR?"
' different header requirements; ReadList calculates Y axis
' values for you
' using ReadToFile method requires that you store Y axis
' information and perform
' calculations in code when reading the file from disk (see
' GetAsciiData routine)
If optReadList.Value = True Then
sXData = RemoveLF (.ReadString)
sXData = rl & ";" & sXData & vbLf

CancelFlag = False
Call HandleSaveDialog ("A")
If CancelFlag Then Exit Sub

ElseIf optReadToFile = True Then
' [record length] ; [trigger position]; [x increment] ;
' [yoffset]; [ymult]; [yzero]
sXData = RemovelLF (.ReadString)
sXData = rl & ";" & sXData & ";" & mData(l) & ";" &
mData(2) & ";" & RemoveLF (StrS$ (mData(3))) & vbLf

CancelFlag = False
Call HandleSaveDialog ("AF")
If CancelFlag Then Exit Sub

End If

.Timeout = 20000
start = GetTickCount

lblStatus.Caption = "Saving data...."
DoEvents

fnum = FreeFile

Open sFileName For Append As #fnum
' write the data header line

Print #fnum, sXData

If optReadList.Value = True Then
.YModelEnabled = True
.yoffset = mData (1)
.ymult = mData(2)
.yzero = mData (3)
.WriteString HOFF & "CURVE?"
wfm = .ReadList (ASCIIType I2, ",")
'Allocate an oversized buffer in memory; 12 possible
'characters w/ 2 byte Unicode
'characters equals 24 possible bytes per value; we assume
'that we will have enough
' to accomodate the comma separators.
buflength = rl * 24
ReDim bArr (buflength)
tracker = 0
1b = LBound (wfm)
ub = UBound (wfm)
For i = 1b To ub
If 1 < ub Then
shold = wfm(i) & sep
Else
' remove last comma
shold = wfm (i)

End If
Call ConcatInBuffer (shold)
Next

Oscilloscope Analysis and Connectivity Made Easy 315

Writing and Reading Binary/ASCII Waveform Example

' assign the array to a string
sWrite = bArr
' find the null character and take everything to the left
' of it
sWrite = Left (sWrite, InStr(sWrite, Chr$(0)) - 1)
' write it to disk
Print #fnum, sWrite
' display time and filesize calculations
finish = GetTickCount
diff = finish - start
flen = LOF (fnum)
Close #fnum
lblStatus.Caption =
"Seconds: " & (diff / 1000) & " Reclength: " & rl & _
" FileLength: " & CInt(flen / 1024) & "KB"
.YModelEnabled = False

ElseIf optReadToFile

True Then

'close the file w/ the header information and append to
'it using ReadToFile method of the TekVIDSA control

Close #fnum

.WriteString HOFF & "CURVE?"

.FileAppendEnabled = True
Do
.ReadToFile sFileName, 1024, flen
Loop While flen = 1024
.FileAppendEnabled = False
finish = GetTickCount
diff = finish - start
1lblStatus.Caption =
"Seconds: " & (diff / 1000) & " Reclength: " & rl & _
" FileLength: " & CInt (FileLen(sFileName) / 1024) & "KB"
End If
.Unlock
End With
Exit Sub
cmdWriteASCIIErr:
Dim msg As String
Screen.MousePointer = vbDefault

lblStatus.Caption =
msg = "Error " & Err.Number &
MsgBox msg
Close

End Sub

Write Binary Button Routine
Private Sub cmdWriteBinary Click ()
Dim sHeader As
Dim
Dim
Dim
Dim
Dim

shold As String,
i As Long

mData

rl As Long, rlOut As Long
nCRpos As Long
fnum As Integer
Dim start As Long,
Dim flen As Long
Const HOFF As String =

It is separated from the

separated by a semicolon

the file format is:
' [yoffset]; [ymult]; [yzerol
'linefeed character

'values in 1 byte increments

316

finish As Long,

" & Err.Description

String, sXData As String

diff As Long

"HEADER OFF;:"
This routine stores xaxis and yaxis values in the header file.

data portion by a line feed character. The header values are

[record lengthl]; [trigger position]; [x increment] ;

Oscilloscope Analysis and Connectivity Made Easy

Writing and Reading Binary/ASCII Waveform Example

On Error GoTo cmdTestBinaryErr

With Tvecl
.DeviceClear
.Lock
.WriteString "DATA:SOURCE CH1"

