SDLA シリアル・データ・リンク解析 オンライン・ヘルプ

Copyright © Tektronix. All rights reserved. 使用許諾ソフトウェア製品は、Tektronix またはその子会社や供給者が所有するもので、米国著作権法および国際条約の規定によって保護されています。

Tektronix 製品は、登録済および出願中の米国その他の国の特許等により保護されています。 本書の内容は、既に発行されている他の資料の内容に代わるものです。また、本製品の仕様 および価格は、予告なく変更させていただく場合がございますので、予めご了承ください。

TEKTRONIX および TEK は Tektronix, Inc. の登録商標です。

コンパイルされたオンライン・ヘルプの部品番号: 076-0173-00.

オンライン・ヘルプ・バージョン: 1.0

2008年10月22日

Tektronix 連絡先

Tektronix, Inc. 14200 SW Karl Braun Drive P.O. Box 500 Beaverton, OR 97077 USA

製品情報、代理店、サービス、およびテクニカル・サポート:

- = 北米内: 1-800-833-9200 までお電話ください。
- = 世界の他の地域では、www.tektronix.com にアクセスし、お近くの代理店をお探しください。

目次

概要

製品の概要	1
ソフトウェアの更新	2
Web サイト経由での更新	2
表記規則	2

はじめに

要件とインストール	3
Signal Path ウィンドウ	
Signal Path ウィンドウの概要	3
ブロックの構成	5
回路ブロックの有効化	7
出力波形を有効化するテスト・ポイントの選択	8
Tx 構成または Rx 構成の選択	8
周波数領域プロットと時間領域プロットの表示	9
アプリケーション・ファイルの種類と場所	14

基本操作

フィクスチャ・ブロックとチャンネル・ブロック	15
エンファシス・ブロック	17
イコライザ・ブロック(オプション SLA 型で使用可能)	19
イコライザの実行	21
イコライザの調整による信号リカバリの向上	21
フィルタ・ファイルとオプション	24
テストの実行	26

索引

1

製品の概要

SDLA ソフトウェアは、シリアル・データ・リンク設計が SAS や USB3 などの電気工業規格 に適合しているかどうかをテストするのに役立ちます。シミュレーション処理には、フィ クスチャ、エンファシス、チャンネル、およびイコライザの 4 つの回路ブロックのいずれ かを組み込むことができます。

平坦振幅応答と線形位相応答に優れ、ジッタ・ノイズ・フロアが低い DPO/DSA70000 シ リーズ・オシロスコープは、シリアル・データ・リンクを設計するエンジニアにとって理 想的なツールです。

SDLA ソフトウェアは、次の機能を備えています。

- 4種類の回路ブロックを使用して共通のシステム・コンポーネントをシミュレートし、シリアル規格を設計およびテストすることができる。SATA/SAS Gen3.0、QPI、PCI-Express、およびディスプレイ・ポートの各規格に対応。
- チャンネルとフィクスチャの両方のSパラメータ・ファイル(.s1p(S21)、.s2p、または .s4p(シングルエンドまたは差動))をサポート。
- 独自の帯域幅制限フィルタの作成や、自動設定による効率的な帯域幅制限が可能。
- テスト・ポイント・フィルタ特性やブロック・フィルタ特性のプロットを生成する。
- イコライザ・ブロックでリファレンス・レシーバをシミュレートして、レシーバに入力される信号の品質をテストする。
- DPOJET ソフトウェアに直接接続して、アイ・ダイアグラムとジッタ測定によりリンク 品質を解析する。

次の図は、SDLA ソフトウェアのメイン・メニューを示しています。

フィクスチャ・ブロックと回路ブロックは、ソース信号に対するそれぞれの効果をエンベ デッドまたはディエンベデッドします。ブロックをクリックすると設定できます。テスト・ ポイント(TpA、TpB、および TpC)は、ソース信号に対するブロックの効果を示します。 処理と解析は、アクティブに取り込まれた波形、または保存されている波形に対して実行 できます。SDLA ソフトウェアを使用するためには、オシロスコープ ソフトウェアを実 行する必要があります。

Signal Path Setup ウィンドウの詳細については、ここをクリックしてください。 (3 ページ参照)

ソフトウェアの更新

SDLA ソフトウェアを再インストールする必要が生じたときには、オシロスコープに付属の オプション・アプリケーション・ソフトウェアの DVD からインストールしてください。

Web サイト経由での更新

ソフトウェアは Tektronix Web サイト経由で定期的にアップグレードできます。

アップグレードの有無は、次の手順で確認できます。

- 1. Tektronix Web サイト (<u>www.tektronix.com/software</u>)にアクセスして、Software Downloads ページに移動します。
- 2. Search by keyword ボックスに製品名を入力して、公開されているソフトウェア・アップ グレードを検索します。
- 該当のソフトウェア・タイトルをクリックし、ご使用の機器のモデルとの互換性があることをアプリケーション情報で確認します。ファイル・サイズをメモし Download File リンクをクリックします(ダウンロード後は、メモしたファイル・サイズと照合してください)。

表記規則

このオンライン・ヘルプでは、次の表記規則を使用しています。

- DUT は被測定装置(Device Under Test)を表す。
- メニュー項目の後ろに続く3つのドット(…)は、そのメニュー項目にサブメニューが あることを示す。
- メニューからサブメニュー、およびメニュー・オプションへという選択の順番は ">"
 で区切って示す。
- サポート・ファイルへのディレクトリ・パスは、SDLA\directory_name という具合に、 SDLA 以降のみ記載する。製品の完全パスは、C:\TekApplications\SDLA である。

要件とインストール

当社の最新 DPO/DSA70000 シリーズ・オシロスコープには、あらかじめ SDLA ソフトウェア がインストールされています。そのすべての機能を 5 回まで無料でお試しいただけます。

動作要件

SDLA ソフトウェアは、4.0 GHz 以上のシングル・ショット帯域幅を持つ DPO/DSA70000 シ リーズ・オシロスコープ上で動作します。

SDLA ソフトウェアは、JIT3v2 ソフトウェアまたは RT-EYE ソフトウェアとは同時に使用でき ません。SDLA ソフトウェアは単独で使用して FIR フィルタを生成し、テスト・ポイントの 演算波形を作成します。その後、SDLA ソフトウェアを閉じて JIT3v2 ソフトウェアまたは RT-EYEソフトウェアを起動し、テスト・ポイントとデータ波形を解析するという手順を踏む 必要があります。SDLA ソフトウェアは、DPOJET ソフトウェアとは同時に使用できます。

オシロスコープ・ソフトウェアの対応バージョンについては、製品のリリース・ノートを 参照してください。

オプション・キー要件

このアプリケーションには有効なオプション・キーが必要です。ただし、5回までならキーな しで無料でお試しいただけます。詳しくは、当社営業所または担当のアプリケーション・エ ンジニアまでご連絡ください。

SDLA ソフトウェアの再インストール

最新バージョンをインストールするには、トピック「<u>Web サイト経由での更新 (2 ページ参</u> 照)」でダウンロード情報を参照してください。

Signal Path ウィンドウの概要

Signal Path ウィンドウは、SDLA ソフトウェアの主要コントロール・パネルです。このウィ ンドウで、回路ブロックを有効化して、システム・コンポーネントのモデリングを行いま す。また、Rx モードまたは Tx モードにしてフィクスチャ接続ポイントを切り替えること もできます。次の図は、有効化されたすべてのブロックを示しています。TpA などのテス ト・ポイントは、有効化された回路ブロックを適用した後の信号を示しています。このセ クションでは、回路ブロックとその使用法の概要を説明します。詳細については、「基本 操作」セクションを参照してください。

