
DAS-4

Keithley MetraByte Corporation

DAS-4

Part Number: 24888

Revision A

Last Edit: July, 1987

Copyright @ 1987

KEITHLEY METRABrrUASYSTlDAC

440 Myles Standish Boulevard
Taunton, Massachusetts 02780

Telephone 5081880-3000
FAX 508/880-0179

WARRANTY INFORMATION

All products manufactured by Keithley MetraByte are warranted against defective materials
and worksmanship for a period of one year h m the date of delivery to the ongind
purchaser. Any product that is found to be defective within the warran@ period will, at t he
option of Keithley MetrdByt'e, be repaired or replaced. This warran@ does not apply to
products damaged by improper use.

New Contact Information

Keithley Instruments, Inc.
28775 Aurora Road

Cleveland, OH 44139

Technical Support: 1-888-KEITHLEY
Monday – Friday 8:00 a.m. to 5:00 p.m (EST)

Fax: (440) 248-6168

Visit our website at http://www.keithley.com

Table of Contents

. . .

.

....

.

.

...

Section 1 INTRODUCTION 1- 1
1.1 SUMMARY OF DAS-4 FUNCTIONS 1-1

Section 2 INSTALLATION 2- 1
2.1 BACKING UP THE DISK 2-1
2.2 HARDWARE INSTALLATION 2-1 .

Section 3 PROG€L"G 3- 1
3.1 PROGRAMMING DAS-4 3-1

3.1.1 I/O ADDRESS MAP OF DAS-4 3-2
3.1.2 STARTING THE A/D CONVERTER 3-2
3.1.3 READING THE A/D DATA 3-3
3.1.4 THE DAS-4 STATUS REGISTER 3-3
3.1.5 THE DAS-4 CONTROL REGISTER 3-4
3.1.6 SOME BASIC PROGRAMMING TIPS 3-5

3.2 LOADING THE MACHINE LANGUAGE CALL ROUTINE
"DAS4.BIN" .. 3-6
3.3 FORMAT OF THE CALL STATEMENT 3-9
3.4 EXAMPLES OF THE USE OF THE CALL ROUTINE 3-12
3.5 MODEO- INITIALIZE 3-13
3.6 MODE 1 . SET MULTIPLEXER SCAN LIMITS 3-15
3.7 MODE 2 . DO ONE A/D CONVERSION AND INCREMENT
MUX ... 3-17
3.8 MODE 3 . DO N AJD CONVERSIONS DIRECT TO ARRAY ... 3-19
3.9 MODE 4 . DO N A/D CONVERSIONS AND TRANSFER TO
MEMORY ON INTERRUPT 3-21
3.10 MODE 5 . ANALOG TRIGGER FUNCTION 3-23
3.1 1 MODE 6 . TRANSFER DATA FROM MEMORY TO ARRAY . 3-25
3.12 MODE 7 - READ STATUS 3-27
3.13 MODE 8 . READ DIGITAL INPUTS IP1-3 3-28
3.14 MODE 9 . WRITE DIGITAL OUTPUT OP1-4 3-29
3.15 SUMMARY OF ERROR CODES 3-30
3.16 PROGRAMMING EXAMPLES FOR THE DRIVER MODES . . 3-31
3.17 OTHER PROGRAMS AhD UTILITIES 3-31
3.18 ASSEMBLY LANGUAGE PROGRAMS AND CALLS IN OTHER
LANGUAGES ... 3-32
3.19 A NOTE ON EXECUTION TMES . COMPILED BASIC 3-32
3.20 MULTIPLE DAS-4's IN ONE SYSTEM 3-33

.........

Section 4 APPLICATIONS 4- 1
4.1 CHANNEL INPUTS 4-1
4.2 MEASURING VOLTAGE . 4-2
4.3 4-2OmA CURRENT LOOPS 4-4
4.4 THE REFERENCE 4-4
4.5 USING DIGITAL INPUT/OUTPUT . 4-4
4.6 ADDING MORE ANALOG INPUTS 4-5

1

4.7 INTERFACE TO TRANSDUCERS, THERMOCOUPLES ETC. ... 4-5
4.8 POWER OUTPUT FROM THE DAS-4 CONNECTOR 4-6 -
4.9 PRECAUTIONS IN USE - NOISE, GROUNDLOOPS AND
OVERLOADS .. 4-6

Section 5 CALIBRATION AND TEST 5- 1
5.1 CALIBRATION AND TEST 5-1
5.2 SERVICE AND REPAIR 5-1
5.3 TECXNICALASSISTANCE 5-1

Appendix A CONNECTIONS A- 1
A.1 MAINI/OCO"ECTOR A-1
A.2 REAR VIEW OF DAS-4 CONNECTOR A-3

Amendix B SPECIFICATIONS B- 1 - -
A A

B.l POWER CONSUMPTION B-1 .
B.2 ANALOG INPUT SPECIFICATIONS B-1
B.3 A/D SPECIFICATION B-1
B.4 SAMPLE HOLD AMPLIFIER.. B-2
B.5 REFERENCE VOLTAGE OUTPUT B-2
B.6 DIGITAL I/O ... B-2
B.7 INTERRUPTINPUT B-3
B.8 POWEROUTPUTS B-3
B.9 GENERAL ENVIRONMENTAL B-3

Appendix C STORAGE OF INTEGER VARIABLES c- 1

..
11

DAS-4 MANUAL INTRODUCTION

Section 1

INTRODUCTION

1.1 SUMMARY OF DAS-4 FUNCTIONS.

1.

2.

3.

4.

5.

MetraByte's DAS-4 is a 8 channel 8 bit hi h speed A/D converter and digital I/O board for the

6300 series, Zenith, Compaq, PC's Limited, Tandon, Televideo etc. The DAS-4 board is 5" long
and can be fitted in a "half' slot. All connections are made through a standard .37 pin D male
connector that projects through the rear of the computer. The following functions are
implemented on the DAS-4:-

IBM PC-PC/XT-PC/AT & PS2 Model 30 P and other bus compatible computers e.g. A.T.& T.

An 8 channel, 8 bit successive approximation A D converter with samplehold. The full scale
input of each channel is +/-5 volts with a resolution of 0.03906 volts (39.06 millivolts). Inputs
are single ended with a common ground and can withstand a continuous overload of +/-30
volts and brief transients of several hundred volts. All inputs are fail safe i.e. open circuit
when the computer power is off. A/D conversion hme is typically 20 microseconds (30
microseconds max.) and depending on the speed of the software driver, through puts of up to
30,000 channels/sec are attainable.

7 bits of TTL digital VO are provided composed of one output port of 4 bits and one input
port of 3 bits.

1 precision +5.OOv (+/-O.~V) reference voltage output is derived from the A/D converter
reference. This output can source/sink 5mA and is the voltage is slightly adjustable by the
A/D Full Scale trim pot.

An external interrupt input is provided that can select any of the IBM P.C. interrupt levels 2-7
and allow user programmed interrupt routines to provide background data acquisition or
interrupt driven control. The DAS-4 includes status and control registers that make intempt
handshaking a simple procedure. The interrupt input is positive edge triggered and may be
connected to any external 'ITL compatible trigger source.

IBM P.C. bus power (+5, +12 & -12v) is provided along with all other YO connections on the
rear connector. This makes for simple addition of user designed interfaces, input signal
conditioning circuits, expansion multiplexers etc.

The following utility software for DAS-4 is provided on a double sided 360K PC-DOS format
5-1/4" floppy disk compatible with DOS 2.0 and higher revisions (3-1/2" media available on
request) : -
1. A machine language I/O driver (DAS4.BIN) for control of A D , and digital

110 channel functions via BASIC CALL. The I/O driver can select

1. Registered trademarks of International Business Machines Corporation.

INTRODUCTION DAS-4 MANUAL

multiplexer channels, set scan limits, pexform software commanded A D
conversions, interrupt driven conversions and scans. The driver source
listing, DAS4.ASM, is also provided on the disk.

2. Initial setup and installation aids.

3. Calibration and test programs.

4. Electronic strip chart program.

5. Slow speed data logging program.

6. Other examples and demonstration programs.

The DAS-4 is simple, inexpensive and easy to use. It is ideally suited to low precision data
acquisition and control applications. 8 bits provides a span of 255 bits with -128 bits
corresponding to -5 volts of input, and +127 corresponding to +4.96 volts. This provides better
than 1% bipolar resolution which is often adequate for many measurement, control and graphing
applications. The DAS-4 is hardware compatible with MetraByte's DAS-8 which provides
higher resolution through the use of a 12 bit A/D.

To extend the capabilities of DAS-4 the following expansion modules can be connected via flat
insulation displacement cable to the main 37 pin D VO connector:-
1.

2.

3.

SCREW "AL CONNECTOR BOARD - All VO lines on the rear connector are
connected to miniature screw terminal connectors. The digital YO port lines are
monitored by L.E.D.'s and a small bread board area with +/-12v & +5v power is
available for amplifiers, filters, and other user supplied circuits. The screw terminal
connector board is MetraByte part number STA-08.

EXPANSION MULTIPLEXER AND INSTRUMENTATION AMPLIFIER - The
EXP-16 multiplexes 16 differential inputs to a single analog output suitable for
connection to any of the analog input channels of DAS-4. EXP-16 boards are
cascadable so that up to 8 EXP-16 boards can be attached to a single DAS-4 providing
a total of 128 channels. The expansion multiplexer board includes a low drift
instrumentation amplifier with preselected switchable gains of 0.5, 1, 2, 10, 50, 100,
200 or 1000 (other gains can be resistor programmed). A cold junction compensation
sensor is also included for software compensation of thermocouples which can be
directly connected to EXP-16, although the DAS-4 resolution will not provide the fine
resolution of a 12 bit A/D board when used for thermocouple measurements.

ISOLATION AMPLIFIER - MetraByte's model ISO-4 provides 4 isolation amplifier
channels and can be connected directly to DAS-4. This is an excellent accessory for
measuring off ground voltages (500v max. isolation) or eliminating ground loops or
protecting input circuits. Up to 32 IS04 expanders may be connected to one DAS-4.
The ISO-4 also includes cold junction compensation and can be used for thermocouple
measurements. The ISO-4 provides gains ranging from 1 to 1000.

MetraByte also offers many optional software packages that can enhance the ease of use of the
DAS-4. Their menu driven user interfaces eliminate programming and give fast results. Most
include the capability of generating Lotus 1-2-3 compatible data files, immediate graphing of
data and some also provide analytical capabilities as well. For a full description, see our catalog.
All of our software that works with DAS-8 will also work with DAS-4 and includes LABTECH
ACQUIRE, LABTECH NOTEBOOK, UNKELSCOPE, UNKELSCOPE JR., SNAPSHOT
STORAGE SCOPE, ?TOOLS and CTOOLS.

1-2

-
DAS-4 MANUAL

-
INSTALLATION

....

- Section 2

I NSTAL LATlO N -

- 2.1 BACKING UP THE DISK

The utility software supplied with DAS-4 is in DOS 2.0 (360K DSDD) format which is
compatible with DOS 2.0 thru 3.3 revisions. If you need a 3-1/2” disk compatible with the PS2
Model 30 drives, please contact MetraByte, it is available at no charge. It is advisable to make a
back up copy before using the software. For a direct back up, use the DOS DISKCOPY utility or
alternatively COPY *.* to a pre-formatted disk. For a hard disk, simply use COPY *.* to transfer
to a directory of your choice, the DAS-4 utility software is not copy protected. If for any reason
you should misplace or damage the disk, please contact MetraByte for a free replacement.

2.2 HARDWARE INSTALLATION

DAS-4 utilizes 4 consecutive address locations in VO space. Some I/O addresses will already be
used by internal VO and your other peripheral cards, so to avoid conflict with these devices,
DAS-4’s I/O address can be set by the BASE ADDRESS D.I.P. switch to be on a 4 bit boundary
anywhere in the I.B.M. PC decoded I/O space. The PC and PC/XT’s expansion UO address
space extends fiom decimal 512-1023 (Hex 200-3FF) which is much larger than is ever likely to
be fully occupied.The PC AT’S VO address space is larger and extends from 256-1023 (Hex
100-3FF), some XT compatibles also follow this expanded VO space capability. Such a large
space also allows use of more than one DAS-4 in a single computer. The reserved UO addresses
for standard lBM devices are detailed below:-.

