SDLA 직렬 데이터 링크 분석 온라인 도움말

www.tektronix.com 077-0215-00

Copyright © Tektronix. All rights reserved. 사용 계약한 소프트웨어 제품은 Tektronix나 그 계열사 또는 공급업체가 소유하며 대한민국 저작권법과 국제 조약에 의해 보호됩니다.

Tektronix 제품은 출원되었거나 출원 중인 미국 및 외국 특허에 의해 보호됩니다. 본 출판물에 있는 정보는 이전에 출판된 모든 자료를 대체합니다. 본사는 사양과 가격을 변경할 권리를 보유합니다.

TEKTRONIX 및 TEK는 Tektronix, Inc.의 등록 상표입니다.

컴파일된 온라인 도움말 부품 번호: 076-0173-00.

온라인 도움말 버전: 1.0

2008년 10월 22일

Tektronix 연락처

Tektronix, Inc. 14200 SW Karl Braun Drive P.O. Box 500 Beaverton, OR 97077 USA

제품 정보, 영업, 서비스 및 기술 지원에 대한 문의:

- 북미지역에서는 1-800-833-9200번으로 전화하시면 됩니다.
- = 기타 지역에서는 www.tektronix.com에서 각 지역 담당자를 찾으실 수 있습니다.

목차

시작

제품 개요	1
소프트웨어 업데이트	2
웹 사이트를 통한 업데이트	2
규약	2

시작하기

요구 사항 및 설치	3
신호 경로(Signal Path) 창	
신호 경로(Signal Path) 창 개요	3
블록 구성	5
회로 블록 사용	7
시험 포인트를 선택하여 출력 파형을 사용하도록 설정	8
Tx 또는 Rx 구성 선택	8
주파수 및 시간 도메인 플롯 표시	9
애플리케이션 파일 유형 및 위치	14

작동 기본 사항

고정기(Fixture) 및 채널(Channel) 블록	15
엠퍼시스(Emphasis) 블록	17
이퀄라이저(Equalizer) 블록(옵션 SLA와 함께 사용 가능)	19
이퀄라이저 실행	20
이퀄라이저를 조정하여 신호 복구 개선	20
필터 파일 및 옵션	23
테스트 실행	25

색인

제품 개요

SDLA 소프트웨어는 SAS 및 USB3과 같은 업계 전자 표준에 따라 직렬 데이터 링크 디자인을 테스트하는 데 도움이 됩니다. 네 가지 회로 블록인 고정기(Fixture), 엠퍼시스(Emphasis), 채널 (Channel) 및 이퀄라이저(Equalizer) 중 하나가 시뮬레이션 처리에 포함될 수 있습니다.

일정한 진폭을 유지하는 응답, 선형 단계 응답 및 낮은 지터 노이즈 층을 통해 DPO/DSA70000 시리즈 오실로스코프는 직렬 데이터 링크를 설계하는 엔지니어에게 이상적인 도구로 자리잡 게 되었습니다.

SDLA 소프트웨어는 다음 기능을 제공합니다.

- 공통 시스템 구성 요소를 시뮬레이트하는 네 개의 구성 가능한 블록으로 이루어진 집합을 사용하여 직렬 표준을 설계하고 테스트할 수 있습니다. SDLA 소프트웨어는 SATA/SAS Gen3.0, QPI, PCI-Express 및 디스플레이 포트 표준에서 작동합니다.
- 채널 및 고정기 S 매개 변수 파일 .s1p (S21), .s2p 또는 .s4p(싱글 엔드 또는 차동)를 모두 지 원합니다.
- 사용자 대역폭 제한 필터를 생성하거나 효율적인 대역폭 제한을 자동으로 설정합니다.
- 시험 포인트 필터 특성 및 블록 필터 특성의 플롯을 생성합니다.
- 이퀄라이저(Equalizer) 블록으로 참조 수신기를 시뮬레이트하여 수신기로 들어가는 신호 의 품질을 테스트합니다.
- DPOJET 소프트웨어에 직접 연결하여 아이 다이어그램 및 지터 측정값으로 링크 품질을 분 석합니다.

다음 그림은 주 SDLA 소프트웨어 메뉴를 보여 줍니다.

*	Tektronix Serial	Data Link Analysis		
Si	gnal Path Setup			
ſ	Oscilloscope Source Ch1 🗸	Tx Rx Fixture [⊙]	Save	Apply
	Bit Rate (Gb/s)	TPA M2	Recall	Plot
	Average	Emphasis TpB M3 Channel FpC M4 Equalizer TpD R4 Channel Channe	Standards	Analyze
	SR: 25GS/s	Press Apply to update filters	Help	About

고정기(Fixture) 및 회로(Circuit) 블록은 소스 신호에 대한 효과를 포함하거나 제외합니다. 모든 블록은 클릭한 후 구성할 수 있습니다. 시험 포인트(TpA, TpB 및 TpC)는 소스 신호에 대한 블 록의 효과를 보여 줍니다.

처리 및 분석은 능동적으로 획득된 파형 또는 저장된 파형에 대해 실행할 수 있습니다. SDLA 소 프트웨어를 사용하려면 오실로스코프 소프트웨어가 실행되고 있어야 합니다. 신호 경로 설정(Signal Path Setup) 창에 대한 자세한 내용을 보려면 여기를 클릭하십시오 (3 페이지의 참조).

소프트웨어 업데이트

SDLA 소프트웨어를 다시 설치해야 하는 경우 오실로스코프와 함께 제공되는 애플리케이션 소프 트웨어 DVD(옵션)에서 설치할 수 있습니다.

웹 사이트를 통한 업데이트

Tektronix 웹 사이트에서 주기적인 소프트웨어 업그레이드를 확인할 수 있습니다.

업그레이드가 있는지 확인하려면

- 1. Tektronix 웹 사이트(<u>www.tektronix.com/software</u>)에서 소프트웨어 다운로드(Software Downloads) 페이지로 바로 이동합니다.
- 2. 키워드별 검색(Search by keyword) 상자에 제품 이름을 입력하여 사용 가능한 소프트웨어 업 그레이드가 있는지 확인합니다.
- 3. 해당 소프트웨어 제목을 클릭하고 애플리케이션 정보를 검토하여 장비 모델과 호환되는지 확 인합니다. 파일 크기를 적어둔 후 파일 다운로드(Download File) 링크를 클릭합니다.

규약

온라인 도움말은 다음 규약을 따릅니다.

- DUT는 피검소자를 의미합니다.
- 메뉴 항목 뒤에 세 개의 점(...)이 있으면 메뉴 항목에서 하위 메뉴가 열림을 의미합니다.
- 한 단계에서 연속적으로 선택해야 경우 ">" 구분 기호가 메뉴에서 하위 메뉴 및 메뉴 옵션으로의 경로를 나타냅니다.
- 지원 파일에 대한 디렉토리 경로는 SDLA\directory_name으로 짧게 표시됩니다. 전체 제 품 경로는 C:\TekApplications\SDLA입니다.

요구 사항 및 설치

SDLA 소프트웨어는 출고되기 전에 최신 Tektronix DPO/DSA70000 시리즈 오실로스코프에 설치됩니다. 이 설치를 통해 전기능 SDLA 소프트웨어를 5가지 방식으로 자유로이 사용할 수 있습니다.

적절한 작동을 위한 요구 사항

SDLA 소프트웨어를 사용하려면 싱글-샷 대역폭이 4.0GHz 이상인 DPO/DSA70000 시리즈 오실 로스코프가 필요합니다.

SDLA 소프트웨어는 JIT3v2 소프트웨어 또는 RT-EYE 소프트웨어와 동시에 실행할 수 없습니다. SDLA 소프트웨어를 자체적으로 실행하여 FIR 필터를 생성하고 시험 포인트 연산 파형을 생 성할 수 있습니다. 그런 다음 SDLA 소프트웨어를 닫고 JIT3v2 또는 RTEYE 소프트웨어를 시 작하여 시험 포인트 및 데이터 파형을 분석합니다. SDLA 소프트웨어는 DPOJET 소프트웨 어와 동시에 실행할 수 있습니다.

제품 릴리스 노트에서 호환되는 오실로스코프 소프트웨어 버전을 참조하십시오.

옵션 키 요구 사항

애플리케이션에 대한 유효한 옵션 키가 있어야 합니다. 이 키가 없을 경우 5가지 무료 평가판 을 사용하시면 됩니다. 자세한 내용은 Tektronix 애플리케이션 엔지니어 또는 계정 관리자 에게 문의하십시오.

SDLA 소프트웨어 다시 설치

최신 버전을 설치하려면 다운로드 정보가 제공되는 <u>웹 사이트를 통한 업데이트 (2페이지의 참조)</u> 항목으로 이동하십시오.

신호 경로(Signal Path) 창 개요

신호 경로(Signal Path) 창은 SDLA 소프트웨어의 최상위 제어판입니다. 여기에서 회로 블록을 사용하여 시스템 구성 요소를 모델링할 수 있습니다. 또한 고정기(Fixture)가 회로에 연결되는 위치를 결정하는 Rx 및 Tx 모드 중에서 선택할 수 있습니다. 이 그림은 모든 블록이 활성화된 모습을 보여 줍니다. TpA와 같은 시험 포인트는 활성화된 회로 블록을 적용한 이후의 신호를 보여 줍니다. 회로 블록와 해당 사용 방식에 대해서는 이 절의 개요 부분과 작동 기본 사항 절에 자세히 설명되어 있습니다.

