# VM 系列

视频测量仪

快速入门用户手册



www.tektronix.com 071-2101-01 版权所有 © Tektronix. 保留所有权利。许可软件产品由 Tektronix、其子公司或提供商所有,受国家版权 法及国际条约规定的保护。

Tektronix 产品受美国和外国专利权(包括已取得的和正在申请的专利权)的保护。本文中的信息将取代 所有以前出版的资料中的信息。保留更改技术规格和价格的权利。

TEKTRONIX 和 TEK 是 Tektronix, Inc. 的注册商标。

## Tektronix 联系信息

Tektronix, Inc. 14200 SW Karl Braun Drive P.O. Box 500 Beaverton, OR 97077 USA

有关产品信息、销售、服务和技术支持:

- = 在北美地区,请拨打 1-800-833-9200。
- = 其他地区用户请访问 www.tektronix.com,以查找当地的联系信息。

### 保修 2

Tektronix 保证本产品自发货之日起一年内,不会出现材料和工艺方面的缺陷。如果在保修期内证实任何此 类产品有缺陷,Tektronix 将自主决定,是修复有缺陷的产品(但不收取部件和人工费用)还是提供替换件 以换回有缺陷的产品。Tektronix 在保修工作中使用的部件、模块和替代产品可能是新的,也可能是具同等 性能的翻新件。所有更换的部件、模块和产品均归 Tektronix 所有。

为得到本保修声明承诺的服务,客户必须在保修期到期前向 Tektronix 通报缺陷,并做出适当安排以便实施 维修。客户应负责将有缺陷的产品打包并运送到 Tektronix 指定的维修中心,同时预付运费。如果产品返回 地是 Tektronix 维修中心所在国家/地区的某地,Tektronix 将支付向客户送返产品的费用。如果产品返回地 是任何其他地点,客户将负责承担所有运费、关税、税金和其他任何费用。

本保修声明不适用于任何由于使用不当或维护保养不足所造成的缺陷、故障或损坏。Tektronix 在本保修 声明下没有义务提供以下服务: a)修理由 Tektronix 代表以外人员对产品进行安装、修理或维护所导致 的损坏; b)修理由于使用不当或与不兼容的设备连接造成的损坏; c)修理由于使用非 Tektronix 提供的 电源而造成的任何损坏或故障; d)维修已改动或者与其他产品集成的产品(如果这种改动或集成会增加 维修产品的时间或难度)。

这项与本产品有关的保修声明由 TEKTRONIX 订立,用于替代任何其他明示或默示的保证。Tektronix 及其供应 商不提供任何对适销性和适用某种特殊用途的默示保证。对于违反本保修声明的情况,Tektronix 负责为客户 修理或更换有缺陷产品是提供给客户的唯一和独有的补救措施。对于任何间接的、特殊的、附带的或后果性 的损坏,无论 Tektronix 及其供应商是否曾被预先告知可能有此类损坏,Tektronix 及其供应商均概不负责。

# 目录

| 常规安全概要            |                                       | i i i                                                                                                          |
|-------------------|---------------------------------------|----------------------------------------------------------------------------------------------------------------|
| 前言                |                                       | v                                                                                                              |
| 主要功能              |                                       | v                                                                                                              |
| 受支持的产品            |                                       | v                                                                                                              |
| 文档                |                                       | vi                                                                                                             |
| 软件升级              |                                       | vi                                                                                                             |
| 本手册中使用的约定         |                                       | vi                                                                                                             |
| 安装仪器              |                                       | 1                                                                                                              |
| 标准附件              |                                       | 1                                                                                                              |
| 推荐附件              |                                       | 3                                                                                                              |
| 操作要求              |                                       | 4                                                                                                              |
| 接通仪器电源            |                                       | 4                                                                                                              |
| 关闭仪器电源            |                                       | 5                                                                                                              |
| 拔下电源              |                                       | 5                                                                                                              |
| 连接到网络             |                                       | 5                                                                                                              |
| 熟悉仪器              |                                       | 6                                                                                                              |
| 前面板               |                                       | 6                                                                                                              |
| 侧面板和后面板           |                                       | 7                                                                                                              |
| 输入连接要求 - 选件 SD/HD |                                       | 8                                                                                                              |
| 输入连接要求 - 选件 VGA   |                                       | 8                                                                                                              |
| 连接输入信号            |                                       | 9                                                                                                              |
|                   |                                       |                                                                                                                |
| 信号路径补偿            |                                       | 20                                                                                                             |
| 信号路径补偿.           |                                       | 20<br>20                                                                                                       |
| 信号路径补偿.           | · · · · · · · · · · · · · · · · · · · | 20<br>20<br>21                                                                                                 |
| 信号路径补偿            | · · · · · · · · · · · · · · · · · · · | 20<br>20<br>21<br>23                                                                                           |
| 信号路径补偿            | · · · · · · · · · · · · · · · · · · · | 20<br>20<br>21<br>23<br>25                                                                                     |
| 信号路径补偿            | · · · · · · · · · · · · · · · · · · · | 20<br>20<br>21<br>23<br>25<br>27                                                                               |
| 信号路径补偿            | · · · · · · · · · · · · · · · · · · · | 20<br>20<br>21<br>23<br>25<br>27<br>29                                                                         |
| 信号路径补偿            | · · · · · · · · · · · · · · · · · · · | 20<br>20<br>21<br>23<br>25<br>27<br>29<br>29                                                                   |
| 信号路径补偿            | · · · · · · · · · · · · · · · · · · · | 20<br>21<br>23<br>25<br>27<br>29<br>29<br>31                                                                   |
| 信号路径补偿            |                                       | 20<br>20<br>21<br>23<br>25<br>27<br>29<br>29<br>31<br>33                                                       |
| 信号路径补偿            |                                       | 20<br>20<br>21<br>23<br>25<br>27<br>29<br>29<br>31<br>33<br>36                                                 |
| 信号路径补偿            |                                       | 20<br>20<br>21<br>23<br>25<br>27<br>29<br>29<br>31<br>33<br>36<br>37                                           |
| 信号路径补偿            |                                       | 20<br>20<br>21<br>23<br>25<br>27<br>29<br>29<br>31<br>33<br>36<br>37<br>40                                     |
| 信号路径补偿            |                                       | 20<br>20<br>21<br>23<br>25<br>27<br>29<br>29<br>31<br>33<br>36<br>37<br>40<br>41                               |
| 信号路径补偿            |                                       | 20<br>20<br>21<br>23<br>25<br>27<br>29<br>29<br>31<br>33<br>36<br>37<br>40<br>41<br>43                         |
| 信号路径补偿            |                                       | 20<br>20<br>21<br>23<br>25<br>27<br>29<br>31<br>33<br>36<br>37<br>40<br>41<br>43<br>47                         |
| 信号路径补偿            |                                       | 20<br>20<br>21<br>23<br>25<br>27<br>29<br>31<br>33<br>36<br>37<br>40<br>41<br>43<br>47<br>47                   |
| 信号路径补偿            |                                       | 20<br>20<br>21<br>23<br>25<br>27<br>29<br>29<br>31<br>33<br>36<br>37<br>40<br>41<br>43<br>47<br>47<br>49       |
| 信号路径补偿            |                                       | 20<br>20<br>21<br>23<br>25<br>27<br>29<br>29<br>31<br>33<br>36<br>37<br>40<br>41<br>43<br>47<br>49<br>53       |
| 信号路径补偿            |                                       | 20<br>20<br>21<br>23<br>25<br>27<br>29<br>29<br>31<br>33<br>36<br>37<br>40<br>41<br>43<br>47<br>49<br>53<br>58 |

| 在多行上进行测量.................................... | 68 |
|----------------------------------------------|----|
| 将输入信号显示为图像                                   | 73 |
| 在矢量示波器窗口中显示输入信号 - 仅限于选件 SD/HD                | 75 |
| 索引                                           |    |

# 常规安全概要

详细阅读下列安全性预防措施,以避免人身伤害,并防止损坏本产品或与本产品连接的任何产品。 为避免可能的危险,请务必按照规定使用本产品。

只有合格人员才能执行维修过程。

使用此产品时,可能需要接触到大系统的其他部分。请阅读其他组件手册的安全性部分中的有 关操作此系统的警告和注意事项。

### 避免火灾或人身伤害

**使用合适的电源线。**请只使用本产品专用并经所在国家/地区认证的电源线。

正确连接并正确断开连接。 探头或测试导线连接到电压源时请勿插拔。

**正确连接并正确断开连接。** 连接电流探头或断开电流探头的连接之前请将被测电路断电。

**将产品接地。** 本产品通过电源线的接地导线接地。为避免电击,必须将接地导线与大地相连。在对 本产品的输入端或输出端进行连接之前,请务必将本产品正确接地。

**遵守所有终端额定值**。 为避免火灾或电击,请遵守产品上的所有额定值和标记。在对产品进行连 接之前,请首先查阅产品手册,了解有关额定值的详细信息。

输入端的额定值不适用于连接到市电或 11、111 或 1V 类型电路。

不要将电流探头连接到电压超过电流探头的电压额定值的任何导线。

**断开电源。** 电源开关可以使产品断开电源。请参阅有关位置的说明。不要挡住电源开关;此电 源开关必须能够随时供用户使用。

**切勿开盖操作**。 请勿在外盖或面板打开时运行本产品。

**怀疑产品出现故障时,请勿进行操作**。 如果怀疑本产品已损坏,请让合格的维修人员进行检查。

远离外露电路。 电源接通后,请勿接触外露的线路和元件。

使用合适的保险丝。 只能使用为本产品指定的保险丝类型和额定指标。

请勿在潮湿环境下操作。

请勿在易燃易爆的环境中操作。

请保持产品表面清洁干燥。

请适当通风。 有关如何安装产品使其保持适当通风的详细信息,请参阅手册中的安装说明。

### 本手册中的术语

本手册中可能出现以下术语:



警告: "警告"声明指出可能会造成人身伤害或危及生命安全的情况或操作。



产品上可能出现以下符号:



# 前言

本手册介绍了 VM 系列视频测量仪的安装和基本操作。有关详细信息,请参阅仪器的在线帮助以及 《VM 系列视频测量仪用户手册》。

## 主要功能

₩ 系列视频测量仪是一种基于示波器平台的高性能自动视频测量仪器。主要功能包括:

- 快速、准确、可靠的视频测量
- 全面的分量模拟信号分析
- PC 和 DTV 消费类视频设备的自动测试
- PC 图形设备的自动 VESA 兼容性测试
- 通过选件支持 SD、HDTV 和 RGBHV 分量模拟视频格式
- 图像、矢量和波形显示
- 集成的通过/不通过极限测试
- 附带测试信号软件包
- GPIB 远程控制和 LAN 连通性
- 完整的示波器功能

## 受支持的产品

可购买 VM 系列视频测量仪软硬件套装。您可以将其安装在已有的 Tektronix 示波器上,或升级 到 VM5000HD 或 VM5000 系统。下表中列出的即为 VM 系列视频测量仪支持的产品。请注意,有些产品不支持选件 VGA。

| 仪器        | 支持的选件       |
|-----------|-------------|
| VM5000HD  | SD、HD 和 VGA |
| VM5000    | SD、HD 和 VGA |
| TDS5104   | SD、HD 和 VGA |
| TDS5104B  | SD、HD 和 VGA |
| TDS5054   | SD 和 HD     |
| TDS 5054B | SD 和 HD     |
| DP07254   | SD、HD 和 VGA |
| DP07104   | SD、HD 和 VGA |
| DP07054   | SD 和 HD     |
| DP07354   | SD、HD 和 VGA |

# 文档

| 阅读内容        | 使用的文档                                                                                                        |
|-------------|--------------------------------------------------------------------------------------------------------------|
| 安装和操作(概述)   | VM 系列视频测量仪快速入门用户手册。本快速入门用户<br>手册包含有关如何使用仪器的一般信息、用户界面控件指<br>南及一些应用示例。                                         |
| 高级操作和用户界面帮助 | ₩ 系列视频测量仪用户手册。本用户手册包含有关如何操<br>作仪器的详细信息,如:测量值的计算方法、技术规格,<br>等等。                                               |
|             | ₩ 系列视频测量仪在线帮助。访问软件的 Help(帮助)菜单<br>中的在线帮助,以获取有关显示屏上的控件及元件的信息。                                                 |
| 编程命令        | VM 系列视频测量仪程序员手册。VM 系列视频测量仪产品软件 CD 中的一个 PDF 文件介绍了专用于 VM 系列视频测量仪<br>的编程命令。示波器的程序员手册是示波器产品软件 CD<br>中的一个 PDF 文件。 |
| 示波器用法       | 有关使用示波器功能的完整信息,请参阅示波器文档。                                                                                     |
| 用户维修和性能验证   | 请参阅该示波器维修手册。                                                                                                 |

## 软件升级

可能有定期的软件升级。必须有特定示波器型号的有效选件密钥和序列号,才可以使用软件。

检查升级:

1. 访问 Tektronix 网站 www.tektronix.com/software。

2. 输入产品名称(VM 系列),查找可用的软件升级。

## 本手册中使用的约定

本手册介绍了 VM 系列视频测量仪选件 SD、HD 和 VGA 的操作方法。尽管三个选件的操作方法完全相同,但功能上却有一些区别,尤其是可以进行的测量。此外,可以购买 VM 系列视频测量仪的软件和 附件,安装在某些 Tektronix 示波器上。配置或应用不同时,在文中会以适用的选件或示波器平台标 明。如果屏幕显示不同,将同时给出两个版本(选件 SD/HD 和选件 VGA)的显示。

### 整本手册中使用以下图标。



# 安装仪器

本部分包含有关仪器安装的信息。打开仪器包装,检查是否包括了列为"标准附件"的所有物品,是 否还包括了您订购的"推荐附件"。请访问 Tektronix 网站(www.tektronix.com),了解最新信息。

# 标准附件

### VM 系列视频测量仪标准附件

| 附件                                                                                                               | 部件号         |
|------------------------------------------------------------------------------------------------------------------|-------------|
| 《VM Series Video Measurement System Quick Start User Manual》英文版,<br>如果订购了语言选件,则还有法语、德语、西班牙语、繁体中文、简体中文<br>或日语翻译版。 | 071-2091-XX |
| VM 系列视频测量仪用户手册                                                                                                   | 071-2103-XX |
| VM Series 视频测量仪程序员手册(PDF 文件,位于产品软件光盘中)                                                                           | 071-2104-XX |
|                                                                                                                  | 071-1733-XX |
| VM 系列视频测量仪产品软件光盘,包括 VM 系列视频测量仪产品软件(含在<br>线帮助)、VM 系列视频测量仪用户手册 PDF、VM 系列视频测量仪快速入门用<br>户手册 PDF 以及版本说明。              | 020-2767-XX |
|                                                                                                                  | 020-2693-XX |
|                                                                                                                  | 020-2659-XX |
| 用于恢复介质/操作系统恢复的 Tek 恢复软件许可                                                                                        | —           |
| 可选应用软件 CD 和文档套件                                                                                                  | 020-2700-XX |
| OpenChoice 解决方案套件入门                                                                                              | 020-2513-XX |
| DP07000、DSA70000 及 DP070000 在线帮助(产品软件的一部分)                                                                       | —           |
|                                                                                                                  | —           |
| DP07000、SA70000 及 DP070000 程序员在线指南(产品软件 CD 中的文件)                                                                 |             |
| NIST、Z540-1 和 IS09000 校准证书                                                                                       |             |
| 光电鼠标                                                                                                             | 119-7054-XX |
| 微型键盘,USB 接口、双端口集线器                                                                                               | 118-7083-XX |
| 前盖                                                                                                               | 200-4963-XX |
| 附件包                                                                                                              | 016-1966-XX |
| 探头校准和相差校正夹具,附带说明                                                                                                 | 067-0405-XX |
| Nero OEM 软件 CD                                                                                                   | 063-3781-XX |
| TPA-BNC 服务替换适配器<br>选件 SD 和 HD — 1 个适配器<br>选件 VGA — 4 个适配器                                                        | 013-0355-02 |
| 精确 75 Ω 终接器(4)                                                                                                   | 011-0102-XX |
| BNC T 形连接器(4)                                                                                                    | 103-0030-XX |
| 同步传感器电缆(仅限于选件 SD/HD)                                                                                             | 012-1680-XX |

## VM 系列视频测量仪标准附件 (续)

| 附件              |                         | 部件号         |
|-----------------|-------------------------|-------------|
| VGA 至 5X BNC 电  | l缆(长6in.)(仅限于选件 VGA)    | 174-5147-XX |
| VGA 至 5X BNC 电  | 1缆(长 3 ft.)(仅限于选件 VGA)  | 174-5216-XX |
| RGBHV 测量接口      | 单元(仅限于选件 VGA)           | 012-1685-XX |
| RS-232 RGBHV MI | U 控制电缆(仅限于选件VGA)        | 012-1692-XX |
| BNC 到接线柱适       | 配器(2)(仅限于选件VGA)         | 011-0183-00 |
| 2.21 kΩ 电阻      |                         | 322-3226-00 |
| 301 Ω 电阻        |                         | 322-3143-00 |
| VGA 同步合并器       | 电缆                      | 012-1664-XX |
| 电源线             | 北美(选件 A0)               | 161-0104-00 |
|                 | 欧洲通用(选件 A1)             | 161-0104-06 |
|                 | 英国(选件 A2)               | 161-0104-07 |
|                 | 澳大利亚(选件 A3)             | 161-0104-05 |
|                 | 瑞士(选件 A5)               | 161-0167-00 |
|                 | 日本(选件 A6)               | 161-A005-00 |
|                 | 中国(选件 A10)              | 161-0306-00 |
|                 | 印度(选件 A11)              | 161-0324-00 |
|                 | 一<br>无电源线或交流适配器(选件 A99) |             |

# 推荐附件

您的仪器可能还包括可选的推荐附件。请确认仪器中包括您订购的可选附件。

### VM 系列视频测量仪推荐附件<sup>1</sup>

## 附件

| 附件                                      | Tektronix 部件号 |  |
|-----------------------------------------|---------------|--|
| VM 系列信号源、480 行扫描格式 DVD 及 580 行扫描格式 DVD  | 020-2770-XX   |  |
| ·<br>Ⅶ 系列信号源、标准清晰度基本码流                  | 020-2771-XX   |  |
| VM 系列信号源、高级 TV 基本码流                     | 020-2772-XX   |  |
| VM 系列信号源、ATSC 传输码流                      | 020-2773-XX   |  |
| VM 系列信号源、基带测试信号                         | 020-2774-XX   |  |
| ·<br>Ⅶ 系列信号源、PC 位图图形测试信号文件              | 020-2775-XX   |  |
|                                         | 020-2776-XX   |  |
|                                         | 071-1174-XX   |  |
|                                         | 016-1942-00   |  |
| 探头校准、补偿和相差校正适配器                         | 067-0405-XX   |  |
| 电源相差校正夹具 067-1478-00                    |               |  |
|                                         | 013-0278-XX   |  |
|                                         | P5050         |  |
| GPIB 电缆 (3.3 ft. 或 1 m)     012-0991-01 |               |  |
| GPIB 电缆 (6.6 ft. 或 2 m)     012-0991-00 |               |  |
| Centronics(打印机)电缆 012-1214-00           |               |  |
|                                         |               |  |