ADDRESS(Hex1 DEVICE ADDRESS(Hex1 DEVICE

000- 1 FF
200-20F
2 10-2 17
220-24F
278-27F
2FO-2F7
2F8-2FF
300-31F
320-32F

Internal system
Game
Expansion unit
Reserved
Reserved
LPT2:
COM2:
Prototype card
Hard disk

378-37F
380-38C
380-389
3AO-3A9
3BO-3BF
3CO-3CF
3DO-3DF
3EO-3E7
3FO-3F7
3F8-3FF

LPT1:
SDLC comm.
Binary comm. 2
Binarycomm. 1
Mono dsp/LPT 1 :
Reserved
Color graphics
Reserved
Floppy disk
COM1:

This covers the standard IBM I70 options (most compatibles are identical), but if you have other
1/0 peripherals e.g. special hard disk drives, special graphics boards, prototype cards etc. they
may be making use of I/O addresses not listed in the table above. Memory addressing is separate

2- 1 v

INSTALLATION

-
-

DAS-4 MANUAL

- from I/O addressing so there is no possible conflict with any add-on memory that may be in your
computer. Usually, a good choices is to put the DAS-4 at base address Hex &H300 or &€-I310
(Decimal 768 or 784). (Note if you have an IBM prototype board plugged in, it makes use of the
Hex 300-3 1F address space and would conflict, &H330 or &H340 would be a good alternative in
this case). As an aid to setting the base address D.I.P. switch, a graphical switch position display
program, INSTALL.EXE, can be run from the DOS prompt. To run the installation aid program,
type:-

A>INSTALL

When you get the "Desired base address?" prompt, type in your choice in decimal or &H---
format and press return. The program will round your address to the nearest 4 bit boundary,
check for possible conflicts with standard IBM YO devices (and warn you if so) and draw a
picture of the correct positions of the toggles on the base address DIP switch. If you like to
understand the details, see Fig. 2.1 for an explanation of base address switch settings. Set the
DAS-4 base address dipswitch to correspond with your choice.

The only other setting on the DAS-4 is the choice of-'hardware intempt level. If you are not
going to use interrupts in your progamming (mode 4 of the DAS4.BIN driver) the interrupt
jumper can be left in the "X" (inactive) position. If you intend to use interrupts, set the jumper to
a level that is not in use by any other peripheral board (see Section 3.5, mode 0 for more
information).

To install the board, TURN OFF THE POWER on your computer and remove the case (See the
"Guide to Operations" manual for your computer if you are not already expert at this maneuver).
Remove a vacant back plate by undoing the screw at the top and plug the DAS-4 in and secure
the backplate. The board will fit in any of the slots of the IBM PC, XT or Portable computer but
should not be placed in the short slot next to the power supply on a PC/XT. This slot is intended
for the expansion interface and has slightly different signals from t5e others, DAS-4 will not
work properly in it although it will not cause any damage. On the PC/AT, DAS-4 can be plugged
into any socket but it will not make use of the extended AT bus interface connector. Installation
is now complete. You may plug any of the DAS-4/8 accessories or your own cable into the 37
pin D connector on the rear.

Remember, TURN OFF THE POWER whenever installing or removing any peripheral board
including f h e DAS-4. Never try to install or remove any peripheral board with the power on as it
can cause costly damage to the electronics of your computer and/or the DAS-4 board.

SHOUN SET TO hH300 BASE ADDRESS
9 8 7 6 5 4 3 2 (DECIMAL 768)

DEC I MAL
ADDRESS EQUIVALENT

. A2 4

. A3 8

. 16

. . . . VALUE IN OFF POSITION

A 4
A 5
A 6

. . A? 128
A 8 256

... ON POSITION A 9 512
VALUE IS ZERO IN THE

INTERRUPT JUMPER BLOCK
PLFICE JUMPER ON LEVEL SELECTED
" X" - I NACT I VE PARK I NG P O S I TI ON

2 3 4 5 6 7 X
I NTERRVPT LEVEL

FIG. 2.1 6ASE ~ICIDRESS d iNTERRUPT SELECTION

2-2

Section 3

PROGRAMMING

PROGRAMMING

3.1 PROGRAMMING DAS-4

At the lowest level, DAS-4 can be programmed using YO input and output instructions. In
- BASIC these are the INP @) and OUT X,Y functions. Assembly language and most other high
level languages have equivalent instructions (IN AL,DX and OUT DX,AL). Use of these
functions usually involves formatting data and dealing with absolute VO addresses. Although not
demanding, this can require many lines of code and necessitates an understanding of the devices,
data format and architecture of the DAS-4. To simplify program generation, a special I/O driver
routine "DAS4.BIN" is included in the DAS-4 software package. This may be accessed from
BASIC by a single line CALL statement and covers the majority of common operating modes.
The various modes of the CALL routine select all the functions of the DAS-4, format and error
check data, and perform frequently used sequences of instructions. An example is Mode 2 which
performs a sequence of operations required to perform an MI conversion, check A/D status,
read data and increment the multiplexer.

Using the DAS4.BIN driver saves a lot of programming time and has some other benefits as
well. For instance, the driver supports data collection on interrupt from an external source. Note
that BASIC has no intempt processing functions and so called "background" data collection
using these methods is only available using the CALL routine.

Both methods of programming using INP and OUT functions and the CALL routine achieve the
same result, and you are free to choose either although usually the BASIC proFammer will find
the CALL routine much simpler to implement. If you need to perform specialized scans such as
non-sequential channels, special interrupt routines etc. you can modify the DAS4.BIN driver to
your requirements. The fully commented assembly source is supplied on the utility disk
(DAS4.ASM) and can be re-assembled using the Microsoft Macro-Assembler (any version) and
is a good starting point for assembly language programmers who wish to modify the standard
driver. For the steps involved in generating a BLOADable DAS4.BIN file, follow the
instructions in the file HOWTO.BIN file on the disk (enter TYPE HOWTO.BIN after the DOS
prompt).

3- 1

PROGRAMMING DAS-4 MANUAL

3.1.1 IIO ADDRESS MAP OF DAS-4

First of all let’s take a look at the VO address map of the DAS-4:-

ADDRESS READ WRITE

Base Address + 0 Always zero Start AD conversion

+ 1 A/D data (8 bit) Start AD conversion

+ 2 Status register Control register

+ 3 Status register
(same as Base + 2)

The DAS-4 has an VO address map that is a subset of the 12 bit DAS-8, it uses only the fust 4
addresses, but the register format and functions are identical. This is to maintain hardware
compatibility with MetrdByte’s model DAS-8, 12 bit AJD board, so that the DAS-4 can be used
with existing software e.g. Labtech Notebook etc. that has drivers for the DAS-8.

3.1.2 STARTING THE AID CONVERTER

An A/D conversion is initiated by writing to either location BASE ADDRESS + 0 or BASE
ADDRESS + 1. The value of any data written to these locations is irrelevant and will be lost in
any case. The ensuing A/D conversion will take about 20 microseconds to complete, its progress
can be monitored from bit 7 of the status register.

The DAS-4 uses the AD7574 8 bit A/D converter. One of the design “features” of this converter
is that it will not start another conversion until data from the previous conversion has been read.
It is a good precaution to perform a read of the A D and throw away the data before issuing a
write to BASE ADDRESS to start a new conversion.

Starting an A/D conversion:-

xxxl0 OUTBASADR%, 0

xxxl0 OUTBASADR% + 1, 0
or:-

3-2

PROGRAMMING DAS-4 MANUAL

3.1.3 READING THE AID DATA

After the end of conversion the data from the A/D may be read from location BASE ADDRESS
+ 1. The data format is:-

- BIT POSITION - D7 - D6 - D5 _. D4 - D3 D2 D1 DO
(BASE ADDRESS + 1) B1 B2 B3 B4 B5 B6 B7 B8

(MSB)

Location BASE ADDRESS + 0 will always return zero when read, this is to maintain
compatibility with the 12 bit A/D data of the DAS-8.

The A/D data bits B 1-B8 correspond to an offset binary code:-

BINARY HEX DECIMAL ANALOG INPUT VOLTAGE

0000
0000

OOOO
0001

00
01

0
1

-5.000 v (-Full scale)
-4.961 v

0100 0000

1000 0000
1000 0001

40 64 -2.500 v (-1/2 scale)

80
81

128
129

+/-0 v (zero)
4 .039 v

1 loo 0060 CO 192 +2.560 v (+1/2 scale)

~4.961 v (+Full scale) iiii iiii * FF 255

A sequence of BASIC instructions to read the data and turn it into volts would be:-

xxxl0 INP(BASADR% + l), D%
X X X ~ O V = (D%-128)*5/128

'read data in bits
'scale to volts

3.1.4 THE DAS-4 STATUS REGISTER

The status register provides information on the operation of DAS-4. It is a read only register at
I/O location BASE ADDRESS + 2 (or BASE ADDRESS + 3) and has the following format:-

BIT POSITION - D7 - D6 - D5 - D4 - D3 D2. D1 - DO

(BASE ADDRESS + 2) EQC IP3 IP2 LP1 IRQ 34A2 MA1 MA0

The bits have the following significance:-

PROGRAMMING

EOC:

IP3 - IP1:

IRQ:

MA2-MAO:

End of Conversion. If EOC is high (Logic 1) the
A/D is busy performing a conversion. Data
should not be read in this condition as it will be
invalid. Wait for the EOC to return to logic 0.
sigmfying valid data available.

These bits correspond to the three digital input
port lines IP3, IP2 and IP1. They may be used
for any digital input data.

After generation of an interrupt to the processor
IRQ is set to logic high (1). It is reset to logic
low (0) by a write to the control register. This
provides a means of acknowledging or
"handshaking" DAS-4 interrupts.

These bits provide the current analog
multiplexer channel address as follows:-

MA2 MA1 MA0 CHANNEL

0 0
0 1
1 0
1 1
0 0
0 1
1 0
1 1

3.1.5 THE DAS-4 CONTROL REGISTER

-
DAS-4 MANUAL

-

The control register sets the multiplexer (channel) address, enables and disables intempts and
provides output data to the 4 general purpose digital outputs OP1-OP4. The control register is a
write only register located at UO address BASE ADDRESS + 2 (same location as status register).
The data format of the control register is:-

- BIT POSITION - D7 - D6 - D5 - D4 - D3 D 2 - D1 DO
(BASEADDRESS+2) OP4 OP3 OP2 OP1 INTE MA2 MA1 MA0

The bits have the following significance:-

OP4-OP1: These bits correspond to the four general purpose
digital output lines OP1 thru OP4. These lines
can be used for external control functions e.g.
driving an input sub-multiplexer to increase the
number of analog input channels. A 16 channel
mux. on each of DAS-4's 8 analog channels can
expand the system to 128 channels.

3-4

DAS-4 MANUAL PROGRAMMING

INTE: DAS-4 generated interrupts are enabled onto any
of the selected IBM P.C. interrupt levels 2-7 if
INTE = 1 (logic high). Interrupts are disabled if
INTE = 0 (logic low). Interrupts from the INT.IN

, input (pin 24) are passed through to the selected
level and are positive edge triggered. It is the
programmer's responsibility to set up an
interrupt handling routine, intempt vectors and
initialize the 8259 interrupt controller on the
IBM P.C. processor board. Writing to the control
register will clear the IRQ bit of the status
register.

MA2-MAO: These bits select the current analog multiplexer
channel address as follows:-

MA2 MA1 MA0 CKANNEL

The multiplexer channel address can be determined at any time by reading the status register.

One further note about the control register. During power up of the IBM P.C. when the RESET
line of the IBM P.C. is asserted, the DAS-4 control register is cleared. This insures that DAS-4
interrupts are disabled, sets digital outputs OP1-4 to zero and sets the multiplexer channel
address to zero.

3.1.6 SOME BASIC PROGRAMMING TIPS

Some BASIC commands which you may not have used frequently in the c o m e of ordinary
programming, but may be useful with DAS-4 are:-

WAIT port, n[,m]

Data read at the port is exclusive-or'ed (XORed) with integer expression "m" and
ANDed with "n". If the result is zero, BASIC loops back and tests the port again
until a non-zero result is obtained. This is an excellent way of making your
program wait until some desired external condition is attained.

ON TIMER (n) GOSUB line

This command is only available in DOS 2.0 and above. In effect it provides you
with a pseudo-interrupt. After execution of each BASIC statement, BASIC
checks the timer to see if the condition >n (1 < n < 86,400 seconds) is satisfied. If

3-5

- PROGRAMMTNG DAS-4 MANUAL

3.2

it is, control passes to the subroutine, otherwise the next line is executed. This
polling of the timer is called trapping and is activated by:-

TIMER ON

Trapping is disabled by:-

TIMER OFF

Note that trapping only occws while your BASIC program is executing (unlike a
true interrupt) and can be slightly delayed by statements that require a lot of
execution time. If you need to sample at long intervals the ON TIMER command
is a convenient way to do it.

If you wish to program an A/D conversion using BASIC INP and OUT rather
than the more powerful CALL routine, the following sequence should be
followed:-

xxxl0 OUT BASADR% +1,0
xxx20 IF INP(BASADR%+2)>=&H80 GOT0 xxx20 'status test loop
xxx30 D%=INP(BASADR%+l) 'read A/D data

'start A/D conversion

Note that looping while the A/D converter is still busy (line. xxx20) is not required
in interpreted BASIC as the interpreter execution time greatly exceeds the A/D
conversion time of 20 microseconds. However, if the program is subsequently
compiled using the BASIC COMPILER, the execution time is reduced to a point
where the status test of line xxx20 is essential to avoid returning enoneous data in
line xxx30.