4	Tektronix Serial	Data Link Analysis		
Si	gnal Path Setup			
ſ	Oscilloscope Source Ch 1 v Bit Rate (Gb/s)	Tx Rx Fixture •	Save	Apply
	6	<u>TpA M2</u>	Recall	Plot
	Average	Emphasis TpB M3 Channel FpC M4 Equalizer TpD R4 Channel Channe	Standards	Analyze
	SR: 25GS/s	0% 100% Press Apply to update filters	Help	About

다음 네 가지 회로 블록이 있습니다.

- 고정기(Fixture) 소스 고정기를 제외합니다.
- 채널(Channel) 전송 회선 또는 장치를 시뮬레이트합니다.
- 에퍼시스(Emphasis) 송신기에 의해 추가된 프리엠퍼시스 또는 디엠퍼시스를 추가 또는 제 거합니다.
- 이퀄라이저(Equalizer)(옵션) 구성 가능한 데이터 및 클럭 복구 기능으로 참조 수신기를 시뮬레이트합니다.

SDLA 소프트웨어와 TekScope 오실로스코프 애플리케이션 간 이동

소프트웨어 애플리케이션 사이를 가장 빠르게 이동하는 방법은 키보드의 Alt 키를 누른 채로 Tab 키를 눌러 애플리케이션을 선택하는 것입니다.

소스 파형 선택

SDLA 소프트웨어는 오실로스코프에 표시되는 파형에서만 작동합니다. 능동적으로 획득된 채널 신호, 연산 파형 및 참조 파형 중에서 선택할 수 있습니다. 실시간으로 획득된 파형의 경우 해당 채 널 번호를 선택합니다. 저장된 파형에 대해 작업을 수행하려면 오실로스코프 디스플레이로 파 형을 호출합니다. 그런 다음 SDLA 소프트웨어의 오실로스코프 소스(Oscilloscope Source) 드 롭다운 목록에서 Ref1과 같은 참조 파형 이름을 선택합니다. SDLA 소프트웨어에 의해 생성 된 연산 파형은 소스로 사용할 수 없습니다.

평균(Average) 기능 사용

평균(Average) 버튼을 클릭하면 SDLA 소프트웨어에서 설정한 평균 개수에 맞게 오실로스코 프 평균 모드가 설정됩니다. 능동적으로 획득된 소스(CH1)는 처리 블록에서 나온 파형처럼 평 균이 계산됩니다. 이와 같이 계산된 파형 또는 연산 평균화된 파형은 오실로스코프 디스플레 이에 표시됩니다. 특성을 검토하거나 측정할 때 평균이 산정되므로 신호의 노이즈가 감소합 니다. 고주파 노이즈는 제외 처리 블록을 실행할 때 나타날 수 있습니다. 평균을 산정하면 결과 파형을 더 잘 보고 측정할 수 있습니다.

설정 저장 및 호출

저장(Save) 버튼을 사용하여 현재의 모든 SDLA 소프트웨어 설정을 .sdl 파일 확장자를 갖는 파일 에 저장할 수 있습니다. 호출(Recall) 버튼을 사용하면 저장된 설정 파일을 호출하여 소프트웨어 를 이전 구성으로 되돌릴 수 있습니다. 설정 내용은 SDLA\Save recall에 저장됩니다.

주석노트. 호출된 설정에 대한 적절한 소스 파일을 제공해야 합니다.

표준 로드

표준(Standards) 버튼을 클릭하여 Tektronix에서 기존 직렬 데이터 표준을 테스트하기 위해 제공한 사전 정의된 설정을 로드할 수 있습니다. 표준 파일은 SDLA/standards에 있습니다.

블록 구성

그림과 같이 신호 경로(Signal Path) 메뉴의 처리 블록을 클릭하여 구성 컨트롤에 액세스합니다. 각 블록을 개별적으로 구성하지 않고, 표준(Standards) 버튼을 클릭하고 자주 사용되는 직렬 표준 에 대한 표준 설정 파일을 로드할 수 있습니다. 모든 회로 블록은 표준에 의해 정의된 대로 구성됩 니다. 설정 파일을 로드한 후에 매개 변수를 변경할 수 있습니다.

🛃 🛛 Tektronix Serial I	Data Link Analysis		
Signal Path Setup			
Oscilloscope Source Ch1 V Bit Rate (Gb/s) 6 Average	Tx Rx Tx Fixture ° TpA M2 TpA M2 Fixture ° Emphasis TpB M3 Channel ° TpC M4 Equalizer ° TpD R4	Save Recall	Apply Plot
25 SR: 25GS/s	0% Clk R3 100% Press Apply to update filters	Help	About

회로 블록은 Tektronix 제공 S 매개 변수 파일 또는 사용자가 제공한 S 매개 변수 파일이나 FIR 필 터 파일을 사용합니다. 활성화된 모든 회로 블록에 대해 적절한 필터를 선택한 후 적용(Apply)을 클릭합니다. 그러면 활성화된 모든 블록에 대해 FIR 필터가 생성됩니다. 플롯(Plot) 버튼을 클릭 하여 필터 응답을 검토할 수 있습니다. 이렇게 하면 올바른 필터를 로드하고 대역폭 제한 기능을 사용하여 적절한 차단 주파수를 설정했는지 확인할 수 있습니다.

필터 파일에 대한 자세한 내용은 필터 파일 및 옵션 (23페이지의 참조)을 참조하십시오.

적용(Apply) 버튼

적용(Apply) 버튼을 클릭하면 다음과 같이 일련의 프로세스가 시작됩니다.

- 1. 본 소프트웨어에서 사용하도록 설정된 블록 및 시험 포인트 필터를 계산합니다. 신호 경로 설 정(Signal Path Setup) 창 맨 아래의 상태에 진행률이 표시됩니다.
- 2. TpC 파형에 대해 이퀄라이저가 작동하여 데이터 신호 및 직렬 클럭을 복구합니다.

분석(Analyze) 버튼

적용 처리가 완료되면 분석(Analyze) 버튼을 선택하여 복구된 데이터 및 클럭 신호를 DPOJET 프 로그램으로 보냅니다. DPOJET 프로그램은 설치되어 있는 경우 시험 포인트 신호를 입력으로 사 용하여 시작됩니다. SDLA 소프트웨어는 아이 다이어그램 및 지터 측정값으로 링크 품질을 분석 하도록 DPOJET 소프트웨어를 구성합니다.

다음 그림은 분석(Analyze) 버튼을 클릭할 때의 DPOJET 소프트웨어 구성을 보여 줍니다. 왼쪽 그 림에는 사용자가 선택한 소스 파형이 표시됩니다. 아이는 문제가 거의 없는 상태로 열려 있습니 다. 중간 그림은 채널(Channel) 블록에 소스가 미치는 효과를 나타내는 TpC 신호를 보여 줍니다. 오른쪽 그림은 이퀄라이저(Equalizer) 블록에서 나온 TpD 신호를 보여 줍니다. 어떻게 이퀄라이저 가 데이터를 복구하고 아이를 열 수 있는지 확인해 보십시오.

다음 그림은 측정(Measurement) 메뉴와 분석(Analyze) 버튼을 선택할 때 DPOJET에서 시작된 측정을 보여 줍니다.