' set the data encoding, byte ordering, binary format,
' and byte width

.WriteString "WFMOUTPRE:ENCDG BIN"

.WriteString "WFMOUTPRE:BYT OR LSB"

.WriteString "WFMOUTPRE:BN FMT RI"

.WriteString "WFMOUTPRE:BYT NR 1"

' set starting point
.WriteString "DATA:START 1"

' make sure we get the entire waveform
.WriteString HOFF & "HORIZONTAL:RECORDLENGTH?"
shold = .ReadString

shold = RemoveLF (shold)

rl = CLng(shold)

.WriteString "DATA:STOP " & rl

'retrieve the Yaxis properties for floating point conversion
.WriteString HOFF & "WFMOUTPRE:YOFF?;YMULT?;YZERO?"

'add to header string

sHeader = RemoveLF (.ReadString)

' retrieve trigger position and x increment values
.WriteString "WFMOUTPRE:PT OFF?;XINCR?"

' continue building the header string

sXData = RemoveLF (.ReadString)

sXData = rl & ";" & sXData

sHeader = sXData & ";" & sHeader & vbCr

' write the header to the file

CancelFlag = False

Call HandleSaveDialog("B")

If CancelFlag Then Exit Sub

fnum = FreeFile

Open sFileName For Binary As #fnum
Put #fnum, , sHeader

Close #fnum

.Timeout = 20000
start = GetTickCount

.WriteString HOFF & "CURVE?"
lblStatus.Caption = "Saving data...."
DoEvents

.FileAppendEnabled = True
Do

Call .ReadToFile(sFileName, 1024, rlOut)
Loop While rlOut = 1024

.FileAppendEnabled = False

' display time and filesize calculations

finish = GetTickCount

diff = finish - start

flen = FileLen (sFileName)

Close #fnum

lblStatus.Caption =
"Seconds: " & (diff / 1000) & " Reclength: " & _
rl & " FileLength: " & CInt(flen / 1024) & "KB"

.Unlock

Oscilloscope Analysis and Connectivity Made Easy 317

Writing and Reading Binary/ASCII Waveform Example

End With

Exit Sub

cmdTestBinaryErr:
Dim msg As String
Screen.MousePointer = vbDefault
lblStatus.Caption = ""

msg = "Error " & Err.Number & ": " & Err.Description
MsgBox msg
Close

End Sub

Form Load Routine

Private Sub Form Load ()
Me.Left = Screen.Width / 10
Me.Top = Screen.Height / 25

End Sub

Handle Open Dialog Routine

Public Function HandleOpenDialog(ftype As String)

Dim msg As String
Dim bArr () As Byte
Dim sRet As String
Dim sFName As String
Dim fnum As Integer
Dim nLength As Long
On Error GoTo HandleOpenDlgErr

With dlgTvc
.Flags = cdlOFNHideReadOnly + cdlOFNPathMustExist +
cdlOFNExplorer

.DialogTitle = "Retrieving Scope Data"

.Filter = "Data files(*.dat) |*.dat|ALll files(*.x) |*.*"
.FilterIndex = 1

. ShowOpen

sFName = .FileName

sAsciiFile = .FileTitle

fnum = FreeFile
nLength = FileLen (sFName)

' open and close to create file and erase any prior
' contents if it exists

If ftype = "A" Then

Open sFName For Input As #fnum

Else
Open sFName For Binary As #fnum
End If
If ftype = "B" Then
ReDim bArr (nLength) As Byte
Get #fnum, , bArr
HandleOpenDialog = bArr
ElseIf ftype = "A" Then

sRet = Input (nLength, #fnum)
HandleOpenDialog = sRet

End If
Close #fnum
End With

Exit Function
HandleOpenDlgErr:
msg = "Error " & Err.Number & ": " & Err.Description
Select Case Err.Number
Case mscomdlg.cdlCancel
sFileName = ""

318 Oscilloscope Analysis and Connectivity Made Easy

Writing and Reading Binary/ASCII Waveform Example

CancelFlag = True
Close
Err.Clear
Exit Function

Case Else
MsgBox msg, vbOKOnly
Close

End Select

End Function

Handle Save Dialog Routine

Public Sub HandleSaveDialog(ftype As String)