LOADING THE MACHINE LANGUAGE CALL
ROUTlN E "DAS4. BI N"

As the previous simple example shows, direct UO using BASIC INP and OUT can be somewhat
tedious to implement although a lot of the required programming could be handled in
subroutines. Use of the CALL routine described in the this section avoids these problems,
circumvents the execution time delays of interpreted or compiled BASIC, and also permits
background data collection using intempts.

In order to make use of the CALL routine "DASABIN", it must first be loaded into memory.
You must avoid loading it over any part of memory that is being used by another program e.g.
BASIC (watch out for BASICA.EXE if you are using GW BASIC) print spoolers or "RAM-
Disk". If you do interfere with another program's use of memory, the CALL routine will not
work and most likely your PC will do strange things for a second or two and then hang up (No
damage will result, but to get things going again you will have to turn off power and wait a few
seconds before turning on again). Here is some advice, when you write programs with CALLS
in them, SAVE them before you run them! Note that the information given in this section is
general and would apply to loading any CALL or USR routine and supplements the limited
information provided in the "I.B.M. BASIC MANUAL".

When you load the DAS4.BIN CALL routine, you have two options depending on the size of
your available memory. Due to the design of Microsoft Basic, the maximum memory se,ment

3-6

DAS-4 MANUAL PROGRAMMING

that BASIC is able to use is 64K bytes. If BASIC is using its maximum 64K you will get the
following message on power up or from DOS by entering A> BASIC(A) :-

BASIC The IBM Personal Computer Basic
Version D1.10 Copyright IBM Corp. 1981,1982
61807 Bytes free

The exact number of "Bytes free" varies with the version of BASIC(A) and DOS but is usually
greater than 60000 bytes if an excess of memory over and above what BASIC can use is
available. When the number of memory bytes free is less than 60000, this is an indication that
your PC's memory is already fully utilized and BASIC is adjusting to this condition by using less
than its possible 64K maximum workspace. If this is the case, you will have to load the CALL
routine by further forced contraction of the BASIC workspace and loading the routine at the end
of the newly defined workspace. DAS4.BIN will occupy about 1852 bytes but to keep things
simple, let's clear a 2K (2048 byte) space for it

Step 1 is to work out how much memory BASIC is able to use. First just load BASIC(A) from
DOS:-

A> BASIC(A)

Note the number of bytes free in BASIC's greeting messages. Next do a SYSTEM command to
return to DOS and this time load BASIC(A) with the optional /M parameter:-

A> BASIC(A) /M: WS where WS is a number (not a variable)

Try setting the WS (workspace) parameter to 30000 or 4oooO and then note the number of bytes
free in the greeting message. The objective is to determine the workspace that must be specified
to reduce the bytes free by at least 2048 bytes. Once this is determined you can either load
BASIC(A) by specifying this workspace or include a CLEAR command right at the beginning of
your program e.g.:-

xxxl0 CLEAR, WS

Next, we need to know what segment BASIC is occupying in memory. In a l l versions of
Microsoft derived BASIC, this can be found from the contents of absolute memory locations
&W11 and &=lo which hold the current BASIC segment which we can call SG. SG can be
determined as follows:-

xxx20 DEF SEG = 0 'define current segment = 0000
before reading absolute
addresses 0000:0510 & 0000:0511

xxx30 SG = 256*PEEK(&H511) + PEEK(&KS10)

The segment address at which we can now load the CALL routine will simply be at the end of
the working space i.e.:-

xxx40 SG = WS/16 + SG 'remember segment addresses
are on 16 bit boundaries

The routine can now be loaded as follows:-

xxx50 DEF SEG = SG
xxx60 BLOAD "DAS4.BINtt,0 'loads routine at SG:0000

3-7

PROGRAMMING DAS-4 MANUAL

A BLOAD must be used as we are loading a binary (machine language) program. Once loaded,
the CALL can be entered as many times as needed in the program after initializing the call
parameters MD%, D%, FLAG% prior to the CALL sequence as follows:-

xxx70 DEF SEG = SG
xxx80 DAS4 = 0
xxx90 CALL DAS4 @ID%, D%(O), FLAG%)

Note that in interpreted Microsoft BASIC, DAS4 is a variable that specifies the memory offset of
the starting address of the CALL routine from the current segment as defined in the most recent
preceding DEF SEG statement. We have chosen DAS4 as a name, as it makes CALL DAS4 easy
to associate with the device and would distinguish it from any other CALLS to other routines that
might be in the same program. In compiled BASIC, Quick Basic or other compiled languages
(FORTRAN, PASCAL etc.) the significance of DAS4 in the CALL is different. In this case, it is

_.

the name of the external routine that the linker will be looking for when linking after
compilation. DAS4.0BJ is supplied on the software disk for this purpose (see Sections 3.18 &
3.19).

Returning to interpreted BASIC, DAS4 is the offset (actually zero) from the current segment as
defined by the last DEF SEG statement that tells your BASIC interpreter where the CALL
routine is located. Be careful that you do not inadvertently redefine the current segment
somewhere in a program before entering the CALL. If you are using DEF SEG in other parts of
your program, i t is good practice to immediately precede the CALL statement by the appropriate
DEF SEG statement (the same one you preceded your BLOAD with) even at the cost of
duplication. This precaution can save a lot of wasted time and frustration from crashing your
computer!

Another important detail to understand is that CLEAR sets working space from the bottom of the
BASIC working area up whereas we must set aside space for our subroutine from the top of
available memory down. If we attempt to CLEAR more space than is actually available, we will
end up loading our routine over the end of the BASIC program, data space and stack and will
hang up the computer. Be careful this does not happen inadvertently if you are memory limited
and later load BASIC with DEBUG or some other memory resident program without making a
compensating reduction in the workspace (WS) declaration in the CLEAR statement. When
memory is limited, setting up a workspace that is a considerable amount less than what is
available is a simple precaution. Another precaution in this regard occurs on computers (other
than the IBM P.C.) that do not contain most of the BASIC in ROM. These machines load BASIC
completely into RAM in the form of a BASICA.COM and a BASICA.EXE file. BASICA.COM,
DOS and the BASIC program space load from the bottom of memory up and BASICA.EXE
loads from the top of memory down. The free memory ends up in the middle and some
contraction of the BASIC program space will automatically take place as soon as the total
memory minus that used by DOS and BASICA.EXE becomes less than MK. This can easily
happen on a machine with less than 128K of memory in which case further forced contraction of
the workspace is the only way of loading the CALL routine. These considerations all sound a
little on the complex side, but like all things they are not once you understand what you are
doing. To further assist you, run and list the file EXOO.BAS. This gives you an examples of
loading and using the CALL routine and ready made loading and ininalizing code that you can
use as a "front end" to your own programs.

The second method of loading the driver is somewhat simpler to follow and applies when you
have plenty of memory (generally 256K or more) and you have the luxury of loading the CALL
routine outside the BASIC workspace. In this case choose a segment that has 2K bytes clear at its
beginning. For example we might choose &H6000 which is at 384K. Then proceed as follows:-

xxxl0 DEF SEG = SrH6000 'Sets up load segment

3-8

DAS-4 MANUAL

xxx20 BLOAD "DAS4.BIN",O 'Loads at 6000:oooO
-30 DAS4 = 0
-40 DIM D%(3)

I111

I l l 1

llll

xxxxx DEF SEG = &H6000
xxxyy CALL DAS4 (MD%, D%(O), FLAG%)
xxxzz etc.

PROGRAMMING

An example of this approach is contained in file EXO.BAS. Before you try loading outside the
workspace, be sure you really do have an unused 2K of memory at 384K. You can change the
DEF SEG statements in EXO.BAS and experiment with loading the CALL routine at other
locations. Usually any clash with another program's use of the same memory results in
obliteration of some of the routine code and a failure to exit and return from the routine. The
computer hangs up, and the only cure is to switch off, wait a few seconds and turn on the power
again. Note that memory resident programs such as Borland's Sidekick will raise the loading
floor in memory for additional programs such as BASIC(A). In this case even machines with
large amounts of memory may run out of space or require loading the DASABIN even higher in
memory than the example above. Also higher revisions of DOS with additional features use more
resident space in memory than earlier versions and may require loading the CALL routine higher
UP.

3.3 FORMAT OF THE CALL STATEMENT

If you are new to using CALL statements, this explanation may assist you in understanding how
the CALL transfers execution to the machine language (binary) driver routine. Prior to entering
the CALL, the DEF SEG = SG statement sets the segment address at which the CALL
subroutine is located. The CALL statement for the DAS4.BIN driver must be of the form:-

xxxxx CALL DAS4 (MD%, D%(O), FLAG%)

As explained in the previous section, DAS4 is the address offset from the current segment of
memory as defined ir! the last DEF SEG statement. In all of our examples, we have chosen to
defme the current segment to correspond with the starting address of the CALL routine, therefore
this offset is always zero and DAS4 = 0.

The three variables within brackets are known as the CALL parameters. On executing the CALL,
the addresses of the Variables (pointers) are passed in the sequence written to BASIC's stack.
The CALL routine unloads these pointers from the stack and uses them to locate the variables in
BASIC's data space so data can be exchanged with them. Three important format requirements
must be met:-

1. The CALL parameters are referenced by position. The subroutine
knows nothing of the names of the variables, just their locations
from the order of their pointers on the stack.

If you write:-

xxxxx CALL DAS4 (D%(O), MD%, FLAG%)

3-9

P R O G R A m G DAS-4 MANUAL

2.

3.

4.

you will mix up the CALL routine, since it will interpret D%(O)
as the mode number, the mode MD% as the data etc.. The
parameters must always be written in the correct order:-

(mode, data, errors)

The CALL routine expects its parameters to be integer type
variables and will write and read to the variables on this
assumption. If you slip up and use a non-integer (real single or
double precision) variable in the CALL p m e t e r s , the routine
will not function correctly. No error checking is done in the
CALL on the variable type, so be careful since you may crash the
computer!

You cannot perform any arithmetic functions within the
parameter list brackets of the CALL statement e.g:-

CALL DAS4 (MD% + 2, D%(O) * 8, FLAG%)

is illegal and will produce a syntax error.

You cannot use constants for any of the parameters in the CALL
statement. The following is illegal:-

CALL DAS4 (7,2, FLAG%)

This must be programmed as:-

XXxlO MD% = 7
xxx20 D%(O) = 2
xxx30 CALL DAS4 (MD%, D%(O), FLAG%)

Apart from these restrictions, you can name the integer variables what you want, the names in
the examples are just convenient mnemonics. Strictly, you should declare the variables before
executing the CALL. If you do not, the simple variables will be declared by default on execution,
but array variables cannot be dimensioned by default and must be dimensioned before the CALL
to pass data COKCX~~Y if used as a CALL parameter. Many modes of the DAS4.BIN CALL
routine require multiple items of data to be passed in an array. For this reason, D%(O) is specified
as the data variable so that the CALL routine can locate the whole array from the position of its
initial element

You can use some elegant techniques with the CALL parameters. Let’s say we wanted to record
or output a whole series of data in a FOR. . . NEXT loop. You can dimension your D% array as
a two or more dimension array, for example:-

xxx00 DIM D%(4,100)
xxxl0 DEF SEG = SG
xxx20 FOR I = 0 to 100
xxx30 CALL DAS4 (MD%, D%(O,I), FLAG%)
xxx40 NEXT I

Likewise any of the other CALL parameters may be integer array variables if required, and you
can name any number of different integer data arrays for output and input. It is O.K. to
dimension arrays with more elements than will be used by the CALL, unused elements will be
unchanged and for example could be used for tagging data with time, date or other information.

DAS-4 MANUAL PROGRAMMING

MetraByte has chosen to use the Same CALL structure for selecting any of the functions of the
board. This makes the CALL structure easy to remember and helps to avoid errors compared to
CALLS with variable offsets and number of parameters. One consequence of this is that not all
functions or modes use all of the data array D%(*). In practice it is dimensioned to D%(3) to
allow for the needs of modes 4 & 7 which use all four elements, but most of the other modes
only use a few elements. In the interests of clarity, our example programs use inline code with
each CALL written out separately, but you can just as readily put the CALL into one subroutine
for the whole program and save a lot of lines of code, as in the following example. After
BLOADing the DAS4.BIN driver (see EXO-BAS) proceed as follows (this program logs
channels 2 - 5 to disk every 10 seconds):-

xxl00 DIM D%(3)
X X l l O MD% = 0
xx120 D%(O) = &H300 : D%(1) = 2
xx130 GOSUB 10000 'initialize
xx140 MD% = 1
xx150 D%(O) = 2 : D%(l) = 5
xx160 GOSUB 10000 'set scan limits
xx170 OPEN "MYF'ILE.DATt FOR OUTPUT AS #1
xx180 TNOW = TIMER 'get system time (in seconds)
XX190 MD% = 2
xx200 GOSUB lo000 'do 1 A D conversion
xx210 PRINT #1, D%(0)*5/128
xx220 IF INKEY$o"" THEN CLOSE #l:END
xx230 IF TIMER > TNOW + 10 THEN GOTO xx180 ELSE GOTO xx220

'save data to disk scaled in volts
'finish if key pressed

'get next channel at 10 second intervals

10000 CALL DAS4 (MD%, D%(O), FLAG%)
10010 IF FLAG%oO THEN ?"Error # ";FLAG%;" in mode ";MD%:STOP
10020 RETURN

'subroutine for all calls

3-11 -

PROGRAMMING DAS-4 MANUAL

3.4 EXAMPLES OF THE USE OF THE CALL ROUTINE

The following subsections give detail information and examples of the use of the CALL routine
in all 10 modes. The modes are selected by the MD% parameter in the CALL as follows:-

MODE FUNCTION

0 ... Initialize, input DAS-4 base address, interrupt level
& check hardware.