File	Edit	Vertical	Horiz/Acq	Trig	Display	Cursors	Measure	Mask	Math	MyScope	Analyze	Utilities	Help		DP	072004	Tek		X
		-04	RA:	:		TADA	2			TAULAN									
4		; Tp	DR4						÷										1
		 		<u> </u>				<u>i i</u>				- [i			<u> </u>		<u> </u>		
																			·
_																			. —
R4																			· —
																			·
																			·
																			:
																			<u> </u>
	<u>C1</u>	300mV	O:-10.0mV :	50Ω E	W:16.0G	D _S Z1	12) 300mV	200ps	s -871ı	ns -869n	\$	A C3	↓ -496mV		2.0µs/div	25.0G	iS/s	40.0ps/	pt
	C2	500mV/d	1V	50Ω -	W:16.0G	211	13) 300mV	200ps	s -8/1i	15 -869n					25 acres	Sing	jle Seq		
	7102	500mV	200ps -87 200ps -87	1ns	-869ns	218	52.5mV	199ps	s _871	ns -869m					Man C	ctober 2	24. 2008	11:4	9:52
			20000 01				CE IONI	Teeps				J _							
			Value		Mean	Min	Max	¢	St Dev	Coun	info]							
	C1	Ampl*	604.5mV	604	.50002m	604.5m	604.5m	0.	.0	1.0									
												<i>v</i>							
												ر							-
	Jitte	r and E	ye Diagran	n Ana	lysis To	ols						J		_	Optio	ns 💽	0	Clear	×
	Jitte	r and E	ye Diagran	n Ana	lysis To	ols	Std Dou		May	Min			Population	Max.cc	Optio	ns 💽		Clear	\triangleleft
	Jitte Sel	r and E	ye Diagran Descripti	n Ana on h1	lysis To	ols Mean 0.0000s	Std Dev		Max 11.805ps	Min	i9ps (р-р 21.541рs	Population 60474	Max-cc	Optio	ns 💽	R	Clear	$\nabla \Delta \otimes$
	Jitte Sel	r and E	ye Diagran Descripti	n Ana on h1 lath4	lysis To	ols Mean 0.0000s -891.57fs	Std Dev 5.2986p 46.430p	os f	Max 11.805ps 142.32ps	Min -9.73: -151.(59ps 2	p-p 21.541ps 293.41ps	Population 60474 60319	Max-cc 18.042ps 153.38ps	Optio Min-ce -18.80 -152.4	ns 💽 C 3ps 6ps	R	Clear X ecalc	$\nabla \Delta $
	Jitte Sele Confi	r and E	ye Diagran Descripti • TIE1, CI • TIE2, M • TIE3, R	n Ana on h1 lath4 ef4, Re	lysis To f3	ols Mean 0.0000s -891.57fs -720.16fs	Std Dev 5.2986j 46.430j 8.1062j	os os os	Max 11.805ps 142.32ps 20.204ps	Min -9.731 -151.(-24.40	59ps 2 99ps 2 90ps 4	p-p 21.541ps 293.41ps 44.604ps	Population 60474 60319 58215	Max-cc 18.042ps 153.38ps 37.208ps	Optio Min-cd -18.80 -152.4 -44.06	ns 💽 C 3ps 6ps Ops	R	Clear Clear Clear ecalc	$\nabla \Delta \otimes$
	Jitte Sele Confi	r and E ect	ye Diagran Descriptii ■ TIE1, C ■ TIE2, M ■ TIE3, R ■ TIE3, R	n Ana on h1 lath4 ef4, Re 1, Ref4	lysis To f3	ols Mean 0.0000s -891.57fs -720.16fs 166.67ps	Std Dev 5.2986j 46.430j 8.1062j 8.7648j	2 I 25 2 25 2 25 2 25 4	Max 11.805ps 142.32ps 20.204ps 199.21ps	Min -9.735 -151.0 -24.40 135.3	19ps 2 19ps 2 19ps 4 10ps 4	p-p 21.541ps 293.41ps 44.604ps 63.855ps	Population 60474 60319 58215 115514	Max-cc 18.042ps 153.38ps 37.208ps 56.305ps	Optio Min-co -18.80 -152.4 -44.06 -61.88	ns 🔽 C 3ps 6ps 0ps 2ps	R	clear ecalc	$\forall \forall $
	Jitte Sel Confi	r and E	ye Diagran Descriptio + TIE1, C + TIE2, M + TIE3, R + Period	n Ana on h1 lath4 ef4, Re 1, Ref4	lysis To 1 13	ols Mean 0.0000s -891.57fs -720.16fs 166.67ps	Std Dev 5.2986p 46.430p 8.1062p 8.7648p	205 1 205 2 205 2 205 2	Max 11.805ps 142.32ps 20.204ps 199.21ps	Min -9.73 -151.0 -24.40 135.3	19ps 2 19ps 2 10ps 4 16ps (p-p 21.541ps 293.41ps 44.604ps 63.855ps	Population 60474 60319 58215 115514	Max-cc 18.042ps 153.38ps 37.208ps 56.305ps	Optio Min-co -18.80 -152.4 -44.06 -61.88	ns 💽 3ps 6ps 0ps 2ps	R	Clear ecalc cingle Run	\mathbf{X}
	Jitte Sele Confi	r and E ect	ye Diagran Description TIE1, C TIE2, M TIE3, R Period	n Ana on h1 lath4 ef4, Re 1, Ref4	lysis To f3	ols Mean 0.0000s -891.57fs -720.16fs 166.67ps	Std Dev 5.2986g 46.430g 8.1062g 8.7648g	os f os f os f os f os f	Max 11.805ps 142.32ps 20.204ps 199.21ps	Min -9.733 -151.0 -24.40 135.3	1995 2 1995 2 1095 4 1695 (p-p 21.541ps 293.41ps 44.604ps 63.855ps	Population 60474 60319 58215 115514	Max-cc 18.042ps 153.38ps 37.208ps 56.305ps	Optio Min-cc -18.80 -152.4 -44.06 -61.88	ns V Sps 6ps 0ps 2ps	R	Clear Clear ecalc C ingle Run C	$\forall \forall \mathbf{X}$
	Jitte Seld Confi Res	r and E ect igure ults	ye Diagran Descripti • TIE1, C • TIE2, M • TIE3, R • TIE3, R • Period	n Ana on h1 lath4 ef4, Re 1, Ref4	lysis Tor f3	ols Mean 0.0000s -891.57fs -720.16fs 166.67ps	Std Dev 5.2986j 46.430j 8.1062j 8.7648j	2 I 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	Max 11.805ps 142.32ps 20.204ps 199.21ps	Min -9.733 -151.0 -24.40 -135.3	19ps 2 19ps 2 10ps 4 6ps (p-p 21.541ps 293.41ps 44.604ps 63.855ps	Population 60474 60319 58215 115514	Max-cc 18.042ps 153.38ps 37.208ps 56.305ps	Optio Min-cd -18.80 -152.4 -44.06 -61.88	ns 💽 C 3ps 6ps 0ps 2ps	R	Clear ecalc cingle Run cun ww Plots	$\nabla \land \bigotimes$
	Jitte Seld Confi Res	r and E ect gure ults	ve Diagran Descripti TIE1, C TIE2, M TIE2, M TIE3, R Period	n Ana on h1 lath4 ef4, Re 1, Ref4	lysis To f3	ols Mean 0.0000s -891.57fs -720.16fs 166.67ps	Std Dev 5.2986j 46.430j 8.1062j 8.7648j	205 / 205 / 205 / 205 /	Max 11.805ps 142.32ps 20.204ps 199.21ps	Min -9.733 -151.0 -24.40 135.3	19 95 2 19 95 2 10 95 4 16 95 (p-p 21.541ps 293.41ps 44.604ps 63.855ps	Population 60474 60319 58215 115514	Max-cc 18.042ps 153.38ps 37.208ps 56.305ps	Optio Min-ca -18.80 -152.4 -44.06 -61.88	ns 💽 3ps 6ps 0ps 2ps	R	Clear ecalc Clear ecalc Clear ecalc Clear ecalc Clear ecalc Clear ecalc Clear ecalc Clear ecalc Clear ecalc Clear ecalc Clear ecalc ec	$\forall \forall $
	Jitte Seld Confi Rest	r and E ect gure ults ots	ye Diagran Descripti TIE1, Cl TIE2, M TIE2, M TIE3, R Period	n Ana on h1 lath4 ef4, Re 1, Ref4	lysis To f3	ols Mean 0.0000s -891.57fs -720.16fs 166.67ps	Std Dev 5.2986j 46.430j 8.1062j 8.7648j	I DS 1 DS 1	Max 11.805ps 142.32ps 20.204ps 199.21ps	Min -9.733 -151.0 -24.40 135.3	i9ps ; 99ps ; 0ps 4 6ps (p-p 21.541ps 293.41ps 44.604ps 63.855ps	Population 60474 60319 58215 115514	Max-cc 18.042ps 153.38ps 37.208ps 56.305ps	Optio Min-cc -18.80 -152.4 -44.06 -61.88	ns v 3ps 6ps 0ps 2ps	R	Clear Cl	
	Jitte Seld Confi Resu Plo	r and E ect gure ults ots	ye Diagran Descripti TIE1, Cl TIE2, M TIE2, M TIE3, R Period	n Ana on h1 lath4 ef4, Re 1, Ref4	lysis Too	ols Mean 0.0000s -891.57fs -720.16fs 166.67ps	Std Dev 5.2986j 46.430j 8.1062j 8.7648j	1 05 1 05 2 05 2 05 2	Max 11.805ps 142.32ps 20.204ps 199.21ps	Min -9.733 -151.0 -24.4(135.3	1995 2 1995 2 1095 4 1695 (p-p 21.541ps 293.41ps 44.604ps 63.855ps	Population 60474 60319 58215 115514	Max-cc 18.042ps 153.38ps 37.208ps 56.305ps	Optio Min-cc -18.80 -152.4 -44.06 -61.88	ns v 3ps 6ps 0ps 2ps	R	Clear ecalc ingle Run ww Plots illi	

회로 블록 사용

회로 블록의 둥근 라디오 버튼을 클릭하여 블록을 사용하거나 사용하지 않도록 설정합니다. 이 그림에서 엠퍼시스(Emphasis), 채널(Channel) 및 이퀄라이저(Equalizer) 블록은 사용하도록 설정되어 있고 고정기(Fixture) 블록은 사용하지 않도록 설정되어 있습니다. 구성 창에서도 회 로 블록을 사용하도록 설정할 수 있습니다.