' this routine uses the MS Comon dialog control to open a file
(timestamp default) for saving

' captured data to disk; called from SRQHandler routines

Dim msg As String

Dim sFileDefault As String

Dim d As Date

Dim fnum As Integer

On Error GoTo HandleSaveDlgErr
' create a default timestamp file name
d = Now
sFileDefault = Format(d, "yy") & Format(d, "mm") & Format (d, "dd") _
& "_" & Format (d, "hh") & Format(d, "nn") & Format(d, "ss")

sFileDefault = ftype & sFileDefault
With dlgTvC
.Flags = cdlOFNHideReadOnly + cdlOFNPathMustExist + cdlOFNExplorer
+ cdlOFNOverwritePrompt
.DialogTitle = "Save Scope Data"
.Filter = "Data files(*.dat)|*.dat|All files(*.*) |*.x"
sFileDefault = sFileDefault & ".dat"
.FileName = sFileDefault
.FilterIndex = 1
.ShowSave
sFileName = .FileName
fnum = FreeFile
' open and close to create file and erase any prior contents if it

' exists

If ftype = "A" Or ftype = "BtoA" Or ftype = "AF" Then
Open sFileName For Output As #fnum

ElseIf ftype = "B" Then
Open sFileName For Binary As #fnum

End If

Close #fnum

End With

Exit Sub

HandleSaveDlgErr:

msg = "Error " & Err.Number & ": " & Err.Description

Select Case Err.Number
Case mscomdlg.cdlCancel
sFileName = ""
CancelFlag = True
Exit Sub
Case Else
MsgBox msg, vbOKOnly
End Select

End Sub

Concatenate String in Buffer Routine
Public Sub ConcatInBuffer (ByRef sl As String)

Oscilloscope Analysis and Connectivity Made Easy 319

Writing and Reading Binary/ASCII Waveform Example

' this routine uses CopyMemory (Alias for RtlMoveMemory) API call

' to speed up
' string concatenation in VB; enormous difference in performance

Static Len_sl As Long

' Get Byte length of passed text.
Len_sl = LenB(sl)

If Len sl > 0 Then
' Copy passed string into preallocated buffer.
Call CopyMemory (bArr (tracker), ByVal StrPtr(sl), Len sl)

' increment byte tracking variable by byte length of passed string
tracker = tracker + Len sl
End If

End Sub

320 Oscilloscope Analysis and Connectivity Made Easy

Introduction

Appendix D: Using the Waveform
Generator

Introduction

This appendix describes how to use the Waveform Generator program,
provided with this book, to generate a live waveform for use with examples.

To Generate a Live Waveform

The Waveform Generator program generates a signal from the sound circuit
on your oscilloscope. You will need a cable that can connect the sound
circuit output on the back of the oscilloscope to the Channel 1 input on the

front (see page for details).

Set up Your Display Mode

You can work the examples either on your oscilloscope or on a connected
desktop PC. If you decide to work on the oscilloscope, you may find it
convenient to attach a second monitor as shown:

o om 00

e mide

00000000
00 00000

[Z)
omQ

[Z]
om0

9
%)

To attach a second monitor:

1. Connect any standard VGA monitor to the second monitor
video port on the back of your oscilloscope.

Note: If you accidentally use the wrong video port, you will see
a duplicate of what is on the oscilloscope screen on the second
monitor, rather than an extension of that space.

Oscilloscope Analysis and Connectivity Made Easy 321

To Generate a Live Waveform

2. Start up your oscilloscope.
The following message will display on the second monitor:

If you can read this message, Windows has successfully initialized
this display adapter.

3. After Windows finishes booting up, right-click anywhere on
the desktop and select Properties.

The Display Properties dialog box appears.
4. Select the Settings tab.
You will see a graphic display of two monitors labeled 2 and 1.

5. Drag the monitor icons and align them to match the physical
arrangement of your monitors. This makes the movement of
the cursor between monitors more natural.

Dizplay Properties

Backgmundl Screen Saverl Appealancel Effectsl Wweh Settings I

Dirag the monitor icons to match the physical arangement of wour roritors

Display:

[1. Default Moritor on Chips and Tech, 59000 PCI =]
Calar Screenarea——————————
|High Calor (16 bit SN [
HE | I B40 by 480 pixels

[V | Exterd i itdaws deskben) orbe s moriter Advanced... |
aK I Cancel | Aol |

6. Select the monitor labeled 2, select the check box labeled
Extend my Windows Desktop onto this monitor, set the
desired screen resolution (or leave it as is), and click OK.