1 ... Set multiplexer low & high scan limits.

2 ... Perform a single A/D conversion. Return data and
increment multiplexer address. (Programmed
conversion). Speed up to 200Hz, Operation -
foreground.

3 ...

4 ...

5 ...

6 ...

7 ...

8 ...
9 . . .

Perfom an N conversion scan after trigger.
Conversions initiated by an external input. Data is
transferred to an integer array. Speed up to 3KHz.
Operation - foreground.

Perform an N conversion scan after trigger into a
memory buffer area. Conversions initiated by an
external input. Data transferred by intempt. Speed
up to 3KHz. Operation - background.

Analog trigger function similar to a scope trigger
(specify channel, level & slope)

Transfers data from memory buffer to an integer
array either as a whole block or piece by piece
(used after mode 4).

Return status. Reports next channel number to be
converted, whether interrupt is active or finished,
interrupt level and remaining number of
conversions in interrupt mode 4.

Read digital inputs IP1-3.

Write digital outputs OP 1-4.

3-12

DAS-4 MANUAL

3.5 MODE 0 = INITIALIZE

PROGRAMMING: MODE 0

Before using any other mode of the CALL routine, you must provide the YO location, or BASE
ADDRESS, of the DAS-4 board and the hardware interrupt level that you intend to use. If you
fail to provide this information before accessing any other mode of the CALL, error flag
(FLAG% = 1, driver not initialized) will be obtained and none of the other modes will execute.
Calling mode 0 need only be done once in the initialization section of your program usually
straight after loading the DAS4.BIN routine. For examples of loading DAS4.BIN and
initializing, run and list EXO.BAS and EXOO.BAS.

On entry the following parameters should be assigned:-

D%(O) = &H300 'for example (VO address)

D%(l) = 2 'for example (interrupt level, 2 thru 7)

D%(2)thru D%(3) (value does not matter)

FLAG% = X (value does not matter)

then:-
CALL DAS4 (MD%, D%(O), FLAG%)

A

Note that specifying the fkst element of the array
will pass all other required m y parameters.

On return the variables contain data as follows:-

M D % = O (unchanged)

D%(O) thru D%(3) (unchanged)

The following error codes apply to mode 0:-

FLAG% = 0 (no error, 0.k.)
= 2
= 3 (hardware failure)
= 10 (base address out of range c256 or >1008)
= 11 (interrupt level <2 or >7)

(mode number out of range, c0 or >9)

The standard IBM PC or P W T allows use of VO addresses between 512 and 1008 (Hex 200 -
3FO), the PC/AT allows use of addresses between 256 and 1008 (Hex 100 - 3FO), all machines
use VO addresses below 256 (Hex 100) for internal devices, hence the driver will flag any
attempt to assign an VO address in the range 0 - 255 (Hex 0 - FF) by returning error code $10 in
the FLAG% variable.

Error #11 will occur if you have specified a non-valid interrupt level. The available levels on the
P.C. expansion bus correspond to 2 thru 7. Certain of these levels may be in use by other

3-13

PROGRAMMING: MODE 0 DAS-4 MANUAL

peripheral devices (especially level 6 used by floppy disk drive). A list of the standard IBM ._

interrupt assignments is:-

Level 2
Level 3 - Serial 40 - used if C O W : installed.
Level 4 - Serial 40 - used if COM1: installed.
Level 5
Level 6 - Always in use by disk drives
Level 7

- Reserved (but not used) by Color Graphics adapter

Printer - may be used by LPT2: if installed.

Printer - may be used by LPT1: if installed.

-
-

If you do not have a particular device installed, it is safe to assume that level is available for use
by DAS-4. The lower the level number, the higher the interrupt priority. Note that the interrupt
will not be enabled unless you enter mode 4 which requires interrupts for operation. If you are
not going to make use of interrupts any level can be chosen e.g. D%(1) = 2.

Mode 0 performs several other initializing functions. Default scan limits of channels 0 & 7 are
set. Mode 0 also performs a simple readwrite test and a check on the busy signal from the A/D

indicative of a hardware fault in the DAS-4 or more commonly a discrepancy between the base
address specified in D%(O) and the actual switch setting on the board.

as a check on the presence and function of the DAS-4 hardware. If you obtain error 3, it is either -

- 3-14

DAS-4 MANUAL PROGRAMMING: MODE 1

3.6 MODE 1 = SET MULTIPLEXER SCAN LIMITS

Mode 1 is used to set the scan limits of the multiplexer to other than the default limits provided
by mode 0. This is done prior to performing conversions in modes 2, 3 & 4. Two limits are
passed. D%(O) contains the lower limit and D%(l) the higher limit. If the default limits of mode
0 are 0.k. for you, it is not necessary to enter mode 1.

To illustrate the action of mode 1 assume we set D%(O) = 3 and D%(1) = 6. The frst conversion
(commanded by modes 2, 3 or 4) would be performed on channel 3, data returned and the
channel incremented to 4. The next conversion would be performed on channel 4, data returned
and the channel incremented to 5 etc. After the conversion on channel 6 has been performed, the
software counter in the driver controlling the m u will automatically re-load to the start of scan
limit to repeat the sequence. Scanning of channels would always be stepped between and
including channels 3 and 6 as follows:-

3-4-5-6-3-4-5-6-3- etc.]

If you specify the lower limit greater than the higher limit i.e. D%(O) > D%(1) you will receive
error code 4 as this is an illegal setup condition.

If you wish to perform continuous conversions on one channel, then set the low and high limits
equal to each other and the desired channel number e.g. setting D%(O) = 1 and D%(l) = 1 would
perform continuous conversions on channel 1.

Note that after exit from mode 1, the starting channel will always be D%{O), the lower limit.

On entry the following parameters should be initialized:-

MD%=1 (mode number)

D%(O) = 0 thru 7 (lower scan limit)

D%(l) = D%(C) +h 7 (upper scan limit)

D%(2 thru 3) (value does not matter)

FLAG% = X (value does not matter)

then:-

CALL DAS4 (MD%, D%(O), FLAG%)

On return the variables contain data as follows:-

h4D%=1 (unchanged)

D%(O thru 3) (unchanged)

The following error codes apply to mode 1:-

PROGRAMMING: MODE 1 DAS-4 MANUAL

FLAG% = 0 (no error, 0.k.)
= 1 (driver not initialized)
= 2 (mode number out of range, # or >9)
= 4 (if limits reverse order, D%(O) > D%il))
= 10 (if lower channel limit D%(O) c0 or >7)
= 11 (if upper channel limit D%(1) <O or >7)

- An example of the use of mode 1 will be found in EX2.BAS as well as several of the other
examples using the A/D converter.

-.

3-16

-a

c.

DAS-4 MANUAL PROGRAMMING: MODE 2

3.7 MODE 2 - DO ONE AID CONVERSION AND
INCREMENT MUX

Mode 2 performs one A/D conversion by software command. The mux is automatically
incremented after the conversion through software routines in the driver. Data is returned as
follows:-

D%(O) - A/D data (-128 to +127 bits)

D%(l) - Channel number

Data is transferred to D%(O) in 2’s compliment form (standard integer) with -128 bits
corresponding to -Full Scale of -5v and +127 corresponding to +Full Scale of 4.961 volts. Zero
volts corresponds to zero bits. This minimizes processing of the data after exit from the CALL.

D%(l) contains the channel from which the data is derived. This information can be used or
ignored as required.

The A/D will perform conversions on channels in accordance with the scan limit conditions set
in mode 1. If mode 1 has not been entered prior to mode 2, conversions will cycle between
channel 0 and channel 7.

On entry the following parameters should be initialized:-

MD%=2 (mode number)

D%(O thru 3) = X (value does not matter)

FLAG% = X (value does not matter)

then:-

CALL DAS4 (MD%, D%(O), FLAG%)

On return the variables contain data as follows:-

m%=2 (unchanged)

D%(O) = A D data

D%(l) = Channel number of data (0 - 7)

(-128 to +127 bits)

D%(2 thru 3) (unchanged)

The following error codes apply to mode 2:-

FLAG% = 0 (no error, 0.k.)
= 1 (driver not initialized)
= 2
= 3

(mode number out of range, <O or >9>
(No EOC from AD, time out
indicative of hardware failure)

3-17

PROGRAMMING: MODE 2 DAS-4 MANUAL

An example of the use of mode 2 will be found in EX2.BAS.

If you wish to perform a series of A/D conversions using mode 2, be aware that the speed
becomes limited by the program execution time which for interpreted B,ASIC is slow (several
milliseconds per line of code). A tight loop such as the one below will perform around 200
conversions/sec. on a standard IBM P.C. (4.77MHz clock):-

xxx10 DIM X%(lOOOO)
xxx20 MD% = 2
xxx30 FOR I% = 0 TO 10000
-40 CALL DAS4 (MD%, D%(O), FLAG%)
xxx50 X%(I%) = D%(O)
xxx60 NEXT I%

etc.

If this is compiled using the BASIC compiler, a conversion rate of about 4000 samples/sec. will
be obtained.

.-

3-18

_-

I _

DAS-4 I " U A L PROGRAMMING: MODE 3

3.8 MODE 3 = DO N A/D CONVERSIONS DIRECT TO
ARRAY

Mode 3 performs N A D conversions and transfers data directly into a BASIC integer m y . N
may be any number of conversions up to 32,767 although in practice it is impossible to
dimension an integer array with 32,767 elements and leave any workspace for the program
(30,000 is a more practical limit). Since the CPU is performing the A/D polling and data
transfers as a "foreground" operation, exit from the CALL will not occur until all conversions
have been completed. To provide an escape route, hitting any key on the keyboard while data is
being gathered in mode 3 will abandon further conversions and produce an immediate return to
your BASIC program. You will receive error code 5 as a warning that you have aborted the
mode in this case. If you do not want to wait for data to be collected, mode 4 can be used to
gather the data as a "background" operation so that your program is able to process data and
collect it at the same time.

The A/D will perform conversions on channels in accordance with the scan limit conditions set
in mode 1. If mode 1 has not been entered prior to mode 3, conversions will start on channel 0
and the upper scan limit will be channel 7.

In mode 3, each A/D conversion is initiated by a positive edge on the interrupt input (pin 24)
although this mode does not make use of hardware interrupts. Triggering may be held off by
holding IP1 low, as soon as IP1 goes high A/D conversions will commence and will continue
until the full conversion count even if IP1 goes low again.

On entry the following parameters should be initialized:-

MD% = 3 (mode number)

D%(O) = VARPTR(ARRAY%(M)) - array pointer
Conversions may be loaded starting at the M'th.
position in an array or at the start if M = 0.

Range 1 to N where N-1 c= m a y dimension
D%(l) = Number of conversions required (Word count).

D%(2 thru 3) - (value does not matter)

FLAG% - (value does not matter)

then:-
CALL DAS4 (MD%, D%(O), FLAG%)

On retum the variables contain data as follows:-

MD%=3 (unchanged)

D%(O thru 3) (unchanged)

ARRAY%(M) = 1st. data word
ARRAY%(M+l) = 2nd. data word
ARRAY%(M+2) = 3rd. data word

PROGRAMMING: MODE 3

...
etc.

The following error codes apply to mode 3:-

DAS-4 MANUAL

FLAG% = 0 (no error, 0.k.)
= 1 (driver not initidized)
= 2
= 3
= 5 (mode aborted by keyboard)
= 11 (number of conversions D%(1)cO or >32767)

(mode number out of range, c0 or >9)
(hardware error - A/D not converting)

An example of the use of mode 3 will be found in EX3.BAS.

A number of precautions apply to the reliable use of mode 3. First you must dimension a
receiving array that has at least as many elements as the number of conversions specified in
D%(l). No checks are made by the CALL routine on whether you are performing more
conversions than the array will hold. If you do, some of the data area of BASIC will be
overwritten which may destroy descriptors and other variable data and cause strange effects as a
result. Do not ovemcn the array limits.