시험 포인트를 선택하여 출력 파형을 사용하도록 설정

각 처리 블록에서 발생하는 파형을 생성 및 플로팅하려면 원하는 시험 포인트 Tp[ABC] 블록을 클 릭합니다. 블록을 클릭하면 색상이 오렌지색으로 바뀝니다. 적용(Apply) 버튼을 클릭하면 선택된 모든 시험 포인트에 대해 계산된 파형이 생성됩니다. 실시간으로 계산된 파형은 레이블이 지정된 후 오실로스코프 디스플레이에 표시됩니다. 오실로스코프 디스플레이로 전환하려면 Alt-Tab 키 보드 키를 사용합니다. 플롯(Plot) 버튼을 클릭하여 계산된 필터 응답을 검토할 수도 있습니다.

시험 포인트 및 해당 오실로스코프 화면 파형 레이블은 다음과 같습니다.

- TpA M2
- TpB M3
- TpC M4

시험 포인트 FIR 필터는 SDLA\output filters 디렉토리의 파일에 저장됩니다.

필터에 대한 자세한 내용은 필터 파일 및 옵션 (23페이지의 참조)을 참조하십시오.

Tx 또는 Rx 구성 선택

Tx 버튼은 다음 그림과 같이 사용 중인 시스템에 맞게 소프트웨어를 구성합니다. 오실로스코프는 표시된 것처럼 고정기에 연결됩니다. 고정기는 활성화되면 송신기 신호에 액세스할 수 있도록 합 니다. 고정기를 제외함으로써 오실로스코프 연결이 효과적으로 송신기 출력으로 바로 이동됩니 다. 이 그림은 직렬 송신기에 연결된 엠퍼시스 블록을 보여 줍니다. 송신기에 추가된 엠퍼시스를 제거하도록 엠퍼시스 블록을 구성하고 고정기를 제외하여 시험 포인트 TpB에서 실시간 송신기 신호 근사치를 구할 수 있습니다. TpA는 고정기만 제외된 송신기 신호를 제공합니다.

Rx 버튼은 다음 그림과 같이 사용 중인 시스템에 맞게 소프트웨어를 구성합니다. 오실로스코프는 표시된 것처럼 고정기에 연결됩니다. 활성화된 고정기는 전송 채널의 수신기 쪽에 액세스할 수 있 도록 합니다. 고정기를 제외함으로써 오실로스코프 연결이 효과적으로 채널 출력으로 바로 이동 됩니다. 이렇게 설정하면 전송 채널을 제외하고 TpB에서 송신기 신호 품질을 확인할 수 있습니다.

주파수 및 시간 도메인 플롯 표시

플롯(Plot) 버튼을 눌러 세 개의 그래픽 창 플롯을 켭니다. 플롯에는 사용하도록 설정된 처리 블록 및 시험 포인트 Tp[ABC]의 실행 결과가 표시됩니다. 플롯을 사용하여 SDLA 소프트웨어 구성 시 각 블록의 필터 구성을 확인할 수 있습니다. 상단에 표시되는 줌(+) 도구와 같은 탐색 기능을 사 용하여 필터 응답을 자세히 볼 수 있습니다.

주석노트. 플롯(Plot) 버튼을 다시 누르면 플롯이 꺼집니다.

다음 그림은 고정기(Fixture) 및 채널(Channel) 필터 설정에 따른 크기 및 주파수 응답을 보여 줍니다. FIR 필터 또는 다른 유형의 S 매개 변수 파일을 사용할 경우 플롯에는 해당 필터 데이 터의 주파수 응답이 표시됩니다.

진폭 및 시간 플롯

다음 그림은 SDLA 소프트웨어에서 발생할 수 있는 여섯 가지 필터 출력에 대한 진폭 및 시간 플롯 을 보여 줍니다. 왼쪽에는 세 개의 회로 블록 필터가 있고 오른쪽에는 세 개의 시험 포인트 필터가 있습니다. 위쪽에는 필터에 대한 표준 임펄스 응답이 표시되고 아래쪽에는 사용하도록 설정된 필 터에 대한 단계 응답이 표시됩니다. 상단에 표시되는 줌(+) 도구와 같은 탐색 기능을 사용하여 필 터 응답을 자세히 볼 수 있습니다. 플롯은 다음과 같이 색상으로 구분됩니다.

- 노란색: 고정기(Fixture), TpA
- 빨간색: 채널(Channel), TpB
- 녹색: 엠퍼시스(Emphasis), TpC

크기와 위상 및 주파수 플롯

다음 그림은 SDLA 소프트웨어에서 발생할 수 있는 여섯 가지 필터 출력에 대한 크기와 위상 플롯 및 주파수를 보여 줍니다. 왼쪽에는 세 개의 블록 필터가 있고 오른쪽에는 세 개의 시험 포인트 필 터가 있습니다. 위쪽에는 필터에 대한 크기(dB)가 표시되고 아래쪽에는 사용하도록 설정된 필터 에 대한 위상 플롯이 표시됩니다. 상단에 표시되는 줌(+) 도구와 같은 탐색 기능을 사용하여 필터 응답을 자세히 검토할 수 있습니다. 플롯은 다음과 같이 색상으로 구분됩니다.

- 노란색: 고정기(Fixture), TpA
- 빨간색: 채널(Channel), TpB
- 녹색: 엠퍼시스(Emphasis), TpC

플롯 창 도구 및 탐색

플롯 창에는 줌(+) 및 팬 기능을 수행하고 필터 응답 플롯에 대해 측정 커서를 설정할 수 있도록 하 는 도구 모음이 있습니다. 다음 그림에는 사용 가능한 도구가 나와 있습니다.

플롯 창 제목 표시줄에서 각 플롯이 식별됩니다. 다음 예제 그림과 같이 플롯은 색상으로 구 분됩니다.

- 노란색 추적 모양은 고정기(Fixture) 필터 또는 시험 포인트 필터 TpA를 나타냅니다.
- 빨간색 추적 모양은 채널(Channel) 필터 또는 시험 포인트 필터 TpB를 나타냅니다.
- 녹색 추적 모양은 엠퍼시스(Emphasis) 필터 또는 시험 포인트 필터 TpC를 나타냅니다.

애플리케이션 파일 유형 및 위치

이 소프트웨어에서는 다음 파일 유형 및 위치가 사용됩니다. 지원 파일은 경로 C:\TekApplications\SDLA에서 설명형 이름을 갖는 폴더에 정렬됩니다.

- 예제 파형 애플리케이션 학습에 도움이 되는 예제 파형 파일입니다.
- 입력 필터 FIR 필터 파일
- 입력 S 매개 변수 Touchstone 1.0 버전
- Output filters 소프트웨어가 생성된 고정기 및 채널 FIR 필터를 저장하는 위치입니다. 파일 이 름은 적용(Apply) 버튼을 클릭할 때마다 덮어쓰여집니다. 나중에 사용할 수 있게 FIR 필터 집 합을 저장하기 위해 필터 파일의 이름을 바꿀 수 있습니다.
- Save recall 소프트웨어가 SDLA 설치 구성 파일을 저장하는 임시 위치입니다.
- 표준 표준에 정의된 대로 이퀄라이저(Equalizer), 채널(Channel) 및 엠퍼시스(Emphasis) 블록 을 설정하기 위한 산업 표준용 설치 파일입니다.

사용자 S 매개 변수 파일 및 필터 파일은 해당 장비에 액세스할 수 있는 모든 경로에 위치할 수 있 습니다. 필터에 대한 자세한 내용은 <u>필터 파일 및 옵션 (23페이지의 참조)</u>을 참조하십시오.

고정기(Fixture) 및 채널(Channel) 블록

회로 블록을 사용하여 고정기(Fixture) 효과를 제거(제외)하고 채널(Channel)의 효과를 포함하거 나 제외할 수 있습니다. 주 신호 경로(Signal Path) 창에서 고정기(Fixture) 또는 채널(Channel) 블록 을 선택하여 구성 대화 상자에 액세스합니다. 다음 그림은 채널(Channel) 블록을 보여 줍니다.

SDLA Channel Initialization							
Channel S	Channel Setup C:\TekScope\SDLA\input S parameters\sixmeter_A5A6B5B6.s4p						
Channe Off On	I Data Input Type FIR Filter S.Parameters Touchstone Format S21 2-port ✓ 4-Port Filename: Browse	S-Parameter Specification Derive Filter From: Single Ended Differential Assign Ports: 01 02 03 04 Tx+ Rx+ 01 02 03 04 Tx- Rx- 01 02 03 04	Bandwidth Limit BW: 25 GHz None Auto Custom	Heip			

데이터 입력 유형(Data Input Type)

S 매개 변수(S-parameter) 필터 또는 FIR 필터(FIR Filter)를 사용하여 전송 채널을 나타낼 수 있습니 다. FIR 필터(FIR Filter) 선택 옵션을 통해 사용자 FIR 필터 파일을 선택하여 블록을 시뮬레이트할 수 있습니다. S 매개 변수(S-Parameters) 선택 옵션을 사용하면 다양한 채널(Channel) 및 고정기 (Fixture) 유형을 포괄하는 Touchstone 형식의 Tektronix 제공 예제 S 매개 변수 파일 중에서 선택할 수 있습니다. 사용자 S 매개 변수 파일을 로드할 수도 있습니다. 찾아보기(Browse) 버튼을 클릭하 여 채널 또는 고정기 시뮬레이트에 적합한 표준 파일을 선택합니다.