1	Tektronix Serial	Data Link Analysis		
9	ignal Path Setup			
	Oscilloscope Source Ch 1	Tx Rx Tx Fixture [⊙]	Save	Apply
	Bit Rate (GD/S)	TPA M2	Recall	Plot
	Average	Emphasis TPB M3 Channel FpC M4 Equalizer TpD R4	Standards	Analyze
	SR: 256S/s	0% press Apply to update filters	Help	About

回路ブロックには次の4種類があります。

- フィクスチャ ソース・フィクスチャをディエンベデッドする。
- チャンネル トランスミッション・ラインまたはデバイスをシミュレートする。
- エンファシス トランスミッタにより追加されたプリエンファシスまたはディエンファシスを追加または除去する。
- イコライザ(オプション) 設定可能データとクロック・リカバリ機能により、リファレンス・レシーバをシミュレートする。

SDLA ソフトウェアと TekScope オシロスコープ・アプリケーション間の移動

ソフトウェア・アプリケーション間をすばやく移動するには、キーボードの Alt キーを押さえ ながら Tab キーを押して、アプリケーションを選択します。

ソース波形の選択

SDLA ソフトウェアは、オシロスコープ上に表示されている波形のみに対して動作します。 アクティブに取り込まれたチャンネル信号、演算波形、およびリファレンス波形から選択で きます。ライブの取り込み波形は、その波形のチャンネル番号で選択します。保存されてい る波形を操作するには、その波形をオシロスコープ画面に呼び出します。この後、SDLA ソ フトウェアの Oscilloscope Source ドロップダウン・リストで、使用するリファレンス波形名 (Refl など)を選択します。SDLA ソフトウェアによって生成された演算波形は、ソースと して使用できないことに注意してください。

アベレージング機能の使用

Average ボタンをクリックすると、オシロスコープがアベレージング・モードに切り替わ ります(アベレージングには SDLA ソフトウェアで設定した値が使用されます)。処理ブ ロックから波形が生成されるときに、アクティブに取り込まれたソース(CH1)がアベレー ジングされます。これらの計算または演算によりアベレージングされた波形が、オシロス コープ画面に表示されます。アベレージングによりノイズを低減させた状態で、信号の特 性を観察または測定することができます。ディエンベデッド処理ブロックを使用すると高 周波ノイズが発生することがありますが、アベレージング機能を使用すると、生成された 波形の観察と測定が効率よく行えます。

セットアップの保存と呼び出し

Save ボタンを使用すると、SDLA ソフトウェアで使用中のすべての設定を.sdl ファイルに保存 できます。Recall ボタンを使用すると、保存されているセットアップ・ファイルを呼び出し て、ソフトウェアを以前の構成に戻せます。セットアップ情報は、SDLA\Save recall に保 存されます。

注: 呼び出したセットアップには、適切なソース・ファイルを用意する必要があります。

規格の読み込み

Standards ボタンをクリックすると、組み込みのセットアップを読み込み、既存のシリアル・ データ規格をテストできます。規格ファイルは SDLA/standards に格納されています。

ブロックの構成

図に示す Signal Path メニューの処理ブロックをクリックすると、構成コントロールにアクセ スできます。各ブロックを個別に構成する代わりに、Standard ボタンをクリックして、一般的 なシリアル規格の規格セットアップ・ファイルを読み込むこともできます。すべての回路 ブロックは、規格での定義に基づいて構成されています。セットアップ・ファイルを読み 込んだ後、任意のパラメータを変更することができます。

回路ブロックでは、組み込みのSパラメータ・ファイルに加えて、お客様独自のSパラメー タまたは FIR フィルタ・ファイルを使用できます。有効化されたすべての回路ブロックに対 して適切なフィルタを選択して、Applyをクリックすると、有効化されたすべてのブロックに 対して FIR フィルタが生成されます。Plots ボタンをクリックすると、フィルタの応答を確認 できます。これにより、正しいフィルタが読み込まれているかどうか、また、帯域幅制限機 能により適切なカットオフ周波数が設定されているかどうかを確認できます。

フィルタ・ファイルの詳細については、「<u>フィルタ・ファイルとオプション (24 ページ参</u> <u>照)</u>」を参照してください。

Apply ボタン

Apply ボタンをクリックすると、次に示す処理シーケンスが開始されます。

- 1. ソフトウェアにより、有効化されたブロックとテスト・ポイントのフィルタが計算されま す。Signal Path Setup ウィンドウ下部のステータスに、進行状況が表示されます。
- 2. イコライザが TpC 波形に対して実行され、データ信号とシリアル・クロックが再生されます。

Analyze ボタン

適用処理が完了したら、Analyzeボタンを選択して、再生されたデータとクロック信号を DPOJET プログラムに送信します。DPOJET プログラムがインストールされていれば、テス ト・ポイントの信号を入力としてプログラムが開始されます。SDLA ソフトウェアは、ア イ・ダイアグラムとジッタ測定によりリンク品質を解析するよう DPOJET ソフトウェアを 構成します。

次の図に、Analyze ボタンをクリックすると起動する DPOJET ソフトウェアの構成を示しま す。左側のプロットは、選択したソース波形を示します。アイ開口にはほとんど劣化はあり ません。中央のプロットは TpC 信号で、チャンネル・ブロックを通過したソースの状況を示 します。右側のプロットは、イコライザ・ブロックから出力された TpD 信号を示します。イ コライザによるデータ再生(アイ開口の復元)の効果をおわかりいただけるでしょう。