For more information about setting up dual monitors, see the Microsoft
Windows 98 Resource Kit.

322 Oscilloscope Analysis and Connectivity Made Easy

To Generate a Live Waveform

Locate the Software and Examples for This Book

The TekVISA API, TekVISA ActiveX Control and TekExcel Toolbar
software are located on the product software CD for your Series of
oscilloscope and may already be preinstalled on your oscilloscope.

To locate the examples needed for this book:

1. Insert the CD that accompanies your hardcopy of this book
either into the drive on the back of your oscilloscope or into
the drive on your desktop PC, depending on where you
intend to work the examples. (The examples can also be
downloaded from the Tektronix website at
http://www.tektronix.com).

2. Using Windows Explorer, browse to locate the examples for
this book, which are organized by chapter.

The folder structure will look similar to this:
[EX Exploring - Samples _ O] x|
J File Edt Wew Go Favortes Took ¥

<:=) * : @ ‘ % 3
Back Farward Up Cut
J.ﬁ.gldress I[:I D:hSamples j
Falders X
[EREE - il =]
=1 OzciloscopeénalysizandConnectivityt adeE as
-7 &ppendis_C
-7 Appendis_D
- th
-] Che
{:I Ch5
- the
- Th
-] The
{7 Ch_LabvIEw |
-7 Cha_Labwindows =

4 | of
| EJMyCo

The Waveform Generator program is stored in the Appendix_D

folder.
Connect the Cable

To generate a waveform, you will need a cable that can connect the sound
circuit output (a 1/8 inch phone plug) on the back of the oscilloscope to the
Channel 1 BNC input on the front.

Note: You can purchase ready-made cables and connectors from
your local electronics parts dealer. For example, Radio Shack offers
a Phono-to-BNC Adapter (part number 278-254) and a 6-ft. Y-
Adapter Audio Cable (part number 42-2481).

Oscilloscope Analysis and Connectivity Made Easy 323

http://www.tektronix.com/

To Generate a Live Waveform

To connect the cable to your oscilloscope:

1. Attach one end of your signal generator cable to the line out
port on the back of your oscilloscope.

2. Attach the other end of your signal generator cable to
Channel 1 on the front of your oscilloscope (or, for
TDS/CSA8000 Series Oscilloscopes, to any BNC connector
on an electrical module).

Start Up the Waveform Generator
To start up the waveform generator program:

1. Using Windows Explorer, locate the WFG.exe file on your
CD in the \Appendix_D folder:

X Exploring - Appendix_D
J File Edt “iew Go Favortes Toolz Help
S = »
N -)
Back Fonward Up Cut Copy Pazte Undo
J Address I[:I DS amplesi0 scilloscopednalysisandConnectiviM adeE asyhdppendis_D j
Folgers *| Appendix_D
o '@? Recpcled ;I T -
E{:l Samples
=] DscilloscopesnalysizandConnectivityM adeE asy
-[_1 Appendis_C
-5 Appendis_D
-] Ch2
-] Chd
- Che
"] Ch&
- Ch?
-] Cha _|
-7 Ch_LabVIEW
{1 Ch3 Labwindows hd
A | »
| |308KE|_,%‘ My Comnputer A

2. Copy and Paste the WFG.exe file to the c: drive on your
oscilloscope, and double-click the WFG.exe file on your
c: drive to start up the program.

The following warning message appears.

WFG

This application can produce very loud sounds. Disconnect any
headphones or speakers before continuing.

Cancel |

3. Disconnect any headphones or speakers attached to your
oscilloscope, then click OK.

The Waveform Generator program appears on your screen with
several tabs to choose from.