표준 2 포트(2-port) 또는 4 포트(4-port) Touchstone 형식 중에서 선택할 수 있습니다. S21 데이 터가 1 포트 파일 형식에 저장되는 비표준 Touchstone 형식 파일인 S21 옵션을 선택할 수도 있 습니다. S21 파일 옵션은 .s1p 파일 이름 확장자를 갖습니다.

2 포트 S 매개 변수 형식

2 포트(2-Port)를 선택한 경우 S21 또는 S12 형식 필터를 선택할 수 있습니다. SDLA 시스템은 블 록 포트가 S 매개 변수 측정에 사용되는 참조 임피던스로 종료된다고 가정합니다. 일반적으로 이 포트 임피던스는 50옴입니다.

4 포트 S 매개 변수 형식

4 포트(4-port) 옵션을 선택하면 Touchstone 파일이 싱글 엔드 표준 형식 또는 혼합 모드 차동 형식 으로 데이터를 포함하도록 할 수 있습니다.

차동 S 매개 변수: 차동(Differential)을 선택하면 Touchstone 파일은 싱글 엔드 데이터가 아닌 혼합 모드의 차동 데이터를 포함할 것으로 예상됩니다. **싱글 엔드 S 매개 변수**: 이 모드에서는 포트 지정(Assign Ports) 기능을 사용하여 S 매개 변수 측정 시 사용되는 입력 및 출력 블록 포트를 식별해야 합니다. 채널(Channel) 및 고정기(Fixture) 블록은 S 매개 변수 파일 생성 시 사용된 포트 지정과 일치해야 합니다.

본 소프트웨어는 다음 작업을 수행하여 4 포트, 싱글 엔드 S 매개 변수 데이터를 사용할 때 FIR 필터를 계산합니다.

1. S 매개 변수 데이터를 싱글 엔드에서 혼합 모드 차동으로 변환합니다.

2. 1단계 결과에서 Sdd21 요소를 식별합니다.

3. 필요한 경우 Sdd21 데이터를 다시 DC로 외삽합니다.

4. 필요한 경우 정지 주파수를 파형 샘플 속도의 Nyquist 포인트로 확장합니다.

5. Sdd21 복합 주파수 도메인 데이터를 FIR 필터로 변환합니다.

4 포트 차동: 4 포트 Touchstone 파일에 혼합 모드 S 매개 변수가 포함되어 있으면 Sdd21의 실 제 및 가상 부품을 포함하는 두 열만 FIR 필터 계산에 사용됩니다. 채널(Channel) 또는 고정기 (Fixture) 블록에서 매개 변수 맵에 대해 일반(Typical) 또는 교번(Alternate) 옵션을 선택하여 Sdd21 특성의 위치를 선택해야 합니다. 다른 매핑은 지원되지 않습니다. 이 그림은 일반(Typical) 차 동 맵을 보여 줍니다.

-	SDLA Fixture De-embed Initialization							
	Fixture Setup	C:\Te	kScope\SDLA\input S parameters\sas_6meter_mixed mode.s4p					
	Fixture Off On	Data Input Type FIR Filter S-Parameters Touchstone Format S21 2-port 4-Port	S-Parameter Specification Derive Filter From: Map Sdd21 From:: Single Ended Differential Typical Alternate Sdd11 Sdd12 Sdc11 Sdc12 Sdd21 Sdd22 Sdc21 Sdc22 Scd11 Scd12 Scc11 Scc12 Scd11 Scc12 Scc11	Bandwidth Limit BW: TBD None Auto Custom	Help OK			
		Filename: Browse	Scd11 Scd12 Scc11 Scc12 Scd21 Scd22 Scc21 Scc22		ОК			

사용자 S 매개 변수 파일 생성

IConnect 소프트웨어가 실행되는 Tektronix 샘플링 오실로스코프 또는 다른 회로 모델링 및 측정 시스템을 사용하여 실제 전송 채널 및 고정기의 S 매개 변수 파일을 측정하고 생성할 수 있습니다. 필터 사용에 대한 자세한 내용은 <mark>필터 파일 및 옵션 (23페이지의 참조)을</mark> 참조하십시오.

대역폭 제한(Bandwidth Limit)

대역폭 제한(Bandwidth Limit) 기능을 사용하여 대역폭 상한을 블록 필터 결과에 적용할 수 있습니다. 생성된 필터는 -60dB 정지 밴드 감쇠를 갖습니다.

다음 옵션을 사용할 수 있습니다.

자동(Auto): 소프트웨어는 S21 또는 Sdd21 필터가 DC 값에서 -14dB 떨어진 포인트를 파악하고 해 당 주파수를 대역폭 상한으로 설정합니다.

사용자(Custom): 원하는 대역폭 필터를 지정합니다. 사용자(Custom) 옵션은 자동 대역폭 필터가 입력 데이터에 적합하지 않을 때 유용합니다.

사용자 필터를 생성하려면 다음 단계를 따릅니다.

- 1. 사용자(Custom) 버튼을 클릭한 후 필터(Filter) 버튼을 클릭합니다.
- 2. BW 필드에서 원하는 값을 설정합니다.
- 3. 적용(Apply)을 클릭하여 대역폭 필터를 생성합니다. 필터 응답은 검토용으로 플로팅됩니다. 내보내기(Export) 버튼을 클릭하여 FIR 필터를 저장할 수 있습니다.
- 4. 닫기(Close) 버튼을 클릭하여 돌아갑니다.

없음(None): 본 소프트웨어는 대역폭 필터를 사용하지 않습니다. 분석할 전체 대역폭은 소스 파 형의 샘플 속도에 대한 Nyquist 포인트입니다.

대역폭 제한 사용에 대한 참고 사항

채널(Channel)을 포함할 때는 없음(None) 옵션을 사용하는 것이 가장 좋습니다.

고정기(Fixture) 또는 채널(Channel)을 제외할 때는 유용한 결과를 얻기 위해 대역폭 제한 필터가 필요합니다. 이러한 경우 대역폭 제한 필터는 고주파를 필터링하여 노이즈를 줄일 수 있습니다.

엠퍼시스(Emphasis) 블록

엠퍼시스(Emphasis) 블록은 대부분의 송신기에 추가된 엠퍼시스 또는 디엠퍼시스를 제거하거 나 추가합니다. 일반적인 3dB 설정을 사용하거나 사용자 dB 설정을 입력할 수 있습니다. 또한 송신기 엠퍼시스를 보다 잘 나타내는 FIR 필터를 로드할 수 있습니다. Tx 모드로 연결된 경우 시험 포인트 TpB(Math3 파형)를 선택하여 소스 신호에 대한 필터 결과를 확인합니다. Rx 모드 인 경우 시험 포인트 TpC(Math4 파형)를 선택하여 소스 신호에 대한 필터 결과를 확인합니다. 엠퍼시스 FIR 필터는 오실로스코프 샘플 속도로 적용됩니다.

다음과 같이 네 가지 유형의 필터 응답이 있습니다.

- 디엠퍼시스 추가 채널(Channel)을 통한 고주파 손실을 상쇄하도록 저주파 구성 요소를 감 쇠합니다.
- 디엠퍼시스 제거 다른 회로 블록이나 장치에 의해 추가된 디엠퍼시스의 효과를 제거합니다.
- 프리엠퍼시스 추가 채널(Channel)을 통한 저주파 손실을 상쇄하도록 고주파 구성 요소 를 증폭합니다.
- 프리엠퍼시스 제거 직렬 송신기 회로에 추가된 프리엠퍼시스의 효과를 제거합니다.

각 옵션을 통해 구성 요소의 효과를 제거하거나 시뮬레이트할 수 있습니다.

주석노트. 필터 설정은 엠퍼시스 유형일 필요가 없습니다. 사용 중인 시스템을 보다 잘 시뮬레이 트하는 데 필요한 모든 유형이 될 수 있습니다.

🛃 🛛 SDLA Emp	hasis Initialization				
Emphasis Se	աթ				
Emphasis Off De- Pre-	Data Input Type Custom dB Read From File	Specification dB 3 Bit Rate Gb/s 6.0	on Add Remove	Bandwidth Limit BW: 12.5 GHz None Custom	Help OK

대역폭 제한

엠퍼시스(Emphasis) 필터로 인한 대역폭을 제한하려면 필터를 생성하여 대역폭 상한을 설정할 수 있습니다. 사용자(Custom) 버튼을 선택한 후 필터(Filter) 버튼을 클릭합니다. 이 대화 상자에 6.25GHz와 같은 원하는 제한 값을 입력한 후 적용합니다. 엠퍼시스(Emphasis) 대화 상자로 돌아가 구성을 완료합니다. 확인(OK)을 클릭하여 주 신호 경로(Signal Path) 창으로 돌아갑니다.

파일에서 필터 읽기

엠퍼시스(Emphasis) 블록은 FIR 필터 파일에서 설정할 수 있습니다. 파일에서 읽기(Read From File) 버튼을 클릭하고 필터 파일 위치를 찾습니다.