1 有关 VM 系列视频测量仪的附件、升级模块和选件(包括维修选件)的最新列表,请访问 Tektronix 网站 www.tektronix.com。

# 操作要求

1. 请将仪器放在手推车或工作台 17.96 in (456.00 mm) 上,注意以下间距要求: ■ 顶部、后面、前面和右侧: 0 in (0 mm) ooa  $\mathbf{000}$ ■ 左侧: 3 in (76 mm) Q 00 0  $\circ$ ■ 底部: 最少 0.75 in (19 mm) 0 10.90 in 或 0 in (0 mm) 支脚支撑,翻 (277.00 mm) 转支架放下 2. 操作之前,请确保环境温度 在+41°F和+113°F之间 (+5°C至+45°C)。 6 6 Ø  $\bigcirc$ 6 гØ 2091-001

注意: 为保证良好通风,请勿在仪器底部和侧面堆放物品。

## 接通仪器电源

### 电源要求

#### 电源电压和频率

### 功耗

100-240  $V_{\text{RMS}}$   $\pm 10\%$ 、47-63 Hz 或 115  $V_{\text{RMS}}$   $\pm 10\%$ 、 最大 550 瓦特 360-440 Hz



# 关闭仪器电源



# 拔下电源



## 连接到网络

您可以将仪器连接到网络,实现打 印、文件共享、互联网访问以及其他 功能。请咨询您的网络管理员,并使 用标准 Windows 实用程序,对仪器 进行网络配置。



# 熟悉仪器

# 前面板

- 1. DVD/CD-RW 驱动器
- 2. 前面板控件
- 3. USB 端口
- 4. 接地端
- 5. 辅助触发输入端
- 6. 通道1至4 输入端
- 7. 探头校准输出端
- 8. 探头补偿输出端



# 侧面板和后面板

- 1. USB 端口
- 2. 连接监视器的视频端口(用于并 排显示)
- 3. 连接到麦克风的 Mic (麦克) 连接器
- 4. 连接扬声器的 Line Out(线路输 出)连接器
- 5. 连接监视器的 Scope Only VGA 输 出视频端口
- 6. 打印机接口
- 7. Line In (线路输入) 连接器
- 8. 连接网络的 RJ-45 LAN 连接器
- 9. Centronics 并行端口
- 10. COM 1 串行端口
- 11. 连接鼠标的 PS-2 连接器
- 12. 连接键盘的 PS-2 连接器
- 13. 供以后使用的 TekLink 连接器
- 14. 可移动硬盘驱动器
- 15. 连接控制器的 GPIB 端口
- 16. 辅助输出端
- 17. 通道 3 输出端
- 18. 外部参考输入端







## 输入连接要求 - 选件 SD/HD

只能使用 75 Ω 同轴电缆连接被测视频设备和本仪器。

使用附带的 BNC T 形连接器,将附带 的 75 Ω 终接器安装在同轴电缆末端 和仪器输入通道之间。为得到精确 的频率响应测量,必须将 T 形连接 器直接连接到输入通道 BNC。



## 输入连接要求 - 选件 VGA

将被测视频设备连接到该仪器的首选 方法是使用 RGBHV 测量接口单元。 该测量接口单元包括一个阻抗匹配回 路,可确保测量结果精确。有些测量 使用低频通路,有些测量使用宽带通 路。VM 系列仪器通过测量接口单元 的 RS-232 连接来选择所用的通路。



您也可以使用附带的 VGA 至 5X 电 缆连接器,将被测视频设备连接到 VM 系列仪器。如果使用这种方法, 则需要通过附带的精确终结器将电 缆连接到 VM 系列仪器,根据所做 的不同测量,测量时可能需要手动 改变终接器。

#### VGA 至 5X 电缆的连接器



## 连接输入信号

### 选件 SD/HD 设置 1

设置 1A 和 1B 首选用于测试三线分量模拟视频信号(Y/G、Pb/B、Pr/R,Y/G 上含有复合同步信号)。 这些设置使用同步提取附件从 CH1 上的 Y/G 信号中取得触发信号。触发源设为通道 4。该配置能提供 比设置 2 更精确的低电平噪声测量(30 MHz 带宽时低于 -60 dB)。

这种类型的连接在 CH4 上触发时无需在 CH1 和 CH4 之间添加额外的电缆连接,即可在 CH1 上进行更 准确的噪声测量。额外的电缆连接可能给频率响应和多波群测量带来不利影响。

要获得最佳频率响应和多波群测量,连接时应将 75 Ω 终接器尽量靠近输入连接器,如设置的插 图所示。

将同步提取器连接到 VM 系列仪器有两种方式。一种是将同步提取器直接连接到仪器输入端,另一种则是通过连接到 75 Ω 终接器的 T 形连接器来连接。使用哪种方式取决于使用的同步提取器版本。

**设置 1A - 含有合成同步信号的三线模拟视频(同步提取器 012-1680-01**)。如果使用的是 012-1680-01 同步提取器(包括内部 75 Ω 终接器),请将同步提取器直接连接到 VM 系列仪器 CH1 输 入端(对于 VM6000 和 DP07000 系列仪器,应使用 TPA-BNC 适配器),如下图所示。如果使用的是 012-1680-00 同步提取器(需要外部 75 Ω 终接器),请按设置 1B 中插图所示进行连接。



#### 连接到 VM6000 / DP07000 系列仪器





**设置 1B - 含有复合同步信号的三线模拟视频,用于同步提取器 012-1680-00**如果使用的是 012-1680-00 同步提取器(部件号位于较大模块的标签上),请将同步提取器连接到 ₩ 系列仪器 CH1 输入端(如下图所示)。如果您使用的是 012-1680-01 同步提取器,请按设置 1A 插图所示进行连接。







#### 连接到 VM5000 / TDS5000 系列仪器

下图显示的是如何将 012-1680-00 同步提取器连接到 CH1 输入端。



**说明:** 确认触发通道设为通道 4 (默认设置)。如果触发设置(Configuration (配置)> Operation (操作))未设为 CH4,将出现信号警告消息,并无法进行测量。

## 选件 SD/HD 设置 2 - 含有合成同步信号的三线模拟视频

使用该设置测试三线分量模拟视频信号(Y/G、Pb/B、Pr/R,Y/G上含有复合同步信号)。将仪器上的触发设置为 CH1(默认触发设置为 CH4)。该设置比本部分介绍的其他设置简单,但将 Y/G 上的噪声测量限制为 -65 dB(30 MHz 噪声带宽)。

### 连接到 VM6000 / DP07000 系列仪器



### 连接到 VM5000 / TDS5000 系列仪器



## 选件 SD/HD 设置 3 - 含有独立合成同步信号的四线模拟视频

使用该设置测试合成同步信号位于独立输出线路上的四线分量模拟视频信号(Y/G、Pb/B、Pr/R)。 仅对于 CH4,连接信号时可以不使用终接器,也可以使用比仪器附带的 75  $\Omega$  终接器精度低的 75  $\Omega$  终接器。





### 连接到 VM5000 / TDS5000 系列仪器



**说明:** 确认触发通道设为通道 4 (默认触发通道)。如果触发设置未设为 CH4 (Configuration (配置)> Operation (操作)),将会出现信号警告消息,并无法进行测量。

## 选件 VGA 设置 1 - RGBHV 测量接口单元

这是测试 PC 和播放设备视频的首选设置。使用 RGBHV 测量接口单元将 PC 视频卡连接到 VM 系列仪器。使用 RGBHV MIU 可以得到最精确的测量结果。



## 连接到 VM6000 / DP07000 系列仪器



连接到 VM5000 / TDS5000 系列仪器

要连接 RGBHV 测量接口单元,请执行下列操作:

 使用 VM 系列仪器附带的一根 VGA 到 BNC 适配器电缆,将被测设备 (DUT) 连接到 RGBHV 测量接口单 元的输入端。



 将 RGBHV 测量接口单元的输出端 (Aux、CH1 至 CH4)连接到 VM 系 列仪器的相同输入端(即将 CH1 输出端连接到 CH1 输入端)。



VM6000 / DP07000 系列仪器



VM5000 / TDS5000 系列

 用 RS-232 电缆连接 RGBHV 测量 接口单元和 VM 系列仪器的 COM1 端口。



 确认在 Configuration(配置)> Operation(操作)选项卡上选中 Use MIU(使用 MIU)复选框。



## 选件 VGA 设置 2 - VGA 连接器至 5X 电缆

当不便使用 RGBHV 测量接口单元时,可使用该设置测试 PC 和播放设备视频。要确保测量结果精确, 请使用 CH1-CH4 上的 T 形连接器和精确终端,将信号连接到 VM 系列仪器。必须在 CH1 至 CH3 (用于 GBR)上使用 75 Ω 终接器,在 CH4 (用于水平同步和垂直同步测量)上使用 2.21 kΩ 和 301 Ω 终接 器。使用该方法时,必须更改 CH4 上的信号和终接器连接,以进行特定的水平和垂直测量。VM 系列仪 器将显示一个对话框,提示您在必要时(RGBHV 测量接口单元在内部执行连接和终端更改)进行更改。

要使用 VGA 至 5X 电缆将 DUT 连接到 VM 系列仪器,请执行下列操作:

 使用附带的 BNC T 形连接器,将 附带的 75 Ω 终接器安装在 BNC 电缆末端和仪器输入通道 1 至 3 之间。为得到精确的测量,必须 将 T 形连接器直接连接在输入通 道 BNC 上。
VGA 至 5X 电缆的连接器
VGA 至 5X 电缆的连接器
(011-0102-03)
(011-0102-03)







VM5000 / TDS5000 系列仪器

进行水平同步测量时,一个弹出警 告会提示您更换 CH4 上的信号终接 器。

| Prompt                                              | × |
|-----------------------------------------------------|---|
| H Sync: Please connect 301 Ohms Termination on Ch4. |   |
|                                                     |   |
|                                                     |   |
|                                                     |   |
|                                                     |   |
|                                                     |   |
|                                                     |   |
|                                                     |   |
|                                                     |   |
|                                                     |   |

下表标识了 DUT 的哪个信号应连接到 VM 系列仪器上的哪个输入端连接器,以及各个信号分别 该使用哪个终接器。

| VGA 信号 | VM 系列仪器输入端连接器     | 终接器             |
|--------|-------------------|-----------------|
| 绿      | CH 1              | 75 Ω            |
| 蓝      | CH 2              | 75 Ω            |
| 红      | CH 3              | <b>75</b> Ω     |
| 水平同步   | CH 4 <sup>1</sup> | 2.21 kΩ 和 301 Ω |
| 垂直同步   | AUX               | 无               |

1 当进行垂直定时或垂直同步测量时,将垂直同步信号连接到该通道。如有必要, VM 系列仪器将提示您更改连接。

## 信号路径补偿

要优化测量精度,请参阅示波器在线帮助以执行仪器信号路径补偿步骤。如果自上次信号路径补偿后 温度变化超过 5°C,则使用该步骤。每周执行一次信号路径补偿。否则,可能导致仪器不能达 到对于那些伏/分度设置所保证的性能水平。

## 同步提取器补偿 - VM6000 和 DP07000 系列, 仅选件 SD/HD

要精确补偿同步提取器,请执行下列操作:

1. 将同步提取器小型外壳(标注有 "连接到触发通道")连接到 CH4。使大型外壳和仪器的连接 保持断开状态。

- 2. 将同步提取器 BNC 连接器连接 到 BNC 转微型钩连接器 (Pomona Electronics 型号 3789)。
- 3. 将微型钩连接到 PROBE COMP (探 头补偿) 连接器。
- 3 0  $\bigcirc$ 0  $(\odot$ (0  $(\odot$ c $\odot$ 2091-015

(Run/ Stop

Single

Horizontal

Position A)

Delay

(Print)

Multiview Zoom 0

0 0 0

A

0 0 0 0000

⊕。

 $O|_{\circ\circ}$ 

6 0

1

2091-014

 $\bigcirc$ 

0 0

0

 $\bigcirc$  $\bigcirc$ 

**□** ()

0

4

Autoset

**a** 

Default Setup

Push - Fine

4. 按下 AUTOSET (自动设置)。

2091-016



## 同步提取器补偿 - VM5000 和 TDS5000 系列, 仅选件 SD/HD

要精确补偿同步提取器,请执行下列操作:

 将同步提取器电缆连接到 CH1 和 CH4。标注有"连接到触发通道" 的小型外壳应连接到 CH4。



- 将同步提取器 BNC 连接器连接 到 BNC 转微型钩连接器(Pomona Electronics 型号 3789)。
- 3. 将微型钩连接到 PROBE COMP (探头补偿)连接器。

 选择 CH1 和 CH4。按下 FastAcq (快速采集)、AUTOSET (自动 设置)。
CH1 和 CH4 波形都应显示出来。

波形显示倾斜是正常的,这是由于 75 Ω 同步提取器终端负载
PROBE COMP (探头补偿)输出信号造成的。

 检查所显示的波形的形状,确定 同步提取器是否已得到正确补 偿。





 如有必要,请调整同步提取器。 根据需要,重复上述操作。

# 关于矩阵测试信号

矩阵测试信号由本产品附带的信号源盘附件提供。有一个用于选件 SD 和 HD 的矩阵信号和一个用于选件 VGA 的矩阵信号。矩阵信号将所有模拟视频信号要求合并到一个测试模式场内的不同行号中。它使用单一的测试模式,在进行不同测量时无需更换测试信号。只需指定进行测量的行号。使用与您正在使用的矩阵测试信号格式匹配的设置文件(.vmset);它为每种测量类型提供适当的行号作为默认设置。有关信号源盘上的文件的完整说明,请参阅《VM 系列视频测量仪 用户手册》。



选件 SD/HD 矩阵信号

| 选件 SD/HD | 矩阵信号 | 的组成要素 |
|----------|------|-------|
|----------|------|-------|

| 信  | 号名称       | 格式    | 信号名称          | 格式    | 信号名称           | 格式    |
|----|-----------|-------|---------------|-------|----------------|-------|
| 1. | 彩条        | 全部    | 7. YPbPr 扫描时间 | YPbPr | 13. 有效锯齿波      | 全部    |
| 2. | RGB 脉冲条   | RGB   | 8. YPbPr 扫描频率 | YPbPr | 14. YPbPr 浅锯齿波 | YPbPr |
| 3. | RGB 频率扫描  | RGB   | 9. YPbPr 多波群  | YPbPr | 15. RGB 浅锯齿波   | RGB   |
| 4. | RGB 时间扫描  | RGB   | 10. YPbPr 多波群 | YPbPr | 16. 平场 7.5%    | 全部    |
| 5. | RGB 多波群   | YPbPr | 11. RGB 串扰    | RGB   | 17. 平场 50%     | 全部    |
| 6. | YPbPr 脉冲条 | YPbPr | 12. YPbPr 串扰  | YPbPr | 18. 平场 100%    | 全部    |



选件VGA 矩阵信号

## 选件 VGA 矩阵信号的组成要素

| 信号名称     | 信号名称     |
|----------|----------|
| 1. 半白半黑  | 5. 黑/白/黑 |
| 2. 九色彩条  | 6. 纯白    |
| 3. 32 阶  | 7. 锯齿波   |
| 4. 黑/白交替 | 8. 半白半黑  |

# 启动 VM 系列仪器软件

1. 接通仪器电源。



2. 选择 Analyze(分析) > VM HD and SD Video V3.2(VM HD 和 SD 视频 V3.2)或 VM VGA Video V3.2 (VM VGA 视频 V3.2)。

| Analyze Utilities Help |                         |
|------------------------|-------------------------|
|                        | Restore Application     |
|                        | Search                  |
|                        | Mark                    |
|                        | VM HD and SD Video V3.2 |
|                        | VM VGA Video V3.2       |
|                        |                         |



选件 VGA

仪器将波形区域缩减到显示器的 上半部分,在显示器的下半部分 打开 VM 系列仪器应用程序。



选件 SD/HD



选件 VGA
### VM 系列视频测量仪快速入门用户手册

# VM 系列仪器软件用户界面

- 1. 菜单栏:选择在应用程序视图中 显示的设置控制和结果信息。
- 2. 应用程序视图:显示配置控制和 测量结果。
- 3. Run(运行)按钮:初始化设置, 开始测量,并显示结果。所显示 的按钮取决于 Run Mode(运行模 式)和 Line Select(行选)设 置。

Run Mode (运行模式) 设为 Once (一次)或 Once and Report (一 次并报告)且 Line Select (行 选)设为 Single Line (单行)时 的 Run (运行)按钮。

Line Select(行选)设为 Multi Lines(多行)时的 Run(运行) 按钮。

Run Mode(运行模式)设为 Continuous(连续)时的 Run (运行)按钮。

- 4. Stop(停止)按钮:终止测量。
- **5.** Picture (图像) 按钮: 将信号显 示为图像。
- Vector scope (矢量示波器) 按 钮: 以矢量示波器格式显示信 号。(仅限于选件 SD/HD)





大大大

Ż









- Hide(隐藏)按钮:将主显示区 恢复为全屏幕显示,并将应用程 序窗口隐藏到主显示区之后。
   要访问 Windows 桌面(查看报 告),请选择 Hide(隐藏)。在 主显示区中,选择 File(文件)
   > Minimize(最小化),然后再 次选择应用程序 Hide(隐藏)
- 要恢复隐藏的应用程序,请执行 以下步骤:在 Analyze(分析) 菜单(VM60000 / DP07000)中选择 Restore Application(恢复应用 程序)项,或选择 App(应用程 序)按钮(VM5000 / TDS5000)。

Hide



VM6000 / DP07000



9. Exit(退出)按钮:退出 ₩系 列产品应用程序,并使仪器恢复 到默认的主显示区。



## 测量步骤

- 1. 使用 Configuration (配置) > Format (格式)设置输入信号格式参数。
- 2. 使用 Configuration (配置) > Measurements (测量)选择要进行的一种或多种测量。
- 3. 使用 Configuration (配置) > Operation (操作) 设置测量运行操作。
- 4. 选择 Run (运行) 按钮,进行测量并观察结果。
- 5. 使用 Utilities (工具) > Generate Report (生成报告)保存测量结果。

## 配置 DUT — 选件 VGA

要对 DUT 进行测量,必须向 VM 系列仪器提供适当的视频信号。在使用该 DUT 的 PC 上显示一个位图 文件即可。进行多项测量时,首选的位图文件是矩阵信号。如只需进行一项测量,则可以使用一个全 场测量模式,而无需矩阵信号。VESA 测试过程(显示图形子系统评估,第一版,第一次修订)必需 的所有矩阵信号和全场测试模式位图都位于PC 位图图形测试信号文件光盘中。

- 1. 将 DUT 的分辨率和刷新速率设置 为所需的值。
- 在包含 DUT 的 PC 上,显示 PC 位 图图形测试信号文件光盘的内 容。
- 3. 显示 Matrix 或 Full Field 文件 夹的内容。
  - 如果要进行多项测量,请打开 Matrix 文件夹。
  - 如果只进行一项测量,请打开 Full Field 文件夹,并根据下 表选择适当的测试模式。

| 测量     | 适当的测试模式 |
|--------|---------|
| 通道间失谐  | 32 阶阶梯  |
| 通道间时滞  | 黑/白交替   |
| 彩条     | 九色彩条    |
| 水平同步   | 任意模式    |
| 水平同步抖动 | 任意模式    |
| 水平定时   | 黑/白/黑   |
| 线性     | 阶梯      |
| 亮度等级   | 黑/白交替   |
|        | 纯白      |
| 视频瞬态响应 | 黑/白交替   |
|        | 任意模式    |
|        | 半白半黑    |