324 Oscilloscope Analysis and Connectivity Made Easy

To Generate a Live Waveform
Set Up the Oscilloscope and Calibrate the Sound Card
To set up the oscilloscope and calibrate the sound card:
1. From the Waveform Generator, click the Calibration tab.

pry
S_fi\'fave[mm Generator

Jitter Adiustmentl Amplitude Modulated Sine I Asymmetric W aveform

Calibration may be neceszary to compensate
for sound card AC coupled output circuit
induced noise

= 1] o}

Start Lery

2. Start your oscilloscope program.

3. To choose the proper oscilloscope settings for calibration,
perform these steps:

a. Start with the default configuration.
b. Set the record length to 5000.
c¢. Set the horizontal resolution to 20us.

d. Set the vertical scale to 500 mV per division or any other
appropriate setting that gives a strong signal.

4. On the Waveform Generator, click the Start button on the
Calibration tab to start generating the calibration waveform.

Caution: To avoid uncomfortably loud noise or damage to
equipment, make sure you disconnect any headphones or
speakers attached to your oscilloscope before clicking Start.

Oscilloscope Analysis and Connectivity Made Easy 325

To Generate a Live Waveform

Your waveform may look something like this:

File Edit Vertical Horz/écg Ing Display Cursors tMeazuwre Math Utlities Help

5. Move the slider bar on the Calibration tab to the left or right
of 0 as needed to square off the tops and sides of the square
waveform that appears on your oscilloscope.

This adjustment compensates for individual characteristics of your
sound circuit card.

6. Click Apply when you are satisfied with the waveform
appearance.

File Edit Vetical Horeftcg Tig Display Cusors Measwe Math Utilties Help

1
|

You only have to calibrate your sound card once. Now you are ready
to export and save the waveform signal so you can use it with
examples in this book.

326 Oscilloscope Analysis and Connectivity Made Easy

Oscilloscope Analysis and Connectivity Made Easy

To Generate a Live Waveform

Generate the Waveform
To generate the Jitter waveform:

1. From the Waveform Generator program, click the Jitter
Adjustment tab.

T
EiWavelmm Generator

Jitter Adjustment |Amplitude Modulated Sine I Asymmetric Wavefolml Calihrationl

Jitter Adjustments

1
Amplitude J Im 153

i] 200

1
Frequency J I‘I Hz
T

1 10

Bitstrearn rate: 5000 bits/sec.
Bitstream pattem: 517 bits, pseudo-random generated

Start |

2. Leave the Amplitude and Frequency slider bars at the
minimum amount for minimum jitter and click Start to start
generating the Jitter waveform.

Caution: To avoid uncomfortably loud noise or damage to
equipment, make sure you disconnect any headphones or
speakers attached to your oscilloscope before clicking Start.

Copy and Paste the Waveform Data into Excel

Note: If you want to save your data in a file so you can transfer it to
another PC or another program, follow the procedure to export and
import as described on page hrough page instead of
copying to the Clipboard.

To copy the waveform to the Clipboard:

1. Follow the recommended procedure to copy waveform data
into Excel for your oscilloscope.

The waveform data is saved in the Clipboard in a format that Excel
understands.

To paste the waveform data from the Clipboard into Excel:
1. Start up Excel and open a new, empty spreadsheet.

2. Select the cell where you want to begin pasting the
waveform.

327

To Generate a Live Waveform

328

3.

Select Edit > Paste from the Excel menu bar or type Ctrl-V to
paste the waveform data.

Export the Waveform into a File Appropriate for Excel
If you cannot use the cut-and-paste technique, you can export and import the
waveform data.

To export the waveform into an Excel-compatible file:

1.

Follow the recommended procedure to export waveform data
into an Excel-compatible file for your oscilloscope.

The waveform data is saved under the filename that you assign it, in
tab-delimited format (.TXT), which is a format that Excel
understands.

Note: TDS5000 and 7000 Series Oscilloscopes offer two export
choices for spreadsheets:

CSV format works best if you plan on loading the data using
Excel 2000’s File > Open menu selection. When you use File >
Open with a .CSV file, you get a new sheet started with none of
your formulas. You must then copy the data to a sheet with your
formulas or copy your formulas to the new data.

TXT format works best if you plan on using Excel 2000°s Data >
Get External Data > Import Text File wizard. The advantage of
the Import Text File approach is that you can easily refresh the
data (by right-clicking and selecting Refresh Data) without
losing the formulas.

Import the Waveform into Excel
To import the waveform data from your oscilloscope into Excel:

1.

If necessary, move the waveform files to a folder on the
computer where you are running Excel.

Start up Excel, name the blank worksheet, and save it.