필터 응답에 미치는 신호 비트 속도의 효과

비트 속도는 소스 신호의 비트 속도입니다. 비트 속도는 엠퍼시스(Emphasis) 필터의 주파수 응답 에서 증가 또는 감소 영역을 결정합니다. 예를 들어 신호에 디엠퍼시스를 추가하면 그림과 같은 주파수 응답이 발생합니다. 크기 주파수 응답은 비트 속도로 결정되는 주기에 따라 주기적으로 나타납니다. 필터 크기 응답의 피크-피크 값은 선택한 dB 값으로 설정됩니다.

필터 파일 형식에 대한 자세한 내용은 필터 파일 및 옵션 (23페이지의 참조)을 참조하십시오.

이퀄라이저(Equalizer) 블록(옵션 SLA와 함께 사용 가능)

이퀄라이저(Equalizer) 블록은 데이터 스트림 무결성을 복원하고 포함된 클럭을 복구합니다. 이 블록은 직렬 데이터 수신기에 대해 허용되는 최소 수준에서 작동한다는 측면에서 "참조 수신기" 로 작동할 수 있습니다. SDLA 이퀄라이저는 함께 작동하는 가변 FFE, 피드 포워드 이퀄라이 저 및 DFE, 결정 재입력 이퀄라이저와 같은 이퀄라이저 쌍으로 구성됩니다. 이러한 이퀄라이 저 쌍은 채널 손상 및 노이즈에 적합합니다.

이 그림은 활성화된 이퀄라이저(Equalizer)와 채널(Channel) 블록의 출력(TpC)인 Math4 파형으로 설정된 소스(Source)를 보여 줍니다.

Source Equalizer aps MATH4 MATH4 FFE Taps 0 DFE Taps 3 PLL Type 1 2 Sample/bit 1 Amplitude (V) 0.153 PLL BW (MHz) 3.6 Rate (Gb/s) 6.0 Use trainSeq Autoset Voltages Clk Delay (ps) 0.0	zation			
MATH4 FFE Taps D DFE Taps 3 PLL Type 1 2 nSeq Sample/bit 1 Amplitude (V) 0.153 PLL BW (MHz) 3.6 r 6.0 Ref Tap 1 Threshold (V) 0.0003 PLL Damp 0.7 b 0 Use trainSeq Autoset Voltages Clk Delay (ps) 0.0	Source	Equalizer 🔽		
inSeq Rate (Gb/s) Sample/bit Amplitude (V) 0.153 PLL BW (MHz) 3.6 or 6.0 Vestors Threshold (V) 0.0003(PLL Damp 0.7 use trainSeq Autoset Voltages Clk Delay (ps) 0.0	MATH4 V FFE Taps 0	DFE Taps 3 PLL	∟Туре ◯1 ⊙2	
or Rate (Gb/s) Ref Tap 1 Threshold (V) 0.0003 PLL Damp 0.7 or 6.0 Use trainSeq Autoset Voltages Clk Delay (ps) 0.0	Sample/bit 1	Amplitude (V) 0.153 PLL	L BW (MHz) 3.6	
6.0 Use trainSeq Autoset Voltages V Clk Delay (ps) 0.0	Rate (Gb/s) Ref Tap 1	Threshold (V) 0.0003(PLL	Damp 0.7	
	6.0 Use trainSeq	🗌 Autoset Voltages 🗹 Cik	(Delay (ps) 0.0	
 Auto adapt taps Adapt from current taps No adapt 				

데이터 및 클럭 신호를 복구하려면 정확한 비트 속도를 입력해야 합니다. 본 소프트웨어는 PLL(위상 잠금 루프) 회로를 에뮬레이트하여 클럭 복구를 수행합니다. 테스트 중인 직렬 표준 에 대해 정의된 데이터 속도를 사용하십시오. 새로운 직렬 회선을 테스트하는 경우 송신기 근 처의 비트 속도를 측정해야 할 수 있습니다.

이퀄라이저는 기본적으로 TpC인 오실로스코프 소스 파형에서 실행됩니다. 이퀄라이저는 각각 정적 데이터 및 클럭 파형을 Ref4 및 Ref3 파형 레코드로 출력합니다. 이러한 파형을 업데이트하 려면 이퀄라이저(Equalizer) 블록에서 EQ 실행(Run EQ) 버튼을 선택하거나 주 신호 경로(Signal Path) 창에서 적용(Apply) 버튼을 선택합니다.

이퀄라이저 실행

다음 단계에서는 이퀄라이저의 초기 실행을 통해 추가 조정이 필요한지 확인하는 방법을 설 명합니다.

- 구성(Config) 탭에서 FFE 및 DFE 탭으로 이동한 후 테스트 중인 표준에 정의된 대로 수신기 에 대한 PLL 필드를 구성합니다. 또한 주 신호 경로(Signal Path) 메뉴의 표준(Standards) 버튼 을 사용하여 표준 설정 파일을 로드할 수 있습니다. 표준 설정 파일은 표준에 정의된 대로 모든 이퀄라이저 매개 변수를 설정합니다.
- 2. TpC 출력, 계산된 파형 또는 Math4가 아닌 경우 입력을 선택합니다. 표준 파일에 의해 아직 설 정되지 않은 경우 비트 속도를 설정합니다.
- 3. EQ 실행(Run EQ) 버튼을 클릭합니다.
- **4.** 출력 파형을 보려면 오실로스코프 디스플레이로 이동하십시오. Ref4 파형은 데이터 신호이며 TpD R4로 레이블이 지정되고, Ref3 파형은 클럭 신호이며 Clk R3으로 레이블이 지정됩니다.

이퀄라이저를 조정하여 신호 복구 개선

이퀄라이저 설정을 조정하여 데이터 및 클럭 신호를 복구해야 할 수 있습니다. 하드웨어 수신기 최적화에 사용되는 많은 기술을 이퀄라이저에서 사용할 수 있습니다.

	Equalizer 🔽					
FFE Taps 0	DFE Taps 3	PLL Type 🛛 1 💿 2				
Sample/bit 1	Amplitude (V) 0.153	PLL BW (MHz) 3.6				
Ref Tap 1	Threshold (V) 0.0003(PLL Damp 0.7				
Use trainSeq 🛛 🗌	Autoset Voltages 🛛 🗹	Cik Delay (ps) 0.0				
Auto adapt taps Adapt from current taps No adapt						

다음 매개 변수 대부분은 직렬 데이터 표준에 정의되어 있습니다.

FFE 탭(FFE Taps): 피드 포워드 이퀄라이저 탭 번호는 일반적으로 직렬 데이터 표준에 의해 정의 된 번호로 설정됩니다. FFE 탭(FFE Taps) 값이 0인 경우 FFE에 탭 계수가 FFE 꺼짐을 나타내는 1 로 고정되어 있는 하나의 탭이 있는 것입니다. 기본값은 0입니다.

샘플/비트(Sample/bit): 샘플/비트는 비트당 FFE 탭의 수를 지정합니다. 이 값이 1보다 크게 설정되면 FFE에 아주 작은 공백이 있는 것입니다. 기본값은 1입니다.

참조 탭(Ref Tap): FFE에 대한 참조 탭은 앞서 표시된 탭의 수를 나타냅니다. 이 값은 비트당 FFE 탭 수의 배수에 1을 더한 값으로 설정되어야 하며 기본값은 1입니다.

DFE 탭(DFE Taps): 결정 재입력 이퀄라이저 탭 번호는 일반적으로 직렬 데이터 표준에 의해 정의 된 번호로 설정됩니다. 예를 들어 SAS에 대한 설정은 3입니다.

진폭(Amplitude): 진폭(Amplitude)은 이퀄라이저의 대상 출력 진폭입니다. 자동 설정 전압(Autoset Voltages)을 선택하면 이 값은 데이터 신호 복구를 최적화하도록 조정 루틴에 의해 자동으로 조정됩니다. 기본값은 0.15V입니다.

한계값(Threshold): 한계값(Threshold)은 로직 수준 간 변이에 해당할 수 있는 신호의 중단 전압 수 준입니다. 편향된 신호의 경우 중간 레벨 값을 입력합니다. 차동 신호의 경우 이 값은 0V에 가까 워야 하며 기본값은 0V입니다. 정확한 전압을 잘 모를 경우 자동 설정 전압(Autoset Voltages) 기 능을 사용하여 최적의 값을 결정하십시오.

PLL 유형(PLL Type): 본 소프트웨어는 유형 I 및 유형 II PLL 클럭 복구를 지원합니다. 각 직렬 표준 은 클럭 복구에 사용할 PLL 유형을 지정합니다.

PLL BW: PLL의 루프 대역폭은 PLL 오류 변환 기능의 -3dB 주파수로 정의됩니다. 해당 값은 직렬 표준에 지정되어야 합니다.

PLL 댐프(PLL Damp): 유형 II PLL의 댐핑 비율입니다. 해당 값은 직렬 표준에 지정되어야 합니다.

Clk 지연(ps)(Clk Delay (ps)): 클럭 지연은 PLL 결과 후에 복구된 클럭에 추가되는 특정 지연입니다. 이 값은 클럭 오프셋을 조정하여 평준화 결과를 최적화하고 최상의 데이터 복구를 달성합니다.