#### 根据测量类型选用适当的全场测试模式

无论选择单一测试模式或进行多项测量,都必须选择要显示的位图文件,以产生视频测试信号。 文件的选择取决于要测试的格式。假设您要测试 1280X1024 分辨率格式(选择位图文件时不考虑 刷新速率)。在相应文件夹中,查找与您要进行的测试的格式相匹配的文件名。如果要测试线 性,就需要选择全场阶梯测试模式,或使用矩阵测试模式。在 Staircase 文件夹中,应查找名为 STEP1280X1024. bmp 的文件。在 Matrix 文件夹中,应查找名为 MAT1280X1024. bmp 的文件。

4. 选择满足要求的位图文件,并 用适当的程序(如 Paint Shop Pro)打开该文件。 如果您将 DUT 设置为驱动另一台 显示器,则可以将第二个显示器 的背景设置为该位图文件,而无 需用位图编辑器打开该文件。



- 5. 在"View" 菜单中选择 "View" > "Full Screen Preview"。 这样该 bmp 文件以全屏幕模式显示,没有任何边框。
- 断开 DUT 输出端和显示器的连接,将该输出端连接到 VM 系列 仪器。

# 设置输入信号格式 - 选件 SD/HD

 选择 Configuration (配置) > Format (格式)。

应用程序将显示 Format (格式) 视图。





- 为正在测量的信号,选择相应的 视频格式。
- 为正在测量的信号,选择相应的 颜色空间。

|                                                                                                                                  | Auto Detect     4801/60     720P/30     10801/60     720P/50     1080P/24     5761/50     720P/60     1080P/50     576P/50     10801/50     1080P/60      Color Space     YPbPr | Auto Detect     4801 / 60     720P / 30     10801 / 60     480P / 60     720P / 50     1080P / 24     5761 / 50     720P / 60     1080P / 60     576P / 50     1080I / 50     1080P / 60      Color Space     YPbPr     RGB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |             | SD Formats  | H           | D Formats    |
|----------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|-------------|-------------|--------------|
| Auto Detect 480P / 60 720P / 50 1080P / 24<br>5761 / 50 720P / 60 1080P / 50<br>576P / 50 1080I / 50 1080P / 60<br>- Color Space | Auto Detect 480P / 60 720P / 50 1080P / 24<br>576I / 50 720P / 60 1080P / 50<br>576P / 50 1080I / 50 1080P / 60<br>Color Space                                                  | Auto Detect 480P / 60 720P / 50 1080P / 24<br>5761 / 50 720P / 60 1080P / 50<br>576P / 50 1080I / 50 1080P / 60<br>Color Space<br>Ŷ YPbPr<br>P RGB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |             | 0 4801 / 60 | 720P / 30   | 10801 / 60   |
| ● 5761/50 ● 720P / 60 ● 1080P / 50<br>● 576P / 50 ● 1080I / 50 ● 1080P / 60<br>■ Color Space                                     | • 5761/50 • 720P / 60 • 1080P / 50<br>• 576P / 50 • 1080I / 50 • 1080P / 60<br>• Color Space                                                                                    | <ul> <li>• 5761 / 50</li> <li>• 5761 / 50</li> <li>• 576P / 50</li> <li>• 1080P / 60</li> <li>• 1080P</li></ul> | Auto Detect | © 480P / 60 | 😳 720P / 50 | 😳 1080P / 24 |
| ● 576P / 50 ● 1080I / 50 ● 1080P / 60<br>- Color Space                                                                           | • 576P / 50 • 1080I / 50 • 1080P / 60<br>- Color Space<br>• YPbPr<br>• DOD                                                                                                      | • 576P / 50 • 1080I / 50 • 1080P / 60<br>• Color Space<br>• YPbPr<br>• RGB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |             | C 576I / 50 | 😳 720P / 60 | 🗢 1080P / 50 |
| – Color Space ——<br>Э ҮРвРг                                                                                                      | Color Space     YPbPr                                                                                                                                                           | <ul> <li>⊂ Color Space</li> <li>○ YPbPr</li> <li>● RGB</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |             | 🗢 576P / 50 | 10801 / 50  | 🗢 1080P / 60 |
|                                                                                                                                  |                                                                                                                                                                                 | © RGB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | YPbPr       |             |             |              |

### 创建自定义格式

如果需要测试某种 Format (格式)选项卡上未列出的格式,可以创建用户定义格式。

Configuration Results

Format Measurements Operation Warnings Reference & Limits Picture & Vector

 选择 Configuration (配置) > Format (格式)。

应用程序将显示 Format (格式) 选项卡视图。

 要添加一种新格式,请选择 Add (添加),将显示 Create User Defined Format(创建用户定义 格式)窗口。





- **3.** 输入指定格式的水平和垂直参数的数值。
  - 设置 Scan Type (扫描类 型)。
  - 设置 Sync Type(同步类 型)。
  - 输入帧速率的数值。
- 4. 输入格式名称,并选择 Save (保存)保存新格式。





5. 要使用 User Defined Format (用户定义格式),请选中 Format(格式)选项卡中的 User Defined Format(用户定义格 式)复选框。从列表框中选中所 需格式。

| ormat Measurements [  | Operation Warning | s Reference & Limits | Picture & Vector |      |             |
|-----------------------|-------------------|----------------------|------------------|------|-------------|
| Format                | SD Formets        |                      | HD Formats       |      | Color Space |
|                       | 9 4801 / 60       | 0 720P / 30          | 0 10801/60       |      | • YPbPr     |
| Auto Detect           | 0 480P / 60       | 🗢 720P / 50          | 🗢 1080P / 24     |      |             |
|                       | 5761 / 50         | 720P / 60            | 🗢 1080P / 50     |      | O RGB       |
|                       | © 576P / 50       | 10801/50             | 🗢 1080P / 60     |      |             |
|                       |                   | User Defined F       | ormat            |      |             |
| 🗹 User Defined Format | 10                | 80i60-YPbPr-Test1    | Add              | Edit | Delete      |
|                       |                   | 1080i60-YPbPr-Test1  |                  |      |             |

# 设置输入信号格式 - 选件 VGA

- 选择 Configuration (配置) > Format (格式)。
- Configuration Results Format Measurements Operation Warnings Reference & Limits

应用程序将显示 Format (格式) 选项卡视图。

| ormat Measure | ments   Operation | ı [Warnings | Reference & Limits |        |            |         |         |
|---------------|-------------------|-------------|--------------------|--------|------------|---------|---------|
|               | Resolut           | ion         |                    |        | Refresh Ra | ate     | Timing  |
| O 640x480     | C 1600x102        | 4 📀         | 1920x1440          | 🗢 50Hz | 🕛 72Hz     | 🗢 100Hz | OMT     |
| 0 800x600     | O 1600x120        | ю 🗢         | 2048x1536          | 📀 60Hz | 🕛 75Hz     | 🗢 120Hz | © CVT   |
| 1024x768      | © 1920x108        | io 🗢        | 2048x2048          | 🖲 65Hz | 🖲 76Hz     |         | © CVT-R |
| 🗩 1280x1024   | © 1920x120        |             |                    | 🗢 70Hz | 🗢 85Hz     |         | © GTF   |
|               |                   |             | User Defined F     | ormat  |            |         |         |
| Liser Defined | Format            |             |                    |        | Add        | Edit    | Delete  |

- 为正在测量的信号,选择相应的 分辨率。
- 为正在测量的信号选择刷新速率。某些刷新速率将不可选择, 这取决于所选择的分辨率。
- 为信号选择 Timing (定时)标准。

|          |         | Resolution  |             |
|----------|---------|-------------|-------------|
| © 640x48 |         | C 1600x1024 | 🗢 1920x1440 |
| 💿 800x60 |         | © 1600x1200 | © 2048x1536 |
| O 1024x7 | 68      | © 1920x1080 | © 2048x2048 |
| C 1280x1 | 024     | © 1920x1200 |             |
|          |         |             |             |
|          |         |             |             |
|          | Refresh | Rate        |             |
| 🗢 50Hz   | 🔘 72Hz  | O 100Hz     |             |
| 💿 60Hz   | 🔿 75Hz  | O 120Hz     |             |
| 🗢 65Hz   | 🗢 76Hz  |             |             |
| 70Hz     | 🗢 85Hz  |             |             |
| <u>5</u> |         |             |             |
|          |         |             |             |
| Timing   |         |             |             |
| O DMT    |         |             |             |
| © c∨t    |         |             |             |
| CVT-R    |         |             |             |
| 💿 GTF    |         |             |             |
|          |         |             |             |

### 创建自定义格式

如果需要测试某种 Format (格式)选项卡上未列出的格式,可以创建用户定义格式。

 选择 Configuration (配置) > Format (格式)。



应用程序将显示 Format (格式) 选项卡视图。



 要添加新格式,请选中 User Defined Format(用户定义格 式)复选框。

| <u>File</u> <u>Configuration</u> | <u>Results Utilities He</u> | p                         |        |            |         |          | VM<br>Video Me | VGA<br>asurement |
|----------------------------------|-----------------------------|---------------------------|--------|------------|---------|----------|----------------|------------------|
| Format Measuren                  | nents Operation Wa          | rnings Reference & Limits | 1      |            |         |          |                |                  |
|                                  | Resolution                  |                           |        | Refresh Ra | ste     | Timing — | *              |                  |
| 🖱 640x480                        | 1600x1024                   | © 1920x1440               | 🗢 50Hz | 🗢 72Hz     | 🗢 100Hz | DMT      |                |                  |
| 00x600 0                         | 1600x1200                   | © 2048x1536               | 💿 60Hz | 🗢 75Hz     | 🗢 120Hz | © CVT    | Ĩ              | 9                |
| 9 1024x768                       | © 1920x1080                 | © 2048x2048               | 🛡 65Hz | 76Hz       |         | CVT-R    | 0.00           |                  |
| 1280x1024                        | O 1920x1200                 |                           | 🗢 70Hz | 🗢 85Hz     |         | O GTF    | Con            | ngure            |
|                                  |                             | User Defined F            | ormat  |            |         |          |                |                  |
| User Defined F                   | Format                      |                           | -      | Add        | Edit    | Delete   |                |                  |
|                                  |                             |                           |        |            |         |          | Exit           | Hide             |

- 3. 要定义新格式的参数,请选中 Add(添加)。
- <u>File Configuration Results Utilities Hel</u> Configuration nts Operation Warnings Reference & Limits Format Measu \* 1600x1024
  1600x1200 50Hz
   60Hz 100Hz
   120Hz © DMT © CVT Ø 🗢 75Hz © 800x600 nfigure 1280x1024 © 1920x1200 🗢 70Hz O GTF 🗢 85Hz 📕 User Defined Format Add Edit Delete

ate User Defined Format ser Defined Format

- 4. 输入指定格式的水平和垂直参数 的数值。
  - 设置 Sync Polarity (同步极 性)。
  - 输入 Refresh Rate(刷新速 率)数值。
- 5. 输入格式名称,并选择 Save (保存),保存新格式。

- 要使用 User Defined Format (用户定义格式),请选中 Format(格式)选项卡中的 User Defined Format(用户定义格 式)复选框。从列表框中选中所 需格式。
- Create User Defined Format

   User Defined Format

   Image: State State

Save

| ormat Measuren   | nents Operation W | arnings   Reference & Limits |        |           |       |        |
|------------------|-------------------|------------------------------|--------|-----------|-------|--------|
|                  | Resolution        |                              |        | Refresh R | ate   | Timing |
| 640x480          | 1600x1024         | 1920x1440                    | • 50Hz | 🔍 72Hz    | 100Hz | O DMT  |
| © 800x600        | 1600x1200         | © 2048x1536                  | © 60Hz | 🗢 75Hz    | 120Hz | © CVT  |
| 1024x768         | 1920x1080         | 0 2048/2048                  | 🗢 65Hz | 🗢 76Hz    |       | OCVT-R |
| 0 1280×1024      | 1920x1200         |                              | 70Hz   | 🗢 85Hz    |       | O GTF  |
|                  |                   | 1280x1024@60Hz_test2         |        |           |       |        |
|                  |                   | 1280x1024@60Hz_test1         |        | 200       |       | 121    |
| 🗹 User Defined F | ormat             | 1280x1024@60Hz_test1         | -      | Add       | Edit  | Delete |

# 选择测量

- 选择 Configuration (配置) > Measurements (测量)。
- 2. 在 Measurements (测量)选项 卡中选择所需的测量。您可以选 择一种测量或多种测量的任意组 合。





选件 SD/HD



选件 VGA

## 设置测量运行操作

- 选择 Configuration (配置)> Operation (操作)。
- Configuration Results Format Measurements Operation Warnings Reference & Limits Picture & Vector 选件 SD/HD Configuration <u>R</u>esults Format Measurements

\_\_\_\_\_\_ 选件 VGA

Warnings Reference & Limits

仪器将显示 Operation (操作) 视图。这些设置在您选择 Run (运行)按钮后,控制仪器如何 对测量进行设置,以及如何采集 测量数据。





2. 选择仪器如何设置和运行测量。



- Setup & Run(设置并运行)配置仪器设置,对所选择的每种测量和每次测量采集都进行一次测量。当进行需要不同仪器设置的多项测量时,请使用该选项。
- Setup Only(只设置)为一项测量配置仪器,但并不进行测量。使用该选项设置自定义设置。按下 Run(运行)按钮试验您的设置,根据需要进行调整(例如改变水平比例),然后再次选择 Run(运行)按钮。对自定义设置满意后,就可以使用 Run Only(只运行)设置来收集结果。
- Run Only(只运行)使用当前仪器配置进行一次测量。使用该设置,可以用自定义设置进行测量(请参阅上面对 Setup Only(只设置)的说明)。
- 选择应用程序如何采集测量数据 (运行模式)。



- Once(一次)对每种所选择的测量进行测量的次数等于平均设置,然后停止测量。这是默认设置。
- Continuously(连续)连续进行测量。必须选择 Stop(停止)按钮,才能停止测量。
- Once & Report (一次并报告)对每种所选择的测量进行测量的次数等于平均设置,然后停止 测量并生成报告。
- 启用或禁用波形自动缩放。Auto Scale(自动缩放)调整垂直刻度 单位,使得输入信号尽量充满格 线。对每种所选择的测量,Auto Scale(自动缩放)将执行一次。
- 选件 SD/HD:选择哪个仪器通道 包含用于触发的同步信号。 如果使用了错误的触发通道, 将得到信号警告(如果已启 用 Signal Warnings(信号警 告))。(见第9页,连接输入 信号)
- 选择适当的 Line Select (行选) 设置。在 Single Line (单行) 模式下,每种测量都在单行上进 行(例如行 153)。在 Multiple Lines (多行)模式下,测量则 在一系列的行上进行(例如,行 153 至 185)。



🗢 Multi Lines

选择 Multiple Lines (多行) 时,会自动将一个报告保存到一 个文件。

- 7. 选件 VGA: 如果您正在使用 RGBHV 测量接口,则必须选择 Use MIU (使用 MIU)复选框。
- 👹 <u>F</u>ile <u>C</u>onfiguration <u>R</u>esults <u>U</u>tilities <u>H</u>elp Configuration Format Measurements Operation Warnings Reference & Limits Setup And/Or Run Run Mode Line Select Auto Scale Setup & Run Sinale Line Once 🗹 Enabled Setup Only Initial Values 🗢 Run Only Once & Report Last Meas. RGBHV MIU Sync Polarity RTF Report Mode Last Recalled 🗹 Use MIU 🗹 Auto Detect Embed Screen Capture Restore Default



8. 选件 VGA: 使用 MIU, 则可以忽 略 Sync Polarity (同步极性) 设置。

| mat Measurements | Operation Warnings R | eference & Limits    |                 |
|------------------|----------------------|----------------------|-----------------|
| Setup And/Or Run | Run Moo              | le Line Select       | Auto Scale      |
| 오 Setup & Run    | Once                 | Single Line          | Enabled         |
| Setup Only       | Continuously         | Multi Lines          | Initial Values  |
| 🗢 Run Only       | Once & Report        |                      | O Last Meas     |
| RGBHV MIU        | Sync Polarity        | RTF Report Mode      | C Last Recalled |
| Use MIU          | 🗹 Auto Detect        | Embed Screen Capture | Restore Default |

因为水平同步信号和垂直同步信号的指定极性因定时标准而异,所以 VM 系列的仪器会提示您连 接水平和垂直同步信号,以自动确定其极性。确定同步信号的极性后,测量周期开始。该"极 性测试"过程在每个测量周期开始时执行。要防止该测试在每个测量周期开始时都运行,请选 中 Auto Detect(自动检测),进行任何一次测量。在选中 Auto Detect(自动检测)完成一个 测量周期后,可以取消 Auto Detect(自动检测),仪器不会再提示您更换信号进行极性测试 (VM 系列仪器将会记住同步信号的极性)。当然,每次更改被测设备的格式设置后,都应该选中 Auto Detect (自动检测)完成一个测量周期。

9. 选择显示哪些警告消息。 有关警告的详细信息,请参阅 《VM 系列视频测量仪器用户手 册》。

| nat Measurements Operation Warnings R | eference & Limits        |
|---------------------------------------|--------------------------|
| Warning Types Reported                | Control Options          |
| 🗹 Measurement Warnings                | 🗹 Pop Up Warning Details |
| 🗹 Signal Warnings                     | Log Warnings To File     |
| Results Warnings                      |                          |

# 进行测量并查看结果

进行测量之前,请先选择信号格式,选择所需的测量,并配置运行选项。

 选择 Run(运行)按钮。仪器开 始进行测量,并显示最近选择的 测量结果的测量结果视图。

2. 要查看其他测量的结果,请在

(同步)。

Results(结果)菜单中选择相 应的测量。例如,要查看同步测 量结果(仅限于选件 SD/HD), 请选择 Results(结果)> Sync

| Format      |         |            |         |         |
|-------------|---------|------------|---------|---------|
| HD 10801/60 | Unit mV |            | Pb / B  | Pr/R    |
| Line Number | VVI     | ite 677.53 | 0.02    | 0.05    |
|             | Yel     | DW 624.69  | -336.49 | 29.82   |
|             |         | an 531.33  | 78.91   | -336.4  |
|             | Gre     | en 482.26  | -258.43 | -304,27 |
| Average g   | Mage    | ita 192.0  | 261.41  | 308.02  |
| 1           |         | ed 145.66  | -76.22  |         |
| 10          | 8       | ue 48.8    | 339.84  | -30.91  |
|             | BI      | ck 0.71    | -0.41   | 0.0     |

选件 SD/HD

| 800x600_60Hz | Unit: mV |         |         |         |
|--------------|----------|---------|---------|---------|
| ine Number   | White    | 642.647 | 645.614 | 642.383 |
|              | Yellow   | 641.009 |         | 640.277 |
| 145          | Cyan     | 640.919 | 645.458 | -2.664  |
|              | Green    | 641.622 | -2.452  | -0.559  |
| Average @    | Magenta  | -1.851  | 645.465 | 642.329 |
| 1            | Red      | -0.283  | -2.672  | 640.978 |
|              | Blue     | 0.085   | 646.05  | -2.311  |
|              | Black    | 0.173   | -1.767  | 0.0     |