Second, after assigning the pointer to the receiving array, do not introduce any new simple
variables before entering the CALL. For example, this is 0.K.:-

xxxl0 DIM D%(3), X%(999)
xxx20 MD% = 3
xxx30 D%(O) = VARPTR(X%(O))
-40 D%(1) = 1000
xxx50 CALL DAS4 (MD%, D%(O), FLAG%)

'declare D%(*), X%(*)
'mode #
'pointer to array
'number of conversions

But this will cause a problem:-

xxxl0 DIM D%(3), X%(999)
-20 MD% = 3
xxx30 D%(O) = VARPTR(X%(O))
xxx40 D%(1) = lo00
-50 NEW-VARIABLE = X
xxx60 CALL DAS4 (MD%, D%(O), FLAG%)

'declare D%(*), X%(*)
'mode #
'pointer to array
'number of conversions
'new variable

The problem arises because of the way BASIC stores array variables. They are located in
memory above the data area for simple (non-array) variables which in turn is located above the
program storage area. If you introduce a simple variable that has not been used before, BASIC
makes room for this variable by re-locating all the array variables upwards in memory. If the
pointer (using VARPTR) is assigned to the receiving array before a new variable is introduced
and then the CALL is entered, the actual location of the array will have changed, and the CALL
routine writes data to the old array location causing strange effects.

ALSO NOTE that exit from mode 3 cannot occur until IP1 has been taken high and a sufficient
number of trigger pulses to perform the desired number of conversions have been supplied. If
these conditions are not met, your computer may give the erroneous appearance of being hung
up. To abort mode 3, hit any key on the keyboard.

Conversion rates in excess of 2000 samples/sec are attainable in this mode. As interrupts in the
computer (mainly the timer interrupt) may divert the CPU away from attending to transferring
data from the A/D for several hundred microseconds, data may be lost above 3000 samples/sec.

_ -
3-20

DAS-4 MANUAL PROGRAMMING: MODE 4

3.9 MODE 4 = DO N A/D CONVERSIONS AND
TRANSFER TO MEMORY ON INTERRUPT

Mode 4 performs N A/D conversions through a special interrupt handler that is installed by this
mode. Each time an interrupt is invoked by a positive edge on the Intermpt In @in 24), the
handler performs an A D conversion, moves the data to a memory buffer area (up to 64K bytes)
and increments the multiplexer ready for the next interrupt. The handler keeps track of the total
number of conversions performed. When the number reaches N, as specified by D%(O),
interrupts are disabled if in the non-recycle mode (D%(3)=0), or the process is repeated
continuously to the same segment of memory if D%(3) specifies the re-cycle mode. Note that
once mode 4 has enabled intenupts, conversions continue regardless of what other programs the
user may be running (although they should not interfere either with the location of the
DAS4.BIN driver or the A/D data area). For this reason it is termed a background opepttion.
About 3000 samples/sec. are possible in mode 4 although at this speed so much processing is
taking place in the background, you may notice a significant reduction in speed of foreground
operations.

To return data to a BASIC integer array when mode 4 is operating or has finished operation, use
mode 6. To assess the progress of an operation initiated by mode 4, use mode 7. To abort an
interrupt operation initiated by mode 4, re-enter mode 4 but with D%(2) = 0. For detail
descriptions of the features of these other modes, see the following sections.

The A/D will perform conversions on channels in accordance with the scan limit conditions set
in mode 1. If mode 1 has not been entered prior to mode 4, conversions will start on channel 0
and the upper scan limit will be channel 7.

The A/D mggering occurs indirectly through the intempt handler. On a 4.77 MHz standard
8088 based PC, there is typically an 80 microsecond latency between generation of the interrupt
and start of A/D conversion. This latency varies according to other interrupt activity especially
the internal time of day interrupt on level 0. P1 acts as a start gate for the operation, holding IP1
low will hold off triggering. To start triggering IP1 should be taken high for at least 100
microseconds after which its subsequent state will have no effect. Hitting any key of the
keyboard will also start conversions while IP1 is held low, in this case error code 5 is produced
as a reminder that the keyboard initiated conversions.

On entry the following parameters should be initialized:-

MD% = 4 (mode number)

D%(O) = Number of conversions required (Word count).
Range -32768 to +32767
Note: BASIC only provides signed integers, data is passed as an unsigned
integer (see Appendix C). e.g. -1 corresponds to 65,535 conversions.

D%(l) = Se,grnent of memory to receive data. Segments are
on paragraph (16 bit) boundaries e.g. D%(l) =
&H7000 would start loading A/D data at 448K.
Be sure to choose an empty area of memory for a
data buffer (always outside BASIC workspace)

D%(2) - Enables/disables intempt:-

3-21

PROGRAMMING: MODE 4

D%(2)=1:

D%(2)=0:

Enables interrupt. Interrupts will
automatically disable when the
conversion count is reached in non-
recycle mode.

Disables intempt. Used to abort an
active intempt or stop further
interrupts when operating in the
recycle mode.

D%(3) - Single cycle/Re-cycle operation:-

D%(3) = 0 :

D%(3)= 1 :

One cycle. After completion of the
number of conversions specified,
interrupts are disabled, setting the
operation status to zero.

Re-cycle. In this case data is
continuously written to the same
memory. D%(O) corresponds to the
memory "buffer" length. The status
of the operation is 1 = active until
stopped by re-entry with D%(2) = 0.

FLAG% = X (value does not matter)
then:-

CALL DAS4 (MD%, D%(O), FLAG%)

On return the variables contain data as follows:-

MD%=4 (unchanged)

D%(O thru 3) (unchanged)

The following error codes apply to mode 4:-

FLAG% = 0 (no error, 0.k.)
= 1 (driver not initialized)
= 2
= 5
= 12 (if D%(2) neither 0 or 1)
= 13 (if D%(3) neither 0 or 1)

(mode number out of range, <O or >9)
(if mode initiated by keyboard)

DAS-4 MANUAL

An example of the use of mode 4,6 & 7 will be found in EX4.BAS. Several details apply to the
reliable use of mode 4. On completion of an interrupt operation, the selected level of the 8259
intempt mask register is disabled and the tri-state interrupt drivers of the DAS-4 are placed in
the high impedance state, also the previous interrupt vectors used by this level are restored. This
allows more than one hardware device, or multiple DAS-4's to use the same intempt level as
long as they do so sequentially. Since the segment registers are not incremented by the handler,
the maximum data area available is 64K (a page) for 65,536 conversions. Be sure that your data
area is not in use by your program or altered by subsequent operations. Data may be retrieved
using mode 6 during or after the operation of mode 6 and this will not alter the memory. It is
possible to re-write the interrupt handler to use several segments of main or extended memory
for data storage.

3-22

DAS-4 MANUAL PROGRAMMING: MODE 5

3.10 MODE 5 = ANALOG TRIGGER FUNCTION

Mode 5 provides an analog trigger function similar to an oscilloscope trigger. It is sometimes .- .
useful to wait for a voltage to reach a certain level before starting to gather data and mode 5
provides this capability. Any of the analog input channels may be designated as a trigger
channel, and you may set the level and slope for triggering.

The main use for mode 5 is in front of any of the other data acquisition modes as a gating or wait
loop until the specified analog trigger conditions are met. Since it is possible to get stuck in the
wait loop indefinitely if the trigger conditions are not fulfilled, you can also exit mode 5 by
hitting any key which will return you to the calling program.

Parameters D%(O) thru D%(2) control the mggering and select the trigger channel number, the
trigger level and the trigger direction (slope). D%(O) specifies the trigger channel number. It may
be one of the scanned channels i.e. within the scan limits and carrying one of the measured
signals, or a separate channel outside the scanned channels used only for triggering. The voltage
level at which niggering occurs is set by D%(1) in bits, (valid range of -128 to +127 bits). The
direction of triggering or slope is controlled by D%(2), for instance if D%(l) = 51 the trigger
level will be +2v and if D%(2) = 0 (positive slope) triggering will take place when the signal
exceeds +2v, alternatively if D%(2) = 1 (negative slope) triggering would take place when the
trigger signal becomes less than +2V.

On entry the following variables should be initialized:-

MD%=5

D%(O) = Channel number (0 - 7)

D%(l) = Trigger level (-128 to +127 bits)

D%(2) = Slope (0 = positive, 1 = negative)

D%(3) - (value does not matter)

FLAG% - (value does not matter)

then:-
CALL DAS4 (MD%, D%(O), FLAG%)

On return the variables contain data as follows:-

D%(O thru 3) - unchanged

The following error codes apply to mode 5:-

FLAG% = 0 (no error, 0.k.)
= 1 (driver not initialized)
= 2
= 5

(mode number out of range, <o or >9)
(if exit aborted by keyboard)

3-23

PROGRAMMING: MODE 5
- DAS-4 MANUAL

= 10 (trigger channel data D%(O) # or >7)
= 11 (trigger channel level D%(1) c-128 or >127)
= 12 (trigger slope data D%(2) neither 0 or 1)

For an example of the use of mode 5 , see EX5.BAS.

-
3-24

-

,...

r - -

-

I-

c

DAS-4 MANUAL PROGRAMMING: MODE 6

3.11 MODE 6 TRANSFER DATA FROM MEMORY TO
ARRAY

Mode 6 transfers data from any segment of memory to integer array variables in BASIC
workspace. It is used following a mode 4 operation. Data in memory derived from mode 4 is in
the form of single bytes of A D data corresponding to each conversion.

Mode 6 functions as follows. D%(O) provides the location of the starting element of the integer
array that you wish to transfer to e.g. D%(O) = VARPTR(X%(O)) would start moving data to the
beginning of the array , X%(O), whereas D%(O) = VARPTR(X%(N)) would start at the N’th
element. D%(1) provides the number of conversions or data bytes to mnsfer, and D%(2) sets the
number of the conversion (segment offset) to start transferring fiom. The segment area of the
buffer area is assumed to be the same as that specified in mode 4. By way of an example, let’s
move 1000 conversions, starting at the 1OO’th element in the area and the 20,OOO’th conversion
in the buffer:-

D%(O) = VARPTR(X%(lOO))

D%(l) = 1000

D%(2) = 20000

In this way we can move data piece by piece and analyze it. Note that we could not handle
64Kbytes of data directly in an integer array, as integers take 2 bytes of storage (one word) and
BASIC could not provide enough storage area (try DIM X%(65535)). We could accomplish the
same effect as mode 6 using DEF SEG’s and PEEK’S in a loop but it would be a lot slower.

Note that you must be careful about the transfer parameters. In particular-

1: Do not transfer more words than an array will hold
or overrun the end of the array. No checking is
performed to detect this condition which will
corrupt BASIC workspace and cause strange
effects.

2: There is nothing to prevent you transfening
garbage from a source segment that does not
contain A/D data or from overrunning the end of
A/D data. No checking is performed to detect this
condition.

On entry the following parameters should be assigned:-

MD% = 6 (mode number)

D%(O) = VARPTR(X%(N)) - (array locator)

D%(l) = Number of transfers (cannot exceed 32,767)

D%(2) = Starting conversion number

3-25

PROGRAMMING: MODE 6 DAS-4 MANUAL

D%(3) - (value does not matter)

FLAG% - (value does not matter)

then:-
CALL DAS4 (MD%, D%(O), FLAG%)

On return the variables contain data as follows:-

MD%=6

D%(O thru 3) - unchanged

The following error codes apply to mode 6:-

FLAG% = 0 (no error, 0.k.)
= 1 (driver not initialized)
= 2
= 11 (number of transfers, D%(1)=0 or >32767)

(mode number out of range, <O or >9)

For an example of the use of mode 6, see EX4.BAS.

Once data acquisition has been set up as a constant background operation using the recycle

to retrieve the data. This is excellent for graphics, "digital oscilloscope" and continuous write to
disk applications.

option of mode 4, a foreground program can be processing the data as it is acquired using mode 6 -

Note that it is advisable to make the assignment:- -

D%(O) = VARPTR(X%(N))
-

immediately before the CALL statement, as declaring a new simple variable after making this
assignment will dynamically relocate the arrays and upset operation of this mode. If the variable
I had not been declared prior to line xxx10, then the following sequence would cause a problem
(see mode 3 for a fuller description of this problem):- -

x u 1 0 D%(O) = VARPTR(X%(O))
xxx20 1 = 3
xxx30 CALL DAS4 &ID%, D%(O), FLAG%)

3-26

DAS-4 MANUAL

7

PROGRAMMING: MODE 7

3.12 MODE 7 - READ STATUS

Mode 7 returns status data which is especially useful when performing background
acquisition using mode 4. It can inform a foreground operation about the progress
background operation.

On entry the following parameters should be initialized:-

MD% = 7 (mode number)

D%(O thru 3) - (value does not matter)

data
of a

FLAG% - (value does not matter)

then:-

CALL DAS4 (MD%, D%(O), FLAG%)

On return the variables contain data as follows:-

MD% =7 (unchanged)

D%(O) = Channel number of next channel to be converted

D%(l) = Status of interrupt operation:-

’ 0 - Done(finished)
1 - Active (in progress)

D%(2) = Selected interrupt level
(corresponds to setting of mode 0)

D%(3) = Remaining number of conversisns to be done

The following error codes apply to mode 7:-

FLAG% = 0 (no error, 0.k.)
= 1 (driver not initialized)
= 2

For an example of the use of mode 7, see EX4.BAS.