次の図は、Analyze ボタンをクリックすると起動する DPOJET のMeasurement メニューと》	則
定項目を示しています。	

File	Edit	Vertical	Horiz/Ac	y Trig	Display	Cursors	Measure	Mask	Mat	th M	yScope	Analyze	Utilities	Help						Tek		X
									:						: :							
<u> </u>		T	DR4								i po m	<u>.</u>										
								+			++				+++		Ħ			++	+ + +	+
																						·
																						·
R4	.																					
4	2																					·
-	• • •								·	• •	•			• •	•			· ·			• • •	· —
																						·
																						; —
																	<u> </u>					
	C1	300mV	O:-10.0m\	50Ω	₩:16.0G	D _S ZI	12) 300mV	200p	os -{	871ns	-869n	5	A C:	3	496mV		2.0µs	div 2	25.0GS	i/s	40.0ps/	pt
	C2	500mV/	liv	50Ω	W:16.0G	21	300mV	200p	DS -{	871ns	-869n	6					Previ	ew	Single	e Seq		
	Z1C1	300mV	200ps -8	/1ns	-869ns	21	R3) 63.2m	/ 199	05 -8	8/1ns	-869n	5					25 ac	:qs	04	2000	RL:500k	0.50
	Z1C2	500mv	200ps -8	/1ns	-869NS	[21]	R4) 52.5M	/ 199	DS -1	8/1ns	-8690	5	J				Man	Octo	ober 24	, 2008	11:4	9:52
			Value		Mean	Min	Ma	x	St D	Dev	Coun	t Info										
	C1	Ampl*	604.5m\	604	4.50002m	604.5m	604.5n	n (0.0		1.0		ך									
								·					_									
÷*,		an an d F	Diam'r																			
	JILLE	er and E	ye Diagra	m Ana													6				Clear	
					ilysis 10	ols											C	options			Clear	1
	L Se	lect	Descrip	tion		ols Mean	Std De	v	Мах		Min		p-p	Po	pulation	Max-cc	C Mi)ptions n-cc				$\overline{\nabla}$
	Se	lect	Descrip ▶ ± TIE1,	tion Ch1		ols Mean 0.0000s	Std De 5.2986	v ps	Max 11.80	05ps	Min -9.735	59ps	p-p 21.541ps	Po 60	pulation 474	Max-cc 18.042ps	C Mi -18)ptions n-cc 3.803ps		R		$\nabla \Delta$
	Se	lect	Descrip	tion Ch1 Vlath4		ols Mean 0.0000s 891.57fs	Std Dev 5.2986 46.430	v ps ps	Max 11.80 142.3	05ps 32ps	Min -9.735 -151.0	59ps)9ps	p-p 21.541ps 293.41ps	Po 60 60	pulation 474 319	Max-cc 18.042ps 153.38ps	Mi -18 -15	options n-cc 3.803ps 52.46ps		R	Clear X ecalc	$\nabla \Delta$
	Cont	figure	Descrip	tion Ch1 Vlath4 Ref4, Re	- 3f3 -	ols Mean 0.0000s 891.57fs 720.16fs	Std De 5.2986 46.430 8.1062	v ps ps ps	Max 11.80 142.3 20.20	05ps 32ps 04ps	Min -9.735 -151.0 -24.40	59ps)9ps)0ps	p-p 21.541ps 293.41ps 44.604ps	Po 60 60 58	pulation 474 319 215	Max-cc 18.042ps 153.38ps 37.208ps	Mi -18 -15 -44	0ptions n-cc 3.803ps 52.46ps 1.060ps		R	Clear	$\nabla \Delta$
	Conf	figure	Descrip	tion Ch1 Wath4 Ref4, Re 11, Ref4	ef3 -	ols Mean 0.0000s 891.57fs 720.16fs 166.67ps	Std De 5.2986 46.430 8.1062 8.7648	ps ps ps ps ps	Max 11.80 142.3 20.20 199.2	05ps 32ps 04ps 21ps	Min -9.738 -151.0 -24.40 135.3	59ps)9ps)0ps 66ps	p-p 21.541ps 293.41ps 44.604ps 63.855ps	Po 60 60 58 11	pulation 474 319 215 5514	Max-cc 18.042ps 153.38ps 37.208ps 56.305ps	Mi -18 -15 -44 -61	0 ptions n-cc 3.803ps 52.46ps 1.060ps 1.882ps			clear kecalc c single	$\forall \forall$
	Conf	figure sults	Descrip + TIE1, + TIE2, + TIE3, + TIE3, + Perio	tion Ch1 Math4 Ref4, Re J1, Ref4	- ef3 - t	ols Mean 0.0000s 891.57fs 720.16fs 166.67ps	Std De 5.2986 46.430 8.1062 8.7648	v ps ps ps ps	Max 11.80 142.3 20.20 199.2	05ps 32ps 04ps 21ps	Min -9.738 -151.0 -24.40 135.3	59ps 19ps 10ps 66ps	p-p 21.541ps 293.41ps 44.604ps 63.855ps	Po 60 60 58 11	pulation 474 319 215 5514	Max-cc 18.042ps 153.38ps 37.208ps 56.305ps	Mi -18 -15 -44 -61	Detions n-cc 3.803ps 52.46ps 1.060ps 1.882ps			Clear Kecalc Clear C	$\forall \forall$
	Cont	figure sults	Descrip	tion Ch1 Math4 Ref4, Re 11, Ref4	ef3 -	ols Mean 0.0000s -891.57fs -720.16fs 166.67ps	Std Der 5.2986 46.430 8.1062 8.7648	y ps ps ps ps	Max 11.80 142.3 20.20 199.2	05ps 32ps 04ps 21ps	Min -9.738 -151.0 -24.40 135.3	59ps 19ps 10ps 16ps	p-p 21.541ps 293.41ps 44.604ps 63.855ps	Po 60 58 11	pulation 474 319 215 5514	Max-cc 18.042ps 153.38ps 37.208ps 56.305ps	Mi -18 -15 -15 -44 -61	0ptions n-cc 3.803ps 52.46ps 5.060ps 1.882ps			Clear Accalc Construction C	
	Cont Res PI	figure sults	Descrip → TIE1, → TIE2, → TIE3, → Perio	tion Ch1 Math4 Ref4, R(11, Ref4	ef3 -	ols Mean 0.0000s .891.57fs .720.16fs 166.67ps	Std De 5.2986 46.430 8.1062 8.7648	y ps ps ps ps	Max 11.80 142.3 20.20 199.2	05ps 32ps 04ps 21ps	Min -9.735 -151.0 -24.40 135.3	59ps)9ps)0ps)6ps	p-p 21.541ps 293.41ps 44.604ps 63.855ps	Po 60 58 11	pulation 474 319 215 5514	Max-cc 18.042ps 153.38ps 37.208ps 56.305ps	Mi -18 -15 -15 -44 -61	0ptions n-cc 3.803ps 52.46ps 1.060ps 1.882ps		R	Accalc Accalc	
	Conf Res PI	figure sults	Descrip + TIE1, + TIE2, + TIE3, + TIE3, + Period	tion Ch1 Math4 Ref4, Ri 11, Ref4	ef3 -	Mean 0.0000s 891.57fs 720.16fs 166.67ps	Std De 5.2986 46.430 8.1062 8.7648	ps ps ps ps	Max 11.80 142.3 20.20 199.2	05ps 32ps 04ps 21ps	Min -9.738 -151.0 -24.40 135.3	59ps 19ps 10ps 16ps	p-p 21.541ps 293.41ps 44.604ps 63.855ps	Po 60 58 11	pulation 474 319 215 5514	Max-cc 18.042ps 153.38ps 37.208ps 56.305ps	Mi -18 -15 -44 -61	0,ptions n-cc 3.803ps 52.46ps 1.060ps 1.882ps		R	Clear A contraction of the cont	
	Conf Res PI Rer	figure sults ots	Descrip + TIE1, + TIE2, + TIE3, + Perior	tion Ch1 Math4 Ref4, R(d1, Ref4	- ef3 - 4	Mean 0.0000s .891.57fs .720.16fs 166.67ps	Std De 5.2986 46.430 8.1062 8.7648	ps ps ps ps	Max 11.80 142.3 20.20 199.2	05ps 32ps 04ps 21ps	Min -9.73 -151.0 -24.40 135.3	59ps 19ps 10ps 16ps	p-p 21.541ps 293.41ps 44.604ps 63.855ps	Po 60 58 11	pulation 474 319 215 5514	Max-cc 18.042ps 153.38ps 37.208ps 56.305ps	Mi -18 -15 -44 -61	0 <i>ptions</i> n-cc 3.803ps 52.46ps 1.060ps 1.882ps		R	Clear A cecalc Clear Recalc Comparison Run Comparison Single Clear Cle	
	Conf Res PI Rep	figure sults ots	Descrip C TIE1, C TIE2, C TIE2, C TIE3, C	tion Ch1 Math4 Ref4, Ri d1, Ref4	ef3 - 4	Mean 0.0000s 891.57fs 720.16fs 166.67ps	5.2986 46.430 8.1062 8.7648	y ps ps ps	Max 11.80 142.3 20.20 199.2	05ps 32ps 04ps 21ps	Min -9.736 -151.0 -24.40 135.3	59ps 19ps 10ps 16ps	p-p 21.541ps 293.41ps 44.604ps 63.855ps	Po 60 58 11	pulation 474 319 215 5514	Max-cc 18.042ps 153.38ps 37.208ps 56.305ps	Mi -18 -15 -44 -61	0ptions n-cc 3.803ps 52.46ps 1.060ps 1.882ps			Clear Recalc Run Run Dow Plots	