选件 VGA

Results Utilities Help

| <ul> <li>Summ¥ry</li> </ul> |                       |
|-----------------------------|-----------------------|
| Channel Delay               | Short Time Distortion |
| Color Bars                  | Spatial Distortion    |
| Frequency Response          | H Sync                |
| Multiburst                  | V Sync                |
| Noise                       | H Sync Jitter         |
| Non Linearity               | Levels                |

选件 SD/HD

| <u>R</u> esults <u>U</u> tilities | <u>H</u> elp    |
|-----------------------------------|-----------------|
| <ul> <li>Summary</li> </ul>       | Ch-Ch Skew      |
| H Sync                            | Luma Levels     |
| V Sync                            | Noise Inj Ratio |
| H Timing                          | Linearity       |
| V Timing                          | Video Transient |
| Color Bars                        | H Sync Jitter   |
| Ch-Ch Mismatch                    | ı               |

选件 VGA

如果已将运行操作设置为"连续",请按下 Stop(停止)按钮,以停止测量。



# 使用示波器

要使用 VM 系列仪器的标准示波器功能测量信号或观察信号特征,只需隐藏 VM 系列仪器软件,而不 必退出 VM 系列仪器软件。

1. 要隐藏 VM 系列仪器软件,请选择 Hide(隐藏)。



VM 系列仪器软件隐藏后,示波器显示出现全屏。无屏幕指示显示 VM 系列仪器软件隐藏。

| File | Edit     | Vertical             | Horiz/Acq                                                                                                       | Trig     | Display  | Cursors    | Measure   | Mask | Math | MyScope    | Analyze       | Utilities | Help        | •     |    |        |               | DPO             | 7254 1 | îek     |                | X    |
|------|----------|----------------------|-----------------------------------------------------------------------------------------------------------------|----------|----------|------------|-----------|------|------|------------|---------------|-----------|-------------|-------|----|--------|---------------|-----------------|--------|---------|----------------|------|
| E    |          |                      |                                                                                                                 |          |          | <u> </u>   | 1 1       |      |      | ' ' ‡      |               |           |             |       |    |        | '             |                 |        |         |                | -    |
| E    |          |                      |                                                                                                                 |          |          |            |           |      |      |            |               |           |             |       |    |        |               |                 |        |         |                |      |
| E    |          | ne i                 |                                                                                                                 | L i      |          | <u>, 1</u> |           |      |      |            |               |           |             |       |    |        |               |                 |        |         |                |      |
| F    |          |                      |                                                                                                                 |          |          |            |           |      |      |            |               |           |             |       |    |        |               |                 |        |         |                |      |
|      |          |                      |                                                                                                                 |          |          |            |           |      |      |            |               |           |             |       |    |        |               |                 |        |         |                |      |
|      |          |                      |                                                                                                                 |          |          |            |           |      |      | tine in F  |               |           |             |       |    |        |               |                 |        |         |                | -    |
|      |          |                      |                                                                                                                 |          |          | ۰.         | -         |      |      |            |               |           |             |       |    |        |               |                 |        |         |                |      |
| E    |          |                      |                                                                                                                 |          |          |            |           |      |      | · · +      |               |           |             |       |    |        |               |                 |        |         |                |      |
|      | <b>.</b> |                      |                                                                                                                 | <u> </u> | <b>.</b> |            |           | -    |      | t.         | A. Turne and  |           |             |       | -  | -      |               |                 |        |         |                | -    |
| I    |          |                      |                                                                                                                 |          |          |            |           |      |      | Į          |               |           |             |       |    |        |               |                 |        |         |                |      |
| Ĭ    |          |                      | T.                                                                                                              |          |          | e re       |           |      |      | tin tin    |               |           |             |       |    |        |               |                 |        |         |                |      |
| E    |          |                      |                                                                                                                 |          |          |            |           |      |      |            |               |           |             |       |    |        |               |                 |        |         |                | -    |
| E    |          |                      |                                                                                                                 |          |          |            |           |      |      |            |               |           |             |       |    |        |               |                 |        |         |                |      |
| J.   |          | بالاحاد بالد         |                                                                                                                 |          |          | يول الم    | المتحدلات |      |      |            | ان مان        |           | d           |       |    | الدغمة |               |                 |        |         | dana di        |      |
| Ĭ    |          | W <sup>1</sup>       | 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - |          |          |            | a hanna a |      |      | Ē          | a la complete |           | (Leiling    |       | 1  | 1      |               | 110             | en en  | lienzen | ( we a         |      |
|      |          |                      |                                                                                                                 |          |          |            |           |      |      |            |               |           |             |       |    |        |               |                 |        |         |                |      |
|      |          |                      |                                                                                                                 |          |          |            |           |      |      |            |               |           |             |       |    |        |               |                 |        |         |                |      |
| ſ    |          | 200                  |                                                                                                                 |          |          |            |           |      |      | <u>, †</u> |               |           |             | EN/   |    |        | 50.0          | . 504           | M8/e   |         | One/ot         | _    |
|      | C2       | 500mV/di             | v                                                                                                               |          |          |            |           |      |      |            |               | Trig      | Dly: 10     | event | ts |        | Run           | s SUI           | ample  |         | .ons/pt        |      |
|      | C3<br>C4 | 200mV/di<br>1.0V/div | v                                                                                                               |          |          |            |           |      |      |            |               | B C4      | <b>f</b> 2. | 22V   |    |        | 242 a<br>Octo | icqs<br>ber 10, | 2006   | R       | L:250k<br>19:0 | 9:59 |

 要返回 VM 系列仪器软件,请 在 Analyze (分析)菜单中选中 Restore Application (恢复应用 程序)。

| Ana | alyze Utilities Help    |
|-----|-------------------------|
|     | Restore Application     |
|     | Search                  |
|     | Mark                    |
|     | VM HD and SD Video V3.2 |
|     | VM VGA Video V3.2       |

# 故障排除信号问题

如果在进行测量时发生问题,可能出现警告或错误消息,这些消息可以帮助您确定问题的起因。下表 描述了消息和可能的原因。

#### 选件 SD/HD 警告消息

| 编号 | 文字                                         | 可能原因                                                     | 可能导致警告的操<br>作 |
|----|--------------------------------------------|----------------------------------------------------------|---------------|
| 1  | 采集问题                                       | 仪器无法触发或信号电平超出<br>范围。                                     | 所有测量          |
| 2  | 彩条测量不确定                                    | 仪器无法找到正确的同步信<br>号、选择了错误的格式或信号<br>失真。                     | 测量短时失真        |
| 3  | 通道延迟:通道 <x> 和 <y>,<br/>相关过低</y></x>        | 行号设置错误、信号失真或输<br>入信号不适合(跃迁过少)。                           | 测量通道延迟        |
| 4  | 通道延迟:通道间相关不连<br>续                          | 通道间群延迟不匹配或信号源<br>不适合。                                    | 测量通道延迟        |
| 5  | 彩条:未找到<颜色>彩条                               | 行号设置错误、信号失真、指<br>定了错误的格式、连接的通道<br>顺序错误、比色法错误或信号<br>过度裁减。 | 测量彩条          |
| 6  | 彩条: 后沿参考有问题                                | 信号失真。                                                    | 测量彩条          |
| 7  | 频率响应: 信号改变: <频率<br>1> -><频率 2> MHz         | 信号电平过低、信号错误或信<br>号改变。                                    | 测量频率响应        |
| 8  | 频率响应单个通道错误:通道<br><x></x>                   | 信号失真或信号中标志丢失。                                            | 测量频率响应        |
| 9  | 频率响应: 所有通道结果无效                             | 行号设置错误、输入信号不适<br>合或配置错误。                                 | 测量频率响应        |
| 10 | 多波群: 信号改变: <频率 1><br>-><频率 2> MHz          | 信号电平过低、信号错误或信<br>号改变。                                    | 测量多波群         |
| 11 | 多波群:单个通道错误:通道<br><x>:标志 &lt;= 0 mV</x>     | 信号失真或信号中标志丢失。                                            | 测量多波群         |
| 12 | 多波群:单个通道错误:通道<br><x>:突发脉冲 <n>:未检测到</n></x> | 信号电平过低、信号失真、输<br>入信号频率分组少于 6 个或信<br>号过度裁减。               | 测量多波群         |
| 13 | 多波群: 所有通道结果无效                              | 行号设置错误、输入信号不适<br>合或配置错误。                                 | 测量多波群         |
| 14 | 噪声: 信号改变: 通道 <x></x>                       | 信号在测量中改变。                                                | 测量噪声          |
| 15 | 噪声:所有通道结果无效。                               | 行号设置错误、输入信号不适<br>合或配置错误。                                 | 测量噪声          |
| 16 | 非线性:结果无效:通道<br><x>:未找到锯齿波或阶跃信号</x>         | 行号设置错误或输入信号不适<br>合。                                      | 测量非线性         |
| 17 | 非线性:信号改变:通道 <x>:</x>                       | 信号在测量中改变。                                                | 测量非线性         |
| 18 | 短时失真:未找到彩条起点                               | 行号设置错误、信号失真或选<br>择了错误格式。                                 | 测量短时失真        |

### 选件 SD/HD 警告消息 (续)

| 编号 | 文字                        | 可能原因                                 | 可能导致警告的操<br>作 |
|----|---------------------------|--------------------------------------|---------------|
| 19 | 短时失真:未找到彩条终点              | 行号设置错误、信号失真或选<br>择了错误格式。             | 测量短时失真        |
| 20 | 短时失真:通道〈x〉结果无<br>效。       | 行号设置错误、输入信号不适<br>合或配置错误。             | 测量短时失真        |
| 21 | 同步测量不确定                   | 仪器无法找到正确的同步信<br>号、选择了错误的格式或信号<br>失真。 | 测量同步          |
| 22 | 同步测量: <n> 未找到</n>         | 仪器无法找到正确的同步信<br>号。                   | 测量同步          |
| 23 | 在信号的亮度分量中未找到 2T<br>脉冲     | 行号设置错误、输入信号不适<br>合或配置错误。             | 测量短时失真        |
| 24 | 正在覆盖文件〈文件名〉               | 仪器正在覆盖现有文件。                          | 调出设置,生成报<br>告 |
| 25 | 同步采集问题:无法触发或信<br>号电平超出范围。 |                                      | 触发            |

### 选件 VGA 警告消息

| 编号 | 文字                                                                               | 可能原因                                                                                             | 可能导致警告的操<br>作        |
|----|----------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|----------------------|
| 1  | 同步边沿位置有问题。确保选<br>择了正确的格式。                                                        | 格式设置错误。                                                                                          | 测量水平同步、垂<br>直同步和垂直定时 |
| 2  | 水平定时:通道 <1 − 3> 中信<br>号错误。使用黑/白/黑信号。<br>同步边沿位置有问题。确保选<br>择了正确的格式。                | 格式设置错误。                                                                                          | 测量水平定时               |
| 3  | 水平定时:通道 <1 - 3> 中信<br>号错误。使用黑/白/黑信号。                                             | 未使用黑/白/黑信号。                                                                                      | 测量水平定时               |
| 4  | 结果无效:采集问题:或者无<br>法触发,或者信号电平超出范<br>围或采集到的取样少于请求<br>数。                             | 采集失败:触发丢失、格式错<br>误或其他原因导致无法采集信<br>号。                                                             | 所有测量                 |
| 5  | 线性:信号改变:通道 <x>:</x>                                                              | 连续运行时出现稳定性问题:<br>锯齿波丢失或阶跃数改变。                                                                    | 测量线性                 |
| 6  | 线性: 信号保真度问题: 通道<br><x> 分辨率不匹配: 行 A <x><br/>位、行 B <y> 位: 未找到阶跃<br/>信号</y></x></x> | 对于两行锯齿波(锯齿波下部<br>位于一行、锯齿波上部位于另<br>一行)来说,LSB 阶梯锯齿波<br>的位分辨率不匹配或阶跃总数<br>不等于(2 <sup>°</sup> n — 1)。 | 测量线性                 |
| 7  | 线性: 切换附件中发生错误                                                                    | RGBHV 测量接口单元响应不正<br>确。                                                                           | 测量线性                 |

可能导致数生的操

### 选件 VGA 警告消息 (续)

| 编号 | 文字                                                 | 可能原因                     | 作                                                                   |
|----|----------------------------------------------------|--------------------------|---------------------------------------------------------------------|
| 8  | 同步边沿位置有问题。确保选<br>择了正确的格式。                          | 格式设置错误。                  | 测量彩条、视频通<br>道失谐、通道间时<br>滞、亮度电平、视<br>频通道失谐、垂直<br>同步、垂直定时和<br>视频瞬态响应。 |
| 9  | 彩条:未找到黄色/青色/绿色/<br>洋红色/红色/蓝色/黑色彩条。                 | 未使用彩条信号。                 | 测量彩条。                                                               |
| 10 | 通道间时滞:通道 <1 − 3> 中<br>信号错误。使用黑白交替条形<br>信号。         | 格式设置错误。                  | 测量通道间时滞。                                                            |
| 11 | 亮度电平:通道 <1 - 3> 中信<br>号错误。使用黑白交替条形信<br>号。          | 未使用黑白交替信号。               | 测量亮度电平。                                                             |
| 12 | 视频瞬态响应:通道 <1-3><br>中信号错误。使用黑白交替信<br>号。             | 未使用黑白交替信号。               | 测量视频瞬态响<br>应。                                                       |
| 13 | 水平同步抖动:同步边沿位置<br>有问题。确保选择了正确的格<br>式。               | 格式设置错误。                  | 测量水平同步抖动                                                            |
| 14 | 噪声:某些通道结果无效。                                       | 行号设置错误、输入信号不适<br>合或配置错误。 | 测量噪声。                                                               |
| 15 | 通道间失谐:通道 <1 - 3> 中<br>信号错误。在真彩色模式下使<br>用 32 阶阶梯信号。 | 未使用 32 阶阶梯信号。            | 测量通道间失谐。                                                            |

### 错误消息

| 编号 | 文字                    | 可能原因                                                                  | 可能导致错误的操<br>作  |
|----|-----------------------|-----------------------------------------------------------------------|----------------|
| 1  | 文件名错误:文件不存在:<<br>文件名> | 所选择的.vmset 文件不存<br>在。(如果文件不在文件夹<br>C:∖VMApps∖ 中,则需要指定全<br>路径。)        | 调出设置。          |
| 2  | 无法写文件:文件已存在:〈<br>文件名〉 | 需要重命名 <文件名>,这样才<br>能写入文件。                                             | 保存设置,生成报<br>告。 |
| 3  | 文件名错误。文件名中存在无<br>效字符  | 文件名中存在无效字符。无<br>效字符包括: "丨",":",<br>"/",",","<",">",<br>"*",″\″ 和 ″?″。 | 保存设置;生成报<br>告。 |
| 4  | 未选择测量                 | 未在 Configuration(配置)><br>Measurements(测量)菜单中<br>选择任何测量。               | 执行测量;生成报<br>告。 |

错误消息 (续)

| 编号 | 文字                   | 可能原因                                                                                | 可能导致错误的操<br>作                        |
|----|----------------------|-------------------------------------------------------------------------------------|--------------------------------------|
| 5  | 无法创建报告。所选测量未全<br>部运行 | 需要运行测量并等待它完成,<br>才可以生成报告。                                                           | 生成报告。                                |
| 6  | 无效文件名                | 文件不存在或路径不正确。如<br>果文件不在文件夹 C∶∖VMApps∖<br>中,则需要指定全路径。                                 | 调出设置;保存设<br>置;生成报告(仅<br>当通过 GP1B 调用) |
| 7  | 无效参数                 | 对某个 GPIB 命令使用了错误<br>的参数。                                                            | 所有 GPIB 命令。                          |
| 8  | 命令溢出                 | 发送 GPIB 命令过快。增加命<br>令之间的延迟时间,以防止出<br>现该问题(建议使用 100 毫<br>秒),或使用 OPComplete 握<br>手方式。 | 当发送 GPIB 命令过<br>快时。                  |
| 9  | 命令丢失                 | 该错误表示最近发送的命令可<br>能未被处理,所以应该返回最<br>近的(已知的)配置,并重新<br>发送最近的命令。                         | 发送 GPIB 命令。                          |
| 10 | 配置 MIU 时出错           | 到 MIU 的串行连接不正确或其<br>中一根 CH1/CH2/CH3/CH4 连接<br>器电缆从 VM 系列仪器断开。                       | 使用 MIU 运行任何<br>测量。                   |

# 应用

## 简单彩条测量 - 选件 SD/HD

通常使用彩条测试信号来进行幅度测量,它可以打开或关闭 R'G'B'分量,以产生所有 8 种可能的 颜色组合(白色、黄色、青色、绿色、洋红色、红色、蓝色和黑色)。存在多种不同形式的彩条测试 信号,一般或者使用 700 mV 的最大动态范围(100%),或者使用 525 mV 的 R'G'B'幅度(75%)。下 表给出了各种 100% 和 75% 彩条标准的 Y'P'bP'r 分量的幅度范围。

#### 各种 100% 彩条信号格式的幅度范围

|     |            |             |            | 480p/5      | 76p         |             | 1080/72     | 20          |             |
|-----|------------|-------------|------------|-------------|-------------|-------------|-------------|-------------|-------------|
| 彩条  | R′<br>(mV) | G ′<br>(mV) | B′<br>(mV) | Y ′<br>(mV) | P′b<br>(mV) | P′r<br>(mV) | Y '<br>(mV) | P′b<br>(mV) | P′r<br>(mV) |
| 白色  | 700        | 700         | 700        | 700. 0      | 0.0         | 0. 0        | 700. 0      | 0.0         | 0.0         |
| 黄色  | 700        | 700         | 0          | 620. 2      | -349.8      | 56.9        | 649.5       | -350. 0     | 32. 1       |
| 青色  | 0          | 700         | 700        | 490. 7      | 118. 0      | -349. 9     | 551.2       | 80. 2       | -350. 0     |
| 绿色  | 0          | 700         | 0          | 410. 9      | -231.7      | -293. 0     | 500.6       | -269.8      | -317.9      |
| 洋红色 | 700        | 0           | 700        | 289. 1      | 231. 7      | 293. 0      | 199. 4      | 269.8       | 317.9       |
| 红色  | 700        | 0           | 0          | 209.3       | -118.0      | 349. 9      | 148.8       | -80. 2      | 350. 0      |
| 蓝色  | 0          | 0           | 700        | 79.8        | 349. 8      | -56.9       | 50. 5       | 350. 0      | -32. 1      |
| 黑色  | 0          | 0           | 0          | 0.0         | 0.0         | 0.0         | 0.0         | 0.0         | 0.0         |

