Tektronix[®]

2 Series Mixed Signal Oscilloscopes MSO22 and MSO24

Specifications and Performance Verification

Warning: The servicing instructions are for use by qualified personnel only. To avoid personal injury, do not perform any servicing unless you are qualified to do so. Refer to all safety summaries prior to performing service.

Revision B

Register now! Click the following link to protect your product. tek.com/register

077-1711-02 July 2023

Copyright © 2023, Tektronix. 2023 All rights reserved. Licensed software products are owned by Tektronix or its subsidiaries or suppliers, and are protected by national copyright laws and international treaty provisions. Tektronix products are covered by U.S. and foreign patents, issued and pending. Information in this publication supersedes that in all previously published material. Specifications and price change privileges reserved. All other trade names referenced are the service marks, trademarks, or registered trademarks of their respective companies.

TEKTRONIX and TEK are registered trademarks of Tektronix, Inc.

Tektronix, Inc. 14150 SW Karl Braun Drive P.O. Box 500 Beaverton, OR 97077 US

For product information, sales, service, and technical support visit tek.com to find contacts in your area.

For warranty information visit tek.com/warranty-status-search.

Contents

Important safety information	4
General safety summary	4
To avoid fire or personal injury	
Probes and test leads	6
Service safety summary	7
Terms in this manual	7
Terms on the product	
Symbols on the product	8
Specifications	
Analog signal acquisition system	9
Triggering system	
Digital channel acquisition	14
Digital pattern generator	
Arbitrary function generator	15
Processor system	17
Display system	
Interfaces, input, and output ports	
Data handling characteristics	
Power supply system	
Safety characteristics	
Mechanical characteristics	
Electromagnetic compatibility	
Environmental	
Regulatory compliance	
Performance verification procedures	
Test records	
Check probe compensation	
Check Aux In	
Check DC gain accuracy	
Check analog bandwidth	
Check digital threshold accuracy with 2-MSO option	
Check long term sample rate	
Check AFG DC offset accuracy	39

Important safety information

This manual contains information and warnings that must be followed by the user for safe operation and to keep the product in a safe condition.

To safely perform service on this product, see the Service safety summary that follows the General safety summary.

General safety summary

Use the product only as specified. Review the following safety precautions to avoid injury and prevent damage to this product or any products connected to it. Carefully read all instructions. Retain these instructions for future reference.

This product shall be used in accordance with local and national codes.

For correct and safe operation of the product, it is essential that you follow generally accepted safety procedures in addition to the safety precautions specified in this manual.

The product is designed to be used by trained personnel only.

Only qualified personnel who are aware of the hazards involved should remove the cover for repair, maintenance, or adjustment.

Before use, always check the product with a known source to be sure it is operating correctly.

This product is not intended for detection of hazardous voltages.

Use personal protective equipment to prevent shock and arc blast injury where hazardous live conductors are exposed.

While using this product, you may need to access other parts of a larger system. Read the safety sections of the other component manuals for warnings and cautions related to operating the system.

When incorporating this equipment into a system, the safety of that system is the responsibility of the assembler of the system.

To avoid fire or personal injury

Use proper power cord

Use only the power cord specified for this product and certified for the country of use. Do not use the provided power cord for other products.

Ground the product

This product is grounded through the grounding conductor of the power cord. To avoid electric shock, the grounding conductor must be connected to earth ground. Before making connections to the input or output terminals of the product, ensure that the product is properly grounded. Do not disable the power cord grounding connection.

Power disconnect

The power cord disconnects the product from the power source. See instructions for the location. Do not position the equipment so that it is difficult to operate the power cord; it must remain accessible to the user at all times to allow for quick disconnection if needed.

Use proper AC adapter

Use only the AC adapter specified for this product.

Connect and disconnect properly

Do not connect or disconnect probes or test leads while they are connected to a voltage source.

Use only insulated voltage probes, test leads, and adapters supplied with the product, or indicated by Tektronix to be suitable for the product.

Connect the probe output to the measurement instrument before connecting the probe to the circuit under test. Connect the probe reference lead to the circuit under test before connecting the probe input. Disconnect the probe input and the probe reference lead from the circuit under test before disconnecting the probe from the measurement instrument.

De-energize the circuit under test before connecting or disconnecting the current probe.

Observe all terminal ratings

To avoid fire or shock hazard, observe all rating and markings on the product. Consult the product manual for further ratings information before making connections to the product.

Do not exceed the Measurement Category (CAT) rating and voltage or current rating of the lowest rated individual component of a product, probe, or accessory. Use caution when using 1:1 test leads because the probe tip voltage is directly transmitted to the product.

Do not apply a potential to any terminal, including the common terminal, that exceeds the maximum rating of that terminal.

Do not float the common terminal above the rated voltage for that terminal.

The measurement terminals on this product are not rated for connection to Category III or IV circuits.

Do not connect a current probe to any wire that carries voltages above the current probe voltage rating.

Do not operate without covers

Do not operate this product with covers or panels removed, or with the case open. Hazardous voltage exposure is possible.

Avoid exposed circuitry

Do not touch exposed connections and components when power is present.

Do not operate with suspected failures

If you suspect that there is damage to this product, have it inspected by qualified service personnel.

Disable the product if it is damaged. Do not use the product if it is damaged or operates incorrectly. If in doubt about safety of the product, turn it off and disconnect the power cord. Clearly mark the product to prevent its further operation.

Before use, inspect voltage probes, test leads, and accessories for mechanical damage and replace when damaged. Do not use probes or test leads if they are damaged, if there is exposed metal, or if a wear indicator shows.

Examine the exterior of the product before you use it. Look for cracks or missing pieces.

Use only specified replacement parts.

Replace batteries properly

Replace batteries only with the specified type and rating.

Recharge batteries for the recommended charge cycle only.

Wear eye protection

Wear eye protection if exposure to high-intensity rays or laser radiation exists.

Do not operate in wet/damp conditions

Be aware that condensation may occur if a unit is moved from a cold to a warm environment.

Do not operate in an explosive atmosphere

Keep product surfaces clean and dry

Remove the input signals before you clean the product.

Provide proper ventilation

Refer to the installation instructions in the manual for details on installing the product so it has proper ventilation.

Slots and openings are provided for ventilation and should never be covered or otherwise obstructed. Do not push objects into any of the openings.

Provide a safe working environment

Always place the product in a location convenient for viewing the display and indicators.

Avoid improper or prolonged use of keyboards, pointers, and button pads. Improper or prolonged keyboard or pointer use may result in serious injury.

Be sure your work area meets applicable ergonomic standards. Consult with an ergonomics professional to avoid stress injuries.

Use only the Tektronix rackmount hardware specified for this product.

Probes and test leads

Before connecting probes or test leads, connect the power cord from the power connector to a properly grounded power outlet.

Keep fingers behind the protective barrier, protective finger guard, or tactile indicator on the probes. Remove all probes, test leads and accessories that are not in use.

Use only correct Measurement Category (CAT), voltage, temperature, altitude, and amperage rated probes, test leads, and adapters for any measurement.

Beware of high voltages

Understand the voltage ratings for the probe you are using and do not exceed those ratings. Two ratings are important to know and understand:

- · The maximum measurement voltage from the probe tip to the probe reference lead.
- The maximum floating voltage from the probe reference lead to earth ground.

These two voltage ratings depend on the probe and your application. Refer to the Specifications section of the manual for more information.

WARNING: To prevent electrical shock, do not exceed the maximum measurement or maximum floating voltage for the oscilloscope input BNC connector, probe tip, or probe reference lead.

Connect and disconnect properly.

Connect the probe output to the measurement product before connecting the probe to the circuit under test. Connect the probe reference lead to the circuit under test before connecting the probe input. Disconnect the probe input and the probe reference lead from the circuit under test before disconnecting the probe from the measurement product.

De-energize the circuit under test before connecting or disconnecting the current probe.

Connect the probe reference lead to earth ground only.

Do not connect a current probe to any wire that carries voltages or frequencies above the current probe voltage rating.

Inspect the probe and accessories

Before each use, inspect probe and accessories for damage (cuts, tears, or defects in the probe body, accessories, or cable jacket). Do not use if damaged.

Ground-referenced oscilloscope use

Do not float the reference lead of this probe when using with ground-referenced oscilloscopes. The reference lead must be connected to earth potential (0 V).

Floating measurement use

Do not float the reference lead of this probe above the rated float voltage.

Service safety summary

The Service safety summary section contains additional information required to safely perform service on the product. Only qualified personnel should perform service procedures. Read this Service safety summary and the General safety summary before performing any service procedures.

To avoid electric shock

Do not touch exposed connections.

Do not service alone

Do not perform internal service or adjustments of this product unless another person capable of rendering first aid and resuscitation is present.

Disconnect power

To avoid electric shock, switch off the product power and disconnect the power cord from the mains power before removing any covers or panels, or opening the case for servicing.

Use care when servicing with power on

Dangerous voltages or currents may exist in this product. Disconnect power, remove battery (if applicable), and disconnect test leads before removing protective panels, soldering, or replacing components.

Verify safety after repair

Always recheck ground continuity and mains dielectric strength after performing a repair.

Terms in this manual

These terms may appear in this manual:

WARNING: Warning statements identify conditions or practices that could result in injury or loss of life.

CAUTION: Caution statements identify conditions or practices that could result in damage to this product or other property.

Terms on the product

These terms may appear on the product:

- · DANGER indicates an injury hazard immediately accessible as you read the marking.
- · WARNING indicates an injury hazard not immediately accessible as you read the marking.
- · CAUTION indicates a hazard to property including the product.

Symbols on the product

When this symbol is marked on the product, be sure to consult the manual to find out the nature of the potential hazards and any actions which have to be taken to avoid them. (This symbol may also be used to refer the user to ratings in the manual.)

The following symbols(s) may appear on the product.

CAUTION: Refer to

Manual

Standby

Protective Ground (Earth) Terminal

Functional Earth Terminal

Earth Terminal

Use only on an insulated wire.

Connection and

disconnection to

hazardous bare wire

permitted.

Breakable. Do not drop.

Do not connect to or remove from an uninsulated conductor that is HAZARDOUS LIVE.

Specifications

This chapter contains specifications for the instrument. All specifications are typical unless noted as guaranteed. Typical specifications are provided for your convenience but are not guaranteed. Specifications that are marked with the \checkmark symbol are guaranteed and checked in Performance Verification.

To meet specifications, these conditions must first be met:

- The instrument must have been calibrated in an ambient temperature between 18 °C and 28 °C (64 °F and 82 °F).
- The instrument must be operating within the environmental limits. (See Environmental characteristics).
- The instrument must be powered from a source that meets the specifications. (See Power supply system on page 20).
- The instrument must have been operating continuously for at least 20 minutes within the specified operating temperature range.
- You must perform the Signal path compensation procedure after the warmup period. See the Signal path compensation procedure for how to perform signal path compensation. If the ambient temperature changes more than 5 °C (9 °F), repeat the procedure.