(mode number out of range, <O or >9)

3-27

PROGRAMMING

3.13 MODE

- MODE 8 DAS-4 MANUAL

8 - READ DIGITAL INPUTS IPI-3

Mode 8 allows you to read the state of digital inputs IP1-3. Data returned can range between 0
and 7 corresponding to a l I combinations of the 3 input bits, IP1-3. -_

On entry the following parameters should be initialized:-

MD%=8

D%(O thru 3) - value does not matter

FLAG% =X - value does not matter

CALL DAS4 (ID%, D%(O), FLAG%)
then:-

On return the variables contain data as follows:-

MD%=8

D%(O) conrains input data (range 0 - 7)

D%(1 thru 3) - unchanged

The following error codes apply to mode 8:-

FLAG% = 0 (no error, 0.k.)
= 1 (driver not initialized)
= 2 (mode number out of range, <O or >9)

For an example of digital input using mode 8, see EX8.BAS.

DAS-4 MANUAL PROGRAMMLVG: MODE 9

3.14 MODE 9 - WRITE DIGITAL OUTPUT OPI-4

Mode 9 is used to write digital data to the 4 bit output port, OP1-4..Output data is checked to be
in the range 0 - 15 and if not an error exit (error # 10) occurs.

On entry the following parameters should be assigned:-

MD%=9

D%(O) = output data (range 0-15)

D%(1 thru 3) - value does not matter

FLAG% = X - value does not matter

CALL DAS4 (MD%, D%(O), FLAG%)
then:-

On return the variables contain data as follows:-

MD%=9 - unchanged

D%(O thru 3) - unchanged

The following error codes apply to mode 9:-

FLAG% = 0 (no error, 0.k.)
= 1 (driver not initialized)
= 2
= 10 (Q%(O), output data c0 or >15)

(mode number out of range, <O or >9)

For an example of digital output using mode 9, see EX9.BAS.

3-29

PROGRAMMING DAS-4 I " U A L

3.15 SUMMARY OF ERROR CQDES

If for any reason the FLAG% variable is returned non-zero, then an error has occurred in the
input of data to the CALL routine. Checking of data occurs first in the routine and no action will
be taken if an error condition exists. An immediate return will take place with the error specified
in the FLAG% variable. The only exception to this rule is error #3 (hardware failure or
installation error) , where an attempt will be made to initialize the hardware even if there appears
to be a problem so that other modes may possibly be run to diagnose the problem.

Following is a list of error codes:-

ERROR FAULT

0 No error, operation successful.

1

2

3

4

Driver not initialized. Using another
mode before initializing with mode 0.

Mode number out of range. Specifying MD%
less than 0 or greater than 9.

Hardware enor. Board not at specified VO
address, not in computer or A/D faulty.

Scan limits in wrong order (mode 1)
scan low limit > scan high limit

5

1 0 + N

Mode aborted by keyboard (modes 3,4 & 5)

Error in range of D%(N)
Note:- Errors 10, 11, 12, 13 are caused

by data range errors in D%(O), D%(l),
D%(2), D%(3). F G i a description of
the specific error, look up under mode
number.

Error detection after the CALL routine is easily implemented:-

xxxl0 CALL DAS4 (MD%, D%(O), FLAG%)
xxx20 IF FLAG% o 0 THEN GOSUB yyyyy

or:- (xxx20 IF FLAG% <> 0 THEN PRIhT "Error ";FLAG% : STOP)
. . .
...
yyyyy REM: Error handling subroutine
. . .
Lzzz RETURN

This is useful while debugging a new program, or with a suitable error handling subroutine, can
be left permanently in the program. See EXO-BAS for an example of an error capturing
routine.

3-30

DAS-4 I"Ua PROGRAMMING

3.16 PROGRAMMING EXAMPLES FOR THE DRIVER
MODES

A number of program examples are included on the floppy disk accompanying this manual. They
include:-

1:

2:

3:

4:

5:

6:

7:

8:

EXO.BAS -

EXOO.BAS -

EX2.BAS -

EX3.BAS -

EX4.BAS -

EX5.BAS -
EX8.BAS -
EX9.BAS -

Example of loading the DAS4.BIN driver
at an absolute memory location and
initializing with mode 0.

Example of loading the DAS4.BIN driver
by contracting BASIC's workspace and
initializing with mode 0.

Using mode 2 (single conversion) for
AD, also shows use of mode 1.

Example of doing A/D conversions direct
to an integer array (modes 1 & 3).

Example of doing A/D conversions using
interrupts (modes 1 , 4 , 6 & 7).

Example of using A/D trigger mode 5.

Example of digital input mode 8.

Example of digital output mode 9.

Since all of these programs are in BASIC and are heavily commented, they are readily listed to
provide a better understanding of how to program DAS-4. They can also be edited and adapted to
provide the basis for your own programs.

3.17 OTHER PROGRAMS AND UTILITIES

In addition to the examples above, the DAS-4 distribution disks includes:-

1: DAS4.BIN - The DAS-4 driver routine

2: DAS4.0BJ - The object file of DAS-4 for compilers

3: DAS4.ASM - The DAS4.BIN assembly source listing. Use TYPE
DAS4.ASM to display this or load into your favorite
word processor.

4: HOWTO.BIN - Enter TYPE HOWTO.BIN to find out how to modify
and re-assemble DASABIN from DAS4.ASM (mainly
of interest to assembly language programmers)

5: 1NSTALL.EXE - Base address switch setting aid.

3-3 1

PROGRAMMING DAS-4 MANUAL

6: STRIP.EXE - Example of a "real time" strip chart program
STRIP. B AS compiled from BASIC source STRIP.BAS.

7: CAL.BAS - Calibration and test program
CAL.EXE I (compiled version)

8: LOG.BAS - A simple low speed data logging program that writes
an ASCII disk file (suitable for import to Lotus 1-2-3
etc.)

9: README.DOC - ASCII text file providing information on any
additional undocumented programs.

From time to h e , MetraByte may add other utilities and examples to the disk that are not
documented in this manual. For explanations enter TYPE README.DOC after the DOS prompt
for the latest information.

3.1 8 ASSEMBLY LANGUAGE PROGRAMS AND
CALLS IN OTHER LANGUAGES

To facilitate the use of the I/O driver CALL routines in other languages e.g. C etc. the assembly
object code file DAS4.0BJ is provided. This was assembled using the IBM or Microsoft Macro
Assembler and may be linked to other object modules from compilers etc. When using the linker,
the routine's public name is DAS4 (see next section concerning use of BASIC COMPILER}.
The fully commented source code and listings of the CALL routines will be found on the utility
disk in file DASAASM. Simply run this through the Macro Assembler (MASM DAS4) to
generate a full listing (DAS4.LST). This material is mainly of interest to assembly language
propmmers who will find the source listing an excellent starting point for adapting or
customizing routines to special requirements. The process for generating a BLOADable
DAS4.BlN file is described in HOWT.O.BIN, simply enter TYPE HOWTO.BIN from the DOS
prompt (pressing Ctrl-PrtScreen will give you a hard copy too). If your pro-grammhg is entirely
in BASIC or BASIC COMPILER, you most probably will never need to refer to the source
listing.

3.19 A NOTE ON EXECUTION TIMES - COMPILED
BASIC _-

The throughput of the DAS-4 A/D converter is a function of many interactions but the
fundamental limitation is the speed of the A D which has a conversion time of 20 microseconds
and the sample/hold which takes 10 microseconds or less to settle. This would indicate that you
could perform conversions at 33KHz and this can in fact be accomplished with a tight assembly
language loop. The various A D conversion modes of the driver involve a lot of "housekeeping"
and are much slower, about 3KHz is the maximum speed. Once inside the CALL, all the
functions run at assembly language rates and are not affected by the BASIC interpreter, but other
operations in your pro,pm processing the data between CALLS may produce bottlenecks and
reduce your overall throughput.

3-32

DAS-4 MANUAL PROGRAMMING

One quick fix to improve the speed of an interpreted BASIC program is to compile it using the
IBM Basic Compiler, Microsoft Basic Compiler or Microsoft Quick Basis. When you compile a
BASIC program the significance of the DAS4 in the CALL statement is no longer the same:-

xxxl0 CALL DAS4 @ID%, D%(O), FLAG%)

DAS4 is not interpreted by the compiler as a variable. It becomes the public name of the
subroutine that you wish to call. Before compiling your program, remove lines that BLOAD the
DAS4.BIN routine and all DEF SEG statements that control the location of the routine. These are
not required as the linker will locate the DAS4 routine in memory automatically. After compiling
your program, run the linking session as follows:-

A> LINK yourprog.obj + das4.obj

DAS4.0BJ is on your distribution disk for this purpose. An example of the effect on
performance of compiling a program is supplied in the programs STRIP.BAS and STFUP.EXE.
This is a real time "stxip chart" emulating program. The BASIC interpreter form, STRIP.BAS, is
extremely slow, but when compiled (STRIP-EXE) using the Microsoft Quick Basic compiler
speeds up to a point of being able to display about 30 points/second and give an effective real
time display.

3.20 MULTIPLE DAS-4's IN ONE SYSTEM

What if you wish to operate more than one DAS-4 in a computer? To avoid conflicts, each
DAS-4 must have a different base address and if interrupts are used, be connected to a different
interrupt level, or if on a common level, each board's intempt can only be enabled in turn, one at
a time. Each board must also be assigned its own CALL routine. To do this start by loading the
DAS4.BIN routine at different locations in memory:-

xxxl0 DEF SEG = SG1
xxx20 BLOAD "DAS4.BIN",O
xxx30 SG2 = SG1+ 2048/16
xxx40 DEF SEG = SG2
xxx50 BLOAD "DAS4.BIN',O
xxx60 SG3 = SG2 + 2048/16

'allow 2K for each routine

'etc. for other boards

Now the CALL appropriate to each board can be entered as required. Note that each CALL is
preceded by a DEF SEG appropriate to that board:-

yyy10 DEF SEG = SG1
yyy20 CALL DAS4 (MD%, X%, FLAG%)
yyy30 DEF SEG = SG2
yyy40 CALL DAS4 (MD%, X%, FLAG%)

'etc.

2. Microsoft and Quick Basic are registered trademarks of rhe Microsoft Corporation. 10700 Nonbup Way, Box 97200, B e l l e ~ ~ . WA. 98009

DAS-4 MANUAL

Section 4

A P P LI CAT1 0 N S

4.1 CHANNEL INPUTS

APPLICATIONS

There are 8 analog input channels on DAS-4. Each has an input range of -5.000~ to +4.961v and
are single ended i.e. they share a common low level ground. Input voltages should be applied
between the channel Hi and any L.L. Gnd. Do not return inputs to the digital common
(DIG.COM.) as this is intended as a heavy current return for power supplies and digital logic
signals and may differ from the low level ground by many millivolts. Correct use of the grounds
is very important to obtain consistent noise free measurements as it is easy to introduce
inadvertent ground loops when using single ended connections. The low level grounds are used
for all analog signal returns and when used correctly should only carry signal currents less than a
few milliamps. The seven identical low level ground inputs have been positioned in the
connector so that they lie between the analog channel inputs in the flat connecting cable, this
helps to prevent cross talk. The input current of each channel is about 100 nanoamps at 25 deg.
C. thus presenting a high input impedance to the signal. Also the 508A solid state channel
multiplexer used on the DAS-4 is designed to withstand continuous overloads of +/- 32v on each
channel and transient overloads of several hundred volts. This multiplexer has two other
desirable characteristics, a "break before make" action to prevent shorts between channels while
switching, and all channel switches turn off when the power is off thus preventing signal to
signal shorts when your computer is off.

Channels are numbered 0 - 7 and the required channel is selected by the three lower bits of the
control register byte. The current channel that the multiplexer is set to can be determined by
reading the three lower bits of the status register. The A/D convert routines of modes 2, 3 and 4
of the CALL will automatically increment the multiplexer within the limits set by mode 1. If
mode 1 is not specified scanning will default to the full range 0 - 7. A typical set up after loading
and initializing (mode 0) DAS4.BIN would be:-

xxxl0 MD% = 1 : D%(O) = 2 : D%(l) = 5
xxx20 CALL DAS4 (MD%, D%(O), FLAG%)

Line 20 enables scanning between channels 2 and 5, so the sequence would be 2, 3 ,4 , 5 - 2, 3,
4, 5 - 2, 3 ,4 ,5 - 2 etc.

-50 MD% = 2
xxx60 FOR I = 1 TO 100
xxx70 CALL (MD%, D%(O), FLAG%)
xxx80 PRINT USING "Channel ## = ####";D%(l);D%(O)
xxx90 NEXT I

4- 1

APPLICATIONS

DIFFERENTIAL
INPUT

DAS-4 MANUAL

R B
R A

UOLTFIGE G A I N = -
I

INPUT

4.2 MEASURING VOLTAGE

Voltages in the range +/-5v may be directly applied to the analog inputs. Xgher voltages should
be attenuated, a simple resistive divider should be adequate as shown in Fig. 4.1.