回路ブロックの有効化

ブロックを有効化または無効化するには、回路ブロックのオプション・ボタンをクリックし ます。この図では、エンファシス・ブロック、チャンネル・ブロック、およびイコライザ・ ブロックが有効化され、フィクスチャ・ブロックが無効化されています。回路ブロックは、 それぞれの構成ウィンドウで有効化することもできます。

出力波形を有効化するテスト・ポイントの選択

処理ブロック単位で波形を生成してプロットするには、対象テスト・ポイントの Tp[ABC] ブロックをクリックします。ブロックを選択するとオレンジ色に変わります。Apply ボタンをクリックすると、選択したすべてのテスト・ポイントに対して、計算された波形が作成されます。計算されたライブの波形にはラベルが付けられ、オシロスコープ画面に表示されます。 オシロスコープ画面に切り替えるには、Alt キーを押さえたまま Tab キーを押します。Plot ボタンをクリックすると、計算されたフィルタの応答を確認できます。

テスト・ポイントの波形は、オシロスコープ・スクリーン上では次のラベルで現されます。

- TpA M2
- TpB M3
- TpC M4

テスト・ポイントの FIR フィルタは、SDLA\output filters ディレクトリ内のファイルに保存されます。

フィルタの詳細については、「<u>フィルタ・ファイルとオプション (24 ページ参照)</u>」を 参照してください。

Tx構成またはRx構成の選択

Tx ボタンでは、次の図に示すようなシステムに合わせてソフトウェアを構成できます。図に 示すように、オシロスコープはフィクスチャに接続されています。フィクスチャは、有効 化されている場合には、トランスミッタ信号にアクセスできます。フィクスチャをディエ ンベデッドすることで、オシロスコープ接続を、トランスミッタの出力に効率的に移動で きます。図では、エンファシス・ブロックがシリアル・トランスミッタに接続されていま す。トランスミッタに追加されたエンファシスを除去するようにエンファシス・ブロック を構成し、フィクスチャをディエンベデッドすると、テスト・ポイント TpB におけるラ イブのトランスミッタ信号の近似値を取得できます。TpA では、フィクスチャをディエン ベデッドするだけで、トランスミッタ信号が得られます。

Rx ボタンは、次の図に示すように、システムに適合するようにソフトウェアを構成します。 図に示すように、オシロスコープはフィクスチャに接続されています。フィクスチャは、有 効化されている場合には、トランスミッション・チャンネルのレシーバ側にアクセスできま す。フィクスチャをディエンベデッドすることで、オシロスコープ接続を、チャンネルの出 力に効率的に移動できます。このセットアップにより、トランスミッション・チャンネルを ディエンベデッドして、TpB におけるトランスミッタ信号の品質を確認することができます。

周波数領域プロットと時間領域プロットの表示

Plot ボタンを押すと、3 つのグラフィック・ウィンドウ・プロットが起動します。プロットに は、有効化された処理ブロックと有効されたテスト・ポイント Tp[ABC]の実行結果が表示 されます。プロットを使用して、各ブロックのフィルタ構成が SDLA ソフトウェアでの構 成に従っていることを確認します。上部にあるズーム(+)ツールなどのナビゲーション 機能は、フィルタ応答の詳細を確認するのに役立ちます。

注: 再度 Plot ボタンを押すと、プロットが終了します。

次の図は、フィクスチャとチャンネルのフィルタ・セットアップに対する、振幅対周波数応 答を示していますFIR フィルタまたはその他のタイプの S パラメータ・ファイルを使用してい る場合は、そのフィルタ・データの周波数応答がプロットに表示されます。

振幅対時間のプロット

次の図は、SDLA ソフトウェアで生成可能な6つのフィルタ出力に対する、振幅対時間のプロットを示しています。左側の3つは回路ブロック・フィルタ、右側の3つはテスト・ポイント・フィルタです。上部はフィルタの標準的なインパルス応答、下部は有効なフィルタのステップ応答を示しています。上部にあるズーム(+)ツールなどのナビゲーション機能は、フィルタ応答の詳細を確認するのに役立ちます。プロットは次のように色分けされます。

- 黄:フィクスチャ、TpA
- 赤:チャンネル、TpB
- 緑:エンファシス、TpC

振幅対周波数および位相対周波数のプロット

次の図は、SDLA ソフトウェアで生成可能な6つのフィルタ出力に対する、振幅対周波数および位相対周波数のプロットを示しています。左側の3つはブロック・フィルタ、右側の3つは テスト・ポイント・フィルタです。上部はフィルタの振幅(dB)、下部は有効なフィルタの 位相プロットを示しています。上部にあるズーム(+)ツールなどのナビゲーション機能は、 フィルタ応答の詳細を確認するのに役立ちます。プロットは次のように色分けされます。

- 黄:フィクスチャ、TpA
- 赤:チャンネル、TpB
- 緑:エンファシス、TpC

プロット・ウィンドウのツールとナビゲーション

プロット・ウィンドウのツール・バーからは、フィルタ応答のプロットをズーム(+)および パンできる機能や、測定カーソルをプロット上に設定するため機能にアクセスできます。次 の図は、使用可能なツールを示しています。

各プロットは、プロット・ウィンドウのタイトル・バーで識別されます。プロットは次 の図のように色分けされます。

- 黄は、フィクスチャ・フィルタまたはテスト・ポイント・フィルタ TpA を表す。
- 赤は、チャンネル・フィルタまたはテスト・ポイント・フィルタ TpB を表す。
- 緑は、エンファシス・フィルタまたはテスト・ポイント・フィルタ TpC を表す。

アプリケーション・ファイルの種類と場所

このソフトウェアで使用するファイルとその場所は次のとおりです。サポート・ファイル は、パス C:\TekApplications\SDLA の、内容を示す名前の付いたフォルダに置かれています。

- Example waveforms アプリケーションの学習に役立つサンプル波形ファイル。
- Input filters FIR フィルタ・ファイル
- Input S-parameters Touchstone 1.0 //- = >
- Output filters 生成されたフィクスチャとチャンネルの FIR フィルタが格納される場所。
 Apply ボタンをクリックするたびに、ファイル名が上書きされる。フィルタ・ファイルの名前を変更すると、その FIR フィルタは上書きされずに残り、後で使用することができる。
- Save recall SDLA セットアップ構成ファイルの一時的な格納場所。
- Standards イコライザ・ブロック、チャンネル・ブロック、およびエンファシス・ブロックを、規格で定義されているように設定する、各種工業規格用セットアップ・ファイル。

カスタムの S パラメータ・ファイルとフィルタ・ファイルは、機器にアクセス可能な任意の パスに置くことができます。フィルタに関する詳細情報については、「<u>フィルタ・ファイ</u> ルとオプション (24 ページ参照)」を参照してください。

フィクスチャ・ブロックとチャンネル・ブロック

回路ブロックを使用すると、フィクスチャの効果を除去(ディエンベデッド)したり、チャ ンネルの効果をエンベデッドまたはディエンベデッドすることができます。メインの Signal Path ウィンドウからフィクスチャ・ブロックまたはチャンネル・ブロックを選択し て、Configuration ダイアログ・ボックスにアクセスします。次の図は、チャンネル・ブ ロックを示しています。

🛃 🛛 SDLA CI	hannel Initialization			
Channel Se	etup C:	\TekScope\SDLA\input S parameters\sixmeter_A5A6B5B6.s4p		
Channel Off On	Data Input Type FIR Filter S-Parameters Touchstone Format S21 2-port 4+Port Filename: Browse	S-Parameter Specification Derive Fiker From: Single Ended Differential Assign Ports: O1 O2 O3 O4 Tx+ Rx+ O1 O2 O3 O4 Tx- Rx- O1 O2 O3 O4 Tx- Rx- O1 O2 O3 O4	Bandwidth Limit BW: 25 GHz None Auto Custom	Help