Analog input channels	MSO22: 2 channel MSO24: 4 channel
Input coupling	AC, DC
Input termination selection	1 MΩ only
Input termination, 1 M Ω DC-	$1 M\Omega \pm 1\%$
coupled	1 IVI12 ± 1 70
Input capacitance, 1 M Ω DC-coupled	14 pF ± 3 pF
Digitized bits	8 bits
	Displayed vertically with 25 digitization levels (DL) per division, 10.24 divisions dynamic range. A converter can resolve the smallest voltage level change by using an 8-bit A–D converter. This value is also known as the Least Significant Bit (LSB).
Sensitivity range (coarse), 1 M Ω	1 mV/Div to 10 V/Div in a 1-2-5 sequence
Sensitivity range (fine)	Continuous adjustment from 1 mV/DIV to 10 V/DIV, 1 M Ω 1x
Sensitivity resolution (fine)	≤10% of current setting
Maximum input voltage, 1 M Ω	Maximum input voltage at the BNC, 300 V _{rms} . Installation category II
DC-coupled	Derate at 20 dB/decade between 3 MHz to 30 MHz
	Derate at 15.5 dB between 30 MHz to 300 MHz; above 300 MHz, 5 V_{rms}
	Maximum peak input voltage at the BNC: ± 424 V
DC gain accuracy	Guaranteed for 2 mV/div and above, typical otherwise. Specification valid after 30 minute warm-up and Signal Path Compensation (SPC) at ambient.
	<2 mV/div: ±3.0%, typical, derated at 0.100%/°C above 30 °C
	≥2 mV/div: ±2.0%, derated at 0.100%/°C above 30 °C
Offset ranges	1 mV/div to 63.8 mV/div : ±1 V
	63.9 mV/div to 999.5 mV/div : ±10 V
	1 V/div to 10 V/div : ±100 V
Position range	±5 divisions

Analog signal acquisition system

Specifications

Waveforms for average acquisition mode 2 to 10.24 k waveforms; default of 16 waveforms DC voltage measurement accuracy, average acquisition mode The basic accuracy specification applies directly to any sample and to the following measurements: high, accuracy, average acquisition involving two of these measurements. The delta volts (difference voltage) accuracy specification applies directly to the following measurements; positive overshoot, Pk-Pk, and amplitude. Offset, position, and the constant offset term must be converted to volts by multiplying by the appropriate volts/dv term. The limits are as follows: Measurement type DC accuracy (in volts) Average of > 16 waveforms + ((DC Gain accuracy X) feeding -(offset - position + 0ffset accuracy + 0.1 div + 1 MV) Delta volts between any two averages of ≥16 ± (DC Gain accuracy X) reading + 0.08 div + 1.4 waveforms acquired with the same oscilloscope ± (DC Gain accuracy X) reading + 0.08 div + 1.4 waveforms acquired with the same oscilloscope ± (DC Gain accuracy X) reading + 0.08 div + 1.4 waveforms acquired with the same oscilloscope ± (DC Gain accuracy X) reading + 0.08 div + 1.4 waveforms acquired with the same oscilloscope ± (DC Gain accuracy X) reading + 0.08 div + 1.4 waveforms acquired with the same oscilloscope ± (DC Gain accuracy X) reading + 0.08 div + 1.4 waveform acquired with the same oscilloscope ± (DC Gain accuracy X) reading + 0.08 div + 1.4 w	Offset accuracy	All terms must be converted to volts by multiplying by the current volts/div setting. >2 mV/div: \pm (0.005 X offset – position + 0.2 div) \leq 2 mV/div: \pm (0.005 X offset – position + 0.3 div)			
accuracy, average acquisition low, maximum, minimum, mean, cycle mean, RMS, and cycle RMS. The delta volts accuracy specification applies to subtractive calculations involving two of these measurements. The delta volts (difference voltage) accuracy specification applies directly to the following measurements; positive overshoot, Pk-Pk, and amplitude. Offset, position, and the constant offset term must be converted to volts by multiplying by the appropriate volts/div term. The limits are as follows: Measurement type DC accuracy (in volts) Average of > 16 waveforms ± (IDC Gain accuracy) X [reading -(offset - position + Offset accuracy + 0.1 div + 1 mV) Delta volts between any two averages of ≥16 waveforms acquired with the same oscilloscope setup and ambient conditions ± (DC Gain accuracy X [reading] + 0.08 div + 1.4 mV) Bandwidth selections 20 MHz, 100 MHz, 200 MHz, 350 MHz, and 500 MHz (when equal to or less than instrument's rated bandwidth) below 5 mV/div, 500 MHz bandwidth is specified as typical. The limits stated below are for an ambient temperature of ≤30 °C. For each degree above 30 °C, reduce the upper bandwidth frequency by 1%. Instrument bandwidth Volts/div setting Bandwidth 100 MHz 1 mV/div - 10 V/div DC - 300 MHz 350 MHz 1 mV/div - 10 V/div DC - 500 MHz <					
Measurement type DC accuracy (in volts) Average of > 16 waveforms ± ((DC Gain accuracy) X [reading -(offset - position + Offset accuracy + 0.1 div + 1 mV) Delta volts between any two averages of ≥16 ± (DC Gain accuracy × I/reading] + 0.08 div + 1.4 mV) Delta volts between any two averages of ≥16 ± (DC Gain accuracy × I/reading] + 0.08 div + 1.4 mV) Delta volts between any two averages of ≥16 ± (DC Gain accuracy × I/reading] + 0.08 div + 1.4 mV) Bandwidth selections 20 MHz, 70 MHz, 100 MHz, 200 MHz, 350 MHz, and 500 MHz (when equal to or less than instrument's rated bandwidth) ✓ Analog bandwidth 20 MHz, 70 MHz, 100 MHz, 200 MHz, 350 MHz, and 500 MHz (when equal to or less than instrument's rated bandwidth) Measurement bandwidth Volts/div setting Bandwidth The limits stated below are for an ambient temperature of ≤30 °C. For each degree above 30 °C, reduce the upper bandwidth frequency by 1%. Instrument bandwidth Volts/div setting Bandwidth 100 MHz 1 mV/div - 10 V/div DC - 350 MHz 500 MH	accuracy, average acquisition	voltage) accuracy specification applies directly to the following measurements; positive overshoot, negative overshoot, Pk-Pk, and amplitude. Offset, position, and the constant offset term must be converted to volts by multiplying by the appropriate			
Average of > 16 waveforms ± ((DC Gain accuracy) X reading -(offset - position + Offset accuracy + 0.1 div + 1 mV) Delta volts between any two averages of ≥16 waveforms acquired with the same oscilloscope setup and ambient conditions ± (DC Gain accuracy X reading] + 0.08 div + 1.4 mV) Bandwidth selections 20 MHz, 70 MHz, 100 MHz, 200 MHz, 350 MHz, and 500 MHz (when equal to or less than instrument's rated bandwidth) ✓ Analog bandwidth Below 5 mV/div, 500 MHz bandwidth is specified as typical. The limits stated below are for an ambient temperature of ≤30 °C. For each degree above 30 °C, reduce the upper bandwidth frequency by 1%. Instrument bandwidth Volts/div setting Bandwidth 70 MHz 1 mV/div - 10 V/div DC - 70 MHz 100 MHz 1 mV/div - 10 V/div DC - 00 MHz 200 MHz 1 mV/div - 10 V/div DC - 350 MHz 350 MHz 1 mV/div - 10 V/div DC - 500 MHz 350 MHz 1 mV/div - 10 V/div DC - 500 MHz 500 MHz ≥5 mV/div - 10 V/div DC - 500 MHz 500 MHz 20 MHz, ± 25%, DC-coupled Measurements made using the oscilloscope's automated measurement feature may read slower rise time values than those determined by the above equation. This is because the automated measurements do not take interpolation into account. Measuring using cursors on the interpolated waveform gives a more accurate result.					
 		Measurement type		DC accuracy (ir	n volts)
waveforms acquired with the same oscilloscope setup and ambient conditions m ^V) Bandwidth selections 20 MHz, 70 MHz, 100 MHz, 200 MHz, 350 MHz, and 500 MHz (when equal to or less than instrument's rated bandwidth) ✓ Analog bandwidth Below 5 mV/div, 500 MHz bandwidth is specified as typical. The limits stated below are for an ambient temperature of ≤30 °C. For each degree above 30 °C, reduce the upper bandwidth frequency by 1%. Instrument bandwidth Volts/div setting Bandwidth 70 MHz 1 mV/div - 10 V/div DC - 70 MHz 100 MHz 1 mV/div - 10 V/div DC - 100 MHz 200 MHz 1 mV/div - 10 V/div DC - 200 MHz 350 MHz 1 mV/div - 10 V/div DC - 200 MHz 350 MHz 1 mV/div - 10 V/div DC - 500 MHz 500 MHz ≤5 mV/div DC - 500 MHz 500 MHz ≥5 mV/div - 10 V/div DC - 500 MHz 500 MHz ≥5 mV/div - 10 V/div DC - 500 MHz 500 MHz ≥5 mV/div - 10 V/div DC - 500 MHz sed. used. 20 MHz, ± 25%, DC-coupled bandwidth-limited Measurements made using the oscilloscope's automated measurement feature may read slower rise time values than those determined by the above equation. This is because the automated measurements do not take interpolation into account. Measuring using cu		Average of > 16 waveforms			
rated bandwidth rated bandwidth is specified as typical. The limits stated below are for an ambient temperature of ≤30 °C. For each degree above 30 °C, reduce the upper bandwidth frequency by 1%. Image: the upper bandwidth Volts/div setting Bandwidth 70 MHz 1 mV/div - 10 V/div DC - 70 MHz 100 MHz 1 mV/div - 10 V/div DC - 100 MHz 200 MHz 1 mV/div - 10 V/div DC - 200 MHz 350 MHz 1 mV/div - 10 V/div DC - 350 MHz 500 MHz 1 mV/div - 10 V/div DC - 500 MHz 500 MHz < 5 mV/div - 10 V/div DC - 500 MHz 500 MHz < 5 mV/div - 10 V/div DC - 500 MHz 500 MHz < 5 mV/div - 10 V/div DC - 500 MHz 500 MHz < 5 mV/div - 10 V/div DC - 500 MHz 500 MHz < 10 Hz The AC-coupled lower frequency limits are reduced by a factor of 10 (<1 Hz) when 10X passive probes a used. Upper frequency limit, 20 MHz 20 MHz, ± 25%, DC-coupled Measurements made using the oscilloscope's automated measurement feature may read slower rise time values than those determined by the above equation. This is because the automated measurements do not take interpolation into account. Measuring using cursors on the interpolated waveform gives a more accurate result.		Delta volts between any two averages of ≥16 ± (DC Gain accuracy X reading + 0.08 div + 1.4 waveforms acquired with the same oscilloscope mV)			ıracy X reading + 0.08 div + 1.4
Lower frequency limit, AC- coupled <10 Hz <10 Hz 1m V/div 10 V/div DC - 70 MHz Upper frequency limit, 20 MHz 1 mV/div - 10 V/div DC - 70 MHz 0 C - 70 MHz 100 HHz 1 mV/div - 10 V/div DC - 100 MHz 0 C - 70 MHz 100 MHz 1 mV/div - 10 V/div DC - 200 MHz 0 C - 200 MHz 100 MHz 1 mV/div - 10 V/div DC - 350 MHz 0 C - 350 MHz 100 MHz 1 mV/div - 10 V/div DC - 500 MHz 0 C - 500 MHz 100 MHz 1 mV/div - 10 V/div DC - 500 MHz 0 C - 500 MHz 100 MHz 25 mV/div - 10 V/div DC - 500 MHz 0 C - 500 MHz 100 MHz 25 mV/div - 10 V/div DC - 500 MHz 0 C - 500 MHz 100 MHz 20 MHz, ± 25%, DC-coupled DC - 500 MHz 0 MHz, ± 25%, DC-coupled Values than those determined by the above equation. This is because the automated measurements do not take interpolation into account. Measuring using cursors on the interpolated waveform gives a more accurate result.	Bandwidth selections				
70 MHz 1 mV/div - 10 V/div DC - 70 MHz 100 MHz 1 mV/div - 10 V/div DC - 100 MHz 200 MHz 1 mV/div - 10 V/div DC - 200 MHz 350 MHz 1 mV/div - 10 V/div DC - 350 MHz 500 MHz 25 mV/div DC - 500 MHz 500 MHz ≥5 mV/div DC - 500 MHz 500 MHz ≥5 mV/div - 10 V/div DC - 500 MHz 200 MHz ≥5 mV/div - 10 V/div DC - 500 MHz 200 MHz ≥5 mV/div - 10 V/div DC - 500 MHz 200 MHz ≥5 mV/div - 10 V/div DC - 500 MHz 200 MHz ≥5 mV/div - 10 V/div DC - 500 MHz 200 MHz ≥5 mV/div - 10 V/div DC - 500 MHz 200 MHz 20 MHz ≥5 mV/div - 10 V/div DC - 500 MHz 20 MHz 20 MHz 20 MHz, ± 25%, DC-coupled Measurements are reduced by a factor of 10 (<1 Hz) when 10X passive probes a used. Upper frequency limit, 20 MHz 20 MHz, ± 25%, DC-coupled Measurements made using the oscilloscope's automated measurement feature may read slower rise time values than those determined by the above equation. This is because the automated measurements do not take interpolation into account. Measuring using cursors on the interpolated waveform gives a more accurate result.	✓ Analog bandwidth	The limits stated below are for an ambient temperature of ≤30 °C. For each degree above 30 °C, reduce			
100 MHz 1 mV/div - 10 V/div DC - 100 MHz 200 MHz 1 mV/div - 10 V/div DC - 200 MHz 350 MHz 1 mV/div - 10 V/div DC - 350 MHz 500 MHz <5 mV/div DC - 500 MHz 500 MHz ≥5 mV/div DC - 500 MHz 500 MHz ≥5 mV/div DC - 500 MHz 500 MHz ≥5 mV/div - 10 V/div DC - 500 MHz 200 MHz ≥5 mV/div - 10 V/div DC - 500 MHz 200 MHz ≥5 mV/div - 10 V/div DC - 500 MHz 200 MHz ≥5 mV/div - 10 V/div DC - 500 MHz 200 MHz ≥5 mV/div - 10 V/div DC - 500 MHz 20 MHz ≥5 mV/div - 10 V/div DC - 500 MHz 20 MHz 20 MHz, ± 25%, DC-coupled 20 MHz, ± 25%, DC-coupled bandwidth-limited Measurements made using the oscilloscope's automated measurement feature may read slower rise time values than those determined by the above equation. This is because the automated measurements do not take interpolation into account. Measuring using cursors on the interpolated waveform gives a more accurate result.					
200 MHz 1 mV/div – 10 V/div DC – 200 MHz 350 MHz 1 mV/div – 10 V/div DC – 350 MHz 500 MHz <5 mV/div DC – 500 MHz 500 MHz ≥5 mV/div DC – 500 MHz 500 MHz ≥5 mV/div - 10 V/div DC – 500 MHz 500 MHz ≥5 mV/div - 10 V/div DC – 500 MHz 200 MHz ≥5 mV/div - 10 V/div DC – 500 MHz 200 MHz ≥5 mV/div - 10 V/div DC – 500 MHz 200 MHz ≥5 mV/div - 10 V/div DC – 500 MHz 200 MHz ≥0 MHz 20 MHz 20 MHz, ± 25%, DC-coupled Measurements made using the oscilloscope's automated measurement feature may read slower rise time Values than those determined by the above equation. This is because the automated measurements do not take interpolation into account. Measuring using cursors on the interpolated waveform gives a more accurate result.		70 MHz	1 mV/div – 10 V/	div	DC – 70 MHz
350 MHz 1 mV/div - 10 V/div DC - 350 MHz 500 MHz ≤5 mV/div DC - 500 MHz 500 MHz ≥5 mV/div - 10 V/div DC - 500 MHz 500 MHz ≥5 mV/div - 10 V/div DC - 500 MHz 10 Hz The AC-coupled lower frequency limits are reduced by a factor of 10 (<1 Hz) when 10X passive probes a used. Upper frequency limit, 20 MHz 20 MHz, ± 25%, DC-coupled Bandwidth-limited Measurements made using the oscilloscope's automated measurement feature may read slower rise time values than those determined by the above equation. This is because the automated measurements do not take interpolation into account. Measuring using cursors on the interpolated waveform gives a more accurate result.		100 MHz	1 mV/div – 10 V/	div	DC – 100 MHz
500 MHz <5 mV/div DC - 500 MHz 500 MHz ≥5 mV/div - 10 V/div DC - 500 MHz Lower frequency limit, AC- coupled <10 Hz The AC-coupled lower frequency limits are reduced by a factor of 10 (<1 Hz) when 10X passive probes a used. Upper frequency limit, 20 MHz bandwidth-limited 20 MHz, ± 25%, DC-coupled Calculated rise time Measurements made using the oscilloscope's automated measurement feature may read slower rise time values than those determined by the above equation. This is because the automated measurements do not take interpolation into account. Measuring using cursors on the interpolated waveform gives a more accurate result.		200 MHz	1 mV/div – 10 V/	div	DC – 200 MHz
500 MHz ≥5 mV/div - 10 V/div DC - 500 MHz Lower frequency limit, AC- coupled <10 Hz The AC-coupled lower frequency limits are reduced by a factor of 10 (<1 Hz) when 10X passive probes a used. Upper frequency limit, 20 MHz bandwidth-limited 20 MHz, ± 25%, DC-coupled Calculated rise time Measurements made using the oscilloscope's automated measurement feature may read slower rise time values than those determined by the above equation. This is because the automated measurements do not take interpolation into account. Measuring using cursors on the interpolated waveform gives a more accurate result.		350 MHz	1 mV/div – 10 V/	div	DC – 350 MHz
Lower frequency limit, AC- coupled <10 Hz The AC-coupled lower frequency limits are reduced by a factor of 10 (<1 Hz) when 10X passive probes a used. Upper frequency limit, 20 MHz 20 MHz, ± 25%, DC-coupled bandwidth-limited Measurements made using the oscilloscope's automated measurement feature may read slower rise time values than those determined by the above equation. This is because the automated measurements do not take interpolation into account. Measuring using cursors on the interpolated waveform gives a more accurate result.		500 MHz	<5 mV/div		DC – 500 MHz
coupledThe AC-coupled lower frequency limits are reduced by a factor of 10 (<1 Hz) when 10X passive probes a used.Upper frequency limit, 20 MHz bandwidth-limited20 MHz, ± 25%, DC-coupledCalculated rise timeMeasurements made using the oscilloscope's automated measurement feature may read slower rise time values than those determined by the above equation. This is because the automated measurements do not take interpolation into account. Measuring using cursors on the interpolated waveform gives a more accurate result.		500 MHz	≥5 mV/div - 10 V	//div	DC – 500 MHz
bandwidth-limited Calculated rise time Measurements made using the oscilloscope's automated measurement feature may read slower rise time values than those determined by the above equation. This is because the automated measurements do not take interpolation into account. Measuring using cursors on the interpolated waveform gives a more accurate result.	coupled	The AC-coupled lower frequency limits are reduced by a factor of 10 (<1 Hz) when 10X passive probes are			
values than those determined by the above equation. This is because the automated measurements do not take interpolation into account. Measuring using cursors on the interpolated waveform gives a more accurate result.		20 MHz, \pm 25%, DC-coupled			
The formula is calculated by measuring the -3 dB bandwidth of the oscilloscope. The formula accounts for the rise time time time contribution of the oscilloscope independent of the rise time of the signal source.	Calculated rise time	not take interpolation into account. Measuring using cursors on the interpolated waveform gives a more accurate result. The formula is calculated by measuring the –3 dB bandwidth of the oscilloscope. The formula accounts for			