#### 各种 75% 彩条信号格式的幅度范围

|     |            |            |            | 480p/5      | 76p         |             | 1080/7      | 20          |             |
|-----|------------|------------|------------|-------------|-------------|-------------|-------------|-------------|-------------|
| 彩条  | R′<br>(mV) | G′<br>(mV) | B′<br>(mV) | Y '<br>(mV) | P′b<br>(mV) | P′r<br>(mV) | Y ′<br>(mV) | P′b<br>(mV) | P′r<br>(mV) |
| 白色  | 700        | 700        | 700        | 700. 0      | 0.0         | 0.0         | 700. 0      | 0.0         | 0.0         |
| 黄色  | 525        | 525        | 0          | 465. 2      | -262.3      | 42. 7       | 487. 1      | -262.5      | 24. 1       |
| 青色  | 0          | 525        | 525        | 368. 0      | 88.5        | -262.4      | 413. 4      | 60. 2       | -262.5      |
| 绿色  | 0          | 525        | 0          | 308. 2      | -173.8      | -219.7      | 375. 5      | -202.3      | -238. 4     |
| 洋红色 | 525        | 0          | 525        | 216. 8      | 173. 8      | 219. 7      | 149. 5      | 202. 3      | 238. 4      |
| 红色  | 525        | 0          | 0          | 157. 0      | -88. 5      | 262. 4      | 111.6       | -60. 2      | 262. 5      |
| 蓝色  | 0          | 0          | 525        | 59.9        | 262. 3      | -42. 7      | 37.9        | 262. 5      | -24. 1      |
| 黑色  | 0          | 0          | 0          | 0.0         | 0.0         | 0.0         | 0.0         | 0.0         | 0.0         |

实际数值可以有所不同,取决于被测设备的类型。例如,DVD 播放机的逐行扫描输出可能给输出 端引入设置信号,这可能会改变总体测量结果。分量电平的变化可能使显示的图像色调和饱和度 不同。使用彩条测试信号,可以检查通道间的增益不平衡性,并确保信号是不失真的,失真可 能会造成严重的信号限幅。

Tektronix 矩阵模式使用 100% 彩条信号测试每个分量的全动态范围。彩条模式位于或接近矩阵模式 的顶部:它所处的行号因标准而异。指定行号是用于生成测试矩阵的默认值,但某些被测系统可能 会将图像中的行移到不同的位置。

| 格式 | 1080 i    | 720p     | 480p     | 576p     |
|----|-----------|----------|----------|----------|
| 行  | 21 - 84   | 26 - 153 | 43 - 106 | 45 - 108 |
| 位置 | 584 - 647 |          |          |          |

通过首先识别 3 个通道各自的相对幅度,VM 系列仪器可进行彩条测量。在每个通道上进行 8 次幅度 测量,在不到半秒钟的时间内共完成 24 次测量。以下步骤显示对 1080i 信号进行典型测量的结果。 测量各个彩条电平的幅值电平是相对于后沿进行的。根据各识别条中的波形平均值计算幅度。因此, 如果对设备进行了手动设置,就必须确保在仪器的捕获窗口中显示完整的视频。

1. 接通仪器电源。



2. 选择 Analyze(分析) > VM HD and SD Video V3.2(VM HD 和 SD 视频 V3.2)。

| Ana | alyze | Utilities   | Help    | v    |
|-----|-------|-------------|---------|------|
|     | Res   | tore Applic | ation   |      |
|     | Sear  | rch         |         |      |
|     | Mar   | k           |         |      |
|     | VM    | HD and SE   | ) Video | V3.2 |
|     | VM    | VGA Video   | V3.2    |      |

- 在 VM 系列仪器应用程序中, 请选择 File (文件) > Recall Default Setup (调出默认设 置),将所有设置恢复为出厂默 认值。
- File Configuration Resu Recall Default Setup Recall Setup... Save Setup... Minimize
- 将信号连接到输入端。(见第9 页, *连接输入信号*)
- 设置输入信号格式。(见第31 页, 设置输入信号格式 - 选件 SD/HD)

- 选择 Configuration (配置) > Measurements (测量)。
   注意,默认情况下 Color Bars (彩条)处于选中状态。
- Format Measurements Operation Warnings Reference & Limits Picture & Vector 🗖 Channel Delay Spatial Distortion Select All Color Bars H Sync Frequency Response V Sync Clear All Multiburst 🗖 H Sync Jitter Noise Levels Non Linearity Short Time Distortion X CC Video 677 a Measured Form HD 108 Ð X Cya Done E-12
- 7. 单击 Run (运行) 按钮。

测量完成后,将显示结果屏幕。

## 简单彩条测量 - 选件 VGA

通常使用彩条测试信号来进行幅度测量,它可以打开或关闭 RGB 分量,以产生所有 8 种可能的颜色组合(白色、黄色、青色、绿色、洋红色、红色、蓝色和黑色)。存在多种不同形式的彩条测试信号,一般或者使用 700 mV 的最大动态范围(100%),或者使用 525 mV 的 RGB 幅度(75%)。下表给出 100% 和 75% 时 RGB 信号的幅度。

Configuration

### 100% 彩条信号的幅度

| 彩条     | R (mV) | G (mV) | B (mV) |
|--------|--------|--------|--------|
| <br>白色 | 700    | 700    | 700    |
|        | 700    | 700    | 0      |
|        | 0      | 700    | 700    |
| 绿色     | 0      | 700    | 0      |
| 洋红色    | 700    | 0      | 700    |
| 红色     | 700    | 0      | 0      |
|        | 0      | 0      | 700    |
|        | 0      | 0      | 0      |

#### 75% 彩条信号格式的幅度

| 彩条      | R (mV) | G (mV) | B (mV) |
|---------|--------|--------|--------|
|         | 700    | 700    | 700    |
|         | 525    | 525    | 0      |
|         | 0      | 525    | 525    |
|         | 0      | 525    | 0      |
| <br>洋红色 | 525    | 0      | 525    |
| <br>红色  | 525    | 0      | 0      |
| <br>蓝色  | 0      | 0      | 525    |
|         | 0      | 0      | 0      |

Tektronix 矩阵模式使用 100% 彩条信号测试每个分量的全动态范围。彩条模式靠近矩阵模式的顶部;它所处的行号因格式而异。下表显示的是在 60 Hz 刷新速率下,不同模式在矩阵信号中所处的行号。对于其他刷新速率而言,实际的起始行号可能与在 60 Hz 刷新速率下明显不同。要查看在其他刷新速率下某种特定模式的有效视频行号位置,请查阅 VM 系列仪器软件光盘上的 Microsoft Excel 文件 Matrix.xls。该文件列出了在所有支持的刷新速率下实际的有效视频行号。

### 60 Hz 刷新速率下(640x480 至 1280x1024)不同模式的有效视频行号位置

| 模式   | 640x480   | 800x600   | 1024x768  | 1280x1024 |
|------|-----------|-----------|-----------|-----------|
| 半白半黑 | 36 - 83   | 28 - 87   | 36 - 112  | 42 - 143  |
| 九色彩条 | 84 - 179  | 88 - 207  | 113 - 265 | 144 - 348 |
| 32 阶 | 180 - 227 | 208 - 267 | 266 - 342 | 349 - 450 |
| 黑白交替 | 228 - 275 | 268 - 327 | 343 - 419 | 451 -552  |
|      | 276 - 323 | 328 - 387 | 420 - 496 | 553 - 654 |
| 纯白   | 324 - 371 | 388 - 447 | 497 - 572 | 655 - 756 |

#### 60 Hz 刷新速率下(640x480 至 1280x1024)不同模式的有效视频行号位置(续)

| 模式   | 640x480   | 800x600   | 1024x768  | 1280x1024  |
|------|-----------|-----------|-----------|------------|
| 锯齿波  | 372 - 467 | 448 - 567 | 573 - 726 | 757 - 962  |
| 半白半黑 | 468 - 515 | 568 - 627 | 727 - 803 | 963 - 1065 |

#### 60 Hz 刷新速率下(1600x1024 至 1900x1200)不同模式的有效视频行号位置

| 模式   | 1600x1024  | 1600x1200   | 1920x1080   | 1920x1200   |
|------|------------|-------------|-------------|-------------|
| 半白半黑 | 36 - 132   | 50 - 169    | 38 - 140    | 43 - 162    |
| 九色彩条 | 143 - 337  | 170 - 409   | 150 - 356   | 163 - 402   |
|      | 347 - 439  | 410 - 529   | 366 - 464   | 403 - 522   |
| 黑白交替 | 450 - 542  | 530 - 649   | 474 - 572   | 523 - 642   |
|      | 552 - 644  | 650 - 769   | 582 - 680   | 643 - 762   |
| 纯白   | 655 - 747  | 770 - 889   | 690 - 788   | 763 - 882   |
|      | 757 - 951  | 890 - 1129  | 798 - 1004  | 883 - 1122  |
|      | 962 - 1059 | 1130 - 1249 | 1014 - 1117 | 1123 - 1242 |

#### 60 Hz 刷新速率下(1920x1440 至 2048x2048)不同模式的有效视频行号位置

| 模式   | 1920x1440   | 2048x1536   | 2048x2048   |
|------|-------------|-------------|-------------|
| 半白半黑 | 50 - 193    | 53 - 198    | 71 - 265    |
| 九色彩条 | 194 - 481   | 213 - 505   | 285 - 674   |
|      | 482 - 625   | 520 - 659   | 695 - 879   |
|      | 626 - 769   | 674 - 812   | 899 - 1084  |
|      | 770 - 913   | 828 - 966   | 1104 - 1289 |
| 纯白   | 914 - 1057  | 981 - 1120  | 1309 - 1493 |
|      | 1058 - 1345 | 1135 - 1427 | 1514 - 1903 |
|      | 1346 - 1489 | 1442 - 1588 | 1923 - 2118 |

₩ 系列仪器进行彩条测量时,首先识别 3 个通道各自的相对幅度。在每个通道上将进行 8 次幅度测量,在不到半秒钟的时间内共完成 24 次测量;以下步骤表示对 1024x768 信号的典型测量结果。测量 各个彩条电平的幅值电平是相对于后沿进行的。根据各识别条中的波形平均值计算幅度。因此,如果 对设备进行了手动设置,就必须确保在仪器的捕获窗口中显示完整的视频。

1. 接通仪器电源。



2. 选择 Analyze(分析) > VM VGA Video V3.2(VM VGA 视频 V3.2)。

- 在 VM 系列仪器应用程序中, 请选择 File (文件) > Recall Default Setup (调出默认设 置),将所有设置恢复为出厂默 认值。
- 将信号连接到输入端。(见第9 页, *连接输入信号*)
- 选择输入信号格式。(见第33 页, 设置输入信号格式 - 选件 VGA)
- 选择 Configuration(配置)> Measurements(测量)。
   注意,默认情况下 Color Bars (彩条)处于选中状态。
- 7. 单击 Run (运行) 按钮。

| Ana | alyze Utilities Help 🔽  |
|-----|-------------------------|
|     | Restore Application     |
|     | Search                  |
|     | Mark                    |
|     | VM HD and SD Video V3.2 |
|     | VM VGA Video V3.2       |

| <u>F</u> ile | <u>C</u> onfiguration | Resu |  |  |  |  |
|--------------|-----------------------|------|--|--|--|--|
| R            | ecall Default Set     | up   |  |  |  |  |
| R            | ecall Setup           |      |  |  |  |  |
| Sa           | Save Setup            |      |  |  |  |  |
| Mi           | inimize               |      |  |  |  |  |
| E)           | cit                   |      |  |  |  |  |
|              |                       |      |  |  |  |  |



测量完成后,将显示结果屏幕。



## 显示相对于参考值的彩条测量

VM 系列仪器以两种方式显示测量结果:测量值和相对于参考值的数值。通过从参考值中减去测量 值,计算得到相对值。要显示相对于参考值的测量结果,必须在 Configuration(配置)屏幕的 Reference & Limits(参考和限制)选项卡中选中 Enable Relative Results(启用相对结果)。参考 值在特殊的逗号分隔值(CSV)文本文件中指定。VM 系列仪器包括一组可以编辑的模板文件,因此, 可以根据您的应用程序指定适当的参考值。

1. 接通仪器电源。



2. 选择 Analyze(分析) > VM HD and SD Video V3.2(VM HD 和 SD 视频 V3.2)或 VM VGA Video V3.2 (VM VGA 视频 V3.2)。



- 在 VM 系列仪器应用程序中, 请选择 File (文件) > Recall Default Setup (调出默认设 置),将所有设置恢复为出厂默 认值。
- 将信号连接到输入端。(见第9 页, *连接输入信号*)
- 选择输入信号格式。(见第31 页,设置输入信号格式 - 选件 SD/HD)(见第33页,设置输入信 号格式 - 选件 VGA)
- 选择 Configuration (配置) > Reference & Limits (参考和极 限)。
- 7. 选中 Enable Relative Result Display(启用相对结果显示)。 默认情况下,VM系列仪器应用程 序会自动从(与所选信号格式相 匹配的)一组附带模板中,选择 一个参考文件。
- 8. 单击 Run (运行) 按钮。





8-3

测量完成后,将显示结果屏幕。 注意,现在可以选择 Relative (相对)和 Reference(参考) 选项卡。



选件 SD/HD



选件 VGA

选择 Reference (参考)选项卡可以显示用于计算 Relative (相对)值的 Reference (参考)值。

| File Edit Vertical Horiz/Acq Trig Display Cu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | rsors Measure Mask Math                                                                       | MyScope Analyze                                                                                                                                              | Utilities Help                                                                        | D                                                                          | eorosa Tek                                                                                                    | : 📃 🔀                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------|----------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                               | · · <u>.</u> · · · ·                                                                                                                                         |                                                                                       |                                                                            |                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                               |                                                                                                                                                              |                                                                                       |                                                                            |                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                               | 🕂                                                                                                                                                            | -                                                                                     |                                                                            |                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                               | ‡                                                                                                                                                            |                                                                                       |                                                                            |                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                               | 1                                                                                                                                                            |                                                                                       |                                                                            |                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                               |                                                                                                                                                              |                                                                                       |                                                                            |                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                               |                                                                                                                                                              | 1                                                                                     | <del>** • • • • • • • • • • • • • • • • • • </del>                         |                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| a second se                                                                                                                                                                                                                                        | · · · · · · · · · ·                                                                           | _                                                                                                                                                            | • · · ·                                                                               |                                                                            |                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                               |                                                                                                                                                              | 1                                                                                     |                                                                            |                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                               |                                                                                                                                                              |                                                                                       |                                                                            |                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                               |                                                                                                                                                              |                                                                                       |                                                                            |                                                                                                               | · · · · =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                               | · · <del>†</del> · · ·                                                                                                                                       |                                                                                       |                                                                            |                                                                                                               | · · · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| E I I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                               | ‡                                                                                                                                                            |                                                                                       | <u> </u>                                                                   |                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| C1 138mV Offset:204mV                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1                                                                                             |                                                                                                                                                              | C4 Video                                                                              | 5.0µs                                                                      | 1000MS/s                                                                                                      | 1.0ns/pt                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                               |                                                                                                                                                              |                                                                                       | ·                                                                          |                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| C2 96.0mV/div                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                               |                                                                                                                                                              |                                                                                       | Run                                                                        | Average:4                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| C2 96.0mV/div<br>C3 98.5mV/div                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                               |                                                                                                                                                              |                                                                                       | Run<br>1 038 ac                                                            | Average:4                                                                                                     | RL:50.0k                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| cc2 96.0mV/div<br>c3 98.5mV/div<br>cc 165mV Offset:-94.0mV <sup>1</sup> /j                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                               |                                                                                                                                                              |                                                                                       | Run<br>1 038 ac<br>Novemb                                                  | Average:4<br>:qs<br>ber 07, 2006                                                                              | RL:50.0k<br>15:48:20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| C2 96.0mV/div<br>C3 98.5mV/div<br>C4 165mV Offset:-94.0mV ↑j<br>SFIIE Configuration Results Utilities Help                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                               |                                                                                                                                                              |                                                                                       | Run<br>1 038 ac<br>Novemb                                                  | Average:4<br>eqs<br>per 07, 2006<br>VM HD<br>Video M                                                          | RL:50.0k<br>15:48:20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| en 96.dmV/div                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Manurad Polativa Pot                                                                          | Propes                                                                                                                                                       |                                                                                       | Run<br>1 038 ac<br>Novemb                                                  | Average:4<br>sqs<br>per 07, 2006<br>VM HE<br>Video MA                                                         | RL:50.0k<br>15:48:20<br>and SD<br>sesurement                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 96.6mV/div     98.5mV/div     98.5mV/div     165mV Offset-94.0mV      6     File Configuration Results Utilities Help     Results: Color Bars     Format     In stremese                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Measured Relative Refe                                                                        | erence Limits                                                                                                                                                | Pb / B                                                                                | Run<br>1 038 ac<br>Novemb                                                  | Average:4<br>icqs<br>per 07, 2006<br>VM HC<br>Video Ma                                                        | RL:50.0k<br>15:48:20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Som Vidw     Som Vidw     Som Vidw     Som Vidw     Som Vidw     Som Vidw     Som Vidwat-SA.OmV     Som V | Measured Relative Refe                                                                        | erence Limits<br>Y/G<br>700.0                                                                                                                                | Pb/B                                                                                  | Pr/R                                                                       | Average:4<br>sqs<br>per 07, 2006<br>VM HE<br>video Ma                                                         | RL:50.0k<br>15:48:20<br>and SD<br>assurement                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Som Vidav     Som Vidav     Som Vidat     Som Vidate: 94.0mV /g     File Configuration Results Utilities Help     Results: Color Bars    Format     Horitobare     Line Number                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Measured Relative Refr<br>Unit: mV<br>Velice<br>Yellow                                        | erence [ Limits]<br>Y / G<br>700.0<br>7 649.5                                                                                                                | Pb / B<br>0.0<br>-350.0                                                               | Pr/R<br>00<br>32.1                                                         | Average:4<br>:qs<br>bor 07, 2006<br>VM HC<br>Video M                                                          | RL:50.0k<br>15:48:20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 6 6 m/ddv     6 file     Configuration Results     Color Bars     forma     to toosloo     Line knowber     27     9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Measured Relative Refe<br>Unit: mV White<br>Yellow<br>Cyan                                    | erence Emil:<br>Y/G<br>700.0<br>649.5<br>551.2                                                                                                               | Pb / B<br>0.0<br>-350.0<br>80.2                                                       | Pr/R<br>0.0<br>32.1<br>-350.0                                              | Average:4<br>cqs<br>ber 07, 2006<br>Video MA<br>X<br>X<br>X<br>X<br>X<br>X<br>X<br>X<br>X<br>X<br>X<br>X<br>X | RL:50.0k<br>15:48:20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| S 6.m Videv     S File Configuration Results Ublitles Help     Results Color Bars     Format     Ho tobulko     Line Hamber     27                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Measured Relative Refe<br>Unit: mV White<br>Yellow<br>Cyan<br>Green                           | erence fimits<br>Y/G<br>7000<br>6495<br>5512<br>5006                                                                                                         | Pb/B<br>00<br>-350.0<br>80.2<br>-269.8                                                | Pr / R<br>0.0<br>32.1<br>-350.0<br>-317.9                                  | Average:4<br>cqs<br>ber 07, 2006<br>Video Mo<br>X<br>Dor                                                      | RL:50.0k<br>15:48:20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| B 6.m Vidiv     Configuration Results Utilities Help     Results: Color Bars     Ho 1008160     Line Humber     27     Average                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Measured Relative Ref<br>Unit: mV White<br>Yellow<br>Cyan<br>Green<br>Magenta                 | Prence IIIII<br>Y/G<br>700.0<br>649.5<br>651.2<br>500.6<br>199.4                                                                                             | Pb / B<br>0.0<br>-350.0<br>80.2<br>-289.8<br>269.8                                    | Pr / R<br>0 0<br>32.1<br>-350.0<br>-317.9<br>317.9                         | Average:4<br>eqs<br>wer 07, 2006<br>Video Mi<br>X<br>Dor                                                      | RL:50.0k<br>15:48:20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| B 6 m/dav     Critest-94 0 m/d     A     Critest-94 0 m/d     Critest-94 0 m/d | (Measured) Relative ) Ref<br>Unit mV White<br>Yellow<br>Cyan<br>Green<br>Magerta<br>Red       | erence ///<br>y/G<br>7000<br>649.5<br>551.2<br>500.6<br>199.4<br>148.8                                                                                       | Pb / B<br>00<br>-350.0<br>80.2<br>-269.8<br>269.8<br>269.8<br>-80.2                   | Pr / R<br>0 0<br>32.1<br>-350 0<br>-317.9<br>350.0                         | Average:4<br>cqs<br>ber 07, 2006<br>Video MA<br>X<br>X<br>Dor                                                 | RL:SO.0k<br>15:48:20<br>and 80<br>azurement                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| B 6 m/ddv     Cffsat-04.0mV /y     Fie Configuration Results Utilities Help     Results: Color Bars     Format     Hot footbod     Line Hember     27     Average     s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Measured Relative Refr<br>Unit: mV White<br>Vellow<br>Cyan<br>Green<br>Magenta<br>Red<br>Blue | <ul> <li>Pronce Immis</li> <li>Y/G</li> <li>7000</li> <li>6495</li> <li>6512</li> <li>6512</li> <li>6006</li> <li>1994</li> <li>1488</li> <li>505</li> </ul> | Pb / B<br>00<br>-350.0<br>80.2<br>-269.8<br>269.8<br>269.8<br>269.8<br>269.0<br>350.0 | Pr / R<br>0 0<br>32.1<br>-350 0<br>-317.9<br>37.9<br>-350 0<br>-32.1       | Average:4<br>iqs<br>or 07, 2006<br>Video M<br>Video M<br>Comparison<br>Dor                                    | RL:50.0k<br>15:48:20<br>and 8D<br>approximation<br>approximation<br>approximation<br>approximation<br>approximation<br>approximation<br>approximation<br>approximation<br>approximation<br>approximation<br>approximation<br>approximation<br>approximation<br>approximation<br>approximation<br>approximation<br>approximation<br>approximation<br>approximation<br>approximation<br>approximation<br>approximation<br>approximation<br>approximation<br>approximation<br>approximation<br>approximation<br>approximation<br>approximation<br>approximation<br>approximation<br>approximation<br>approximation<br>approximation<br>approximation<br>approximation<br>approximation<br>approximation<br>approximation<br>approximation<br>approximation<br>approximation<br>approximation<br>approximation<br>approximation<br>approximation<br>approximation<br>approximation<br>approximation<br>approximation<br>approximation<br>approximation<br>approximation<br>approximation<br>approximation<br>approximation<br>approximation<br>approximation<br>approximation<br>approximation<br>approximation<br>approximation<br>approximation<br>approximation<br>approximation<br>approximation<br>approximation<br>approximation<br>approximation<br>approximation<br>approximation<br>approximation<br>approximation<br>approximation<br>approximation<br>approximation<br>approximation<br>approximation<br>approximation<br>approximation<br>approximation<br>approximation<br>approximation<br>approximation<br>approximation<br>approximation<br>approximation<br>approximation<br>approximation<br>approximation<br>approximation<br>approximation<br>approximation<br>approximation<br>approximation<br>approximation<br>approximation<br>approximation<br>approximation<br>approximation<br>approximation<br>approximation<br>approximation<br>approximation<br>approximation<br>approximation<br>approximation<br>approximation<br>approximation<br>approximation<br>approximation<br>approximation<br>approximation<br>approximation<br>approximation<br>approximation<br>approximation<br>approximation<br>approximation<br>approximation<br>approximation<br>approximation<br>approximation<br>approximation<br>approximation<br>approximation<br>approximation<br>approximation<br>approximation<br>approximation<br>approximation<br>approximation<br>approximation<br>approximation<br>approximation<br>approximation<br>approximation<br>approximation<br>approximation<br>approximation<br>approximation<br>approximation<br>approximation<br>approximation<br>appro |
| B 6 minuter<br>B 6 minuter<br>B 6 minuter<br>B 6 minuter<br>B 6 minuter<br>B 6 minuter<br>Ho transacione<br>Line Namber<br>27<br>Average<br>1<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Measured Relative Ref<br>Unit mV<br>Velow<br>Cyan<br>Green<br>Magerta<br>Biack<br>Biack       | erence fimits<br>Y/G<br>7000<br>6436<br>5512<br>5006<br>1994<br>1488<br>5005<br>00                                                                           | Pb / B<br>0.0<br>-350.0<br>80.2<br>-269.8<br>269.8<br>-80.2<br>350.0<br>0.0           | Pr / R<br>0.0<br>32.1<br>-3500<br>-317.9<br>317.9<br>317.9<br>317.9<br>0.0 | Average:4<br>cqs<br>or 07, 2006<br>Virt Re<br>Virtes 7/2<br>Dor                                               | RL:50.0k<br>15:48:20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |

选件 SD/HD



选件 VGA

#### 10. 选择 Relative (相对)选项卡可 以显示计算出的相对值。

| File Edit Vertical Horiz/Acq Trig Display Cu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | rsors Measure Mask Math N                                                               | lyScope Analyze U                                                                             | Utilities Help 💽                                                            |                                                                                                                                                                       | Tek                                                                           | : 💶 🔀                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                         |                                                                                               |                                                                             |                                                                                                                                                                       |                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                         |                                                                                               |                                                                             |                                                                                                                                                                       |                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                         |                                                                                               |                                                                             |                                                                                                                                                                       |                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                         |                                                                                               |                                                                             |                                                                                                                                                                       |                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Con 118mV Offsat-54.0mV                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                         |                                                                                               | Video                                                                       | ] 5.0us                                                                                                                                                               | 500MS/s                                                                       | 2.0ns/nt                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Ci. 118mV Offset:J4.0mV     Cifset:J.0mV     Cifset:J0mV     Cifset:G5.0mV     Cifset:G5.0mV     V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                         |                                                                                               | Ct Video                                                                    | 5.0µs<br>Run<br>22 953<br>Septen                                                                                                                                      | 500MS/s<br>Sample<br>acqs<br>nber 12, 2006                                    | 2.0ns/pt<br>RL:25.0k<br>20:25:51                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Tiam V Offset-Jam V     Tiam Volfast-66.0m V     Tiam Volfast-66.0m V     File Configuration Results Utilities Help     Results: Color Bars                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Measured   Relative   Refe                                                              | rence   Linits                                                                                | Video                                                                       | S.0µs<br>Run<br>22 953<br>Septen                                                                                                                                      | 500MS/s<br>Sample<br>acqs<br>nber 12, 2006                                    | 2.0ns/pt<br>RL:25.0k<br>20:25:51                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Think Offset: SumV     Total Standy     Think Offset: SumV     Total Standy     Think Value     Think Value     Think Value     Think Value     Total Standy     Total Stan | Measured Relative Refer                                                                 | rence Limits                                                                                  | Pb / B                                                                      | Pr / R                                                                                                                                                                | 500MS/s<br>Sample<br>acqs<br>nber 12, 2006<br>VM Optio<br>Video M             | 2.0ns/pt<br>RL:25.0k<br>20:25:51                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Timv Offset: Sunv     Timv Offset: Sunv     Timv Offset: Sunv     Timv Offset: Sunv     Timv Offset: Secure     Timv Offset: Secure     Tormat     Honoman     Line Render     27                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Measured Relative Refe<br>0 mV<br>% Vhite<br>Yellow<br>Croan                            | rence 100000<br>Y/G<br>-20.77<br>-23.39<br>-17.74                                             | Pb / B<br>-0.07<br>-12.94<br>-114                                           | Pr / R<br>-0.08<br>-1.07<br>15.02                                                                                                                                     | 500MS/s<br>Sample<br>acqs<br>nber 12, 2006                                    | 2.0ns/pt<br>RL:25.0k<br>20:25:51<br>bit do and 50<br>extractional                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| HimV Offset: SumV     HimV Offset: SumV     HimVide     HimVide     HimVide     HimVide     HimVide     HimVide     HimVide     Hotomat     Hotomat     Hotomat     Hotomat     Hotomat                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Measured Relative Refer<br>mrv<br>% White<br>Yellow<br>Cyan<br>Magerta<br>mrea          | rence 10/100<br>Y/G<br>-20 77<br>-23 39<br>-17 74<br>-16 76<br>-6.04                          | Pb / B<br>-0.07<br>12.94<br>-1.14<br>11.16<br>-8.5<br>-7                    | S 0ps           Run           22 953           Septen           Pr / R           -0.08           -1.07           15.02           13.68           -8.64           10.7 | SOUMS/s<br>Sample<br>acqs<br>nber12, 2006                                     | 2.0ms/pt<br>RL:25.6k<br>20.25.51<br>and and 50<br>approximation<br>approximation<br>approximation<br>approximation<br>approximation<br>approximation<br>approximation<br>approximation<br>approximation<br>approximation<br>approximation<br>approximation<br>approximation<br>approximation<br>approximation<br>approximation<br>approximation<br>approximation<br>approximation<br>approximation<br>approximation<br>approximation<br>approximation<br>approximation<br>approximation<br>approximation<br>approximation<br>approximation<br>approximation<br>approximation<br>approximation<br>approximation<br>approximation<br>approximation<br>approximation<br>approximation<br>approximation<br>approximation<br>approximation<br>approximation<br>approximation<br>approximation<br>approximation<br>approximation<br>approximation<br>approximation<br>approximation<br>approximation<br>approximation<br>approximation<br>approximation<br>approximation<br>approximation<br>approximation<br>approximation<br>approximation<br>approximation<br>approximation<br>approximation<br>approximation<br>approximation<br>approximation<br>approximation<br>approximation<br>approximation<br>approximation<br>approximation<br>approximation<br>approximation<br>approximation<br>approximation<br>approximation<br>approximation<br>approximation<br>approximation<br>approximation<br>approximation<br>approximation<br>approximation<br>approximation<br>approximation<br>approximation<br>approximation<br>approximation<br>approximation<br>approximation<br>approximation<br>approximation<br>approximation<br>approximation<br>approximation<br>approximation<br>approximation<br>approximation<br>approximation<br>approximation<br>approximation<br>approximation<br>approximation<br>approximation<br>approximation<br>approximation<br>approximation<br>approximation<br>approximation<br>approximation<br>approximation<br>approximation<br>approximation<br>approximation<br>approximation<br>approximation<br>approximation<br>approximation<br>approximation<br>approximation<br>approximation<br>approximation<br>approximation<br>approximation<br>approximation<br>approximation<br>approximation<br>approximation<br>approximation<br>approximation<br>approximation<br>approximation<br>approximation<br>approximation<br>approximation<br>approximation<br>approximation<br>approximation<br>approximation<br>approximation<br>approximation<br>approximation<br>approximation<br>approximation<br>approximation<br>approximation<br>approximation<br>approx |
| HimV Offset: SumV     MinV Offset: SumV     MinV Offset: SumV     HimVVde     HimVVde     HimV Offset: 66 MV     M     File Configuration Results Utilities Help     Results: Color Bars     format     Hotologio     Line Results     Z     Average     1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Measured Relative Refe<br>● mV<br>● % Vhite<br>Cyan<br>Green<br>Magerta<br>Red<br>Biock | ence 1 mile<br>Y/G<br>-20 77<br>-23 39<br>-17.74<br>-16.76<br>-6.04<br>-2.34<br>-0.61<br>1.65 | Pb / B<br>-0.07<br>12.94<br>-1.14<br>11.16<br>-8.5<br>3.7<br>-10.41<br>-0.5 | Pr / R<br>-0.08<br>-1.07<br>15.02<br>-1.25<br>-1.96<br>-1.96<br>-1.96<br>-1.96<br>-1.96                                                                               | S00MS/n<br>Sample<br>acqs<br>nber 12, 2006<br>Vel Collec<br>Vel Collec<br>Dos | 2.0ms/pt<br>RL:25.6k<br>20:25:51                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |

11. 选择 % 选项按钮,可以以百分比 显示测量值和参考值的差。



选件 SD/HD

| File Edit Vertical Horiz/Acq Trig                                                                                                                                       | Display Cursors                 | Measure Mask   | Math MyScop | Analyze Utilities     | Help 🔽                                                                | DFC                                           | Tek                                  | <b>— X</b>                            |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------|----------------|-------------|-----------------------|-----------------------------------------------------------------------|-----------------------------------------------|--------------------------------------|---------------------------------------|
|                                                                                                                                                                         |                                 |                |             |                       |                                                                       |                                               |                                      |                                       |
|                                                                                                                                                                         |                                 | <br>           |             |                       |                                                                       |                                               |                                      |                                       |
|                                                                                                                                                                         | · · ·                           |                | · · · · · · |                       | · · · ·                                                               |                                               |                                      | · · · · · · · · · · · · · · · · · · · |
|                                                                                                                                                                         |                                 |                |             |                       |                                                                       |                                               |                                      |                                       |
| •                                                                                                                                                                       |                                 |                |             |                       |                                                                       |                                               |                                      |                                       |
|                                                                                                                                                                         |                                 |                |             |                       |                                                                       |                                               |                                      |                                       |
| G1         97.0mV         Offset:350mV           G2         97.0mV         Offset:350mV           G3         97.0mV         Offset:350mV           G4         1.02V/div |                                 |                |             | A Aux<br>Trig<br>B Co | <ul> <li>J 1.63V</li> <li>Dly: 188 events</li> <li>↓ 2.24V</li> </ul> | 2.0µs 10<br>Run 1<br>10 812 acq<br>October 11 | 00MS/s<br>Average:4<br> s<br> , 2006 | 1.0ns/pt<br>RL:20.0k<br>17:49:13      |
| <u>File Configuration Results Util</u><br>Results: Color Bars<br>Formet                                                                                                 | ttes <u>H</u> elp<br>Measured R | elative Refere | nce Limits  |                       |                                                                       | -                                             | VM V<br>Video Mea                    | /GA<br>isurement                      |
| 1024x768_75Hz                                                                                                                                                           | <ul> <li>Unit</li> </ul>        |                |             | в                     |                                                                       |                                               | *                                    |                                       |
| Line Number 👩                                                                                                                                                           | • %                             | White          | -5.975      | -6.085                | -6.209                                                                |                                               |                                      |                                       |
| 188                                                                                                                                                                     |                                 | Cyan           | -6.788      | -6.4                  | -1024                                                                 |                                               | 1                                    | 3                                     |
|                                                                                                                                                                         |                                 | Green          |             | -Infinity             | -Infinity                                                             |                                               | <u>je</u>                            |                                       |
| Average 😦                                                                                                                                                               |                                 | Magenta        | -infinity   |                       | -6.42                                                                 |                                               | Don                                  | e                                     |
|                                                                                                                                                                         |                                 | Red            | -Infinity   | -Infinity             | -6.971                                                                |                                               |                                      |                                       |
| 1 N                                                                                                                                                                     |                                 |                |             |                       |                                                                       |                                               |                                      |                                       |
|                                                                                                                                                                         |                                 | Blue           | Infinity    |                       | -Infinity                                                             |                                               |                                      |                                       |

选件 VGA

## 显示使用极限测试的彩条测量

VM 系列仪器可以显示测量结果与极限值的比较,并显示通过/不通过指示。与相对测量一样,极限值 也在 CSV 格式的文本文件中指定。VM 系列仪器包括一组可以编辑的模板文件,因此,可以根据您的应 用程序指定适当的极限值。极限值包括最大值和最小值。如果测量值落在最大极限值和最小极限值之 间,则认为通过极限测试。如果测量值落在最大极限值和最小极限值之外,则认为没通过极限测试。

1. 接通仪器电源。



2. 选择 Analyze(分析) > VM HD and SD Video V3.2(VM HD 和 SD 视频 V3.2)或 VM VGA Video V3.2 (VM VGA 视频 V3.2)。

| Ana | alyze Utilities Help 🔽  |  |  |  |  |  |  |  |  |
|-----|-------------------------|--|--|--|--|--|--|--|--|
|     | Restore Application     |  |  |  |  |  |  |  |  |
|     | Search                  |  |  |  |  |  |  |  |  |
|     | Mark                    |  |  |  |  |  |  |  |  |
|     | VM HD and SD Video V3.2 |  |  |  |  |  |  |  |  |
|     | VM VGA Video V3.2       |  |  |  |  |  |  |  |  |

- 选择 File (文件) > Recall Default Setup (调出默认设 置),将所有设置恢复为出厂默 认值。
- File Configuration Resu Recall Default Setup Recall Setup... Save Setup... Minimize 选件 SD/HD

| <u>F</u> ile | <u>C</u> onfiguration | <u>R</u> esu |
|--------------|-----------------------|--------------|
| R            | ecall Default Set     | tup          |
| R            | ecall Setup           |              |
| S            | ave Setup             |              |
| M            | inimize               |              |
| E            | kit                   |              |
| 选件           | VGA                   |              |

- 将信号连接到输入端。(见第9 页, *连接输入信号*)
- 选择输入信号格式。(见第8页, *输入连接要求 - 选件 SD/HD*) (见第8页, *输入连接要求 - 选 件 VGA*)
- 选择 Configuration (配置) > Reference & Limits (参考和极限)。