Click the cell location where you want to begin loading the
waveform data.

From the Excel menu bar, select Data > Get External Data >
Import Text File.

Browse to the folder where the data is located, select the
name of your file, and click Import.

The Step 1 of 3 dialog box appears.

Oscilloscope Analysis and Connectivity Made Easy

To Generate a Live Waveform

6. Click the Delimited button and click Next.
The Step 2 of 3 dialog box appears.

7. Select the check box next to Tab and click Next.
The Step 3 of 3 dialog box appears.

8. Click Finish.

A dialog box appears, asking if you want to import data into the
existing worksheet at the currently selected cell location.

9. Click OK.

Oscilloscope Analysis and Connectivity Made Easy 329

To Generate a Live Waveform

330 Oscilloscope Analysis and Connectivity Made Easy

Index
cD
to install TekVISA software on a PC
295
with examples for this book xii, 323
with TekVISA software 323
command and control terminology 38
connectivity
building blocks 1
built-in Tektronix features for 1
made easier 1
new building blocks for 3
display setup
how to attach a second monitor 321
Excel
how to copy and paste waveform data
into 327
how to export waveform data into a file
for 328

how to import waveform data into 328
Excel Chart Measurements example

building the form 104
changing properties 104
coding the 107
getting started 99
review of 124
running the 120
using VB instead of VBA 121
Excel Get Waveform example 41
building the form 48
changing properties 54
coding the 60
getting help 53
getting started 44
review of 76
running the 69
running with Jitter example 71
using VB instead of VBA 74
Excel Object Model
quick overview of 58
working with charts 118
Excel Test Run example
building the form 81
changing properties 81
coding the 83
getting started 77
review of 98
running the 95
using VB instead of VBA 97
jitter waveform
how to generate 327
LabVIEW
overview of 227

Oscilloscope Analysis and Connectivity Made Easy

Index

using Tektronix Plug-n-Play drivers
with 228
using VISA operations with 244
LabVIEW and Tektronix Plug-n-Play drivers
configuring vi’s from the Block

Diagram 240
configuring vi’s from the Front Panel
242
creating an example 234
getting help 231
running the example 243
LabVIEW and VISA
creating an example 244
creating the Block Diagram 247
creating the Front Panel 244
running the example 252
LabWindows/CVI
overview of 208
using Tektronix Plug-n-Play drivers
with 209

LabWindows/CVI and LabVIEW
review of using PnP drivers and VISA

commands with 253
using Tektronix Plug-n-Play drivers
with 207
LabWindows/CVI and Tektronix Plug-n-Play
drivers
building the interface 213
coding the example 217
getting help 216
running the example 226
LAN connectivity for oscilloscopes 291
live waveform
how to calibrate the sound card for 325
how to connect the cable for 323
how to generate 321

how to set up the oscilloscope for 325
MATLAB Instrument Control Toolbox 3, 9, 167
adding GUI components to the

improved Jitter example 184
cleaning up instrument objects during
debugging 172

coding the improved Jitter example 189
communicating with VISA-GPIB

objects 169
configuring VISA resources 169
creating the Jitter example 174
functions 281
improving the Jitter example 184
Jitter example with 173
native GPIB commands and queries

with 173
review of 206

331

Index

testing the improved Jitter example 204

testing the Jitter example 182
using the Instrument Control ASCII
Communication Tool 170

Native GPIB commands and queries 39, 255
Object Browser

using in Excel 57
using with VB 141
VB Intellisense feature 142
VBA Intellisense feature 60
Oscilloscope Analysis and Connectivity Made
Easy
document conventions xii
how this book is organized xi
what this book is about xi
who should read this book xi
Tektronix Plug-n-Play drivers 3,8, 207
functions 287
loading in LabVIEW 228
loading in LabWindows/CVI 209
viewing driver functions in LabVIEW
230
TekVISA
overview 4
TekVISA ActiveX Control 3,6
background information 37

methods, properties, and events 39, 263
waveform acquisition commands 43

TekVISA API 3,6
TekVISA Toolbar 3,513
adding to Excel 14
Clear Activesheet button 24
Connect button 15
features 14
Help button 34
Measurement button 24
prerequisites 13
review of 35
Settings button 16
source code 35
TriggerCapture button 31
Waveform button 21
VB Triggered Waveform Capture example
building the form 130
332