データ入力タイプ

S パラメータ・フィルタまたは FIR フィルタのいずれかを使用して、トランスミッション・ チャンネルを表すことができます。FIR フィルタを選択すると、独自の FIR フィルタ・ファイ ルを選択してブロックをシミュレートできます。S パラメータを選択すると、組み込みの Touchstone フォーマットの S パラメータのサンプル・ファイルを選択できます。これらのファ イルは、さまざまな種類のチャンネルおよびフィクスチャに対応しています。また、カスタ ムの S パラメータ・ファイルを読み込むこともできます。チャンネルまたはフィクスチャを シミュレートするには、Browse ボタンをクリックして、適切な規格ファイルを選択します。

標準の2ポートまたは4ポートの Touchstone フォーマットを選択できます。また、S21オプ ションを選択することもできます。このオプションは非標準の Touchstone フォーマット・ ファイルで、S21データが1ポート・ファイル・フォーマットで格納されます。オプションの S21ファイルには、.s1pファイル名拡張子を付ける必要があります。

2ポート S パラメータ・フォーマット

2-Portを選択すると、S21 フォーマット・フィルタまたは S12 フォーマット・フィルタを選 択できます。SDLA システムでは、ブロック・ポートが、S パラメータの測定に使用され るリファレンス・インピーダンスで終端処理されていると想定されています。通常、ポー ト・インピーダンスは 50 Ω です。 4ポート S パラメータ・フォーマット

4-Portを選択すると、データをシングルエンド標準フォーマットで、またはミックスド・モードの差動フォーマットで Touchstone ファイルに格納できます。

差動Sパラメータ: Differential を選択すると、Touchstone ファイルにはシングルエンド・デー タではなく、ミックスド・モードの差動データが格納されているものと仮定されます。

シングルエンドSパラメータ: このモードでは、Assign Ports 機能を使用して、Sパラメータの測定時に使用する入力ブロック・ポートと出力ブロック・ポートを識別する必要があります。チャンネル・ブロックとフィクスチャ・ブロックは、Sパラメータ・ファイルの作成時に使用されるポートの割り当てに一致する必要があります。

4 ポートのシングルエンド S パラメータ・データを使用する場合、ソフトウェアは次の操作 を実行して FIR フィルタを計算します。

- 1. S パラメータ・データをシングルエンド・データからミックスド・モードの差動デー タに変換します。
- 2. 手順1の結果から Sdd21 要素を特定します。
- 3. 必要に応じて、Sdd21 データを DC まで戻って外挿します。
- 4. 必要な場合、停止周波数を波形サンプル・レートのナイキスト・ポイントまで拡張します。
- 5. Sdd21 複素周波数領域データを FIR フィルタに変換します。

4ポート差動:4ポートの Touchstone ファイルにミックスド・モードのSパラメータが含まれ ている場合、Sdd21の実数部と虚数部を含む2列のみが、FIR フィルタの計算に使用されま す。チャンネル・ブロックまたはフィクスチャ・ブロックでは、Map パラメータに Typical ま たは Alternate のいずれかを選択して、Sdd21 特性の位置を選択する必要があります。その他 のマッピングはサポートされていません。次の図は、Typical の差動マップを示しています。

SDLA Fixture De-embed Initialization
Fixture Setup C:\TekScope\SDLA\input S parameters\sas_6meter_mixed mode.s4p
Fixture Data Input Type S-Parameter Specification Bandwidth Limit Off FIR Filter Derive Filter From: Map Sdd21 From:: BW: TBD On S-Parameters Image: Single Ended Image: Differential Image: Single Ended Image: Sin

カスタムSパラメータ・ファイルの作成

IConnect ソフトウェア搭載の当社サンプリング・オシロスコープや、その他同等の回路モデ リング/測定システムを使用すると、実際のトランスミッション・チャンネルとフィクスチャ での測定結果に基づいて独自のSパラメータ・ファイルを作成することができます。フィ ルタの使用法に関する詳細情報については、「<u>フィルタ・ファイルとオプション (24 ペー</u>ジ参照)」を参照してください。

帯域幅制限

帯域幅制限機能により、ブロック・フィルタ結果に対して帯域幅制限の上限を適用できます。作成されるフィルタの阻止帯域減衰量は -60 dB です。

オプションには次のものがあります。

Auto: S21 フィルタまたは Sdd21 フィルタが DC 値から -14 dB 下がった点を決定し、その周波 数を帯域幅制限の上限として設定します。

Custom: 必要な帯域幅フィルタを指定します。Auto 帯域幅フィルタが入力データに適さない 場合は、Custom オプションが最も有効です。

次の手順に従って、カスタム・フィルタを作成します。

- 1. Custom ボタン、Filter ボタンの順にクリックします。
- 2. BW フィールドに必要な値を設定します。
- **3.** Apply をクリックして、帯域幅フィルタを生成します。確認のためにフィルタ応答がプロットされます。Export ボタンをクリックすると、FIR フィルタを保存できます。
- 4. Close ボタンをクリックして戻ります。

注: このソフトウェアでは帯域幅フィルタを使用しません。解析用の帯域幅全体が、ソース 波形のサンプル・レートに対するナイキスト・ポイントとなります。

帯域幅制限の使用に関する注意

None オプションは、チャンネルをエンベデッドする場合に最適です。

フィクスチャまたはチャンネルをディエンベデッドする場合、有効な結果を得るためには、 通常、帯域幅制限フィルタが必要になります。このような場合、帯域幅制限フィルタによ り高周波がフィルタリングされてノイズを低減できます。

エンファシス・ブロック

エンファシス・ブロックは、ほとんどのトランスミッタで追加されたエンファシスまたはデ エンファシスを除去または追加します。標準の3dB設定を使用したり、任意のdB設定を入 力することができます。さらに、トランスミッタ・エンファシスをより的確に表すFIRフィ ルタを読み込むこともできます。Txモードで接続している場合、ソース信号に対するフィル タリング結果を表示するには、テスト・ポイントTpB(Math3波形)を選択します。Rxモー ドで接続している場合、ソース信号に対するフィルタリング結果を表示するには、テスト・ ポイントTpC(Math4波形)を選択します。エンファシス FIR フィルタは、オシロスコー プのサンプル・レートで適用されます。 フィルタ応答には次の4つの種類があります。

- デエンファシスの追加 低周波成分を減衰して、チャンネル経由の高周波損失を補正する。
- デエンファシスの除去 別の回路ブロックやデバイスにより追加されたデエンファシスの 効果を除去する。
- プリエンファシスの追加 高周波成分を増幅して、チャンネル経由の高周波損失を補 正する。
- プリエンファシスの除去 シリアル・トランスミッタ回路に追加されたプリエンファシスの効果を除去する。

各オプションには、特定の成分の効果の除去、または特定の成分のシミュレートを行う機能 があります。

注: フィルタのセットアップは、エンファシス・タイプである必要はありません。システム をより適切にシミュレートするのに必要であればタイプを問いません。

帯域幅制限

フィルタを作成して帯域幅の上限を設定すると、エンファシス・フィルタにより生成される 帯域幅を制限することができます。Custom ボタン、Filter ボタンの順にクリックします。ダイ アログ・ボックスに、6.25 GHz などの必要な制限値を入力して、適用します。Emphasis ダイ アログ・ボックスに戻り、構成を完了します。OK をクリックすると、メインの Signal Path ウィンドウに戻ります。

ファイルからのフィルタの読み込み

FIR フィルタ・ファイルから、エンファシス・ブロックをセットアップすることができます。 Read From File ボタンをクリックして、フィルタ・ファイルの場所を参照します。