Manual

选件 VGA

Manual

 洗择 Enable Limit Testing (启 用极限测试)。

在默认情况下,VM系列仪器应用 程序会自动从一组附带模板中, 选择一个匹配所选信号格式的极 限值文件。



选件 VGA

X

8

8. 单击 Run (运行) 按钮。

测量完成后,将显示结果屏幕。 注意,现在可以选择 Limits(极 限)选项卡。

启用极限测试后,结果以绿色或 红色文字显示。绿色文字表示通 过(测量值未超出极限值)。红 色文字表示不通过(测量值超出 了最大或最小极限值)。

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Housed                                                   | ring Dispitaj         | V Cursors Measur                  | e mask mauri                                                        | myscope Analys                                                                                                                                                                                              | e dames new                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                             |                                            |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------|-----------------------|-----------------------------------|---------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------|--------------------------------------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | -                                                        |                       |                                   |                                                                     |                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                             |                                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                          | <b>1</b>              |                                   |                                                                     |                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                             |                                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | · · ·                                                    |                       | · · ·   · · ·                     |                                                                     | · · · <b>·</b> · · ·                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                             | · · ·                                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                          |                       |                                   |                                                                     |                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                             |                                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                          |                       |                                   |                                                                     |                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                             |                                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                          |                       |                                   | <b>.</b>                                                            | · · ‡ · · ·                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                             |                                            |
| C1 138mV                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Offset:204m                                              | v                     |                                   |                                                                     |                                                                                                                                                                                                             | C4 Video                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 5.0µ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | s 1000MS/s                                                  | 1.0ns/pt                                   |
| 62 96.0mV/c<br>63 98.5mV/c<br>64 165mV                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | div<br>Offset:-94.0r                                     | n∨ (j                 |                                   |                                                                     |                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 10 28<br>Nove                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 84 acqs<br>ember 07, 2006                                   | RL:50.0k<br>15:46:0                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | div<br>Offset:-94.0r<br>on Results                       | n∨ ¶<br>Utilities He  | elp                               |                                                                     |                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 10 28<br>Nove                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ember 07, 2006                                              | RL:50.0k<br>15:46:1                        |
| C2 96.0mV/c<br>C3 98.5mV/c<br>C4 165mV<br>ille Configurations<br>cults: Color B:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | div<br>Offset:-94.0r<br>on Results<br>ars                | nv ∿<br>Utilities He  | elp<br>(Measured                  | Relative Re                                                         | ierence Limits                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 10 28<br>Nove                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 84 acqs<br>ember 07, 2006<br>VM HC<br>Video Ma              | RL:50.0k<br>15:46:<br>and SD<br>easurement |
| C2 96.0mV/c<br>C3 98.5mV/c<br>C4 165mV<br>lie Configuration<br>ults: Color B:<br>Format<br>HD 10801/6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | div<br>Offset:-94.0r<br>on Results<br>ars<br>0           | πV 1)<br>Utilities He | Measured<br>Unit: mV              | Relative Re                                                         | ierence Limits<br>Y/G                                                                                                                                                                                       | Pb / B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 10 28<br>Nove                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Average.4<br>84 acqs<br>ember 07, 2006<br>VM HC<br>Video Mi | RL:50.0k<br>15:46:<br>and SD<br>easurement |
| cz 96.0mV/c<br>c3 98.5mV/c<br>c4 165mV<br>le Configuratio<br>ults: Color B:<br>Format<br>HD 10801/6<br>Line Number                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | div<br>Offset:-94.0r<br>on Results<br>ars<br>0           | nV ≬<br>Utilities He  | elp<br>Measured<br>Unit: mV       | Relative Re                                                         | erence Limits<br>Y/G<br>e 771 2                                                                                                                                                                             | Pb/B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Pr / R                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Storage A<br>B4 acqs<br>somber 07, 2006<br>Video M4         | RL:50.0k<br>15:46:<br>and SD<br>assurement |
| ez 96.0mV/c<br>es 98.5mV/c<br>es 165mV<br>le Configuration<br>ults: Color B:<br>Format<br>HD 10800/6<br>Line Number                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | on Results<br>ars<br>0                                   | nV ¶<br>Ublities He   | elp<br>Measured<br>Unit: mV       | Relative Re<br>Whit<br>Yellor                                       | ference Limits<br>Y/G<br>e 771 0<br>w 200 0                                                                                                                                                                 | Рю/В<br>000<br>0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Pr/R                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Avinge.x<br>84 acqs<br>amber 07, 2006<br>VM HD<br>Video MA  | RL:50.0k<br>15:46:<br>and SD<br>raturement |
| cz 96.0mV/c<br>c3 98.5mV/c<br>c4 165mV 1<br>lie Configuratio<br>ults: Color B:<br>Format<br>HD 10900/6<br>Line Number<br>37                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | on Results<br>ars<br>0                                   | πV ¶<br>Ublities He   | elp                               | Relative Re<br>Whit<br>Yello<br>Cya                                 | <u>бегенсе</u> <mark>Limits</mark><br>У/G<br>е <u>С775 (1</u><br>и<br>о <u>С55 75</u>                                                                                                                       | Pb / B<br>0.00<br>2000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Pr/R<br>10 28<br>Nove                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Storage.v<br>B4 access<br>smbber 07, 2006                   | RL:50.0k<br>15:46:<br>and SD<br>assurement |
| cz 96.0mV/c<br>cz 98.5mV/c<br>cz 165mV<br>ile Configuratio<br>sults: Color B:<br>Format<br>HD 10801/6<br>Line Number<br>37                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | on Results<br>ars<br>0                                   | nV ()<br>Utilities He | elp<br>∫ Measured<br>Unit: m∨     | Relative Re<br>Whit<br>Yello<br>Cya<br>Gree                         | Perence Limits<br>Y/G<br>e <u>S7012</u><br>M <u>C.201</u><br>n <u>S2010</u><br>n <u>S3010</u>                                                                                                               | Pb / B<br>7125<br>755 (0)<br>7755 (0)<br>7755 (0)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Pr/R<br>10 21<br>Nove                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 34 acqs<br>smber 07, 2006                                   | RL:50.0k<br>15:46:<br>and SD<br>casurement |
| C2 96.0mV/c<br>C2 98.5mV/c<br>C2 165mV<br>IIIE Configuration<br>IIIE Configuration                                                                                    | div<br>Offset:-94.0r<br>on Results<br>ars<br>0<br>e<br>e | nV {}                 | lp<br><u>Measured</u><br>Unit: m∨ | Relative Re<br>Whit<br>Yello<br>Cya<br>Gree<br>Magent               | erence Limits<br>Y/G<br>e CTLCS<br>w CTLCS<br>n CTLCS<br>n CTLCS<br>a TTLCS                                                                                                                                 | Pb/8<br>7755<br>5.005<br>7755<br>-5.005<br>-5.005                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Pr/R<br>0.01<br>Pr/R<br>0.01<br>0.10<br>0.10<br>0.10<br>0.10<br>0.10<br>0.10<br>0.10<br>0.10<br>0.10<br>0.10<br>0.10<br>0.10<br>0.10<br>0.10<br>0.10<br>0.10<br>0.10<br>0.10<br>0.10<br>0.10<br>0.10<br>0.10<br>0.10<br>0.10<br>0.10<br>0.10<br>0.10<br>0.10<br>0.10<br>0.10<br>0.10<br>0.10<br>0.10<br>0.10<br>0.10<br>0.10<br>0.10<br>0.10<br>0.10<br>0.10<br>0.10<br>0.10<br>0.10<br>0.10<br>0.10<br>0.10<br>0.10<br>0.10<br>0.10<br>0.10<br>0.10<br>0.10<br>0.10<br>0.10<br>0.10<br>0.10<br>0.10<br>0.10<br>0.10<br>0.10<br>0.10<br>0.10<br>0.10<br>0.10<br>0.10<br>0.10<br>0.10<br>0.10<br>0.10<br>0.10<br>0.10<br>0.10<br>0.10<br>0.10<br>0.10<br>0.10<br>0.10<br>0.10<br>0.10<br>0.10<br>0.10<br>0.10<br>0.10<br>0.10<br>0.10<br>0.10<br>0.10<br>0.10<br>0.10<br>0.10<br>0.10<br>0.10<br>0.10<br>0.10<br>0.10<br>0.10<br>0.10<br>0.10<br>0.10<br>0.10<br>0.10<br>0.10<br>0.10<br>0.10<br>0.10<br>0.10<br>0.10<br>0.10<br>0.10<br>0.10<br>0.10<br>0.10<br>0.10<br>0.10<br>0.10<br>0.10<br>0.10<br>0.10<br>0.10<br>0.10<br>0.10<br>0.10<br>0.10<br>0.10<br>0.10<br>0.10<br>0.10<br>0.10<br>0.10<br>0.10<br>0.10<br>0.10<br>0.10<br>0.10<br>0.10<br>0.10<br>0.10<br>0.10<br>0.10<br>0.10<br>0.10<br>0.10<br>0.10<br>0.10<br>0.10<br>0.10<br>0.10<br>0.10<br>0.10<br>0.10<br>0.10<br>0.10<br>0.10<br>0.10<br>0.10<br>0.10<br>0.10<br>0.10<br>0.10<br>0.10<br>0.10<br>0.10<br>0.10<br>0.10<br>0.10<br>0.10<br>0.10<br>0.10<br>0.10<br>0.10<br>0.10<br>0.10<br>0.10<br>0.10<br>0.10<br>0.10<br>0.10<br>0.10<br>0.10<br>0.10<br>0.10<br>0.10<br>0.10<br>0.10<br>0.10<br>0.10<br>0.10<br>0.10<br>0.10<br>0.10<br>0.10<br>0.10<br>0.10<br>0.10<br>0.10<br>0.10<br>0.10<br>0.10<br>0.10<br>0.10<br>0.10<br>0.10<br>0.10<br>0.10<br>0.10<br>0.10<br>0.10<br>0.10<br>0.10<br>0.10<br>0.10<br>0.10<br>0.10<br>0.10<br>0.10<br>0.10<br>0.10<br>0.10<br>0.10<br>0.10<br>0.10<br>0.10<br>0.10<br>0.10<br>0.10<br>0.10<br>0.10<br>0.10<br>0.10<br>0.10<br>0.10<br>0.10<br>0.10<br>0.10<br>0.10<br>0.10<br>0.10<br>0.10<br>0.10<br>0.10<br>0.10<br>0.10<br>0.10<br>0.10<br>0.10<br>0.10<br>0.10<br>0.10<br>0.10<br>0.10<br>0.10<br>0.10<br>0.10<br>0.10<br>0.10<br>0.10<br>0.10<br>0.10<br>0.10<br>0.10<br>0.10<br>0.10<br>0.10<br>0.10<br>0.10<br>0.10<br>0.10<br>0.10<br>0.10<br>0.10<br>0.10<br>0.10<br>0.10<br>0.10<br>0.10<br>0.10<br>0.10<br>0.10<br>0.10<br>0.10<br>0.10<br>0.10<br>0.10<br>0.10<br>0.10<br>0.10<br>0.10<br>0.10<br>0.10<br>0.10<br>0.10<br>0.10<br>0.10<br>0.10<br>0.10<br>0.10<br>0.10<br>0.10<br>0.10<br>0.10<br>0.10<br>0.10<br>0.10<br>0.10<br>0.10<br>0.10<br>0.10<br>0.10<br>0.10<br>0.10<br>0.10<br>0.10<br>0.10<br>0.10<br>0.10<br>0.10<br>0.10<br>0.10<br>0.10<br>0.10<br>0.10<br>0.10<br>0.10<br>0.10<br>0.10<br>0.10<br>0.10<br>0.10<br>0.10<br>0.10<br>0.10<br>0.10<br>0.10<br>0.10<br>0.10<br>0.10<br>0.10 | 34 acqs<br>amber 07, 2006                                   | RL:50.0k<br>15:46:<br>and SD<br>caturement |
| 23 96.0mV/c<br>29.5mV/c<br>21 165mV<br>21 | offset:-94.0r<br>on Results<br>ars<br>0<br>e<br>e<br>e   | nV {}<br>Ublities He  | lip<br>∫Measured<br>Unit: m∨      | Relative Re<br>Whit<br>Yello<br>Cya<br>Gree<br>Magent<br>Re         | Brance         Limits           Y/G         Y/G           w         C7122           w         C7132           n         C7132           n         C7122           a         C7122           d         C7122 | Pb/B<br>744<br>744<br>744<br>744<br>744<br>744<br>744<br>744<br>744<br>74                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Pr/R<br>10 21<br>Nove                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 34 acqs<br>smber 07, 2006                                   | RL:50.0k<br>15:46:<br>and SD<br>assurement |
| cz 96.0mV/c<br>cz 96.0mV/c<br>cz 165mV<br>sults: Color B:<br>Format<br>HD 109016<br>Line Number<br>37<br>Average                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | div<br>Odfset:-94.0r<br>ars<br>0<br>e<br>e<br>e          | nV ℓj<br>Utilites He  | lp<br>∫Measured<br>Unit. m∨       | Relativo Ra<br>Whit<br>Yellor<br>Cya<br>Gree<br>Magent<br>Re<br>Blu | Grance Limits<br>Y/G<br>e <u>513</u><br>w 513<br>0<br>527<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1                                                                                  | Pb/B<br>10<br>30355<br>10105<br>10105<br>10105<br>10105<br>10105<br>10105<br>10105<br>10105<br>10105<br>10105<br>10105<br>10105<br>10105<br>10105<br>10105<br>10105<br>10105<br>10105<br>10105<br>10105<br>10105<br>10105<br>10105<br>10105<br>10105<br>10105<br>10105<br>10105<br>10105<br>10105<br>10105<br>10105<br>10105<br>10105<br>10105<br>10105<br>10105<br>10105<br>10105<br>10105<br>10105<br>10105<br>10105<br>10105<br>10105<br>10105<br>10105<br>10105<br>10105<br>10105<br>10105<br>10105<br>10105<br>10105<br>10105<br>10105<br>10105<br>10105<br>10105<br>10105<br>10105<br>10105<br>10105<br>10105<br>10105<br>10105<br>10105<br>10105<br>10105<br>10105<br>10105<br>10105<br>10105<br>10105<br>10105<br>10105<br>10105<br>10105<br>10105<br>10105<br>10105<br>10105<br>10105<br>1005<br>1005<br>1005<br>1005<br>1005<br>1005<br>1005<br>1005<br>1005<br>1005<br>1005<br>1005<br>1005<br>1005<br>1005<br>1005<br>1005<br>1005<br>1005<br>1005<br>1005<br>1005<br>1005<br>1005<br>1005<br>1005<br>1005<br>1005<br>1005<br>1005<br>1005<br>1005<br>1005<br>1005<br>1005<br>1005<br>1005<br>1005<br>1005<br>1005<br>1005<br>1005<br>1005<br>1005<br>1005<br>1005<br>1005<br>1005<br>1005<br>1005<br>1005<br>1005<br>1005<br>1005<br>1005<br>1005<br>1005<br>1005<br>1005<br>1005<br>1005<br>1005<br>1005<br>1005<br>1005<br>1005<br>1005<br>1005<br>1005<br>1005<br>1005<br>1005<br>1005<br>1005<br>1005<br>1005<br>1005<br>1005<br>1005<br>1005<br>1005<br>1005<br>1005<br>1005<br>1005<br>1005<br>1005<br>1005<br>1005<br>1005<br>1005<br>1005<br>1005<br>1005<br>1005<br>1005<br>1005<br>1005<br>1005<br>1005<br>1005<br>1005<br>1005<br>1005<br>1005<br>1005<br>1005<br>1005<br>1005<br>1005<br>1005<br>1005<br>1005<br>1005<br>1005<br>1005<br>1005<br>1005<br>1005<br>1005<br>1005<br>1005<br>1005<br>1005<br>1005<br>1005<br>1005<br>1005<br>1005<br>1005<br>1005<br>1005<br>1005<br>1005<br>1005<br>1005<br>1005<br>1005<br>1005<br>1005<br>1005<br>1005<br>1005<br>1005<br>1005<br>1005<br>1005<br>1005<br>1005<br>1005<br>1005<br>1005<br>1005<br>1005<br>1005<br>1005<br>1005<br>1005<br>1005<br>1005<br>1005<br>1005<br>1005<br>1005<br>1005<br>1005<br>1005<br>1005<br>1005<br>1005<br>1005<br>1005<br>1005<br>1005<br>1005<br>1005<br>1005<br>1005<br>1005<br>1005<br>1005<br>1005<br>1005<br>1005<br>1005<br>1005<br>1005<br>1005<br>1005<br>1005<br>1005<br>1005<br>1005<br>1005<br>1005<br>1005<br>1005<br>1005<br>1005<br>1005<br>1005<br>1005<br>1005<br>1005<br>1005<br>1005<br>1005<br>1005<br>1005<br>1005<br>1005<br>1005<br>1005<br>1005<br>1005<br>1005<br>1005<br>1005<br>1005<br>1005<br>1005<br>1005<br>1005<br>1005<br>1005<br>1005<br>1005<br>1005<br>1005<br>1005<br>1005<br>1005<br>1005<br>1005<br>1005<br>1005<br>1005<br>1005<br>1005<br>1005<br>1005<br>1005<br>1005<br>1005<br>1005<br>1005<br>1005<br>1005<br>1005<br>1005<br>1005<br>1005<br>1005<br>1005<br>1005<br>1005<br>1005<br>1005<br>1005<br>1005<br>1005<br>1005<br>1005<br>1005<br>1005<br>1005<br>1005<br>1005<br>1005<br>1005<br>1005<br>1005<br>1005<br>1005<br>1005<br>1005<br>1005<br>1005<br>1005<br>1005<br>1005<br>1005<br>1005<br>1005<br>1005<br>1005<br>1005<br>1005<br>1005<br>1005<br>1005<br>1005<br>1005<br>1005<br>10005<br>10000<br>100000000 | Pr/R<br>Pr/R<br>122<br>212<br>222<br>225<br>225<br>225<br>225<br>225                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 34 acqs<br>smber 07, 2006                                   | RL:50.0k<br>15:46:<br>and SD<br>autoement  |

选件 SD/HD



选件 VGA

9. 选择 Limits(极限)选项卡可以 显示所用的 Limits(极限)值。 选择 min(最小值)或 max(最 大值)查看可接受的最小和最大 极限值。



选件 SD/HD

| File E | Edit | Vertical | Horiz/Acq   | Trig | Display | Cursors  | Measure | Mask | Math | MyScope | Analyze | Utilities |
|--------|------|----------|-------------|------|---------|----------|---------|------|------|---------|---------|-----------|
|        |      | ļ        |             |      | - 1     | <u> </u> |         |      |      | ' !     |         |           |
|        |      |          | ~           |      |         |          |         |      |      |         |         |           |
|        |      |          | 1.1         |      |         |          |         |      |      |         |         |           |
|        |      |          |             |      |         |          |         |      |      |         |         |           |
| -      |      |          |             |      |         |          |         |      |      |         |         |           |
|        |      |          |             | + +  |         |          |         | ÷.   |      | + + ‡   |         |           |
| E.     |      |          |             |      |         |          |         |      |      |         |         |           |
| Ξ.     |      |          |             |      |         |          |         |      |      |         |         |           |
|        |      |          |             |      |         |          |         |      |      | Į.      |         |           |
| 1-     |      |          | -           | Ľ    |         |          |         |      |      |         | 1       | _         |
|        |      |          |             |      |         |          |         |      |      | ‡       |         |           |
|        | 1 9  | 7.0mV (  | Offset:350m | v    |         |          |         |      |      |         |         | A         |
|        | 2 9  | 7.0mV (  | Offset:350m |      |         |          |         |      |      |         |         | Trig      |
| C      | 3 9  | 7.0mV (  | Offset:350m | V    |         |          |         |      |      |         |         | B C4      |

|                                                                              |                                           |                    |                  |                |                       |                                       |                                   | ·<br>·                                       |                                  |
|------------------------------------------------------------------------------|-------------------------------------------|--------------------|------------------|----------------|-----------------------|---------------------------------------|-----------------------------------|----------------------------------------------|----------------------------------|
| C1 97.0mV 01<br>C2 97.0mV 01<br>C3 97.0mV 01<br>C3 97.0mV 01<br>C4 1.02V/div | ífset:350mV<br>ífset:350mV<br>ífset:350mV |                    |                  |                | A Aux<br>Trig<br>B C4 | ∫ 1.63V<br>Diy: 184 events<br>↓ 2.22V | 2.0µs<br>Run<br>3 426 a<br>Octobe | 1000MS/s<br>Average:4<br>ccqs<br>er 11, 2006 | 1.0ns/pt<br>RL:20.0k<br>16:03:0! |
| lle <u>C</u> onfiguration<br>ults: Color Bar                                 | <u>R</u> esults <u>U</u> til<br>s         | ities <u>H</u> elp | Relative Refere  | nce Limits     |                       |                                       |                                   | VM<br>Video M                                | VGA<br>easurement                |
| Format<br>1024x768_75H                                                       | z                                         | Unit: mV           | White            | G 665 0        | B<br>665 D            | R<br>665.0                            |                                   | ×                                            |                                  |
| Line Number                                                                  |                                           | • max              | Yellow<br>Cvan   | 665.0<br>665.0 | -35.0                 | 665.0<br>-35.0                        |                                   | ā                                            | a                                |
| Average                                                                      |                                           |                    | Green<br>Magenta | 665.0<br>-35.0 | -35.0<br>665.0        | -35.0<br>665.0                        |                                   | × Fai                                        |                                  |
| 1                                                                            |                                           |                    | Red<br>Blue      | -35.0<br>-35.0 | -35.0<br>665.0        | 665.0<br>-35.0                        |                                   |                                              |                                  |
|                                                                              |                                           |                    | Black            | -35.0          | -35.0                 | -35.0                                 |                                   | Exit                                         | Hide                             |