Single ended inputs have a common ground return which is connected to the ground (case) of the
computer. If you are measuring a signal which is floating i.e. has no connection to ground, there
will be no problem but if your signal source is also connected to ground, then there is the
potential for a ground loop which may cause an error or noise in your readings. There are several
ways to avoid this complication, some of the solutions are shown in Figs. 4.2,4.3 & 4.4. All of
these methods provide you with a differential input which allows you to reject any small
differences in ground potential between your computer and signal source.

-

.... tc. OPTIONAL . FILTER
i CAPACITOR RY ---**---. f

HNY ANALOG
INPUT

-
TYPICAL VALUES
KEEP RX LOW AROUND 1 - 1 0 K

1 +L.L. GND. I d COMMON @
(Rx + Ry) 6TTENUATION =

RY

-
- RY - RX TO DAS-4 ATTENUATION

x 2 10K 1 OK t x 10 9 0 K 1 OK
x 120 9 9 K 1K -
x 1000 9 9 9 K 1K

F I G . 4.1 SIMPLE INPUT ATTENUHTGR ._

FIG. 4.2 SIMPLE DIFFERENTIAL RMPLIFIER

The circuit of Fig. 4.2 is the least expensive, but has the drawback of having an input resistance
set by the input resistors. This may be quite large, in the lOKohm to lOOKohm region, but may
be too low for some applications. As an added benefit, the resistors may be chosen to provide
gain or attenuation. This circuit is the classic differential connection for an operational amplifier
and a full description can be found in any book on Operational Amplifiers3.

3. See for instance "Operational Amplitiers - Dcsign and Applications" by Tobey. Graeme & Huelsman. McGraw-Hill 1971.

4-2

DAS-4 MANUAL APPLICATIONS

HI @
-

- LO @ '

Fig 4.3 is a variation on the circuit of Fig 4.2 and adds two voltage followers to this circuit to
provide a very high input impedance for sensitive signals.

Finally if you want to buy a ready made differential amplifier, this part is available from
integrated circuit manufacturers as a single component. In this form it is called an
instrumentation amplifier, some types include gain setting resistors and others require external
resistors. Instrumentation amplifiers are usually optimized for operation at high gains with small
signals and usually have zero drifts of less than a few millionths (microvolts) per degree C..
Although more costly than simple operational amplifiers, operation under high gain conditions
usually demands the extra stability and common mode rejection that instrumentation amplifiers
provide.

If you are using the STA-08 screw connector accessory, there is a small bread board area with
+/- 12v & +5v power that can be used to accommodate attenuators, filters or amplifiers.

+ INPUT

I

TO DAS-4

INSTRUIENTATION OUT
AMPLIFIER INPUT

SENSE A
- INPUT

REFERENCE

LO@
-

I 1
,AN'(ANALOG

-

I TO GAS-4

INPUT
HI@

-L.L. GND. J

FIG. 4.3 HIGH INPUT IMPEDANCE DIFFERENTIAL FIMPLIFIER

1 +L.L. G N D . 2 -
TYPICFIL INSTRUMENTATION AMPLIFIERS:-

LM363 Nf3TIONHL SEMICONDUCTOR
AMP-01 PRECISION MONOLITHICS
AD-524 fWFILOG DEUICES
I NA-102 BURR BROWN

FIG. 4.4 CORRECT CONSCTIONS FOR PIN INSTRUMENTATION WIPLIFIER

4-3

APPLICATIONS D A M MANUAL

For a ready made differential input with instrumentation amplifier, you can add the EXP-16
expansion multiplexer from MetraByte. This is designed to connect directly through flat cable to
the DAS-4 and each EXP-16 provides 16 differential inputs and a common instrumentation
amplifier connected to one of DAS-4's input channels. Up to 8 EXP-16's can be connected to
one DAS-4 providing a total of 128 channels of differential analog input, each group of 16
channels being individually gain selectable. The EXP-16 is powered by the computer and the
sub-multiplex channel is selected by the DAS-4 digital outputs (OP1-4).

The ISO-4 is a 4 channel isolation amplifier that is plug compatible with DAS-4. Up to 32
1 S 0 - 4 ' ~ can be connected to one DAS-4. Each channel provides analog input isolation of up to
500 volts and gains ranging from 1 to 1OOO. See our catalog for detail specifications on the
EXP- 16 and ISO-4.

These various methods provide a variety of different interfacing solutions of different costs and
complexities. Almost certainly, one of these will be appropriate for your requirements. .

4.3 4-20mA CURRENT LOOPS

Process control current loop transducers are easily interfaced to DAS-4 by adding a suitable
shunt resistor acToss the input. Since the maximum current will be 20mA and the maximum input
range is +5v, a 250 ohm precision shunt resistor will be required. This should be of low
temperature coefficient metal film or wire wound construction for stability with time and
temperature. Using this interface, the 4-2OmA working range of the current loop corresponds to
102 bits of input, a resolution of about 1%.

4.4 THE REFERENCE

The 5v A/D voltage reference (Vref) is brought out for users. It may be used for offsetting
signals etc. but should not be heavily loaded. The maximum available output current is 5mA.

4.5 USING DIGITAL INPUT/OUTPUT

DAS-4 provides 4 'ITLDTL compatible digital outputs (OP1-4) and 3 TTLDTL, compatible
digital inputs.

The digital outputs correspond to bits 4 - 7 of the control register and are accessed by writing to
the control register (see section 3.1.5). When you write to the control register you will usually
need to maintain the state of bits 0 - 3 that control the multiplexer address and interrupt enable.
The DAS4.BIN routine does this for you by holding an "image" of the control register in
temporary storage. If you are not using this routine, it may be advisable to set up a similar
capability in your own software. The multiplexer address bits 0 - 2 can always be determined by
reading the status register, so the only state that has to be stored is whether or not the interrupt is
enabled.

Digital outputs can sink 8mA (5 standard TTL loads or 20 LSTTL loads). Lf you wish to
interface to CMOS, lKohm pull-up resistors connected to +5v should be attached to the outputs.

4-4

-

.-

I

DAS-4 MANUAL APPLICATIONS

This will raise the logic high output level from its minimum ‘ITL level of 2 . 4 ~ to +5v suitable for
CMOS interface.

If EXP-16 or IS04 expansion interface(s) are used, then the digital outputs are usually fully
committed to providing.the sub-multiplex address.

Digital inputs are available through bits 4 - 6 of the status register (see section 3.1.4). The digital
data is easily obtained by masking out these bits using a logical AND operation. The inputs
present a -0.4m.A loading corresponding to 1 L S T L load,

4.6 ADDING MORE ANALOG INPUTS

You may add sub-multiplexers to any or all of the 8 analog inputs. MetraE3yte’s EXP-16 provides
16 channels per input and is directly plug compatible with DAS-4. Up to 8 EXP 16’s can be
added to one DAS4 providing a total of 128 channels. The sub-multiplexer address is set by
digital outputs OP1-4 so that a typical scan would be to use Mode 2 and then increment the sub-
multiplexer address with Mode 9 and repeat the scan of Mode 2 on the next set of sub-multiplex
channels etc.

The ED-16 cards are designed to cascade with flat cable and connectors similar to that used to
connect to DAS-4. One cable should be provided for each EXP-16. All analog channel
connections are made by screw connectors, and each EXP-16 (goup of 16 channels) can be
operated at a different gain. In this way a system can be confiewed with a variety of different
channel functions and gains, single ended and differential.

4.7 INTERFACE TO TRANSDUCERS,
THERMOCOUPLES ETC.

Low level transducers such as thermocouples and strain gage bridges (load cells, pressure &
force transducers) require amplification before applying to the high level DAS4 inputs. The
EXP- 16 expansion multiplexer kcorporates an instrumentation amplifier that can provide stable
amplification and also includes circuitry that allows cold junction compensation of
.thermocouples. EXP-16 will handle most interfacing requirements to D.C. output transducers
and also includes spaces for filters, shunts and attenuators. In general, the limited 8 bit resolution
of DAS-4 will not give very precise results when used with thermocouples, MetraByte’s 12 bit
DAS-8 will give better performance. Most thermocouples (J,K,T & E characteristics) produce
about 40 rnicrovolts/deg C.. Amplified by a gain of 1000, this corresponds to 40 millivolts/deg C.
and since the resolution of the DAS-4 is 39 millivolts/bit, each bit will correspond to 1 deg. C.
which for many purposes is a coarse resolution. This is why a 12 bit converter with 16 times
better resolution can will give better results. However, for alarm or threshold sensing, the DAS-4
may be adequate when used with a thermocouple, or if the accuracy is not very demanding.

For inexpensive temperature measurement in the -50 to +125 deg. C. temperature range,
semiconductor temperature transducers are a good choice. The most popular types are the
AD590 (Analog Devices) which behaves like a constant current source with an output of 273uA
at 0 deg.C. and a scaling of 1uNdeg.C. and the LM335 (National Semiconductor) that has an
output of 2.73 volts at 0 degC. and a temperature coefficient of lOmV/deg.C.. Both of these
devices can be powered from the +12v available from the computer and interfaced to DAS-4

4-5

APPLICATIONS DAS-4 MANUAL

either directly or through a simple operational amplifier. These can give much better resolution
than a thermocouple for ambient temperature measurements, and are easier to interface.

4.8 POWER OUTPUT FROM THE DAS-4 CONNECTOR

The +5v and +/-12v I.B.M. P.C. bus supplies are available on the DAS-4 rear connector. These
are provided as a convenience to users who wish to add external signal conditioning and logic
circuits but they should be used with caution and an awareness that these same supplies are
connected to the internal circuitry of your PC. The +/-12v can be used for analog circuits,
operational amplifiers, comparators, indicators relays etc. and the +5v will power logic circuits,
TTL, CMOS etc. Careful use of these supplies can often avoid the expense and bulk of external
supplies to power your signal sources and the nuisance of multiple power switches.

The available power will depend on the type of computer and what other peripheral cards are
installed. Consult your users technical reference manual for details on the power supply
specification. Due to cabling and connector limitations, it is recommended that you limit current
draw to less than 1 amp from any supply (the -12v supply is usually limited to a few 100
milliamps). Most analog circuits will consume a few tens of milliamps which is negligible.

If the power outputs are subjected to an over current (overload) or over voltage condition, most
power supplies are designed to shut down and the computer will have to be turned off and turned
on again to restore operation after removing the fault. Although these protective devices are built
into your computer supply, do not depend on them, use your computer power with care and
consideration. If there is any possibility of frequent short circuits or shorts to high voltages and
signal sources which could damage your whole computer, then it is strongly advisable to
provide an external (and more easily repaired) power supply for your user circuits.

4.9 PRECAUTIONS IN USE - NOISE, GROUNDLOOPS
ANDOVERLOADS

Unavoidably, data acquisition systems give users access to inputs to the computer. Do NOT,
whatever else vou do. Pet these inDuts mixed U D with the A.C. line. An inadvertent short can in
an instant can cause extensive and costly damage to D A M as well as your computer.
MetraByte can accept no liability for this type of accident. As an aid to avoiding this problem:-

1. - Avoid direct connections to the A.C. line.

2. - Make sure that all connections are tight and sound so that
signal wires are not likely to come loose and short to high
voltages.

3. - Use isolation amplifiers and transformers where
necessary.

There are two ground connections on the rear connector called DIG. COM. and L.L. GND.
Digital common is the noisy or "dirty" ground that is meant to carry all digital signal and heavy
current (power supply) currents. Low level ground is the signal ground for all analog input
functions. It is only meant to carry signal currents (less than a few mA) and is the ground

4- 6

DAS-4 MANUAL APPLICATIONS

reference for the A/D channels. Due to connector contact resistance and cable resistance there
may be many millivolts difference between the two grounds although they are connected to each
other and the computer and power line grounds on the DAS-4 board.

4-7

DAS-4 MANUAL

--
CALIBRATION AND TEST

Section 5

CALIBRATION AND TEST

5.1 CALIBRATION AND TEST

The 8 bit resolution and 39 millivolt bit size of the DAS-4 is so coarse that once correctly set,
units will most likely never require further calibration. If you wish to check the calibration, run
CAL.EXE from DOS, or CAL-BAS from BASIC(A). You should connect a voltage calibrator or
multimeter with a variable D.C. source attached connected to one or more of the inputs, the CAL
pr0,ga.m will guide you through the necessary adjustments. Operation of the digital outputs and
inputs can also be checked from the calibration program. The DAS4 calibration potentiometer
locations are shown in Fig, 5.1.

5.2 SERVICE AND REPAIR

MemByte products are warranted for 1 year against defects in workmanship and material. Most
data acquisition products are susceptible to damage from external over voltages such as
connecting inputs or grounds to line voltages. We hope you will take precautions to avoid this
sort of calamity but if you do, there are a couple of remedies.

The integrated circuits that provide the digital input and output and the analog multiplexer are
installed in sockets. In the event that you apply an over voltage and succeed in "zapping" an
i n p ~ or output, you can replace these inexpensive parts yourself if you wish.

Alternatively, MetraByte can service your DAS-4, simply call (617)-880-3000 and ask for
customer service. We will issue you with a Return Material Authorization (R.M.A.) number
which should be attached to any packages returned to MetraByte. Please do not return material
without an R.M.A. number as it greatly complicates the handling of the material and paperwork.
If the fault is not obvious, it will help our repair technicians if you include a brief note describing
the problem and under what conditions it occurs.