フィルタ応答に対する信号ビット・レートの影響

ビット・レートは、ソース信号のビット・レートです。ビット・レートは、エンファシス・ フィルタの周波数応答内の増減範囲を決定します。たとえば、信号にデエンファシスを追 加すると、図のような周波数応答が得られます。振幅周波数応答は周期的であり、その周 期はビット・レートにより決まります。フィルタの振幅応答のピーク・ツー・ピーク値 は、選択した dB 値により設定されます。

フィルタ・ファイル・フォーマットの詳細については、「<u>フィルタ・ファイルとオプショ</u> <u>ン (24 ページ参照)</u>」を参照してください。

イコライザ・ブロック(オプション SLA 型で使用可能)

イコライザ・ブロックは、データ・ストリームのインテグリティを回復し、エンベデッドさ れたクロックを再生します。シリアル・データ・レシーバの最低許容レベルで動作するとい う点において、"リファレンス・レシーバ"として使用できます。SDLA イコライザは、連携 する一組のイコライザ(適応フィード・フォワード・イコライザ(FFE)と判定帰還型イコラ イザ(DFE))で構成されます。この2つでチャンネル障害とノイズを補正します。

次の図では、Equalizer が有効化され、Source が Math4 波形に設定されています。これは、 チャンネル・ブロックの出力(TpC)です。

Equalizat	tion			
Config	Source		Equalizer 🗹	
Taps	MATH4 💌	FFE Taps 0	DFE Taps 3	PLL Type 🛛 1 💿 2
TrainSeq		Sample/bit 1	Amplitude (V) 0.153	PLL BW (MHz) 3.6
Error	Rate (Gb/s)	Ref Tap 1	Threshold (V) 0.0003(PLL Damp 0.7
	6.0	Use trainSeq 🗌	Autoset Voltages 🔽	Clk Delay (ps) 0.0
		 Auto adapt taps 	O Adapt from current t	taps 🔵 No adapt
Ì	Tektronix :	Single run completed.		

シリアル・データ・リンク解析の印刷版ヘルプ

データとクロック信号を再生するには、正確なビット・レートを入力する必要があります。 ソフトウェアは、位相ロック・ループ(PLL)回路をエミュレートして、クロック・リカバ リを実行します。テストするシリアル規格に定義されているデータ・レートを使用してく ださい。新しいシリアル回線のテストでは、トランスミッタ付近のビット・レートの測定 が必要になる場合があります。

イコライザは、オシロスコープのソース波形に対して実行され、デフォルトで TpC を使用します。イコライザは、Ref4 波形レコードに静的データ、Ref3 波形レコードにクロック波形を出力します。これらの波形を更新するには、イコライザ・ブロックで Run EQ ボタンを選択するか、メインの Signal Path ウィンドウで Apply ボタンを選択します。

イコライザの実行

次の手順では、追加調整が必要かどうかを判断するための、イコライザの初期実行の方 法について説明します。

- Config タブで、FFE タップと DFE タップを入力し、テストする規格の定義に従って レシーバの PLL フィールドを構成します。または、メインの Signal Path メニューの Standards ボタンを使用して、規格セットアップ・ファイルを読み込むこともできます。 規格セットアップ・ファイルにより、すべてのイコライザ・パラメータが規格の定義 に従って設定されます。
- 2. TpC 出力、計算された波形、または Math4 でない場合、入力を選択します。規格ファイル でビット・レートが設定されていない場合は、ビット・レートを設定します。
- 3. Run EQ ボタンをクリックします。
- 4. 出力波形を表示するには、オシロスコープ画面に移動します。Ref4 波形はデータ信号 であり、TpD R4 というラベルが付きます。Ref3 波形はクロック信号であり、Clk R3 と いうラベルが付きます。

イコライザの調整による信号リカバリの向上

データとクロック信号を再生するには、イコライザ設定の調整が必要になる場合がありま す。ハードウェア・レシーバの最適化に使用されている多くの方法が、イコライザに利 用できます。

Equalizer 🔽								
FFE Taps 0	DFE Taps 3	PLL Type 🛛 🔿 1 💿 2						
Sample/bit 1	Amplitude (V) 0.153	PLL BW (MHz) 3.6						
Ref Tap 1	Threshold (V) 0.00030	PLL Damp 0.7						
Use trainSeq 🛛 🗌	Autoset Voltages 🛛 🗹	Clk Delay (ps) 0.0						
 Auto adapt taps 	O Adapt from current t	taps 🔿 No adapt						

次のパラメータのほとんどが、シリアル・データ規格で定義されています。

FFE Taps: フィード・フォワード・イコライザのタップ数は、通常、シリアル・データ規格 で定義されている数に設定します。FFE Taps=0°という値は、FFE に、タップ係数が1に 固定された1つのタップがあることを意味しており、FFE がオフであることを示してい ます。デフォルト値は0です。

Sample/bit: 1ビットあたりの FFE タップ数を指定します。1より大きい数に設定すると、フラ クショナル・スペースを持つ FFE であることを示します。デフォルト値は1です。

Ref Tap: FFE のリファレンス・タップは、プリカーサ・タップ数を示します。1 ビットあたりの FFE タップ数の倍数より1 だけ大きい数に設定する必要があります。デフォルト値は1 です。

DFE Taps: 判定帰還型イコライザのタップ数は、通常、シリアル・データ規格で定義されている数に設定します。たとえば、SASの設定は3になります。

Amplitude: イコライザのターゲット出力振幅です。Autoset Voltages を選択している場合、 適応ルーチンによりこの値が自動的に調整され、データ信号のリカバリが最適化されま す。デフォルト値は 0.15 V です。

Threshold: 信号の中間電圧レベルです。これは、ロジック・レベル間の過渡値に相当することもあります。バイアスされた信号の場合は、中間レベル値を入力します。差動信号の場合は、0Vに近い値にする必要があります。デフォルト値は0Vです。正しい電圧が不明なときは、Autoset Voltages 機能を使用して最適値を決定してください。

PLL Type: Type I と Type II の PLL クロック・リカバリをサポートしています。クロック・リカ バリに使用する PLL の種類は、シリアル規格ごとに決まっています。

PLL BW: PLL のループ帯域幅は、PLL のエラー変換機能の -3 dB 周波数に定義されています。 この値はシリアル規格で指定されています。

PLL Damp: Type II PLL の減衰比です。この値はシリアル規格で指定されています。

Clk Delay (ps): Clk Delay は、PLL 結果の後に再生されたクロックに追加された特定の遅延で す。この値で、クロック・オフセットを調整してイコライゼーションの結果を最適化し、 最適なデータ・リカバリを実現します。

Use TrainSeq: イコライザを有効にして、TrainSeq タブで長さが定義された特定のパターン に対して適応ルーチンを最適化します。

Autoset Voltages: このオプションを有効にすると、イコライザの適応ルーチンにより Amplitude 値と Threshold 値が調整され、データとクロックのリカバリが最適化されます。

Auto adapt Taps: 適応ルーチンが、初期タップ設定を識別して開始され、これらの値を調整してデータとクロックのリカバリを最適化します。

Adapt from Current taps: 適応ルーチンが、初期タップ設定を使用し、これらの値を調整して データとクロックのリカバリを最適化します。初期タップ設定は、シリアル規格の設定、ま たは初期テストで保存された設定である可能性があります。

No Adapt: イコライザが、現在のタップの値として、入力値または以前の適応セッションの値 を使用します。入力された値を変更せずに使用します。このオプションは、Taps タブで既知 のタップ・ファイルを読み込んで、以前に開始したテストを再開する場合に役立ちます。

Taps タブの設定

次の図では、FFE タップは 1 という値を持ち、DFE フィールドにはそれぞれ値の異なる 3 つ のタップを示しています。この状態は、Config タブで FFE を 0 に設定し、DFE を 3 に設定し た場合の結果を表しています。これが Auto adapt Taps の実行結果であった場合、後でイコラ イザの実行で使用できるように、結果をタップ・ファイルに保存できます。

🙏 Equalizat	tion						
Config		FFE taps			DFE taps		Tap file
Taps	1:	1.000	^	1: 2: 3:	0.032 0.011 0.003	~	
TrainSeq Error							heal
			~			~	Save
l							
	Tektr	onix Single r	run complete	d.			