选件 VGA

# 执行两种测量的极限测试

VM 系列仪器可同时执行多种测量的极限测试。

1. 接通仪器电源。



2. 选择 Analyze(分析) > VM HD and SD Video V3.2(VM HD 和 SD 视频 V3.2)或 VM VGA Video V3.2 (VM VGA 视频 V3.2)。



选件 SD/HD
选择 File (文件) > Recall Default Setup (调出默认设 置),将所有设置恢复为出厂默 认值。

| <u>F</u> ile | <u>C</u> onfiguration | <u>R</u> esu |  |  |  |  |
|--------------|-----------------------|--------------|--|--|--|--|
| R            | ecall Default Set     | tup          |  |  |  |  |
| Recall Setup |                       |              |  |  |  |  |
| Save Setup   |                       |              |  |  |  |  |
| Minimize     |                       |              |  |  |  |  |
| E)           | kit                   |              |  |  |  |  |

- 将信号连接到输入端。(见第9 页, *连接输入信号*)
- 选择输入信号格式。(见第31 页,设置输入信号格式 - 选件 SD/HD)(见第33页,设置输入信 号格式 - 选件 VGA)
- 选择 Configuration (配置) > Reference & Limits (参考和极限)。



选件 SD/HD



7. 选择 Enable Limit Testing (启 用极限测试)。

在默认情况下, ₩ 系列仪器应 用程序会自动从(与所选择的信 号格式相匹配的)一组附带模板 中,选择一个极限值文件。





- 8. 单击 Measurements (测量)选项 卡,选择要进行的测量。
- 9. 选择两种测量:
- 选件 SD/HD:选择 Color Bars (彩 条)和 H Sync(水平同步)。

■ 选件 VGA: 选择 Color Bars (彩 条)和 Luma Levels (亮度电 平)。







10. 单击 Run (运行) 按钮。



测量开始后,会出现测量状态屏 幕。测量完成后,会显示所选择 的测量 Pass(通过)(或 Fail (不通过))。



选件 SD/HD



11. 要显示所选择的每种测量的结 果,请选择 Results(结果)菜 单,再选择某种已选中的测量。 将显示所选测量的结果屏幕。



选件 SD/HD



12. 要显示另一选中测量的结果,请 选择 Results(结果)菜单,并 选择另一测量。



选件 SD/HD



## 在多行上进行测量

当 VM 系列仪器进行测量时,所测量的位置(也可以说测量的"时间")由行号指定。(如果要测量 亮度电平,则需要确保在信号的有效视频部分进行测量。)有时会需要在多行上进行测量。(例如, 可能需要验证从显示器的顶部到底部的电平是恒定的。)要执行此验证,请使用 Operation (操作) 选项卡上 Line Select (行选)下的 Multi Lines (多行)设置。每种测量都需要在输入视频信号的指 定行上存在合适的信号模式。这个行号设置参数通过测量结果面板内的 Line Number (行号)输入框 进行配置。信号模式通常在输入信号的多个行上提供。可通过指定这些行中的任意一个来执行测量。

**说明:** 有些测量在 Multiple Lines(多行)模式下不可用。Setup Only(只设置)、Run Only(只运 行)和 Continuously(连续)设置(操作面板)在 Multiple Lines(多行)模式下不可选择。

当测量处于 Multiple lines(多行)模式下时,在所选测量的指定范围内在每个行号上顺序进行 测量。各行测量结果进行平均后显示在测量结果面板内。所选测量的指定行号显示在相应结果面 板内的 Line Number(行号)字段内。当 Run Mode(运行模式)设为 Once & Report(一次并报 告)时,仪器会按所选格式生成报告(RTF、PDF 或 CSV),内含所选范围内各个行号的结果,后 跟整个范围所计算出的平均结果。

1. 接通仪器电源。



2. 选择 Analyze(分析) > VM HD and SD Video V3.2(VM HD 和 SD 视频 V3.2)或 VM VGA Video V3.2 (VM VGA 视频 V3.2)。



 在 VM 系列仪器应用程序中, 请选择 File (文件) > Recall Default Setup (调出默认设 置),将所有设置恢复为出厂默 认值。

<u>F</u>ile <u>C</u>onfiguration <u>R</u>esu

| Recall Default Setup |  |
|----------------------|--|
| Recall Setup         |  |
| Save Setup           |  |
| Minimize             |  |
| Exit                 |  |

- 将信号连接到输入端。(见第9 页, *连接输入信号*)
- 选择 Configuration (配置)> Format (格式),并根据需要选 择格式设置。
- 选择 Configuration(配置)>
   Operation(操作)。

| <u>C</u> onfiguration | <u>R</u> esults |  |  |  |  |  |
|-----------------------|-----------------|--|--|--|--|--|
| Format                |                 |  |  |  |  |  |
| Measurements          |                 |  |  |  |  |  |
| Operation             |                 |  |  |  |  |  |
| Warnings              |                 |  |  |  |  |  |
| Reference & Limits    |                 |  |  |  |  |  |
| <br>选件 VGA            |                 |  |  |  |  |  |

7. 在 Line Select (行选) 部分单击 Multi Lines (多行)。



选件 SD/HD



8. 要指定测量和进行测量的行,请 选择 Measurements (测量)选项 卡。



#### 选件 SD/HD

| Format Measurements | Operation Warnir | ngs Reference & L | imits               |            |          |
|---------------------|------------------|-------------------|---------------------|------------|----------|
|                     |                  | Measurement       | s on Multiple Lines |            |          |
|                     | Start Line       | e End Line        |                     | Start Line | End Line |
| 🗖 H Sync            | 153              | 153               | 🗖 Ch-Ch Skew        | 383        | 383      |
| 🗖 H Timing          | 460              | 460               | 🗹 Luma Levels       | 383        | 383      |
| 🗹 Color Bars        | 184              | 184               | 🗖 Linearity         | 644        | 644      |
| 🗖 Ch-Ch Mismatch    | 325              | 325               | 🗖 Video Transient   | 383        | 383      |

Start Line End Line

153

445

153

153

445

153

选件 VGA

📃 H Sync

🔲 H Timing

🗹 Color Bars

对于每种测量,有两个输入框: Start Line (起始行)和 End Line(结束行)。使用这两个输 入框指定要在其上进行测量的行 的范围。

9. 要选择一种要进行的测量,请单 击测量名称旁边的复选框。

10. 在 Start Line (起始行) 和 End

Line (结束行) 框中输入行号。



选件 VGA



当 Run Mode (运行模式)设为 Once & Report (一次并报告) 时,仪器会在完成测量后生成报 告。默认情况下,仪器自动为报 告文件生成唯一的文件名。但 是,可以指定文件名和位置。

- 11. 要指定保存结果的文件参数,请 执行下列操作:
  - 单击 Utilities (辅助功能)
     > Generate Report (生成报告)。

显示 Generate Report(生成报 告)面板。

- **12.** 要更改文件名和保存位置,请单 击 Browse(浏览)。显示 Save (保存)对话框。
- **13.** 输入文件名或导航至希望保存文件的位置。

| Format       | Report File                                  |             |
|--------------|----------------------------------------------|-------------|
| • RTF        | File Name C:\VMApps\OptHDSD\Reports\Tek49.tt | Brows       |
| • PDF        |                                              | Get Default |
| O CSV        | Report Heading                               | Generate    |
| Measurements | Recent Reports                               |             |
| O All        |                                              |             |
| Selected     |                                              | View        |

| 🍰 Save Repo  | rt                                        | ×              |
|--------------|-------------------------------------------|----------------|
| Save in:     | 📔 Reports 🔹 🚺                             | 5 📂 🖽 📰        |
|              | 🚱 Desktop                                 |                |
|              | 📋 My Documents                            |                |
| My Recent D  | 😼 My Computer                             |                |
|              | 🧇 Local Disk (C:)                         |                |
|              | MApps                                     |                |
| Desktop      | CoptVGA                                   |                |
|              | Reports                                   |                |
|              | Shared Documents                          |                |
| My Documents | Tek5.rtf                                  |                |
| <b>9</b>     | 🛱 Tek6.ntf                                |                |
| My Computer  |                                           |                |
|              |                                           |                |
| Mv Network   |                                           |                |
|              | File name: Color Bars and Luma Levels.rtf | Save           |
|              | Files of type: RTF Report files (.ftf)    | <u>C</u> ancel |

**14.** 从 Files of type(**文件类型**) 下面列出的选项中选择报告的格 式。



- 15. 单击 Save (保存)。
- 如果希望在报告中保存信号的屏幕捕获,请选择 Configuration (配置)> Operations(操作) 显示出 Operations(操作)面板。选择 RTF Report Mode(RTF 报告模式)下的 Embed Screen Capture(嵌入屏幕捕获)。

| mai measurements  | Operation warnings       | Reference & Li |                 |                 |
|-------------------|--------------------------|----------------|-----------------|-----------------|
| – Setup And/Or Ru | n Run M                  | lode           | Line Select     | Auto Scale      |
| Setup & Run       | <ul> <li>Once</li> </ul> |                | O Single Line   | Enabled         |
| Setup Only        | Continuousl              |                | Multi Lines     | Initial Values  |
| 🔍 Run Only        | 🗢 Once & Rep             | oort           |                 | Q Last Maas     |
| RGBHV MIU         | Sync Polarity            |                | RTF Report Mode | C Last Recalled |
| Use MIU           | 🗹 Auto Detect            | 🗖 Embed        | Screen Capture  | Restore Default |

选件 VGA

17. 选择 Run(运行)按钮,进行测量。

选择 Run (运行) 后, VM 系列 仪器显示所选的第一项测量的结 果页,并开始进行测量。每次测 量后,显示的 Line Number (行 号)都会增加,直到每个指定行 的测量都已完成。对所选的每个 测量,都会重复该过程。

## **18.** 要查看测量结果,请使用适当的 应用程序打开报告文件。

#### VM VGA Video - Measurements Results Report

August 27, 2007 03:26 PM

P

Instrument: TDS5104.B020460.CF:91.1CT FV:1.2.1, Software Version: 3.2 Reference File: C:\VMApps\OptVGA\RefLimFiles\GTF\DefaultReference1920X1200@75-RGB.csv Limits File: C:\VMApps\OptVGA\RefLimFiles\GTF\DefaultLimits1920X1200@75-RGB.csv Autoscale: On Stop On Limit Error: Off MUU: Used Sync Polarity Auto Detection: Enabled

#### Format Details:

| Resolution: 1920x1200 | Refresh Rate: 75Hz | Timing Standard: GTF |
|-----------------------|--------------------|----------------------|
| SUMMARY:              | Status             | Warnings             |

|   | SUMMARI:   | Status | vv anmigs |
|---|------------|--------|-----------|
|   | Color Bars | PASS   |           |
| 1 |            |        |           |

Color Bars Line = 285

| Line = 285 | Average = | = 1 |
|------------|-----------|-----|
| Color Bars |           | G   |

| 04 670.291<br>06 0.908<br>09 670.478 | 669.008<br>670.015                                                                                 |
|--------------------------------------|----------------------------------------------------------------------------------------------------|
| 06 0.908                             | 670.015                                                                                            |
| 670.479                              |                                                                                                    |
| 0/0.4/0                              | 1.627                                                                                              |
| 93 1.003                             | 0.691                                                                                              |
| 5 670.865                            | 669.643                                                                                            |
| 1.442                                | 670.118                                                                                            |
| 670.672                              | 1.639                                                                                              |
| 3 1.444                              | 0.711                                                                                              |
|                                      | 93         1.003           5         670.865           9         1.442           670.672         8 |

R

| Tel | k  | Rur     | 1   | A٧   | erag | e        |     |     |   |     |     |            |     |   |     |    |      |     | 27  | ? Aug | 1 O 7 1 | 15:2 | 6:42 |            |
|-----|----|---------|-----|------|------|----------|-----|-----|---|-----|-----|------------|-----|---|-----|----|------|-----|-----|-------|---------|------|------|------------|
|     | Ē  |         |     | Ú.   | ÷.,  | <u>.</u> |     |     |   |     |     | Ξŧ         |     |   |     |    |      |     | i.  |       |         |      |      | <u>الت</u> |
|     | ÷  |         |     | ]    |      |          |     |     |   |     |     | ·+         |     |   | 1   |    |      | 1.1 | )   |       |         |      |      | · -        |
|     | E  |         |     |      |      |          |     |     |   |     |     | ‡          |     |   |     |    |      | 1   |     |       |         |      |      |            |
|     | Ē  |         |     |      |      |          |     |     |   |     |     | ŧ          |     |   | 1   |    |      |     |     |       |         |      |      |            |
|     | E  |         | •   |      |      |          |     |     |   |     | · · | ۰ŧ         | - 1 |   |     |    |      | 1   | · • |       |         |      | · ·  | · -{       |
| 3   | Ē. | <b></b> |     |      | _    |          |     |     |   |     |     | ≢          | +   |   |     |    |      | i.  |     |       |         |      |      |            |
| ď   | E  |         |     |      |      |          |     |     |   |     |     | Ē          |     |   |     |    |      |     |     |       |         |      |      |            |
|     | E  |         |     |      |      |          | • • |     |   |     | ••• | Ľ∰         |     |   |     |    |      | ÷   | • • |       |         |      | • •  |            |
|     | E  |         | . : |      |      |          |     | ÷ . |   | . 1 |     | . <b>Ē</b> |     |   |     |    |      | : . |     | . :   |         |      |      | . 4        |
|     | Еh | 1       | 95  | .0mV |      |          |     | Ch  | 2 | 95. | ٥m٧ | Ŧ          |     | М | 201 | ıs | .250 | S/s | п   | 400   | os/o    |      |      |            |
| 4   | Għ |         | 95  | .0m¥ |      |          | • • | Ch  | 1 | 1.0 | 1   |            | ٦   | A | AUR | 7  | 1.4  | 1Y  |     |       |         |      |      |            |
|     |    |         |     |      |      |          | L   |     |   |     |     |            | -   |   | -14 |    |      | 47. |     | les a |         | i i  |      |            |

### 将输入信号显示为图像

VM 系列仪器可将输入信号显示为图像。

1. 接通仪器电源。



2. 选择 Analyze(分析) > VM HD and SD Video V3.2(VM HD 和 SD 视频 V3.2)或 VM VGA Video V3.2 (VM VGA 视频 V3.2)。



- 将信号连接到输入端。(见第9 页, *连接输入信号*)
- 4. 选择 Picture(图像)按钮。这 将启动视频监视器窗口。
- 5. 单击 Maximize (最大化) 按钮, 将图像扩大到整个屏幕。



| 😝 Tektronix - VM Series Video Monitor |  |  |  |  |  |  |  |  |
|---------------------------------------|--|--|--|--|--|--|--|--|
|                                       |  |  |  |  |  |  |  |  |
|                                       |  |  |  |  |  |  |  |  |
|                                       |  |  |  |  |  |  |  |  |
|                                       |  |  |  |  |  |  |  |  |
|                                       |  |  |  |  |  |  |  |  |
|                                       |  |  |  |  |  |  |  |  |
|                                       |  |  |  |  |  |  |  |  |
|                                       |  |  |  |  |  |  |  |  |
|                                       |  |  |  |  |  |  |  |  |
|                                       |  |  |  |  |  |  |  |  |

### 在矢量示波器窗口中显示输入信号 - 仅限于选件 SD/HD

WM 系列仪器可在矢量示波器窗口显示输入信号,这样您就可以迅速地看到信号的颜色范围。

1

Analyze Utilities Help

Search ... Mark...

Restore Application

VM HD and SD Video V3.2

VM VGA Video V3.2

0 0 0 0

0000

ίO 091-017

Ο O 00

00

6

⊕₀

1. 接通仪器电源。

2. 选择 Analyze (分析) > VM HD and SD Video V3.2(VM HD 和 SD 视频 V3.2)。

- 3. 将信号连接到输入端。(见第9 页, *连接输入信号*)
- **4.** 选择 Vectorscope (矢量示波 器)按钮。 这将启动视频监视器显示窗口。



5. 单击 Maximize(最大化)按钮, 将矢量示波器显示扩大到整个屏 幕。



# 索引

#### English terms

Continuously (连续)选项按 钮, 38 Once (一次)并报告"选项按 钮, 38 RGBHV 测量接口单元 连接, 13 Run Only (只运行)选项按 钮, 38 Setup & Run (设置并运行)选 项按钮, 38 Setup Only (只设置)选项按 钮, 38 VESA 测试步骤 版本, 29

### 人

使用示波器,41 侧面板示意图,7 信号 连接,9

#### フ

切换附件, 39 前面板示意图, 6

#### 又

受支持的仪器, v 受支持的示波器, v

#### $\square$

同步提取器 补偿,20 连接,9 后面板示意图,7

#### 口

图像显示, 73

タ

多行, 68

➡
安全概要, iii

#### 手

技术规格 电源,4 按钮 停止,27 图用程序,28 大运用量示,28 关行,27 退忠藏,28 控制面板,6 操作 设范,37 操作规范,4

### 文

文档, vi

#### 木

极限测试, 58, 62 查看测量结果, 40 标准附件, 1, 3 校准, 20

#### 水

测量 进行,29 选择,36 消息,43

#### 用

用户定义格式 创建, 32, 34

#### 田

电源 要求,4

#### **目** 相关文档, vi

相对于参考值的测量,53

## 矢

矢量示波器显示,75 矩阵信号 说明,23 矩阵信号模式 起始行,50

#### 示

示波器 使用,41

#### X

网络连接,5

**目** 自动缩放 按钮,38

## 行

行号 起始,50

#### 衣

补偿同步提取器,20

#### 见

规范 操作,4

#### 言

警告和错误消息, 43 警告类型已报告, 39

#### ì

| 设置      |     |    |  |
|---------|-----|----|--|
| 测量运行操作, | 37  |    |  |
| 警告, 39  |     |    |  |
| 输入信号格式, | 31, | 33 |  |

### 走

起始行号 矩阵信号,50

### 车

软件升级, vi 输入信号格式 设置, 31, 33 输入要求, 8 上
进行测量,40
连接信号,9
选项按钮
Continuously(连 续),38
Once(一次),38
Run Mode(运行模式),38
一次并报告,38
只设置,38
只设置,38
自动缩放启用,38
设置并运行,38
通道4,38
通过/不通过测试,58
通道1/4选项按钮,38 钅

错误和警告消息, 43

#### ß

附件 标准,3