TrainSeq 사용(Use TrainSeq): 이퀄라이저를 사용하여 TrainSeq 탭에 길이가 정의된 특정 패턴에 대한 조정 루틴을 최적화합니다.

자동 설정 전압(Autoset Voltages): 이 옵션을 사용하도록 설정하면 이퀄라이저 조정 루틴은 진폭 (Amplitude) 및 한계값(Threshold) 값을 조정하여 데이터 및 클럭 복구를 최적화합니다.

자동 적응 탭(Auto adapt Taps): 조정 루틴은 초기 탭 설정을 식별한 후 이 설정을 조정하여 데이 터 및 클럭 복구를 최적화합니다.

현재 탭에서 적응(Adapt from Current taps): 조정 루틴은 초기 탭(Taps) 설정을 사용한 후 이 설정을 조정하여 데이터 및 클럭 복구를 최적화합니다. 초기 탭(Taps) 설정은 직렬 표준에 대한 설정이거 나 이전 테스트에서 저장된 설정일 수 있습니다.

적응 없음(No Adapt): 이퀄라이저는 사용자의 입력 또는 이전 가변 세션에서 가져온 현재 탭(Taps) 을 사용합니다. 입력된 값을 변경하지 말고 사용하십시오. 이 옵션은 탭(Taps) 탭에 알려진 탭 (Taps) 파일을 로드하여 이전에 시작된 테스트를 재개하려고 할 때 유용합니다.

탭(Taps) 탭 설정

그림에서 FFE 탭은 하나의 값을 가지며 DFE 필드에는 각기 다른 값을 갖는 세 개의 탭이 표시됩니다. 이상태는 FFE가 0으로, DFE가 3으로 설정된 구성(Cofig) 탭의 설정으로 인한 것입니다. 이러한 결과가 자동 적응 탭(Auto adapt Taps) 실행으로 인한 경우 후속 이퀄라이저 실행 시 사용할 수 있게 탭 파일에 결과를 저장할 수 있습니다.

데이터 및 클럭 복구 문제 해결

클럭 복구가 실패하면 비트 속도가 기대와 다를 수 있습니다. 한 가지 해결 방법은 수신기에 가 능한 가까운 비트 속도를 측정하는 것입니다. 오실로스코프에서 실행되고 있는 DPOJET 소프 트웨어를 사용하여 비트 속도를 정확히 측정할 수 있습니다.

FFE 탭(FFE Taps), DFE 탭(DFE Taps) 및 PLL에 대한 정의된 표준 값을 입력했으며 데이터 및 클럭 을 성공적으로 복구하지 못한 경우 다음 단계에서 조정 설정을 사용해야 합니다. 초기 설정을 변 경하지 않은 경우 구성(Config) 탭의 현재 탭에서 적응(Adapt from current taps) 및 자동 설정 전압 (Autoset Voltages)을 선택합니다. EQ 실행(Run EQ) 버튼을 클릭하고 결과 파형을 확인합니다. 결 과가 더 좋거나 수용할 만한 경우 조정 루틴에 의해 설정된 탭(Taps) 값 및 전압을 적어둡니다.

이퀄라이저를 통해 테스트 신호를 다시 실행하기 전에 TrainSeq 기능을 사용하여 이퀄라이저가 올바른 비트 시퀀스를 식별하도록 하는 기술도 있습니다. 이 그림은 이퀄라이저의 TrainSeq 탭 을 보여 줍니다.

Equalization			
Config Taps TrainSeq Error	Train Seq Detection Pattern Length Detect	Sequence file Load Save	Run EQ Help ? Ok

- 이퀄라이저 구성(Config) 탭에서 이퀄라이저 소스를 테스트하려는 신호와 같은 데이터 패턴을 갖지만 열려 있고 깨끗한 아이 패턴을 갖는 신호로 설정합니다. 이 신호는 송신기 가까이에서 획득된 신호이거나 원래 신호 또는 아이 열기의 향상을 위해 송신기 엠퍼시스를 사용하여 보 정된 원래 신호의 저속 버전일 수 있습니다.
- 2. 구성(Config) 탭에서 TrainSeq 사용(Use TrainSeq) 상자를 클릭합니다.
- 3. TrainSeq 탭으로 이동한 후 표준에 따라 올바른 패턴 길이(Pattern Length)를 설정합니다.
- 4. 감지(Detect) 버튼을 클릭합니다. 왼쪽 필드에 표시된 비트 시퀀스(Bit Sequence)를 확인합니다. 이 값은 원래 신호의 비트 시퀀스와 같아야 합니다.
- 5. 비트 시퀀스가 올바른 경우 구성(Config) 탭으로 돌아가 원본 테스트 소스를 선택합니다.
- 6. TrainSeq 사용(Use TrainSeq) 상자를 아직 선택하지 않은 경우 선택하여 활성화합니다. 이전 단계에서 비트 속도를 변경한 경우 올바른 비트 속도를 입력합니다. EQ 실행(Run EQ) 버튼 을 클릭합니다.
- 7. 오실로스코프 디스플레이에서 결과를 확인합니다. 복구된 데이터 신호가 표시됩니다. 이 신 호는 표준 사양을 만족하지 않을 수도 있습니다. 복구된 데이터 문제를 수정하기 위해 다른 설 계상의 문제를 해결해야 할 수도 있습니다.

채널(Channel) 및 고정기(Fixture) 필터가 올바른지 여부도 조사해야 합니다. 해당 필터에 대한 플 롯을 검토하여 고주파 노이즈 또는 다른 이탈로 인해 신호가 손상되는지를 파악합니다. 대역폭 제한 필터를 사용하여 이러한 노이즈를 줄입니다.

필터 파일 및 옵션

모든 SDLA 소프트웨어 처리 블록은 같은 유형의 필터 파일에서 작동합니다. 회로 블록은 Tektronix 제공 S 매개 변수 파일 또는 사용자가 제공한 S 매개 변수 파일이나 FFE 필터 파일을 사 용합니다. 필터 및 기타 지원 파일 위치에 대한 자세한 내용은 <u>애플리케이션 파일 유형 및 위</u> 치 (14페이지의 참조)로 이동하십시오.

필터 파일 형식

FIR 블록 필터는 오실로스코프 연산 함수에 필요한 arbfilt 형식의 ASCII 파일로 저장됩니다.

FIR 필터 파일의 첫 번째 항목은 샘플 속도이고 나머지 항목은 필터 계수입니다. 간단히 arbfilt 형 식을 정의된 샘플 속도가 없는 필터 계수의 열 또는 행으로 볼 수도 있습니다. 본 소프트웨어는 생 성된 FIR 필터 파일을 SDLA\output filters 디렉토리에 저장합니다.

필터 상호 작용

블록 필터, 시험 포인트 필터 및 BW 제한 필터는 SDLA 소프트웨어 모델 내의 모든 상호 작용을 지원하기 위해 생성되었습니다. 필터 처리 다이어그램에 정의된 다양한 필터의 처리 순서가 나와 있습니다. 분석(Analyze) 기능은 이퀄라이저를 통해 TpC 파형을 실행한 후 해당 출력 데이터 및 클럭 신호를 DPOJET 소프트웨어 애플리케이션으로 전달합니다. 여기서 사용자는 데이터 신 호의 아이가 직렬 표준을 만족할 만큼 충분히 열려 있는지 확인할 수 있습니다. DPOJET은 신 호 분석에 도움을 주기 위해 광범위한 측정값을 제공합니다.

TpA, TpB 및 TpC에 대한 시험 포인트 필터는 표에 표시된 것처럼 회로 블록 필터 조합으로 컨벌브하여 생성됩니다.

표 1: 시험 포인트 필터 컨벌브

Rx/Tx 선택	시험 포인트	회로 블록(사용하도록 설정된 경우)	
Τx	ТрА	고정기 제외	
	ТрВ	고정기 제외	
		엠퍼시스	
	ТрС	고정기 제외	
		엠퍼시스	
		채널 포함	
Rx	ТрА	고정기 제외	
	ТрВ	고정기 제외	
		엠퍼시스	
		채널 제외	
	ТрС	고정기 제외	
		엠퍼시스	

필터 데이터의 외삽

S 매개 변수 파일이 0Hz(DC)로 시작되지 않거나 필터에서 요구하는 대로 소스 파형의 Nyquist로 확장되지 않을 경우 SDLA 소프트웨어는 기존 데이터를 외삽하여 대역폭 간격을 채웁니다. **DC부터 시작 주파수**: 본 소프트웨어는 특성 응답의 처음 두 크기 데이터 포인트를 사용하여 0Hz 에 대한 기울기를 계산합니다. 또한 위상을 풀고 위상 응답을 선형으로 외삽하여 정의된 기울기 에 따라 데이터 포인트를 생성합니다. 이 데이터는 원래의 S 매개 변수 데이터에 첨부됩니다.

대역폭 상한 확장: 필요한 경우 본 소프트웨어는 정지 주파수를 소스 파형 샘플 속도의 Nyquist 포인트로 확장합니다. 이 작업은 정지 주파수에서 시작하여 크기 및 위상 응답 데이터의 복 합 데이터 포인트를 복제하여 수행됩니다.