getting help

getting started

review of

reviewing the code

running the

using VBA instead of VB
VB Writing and Reading Binary/ASCII

Waveform example

code listing

how the program works

user interface

using alternate methods for getting

waveform data
Virtual GPIB
VISA operations
VXI-11 LAN Client
access setup
VXI-11 LAN Client/Server
benefits of LAN access
C program example
deployment considerations
introduction to
LabVIEW example
LabWindows/CVI example
MATLAB example
Non-TekVISA VXI-11 Clients
programming tip
TekVISA installation
timeout settings
VB example
VXI-11 Standard
VXI-11 LAN Server
installation and configuration
waveform
preamble
record length
source
waveform acquisition
GPIB commands for
waveform data
formats
Waveform Generator
how to start up
using the

141
127
163
143
158
162

303
309
307
305

303
3,6
288

294
3,6
292
300
293
291
300
299
299
301
300
294
300
299
301

293

43
42
42

41
41
42

324
321

Oscilloscope Analysis and Connectivity Made Easy

	Title Page
	Preface
	What This Book is About
	Who Should Read This Book
	How This Book is Organized
	Document Conventions

	Chapter 1: Connectivity Building Blocks
	Connectivity Made Easier
	Built-in Connectivity Features
	New Connectivity Building Blocks

	PART 1: EXCEL AND VISUAL BASIC
	Chapter 2: The TekExcel Toolbar
	Introduction
	Capturing and Graphing Waveforms
	Clearing the Active Sheet
	Getting Help with the TekExcel Toolbar
	TekExcel Toolbar Source Code
	Chapter 2 Review

	Chapter 3: Understanding the TekVISA ActiveX Control
	Introduction
	Background Information
	Terminology
	Automated Acquisition

	Chapter 4. A Simple Program To Get Waveforms
	Introduction
	GPIB Commands for Waveform Acquisition
	The TekVISA ActiveX Control and Waveform Acquisition
	Getting Started
	The Get Waveform Example in Excel VBA
	Running the Program with the Jitter Example
	Using VB Instead of VBA
	Chapter 4 Review

	Chapter 5. A More Complex Four-Part Program
	Introduction
	The TekVISA Test Run Example in Excel VBA
	Using VB Instead of VBA
	Chapter 5 Review

	Chapter 6: A Measurement Charting Example
	Introduction
	The Chart Measurements Example in Excel VBA
	Using VB Instead of VBA
	Chapter 6 Review

	Chapter 7: A Triggered Waveform Capture Example
	Introduction
	Getting Started
	The Triggered Waveform Capture Example in VB
	Using VBA Instead of VB
	Chapter 7 Review

	PART 2: MATLAB AND LABWINDOWS/ CVI AND LABVIEW
	Chapter 8: Live Updates to MATLAB using ICT
	Introduction
	The Instrument Control Toolbox
	The Jitter Example with MATLAB ICT Functions
	Improved Jitter Example with a GUI Interface
	Chapter 8 Review

	Chapter 9: LabWindows/CVI and LabVIEW
	Introduction
	Tektronix Plug-n-Play Drivers
	Overview of LabWindows/CVI
	Using Tektronix Plug-n-Play Drivers with LabWindows/CVI
	Overview of LabVIEW
	Using Tektronix Plug-n-Play Drivers with LabVIEW
	Using VISA Operations with LabVIEW
	Chapter 9 Review

	Appendix A: Command and Control Reference
	Introduction
	Native GPIB Commands and Queries
	TekVISA Active X Control Methods, Properties, and Events
	MATLAB Instrument Control Toolbox Functions
	PnP Driver Functions
	VISA Operations

	Appendix B: Fast LAN Access to Your Oscilloscope
	Introduction
	VXI-11 and LAN Connectivity for Oscilloscopes
	Benefits of LAN Access
	Deployment Considerations
	VXI-11 LAN Server Installation and Configuration
	VXI-11 LAN Client Access Setup
	Application Examples
	Programming Tips
	VXI-11 Standard

	Appendix C: Other VB Examples
	Introduction
	Alternate Methods for Getting Waveform Data Using the TekVISA Control
	Writing and Reading Binary/ASCII Waveform Example

	Appendix D: Using the Waveform Generator
	Introduction
	To Generate a Live Waveform

	Index