データとクロックのリカバリのトラブルシューティング

クロック・リカバリが失敗した場合、ビット・レートが予期しない値になる可能性がありま す。1 つの解決策として、できるだけトランスミッタの近くでビット・レートを測定する方 法があります。オシロスコープ上で実行されている DPOJET ソフトウェアを使用すると、 ビット・レートを正確に測定できます。

FFE Taps、DFE Taps、および PLL に定義された規格値が入力されており、データとクロック のリカバリが正常に実行されていない場合は、次のステップとして、適応の設定を使用し ます。初期設定を変更せずに、Config タブで Autoset Voltages および Adapt from current taps を選択します。Run EQ ボタンをクリックし、生成される波形をチェックします。より適 切な結果または許容できる結果が得られた場合には、適応ルーチンで設定されたタップの 値と電圧をメモします。

別の方法として、TrainSeq 機能を使用する方法があります。この機能は、テスト信号をイコ ライザで再実行する前に、イコライザが正しいビット・シーケンスを識別するのに役立ちま す。次の図は、イコライザの TrainSeq タブを示しています。

- イコライザの Config タブで、テストする信号と同じデータ・パターンとクリーンなアイ開 ロパターンを持つ信号をイコライザのソースとして設定します。これに相当する信号とし ては、トランスミッタの近くで取り込まれた信号、元の状態より速度を落とした信号、ト ランスミッタ・エンファシスによる補正でアイ開口を改善させた信号が考えられます。
- 2. Config タブの Use TrainSeq ボックスをクリックします。
- 3. TrainSeq タブに移動し、規格に従って適切な Pattern Length を設定します。
- **4.** Detect ボタンをクリックします。左側のフィールドにビット・シーケンスが表示されます。これは元の信号と同じビット・シーケンスです。
- 適切なビット・シーケンスが設定されたら、Config タブに戻り、元のテスト・ソースを 選択します。
- 6. Use TrainSeq ボックスが有効になっていない場合には、選択(有効化)します。前のス テップでビット・レートを変更している場合、適切なビット・レートを入力します。Run EQ ボタンをクリックします。
- オシロスコープ画面で結果をチェックします。再生されたデータ信号が表示されますが、 規格の仕様とは一致していないこともあります。再生されたデータに関する問題を修正す るために、その他の設計上の問題に対処しなければならない場合があります。

もう1つの調査領域は、チャンネル・フィルタとフィクスチャ・フィルタが適切かどうかということです。これらのフィルタのプロットを見直して、高周波ノイズやその他のアベレーションが信号を破損していなかどうかを確認します。帯域幅制限フィルタを使用して、このようなノイズを低減します。

フィルタ・ファイルとオプション

SDLA ソフトウェアの処理ブロックはすべて、同じ種類のフィルタ・ファイルから動作しま す。回路ブロックでは、当社で用意した S パラメータ・ファイル、あるいはお客様が用意さ れる S パラメータまたは FFE フィルタ・ファイルのいずれかを使用します。フィルタの場所 と、その他のサポート・ファイルについては、「<u>アプリケーション・ファイルの種類と場</u> 所 (14 ページ参照)」を参照してください。

フィルタ・ファイルのフォーマット

FIR ブロック・フィルタは、オシロスコープ演算機能に必要な arbfilt フォーマットで、ASCII ファイルとして保存されます。

FIR フィルタ・ファイルの先頭エントリはサンプル・レートで、他のエントリはフィルタ係数 です。また、arbfilt フォーマットは、単純に、定義されたサンプル・レートを含まない、フィ ルタ係数の列または行にすることもできます。作成された FIR フィルタ・ファイルは、ソフ トウェアにより SDLA\output filters ディレクトリに保存されます。

フィルタの相互作用

ブロック・フィルタ、テスト・ポイント・フィルタ、および BW 制限フィルタは、SDLA ソ フトウェア・モデル内のすべての相互作用をサポートするために作成されます。フィルタ処 理ダイアグラムは、さまざまな定義済みフィルタの処理順序を示します。解析機能により、 イコライザが TpC 波形に対して実行され、その出力データとクロック信号が DPOJET ソフト ウェア・アプリケーションに渡されます。このアプリケーションで、データ信号でアイが十 分に開き、シリアル規格を満たしていることを確認できます。DPOJET には、信号の解析に 有用な測定セットが多数用意されています。

TpA、TpB、および TpC のテスト・ポイント・フィルタは、これらのフィルタを、次の表に示 す回路ブロック・フィルタの組み合わせに畳み込むことによって作成されます。

表 1: テスト・ポイント・フィルタの畳み込み

Rx または Tx の選択	テスト・ポイント	回路ブロック(有効化されて いる場合)
Тх	ТрА	フィクスチャをディエンベ デッド
	ТрВ	フィクスチャをディエンベ デッド
		エンファシス
	ТрС	フィクスチャをディエンベ デッド
		エンファシス
		チャンネルをエンベデッド

Rx または Tx の選択	テスト・ポイント	回路フロック(有効化されて いる場合)
Rx	ТрА	フィクスチャをディエンベ デッド
	ТрВ	フィクスチャをディエンベ デッド エンファシス チャンネルをディエンベデッ ド
	ТрС	フィクスチャをディエンベ デッド エンファシス

表 1: テスト・ポイント・フィルタの畳み込み (続き)

フィルタ・データの外挿

S パラメータ・ファイルが 0 Hz (DC) から開始されていない場合、またはフィルタに必要 なソース波形のナイキストに拡張されていない場合、SDLA ソフトウェアは既存のデータ を外挿して帯域幅ギャップを埋めます。

DC ~開始周波数まで: ソフトウェアでは、応答特性の最初の2つの振幅データ・ポイントを 使用して、0Hzまでのスロープを計算します。また、位相をアンラップして、位相応答を 直線的に外挿し、定義されたスロープに沿ってデータ・ポイントを生成します。このデー タは、元のSパラメータ・データの先頭に追加されます。

帯域幅上限の拡張: ソフトウェアは必要に応じて、停止周波数を、ソース波形サンプル・ レートのナイキスト・ポイントまで拡張できます。これは、停止周波数から開始される振幅 および位相応答データ内での、複素数データ・ポイントのポイント複製により行われます。

テストの実行

このセクションでは、DPOJET ソフトウェアを使用した、ブロックの構成、シミュレーションの実行から、SDLA テスト・ポイントでのジッタおよびアイ解析に至るまで、推奨される順序を説明します。

- フィクスチャとオシロスコープを、トランスミッション・チャンネルのトランスミッタ(Tx)端またはレシーバ(Rx)端の DUT に接続します。Rx または Tx から適切な接続を選択します。
- ソース信号をオシロスコープ入力チャンネルに接続します。信号を忠実に取り込めるように、オシロスコープのトリガ、垂直および水平の各設定を調整します。オシロスコープのオートセット機能を使用すると、この調整を簡単に行えます。
- シリアル規格の適合性テストを予定している場合は、Standards ボタンをクリックして、適切なセットアップ・ファイルを参照します。規格ファイルは、すべての SDLA ソフトウェアのパラメータを一度に設定します。ソースが CH1 でない場合、メインの Signal Path