테스트 실행

이 절에서는 블록 구성, 시뮬레이션 실행, DPOJET 소프트웨어를 사용한 SDLA 시험 포인트에 대한 지터 및 아이 분석 등의 작업을 권장 순서대로 설명합니다.

- 1. 고정기 및 오실로스코프를 전송 채널의 송신기(Tx) 엔드 또는 수신기(Rx) 엔드에 있는 DUT 에 연결합니다. Rx 또는 Tx에서 적절한 연결을 선택합니다.
- 2. 소스 신호를 오실로스코프 입력 채널에 연결합니다. 충실도 높은 신호를 포착하도록 오실로스 코프 트리거, 세로 및 가로 설정을 조정합니다. 오실로스코프 자동 설정(Autoset) 기능을 사 용하면 이러한 설정을 보다 간편하게 조정할 수 있습니다.
- 3. 직렬 표준 표준 준수 테스트를 계획하는 경우 표준(Standards) 버튼을 클릭하고 해당 설정 파일을 찾습니다. 표준 파일은 한 번에 모든 SDLA 소프트웨어 매개 변수를 설정합니다. 소스가 CH1이 아닌 경우 주 신호 경로(Signal Path) 창에서 올바른 소스를 선택하십시오. 표준 설정 파일을 로드한 후에 적용(Apply) 버튼을 클릭하고 상태 표시줄에서 필터 생성이 완료되었는지 모니터링한 후 10단계를 계속 진행합니다.
- 4. 표준 또는 다른 설정 파일을 사용하지 않을 경우 필요한 처리 블록과 생성하려는 시험 포인트 (Tp[ABC])를 사용하도록 설정합니다. 필요한 경우 대역폭 제한 필터를 조정합니다.
- 5. 고정기(Fixture) 블록을 사용하는 경우 S 매개 변수 또는 FIR 필터 파일을 찾은 후 로드하여 신 호에 대한 효과를 제외합니다. 사용자 S 매개 변수나 FIR 필터 파일이 있는 경우 로드하고, 필 요한 경우 대역폭 제한 필터를 조정합니다.
- 6. 채널(Channel) 블록을 사용하는 경우 해당 S 매개 변수 또는 FIR 필터 파일을 찾아 로드합니다. 필요한 경우 대역폭 제한 필터를 조정합니다.
- 7. 엠퍼시스(Emphasis) 블록을 사용하는 경우 송신기 회로의 적합한 dB 값과 정확한 비트 속도를 입력합니다. 그 대신 FIR 필터 파일을 찾은 후 로드하여 신호를 조절할 수도 있습니다. 필요 한 경우 대역폭 제한 필터를 조정합니다.
- 8. 이퀄라이저(Equalizer) 블록을 사용할 경우 FFE/DFE 및 클럭 복구 매개 변수를 구성합니다.
- 9. 적용(Apply) 버튼을 클릭하여 각 블록 및 선택된 시험 포인트에 대한 FIR 필터를 생성합니다. 맨 아래의 상태 표시줄에 처리가 완료되었다고 표시될 때까지 기다립니다.
- 10.플롯(Plot) 버튼을 클릭한 후 블록 및 시험 포인트 시간과 주파수 도메인 응답을 검사하여 예상 한 응답을 갖는지 확인합니다. 플롯(Plot) 버튼을 다시 클릭하여 플롯을 제거합니다. 블록 구성 을 빠르게 수정한 후 적용(Apply) 버튼을 다시 클릭하여 필터를 재생성할 수 있습니다.
- 11.DPOJET이 설치되어 있고 제대로 실행되고 있는지 확인합니다. 이 프로그램을 계속 실행 상태 로 둘 수 있습니다. SDLA 소프트웨어는 필요한 경우 DPOJET 소프트웨어를 시작합니다.

- 12.분석(Analyze) 버튼을 클릭하고 DPOJET 소프트웨어로 전환하여(Alt+Tab 키 사용) 시뮬레이 션 결과를 분석합니다. DPOJET은 지터 및 아이 분석으로 시험 포인트 파형을 분석하도록 설정되어 있습니다. SDLA 소프트웨어 설정을 수정하고 필요에 따라 7-10 단계를 반복하 여 테스트를 완료합니다.
- 13.오실로스코프 디스플레이로 전환하고(Alt+Tab 키 사용) 사용하도록 설정된 시험 포인트 파형을 관찰합니다.

이로써 SDLA 소프트웨어 실행 절차를 마쳤습니다. 각 블록에는 이 절차에서 다루지 않은 많 은 구성 매개 변수가 있습니다. 이퀄라이저에는 데이터 및 클럭 신호의 복구를 획기적으로 개 선하기 위한 기능들이 있습니다. 각 처리 블록의 세부 사항을 검토하여 SDLA 소프트웨어 를 최대한 활용하십시오.

색인

ENGLISH TERMS

현재 탭에서 적응(Adapt from Current taps), 21 진폭(Amplitude), 20 분석(Analyze) 버튼, 6 적용(Apply) 버튼, 6 자동 적응 탭(Auto adapt Taps), 21 자동 설정 전압(Autoset Voltages), 21 대역폭 제한(Bandwidth Limit), 16 채널(Channel) 블록, 15 Clk 지연(Clk Delay), 21 클럭 신호 Clk R3, 20 데이터 입력 유형(Data Input Type), 15 DC부터 시작 주파수, 25 DFE 탭(DFE Taps), 20 DPOJET 소프트웨어, 6 DPOJET 사용, 6 엠퍼시스(Emphasis) 블록, 17 이퀄라이저(Equalizer) 블록, 19 FFE 탭(FFE Taps), 20 시험 포인트 FIR 필터 저장, 8 FIR 필터 저장, 14 FIR 필터 형식, 23 고정기 FIR 필터, 14 채널 FIR 필터, 14 FIR 필터(FIR Filter) 선택 옵 션.15 고정기(Fixture) 블록, 15 고정기(Fixture) 및 채널(Channel) 블록, 15 Math4 파형, 20 적응 없음(No Adapt), 22 Output filters 위치, 14 저장, 14 PLL BW, 21 PLL 댐프(PLL Damp), 21 PLL 유형(PLL Type), 21 R4 레이블 데이터 파형, 20

R3 레이블 클럭 파형, 20 데이터 신호 R4, 20 호출(Recall) 버튼, 5 참조 탭(Ref Tap), 20 Rx 구성, 8 싱글 엔드 S 매개 변수, 16 차동 S 매개 변수, 15 2 포트 S 매개 변수, 15 샘플/비트(Sample/bit), 20 저장(Save) 버튼, 5 Save recall 위치, 14 Sdd21, 16 SDLA 소프트웨어 다시 설치, 2 신호 경로(Signal Path) 창, 3 표준(Standards) 버튼, 5 탭(Taps) 탭 설정, 22 TekScope 오실로스코프로 전 환.4 한계값(Threshold), 21 TpA, 8 TpB, 8 TpC, 8 TrainSeq, 21 TrainSeq 탭, 22 TrainSeq 사용(Use TrainSeq), 21 Tx 구성, 8

Г

개요, 1 결정 재입력 이퀄라이저, 19 규약, 2

대역폭 상한 확장, 25 대역폭 요구 사항, 3 대역폭 제한 사용, 17 대역폭 제한에 대한 참고 사 항, 17 데이터 클럭 복구, 20 디렉토리 경로, 2 디엠퍼시스, 17

버 블록 구성, 5 비트 속도, 19 비트 속도 및 필터 응답, 18

人

사용자 대역폭 제한, 17 설정, 5 설정 저장, 5 설정 호출, 5 설치, 3 소프트웨어 업데이트, 2 시간 도메인 플롯, 9 시작하기, 3 시험 포인트, 8 시험 포인트 필터, 24 시험 포인트 필터 컨벌브, 24 신호 복구, 20 신호 복구 개선, 20 신호 비트 속도, 18

0

업데이트 소프트웨어, 2 예제 파형 위치, 14 옵션 키 요구 사항, 3 요구 사항, 3 웹 사이트 소프트웨어 업데이 트, 2 위상 잠금 루프, 19 이퀄라이저 실행, 20 이퀄라이저 조정, 20 입력 필터 위치, 14

ス

자동 대역폭 제한, 16 작동 기본 사항, 15 제품 개요, 1 주파수 도메인 플롯, 9

ᄎ

참조 수신기, 19 출력 파형 사용, 8 출력 파형 사용, 8

7

클럭 복구, 19 문제 해결, 22 클럭 복구 문제 해결, 22

Ε

탭 파일, 22 테스트 실행, 25

Π

파일 유형 및 위치, 14 4 포트 차동, 16 표준, 5 위치, 14 표준 로드, 5 프리엠퍼시스, 17 플롯, 9 플롯 색상 코드, 11 플롯 창 도구, 13 플롯 표시, 9 피드 포워드 이퀄라이저, 19 필터 구성 확인, 9 필터 데이터, 24 필터 데이터의 외삽, 24

필터	데이터 확장, 24
필터	상호 작용, 23
필터	유형, 15
필터	응답, 18
필터	입력 유형, 15
필터	컨벌브, 24
필터	파일, 23
필터	파일 형식, 23

ᅙ

회로 블록 사용, 7	
회로 블록 사용,	7
회로 블록 필터,	5