
xx

FCA3000, FCA3100, MCA3000 Series
Timer/Counter/Analyzers

ZZZ

Programmer Manual

P077049400

077-0494-00

FCA3000, FCA3100, MCA3000 Series
Timer/Counter/Analyzers

ZZZ

Programmer Manual

xx

Revision A

www.tektronix.com
077-0494-00

Copyright © Tektronix. All rights reserved. Licensed software products are owned by Tektronix or its subsidiaries
or suppliers, and are protected by national copyright laws and international treaty provisions.

Tektronix products are covered by U.S. and foreign patents, issued and pending. Information in this publication
supersedes that in all previously published material. Specifications and price change privileges reserved.

TEKTRONIX and TEK are registered trademarks of Tektronix, Inc.

Contacting Tektronix

Tektronix, Inc.
14150 SW Karl Braun Drive
P.O. Box 500
Beaverton, OR 97077
USA

For product information, sales, service, and technical support:
In North America, call 1-800-833-9200.
Worldwide, visit www.tektronix.com to find contacts in your area.

http://www.tektronix.com/contact

Table of Contents

Preface .. iii

Getting Started
Setting Up the Instrument . 1-1
Interface Functions . 1-2
Using the USB Interface . 1-3

Syntax and Commands
Command Syntax.. 2-1

Command and Query Structure . 2-1
Clearing the Instrument . 2-2
Command Entry. 2-3
Argument Types. 2-4
Macros . 2-6

Command Groups . 2-11
Arming Subsystem .. 2-11
Calculate Subsystem.. 2-11
Calibration Subsystem .. 2-13
Configure Function . 2-13
Display Subsystem .. 2-14
Fetch Function .. 2-14
Format Subsystem .. 2-15
Hard Copy .. 2-15
Initiate Subsystem .. 2-16
Input Subsystem .. 2-16
Measurement Subsystem.. 2-17
Memory Subsystem .. 2-19
Output Subsystem .. 2-20
Read Function . 2-20
Sense Command Subsystem.. 2-20
Status Subsystem .. 2-21
System Subsystem .. 2-22
Test Subsystem.. 2-23
Trigger Subsystem .. 2-23
Common Commands . 2-27

FCA3000, FCA3100, MCA3000 Series Programmer Manual i

Table of Contents

Command Descriptions . 2-29

Status and Events
Status and Events . 3-1

Registers . 3-1
Queues . 3-4
Event Handling Sequence.. 3-5
Synchronization Methods .. 3-6
Error Messages. 3-10

Programming Examples
Programming Examples . 4-1

Introduction.. 4-1
Individual Measurements (Example #1) . 4-2
Block Measurements (Example #2) . 4-4
Fast Measurements (Example #3). 4-6
USB Communication (Example #4) . 4-9
Continuous Measurements (Example #5) . 4-11

Appendices
Appendix A: Character Set . A-1
Appendix B: Default Command Settings . B-1
Appendix C: Instrument Settings After *RST.. C-1
Appendix D: Reserved Words.. D-1

ii FCA3000, FCA3100, MCA3000 Series Programmer Manual

Preface
This programmer manual covers the Tektronix FCA3000, FCA3100, and
MCA3000 Series Timer/Counter/Analyzer instruments. It provides information
on operating your instrument using the General Purpose Interface Bus (GPIB)
or USB interface.

The programmer manual contains the following sections:

Getting Started. This section introduces you to the programming information
and provides basic information about setting up your instrument for remote
control.

Syntax and Commands. This section describes the command syntax structure,
provides tables that list all the commands by functional groups, and describes
all commands in alphabetical order.

Status and Events. This section discusses the status and event reporting
system for the GPIB interfaces. This system informs you of certain significant
events that occur within the instrument. Topics that are discussed include
registers, queues, event handling sequences, synchronization methods, and
messages that the instrument may return, including error messages.

Programming examples. This section provides examples of C code used to
take measurements with the instruments.

Appendices. The appendices contain miscellaneous information such as a
list of reserved words, a table of the factory initialization (default) settings,
and interface specifications.

FCA3000, FCA3100, MCA3000 Series Programmer Manual iii

Preface

iv FCA3000, FCA3100, MCA3000 Series Programmer Manual

Getting Started

Setting Up the Instrument
Setting the GPIB Address The default GPIB address of the instrument is 10. Push USER OPT > Interface

to see the active address above the soft key button labeled GPIB address.

To change the instrument GPIB address, push GPIB address and enter a new
address value between 0 and 30. The GPIB address is stored in nonvolatile
memory and remains until you change it.

You can also set the GPIB address remotely by using a GPIB command.

Standby Power and
Remote Access

When the instrument is in REMOTE mode, you cannot power it off from the
power button. You must first push the Esc button to enter Local mode, and then
push the Power button.

Testing the Bus To test that the instrument is operational over the bus, send the *IDN? command
to identify the instrument and the *OPT? command to identify which features
are available.

FCA3000, FCA3100, MCA3000 Series Programmer Manual 1-1

Interface Functions

Interface Functions
Table 1-1: Interface function summary
Code Description
SH1 Source handshake: The instrument can exchange data with other instruments or

a controller using the bus handshake lines DAV, NRFD, and NADC.
AH1 Acceptor handshake: The instrument can exchange data with other instruments

or a controller using the bus handshake lines DAV, NRFD, and NADC.
C0 Control function: The instrument does not function as a controller.
T6 Talker function: The instrument can send responses and the results of its

measurements to other devices or to the controller. T6 has the following functions:

Basic talker

No talker only

Send out a status byte as response to a serial poll from the controller

Automatic unaddressing as a talker when it is addressed as a listener
L4 Listener function: The instrument can receive programming instructions from the

controller. L4 has the following functions:

Basic listener

No listen only

Automatic unaddressing as listener when addressed as a talker
SR1 Service request: The instrument can call for attention from the controller, such as

when a measurement is completed and a result is available.
RL1 Remote/local function: You can control the instrument manually (locally) from the

front panel or remotely from the controller. The LLO, local-lock-out function, can
disable the LOCAL button on the front panel.

PP0 Parallel poll: The instrument does not have any parallel poll facility.
DC1 Device clear function: The controller can reset the instrument by sending the

interface message DCL (Device clear) or SDC (Selective Device Clear).
DT1 Device trigger function: You can start a new measurement from the controller by

sending the interface message GET (Group Execute Trigger).
E2 Bus drivers: The GPIB interface has tri-state bus drivers.

1-2 FCA3000, FCA3100, MCA3000 Series Programmer Manual

Using the USB Interface

Using the USB Interface
The instrument is equipped with a USB full speed interface, which supports the
same command set as the GPIB interface.

The USB interface is a full speed interface (12 Mbit/s), supporting the industry
standard USBTMC (Universal Serial Bus Test and Measurement Class) revision
1.0, with the subclass USB488, revision 1.0. The full specification for this
protocol is at www.usb.org.

A valid driver for this protocol must be installed to be able to communicate over
USB. We recommend NI-VISA version 3.2 or above, which is available from
National Instruments (www.ni.com) for several operating systems. The Windows
version is supplied on the product CD.

In order to test the communication and send single commands, use the National
Instruments utility supplied with the NI-VISA drivers to open a VISA session to
send and receive data from the instrument, and also set control signals such as
Remote or Local.

Third party application programs, such as LabView, normally support USB
communication directly, for example through the Instrument I/O Assistant.

Custom specific programs using USB communication can be written in C/C++,
supported by libraries and lib-files supplied with the NI-VISA driver (default
location C:\VXIPNP\WinNT\). A sample program is in included in the Examples
section. (See page 4-9, USB Communication (Example #4).)

Instruments connected to the USB bus are identified by a unique vendor identifier,
the instrument model number and the instrument serial number. The structure
of the instrument identifier string is:

“USB0::0x0699::0x3003::######::INSTR”

Where:

0x0699 is the vendor identifier code for Tektronix instruments

0x3003 is the instrument model (based on the last four digits of the model
number)

is the instrument serial number

Use this string to identify the instrument vendor, model, or serial number when
searching for or connecting to a specific instrument.

FCA3000, FCA3100, MCA3000 Series Programmer Manual 1-3

http://www.usb.org
http://www.ni.com

Using the USB Interface

1-4 FCA3000, FCA3100, MCA3000 Series Programmer Manual

Syntax and Commands

Command Syntax
You can control the operations and functions of the instrument through the GPIB
port or the USB 2.0 device port using commands and queries. The related topics
listed below describe the syntax of these commands and queries. The topics
also describe the conventions that the instrument uses to process them. See the
Command Groups topic in the table of contents for a listing of the commands by
command group, or use the index to locate a specific command.

Backus-Naur Form
Notation

This documentation describes the commands and queries using Backus-Naur
Form (BNF) notation. The following table lists the BNF notation symbols.

Table 2-1: Symbols for Backus-Naur form
Symbol Meaning
< > Defined element
= Is defined as
| Exclusive OR
{ } Group; one element is required
[] Optional; can be omitted
. . . Previous element(s) may be repeated
() Comment

Command and Query Structure
Commands consist of set commands and query commands (usually called
commands and queries). Commands modify instrument settings or tell the
instrument to perform a specific action. Queries cause the instrument to return
data and status information.

Most commands have both a set form and a query form. The query form of the
command differs from the set form by its question mark at the end. For example,
the set command ACQuisition:HOFF has a query form ACQuisition:HOFF?.
Not all commands have both a set and a query form. Some commands have set
only and some have query only.

Messages A command message is a command or query name followed by any information
the instrument needs to execute the command or query. Command messages may
contain five element types, defined in the following table.

FCA3000, FCA3100, MCA3000 Series Programmer Manual 2-1

Command Syntax

Table 2-2: Command message elements
Symbol Meaning
<Header> This is the basic command name. If the header ends with a question

mark, the command is a query. The header may begin with a colon
(:) character. If the command is concatenated with other commands,
the beginning colon is required. Never use the beginning colon with
command headers beginning with a star (*).

<Mnemonic> This is a header subfunction. Some command headers have only one
mnemonic. If a command header has multiple mnemonics, a colon (:)
character always separates them from each other.

<Argument> This is a quantity, quality, restriction, or limit associated with the header.
Some commands have no arguments while others have multiple
arguments. A <space> separates arguments from the header. A
<comma> separates arguments from each other.

<Comma> A single comma is used between arguments of multiple-argument
commands. Optionally, there may be white space characters before
and after the comma.

<Space> A white space character is used between a command header and the
related argument. Optionally, a white space may consist of multiple
white space characters.

Commands Commands cause the instrument to perform a specific function or change one of
the settings. Commands have the structure:

[:]<Header>[<Space><Argument>[<Comma> <Argument>]...]

A command header consists of one or more mnemonics arranged in a hierarchical
or tree structure. The first mnemonic is the base or root of the tree and each
subsequent mnemonic is a level or branch off the previous one. Commands at a
higher level in the tree may affect those at a lower level. The leading colon (:)
always returns you to the base of the command tree.

Queries Queries cause the instrument to return status or setting information. Queries
have the structure:

[:]<Header>

[:]<Header>[<Space><Argument> [<Comma><Argument>]...]

You can specify a query command at any level within the command tree unless
otherwise noted. These branch queries return information about all the mnemonics
below the specified branch or level.

Clearing the Instrument
You can clear the Output Queue and reset the instrument to accept a new command
or query by using the selected Device Clear (DCL) function.

2-2 FCA3000, FCA3100, MCA3000 Series Programmer Manual

Command Syntax

Command Entry
The following rules apply when entering commands:

You can enter commands in upper or lower case.

You can precede any command with white space characters. White space
characters include any combination of the ASCII control characters 00 through
09 and 0B through 20 hexadecimal (0 through 9 and 11 through 32 decimal).

The instrument ignores commands consisting of any combination of white
space characters and line feeds.

Abbreviating You can abbreviate many instrument commands. The syntax of each command
shows the minimum acceptable abbreviations in capitals. For example, you
can enter the command CALCulate:AVERage:COUNt as CALC:AVER:COUN
or calc:aver:coun.

Abbreviation rules may change over time as new instrument models are
introduced. Thus, for the most robust code, use the full spelling.

Concatenating You can concatenate any combination of set commands and queries using a
semicolon (;). The instrument executes concatenated commands in the order
received.

FCA3000, FCA3100, MCA3000 Series Programmer Manual 2-3

Command Syntax

When concatenating commands and queries, you must follow these rules:

1. Separate completely different headers by a semicolon and by the beginning
colon on all commands except the first one. For example, you can concatenate
the commands CALCULATE:AVERAGE:COUNT 20 and INPUT:ATTENUATION
10 into the following single command:

CALCULATE:AVERAGE:COUNT 20;INPUT:ATTENUATION 10

2. If concatenated commands have headers that differ by only the last mnemonic,
you can abbreviate the second command and eliminate the beginning colon.
For example, you can concatenate the commands INPUT:ATTENUATION 10

and INPUT:COUPLING DC into a single command:

INPUT:ATTENUATION 10; COUPLING DC

The longer version works equally well:

INPUT:ATTENUATION 10;INPUT:COUPLING DC

3. Never precede a star (*) command with a colon:

INPUT:ATTENUATION 10;*OPC

Any commands that follow are processed as if the star command
was not there. For example, the commands INPUT:ATTENUATION
10;*OPC;INPUT:COUPLING DC set the input attenuation to 10X and set the
input coupling to DC.

Message Terminator This documentation uses <EOM> (End of Message) to represent a message
terminator. An incoming end of message terminator can be one of the following:

END message (EOI asserted concurrently with the last data byte). The last
data byte may be an ASCII line feed (LF) character.

Combining LF and EOI.

The instrument always terminates outgoing messages with LF and EOI.

Argument Types
Commands use arguments such as enumeration, numeric, quoted string and block.
Each of these arguments are listed in detail below.

Enumeration Enter these arguments as unquoted text words. Like key words, enumeration
arguments follow the same convention where the portion indicated in uppercase is
required and that in lowercase is optional.

For example: INPUT:COUPLING DC

2-4 FCA3000, FCA3100, MCA3000 Series Programmer Manual

Command Syntax

Numeric Many instrument commands require numeric arguments. The syntax shows the
format that the instrument returns in response to a query. This is also the preferred
format when sending the command to the instrument though any of the formats
will be accepted. This documentation represents these arguments as described
below.

Table 2-3: Numeric arguments
Symbol Meaning
<Integer> Signed integer value
<Decimal data> Floating point value with or without an exponent

Most numeric arguments are automatically forced to a valid setting, by either
rounding or truncating, when an invalid number is input, unless otherwise noted
in the command description.

Quoted String Some commands accept or return data in the form of a quoted string, which is
simply a group of ASCII characters enclosed by a single quote (') or double quote
("). The following is an example of a quoted string: "This is a quoted

string".

A quoted string can include any character defined in the 7-bit ASCII character
set. Follow these rules when you use quoted strings:

1. Use the same type of quote character to open and close the string. For
example: "this is a valid string".

2. You can mix quotation marks within a string if you follow the previous rule.
For example: "this is an 'acceptable' string".

3. You can include a quote character within a string by repeating the quote. For
example: "here is a "" mark".

4. Strings can have upper or lower case characters.

5. If you use a GPIB network, you cannot terminate a quoted string with the
END message before the closing delimiter.

6. A carriage return or line feed embedded in a quoted string does not terminate
the string. The return is treated as another character in the string.

7. The maximum length of a quoted string returned from a query is 1000
characters.

Here are some invalid strings:

"Invalid string argument' (quotes are not of the same type)

"test<EOI>" (termination character is embedded in the string)

FCA3000, FCA3100, MCA3000 Series Programmer Manual 2-5

Command Syntax

Block Several instrument commands use a block argument form, as defined in the
following table:

Table 2-4: Block argument
Symbol Meaning
<NZDig> A nonzero digit character in the range of 1-9
<Dig> A digit character, in the range of 0-9
<DChar> A character with the hexadecimal equivalent of 00 through FF (0

through 255 decimal)
<Block> A block of data bytes defined as: <Block>::=

{#<NZDig><Dig>[<Dig>...][<DChar>...] |#0[<DChar>...]<terminator>}

<NZDig> specifies the number of <Dig> elements that follow. Taken together,
the <NZDig> and <Dig> elements form a decimal integer that specifies how
many <DChar> elements follow.

Macros
A macro is a single command, that represents one or several other commands,
depending on your definition. You can define 25 macros of 40 characters in the
instrument. One macro can address other macros, but you cannot call a macro
from within itself (recursion). You can use variable parameters that modify the
macro.

Use macros to do the following:

Provide a shorthand for complex commands.

Cut down on bus traffic.

Macro Names You can use both commands and queries as macro labels. The label cannot be
the same as common commands or queries. If a macro label is the same as an
instrument command, the instrument will execute the macro when macros are
enabled (*EMC 1), and it will execute the instrument command when macros
are disabled (*EMC 0).

Data Types Within Macros The commands to be performed by the macro can be sent both as block and string
data.

String data is the easiest to use since you don’t have to count the number of
characters in the macro. However, there are some things you must keep in mind:

Both double quote (“) and single quote (‘) can be used to identify the string data.
If you use a controller language that uses double quotation marks to define strings

2-6 FCA3000, FCA3100, MCA3000 Series Programmer Manual

Command Syntax

within the language (like BASIC) we recommend that you use block data instead,
and use single quotes as string identifiers within the macro.

When using string data for the commands in a macro, remember to use a
different type of string data identifiers for strings within the macro. If the
macro should for instance set the input slope to positive and select the period
function, you must type:

“:Inp:slope pos; :Func ’PER 1’”

or

‘:Inp:slope pos; :Func "PER 1"’

Define Macro Command *DMC assigns a sequence of commands to a macro label. Later when you use the
macro label as a command, the instrument will execute the sequence of commands.

Use the following syntax:

*DMC <macro-label>, <commands>

Simple macro example. *DMC ‘FREQUENCY?’,":FUNC ‘FREQ
1’;:INP:LEV:AUTO ON ;:ARM:START:LAY2:SOURCE BUS;:INIT:CONT
ON;*TRG"

This example defines a macro “FREQUENCY?” that takes a single frequency
measurement with an automatic trigger level setting and places the result in the
output queue.

Macros with arguments. You can pass arguments (variable parameters) with the
macro. Insert a dollar sign ($) followed by a single digit in the range 1 to 9 where
you want to insert the parameter. See the example below.

When a macro with defined arguments is used, the first argument sent will replace
any occurrence of $1 in the definition; the second argument will replace $2, and
so on.

Example. *DMC ‘AUTOFILT’,":INP:LEV:AUTO $1;:INP:FILT
$1;:INP2:LEV:AUTO $1;:INP2:FILT $1"

This example defines a macro called AUTOFILT that takes one Boolean argument
such as ON or OFF for ($1).

AUTOFILT OFF

Turns off both the auto function and the analog lowpass filter on both input
channels.

FCA3000, FCA3100, MCA3000 Series Programmer Manual 2-7

Command Syntax

Deleting Macros Use the *PMC (purge macro) command to delete all macros defined
with the*DMC command. This removes all macro labels and sequences
from the memory. To delete only one macro in the memory, use
the:MEMory:DELete:MACRo command.

NOTE. You cannot overwrite a macro; you must delete it before you can use the
same name for a new macro.

Enabling and Disabling
Macros

*EMC Enable Macro Command. When you want to execute an instrument
command or query with the same name as a defined macro, you need to disable
macro execution. Disabling macros does not delete stored macros; it just hides
them from execution.

Disabling: *EMC0 disables all macros.

Enabling: *EMC1.

*EMC? Enable Macro Query. Use this query to determine if macros are enabled.

Possible response: 1 = macros are enabled, 0 = macros are disabled

How to Execute a Macro Macros are disabled after *RST, so to be sure, start by enabling macros with
*EMC 1. Now macros can be executed by using the macro labels as commands.

Example:

*DMC ‘LIMITMON’,’ :CALC:STAT ON; :CALC:LIM:STAT ON;
:CALC:LIM:LOW:DATA $1;STAT ON; :CALC:LIM:UPP:DATA $2;STAT ON’

*EMC 1

Now sending the command

LIMITMON 1E6,1.1E6

will switch on the limit monitoring to alarm between the limits 1MHz and 1.1MHz.

Retrieve a Macro GMC? Get Macro Contents query. This query sets a response containing the
definition of the macro you specified when sending the query.

Example using the above defined macro:

*GMC? ‘LIMITMON’

#292:CALC:STAT ON;:CALC:LIM:STAT ON; :CALC:LIM:LOW:DATA
$1;STAT ON; :CALC:LIM:UPP:DATA $2;STAT ON’

2-8 FCA3000, FCA3100, MCA3000 Series Programmer Manual

Command Syntax

LMC? Learn Macro query. This query returns a response containing the labels of
all the macros stored in the Timer/instrument.

Example:

*LMC? might return "MYINPSETTING","LIMITMON"

Now there are two macros in memory, and they have the following labels:
“MYINPSETTING” and “LIMITMON”.

FCA3000, FCA3100, MCA3000 Series Programmer Manual 2-9

Command Syntax

2-10 FCA3000, FCA3100, MCA3000 Series Programmer Manual

Command Groups

Arming Subsystem
Table 2-5: Arming commands
Command Description
ARM:COUNt Sets or returns the upward exit of the wait-for-bus-arm

state.
ARM:DELay Sets or returns a delay between the pulse on

the selected arming input and the time when the
instrument starts measuring.

ARM:LAYer2 Overrides the waiting for bus arm, provided the source
is set to bus.

ARM:LAYer2:SOURce Sets or returns the mode for the wait-for-bus-arm
function,

ARM:SLOPe Sets or returns the slope for the start arming condition.
ARM:SOURce Selects START arming input or switches off the start

arming function.
ARM:STOP:SLOPe Sets or returns the slope for the stop arming condition.
ARM:STOP:SOURce Selects STOP arming input or switches off the STOP

arming function.
ARM:STOP:TIMer Sets or returns a delay between a pulse on the

selected start arming input and the point of time when
totalizing stops (FCA3100 Series only, Totalize mode
only).

Calculate Subsystem
The calculate subsystem processes the measuring results. Here you can recalculate
the result using mathematics, make statistics and set upper and lower limits for
the measurement result. The instrument itself monitors the result and alerts you
when the limits are exceeded.

Limit monitoring makes it is possible to get a service request when the
measurement value falls below a lower limit or rises above an upper limit. Two
status bits are defined to support limit monitoring. One is set when the results
are greater than the UPPer limit, the other is set when the result is less than
the LOWer limit. Enable the bits by using the standard *SRE command and
:STAT:DREG0:ENAB. Using both these bits, it is possible to get a service request
when a value passes out of a band (UPPer is set at the upper band border and
LOWer at the lower border) OR when a measurement value enters a band (LOWer
set at the upper band border and UPPer set at the lower border). Turning the limit
monitoring calculations on or off will not influence the status register mask bits
which determine whether or not to generate a service request when a limit is
reached. Note that the calculate subsystem is automatically enabled when limit

FCA3000, FCA3100, MCA3000 Series Programmer Manual 2-11

Command Groups

monitoring is switched on. This means that other enabled calculate sub-blocks are
indirectly switched on.

Table 2-6: Calculate commands
Command Description
CALCulate:AVERage:ALL? Returns mean value, standard deviation, min and max

value from the current statistics sampling.
CALCulate:AVERage:COUNt Sets or returns the number of samples to use in

statistics sampling.
CALCulate:AVERage:COUNt:
CURRent?

Returns the number of samples in the current statistics
sampling.

CALCulate:AVERage:STATe Switches the statistical function on and off or returns
the state.

CALCulate:AVERage:TYPE Sets or returns the statistical function to be performed.
CALCulate:DATA? Fetches data calculated in the post processing block.
CALCulate:IMMediate Causes the calculate subsystem to reprocess

the statistical function on the sense data without
reacquiring the data. Query returns this reprocessed
data.

CALCulate:LIMit Turns On/Off the limit-monitoring calculations.
CALCulate:LIMit:CLEar Resets the instrument that reports its result using the

CALCulate:LIMit:FCOunt? query.
CALCulate:LIMit:CLEar:AUTO Activates or deactivates automatic reset by INIT

of the instrument that reports its result using the
CALCulate:LIMit:FCOunt? query.

CALCulate:LIMit:FAIL? Returns the result of limit testing.
CALCulate:LIMit:FCOunt? Returns the total number of times the set lower and

upper limits have been passed since the instrument
was last reset.

CALCulate:LIMit:FCOunt:LOWer? Returns the number of times the set lower limit was
passed since the instrument was last reset.

CALCulate:LIMit:FCOunt:UPPer? Returns the number of times the set upper limit was
passed since the instrument was last reset

CALCulate:LIMit:LOWer Sets or returns the value of the lower limit.
CALCulate:LIMit:LOWer:STATe Sets whether the measured value should be checked

against the lower limit.
CALCulate:LIMit:PCOunt? Returns the number of measurement results between

the set lower and upper limits since the instrument
was last reset

CALCulate:LIMit:UPPer Sets or returns the value of the upper limit.
CALCulate:LIMit:UPPer:STATe Sets whether the measured value should be checked

against the upper limit.
CALCulate:MATH Defines the mathematical expression used for

mathematical operations.

2-12 FCA3000, FCA3100, MCA3000 Series Programmer Manual

Command Groups

Table 2-6: Calculate commands (cont.)

Command Description
CALCulate:MATH:STATe Switches on/off the mathematical function.
CALCulate:STATe Switches on/off the complete post-processing block.
CALCulate:TOTalize:TYPE Selects postprocessing for totalize.

Calibration Subsystem
This subsystem controls the calibration of the interpolators used to increase the
resolution of the instrument.

Table 2-7: Calibration commands
Command Description
CALibration:INTerpolator:AUTO Sets or returns whether the instrument calibrates the

time interpolators for every measurement.

Configure Function
The CONFigure command sets up the instrument to make the same measurements
as the MEASure query, but without initiating the measurement and fetching the
result. Use configure when you want to change any parameters before making
the measurement.

CONFigure; READ? The CONFigure command causes the instrument to choose an optimal setting for
the specified measurement. CONFigure may cause any device setting to change.
READ? starts the acquisition and returns the result.

This sequence operates in the same way as the MEASure command, but now it is
possible to insert commands between CONFigure and READ? to fine-tune the
setting of a particular function. For example, you can change the input impedance
from 1M Ω to 50Ω.

Start with the command CONFigure:FREQ 2E6,1, where 2E6 is the expected
value 1 is the required resolution (1Hz).

Then send INPut:IMPedance 50 to set input impedance to 50 Ω.

Then send READ? to start the measurement and returns the result.

CONFigure;INITiate;FETCh? The READ? command can be divided into the INITiate command, which starts
the measurement, and the FETCh? command, which requests the instrument to
return the measuring results to the controller.

FCA3000, FCA3100, MCA3000 Series Programmer Manual 2-13

Command Groups

Start with the command CONFigure:FREQ 20E6,1, where 20E6 is the expected
signal value 1 is the required resolution.

Then send INPut:IMPedance 1E6 to set input impedance to 1 MΩ.

Then send INITiate to start the measurement.

Then send FETCh? to fetch the result.

Table 2-8: Comparison of ways to take a measurement
Command Advantage
MEASure? Simple to use, few additional possibilities.
CONFigure READ? Somewhat more difficult, but some extra

possibilities.
CONFigure INITiate FETCh? Most difficult to use, but many extra features.

Table 2-9: Configure commands
Command Description
CONFigure:ARRay:
<MeasuringFunction>

Sets up the instrument to perform the number of
measurements you choose.

CONFigure:<MeasuringFunction> Sets up the instrument to perform one measurement.
CONFigure:TOTalize[:
CONTinuous]

Set up the instrument to take repeated measurements.

Display Subsystem
Commands in this subsystem control what data is to be present on the display
and whether the display is on or off.

Table 2-10: Display command
Command Description
DISPlay:ENABle Turns On/Off the updating of the screen.

Fetch Function
Table 2-11: Fetch commands
Command Description
FETCh:ARRay? Fetches multiple measurements.
FETCh[:SCALar]? Fetches a single measurement.

2-14 FCA3000, FCA3100, MCA3000 Series Programmer Manual

Command Groups

Format Subsystem
The Format subsystem converts the internal data representation to the data
transferred over the external GPIB interface. Commands in this block control the
data type to be sent over the external interface.

Time Stamp Readout
Format

When FORMat:TINFormation is set to ON, the readout contains two values
instead of one for FETCh:SCALar?, READ:SCALar? and MEASure:SCALar?.

The first is the measured value, expressed in the basic unit of the measurement
function, and the second value is the timestamp value in seconds.

In FORMat ASCII mode, the result is given as a floating-point number, followed
by a floating point timestamp value.

In FORMat REAL mode, the result is given as an eight-byte block containing the
floating-point measured value, followed by an eight-byte block containing the
floating-point timestamp value.

When doing readouts in array form, with FETCh:ARRay?, READ:ARRay? or
MEASure:ARRay?, the response consists of alternating measurement values and
timestamp values, formatted in a similar way as for scalar readout. All values are
separated by commas.

Table 2-12: Format commands
Command Description
FORMat Sets or returns the format in which the result is sent

on the bus.
FORMat:BORDer Sets or returns the order in which response data bytes

formatted.
FORMat:SMAX Sets or queries the upper limit for FETCh:ARRay?
FORMat:TINFormation Turns on/off the time stamping of measurements.

Hard Copy
Table 2-13: Hard copy command
Command Description
HCOPy:SDUMp:DATA? Returns block data containing a screen image in

Windows BMP format.

FCA3000, FCA3100, MCA3000 Series Programmer Manual 2-15

Command Groups

Initiate Subsystem
Table 2-14: Initiate commands
Command Description
INITiate Initiate the trigger system to take a measurement.
INITiate:CONTinuous Initiate the trigger system to take continuous

measurements.

Input Subsystem
The Input subsystem performs all the signal conditioning of the input signal
before it is converted into data by the Sense subsystem. The Input subsystem
includes coupling, impedance, filtering, and so forth.

2-16 FCA3000, FCA3100, MCA3000 Series Programmer Manual

Command Groups

Table 2-15: Input commands
Command Description
AUTO Performs the same task as the front panel button

AUTO SET.
INPut{[1]|2}:ATTenuation Sets or returns the input attenuation.
INPut{[1]|2}:COUPling Sets or returns the input coupling.
INPut{[1]|2}:FILTer Switches on or off the analog low pass filter.
INPut{[1]|2}:FILTer:DIGital Switches on or off the digital low pass filter.
INPut{[1]|2}:FILTer:DIGital:
FREQuency

Sets or returns the digital filter cutoff frequency.

INPut{[1]|2}:IMPedance Sets or returns the input impedance.
INPut{[1]|2}:LEVel Sets or returns the input threshold level.
INPut{[1]|2}:LEVel:AUTO Switches autotrigger level on or off.
INPut{[1]|2}:LEVel:RELative Sets or returns specific trigger levels for different

measurements.
INPut{[1]|2}:SLOPe Sets or returns the slope for certain measurements.

Measurement Subsystem
The Measure function group has a different level of compatibility and flexibility
than other commands. The parameters used with commands from the Measure
group describe the signal you are going to measure. This means that the Measure
functions give compatibility between instruments, since you don’t need to know
anything about the instrument you are using.

MEASure? This is the most simple query to use, but it does not offer much flexibility. The
MEASure? query lets the instrument configure itself for an optimal measurement,
starts the data acquisition, and returns the result.

MEASure:FREQ? example. This will execute a frequency measurement and the
result is sent to the controller. The instrument will select a setting for this purpose
by itself, and will carry out the required measurement as “well” as possible;
moreover, it will automatically start the measurement and send the result to the
controller. You may add parameters to give more details about the signal you are
going to measure, for example:

Send the query MEASure:FREQ? 20 MHz,1, where: 20 MHz is the expected
value, which can, of course, also be sent as 20E6, and 1 is the required resolution.
(1Hz)

Also the channel numbers can be specified, for example: MEASure:FREQ? (@3)
or MEASure:FREQ? 20E6, 1,(@1)

FCA3000, FCA3100, MCA3000 Series Programmer Manual 2-17

Command Groups

Table 2-16: Comparison of ways to take a measurement
Command Advantage
MEASure? Simple to use, few additional possibilities.
CONFigure READ? Somewhat more difficult, but some extra

possibilities.
CONFigure INITiate FETCh? Most difficult to use, but many extra features.