ウィンドウで適切なソースを選択します。規格セットアップ・ファイルを読み込んだ ら、Apply ボタンをクリックして、フィルタ作成が完了するのをステータス・バーで監 視し、完了したら手順 10 に進みます。

- 4. 規格セットアップ・ファイルまたは他のセットアップ・ファイルを使用しない場合は、必要な処理ブロックと、生成するテスト・ポイント(Tp[ABC])を有効化します。帯域幅制限フィルタを必要に応じて調整します。
- 5. フィクスチャ・ブロックを使用する場合、Sパラメータまたは FIR フィルタ・ファイルを 探して読み込み、信号に対するその影響をディエンベデッドします。カスタムの Sパラ メータまたは FIR フィルタ・ファイルがある場合は、それを読み込みます。必要に応 じて帯域幅制限フィルタを調整します。
- チャンネル・ブロックを使用する場合、適切なSパラメータまたは FIR フィルタ・ファイルを探して読み込みます。必要に応じて帯域幅制限フィルタを調整します。
- エンファシス・ブロックを使用する場合、トランスミッタ回路に適した dB 値と正確な ビット・レートを入力します。代わりに、FIR フィルタ・ファイルを探して読み込み、信 号を調整することもできます。必要に応じて帯域幅制限フィルタを調整します。
- 8. イコライザ・ブロックを使用する場合、FFE/DFE とクロック・リカバリ・パラメー タを構成します。
- 9. Apply ボタンをクリックすると、各ブロックと選択したテスト・ポイントに対して FIR フィルタが生成されます。下部のステータス・バーに、処理が完了したことが示され るまで待ちます。
- 10.Plots ボタンをクリックして、ブロックとテスト・ポイントの時間領域および周波数領域の 応答を調べ、期待される応答が得られているかどうかを確認します。再度 Plot ボタンを押 すと、プロットが削除されます。ブロック構成をすぐに修正して再度 Apply ボタンをク リックすると、フィルタを再生成できます。
- 11.DPOJET がインストールされ、正しく実行されるかどうかを確認します。DPOJET を実行 したままにしておくことができます。SDLA ソフトウェアは、必要なときに必要に応じ て DPOJET ソフトウェアを起動します。
- 12.Analyze ボタンをクリックして、DPOJET ソフトウェアに切り替えて(Alt キーと Tab キー を使用)、シミュレーションの結果を解析します。DPOJET は、ジッタおよびアイ解析に よりテスト・ポイントの波形を解析するように設定されます。必要に応じて SDLA ソフト ウェアのセットアップを修正し、手順 7 ~ 10 を繰り返して、テストを完了します。
- 13.オシロスコープ画面に切り替えて(Alt キーと Tab キーを使用)、有効化したテスト・ ポイントの波形を観察します。

これで SDLA ソフトウェアの実行手順が完了しました。各ブロックには、この手順で説明さ れていない多くの構成パラメータがあります。イコライザは、データとクロック信号のリカ バリを大幅に向上させるための機能を備えています。各処理ブロックの詳細を調べ、SDLA ソフトウェアを最大限に活用してください。

索引

記号と番号

2 ポート S パラメータ, 15 4 ポート S パラメータ, 16 4 ポート差動, 16

ENGLISH TERMS

Adapt from Current taps, 22 Amplitude, 22 Analyze $\pi \mathbf{y}$, 6 Apply $\pi \mathbf{y}$, 6 Auto adapt Taps, 22 Auto 帯域幅制限, 17 Autoset Voltages, 22 Clk Delay, 22 Custom 带域幅制限, 17 DC ~ 開始周波数まで、26 DFE Taps, 21 DPOJET 使用法, 6 DPOJET ソフトウェア, 6 Example waveforms 場所,14 FFE Taps, 21 FIR フィルタ選択, 15 FIR フィルタの保存, 14 FIR フィルタ・フォーマッ h, 24 Input filters 場所,14 Math4 波形, 21 No Adapt, 23 Output filters 場所,14 保存、14 PLL BW, 22 PLL Damp, 22 PLL Type, 22 R3 ラベル付きクロック波 形,21 R4 ラベル付きデータ波形, 21 Recall $\pi s > 5$ Ref Tap, 21 Rx 構成, 8 Sample/bit, 21

Save recall 場所、14 Save $\pi \mathbf{y}$, 5 Sdd21, 16 SDLA ソフトウェアの再イン ストール,3 Signal Path ウィンドウ, 3 standards 場所,14 Standards $\pi p \gamma$, 5 Taps タブの設定, 23 TekScope オシロスコープへの 切り替え、4 Threshold, 22 TpA, 8 TpB, 8 TpC, 8 TrainSeq, 22 TrainSeq タブ, 23 Tx 構成, 8 Use TrainSeq, 22 Web サイト経由でのソフト ウェアの更新,2

こ

イコライザ調整,21 イコライザの実行,21 イコライザの調整,21 イコライザ・ブロック,19 位相ロック・ループ,20 インストール,3

え

エンファシス・ブロック, 17

お

オプション・キー要件,3

か

概要,1 回路ブロック 有効化,7 回路ブロックの有効化, 7 回路ブロック・フィルタ, 5

き

規格,5 規格の読み込み,5 基本操作,15

<

クロック信号 Clk R3, 21 クロック・リカバリ, 20 トラブルシューティン グ, 23 クロック・リカバリのトラブ ルシューティング, 23

Z

更新 ソフトウェア, 2

さ 差動 S パラメータ, 16

し

時間領域プロット,9 周波数領域プロット,9 出力波形 有効化,8 出力波形の有効化,8 シングルエンドSパラメー タ,16 信号ビット・レート,19 信号リカバリ,21 信号リカバリの向上,21

せ

ー 製品の概要,1 設定の保存,5 セットアップ,5 セットアップの保存,5 セットアップの呼び出し,5 **そ** ソフトウェアの更新, 2

た

帯域幅上限の拡張,26 帯域幅制限,17 帯域幅制限に関する注意,17 帯域幅制限の使用法,17 帯域幅の要件,3 タップ・ファイル,23

ち

チャンネル FIR フィルタ, 14 チャンネル・ブロック, 15

て

ディレクトリ・パス,2 デエンファシス,18 テストの実行,26 テスト・ポイント,8 テスト・ポイント FIR フィル タ 保存,8 テスト・ポイント・フィル タ,25 テスト・ポイント・フィルタ の畳み込み,25 テスト・ポイント・プロッ ト,9 データ信号 R4,21 データ入力タイプ,15 データ・クロックのリカバ リ,21

は

はじめに,3 判定帰還型イコライザ,19

ひ

ビット・レート,23 ビット・レートとフィルタ応 答,19 表記規則,2

ふ

ファイルの種類と場所,14 フィクスチャ FIR フィルタ,14 フィクスチャ・ブロック,15 フィクスチャ・ブロックと チャンネル・ブロック,15 フィルタ応答,19 フィルタ構成の確認,9 フィルタ構成の検証,9 フィルタ入力タイプ,15 フィルタの相互作用。25 フィルタの畳み込み、25 フィルタ・タイプ、15 フィルタ・データ、26 フィルタ・データの外挿.26 フィルタ・データの拡張、26 フィルタ・ファイル、24 フィルタ・ファイルのフォー マット, 24 フィード・フォワード・イコ **ライザ**, 19 プリエンファシス, 18 ブロックの構成、5 プロット. 9 プロットの色分け、11 プロットの表示,9 プロット・ウィンドウのツー ル,13

ほ

保存、設定,5

よ

要件,3

1

リファレンス・レシーバ, 19