Calculated rise time (10% to 90%, in ps) equals 0.35/BW except from 1000 to 2100 mentioned in below table.

Bandwidth	Rise time (ps)
500 MHz	1000
350 MHz	1400
200 MHz	2100
100 MHz	3500
70 MHz	5000

pulse response

Peak detect or envelope mode Peak detect response indicates how effective the oscilloscope is at picking up a single narrow pulse and determining its amplitude.

The minimum single pulse widths for peak detect or envelope mode is at least:

Bandwidth (MHz)	Minimum pulse width
500	> 2 ns
350	> 3 ns
200	> 5 ns
100	> 10 ns
70	> 14 ns
50	> 20 ns

Deskew range Crosstalk (channel isolation)

-95 ns to +95 ns

	≤ 100 MHz	> 100 MHz
1 MΩ	100:1	30:1

Sample rate range	Maximum 1.25 GS/s - All channels
	Maximum 2.5 GS/s - Half channel
Record length range	10 M Standard
Seconds/Division range	1 ns/div to 1000 s/div when in half channel mode
	2 ns/div to 1000 s/div when in full channel mode
Maximum triggered acquisition rate	n >5k wfm/s
 Timebase accuracy 	$\pm 25 \times 10^{-6}$ over any over any ≥ 1 ms interval
	Guaranteed, the specification valid after 30 minute warm-up and Signal Path Compensation (SPC) at ambient.
Timebase delay time range	-10 divisions to 5000 s
Delta time measurement accuracy (DTA)	The formula to calculate delta-time measurement accuracy (DTA) for a given instrument setting and input signal is as follows (assumes insignificant signal content above the Nyquist frequency).SR ₁ = Slew rate (1 st Edge) around 1 st point in measurement
	SR ₂ = Slew rate (2 nd Edge) around 2 nd point in measurement
	N = Input-referred noise (V _{rms})

TBA = Timebase accuracy

tp = Delta-time measurement duration (sec)

RD = (Record length)/(Sample rate)

(assume edge shape that results from Gaussian filter response)

$$DTApp = \pm 5 \times \sqrt{2 \cdot \left(\frac{N}{SR_1}\right)^2 + 2 \cdot \left(\frac{N}{SR_2}\right)^2 + \left(5ps + 1 \cdot 10^{-6} \cdot RD\right)^2} + 2 \cdot t_{sr} + TBA \cdot t_p$$
$$DTArms = \sqrt{2 \cdot \left(\frac{N}{SR_1}\right)^2 + 2 \cdot \left(\frac{N}{SR_2}\right)^2 + \left(5ps + 1 \cdot 10^{-6} \cdot RD\right)^2 + \left(\frac{2 \cdot t_{sr}}{\sqrt{12}}\right)^2} + TBA \cdot t_p$$

(Assumes insignificant error due to aliasing)

The term under the square root sign is stability and is due to Time Interval Error (TIE). The errors due to this term occur throughout a single-shot measurement. The second term is due to both the absolute center-frequency accuracy and the center-frequency stability of the time base and varies between multiple single-shot measurements over the observation interval (the amount of time from the first single-shot measurement to the final single-shot measurement).

Triggering system

Aux In (external) trigger channels	One channel		
Aux In (external) trigger input impedance	$1\ \text{M}\Omega$ \pm 1% in parallel with 14 pF	± 3 pF	
Aux In (external) trigger	300 V _{rms} , Installation category II		
maximum input voltage	Derate at 20 dB/decade above 3	MHz to 30 V _{rms} at 30 MHz; 10 dB/decade above 30 MHz.	
	Based upon a sinusoidal or DC input signal. The excursion above 300 V should be less than 100 ms in duration, and the duty factor is limited to < 44%. The RMS signal level must be limited to 300 V. If these values are exceeded, damage to the instrument may result.		
Edge-type trigger sensitivity,	The greater of 2 mV or 0.4 div from	m DC to 20 MHz	
DC-coupled	The greater of 3 mV or 0.5 div from >20 MHz to 70 MHz		
	The greater of 4 mV or 0.5 div from >70 MHz to 100 MHz		
	The greater of 4 mV or 0.6 div from >100 MHz to 200 MHz		
	The greater of 5 mV or 0.7 div from >200 MHz to 350 MHz		
	The greater of 6 mV or 0.8 div from	m >350 MHz to instrument bandwidth	
Edge trigger sensitivity, AC-	The minimum sensitivities are as	follows:	
coupled	Trigger coupling	Typical sensitivity	
	AC	1.0 times the DC coupled limits for frequencies above 10 Hz. Attenuates signals below 10 Hz	
	NOISE REJ	2.5 times the DC coupled limits	
	HF REJ	1.0 times the DC coupled limits from DC to 50 kHz. Attenuates signals above 50 kHz	

	Trigger coupling	Typical sensitivity	1	
	LF REJ	1.0 times the DC C Attenuates signals	oupled limits for frequencie below 50 kHz	es above 50 kHz.
Frigger modes	Auto, normal, and single			
Frigger coupling	DC, HF Reject (attenuates > 50 kHz), LF Reject (attenuates < 50 kHz), noise reject (reduces sensitivity)			
Frigger level ranges				
Any input channel	±5 divisions from center of screen			
Aux In	±8 V			
rigger types				
Edge	Positive, negative, or eithe	er slope on any channel.		
Pulse Width	Trigger on width of positiv	e or negative pulses. Event	t can be time- or logic-quali	fied.
Timeout	Trigger on an event which	remains high, low, or eithe	r, for a specified time perio	d. Event can be logic-qualifi
Runt	Trigger on a pulse that cro again. Event can be time-		s to cross a second thresho	old before crossing the first
Logic	Trigger when logic pattern goes true, goes false, or occurs coincident with a clock edge. Pattern (AND, OR, NAND, NOR) specified for all input channels defined as high, low, or don't care. Logic pattern going true can be time-qualified.			
Setup/Hold	Trigger on violations of both setup time and hold time between clock and data present on any input channels.			
Rise/Fall	Trigger on pulse edge rates that are faster or slower than specified. Slope may be positive, negative, or either. Event can be logic-qualified.			
Parallel (with MSO option)	 Trigger on a parallel bus data value. Parallel bus can be from 1 to 20 bits (from the digital and analog channels) in size. Supports binary and hex radices. 			
I2C (option)	Trigger on start, repeated start, stop, missing ack, address (7 or 10 bit), data, or address and data on I2C buses up to 10 Mb/s.			
SPI (option)	Trigger on slave select, id	le time, or data (1-16 words	s) on SPI buses up to 20 M	b/s.
RS-232/422/485/UART (option)	Trigger on start bit, end of	packet, data, and parity er	ror up to 15 Mb/s.	
CAN (option)	Trigger on start of frame, type of frame (data, remote, error, or overload), identifier, data, identifier and data, end of frame, missing ack, and bit stuff error on CAN buses up to 1 Mb/s and CAN-FD buses up to 16 Mb/s. Trigger on sync, identifier, data, identifier and data, wakeup frame, sleep frame, and error on lin buses up to 1 Mb/s.			
LIN (option)				
SENT (option)	Trigger on start of packet,	fast channel status and da	ta, slow channel message	ID and data, and CRC error
owest frequency for successful operation of "Set evel to 50%" function	50 Hz			
_ogic trigger minimum logic or earm time		cognized. For events, the t ed if more than one channe	ime is the minimum time be	l from more than one etween a main and delayed
	Triggering type	Pulse width	Rearm time	Time between channels

Triggering type	Pulse width	Rearm time	Time between channels
Logic	Not applicble	2 ns	2 ns
Table continued			

Triggering type	Pulse width	Rearm time	Time between channels
Time qualified logic	4 ns	2 ns	2 ns

Setup/hold violation trigger, setup and hold time ranges

Input coupling on the clock and data channels must be the same.

For setup time, positive numbers mean a data transition before the clock.

For hold time, positive numbers mean a data transition after the clock edge.

Setup + hold time is the algebraic sum of the setup time and the hold time programmed by the user. The limits are as follows:

Feature	Minimum	Maximum
Setup time	0 ns	20 s
Hold time	0 ns	20 s
Setup + hold time	400 ps	21 s

Minimum pulse width, rearm
time, and transition timeFor trigger class width and runt, pulse width refers to the width of the pulse being measured. Rearm time
refers to the time between pulses.

For trigger class slew rate, pulse width refers to the delta time being measured. Rearm time refers to the time it takes the signal to cross the two trigger thresholds again.

For Slew rate triggering, the minimum transition time defined as the time signal spends between the two trigger threshold settings.

Pulse class	Minimum pulse width	Minimum rearm time
Runt	4 ns	2 s
Width	4 ns	2 ns + 5% of width upper limit setting
Slew rate	4 ns	8.5 ns + 5% of delta time setting

Rise/fall time trigger, delta time range	800 ps to 20 s
Pulse width, or time-qualified runt trigger time range	800 ps to 20 s
Trigger holdoff range	0 s minimum to 10 s maximum. Hold off may not function correctly in sequence trigger mode.

Digital channel acquisition

Digital input channels	16 Digital Inputs [D0:D15]
Input resistance, typical	101 KΩ to ground
Input capacitance, typical	8 pF Specified at the input to the P6316 probe with all 8 ground inputs connected to the user's ground. Use of leadsets, grabber clips, ground extenders, or other connection accessories may compromise this specification.
Minimum input signal swing, typical	500mV peak-to-peak

	Specified at the input to the P6316 probe with all 8 ground inputs connected to the user's ground. Use of leadsets, grabber clips, ground extenders, or other connection accessories may compromise this specification.
Maximum input signal swing, typical	+30 V, -20 V
DC input voltage range	+30 V, -20 V
Maximum input dynamic range	50 V _{pp} (threshold setting dependent)
Channel to channel skew (typical)	500 ps Digital Channel to Digital Channel only This is the propagation path skew, and ignores skew contributions due to bandpass distortion, threshold inaccuracies (see Threshold Accuracy), and sample binning (see Digital Channel Timing Resolution).
Thresholds	Thresholds per set of 8 channels
Threshold Selections	TTL, CMOS, ECL, PECL, User-Defined
Threshold voltage range	–15 V to +25 V
Digital channel timing resolution	Minimum: 2 ns
Threshold accuracy	± [180 mV + 2% of threshold setting after calibration]. Requires valid SPC.
Minimum detectable pulse	5.0 ns Specified at the input to the P6316 probe with all eight ground inputs connected to the user's ground. Use of lead sets, grabber clips, ground extenders, or other connection accessories may compromise this specification.

Digital pattern generator

Number of channels	4
Pattern memory length	4 K bits
Output amplitude	2.5 V, 3.3 V, 5 V (Continuous Mode)
	5 V (Burst Mode)
	Typical voltages are 10% below the nominal settings to allow for voltage differentials and tolerances
Bit Rate	1 bps to 25 Mbps
Pattern type	Square, counter, user defined, and manual

Arbitrary function generator

Operating modes	Continuous, burst			
Function types	Arbitrary, sine, square, pulse, ramp, DC level, Gaussian, Lorentz, exponential rise/fall, sin(x)/x, random noise, Haversine, and Cardiac.			
Amplitude and frequency	Values are peak-to-peak voltages.			
range	Waveform	Amplitude range 50 Ω	Amplitude range 1 M Ω	Frequency range
	Arbitrary	10 mV to 2.5 V	20 mV to 5 V	0.1 Hz to 25 MHz
	Sine	10 mV to 2.5 V	20 mV to 5 V	0.1 Hz to 50 MHz

	Waveform	Amplitude range 50 Ω	Amplitude range 1 M Ω	Frequency range
	Square	10 mV to 2.5 V	20 mV to 5 V	0.1 Hz to 20 MHz
	Pulse	10 mV to 2.5 V	20 mV to 5 V	0.1 Hz to 20 MHz
	Ramp	10 mV to 2.5 V	20 mV to 5 V	0.1 Hz to 500 KHz
	DC Level		20 mV to 5V	
	Gaussian	10 mV to 1.25 V	20 mV to 2.5 V	0.1 Hz to 5 MHz
	Lorentz	10 mV to 1.2 V	20 mV to 2.4 V	0.1 Hz to 5 MHz
	Exponential rise	10 mV to 1.25 V	20 mV to 2.5 V	0.1 Hz to 5 MHz
	Exponential decay	10 mV to 1.25 V	20 mV to 2.5 V	0.1 Hz to 5 MHz
	Sin(X)/X	10 mV to 1.5 V	20 mV to 3.0 V	0.1 Hz to 2 MHz
	Random noise	10 mV to 2.5 V	20 mV to 5 V	
	Haversine	10 mV to 1.25 V	20 mV to 2.5 V	0.1 Hz to 5 MHz
	Cardiac	10 mV to 2.5 V	20 mV to 5 V	0.1 Hz to 500 KHz
Maximum sample rate	250 MS/s			
Arbitrary function length	128 K sample			
Sine waveform				
Frequency setting	0.1 Hz			
resolution				
	±0.5 dB at 1 kHz ±1.5 dB at 1 kHz for <2	20 mV _{pp} amplitudes with 50 Ω) termination	
resolution		FF	termination	
resolution Amplitude flatness	\pm 1.5 dB at 1 kHz for <2	ude > 100 mV	2 termination	
resolution Amplitude flatness Total harmonic distortion Spurious-free dynamic range	\pm 1.5 dB at 1 kHz for <2 1% into 50 Ω for amplit	ude > 100 mV	2 termination	
resolution Amplitude flatness Total harmonic distortion Spurious-free dynamic	\pm 1.5 dB at 1 kHz for <2 1% into 50 Ω for amplit	ude > 100 mV	2 termination	
resolution Amplitude flatness Total harmonic distortion Spurious-free dynamic range Square and pulse waveform Frequency setting	± 1.5 dB at 1 kHz for <2 1% into 50 Ω for amplit 40 dB (V _{pp} ≥ 0.1 V) 50 0.1 Hz 10% - 90% or 10 ns mi	ude > 100 mV Ω load nimum pulse, whichever is la pplies to both on and off time,	rger	l be reduced at higher
resolution Amplitude flatness Total harmonic distortion Spurious-free dynamic range Square and pulse waveform Frequency setting resolution	± 1.5 dB at 1 kHz for <2 1% into 50 Ω for amplit 40 dB (V _{pp} ≥ 0.1 V) 50 0.1 Hz 10% - 90% or 10 ns mi Minimum pulse time ap frequencies to maintain	ude > 100 mV Ω load nimum pulse, whichever is la pplies to both on and off time,	rger so maximum duty cycle wil	l be reduced at higher
resolution Amplitude flatness Total harmonic distortion Spurious-free dynamic range Square and pulse waveform Frequency setting resolution Duty cycle range Minimum pulse width,	± 1.5 dB at 1 kHz for <2 1% into 50 Ω for amplit 40 dB (V _{pp} ≥ 0.1 V) 50 0.1 Hz 10% - 90% or 10 ns mi Minimum pulse time ap frequencies to maintain	ude > 100 mV Ω load nimum pulse, whichever is la pplies to both on and off time, n 10 ns of off time. num time for either on or off d	rger so maximum duty cycle wil	l be reduced at higher
resolution Amplitude flatness Total harmonic distortion Spurious-free dynamic range Square and pulse waveform Frequency setting resolution Duty cycle range Minimum pulse width, typical	\pm 1.5 dB at 1 kHz for <2 1% into 50 Ω for amplit 40 dB (V _{pp} ≥ 0.1 V) 50 0.1 Hz 10% - 90% or 10 ns mi Minimum pulse time ap frequencies to maintain 10 ns. This is the minim	ude > 100 mV Ω load nimum pulse, whichever is la pplies to both on and off time, n 10 ns of off time. num time for either on or off d	rger so maximum duty cycle wil	l be reduced at higher
resolution Amplitude flatness Total harmonic distortion Spurious-free dynamic range Square and pulse waveform Frequency setting resolution Duty cycle range Minimum pulse width, typical Rise/fall time	± 1.5 dB at 1 kHz for <2 1% into 50 Ω for amplit 40 dB (V _{pp} ≥ 0.1 V) 50 0.1 Hz 10% - 90% or 10 ns mi Minimum pulse time ap frequencies to maintain 10 ns. This is the minim 5.5 ns, 10% - 90% with 100 ps	ude > 100 mV Ω load nimum pulse, whichever is la pplies to both on and off time, n 10 ns of off time. num time for either on or off d	rger so maximum duty cycle wil luration.	
resolution Amplitude flatness Total harmonic distortion Spurious-free dynamic range Square and pulse waveform Frequency setting resolution Duty cycle range Minimum pulse width, typical Rise/fall time Pulse width resolution	± 1.5 dB at 1 kHz for <2 1% into 50 Ω for amplit 40 dB (V _{pp} ≥ 0.1 V) 50 0.1 Hz 10% - 90% or 10 ns mi Minimum pulse time ap frequencies to maintain 10 ns. This is the minim 5.5 ns, 10% - 90% with 100 ps <5% for signal steps >	ude > 100 mV Ω load nimum pulse, whichever is lan oplies to both on and off time, n 10 ns of off time. num time for either on or off d	rger so maximum duty cycle wil luration. ings ≥100 kHz with 50 Ω te	rmination
resolution Amplitude flatness Total harmonic distortion Spurious-free dynamic range Square and pulse waveform Frequency setting resolution Duty cycle range Minimum pulse width, typical Rise/fall time Pulse width resolution	± 1.5 dB at 1 kHz for <2 1% into 50 Ω for amplit 40 dB (V _{pp} ≥ 0.1 V) 50 0.1 Hz 10% - 90% or 10 ns mi Minimum pulse time ap frequencies to maintain 10 ns. This is the minim 5.5 ns, 10% - 90% with 100 ps <5% for signal steps > <7% for signal steps >	ude > 100 mV Ω load nimum pulse, whichever is land oplies to both on and off time, a 10 ns of off time. num time for either on or off d a 50 Ω termination 100 mV _{pp} and frequency sett	rger so maximum duty cycle wil luration. ings ≥100 kHz with 50 Ω te ings < 100 kHz with 50 Ω te	rmination
resolution Amplitude flatness Total harmonic distortion Spurious-free dynamic range Square and pulse waveform Frequency setting resolution Duty cycle range Minimum pulse width, typical Rise/fall time Pulse width resolution	± 1.5 dB at 1 kHz for <2 1% into 50 Ω for amplit 40 dB (V _{pp} ≥ 0.1 V) 50 0.1 Hz 10% - 90% or 10 ns mi Minimum pulse time ap frequencies to maintain 10 ns. This is the minim 5.5 ns, 10% - 90% with 100 ps <5% for signal steps > <7% for signal steps > This applies to the over transition.	ude > 100 mV Ω load nimum pulse, whichever is land oplies to both on and off time, in 10 ns of off time. num time for either on or off d 150 Ω termination 100 mV _{pp} and frequency sett 100 mV _{pp} and frequency sett	rger so maximum duty cycle wil luration. ings ≥100 kHz with 50 Ω te ings < 100 kHz with 50 Ω te ansition (+overshoot) and th	rmination

<60 ps TIE _{rms} , ≥100 mV _{pp} amplitude, 40% - 60% duty cycle (Square and pulse waveforms, 5 GHz	
measurement bandwidth)	

Ramp and triangle waveform

Frequency setting resolution	0.1 Hz
Variable symmetry	0% - 100%
Symmetry resolution	0.1%
DC level range	±2.5 V into Hi-Z
	±1.25 V into 50 Ω
Random noise amplitude	20 mV _{pp} to 5 V _{pp} in to Hi-Z
range	10 mV _{pp} to 2.5 V _{pp} into 50 Ω
	For both isolated noise signal and additive noise signal. Additive noise is 0% to 100% of the peak-to-peak amplitude specified. The additive noise range is restricted in favor of amplitude in order not to exceed the maximum output limits. There is currently a linear reduction from 100% to 0% above 50% amplitude.
Sine and ramp frequency accuracy	130 ppm (frequency ≤10 kHz); 50 ppm (frequency > 10 kHz)
Square and pulse frequency accuracy	130 ppm (frequency ≤10 kHz); 50 ppm (frequency > 10 kHz)
Signal amplitude	500 μV (50 Ω)
resolution	1 mV (Hi-Z)
Signal amplitude accuracy	\pm [(1.5% of peak-to-peak amplitude setting) + (1.5% of absolute DC offset setting) + 1 mV] (frequency = 1 kHz)
DC offset Range	±2.5 V into Hi-Z
	±1.25 V into 50 Ω
DC offset Resolution	500 μV (50 Ω)
	1 mV (Hi-Z)
DC offset accuracy	±[(1.5% of absolute offset voltage setting) + 1 mV]
	Add 3 mV of uncertainty per 10 °C change from 25 °C ambient
	Guaranteed, specification valid after 30 minute warm-up and Signal Path Compensation (SPC) at ambient.

Processor system

Host processor	Application processing unit: Dual-core Arm Cortex-A53 MPCore with CoreSight; NEON and single/double precision floating point; 32 KB/32 KB L1 cache, 1 MB L2 cache
	Real-time processing unit Dual-core Arm Cortex-R5F with CoreSight; single/double precision floating point; 32 KB/32 KB L1 cache, and TCM

Display system

Display type	Display area – 217 mm x 135 mm, TFT active matrix, and Liquid Crystal Display (LCD) with capacitive touch.
Display resolution	1,280 horizontal × 800 vertical pixels
Display modes	Overlay and stacked

Specifications

Luminance	260 cd/m² Display luminance is specified for a new display set at full white brightness.
Color support	16,777,216 (8-bit RGB) colors
Zoom	Horizontal and vertical zooming is supported in all waveform and plot views
Interpolation	Sin(x)/x and linear
Waveform styles	Vectors, dots, variable persistence, and infinite persistence
Graticules	Movable and fixed graticules, selectable between grid, time, full, and none
Color palettes	Normal and inverted for screen captures
	Individual waveform colors are user-selectable
Format	YT, XY
Language support	English, Japanese, Simplified Chinese, Traditional Chinese, French, German, Italian, Spanish, Portuguese, Russian, Korean

Interfaces, input, and output ports

USB interfaceTwo USB 2.0 high speed host ports on the side of the instrument One USB 2.0 high speed device port on the side of the instrument (USB Ethernet InterfaceEthernet InterfaceOne 8-pin RJ-45 connector that supports 10/100 Mb/s and 1000 Mbps E		ne instrument (USBTMC support)
Probe compensator, output voltage and frequency	Characteristic	Value
	Output voltage	Normal: 0-2.5 V amplitude
	Source impedance	Normal: 1 kΩ
	Frequency	1 kHz
		·

Auxiliary	output	(Aux	out)
-----------	--------	------	------

Aux out connector and	A single BNC connector
functional modes	Acquisition (main) trigger out and AFG out
Aux out output voltage	Non-AFG voltage thresholds are listed in the following table:

Characteristic	Limits
V _{out} (HI)	\ge 2.5 V open circuit; \ge 1.0 V into a 50 Ω load to ground
V _{out} (LO)	\leq 0.7 V into a load of \leq 4 mA; \leq 0.25 V into a 50 Ω load to ground

Aux input	300 Vrms CAT II with peaks $\leq \pm 425$ V
Security lock	Rear-panel security slot connects to standard Kensington-style lock
VESA mount	Standard (VESA MIS-D 100) 100 mm x 100 mm VESA mounting points on rear of instrument
Ground lug	Provides a safe ground return path when the instrument is operating on battery

Data handling characteristics

Real-time clock

A programmable clock maintains and reports the current time in the units of years, months, days, hours, minutes, and seconds.

Non-volatile memory capacity	One eMMC device (limited to 2 GB of usable space in SLC mode) contains the bootloader, operating system, application software, calibration constants, and user data storage.
Mass storage device capacity	Linux: ≥4 GB. The form factor is an embedded eMMC BGA. It provides storage for saved customer data, all calibration constants and the Linux operating system. Not customer serviceable. Partition on the user device, with a nominal capacity of 2 GB, is available for the storage of saved customer data. The physical capacity is larger, but in SLC mode it is 2 GB only for the longevity of the NAND flash.

Power supply system

Power consumption	60 W maximum
Source voltage	100 – 240 VAC ±10% (50/60 Hz)
Source frequency	50 – 60 Hz (100 – 240 VAC)
AC Adapter output	24 V DC, 2.71 A
Fuse rating	T3.15 A, 250 V
	The fuse is not customer replaceable.
	The line lead is fused, but the neutral lead is not fused.
Battery	
Description	Requires Opt 2-BATPK or 2-BP battery pack, with 2 slots for batteries Supports up to 2 TEKBAT-01 Li-lon rechargeable batteries
Cell chemistry	Li-lon
Nominal capacity	6700 mAh
Voltage	14.52 VDC
Weight	450 g (1 lb)
Battery operating time,	Up to 4 hours with single battery
typical	Up to 8 hours with dual batteries
	Hot swappable
	Battery life is measured under following conditions:
	Only one channel is turned on
	Lowest timebase setting selected
	Lowest record length is selected
	Fastest sample rate is selected
	All analysis or interpolation capabilities are turned off
	Edge trigger is selected
	Back-light set to low
Safety characteristi	

Safety characteristics

Safety certification	The following certifications and compliance are applicable:
	UL/CSA/EN 61010-2-030.
	US NRTL Listed - UL61010-1.
	Canadian Certification - CAN/CSA-C22.2 No. 61010.1.
	EU Compliance – Low Voltage Directive 2014-35-EU and EN61010-1.
	International Compliance – IEC 61010-1.
Pollution degree	Pollution degree 2, indoor, and dry location use only.

Mechanical characteristics

Weight

Instrument only 1.8 kg (4 lbs)

Instrument with battery pack	3.2 kg (7 lbs) – one battery 3.6 kg (8 lbs) – two batteries
Instrument only dimensions	
Height	210 mm (8.26 in)
Width	344 mm (13.54 in)
Depth	40.4 mm (1.59 in)
Instrument with battery pack of	dimensions
Height	210 mm (8.26 in)
Width	344 mm (13.54 in)
Depth	78 mm (3.07 in)
Clearance requirements	The clearance requirement for adequate cooling is 13 mm (0.5 in) on the rear of the instrument along the bottom edge (inlet vents) and top edge (exhaust vents).
Rackmount configuration	5U

Electromagnetic compatibility

Regional certifications, classifications, and standards list

European union	 EC Council EMC Directive 2014/30/EU Demonstrated using: EN 61326-2-1:2006 Electrical equipment for measurement, control, and laboratory, part 2-1. Emissions that exceed the levels required by this standard may occur when this equipment is connected to a test object. Compliance is demonstrated using high-quality, shielded interface cables. EN IEC 61326-1:2021 and EN IEC 61326-2-1:2021 EMC requirements for Class A electrical equipment. Emissions: EN 55011, Class A Immunity: IEC 61000-4-2 IEC 61000-4-3 IEC 61000-4-4 IEC 61000-4-5 IEC 61000-4-6 IEC 61000-4-11 EN 61000-3-2 EN 61000-3-3
Australia	EMC Framework, demonstrated per emission standard CISPR 11 in accordance with EN 61326-2-1.
United Kingdom	Electromagnetic Compatibility Regulations 2016-UK SI 2016 No.1091 Demonstrated using: EN 61326-2-1:2013 Electrical equipment for measurement, control, and laboratory, Part 2-1. Emissions that exceed the levels required by this standard may occur when this equipment is connected to a test object. Use high quality shielded cables to maintain compliance. Emissions: EN 55011, Class A Immunity:

	IEC 61000-4-2
	IEC 61000-4-3
	IEC 61000-4-4
	IEC 61000-4-5
	IEC 61000-4-6
	IEC 61000-4-11
	EN 61000-3-2
	EN 61000-3-3
Ukraine	Technical Regulations on Electromagnetic Equipment Compatibility TR 1077 DSTU EN 61326-1: 2016 (EN 61326-1: 2013. IDT) and DSTU EN 61326-2-1: 2016 (EN 61326-2-1: 2013. IDT): Electrical equipment for measuring control and laboratory use. Requirements for electromagnetic compatibility Part 1 consists of general requirements, and Part 2-1 consists of additional requirements. Test configurations, working conditions, and quality criteria for the operation of an accurate test.
	Emissions: DSTU EN 55011: 2019 (EN 55011: 2009. IDT. CISPR 11: 2009. MOD) / Amendment № 1: 2019 (EN 55011: 2009 / A1: 2010. IDT.
	CISPR 11: 2009 / A1: 2010. IDT) - Industrial equipment, scientific, and medical radio frequency. Characteristics of electromagnetic interference, norms, and methods of measurement.
	Immunity
	DSTU EN 61000-4-11: 2019 (EN 61000-4-11: 2004. IDT. IEC 61000-4-11: 2004. IDT) - Electromagnetic compatibility Part 4-11 consists of test and measurement methods. Tests for immunity to voltage dips, short-term interruptions, and voltage changes.
	DSTU EN 61000-4-2: 2018 (EN 61000-4-2: 2009. IDT. IEC 61000-4-2: 2008. IDT) - Electromagnetic compatibility Part 4-2 consists of test and measurement methods. Tests for resistance to electrostatic
	discharges. DSTU EN 61000-4-3: 2019 (EN 61000-4-3: 2006. IDT. IEC 61000-4-3: 2006. IDT) / Amendment № 2: 2019 (EN 61000-4-3: 2006 / A2: 2010 IDT IEC 61000-4-3: 2006 / A2: 2010 IDT) - Electromagnetic compatibility. Part 4-3. Test and measurement methods. Tests for immunity to radio frequency electromagnetic fields of radiation.
	DSTU EN 61000-4-4: 2019 (EN 61000-4-4: 2012. IDT. IEC 61000-4-4: 2012. IDT) - Electromagnetic compatibility Part 4-4 consists of test methods for testing and measurement. Tests for susceptibility to electrical rapid transition processes or pulse packets.
	DSTU EN 61000-4-5: 2019 (EN 61000-4-5: 2014. IDT. IEC 61000-4-5: 2014. IDT) - Electromagnetic compatibility Part 4-5 consists of test and measurement methods. Tests for immunity to voltage and current surges.
	DSTU EN 61000-4-6: 2019 (EN 61000-4-6: 2014. IDT. IEC 61000-4-6: 2013. IDT) - Electromagnetic compatibility Part 4 consists of test and measurement methods. Tests for immunity to conductive perturbations induced by radio frequency fields
	Emissions that exceed the levels required by this standard may occur when this equipment is connected to a test object.
	Compliance demonstrated using high quality, shielded interface cables.
Korea	EC Council EMC Directive 2014/30/EU
	Demonstrated using:
	EN 61326-2-1:2013 Electrical equipment for measurement, control, and laboratory, Part 2-1. Emissions that
	exceed the levels required by this standard may occur when this equipment is connected to a test object. Use high quality shielded cables to maintain compliance.
	EN IEC 61326-1:2021 and EN IEC 61326-2-1:2021 EMC Requirements for Class A electrical equipment Emissions

	EN 55011, Class A Immunity IEC 61000-4-2 IEC 61000-4-3 IEC 61000-4-4 IEC 61000-4-5 IEC 61000-4-6 IEC 61000-4-11 EN 61000-3-2 EN 61000-3-3
	EN 01000-3-3
Immunity	
Electrostatic discharge (ESD), and enclosure port	IEC 61000-4-2
Radiated radio frequency electromagnetic field, and enclosure port	IEC 61000-4-3
	Triggering when the trigger threshold is offset by less than 4 minor divisions from ground reference is allowed.
Electrical fast Transient/burst, and common-mode	IEC 61000-4-4
Surge/electrical slow transient	IEC 61000-4-5
Conducted radio frequency	IEC 61000-4-6
	Ambient fields may induce triggering when the trigger threshold is offset by less than 1 major division from ground reference.
Voltage dips and short interruptions, and AC power port	IEC 61000-4-11

Environmental

Product recycling information and documentation	User information should include an explanation of the recycling mark and direct the customer to the appropriate resources for recycling the product via one of the following methods:
	1. Operator manual boilerplate; or
	2. Pack-in errata sheet (only use this method if manual has been finalized); or
	3. Online help file (if no other documentation is shipped with the product).
Temperature	
Operating	0 °C to +50 °C (+32 °F to 120 °F)
Operating battery	0 °C to 45 °C (+32 °F to 113 °F)
Non-operating	-20 °C to +60 °C (-4 °F to 140 °F)
Humidity	
Operating	5% to 90% relative humidity at temperatures up to +30 °C,
	5% to 60% relative humidity at temperatures greater than +30 $^\circ C$ and up to +50 $^\circ C$
Non-operating	5% to 90% relative humidity at temperatures up to +30 °C
	5% to 60% relative humidity at temperatures greater than +30 $^\circ\text{C}$ and up to +60 $^\circ\text{C}$
Altitude	
Operating	Up to 3,000 meters (9,842 feet)
Non-operating	Up to 12,000 meters (39,370 feet)

Regulatory compliance

EMC	Conforms to European Union EMC Directive (CE-marked)
Safety	Conforms to European Union Low Voltage Directive (CE-marked)
	Conforms to ANSI/UL61010-1 and ANSI/UL61010-2-030 (CSA-marked)
	Certified to CAN/CSA C22.2 No.61010-1 and CAN/CSA C22.2 No.61010-2-030 (CSA-marked)
RoHS	Conforms to European Union Restrictions on Hazardous Substances (CE-marked)

Performance verification procedures

This chapter contains performance verification procedures for the specifications marked with the \checkmark symbol. The following equipment, or a suitable equivalent, is required to complete these procedures.

The performance verification procedures verify the performance of your instrument. They do not adjust your instrument. If your instrument fails any of the performance verification tests, repeat the failing test, verifying that the test equipment and settings are correct. If the instrument continues to fail a test, contact Tektronix Customer Support for assistance.

These procedures cover all 2 Series MSO instruments. Completion of the performance verification procedure does not update the instrument time and date.

Print the test records on the following pages and use them to record the performance test results for your oscilloscope. Disregard checks and test records that do not apply to the specific model you are testing.

The following table lists the required equipment. You might need additional cables and adapters, depending on the actual test equipment you use.

Required equipment	Minimum requirements	Examples
DC voltage source	3 mV to 4 V, ±0.1% accuracy	Fluke 9500B Oscilloscope Calibrator with a 9530 Output Module
Leveled sine wave generator	50 kHz to 2 GHz, ±4% amplitude accuracy	
Time mark generator	80 ms period, $\pm 1.0 \times 10^{-6}$ accuracy, rise time <50 ns	

Test records

DC Gain Accuracy test record

DC Gain Accuracy					
Performance checks	Bandwidth	Vertical scale	Low limit	Test result	High limit
Channel 1 DC Gain	20 MHz	2 mV/div	-2%		2%
Accuracy, 0 V offset, 0 V vertical position		4.98 mV/div	-2%		2%
		5 mV/div	-2%		2%
		10 mV/div	-2%		2%
		20 mV/div	-2%		2%
		49.8 mV/div	-2%		2%
		50 mV/div	-2%		2%
		100 mV/div	-2%		2%
		200 mV/div	-2%		2%
		500 mV/div	-2%		2%
		1 V/div	-2%		2%
	FULL	100 mV/div	-2%		2%
Channel 2 DC Gain	20 MHz	2 mV/div	-2%		2%
Accuracy, 0 V offset, 0 V vertical position		4.98 mV/div	-2%		2%
		5 mV/div	-2%		2%
		10 mV/div	-2%		2%
		20 mV/div	-2%		2%
		49.8 mV/div	-2%		2%
		50 mV/div	-2%		2%
		100 mV/div	-2%		2%
		200 mV/div	-2%		2%
		500 mV/div	-2%		2%
		1 V/div	-2%		2%
	FULL	100 mV/div	-2%		2%

Performance	Bandwidth	Vertical scale	Low limit	Test result	High limit
checks					
Channel 3 DC Gain	20 MHz	2 mV/div	-2%		2%
Accuracy, 0 V offset, 0 V vertical position		4.98 mV/div	-2%		2%
		5 mV/div	-2%		2%
		10 mV/div	-2%		2%
		20 mV/div	-2%		2%
		49.8 mV/div	-2%		2%
		50 mV/div	-2%		2%
		100 mV/div	-2%		2%
		200 mV/div	-2%		2%
		500 mV/div	-2%		2%
		1 V/div	-2%		2%
	FULL	100 mV/div	-2%		2%
Channel 4 DC Gain	20 MHz	2 mV/div	-2%		2%
Accuracy, 0 V offset, 0 V vertical position		4.98 mV/div	-2%		2%
		5 mV/div	-2%		2%
		10 mV/div	-2%		2%
		20 mV/div	-2%		2%
		49.8 mV/div	-2%		2%
		50 mV/div	-2%		2%
		100 mV/div	-2%		2%
		200 mV/div	-2%		2%
		500 mV/div	-2%		2%
		1 V/div	-2%		2%
	FULL	100 mV/div	-2%		2%

Analog Bandwidth test record

Bandwidth at Channel	Vertical scale	V _{in-AC RMS}	V _{bw-AC RMS}	Limit	Test result Gain = V _{bw-AC RMS} /V _{in-AC RMS}
Channel 1	1 mV/div			≥ 0.707	
	2 mV/div			≥ 0.707	
	5 mV/div			≥ 0.707	
	10 mV/div			≥ 0.707	
	20 mV/div			≥ 0.707	
	200 mV/div			≥ 0.707	
	700 mV/div			≥ 0.707	
	3 V/div			≥ 0.707	
	5 V/div			≥ 0.707	
Channel 2	1 mV/div			≥ 0.707	
	2 mV/div			≥ 0.707	
	5 mV/div			≥ 0.707	
	10 mV/div			≥ 0.707	
	20 mV/div			≥ 0.707	
	200 mV/div			≥ 0.707	
	700 mV/div			≥ 0.707	
	3 V/div			≥ 0.707	
	5 V/div			≥ 0.707	
Channel 3	1 mV/div			≥ 0.707	
	2 mV/div			≥ 0.707	
	5 mV/div			≥ 0.707	
	10 mV/div			≥ 0.707	
	20 mV/div			≥ 0.707	
	200 mV/div			≥ 0.707	
	700 mV/div			≥ 0.707	
	3 V/div			≥ 0.707	
	5 V/div			≥ 0.707	

Analog Bandwidth	n performance checks				
Bandwidth at Channel	Vertical scale	V _{in-AC RMS}	V _{bw-AC RMS}	Limit	Test result Gain = V _{bw-AC RMS} /V _{in-AC RMS}
Channel 4	1 mV/div			≥ 0.707	
	2 mV/div			≥ 0.707	
	5 mV/div			≥ 0.707	
	10 mV/div			≥ 0.707	
	20 mV/div			≥ 0.707	
	200 mV/div			≥ 0.707	
	700 mV/div			≥ 0.707	
	3 V/div			≥ 0.707	
	5 V/div			≥ 0.707	

Digital threshold accuracy tests with 2-MSO option

Digital channel	Threshold	V _s .	V _{s+}	Low limit	Test result V _{sAvg} = (V _s + V _{s+})/2	High limit
D0	0 V			-0.18 V		0.18 V
	4 V			3.74 V		4.26 V
D1	0 V			-0.18 V		0.18 V
	4 V			3.74 V		4.26 V
D2	0 V			-0.18 V		0.18 V
	4 V			3.74 V		4.26 V
D3	0 V			-0.18 V		0.18 V
	4 V			3.74 V		4.26 V
D4	0 V			-0.18 V		0.18 V
	4 V			3.74 V		4.26 V
D5	0 V			-0.18 V		0.18 V
	4 V			3.74 V		4.26 V
D6	0 V			-0.18 V		0.18 V
	4 V			3.74 V		4.26 V
D7	0 V			-0.18 V		0.18 V
	4 V			3.74 V		4.26 V
D8	0 V			-0.18 V		0.18 V
	4 V			3.74 V		4.26 V
D9	0 V			-0.18 V		0.18 V
	4 V			3.74 V		4.26 V

Digital threshold	accuracy perfor	mance checks				
Digital channel	Threshold	V _s .	V _{s+}	Low limit	Test result V _{sAvg} = (V _s + V _{s+})/2	High limit
D10	0 V			-0.18 V		0.18 V
	4 V			3.74 V		4.26 V
D11	0 V			-0.18 V		0.18 V
	4 V			3.74 V		4.26 V
D12	0 V			-0.18 V		0.18 V
	4 V			3.74 V		4.26 V
D13	0 V			-0.18 V		0.18 V
	4 V			3.74 V		4.26 V
D14	0 V			-0.18 V		0.18 V
	4 V			3.74 V		4.26 V
D15	0 V			-0.18 V		0.18 V
	4 V			3.74 V		4.26 V

Long term sample rate test records

Long Term Sample Rate	Low limit	Test result	High limit
Performance checks			
Long Term Sample Rate	-2 divisions		+2 divisions

AFG DC Offset Accuracy Tests

AFG DC Offset Accuracy							
Performance checks		Low limit	Test result	High limit			
All models	20 mV DC offset @ 50 Ω	18.7 mV		21.3 mV			
	1 V DC offset @ 50 Ω	984 mV		1.016 V			
	- 1 V DC offset @ 50 Ω	-1.016 V		-984 mV			

Check probe compensation

Procedure to check the probe compensation.

Procedure

- 1. Connect the probe compensation to Ch 1.
- 2. Turn on the Ch 1 and turn off all other channels.
- 3. Tap File > Default Setup.
- 4. Push Autoset button on the front-panel or tap File > Autoset from the menu bar.

The screen displays a square wave. The levels should be approximately 0 V - 2.5 V and 1 kHz.

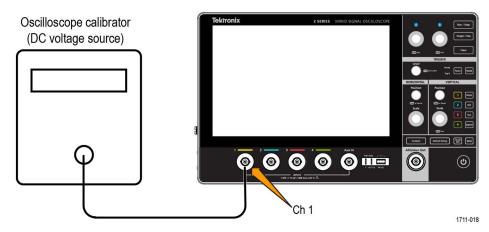
Check Aux In

Procedure to check the Aux In.

Procedure

- 1. Connect probe compensation to Aux In.
- 2. Tap File > Default Setup.
- 3. Double-tap the trigger badge on the settings bar and set the trigger Source to Aux In.
- 4. Set Trigger Level to 1 V.
- 5. Tap Trigger on the settings bar and verify the oscilloscope is Triggering.

Check DC gain accuracy


Procedure to test the DC gain accuracy.

Procedure

WARNING: Set the generator output to Off or 0 volts before connecting, disconnecting, and/or moving the test hookup during the performance of this procedure. The generator is capable of providing dangerous voltages.

1. Connect the oscilloscope to a calibrated DC voltage source. If you are using the Fluke 9500 calibrator, connect the calibrator head to the oscilloscope channel to test.

- 2. Tap File > Default Setup.
- 3. Double-tap the Horizontal badge and open the Acquisition Settings.
- 4. Set Acquisition Mode to Average.
- 5. Set the Number of Waveforms to 16.
- 6. Tap outside the menu to close the menu.
- 7. Double-tap the Trigger badge and set the trigger Source to Internal.
- 8. Tap outside the menu to close it.
- 9. Add the Mean measurement to the Results bar:
 - a) Tap the Measure button to open the Add Measurements menu.
 - b) Set the Source to Ch 1.
 - c) In the Amplitude Measurements panel, double-tap the Mean button to add the Mean measurement badge to the Results bar.
- 10. Tap outside the menu to close it.
- **11.** Double-tap the **Mean** results badge.
- 12. Tap Show Statistics in Badge.
- 13. Tap outside the menu to close it.
- 14. Tap the channel button of the channel to test, to add the channel badge to the Settings bar.
- 15. Double tap the channel to test badge to open its menu and set the channel settings:
 - a) Set Vertical Scale to 2 mV/div.
 - b) Tap Bandwidth Limit and set to 20 MHz.
 - c) Tap Probe Setup and set Attenuation to 1X.
 - d) Tap outside the menu to close it.
- 16. Record the negative-measured and positive-measured mean readings in the *Expected gain worksheet* as follows:
 - a) On the calibrator, set the DC Voltage Source to the V_{negative} value as listed in the 2 mV row of the worksheet.
 - b) Double-tap the Horizontal badge and open Acquisition Settings.
 - c) Tap Clear to reset the measurement statistics.
 - d) Enter the $\ensuremath{\text{Mean}}$ reading in the worksheet as $V_{\ensuremath{\text{negative-measured}}}.$
 - e) On the calibrator, set the DC Voltage Source to V_{positive} value as listed in the 2 mV row of the worksheet.
 - f) Double-tap the Horizontal badge and open Acquisition Settings (if not open).
 - g) Tap Clear to reset the measurement statistics.
 - h) Enter the Mean reading in the worksheet as V_{positive-measured}.

Oscilloscope vertical scale setting	V _{diffExpected}	V _{negative}	V _{positive}	V _{negative-} measured	V _{positive-} measured	V _{diff}	Test result (Gain accuracy)
2 mV/div							
4.98 mV/div							
5 mV/div							
10 mV/div							
20 mV/div							
49.8 mV/div							
50 mV/div							
100 mV/div							
200 mV/div							
500 mV/div							
1.0 V/div							
100 mV/div at Full BW							

Table 1: Expected gain worksheet

Tektronix recommends calculating the stimulus voltage using 7 vertical divisions. However, the stimulus voltage value could be what fits within the display area based on the vertical scale.

- TotalOffset = ((-Position * VoltsPerDiv) + Offset
- Voltage = (number of vertical divisions * VoltsPerDiv)/2
- Vnegative = TotalOffset Voltage
- Vpositive = TotalOffset + Voltage
- VdiffExpected = abs(Vnegative Vpositive)
- Divisions = peak to peak voltage in division equivalent (7 divisions at 1mV/div = 7mVpp signal, or ±3.5mV, around the TotalOffset)

Table 2: Example expected gain worksheet with 7 vertical divisions stimulus voltage values

Oscilloscope vertical scale setting	V _{diffExpected}	V _{negative}	V _{positive}	V _{negative-} measured	V _{positive-} measured	V _{diff}	Test result (Gain accuracy)
2 mV/div	14 mV	-7 mV	+7 mV				
4.98 mV/div	34.86 mV	-17.43 mV	+17.43 mV				
5 mV/div	35 mV	-17.5 mV	+17.5 mV				
10 mV/div	70 mV	-35 mV	+35 mV				
20 mV/div	140 mV	-70 mV	+70 mV				
49.8 mV/div	348.6 mV	-174.3 mV	+174.3 mV				
50 mV/div	350 mV	-175 mV	+175 mV				
100 mV/div	700 mV	-350 mV	+350 mV				
200 mV/div	1400 mV	-700 mV	+700 mV				
Table continued			1	- 1	1		1

Oscilloscope vertical scale setting	V _{diffExpected}	V _{negative}	V _{positive}	V _{negative-} measured	V _{positive-} measured	V _{diff}	Test result (Gain accuracy)
500 mV/div	3500 mV	-1750 mV	+1750 mV				
1.0 V/div	7 V	-3.5 V	+3.5 V				
100 mV/div at Full BW	700 mV	-350 mV	+350 mV				

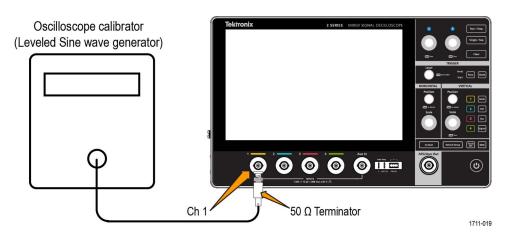
- 17. Calculate Gain Accuracy as follows:
 - a) Calculate V diff as follows:

V_{diff} = | V_{negative-measured} - V_{positive-measured} |

- b) Enter V diff in the worksheet.
- c) Calculate Gain Accuracy as follows:
 - Gain Accuracy = ((V diff V diffExpected)/V diffExpected) × 100%
- d) Enter the Gain Accuracy value in the worksheet and in the test record.
- 18. Repeat steps 15 on page 32 through 17 on page 34 for all vertical scale settings in the work sheet and the test record.
- **19.** Repeat the procedure for all remaining channels:
 - a) Set the calibrator to 0 volts.
 - b) Move the calibrator output to the next channel input to be tested.
 - c) Double-tap the channel badge of the channel that you have finished testing and set Display to Off.
 - d) Double-tap the Mean measurement badge.
 - e) Tap the **Configure** panel.
 - f) Tap the Source 1 field and select the next channel to test.
 - g) Starting from step 15 on page 32, set the values from the test record for the channel under test, and repeat the above steps until all channels have been tested.
- 20. Touch outside a menu to close the menu.

Check analog bandwidth

Procedure to check the bandwidth for each channel.


Procedure

WARNING: Set the generator to off or 0 volts before connecting, disconnecting, and/or moving the test hookup during the performance of this procedure. The generator is capable of providing dangerous voltages.

1. Connect the output of the calibrated leveled sine wave generator to the 50 Ω terminator (Tektronix Part Number 011-0049-02) on Channel 1 as shown in the following illustration.

If using the Fluke 9500 calibrator as the sine wave generator, connect the calibrator head to the 50 Ω terminator with the Fluke 9500 in 50 Ω output mode. Do not connect the Fluke 9500 calibrator head directly to the oscilloscope channel.

- 2. Tap File > Default Setup to reset the instrument and add the channel 1 badge and signal to the display.
- 3. Add the AC RMS measurement as follows:
 - a) Tap the Measure button.
 - b) Set the **Source** to the channel under test.
 - c) In the **Amplitude Measurements** panel, double-tap the **AC RMS** measurement button to add the measurement badge to the Results bar.
- 4. Set the channel under test settings:
 - a) Double-tap the badge of the channel under test to open its configuration menu.
 - b) Set Vertical Scale to 1 mV/div.
 - c) Tap outside the menu to close it.
- 5. Adjust the leveled sine wave signal source to display a waveform of 8 vertical divisions at the selected vertical scale with a set frequency of 1 kHz.

For example, at 5 mV/div, use a \geq 40 mV_{p-p} signal; at 2 mV/div, use a \geq 16 mV_{p-p} signal.

At some V/div settings, the generator may not provide 8 vertical divisions of signal. Set the generator output to obtain as many vertical divisions of signal as possible.

- 6. Double-tap the Horizontal badge in the Settings bar.
- 7. Set the Horizontal Scale to 1 ms/division.
- 8. Tap outside the menu to close it.
- 9. Record the AC RMS measurement in the V in-AC RMS entry of the test record.
- 10. Double-tap the Horizontal badge in the Settings bar.
- 11. Set the Horizontal Scale to 4 ns/division.
- 12. Adjust the signal source to the maximum bandwidth frequency for the bandwidth and model being tested.
- 13. Record the AC RMS measurement at the new frequency in the V bw-pp entry of the test record.
- **14.** Use the values of *V bw-pp* and *V in-pp* recorded in the test record, and the following equation, to calculate the Gain at bandwidth. *Gain* = *Vbw-pp* / *Vin-pp*.

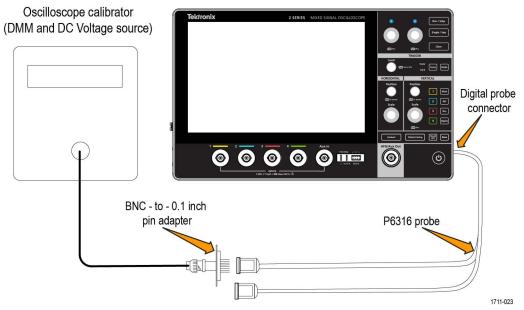
To pass the performance measurement test, Gain should be \geq 0.707. Enter Gain in the test record.

- **15.** Repeat steps from 4 on page 35 to 14 on page 35 for all combinations of Vertical Scale and Horizontal Scale settings listed in the test record.
- 16. Repeat the test for all remaining channels as follows:
 - a) Turn Off the generator.
 - b) Move the calibrator output to the next channel input to be tested.
 - c) Turn **On** the generator.

- d) Tap the channel button on the oscilloscope Settings bar of the next channel to test.
- e) Double-tap the **AC RMS** measurement badge.
- f) Tap the **Configure** panel.
- g) Tap the **Source 1** field and select the next channel to test.
- h) Starting from step 4 on page 35, repeat the procedure until all channels have been tested.

Check digital threshold accuracy with 2-MSO option

This procedure checks the threshold accuracy of the digital channels and is for models with the 2-MSO option only.


About this task

This procedure applies to digital channels D0 through D15, and to channel threshold values of 0 V and 4 V.

Procedure

- 1. Connect the P6316 digital probe to the instrument.
- 2. Connect the P6316 Group 1 pod to the DC voltage source to run this test.

You will need a BNC-to-0.1 inch pin adapter to complete the connection. If using the Fluke 9500 calibrator as the DC voltage source, connect the calibrator head to the P6316 Group 1 pod. You will need a BNC-to-0.1 inch pin adapter to complete the connection.

- 3. Push Default Setup on the front panel to set the instrument to the factory default settings.
 - Display the digital channels and set the thresholds as follows:
 - a) Tap the D15-D0 button on the Settings bar.
 - b) Double-tap the D15-D0 badge on the Settings bar.
 - c) Tap the D15-D8 Turn All On button to turn all bits on.
 - d) Tap the D7-D0 Turn All On button to turn all bits on.
 - e) Tap the D15-D8 Thresholds field at the bottom of the menu and set the value to 0 V.
 - f) Tap the D7-D0 field at the bottom of the menu and set the value to **0 V**. The thresholds are set for the 0 V threshold check.
 - g) Tap outside the menu to close it.

4.

- 5. You need to record the test values in the test record row for 0 V for each digital channel. See *Digital threshold accuracy performance checks table*.
- 6. Double-tap the **Trigger** badge.
- 7. Tap **Slope** and change the slope to rising edge.
- 8. Set the **Source** to the appropriate channel, such as D0.

By default, the Type is set to Edge, Coupling is set to DC, Slope is set to Rising, Mode is set to Auto, and Level is set to match the threshold of the channel being tested.

- 9. Tap outside the menu to close it.
- **10.** Set the DC voltage source (Vs) to -400 mV. Wait 3 seconds. Check the logic level of the corresponding digital channel in the display. If the channel is a static logic level high (green), change the DC voltage source Vs to -500 mV.
- 11. Increment Vs by +20 mV. Wait 3 seconds and check the logic level of the corresponding digital channel in the display. If the channel is at a static logic level high (green), record the Vs value as in the 0 V row of the test record.

If the channel is a logic level low (blue) or is alternating between high and low, repeat this step (increment Vs by 20 mV, wait 3 seconds, and check for a static logic high). Continue until a value for **Vs-** is found. In this procedure, the channel might not change state until after you pass the set threshold level.

- **12.** Double-tap the **Trigger** badge.
- 13. Tap Slope and change the slope to falling edge.
- 14. Tap outside the menu to close it.
- **15.** Set the DC voltage source (Vs) to +400 mV. Wait 3 seconds. Check the logic level of the corresponding digital channel in the display. If the channel is a static logic level low (blue), change the DC voltage source Vs to +500 mV.
- **16.** Decrement Vs by -20 mV. Wait 3 seconds and check the logic level of the corresponding digital channel in the display. If the channel is at a static logic level low, record the Vs value as **Vs+** in the 0 V row of the test record.

If the channel is a logic level high (green) or is alternating between high and low, repeat this step (decrement Vs by 20 mV, wait 3 seconds, and check for a static logic low). Continue until a value for **Vs+** is found.

17. Find the average, $V_{sAvg} = (Vs - + Vs +)/2$. Record the average as the test result in the test record.

Compare the test result to the limits. If the result is between the limits, continue with the procedure to test the channel at the +4 V threshold value.

- **18.** Repeat the procedure starting with step **6** on page 37 for each remaining digital channel.
- **19.** Double-tap the **Trigger** badge.
- **20.** Set the **Source** to the appropriate channel, such as D0.
- **21.** Tap **Slope** and change the slope to falling edge.
- **22.** The remaining part of this procedure is for the +4 V threshold test.
 - a) Double-tap the **D15-D0** badge on the Settings bar.
 - b) Tap the D15-D8 Turn All On button to turn all bits on.
 - c) Tap the D7-D0 Turn All On button to turn all bits on.
 - d) Tap the D15-D8 Thresholds field at the bottom of the menu and set the value to 4.00 V.
 - e) Tap the D7-D0 Thresholds field at the bottom of the menu and set the value to 4.00 V.
 - f) Tap outside the menu to close it.
- **23.** Set the DC voltage source (Vs) to +4.4 V. Wait 3 seconds. Check the logic level of the corresponding digital channel in the display. If the channel is a static logic level low (blue), change the DC voltage source Vs to +4.5 V.
- 24. Decrement Vs by -20 mV. Wait 3 seconds and check the logic level of the corresponding digital channel in the display. If the channel is at a static logic level low, record the Vs value as Vs+ in the 4 V row of the test record.

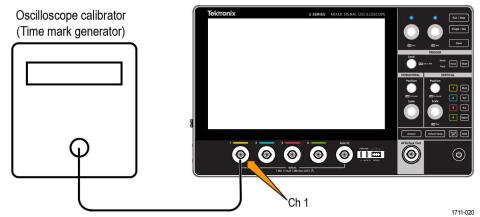
If the channel is a logic level high (green) or is alternating between high and low, repeat this step (decrement Vs by 20 mV, wait 3 seconds, and check for a static logic low). Continue until a value for **Vs+** is found.

25. Double-tap the **Trigger** badge.

- 26. Tap Slope and change the slope to rising edge.
- 27. Tap outside the menu to close it.
- **28.** Set the DC voltage source (Vs) to +3.6 V. Wait 3 seconds. Check the logic level of the corresponding digital channel in the display. If the channel is a static logic level high (green), change the DC voltage source Vs to +3.5 V.
- 29. Increment Vs by +20 mV. Wait 3 seconds and check the logic level of the corresponding digital channel in the display. If the channel is at a static logic level high, record the Vs value as in the 4 V row of the test record. If the channel is a logic level low (blue) or is alternating between high and low, repeat this step (increment Vs by 20 mV, wait 3 seconds, and check for a static logic high). Continue until a value for Vs- is found.
- **30.** Find the average, $V_{sAvg} = (Vs + Vs +)/2$. Record the average as the test result in the test record.

Compare the test result to the limits. If the result is between the limits, the channel passes the test.

31. Repeat the procedure starting with step 19 on page 37 for each digital channel.


Check long term sample rate

This procedure checks the sample rate and delay time accuracy (time base).

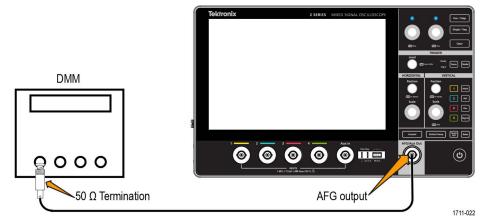
Procedure

WARNING: Set the generator to off or 0 volts before connecting, disconnecting, and/or moving the test hookup during the performance of this procedure. The generator is capable of providing dangerous voltages.

1. Connect the output of a time mark generator to the oscilloscope channel 1 input.

- 2. Set the time mark generator period to 80 ms. Use a time mark waveform with a fast rising edge.
- 3. If it is adjustable, set the time mark amplitude to approximately 1 V_{P-P}.
- 4. Tap File > Default Setup.
- 5. Tap the channel 1 button on the Settings bar.
- 6. Double-tap the Channel 1 badge to open its Configuration menu.
- 7. Set Vertical Scale to 500 mV.
- 8. Set the **Position** value to center the time mark signal on the screen.
- 9. Tap outside the menu area to close it.
- **10.** Double-tap the **Horizontal** settings badge.
- 11. Set the Horizontal Scale to 1 us/div.
- 12. Tap outside the menu area to close it.
- 13. Double-tap the Trigger settings badge.

- 14. Set Source to the channel being tested.
- **15.** Set the **Level** as necessary for a triggered display.
- 16. Tap outside the menu area to close it.
- **17.** Double-tap the **Horizontal** settings badge.
- 18. Adjust the Position value to move the trigger point to the center of the screen.
- 19. Turn Delay to On and set Position to 80 ms.
- 20. Set the Horizontal Scale to 1 us/div.
- 21. Observe where the rising edge of the marker crosses the center horizontal graticule line. The rising edge should cross within ±2 divisions of the vertical center graticule. Enter the deviation in the test record.


A 2.5 x 10⁻⁶ time base error is 2 divisions of displacement.

Check AFG DC offset accuracy

This procedure checks the AFG DC Offset Accuracy.

Procedure

1. Connect the AFG output to the DMM through a 50 Ω termination.

- 2. Push the Default Setup button on the oscilloscope front panel.
- 3. Tap the AFG button.
- 4. Tap Waveform Type and select DC from the drop down list.
- 5. Tap Amplitude and set amplitude to the value shown in the test record.
- 6. Set DMM to measure DC Voltage.
- 7. Measure voltage on the DMM. Compare the result to the limits in the test record.
- 8. Repeat steps from 3 on page 39 to 7 on page 39 above for each line in the test record. This completes the procedure.