Table 2-17: Measurement commands
Command Description
ABORt Terminates a measurement.
MEASure:ARRay:FREQuency:
BTBack?

Takes a series of back-to-back frequency
measurements.

MEASure:ARRay:
<MeasuringFunction>?

Sets up a series of measurements with the results
returned in a single string.

MEASure:ARRay:PERiod:
BTBack?

Takes a series of back-to-back period measurements.

MEASure:ARRay:STSTamp? Takes a series of back-to-back time-stamp
measurements.

MEASure:ARRay:TIError? Takes a series of back-to-back relative frequency
measurements.

MEASure:ARRay:TSTAmp? Takes a series of back-to-back time-stamp
measurements taken at all positive and negative
trigger level crossings.

MEASure{:FALL:TIME|:FTIM}? Takes a fall time measurement.
MEASure:FREQuency? Takes a frequency measurement.
MEASure:FREQuency:BURSt? Takes a measurement of the carrier frequency of a

burst.
MEASure:FREQuency:POWer[:
AC]?

Takes a power measurement.

MEASure:FREQuency:PRF? Takes a pulse-repetition frequency measurement.
MEASure:FREQuency:RATio? Takes a frequency ratio measurement.
MEASure:<MeasuringFunction>? Sets up a single measurement with the result returned

in a string.
MEASure:MEMory? Recalls an instrument setting stored in memory and

returns a measurement value.
MEASure:MEMory<N>? Recalls an instrument setting stored in memory and

returns a measurement value.
MEASure:NDUTycycle? Takes a negative duty cycle measurement.
MEASure:NWIDth? Takes a negative pulse width measurement.
MEASure{:PDUTycycle|:DCYCle}? Takes a positive duty cycle measurement.
MEASure:PERiod? Takes a period measurement.
MEASure:PERiod:AVERage? Returns an average of multiple period measurements.

2-18 FCA3000, FCA3100, MCA3000 Series Programmer Manual

Command Groups

Table 2-17: Measurement commands (cont.)

Command Description
MEASure:PHASe? Takes a phase measurement.
MEASure:PWIDth? Takes a positive pulse width measurement.
MEASure{:RISE:TIME|:RTIM}? Takes a rise time measurement.
MEASure:TINTerval? Takes a time interval measurement.
MEASure[:VOLT]:MAXimum? Takes a positive peak voltage measurement.
MEASure[:VOLT]:MINimum? Takes a negative peak voltage measurement.
MEASure[:VOLT]:NCYCles? Measures the number of cycles in a burst.
MEASure[:VOLT]:NSLEwrate? Takes a negative slew rate measurement.
MEASure[:VOLT]:PSLEwrate? Takes a positive slew rate measurement.
MEASure[:VOLT]:PTPeak? Takes a peak-to-peak voltage measurement.
MEASure[:VOLT]:RATio? Takes a peak-to-peak voltage ratio measurement.
TOTalize:GATE Opens and closes the gate for continuous

measurements.

Memory Subsystem
The Memory subsystem holds macro and instrument state data inside the
instrument.

Table 2-18: Memory commands
Command Description
MEMory:DATA:RECord:COUNt? Returns the number of samples in a given memory

location.
MEMory:DATA:RECord:DELete Erases a given memory location.
MEMory:DATA:RECord:FETCh? Returns one sample from a given memory location.
MEMory:DATA:RECord:FETCh:
ARRay?

Returns multiple samples from a given memory
location.

MEMory:DATA:RECord:FETCh:
STARt

Sets the pointer to the first sample in a given memory
location.

MEMory:DATA:RECord:NAME? Returns the name of a given memory location.
MEMory:DATA:RECord:SAVE Saves samples in a given memory location.
MEMory:DATA:RECord:SETTings? Returns the instrument settings used when the

specified <Dataset> was saved.
MEMory:DELete:MACRo Deletes an individual macro.
MEMory:FREE:MACRo? Returns the bytes used and available for macros.
MEMory:NSTates? Returns (one greater than) the number of available

memory locations for instrument settings.

FCA3000, FCA3100, MCA3000 Series Programmer Manual 2-19

Command Groups

Output Subsystem
Table 2-19: Output commands
Command Description
OUTPut:POLarity Sets or returns the polarity of the pulse output.
OUTPut:TYPE Sets or returns the function of the pulse output.
SOURce:PULSe:PERiod Sets the period for the pulse output.
SOURce:PULSe:WIDTh Sets the pulse width for the pulse output.

Read Function
Table 2-20: Read commands
Command Description
READ? Performs a new measurement and reads out a

measuring result.
READ:ARRay? Performs multiple measurements and reads out the

measuring results.

Sense Command Subsystem
The Sense subsystem converts the signals into internal data that can be
processed by the Calculate subsystem. The SENSe commands control various
characteristics of the measurement and acquisition process. These include gate
time, measurement function, resolution, and so on.

Depending on application, you can select different input channels and input
characteristics.

Switchbox. In automatic test systems, it is difficult to swap BNC cables when
you need to measure on several measuring points. The FCA3000 series lets you
switch between input A and B to take measurements directly without the need
for external switching devices.

Prescaling. For all measuring functions except time interval , rise/fall time ,
phase and time stamping , the maximum input A or B frequency is 300 MHz.

For the measuring functions explicitly mentioned above, the instrument has a
max repetition rate of 160MHz.

For the measuring functions Frequency and Period Average , the signal to
Input A or Input B is prescaled by a factor of 2. For Frequency in Burst , PRF
and Number of Cycles in Burst , the signal is prescaled by a factor of 2 if the
command :SENSe:FREQuency:BURSt:PREScaleris set to ON. This is also the
default condition.

2-20 FCA3000, FCA3100, MCA3000 Series Programmer Manual

Command Groups

Table 2-21: Sense commands
Command Description
ACQuisition:APERture Sets or returns the gate time for a measurement.
ACQuisition:HOFF Switches the holdoff function on or off.
ACQuisition:HOFF:TIME Sets or returns the holfoff time value.
FREQuency:BURSt:APERture Sets the time length within a burst during which the

burst frequency is measured.
FREQuency:BURSt:PREScaler[:
STATe]

Switches the frequency burst prescaler on and off.

FREQuency:BURSt:STARt:DELay Sets or returns the time length between the burst start
and the actual start of the burst measuring time.

FREQuency:BURSt:SYNC:PERiod Sets the synchronization delay time used in burst
measurements.

FREQuency:POWer:UNIT Sets or returns the measurement unit for power
measurements.

FREQuency:RANGe:LOWer Sets a lower-limit frequency for certain voltage and
autotrigger function.

FREQuency:REGRession Switches the linear regression function on and off.
FUNCtion Sets the measuring function to be performed and input

channel.
HF:ACQuisition[:STATe] Switches the automatic acquisition system on or off.
HF:FREQuency:CENTer Sets the center frequency value for the RF input.
ROSCillator:SOURce Selects the source for the time base.
TIError:FREQuency Sets a reference frequency for relative frequency

measurements.
TIError:FREQuency:AUTO Sets the instrument to use a relative frequency that is

listed for automatic recognition.
TINTerval:AUTO Sets the instrument to automatically detect the start

channel in a time interval measurement.

Status Subsystem
This subsystem can be used to get information about what is happening in the
instrument at the moment.

Table 2-22: Status commands
Command Description
STATus:DREGister0? Returns the contents of the Device Event Register.
STATus:DREGister0:ENABle Sets the enable bit of the Device Register 0.
STATus:OPERation? Returns the contents of the operation event status

register.

FCA3000, FCA3100, MCA3000 Series Programmer Manual 2-21

Command Groups

Table 2-22: Status commands (cont.)

Command Description
STATus:OPERation:CONDition? Returns the contents of the operation status condition

register.
STATus:OPERation:ENABle Sets the enable bits of the operation status enable

register.
STATus:PRESet Sets or clears all other enable registers other than the

IEEE-488.2 enable registers.
STATus:QUEStionable? Returns the contents of the status questionable event

register.
STATus:QUEStionable:
CONDition?

Returns the contents of the status questionable
condition register.

STATus:QUEStionable:ENABle Sets the enable bits of the status questionable enable
register.

System Subsystem
This subsystem controls some system parameters like timeout.

Table 2-23: System commands
Command Description
SYSTem:COMMunicate:GPIB:
ADDRess

Sets or returns the GPIB address.

SYSTem:ERRor? Queries for an ASCII text description of an error that
occurred.

SYSTem:LANGuage Selects one of two command sets.
SYSTem:PRESet Recalls the default settings for the instrument.
SYSTem:SET Returns the complete current state of the instrument.
SYSTem:TALKonly Sets the instrument to talk-only mode.
SYSTem:TEMPerature? Returns the temperature in degrees C at the fan

control sensor inside the instrument housing.
SYSTem:TOUT Switches the time-out on or off.
SYSTem:TOUT:AUTO Sets an automatic time out after the first start trigger.
SYSTem:TOUT:TIME Sets or returns the time-out time.
SYSTem:UNPRotect Unprotects the user data set or read by the *PUD

command.

2-22 FCA3000, FCA3100, MCA3000 Series Programmer Manual

Command Groups

Test Subsystem
This subsystem tests the hardware and software of the instrument and reports
errors.

Table 2-24: Test command
Command Description
TEST:SELect Selects which internal self-tests shall be used when

self-test is requested by the *TST? command.

Trigger Subsystem
The Trigger subsystem enables synchronization of instrument actions with
specified internal or external events.

Instrument Action Some examples of events to synchronize with are as follows:

Measurement

Bus trigger

External signal level or pulse

Ten occurrences of a pulse on the external trigger input

Other instrument ready

Signal switching

Input signal present

One second after input signal is present

Sourcing output signal

Switching system ready

The ARM-TRIG Trigger Configuration gives a typical trigger configuration, the
ARM-TRIG model. The configuration contains two event-detection layers: the
‘Wait for ARM’ and ‘Wait for TRIG’ states.

FCA3000, FCA3100, MCA3000 Series Programmer Manual 2-23

Command Groups

This trigger configuration is sufficient for most instruments. More complex
instruments, such as the FCA3000 and MCA3000 Series, have more ARM layers.

The ‘Wait for TRIG’ event-detection layer is always the last to be crossed before
instrument actions can take place.

Structure of the IDLE and
INITIATED States

When you turn on the power or send *RST or ABORT to the instrument, it sets
the trigger system in the IDLE state.

The trigger system will exit from the IDLE state when the instrument receives an
INITiate:IMMediate. The instrument will pass directly through the INITIATED
state downward to the next event-detection layers (if the instrument contains
any more layers).

The trigger system will return to the INITIATED state when all events required
by the detection layers have occurred and the instrument has made the intended
measurement. When you program the trigger system to INITiate:CONTinuous
ON, the instrument will directly exit the INITIATED state moving downward and
will repeat the whole flow described above. When INITiate:CONTinuous is OFF,
the trigger system will return to the IDLE state.

2-24 FCA3000, FCA3100, MCA3000 Series Programmer Manual

Command Groups

Figure 2-1: Flow diagram of IDLE and INITIATED layers.

Structure of an event-detection layer. The general structure of all event-detection
layers is identical. (See Figure 2-1.)

In each layer there are several programmable conditions, which must be satisfied
to pass by the layer in a downward direction:

Forward traversing an event-detection layer. After initiating the loop instruments,
the instrument waits for the event to be detected. You can select the event
to be detected by using the <layer>:SOURce command. For example:
ARM:LAYer2:SOURce BUS

You can specify a more precise characteristic of the event to occur. For example:
ARM:LAYer:DELay 0.1

You may program a certain delay between the occurrence of the event and
entering into the next layer (or starting the device actions when in the TRIGger
layer). This delay can be programmed by using the <layer>:DELay command.

Backward traversing an event-detection layer. The number of times a layer event
has to initiate a device action can be programmed by using the <layer>:COUNt
command. For example: :TRIGger:COUNt 3 causes the instrument to measure
three times, each measurement being triggered by the specified events.

Triggering *TRG trigger command. The trigger command has the same function as the Group
Execute Trigger command GET, defined by IEEE488.1.

When to use * TRG and GET

The *TRGand the GET commands have the same effect on the instrument. If the
instrument is in idle (not parsing or executing any commands), GET will execute
much faster than *TRG since the instrument must always parse *TRG.

FCA3000, FCA3100, MCA3000 Series Programmer Manual 2-25

Command Groups

Figure 2-2: Structure of event detection layers.

Table 2-25: Trigger commands
Command Description
TRIGger:COUNt Sets or returns how many measurements the

instrument should make for each arm condition.
TRIGger:SOURce Enables or disables the sample rate control.
TRIGger:TIMer Sets the sample rate fur use with the statistics

functions.

2-26 FCA3000, FCA3100, MCA3000 Series Programmer Manual

Command Groups

Common Commands
Table 2-26: IEEE common commands
Command Description
*CLS Clears the status data structures by clearing all event

registers and the error queue.
*DDT Sets or queries the command that the device will

execute on receiving the GET interface message or
the *TRG common command.

*DMC Defines a new macro.
*EMC Enables macros.
*ESE Sets the enable bits of the standard event enable

register.
*ESR? Returns the contents of the standard event status

register.
*GMC? Returns the definition of a existing macro.
*IDN? Reads out the manufacturer, model, serial number,

and firmware level in an ASCII response data element.
*LMC? Returns the labels of all defined macros.
*LRN? Returns a message that can be sent to the instrument

to return it to the state it was in when the *LRN? query
was made.

*OPC Generates the operation complete message in the
Standard Event Status Register.

*OPT? Return all detectable features present in the
instrument.

*PMC Deletes all macro definitions.
*PSC Enables/disables automatic power-on clearing.
*PUD Sets or returns protected user data.
*RCL Recalls one of the previously stored complete

instrument settings from the internal nonvolatile
memory of the instrument.

*RMC Deletes an individual macro.
*RST Resets the instrument.
*SAV Saves the settings of the instrument in an internal

nonvolatile memory.
*SRE Sets or returns the service request enable register bits.
*STB? Returns the value of the Status Byte.
*TRG Starts the measurement and places the result in the

output queue.

FCA3000, FCA3100, MCA3000 Series Programmer Manual 2-27

Command Groups

Table 2-26: IEEE common commands (cont.)

Command Description
*TST? Starts an internal self-test and generates a response

indicating whether or not the instrument completed the
self-test without any detected errors.

*WAI Prevents the instrument from executing any further
commands or queries until execution of all previous
commands or queries is completed.

2-28 FCA3000, FCA3100, MCA3000 Series Programmer Manual

Command Descriptions

ABORt (No Query Form)
The ABORt command terminates a measurement. The trigger subsystem state
is set to idle-state. The command does not invalidate already finished results
when breaking an array measurement. This means that you can fetch a partial
result after an abort.

Aborts all previous measurements if *WAI is not used.

Group Measurement

Syntax ABORt

ACQuisition:APERture
Sets the gate time for one measurement.

Group Sense

Syntax ACQuisition:APERture {<Decimal value > | MIN | MAX }
ACQuisition:APERture?

Arguments <DECIMAL VALUE> is 20 ns to 1000s. MIN sets 20 ns and MAX sets 1000 s.

Returns <Decimal value >

200 ms after SYST:PRES

10 ms after *RST

ACQuisition:HOFF
Sets the Hold Off function On or Off.

Group Sense

Syntax ACQuisition:HOFF <boolean>
ACQuisition:HOFF?

FCA3000, FCA3100, MCA3000 Series Programmer Manual 2-29

Command Descriptions

Arguments <BOOLEAN> = 1 | ON | 0 | OFF

Returns 1 | 0

ACQuisition:HOFF:TIME
Sets the Hold Off time value.

Group Sense

Syntax ACQuisition:HOFF:TIME {<Decimal value> | MIN | MAX}
ACQuisition:HOFF:TIME?

Arguments <DECIMAL DATA>= a number between 20E–9 and 2.0

Returns <Decimal value>

ARM:COUNt
This count variable controls the upward exit of the wait-for-bus-arm state. The
instrument loops the trigger subsystem downwards COUNt number of times
before it exits to the idle state.

This means that a COUNt number of measurements can be done for each Bus
arming or INITiate.

NOTE. The actual number of measurements made on each INIT is equal to
(ARM:COUNT)*(TRIG:START:COUNT).

Group Arming

Syntax ARM:COUNt <Numeric value>| MIN | MAX | INFinity
ARM:COUNt?

Arguments <Numeric value> is an integer between 1 and 2,147,483,647 (231 -1). The
integer 1 switches the function OFF.

MIN sets 1.

MAX sets 2147483647.

2-30 FCA3000, FCA3100, MCA3000 Series Programmer Manual

Command Descriptions

INFinity makes the arm loop continue indefinitely, or until other
device-dependent parameters set limits.

ARM:DELay
This command sets a delay between the pulse on the selected arming input and the
time when the instrument starts measuring.

Range: 20ns to 2s, with 10 ns resolution.

Group Arming

Syntax ARM:DELay <Numeric value> | MIN | MAX
ARM:DELay?

Arguments <Numeric value> is a number between 20*10–9 and 2.

MIN sets 0 which switches the delay OFF.

MAX sets 2 s.

Returns <Numeric value>

Examples ARM:DELAY 0.1

ARM:LAYer2 (No Query Form)
This command overrides the waiting for bus arm, provided the source is set to
bus. When this command is issued, the instrument will immediately exit the
wait-for-bus-arm state.

The instrument generates an error if it receives this command when the trigger
subsystem is not in the wait-for-bus-arm state.

If the Arming source is set to Immediate, this command is ignored.

Group Arming

Syntax ARM:LAYer2

Examples ARM:LAYER2

FCA3000, FCA3100, MCA3000 Series Programmer Manual 2-31

Command Descriptions

ARM:LAYer2:SOURce
Switches between Bus and Immediate mode for the wait-for-bus-arm function,
(layer 2). GETand *TRG triggers the instrument if Bus is selected as source.

If the instrument receives GET/*TRG when not in wait-for-bus-arm state, it
ignores the trigger and generates an error.

It also generates an error if it receives GET/*TRG and bus arming is switched
off (set to IMMediate).

Group Arming

Syntax ARM:LAYer2:SOURce {BUS | IMMediate}
ARM:LAYer2:SOURce?

Arguments BUS

IMMediate

Examples ARM:LAYER2:SOURCE BUS

ARM:SLOPe
Sets the slope for the start arming condition.

Group Arming

Syntax ARM:SLOPe {POSitive | NEGative}
ARM:SLOPe?

Arguments POS

NEG

Examples ARM:SLOPE NEG

ARM:SOURce
Selects START arming input or switches off the start arming function. When
switched off the DELay is inactive.

2-32 FCA3000, FCA3100, MCA3000 Series Programmer Manual

Command Descriptions

Group Arming

Syntax ARM:SOURce {EXTernal1 | EXTernal2 | EXTernal4 | IMMediate}
ARM:SOURce?

Arguments EXTernal1 is input A

EXTernal2 is input B

EXTernal4 is input E

IMMediate is Start arming OFF

NOTE. For the Totalize function in the FCA3100 Series, IMM means manual
start-stop using the commands TOT:GATEON|OFF.

Returns EXT1 | EXT2 | EXT4 | IMM

Examples ARM:SOURCE EXT4

ARM:STOP:SLOPe
Sets the slope for the stop arming condition.

Group Arming

Syntax ARM:STOP:SLOPe {POSitive | NEGative}
ARM:STOP:SLOPe?

Returns POS|NEG

Examples ARM:STOP:SLOPE NEG

ARM:STOP:SOURce
Selects STOP arming input or switches off the STOP arming function. The
FCA3100 Series has also a programmable timer that is accessible in Totalize
mode.

FCA3000, FCA3100, MCA3000 Series Programmer Manual 2-33

Command Descriptions

Group Arming

Syntax ARM:STOP:SOURce {EXTernal1 | EXTernal2 | EXTernal4 | TIMer
| IMMediate}
ARM:STOP:SOURce?

Arguments EXTernal1 is input A

EXTernal2 is input B

EXTernal4 is input E

TIMer is timed STOP in Totalize measurements (FCA3100 Series only). The
time is set with the command ARM:STOP:TIMer.

IMMediate sets Stop arming OFF

Returns EXT1 | EXT2 | EXT4 | TIM | IMM

Examples ARM:STOP:SOURCE EXT4

ARM:STOP:TIMer
This command sets a delay between a pulse on the selected start arming input
(when totalizing starts) and the point of time when totalizing stops.

Range: 20 ns to 2 s, with 10 ns resolution.

Group Arming

Syntax ARM:STOP:TIMer <Numeric value> | MIN | MAX
ARM:STOP:TIMer?

Arguments <Numeric value> is a number between 20 * 10-9 and 2 s.

MIN sets 20 * 10-9 s.

MAX sets 2 s.

Returns <Numeric value>

Examples ARM:STOP:TIMER 0.1

2-34 FCA3000, FCA3100, MCA3000 Series Programmer Manual

Command Descriptions

AUTO (No Query Form)
Performs the same task as the front panel button AUTO SET.

Group Input

Syntax AUTO ONCE | PRESet

Arguments ONCE corresponds to pressing AUTO SET once.

PRESet corresponds to double-clicking AUTO SET.

CALCulate:AVERage:ALL? (Query Only)
Returns mean value, standard deviation, min and max value from the current
statistics sampling.

Group Calculate

Syntax CALCulate:AVERage:ALL?

Returns <mean value>, <standard deviation>, <min value>, <max value>

CALCulate:AVERage:COUNt
Sets the number of samples to use in statistics sampling.

Group Calculate

Syntax CALCulate:AVERage:COUNt <number of samples>
CALCulate:AVERage:COUNt?

Arguments <number of samples> is an integer in the range 2 to 2*109.

Returns < number of samples>

FCA3000, FCA3100, MCA3000 Series Programmer Manual 2-35

Command Descriptions

CALCulate:AVERage:COUNt:CURRent? (Query Only)
Returns the number of samples in the current statistics sampling.

Group Calculate

Syntax CALCulate:AVERage:COUNt:CURRent?

Returns <number of samples>

CALCulate:AVERage:STATe
This command switches the statistical function on and off.

The CALCulate subsystem is automatically enabled when the statistical functions
are switched on. This means that other enabled calculate sub-blocks are indirectly
switched on. The statistics must be enabled before the measurements are
performed. When the statistical function is enabled, the instrument will keep
the trigger subsystem initiated until the CALCulate:AVERage:COUNt variable
is reached. This is done without any change in the trigger subsystem settings.
Consider that the trigger subsystem is programmed to perform 1000 measurements
when initiated. In such a case, the instrument must make 10000 measurements
if the statistical function requires 9500 measurements because the number of
measurements must be a multiple of the number of measurements programmed in
trigger subsystem (1000 in this example).

Group Calculate

Syntax CALCulate:AVERage:STATe < Boolean >
CALCulate:AVERage:STATe?

Arguments <BOOLEAN> = (1| ON | 0 | OFF)

Returns 1|0

NOTE. Statistics with array readouts cannot be combined. To store and
fetch individual values in a block measurement, use the default command
CALCulate:AVERage:STATe is OFF.

2-36 FCA3000, FCA3100, MCA3000 Series Programmer Manual

Command Descriptions

CALCulate:AVERage:TYPE
Selects the statistical function to be performed.

NOTE. Use CALCulate:DATA? to read the result of statistical operations. READ?
and FETCh[:SCALar]? will only send the results that the statistical operation
is based on.

Group Calculate

Syntax CALCulate:AVERage:TYPE { MAX | MIN | MEAN | SDEViation |
ADEViation}
CALCulate:AVERage:TYPE?

Arguments MAX returns the maximum value of all samples taken under CALC:AVERcontrol.

MIN returns the minimum value of all samples taken under CALC:AVERcontrol.

MEAN returns the mean value of the samples taken:

SDEV returns the standard deviation of the samples taken:

ADEV returns the Allan deviation of the samples taken:

Returns MAX | MIN | MEAN | SDEV | ADEV

CALCulate:DATA? (Query Only)
Returns data calculated in the post processing block.

NOTE. Use this command to return the calculated result without making a new
measurement.

FCA3000, FCA3100, MCA3000 Series Programmer Manual 2-37

Command Descriptions

Group Calculate

Syntax CALCulate:DATA?

Returns <Decimal data>

Examples CALCULATE:DATA? might return CALC:MATH:STAT

ON;:CALC:MATH(((1*X)-10.7E6)/1) ;:INIT; *OPC

Wait for operation complete

CALCULATE:DATA?

<Measurement result> – 10.7E6

CALCulate:IMMediate
This event causes the calculate subsystem to reprocess the statistical function on
the sense data without reacquiring the data. Query returns this reprocessed data.

Group Calculate

Syntax CALCulate:IMMediate
CALCulate:IMMediate?

Returns <Decimal data>

Where: <Decimal data> is the recalculated data.

Examples CALCULATE:IMMEDIATE CALC:AVER:STAT ON;TYPES DEV;:INIT;*OPC

Wait for operation complete

CALC:DATA?

<VALUE OF STANDARD DEVIATION>

CALC:AVER:TYPE MEAN

CALC:IMM?

<MEAN VALUE>

2-38 FCA3000, FCA3100, MCA3000 Series Programmer Manual

Command Descriptions

CALCulate:LIMit
Turns On/Off the limit-monitoring calculations. Limit monitoring generates a
service request when the measurement value falls below a lower limit, or rises
above an upper limit.

Two status bits are defined to support limit-monitoring. One is set when the
results are greater than the UPPer limit, the other is set when the result is less
than the LOWer limit. The bits are enabled using the standard * SREcommand
and:STAT:DREG0:ENAB. Using both these bits, it is possible to get a service
request when a value passes out of a band (UPPer is set at the upper band border
and LOWer at the lower border) OR when a measurement value enters a band
(LOWer set at the upper band border and UPPer set at the lower border). Turning
the limit-monitoring calculations On/Off will not influence the status register
mask bits, which determine whether or not a service request is generated when a
limit is reached.

NOTE. The calculate subsystem is automatically enabled when limit-monitoring is
switched on. This means that other enabled calculate sub-blocks are indirectly
switched on.

Group Calculate

Syntax CALCulate:LIMit <Boolean>
CALCulate:LIMit?

Related Commands Example 1 in Chapter 4 deals with limit-monitoring.

Arguments <BOOLEAN> = (1 | ON | 0 | OFF)

Returns 1 | 0

CALCulate:LIMit:CLEar (No Query Form)
The command resets the instrument that reports its result using the
CALCulate:LIMit:FCOunt? query.

Group Calculate

Syntax CALCulate:LIMit:CLEar

FCA3000, FCA3100, MCA3000 Series Programmer Manual 2-39

Command Descriptions

CALCulate:LIMit:CLEar:AUTO
The command activates (ON) or deactivates (OFF) automatic reset by INIT of the
instrument that reports its result using the CALCulate:LIMit:FCOunt? query.

Group Calculate

Syntax CALCulate:LIMit:CLEar:AUTO <Boolean>
CALCulate:LIMit:CLEar:AUTO?

Arguments <Boolean> = (1 | ON | 0 | OFF)

CALCulate:LIMit:FAIL? (Query Only)
Returns a 1 if the limit testing has failed (the measurement result has passed the
limit), and a 0 if the limit testing has passed.

The following events reset the fail flag:

Power-on

* RST

A:CALC:LIM:STATOFF:CALC:LIM:STATONtransition

Reading a 1 with this command

Group Calculate

Syntax CALCulate:LIMit:FAIL?

Returns 1| 0

Examples SENS:FUNC 'FREQ';:CALC:LIM:STATON;:CALC:LIM:UPPER

1E3;READ?;*WAI;:CALC:LIM:FAIL? might return 1 if frequency is above
1 kHz, and 0 otherwise.

CALCulate:LIMit:FCOunt? (Query Only)
The command returns the total number of times the set lower and upper limits
have been passed since the instrument was last reset by CALCulate:LIMit:CLEar
or automatically by INITiate if CALCulate:LIMit:CLEar:AUTO is set to ON.

2-40 FCA3000, FCA3100, MCA3000 Series Programmer Manual

Command Descriptions

In other words, the returned value is the sum of the values returned by
CALCulate:LIMit:FCOunt:LOWer? and CALCulate:LIMit:FCOunt:UPPer?.

Group Calculate

Syntax CALCulate:LIMit:FCOunt?

Returns <Number of counts>

CALCulate:LIMit:FCOunt:LOWer? (Query Only)
The command returns the number of times the set lower limit was passed since
the instrument was last reset by CALCulate:LIMit:CLEar or automatically by
INITiate if CALCulate:LIMit:CLEar:AUTO is set to ON.

Group Calculate

Syntax CALCulate:LIMit:FCOunt:LOWer?

Returns <Number of counts>

CALCulate:LIMit:FCOunt:UPPer? (Query Only)
The command returns the number of times the set upper limit was passed since
the instrument was last reset by CALCulate:LIMit:CLEar or automatically by
INITiate if CALCulate:LIMit:CLEar:AUTO is set to ON.

Group Calculate

Syntax CALCulate:LIMit:FCOunt:UPPer?

Returns <Number of counts>

FCA3000, FCA3100, MCA3000 Series Programmer Manual 2-41

Command Descriptions

CALCulate:LIMit:LOWer
Sets the value of the lower limit, that is, the lowest measurement result allowed
before the instrument generates a 1 that can be read with CALCulate:LIMit:FAIL?,
or by reading the corresponding status byte.

Group Calculate

Syntax CALCulate:LIMit:LOWer {<Decimal data>| MAX | MIN }
CALCulate:LIMit:LOWer?

Arguments PARAMETER RANGE: -9.9*10+37to +9.9*10+37.

Returns <Decimal data>

CALCulate:LIMit:LOWer:STATe
Selects if the measured value should be checked against the lower limit.

Group Calculate

Syntax CALCulate:LIMit:LOWer:STATe <Boolean>
CALCulate:LIMit:LOWer:STATe?

Arguments <BOOLEAN> = (1/ON | 0/OFF)

Returns 1| 0

CALCulate:LIMit:PCOunt?
The command returns the number of measurement results between the set lower
and upper limits since the instrument was last reset by CALCulate:LIMit:CLEar
or automatically by INITiate if CALCulate:LIMit:CLEar:AUTO is set to ON.

Group Calculate

Syntax CALCulate:LIMit:PCOunt?

2-42 FCA3000, FCA3100, MCA3000 Series Programmer Manual

Command Descriptions

Returns < number of counts>

CALCulate:LIMit:UPPer
Sets the value of the upper limit (the highest measurement result allowed) before
the instrument generates a 1 that can be read with CALCulate:LIMit:FAIL?, or by
reading the corresponding status byte.

Group Calculate

Syntax CALCulate:LIMit:UPPer {<Decimal data>| MAX | MIN }
CALCulate:LIMit:UPPer?

Arguments RANGE: -9.9*10+37 to +9.9*10+37

Returns <Decimal data>

CALCulate:LIMit:UPPer:STATe
Selects if the measured value should be checked against the upper limit.

Group Calculate

Syntax CALCulate:LIMit:UPPer:STATe <Boolean>
CALCulate:LIMit:UPPer:STATe?

Arguments <BOOLEAN> = (1/ON | 0/OFF)

Returns 1| 0

CALCulate:MATH
Defines the mathematical expression used for mathematical operations.

NOTE. The data type <expression data> must be enclosed within parentheses.

Group Calculate

FCA3000, FCA3100, MCA3000 Series Programmer Manual 2-43

Command Descriptions

Syntax CALCulate:MATH (<expression>)
CALCulate:MATH?

Arguments <EXPRESSION> is one of the following five mathematical expressions:

((K * X) + L)

(((K * X) + L) / M)

(((K / X) + L) / M)

((X / M) - 1)

NOTE. No deviations are allowed. K, L and M can be any positive or negative
numerical constant. Each operator must be surrounded by space characters.

Returns <expression>

Examples CALCULATE:MATH (((64 * X) + -1.07E7) / 1E6)

CALCulate:MATH:STATe
Switches on/off the mathematical function.

NOTE. The CALCulate subsystem is automatically enabled when MATH
operations are switched on. This means that other enabled calculate sub-blocks
are indirectly switched on. Switching off mathematics, however, does not switch
off the CALCulate subsystem.

Group Calculate

Syntax CALCulate:MATH:STATe <Boolean>
CALCulate:MATH:STATe?

Arguments <BOOLEAN> = (1/ON | 0/OFF)

Returns 1|0

Examples CALCULATE:MATH:STATE 1

This example switches on mathematics.

2-44 FCA3000, FCA3100, MCA3000 Series Programmer Manual

Command Descriptions

CALCulate:STATe
Switches on/off the complete post-processing block. If disabled, neither
mathematics or limit-monitoring can be done.

Group Calculate

Syntax CALCulate:STATe <Boolean>
CALCulate:STATe?

Arguments <BOOLEAN> = (1/ON | 0/OFF)

Returns 1|0

OFF

Examples CALCULATE:STATE

CALC:STAT 1

Switches on Post Processing.

CALCulate:TOTalize:TYPE
Selects postprocessing for totalize.

NOTE. If both counting registers (primary and secondary channel) are being
used, you can manipulate the measurement results before presentation by selecting
one of three postprocessing formulas that operate directly on the raw data.

Group Calculate

Syntax CALCulate:TOTalize:TYPE APLUSB|AMINUSB|ADIVB
CALCulate:TOTalize:TYPE?

Arguments APLUSB selects the expression A + B to add the results in the two registers.

AMINUSB selects the expression A - B to subtract the value in register B from
the value in register A.

ADIVB selects the expression A / B to calculate the ratio of the contents in
registers A and B.

FCA3000, FCA3100, MCA3000 Series Programmer Manual 2-45

Command Descriptions

Returns APLUSB|AMINUSB|ADIVB

Examples CALCULATE:TOTALIZE:TYPE ADIVB selects the formula A / B.

CALibration:INTerpolator:AUTO
The FCA3000, FCA3100, and MCA3000 Series are reciprocal instruments that
use an interpolating technique to increase the measurement resolution. In time
measurements, for example, interpolation increases the resolution from 10 ns
to 0.1 ns.

The instrument calibrates the interpolators automatically once for every
measurement when this command is ON. When this command is OFF, the
instrument does no calibrations but uses the values from the last preceding
calibration. The intention of this command is to turn off the auto calibration for
applications that dump measurements into the internal memory. This will increase
the measurement speed.

Group Calibration

Syntax CALibration:INTerpolator:AUTO <Boolean>
CALibration:INTerpolator:AUTO?

Arguments <BOOLEAN> = (1 | ON / 0 | OFF)

Returns 1|0

*CLS (No Query Form)
The *CLS common command clears the status data structures by clearing all
event registers and the error queue. It does not clear enable registers and transition
filters. It clears any pending *WAI, *OPC, and *OPC?.

Group Common

Syntax *CLS

Examples *CLS

2-46 FCA3000, FCA3100, MCA3000 Series Programmer Manual

Command Descriptions

CONFigure:ARRay:<MeasuringFunction>
The CONFigure:ARRay command differs from the CONFigure command in that
it sets up the instrument to perform the number of measurements you choose in
the <array size>.

To perform the selected function, you must trigger the instrument with the
READ:ARRay? or INITiate;:FETCh:ARRay? queries.

Group Configure

Syntax CONFigure:ARRay:<MeasuringFunction> (<array
size>)[,<parameters> [,(<channels>)]]
CONFigure:ARRay:<MeasuringFunction>?

Arguments <ARRAY SIZE> sets the number of measurements in the array.

<MEASURING FUNCTION>, <PARAMETERS> and <CHANNELS> are defined for
each measuring function in the following table.

Table 2-27: Measuring functions and parameters
Measuring functions Parameters
FREQuency [<expected value>[,<resolution>],][(@1|@2|@3|@4|@6)]
FREQuency:BURSt [<expected value>[,<resolution>],][(@1|@2|@3)]
FREQuency:POWer (@3)
FREQuency:PRF [<expected value>[,<resolution>],][(@1|@2|@3)]
FREQuency:RATio [<expected value>[,<resolution>],][(@1|@2|@3),(@1|@2|@3)]
NCYCles (@1|@2|@3)
PDUTycycle|DCYCle [<reference>],[(@1|@2)]
NDUTycycle [<reference>],[(@1|@2)]
PERiod [<expected value>[,<resolution>],][(@1|@2|@3)]
PERiod:AVERage [<expected value>[,<resolution>],][(@1|@2|@3)]
PHASe [<expected value>[,<resolution>],][(@1|@2),(@1|@2)]
PSLEwrate (@1|@2)
NSLEwrate (@1|@2)
RISE:TIME|RTIM [<lo threshold>[,<hi threshold>[,<expected value[,<resolution>]]],][(@1|@2)]
FALL:TIME|FTIM [<lo threshold>[,<hi threshold>[,<expected value[,<resolution>]]],][(@1|@2)]
PWIDth [<reference>],[(@1|@2)]
NWIDth [<reference>],[(@1|@2)]
TINTerval [<expected value>[,<resolution>],][(@1|@2),(@1|@2)]
TSTAmp (@1|@2)

FCA3000, FCA3100, MCA3000 Series Programmer Manual 2-47

Command Descriptions

Table 2-27: Measuring functions and parameters (cont.)

Measuring functions Parameters
[VOLTage:]MAXimum (@1|@2)
[VOLTage:]MINimum (@1|@2)
[VOLTage:]PTPeak (@1|@2)
[VOLTage:]RATIO (@1|@2),(@1|@2)

<(@{1|2|3|4|6})> is the channel to measure on, where:

(@1) means input A 1

(@2) means input B 1

(@3) means input C (RF input option),

(@4) means input E (Rear panel arming input)

(@6) means the internal reference

NOTE. The channel is expression data and it must be in parentheses ().

1 These channels are prescaled by 2 when measuring frequency, and prescaled by 1 for all other
functions. An exception is burst frequency measurements, where you can choose between
the two factors. See the MEASure:FREQuency:BURSt? command and the command
FREQuency:BURSt:PREScaler[:STATe]. There is a tradeoff between the minimum number of
pulses in a burst and the frequency range.

Examples CONF:ARR:PER (7),5E3,1E6,(@4)

This example sets up the instrument to make seven period measurements. The
expected result is 5 ms, and the required resolution is 1 ms. The EXT ARM
input is the measuring input.

To make the measurements and fetch the seven measurement results:

READ:ARRAY? 7 might return 5.23421E-3,5.12311E-3,5.87526E-3,
5.50345E-3,5.33901E-3,5.25501E-3,5.03571E-3

CONFigure:<MeasuringFunction>
Use the configure command instead of the measure query when you want
to change other settings, for instance, the input settings before making the
measurement and fetching the result.

The CONFigure command controls the settings of the Input, Sense and Trigger
subsystems in the instrument in order to make the best possible measurement. It
also switches off any calculations with CALC:STATE OFF.

2-48 FCA3000, FCA3100, MCA3000 Series Programmer Manual

Command Descriptions

READ? or INITiate:FETCh? will make the measurement and read the resulting
measured value.

Since you may not know exactly what settings the instrument has chosen to
configure itself for the measurement, send an * RST before doing other manual
set up measurements.

Group Configure

Syntax CONFigure:<MeasuringFunction>[<parameters>[,(<channels>)]]
CONFigure:<MeasuringFunction>?

Arguments <MEASURING FUNCTION>, <PARAMETERS> and <CHANNELS> are defined for
each measuring function in the following table.

Table 2-28: Measuring functions and parameters
Measuring functions Parameters
FREQuency [<expected value>[,<resolution>],][(@1|@2|@3|@4|@6)]
FREQuency:BURSt [<expected value>[,<resolution>],][(@1|@2|@3)]
FREQuency:POWer (@3)
FREQuency:PRF [<expected value>[,<resolution>],][(@1|@2|@3)]
FREQuency:RATio [<expected value>[,<resolution>],][(@1|@2|@3),(@1|@2|@3)]
NCYCles (@1|@2|@3)
PDUTycycle|DCYCle [<reference>],[(@1|@2)]
NDUTycycle [<reference>],[(@1|@2)]
PERiod [<expected value>[,<resolution>],][(@1|@2|@3)]
PERiod:AVERage [<expected value>[,<resolution>],][(@1|@2|@3)]
PHASe [<expected value>[,<resolution>],][(@1|@2),(@1|@2)]
PSLEwrate (@1|@2)
NSLEwrate (@1|@2)
RISE:TIME|RTIM [<lo threshold>[,<hi threshold>[,<expected value[,<resolution>]]],][(@1|@2)]
FALL:TIME|FTIM [<lo threshold>[,<hi threshold>[,<expected value[,<resolution>]]],][(@1|@2)]
PWIDth [<reference>],[(@1|@2)]
NWIDth [<reference>],[(@1|@2)]
TINTerval [<expected value>[,<resolution>],][(@1|@2),(@1|@2)]
TSTAmp (@1|@2)
[VOLTage:]MAXimum (@1|@2)
[VOLTage:]MINimum (@1|@2)
[VOLTage:]PTPeak (@1|@2)
[VOLTage:]RATIO (@1|@2),(@1|@2)

FCA3000, FCA3100, MCA3000 Series Programmer Manual 2-49

Command Descriptions

Returns <String> contains the current measuring function and channel. The response is a
<String data element> containing the same answer as for [:SENSe]:FUNCtion?.

CONFigure:TOTalize[:CONTinuous]
Postprocessing of two-channel results is done with the CALCulate command.
Arming is used for realizing non-manual functions like TOTalize:GATE or
ARM:STOP:TIMer.

This is a count/totalize function controlled from the GPIB interface using the
command TOTalize:GATE ON|OFF.

The instrument counts up for each event on the primary input channel. The
same applies to the secondary channel if it is activated. The result is one or
two values depending on the presence of the secondary channel. In addition to
selecting totalizing, the CONFigure:TOTalize[:CONTinuous] command also
selects positive trigger slope. If you want to count negative slopes on input A,
send INPut{[1]|2}:SLOPe NEG after the CONFigure:TOTalize[:CONTinuous]
command. The results of successive ON-OFF periods are accumulated.

Group Configure

Syntax CONFigure:TOTalize[:CONTinuous][(@{1|2})][,(@{1|2})]
CONFigure:TOTalize[:CONTinuous]?

Arguments (@{1|2}) is the primary channel: (@{1|2}) is the secondary channel:

(@1) stands for input A (@2) stands for input B

This measurement cannot be made as a MEASure, it must be made as a
CONFigure followed by INIT:CONT ON, gate control with SENS:TOT:GATE
{ON|OFF} and completed with a FETCh:ARR? <array size>.

Examples CONF:TOT;:INP:SLOPE NEG

This example sets up the instrument to totalize the negative slopes on Input A and
disable the secondary channel. (Same as (@1))

Normal Program Sequence for Totalizing on A
CONFIGURE:TOTALIZE[:
CONTINUOUS] (@1)

Set up the instrument for totalize on A, reset
registers

INIT:CONT ON Initiate the instrument continuously
TOT:GATE ON Start totalizing
FETC:ARR? -1 Read the most recent intermediate result

without stopping the totalizing

2-50 FCA3000, FCA3100, MCA3000 Series Programmer Manual

Command Descriptions

Normal Program Sequence for Totalizing on A
TOT:GATE OFF Stop totalizing
FETC:ARR? -1 Fetch the final result from the totalizing

NOTE. When totalizing you often want to read intermediate results without
stopping the totalizing process. FETC:ARR? -1 always outputs the current
register value.

*DDT
Sets or queries the command that the device will execute on receiving the GET
interface message or the *TRG common command.

Group Common

Syntax *DDT <arbitrary block>
*DDT?

Arguments <arbitrary block> is one of six accepted blocks:

#14INIT
#15FETC?
#15READ?
#18ARM:LAY2
#19INIT;*OPC
#215ARM:LAY2;:FETC?

Examples *DDT #19INIT; *OPC?

DISPlay:ENABle
Turns On/Off the updating of the screen. This can be used for security reasons or
to improve the GPIB speed when the screen does not need to be updated.

Group Display

Syntax DISPlay:ENABle < Boolean >
DISPlay:ENABle?

FCA3000, FCA3100, MCA3000 Series Programmer Manual 2-51

Command Descriptions

Arguments <BOOLEAN> = (1 / ON | 0 / OFF)

Returns 1|0

*DMC
Allows you to assign a sequence of one or more program message units to a macro
label. The sequence is executed when the macro label is received as a command
or query. Twenty-five macros can be defined at the same time, and each macro
can contain an average of 40 characters.

If a macro has the same name as a command, it masks out the real command with
the same name when macros are enabled. If macros are disabled, the original
command is executed.

If you define macros when macro execution is disabled, the instrument executes
the * DMC command fast, but if macros are enabled, the execution time for this
command is longer.

Group Common

Syntax *DMC <Macro label>, <Program messages>

Arguments <MACRO LABEL> is a 1- to 12-character macro label. Enclose string data in quotes
(“ ”or ' '), as shown in the example.

<PROGRAM MESSAGES> the commands to be executed when the macro label is
received, both block data and string data formats can be used.

Examples *DMC 'FREQUENCY?', "FUNC 'FREQ 1'; INP:LEV:AUTO ON;

ARM:SOURCE BUS; INIT:CONT ON; *TRG"

*EMC
This command enables and disables expansion and execution of macros. If macros
are disabled, the instrument will not recognize a macro although it is defined in
the instrument. (The Enable Macro command takes a long time to execute.)

Group Common

2-52 FCA3000, FCA3100, MCA3000 Series Programmer Manual

Command Descriptions

Syntax *EMC <Decimal data>
*EMC?

Arguments <DECIMAL DATA> = is 0 or 1. A value which rounds to 0 turns off macro
execution. Any other value turns macro execution on.

NOTE. 1 or 0 is <Decimal data>, not <Boolean>! ON and OFF are not valid
arguments for this command.

Returns {1 | 0}

1 means that macro expansion is enabled. 0 means that macro expansion is
disabled.

Examples *EMC 1

Enables macro expansion and execution.

*ESE (No Query Form)
Sets the enable bits of the standard event enable register. This enable register
contains a mask value for the bits to be enabled in the standard event status
register. A bit that is set true in the enable register enables the corresponding
bit in the status register. An enabled bit will set the ESB (Event Status Bit) in
the Status Byte Register if the enabled event occurs. (See page 3-3, The Event
Status Enable Register (ESER).)

Group Common

Syntax *ESE <Decimal data>

Arguments <DEC.DATA> = the sum (between 0 and 255) of all bits that are true.

Table 2-29: Event status enable register (1 = enable)
Bit Weight Enables
7 128 PON, Power-on occurred
6 64 URQ, User Request
5 32 CME, Command Error
4 16 EXE, Execution Error

FCA3000, FCA3100, MCA3000 Series Programmer Manual 2-53

Command Descriptions

Table 2-29: Event status enable register (1 = enable) (cont.)

Bit Weight Enables
3 8 DDE, Device Dependent

Error
2 4 QYE, Query Error
1 2 RQC, Request Control (not

used)
0 1 Operation Complete

Returns <Decimal data>

Examples *ESE 36

In this example, command error bit 5, and query error bit 2, will set the ESB-bit of
the Status Byte if these errors occur.

*ESR?
Reads out the contents of the standard event status register. Reading the Standard
Event Status Register clears the register.

Group Common

Syntax *ESR?

Returns <dec.data> = the sum (between 0 and 255) of all bits that are true. (See Table 2-29
on page 2-53.)

FETCh:ARRay? (Query Only)
FETCh:ARRay? query differs from the FETCh[:SCALar]? query by fetching
several measuring results at once.

An array of measurements must first be made by the commands: INITiate,
MEASure:ARRay:<MeasuringFunction>? or CONFigure:ARRay:
<MeasuringFunction>; READ:ARRay?.

If the array size is set to a positive value, the first measurement made is the first
result to be fetched.

2-54 FCA3000, FCA3100, MCA3000 Series Programmer Manual

Command Descriptions

When the instrument has made an array of measurements, FETCh:ARRay?
10 fetches the first 10 measuring results from the output queue. The second
FETCh:ARRay? 10 fetches the result 11 to 20, and so on. When the last measuring
result is fetched, FETCh:ARRay? starts over again with the first result.

In totalizing for instance, you may want to read the last measurement result
instead of the first one. This is possible if you set the array size to a negative
number. Example: FETCh:ARRay? -5 fetches the last five results. The output
queue pointer is not altered when the array size is negative. That is, the example
above always returns the last five results every time the command is sent.

FETCh:ARRay? -1 is useful to fetch intermediate results in free-running or array
measurements without interrupting the measurement.

Group Fetch

Syntax FETCh:ARRay? <fetch array size>|MAX

FETCh[:SCALar]? (Query Only)
The fetch query retrieves one measuring result from the measurement result buffer
of the instrument without making new measurements. Fetch does not work unless
a measurement was taken by the INITiate, MEASure:<MeasuringFunction>?,
or READ? commands.

If the instrument has made an array of measurements, FETCh[:SCALar]? fetches
the first measuring results first. The second FETCh[:SCALar]? fetches the
second result and so on. When the last measuring result is fetched, fetch starts
over again with the first result.

The same measuring result can be fetched again and again if the result is valid,
until the following occurs:

*RST is received.

an INITiate, MEASure or READ command is executed

any reconfiguration is done.

an acquisition of a new reading is started.

If the measuring result in the output buffer is invalid, but a new measurement was
started, the fetch query completes when a new measuring result becomes valid. If
no new measurement was started, an error is returned.

The optional SCALar means that one result is retrieved.

Group Fetch

FCA3000, FCA3100, MCA3000 Series Programmer Manual 2-55

Command Descriptions

Syntax FETCh[:SCALar]?

FORMat
Sets the format in which the result is sent on the bus.

Group Format

Syntax FORMat ASCii|REAL|PACKed
FORMat?

Related Commands FORMat:TINFormation, FETCh[:SCALar]?

Arguments ASCII: The length is automatically controlled by the resolution of each
measurement result.

REAL: The length parameter is ignored; the output is always in 8-byte format.

PACKED: See REAL.

Returns ASC|REAL|PACK

FORMat:BORDer
Sets the order in which response data bytes formatted as REAL or PACKED
are sent on the bus.

Group Format

Syntax FORMat:BORDer NORMal|SWAPped
FORMat:BORDer?

Related Commands FORMat

Arguments NORMAL: Response data is sent with the MSB first and the LSB last (big-endian
order)

SWAPPED: Response data is sent with the LSB first and the MSB last (little-endian
order)

2-56 FCA3000, FCA3100, MCA3000 Series Programmer Manual

Command Descriptions

Returns NORM or SWAP

FORMat:SMAX
Sets or queries the upper limit for FETCh:ARRay? MAX command in number
of samples. The command is intended to set an upper limit for use with any
controllers or application programs that cannot read large amounts of data.

Group Format

Syntax FORMat:SMAX <Numeric value>
FORMat:SMAX?

Arguments Integer N, where 4 ≤ N ≤ 10000

Returns <Numeric value>

FORMat:TINFormation
This command turns on/off the time stamping of measurements. Time stamping is
always done at the start of a measurement with full measurement resolution, and
is saved in the measurement buffer together with the measurement result.

The setting of this command will affect the output format of the MEASure, READ
and FETCh queries. See the FETCh[:SCALar]? query.

For FETCh:SCALar?, READ:SCALar? and MEASure:SCALar? the readout
consists of two values instead of one. The first value is the measured value and
the second value is the timestamp value.

In FORMat ASCII mode, both the measured value and the timestamp value are
given as floating-point numbers expressed in the basic units (Hz or s).

In FORMat REAL mode, the result is given as an eight-byte block containing the
floating-point measured value, followed by an eight-byte block containing the
floating point timestamp value.

In FORMat PACKed mode, the result is given as an eight-byte block containing
the floating-point measured value followed by an eight-byte block containing the
timestamp value expressed as a 64-bit integer (int64), the implicit unit being ps.

When doing readouts in array form, with FETCh:ARRay?, READ:ARRay?, or
MEASure:ARRay?, the response will consist of alternating measurement values.

FCA3000, FCA3100, MCA3000 Series Programmer Manual 2-57

Command Descriptions

Group Format

Syntax FORMat:TINFormation Boolean
FORMat:TINFormation?

FREQuency:BURSt:APERture
Sets the time length within a burst during which the burst frequency is measured.

Group Sense

Syntax FREQuency:BURSt:APERture {<Numeric value>|MIN|MAX}
FREQuency:BURSt:APERture?

Arguments <NUMERIC VALUE> is a number between 2E-8 (20 ns) and 2 s.

Returns <Numeric value>

FREQuency:BURSt:PREScaler[:STATe]
The burst frequency limit is 300 MHz if the prescaler is ON and 160 MHz if
it is OFF.

Group Sense

Syntax FREQuency:BURSt:PREScaler[:STATe] <Boolean>
FREQuency:BURSt:PREScaler[:STATe]?

Arguments <BOOLEAN> = (1 | ON | 0 | OFF)

Returns 1 | 0

FREQuency:BURSt:STARt:DELay
Sets the burst start delay (the time length between the burst start and the actual
start of the burst measuring time). This parameter controls the point of time when
a measurement sample is taken.

2-58 FCA3000, FCA3100, MCA3000 Series Programmer Manual

Command Descriptions

Group Sense

Syntax FREQuency:BURSt:STARt:DELay {<Numeric value>|MIN|MAX}
FREQuency:BURSt:STARt:DELay?

Arguments <NUMERIC VALUE> is a number between 2E-8 (20 ns) and 2 s.

Returns <Numeric value>

FREQuency:BURSt:SYNC:PERiod
Sets the synchronization delay time used in burst measurements. A correct value
should be longer than the burst time and shorter than 1/PRF (the inverse of the
pulse repetition frequency).

Group Sense

Syntax FREQuency:BURSt:SYNC:PERiod {<Numeric value>|MIN|MAX}
FREQuency:BURSt:SYNC:PERiod?

Arguments <NUMERIC VALUE> is a number between 1E-6 (1 μs) and 2 s.

Returns <Numeric value>

FREQuency:POWer:UNIT
Selects dBm or W as the basic measurement unit to be displayed or read out.

Group Sense

Syntax FREQuency:POWer:UNIT DBM|W
FREQuency:POWer:UNIT?

Arguments DBM | W

The reference level 0 dBm is 1 mW in 50 Ω. Increasing the level by 3 dB means
doubling the power. Decreasing the level by 3 dB means halving the power.

FCA3000, FCA3100, MCA3000 Series Programmer Manual 2-59

Command Descriptions

Returns DBM | W

FREQuency:RANGe:LOWer
Use this command to speed up voltage measurements and Autotrigger functions
when you do not need to measure on low frequencies.

Table 2-30: Time to determine trigger levels (typical)
Min. frequency limit (1 Hz) Default (100 Hz)
8 s 80 ms

Group Sense

Syntax FREQuency:RANGe:LOWer {<Numeric value>|MIN|MAX}
FREQuency:RANGe:LOWer?

Arguments <NUMERIC VALUE> between 1 and 50000 (Hz).

MIN sets 1 Hz.

MAX sets 50 kHz.

Returns <Numeric value>

FREQuency:REGRession
Despite its name, this command also applies to Period Average.

By continuous time stamping and linear regression analysis, the resolution
compared to a normal reciprocal instrument is improved by one or two digits for
measuring times between 200 ms and 100 s.

Not all combinations of settings will work:

In local mode (front panel control), this function may be overridden by the
firmware:

Measurement time < 16 us: On is changed to Auto(Off)

Measurement time > 2.5 s: Off is changed to Auto(On)

External arming: On is changed to Auto(Off)

An info box pops up explaining this.

2-60 FCA3000, FCA3100, MCA3000 Series Programmer Manual

Command Descriptions

In remote mode (bus control), no consistency checks are made until you try to
issue an INITiate command. If, at that time, the settings are inconsistent, you get a
"Settings conflict" error, and the measurement will not start.

Group Sense

Syntax FREQuency:REGRession ON|OFF|AUTO
FREQuency:REGRession?

FUNCtion
Selects which measuring function is to be performed and on which channel(s)
the instrument should measure.

Group Sense

Syntax FUNCtion '<Measuring function> [<Primary channel>
[,<Secondary channel>]]'
FUNCtion?

Arguments <MEASURING FUNCTION> is the function you want to select. Choose a function
from the following table.

<PRIMARY CHANNEL> is the channel used in all single-channel measurements
and the main channel in dual-channel measurements.

<SECONDARY CHANNEL> is the other channel in dual-channel measurements.
Only the primary channel may be programmed for all single channel
measurements.

NOTE. The measuring function and the channels together form one <String> that
must be placed within quotation marks.

Table 2-31: Measuring functions and channels
Measuring functions Available channels
FREQuency 1|2|3|4|6
FREQuency:RATio 1|2|3,1|2|3
FREQuency:BURSt 1|2|3
FREQuency:PRF 1|2|3
NCYCles 1|2|3

FCA3000, FCA3100, MCA3000 Series Programmer Manual 2-61

Command Descriptions

Table 2-31: Measuring functions and channels (cont.)

Measuring functions Available channels
PDUTycycle|DCYCle 1|2
NDUTycycle 1|2
PERiod 1|2|3
PERiod:AVERage 1|2|3
PHASe 1|2,1|2
PSLEwrate 1|2
NSLEwrate 1|2
RISE:TIME|RTIM 1|2
FALL:TIME|FTIM 1|2
PWIDth 1|2
NWIDth 1|2
TINTerval 1|2,1|2
TSTAmp 1|2
[VOLTage:]MAXimum 1|2
[VOLTage:]MINimum 1|2
[VOLTage:]PTPeak 1|2
[VOLTage:]RATIO 1|2,1|2

Returns “<Measuring function>,<Primary channel>[,<Secondary channel>]”

Examples Select a pulse period measurement on input A (channel 1):

FUNCTION'PERIOD 1'

*GMC? (Query Only)
This command returns the definition of the specified macro label.

Group Common

Syntax *GMC? < macro label>

Arguments <Macro label> = the label of the macro for which you want to see the definition.
(String data must be surrounded by or “ ”or ' ' as in the example below.)

Returns <Block data>

2-62 FCA3000, FCA3100, MCA3000 Series Programmer Manual

Command Descriptions

Examples *GMC? 'AUTOTRGLVL?'

Returns a block data response, for example:

#242:FUNC 'FREQ 1'; INP:LEV:AUTO ONCE; INP:LEV?

HCOPy:SDUMp:DATA? (Query Only)
Returns block data containing screen dump in Windows BMP format.

Group Hard Copy

Syntax HCOPy:SDUMp:DATA?

Returns #43942<Binary BMP Data>

The '4' means that the following four digits (3942) tell how many data bytes will
succeed. The proper screen data is preceded by a 62-byte header, which means
that 3942 - 62 = 3880 bytes carry the pixel information. The number of pixels is
3880 x 8 = 31040. The display geometry is 320 x 97 = 31040.

HF:ACQuisition[:STATe]
Switches the automatic acquisition system on or off. ON means Automatic
Acquisition, OFF means Manual Acquisition. When the instrument is switched
from remote to local operation, Automatic Acquisition mode is entered,
irrespective of the previous remote setting.

Group Sense

Syntax HF:ACQuisition[:STATe] <Boolean>
HF:ACQuisition[:STATe]?

Arguments <BOOLEAN> = {1 | ON} | {0 | OFF}

Returns 1 | 0

FCA3000, FCA3100, MCA3000 Series Programmer Manual 2-63

Command Descriptions

HF:FREQuency:CENTer
Sets the center frequency value for the RF input. Used when Manual Acquisition
is selected.

Group Sense

Syntax HF:FREQuency:CENTer <Numeric value>
HF:FREQuency:CENTer?

Arguments <Numeric value> = a number between 3*108 (Hz) and 27*109, 40*109, 46*109
or 60*109 (Hz), depending on the model number -27G, -40G, -46G or -60G
respectively.

Returns <Numeric value>

*IDN? (Query Only)
Returns the manufacturer, model, serial number, and firmware level in an ASCII
response data element. The query must be the last query in a program message.

Response is <Manufacturer>, <Model>, <Serial Number>, <Firmware Level>.

Group Common

Syntax *IDN?

Examples *IDN? might return <MANUFACTURER>, <MODEL>, 1234567, V1.01 28

Jun 2004

INITiate (No Query Form)
The INITiate command initiates a measurement. Executing an INITiate
command changes the instrument trigger subsystem state from idle-state to
wait-for-bus-arm-state. The trigger subsystem will continue to the other states,
depending on programming. With the *RST setting, the trigger subsystem will
bypass all its states and make a measurement, then return to idle state. (See
page 2-23, Trigger Subsystem.)

Group Initiate

2-64 FCA3000, FCA3100, MCA3000 Series Programmer Manual

Command Descriptions

Syntax INITiate

INITiate:CONTinuous
The trigger system could continuously be initiated with this command. When
Continuous is OFF, the trigger system remains in the idle-state until Continuous
is set to ON or the INITiate is received. When Continuous is set to ON, the
completion of a measurement cycle immediately starts a new trigger cycle without
entering the idle-state. In other words, the instrument is continuously measuring
and storing response data.

Group Initiate

Syntax INITiate:CONTinuous <Boolean>
INITiate:CONTinuous?

Returns 1|0

INPut{[1]|2}:ATTenuation
Attenuates the specified input channel signal by 1 or 10. The attenuation is
automatically set if the input level is set to AUTO.

Group Input

Syntax INPut{[1]|2}:ATTenuation {<Numeric value>| MAX | MIN }
INPut{[1]|2}:ATTenuation?

Arguments INPut{[1]|2} specifies the input channel to set (1 = A, 2 = B). If no value is
entered for this argument, the command sets the attenuation for Input A.

Numeric values <5 or MIN set the attenuation to 1.

Numeric values ≥5 or MAX set the attenuation to 10.

Returns 1.00000000000E+000|1.00000000000E+001

Examples INPUT:ATTENUATION 10 sets the Input A attenuation to x10.

INPUT2:ATTENUATION MIN sets the Input B attenuation to x1.

FCA3000, FCA3100, MCA3000 Series Programmer Manual 2-65

Command Descriptions

INPut{[1]|2}:COUPling
Selects AC coupling (normally used for frequency measurements), or DC
coupling (normally used for time measurements).

Group Input

Syntax INPut{[1]|2}:COUPling {AC|DC}
INPut{[1]|2}:COUPling?

Returns AC|DC

Examples INPUT{[1]|2}:COUPLING DC

INPUT{[1]|2}:COUPLING AC

INPut{[1]|2}:FILTer
Switches on or off the analog low pass filter on input 1 (A) and/or input 2 (B).
It has a cutoff frequency of 100 kHz.

Group Input

Syntax INPut{[1]|2}:FILTer <Boolean>
INPut{[1]|2}:FILTer?

Arguments INPut{[1]|2} specifies the input channel to set (1 = A, 2 = B). If no value is
entered for this argument, the command sets the attenuation for Input A.

<BOOLEAN> = {1 | ON} | {0 | OFF}

Returns 1|0

INPut{[1]|2}:FILTer:DIGital
Switches on or off the digital low pass filter on input 1 (A) and/or input 2 (B). The
cutoff frequency is set by the command: INPut{[1]|2}:FILTer:DIGital:FREQuency

Group Input

2-66 FCA3000, FCA3100, MCA3000 Series Programmer Manual

Command Descriptions

Syntax INPut{[1]|2}:FILTer:DIGital <Boolean>
INPut{[1]|2}:FILTer:DIGital?

Arguments INPut{[1]|2} specifies the input channel to set (1 = A, 2 = B). If no value is
entered for this argument, the command sets the attenuation for Input A.

<BOOLEAN> = {1 | ON} | {0 | OFF}

Returns 1|0

INPut{[1]|2}:FILTer:DIGital:FREQuency
Any frequency between 1 Hz and 50 MHz can be entered. The filter is activated
by the command: INPut{[1]|2}:FILTer:DIGital

Group Input

Syntax INPut{[1]|2}:FILTer:DIGital:FREQuency {<Numeric value>| MIN
| MAX}
INPut{[1]|2}:FILTer:DIGital:FREQuency?

Arguments INPut{[1]|2} specifies the input channel to set (1 = A, 2 = B). If no value is
entered for this argument, the command sets the attenuation for Input A.

<NUMERIC VALUE> is a value between 1 and 50000000.

MIN sets the filter to 1 Hz.

MAX sets the filter to 50 MHz.

Returns <Numeric value>

INPut{[1]|2}:IMPedance
The impedance can be set to 50 Ω or 1 MΩ.

Group Input

Syntax INPut{[1]|2}:IMPedance {<Decimal data>| MAX | MIN }
INPut{[1]|2}:IMPedance?

FCA3000, FCA3100, MCA3000 Series Programmer Manual 2-67

Command Descriptions

Arguments INPut{[1]|2} specifies the input channel to set (1 = A, 2 = B). If no value is
entered for this argument, the command sets the attenuation for Input A.

MIN or <DECIMAL DATA> that rounds off to 50 or less, sets the input impedance
to 50 Ω.

MAX or <DECIMAL DATA> that rounds off to 1001 or more, sets the impedance
to 1 MΩ.

Returns 5.00000000000E+001|1.00000000000E+6

Examples INPUT:IMPEDANCE 50 sets the input A impedance to 50 Ω.

INPUT2:IMPEDANCE 1000000 sets the input B impedance to 1 MΩ.

INPut{[1]|2}:LEVel
Input A and input B can be individually set to autotrigger or to fixed trigger levels
of between -5V and +5V in steps of 2.5mV. If the attenuator is set to 10X, the
range is -50V and +50V in 25 mV steps. Setting an absolute trigger level turns off
autotrigger for the selected channel.

For autotrigger, see INPut{[1]|2}:LEVel:AUTO.

Group Input

Syntax INPut{[1]|2}:LEVel {<Decimal data>| MAX | MIN }
INPut{[1]|2}:LEVel?

Arguments INPut{[1]|2} specifies the input channel to set (1 = A, 2 = B). If no value is
entered for this argument, the command sets the attenuation for Input A.

<DECIMAL DATA> is a number between -5V and +5V if att = 1X, and between
-50V and +50V if att = 10X.

MAX sets +5 V or +50 V and MIN sets -5 V or -50 V, depending on the attenuator
setting.

Returns <Decimal data>

Examples INPUT:LEVEL 0.01

INPUT2:LEVEL 2.0

2-68 FCA3000, FCA3100, MCA3000 Series Programmer Manual

Command Descriptions

INPut{[1]|2}:LEVel:AUTO
If set to AUTO, the instrument automatically controls the trigger level.

The autotrigger function normally sets the trigger levels to 50 % of the signal
amplitude, except for the following measurements or modes:

Rise/Fall time measurements: Here the Input 1 (A) trigger level is set to 10%
resp. 90% and the Input 2 (B) trigger level is set to 90% respectively. 10%
of the amplitude.

Frequency and Period Average mode: The input trigger levels are set to 70%
and 30% of the signal amplitude.

Functions for which AUTO does not work are Frequency or Period
Back-to-Back, Time Interval Error (TIE) and Totalize. If one of these is
selected, an AUTO ONCE is performed instead.

Group Input

Syntax INPut{[1]|2}:LEVel:AUTO {<Boolean> | ONCE}
INPut{[1]|2}:LEVel:AUTO?

Arguments INPut{[1]|2} specifies the input channel to set (1 = A, 2 = B). If no value is
entered for this argument, the command sets the attenuation for Input A.

<BOOLEAN> = {1 | ON} | {0 | OFF}.

ONCE sets the instrument to make one automatic calculation of the trigger level at
the beginning of a measurement. This value is then used until another level-setting
command is sent to the instrument, or until a new measurement is initiated.

INPut{[1]|2}:LEVel:RELative
When autotrigger is active, the relative trigger levels are normally fixed at
values that depend on the selected function, for instance 10% (Input A) and
90% (Input B) for Rise Time, 50% (Input A & Input B) for Time Interval, 70%
(Input A) and 30% (Input B) for Frequency. At times you may want to change
these values. Since the default values are restored automatically after changing
function, this command may have to be sent repeatedly. The two input channels
are programmed separately and are not interdependent.

The command itself does not switch on autotrigger, so if you want to set relative
levels after having used absolute levels, you must also send the command
INPut{[1]|2}:LEVel:AUTO, unless you have changed measurement function.

Group Input

FCA3000, FCA3100, MCA3000 Series Programmer Manual 2-69

Command Descriptions

Syntax INPut{[1]|2}:LEVel:RELative <Numeric value>
INPut{[1]|2}:LEVel:RELative?

Arguments INPut{[1]|2} specifies the input channel to set (1 = A, 2 = B). If no value is
entered for this argument, the command sets the attenuation for Input A.

<NUMERIC VALUE> is a positive number between 0 and 100 (%).

Returns <Numeric value>

Examples INPUT:LEVEL:RELATIVE 20 (Input A set to 20% to measure ECL rise time)

INPUT2:RELATIVE 80 (Input B set to 80% to measure ECL rise time)

INPut{[1]|2}:SLOPe
Selects if the instrument should trigger on a positive or a negative transition.
Selecting negative slope is useful for Time Interval measurements.

The slope is fixed for Pos/Neg Pulse Width/Duty Factor and Rise/Fall Time.

Arming slope is not affected by this command. Use ARM:STARt:SLOPe and
ARM:STOP:SLOPe instead.

Group Input

Syntax INPut{[1]|2}:SLOPe {POS | NEG}
INPut{[1]|2}:SLOPe?

Arguments INPut{[1]|2} specifies the input channel to set (1 = A, 2 = B). If no value is
entered for this argument, the command sets the attenuation for Input A.

POS sets the instrument to trigger on a positive signal transition.

NEG sets the instrument to trigger on a negative signal transition.

Returns POS | NEG

Examples INPUT:SLOPE POS

INPUT2:SLOPE NEG

2-70 FCA3000, FCA3100, MCA3000 Series Programmer Manual

Command Descriptions

*LMC? (Query Only)
Makes the instrument send a list of string data elements, containing all macro
labels defined in the instrument.

Group Common

Syntax *LMC?

Returns <String> { ,<String> }

<String> = a Macro label. (String data is surrounded by quotes as in the example
below.)

Examples *LMC? might return AUTOFILT, "AMPLITUDE?"

*LRN?
Learn Device Setup Query. Causes a response message that can be sent to the
instrument to return it to the state it was in when the *LRN? query was made.

Group Common

Syntax *LRN?

Returns :SYST:SET_<Block data>

Where: <Block data> is #3104<104 data bytes>

Examples *LRN?

MEASure:ARRay:FREQuency:BTBack? (Query Only)
This is the inverse function of Period Back-to-Back. See MEASure:ARRay:
PERiod:BTBack?. If CALCulate:AVERage:STATe is ON, measurement time is
used for pacing the time stamps. The pacing parameter is not used in this case.
Thus a series of consecutive frequency average measurements without dead time
can be made in order to fulfil the requirements for correct calculation of Allan
variance or deviation.

FCA3000, FCA3100, MCA3000 Series Programmer Manual 2-71

Command Descriptions

Group Measurement

Syntax MEASure:ARRay:FREQuency:BTBack? (<array size>)[,(@1)|(@2)]

Arguments <ARRAY SIZE> sets the number of samples. (@1)|(@2) is the measurement
channel: (@1) means input A

(@2) means input B

MEASure:ARRay:<MeasuringFunction>? (Query Only)
The MEASure:ARRay:<MeasuringFunction>? query differs from the
MEASure:<MeasuringFunction>? query in that it performs the number of
measurements you decide in the <array size> and sends all the measuring results
in one string to the controller.

NOTE. The array size for MEASure and CONFigure, and the channels, are
expression data that must be in parentheses ().

The MEASure:ARRay:<MeasuringFunction>? query is a compound
query identical to: :ABORt; CONFigure:ARRay:<Meas-func>(<array-size>);
READ:ARRay?(<array-size>)

Group Measurement

Syntax MEASure:ARRay:<MeasuringFunction>?
(<arraysize>)[,[<parameters>] [,(<channels>)]]

Arguments <ARRAY SIZE> sets the number of measurements in the array. The maximum
number is limited to 10000 due to the physical size of the output buffer. See
also FETCH:ARR? and READ:ARR?

<MEASURING FUNCTION>, <PARAMETERS> and <CHANNELS> are defined for
each measuring function in the following table.

Table 2-32: Measuring functions and parameters
Measuring functions Parameters
FREQuency [<expected value>[,<resolution>],][(@1|@2|@3|@4|@6)]
FREQuency:BURSt [<expected value>[,<resolution>],][(@1|@2|@3)]
FREQuency:POWer (@3)

2-72 FCA3000, FCA3100, MCA3000 Series Programmer Manual

Command Descriptions

Table 2-32: Measuring functions and parameters (cont.)

Measuring functions Parameters
FREQuency:PRF [<expected value>[,<resolution>],][(@1|@2|@3)]
FREQuency:RATio [<expected value>[,<resolution>],][(@1|@2|@3),(@1|@2|@3)]
NCYCles (@1|@2|@3)
PDUTycycle|DCYCle [<reference>],[(@1|@2)]
NDUTycycle [<reference>],[(@1|@2)]
PERiod [<expected value>[,<resolution>],][(@1|@2|@3)]
PERiod:AVERage [<expected value>[,<resolution>],][(@1|@2|@3)]
PHASe [<expected value>[,<resolution>],][(@1|@2),(@1|@2)]
PSLEwrate (@1|@2)
NSLEwrate (@1|@2)
RISE:TIME|RTIM [<lo threshold>[,<hi threshold>[,<expected value[,<resolution>]]],][(@1|@2)]
FALL:TIME|FTIM [<lo threshold>[,<hi threshold>[,<expected value[,<resolution>]]],][(@1|@2)]
PWIDth [<reference>],[(@1|@2)]
NWIDth [<reference>],[(@1|@2)]
TINTerval [<expected value>[,<resolution>],][(@1|@2),(@1|@2)]
TSTAmp (@1|@2)
[VOLTage:]MAXimum (@1|@2)
[VOLTage:]MINimum (@1|@2)
[VOLTage:]PTPeak (@1|@2)
[VOLTage:]RATIO (@1|@2),(@1|@2)

Returns <Measuring result>{[,<measuring result>]}

Examples MEASURE:ARRAY:FREQUENCY? (10) returns ten measurement results.

MEASure:ARRay:PERiod:BTBack? (Query Only)
Every positive or negative zero crossing (depending on the selected slope) up to
the maximum frequency (125 kHz with interpolator calibration ON or 250 kHz
with interpolator calibration OFF) is time-stamped. For every new time stamp the
previous value is subtracted from the current value, and the result is stored.

If CALCulate:AVERage:STATe is ON, the array contains all periods up to the
maximum input frequency. For higher frequencies the average period time during
the 4 μs or 8 μs observation time is stored. So, for higher frequencies the actual
function is rather Period Average Back-to-Back.

FCA3000, FCA3100, MCA3000 Series Programmer Manual 2-73

Command Descriptions

The main purpose of this function is to make continuous measurements of
relatively long period times without losing single periods due to result processing.
A typical example is the 1-pps timebase output from GPS receivers.

Group Measurement

Syntax MEASure:ARRay:PERiod:BTBack? (<array size>)[,(@1)|(@2)]

Arguments <ARRAY SIZE> sets the number of samples. (@1)|(@2) is the measurement
channel: (@1) means input A

(@2) means input B

MEASure:ARRay:STSTamp? (Query Only)
A time stamp (TS) is taken of the trigger level crossing on the selected
input channel. The commands MEASure:ARRay:<MeasuringFunction>?
and CONFigure:ARRay:<MeasuringFunction> automatically invoke
FORMat:TINFormation ON to get the time stamp data, but when FUNCtion is used
instead, you should normally let it be preceded by the FORMat:TINFormation
ON command explicitly. Otherwise the TS 1 values are omitted. See Returned
format below.

The deadtime to the next TS is due to pacing and interpolator calibration and
can go down to 4 μs. The X register/counter records the number of trigger level
crossings.

Depending on the state of the command FORMat:TINFormation, one or two
values are output for each TS. If OFF, only the content of the X register/counter at
the timestamp is output. If ON, both the X register/counter and the TS value are
read and output as two values, separated by a comma in ASCII and REAL mode.
1 TS is the time stamp value in seconds since a certain start event that is not available for external control.

Therefore the TS values can only be used for relative time measurements.

Group Measurement

Syntax MEASure:ARRay:STSTamp? (<array size>)[,(@1)|(@2)]

Arguments Array size is the number of TS. One TS can contain 1 or 2 numeric values
depending on the state of the FORMat:TINFormation command.

2-74 FCA3000, FCA3100, MCA3000 Series Programmer Manual

Command Descriptions

Returns <number of trg lvl crossings>,(<TS for trg lvl crossing>,)...deadtime...<number of
trg lvl crossings>(<TS for trg lvl crossing>,)...deadtime...and so forth.

The format is set by the FORMat command, and the data in parentheses is sent if
FORMat:TINFormation ON is active.

MEASure:ARRay:TIError? (Query Only)
This command automatically performs TIE measurements on clock signals from a
predefined collection of system frequencies: 4, 8, 15.75, 64 kHz or 1.544, 2.048,
5, 10, 27, 34, 45, 52 MHz

TIE is defined as positive and increasing if the measured frequency exceeds the
reference frequency.

Group Measurement

Syntax MEASure:ARRay:TIError? (array size)[,[<exp
value>[,<resol>],][(@1|(@2)]]

MEASure:ARRay:TSTAmp? (Query Only)
Time stamps are taken of all positive and negative trigger level crossings of the
selected input channel. The commands MEASure:ARRay:<MeasuringFunction>?
and CONFigure:ARRay:<MeasuringFunction> automatically invoke
FORMat:TINFormation ON to get the time stamp data, but when FUNCtion is used
instead, you should normally let it be preceded by the FORMat:TINFormation
ON command explicitly. Otherwise the TS 2 values are omitted. See Returned
format below.

Measurements are performed in groups of four TS results, two positive and two
negative, with no deadtime between the values. Deadtime between groups is
affected by pacing and interpolator calibration, down to 4 μs.

Measurement results of 0 indicate negative trigger level crossings, whereas
positive values indicate the number of positive trigger level crossings since the
last reset.
2 TS is the time stamp value in seconds since a certain start event that is not available for external control.

So the TS values can only be used for relative time measurements.

Group Measurement

Syntax MEASure:ARRay:TSTAmp? (<array size>)[,(@1)|(@2)]

FCA3000, FCA3100, MCA3000 Series Programmer Manual 2-75

Command Descriptions

Arguments <array size> sets the number of samples. One complete group requires an
array size of 4. It can contain 4 or 8 numeric values depending on whether
FORMat:TINFormation is OFF or ON.

MEASure{:FALL:TIME|:FTIM}? (Query Only)
The transition time from 90% to 10% of the signal amplitude is measured.

The measurement is always a single measurement and the Auto-trigger is always
on, setting the trigger levels to 90% and 10% of the amplitude. If you need an
average transition time measurement, or other trigger levels, use the SENSe
subsystem and manually set trigger levels instead.

Group Measurement

Syntax MEASure{:FALL:TIME|:FTIM}?[[<lower threshold> [,<upper
threshold>[,<expected value>[,<resolution>]]]] [,(@1|@2)]]

Arguments <LOWER THRESHOLD>, <UPPER THRESHOLD>, <EXPECTED VALUE> and
<RESOLUTION> are all ignored by the instrument.

<(@1)> or <(@2)> is the measurement channel (input A or input B).

MEASure:FREQuency? (Query Only)
Traditional frequency measurements. The instrument uses the <expected value>
and <resolution> to calculate the Measurement Time (ACQuisition:APERture).

Group Measurement

Syntax MEASure:FREQuency?[[<expected value>[,<resolution>]]
[,<(@{1|2|3|4|6})>]]

Arguments <expected value> is the expected frequency,

<resolution> is the required resolution.

<(@{1|2|3|4|6})> is the channel to measure on, where:

(@1) means input A 3

(@2) means input B 3

(@3) means input C (RF input option),

2-76 FCA3000, FCA3100, MCA3000 Series Programmer Manual

Command Descriptions

(@4) means input E (Rear panel arming input)

(@6) means the internal reference

NOTE. The channel is expression data and it must be in parentheses ().

3 These channels are prescaled by 2 when measuring frequency, and prescaled by 1 for all other
functions. An exception is burst frequency measurements, where you can choose between
the two factors. See the MEASure:FREQuency:BURSt? command and the command
FREQuency:BURSt:PREScaler[:STATe]. There is a tradeoff between the minimum number of
pulses in a burst and the frequency range.

Examples MEASURE:FREQUENCY? (@3) might return 1.78112526833E+009, which
measures the frequency at input C.

MEASure:FREQuency:BURSt? (Query Only)
Measures the carrier frequency of a burst. The burst duration must be less than
50% of the pulse repetition frequency (PRF).

How to measure bursts is described in detail in the Operators Manual.

The instrument uses <expected value> and <resolution> to select a Measurement
Time. See ACQuisition:APERture. See FREQuency:BURSt:SYNC:PERiod.

Group Measurement

Syntax MEASure:FREQuency:BURSt?[[<expected value>[,<resolution>]]
[,<(@{1|2|3|4})>]]

Arguments <EXPECTED VALUE> is the expected carrier frequency, <RESOLUTION> is the
required resolution; for example, 1 sets 1 Hz resolution.

<(@{1|2|3|4})> is the measurement channel:

(@1) means input A 4

(@2) means input B 4

(@3) means input C (RF input on FCA3003, FCA3020, FCA3103, FCA3120,
MCA3027, and MCA3040)

(@4) means input E (Rear panel arming input)

If you omit the channel, the instrument measures on input A (@1).
4 The prescaling factor for these channels can be set to 1 or 2 with the command

FREQuency:BURSt:PREScaler[:STATe].

FCA3000, FCA3100, MCA3000 Series Programmer Manual 2-77

Command Descriptions

MEASure:FREQuency:POWer[:AC]? (Query Only)
Measures the power of the signal on input C in dBm or W. Use the command
FREQuency:POWer:UNIT to select measurement unit.

Group Measurement

Syntax MEASure:FREQuency:POWer[:AC]?[(@3)]

Arguments (@3) is the measurement channel number of the RF input C. It is redundant in
this case, as there is no other RF channel available.

MEASure:FREQuency:PRF? (Query Only)
Measures the PRF (Pulse Repetition Frequency) of a burst signal. The burst
duration must be less than 50% of the pulse repetition frequency (PRF).

NOTE. It is better to set up the measurement with the FUNCtion “:FREQ:PRF”
command when measuring pulse repetition frequency. This command will allow
you to set a suitable sync delay with the FREQuency:BURSt:SYNC:PERiod
command.

How to measure bursts is described in detail in the Operators Manual.

Group Measurement

Syntax MEASure:FREQuency:PRF?[[<exp.
val.>[,<res.>]][,<(@{1|2|3|4})>]]

Arguments <EXP. VAL.> is the expected PRF, <RES.> is the required resolution.

<(@{1|2|3|4})> is the measurement channel:

(@1) means input A

(@2) means input B

(@3) means input C (RF-input option)

(@4) means input E (Rear panel arming input)

If you omit the channel, the instrument measures on input A(@1).

2-78 FCA3000, FCA3100, MCA3000 Series Programmer Manual

Command Descriptions

The <EXPECTED VALUE> and <RESOLUTION> are used to calculate the
Measurement Time (ACQuisition:APERture). The Sync. Delay is always 10ms
(default value).

MEASure:FREQuency:RATio? (Query Only)
Frequency ratio measurements between two inputs.

Group Measurement

Syntax MEASure:FREQuency:RATio?[[<expected value>
[,<resolution>]][,<(@{1|2|3})>,<(@{1|2|3})>]]

Arguments <expected value> and <resolution> are ignored

<(@{1|2|3})>,<(@{1|2|3})> are the measurement channels: (@1) means input
A,(@2) means input B, (@3) means input C (RF input option)

If you omit the channels, the instrument measures between input A and input B.

NOTE. The channel is expression data and must be within parentheses ().

Examples MEASURE:FREQUENCY:RATIO? (@1),(@3) might return 2.345625764333E+000.
This example measures the ratio between input A and input C.

MEASure:<MeasuringFunction>? (Query Only)
The measure query makes a complete measurement, including configuration and
readout of data. Use measure when you can accept the generic measurement
without fine tuning.

NOTE. When a CONFigure command or MEASure:<MeasuringFunction>?
query is issued, all instrument settings are set to the *RST settings, except those
specified as <parameters> and <channels> in the CONFigure command or
MEASure:<MeasuringFunction>? query.

You cannot use the MEASure:<MeasuringFunction>? query with
CONFigure:TOTalize[:CONTinuous], since this function measures without
stopping (continuously forever).

FCA3000, FCA3100, MCA3000 Series Programmer Manual 2-79

Command Descriptions

The MEASure:<MeasuringFunction>? query is a compound query identical to
ABORt; CONFigure:<Meas_func>; READ?

NOTE. Aborts all previous measurement commands if *WAI is not used.

Group Measurement

Syntax MEASure:<MeasuringFunction>?[[<parameters>][
,(<channels>)]]

Arguments <MEASURING FUNCTION>, <PARAMETERS> and <CHANNELS> are defined for
each measuring function in the following table.

Table 2-33: Measuring functions and parameters
Measuring functions Parameters
FREQuency [<expected value>[,<resolution>],][(@1|@2|@3|@4|@6)]
FREQuency:BURSt [<expected value>[,<resolution>],][(@1|@2|@3)]
FREQuency:POWer (@3)
FREQuency:PRF [<expected value>[,<resolution>],][(@1|@2|@3)]
FREQuency:RATio [<expected value>[,<resolution>],][(@1|@2|@3),(@1|@2|@3)]
NCYCles (@1|@2|@3)
PDUTycycle|DCYCle [<reference>],[(@1|@2)]
NDUTycycle [<reference>],[(@1|@2)]
PERiod [<expected value>[,<resolution>],][(@1|@2|@3)]
PERiod:AVERage [<expected value>[,<resolution>],][(@1|@2|@3)]
PHASe [<expected value>[,<resolution>],][(@1|@2),(@1|@2)]
PSLEwrate (@1|@2)
NSLEwrate (@1|@2)
RISE:TIME|RTIM [<lo threshold>[,<hi threshold>[,<expected value[,<resolution>]]],][(@1|@2)]
FALL:TIME|FTIM [<lo threshold>[,<hi threshold>[,<expected value[,<resolution>]]],][(@1|@2)]
PWIDth [<reference>],[(@1|@2)]
NWIDth [<reference>],[(@1|@2)]
TINTerval [<expected value>[,<resolution>],][(@1|@2),(@1|@2)]
TSTAmp (@1|@2)
[VOLTage:]MAXimum (@1|@2)
[VOLTage:]MINimum (@1|@2)
[VOLTage:]PTPeak (@1|@2)
[VOLTage:]RATIO (@1|@2),(@1|@2)

2-80 FCA3000, FCA3100, MCA3000 Series Programmer Manual

Command Descriptions

MEASure:ARRay:<MeasuringFunction>?

Returns <data> Where the format of the returned data is determined by the format
commands FORMat.

Examples MEASURE:FREQUENCY? (@3) might return 1.78112526833E+009

MEASure:MEMory? (Query Only)
Same as MEASure:MEMory<N>? ommand but somewhat slower. Allows use of
all memories from 1 through 19.

Group Measurement

Syntax MEASure:MEMory? <N>

Examples MEASURE:MEMORY? 13 recalls the instrument setting in memory number 13, takes
a measurement, and fetches the result.

MEASure:MEMory<N>? (Query Only)
Use this command when you want to measure several parameters fast.

MEAS:MEM1? recalls the contents of memory one and reads out the result,
MEAS:MEM2? recalls the contents of memory two and reads out the result,
and so forth.

The equivalent command sequence is *RCL 1; READ?.

The allowed range for <N> is 1 to 9. Use the somewhat slower
MEASure:MEMory? command if you use memories 10 to 19.

Group Measurement

Syntax MEASure:MEMory<N>?

Returns <measurement result>

FCA3000, FCA3100, MCA3000 Series Programmer Manual 2-81

Command Descriptions

MEASure:NDUTycycle? (Query Only)
Traditional negative duty cycle measurement is performed. That is, the ratio
between the on time and the off time of the input pulse is measured.

Group Measurement

Syntax MEASure:NDUTycycle?[[<threshold>] [,(@{1|2})]]

Arguments <THRESHOLD> parameter sets the trigger levels in volts. If omitted, the auto
trigger level is set to 50 percent of the signal.

(@{1|2}) is the measurement channel: (@1) means input A, (@2) means input
B.

If you omit the channel, the instrument measures on input A (@1).

Examples MEASURE:NDUTYCYCLE? might return +5.097555E-001. In this example, the
duty cycle is 50.97%.

MEASure:NWIDth? (Query Only)
A negative pulse width measurement is performed.

This is always a single measurement. If you need an average pulse width
measurement, use the SENSe subsystem instead.

Group Measurement

Syntax MEASure:NWIDth?[[<threshold>] [,<(@{1|2})>]]

Arguments <THRESHOLD> parameter sets the trigger levels in volts. If omitted, the auto
trigger level is set to 50 percent of the signal.

<(@{1|2})> is the measurement channel:

(@1) means input A

(@2) means input B.

If you omit the channel, the instrument measures on input A.

2-82 FCA3000, FCA3100, MCA3000 Series Programmer Manual

Command Descriptions

MEASure{:PDUTycycle|:DCYCle}? (Query Only)
Traditional positive duty cycle measurement is performed. That is, the ratio
between the on time and the off time of the input pulse is measured.

Group Measurement

Syntax MEASure{:PDUTycycle|:DCYCle}?[[<threshold>] [,(@{1|2})]]

Arguments <THRESHOLD> parameter sets the trigger levels in volts. If omitted, the auto
trigger level is set to 50 percent of the signal.

(@{1|2}) is the measurement channel: (@1) means input A, (@2) means input
B.

If you omit the channel, the instrument measures on input A (@1).

Examples MEASURE:PDUTYCYCLE? might return +5.097555E-001. In this example, the
duty cycle is 50.97%

MEASure:PERiod? (Query Only)
A period time measurement is taken on a single period. Measuring time set by the
ACQuisition:APERture command does not affect the measurement.

The <expected value> and <resolution> are used to calculate the Measurement
Time (ACQuisition:APERture).

Group Measurement

Syntax MEASure:PERiod?[[<expected value>
[,<resolution>]][,<(@{1|2|3})>]]

Arguments <EXPECTED VALUE> is the expected Period,

<RESOLUTION> is the required resolution,

<(@{1|2|3})> is the measurement channel:

(@1) means input A

(@2) means input B

(@3) means input C (RF input option).

FCA3000, FCA3100, MCA3000 Series Programmer Manual 2-83

Command Descriptions

If you omit the channel, the instrument measures on input A (@1).

MEASure:PERiod:AVERage? (Query Only)
A traditional period time measurement is performed on multiple periods.
Measuring time set by the ACQuisition:APERture command determines the
resolution.

The <expected value> and <resolution> are used to calculate the Measurement
Time (ACQuisition:APERture).

Group Measurement

Syntax MEASure:PERiod:AVERage?[[<expected value>
[,<resolution>]][,<(@{1|2|3})>]]

Arguments <EXPECTED VALUE> is the expected Period,

<RESOLUTION> is the required resolution,

<(@{1|2|3})> is the measurement channel:

(@1) means input A

(@2) means input B

(@3) means input C (RF input option).

If you omit the channel, the instrument measures on input A (@1).

MEASure:PHASe? (Query Only)
A traditional PHASe measurement is performed.

Group Measurement

Syntax MEASure:PHASe?[[<expected value>[,<resolution>]]
[,(@{1|2}),(@{1|2})]]

Arguments <EXPECTED VALUE> and <RESOLUTION> are ignored by the instrument.

The first (@{1|2}) is the start channel and the second (@{1|2}) is the stop
channel, (@1) means input A, (@2) means input B.

If you omit the channel, the instrument measures between input A and input B.

2-84 FCA3000, FCA3100, MCA3000 Series Programmer Manual

Command Descriptions

MEASure:PWIDth? (Query Only)
A positive pulse width measurement is performed.

This is always a single measurement. If you need an average pulse width
measurement, use the SENSe subsystem instead.

Group Measurement

Syntax MEASure:PWIDth?[[<threshold>] [,<(@{1|2})>]]

Arguments <THRESHOLD> parameter sets the trigger levels in volts. If omitted, the auto
trigger level is set to 50 percent of the signal.

<(@{1|2})> is the measurement channel:

(@1) means input A

(@2) means input B.

If you omit the channel, the instrument measures on input A.

MEASure{:RISE:TIME|:RTIM}? (Query Only)
The transition time from 10% to 90% of the signal amplitude is measured. The
measurement is always a single measurement and the Auto-trigger is always on,
setting the trigger levels to 10% and 90% of the amplitude. If you need an average
transition time measurement or other trigger levels, use the SENSe subsystem
and manually set trigger levels instead.

Group Measurement

Syntax MEASure{:RISE:TIME|:RTIM}?[[<lower threshold> [,<upper
threshold>[,<expected value>[,<resolution>]]]] [,(@1|@2)]

Arguments <LOWER THRESHOLD>, <UPPER THRESHOLD>, <EXPECTED VALUE> and
<RESOLUTION> are all ignored by the instrument.

<(@1)> or <(@2) is the measurement channel (input A or input B).

FCA3000, FCA3100, MCA3000 Series Programmer Manual 2-85

Command Descriptions

MEASure:TINTerval? (Query Only)
Traditional time-interval measurements are performed. The trigger levels are set
automatically, and positive slope is used. The first channel in the channel list is
the start channel, and the second is the stop channel.

Group Measurement

Syntax MEASure:TINTerval? (@{1|2}),(@{1|2})]

Arguments The first (@{1|2|4}) is the start channel and the second (@{1|2|4}) is the stop
channel. (@1) means input A

(@2) means input B.

If you omit the channel, input A is the start channel, and input B is the stop
channel.

MEASure[:VOLT]:MAXimum? (Query Only)
This command measures the positive peak voltage with the input DC coupled.

Group Measurement

Syntax MEASure[:VOLT]:MAXimum?[({@1|@2})]

Arguments ({@1|@2}) is the measurement channel. (@1) means input A, (@2) means
input B.

MEASure[:VOLT]:MINimum? (Query Only)
This command measures the negative peak voltage with the input DC coupled.

Group Measurement

Syntax MEASure[:VOLT]:MINimum?[({@1|@2})]

Arguments ({@1|@2}) is the measurement channel. (@1) means input A, (@2) means
input B.

2-86 FCA3000, FCA3100, MCA3000 Series Programmer Manual

Command Descriptions

MEASure[:VOLT]:NCYCles? (Query Only)
If FREQ:BURSt is active, this function measures the number of cycles in each
burst.

<(@{1|2|3})>,<(@{1|2|3})> are the measurement channels: (@1) means
input A, (@2) means input B, and (@3) means input C (RF input option).

NOTE. The channel is expression data and must be within parentheses ().

Group Measurement

Syntax MEASure[:VOLT]:NCYCles?[[(@1|@2|@3)]

Returns <Numeric value (integer)>

Examples MEASURE:VOLT:NCYCLES? (@3) might return 2356. This example shows a
measurement on the RF channel.

MEASure[:VOLT]:NSLEwrate? (Query Only)
This command measures the negative slew rate in V/s on either main input
channel.

Group Measurement

Syntax MEASure[:VOLT]:NSLEwrate?[(@1|@2)]

Arguments (@{1|2}) is the measurement channel. (@1) means input A, (@2) means input
B.

MEASure[:VOLT]:PSLEwrate? (Query Only)
This command measures the positive slew rate in V/s on either main input channel.

Group Measurement

Syntax MEASure[:VOLT]:PSLEwrate?[(@1|@2)]

FCA3000, FCA3100, MCA3000 Series Programmer Manual 2-87

Command Descriptions

Arguments (@{1|2}) is the measurement channel. (@1) means input A, (@2) means input
B.

MEASure[:VOLT]:PTPeak? (Query Only)
This command measures the peak-to-peak voltage on either main input channel.

Group Measurement

Syntax MEASure[:VOLT]:PTPeak?[(@{1|2})].

Arguments (@{1|2}) is the measurement channel. (@1) means input A, (@2) means input
B.

MEASure[:VOLT]:RATio? (Query Only)
This command measures the peak-to-peak voltage ratio in dB between the
selected channels.

Group Measurement

Syntax MEASure[:VOLT]:RATio?[(@1|@2),(@1|@2)]

Arguments (@{1|2}) is the measurement channel. (@1) means input A, (@2) means input
B.

MEMory:DATA:RECord:COUNt? (Query Only)
If the optional <Dataset Number> parameter is specified, the command returns the
number of samples in the corresponding FLASH memory position 0-7.

If no parameter is specified, a comma-separated list is returned, containing the
number of samples in each of the eight FLASH memory positions 0-7.

Group Memory

Syntax MEMory:DATA:RECord:COUNt?[<Dataset Number>]

2-88 FCA3000, FCA3100, MCA3000 Series Programmer Manual

Command Descriptions

MEMory:DATA:RECord:DELete (No Query Form)
The command erases the measurement data array in the FLASH memory position
with the number (0-7) given in the command parameter <Dataset Number>.

Group Memory

Syntax MEMory:DATA:RECord:DELete <Dataset Number>

MEMory:DATA:RECord:FETCh? (Query Only)
The command fetches one sample from the FLASH memory position with the
number (0-7) given in the command parameter <Dataset Number>.

Set the start position with the command MEMory:DATA:RECord:FETCh:STARt.

Group Memory

Syntax MEMory:DATA:RECord:FETCh? <Dataset Number>

MEMory:DATA:RECord:FETCh:ARRay? (Query Only)
The command fetches an array of samples from the FLASH memory position with
the number (0-7) given in the command parameter <Dataset Number>.

You can either specify the number of samples to be fetched or get all samples (up
to 32000) by using the MAXimum parameter.

Group Memory

Syntax MEMory:DATA:RECord:FETCh:ARRay? <Dataset Number>,<Number of
Samples>|MAXimum

MEMory:DATA:RECord:FETCh:STARt (No Query Form)
The data pointer is set to the first sample in the Dataset entered as a number (0-7)
in the command parameter <Dataset Number>.

Group Memory

FCA3000, FCA3100, MCA3000 Series Programmer Manual 2-89

Command Descriptions

Syntax MEMory:DATA:RECord:FETCh:STARt <Dataset Number>

MEMory:DATA:RECord:NAME? (Query Only)
If the optional <Dataset Number> parameter is specified, the command returns the
name assigned to the Dataset.

If no parameter is given, the command returns a comma-separated list of all
Dataset Names.

Group Memory

Syntax MEMory:DATA:RECord:NAME?[<Dataset Number>]

MEMory:DATA:RECord:SAVE (No Query Form)
One of the eight (0-7) memory positions must be entered, but you can also enter
an optional name (max 6 characters) for easier recognition.

A default name is assigned automatically if you omit the <Label> parameter. It
represents the abbreviated measurement function and the channel. For example:
Period Single A will read PerA.

If the instrument is not in Hold when this command is sent, then Execution Error
(-200) is placed in the error queue.

If the instrument is not in Statistics Mode when this command is sent, then
Settings Conflict Error (-221) is placed in the error queue.

If specified <Dataset> already contains data, then Directory Full Error (-255)
is placed in the error queue.

If there are more than 32000 samples to save, only the last 32000 is saved without
notification to the operator.

Group Memory

Syntax MEMory:DATA:RECord:SAVE <Dataset Number>[,<Label>]

MEMory:DATA:RECord:SETTings? (Query Only)
The command returns the instrument settings used when the specified <Dataset>
was saved. The format is the same as for SYSTem:SET.

2-90 FCA3000, FCA3100, MCA3000 Series Programmer Manual

Command Descriptions

Group Memory

Syntax MEMory:DATA:RECord:SETTings? <Dataset Number>

MEMory:DELete:MACRo (No Query Form)
This command removes an individual macro.

Group Memory

Syntax MEMory:DELete:MACRo '<Macro name>'

Related Commands *PMC, if you want to delete all macros.

The IEEE488.2 command *RMC (Remove Macro command) will also work. It
performs exactly the same action as MEMory:DELete:MACRo.

Arguments <MACRO NAME> is the name of the macro you want to delete. <MACRO NAME> is a
String data that must be surrounded by quotation marks.

MEMory:FREE:MACRo? (Query Only)
This command returns information of the free memory available for macros in the
instrument. If no macros are specified, 1160 bytes are available.

Group Memory

Syntax MEMory:FREE:MACRo?

Returns <Bytes available>, <Bytes used>

MEMory:NSTates? (Query Only)
The Number of States query (only) requests the number of *SAV/*RCL instrument
setting memory states available in the instrument. The instrument responds with a
value that is one greater than the maximum that can be sent as a parameter to the
*SAV and *RCL commands. (States are numbered from 0 to max –1.)

FCA3000, FCA3100, MCA3000 Series Programmer Manual 2-91

Command Descriptions

Group Memory

Syntax MEMory:NSTates?

Returns <the number of states available>

*OPC
Generates the operation complete message in the Standard Event Status Register
(SESR) when all pending commands that generate an OPC message are complete.
The *OPC? query places the ASCII character "1" into the output queue when all
such OPC commands are complete. The *OPC? response is not available to read
until all pending operations finish. (See page 3-118, Status and Events.)

The *OPC command allows you to synchronize the operation of the instrument
with your application program. (See page 3-6, Synchronization Methods.)

Certain instrument operations can affect the *OPC response. (See Table 3-3 on
page 3-6.)

Group Common

Syntax *OPC
*OPC?

Related Commands *WAI

Examples *OPC generates the operation complete message in the SESR at the completion of
all pending OPC operations.

*OPC? might return 1 to indicate that all pending OPC operations are finished.

*OPT? (Query Only)
Returns a list of all detectable options present in the instrument, with absent
options represented by an ASCII '0'.

Group Common

Syntax *OPT?

2-92 FCA3000, FCA3100, MCA3000 Series Programmer Manual

Command Descriptions

Returns <Timebase>,<Prescaler | Microwave converter>, <Reserved>

Where:

<Timebase> = Standard | Option 19 | Option 30 | Option 40

<Prescaler> = 0 | Option 10 | Option 14B

<Microwave converter> = 27GHz | 40GHz

<Reserved> = 0 until further notice.

Options definition:

Option 10 = 3 GHz prescaler (Input C)

Option 14B = 20 GHz prescaler (Input C)

Opton 19 = Medium timebase (Option MS)

Option 30 = High timebase (Option HS)

Option 40 = Ultra High timebase (Option US)

OUTPut:POLarity
The command controls the polarity of the pulse output, but only if it is configured
as an alarm circuit. See also the command OUTPut:TYPE.

Group Output

Syntax OUTPut:POLarity NORMal | INVerted

Arguments NORMAL means that the output level is high when the alarm is activated.
INVERTED means that the output level is low when the alarm is activated.

The output amplitude is fixed at TTL levels into 50 Ω.

OUTPut:TYPE
The command controls the rear panel pulse output configuration.

Group Output

Syntax OUTPut:TYPE PULSe | GATE | ALARm | OFF
OUTPut:TYPE?

FCA3000, FCA3100, MCA3000 Series Programmer Manual 2-93

Command Descriptions

Arguments PULSE means that the output serves as a fixed TTL level pulse generator.

NOTE. See SOURce:PULSe:PERiod and SOURce:PULSe:WIDTh for time
parameter setting commands.

GATE (low level) means that the output signals a pending measurement. ALARM
(low or high level) means that the output has an alarm condition.

NOTE. See command OUTPut:POLarity to change the active polarity.

OFF (low level) means no activity.

*PMC (No Query Form)
Removes all macro definitions.

Group Common

Syntax *PMC

Related Commands MEMory:DELete:MACRo '<Macro-name>' if you want to remove a single macro.

Examples *PMC

*PSC
Enables/disables automatic power-on status register clearing. The status registers
listed below are cleared when the power-on status clear flag is 1. Power-on does
not affect the registers when the flag is 0.

Service request enable register (*SRE)

Event status enable register (*ESE)

Operation status enable register (:STAT:OPER:ENAB)

Questionable data/signal enable register (:STAT:QUES:ENAB)

Device enable registers (:STAT:DREG0:ENAB)

NOTE. *RST does not affect this power-on status clear flag.

2-94 FCA3000, FCA3100, MCA3000 Series Programmer Manual

Command Descriptions

Group Common

Syntax *PSC <Decimal data>
*PSC?

Arguments <DECIMAL DATA> = a number that rounds to 0 turns off automatic power-on
clearing. Any other value turns it on.

Returns {1 | 0}

1 is enabled and 0 is disabled.

Examples *PSC1

This example enables automatic power-on clearing.

*PUD
Protected user data. This is a data area in which the user may write any data up
to 64 characters. The data can always be read, but you can only write data after
unprotecting the data area. Typical uses include storing calibration information,
instrument usage time, or inventory control numbers.

The content at delivery is: #234 FACTORY CALIBRATED ON: 20YY-MM-DD,
where YY = year, MM = month, DD = day.

Group Common

Syntax *PUD <Arbitrary block program data>
*PUD?

Returns <Arbitrary block response data>, where: <arbitrary block program data> is the
data last programmed with *PUD.

Examples SYSTEM:UNPROTECT; *PUD #240Calibrated 1993-07-16, inventory

No.1234

means that <arbitrary block program data> will follow. 2 means that the two
following digits will specify the length of the data block. 40 is the number of
characters in this example.

FCA3000, FCA3100, MCA3000 Series Programmer Manual 2-95

Command Descriptions

*RCL (No Query Form)
Recalls one of the up to 20 previously stored complete instrument settings from
the internal nonvolatile memory of the instrument.

Memory number 0 contains the power-off settings.

Group Common

Syntax *RCL <Decimal data>

Arguments <DECIMAL DATA> = a number between 0 and 19.

Examples *RCL 10

READ? (Query Only)
The read function performs new measurements and reads out a measuring result
without reprogramming the instrument. Using the READ? query in conjunction
with the CONFigure:<MeasuringFunction> command gives you the capability
to fine tune the measurement.

If the instrument is set up to do an array of measurements, READ? makes all the
measurements in the array, stores the results in the output buffer, and fetches
the first measuring result. Use FETCh[:SCALar]? or FETCh:ARRay? to fetch
other measuring results from the output buffer. The READ? query is identical to
ABORt; INITiate; FETCh[:SCALar]?.

Aborts all previous measurement commands if *WAI is not used.

Group Read

Syntax READ?

Returns <data>

The format of the returned data is determined by the format commands FORMat
and FORMat:FIXed.

Examples CONF:FREQ; INP:FILT ON; READ? configures the instrument to make a
standard frequency measurement with the 100kHz filter on. The instrument is
triggered, and data from the measurement are read out with the READ? query.

2-96 FCA3000, FCA3100, MCA3000 Series Programmer Manual

Command Descriptions

READ? takes a new measurement and fetches the result without changing the
programming of the instrument.

READ:ARRay? (Query Only)
The READ:ARRay? query is identical to ABORt; INITiate; FETCh:ARRay?.

Aborts all previous measurement commands if *WAI is not used.

NOTE. The Statistics with array readouts cannot be combined and if the individual
values in a block measurement have to be stored, make sure the default command
CALCulate:AVERage:STATe is OFF.

The READ:ARRay? query differs from the READ? query by reading
out several results at once after making the number of measurements
previously set up by CONFigure:ARRay:<MeasuringFunction> or
MEASure:ARRay:<MeasuringFunction>?.

Group Read

Syntax READ:ARRay? {<array size for FETCh>|MAX}

Arguments <ARRAY SIZE FOR FETCH> sets the number of measurement results in the array.
The size must be equal to or less than the number of measurements in the output
buffer. The maximum limit is 10000 due to the physical size of the output buffer.

MAX means that all the results in the output buffer are fetched.

Returns <data>[,<data>]

The format of the returned data is determined by the format commands FORMat.

Examples ARM:COUN 10; READ:ARRAY?: 5 configures the instrument to make an array of
10 standard measurements. The instrument is triggered and data from the first five
measurements are read out with the READ? query.

*RMC (No Query Form)
This command removes an individual macro.

Group Common

FCA3000, FCA3100, MCA3000 Series Programmer Manual 2-97

Command Descriptions

Syntax *RMC '<Macro name>'

Related Commands *PMC, if you want to delete all macros.

Arguments <MACRO NAME> is the name of the macro you want to delete.

NOTE. <MACRO NAME> is String data that must be surrounded by quotation
marks.

ROSCillator:SOURce
Selects the signal from the external reference input as timebase instead of the
internal timebase oscillator. If the parameter is set to the default value AUTO, the
instrument uses the external reference signal if present.

Group Sense

Syntax ROSCillator:SOURce {INT|EXT|AUTO}
ROSCillator:SOURce?

Returns <INT|EXT|AUTO>

*RST (No Query Form)
The Reset command resets the instrument. It is the third level of reset in a 3-level
reset strategy, and it primarily affects the instrument functions, not the IEEE 488
bus. (See page C-1, Instrument Settings After *RST.)

All previous commands are discarded, macros are disabled, and the instrument is
prepared to start new operations.

Group Common

Syntax *RST

Examples *RST

2-98 FCA3000, FCA3100, MCA3000 Series Programmer Manual

Command Descriptions

*SAV (No Query Form)
Saves the instrument settings in an internal nonvolatile memory location.
Nineteen memory locations are available. Switching the power off and on does
not change the settings stored in the registers.

NOTE. The memory positions 1 to 10 can be protected from the front panel USER
OPT menu. Use the SYSTem:UNPRotect command to change protected memory
positions to unprotected.

Group Common

Syntax *SAV

Arguments <DECIMAL DATA> = a number between 1 and 19.

Examples *SAV 11

SOURce:PULSe:PERiod
The pulse generator time parameters are activated when the output type is
configured to pulse using the OUTPut:TYPE PULSe command.

Group Output

Syntax SOURce:PULSe:PERiod <Numeric value>
SOURce:PULSe:PERiod?

Arguments <NUMERIC VALUE> = a number between 2E-8 (20 ns) and 2 s, in 10 ns increments.

SOURce:PULSe:WIDTh
The pulse generator time parameters are activated when the output type is
configured to pulse using the OUTPut:TYPE PULSe command.

Group Output

FCA3000, FCA3100, MCA3000 Series Programmer Manual 2-99

Command Descriptions

Syntax SOURce:PULSe:WIDTh <Numeric value>
SOURce:PULSe:WIDTh?

Arguments <NUMERIC VALUE> = a number between 2E-8 (20 ns) and 2 s, in 10 ns increments.

*SRE
The SRE (Service Request Enable) command sets or queries the service request
enable register bits. This enable register contains a mask value for the bits to be
enabled in the status byte register. A bit that is set true in the enable register
enables the corresponding bit in the status byte register to generate a Service
Request.

Group Common

Syntax *SRE <Decimal data>
*SRE?

Arguments <Decimal data> = the sum (between 0 and 255) of all bits that are true. See
the following table.

Table 2-34: Service Request Enable register (1 = enable)
Bit Weight Enables
7 128 OPR, Operation Status
6 64 RQS, Request Service
5 32 ESB, Event Status Bit
4 16 MAV, Message Available
3 8 QUE, Questionable

Data/Signal Status
2 4 EAV, Error Available
1 2 Not used
0 1 Device Status

Returns <Integer>, the sum of all bits that are sent.

Examples *SRE? might return 16 to indicate that a message is available in the output queue.

2-100 FCA3000, FCA3100, MCA3000 Series Programmer Manual

Command Descriptions

STATus:DREGister0? (Query Only)
This query reads out the contents of the Device Event Register. Reading the
Device Event Register clears the register.

Group Status

Syntax STATus:DREGister0?

Returns <Decimal data> = the sum (between 0 and 30) of all bits that are true. See the
following table.

Bit number Weight Condition
2 4 Last measurement below

low limit.
1 2 Last measurement above

high limit.

STATus:DREGister0:ENABle
This command sets the enable bit of the Device Register 0.

Group Status

Syntax STATus:DREGister0:ENABle <bit mask>
STATus:DREGister0:ENABle?

Arguments <Decimal data> = the sum (between 0 and 6) of all bits that are true. See the
following table.

Bit number Weight Condition
2 4 Enable monitoring of low

limit
1 2 Enable monitoring of high

limit

Returns <bit mask>

FCA3000, FCA3100, MCA3000 Series Programmer Manual 2-101

Command Descriptions

STATus:OPERation? (Query Only)
Reads out the contents of the operation event status register. Reading the
Operation Event Register clears the register. (See Figure 2-3 on page 2-103.)

Group Status

Syntax STATus:OPERation?

Returns <Decimal data> = the sum (between 0 and 368) of all bits that are true. See the
following table.

Bit number Weight Condition
8 256 No measurement
6 64 Waiting for bus arming
5 32 Waiting for triggering and/or

external arming
4 16 Measurement

STATus:OPERation:CONDition? (Query Only)
Reads out the contents of the operation status condition register. This register
reflects the state of the measurement process. See table below.

Group Status

Syntax STATus:OPERation:CONDition?

Returns <Decimal data> = the sum (between 0 and 3953) of all bits that are true. See
the following table.

Bit number Weight Condition
11 2048 Computing statistics
10 1024 In limit
9 512 Using internal reference
8 256 Meas. stopped / Computing

statistics (in compatibility
mode)

6 64 Waiting for bus arming

2-102 FCA3000, FCA3100, MCA3000 Series Programmer Manual

Command Descriptions

Bit number Weight Condition
5 32 Waiting for triggering and /

or external arming
4 16 Measurement started
0 1 Calibrating

Figure 2-3: Device status continuously monitored

STATus:OPERation:ENABle
Sets the enable bits of the operation status enable register. This enable register
contains a mask value for the bits to be enabled in the operation status event
register. A bit that is set true in the enable register enables the corresponding bit in
the status register. (See Figure 2-3 on page 2-103.)

An enabled bit will set bit #7, OPR (Operation Status Bit), in the Status Byte
Register if the enabled event occurs. (See page 3-2, The Status Byte Register
(SBR).)

Power-on will clear this register if power-on clearing is enabled via *PSC.

Group Status

Syntax STATus:OPERation:ENABle <Decimal data>
STATus:OPERation:ENABle?

FCA3000, FCA3100, MCA3000 Series Programmer Manual 2-103

Command Descriptions

Arguments <Decimal data> = the sum (between 0 and 368) of all bits that are true. See the
following table.

Bit number Weight Condition
8 256 No measurement
6 64 Waiting for bus arming
5 32 Waiting for triggering and/or

external arming
4 16 Measurement

Returns <Decimal data>

STATus:PRESet (No Query Form)
This command has an SCPI standardized effect on the status data structures. The
purpose is to precondition these toward reporting only device-dependent status
data.

It only affects enable registers. It does not change event and condition
registers.

The IEEE-488.2 enable registers, which are handled with the common
commands *SRE and *ESE remain unchanged.

The command sets or clears all other enable registers. Those relevant for
this instrument are as follows:

It sets all bits of the Device status Enable Registers to 1.

It sets all bits of the Questionable Data Status Enable Registers and the
Operation Status Enable Registers to 0.

The following registers never change in the instrument, but they do
conform to the standard STATus:PRESet values.

All bits in the positive transition filters of Questionable Data and Operation
status registers are 1.

All bits in the negative transition filters of Questionable Data and
Operation status registers are 0.

Group Status

Syntax STATus:PRESet

2-104 FCA3000, FCA3100, MCA3000 Series Programmer Manual

Command Descriptions

STATus:QUEStionable? (Query Only)
Reads out the contents of the status questionable event register. Reading the Status
Questionable Event Register clears the register. (See Figure 2-3 on page 2-103.)

Group Status

Syntax STATus:QUEStionable?

Returns <Decimal data> = the sum (between 0 and 20324) of all bits that are true. See
the following table.

Bit number Weight Condition
14 16384 Unexpected parameter
11 2048 Out of limit
10 1024 Measurement timeout /

Out of limit (in compatibility
mode)

9 512 Overflow
8 256 Calibration error
6 64 Phase interpolation

calibration off
5 32 Frequency interpolation

calibration off
2 4 Time interpolation

calibration off

STATus:QUEStionable:CONDition? (Query Only)
Reads out the contents of the status questionable condition register.

Group Status

Syntax STATus:QUEStionable:CONDition?

Returns <Decimal data> = the sum (between 0 and 20324) of all bits that are true. See
the following table.

FCA3000, FCA3100, MCA3000 Series Programmer Manual 2-105

Command Descriptions

Bit number Weight Condition
14 16384 Unexpected parameter
11 2048 Out of limit
10 1024 Measurement timeout /

Out of limit (in compatibility
mode)

9 512 Overflow
8 256 Calibration error
6 64 Phase interpolation

calibration off
5 32 Frequency interpolation

calibration off
2 4 Time interpolation

calibration off

STATus:QUEStionable:ENABle (No Query Form)
Sets the enable bits of the status questionable enable register. This enable register
contains a mask value for the bits to be enabled in the status questionable event
register. A bit that is set true in the enable register enables the corresponding bit in
the status register. (See Figure 2-3 on page 2-103.)

An enabled bit will set bit #3, QUE (Questionable Status Bit), in the Status Byte
Register if the enabled event occurs. (See page 3-2, The Status Byte Register
(SBR).)

Power-on will clear this register if power-on clearing is enabled via *PSC.

Group Status

Syntax STATus:QUEStionable:ENABle <Decimal data>

Arguments <Decimal data> = the sum (between 0 and 20324) of all bits that are true. See
the following table.

Bit number Weight Condition
14 16384 Unexpected parameter
11 2048 Out of limit
10 1024 Measurement timeout /

Out of limit (in compatibility
mode)

9 512 Overflow

2-106 FCA3000, FCA3100, MCA3000 Series Programmer Manual

Command Descriptions

Bit number Weight Condition
8 256 Calibration error
6 64 Phase interpolation

calibration off
5 32 Frequency interpolation

calibration off
2 4 Time interpolation

calibration off

Returns <Decimal data>

Examples STATUS:QUESTIONABLE:ENABLE 16896

In this example, both 'unexpected parameter' bit 14, and 'overflow' bit 8, will set
the QUE-bit of the Status Byte when a questionable status occurs.

*STB? (Query Only)
Queries the value of the Status Byte. Bit 6 reports the Master Summary Status bit
(MSS), not the Request Service (RQS). The MSS is set if the instrument has one
or more reasons for requesting service.

Group Common

Syntax *STB?

Related Commands Use a serial poll to read the status byte with the RQS bit.

Returns <Integer> = the sum (between 0 and 255) of all bits that are true. See the
following table.

Table 2-35: Status Byte register (1 = true)
Bit Weight Name Condition
7 128 OPR Enabled operation

status has
occurred.

6 64 MSS Reason for
requesting service

FCA3000, FCA3100, MCA3000 Series Programmer Manual 2-107

Command Descriptions

Table 2-35: Status Byte register (1 = true) (cont.)

Bit Weight Name Condition
5 32 ESB Enabled status

event condition has
occurred

4 16 MAV An output message
is ready

3 8 QUE The quality of the
output signal is
questionable

2 4 EAV Error available
1 2 Not used
0 1 DREG0 Enabled status

device event
conditions have
occurred

SYSTem:COMMunicate:GPIB:ADDRess
This command sets the GPIB address. It is valid until a new address is set, either
by sending a new bus command or via the front panel USER OPT menu.

Group System

Syntax SYSTem:COMMunicate:GPIB:ADDRess {<Numeric value>| MAX | MIN
} [,{<Numeric value>| MAX | MIN }]
SYSTem:COMMunicate:GPIB:ADDRess?

Arguments <NUMERIC VALUE> is a number between 0 and 30.

MIN sets address 0.

MAX sets address 30. [,<Numeric value> | MAX | MIN] sets a secondary address.
This is accepted but not used in the FCA3000 Series.

Returns <Numeric value>

Examples SYSTEM:COMMUNICATE:GPIB:ADDRESS 12

This example sets the bus address to 12.

2-108 FCA3000, FCA3100, MCA3000 Series Programmer Manual

Command Descriptions

SYSTem:ERRor? (Query Only)
Queries for an ASCII text description of an error that occurred. The error
messages are placed in an error queue, with a FIFO (First In-First Out) Structure.
This queue is summarized in the Error AVailable (EAV) bit in the status byte.

Group System

Syntax SYSTem:ERRor?

Returns <error number>,"<Error Description String>", where: <Error
Description String> = an error description as ASCII text. (See page 3-10, Error
Messages.)

SYSTem:LANGuage
The user can select between two command sets, where native exploits the full
capability of the instrument, and compatible facilitates portability to test systems
using the Agilent instruments 53131 and 53132.

The command set described in this manual refers to the native mode only.

Group System

Syntax SYSTem:LANGuage NATive | COMPatible
SYSTem:LANGuage?

SYSTem:PRESet (No Query Form)
This command recalls the same default settings that are entered when you push
USER OPT > Save/Recall > Recall Setup > Default.

Table 2-36: Differences between SYSTem:PRESet and *RST
SYSTem:PRESet *RST

Measurement time 200 ms 10 ms
INITiate:CONTinuous state ON OFF

Group System

FCA3000, FCA3100, MCA3000 Series Programmer Manual 2-109

Command Descriptions

Syntax SYSTem:PRESet

Related Commands *RST

SYSTem:SET
Transmits in binary form the complete current state of the instrument. This data
can be sent to the instrument to later restore this setting. This command has the
same function as the *LRN? common command with the exception that it returns
the data only as response to SYSTem:SET?. The query form of this command
returns a definite block data element.

Group System

Syntax SYSTem:SET <Block data>
SYSTem:SET?

Arguments <BLOCK DATA> is the instrument setting previously retrieved via the
SYSTem:SET? query.

Returns <Block data>

Examples SYSTEM:SET? might return #41686<data byte 1><data byte

2>...<data byte 1686>.

NOTE. The real number of data bytes will probably differ from the one specified
above and depends on the instrument type and the firmware version.

SYSTem:TALKonly (No Query Form)
The main purpose is to transfer streaming data fast in monitoring systems without
predefined limits for time or number of samples. It is a non-reversible command;
you can only return to normal bus mode by sending IFC or by pushing the Esc
button on the front panel.

The Talk Only output buffer can hold one value. If a new measurement result is
ready for output before the previous one was transferred, the new value is rejected
and the previous transfer is left undisturbed.

A pause during the reading will cause the first value read after the pause to be the
first measurement finished after the latest pre-pause value was read. The second

2-110 FCA3000, FCA3100, MCA3000 Series Programmer Manual

Command Descriptions

value read will be that of the most recently finished measurement. All values in
between are lost. The same applies if there is a pause between turning on Talk
Only and starting to read values. Therefore a dummy read is recommended in
many cases.

Prerequisites DISPlay:ENABle should be OFF. FORMat should be REAL or PACKed.
ARM:COUNt and TRIGger:COUNt should both be 1. INITiate:CONTinuous
should be ON.

Smart Period/Frequency/Time Interval or any functions using voltage
measurement or timestamp cannot be used with Talk Only.

Group System

Syntax SYSTem:TALKonly ON

SYSTem:TEMPerature? (Query Only)
This command returns the temperature in degrees C at the fan control sensor
inside the instrument housing.

Group System

Syntax SYSTem:TEMPerature?

Returns <Numeric value>

Examples SYSTEM:TEMPERATURE? might return 50.

SYSTem:TOUT
This command switches the time-out on or off. When time-out is enabled, the
measurement attempt is abandoned when the time set with SYSTem:TOUT:TIME
has elapsed. Depending on GPIB mode and output format, a special response
message is sent to the controller instead of a measurement result, and the time-out
bit in the STATus:QUEStionable? register is set.

Group System

FCA3000, FCA3100, MCA3000 Series Programmer Manual 2-111

Command Descriptions

Syntax SYSTem:TOUT <Boolean>
SYSTem:TOUT?

Examples Send the command sequence:
SYSTEM:TOUT 1

SYSTEM:TOUT:TIME 0.5

STATUS:QUESTIONABLE:ENABLE 1024

*SRE 8

This example turns on time-out, sets the time-out to 0.5 s, enables status reporting
of questionable data at time-out, and enables service request on questionable data.

Now send the command sequence:
*STB? // If bit 3 in the status byte is set, read the questionable data status.
STATUS:QUESTIONABLE? // This query reads the questionable data status and
might return 1024 or 0. 1024 means time-out has occurred, and 0 means no
time-out.

SYSTem:TOUT:AUTO
This command is primarily intended for use with long measurement times to
quickly determine if there is any signal at all present at the input, without having
to wait for the entire measurement to time out.

If ON there is a short time-out of 2 timer ticks (10-20ms) from the INIT/ARM to
the first start trigger, independent of any other time-out setting.

Group System

Syntax SYSTem:TOUT:AUTO <Boolean>
SYSTem:TOUT:AUTO?

SYSTem:TOUT:TIME
This command sets the time-out in seconds with a resolution of 10 ms.

The 10 ms timer ticks start to be counted after either a measurement INIT (if
Arming is not selected) or an external arming event (if Arming is selected). The
counting stops at the stop trigger of the measurement. For block measurements
a time-out results in the whole block timing out. The measurement start is not
involved. See also SYSTem:TOUT:AUTO if you need a command dealing with
unnecessarily long timeouts due to absence of input signal.

Note that you must enable time-out using SYSTem:TOUT ON for this setting
to take effect.

2-112 FCA3000, FCA3100, MCA3000 Series Programmer Manual

Command Descriptions

Group System

Syntax SYSTem:TOUT:TIME {<Numeric value>|MIN|MAX}
SYSTem:TOUT:TIME?

Arguments <NUMERIC VALUE> is the time-out in seconds. The range is 0.01 to 1000(s)

MIN sets 0.01s

MAX sets 1000 s

Returns <Numeric value>

SYSTem:UNPRotect (No Query Form)
This command will unprotect the user data (set/read by * PUD) and front setting
memories 1-10 until the next PMT (Program message terminator) or Device clear
or Reset (*RST). This makes it necessary to send an unprotect command in the
same message as for instance *PUD.

Group System

Syntax SYSTem:UNPRotect

Examples SYSTEM:UNPROTECT;*PUD #240 Calibrated 1992-11-17, inventory

No.1234

Where: # means that < arbitrary block program data> will follow. 2 means that
the two following digits will specify the length of the data block 40 is the number
of characters in this example.

TEST:SELect
Selects which internal self-tests shall be used when self-test is requested by the
*TST? command.

Group Test

Syntax TEST:SELect {RAM | ROM | LOGic | DISPlay | ALL}
TEST:SELect?

FCA3000, FCA3100, MCA3000 Series Programmer Manual 2-113

Command Descriptions

Returns {RAM | ROM | LOGic | DISPlay | ALL}

TIError:FREQuency
An arbitrary frequency in the range 1 Hz to 100 MHz can be entered (increment
= 1 Hz). Subsequent TIE measurements are made by continuous time stamping
of the input signal and the internal/external time base clock. Observations of
Wander, for instance, can easily be made with this command and the function
MEASure:ARRay:TIError? in conjunction with the built-in statistics/graphics
facilities.

Group Sense

Syntax TIError:FREQuency <Numeric value>
TIError:FREQuency?

Arguments <NUMERIC VALUE> = a number between 1 and 1E8 (Hz) in 1 Hz increments.

TIError:FREQuency:AUTO
If AUTO is ON, a check measurement is made at the start of the block to
determine if the frequency of the input signal, rounded to 4 significant digits, is
listed for automatic recognition, for instance:

4, 8, 15.75, 64 kHz or 1.544, 2.048, 5, 10, 27, 34, 45, 52 MHz

If the command is successful, the found value is stored and can be recalled with
a query command. Subsequent TIE measurements will use this value until it is
changed by sending this command once more or by sending the setting command
TIError:FREQuency <Numeric value>, which will deliberately fix the frequency.

Group Sense

Syntax TIError:FREQuency:AUTO {ON|OFF}
TIError:FREQuency:AUTO?

Returns 1 | 0

2-114 FCA3000, FCA3100, MCA3000 Series Programmer Manual

Command Descriptions

TINTerval:AUTO
Using four time stamps (two on each channel), the instrument can determine
which event precedes the other. Thus you do not have to set aside Input A as
the start channel.

Group Sense

Syntax TINTerval:AUTO {Boolean}
TINTerval:AUTO?

Arguments <BOOLEAN> = {1 | ON} | {0 | OFF}

Returns 1 | 0

TOTalize:GATE
Open/closes the gate for CONFigure:TOTalize[:CONTinuous].

NOTE. Before opening the gate with this command, the instrument must be in the
'continuously initiated' state (INITiate:CONTinuous ON), or else the totalizing
will not start.

Group Measurement

Syntax TOTalize:GATE ON | OFF
TOTalize:GATE?

Arguments <BOOLEAN> = (1 | ON | 0 | OFF)

Returns <Boolean>

Examples Example command sequence:

CONFIGURE:TOTALIZE (@1),(@2) - Select totalizing on inputs A & B and
reset registers

INITIATE:CONTINUOUS ON

TOTALIZE:GATE ON - Initiate totalizing

FCA3000, FCA3100, MCA3000 Series Programmer Manual 2-115

Command Descriptions

FETCH:ARRAY? -1 - Read intermediate results (A & B)

TOTALIZE:GATE OFF - Stop totalizing

TOTALIZE:GATE ON - Start totalizing and accumulate results

TOTALIZE:GATE OFF - Stop totalizing

FETCH:ARRAY? —1 - Read final results (separated by a comma)

*TRG (No Query Form)
Starts the measurement and places the result in the output queue.

It is the same as ARM:LAYer2:IMM; *WAI; FETCh?.

The Trigger command is the device-specific equivalent of the IEEE 488.1 defined
Group Execute Trigger (GET). It has exactly the same effect as a GET after it
is received and parsed by the instrument. However, GET is much faster than
*TRG because GET is a hardware signal that does not have to be parsed by the
instrument.

NOTE. Aborts all previous measurement commands if *WAI is not used.

Group Common

Syntax *TRG

TRIGger:COUNt
Sets how many measurements the instrument should make for each arm condition,
(block arming).

These measurements are done without any additional arming conditions before the
measurement. This also means that stop arming is disabled for the measurements
inside a block.

NOTE. The actual number of measurements made on each INIT equals to:
(ARM:COUNT)*(TRIGGER:START:COUNT)

Group Trigger

Syntax TRIGger:COUNt {<Numeric value> | MIN | MAX}
TRIGger:COUNt?

2-116 FCA3000, FCA3100, MCA3000 Series Programmer Manual

Command Descriptions

Arguments <NUMERIC VALUE> is a number between 1 and 16777215 (224 -1).

MAX sets 16777215

MIN sets 1

Returns <Numeric value>

Examples TRIGGER:COUNT 50

TRIGger:SOURce
Enables or disables the pacing function (the sample rate control). The pacing time
is set by the TRIGger:TIMer command.

Group Trigger

Syntax TRIGger:SOURce TIMer | IMMediate
TRIGger:SOURce?

Arguments TIMER - enables pacing

IMMediate - disables pacing

TRIGger:TIMer
This command sets the sample rate, for instance in conjunction with the statistics
functions.

Group Trigger

Syntax TRIGger:TIMer <Numeric value> | MIN | MAX
TRIGger:TIMer?

Arguments <NUMERIC VALUE> is a time length between 2 ms and 500 s, entered in seconds.

MIN means 2 ms.

MAX means 500 s.

Returns <Numeric value>

FCA3000, FCA3100, MCA3000 Series Programmer Manual 2-117

Command Descriptions

*TST? (Query Only)
The self-test query causes an internal self-test and generates a response indicating
whether or not the device completed the self-test without any detected errors.

Group Common

Syntax *TST?

Returns <Integer>

Where <Integer> = a number indicating specific errors as listed in the following
table:

Integer Error
0 No Error
1 RAM Failure
2 ROM Failure
4 Logic Failure
8 Display Failure
16
32

*WAI (No Query Form)
The Wait-to-Continue command sets the instrument to not execute any further
commands or queries until execution of all previous commands or queries is
completed.

Group Common

Syntax *WAI

Examples MEASURE:FREQUENCY?; *WAI; MEASURE:PDUT?

In this example, *WAI makes the instrument perform both the frequency and the
Duty Cycle measurement. Without *WAI, only the Duty Cycle measurement
would be performed. This command sequence might return +5.1204004E+002;
+1.250030E-001.

2-118 FCA3000, FCA3100, MCA3000 Series Programmer Manual

Status and Events

Status and Events
The instrument provides a status and event reporting system for the GPIB and
USB interfaces. This system informs you of certain significant events that occur
within the instrument.

The instrument status handling system consists of four 8-bit registers and two
queues. The following text describes these registers and components. They also
explain how the event handling system operates.

Registers
Overview The registers in the event handling system fall into two functional groups:

Status Registers contain information about the status of the instrument. They
include the Standard Event Status Register (SESR).

Enable Registers determine whether selected types of events are reported to
the Status Registers and the Event Queue. They include the Device Event
Status Enable Register (DESER), the Event Status Enable Register (ESER),
and the Service Request Enable Register (SRER).

Status Registers The Standard Event Status Register (SESR) and the Status Byte Register (SBR)
record certain types of events that may occur while the instrument is in use. IEEE
Std 488.2-1987 defines these registers.

Each bit in a Status Register records a particular type of event, such as an
execution error or message available. When an event of a given type occurs, the
instrument sets the bit that represents that type of event to a value of one. (You can
disable bits so that they ignore events and remain at zero. See Enable Registers).
Reading the status registers tells you what types of events have occurred.

The Standard Event Status Register (SESR). The SESR records eight types of
events that can occur within the instrument. Use the *ESR? query to read the
SESR register. Reading the register clears the bits of the register so that the
register can accumulate information about new events.

Figure 3-1: The Standard Event Status Register (SESR)

FCA3000, FCA3100, MCA3000 Series Programmer Manual 3-1

Status and Events

Table 3-1: SESR bit functions
Bit Function
7 (MSB) PON Power On. Shows that the instrument was powered on. On

completion, the diagnostic self tests also set this bit.
6 URQ User Request. Shows that an application event has

occurred. *See note.
5 CME Command Error. Shows that an error occurred while the

instrument was parsing a command or query.
4 EXE Execution Error. Shows that an error occurred while

executing a command or query.
3 DDE Device Error. Shows that a device error occurred.
2 QYE Query Error. Either an attempt was made to read the Output

Queue when no data was present or pending, or that data in
the Output Queue was lost.

1 RQC Request Control. This is not used.
0 (LSB) OPC Operation Complete. Shows that the operation is complete.

This bit is set when all pending operations complete
following an *OPC command.

The Status Byte Register (SBR). Records whether output is available in the
Output Queue, whether the instrument requests service, and whether the SESR
has recorded any events.

Use a Serial Poll or the *STB? query to read the contents of the SBR. The bits in
the SBR are set and cleared depending on the contents of the SESR, the Event
Status Enable Register (ESER), and the Output Queue. When you use a Serial
Poll to obtain the SBR, bit 6 is the RQS bit. When you use the *STB? query to
read the SBR, bit 6 is the MSS bit. Reading the SBR does not clear the bits.

Figure 3-2: The Status Byte Register (SBR)

Table 3-2: SBR bit functions
Bit Function
7 (MSB) OPR Operation status.
6
(serial poll)

RQS Request Service. Obtained from a serial poll. Shows that
the instrument requests service from the GPIB controller.

6
(*STB? query)

MSS Master Status Summary. Obtained from *STB? query.
Summarizes the ESB and MAV bits in the SBR.

5 ESB Event Status Bit. Shows that status is enabled and present
in the SESR.

3-2 FCA3000, FCA3100, MCA3000 Series Programmer Manual

Status and Events

Table 3-2: SBR bit functions (cont.)

Bit Function
4 MAV Message Available. Shows that output is available in the

Output Queue.
3 QUE Questionable Data/Signal Status.
2 EAV Error Available.
1 ———— Not used.
0 (LSB) DEV Device Status.

Enable Registers ESER and SRER allow you to select which events are reported to the Status
Registers and the Event Queue. Each Enable Register acts as a filter to a Status
Register and can prevent information from being recorded in the register or queue.

Each bit in an Enable Register corresponds to a bit in the Status Register it
controls. In order for an event to be reported to a bit in the Status Register, the
corresponding bit in the Enable Register must be set to one. If the bit in the Enable
Register is set to zero, the event is not recorded.

Various commands set the bits in the Enable Registers. The Enable Registers and
the commands used to set them are described below.

The Event Status Enable Register (ESER). This register controls which types of
events are summarized by the Event Status Bit (ESB) in the SBR. Use the *ESE
command to set the bits in the ESER. Use the *ESE? query to read it.

Figure 3-3: The Event Status Enable Register (ESER)

The Service Request Enable Register (SRER). This register controls which bits
in the SBR generate a Service Request and are summarized by the Master Status
Summary (MSS) bit.

Use the *SRE command to set the SRER. Use the *SRE? query to read the
register. The RQS bit remains set to one until either the Status Byte Register is
read with a Serial Poll or the MSS bit changes back to a zero.

Figure 3-4: The Service Request Enable Register (SRER)

FCA3000, FCA3100, MCA3000 Series Programmer Manual 3-3

Status and Events

*PSC Command The *PSC command controls the Enable Registers contents at power-on. Sending
*PSC 1 sets the Enable Registers at power on as follows:

ESER 0 (equivalent to an *ESE 0 command)

SRER 0 (equivalent to an *SRE 0 command)

Sending *PSC 0 sets the Enable Register to store register values in nonvolatile
memory through a power cycle.

NOTE. To enable the PON (Power On) event to generate a Service Request, send
*PSC 0, use the *ESE command to enable PON in the ESER, and use the *SRE
command to enable bit 5 in the SRER. Subsequent power-on cycles will generate a
Service Request.

Queues
The *PSC command controls the Enable Registers contents at power-on. Sending
*PSC 1 sets the Enable Registers to clear at power on.

Output Queue The instrument stores query responses in the Output Queue and empties this
queue each time it receives a new command or query message after an <EOM>.
The controller must read a query response before it sends the next command (or
query) or it will lose responses to earlier queries.

CAUTION. When a controller sends a query, an <EOM>, and a second query,
the instrument normally clears the first response and outputs the second while
reporting a Query Error (QYE bit in the ESER) to indicate the lost response. A
fast controller, however, may receive a part or all of the first response as well. To
avoid this situation, the controller should always read the response immediately
after sending any terminated query message or send a DCL (Device Clear) before
sending the second query.

Event Queue The Event Queue stores detailed information on up to 32 events. If more than 32
events stack up in the Event Queue, the 32nd event is replaced by event code
350, "Queue Overflow."

Before reading an event from the Event Queue, you must use the *ESR? query
to read the summary of the event from the SESR. Reading the SESR erases any
events that were summarized by previous *ESR? reads but not read from the
Event Queue. Events that follow an *ESR? read are put in the Event Queue but
are not available until *ESR? is used again.

3-4 FCA3000, FCA3100, MCA3000 Series Programmer Manual

Status and Events

Event Handling Sequence
The following figure shows how to use the status and event handling system. In
the explanation that follows, numbers in parentheses refer to numbers in the figure.

Figure 3-5: Status and event handling process

When an event occurs, a signal is sent to the DESER (1). If that type of event
is enabled in the DESER (that is, if the bit for that event type is set to 1), the
appropriate bit in the SESR is set to one, and the event is recorded in the Event
Queue (2). If the corresponding bit in the ESER is also enabled (3), then the
ESB bit in the SBR is set to one (4).

When output is sent to the Output Queue, the MAV bit in the SBR is set to one (5).

FCA3000, FCA3100, MCA3000 Series Programmer Manual 3-5

Status and Events

When a bit in the SBR is set to one and the corresponding bit in the SRER
is enabled (6), the MSS bit in the SBR is set to one and a service request is
generated (7).

Synchronization Methods
Overview Although most commands are completed almost immediately after being received

by the instrument, some commands start a process that requires time. For example,
once a single sequence acquisition command is executed, depending upon the
applied signals and trigger settings, it may take an extended period of time before
the acquisition is complete. Rather than remain idle while the operation is in
process, the instrument will continue processing other commands. This means
that some operations will not be completed in the order that they were sent.

Sometimes the result of an operation depends on the result of an earlier operation.
A first operation must complete before the next one is processed. The instrument
status and event reporting system is designed to accommodate this process.

The Operation Complete (OPC) bit of the Standard Event Status Register
(SESR) can be programmed to indicate when certain instrument operations have
completed and, by setting the Event Status Enable Register (ESER) to report OPC
in the Event Status Bit (ESB) of the Status Byte Register (SBR) and setting the
Service Request Enable Register (SRER) to generate a service request upon a
positive transition of the ESB, a service request (SRQ) interrupt can be generated
when certain operations complete as described in this section.

The following instrument operations can generate an OPC:

Table 3-3: Commands that can set the OPC bit
Command Conditions
CONFigure:ARRay:<MeasuringFunction>
CONFigure:<MeasuringFunction>
CONFigure:TOTalize[:CONTinuous]
HCOPy:SDUMp:DATA?
INITiate
INITiate:CONTinuous
*RCL
SYSTem:PRESet
SYSTem:SET

For example, you could use the following command sequence to take a series of
fast period measurements on a signal:

/** Set up for period measurement **/

FUNCTION “PERIOD 1”

INPUT:LEVEL 0; :AUTO OFF; :COUPLING DC

3-6 FCA3000, FCA3100, MCA3000 Series Programmer Manual

Status and Events

TRIGGER:COUNT 1000; :ARM COUNT 1

DISPLAY:ENABLE ON

FORMAT ASCII; :TINFORMATION OFF

/** Start measurement**/

INITIATE

/** Read results **/

FETCH:ARRAY? 1000

Measurements require extended processing time. They may not finish before the
controller attempts to read the results. To be sure the instrument completes the
measurements before the controller reads them, you can synchronize the program.

You can use three commands to synchronize the operation of the instrument with
your application program: *WAI, *OPC, and *OPC?

Using the *WAI Command The *WAI command forces completion of previous commands that generate
an OPC message. No commands after the *WAI are processed before the OPC
message(s) are generated

The same command sequence using the *WAI command for synchronization
looks like this:

/** Set up for period measurement **/

FUNCTION “PERIOD 1”

INPUT:LEVEL 0; :AUTO OFF; :COUPLING DC

TRIGGER:COUNT 1000; :ARM COUNT 1

DISPLAY:ENABLE ON

FORMAT ASCII; :TINFORMATION OFF

/** Start measurement**/

INITIATE

/* Wait until the measurements are complete before

reading them*/

*/

*WAI

/** Read results **/

FETCH:ARRAY? 1000

The controller can continue to write commands to the input buffer of the
instrument, but the commands will not be processed by the instrument until all
in-process OPC operations are complete. If the input buffer becomes full, the
controller is unable to write commands to the buffer. This can cause a time-out.

Using the *OPC Command If the corresponding status registers are enabled, the *OPC command sets the
OPC bit in the Standard Event Status Register (SESR) when an operation is
complete. You achieve synchronization by using this command with either a
serial poll or service request handler.

FCA3000, FCA3100, MCA3000 Series Programmer Manual 3-7

Status and Events

Serial poll method. Enable the OPC bit in the Event Status Enable Register
(ESER) using the *ESE command.

When the operation is complete, the OPC bit in the Standard Event Status Register
(SESR) is enabled and the Event Status Bit (ESB) in the Status Byte Register is
enabled.

The same command sequence using the *OPC command for synchronization with
serial polling looks like this:

/** Set up for period measurement **/

FUNCTION “PERIOD 1”

INPUT:LEVEL 0; :AUTO OFF; :COUPLING DC

TRIGGER:COUNT 1000; :ARM COUNT 1

DISPLAY:ENABLE ON

FORMAT ASCII; :TINFORMATION OFF

/* Enable the status registers */

*ESE 1

*SRE 0

/** Start measurement**/

INITIATE

/* Wait until the measurements are complete before

reading them*/

*OPC

While serial poll = 0, keep looping

/** Read results **/

FETCH:ARRAY? 1000

Service request method. Enable the OPC bit in the Event Status Enable Register
(ESER) using the *ESE command.

You can also enable service requests by setting the ESB bit in the Service Request
Enable Register (SRER) using the *SRE command. When the operation is
complete, the instrument will generate a Service Request.

The same command sequence using the *OPC command for synchronization
looks like this

/** Set up for period measurement **/

FUNCTION “PERIOD 1”

INPUT:LEVEL 0; :AUTO OFF; :COUPLING DC

TRIGGER:COUNT 1000; :ARM COUNT 1

DISPLAY:ENABLE ON

FORMAT ASCII; :TINFORMATION OFF

/* Enable the status registers */

*ESE 1

*SRE 32

/** Start measurement**/

INITIATE

3-8 FCA3000, FCA3100, MCA3000 Series Programmer Manual

Status and Events

/* Wait until the measurements are complete before

reading them*/

*OPC

The program can now do different tasks such as talk to other devices. The SRQ,
when it comes, interrupts those tasks and returns control to this task.

/** Read results **/

FETCH:ARRAY? 1000

Using the *OPC? Query The *OPC? query places a 1 in the Output Queue once an operation that generates
an OPC message is complete. The *OPC? query does not return until all pending
OPC operations have completed. Therefore, your time-out must be set to a time at
least as long as the longest expected time for the operations to complete.

The same command sequence using the *OPC? query for synchronization looks
like this:

/** Set up for period measurement **/

FUNCTION “PERIOD 1”

INPUT:LEVEL 0; :AUTO OFF; :COUPLING DC

TRIGGER:COUNT 1000; :ARM COUNT 1

DISPLAY:ENABLE ON

FORMAT ASCII; :TINFORMATION OFF

/** Start measurement**/

INITIATE

/* Wait until the measurements are complete before

reading them*/

*OPC?

Wait for read from Output Queue.
/** Read results **/

FETCH:ARRAY? 1000

This is the simplest approach. It requires no status handling or loops. However,
you must set the controller time-out for longer than the acquisition operation.

Messages The information contained in the topic tabs above covers all the programming
interface messages the instrument generates in response to commands and queries.

For most messages, a secondary message from the instrument returns detail about
the cause of the error or the meaning of the message. This message is part of the
message string and is separated from the main message by a semicolon.

Each message is the result of an event. Each type of event sets a specific bit in the
SESR and is controlled by the equivalent bit in the DESER. Thus, each message
is associated with a specific SESR bit. In the message tables, the associated SESR
bit is specified in the table title, with exceptions noted with the error message text.

FCA3000, FCA3100, MCA3000 Series Programmer Manual 3-9

Status and Events

No Event The following table shows the messages when the system has no events or status
to report. These have no associated SESR bit.

Table 3-4: No Event messages
Code Message
0 No events to report; queue empty
1 No events to report; new events pending *ESR?

Error Messages
You read the error queue with the SYSTem:ERRor? query.

Example SYSTem:ERRor? might return –100, “Command Error”

The query returns the error number followed by the error description.

If more than one error occurred, the query will return the error that occurred first.
When you read an error, you will also remove it from the queue. You can read
the next error by repeating the query. When you have read all errors, the queue is
empty, and the :SYSTem:ERRor? query will return: 0, “No error”

When errors occur and you do not read these errors, the Error Queue may
overflow. Then the instrument will overwrite the last error in the queue with:

–350, “Queue overflow”

If more errors occur they will be discarded.

NOTE. Read more about how to use error reporting in the Introduction to SCPI
chapter

Command Errors The following table shows the command error messages generated by improper
syntax. Check that the command is properly formed and that it follows the rules
in the section on command Syntax.

Table 3-5: Command errors
Error Number Error Description Description/Explanation/Examples
0 No error
–100 Command error This is the generic syntax error for devices that cannot detect more specific

errors. This code means that a Command Error defined in IEEE-488.2,
11.5.1.1.4 has occurred.

–101 Invalid character A syntactic element contains a character which is invalid for that type; for
example, a header containing an ampersand, SETUP&. This error might be
used in place of errors –114, –121, –141, and perhaps some others.

3-10 FCA3000, FCA3100, MCA3000 Series Programmer Manual

Status and Events

Table 3-5: Command errors (cont.)

Error Number Error Description Description/Explanation/Examples
Syntax error–102
Syntax error; unrecognized
data

An unrecognized command or data type was detected; for example, a string
was received when the instrument does not accept strings.

–103 Invalid separator The parser was expecting a separator and detected an illegal character;
for example, the semicolon was omitted after a program message unit,
*EMC1:CH1:VOLTS5.

–104 Data type error The parser recognized a data element different than one allowed; for example,
numeric or string data was expected but block data was detected.

–105 GET not allowed A Group Execute Trigger was received within a program message (see
IEEE-488.2, 7.7).

–108 Parameter not allowed More parameters were received than expected for the header; for example,
the *EMC common command accepts only one parameter, so receiving
*EMC0,,1 is not allowed.

–109 Missing parameter Fewer parameters were received than required for the header; for example,
the *EMC common command requires one parameter, so receiving *EMC is
not allowed.

–110 Command header error An error was detected in the header. This error message is used when the
instrument cannot detect the more specific errors described for errors 111–119.

–111 Header separator error A character that is not a legal header separator was detected while parsing
the header; for example, no space followed the header, thus *GMC"MACRO"
is an error.

–112 Program mnemonic too long The header contains more than 12 characters (see IEEE-488.2, 7.6.1.4.1).
–113 Undefined header The header is syntactically correct, but it is undefined for this specific

instrument; for example, *XYZ is not defined for any device.
–114 Header suffix out of range A non-header character was detected in what the parser expects is a header

element.
Numeric data error
Numeric data error; overflow
from conversion
Numeric data error; underflow
from conversion

–120

Numeric data error; not a
number from conversion

This error, and errors –121 through –129, are generated when parsing a data
element that appears to be a numeric type. This particular error message is
used when the instrument cannot detect a more specific error.

–121 Invalid character in number An invalid character for the data type being parsed was detected; for example,
an alpha in a decimal numeric or a “0" in octal data.

–123 Exponent too large The magnitude of the exponent was larger than 32000 (see IEEE-488.2,
7.7.2.4.1).

–124 Too many digits The mantissa of a decimal numeric data element contained more than
255 digits excluding leading zeros (see IEEE-488.2, 7.7.2.4.1).

–128 Numeric data not allowed A legal numeric data element was received, but the instrument does not
accept it in this position for the header.

FCA3000, FCA3100, MCA3000 Series Programmer Manual 3-11

Status and Events

Table 3-5: Command errors (cont.)

Error Number Error Description Description/Explanation/Examples
–130 Suffix error This error and errors –131 through –139 is generated when parsing a suffix.

This particular error message is used when the instrument cannot detect
a more specific error.

–131 Invalid suffix The suffix does not follow the syntax described in IEEE-488.2, 7.7.3.2, or the
suffix is inappropriate for this instrument.

–134 Suffix too long The suffix contained more than 12 characters (see IEEE-488.2, 7.7.3.4).
–138 Suffix not allowed A suffix was detected after a numeric element that does not allow suffixes.
–140 Character data error This error and errors 141 through –149 is generated when parsing a character

data element. This particular error message is used when the instrument
cannot detect a more specific error.

–141 Invalid character data Either the character data element contains an invalid character or the
particular element received is not valid for the header.

–144 Character data too long The character data element contains more than 12 characters (see
IEEE-488.2, 7.7.1.4).

–148 Character data not allowed A legal character data element was detected where prohibited by the
instrument.

–150 String data error This error and errors –151 through –159 is generated when parsing a string
data element. This particular error message is used when the instrument
cannot detect a more specific error.

Invalid string data–151
Invalid string data;
unexpected end of message

A string data element was expected, but was invalid for some reason (see
IEEE-488.2, 7.7.5.2); for example, an END message was received before
the terminal quote character.

–158 String data not allowed A string data element was detected but was not allowed at this point in parsing.
–160 Block data error This error and errors –161 through –169 is generated when parsing a block

data element. This particular error message is used when the instrument
cannot detect a more specific error.

–161 Invalid block data A block data element was expected, but was invalid for some reason (see
IEEE-488.2, 7.7.6.2); for example, an END message was received before the
length was satisfied.

–168 Block data not allowed A legal block data element was detected but was not allowed by the instrument
at this point in parsing.

3-12 FCA3000, FCA3100, MCA3000 Series Programmer Manual

Status and Events

Table 3-5: Command errors (cont.)

Error Number Error Description Description/Explanation/Examples
Expression data error This error and errors –171 through –179 is generated when parsing an

expression data element. This particular error message is used if the
instrument cannot detect a more specific error.

Expression data error;
floating-point underflow
Expression data error;
floating-point overflow
Expression data error; not a
number

The floating-point operations specified in the expression caused a
floating-point error.

–170

Expression data error;
different number of channels
given

Two channel list specifications, giving primary and secondary channels for
2-channel measurements, contained a different number of channels.

Invalid expression data The expression data element was invalid (see IEEE-488.2, 7.7.7.2); for
example, unmatched parentheses or an illegal character were used.

Invalid expression data; bad
mnemonic

A mnemonic data element in the expression was not valid.

Invalid expression data;
illegal element

The expression contained a hexadecimal element not permitted in
expressions.

Invalid expression data;
unexpected end of message

End of message occurred before the closing parenthesis.

–171

Invalid expression data;
unrecognized expression
type

The expression could not be recognized as either a mathematical expression,
a data element list or a channel list.

–178 Expression data not allowed A legal expression data was detected but was not allowed by the instrument at
this point in parsing.

–180 Macro error This error and errors –181 through –189 is generated when defining a macro
or executing a macro. This particular error message is used when the
instrument cannot detect a more specific error.

–181 Invalid outside macro
definition

Indicates that a macro parameter placeholder ($<number) was detected
outside of a macro definition.

–183 Invalid inside macro definition Indicates that the program message unit sequence, sent with a *DDT or*DMC
command, is syntactically invalid (see IEEE-10.7.6.3).

Macro parameter error Indicates that a command inside the macro definition had the wrong number
or type of parameters.

Macro parameter error;
unused parameter

The specified parameter numbers are not continuous; one or more numbers
have been skipped.

Macro parameter error; badly
formed placeholder

The ’$’ sign was not followed by a single digit between 1 and 9.

–184

Macro parameter error;
parameter count mismatch

The macro was invoked with a different number of parameters than used
in the definition.

FCA3000, FCA3100, MCA3000 Series Programmer Manual 3-13

Status and Events

Execution Error The following table lists the execution errors that are detected during execution of
a command.

Table 3-6: Execution errors
Error Number Error Description Explanation and examples
–200 Execution error This is the generic syntax error for devices that cannot detect more specific

errors. This code shows that an Execution Error as defined in IEEE-488.2,
11.5.1.1.5 has occurred.

–210 Trigger error
–211 Trigger ignored Indicates that a GET, *TRG, or triggering signal was received and

recognized by the instrument but was ignored because of instrument timing
considerations; for example, the instrument was not ready to respond.

–212 Arm ignored Indicates that an arming signal was received and recognized by the
instrument but was ignored.

–213 Init ignored Indicates that a request for a measurement initiation was ignored because
another measurement was already in progress.

–214 Trigger deadlock Indicates that the trigger source for the initiation of a measurement is set to
GET and subsequent measurement query is received. The measurement
cannot be started until a GET is received, but the GET would cause an
INTERRUPTED error.

–215 Arm deadlock Indicates that the arm source for the initiation of a measurement is set to
GET and subsequent measurement query is received. The measurement
cannot be started until a GET is received, but the GET would cause an
INTERRUPTED error.

–220 Parameter error Indicates that a program-data-element related error occurred. This error
message is used when the instrument cannot detect the more specific errors
–221 to –229.

Settings conflict
Settings conflict; PUD memory
is protected

–221

Settings conflict; invalid
combination of channel and
function

Indicates that a legal program data element was parsed but could not be
executed due to the current instrument state (see IEEE-488.2, 6.4.5.3 and
11.5.1.1.5.)

Data out of range Indicates that a legal program data element was parsed but could not be
executed because the interpreted value was outside the legal range as
defined by the instrument (see IEEE-488.2, 11.5.1.1.5.).

Data out of range; exponent
too large

The expression was too large for the internal floating-point format.

Data out of range; below
minimum

Data below minimum for this function/parameter.

Data out of range; above
maximum

Data above maximum for this function/ parameter.

–222

Data out of range; (Save/recall
memory number)

A number outside 0 to 19 was specified for the save/recall memory.

3-14 FCA3000, FCA3100, MCA3000 Series Programmer Manual

Status and Events

Table 3-6: Execution errors (cont.)

Error Number Error Description Explanation and examples
Too much data
Too much data; *PUD string
too long

–223

Too much data; String or block
too long

Indicates that a legal program data element of block, expression, or string
type received that contained more data than the instrument could handle due
to memory or related instrument-specific requirements.

–224 Illegal parameter value Used where exact value, from a list of possible values, was expected.
–230 Data corrupt or stale Possibly invalid data; new reading started but not completed since last

access.
Data questionable–231
Data questionable; one or
more data elements ignored

One or more data elements sent with a MEASure or CONFigure command
was ignored by the instrument.

–240 Hardware error Indicates that a legal program command or query could not be executed
because of a hardware problem in the instrument. Definition of what
constitutes a hardware problem is completely device specific. This error
message is used when the instrument cannot detect the more specific errors
described for errors –241 through –249.

Hardware missing–241
Hardware missing;
(prescaler)"

Indicates that a legal program command or query could not be executed
because of missing instrument hardware; for example, an option was not
installed. Definition of what constitutes missing hardware is completely
device specific.

–254 Media full Indicates that a legal program command or query could not be executed
because the media was full; for example, there is no room on the disk. The
definition of what constitutes a full media is device specific.

–258 Media protected Indicates that a legal program command or query could not be executed
because the media was protected; for example, the write-protect tab on
a disk was present. The definition of what constitutes protected media is
device specific.

–260 Expression error Indicates that an expression-program data-element- related error occurred.
This error message is used when the instrument cannot detect the more
specific errors described for errors –261 through –269.

–261 Math error in expression Indicates that a syntactically correct expression program data element
could not be executed due to a math error; for example, a divide-by-zero
was attempted.

Macro error Indicates that a macro-related execution error occurred. This error message
is used when the instrument cannot detect the more specific error described
for errors –271 through –279.

Macro error; out of name
space

No room for any more macro names.

–270

Macro error; out of definition
space

No room for this macro definition.

–271 Macro syntax error Indicates that a syntactically correct macro program data sequence,
according to IEEE-488.2 10.7.2, could not be executed due to a syntax error
within the macro definition (see IEEE-488.2, 10.7.6.3)

FCA3000, FCA3100, MCA3000 Series Programmer Manual 3-15

Status and Events

Table 3-6: Execution errors (cont.)

Error Number Error Description Explanation and examples
–272 Macro execution error Indicates that a syntactically correct macro program data sequence could

not be executed due to some error in the macro definition (see IEEE-488.2,
10.7.6.3)

–273 Illegal macro label Indicates that the macro label defined in the *DMC command was a legal
string syntax, but could not be accepted by the instrument (see IEEE-488.2,
10.7.3 and 10.7.6.2); for example, the label was too long, the same as a
common command header, or contained invalid header syntax.

–274 Macro parameter error Indicates that the macro definition improperly used a macro parameter place
holder (see IEEE-488.2, 10.7.3).

–275 Macro definition too long Indicates that a syntactically correct macro program data sequence could
not be executed because the string or block contents were too long for the
instrument to handle (see IEEE-488.2, 10.7.6.1).

–276 Macro recursion error Indicates that a syntactically correct macro program data sequence could not
be executed because the instrument found it to be recursive (see IEEE-488.2,
10.7.6.6).

–277 Macro redefinition not allowed Indicates that a syntactically correct macro label in the *DMC command
could not be executed because the macro label was already defined (see
IEEE-488.2, 10.7.6.4).

–278 Macro header not found Indicates that a syntactically correct macro label in the *GMC? query could
not be executed because the header was not previously defined.

Device Errors The following table lists the device errors that can occur during instrument
operation. These errors may indicate that the instrument needs repair.

Table 3-7: Standardized device-specific errors
Error Number Error Description Explanation and examples
–300 Device specific error This code indicates only that a Device-Dependent Error as defined in

IEEE-488.2, 11.5.1.1.6 has occurred. Contact your local service center.
–311 Memory error Indicates that an error was detected in the instrument’s memory. Contact

your local service center.
–312 PUD memory lost Indicates that the protected user data saved by the *PUD command was

lost. Contact your local service center.
–314 Save/recall memory lost Indicates that the nonvolatile calibration data used by the *SAV? command

was lost. Contact your local service center.
–330 Self-test failed Contact your local service center.
–350 Queue overflow A specific code entered into the queue in lieu of the code that caused the

error. This code indicates that there is no room in the queue and an error
occurred but was not recorded.

System Query Errors The following table lists the system event messages. These messages are
generated whenever certain system conditions occur.

3-16 FCA3000, FCA3100, MCA3000 Series Programmer Manual

Status and Events

Table 3-8: Query errors
Error Number Error Description Explanation and examples
–400 Query error This code indicates that a Query Error as defined in IEEE-488.2, 11.5.1.1.7

and 6.3 has occurred.
Query INTERRUPTED Indicates that a condition causing an INTERRUPTED Query error occurred

(see IEEE-488.2, 6.3.2.3); for example, a query was followed by DAB or
GET before a response was completely sent.

Query INTERRUPTED; in
send state
Query INTERRUPTED; in
query state

–410

Query INTERRUPTED; in
response state

The additional information indicates the IEEE-488.2 message exchange
state where the error occurred.

Query UNTERMINATED Indicates that a condition causing an UNTERMINATED Query error occurred
(see IEEE-488.2, 6.3.2.2); for example, the instrument was addressed to
talk and an incomplete program message was received.

Query UNTERMINATED; in
idle state
Query UNTERMINATED; in
read state

–420

Query UNTERMINATED; in
send state

The additional information indicates the IEEE-488.2 message exchange
state where the error occurred

–430 Query DEADLOCKED Indicates that a condition causing an DEADLOCKED Query error occurred
(see IEEE-488.2, 6.3.1.7); for example, both input buffer and output buffer
are full and the instrument cannot continue.

–440 Query UNTERMINATED after
indefinite response

Indicates that a query was received in the same program message after an
query requesting an indefinite response was executed (see IEEE-488.2,
6.5.7.5.7.)

Table 3-9: Device-specific errors
Error Number Error Description Explanation and examples
(1)100 Device operation gave

floating-point underflow
A floating-point error occurred during a instrument operation.

(1)101 Device operation gave
floating-point overflow

A floating-point error occurred during a instrument operation.

(1)102 Device operation gave ‘not a
number’

A floating-point error occurred during a instrument operation.

(1)110 Invalid measurement function The instrument was requested to set a measurement function it could not
make.

(1)120 Save/recall memory protected An attempt was made to write in a protected memory.

FCA3000, FCA3100, MCA3000 Series Programmer Manual 3-17

Status and Events

Table 3-9: Device-specific errors (cont.)

Error Number Error Description Explanation and examples
(1)130 Unsupported command
(1)131 Unsupported boolean

command
(1)132 Unsupported decimal

command
(1)133 Unsupported enumerated

command
(1)134 Unsupported auto command
(1)135 Unsupported single shot

command

Indicates a mismatch between bus and instrument capabilities.

(1)136 Command queue full; last
command discarded

The instrument has an internal command queue with room for about 100
commands. Many commands arrived fast without any intervening query.

(1)137 Inappropriate suffix unit A suffix unit was not appropriate for the command. Recognized units are
Hz (Hertz), s (seconds), ohms (Ω) and V (Volt).

(1)138 Unexpected command to
device execution

A command reached instrument execution which should have been handled
by the bus.

(1)139 Unexpected query to device
execution

A query reached instrument execution which should have been handled
by the bus.

(1)150 Bad math expression format Only a fixed, specific math expression is recognized by the instrument,
and this was not it.

(1)160 Measurement broken off A new bus command caused a running measurement to be broken off.
(1)170 Instrument set to default An internal setting inconsistency caused the instrument to go to default

setting.
(1)190 Error during calibration An error has occurred during calibration of the instrument.
(1)191 Hysteresis calibration failed The input hysteresis values found by the calibration routine was out of

range. Did you remember to remove the input signal?
(1)200 Message exchange error An error occurred in the message exchange handler (generic error).
(1)201 Reset during bus input The instrument was waiting for more bus input, but the waiting was broken

by the operator.
(1)202 Reset during bus output The instrument was waiting for more bus output to be read, but the waiting

was broken by the operator.
(1)203 Bad message exchange

control state
An internal error in the message exchange handler.

(1)204 Unexpected reason for GPIB
interrupt

A spurious GPIB interrupt occurred, not conforming to any valid reason such
as an incoming byte or address change.

(1)205 No listener on bus when trying
to respond

This error is generated when the instrument is an active talker, and tries to
send a byte on the bus, but there are no active listeners. (This may occur
if the controller issues the device talker address before its own listener
address, which some PC controller cards are known to do)

(1)210 Mnemonic table error An abnormal condition occurred in connection with the mnemonics tables
(generic error).

3-18 FCA3000, FCA3100, MCA3000 Series Programmer Manual

Status and Events

Table 3-9: Device-specific errors (cont.)

Error Number Error Description Explanation and examples
(1)211 Wrong macro table checksum

found
The macro definitions have been corrupted (could be loss of memory).

(1)212 Wrong hash table checksum
found

The hash table is corrupted. Could be bad memory chips or address logic.
Contact your local service center.

(1)213 RAM failure to hold
information (hash table)

The memory did not retain information written to it. Could be bad memory
chips or address logic. Contact your local service center.

(1)214 Hash table overflow The hash table was too small to hold all mnemonics. Ordinarily indicates a
failure to read (RAM or ROM) correctly. Contact your local service center.

(1)220 Parser error Generic error in the parser.
(1)221 Illegal parser call The parser was called when it should not be active.
(1)222 Unrecognized input character A character not in the valid IEEE488.2 character set was part of a command.
(1)223 Internal parser error The parser reached an unexpected internal state.
(1)230 Response formatter error Generic error in the response formatter.
(1)231 Bad response formatter call The response formatter was called when it should not be active.
(1)232 Bad response formatter call

(eom)
The response formatter was called to output an end of message, when it
should not be active.

(1)233 Invalid function code to
response formatter

The response formatter was requested to output data for an unrecognized
function.

(1)234 Invalid header type to
response formatter

The response formatter was called with bad data for the response header
(normally empty)

(1)235 Invalid data type to response
formatter

The response formatter was called with bad data for the response data.

(1)240 Unrecognized error number
in error queue

An error number was found in the error queue for which no matching error
information was found.

FCA3000, FCA3100, MCA3000 Series Programmer Manual 3-19

Status and Events

3-20 FCA3000, FCA3100, MCA3000 Series Programmer Manual

Programming Examples

Programming Examples

Introduction
The program examples in this chapter are written in standard 'C' extended with a
dedicated library for the National AT-GPIB/TNT controller board.

The programs can be run on PCs using Microsoft Windows NT and later operating
systems.

Even if you use other platforms for your applications, these examples provide a
good insight into how to program the instrument.

NOTE. To be able to run these programs without modification, the address of your
instrument must be set to 10.

Five examples are included:

Example 1: Individual Measurements

Example 2: Block Measurements

Example 3: Fast Measurements

Example 4: USB Communication

Example 5: Continuous Measurements

FCA3000, FCA3100, MCA3000 Series Programmer Manual 4-1

Programming Examples

Individual Measurements (Example #1)
This sample program takes individual measurements on the instrument. Written
for National AT-GPIB/TNT for Windows NT and later.
/*
**
Sample program to perform individual measurements on the instrument. Written
for National AT-GPIB/TNT for Windows NT and later.
**
*/
#include <windows.h>
#include <stdio.h>
#include <time.h>
#include “decl-32.h”
void ibwrite(int instrument, const char *string);
void sleep (long mswait);
void main() {
int address = 10;
int i, instrument;/* file descriptor for instrument */
char reading[50];
char buf[100];
printf (“Connecting to the instrument on address %d using National Instruments

GPIB card.\n”, address);
if ((instrument = ibdev(0, address, 0, T10s, 1, 0)) < 0) {
printf(“Could not connect to instrument”);
exit(1);

}
ibclr(instrument);
do {
ibwrite(instrument, “syst:err?”);
ibrd(instrument, buf, 100L); buf[ibcnt]=0;
printf(“Errors before start: %s\n”, buf);

} while (atoi(buf)!=0);
ibwrite(instrument, “*idn?”);
ibrd(instrument, buf, 100L); buf[ibcnt]=0;
printf(“instrument identification string: %s\n”, buf);
printf(“Setup\n”);

// Reset instrument to known state
ibwrite(instrument, “*rst;*cls”);

// Setup for pulse width measurement
ibwrite(instrument, “CONF:PWID (@1)”);

// Some settings...
ibwrite(instrument, “AVER:STAT OFF;:ACQ:APER MIN”);
ibwrite(instrument, “INP:LEV:AUTO OFF; :INP:LEV 0");
ibwrite(instrument, ”FORMAT:TINF ON;:FORMAT ASCII");

// Check that setup was OK, all commands correctly spelled etc
ibwrite(instrument, “syst:err?”);
ibrd(instrument, buf, 100L); buf[ibcnt]=0;

4-2 FCA3000, FCA3100, MCA3000 Series Programmer Manual

Programming Examples

printf(“Setup error: %s\n”, buf);
// Measure 20 samples
for (i=0; i<20; i++) {
ibwrite(instrument, “READ?”);
ibrd(instrument, reading, 49L); reading[ibcnt]=0;
printf(“Result %d:%s”, i, reading);

}
do {
ibwrite(instrument, “syst:err?”);
ibrd(instrument, buf, 100L); buf[ibcnt]=0;
printf(“End error: %s\n”, buf);

} while (atoi(buf)!=0);
ibonl(instrument, 0);

}
/********************
* Support functions *
********************/
void ibwrite(int instrument, const char *string) {
ibwrt(instrument, (char*) string, strlen(string));

}
void sleep (long mswait) {
time_t EndWait = clock() + mswait * (CLOCKS_PER_SEC/1000);
while (clock() < EndWait);

}

FCA3000, FCA3100, MCA3000 Series Programmer Manual 4-3

Programming Examples

Block Measurements (Example #2)
Sample program to perform fast measurements on the instrument using block
measurements. Written for National AT-GPIB/TNT for Windows NT and later.
/*
**
** Sample program to perform fast measurements on the instrument
** using block measurements
**
** Written for National AT-GPIB/TNT for Windows NT and later
*/
#include <windows.h>
#include <stdio.h>
#include <time.h>
#include “decl-32.h”
void ibwrite(int instrument, const char *string);
void sleep (long mswait);
time_t StartMain, Start, Stop, StopMain;
void main() {
int address = 10;
int i, j, instrument; /* file descriptor for instrument */
charbigbuf[30000], *pbuf; charbuf[100];
char Status;
printf (“Connecting to the instrument on address %d using National Instruments

GPIB card.\n”, address);
if ((instrument = ibdev(0, address, 0, T10s, 1, 0)) < 0) {
printf(“Could not connect to instrument”);
exit(1);

}
ibclr(instrument);
do {
ibwrite(instrument, “syst:err?”);
ibrd(instrument, buf, 100L); buf[ibcnt]=0;
printf(“Errors before start: %s\n”, buf);

} while (atoi(buf)!=0);
ibwrite(instrument, “*idn?”);
ibrd(instrument, buf, 100L); buf[ibcnt]=0; printf(“instrument identification

string: %s\n”, buf);
printf(“Setup\n”);

// Reset instrument to known state
ibwrite(instrument, “*rst;*cls”);

// Setup for period measurement
ibwrite(instrument, “FUNC ‘PER 1’”);

// Some settings...
ibwrite(instrument, “INP:LEV:AUTO OFF;:INP:LEV 0;COUP DC”);
ibwrite(instrument, “TRIG:COUNT 1000;:ARM:COUNT 1");

ibwrite(instrument, ”DISP:ENAB ON"); ibwrite(instrument, “FORMAT
ASCII;:FORMAT:TINF OFF”);

4-4 FCA3000, FCA3100, MCA3000 Series Programmer Manual

Programming Examples

ibwrite(instrument, “*ESE 1;*SRE 32");
// On the safe side: Check that setup was OK, all commands correctly spelled etc
ibwrite(instrument, ”syst:err?");
ibrd(instrument, buf, 100L); buf[ibcnt]=0; printf(“Setup error: %s\n”, buf);

// Measure 1000 samples
Start = clock();
ibwrite(instrument, “INIT;*OPC”);

// Wait for completion
ibwait(instrument, RQS);

/* Read status and event registers to clear them */
ibrsp(instrument, &Status);
ibwrite(instrument, “*ESR?”);
ibrd(instrument, buf, 100L);
ibwrite(instrument, “FETC:ARR? 1000");
ibrd(instrument, bigbuf, 30000L);
if (ibcnt >0) {
pbuf = bigbuf;
for (i=0; i<1000; i++) {
for (j=0; pbuf[j]!=’,’ && pbuf[j]!=’\0’; j++);
pbuf[j]=’\0’;
if (i%50 == 0) printf(”Result %d: %s\n", i, pbuf);
pbuf+=j+1;

}
}
Stop = clock();
printf (“Block measurement: %d samples/s\n”, 10000 * 1000 / (Stop - Start));
do {
ibwrite(instrument, “syst:err?”);
ibrd(instrument, buf, 100L); buf[ibcnt]=0;
printf(“End error: %s\n”, buf);

} while (atoi(buf)!=0);
ibonl(instrument, 0);

}
/********************
* Support functions *
********************/
void ibwrite(int instrument, const char *string) {
ibwrt(instrument, (char*) string, strlen(string));

}
void sleep (long mswait) {
time_t EndWait = clock() + mswait * (CLOCKS_PER_SEC/1000);
while (clock() < EndWait);

}

FCA3000, FCA3100, MCA3000 Series Programmer Manual 4-5

Programming Examples

Fast Measurements (Example #3)
Sample program to perform fast measurements on the instrument using GET,
DISP:ENAB OFF and FORMAT REAL. Written for National AT-GPIB/TNT for
Windows NT and later.
/*
**
** Sample program to perform fast measurements on the instrument
** using GET, DISP:ENAB OFF and FORMAT REAL
**
** Written for National AT-GPIB/TNT for Windows NT and later
*/
#include <windows.h>
#include <stdio.h>
#include <time.h>
#include “decl-32.h”
void ibwrite(int instrument, const char *string);
void sleep (long mswait);
time_t StartMain, Start, Stop, StopMain;
typedef union {
double d;
char c[8];

} r2d;
void main() {
int address = 10;
int i, j, instrument; /* file descriptor for instrument */
char reading[30];
char buf[100];
r2d Result;
printf (“Connecting to the instrument on address %d using National Instruments

GPIB card.\n”, address);
if ((instrument = ibdev(0, address, 0, T10s, 1, 0)) < 0) {
printf(“Could not connect to instrument”);
exit(1);

}
sleep(100);
ibclr(instrument);
sleep(100);
ibwrite(instrument, “*idn?”);
ibrd(instrument, buf, 100L); buf[ibcnt]=0;
printf(“instrument identification string: %s\n”, buf);
printf(“Setup\n”);
if ((instrument = ibdev(0, address, 0, T3s, 1, 0)) < 0) {
printf(“Could not connect to instrument”);
exit(1);

}
// Reset instrument to known state
ibwrite(instrument, “*rst;*cls”);

4-6 FCA3000, FCA3100, MCA3000 Series Programmer Manual

Programming Examples

ibwrite(instrument, “*ESE 0; *SRE 0");
// Setup for frequency measurement
ibwrite(instrument, “FUNC ‘per 1’”);

// Some settings...
ibwrite(instrument, “INP:LEV:AUTO OFF;:INP:LEV .5;:inp:coup dc”);
ibwrite(instrument, “TRIG:COUNT 1;:ARM:COUNT 1");
ibwrite(instrument, ”ACQ:APER 1e-7");
ibwrite(instrument, “DISP:ENAB OFF”);

// Disable display to get maximum speed
ibwrite(instrument, “FORMAT REAL;:FORMAT:TINF OFF”);

// Floating point output, no timestamps
ibwrite(instrument, “FORMAT:BORDER swap”);

// Intel byte order on results
ibwrite(instrument, “ARM:LAY2:SOUR BUS;:INIT:CONT ON”);

// Bus arming
sleep(100);

// On the safe side: Check that setup was OK, all commands correctly spelled etc
do {
ibwrite(instrument, “syst:err?”);
ibrd(instrument, buf, 100L); buf[ibcnt]=0;
printf(“Setup error: %s\n”, buf);

} while (atoi(buf)!=0);
printf(“Start\n”);

// Measure 1000 samples
Start = clock();
for (i=0; i<1000; i++) {
ibtrg(instrument);

// Generate GET signal
ibrd(instrument, reading, 29L);
for (j=0; j<8; j++) {
Result.c[j] = reading[3+j];

}
if (i%50 == 0) printf(“Result %d: %e\n”, i, Result.d);

}
Stop = clock();
printf (“Total time %d ms (%f samples /s)\n”, Stop- Start,

(double)1000.0/(Stop-Start)*1000);
ibwrite(instrument, “DISP:ENAB ON”);
do {
ibwrite(instrument, “syst:err?”);
ibrd(instrument, buf, 100L); buf[ibcnt]=0;
printf(“End error: %s\n”, buf);

} while (atoi(buf)!=0);
ibonl(instrument, 0);

}
/********************
* Support functions *

FCA3000, FCA3100, MCA3000 Series Programmer Manual 4-7

Programming Examples

********************/
void ibwrite(int instrument, const char *string) {
ibwrt(instrument, string, strlen(string));

}
void sleep (long mswait) {
time_t EndWait = clock() + mswait * (CLOCKS_PER_SEC/1000);
while (clock() < EndWait);

}

4-8 FCA3000, FCA3100, MCA3000 Series Programmer Manual

Programming Examples

USB Communication (Example #4)
#include “stdio.h”
#include “visa.h”
#include <time.h>
#define MAX_CNT 200
void Sleep(clock_t Wait);
int main(void) {
ViStatus Status; // For checking errors
ViUInt32 RetCount; // Return count from string I/O
ViChar Buffer[MAX_CNT]; // Buffer for string I/O
ViFindList fList;
ViChar Desc[VI_FIND_BUFLEN];
ViUInt32 numInstrs;
ViSession defaultRM, Instr;
int i = 0;

// Begin by initializing the system
Status = viOpenDefaultRM(&defaultRM);
if (Status < VI_SUCCESS) {
printf (“Failed to initialise NI-VISA system.\n”);
return -1;

}
// Look for instrument
Status = viFindRsrc(defaultRM,
“USB?*INSTR{VI_ATTR_MANF_ID==0x0699}”,
&fList, &numInstrs, Desc);

if (Status < VI_SUCCESS) {
printf (“No matching instruments found.\n”);
return -1;

}
// Open communication with GPIB Device
Status = viOpen(defaultRM, Desc, VI_NULL, VI_NULL, &Instr);
if (Status < VI_SUCCESS) {
printf (“Cannot communicate with instrument.\n”);
return -1;

}
// Set the timeout for message-based communication
Status = viSetAttribute(Instr, VI_ATTR_TMO_VALUE, 1000);

// Ask the device for identification
Status = viWrite(Instr, “*IDN?\n”, 6, &RetCount);
Status = viRead(Instr, Buffer, MAX_CNT, &RetCount);
Buffer[RetCount]=0;
printf(“%s\n”,Buffer);
Status = viWrite(Instr, “INIT:CONT OFF;:func ‘per’\n”, 25,
&RetCount);

while(i++<10){
Status = viWrite(Instr, “init;fetc?\n”, 11, &RetCount);
if (Status != VI_SUCCESS) {

FCA3000, FCA3100, MCA3000 Series Programmer Manual 4-9

Programming Examples

printf(“Write: status = %x, i = %d\n”, Status, i);
/* Close down the system */

Status = viClose(Instr);
Status = viClose(defaultRM);
return 0;

}
Sleep(200);
Status = viRead(Instr, Buffer, MAX_CNT, &RetCount);
if (Status != VI_SUCCESS) {
printf(“Read: status = %x, i = %d\n”, Status, i);

/* Close down the system */
Status = viClose(Instr);
Status = viClose(defaultRM);
return 0;

}
Buffer[RetCount]=0;
printf(“%s\n”,Buffer);
Sleep(25);

}
Status = viWrite(Instr, “syst:err?\n”, 10, &RetCount);
Sleep(25);
Status = viRead(Instr, Buffer, MAX_CNT, &RetCount);
Buffer[RetCount]=0;
printf(“%s\n”,Buffer);

/* Close down the system */
Status = viClose(Instr);
Status = viClose(defaultRM);
return 0;

}
void Sleep(clock_t Wait) {
clock_t Goal;
Goal = Wait + clock();
while(Goal > clock());

}

4-10 FCA3000, FCA3100, MCA3000 Series Programmer Manual

Programming Examples

Continuous Measurements (Example #5)
#include <windows.h>
#include <stdio.h>
#include <conio.h>
#include <stdlib.h>
#include <float.h>
#include <math.h>
#include <assert.h>
#include "visa.h"
// Write a null terminated string (ie, no binary data) to the
// instrument.
unsigned WriteDevice(ViSession Instr, const char *Str, int Line) {
ViStatus Status;
int Length;
ViUInt32 RetLength;
assert(Str != NULL);
Length = strlen(Str);
Status = viWrite(Instr, (unsigned char *)Str, Length, &RetLength);
if (Status != VI_SUCCESS) {
fprintf(stderr, "Write error: %x at line %d\n", (unsigned)Status, Line);
return((unsigned)Status);

}
assert(Length == (int)RetLength);
return((unsigned)Status);

}
// Read data (may be binary) into the buffer.
unsigned ReadDevice(ViSession Instr, char *Buf, int BufLength, ViUInt32
*pActualLength, int Line) {
ViStatus Status;
assert(Buf != NULL);
assert(BufLength > 0);
assert(pActualLength != NULL);
Status = viRead(Instr, (unsigned char *)Buf, BufLength, pActualLength);
if (Status != VI_SUCCESS) {
fprintf(stderr, "Read error: %x at line %d\n", (unsigned)Status, Line);

}
return((unsigned)Status);

}
#define WriteDev(Str) WriteDevice(Instr, Str, __LINE__)
#define ReadDev(Buf, BufLength, pActualLength) ReadDevice(Instr, Buf,
BufLength, pActualLength, __LINE__)
ViSession defaultRM, Instr;
void Quit() {
(void)viClose(Instr);
(void)viClose(defaultRM);
_exit(0);

}

FCA3000, FCA3100, MCA3000 Series Programmer Manual 4-11

Programming Examples

void QuitMsg(char *Str) {
fprintf(stderr, Str);
Quit();

}
void ReportAndQuit() {
char Buf[100];
ViUInt32 ReadLength;
int Error;

// Break the measurement.
(void)WriteDev("abort");

// Check if everything seems to have worked out OK.
printf("Error queue:\n");
do {
if (WriteDev("syst:err?") != VI_SUCCESS) {
QuitMsg("Failed to query error queue\n");

}
if (ReadDev(Buf, 100, &ReadLength) != VI_SUCCESS) {
QuitMsg("Failed to read error message\n");

}
Buf[ReadLength] = 0; // Null terminate.
if (sscanf(Buf, "%d", &Error) != 1) {
QuitMsg("Failed to scan error status number\n");

}
printf(Buf);

} while (Error != 0);
// Restore the instrument to a more front panel friendly
// state.
(void)WriteDev("syst:pres");
(void)viClose(Instr);
(void)viClose(defaultRM);
_exit(0);

}
// command line arguments
struct CmdArgs {
bool bUSB; // GPIB if false
unsigned int nAddr; // GPIB address. Not used for USB
double Pacing;
char Func[64]; // measurement function
bool bPeriod; // is Meas Func one of Period functions

// or one of Freq functions
double RefVal, Delta;// reference value and acceptable error

// (used to check meas results)
double RefFreq; // reference freq

};
// check if string is one of the given set. returns
// the number of matched string or -1 if no matches are found
inline int CheckStr(char const *s, int nSLen, char const *Set[], int nSetSize) {

4-12 FCA3000, FCA3100, MCA3000 Series Programmer Manual

Programming Examples

for (int i = 0; i < nSetSize; i++)
if (0 == strncmp(s, Set[i], nSLen) && nSLen == strlen(Set[i])) {
return i;

}
return -1;

}
// Parse command line. Format:
// <Executable> USB|GPIB[:<Address>] [<Pacing>] [<Meas Func>]
// [<RefFreq>] [<Delta>]
bool ParseCmdArgs(CmdArgs *pArgs, int argc, char* argv[]) {
static char const *StrInterfaces[] = { "USB", "GPIB" };
static char const *StrMeasFuncs[] =
{
"PER",
"PER:BTB",
"FREQ:BTB" // <-nFirstFreq
};

static int const nFirstFreq = 2;
static int const nMeasFuncs = sizeof(StrMeasFuncs) / sizeof(StrMeasFuncs[0]);
// defaults
static int const DefAddr = 10;
static double const DefPacing = 100e-6; // s
static int const DefMeasFunc = 2;
static double const DefRefFreq = 10e6; // Hz
static double const DefDelta = 10e5; // Hz
// assign some defaults
pArgs->bUSB = true;
pArgs->nAddr = DefAddr;
pArgs->Pacing = DefPacing;
strcpy(pArgs->Func, StrMeasFuncs[DefMeasFunc]);
pArgs->bPeriod = (DefMeasFunc < nFirstFreq);
pArgs->RefFreq = DefRefFreq;
pArgs->Delta = DefDelta;
// parse command line
bool bError = (argc < 2); // at least interface should be
// specified
for (int i = 1, nArg = i; ! bError && i < argc; i++, nArg++) {
char const *s = argv[i];
switch (nArg)
{
case 1: { // interface

// find ':' delimiter
int j = 0;
for (j = 0; 0 != s[j] && ':' != s[j]; j++);

// check interface and read address (if any)
int const nInterface = CheckStr(s, j, StrInterfaces, 2);
if (nInterface < 0) { bError = true; break; }

FCA3000, FCA3100, MCA3000 Series Programmer Manual 4-13

Programming Examples

pArgs->bUSB = (0 == nInterface);
sscanf(s + j, ":%d", &(pArgs->nAddr));
break;

}
case 2: { // Pacing
if (1 == sscanf(s, "%lf", &(pArgs->Pacing))) {
if (pArgs->Pacing < 50e-6) pArgs->Pacing = 50e-6;
break;

}
// this is not pacing. fallthrough to next arg

nArg++;
}
case 3: { // meas func

// copy Meas Func
int n = strlen(s);
if (n >= sizeof(pArgs->Func) / sizeof(pArgs->Func[0])) {

// func is too long
bError = true;
break;

}
strncpy(pArgs->Func, s, n);
pArgs->Func[n] = 0;

// determine if it is period (and if it is valid
// at all)

n = CheckStr(s, n, StrMeasFuncs, nMeasFuncs);
if (n >= 0) {
pArgs->bPeriod = (n < nFirstFreq);
break;

}
// not a function specification. fallthrough

nArg++;
}
case 4: { // Reference Value
if (1 != sscanf(s, "%lf", &(pArgs->RefFreq))) {
bError = true;

}

break;
}
case 5: { // Delta
if (1 != sscanf(s, "%lf", &(pArgs->Delta))) {

bError = true;

}
break;

}
default: {

4-14 FCA3000, FCA3100, MCA3000 Series Programmer Manual

Programming Examples

bError = true;
}

}
// show the usage string in a case of error
if (bError) {
fprintf(stderr, "Usage:\n"
"%s USB|GPIB[:<Address>] [<Pacing>] [<Meas Func>] [<Ref Freq>]

[<Delta>]\n\n"
"Parameters description:\n"
" USB|GPIB - selects particular bus interface,\n"
" <Address> - (optional) instrument GPIB address\n"
" (%d if omitted)\n"
" <Pacing> - (optional) pacing time between measurements\n"
" (%lg s if omitted)\n"
" <Meas Func> - (optional) meas func to be used. Possible values:\n",

argv[0], DefAddr, DefPacing);
for (int i = 0; i < nMeasFuncs; i++) {
fprintf(stderr,
" %s\n",
StrMeasFuncs[i]);

fprintf(stderr,
" (%s if omitted)\n",
StrMeasFuncs[DefMeasFunc]);

fprintf(stderr,
" <Ref Freq> - (optional) frequency to be measured\n"
" (%lg Hz if omitted)\n"
" <Delta> - (optional) acceptable frequency error\n"
" (%lg Hz if omitted)\n",
DefRefFreq, DefDelta);

return false;
}

// convert RefVal and Delta for Period
pArgs->RefVal = pArgs->RefFreq;
if (pArgs->bPeriod) {
pArgs->RefVal = 1 / pArgs->RefVal;
pArgs->Delta *= pArgs->RefVal * pArgs->RefVal;

}
return true;

}
}
// check that measurement is correct
inline bool CheckMeas(double Val, CmdArgs const &Args) {
return (_isnan(Val) ||
Val < Args.RefVal - Args.Delta || Val > Args.RefVal + Args.Delta);

}
// check for buttonpress and exit if any
inline void CheckUserCancel() {

FCA3000, FCA3100, MCA3000 Series Programmer Manual 4-15

Programming Examples

if (kbhit()) {
if (0 == getch()) getch();
QuitMsg("\nCancelled by the user...\n");

}
}
// Create a buffer that should fit 10000 samples in FORMat
// PACKed.
#define BUFSIZE 170000
char Buffer[BUFSIZE];
int main(int argc, char* argv[]) {
ViStatus Status;
ViUInt32 ReadLength;
ViFindList fList;
ViChar Desc[VI_FIND_BUFLEN];
ViUInt32 numInstrs;
double Val;
bool Failed;
int Samples, Digits, i;
__int64 TSVal, PrevTSVal, Count;
char *pBuf, Command[200];

// Begin by initializing the system
Status = viOpenDefaultRM(&defaultRM);
if (Status != VI_SUCCESS) {
fprintf(stderr, "Initialization failed\n");
return -1;

}
// Parse cmdline
CmdArgs Args;
if (! ParseCmdArgs(&Args, argc, argv)) {
viClose(defaultRM);
return -1;

}
// Find the instrument
if (Args.bUSB) {

// Look on USB/GPIB for counter model FCA3020
// code 0x3020.
// For this sample program we'll just pick the first
// found, if any.

sprintf(Command, "USB?*INSTR{VI_ATTR_MANF_ID==0x0699 &&
VI_ATTR_MODEL_CODE==0x3020}");
}
else { // GPIB
sprintf(Command, "GPIB::%d::INSTR", Args.nAddr);

}
Status = viFindRsrc(defaultRM, Command, &fList, &numInstrs, Desc);
if (Status != VI_SUCCESS) {
fprintf(stderr, "Did not find instrument\n");

4-16 FCA3000, FCA3100, MCA3000 Series Programmer Manual

Programming Examples

viClose(defaultRM);
return(-1);

}
// Open communication with the device.
if (viOpen(defaultRM, Desc, VI_NULL, VI_NULL, &Instr) != VI_SUCCESS)

{
QuitMsg("Could not open connection to the instrument\n");

}
// Set short timeout for message-based communication (1 s)
if (viSetAttribute(Instr, VI_ATTR_TMO_VALUE, 1000) != VI_SUCCESS){
QuitMsg("Failed to set timeout\n");

}
// Clear the instrument
if (viClear(Instr) != VI_SUCCESS) {
QuitMsg("Could not clear the instrument\n");

}
// Check IDN.
if (WriteDev("*idn?") != VI_SUCCESS) Quit();
if (ReadDev(Buffer, BUFSIZE, &ReadLength) != VI_SUCCESS) Quit();
Buffer[ReadLength] = 0; // Null terminate.
printf("%s\n", Buffer);

// Initialize the instrument.
printf("Testing %s with pacing: %g\n", Args.Func, Args.Pacing);
printf("Push any button to cancel.\n");
fflush(stdout);
if (WriteDev("*cls;*rst") != VI_SUCCESS) Quit();
if (WriteDev("*ese 0;*sre 0") != VI_SUCCESS) Quit();

// Set Meas Func
sprintf(Command, "CONF:%s", Args.Func);
if (WriteDev(Command) != VI_SUCCESS) Quit();

// Do a measurement to check if all is set up OK.
if (WriteDev("inp:lev:auto off;:inp:lev 0;:form:bord swap") != VI_SUCCESS)

Quit();
if (WriteDev("form asc;:form:tinf on") != VI_SUCCESS) Quit();
if (WriteDev("read?") != VI_SUCCESS) Quit();
if (ReadDev(Buffer, BUFSIZE, &ReadLength) != VI_SUCCESS) Quit();
Buffer[ReadLength] = 0; // Null terminate.
if (sscanf(Buffer, "%lf", &Val) != 1) {
QuitMsg("Failed to scan test measurement\n");

}
if (CheckMeas(Val, Args)) {
fprintf(stderr, "Bad result: %s = %g %s\n", Args.Func, Val, (Args.bPeriod ?

"s" : "Hz"));
sprintf(Command, "Connect a %lg Hz signal to A and try again\n",

Args.RefFreq);
QuitMsg(Command);

}

FCA3000, FCA3100, MCA3000 Series Programmer Manual 4-17

Programming Examples

// Set the timeout for message-based communication (10 s)
if (viSetAttribute(Instr, VI_ATTR_TMO_VALUE, 10000) != VI_SUCCESS) {
QuitMsg("Failed to set timeout\n");

}
// Set up for "infinite" number of measurements
printf("\n");
sprintf(Command, "trig:coun 1;:arm:coun inf");
if (WriteDev(Command) != VI_SUCCESS) Quit();

// set pacing. note: for freq:btb meas time is actual pacing
if (Args.bPeriod) {
sprintf(Command, "trig:sour tim;:trig:tim %lg", Args.Pacing);

}
else {
sprintf(Command, "sens:acq:aper %lg", Args.Pacing);

}
if (WriteDev(Command) != VI_SUCCESS) Quit();

// FORMat PACKed is the recommended format for maximum fetch
// speed and for best timestamp resolution.
sprintf(Command, "form pack;:form:tinf on;:disp:enab off");
if (WriteDev(Command) != VI_SUCCESS) Quit();
PrevTSVal = 0;
Failed = false;
Sleep(500);

// Start the measurement.
if (WriteDev("init") != VI_SUCCESS) Quit();

// Fetch the measurement results as it goes.
Count = 0;
while (true) {
CheckUserCancel();

// The 'max' parameter means fetch as many samples as is
// currently available for fetching (but no more than
// the upper limit, which by default is 10000).

if (WriteDev("fetc:arr? max") != VI_SUCCESS) Quit();
if (ReadDev(Buffer, BUFSIZE, &ReadLength) != VI_SUCCESS) Quit();
Buffer[ReadLength] = 0; // Null terminate.
pBuf = Buffer;

// Check for fetc:arr? max 'no data' marker.
char *p = pBuf;
if (*p++ == '#' && *p++ == '1' && *p == '0') {

// There is no data available at the moment. Wait a
// bit with the next fetch attempt in order to avoid
// swamping the instrument with useless operations
// which could actually starve the measurement
// handling in the instrument.

Sleep(20);
continue;

}

4-18 FCA3000, FCA3100, MCA3000 Series Programmer Manual

Programming Examples

// Scan FORMat PACKed header.
if (*pBuf++ != '#') {
printf("Failed to scan packed header start\n");
WriteDev("abort");
Quit();

}
Digits = *pBuf++ - '0';
if (Digits < 1 || Digits > 9) {
printf("Failed to scan packed header size\n");
WriteDev("abort");
Quit();

}
int Size = 0;
for (i=0; i<Digits; i++) {
Size = 10 * Size + (int)(*pBuf++ - '0');

}
// With format packed and format:tinf on each sample is
// a double format measurement value and a 64 bit
// integer timestamp (in ps), for a total of
// 16 bytes / sample.

Samples = Size / 16;
for (i=0; i<Samples; i++) {
Val = *((double*)pBuf);
pBuf += 8;
if (i == 0 && _isnan(Val)) {

// Invalid value response.
printf("The instrument is apparently no longer measuring.\n");
Failed = true;
break;

}
TSVal = *((__int64*)pBuf);
pBuf += 8;

// Do something with the fetched result. For this
// test just check that the measurement result seems
// reasonable and that the timestamps increase as
// they should.

if (CheckMeas(Val, Args)) {
printf("Bad result of measurement %lf: %g %s\n", (double)Count, Val,

(Args.bPeriod ? "s" : "Hz"));
// Check that the timestamps keep increasing during
// the test run.

if (TSVal <= PrevTSVal) {
printf("Invalid timestamp, sample %lf, prev = %lf, Cur = %lf\n",
(double)Count, (double)PrevTSVal * 1e-12,
(double)TSVal * 1e-12);

}
// Check for gaps in the measurement data. This will

FCA3000, FCA3100, MCA3000 Series Programmer Manual 4-19

Programming Examples

// happen if we try to measure faster than we can
// keep up with fetching.

if (Count != 0 &&
fabs((double)(TSVal - PrevTSVal) * 1e-12 - Args.Pacing) >
1.5 * Args.Pacing) {
printf("Gap: %lf -> %lf\n",
(double)PrevTSVal * 1e-12,
(double)TSVal * 1e-12);

}
PrevTSVal = TSVal;
Count++;

// Display some progress.
if (Count % 10000 == 0) {
printf("Sample %.0lf, value %.8le, timestamp %lf\n",
(double)Count, Val, (double)TSVal * 1e-12);
}

}
if (Failed) {
break;

}
}
ReportAndQuit();
return(0);

}
}

4-20 FCA3000, FCA3100, MCA3000 Series Programmer Manual

Appendices

Appendix A: Character Set

FCA3000, FCA3100, MCA3000 Series Programmer Manual A-1

Appendix A: Character Set

A-2 FCA3000, FCA3100, MCA3000 Series Programmer Manual

Appendix B: Default Command Settings
Command Default setting
ARM:SLOPe POS
ARM:SOURce IMM
CALCulate:STATe OFF
CALibration:INTerpolator:AUTO ON
FORMat:BORDer NORMal
INPut{[1]|2}:LEVel:RELative Depending on function
FREQuency:BURSt:PREScaler[:STATe] ON
FREQuency:BURSt:APERture 200 μs
FREQuency:BURSt:SYNC:PERiod 400 μs
FREQuency:BURSt:STARt:DELay 200 μs
HF:ACQuisition[:STATe] ON
HF:FREQuency:CENTer 300 MHz
TIError:FREQuency:AUTO OFF
SYSTem:TOUT:AUTO OFF.
TRIGger:SOURce IMM
TRIGger:TIMer 20 ms
*DDT #215ARM:LAY2;:FETC? in native mode and

#14INIT in compatible mode
ARM:DELay 0
ARM:STOP:SLOPe POS
ARM:STOP:SOURce IMM
ARM:STOP:TIMer 0
CALCulate:AVERage:COUNt 100
CALCulate:AVERage:STATe OFF
CALCulate:AVERage:TYPE MEAN
CALCulate:DATA? Event, no * RSTcondition.
CALCulate:IMMediate Event, no * RSTcondition.
CALCulate:LIMit OFF
CALCulate:LIMit:CLEar:AUTO OFF
CALCulate:LIMit:LOWer 0
CALCulate:LIMit:LOWer:STATe 0
CALCulate:LIMit:UPPer 0
CALCulate:LIMit:UPPer:STATe 0
CALCulate:MATH K=1, L=0, M=1 (No calculation)
CALCulate:MATH:STATe OFF
CONFigure:TOTalize[:CONTinuous] (@1),(@2)

FCA3000, FCA3100, MCA3000 Series Programmer Manual B-1

Appendix B: Default Command Settings

Command Default setting
DISPlay:ENABle ON
FORMat ASCII
FORMat:SMAX Not affected
INITiate:CONTinuous OFF
INPut{[1]|2}:COUPling Input A (1): AC
INPut{[1]|2}:COUPling Input B (2): AC
INPut{[1]|2}:FILTer OFF
INPut{[1]|2}:FILTer:DIGital OFF
INPut{[1]|2}:FILTer:DIGital:FREQuency 100 kHz
INPut{[1]|2}:IMPedance 1 MΩ
INPut{[1]|2}:LEVel 0 (but controlled by Autotrigger since AUTO

is on after * RST)
INPut{[1]|2}:SLOPe POS
ACQuisition:APERture 10 ms after *RST
ACQuisition:HOFF OFF
ACQuisition:HOFF:TIME 200 μs
FREQuency:POWer:UNIT DBM
FREQuency:RANGe:LOWer 100 (Hz)
FUNCtion FREQuency_1
FREQuency:REGRession AUTO
ROSCillator:SOURce AUTO
TOTalize:GATE OFF
SYSTem:TOUT 0
SYSTem:TOUT:TIME 0.1 s
TEST:SELect ALL
TRIGger:COUNt 1

B-2 FCA3000, FCA3100, MCA3000 Series Programmer Manual

Appendix C: Instrument Settings After *RST
PARAMETER VALUE/ SETTING
Inputs A & B
Trigger Level AUTO
Impedance 1M Ω
Manual Attenuator 1X
Coupling AC
Trigger Slope POS
Filter OFF
Arming
Start OFF
Start Slope POS
Start Arm Delay 0
Stop OFF
Stop Slope POS
Source IMM
Hold-Off
Hold-Off State OFF
Hold-Off Time 200 μs
Time-Out
Time-Out State OFF
Time-Out Time 100 ms
Statistics
Statistics State OFF
number of Samples 100
number of Bins 20
Pacing State OFF
Pacing Time 20 ms
Mathematics
Mathematics State OFF
Constants K=M=1, L=0
Limits
Limit State OFF
Limit Mode RANGE
Lower Limit 0
Upper Limit 0
Burst
Sync Delay 400 μs

FCA3000, FCA3100, MCA3000 Series Programmer Manual C-1

Appendix C: Instrument Settings After *RST

PARAMETER VALUE/ SETTING
Start Delay 200 μs
Meas. Time 200 μs
Freq. Limit 300 MHz
Miscellaneous
Function FREQ A
Smart Frequency AUTO
Smart Time Interval OFF
Meas. Time 10 ms
Memory Protection (Memory 1 to 10) Not changed by *RST
Auto Trig Low Freq Lim 100 Hz
Timebase Reference AUTO
Arm-Trig State IDLE (equivalent to sending :INIT:CONT

OFF)

C-2 FCA3000, FCA3100, MCA3000 Series Programmer Manual

Appendix D: Reserved Words

*CLS
*DDT
*DMC
*EMC
*ESE
*ESR
*GMC
*IDN
*LMC
*LRN
*OPC
*OPT
*PMC
*PSC
*PUD
*RCL
*RMC
*RST
*SAV
*SRE
*STB
*TRG
*TST
*WAI
ABORt
AC
ACQuisition
ADDRess
ADEViation
ADIVB
ALARm
ALL
AMINUSB
APERture
APLUSB
ARM
ARRay
ASCII
ATTenuation
AUTO
AVERage
BORDer
BTBack
BURSt
BUS
Blockdata
Boolean
CALCulate
CALibration
CENTer

CLEar
COMMunicate
COMPatible
CONDition
CONFigure
CONTinuous
COUNt
COUPling
CURRent
DATA
DBM
DC
DCYCle
DELay
DELete
DIGital
DISPlay
DREGister0
ENABle
ERRor
EXT
EXTernal1
EXTernal2
EXTernal4
FAIL
FALL
FCOunt
FETCh
FILTer
FORMat
FREE
FREQuency
FTIM
FUNCtion
GATE
GPIB
HCOPy
HF
HOFF
IMMediate
IMPedance
INFinity
INITiate
INPut
INSTRument
INT
INTerpolator
INVerted
LANGuage
LAYer2

LEVel
LIMit
LOCK
LOGic
LOWer
MACRo
MATH
MAX
MAXimum
MEAN
MEASure
MEMory
MIN
MINNumericvalue
MINimum
N
NAME
NATive
NCYCles
NDUTycycle
NEG
NEGative
NORMal
NSLEwrate
NSTates
NWIDth
OFF
ON
ONCE
OPERation
OUTPut
PACKed
PCOunt
PDUTycycle
PERiod
PHASe
POLarity
POS
POSitive
POWer
PREScaler
PRESet
PRF
PSLEwrate
PTPeak
PULSe
PWIDth
QUEStionable
RAM
RANGe

RATio
READ
REAL
RECord
REGRession
RELative
RISE
ROM
ROSCillator
RTIM
SAVE
SCALar
SDEViation
SDUMp
SELect
SET
SETTings
SLOPe
SMAX
SOURce
STARt
STATe
STATus
STOP
STSTamp
SWAPped
SYNC
SYSTem
TALKonly
TBASe
TEMPerature
TEST
TIError
TIME
TIMer
TINFormation
TINTerval
TOTalize
TOUT
TRIGger
TSTAmp
TYPE
UNIT
UNPRotect
UPPer
VOLT
W
WIDTh

FCA3000, FCA3100, MCA3000 Series Programmer Manual D-1

Appendix D: Reserved Words

D-2 FCA3000, FCA3100, MCA3000 Series Programmer Manual

Index

A
Abbreviating commands, 2-3
ABORt, 2-29
ACQuisition:APERture, 2-29
ACQuisition:HOFF, 2-29
ACQuisition:HOFF:TIME, 2-30
ARM:COUNt, 2-30
ARM:DELay, 2-31
ARM:LAYer2, 2-31
ARM:LAYer2:SOURce, 2-32
ARM:SLOPe, 2-32
ARM:SOURce, 2-32
ARM:STOP:SLOPe, 2-33
ARM:STOP:SOURce, 2-33
ARM:STOP:TIMer, 2-34
AUTO, 2-35

C
CALCulate:AVERage:ALL?, 2-35
CALCulate:AVERage:COUNt, 2-35
CALCulate:AVERage:COUNt:CURRent?, 2-36
CALCulate:AVERage:STATe, 2-36
CALCulate:AVERage:TYPE, 2-37
CALCulate:DATA?, 2-37
CALCulate:IMMediate, 2-38
CALCulate:LIMit, 2-39
CALCulate:LIMit:CLEar, 2-39
CALCulate:LIMit:CLEar:AUTO, 2-40
CALCulate:LIMit:FAIL?, 2-40
CALCulate:LIMit:FCOunt:LOWer?, 2-41
CALCulate:LIMit:FCOunt:UPPer?, 2-41
CALCulate:LIMit:FCOunt?, 2-40
CALCulate:LIMit:LOWer, 2-42
CALCulate:LIMit:LOWer:STATe, 2-42
CALCulate:LIMit:PCOunt?, 2-42
CALCulate:LIMit:UPPer, 2-43
CALCulate:LIMit:UPPer:STATe, 2-43
CALCulate:MATH, 2-43
CALCulate:MATH:STATe, 2-44
CALCulate:STATe, 2-45
CALCulate:TOTalize:TYPE, 2-45
CALibration:INTerpolator:AUTO, 2-46
*CLS, 2-46

Command short form, 2-3
CONFigure:<MeasuringFunction>, 2-48
CONFigure:ARRay:<MeasuringFunction>, 2-47
CONFigure:TOTalize[:CONTinuous], 2-50

D
*DDT, 2-51
DISPlay:ENABle, 2-51
*DMC, 2-52

E
*EMC, 2-52
*ESE, 2-53
*ESR?, 2-54

F
FETCh:ARRay?, 2-54
FETCh[:SCALar]?, 2-55
FORMat, 2-56
FORMat:BORDer, 2-56
FORMat:SMAX, 2-57
FORMat:TINFormation, 2-57
FREQuency:BURSt:APERture, 2-58
FREQuency:BURSt:PREScaler[:STATe], 2-58
FREQuency:BURSt:STARt:DELay, 2-58
FREQuency:BURSt:SYNC:PERiod, 2-59
FREQuency:POWer:UNIT, 2-59
FREQuency:RANGe:LOWer, 2-60
FREQuency:REGRession, 2-60
FUNCtion, 2-61

G
*GMC?, 2-62

H
HCOPy:SDUMp:DATA?, 2-63
HF:ACQuisition[:STATe], 2-63
HF:FREQuency:CENTer, 2-64

I
*IDN?, 1-1

FCA3000, FCA3100, MCA3000 Series Programmer Manual Index-1

Index

INITiate, 2-64
INITiate:CONTinuous, 2-65
INPut{[1]|2}:ATTenuation, 2-65
INPut{[1]|2}:COUPling, 2-66
INPut{[1]|2}:FILTer, 2-66
INPut{[1]|2}:FILTer:DIGital, 2-66
INPut{[1]|2}:FILTer:DIGital:FREQuency, 2-67
INPut{[1]|2}:IMPedance, 2-67
INPut{[1]|2}:LEVel, 2-68
INPut{[1]|2}:LEVel:AUTO, 2-69
INPut{[1]|2}:LEVel:RELative, 2-69
INPut{[1]|2}:SLOPe, 2-70

L
*LMC?, 2-71
*LRN?, 2-71

M
MEASure:<MeasuringFunction>?, 2-79
MEASure:ARRay:<MeasuringFunction>?, 2-72
MEASure:ARRay:FREQuency:BTBack?, 2-71
MEASure:ARRay:PERiod:BTBack?, 2-73
MEASure:ARRay:STSTamp?, 2-74
MEASure:ARRay:TIError?, 2-75
MEASure:ARRay:TSTAmp?, 2-75
MEASure:FREQuency:BURSt?, 2-77
MEASure:FREQuency:POWer[:AC]?, 2-78
MEASure:FREQuency:PRF?, 2-78
MEASure:FREQuency:RATio?, 2-79
MEASure:FREQuency?, 2-76
MEASure:MEMory?, 2-81
MEASure:MEMory<N>?, 2-81
MEASure:NDUTycycle?, 2-82
MEASure:NWIDth?, 2-82
MEASure:PERiod:AVERage?, 2-84
MEASure:PERiod?, 2-83
MEASure:PHASe?, 2-84
MEASure:PWIDth?, 2-85
MEASure:TINTerval?, 2-86
MEASure{:FALL:TIME|:FTIM}?, 2-76
MEASure{:PDUTycycle|:DCYCle}?, 2-83
MEASure{:RISE:TIME|:RTIM}?, 2-85
MEASure[:VOLT]:MAXimum?, 2-86
MEASure[:VOLT]:MINimum?, 2-86
MEASure[:VOLT]:NCYCles?, 2-87
MEASure[:VOLT]:NSLEwrate?, 2-87

MEASure[:VOLT]:PSLEwrate?, 2-87
MEASure[:VOLT]:PTPeak?, 2-88
MEASure[:VOLT]:RATio?, 2-88
MEMory:DATA:RECord:COUNt?, 2-88
MEMory:DATA:RECord:DELete, 2-89
MEMory:DATA:RECord:FETCh:ARRay?, 2-89
MEMory:DATA:RECord:FETCh:STARt, 2-89
MEMory:DATA:RECord:FETCh?, 2-89
MEMory:DATA:RECord:NAME?, 2-90
MEMory:DATA:RECord:SAVE, 2-90
MEMory:DATA:RECord:SETTings?, 2-90
MEMory:DELete:MACRo, 2-91
MEMory:FREE:MACRo?, 2-91
MEMory:NSTates?, 2-91
MSS bit, 3-2

O
*OPC, 2-92
*OPT?, 2-92
OUTPut:POLarity, 2-93
OUTPut:TYPE, 2-93

P
*PMC, 2-94
*PSC, 2-94
*PUD, 2-95

R
*RCL, 2-96
READ:ARRay?, 2-97
READ?, 2-96
*RMC, 2-97
ROSCillator:SOURce, 2-98
RQS bit, 3-2
*RST, 2-98

S
*SAV, 2-99
SOURce:PULSe:PERiod, 2-99
SOURce:PULSe:WIDTh, 2-99
*SRE, 2-100
STATus:DREGister0:ENABle, 2-101
STATus:DREGister0?, 2-101
STATus:OPERation:CONDition?, 2-102
STATus:OPERation:ENABle, 2-103

Index-2 FCA3000, FCA3100, MCA3000 Series Programmer Manual

Index

STATus:OPERation?, 2-102
STATus:PRESet, 2-104
STATus:QUEStionable:CONDition?, 2-105
STATus:QUEStionable:ENABle, 2-106
STATus:QUEStionable?, 2-105
*STB?, 2-107
SYSTem:COMMunicate:GPIB:ADDRess, 2-108
SYSTem:ERRor?, 2-109
SYSTem:LANGuage, 2-109
SYSTem:PRESet, 2-109
SYSTem:SET, 2-110
SYSTem:TALKonly, 2-110
SYSTem:TEMPerature?, 2-111
SYSTem:TOUT, 2-111
SYSTem:TOUT:AUTO, 2-112
SYSTem:TOUT:TIME, 2-112
SYSTem:UNPRotect, 2-113

T
TEST:SELect, 2-113
TIError:FREQuency, 2-114
TIError:FREQuency:AUTO, 2-114
TINTerval:AUTO, 2-115
TOTalize:GATE, 2-115
*TRG, 2-116
TRIGger:COUNt, 2-116
TRIGger:SOURce, 2-117
TRIGger:TIMer, 2-117
Truncating commands, 2-3
*TST?, 2-118

W
*WAI, 2-118

FCA3000, FCA3100, MCA3000 Series Programmer Manual Index-3

	FCA3000, FCA3100, MCA3000 Series Timer/Counter/Analyzers Programmer Manual
	Table of Contents
	Preface
	Getting Started
	Setting Up the Instrument
	Interface Functions
	Using the USB Interface

	Syntax and Commands
	Command Syntax
	Command and Query Structure
	Clearing the Instrument
	Command Entry
	Argument Types
	Macros

	Command Groups
	Arming Subsystem
	Calculate Subsystem
	Calibration Subsystem
	Configure Function
	Display Subsystem
	Fetch Function
	Format Subsystem
	Hard Copy
	Initiate Subsystem
	Input Subsystem
	Measurement Subsystem
	Memory Subsystem
	Output Subsystem
	Read Function
	Sense Command Subsystem
	Status Subsystem
	System Subsystem
	Test Subsystem
	Trigger Subsystem
	Common Commands

	Command Descriptions
	ABORt (No Query Form)
	ACQuisition:APERture
	ACQuisition:HOFF
	ACQuisition:HOFF:TIME
	ARM:COUNt
	ARM:DELay
	ARM:LAYer2 (No Query Form)
	ARM:LAYer2:SOURce
	ARM:SLOPe
	ARM:SOURce
	ARM:STOP:SLOPe
	ARM:STOP:SOURce
	ARM:STOP:TIMer
	AUTO (No Query Form)
	CALCulate:AVERage:ALL? (Query Only)
	CALCulate:AVERage:COUNt
	CALCulate:AVERage:COUNt:CURRent? (Query Only)
	CALCulate:AVERage:STATe
	CALCulate:AVERage:TYPE
	CALCulate:DATA? (Query Only)
	CALCulate:IMMediate
	CALCulate:LIMit
	CALCulate:LIMit:CLEar (No Query Form)
	CALCulate:LIMit:CLEar:AUTO
	CALCulate:LIMit:FAIL? (Query Only)
	CALCulate:LIMit:FCOunt? (Query Only)
	CALCulate:LIMit:FCOunt:LOWer? (Query Only)
	CALCulate:LIMit:FCOunt:UPPer? (Query Only)
	CALCulate:LIMit:LOWer
	CALCulate:LIMit:LOWer:STATe
	CALCulate:LIMit:PCOunt?
	CALCulate:LIMit:UPPer
	CALCulate:LIMit:UPPer:STATe
	CALCulate:MATH
	CALCulate:MATH:STATe
	CALCulate:STATe
	CALCulate:TOTalize:TYPE
	CALibration:INTerpolator:AUTO
	*CLS (No Query Form)
	CONFigure:ARRay:<MeasuringFunction>
	CONFigure:<MeasuringFunction>
	CONFigure:TOTalize[:CONTinuous]
	*DDT
	DISPlay:ENABle
	*DMC
	*EMC
	*ESE (No Query Form)
	*ESR?
	FETCh:ARRay? (Query Only)
	FETCh[:SCALar]? (Query Only)
	FORMat
	FORMat:BORDer
	FORMat:SMAX
	FORMat:TINFormation
	FREQuency:BURSt:APERture
	FREQuency:BURSt:PREScaler[:STATe]
	FREQuency:BURSt:STARt:DELay
	FREQuency:BURSt:SYNC:PERiod
	FREQuency:POWer:UNIT
	FREQuency:RANGe:LOWer
	FREQuency:REGRession
	FUNCtion
	*% GMC? (Query Only)
	HCOPy:SDUMp:DATA? (Query Only)
	HF:ACQuisition[:STATe]
	HF:FREQuency:CENTer
	*IDN? (Query Only)
	INITiate (No Query Form)
	INITiate:CONTinuous
	INPut{[1]|2}:ATTenuation
	INPut{[1]|2}:COUPling
	INPut{[1]|2}:FILTer
	INPut{[1]|2}:FILTer:DIGital
	INPut{[1]|2}:FILTer:DIGital:FREQuency
	INPut{[1]|2}:IMPedance
	INPut{[1]|2}:LEVel
	INPut{[1]|2}:LEVel:AUTO
	INPut{[1]|2}:LEVel:RELative
	INPut{[1]|2}:SLOPe
	*LMC? (Query Only)
	*LRN?
	MEASure:ARRay:FREQuency:BTBack? (Query Only)
	MEASure:ARRay:<MeasuringFunction>? (Query Only)
	MEASure:ARRay:PERiod:BTBack? (Query Only)
	MEASure:ARRay:STSTamp? (Query Only)
	MEASure:ARRay:TIError? (Query Only)
	MEASure:ARRay:TSTAmp? (Query Only)
	MEASure{:FALL:TIME|:FTIM}? (Query Only)
	MEASure:FREQuency? (Query Only)
	MEASure:FREQuency:BURSt? (Query Only)
	MEASure:FREQuency:POWer[:AC]? (Query Only)
	MEASure:FREQuency:PRF? (Query Only)
	MEASure:FREQuency:RATio? (Query Only)
	MEASure:<MeasuringFunction>? (Query Only)
	MEASure:MEMory? (Query Only)
	MEASure:MEMory<N>? (Query Only)
	MEASure:NDUTycycle? (Query Only)
	MEASure:NWIDth? (Query Only)
	MEASure{:PDUTycycle|:DCYCle}? (Query Only)
	MEASure:PERiod? (Query Only)
	MEASure:PERiod:AVERage? (Query Only)
	MEASure:PHASe? (Query Only)
	MEASure:PWIDth? (Query Only)
	MEASure{:RISE:TIME|:RTIM}? (Query Only)
	MEASure:TINTerval? (Query Only)
	MEASure[:VOLT]:MAXimum? (Query Only)
	MEASure[:VOLT]:MINimum? (Query Only)
	MEASure[:VOLT]:NCYCles? (Query Only)
	MEASure[:VOLT]:NSLEwrate? (Query Only)
	MEASure[:VOLT]:PSLEwrate? (Query Only)
	MEASure[:VOLT]:PTPeak? (Query Only)
	MEASure[:VOLT]:RATio? (Query Only)
	MEMory:DATA:RECord:COUNt? (Query Only)
	MEMory:DATA:RECord:DELete (No Query Form)
	MEMory:DATA:RECord:FETCh? (Query Only)
	MEMory:DATA:RECord:FETCh:ARRay? (Query Only)
	MEMory:DATA:RECord:FETCh:STARt (No Query Form)
	MEMory:DATA:RECord:NAME? (Query Only)
	MEMory:DATA:RECord:SAVE (No Query Form)
	MEMory:DATA:RECord:SETTings? (Query Only)
	MEMory:DELete:MACRo (No Query Form)
	MEMory:FREE:MACRo? (Query Only)
	MEMory:NSTates? (Query Only)
	*OPC
	*OPT? (Query Only)
	OUTPut:POLarity
	OUTPut:TYPE
	*PMC (No Query Form)
	*PSC
	*PUD
	*RCL (No Query Form)
	READ? (Query Only)
	READ:ARRay? (Query Only)
	*RMC (No Query Form)
	ROSCillator:SOURce
	*RST (No Query Form)
	*SAV (No Query Form)
	SOURce:PULSe:PERiod
	SOURce:PULSe:WIDTh
	*SRE
	STATus:DREGister0? (Query Only)
	STATus:DREGister0:ENABle
	STATus:OPERation? (Query Only)
	STATus:OPERation:CONDition? (Query Only)
	STATus:OPERation:ENABle
	STATus:PRESet (No Query Form)
	STATus:QUEStionable? (Query Only)
	STATus:QUEStionable:CONDition? (Query Only)
	STATus:QUEStionable:ENABle (No Query Form)
	*STB? (Query Only)
	SYSTem:COMMunicate:GPIB:ADDRess
	SYSTem:ERRor? (Query Only)
	SYSTem:LANGuage
	SYSTem:PRESet (No Query Form)
	SYSTem:SET
	SYSTem:TALKonly (No Query Form)
	SYSTem:TEMPerature? (Query Only)
	SYSTem:TOUT
	SYSTem:TOUT:AUTO
	SYSTem:TOUT:TIME
	SYSTem:UNPRotect (No Query Form)
	TEST:SELect
	TIError:FREQuency
	TIError:FREQuency:AUTO
	TINTerval:AUTO
	TOTalize:GATE
	*TRG (No Query Form)
	TRIGger:COUNt
	TRIGger:SOURce
	TRIGger:TIMer
	*TST? (Query Only)
	*WAI (No Query Form)

	Status and Events
	Status and Events
	Registers
	Queues
	Event Handling Sequence
	Synchronization Methods
	Error Messages

	Programming Examples
	Programming Examples
	Introduction
	Individual Measurements (Example #1)
	Block Measurements (Example #2)
	Fast Measurements (Example #3)
	USB Communication (Example #4)
	Continuous Measurements (Example #5)

	Appendices
	Appendix A: Character Set
	Appendix B: Default Command Settings
	Appendix C: Instrument Settings After *RST
	Appendix D: Reserved Words

	Index