5.3 TECHNICAL ASSISTANCE

MetraByte has a staff of technical assistance engineers. Should you have a problem or require
help or advice on using any MetraByte product, call (617)-880-3000. Technical assistance is free
of charge and is available on Mondays thru Fridays from 9:OO a.m. to 5.00 p.m. E.S.T.

CALIBRATION AND TEST

A / D F u l l Scale

A'D r

*

f

I

--
-

DAS-4 MANUAL

I n t e r r u p t Level Select

(X = i n a c t i v e)

Base A d d r e s s

s w i t c h

Fig. 5.1 DAS-4 A D J U S ' M E N T S , JUMPERS AND S W I T C H L O C A T I O N S

DAS-4 MANUAL

7

APPENDIX A: CONNECTIONS

Appendix A

CONNECTIONS

A.l MAIN I/O CONNECTOR

The main analog and digital I/O is via a 37 pin D type connector that projects through the
computer case at the rear of the board. The pin functions are as follows (see Fig A.l for
locations):-

- PIN NAME FUNCTION

1 +12v +12v power supply from P.C.
bus (observe loading limits)

2 - No connection

3 - No connection

4 - No connection

5 - No connection

6 - No connection

7 O P 1 . Digital output #1

8 OP2 Digital output #2

9 OP3 Digital output #3

10 OP4 Digital output #4

11 DIG.COM. Digital Common. Return
for all logic signals and
power supply currents.
Connected to computer frame.

12 L.L.GND.
13 L.L.GND.
14 L.L.GND.
15 L.L.GND.
16 L.L.GND.
17 L.L.GND.
18 L.L.GND.

Low level grounds.
These are common returns
and shields for the analog
input channels.

A- 1

- APPENDIX A: CONNECTIONS DAS-4 MANUAL

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

VREF

- 12v

-

-

-

INT. IN.

IP1

IP2

IP3

DIG. COM.

t5v

IN 7

IN6

LN5

IN4

IN3

IN 2

IN1

IN 0

+5.0Ov(+/-O.2~) precision
reference voltage from A/D.

- 12v power from P.C. bus.
(observe loading limits).

No connection

No connection

No connection

Interrupt input. Positive
edge triggered input.

Digital input #1

Digital input #2

Digital input #3

Digital common. (same as
pin 11).

+5v power from P.C. bus
(observe loading limits).

Channel #7 analog input

Channel #6 analog input

Channel #5 analog input

Channel #4 analog input

Channel #3 analog input

Channel #2 analog input

Channel #1 analog input

Channel #O analog input

The mating connector for DAS-4 is a standard 37 pin D type female such as IlT/Cannon
#DC-37S for soldered connections. Insulation displacement (flat cable) types are readi!y
available e.g. Amp #745242- 1.

A-2

DAS-4 MANUAL

A.2 REARVIE\

Vref

L.L. GND.

L.L. GND.

L.L. GND.

L.L. GND.

L.L. GND.

L.L. GND.

L.L. GND.

DIG. COM.

OP4

Digital
outputs

N.C.

OF DAS-4 CO

Rear view

N.C.

N.C.

N.C.

N.C.

+ 12v(’)

b
37

36

35

34

33

32

31

30

29

28

27

26

25

24

23

22

21

20

18

17

16

15

14

13

12

11

LO

9

8

7

6

5

4

3

2

1

APPENDIX A: CONNECTIONS

ECTOR

ANALOG IN 0 ?
ANALOGIN1 j

ANALOGIN2 1
I Analog signal

f forreturn)
ANALOG IN 3 inputs (use L.L. GND’S.

ANALOGIN4 1
ANALOGINS 1

ANALOGIN6 1
ANALOG IN 7)
+5v (*)

DIG. COM.

IP3J

Digital inputs

IP1 ”’:
INTERRUPT INPUT

N.C.

N. C.

N.C.

- 12v(*)

* - These are power outputs from the computer.

c

A-3

DAS-4 MANUAL -

- Appendix B

~ -

APPENDIX B: SPECIFICATIONS

SPECIFICATIONS

B.l POWER CONSUMPTION

+5v supply - 170mA typ. / 240mA max.
+12v supply - 7mAtyp./llmArnax.
-12v supply - 7mA typ. / 11mA ma.

-
B.2 ANALOG INPUT SPECIFICATIONS

I

8 analog input channels each with the following specification:-

- Resolution - 8 bits. (39mV/bit)

Accuracy - 0.2% of reading +/- 1 bit.

Full scale - +/-5 volts

coding - Offset binary
- - Over voltage Continuous single channel to +/-35v

Configuration - Single ended.
__

- Input current lOOnA max at 25 deg.C.

- Temperature
Coefficient Zero, +/-lo microvolt/deg.C. max.

Gain or F.S., +/-5Oppddeg.C. max.

B.3 A/D SPECIFICATION

- Successive approximation. m e
Resolution - 8 bits

Conversion - 20 microseconds typ.
time. 30 microseconds m a .

B- 1 c

APPENDIX B: SPECIFICATIONS DAS-4 MANUAL

Monotonicity - Guaranteed over operating temperature range.

- Linearity +/-1 bit.

Zero drift - 10ppddeg. C. max.

Gain drift - 50 ppddeg. C max.

B.4 SAMPLE HOLD AMPLIFIER

Acquisition - 10 microseconds to 0.1% typ.
time

Dynamic - 2mV @ 2000v/sec.
sampling error

for full scale step input

B.5 REFERENCE VOLTAGE OUTPUT

Reference - + ~ . O V +/- 0 . 2 ~
voltage

Temperature - 50 ppddeg.C max.
coefficient

Load current - +/-5mA max.

B.6 DIGITAL I/O

- OP1-4 output
low voltage

high voltage

0 . 5 max at Isink = 8.0mA

OP 1-4 output - 2 . 7 ~ min at Isource = -0.4mA

IP1-3 input - 0 . 8 ~ max
low voltage

IP1-3 input - -0.4mA max
low current

IP1-3 input - 2 . 0 ~ min

IP1-3 input - 20uA max. @ 2 . 7 ~

high voltage

current

B-2

DAS-4 MANUAL

-

APPENDIX B: SPECIFICATIONS

B.7 INTERRUPT INPUT

- Positive edge triggered Type
Level - 2 - 7 jumper selectable

-

Enable - Via INTE of CONTROL register

Interrupts are latched in an internal flip-flop on the DAS-4 board. The state of
this flip-flop corresponds to the INT bit in the STATUS register. The intempt
flip-flop is cleared by a write to the CONTROL register. Service routines should
acknowledge and re-enable the interrupt flop.

B.8 POWER OUTPUTS

IBM P.C. bus - +5v & +I- 12v
supplies

Tolerance - +5v +/-5%
+ 1 2 ~ +/-5%
-12v +/-lo%

Loading - Dependent on other peripherals
(see Section 4.8)

B.9 GENERAL ENVIRONMENTAL

Operating - 0 to 50 deg. C.
temperature
range.

Storage - -20 to +70 deg.C.
temperature
range

Humidity - 0 to 90% non-condensing.

Weight - 4 oz. (120 gm.)

DAS-16G MANUAL

- -
APPENDIX C: INTEGER VAR.IABLE STORAGE

Appendix C

STORAGE OF INTEGER VARIABLES

Data is stored in integer variables (5% type) in 2’s complement form. Each integer variable uses
16 bits or 2 bytes of memory. 16 bits of data is equivalent to values from 0 to 65,535 decimal,
but the 2’s complement convention interprets the most significant bit as a sign bit so the-actual
range becomes -32,768 to +32,767 (a span of 65,535). Numbers are represented as follows:-

Low bvte High byte
D7 . . DO D7 . . DO

+32,767 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

+lO,OOO 0 0 1 0 0 1 1 1 o o o i o o o o
+l 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

- 10,000 1 1 0 1 1 0 0 0 i i i i o o o o
-32,768 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
-1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

A

Sign bit (1 if negative, 0 if positive)

Integer variables are the most compact form of storage for the 12 bit data from the A/D converter
and 16 bit data of the 8254 interval h e r and so to conserve memory and disk space and
optimize execution speed, all data exchange via the CALL is through integer type variables. This
poses a programming problem when handling unsigned numbers in the range 32,768 to 65,535.

If you wish to input or output an unsigned integer greater than 32,767 then i t is necessary to
work out what its 2’s compliment signed equivalent is. As an example, assume we want to load a
16 bit counter with 50,000 decimal. An easy way of turning this to binary is to enter BASIC and
execute PRINT HEX$(50000). This returns C350 or binary 1100 0011 0101 0000. Since the
most significant bit is 1 this would be stored as a negative integer and in fact the correct integer
variable value would be 50,000 - 65,536 = -15,536. The programming steps for switching
between integer and real variables for representation of unsigned numbers between 0 and 65,535
is therefore:-

From real variable N (0 <= N <= 65,535) to integer variable N%:-
X X X l O IF N<=32767 THEN N% = N ELSE N% = N - 65536

From integer variable N% to real variable N:-
xxx20 IF N% >= 0 THEN N=N% ELSE N = N% + 65536

c- 1

Index

A
A/D - channel inputs 4-1
A/D - conversion by software command 3- 17
A/D - conversions direct to array 3-19
A/D - conversions transfer by interrupt 3-21
A D - data format 3-3
A/D - reading data 3-3
A/D - sample rate 3-32
A/D - specification 1-1, B-1
A/D - starting conversion 3-2
A/D - stams of operation 3-27
Accessories 1-2
Adding analog inputs 4-5
Address map 3-2
Amplifiers & attenuators 4-2
Analog input channels 4- 1
Analog inputs B-1
Analog trigger 3-23
Applications 1-2,4-1
Assembly language programming 3-32
Assistance - technical 5-1

Base address 2-2
Base address switch 2-2
Base I/O address 2-1
BASIC - some useful commands 3-5
BASIC Compiler 3-32

Calibration 5- 1
CALL routine: Format 3-8,3-9
CALL routine: Initialization 3-13
CALL routine: Loading 3-6
CALL routine: Modes 3-12
Channel inputs 4- 1
Connecting analog inputs 4-1
Connector assignments A-1
Control register 3-4
Current loops 4-2OmA 4-4

DAS4.ASM driver source listing 3-1,3-32

B

C

D
DAS4.BI.N 1-1, 3-1,3-6

Index- 1

INDEX DAS-4 MANUAL

DAS4.0BJ 3-33
Differential inputs 4-2
Digital Common 4-6
Digital VO 1-1,4-4, B-2
Digital VO - Output to OP1-4 3-29
Digital VO - Reading IP1-3 3-28
Disk back up 2-1

Environmental specification B-3
Error codes 3-30

Examples of programming 3-31
Execution time 3-32
Expansion multiplexer 1-2,4-4,4-5

Ground loops 4-6
Grounds 4-6

E

EX0 & EXOO.BAS 3-8

G

1NSTALL.EXE 2-2
Installation 2- 1
Instrumentation amplifier 4-3
Integer variables -2’s complement storage C- 1
Interrupt - data transfer after operation 3-25
Interrupt - determining status of transfer 3-27
Intempt input 1-1, B-3
Isolated analog inputs 1-2

L
L.L. Ground 4-6
Loading DAS4.BIN 3-6
Low-level signals 4-3

Measuring voltage 4-2
Memory - data transfer after interrupt 3-25
Memory size 3-7
Mode 0 - Initialize 3-13
Mode 1 - Set scan limits 3-15
Mode 2 - Single A/D conversion 3-17
Mode 3 - A/D convert to array 3-19
Mode 4 - A/D convert on interrupt 3-21
Mode 5 - Analog trigger 3-23
Mode 6 - Transfer data after interrupt 3-25
Mode 7 - Read status 3-27
Mode 8 - Digital input 3-28
Mode 9 - Digital output 3-29
Mode error codes 3-30
Multiple DAS-4 boards 3-33
Multiplexer: Setting scan limits 3-15
Multiplexer control 3-5

..

. ...

-. .

Index-2

DAS-4 MANUAL INDEX

0

P
ON TlMER command 3-5

Power consumption B- 1
Power outputs 1-1,4-6, B-3
Precautions in use 4-6
Process control current loops 4-4
Programming 3-1
Programming - example sequences 3-31

Reference Voltage 1-1, B-2
Repair 5- 1

Sample-hold B-2
Sampling rate 3-32
Screw terminal board 1-2
Semiconductor temperature sensors 4-5
Setup 2-1
Single ended inputs 4-2
software 1-1
Software supplied on disk 3-31
Source listing 1-2
Specifications B- 1
Speed 3-32
Status register 3-3
STRIP.EXE strip chart program 3-33

Technical assistance 5-1
Temperature measurement 4-5
Temperature sensors - solid state 4-5
Thermocouple measurement 1-2

Voltage reference 4-4

R

S

T

V

W
WAITc01n~11and3-5

Index-3

	w/o:
	TOC:

