tek.com/keithley

Model 4200A-SCS
KULT and KULT Extension

Programming

4200A-KULT-907-01 Rev. C March 2023

4200A-KULT-907-01C

KEITHLEY

A Tektronix Company

https://www.tek.com/products/keithley

Model 4200A-SCS
KULT and KULT Extension

Programming

© 2023, Keithley Instruments
Cleveland, Ohio, U.S.A.
All rights reserved.

Any unauthorized reproduction, photocopy, or use of the information herein, in whole or in part,
without the prior written approval of Keithley Instruments is strictly prohibited.

All Keithley Instruments product nhames are trademarks or registered trademarks of Keithley
Instruments, LLC. Other brand names are trademarks or registered trademarks of their
respective holders.

Actuate®
Copyright © 1993-2003 Actuate Corporation.
All Rights Reserved.

Microsoft, Visual C++, Excel, and Windows are either registered trademarks or trademarks of
Microsoft Corporation in the United States and/or other countries.

Document number: 4200A-KULT-907-01 Rev. C March 2023

KEITHLEY

A Tektronix Company Saf ety p reC au t i O n S

The following safety precautions should be observed before using this product and any associated instrumentation. Although
some instruments and accessories would normally be used with nonhazardous voltages, there are situations where hazardous
conditions may be present.

This product is intended for use by personnel who recognize shock hazards and are familiar with the safety precautions required
to avoid possible injury. Read and follow all installation, operation, and maintenance information carefully before using the
product. Refer to the user documentation for complete product specifications.

If the product is used in a manner not specified, the protection provided by the product warranty may be impaired.
The types of product users are:

Responsible body is the individual or group responsible for the use and maintenance of equipment, for ensuring that the
equipment is operated within its specifications and operating limits, and for ensuring that operators are adequately trained.

Operators use the product for its intended function. They must be trained in electrical safety procedures and proper use of the
instrument. They must be protected from electric shock and contact with hazardous live circuits.

Maintenance personnel perform routine procedures on the product to keep it operating properly, for example, setting the line
voltage or replacing consumable materials. Maintenance procedures are described in the user documentation. The procedures
explicitly state if the operator may perform them. Otherwise, they should be performed only by service personnel.

Service personnel are trained to work on live circuits, perform safe installations, and repair products. Only properly trained
service personnel may perform installation and service procedures.

Keithley products are designed for use with electrical signals that are measurement, control, and data I/O connections, with low
transient overvoltages, and must not be directly connected to mains voltage or to voltage sources with high transient
overvoltages. Measurement Category Il (as referenced in IEC 60664) connections require protection for high transient
overvoltages often associated with local AC mains connections. Certain Keithley measuring instruments may be connected to
mains. These instruments will be marked as category Il or higher.

Unless explicitly allowed in the specifications, operating manual, and instrument labels, do not connect any instrument to mains.

Exercise extreme caution when a shock hazard is present. Lethal voltage may be present on cable connector jacks or test
fixtures. The American National Standards Institute (ANSI) states that a shock hazard exists when voltage levels greater than
30 VRMS, 42.4 V peak, or 60 VDC are present. A good safety practice is to expect that hazardous voltage is present in any
unknown circuit before measuring.

Operators of this product must be protected from electric shock at all times. The responsible body must ensure that operators
are prevented access and/or insulated from every connection point. In some cases, connections must be exposed to potential
human contact. Product operators in these circumstances must be trained to protect themselves from the risk of electric shock. If
the circuit is capable of operating at or above 1000 V, no conductive part of the circuit may be exposed.

Do not connect switching cards directly to unlimited power circuits. They are intended to be used with impedance-limited
sources. NEVER connect switching cards directly to AC mains. When connecting sources to switching cards, install protective
devices to limit fault current and voltage to the card.

Before operating an instrument, ensure that the line cord is connected to a properly-grounded power receptacle. Inspect the
connecting cables, test leads, and jumpers for possible wear, cracks, or breaks before each use.

When installing equipment where access to the main power cord is restricted, such as rack mounting, a separate main input
power disconnect device must be provided in close proximity to the equipment and within easy reach of the operator.

For maximum safety, do not touch the product, test cables, or any other instruments while power is applied to the circuit under
test. ALWAYS remove power from the entire test system and discharge any capacitors before connecting or disconnecting
cables or jumpers, installing or removing switching cards, or making internal changes, such as installing or removing jumpers.

Do not touch any object that could provide a current path to the common side of the circuit under test or power line (earth)
ground. Always make measurements with dry hands while standing on a dry, insulated surface capable of withstanding the
voltage being measured.

For safety, instruments and accessories must be used in accordance with the operating instructions. If the instruments or
accessories are used in a manner not specified in the operating instructions, the protection provided by the equipment may be
impaired.

Do not exceed the maximum signal levels of the instruments and accessories. Maximum signal levels are defined in the
specifications and operating information and shown on the instrument panels, test fixture panels, and switching cards.

When fuses are used in a product, replace with the same type and rating for continued protection against fire hazard.

Chassis connections must only be used as shield connections for measuring circuits, NOT as protective earth (safety ground)
connections.

If you are using a test fixture, keep the lid closed while power is applied to the device under test. Safe operation requires the use
of a lid interlock.

Ifa @ screw is present, connect it to protective earth (safety ground) using the wire recommended in the user documentation.

The A symbol on an instrument means caution, risk of hazard. The user must refer to the operating instructions located in the
user documentation in all cases where the symbol is marked on the instrument.

The A symbol on an instrument means warning, risk of electric shock. Use standard safety precautions to avoid personal
contact with these voltages.

The & symbol on an instrument shows that the surface may be hot. Avoid personal contact to prevent burns.
The I‘l‘l symbol indicates a connection terminal to the equipment frame.

If this symbol is on a product, it indicates that mercury is present in the display lamp. Please note that the lamp must be
properly disposed of according to federal, state, and local laws.

The WARNING heading in the user documentation explains hazards that might result in personal injury or death. Always read
the associated information very carefully before performing the indicated procedure.

The CAUTION heading in the user documentation explains hazards that could damage the instrument. Such damage may
invalidate the warranty.

The CAUTION heading with the A symbol in the user documentation explains hazards that could result in moderate or minor
injury or damage the instrument. Always read the associated information very carefully before performing the indicated
procedure. Damage to the instrument may invalidate the warranty.

Instrumentation and accessories shall not be connected to humans.
Before performing any maintenance, disconnect the line cord and all test cables.

To maintain protection from electric shock and fire, replacement components in mains circuits — including the power
transformer, test leads, and input jacks — must be purchased from Keithley. Standard fuses with applicable national safety
approvals may be used if the rating and type are the same. The detachable mains power cord provided with the instrument may
only be replaced with a similarly rated power cord. Other components that are not safety-related may be purchased from other
suppliers as long as they are equivalent to the original component (note that selected parts should be purchased only through
Keithley to maintain accuracy and functionality of the product). If you are unsure about the applicability of a replacement
component, call a Keithley office for information.

Unless otherwise noted in product-specific literature, Keithley instruments are designed to operate indoors only, in the following
environment: Altitude at or below 2,000 m (6,562 ft); temperature 0 °C to 50 °C (32 °F to 122 °F); and pollution degree 1 or 2.

To clean an instrument, use a cloth dampened with deionized water or mild, water-based cleaner. Clean the exterior of the
instrument only. Do not apply cleaner directly to the instrument or allow liquids to enter or spill on the instrument. Products that
consist of a circuit board with no case or chassis (e.g., a data acquisition board for installation into a computer) should never
require cleaning if handled according to instructions. If the board becomes contaminated and operation is affected, the board
should be returned to the factory for proper cleaning/servicing.

Safety precaution revision as of June 2018.

Table of contents

INEFOAUCTION 1o e e e e 1-1
[0 o [N L1 o] o H PP PUPPPOTPRR 1-1
U 0 (S o]) o) o SR 1-2
KULT interface deSCIPHION.......i ittt ettt e e e e e e snnbeee s 1-3
Module Identification Qreacvevviiiiiiiiiiiii 1-4
Module parameter diSPIAY ArEaceiiiiiiiiiiiiiiiie e e 1-4
V(oo [l S oTe o SRt Yo i A= T (=T NP PPPTPTPRR 1-5
TerminNating DrACE AIa......cccii ittt e ettt e e e et e e e e e e s e annbbeeeaaae s 1-5
LI 10 J- L= PRSP PR 1-5

Parameters tah @rEac.ueiiiiie ittt ettt naeennaeas 1-5
[aed (W0 (oIS = Lo I U == U U UTSTRPRRR 1-8
DESCHPLON tAD GIrE@ ... eeiii ittt e e e e ettt e e e e e e e e eeaee e s 1-9
010 B =] o J= 1 Y- U PRT TP 1-11
SEALUS DA ... ———————————————— 1-11
=T 10 SRS 1-11
1= 4= O U EPET PP 1-11
o [101 o LU U RRT PP 1-14
(0100 F-30 1 01=] o 10 PP PR SORPTRRP 1-15
[(=11 oI 0 =Y o T OO UPPTP PP 1-16
Develop and USE USEr DIAIIEScooiiiiiiiiiiii et 1-16
Copy user Modules and fIlES..........uiiiiiii s 1-16
Enabling real-time plotting fOr UTMS.......ccoiiiiiiiiii ettt 1-17
Using NI-VISA N USEr lIDFariesuveiiiiieiiiie e 1-18
Add NI-VISA as a library dependency in KULTcoooiiiiiiiiiee e 1-18
Add NI-VISA as a library dependency in the KULT EXtENSIONc..cvvvvieeiiiiiiiiiie e 1-19
Include the NI-VISA header files in KULToooiiiiiiiiiiieciiee et 1-19
Include the NI-VISA header files in the KULT EXENSION........cocciiiiiiiiieiiiiiee it 1-19
REMOVE INEIISENSE EITOTS.iiiiiiiie ittt ettt e et e e e 1-19

[I (V) o = 1 2-1
KULT TULOTIAIS .ttt e ettt e e ettt e e e snb e e s snb e e e s snbeeeesnnbeeeennn 2-1
Tutorial: Creating a new user library and user moduleccccccvvveeiiiciiiiiene e, 2-3

S = a1 oo TN S | PSP POPPPPRURN 2-3
NaMING @ NEW USEI HDIAIY........iiiiieie et e e e st e e e e s et aaaee e an 2-4
Creating a NeW USEIr MOUUIEciiiiiiiiii ettt e e e e e e e e e e e st e e e e e e e s sstbaaaeaaeessnees 2-4
ENteriNg the FEIUMN (Y P8 et e e e e e s et e e e e e s eetbrraaaeeeean 2-5
Entering USEr MOAUIE COUEeuiiii ettt et e e e e e et e e e e e e e annnneeeaee e s 2-6
ENEEIING PATAMELEIS......eeei ittt e et e oottt e e e e sttt e e e e e s et b et e e e e e e e aannateeeeaeesaannnneeeaaeean 2-6
ENtering NEATET fIlESooei ettt e e e et e e e e e e eaae e an 2-7
Documenting the USEr MOAUIEooi it e e e e e eeae e an 2-8
SaVING the USEr MOGUIEuviiiiii e e e e e e e e e s st r e e e e s s sntbaaaeaaeeasnees 2-9
Building the user library to include the new user modulecccovviiiieiiiiiiiiee e 2-9
(ST To T ol o101 e I=T (o] =T OO UPPTR PR 2-10
Checking the USEr MOGUIE.cooiiiiiiiee e e e e e s e e e e an 2-11

Tutorial: Creating a user module that returns data arraysccccceveeeeeeiiicveeereeeesseseeenes 2-12

Table of contents Model 4200A-SCS KULT and KULT Extension Programming

Naming new user library and new VSweep user module
Entering the VSweep user-module return type.........ccccceeeviuineeen.
Entering the VSweep user-module code...............
Entering the VSweep user-module parameters.....
Entering the VSweep user-module header files.....
Documenting the VSweep USEr MOAUIEcooiiiiiiiiiee e e e
Saving the VSWeep USEr MOUUIEuuiiiiiiii e e e e s araaa e an
Building the VSweep user module
Checking the VSweep user module

Tutorial: Creating a user module that returns data arrays in real timeccccccoeinnee 2-18
Naming new user library and new VSweepRT user module
Entering the VSweepRT user-module return type...........ccccuvveeee.
Entering the VSweepRT user-module code...............
Entering the VSweepRT user-module parameters....
Entering the VSweepRT user-module header files ...
Documenting the VSWeepRT USEr MOAUIEccuiiiiiiii e
Saving the VSWeepRT USEr MOUUIEoiiiiiiiiiiiiie et e e e e
Building the VSweepRT user module....................
Checking the VSWeepRT USEr MOTUIEceuiiiiiiiee e

Tutorial: Calling one user module from within another ...
Creating the VSweepBeep user module by copying an existing user module 2-24
Calling independent user module from VSweepBeep user module
Specifying user library dependencies in VSweepBeep user module...........ccceveeeeeiiiiiiieeneenn. 2-27
Building the VSweep USEr MOTUIEoeiiiiiiie e
Checking the VSweepBeep USEr MOUUIE..........uuuiiiiiiiiiiiiiie e

Tutorial: Customizing a user test module (UTM)
Open KULT ...
Open the Kl42xxulib user library
Open the Rdson42XX user module
Copy Rdson42XX to RASONAVYceveeeeeiininenen.

Open and modify the RdsonAvg user module.......
Save and build the modified library
Add a new UTM t0 the iVSWItCN PrOJECTooii i

Tutorial: Creating a user module for stepping Or SWEEPINGccuvveeieeeeriiiiiiiiee e
Name a NeW USEIr MOUUIEuiieiiiee ettt e e e e e et e e e e e e e e nnneeeeas
Entering the return type...................

Entering the user-module code
Entering the user-module parameters...................
Enter the user-module header files
Documenting the user module
Saving the user module
Building the user module.................
Checking the USEr MOTUIE...........ooii e e e e eaa e

User module and library managementouuiiiiieeriiiiiiiieeee e 3-1
[a1 doTo [0 Tox i o] o PP TR 3-1

Managing USEr lIDFAriEScoiiiieiiiii e e e 3-1
Updating and copying user libraries using KULT command-line utilitieS............cccccceeiinininneen. 3-1
Performing other KULT tasks using command-line commands............cccccoviiiuiiierieeniiiiiiieneeennn 3-3

Dependent user modules and USer Draries ... 3-9
Structuring dependencies hierarchiCally..............coooiiiiii e 3-9
Building dependent user libraries in the correct Order ... 3-11

Formatting user module help for the Clarius Help pane ... 3-13

Creating PrOJECE PrOMPLS ittt e ettt et e e e s et e e e e e e e e e s e abebeeeeaaesssannbbseeaeaeeaaannes 3-14

Model 4200A-SCS KULT and KULT Extension Programming Table of contents

(0L g To e 1= oo o Jo)l (= = ST PPRRRT 3-14
Dialog tESE @XAMPIESeeeiieeiiietie ettt ettt e e e e ettt e e e e e s e e e e e e e e e e nnr e e e e e e e e e e nnneeeeas 3-15
KULT Extension for Visual Studio COUE.........ovivniiiiiiiiieeeeeeeeeeeeeee e 4-1
(a1 (oo [¥ o3 i o] s IR PSPPSR 4-1
INSTAIATION ...eoiiiiiiiiiieeeeeeeee e 4-1
Download Visual StUAIO COU.......ceiiiiiiiiiiiiee ettt e e st e e e e s e e trrbaaaaee s 4-2
Install Visual Studio Code
Install extensions with an iNternet CONNECHIONccoiiiiiiiiei e e 4-3
Install extensions without an iNternet CONNECLIONeeiiiiiiiiiiee et 4-5
Updating the KULT Extension after installing Clarius............ccouueeiieiiiiiiiiiie e 4-7
Setting up Visual Studio Code for library development ..., 4-10
Opening the user library in Visual Studio Code............cccuvveeeeenn.

Creating the Visual Studio Code configuration files

Visual Studio COAE OVEIVIEWcooeiiieieiiieeeeee
Opening Visual StUAIO COUEcooiiiiiiiie et e e a e e e et e e e e e s eeabaraeaeee s
Visual Studio Code USEr INtEIACEccoeiiiiieiiee e
Command Palette
Settings in Visual Studio Code

Q1 I o [o T

Working with user libraries in Visual Studio Codecccccveeeiiiiiiiiiieee e
Creating @ NEW lDFAIY ... e e e e s e e e e e s et areeaaeeaan
[070] o)V 1ol = W 11 o] = 1 VP TU TSR
(D211 a T Lo J= N 1 o] = T YA U PRT PP
Renaming a library
Setting library visibility
Entering library dependencies and environment variables
Building @ library........ccuuveeiieiiiieec et
(o1 T oL oL = W 11 o] -1 PSPPSR

Working with modules in Visual Studio COUEccoocviiiiiiie e
Creating a new user module
Copy a user module..........cccveeeeen.
RENAME 8 USEI MOAUIE ...ttt e e e e s et e e e e e e et e e e e e e e e nneeeeeas
Deleting @ USEr MOAUIEooi ettt e e e e sttt e e e e e e et e e e e e e e e nnneeeeas
Setting the return type of a user module
Including header files ...
Editing module parameters
Reorder the user module parameters
Editing the module deSCHPLIONiiiiiiiiiii e e e r e e e s e e naraees

[D=T o 0T o 1T 1o} = U4 =TSR
Debugger side bar and tOOIDAN............coiiuiiiiiie e
Setting up the debugger..................
Running code with the debugger
Ending a debugging session...........
Setting breakpoints in modules........
Expression evaluation.....................
Watching variables

KULT EXTENSION tULOTIAIS ..oooiiiiiiiiieiiiic e 5-1
TULOTTAL OVEIVIEW ...ttt ettt ettt e e e e e sttt e e e e e e e e bbbt e e e e e e e e nnbbeeeaaaaeas 5-1
Tutorial: Creating a new user library and user module ..., 5-2

Starting Visual STUAIO COAEc.ooiiiiiiiiii ettt e e et e e e e e e aneae e e e e e e e anees 5-2

Table of contents Model 4200A-SCS KULT and KULT Extension Programming

Creating @ NEW USET NDFANYoooo ettt e e e e e e aneae e e e e e e e anees
Creating a new user module
Entering a return type..........cccceeee...
Entering user module code
Entering parameters............c.ccoeeu...
ENtering NEATET filESveieii i e e e e e s e e e e s et aaaae e an
Documenting the USEr MOAUIEcoiiiiiiiiie e e e e e e s e eaaeeean
Saving the user module
BUIIAING the TIDFAIY ...ttt e e et e e e e e anareeeaee e an
[T o [T o [eloTe [N =T 4 o] £ PR TRPTRRR
Checking the user module iN CIariUS..........ooi i eeaa e

Tutorial: Creating a user module that returns data arrays
Creating a new user library and user MOdUIE...........ooi i
Entering the return type for VSweepcccccee....

Entering the VSweep user module code...............

Entering the VSweep user module parameters
Entering the header files for the VSweep user modulecccceeeeiiiiiiiiiiic e
Documenting the VSweep user module
Saving the VSwWeep USEr MOGUIEo i e e e eaa e
Building the VSweep USEr MOAUIEoeiiiiiiiii e
Checking the VSweep user module in CIariUSooiuiiiiiiaei e

Tutorial: Calling one user module from another...........c...eeiiiiiiii e
Copying an existing USEr MOGUIEoiiiiii e e e eaa e
Calling another user module from the VSweepBeep user module
Specifying user library dependencies
BUIldiNg the USEI lIDFary......ccoiiiiiiii e e e e e e e s e e aaraee s
Checking the VSweepBeep USEr MOUUIE..........uuiiiiieiiiiiiiiie et

Tutorial: Customizing a user test module (UTM)
Copy the Rdson42XX user module
Modify the RdsonAvg user module
Change a parameter name
Change the module description...........
Save and build the modified library
Add a new UTM t0 the iVSWItCh PrOJECTiiiiiiiiiiiiiii e

Tutorial: Debugging @ USEr MOUUIEcoiiiiiiiieiee e r e e e e e e nenaeees
Using copy to create the VSweepRes uUSer MOAUIEccoviiiiiiiiiei i
Adding an average resistance calculation to VSweepRes
Adding a parameter to0 VSWEEPRESuvvvvveeeiiiiiiiiiiee e
Building the user library...........cccovvvveeeiiiiiiiienee,
Checking the VSweepRes user module................
Starting the debugger and adding a breakpoint
Debugging the codecccooiiiiiiiiiiiieiiiiieeeeen
Retest the VSweepRes user module in CIariUS.coiiiiiiiiiiie e

Section 1

Introduction

In this section:

INEFOAUCTION ..ot 1-1
KULT deSCHPLON....cciiiiiiiiiie et e e e 1-2
KULT interface description..........cccevveeeeiiiiiieiee e 1-3
Module identification areaeeeeeeiiiiiiiiieee e 1-4
Module parameter display area..........ccooeevveeieeeeeiiiiiiiieeeeee s 1-4
Module COAE-ENtIY @reacceviuiiieiiee e 1-5
Terminating brace area..........ccccveeeiiiiiiiiiie e 1-5
TAD ArB@....cii i 1-5
SEAtUS DA ... 1-11
IMIBIUS .ttt et 1-11
Develop and use user libraries...........c.ccccoevvviieeieeiiiiiiiiencen 1-16
Copy user modules and files.........ccccceveeeiiiiiiiienie e, 1-16
Enabling real-time plotting for UTMScoccoiiiiiiiiniiieee 1-17
Using NI-VISA in user libraries.........cccccouiiiiiiiieneeesiiiiieeeeen 1-18
Introduction

The Keithley User Library Tool (KULT) and the KULT Extension for Visual Studio Code are a few of
the software tools provided with the Keithley Instruments Model 4200A-SCS. The 4200A-SCS is a
customizable and fully integrated parameter analyzer that provides synchronized insight into
current-voltage (I-V), capacitance-voltage (C-V), and ultra-fast pulsed I-V characterization. Its
advanced digital sweep parameter analyzer combines speed and accuracy for deep sub-micron
characterization.

The primary 4200A-SCS components and typical supported external components are illustrated in the
following figure.

Section 1: Introduction Model 4200A-SCS KULT and KULT Extension Programming

Figure 1: 4200A-SCS summary

4200A-SCS
. :
|| Interactive User test |
| |test module | |module (UTM) Clarius* !
'|(ITM) library library arius :
A X / 1 |
|

N 4 |
| Clarius Keithley Keithley Keithley Keithley | |
: User Configuration External Pulse |
| Library Utility Control Application | 1
| Tool (KCon) Interface (KPulse) |
| (KULT) (KXCI) :

A |
(S s PR SR S— —

Preamps |« L
4200A-SCS < |SMUs ['/VMSwitch
Optional Computer vv atrix [Prober
external |« PGUs/PMUs |- Pulses {> RBTs | ’—;
monitor 4—@4 c/V X j;\
Pulses
Pulses
\Z v v v v . External
Video USB LAN Serial GPIB instrument
interface interface interface interface interface Y
v A
4200A-CVIV
USB devices Other external
control

KULT description

You can use the Keithley User Library Tool (KULT) and the KULT Extension for Visual Studio Code to
create and manage user libraries. A user library is a collection of user modules. User modules are C
programming language subroutines, also called functions. User libraries are created to control
instrumentation, analyze data, or perform any other system automation task programmatically. Once
a user library has been successfully built using KULT, its user modules can be executed using the
Clarius software tool.

KULT provides a simple user interface that helps you effectively enter code, build a user module, and
build a user library. KULT also provides management features for the user library, including menu
commands to copy modules, copy libraries, delete modules, and delete library menu commands.
KULT manages user libraries in a structured manner. You can create your own user libraries to
extend the capabilities of the 4200A-SCS.

The KULT Extension for Visual Studio Code gives you the ability to write, compile, and debug user
libraries outside of KULT. Combining the user-friendly Visual Studio Code editor with KULT creates
an integrated development environment (IDE).

4200A-KULT-907-01 Rev. C March 2023

Model 4200A-SCS KULT and KULT Extension Programming Section 1: Introduction

To execute a KULT user module in Clarius, you create a Clarius user test module (UTM) and connect
it to the user module. Once this user module is connected to the UTM, the following occurs each time
Clarius executes the UTM:

e Clarius dynamically loads the user module and the appropriate user library directory (usrlib).
e Clarius passes the user-module parameters (stored in the UTM) to the user module.

e Data generated by the user module is returned to the UTM for interactive analysis.

KULT interface description

The KULT interface is shown in the following figure. It provides all the menus, controls, and user-entry
areas that you need to create, edit, view, and build a user library and to create, edit, view, and build a

user module.
Figure 2: KULT interface overview
Module identification area Library visible or
hidden display
@ KULT: Module "Rdson4: c" Library "Kl42xxulib”, - X
Menu bar—— | file Edit Options Hel
Library: K142xxulib
Module: [Rdsond234X V4
Retum Type [t =] Library Visible Apply
< Module-parameter
#include "ulib_internal.h" ﬁ’ dlsplay area
int Rdson42XX(double Vg, double Vdl, double Vd2, int GatePin, int j
- Module code-entry
// Verify parameters
if (GatePin > 72) return(INVAL_PARAM); area
if (SourcePin > 72) return (INVAL_PARAM) ; . .
if (DrainPin > 72) return(INVAL PARAM); Termmatlng-brace
if (BulkPin > 72) return(INVAL_PARAM):; area
// Make the connections
if ((GatePin > 0) && (DrainPin > 0) && (SourcePin > 0))
{
// Switch matrix used.
nnnnnn reMTTR FfaraDin ny . =
< |>|_I
|+ /% End Rdson42XX.c */
Includes] Description I Build |
Tab area— | Parameter Name ‘ Data Type ‘ 170 Default ‘ Min ‘ Max Add |
Vg double rput 2 a0 |10 ii Delete |
Vd1 double Input 3 -10 10 Appl
EPY
Vd2 double Input 5 -10 10 |- —,
Status bar Module parameter view KEITHLEY ‘

Each feature of the KULT interface is explained in the following sections.

4200A-KULT-907-01 Rev. C March 2023 1-3

Section 1: Introduction Model 4200A-SCS KULT and KULT Extension Programming

Module identification area

The module identification area is directly below the menu bar and defines the presently open user
library and user module. The components of this area are as follows:

e Library: Displays the name of the presently open (active) user library.
e Module: Displays the name of the presently open user module.

e Return Type: Defines the data type of all codes that are returned by return(code) statements
in the user module. You can select one of the following variable types:
= char: Character data
= double: Double-precision data
= float: Single-precision floating point data
*= int: Integer data
= long: 32-bit integer data

= void: No data returned

NOTE

When a user test module (UTM) is executed by Clarius, the value of the return(code) statement

is displayed on the Data worksheet in the column labeled with the module name.

e Library Visible / Library Hidden: Displays whether or not the presently open user library is
available to Clarius. To change the hidden or visible status, select or clear the Hide Library option

in the Options menu (on page 1-15).

e Apply: Updates the presently open user module to reflect additions and changes.

Module parameter display area

The module parameter area is a display-only area that is directly below the module identification area.
In the module-parameter area, KULT displays:

e The C-language function prototype for the user module, reflecting the parameters that are
specified in the Parameters tab area, and the return(code) data type.

e The #include and #define statements that are specified in the Includes tab.

4200A-KULT-907-01 Rev. C March 2023

Model 4200A-SCS KULT and KULT Extension Programming Section 1: Introduction

Module code-entry area

The module code-entry area is below the module-parameter area. The module code-entry area is
where you enter, edit, or view the user-module C code. Scroll bars located to the right and below the
module-code entry area let you move through the code.

NOTE

Do not enter the following C-code items in the module code-entry area (KULT enters these at special
locations based on information in other places in KULT): #include and #define statements; the
function prototype; and the terminating brace. To control internal or external instrumentation, use
functions from the Linear Parametric Test Library (LPTLib). For more information, refer to Model
4200A-SCS LPT Library Programming.

Terminating brace area

The terminating-brace area is a display-only area. KULT automatically enters and displays the
terminating brace for the user-module code when you select Apply.

Tab area

The Tab area includes the tabs:
e Parameters

e Includes

e Description

e Build

Parameters tab area

In the Parameters tab, you define and display parameters in the user module call. You can define
and display:

e Parameter name
e Parameter data type
e Input or output (I/O) data direction

e Default, min, and max values for the parameter

These options are defined in the following text.

4200A-KULT-907-01 Rev. C March 2023 1-5

Section 1: Introduction Model 4200A-SCS KULT and KULT Extension Programming

The Parameters tab area is near the bottom of the KULT main screen. An example is shown here.

Figure 3: Parameters tab for the Rdson42XX user module from the Kl42XX library

Parameters Ilncludes I Description] Build I

Parameter Name Data Type 170 Default Min Max I

Vg double Input 2 ’ 10 j Delete I
Vdil double Input 3 -10 A
1 pply I

Va2 double | nput 5 |10 10

NOTE

You can right-click anywhere in the Parameters tab area to access the Add, Delete, and
Apply options.

To add a parameter:
1. Select Add.
2. Enter the information as needed.

3. Select Apply.

To delete a parameter:
1. Select the parameter name or any of the adjacent fields.
2. Select Delete.

To make changes to the parameters:
1. Make changes in the appropriate field.
2. Select Apply.

Parameter name field

The parameter name field identifies the parameters that are passed to the user module. These are
the same parameters that are specified in the user-module function prototype. KULT constructs the
prototype from the Parameters tab entries when you select Apply, and then displays it in the
module-parameter display area.

1-6 4200A-KULT-907-01 Rev. C March 2023

Model 4200A-SCS KULT and KULT Extension Programming Section 1: Introduction

Data type field

The data type field specifies the parameter data type. Select the arrow at the right of the data type
field to choose from a list of the following data types:

e char: Character data

e char*: Pointer to character data

e float: Single-precision floating point data

e float*: Pointer to single-precision floating point data
e double: Double-precision data

e double*: Pointer to double-precision point data

e int: Integer data

e int*: Pointer to integer data

e long: 32-bit integer data

e long*: Pointer to 32-bit integer data

F_ARRAY_T: Floating point array type

I_ARRAY_T: Integer array type

D_ARRAY_T: Double-precision array type

1/O field
The I/O field defines whether the parameter is an input or output type. Select the arrow to the right of
the 1/O field to select from the input and output selections.

Default, min, and max fields

The Default field specifies the default value for a nonarray (only) input parameter.

The Min field specifies the minimum recommended value for a nonarray (only) input parameter.
When the user module is used in a Clarius user test module (UTM), configuration of the UTM with a
parameter value smaller than the minimum value causes Clarius to display an out-of-range message.

The Max field specifies the maximum recommended value for a nonarray (only) input parameter.
When the user module is used in a Clarius UTM, configuration of the UTM with a parameter value
larger than the maximum value causes Clarius to display an out-of-range message.

The minimum value must be less than the maximum value.

4200A-KULT-907-01 Rev. C March 2023 1-7

Section 1: Introduction Model 4200A-SCS KULT and KULT Extension Programming

Includes tab area

The Includes tab, shown below, lists the header files used in the user module. This area can be used
to add #include and #define statements to the presently open user module.

Figure 4: Default Includes tab area

l} /* End TwoTonesTwice.c */
Parameters I Description I Build
#include "keithley.h" -
User specified “#include's” and "#define's" KEITHLEY

By default, KULT automatically enters the keithley.h header file into the Includes tab. The
keithley.h header file includes the following frequently used C-programming interfaces:

e #include <stdio.h>
e #include <stdlib.h>
e #include <string.h>
e #include <math._h>

e #include "windows.h"

In most cases, it is not necessary to add items to the Includes tab area, because keithley.h
provides access to the most common C functions. However, in some cases, both of the following

may apply:
e You do not want to include keithley._h

e You want to include only the header files specifically needed by your user module and all the user
modules on which it depends.

If so, you must minimally include the following header files and #define statements to properly build
user modules and user libraries:

#include "lptdef._h"

#include "lptdef_lowercase.h"
#include "kilogmsg_proto.h

#include "ktemalloc.h"

#include "usrlib_proto.h"

#define PTexit _exit

#define exit Unsupported Syntax
#define abort Unsupported Syntax
#define terminate Unsupported Syntax

1-8

4200A-KULT-907-01 Rev. C March 2023

Model 4200A-SCS KULT and KULT Extension Programming

Section 1: Introduction

Description tab area

The Description tab, shown below, allows you to enter descriptive information for the presently open
user module. The information that is entered in this area documents the module to the Clarius user

and is used to create Clarius user library help.

Figure 5: Description tab area

Parameters Includes Description] Build I

<!--MarkdownExtra-->
<link rel="stylesheet" type="text/css"
href="http://clariusweb/HelpPane/stylesheet.css">

MODULE

TrATAnaeTwi ~a

’

=l

Module code view

kermniev]

Do not use C-code comment designators (/*, */, or //) in the Description tab area. When the
user-module code is built, KULT also evaluates the text in this area. C-code comment
designators in the Description tab area can be misinterpreted, causing errors.

NOTE

Do not place a period in the first column (the left-most position) of any line in the Description tab area.
Any text after a first-column period will not be displayed in the documentation area of a Clarius UTM

definition document.

To enter a description:
1. Selectinthe Description tab area.

2. Enter the description.

3. Right-click in the Description tab area to open the menu shown here.

Figure 6: Edit menu for the Description tab area

Execution results in sounding of four heep |nclude
user-settable frequencies. Each beeps soun

C
INPUTS: -
Framl {dmavhlal io thae Frarancr in Hoe AF Copy

Paste

Select All

Parameters I Includes Description I Build I

MODULE:| Edit Description
TwoTonesTwice

DESCRIPTION: New

ting

=~
BrdvAd haan

[cimne]

4200A-KULT-907-01 Rev. C March 2023

1-9

Section 1: Introduction Model 4200A-SCS KULT and KULT Extension Programming

The edit menu commands are:

e New: Deletes the present description from the description tab area, allowing you to enter a new
description.

e Include: Imports any file that you specify, typically a text file, into the document tab area. Refer to
Include (on page 1-10) for more information.

e Cut: Removes highlighted text from the Description tab and copies it to the clipboard. The text on
the clipboard can be restored to new locations, in or out of KULT, using the paste function.

e Copy: Copies highlighted text from the description tab area to the clipboard. The text on the
clipboard can be placed at new locations, in or out of KULT, using the paste function.

e Paste: Places text from the clipboard at a selected location in the Description tab area.

e Select All: Selects everything in the Description tab area.

Include

Imports a *. c file that you specify into the module code-entry area only. This is typically a text file.
The file is imported into the document tab area.

The File > Include command inserts everything from the specified file. If the specified file is
the source file for a KULT user module <ModuleName.c>, everything that KULT saves into
the user module (not only the C code) is imported. Therefore, you must edit the entered text
to remove all but the needed information. In particular, you must remove any comments of
the form /7* USRLIB MODULE __ */.

In some cases, it is more efficient to copy only the needed code text from the source file, then
paste it into the module code-entry area.

NOTE

To insert a text or other file into the document tab area, refer to Description tab area (on page 1-9)
for information about the Include menu option.

To import a *.c file:

1. SelectInclude. The Include Other File dialog opens.

2. Place the cursor where you want to place the new information.
3. Browse and select a file or enter a file name and path.
4

Select Open. The file is inserted at the cursor location.

1-10 4200A-KULT-907-01 Rev. C March 2023

Model 4200A-SCS KULT and KULT Extension Programming Section 1: Introduction

Build tab area

The Build tab area displays any error or warning messages that are generated during a code build
operation of the user library. When you select a build error message that is displayed in the Build tab
area, KULT highlights either the line of code where the error occurred or the next line, depending on
how the compiler caught the error. KULT also highlights the error message. This helps you

correct errors.

If no errors are found, the Build tab area displays:

No Errors/Warnings Reported. Compilation/Build was Successful.

Status bar

The status bar at the bottom of the KULT dialog displays a description of the area where the cursor is
located. For example, if the cursor is in the Parameters tab area, the status bar describes that area,
as shown in the following figure.

Figure 7: Example of description in status bar

Parameters Includes I Description I Build I
Parameter Name Data Type 1/0 Default | Min Max Add
Freql Input 1000 800 1200 |- Delete |

Freq2 long Input 400 300 ’ 500 Apply I

Parameter Entry: Name, Data Type, Input/Output, Default Value KEITHLEY

Menus

This section describes the menus on the menu bar, which is at the top of the KULT dialog.

File menu

All user libraries are stored in the C:\s4200\kiuser\usrlib directory. This directory is referred to
as Clarius/KULT user-library directory. It is the active user-library directory, which is where Clarius
and KULT look for user libraries and user modules.

The File menu includes options to work with libraries.

4200A-KULT-907-01 Rev. C March 2023 1-11

Section 1: Introduction Model 4200A-SCS KULT and KULT Extension Programming

New Library

The New Library menu option creates a new user library.

NOTE

Library names cannot start with a number.

To create a new user library:
1. Select New Library. The Enter library dialog opens.
2. Name the new user library.

3. Select OK. This initializes and opens the new user library in place of the presently open library.

Open Library

Opens an existing user library in place of the presently open library.

To open alibrary:

1. Select Open Library to display the open library list.
2. Select an existing user library.

3. Select OK to open the selected library.

Copy Library

Creates a copy of the presently open user library.

To copy alibrary:
1. Select Copy Library. The Enter Library dialog opens.
2. Name the new user library into which to copy the presently open library.

3. Select OK to copy the open user library into the new library.

Delete Library

Deletes an existing user library and all its contents.

To delete a library:
1. Select Delete Library. The list of libraries is displayed.
2. Select the user library to be deleted.

3. Select OK to delete the selected library.

1-12 4200A-KULT-907-01 Rev. C March 2023

Model 4200A-SCS KULT and KULT Extension Programming Section 1: Introduction

New Module

This option creates a new user module. When you create a new user module, existing module
information in the KULT interface is cleared.

The name of the new module must not duplicate the name of any existing user module or user library
in the entire collection of user libraries.

To create a new user module:

1. Select New Module.
2. Enter a new user-module name in Module.
3. Select Apply.

Open Module

Opens an existing user module.

To open a module:

1.
2.
3.

Select Open Module. The Open Module list is displayed.
Select an existing user module.

Select OK to open the selected module in place of the presently open module.

Save Module

Saves the open user module.

Copy Module

Creates a copy of the open user module.

The name of the new module must not duplicate the name of any existing user module or user library
in the entire collection of user libraries.

To copy the user module:

1.

o > w D

Select Copy Module. The list of libraries opens.

Select the user library in which to copy the presently open user module.
Select OK. The Enter New Module dialog opens.

Enter a unique user-module name.

Select OK. The presently open module is copied into the selected library under the new name.
The presently open module remains open.

4200A-KULT-907-01 Rev. C March 2023 1-13

Section 1: Introduction Model 4200A-SCS KULT and KULT Extension Programming

Delete Module

Deletes a user module from the open user library.

To delete a user module:
1. Select Delete Module. The KULT: Library [OpenLibraryName] list is displayed.
2. Select the module to be deleted.

3. Select OK. The selected module is deleted. The open module continues to be displayed, even if it
is the module that you deleted.

NOTE

The executable user-library file, a dynamic link library (DLL), contains the deleted module until you
rebuild the library. Refer to Building the user library to include the new user module (on page 2-9) for
more information.

Print Module

Prints a text file that contains all the information for the presently open user module. The text file is
arranged in the form that KULT uses internally.

Exit
Exits KULT.

Edit menu

The Edit menu contains typical Microsoft® Windows® editing commands.

Edit menu commands:

e Cut: Removes highlighted text and copies it to the clipboard. The text on the clipboard can be
restored to new locations, in or out of KULT, using the paste function.

e Copy: Copies highlighted text to the clipboard. The text on the clipboard can be placed at new
locations, in or out of KULT, using the paste function.

e Paste: Places the text from the clipboard to a selected location.
e Select All: Selects everything in the module code-entry area.
e Undo: Allows you to reverse up to the last ten changes made in the module code-entry area.

e Redo: Allows you to reverse up to the last ten undo operations in the module code-entry area.

1-14 4200A-KULT-907-01 Rev. C March 2023

Model 4200A-SCS KULT and KULT Extension Programming Section 1: Introduction

Options menu

The KULT Options menu is shown here.

Figure 8: KULT Options menu

@ KULT: Module "NoName" Library "BeepLib".
File Edit Options Help

Compile ’

Build Library

L
Hide Library]

;

Library Dependencies...

il

Options menu commands:

e Build Library: When selected, adds the open user module (or updates changes) to the open
user library. All the modules in the open user library and any libraries on which the open module
depends are linked together. A dynamic link library (DLL) is created that is accessible using user
test modules (UTMs) in Clarius.

NOTE

Some Keithley Instruments-supplied user libraries contain dependencies. If you need to build or
rebuild such libraries, be sure that you specify the dependencies in the dialog opened by Options >
Library Dependencies. For more information, refer to descriptions in the following and to details in
the Dependent user modules and user libraries (on page 3-9).

Otherwise, the Build Library function will fail. For example, ki82ul ib depends on KI590ul ib and
Winulib. You must specify these dependencies before rebuilding ki82ul ib after making changes.

e Hide Library: When selected, causes the present user library to be unavailable to Clarius. For
example, use Hide Library if you want to designate that a user library is only to be called by
another user library and is not to be connected to a UTM.

e Library Dependencies: When selected, displays the Library Dependencies list, where you
specify each user library that is called by and that must be linked to the open user library. You
must make selections individually; do not hold down the control or shift key to make
multiple selections.

NOTE

The C:\s4200\kiuser\usrlib\<library name>\bui Ild folder is created when you run the
bld_11ib subcommand or select the Build Library menu option. This folder can be safely deleted

for debugging purposes.

4200A-KULT-907-01 Rev. C March 2023 1-15

Section 1: Introduction Model 4200A-SCS KULT and KULT Extension Programming

Help menu

The Help menu contains online help information about KULT:

e Contents: Allows access to the online KULT manual and other 4200A-SCS reference
information.

e About KULT: Displays the software version.

Develop and use user libraries

Clarius includes user libraries of user modules that contain precoded user modules for commonly
used external instruments. You can use these as-is, customize them, or create new ones. Most user
modules contain functions from the Keithley-supplied Linear Parametric Test Library (LPT Library)
and ANSI-C functions. All user modules are created and built using KULT.

Additionally, using KULT, you can program custom user modules in C. The LPT Library contains
functions that are designed for parametric tests. However, any C routine that can be built using KULT
can be used as source code for a user module.

A user library is a dynamic link library (DLL) of user modules that are built and linked using the
Keithley User Library Tool (KULT).

A user module is a C-language function that:
1. Typically calls functions from the LPT library and ANSI-C functions.
2. Is developed using the Keithley User Library Tool (KULT).

The default collection of KULT user libraries is stored in the directory C:\s4200\kiuser\usrlib.

NOTE

User library names must not start with a number.

Copy user modules and files

You can use the KULT zip (on page 3-8) and unzip (on page 3-8) subcommands to copy user
libraries and other files. See Performing other KULT tasks using command-line commands (on
page 3-3) for more information.

The KULTArchive .exe utility is installed on your 4200A-SCS. You can copy this utility to a Model
4200 or 4200A-SCS to archive or unzip a user library for use with an earlier version of Clarius. This
utility is located at C:\S4200\sys\bin\KULTArchive.exe.

If you use the KULTArchive.exe utility with a Model 4200, you must install the Microsoft Visual C++

Redistributable. This file is available on your 4200A-SCS at
C:\s4200\sys\Microsoft\Microsoft Visual C++ 2017

Redistributable\c_redistx86.exe.

1-16

4200A-KULT-907-01 Rev. C March 2023

Model 4200A-SCS KULT and KULT Extension Programming Section 1: Introduction

Usage
kultarchive [subcommand]
Where:

<subcommand> is the zip or unzip operation.

KULTArchive zip subcommand
zip -I<library_name> [password] <zipfile_name>
The <library_name> user library is created in the active user-library directory.

The [password] parameter is optional.

Example for zip without password
kultarchive zip -I<Libraryl> C:\temp\myzip.zip

KULTArchive unzip subcommand

unzip [-dest_path] [password] <zipfile_name>

Where:

e [-dest path] is the target directory where the file will be unzipped.

e [password] is required if the file was compressed using the password parameter in the zip
subcommand.

The <zipfile_name> archive is unzipped in the active user-library directory unless the
[-dest_path] parameter is specified. The [-dest_path] parameter should not be used when
you import a user library.

Example for unzip with password

kultarchive unzip -password -pwl234 C:\temp\myzip.zip

Enabling real-time plotting for UTMs
To enable real-time plotting in a UTM, you use the following LPT library functions:
e PostDataDouble()
e PostDatalnt()

e PostDataString()

In these functions, the first parameter is the variable name, defined as char *.

4200A-KULT-907-01 Rev. C March 2023 1-17

Section 1: Introduction Model 4200A-SCS KULT and KULT Extension Programming

Using

Add

When using the new functions to transfer data into the data sheet in real time, make sure the data is
already in the memory of the 4200A-SCS. Sweep measurements are not suitable for real-time
transfer because data is not ready until sweep finishes. The following tutorials show how to enable
real-time plotting for a UTM.

For more information on LPT library functions, refer to Model 4200A-SCS LPT Library Programming.

NI-VISA in user libraries

You can use a user library to communicate with an external instrument that is connected using a USB
cable. The library requires the optional NI-VISA installation. To include NI-VISA, a library dependency
to visa32.1ib must be added first. This dependency applies to all modules in a library and only
needs to be completed once per library.

Clarius includes two libraries, generic_visa_ulib and the dmm_6500_7510_ temp_ulib, as
examples of using VISA commands to communicate with USB controlled instruments.

NI-VISA as a library dependency in KULT

To add NI-VISA as a library dependency in KULT:
1. Close KULT.

2. Goto the kitt_src folder for the library, such as
C:\s4200\kiuser\BeepLib\lib_name\kitt_src.

3. Open the _mak file for the library in Notepad or another editor.

4. Inthe LIBS variable, between the quotes, enter visa32.1ib. Enter any other library
dependencies you may need.

Save the file.

Reopen the library in KULT.

NOTE

Modifying the library dependencies in KULT will overwrite NI-VISA. To add additional dependencies
without overwriting VISA, repeat the above process.

1-18

4200A-KULT-907-01 Rev. C March 2023

Model 4200A-SCS KULT and KULT Extension Programming Section 1: Introduction

Add NI-VISA as alibrary dependency in the KULT Extension

In addition to the library dependency, all modules that use NI-VISA must also include the visa.h and
visatype.h header files.

To add NI-VISA as a library dependency in the KULT Extension:

1.
2.

Select the library in the KULT side bar.

In the Miscellaneous pane of the KULT side bar, select the library_name.mak file to openiitin
the editor.

In the code editor, add the visa32. lib file to the LIBS variable.

Save the file.

Include the NI-VISA header files in KULT

To include the NI-VISA header files in KULT:

1.
2.
3.

Open the module in KULT.
Select the Includes tab at the bottom of the screen.

Add the following statements:
#include "visa.h"
#include "visatype.h"

Include the NI-VISA header files in the KULT Extension

To include the NI-VISA header files in the KULT Extension:

1.
2.

Open the module in the editor.

Under the /* USRLIB MODULE PARAMETER LIST */ comment, add the following statements:
#include "visa.h"
#include "visatype.h"

Remove Intellisense errors

If you are using the KULT Extension, including visa.h and visatype.h may cause an Intellisense
error, because the Intellisense configuration file cannot find the path to the header files. This error will
not affect building the library, but you can remove it by editing the c_cpp_properties. json file.

4200A-KULT-907-01 Rev. C March 2023 1-19

Section 1: Introduction Model 4200A-SCS KULT and KULT Extension Programming

To remove Intellisense errors caused by the NI-VISA header files:
1. Openthe c_cpp_properties. json header file from the Miscellaneous pane of the KULT
side bar.

2. Inthe editor, add the path to the header files:
C:/Program Files (x86)/1V1 Foundation/VISA/WinNT/include

Included paths should be enclosed in double quotes and separated by commas.

3. Save the file. This applies to all libraries in the working directory of Visual Studio Code.

NI-VISA commands must be used to communicate with the instrument. These commands are
documented in the NI-VISA Programmer Reference Manual. The most commonly used commands
are shown in the following table.

Commonly used VISA commands

Command Name Description

viOpenDefaultRM Initializes VISA. Must be called before any other VISA command.

viFindRsrc Finds available instruments and returns a list of their resource strings. The
list can be filtered to USB only using the format string USB?*

viFindNext Used to iterate through the returned list of instruments from viFindRsrc to
find an instrument.

viOpen Opens a session to the instrument specified by the VISA resource string.

viWrite Writes data to an external instrument.

viRead Reads a set number of characters as a string from the output buffer of the
external instrument.

viClose Closes a VISA session. Use this command before exiting a user module.

For more information on VISA command syntax, usage, and error codes, refer to the NI-VISA
Programmer Reference Manual, available at https://www.ni.com/ (ni.com/).

1-20

4200A-KULT-907-01 Rev. C March 2023

https://www.ni.com/
https://www.ni.com/

Section 2

In this section:

KULT TULOMIAIS ..t 2-1
Tutorial: Creating a new user library and user module............. 2-3
Tutorial: Creating a user module that returns data arrays...... 2-12

Tutorial: Creating a user module that returns data arrays

INTEAITIME ... 2-18
Tutorial: Calling one user module from within another 2-23
Tutorial: Customizing a user test module (UTM).................... 2-29

Tutorial: Creating a user module for stepping or sweeping ... 2-36

KULT Tutorials

The tutorials in this section provide step-by-step instructions for accomplishing common tasks with
KULT. The tutorials are summarized here.

KULT tutorials

Tutorial: Creating a new user library and new user module (on page 2-3)

Name a new user library
Name a new user module
Enter a return type

Enter user module code
Enter parameters

Enter header files
Document the user module
Save the user module
Build the user module

Find code errors

Build the user library to include the new user module
Find build errors

Check the user module

Section 2: KULT tutorials Model 4200A-SCS KULT and KULT Extension Programming

Tutorial: Creating a user module that returns data arrays (on page 2-12)

e Name a new user library and new VSweep user module
e Enter the VSweep user-module return type

e Enter the VSweep user-module code

e Enter the VSweep user-module parameters

e Enter the VSweep user-module header files

e Document the VSweep user module

e Save the VSweep user module

e Build the VSweep user module

e Check the VSweep user module

Tutorial: Creating a user module that returns data arrays in real time (on page 2-18)

e Name a new user library and new VSweepRT user module
e Enter the VSweepRT user-module return type

e Enter the VSweepRT user-module code

e Enter the VSweepRT user-module parameters

e Enter the VSweepRT user-module header files

e Document the VSweepRT user module

e Save the VSweepRT user module

e Build the VSweepRT user module

® Check the VSweepRT user module

Tutorial: Calling one user module from within another (on page 2-23)

e Create the VSweepBeep user module by copying an existing user module
e Call an independent user module from the VSweepBeep user module

e Specify user library dependencies in the VSweepBeep user module

e Build the VSweepBeep user module

e Check the VSweepBeep user module

Tutorial: Customizing a user test module (UTM) (on page 2-29)

Tutorial: Creating a user module for stepping or sweeping (on page 2-36)

2-2 4200A-KULT-907-01 Rev. C March 2023

Model 4200A-SCS KULT and KULT Extension Programming Section 2: KULT tutorials

Tutorial: Creating a new user library and user module

KULT is a tool that helps you develop user libraries. Each user library is comprised of one or more
user modules. Each user module is created using the C programming language.

This section contains a tutorial that shows you how to create a new user library and new user module.
A hands-on example is provided that illustrates how to create a user library that contains a user
module that activates the internal beeper of the 4200A-SCS.

Starting KULT

To start KULT:
1. Select KULT in the Microsoft® Windows® Start menu (Start > Keithley Instruments > KULT).

2. Ablank KULT dialog appears named KULT: Module "NoName" Library "NoName", as shown in
the following figure.

Figure 9: Blank KULT dialog

@ KULT: Module "NoName" Library "NoName". - a X
File Edit Options Help
Library: NoN ame
|
| =] LibayVisle [20|
-
v
-
< D
Patameters Includes I Description | Buid
Patameter Name Data Type 1/0 Default Min Max
| KEITHLEY

4200A-KULT-907-01 Rev. C March 2023 2-3

Section 2: KULT tutorials Model 4200A-SCS KULT and KULT Extension Programming

Naming a new user library

NOTE

User library names cannot start with a number and cannot contain spaces.

To name a new user library:

1. In KULT, select File > New Library.

2. Enter the new user library name. For this tutorial, enter my_1st_lib.
3. Select OK.

The dialog name changes to KULT: Modulle ""NoName"' Library ""my_1st_ lib", and the name
next to library in the top left of the dialog is now my_1st_lib, as shown in the following figure.

Figure 10: KULT after naming a user library

@ KULT: Module "NoName" Library "my_1st_lib". — O X
File Edit Options Help

Library: my_1st_lib
Module: Il
Retun Type [void | Library Visible Apply

Creating a new user module

NOTE

When naming a user module, conform to case-sensitive C programming language naming
conventions. Do not duplicate names of existing user modules or user libraries.

To create a new user module:
1. Select File > New Module.

2. Inthe Module text box at the top of the KULT dialog, enter the new user module name. For this
tutorial, enter TwoTonesTwice as the new user module name.

3. Select Apply.

The KULT dialog changes as follows:

e The name of the dialog changes to KULT: Module "TwoTonesTwice.c" Library
"my 1st_lib".

® You see entries in the user-module parameters display area and in the terminating-brace display.
If you select the Includes tab, there is also an entry there, as shown in the following figure.

2-4

4200A-KULT-907-01 Rev. C March 2023

Model 4200A-SCS KULT and KULT Extension Programming

Section 2: KULT tutorials

Figure 11: KULT after naming a user module

@ KULT: Module "TwoTonesTwice.c” Library "my_1st_lib", - ad X
File Edit Options Help
Library: my_1st_lib
Module; [TwoTonesTwice
Retum Type [void] Library Visible Apply
/* USRLIB MODULE MAIN FUNCTION */ A
void TwoTonesTwice()
{ -
-
|
< D
[} /* End TwoTonesTwice.c */
Parameters Description] Build I
$include "keithley.h" -
hd
I KEITHLEY

NOTE

To view the entire module parameter display area, use the scroll bar.

Entering the return type

If your user module generates a return value, select the data type for the return value in the Return

Type box. The TwoTonesTwice user module does not produce a return value, so keep the void
default entry.

4200A-KULT-907-01 Rev. C March 2023

2-5

Section 2: KULT tutorials Model 4200A-SCS KULT and KULT Extension Programming

Entering user module code

Enter the C language code.

NOTE

Refer to Model 4200A-SCS LPT Library Programming for a complete list of supported 1/0 and
SMU commands.

To enter the C code, enter the new C code into the module-code entry area.

For the TwoTonesTwice user module, enter the code listed below. The code deliberately contains a
missing ; error to illustrate KULT debug capability.

/* Beeps four times at two alternating user-settable frequencies. */
/* Makes use of Windows Beep (frequency, duration) function. */

/* Frequency of beep is long integer, in units of Hz. */

/* Duration of beep is long integer, in units of milliseconds. */
Beep(Freql, 500); /* Beep at first frequency for 500 ms */
Beep(Freq2, 500); /* Beep at second frequency */

Beep(Freql, 500);

Beep(Freq2, 500);

Sleep(500) /* NOTE deliberately leave out semicolon */

Entering parameters

To enter the required parameters for the code:

1. Select the Parameters tab.

2. Select Add at the right side of the parameters tab area.
3. Under Parameter Name, enter Freql.
4

Select the Data Type cell and select long, as shown here. This is the C data type.

Figure 12: Data Type menu

Parameters I Includes] Description
Parameter Name Data Type

Freql | char B

long *
F_ARR&Y_T
I_ARRAY_T

5. For this user module, the 1/0 selection of Input is correct. If the Data Type is a pointer or array,
you could choose Input or Output.

6. Under Default, Min, and Max, enter default, minimum, and maximum values. These values limit
the choices the user sees. For the TwoTonesTwice user module, enter 1000, 800, and 1200.

2-6

4200A-KULT-907-01 Rev. C March 2023

Model 4200A-SCS KULT and KULT Extension Programming

Section 2: KULT tutorials

7. For the TwoTonesTwice module, add one more parameter with the values:

= Parameter name: Freqg2

= Datatype: long

= 1/O: Input
= Default: 400
= Min: 300

= Max: 500

8. Select Apply. (The Apply buttons at the top and bottom of the dialog act identically.)

Figure 13: Parameter entries for the TwoTonesTwice user module

Add

Parameters Ilncludes I Description I Build l

Parameter Name . Data Type . 140 Default Min Max

Freql long _Inpul | 1000 800 1200 A
Freq2 long Input | 400 _ 300 500

Delete

NOTE

For an output parameter, only the following data types are acceptable: pointers (such as char*, float*,
and double) and arrays (I _ARRAY_T, F_ARRAY_T, or D_ARRAY_T).

Entering header files

To enter the header files:

1. Selectthe Includes tab at the bottom of the dialog.

Figure 14: Default Includes tab area

Parameters

[} /* End TwoTonesTwice.c */

I Description I Build |

#include "keithley.h"

-

User specified "#include's” and "#define's"

[erhiev]

2. Enter any additional header files that are needed by the user module. No additional header files

are needed for the TwoTonesTwice user module or for any of the user libraries supplied by
Keithley Instruments.

3. Select Apply.

4200A-KULT-907-01 Rev. C March 2023

2-7

Section 2: KULT tutorials Model 4200A-SCS KULT and KULT Extension Programming

Documenting the user module

To document the user module:
1. Select the Description tab at the bottom of the dialog.

2. Enter any text needed to adequately document the user module to the Clarius user.

Do not use C-code comment designators (/*, */, or //) in the Description tab area. When the
user-module code is built, KULT also evaluates the text in this area. C-code comment
designators in the Description tab area can be misinterpreted, causing errors.

NOTE

Do not place a period in the first column (the left-most position) of any line in the Description tab area.
Any text after a first-column period will not be displayed in the documentation area of a Clarius UTM
definition document.

3. For the TwoTonesTwice user module, copy the following information into the Description tab:

<!--MarkdownExtra-->
<link rel="stylesheet” type="text/css"
href="http://clariusweb/HelpPane/stylesheet.css">

MODULE

TwoTonesTwice

DESCRIPTION

Execution results in sounding of four beeps at two alternating user-settable
frequencies. Each beeps sounds for 500 ms.

INPUTS

Freql (double) is the frequency, in Hz, of the first and third beep.
Freg2 (double) is the frequency, in Hz, of the second and fourth beep.

OUTPUTS

2-8

4200A-KULT-907-01 Rev. C March 2023

Model 4200A-SCS KULT and KULT Extension Programming

Section 2: KULT tutorials

Figure 15: Description tab area

Parameters Includes Description l Build I

<!--MarkdownExtra-->
<link rel="stylesheet" type="text/css"
href="http://clariusweb/HelpPane/stylesheet.css">

MODULE

TrATAnaeTrrs ~a

]

=l

Module code view

[remiev]

Saving the user module

Select the File menu, then select Save Module.

Building the user library to include the new user module

Build the user library to include the module.

To build the user library:
1. Select the Build tab.

2. From the Options menu, select Build Library. The following occurs:

= The user library is built. All the user modules in the presently open user library and any

libraries on which the presently open user module depends are linked together.

= ADLL is created that is accessible using UTMs in Clarius.

= The KULT Build Library message box indicates the build progress. If problems are
encountered, this message box displays error messages. When you build the

TwoTonesTwice user module, you should see an error.

4200A-KULT-907-01 Rev. C March 2023

Section 2: KULT tutorials Model 4200A-SCS KULT and KULT Extension Programming

Finding build errors

To find code errors for the TwoTonesTwice user module:

1. Review the error in the Build tab.

Figure 16: Find a code error

File Edit Options Help

Library: my_1st_lib

Module: | TwoTonesTwice
Retumn Type [void =] Library Visible Apply
/* USRLIB MODULE MAIN FUNCTION */ s
void TwoTonesIwice(long Fregql, long Freq2)
{ -
/* Beeps four times at two alternating user-settable frequencies. */ |
/* Makes use of Windows Beep (frequency, duration) function. */
/* Frequency of beep is long integer, in units of Hz. */
/* Duration of beep is long integer, in units of milliseconds. */
Beep (Freql, 500); /* Beep at first frequency for 500 ms */
Beep (Freq2, 500); /* Beep at second frequency */
Beep (Freql, 500):
Beep (Freqg2, 500):
Sleep (500);
=
< [o[
I} /* End TwoTonesTwice.c */
Parameters l Includes Description Build I

C:\s4200Nkiuser\usilibhmy_1st_lib\sre\TwoT onesTwice.c:55:1: enor: expected ';' before '} token o
v
Ll_l »

Module code view KEITHLEY

2. Add the missing semicolon at the end of the code [S1eep(500) ;] and delete the comment about
the missing semicolon.

Select File > Save Module.
Select Options > Build Library.
= The KULT Build message box should now display no error messages.

= The Build tab area should display “No errors or warnings reported: Library was
successfully built.”

2-10 4200A-KULT-907-01 Rev. C March 2023

Model 4200A-SCS KULT and KULT Extension Programming Section 2: KULT tutorials

Checking the user module

To check a user module, you need to create and execute a user test module (UTM) in Clarius. Create
a simple Clarius project to check the user module.

To check the user module in Clarius:

1. Start Clarius. If Clarius is already running, restart it.

2. Choose the Select pane.

3. Select the Projects tab.

4. Select New Project.

5. Select Create. You are prompted to replace the existing project.

6. Select Yes.

7. Select Rename.

8. Enter UserModCheck and press Enter.

9. Choose Select.

10. Select the Actions tab.

11. Drag Custom Action to the project tree. The action has a red triangle next to it to indicate that it
is not configured.

12. Select Rename.

13. Enter 2tones_twice_chk and press Enter.

14. Select Configure.

15. In the Test Settings pane, select the my 1st_lib user library.

16. From the User Modules list, select the TwoTonesTwice user module. A group of parameters are
displayed for the UTM as shown in the following figure. Accept the default parameters for now.
You can experiment later after you establish that the user module executes correctly.

Figure 17: Configured UTM
twa_tones_twice_check# PR DY 7esi eitings
bwotons._twice_check#]
=3 £
17. Select Help to verify that the HTML in the Description tab is correctly formatted. An example is

shown in the following figure.

4200A-KULT-907-01 Rev. C March 2023 2-11

Section 2: KULT tutorials Model 4200A-SCS KULT and KULT Extension Programming

Figure 18: Example of help formatted as HTML for a user module

@ Test Settings m

TwoTonesTwice
DESCRIPTION

Execution results in sounding of four beeps at two
alternating user-settable frequencies. Each beeps sounds
for 500 ms

Freql (double) is the frequency. in Hz, of the first and third
beep.

Freq2 (double) is the frequency. in Hz, of the second and
fourth beep,

OUTPUTS

18. Select Save.
19. Execute the UTM by selecting Run. You should hear a sequence of four tones, sounded at
alternating frequencies.

This tutorial generates no data. For an example of numerical data, see Tutorial: Creating a user
module that returns data arrays (on page 2-12).

Tutorial: Creating a user module that returns data arrays

This section provides a tutorial that helps you use array variables in KULT. It also illustrates the use of
return types (or codes), and the use of two functions from the Keithley Linear Parametric Test
Library (LPTLib).

NOTE

Most of the basic steps that were detailed in Tutorial: Creating a new user library and user module
(on page 2-3) are abbreviated in this tutorial.

2-12 4200A-KULT-907-01 Rev. C March 2023

Model 4200A-SCS KULT and KULT Extension Programming Section 2: KULT tutorials

Naming new user library and new VSweep user module

To name new user library and new VSweep user module:

Start KULT.

Select File > New Library.

In the Enter Library dialog that appears, enter my_2nd_11ib as the new user library name.
Select OK.

Select File > New Module.

In the Module text box at the top of the KULT dialog, enter VSweep as the new module name.

N oo o M 0w DR

Select Apply.

Entering the VSweep user-module return type

Select int from the Return Type list. This configures the VSweep user module to generate an integer
return value.

Entering the VSweep user-module code

In the module code-entry area, enter the C code below for the VSweep user module. Open the KULT
dialog to full screen view to simplify code entry.

/* VSweep module

Sweeps through specified V range & measures I, using specified number of points.
Places forced voltage & measured current values (Vforce and Imeas) iIn output arrays.
NOTE For n increments, specify n+l array size (for both NumlPoints and NumVPoints).

*/

double vstep, v; /* Declaration of module internal variables. */

int i;

if ((Vstart == Vstop)) /* Stops execution and returns -1 if */

return(-1); /* sweep range is zero. */

if ((NumlPoints = NumVPoints)) /* Stops execution and returns -2 if */
return(-2); /* V and | array sizes do not match. */

vstep = (Vstop-Vstart) / (NumVPoints -1); /* Calculates V-increment size. */

for(i=0, v = Vstart; i < NumlPoints; i++) /* Loops through specified number of */
/* points. */

{

forcev(SMU1, v); /* LPTLib function forceX, which forces a V or 1. */

measi(SMUL1, &lImeas[i]); /* LPTLib function measX, which measures a V or 1. */
/* Be sure to specify the *address* of the array. */

Vforce[i] = v; /* Returns Vforce array for display in UTM Sheet. */

Vv = v + vstep; /* Increments the forced voltage. */

}

return(0); /* Returns zero if execution Ok.*/

4200A-KULT-907-01 Rev. C March 2023 2-13

Section 2: KULT tutorials Model 4200A-SCS KULT and KULT Extension Programming

Entering the VSweep user-module parameters

This example uses the double-precision D_ARRAY_T array type. The D_ARRAY_T, I _ARRAY_T, and
F_ARRAY_T are special array types that are unique to KULT. For each of these array types, you
cannot enter values in the Default, Min, and Max fields. On the scroll bar in the Parameters tab area,
there is a space below the slider. This space indicates a hidden fourth line of incomplete parameter
information for the array-size parameter specification.

NOTE

When executing the Vsweep user module in a UTM, the start and stop voltages (Vstart and Vstop)
must differ. Otherwise, the first return statement in the code halts execution and returns an error
number (-1). When a user module is executed using a Clarius UTM, this return code is stored in the
UTM Data worksheet. The return code is stored in a column that is labeled with the

user-module name.

To enter the required parameters for the code:
1. Select the Parameters tab.

2. Enter the information for the two voltage input parameters, as shown in the following table. Select
the Add button before adding each new parameter.

Parameter name Data type 1/0 Default Min Max
Vstart double Input 0 -200 200
Vstop double Input 5 -200 200
Select Add.

Enter the following measured-current parameter information:
= Parameter Name: Imeas

= Datatype: D_ARRAY_T

=]/O: Output

5. Scroll down to display line 4 of the Parameters tab area. KULT enters the array size parameter in
this line automatically for the array that is specified on line 3, as shown in the following figure.

Figure 19: KULT-entered array-size parameters

Parameters I Includes I Description I Build I
Parameter Name Data Type 170 ‘ Default Min Max Add
Wstop double Input 5 -200 200 ;I Delete

Imeas D_ARRAY_T Output Apply
I AnSizeForParm3 _Input—l -

2-14 4200A-KULT-907-01 Rev. C March 2023

Model 4200A-SCS KULT and KULT Extension Programming Section 2: KULT tutorials

6. Under Parameter Name, change ArrSizeForParm3 to NumlPoints. The default Parameter
Name entry is only a description of the required array size parameter. You must replace it with an
appropriate array size parameter, as required by the user module code.

Leave the Data Type and I/O entries as is.

Under Default, enter the number 11 for the default current-array size. You can also add Min and
Max array sizes if needed.

9. Select Add.
10. Enter the following forced-voltage parameter information:
= Parameter Name: Vforce
= Datatype: D_ARRAY_T
= 1/O: Output
11. Under Parameter Name, change ArrSizeForParm5 to NumVPoints.

12. Under Default, enter the number 11 for the default voltage array size.

NOTE

When executing the VSweep user module in a UTM, the current and voltage array sizes must match;
NumlPoints must equal NumVPoints. If the sizes do not match, the second return statement in the
code halts execution and returns an error number (-2) in the VSweep column of the UTM

Data worksheet.

13. Select Apply. In the module-parameter display area, the function prototype now includes the
declared parameters, as shown in the following figure.

4200A-KULT-907-01 Rev. C March 2023 2-15

Section 2: KULT tutorials

Model 4200A-SCS KULT and KULT Extension Programming

Figure 20: VSweep user-module dialog after entering and applying code and parameters

File Edit Options Help

Library: my_2nd_lib

& KULT: Module "VSweep.c" Library "my_2nd_lib".

O X

Module:
Retun Type [int

[VSweep

|

Library Visible

Apply

int VSweep(double Vstart,
NumIPoints, double *Vforce,
{

double Vstop,
int NumVPoints)

double *Imeas, int

{

measi (SMUl, &Imeas([i]):

Vforce[i] = v

v
}

|

forcev (SMU1, v):; /* LPTLib function forceX,
/* LPTLib function measX, which measures a V or
/* Be sure to specify the *address* of the array.

/* Returns Vforce array for display in UTM Sheet.

v + vstep; /* Increments the forced voltage.

return(0):; /* Returns zero if execution Ok.*/

DLl >

which forces a V or I. */
*/
wf

"y

B

/* End VSweep.c */

| LJ
Add

Parameters Includes I Desciription Build [
I Parameter Name Data Type ' 1/0 Default I Min ‘ Max

Imeas | D_ARRAY_T | Dutput | | __:_l Delete
NumlPaints int | Input | | __I

Vforce | D_ARRAY_T | Output |] -]

| kermHLEY |

Entering the VSweep user-module header files

You do not need to enter any header files for the VSweep user module. The default keithley.h

header file is sufficient.

Documenting the VSweep user module

Select the Description tab and enter documentation for the user module, based on the comments
provided in the code and other information about the module.

Saving the VSweep user module

From the File menu, select Save Module.

2-16

4200A-KULT-907-01 Rev. C March 2023

Model 4200A-SCS KULT and KULT Extension Programming Section 2: KULT tutorials

Building the VSweep user module

To build the user module:

1.
2.

Select the Build tab at the bottom of the dialog to open the Build tab area.

In the Options menu, select Build Library. The user library builds. You should not see error
messages.

NOTE

If you do see error messages, check for typographic errors, then fix and rebuild the user module. If
necessary, review Finding build errors (on page 2-10).

Checking the VSweep user module

Check the user module by creating and executing a UTM in Clarius.

To check the user module:

1.

© ® N o o b~ w

15.
16.
17.

Connect a 1 kQ resistor between the FORCE terminal of the ground unit (GNDU) and the FORCE
terminal of SMU1.

Instead of creating a new project, reuse the UserModCheck project that you created in Tutorial:
Creating a new user library and user module (on page 2-3).

Choose Select.

Select the Devices tab.

Select the 2-wire-resistor.

Choose Select.

Select the Tests tab.

For the Custom Test, select Choose a test from the pre-programmed library (UTM).

Drag Custom Test to the project tree. The test has a red triangle next to it to indicate that it is not
configured.

. Select Rename.
11.
12.
13.
14.

Enter the name v_sweep_chk. You will use this UTM test to execute the VSweep user module.
Select Configure.
In the right pane Test Settings tab, from the User Libraries list, select my_2nd_11ib.

From the User Modules list, select the Vsweep user module. A default schematic and group of
parameters are displayed for the UTM.

For Vstart, enter the sweep values.
Select Run.

Select Analyze.

4200A-KULT-907-01 Rev. C March 2023 2-17

Section 2: KULT tutorials Model 4200A-SCS KULT and KULT Extension Programming

At the conclusion of execution, review the results in the Analyze sheet. If you connected a 1 kQ
resistor between SMU1 and GNDU, used the default UTM parameter values, and executed the UTM
successfully, the results should be similar to the results in the following figure. The current/voltage
ratio for each row of results should be approximately 1 mA / V.

In the example in the following figure, a code of O is returned. This means that the user module
executed with no errors.

Figure 21: Checking the VSweep user module

Ky B C

VSweep | Imeas Vforce
0 -623 4790E-3 000 DDODE-3
501 758066 500 .0000E-3
1.0036E-3) 1 .0000E+D
16026E-3 15000E+D
20048E-3 2 00D00EA4D
26040E-3 Z25000E+0
3.0054E-3 3 0000E+D
3.5065E-3 3.5000E+D
4 0076E-3. 4 O0OOEA+D
A45071E-3 4 5000E+D
S50077E-3. 50000E+D

ot b Y- - RN - K HECS R RN

Tutorial: Creating a user module that returns data arrays in
real time

This tutorial helps you use array variables in KULT and return real-time data. It also illustrates the use
of return types (or codes), and the use of two functions from the Keithley Linear Parametric Test
Library (LPTLIib).

NOTE

The steps that were detailed in Tutorial: Creating a new user library and user module (on page 2-3)
are abbreviated in this tutorial.

To start this tutorial, go to Naming new user library and new VSweep user module (on page 2-19).

2-18 4200A-KULT-907-01 Rev. C March 2023

Model 4200A-SCS KULT and KULT Extension Programming Section 2: KULT tutorials

Naming new user library and new VSweepRT user module

To name new user library and new VSweep user module:

Start KULT.

Select File > New Library.

In the Enter Library dialog that appears, enter my_2nd_lib as the new user library name.
Select OK.

Select File > New Module.

In the Module text box at the top of the KULT dialog, enter VSweepRT as the new module name.

N o o > DR

Select Apply.

Entering the VSweepRT user-module return type

Select int from the Return Type list. This configures the VSweepRT user module to generate an
integer return value.

Entering the VSweepRT user-module code

In the module code-entry area, enter the C code below for the VSweep user module. To simplify code
entry, open the KULT dialog to full screen view.

/* VSweep module

Sweeps through specified V range & measures I, using specified number of points.
Places forced voltage & measured current values (Vforce and Imeas) in output arrays.

*/

double vstep, v; /* Declaration of module internal variables. */

int i;

if ((Vstart == Vstop)) /* Stops execution and returns -1 if */

return(-1); /* sweep range is zero. */
vstep = (Vstop-Vstart) / (NumVPoints -1); /* Calculates V-increment size. */

for(i=0, v = Vstart; i < NumVPoints; i++) /* Loops through specified number of */
/* points. */

{
forcev(SMU1, v); /* LPTLib function forceX, which forces a V or 1. */
measi (SMU1l, Imeas); /* LPTLib function measX, which measures a V or 1. */

PostDataDouble(*"Vforce"™, v); /* Returns Vforce for display in UTM Sheet. */
Vv = v + vstep; /* Increments the forced voltage. */

}

return(0); /* Returns zero if execution is OK. */

4200A-KULT-907-01 Rev. C March 2023 2-19

Section 2: KULT tutorials Model 4200A-SCS KULT and KULT Extension Programming

Entering the VSweepRT user-module parameters

This example uses the double-precision D_ARRAY_T array type. The D_ARRAY_T, I _ARRAY_T, and
F_ARRAY_T are special array types that are unique to KULT. For each of these array types, you
cannot enter values in the Default, Min, and Max fields.

NOTE

When executing the Vsweep user module in a UTM, the start and stop voltages (Vstart and Vstop)
must differ. Otherwise, the first return statement in the code halts execution and returns an error
number (—1). When a user module is executed using a Clarius UTM, this return code is stored in the
UTM Data worksheet. The return code is stored in a column that is labeled with the

user-module name.

To enter the parameters for the code:
1. Select the Parameters tab.

2. Enter the information for the two voltage input parameters, as shown in the following table. Select
the Add button before adding each new parameter.

Parameter name Data type 1/0 Default Min Max
Vstart double Input 0 -200 200
Vstop double Input 5 -200 200
NumVPoints int Input 50 2 65535
Vforce double * Output — — —
Imeas double * Output — — —

3. Select Apply. In the Parameters tab, the function prototype now includes the declared
parameters, as shown in the following figure.

2-20 4200A-KULT-907-01 Rev. C March 2023

Model 4200A-SCS KULT and KULT Extension Programming Section 2: KULT tutorials

Figure 22: VSweepRT user-module dialog after entering and applying code and parameters

@ KuLT: Module “VSweepRT.c" Library “my_2nd_lib". . o X
File Edit Options Help

Libeary: my_2nd_kb

Modude: [VSweepRT

Retum Type [| Libeary Visble

int VSweepRT (double Vstart, double Vstop, int NumVPoints, double *Vforce, double *Imeas
)
{

3 KN

/* VSweep module
Sweeps through specified V range £ measures I, using specified number of points.
Places forced voltage & measured current values (Vforce and Imeas) in output arrays.

-/

double vatep, v:; /* Declaration of module internal variables. */

int i;

if ((Vstart == Vstop)) /* Stops execution and returms -1 if +/
recurn(-1); /* sweep range is zero. */

vstep = (Vstop-Vstart) / (NumVPoints -1):; /+* Calculates V-increment size. */

for(i=0, v = Vstart; i < NumVPoints: i++) I’ Loops through specified number of */
/* points. */
{
forcev(SMU1, v): /* LPTLib function forceX, which forces a V or I. =/
measi (SMU1, Imeas): /* LPTLib function measX, which measures a V or I. */
PostDataDouble ("VIorce™, v):; /* Returns Vforce for display in UTM Sheet. */
v = v + vatep: /* Increments the forced voltage. */
}
return(0): /* Returns zero if execution is OK. */

B
dl N
I} /* End VSweepRT.c */
Patameters Includes I Description | Buld I
| Patameter Name Data Type 170 Defaut Min Max Add I
NurVPoints nt Input | 50 | 2 65535 |« _ Delete
Viocce double * Output Apply I
Imeas double * | Output EI
Module code view KEITHLEY

Entering the VSweepRT user-module header files

You do not need to enter any header files for the VSweepRT user module. The default keithley.h
header file is sufficient.

Documenting the VSweepRT user module

Select the Description tab and enter documentation for the user module, based on the comments
provided in the code and other information about the module.

Saving the VSweepRT user module

From the File menu, select Save Module.

4200A-KULT-907-01 Rev. C March 2023 2-21

Section 2: KULT tutorials Model 4200A-SCS KULT and KULT Extension Programming

Building the VSweepRT user module

To build the user module:

1.
2.

Select the Build tab at the bottom of the dialog to open the Build tab area.

In the Options menu, select Build Library. You should not see error messages.

NOTE

If you do see error messages, check for typographic errors, then fix and rebuild the user module. If
necessary, review Finding build errors (on page 2-10).

Checking the VSweepRT user module

Check the user module by creating and executing a UTM in Clarius.

To check the user module:

1.

© ©® N o 0 M w

12.
13.
14.

15.
16.
17.

Connect a 1 kQ resistor between the FORCE terminal of the ground unit (GNDU) and the FORCE
terminal of SMU1.

Instead of creating a new project, reuse the UserModCheck project that you created in Tutorial:
Creating a new user library and user module (on page 2-3).

Choose Select.

Select the Devices tab.

Select the 2-wire-resistor.

Choose Select.

Select the Tests tab.

For the Custom Test, select Choose a test from the pre-programmed library (UTM).

Drag Custom Test to the project tree. The test has a red triangle next to it to indicate that it is not
configured.

. Select Rename.
11.

Enter the name v_sweepRT_chk. You will use this UTM test to execute the VSweepRT user
module.

Select Configure.
In the right pane Test Settings tab, from the User Libraries list, select my _2nd_11ib.

From the User Modules list, select the VsweepRT user module. A default schematic and group of
parameters are displayed for the UTM.

For Vstart, enter the sweep values.
Select Run.

Select Analyze.

2-22

4200A-KULT-907-01 Rev. C March 2023

Model 4200A-SCS KULT and KULT Extension Programming Section 2: KULT tutorials

At the conclusion of execution, review the results in the Analyze sheet. If you connected a 1 kQ
resistor between SMU1 and GNDU, used the default UTM parameter values, and executed the UTM
successfully, the results should be similar to the results in the following figure. The current/voltage
ratio for each row of results should be approximately 1 mA / V.

In the example in the following figure, a code of O is returned. This means that the user module
executed with no errors.

Figure 23: Checking the VSweep user module

Ky B C

VSweep | Imeas Vforce
0 623 4790E-3 000.0000E-3
501.7580E-6 500.0000E-3
1.0036E-3 1.0000E+D
16502663 1.5000E+D
20048E-3 2.0000E+D
25040E-3 2.5000E+]
3.0054E-3 3.0000E+]
3.5065E-3 3.5000E+]
4 0076E-3 4 D0ODCEA+D
45071E-3 4.5000E+]
50077E-3] 5.0000E+]

ot b Y- - RN - K HECS R RN

Tutorial: Calling one user module from within another

KULT allows a user module to call other user modules. A called user module may be in the same
user library as the calling module or may be in another user library. This section provides a brief
tutorial that illustrates application of such dependencies. It also illustrates the File > Copy
Module command.

In this tutorial, you create a new user module using two user modules that were created in the
previous tutorials: Creating a new user library and user module (on page 2-3) and Creating a user
module that returns data arrays (on page 2-12):

e The VSweep user module inthe my_2nd_lib user library, a copy of which is used as the
dependent user library.

e The TwoTonesTwice user module, inthe my 1st lib user library, which is the independent

user library that will be called by the VSweep user module.

A copy of the VSweep user module, called VSweepBeep, calls the TwoTonesTwice user module to
signal the end of execution.

4200A-KULT-907-01 Rev. C March 2023 2-23

Section 2: KULT tutorials

Model 4200A-SCS KULT and KULT Extension Programming

Creating the VSweepBeep user module by copying an existing
user module

Open the Vsweep user module:

N o o M w DR

Start KULT.
Select File > Open Library.

Select my_2nd_Tlib from the list.

Select OK.
Select File > Open Module.

Select VSweep.c from the list.

Select OK.

Copy VSweep.c to the new user module VSweepBeep:

1. Select File > Copy Module. The Copy Module list shown in the following figure opens.

Figure 24: Copy Module list

Copy Module...

Select Library

HP4284ulib |
HP4294ulib

HP8110ulib

ki3d0xulib

KI42xzxulib

kiS30ulib

KI595ulib A
ki622x_2182_ulib
kiS2ulib

LS336ulib

math_utils

Matrixulib
MultiSegmentSweep_ulib

my_1st_lib
f_'r'ri T

2. Selectmy 2nd_lib (in this case, the user library for the copy is the same as the user library for

the source).

3. Select OK. The Enter New Module dialog opens, as shown here.

2-24

4200A-KULT-907-01 Rev. C March 2023

Model 4200A-SCS KULT and KULT Extension Programming Section 2: KULT tutorials

Figure 25: Enter New Module dialog

Enter New Module ...

‘? Enter New Module Name:

oK

4. Enter the name VSweepBeep.
5. Select OK.

NOTE

The name of the user module must not duplicate the name of any existing user module or user
library in the entire collection of user libraries.

More than one collection of user libraries can be maintained and accessed, each collection residing
in a separate usrlib. However, only one usrlib can be active at a time. For more information,
refer to the Managing user libraries (on page 3-1).

KULT creates a copy of the user module under the new name and displays a message indicating the
need to rebuild the user library. You can skip the rebuild for now. Continue with the next step.

Open the new VSweepBeep user module:
1. Select File > Open Module.
2. Select VSweepBeep.c from the list. The KULT dialog displays the VSweepBeep user module.

NOTE

You can also create a copy of the presently open user module in the same user library as follows:
1. Enter a new name in the User Module text box.
2. Select Apply. Before using the user module, you must save and rebuild the user library.

4200A-KULT-907-01 Rev. C March 2023 2-25

Section 2: KULT tutorials

Model 4200A-SCS KULT and KULT Extension Programming

Calling independent user module from VSweepBeep user module

To call the TwoTonesTwice user module at the end of the VSweepBeep user module:

1. Atthe end of VSweepBeep, immediately before the return(0) statement, add the

following statement:
TwoTonesTwice(Freql, Freq2); /* Beeps 4X at end of sweep. */

2. Inthe Parameters tab area, add the Freql and Freq2 parameters with the values shown in the
following table, as you did when you created the TwoTonesTwice user module, changing the

Default, Min, and Max values as needed.

Parameter entries for the called user module, TwoTonesTwice

Parameter name Data type I/0 Default Min
Freql long Input 1000 800
Freq2 long Input 400 300

Max

1200
500

3. Select Apply. The Freql and Freq2 parameters are added to the function prototype as shown in

the following figure.

Figure 26: Completed VSweepBeep user module

@

Ei Fdat Ot i ne Healn
ile Edit Ophons elp

Libwany: mge_2red_b

Modue: |VSwespBesp
Fistum Type [3 Library Visible

Apply

int VSweepBeep(double Vatart, double Vatop, double *Imeas, int

{

HumIPaints, double *Vfarse, int HumVPaints, long Fregl, long Freg2)

||| IP

forcew(5MUL, w); /* LPTLib function forceX, which forces a V or
/* Be sure to specify the waddress+* of the array. =/

Viorce[i] = v: f* Returns Viorce array for display in UIM Sheet.
v = v 4+ vatep; /* Increments the forced wvoltage. %/

1

TwoTonesTwice (Freql, Fregq2):; /% Beeps 4X at end of sweep. */

retuzn{ 0);: /* Returns zero if execution Ok.*/

1| |

measi (SMUL, &Imeas[i]): /* LPTLib function measX, which measures a V oz

I. o+ |

wf

M

E /* End VSweepBeep.c */
Parametars Inchudes] Desenplion] Busld]
| Parametes Mame Diata Type 10 Default | Min Max Add |
MurePoirts irit Irpast 11 Diedete
Freql sy Irput 1000
Freg2 0] Input 400

Module code view

8|8
88
L]

0k

KEITHLEY

2-26

4200A-KULT-907

-01 Rev. C March 2023

Model 4200A-SCS KULT and KULT Extension Programming Section 2: KULT tutorials

Specifying user library dependencies in VSweepBeep
user module

Before building the presently open user module, you must specify all user libraries on which the user
module depends (the other user libraries that contain user modules that are called).

The VSweepBeep user module depends on the my_1st_lib user library.

To specify this dependency:

1. Inthe Options menu, select Library Dependencies. The Library Dependencies list opens, as
shown here.

Figure 27: Library Dependencies list

Library Dependencies... h

User Libraries I

L5336ulb 4]
Matrixulib
MultiSegmentSweep_ulib

] my_Tst_lib

nvm
OvPControl
parlib
pmuCompulib
pmuulib

PMU_examples_ulib

PMU_freq_time_ulib
PMU_PCRAM_ulib
PRBCC12K

PRBCMS00 =2
1 | »

Apply | Cancel

In general, in the Library Dependencies list box, select all user libraries on which the presently
open user module depends (each selection toggles on and off). For the VSweepBeep module,
selectmy_1st_lib.

2. Select Apply.

4200A-KULT-907-01 Rev. C March 2023 2-27

Section 2: KULT tutorials Model 4200A-SCS KULT and KULT Extension Programming

Building the VSweep user module

To build the VSweepBeep user module:

1.
2.
3.

Save the VSweepBeep user module.
Select the Build tab at the bottom of the dialog to open the Build tab area.

In the Options menu, select Build Library. The user library builds. You should not see
error messages.

NOTE

If you see error messages, check for typographical errors; then fix and rebuild the module. If
necessary, review Finding build errors (on page 2-10).

Checking the VSweepBeep user module

Check the user module as you did in the previous tutorials by creating and executing a user test
module (UTM) in Clarius. Refer to Checking the user module (on page 2-11) for details.

This tutorial is almost identical to Tutorial: Creating a user module that returns data arrays (on page
2-12) except that four beeps should sound at the end of execution.

Before proceeding:

1.

Connect a 1 kQ resistor between the FORCE terminal of the GNDU and the FORCE terminal

of SMUL.

Instead of creating a new project, reuse the UserModCheck project that you created in Tutorial:
Creating a new user library and user module (on page 2-3). Add to this project a UTM called
v_sweep_bp_chk.

Configure the v_sweep_bp_chk UTM to execute the VSweepBeep user module, which is found
inthe my_2nd_Lib user library.

Run the v_sweep_bp_chk UTM. Near the end of a successful execution, you should hear a
sequence of four tones, sounded at alternating frequencies.

At the conclusion of execution, review the results in the Analyze sheet (or the Graph document, if
configured). If you connected a 1 kQ resistor between SMU1 and GNDU, used the default UTM
parameter values, and executed the UTM successfully, your results should be similar to the
results shown in Checking the VSweep user module (on page 2-17). The current/voltage ratio for
each row of results should be approximately 1 mA/V.

2-28

4200A-KULT-907-01 Rev. C March 2023

Model 4200A-SCS KULT and KULT Extension Programming Section 2: KULT tutorials

Tutorial: Customizing a user test module (UTM)

This tutorial demonstrates how to modify a user module using KULT. In the ivswitch project, there
is a test named rdson. The rdson test measures the drain-to-source resistance of a saturated
N-channel MOSFET as follows:

1. Applies 2 V to the gate (Vy) to saturate the MOSFET.
Applies 3 V to the drain (Vd1) and performs a current measurement (ld).
3. Applies 5V to the drain (Va2) and performs another current measurement (la2).

Calculates the drain-to-source resistance rdson as follows:

rdson = (Va2-Va1) / (la2-la1)

The rdson test has a potential shortcoming. If the drain current is noisy, the two current
measurements may not be representative of the actual drain current. Therefore, the calculated
resistance may be incorrect.

In this example, the user module is modified in KULT so that ten current measurements are made at
Va1 and ten more at Va2. The current readings at Va1 are averaged to yield lqa1, and the current
readings at Va2 are averaged to yield lq2. Using averaged current readings smooths out the noise.

The modified test, rdsonAvg, measures the drain-to-source resistance of a saturated MOSFET. The
MOSFET is tested as follows when rdsonAvg is executed:

Applies 2 V to the gate (Vg) to saturate the MOSFET.

Applies 3 V to the drain (Va1) and makes ten current measurements.
Averages the 10 current readings to yield a single reading (ldz).

Applies 5 V to the drain (Va2) and makes ten more current measurements.

Averages the ten current readings to yield a single reading (la2).

o g M w NP

Calculates the drain-to-source resistance (rdsonAvg) as follows:

rdsonAvg = (Vaz2-Vay) / (laz2-la1)

4200A-KULT-907-01 Rev. C March 2023 2-29

Section 2: KULT tutorials Model 4200A-SCS KULT and KULT Extension Programming

Open KULT

From the desktop, open the KULT tool by double-clicking the KULT icon. The KULT main dialog is
shown in the following figure.

Figure 28: KULT main dialog

@) KULT: Module "NoName" Library "NoName". - (m) X
File Edit Options Help
Library: NoN ame
[
[=] Ly Visle [20|
< [
I
Parameters Ilncludes I Description | Buid |
PaameterName | Data Type |10 Defaul | Min | Max |
| | | - |
| | | —
[kemiev]

Open the Kl42xxulib user library

1. Select File > Open Library.
2. From the Open Library dialog, select Kl42xxulib.

2-30 4200A-KULT-907-01 Rev. C March 2023

Model 4200A-SCS KULT and KULT Extension Programming

Section 2: KULT tutorials

3. Select OK.

Figure 29: KULT Open Library dialog

Open Library

Open Library

HP4284ulb -]
HP4234ulib

HP8110ulib

ki34 0xulib

.. K S

kiSS90ulib

KI595ulib
ki6225_2182_ulib
kig2ulib

L5 336ulib

math_utils

Matrixulio
MuliSegmentSweep_ulib
my_1st_lib

my_2nd_lib

Open the Rdson42XX user module

1. From the File menu, select Open Module.

2. From the Open Module dialog, select Rdson42XX.c, as shown in the following figure.

Figure 30: KULT Open Module dialog

KULT: Library "Ki42xxulib®,

Open Module

o,

Cancel

3. Select OK. The Rdson42XX module opens.

4200A-KULT-907-01 Rev. C March 2023

2-31

Section 2: KULT tutorials Model 4200A-SCS KULT and KULT Extension Programming

Copy Rdson42XX to RdsonAvg

You create the new module by copying the Rdson42XX module to a module named RdsonAvg and
then making the appropriate changes to the test module.

NOTE

When naming a user module, conform to case-sensitive C programming language naming
conventions. Do not duplicate names of existing user modules or user libraries.

To create the new module:

1. From the File menu, select Copy Module.

2. Select the library for the module. From the Copy Module dialog, select Kl42xxulib.
3. Select OK.

4. Inthe Enter New Module dialog, type in RdsonAvg.

Figure 31: Enter New Module Name dialog

Enter New Module ...

9 Enter New Module Name:

| Rdsondwvg

Cancel | 0K

5. Select OK. A reminder that the library using the new module needs to be built is displayed.
6. Select OK.

Open and modify the RdsonAvg user module

To open the user module:
1. From the File menu, select Open Module.

2. Select RdsonAvg.c from the Open Module dialog.

The RdsonAvg module is shown in the following figure.

2-32 4200A-KULT-907-01 Rev. C March 2023

Model 4200A-SCS KULT and KULT Extension Programming Section 2: KULT tutorials

Figure 32: KULT module dialog

Library: KI42xxulib
Module: [Rdsondvg

Retun Type [int = | Library Visible Apply
*Rdson) ﬂ
{

// Force the first point and measure
forcev (SMU1, 0.0):
forcev (SMU4, 0.0);
forcev (SMU3, Vg):
forcev (5MU2, Vdil):;
measi (SMU2, Idi):

E—

// Force the second point and measure
forcev (SMU2, Vd2):
measi (SMU2, Id2):

mla

|E /* End RdsonAvg.c */

i Includes] Description] Build [

| Parameter Name: Data Type 1/0 Default Min Max Add
Id1 double * Dutput ‘ _ [a] Delete
12 double * | Output : j Apply
Rdson double * | Output | -

[remiev]

Modify the user module code

In the user module code, you need to replace the measi commands with avgi commands. While a
measi command makes a single measurement, an avgi command makes a specified number of
measurements, and then calculates the average reading. For example:

avgi (SMU2, 1d1, 10, 0.01);

For the above command, SMU2 makes 10 current measurements and then calculates the average
reading (1d1). The 0.01 parameter is the delay between measurements (10 ms).

The source code for the module is in the module code area of the dialog. In this area, make the
following changes.

Under Force the first point and measure, change the line:
measi (SMU2, 1d1);

to

avgi(SMu2, I1d1, 10, 0.01); // Make averaged | measurement

4200A-KULT-907-01 Rev. C March 2023 2-33

Section 2: KULT tutorials Model 4200A-SCS KULT and KULT Extension Programming

Under Force the second point and measure, change the line:
measi (SMU2, 1d2);

to

avgi(SMU2, 1d2, 10, 0.01); // Make averaged | measurement
Change the line:

*Rdson = (Vd2-Vvdl)/(*1d2- *1dl); // Calculate Rdson

to

sonAvg = - - ; alculate RdsonAvg
*RdsonA Vd2-vd1l)/(*1d2- *1d1l // Calcul RdsonA

Change a parameter name

Change the name of the Rdson parameter:

1. Select the Parameters tab.

2. Scroll down to the parameter Rdson.

3. Select the name and change it to RdsonAvg.
4

Select Apply.

Change the module description

In Clarius, any user test modules (UTMs) that are connected to this user module show the text that is
entered on the Description tab in KULT.

To change the module description:

1. Select the Description tab.

2. Above DESCRIPTION, change MODULE: Rdson42xx to MODULE: RdsonAvg, as shown in the
following figure.

3. Replace all occurrences of Rdson with RdsonAvg.

Figure 33: User module description

Parameters I Includes I Build I

Module: RdsonAvg :J
Description

Measures the drain to source resistance of a saturated MOSFET.

Thie e arm~crawnlsohad hars j

Save and build the modified library

You must save and also rebuild the library to ensure that the new module is available for use by
Clarius user test modules (UTMSs).

2-34 4200A-KULT-907-01 Rev. C March 2023

Model 4200A-SCS KULT and KULT Extension Programming Section 2: KULT tutorials

To save and build the user module and library:

1.
2.

Select File > Save Module.

Select Options > Build Library. A dialog is displayed that indicates the build is in process.

Add a new UTM to the ivswitch project

To add rdsonAvg to the ivswitch project:

1.
2.

N oo o &

10.
11.
12.
13.
14.

Choose Select.

Select Projects.

In the Search box, enter ivswitch and select Search. The Library displays the I-V Switch Project
(ivswitch).

Select Create. The ivswitch project replaces the previous project in the project tree.

Select the Tests tab.

For the Custom Test, select Choose a test from the pre-programmed library (UTM).

Drag Custom Test to the project tree. The test has a red triangle next to it to indicate that it is not
configured.

Select Rename.

Enter rdsonAvg and press Enter.

In the project tree, drag rdsonAvg to the 4terminal-n-fet device, after the rdson test.
Choose Configure.

In the Test Settings pane, from the User Libraries list, select Kl42xxulib.

From the User Modules list, select Rdson42XX.

Select Save.

The project tree for the ivswitch project with rdsonAvg added is shown in the following figure.

Figure 34: Project tree with rdsonAvg added to 4terminal-n-fet device

Project: ivswitch
4 - dterminal-n-fet
& connect 1
vds-id
subvt
vgs-id
ig-vg
rdson
rdsonAvg

4200A-KULT-907-01 Rev. C March 2023 2-35

Section 2: KULT tutorials Model 4200A-SCS KULT and KULT Extension Programming

Tutorial: Creating a user module for stepping or sweeping

This section provides a tutorial that helps you set up a user test module (UTM) that supports stepping
or sweeping. This example is similar to the vds-id test. For each gate voltage step, the test sweeps
the drain voltage.

NOTE

Most of the basic steps that were detailed in Tutorial: Creating a new user library and user module
(on page 2-3) are abbreviated in this tutorial. This tutorial adds a user module to the library
my_2nd_ b, which was created in Tutorial: Creating a user module that returns data arrays (on
page 2-12).

Name a new user module

To name new user library and new user module:
Start KULT.

Select File > Open Library.

Select my_2nd_lib.

Select OK.

Select File > New Module.

For Module, enter vds_id_step_sweep.

N o o~ w DR

Select Apply.

Entering the return type

From the Return Type list, select int. This configures the user module to generate an integer
return value.

2-36 4200A-KULT-907-01 Rev. C March 2023

Model 4200A-SCS KULT and KULT Extension Programming Section 2: KULT tutorials

Entering the user-module code

In the module code-entry area, enter the C language code below for the user module. To simplify
code entry, open the KULT dialog to full-screen view.

int retCode = 0; // This module returns an error or success code to Clarius (shown in
the first column of the data grid).

int stepSteps = 1;

int sweepSteps = 8;

int i = 0;

int j = 0;

int stepperlID = 1;

double vg = VgStart;

double stepSimTime = 5000.0; // The time to simulate acquisition of one step data.

double pointDelay = 1.0; // Simulated delay between single data points.

double vd = VdStart;

double id = vd /7 1e6; // Simulate id current.

double vgScale = 1.0; // Simulate shift in id data between different steps.

char vgName[32]; // Output names for PostDataDouble data transfer to Clarius.

char vdName[32];

char idName[32];

if (VdStep == 0.0 || VgStep == 0.0)
{

return -1; // Invalid input parameters

}

stepSteps = fabs((VgStop - VgStart) / VgStep) + 1;
sweepSteps = fabs((VdStop - VdStart) / VdStep) + 1;
pointDelay = stepSimTime / sweepSteps;

for (i = 0; 1 < stepSteps; i++)

{

vd VdStart;

id = vd / 1leb6;

// Define output column names for each step (must include stepperliD).
stepperlID = 1 + 1;

sprintf(vgName, "OutVg(%d)', stepperliD);

sprintf(vdName, "OutvVd(%d)', stepperliD);

sprintf(idName, "Outld(%d)", stepperliD);

for (J = 0; j < sweepSteps; j++)
{

PostDataDouble(vgName, vg);
PostDataDouble(vdName, vd);
PostDataDouble(idName, id);
Sleep(pointDelay);

vd += VdStep;

id = sqrt(vd * vgScale) / 1e6;
}

vg += VgStep;

vgScale += 0.2;

}

return retCode;

4200A-KULT-907-01 Rev. C March 2023 2-37

Section 2: KULT tutorials

Model 4200A-SCS KULT and KULT Extension Programming

Entering the user-module parameters

NOTE

When the user module is executed in a UTM, the start and stop voltages must differ. Otherwise, the
first return statement in the code halts execution and returns an error number (=1). This return code
is stored in the Analyze sheet for the test, in a column that is labeled with the user-module name.

To enter the parameters for the code:

1. Select the Parameters tab.

2. Enter the information for the two voltage input parameters, as shown in the following table. Select
the Add button before adding each new parameter.

Parameter name
VdStart

VdStop

VdStep

VgStart

VgStop

VgStep

OutVg

Outvd

Outld

Data type
double
double
double
double
double
double
double *
double *
double *

I/0
Input
Input
Input
Input
Input
Input
Output
Output
Output

Default

Min
-2000
-2000
-1000
-20
-20
-10

Max
2000
2000
1000
20
20
10

3. Select Apply. In the Parameters tab, the function prototype now includes the declared
parameters, as shown in the following figure.

Figure 35: Parameters for the vds_id_step_sweep user module

Librany: my_2nd_lib

File Edit Options Help

@ KULT: Module "vds_id_step_sweep.c" Library "my_2nd_lib". - o X
Module: [wds_id_step_sweep
Retun Twpe [/t =] Library Yisible Apply

int vds id step_sweep| double VdStart, double VdStop, double VdStep,

double VgStart, double VgStop, double VgStep, double
*QutVd, double *CutId)

*QutVg, double

Pl 1

PostDataDouble (idName, id);
Sleep(pointDelay);

vd += VdStep:
id = sqrt(vd * vgScale) / leé;
}

vg += VgStep:

vgScale += 0.2;

}

return retCode;

a

| |

[¥ /* End vds_id step_sweep.c */

Parameters Inchudes | Description | Build |

| Paramster Name Data Type [Fu} Default Min Max Add
YoStop doubls Input 5 -20 20 B Delete
gStep double Input. 1 -10 10 J 5 APPLV A
Outig double * Qutput ﬂ

KEITHLEY

2-38

4200A-KULT-907-01 Rev. C March 2023

Model 4200A-SCS KULT and KULT Extension Programming Section 2: KULT tutorials

Enter the user-module header files

You do not need to enter any header files for the vds_id_step_sweep user module. The default
keithley.h header file is sufficient.

Documenting the user module

Select the Description tab and enter documentation for the user module, based on the comments
provided in the code and other information about the module.

Saving the user module

From the File menu, select Save Module.

Building the user module

To build the user module:

1.
2.
3.
4.

Select the Build tab at the bottom of the dialog to open the Build tab area.

In the Options menu, select Build Library.

Scroll down in the KULT Build Library dialog. You should not see error messages.
Select OK.

NOTE

If you do see error messages, check for typographical errors, then fix and rebuild the user module. If
necessary, review Finding build errors (on page 2-10).

Checking the user module

Check the user module by creating and executing a UTM in Clarius.

This example briefly describes how to edit the UTM user interface in Clarius. For more detail, refer to
“Defining the UTM user interface” in the Model 4200A-SCS Clarius User’'s Manual.

To check the user module:

1.

N o o b~ w D

Open the UserModCheck project that you created in Tutorial: Creating a new user library and
user module (on page 2-3).

Choose Select.

Select Devices.

Select MOSFET, n-type, t terminal (4terminal-n-fet).
Choose Select.

Select the Tests tab.

For the Custom Test, select Choose a test from the pre-programmed library (UTM).

4200A-KULT-907-01 Rev. C March 2023 2-39

Section 2: KULT tutorials

Model 4200A-SCS KULT and KULT Extension Programming

10.
11.
12.
13.

14.

15

16. Select Edit UTM Ul. The UTM Ul Editor dialog opens.

17

Drag Custom Test to the project tree. The test has a red triangle next to it to indicate that it is not

configured.

Select Rename.

Select Configure.

4200A-SCS Clarius User’'s Manual.

Enter the name vds_id_step_sweep. Use this UTM test to execute the new user module.

In the right pane Test Settings tab, from the User Libraries list, select my_2nd_11ib.

From the User Modules list, select the vds_id_step_sweep user module. A default schematic
and group of parameters are displayed for the UTM.

Make sure the UTM Ul Editor is enabled. See “Allow access to the UTM Ul editor” in the Model

. Right-click in the Configure pane to display the Edit UTM Ul button, shown in the following figure.

Figure 36: Edit UTM Ul button

Vdstart

VdStop

VdStep

VigStart

VgStop

VgStep

Edit UTM UL...

|

A

—

. Select Group 1.

Figure 37: UTM Ul Editor with Group 1 selected

Groo Wt [2unt woh

Tooltips Configure

Advances Sestrgs.. Move U

18. In Group Name, enter Vg Stepper.

19. Set the Group Position to Clarius Central Pane and 9 o'clock.

2-40

4200A-KULT-907-01 Rev. C March 2023

Model 4200A-SCS KULT and KULT Extension Programming

Section 2: KULT tutorials

20. Remove the VdStart, VdStop, and VdStep parameters from this group.

Figure 38: Vg Stepper group in the UTM Ul Editor

< >\ Nlnaoge), Vg Stagpee /

add Remore

Advanced Settegs.

Pacameters n Grocp

Movel

Move Dawn

21.
22.
23.
24.

Under Groups, select Add.

In Group Name, enter Vd Sweeper.

Set the Group Position to Clarius Central Pane and 3 o'clock.

Add the VdStart, VdStop, and VdStep parameters to this group.

Figure 39: Vd Sweeper group in the UTM Ul Editor

~| 3o

Control Type | Min

2000
2000
000

A Remove.

» N A8 K image J\ Vg Stepper A Vd Swesper

Advarced Settnge..

Parameters In Group

Move Lo

Move Donn

e

Remore

Coc] [el

Remore 1

25.

Select Advanced Settings. The UTM Ul Advanced Settings dialog allows you to select

parameters that are used as UTM stepper Start, Stop, and Step values. This information is
required for Clarius to manage data coming from the user module while running the UTM.

26.
27.
28.
29.

For Start, select VgStart.
For Stop, select VgStop.
For Step, select VgStep.
Select OK.

4200A-KULT-907-01 Rev. C March 2023

2-41

Section 2: KULT tutorials Model 4200A-SCS KULT and KULT Extension Programming

Figure 40: Edit UTM Ul for a stepper

UTM Ul Advanced Settings X
Stepper Settings
Start: | vdStart «| stop: [vdstop v Step: | vdstep v
Test Verify Rules
Werify Rule Error on rule failure Configure
1
2
2
4
5
6
7
8
9
10
1"
12
Add Remove Remove Al
cance

30. Select OK. Configure shows the new groups.

Figure 41: vds_id_step_sweep in Configure

Vg Stepper J Vd Sweeper
VgStart ‘ 1 | | VdStart ‘ 2 |
VgStop ‘ 5 | | VdStop ‘ 5 |
VgStep ‘ 1 | —I VdStep ‘ 0.2 |

31. Select Run.

32. Select Analyze to review the results. Each output parameter is repeated based on the number
of steps.

2-42 4200A-KULT-907-01 Rev. C March 2023

Section 3

User module and library management

In this section:

INEFOAUCTION ..ot 3-1

Managing User lIbraries..........coocvvvviieieiiiiieiee e 3-1

Dependent user modules and user libraries...........cccccceeeeeiinns 3-9

Formatting user module help for the Clarius Help pane......... 3-13

Creating project ProMPLSceeeeiiiiurieeeee e eaiieee e e e eeiieieeeea e 3-14
Introduction

Additional features of KULT include:

e Tools to manage user libraries (on page 3-1)

e Dependent user modules and user libraries (on page 3-9)

e Ability to format user module help for the Clarius Help pane (on page 3-13)

e Ability to create project prompts (on page 3-14)

Managing user libraries

This section addresses the following topics:

e Updating and copying user libraries using KULT command-line utilities (on page 3-1) describes
two command-line utilities. One utility provides a command-line method to copy user libraries.
The other utility provides a means to update user libraries after they are copied.

e Performing other KULT tasks using command-line commands (on page 3-3) describes a series of
command-line commands. These commands can be used individually or in a batch file to perform
various KULT tasks without opening the KULT user interface.

Updating and copying user libraries using KULT command-line
utilities

This section describes the command-line utilities kultupdate and kultcopy.

Section 3: User module and library management Model 4200A-SCS KULT and KULT Extension Programming

Updating user libraries using kultupdate

If you copy user libraries to a new storage location (another user directory or drive), you must use the
kultupdate utility to update the user libraries. User libraries must be updated to ensure the
correctness of all path information, which is built into the library. The kultupdate utility rebuilds
each user module in the library and also rebuilds the library.

Usage

kultupdate <library name> [options]

Options

You can place any of the following options at the [options] position in the command:

e —dep <library dep 1>.._[library_dep 6]
Specifies up to six libraries on which library name depends.

e -hide
Hides library_name so that it is not visible in Clarius.

e +hide
Shows library_name so that it is visible in Clarius.

Example

Update the KI590ul ib library in the active user-library directory, which depends on the
Winulib library:

C:\>kultupdate KI1590ulib -dep Winulib

Copying user libraries using kultcopy

The kultcopy utility copies any user library from any accessible storage location to the active
user-library directory. The kultcopy utility:

e Performs kultupdate so that the user library is immediately ready for use. Refer to Updating
user libraries using kultupdate (on page 3-2) for more information.

e Copies the user library that is specified by the "Start-In" user-library directory, which is the
directory in which you start the kultcopy command.

To successfully copy a user library to the active user-library directory, you must start kultcopy in the
following directory:

<source_lib_path>\<source_lib_name>\src
This directory is called the "Start-In" directory, where:
e <source_lib_path>is any accessible user-library directory.

e <source_lib_name> is the name of the specific user library to be copied.

4200A-KULT-907-01 Rev. C March 2023

Model 4200A-SCS KULT and KULT Extension Programming Section 3: User module and library management

Usage

kultcopy <library_name> [options]

Options

Any of the following options may be placed at the [options] position in the command:

o —dep <library dep 1>.._[library_dep 6]
Specifies up to six libraries on which library_ name depends.

e -hide
Hides library_name so that it is not visible in Clarius.

e +hide
Shows library_name so that it is visible in Clarius.

You can use kultcopy restore the original userlib directory. A backup copy of the userlib directory is
provided at c:\s4200\sys\factory\usrlib.

NOTE

If there are images linked to the original UTMs, the new modules point to the images in the original
directory, even though the files for the images were moved. You need to manually change the path
to the new directory.

Performing other KULT tasks using command-line commands

The KULT command-line interface lets you load, build, or delete user libraries and add or delete user
modules without opening the KULT user interface. This feature is useful when developing and
managing user libraries. The commands can be used individually or in a batch file.

The general format for a command line instruction is as follows:
kult subcommand -I<library_name> [options] [module]

The individual items in the instruction are as follows:

e The item subcommand may be any one of these subcommands:

= add_mod
= bld_lib
= del_lib

= del_mod
= gui

= help

= new_lib
= new_mod
= unzip

= zip

4200A-KULT-907-01 Rev. C March 2023 3-3

Section 3: User module and library management Model 4200A-SCS KULT and KULT Extension Programming

gui

e Theitem <library_name> specifies the name of the library involved in the commanded action.

e The item [options] includes one or more of these options:

= -—d<directory_name>

= -hide
= +hide
= -—dep <library dep 1>..... [library dep 6]

* build_type
e These options are described in the following descriptions of individual subcommands.

e |f appropriate to the commanded action, [nodulle] specifies the name of the involved user
module.

The sections that follow describe the subcommands.

subcommand

The gui subcommand launches the KULT editor.

Usage

kult gui [option] [type]

The -bui ld_type option may be placed at the [options] position in the command. The following
[type] options are available:

e Release
Default option. This option builds the library more efficiently than the Debug option.

e Debug
Use this option if you want to use an integrated development environment, such as Visual Studio
Code, to debug your source code.

Example

kult gui -build_type Release

new_lib subcommand

The new_1ib subcommand lets you create a new user library without any user modules. Its action is
equivalent to the following steps in KULT:

e Starting KULT

e Selecting File > New Library
e Entering a new library name
e Selecting OK

e Selecting File > Exit

4200A-KULT-907-01 Rev. C March 2023

Model 4200A-SCS KULT and KULT Extension Programming Section 3: User module and library management

Usage
kult new_lib -I<library_name>

The <library_name> user library is created in the active user-library directory.

bld_lib subcommand

The bld_lib subcommand lets you build a user library from the command line. Its action is
equivalent to the following steps in KULT:

e Starting KULT

e Selecting File > Open Library

e Selecting the <library_name> user library

e Selecting OK, selecting Options > Build Library
e After the build is completed, selecting File > Exit
Usage

kult bld_lib -I<library_name> [options]

Builds the <library_name> user library in the active user-library directory.

Any of the following may be placed at the [options] position in the command:

e —dep <library dep_1>.._._[library_dep_ 6]
Specifies up to six user libraries upon which library_name depends.

NOTE

Dependent user libraries must be in the active user-library directory. For more information about
dependent libraries, refer to Dependent user modules and user libraries (on page 3-9).

e +hide

Hides library_name so that it is not visible in Clarius.
e -hide

Shows library_name so that it is visible in Clarius.

NOTE

The C:\s4200\kiuser\usrlib\<library name>\bui Ild folder is created when you run the
bld_1ib subcommand or select the Build Library menu option. This folder can be safely deleted
for debugging purposes.

4200A-KULT-907-01 Rev. C March 2023 3-5

Section 3: User module and library management Model 4200A-SCS KULT and KULT Extension Programming

del lib subcommand

The del_lib subcommand lets you delete a library from the command line. Its action is equivalent to
the following steps in KULT:

e Starting KULT

e Selecting File > Delete Library

e Selecting a user library to be deleted
e Selecting OK

e Selecting File > Exit
Usage
kult del_lib -I<library_name>

The <library_name> user library is deleted from the active user-library directory.

new_mod subcommand

The new_mod subcommand lets you create a new module in a user library. Its action is equivalent to
the following steps in KULT:

e Starting KULT

e Selecting File > Open Library > <library_name>
e Select OK

e Selecting File > New Module

e Entering a new module name

e Selecting Apply

e Selecting File > Exit

Usage

kult new_mod -I<library_name> <module>

The <module> module is created in the <l ibrary_name> library.

Where:

e <library_name> is the target library into which <module> is to be created. It must be in the
active user-library directory.

e <module> is the new module name.

3-6 4200A-KULT-907-01 Rev. C March 2023

Model 4200A-SCS KULT and KULT Extension Programming Section 3: User module and library management

add_mod subcommand

The add_mod subcommand lets you add or copy a user module from one user library (source) to
another library (target). Its action is equivalent to the following KULT steps:

Starting KULT

Selecting File > Open Library

Selecting the <source_lib_name> source library
Selecting File > Open Module

Selecting the <module> source module

Selecting File > Copy Module

Selecting the <library_name> target library
Entering a target-module name

Selecting File > Exit

NOTE

All user modules must be named uniquely, even if they are duplicates that reside in different user
libraries. The add_mod subcommand automatically assigns a target-module name that is a
derivative of the source-module name. The naming convention is as follows:
<source_library_name>_<module>.

Usage

kult add_mod -I<library_name> [-d<source_lib_path>\source_lib_name>\src] <module>

Where:

<library_name> is the target library into which <module> is to be copied. It must be in the
active user-library directory.

<source_lib_path>is any accessible user-library directory.

<source_lib_name> is the name of the specific user library from which <module> is to be
copied.

<module> is the source user module.

You must use the -d option when you execute add_mod in a directory other than
<source_lib_path>\<source_lib_name>.

4200A-KULT-907-01 Rev. C March 2023 3-7

Section 3: User module and library management Model 4200A-SCS KULT and KULT Extension Programming

del_mod subcommand

The del_mod subcommand lets you delete a module from the command line. Its action is equivalent
to the following steps in KULT:

e Starting KULT

e Selecting File > Delete Module

e Selecting a user module to be deleted

e Selecting OK

e Selecting File > Exit

Usage

kult del_mod -I<library_name> <module>
Where:

e <library_name> is the target library from where <module> will be deleted. It must be in the
active user-library directory.

e <module> is the name of the module to be deleted.

zip subcommand

The zip subcommand creates a .zip file for a user library.

Usage
kult zip -I<library_name> [password] <zipfile_name>

The <library_name> user library is created in the active user-library directory.

The [password] parameter is optional.

unzip subcommand

The unzip subcommand unzips a file containing a KULT library.

Usage

kult unzip [-dest_path] [password] <zipfile_name>

Where:

e [-dest_path] is the target directory where the file will be unzipped.

e [password] is required if the file was compressed using the password parameter in the zip
subcommand.

The <zipfile_name> archive is unzipped in the active user-library directory unless the
[-dest_path] parameter is specified. The [-dest_path] parameter should not be used when
you import a user library.

4200A-KULT-907-01 Rev. C March 2023

Model 4200A-SCS KULT and KULT Extension Programming Section 3: User module and library management

help subcommand

The help subcommand displays all usage information for subcommands and options.

Usage

kult help

Dependent user modules and user libraries

KULT allows a user module to call other user modules. A called user module can be in the same user
library as the calling module or can be in another user library. When the module that you are creating
calls a module in another user library, you must:

1. Select Options > Library Dependencies.

2. Specify each called library from the list that is displayed.

You must select user module and user-library dependencies carefully. Observe the following:

e Try to put user modules with interdependencies in the same user library and minimize the
interdependencies between libraries. This practice helps to avoid problematic user library
dependency loops (Lib1 relies on Lib2, Lib2 relies on Lib3, Lib3 relies on Lib1).

e |f a user module in one user library must depend on user modules in other user libraries, take
care when selecting the user libraries to be linked with the user module under development. The
next section provides guidance.

NOTE

The user libraries to be linked are saved so that future rebuilds do not require the dependencies to
be selected again. This information is stored in the <library_name>_modules.mak file in the
%KI1_KULT_PATH%\<library name>\kitt_obj directory.

e Structure dependencies hierarchically to avoid circular dependencies, and then build the
dependent user libraries in the correct order. The next two sections provide guidance.

Structuring dependencies hierarchically

You can avoid user library circular dependency by calling user libraries in a hierarchical design, as
illustrated in "Hierarchical design for user-library dependencies” below.

Observe the following:

e Design lower-level user modules in the calling hierarchy so that they do not require support from
higher-level modules. That is, lower-level user modules should not require calls to higher-level
modules to perform their required tasks.

e Use several general-purpose low-level-library user modules to do a task rather than a single,
do-all, higher-level-library user module.

4200A-KULT-907-01 Rev. C March 2023 3-9

Section 3: User module and library management Model 4200A-SCS KULT and KULT Extension Programming

You may find it helpful to prefix user modules with the user-library name as an identifier, for example,
liba_ModuleName for user modules in 1iba. This avoids duplicate user module names and
prevents confusion with similarly named modules that are in other user libraries and source files.
When you execute the File > Copy Library command, KULT automatically appends the user library
name to each user module in the new user library name. KULT also appends the library name, as a
suggestion, when you execute the File > Copy Module command.

In the following table, the series of coded user modules amplifies the hierarchical dependencies
shown in the following figure.

Coded user modules illustrating the use of hierarchical user library dependencies

Hierarchy |User-library | User-module

level name name User-module code
0 liba Test void Test(void)
{

printf("In liba, calling CalledA1()\n");
CalledA1(Q);

}
1 libal CalledAl void CalledAl(void)
{
printf("In libal, calling CalledA2()\n");
CalledA2(Q);
}
2 liba2 CalledA2 void CalledA2(void)
{
printf("In liba2, calling CalledA3(\n");
CalledA3(Q):
}
3 liba3 CalledA3 void CalledA3(void)
{
printf("In 1iba3, making no calls(Q\n");
}

A user module in Iiba calls a user module in Iibal. In turn, a user module in Iibal calls a user
module in 1iba2. Finally, a user module in Iiba2 calls a user module in 1iba3.

3-10 4200A-KULT-907-01 Rev. C March 2023

Model 4200A-SCS KULT and KULT Extension Programming Section 3: User module and library management

Figure 42: Hierarchical design for user library dependencies

LEVEL O
Dependent user
library
liba
(Library)

Test
(Module)

I

Using selections in the
KULT options menu, do

Dep%glr;t]user the following for each
library module, _Iowest level first:
Tibal 1. Complle_ the module _
(Library) 2. In the Library Dependencies
list, select its library
(such as 1iba3).
CalledAl 3. Build its library

(Module)

LEVEL 2
Dependent user
library

liba?
(Library)

CalledA2
(Module)

Create, edit, and save

interdependent user libraries: LEVEL 3
highest-level modules first Dependent user
library
liba3
(Library)

CalledA3
(Module)

Building dependent user libraries in the correct order

When KULT builds a user library that depends on other user libraries, it must link to each of these
libraries. For example, when KULT builds Biba, the following linkages occur: 1iba is linked with
libal, the liba/libal pair is linked with 1iba2, the liba/libal/1iba2 trio is linked with 1iba3,
and so on. Therefore, a series of hierarchical dependencies requires a reverse hierarchical build
order, starting first with the lowest-level user library. Before building any dependent user library, you
must first successfully build each library on which it depends, as illustrated below:

4200A-KULT-907-01 Rev. C March 2023 3-11

Section 3: User module and library management Model 4200A-SCS KULT and KULT Extension Programming

e |f liba depends on libal, liba cannot successfully build until Fibal has been built.

e If additionally, 1ibal depends on liba2, both 1iba and 1ibal cannot successfully build until
1iba2 has been built.

e Finally, if Iiba2 depends on liba3, then the three higher level user libraries (Iiba, libal, and
1 iba2) cannot successfully build until 1i1ba3 has been built.

The following procedure illustrates the correct reverse build order for the dependencies shown in the
table and figure in Structuring dependencies hierarchically (on page 3-9). This is a general procedure
based on the assumption that each of the interdependent user modules are newly created or were
edited since the last build. You do not need to repeat builds that are already complete up to a given
level of dependency.

Build the Level 3 user module and user library:

1. Build the saved Cal 1edA3 user module, which is in the 1iba3 user library (in the KULT Options
menu, select Build).

2. Build the Fiba3 user library (in the KULT Options menu, select Build).

Build and set dependencies for the Level 2 user module and user library:
1. Build the saved Cal 1edA2 user module, which is in the 1iba2 user library.
2. Select Options > Library Dependencies.

3. Select 1iba3 from the Library Dependencies list box.

4. Select Apply.

5. Build the I'iba2 user library.

Build and set dependencies for the Level 1 user module and user library:
1. Build the saved Cal ledAl user module, which is in the 1ibal user library.
2. Select Options > Library Dependencies.

3. Select liba2 from the Library Dependencies list box.

4. Select Apply.

5. Build the Iibal user library.

Build and set dependencies for the Level 0 user module and user library:
1. Build the saved Test user module, which is in the Iiba user library.

2. Select Options > Library Dependencies.

3. Select libal from the Library Dependencies list box.

4. Select Apply.

5. Build the Liba user library.

This reverse hierarchical build order results in a linking scheme that satisfies the dynamic linking
requirements of Microsoft® Windows®.

3-12

4200A-KULT-907-01 Rev. C March 2023

Model 4200A-SCS KULT and KULT Extension Programming Section 3: User module and library management

Formatting user module help for the Clarius Help pane

If your user module includes a help description, but it is not set up for HTML, when you create a UTM
in Clarius, the Help pane displays the Open UTM Comments button. If you select this button, text
from the Description tab in KULT is displayed in an ASCII browser dialog.

You can set up this help to display as formatted HTML in the Help pane using PHP Markdown Extra
tools. On the first line of the description, add the following stylesheet and MarkdownExtra code:

<!--MarkdownExtra-->

<link rel="stylesheet" type="text/css"
href="http://clariusweb/HelpPane/stylesheet.css">

In order to see the help in Clarius, you must build the UTM and rebuild the library after entering the
Markdown code.

To format the text, you can use some of the following options:

e Create afirst level heading: Place ===== under a line to center and bold the line. (You can use
any number of = characters.)

e Create asecond level heading: Place - ----—-- under a line to bold the line. (You can use any
number of - characters.)

e To create list: Insert a blank line before the start of the list, then use 1., 2., and so on to number
each item in the list.

e talicize text: Place * before and after the text to be italicized.
e Display text in a fixed-width font: Put six spaces before each line of the text or use four tilde

characters (~~~~) before and after the lines of text.

You can make changes to the . c file of the user module with KULT or a text editor. After saving
changes, to view the changes, select another project tree object and then return to the UTM.

An example of the code entered in the Description tab is shown in Documenting the user module (on
page 2-8). An example of the result in the Help pane in Clarius is shown in Checking the user module
(on page 2-11).

For information on additional formatting options, refer to the PHP Markdown Extra website of Michel
Fortin (michelf.ca/projects/php-markdown/extra/).

PHP Markdown Lib Copyright © 2004-2015 Michel Fortin (michelf.ca/). All rights reserved.

Based on Markdown. Copyright © 2003-2005 John Gruber, Daring Fireball (daringfireball.net/). All
rights reserved.

4200A-KULT-907-01 Rev. C March 2023 3-13

https://michelf.ca/projects/php-markdown/extra/
https://michelf.ca/projects/php-markdown/extra/
https://michelf.ca/projects/php-markdown/extra/
https://michelf.ca/
https://michelf.ca/
https://daringfireball.net/
https://daringfireball.net/

Section 3: User module and library management Model 4200A-SCS KULT and KULT Extension Programming

Creating project prompts

KULT provides user modules that you can use to create dialogs to pause a test sequence with a
prompt. These dialogs are available as user modules, shown in the following table.

You define the text message for the prompt. When one of these user modules is run, the test
sequence pauses. The test sequence continues when a button on the dialog is selected.

Winulib user library

User module Description

AbortRetrylgnoreDialog Pause test sequence with a prompt to Abort, Retry or Ignore
InputOkCancelDialog Pause test sequence for an input prompt; enter input data (OK) or Cancel
OkCancelDialog Pause test sequence with a prompt to continue (OK) or Cancel
OkDialog Pause test sequence with a prompt to continue (OK)
RetryCancelDialog Pause test sequence with a prompt to Retry or Cancel
YesNoCancelDialog Pause test sequence with a Yes, No, or Cancel decision prompt
YesNoDialog Pause test sequence with a Yes or No decision prompt

Using dialog boxes

The Winul ib user library has user modules for six action or decision dialogs and one input dialog.
The dialog, with example prompts, are shown in Dialog formats (on page 3-14).

The text message for a prompt is entered by the user into the user module. See “Winulib user-library
reference” in the Model 4200A-SCS Clarius User's Manual for details on the user modules.

NOTE

An example using the OK dialog is provided in Dialog test examples (on page 3-15).

Dialog formats

The OK dialog in the following figures has only one button. You can use this dialog to pause a test
sequence to make an announcement (for example, "Test Finished"), or prompt for an action (for
example, "Connect 590 to DUT"). When OK is selected, the test sequence continues.

B Action Required X

Test Complete.
l Click OK to continue.

- QK |

3-14

4200A-KULT-907-01 Rev. C March 2023

Model 4200A-SCS KULT and KULT Extension Programming Section 3: User module and library management

The other dialogs have two or three buttons, as shown in the following examples. When a button on a
dialog is selected, a status value that corresponds to that button is placed in the Analyze sheet for the
action. If there are input parameters, the entries for the input parameters are placed in the Analyze
sheet. You can pass a parameter value into a user-created routine.

Furst test run complete.
| v Continue to second run?

Yes Mo

B Action Reguired X

Test 2 failed
! Repeat Test 27
Select Cancel to cancel all tests.

g Ho Cancel

To pass parameters, the dialog user module must be called from another user-created user module
that is designed for parameter passing. A parameter that is in the Analyze sheet is passed to a
routine in the user-created user module to perform the appropriate operation or action.

NOTE

An example to demonstrate parameter passing is provided in Dialog test examples (on page 3-15).

Dialog test examples

The following examples demonstrate how you can use dialogs in a test sequence.

Example: Announce end of test

For this example, you will create a user test module (UTM) that uses the OK dialog user module. This
dialog announces the end of a test sequence. You can use this UTM in any project at the end of any
test sequence.

To create an end-of-test announcement:

1. Inthe Clarius project tree, select the last test. The announcement occurs after this test.
2. Choose Select.

3. Select the Tests tab.

4200A-KULT-907-01 Rev. C March 2023 3-15

Section 3: User module and library management

Model 4200A-SCS KULT and KULT Extension Programming

For the Custom Test, select Choose a test from the pre-programmed library (UTM).

Drag Custom Test to the project tree. The test has a red triangle next to it to indicate that it is
not configured.

6. Select Rename.
7. Enter the name End of test prompt.
8. Select Configure.
9. Inthe Test Setting pane on the right, set the User Libraries to Winulib.
10. Set User Modules to OkDialog.
11. For NumberOfMessages, enter 2.
12. For MessagelText, enter Test Finished.
13. For Message2Text, enter Click OK to continue. An example is shown in the following figure.
Figure 43: New UTM using OkDialog user module
End of test prompt#1 All Parameters ©) Help
End of test prompt#1
User Libraries:
Winulib [+
User Modules:
OkDialog \ v
Dialog Settings
NurﬁberOlMessages? |
MessagelTEXI. Test Finished I
MessageZText. Click OK to continug| |
Message3Text |
Messageﬂen. |
14. Select Save.

When you run the test sequence, the end of test dialog displayed, as shown in the following figure.
Select OK to continue.

B Action Required x

Test Complete.
l % Click OK to continue.

3-16

4200A-KULT-907-01 Rev. C March 2023

Section 4

KULT Extension for Visual Studio Code

In this section:

INEFOAUCTION ..ot 4-1
INSEAIIALIONceiiiiiie e 4-1
Setting up Visual Studio Code for library development.......... 4-10
Visual Studio COde OVEIVIEWccccuvviiiieeieiiiiiiiee e 4-13
KULT SIid€ DA ...eeeeiiee e 4-17
Working with user libraries in Visual Studio Code................... 4-18
Working with modules in Visual Studio Code...............cuueeee. 4-25
Debugging librariesccccveeeiiiiiiiiiie e 4-31
Introduction

The Keithley KULT Extension for Visual Studio Code gives you the ability to write, compile, and
debug user libraries outside of KULT. Combining the user-friendly Visual Studio Code editor with
KULT creates an integrated development environment (IDE).

This section describes how to download, install, and set up Visual Studio Code and the KULT
Extension.

You can use the KULT Extension for Visual Studio Code on a computer with Clarius V1.8 or higher
installed. All features for the KULT Extension are available on the computer version of Clarius except
the debugging tool. Installation and setup instructions are the same on the 4200A and the computer.

NOTE

The documentation in this section was verified against Visual Studio Code version 1.71.

Installation

You can install Visual Studio Code and the KULT Extension with or without a connection to the
internet on the instrument.

These instructions provide information on installing the KULT Extension for the first time and for
updating it if Clarius was reinstalled.

Section 4: KULT Extension for Visual Studio Code Model 4200A-SCS KULT and KULT Extension Programming

Download Visual Studio Code

If you cannot connect to the internet from the instrument, use another computer to download Visual
Studio Code.

To download Visual Studio Code:

1. Go to the Visual Studio Code download site (code.visualstudio.com/download).

2. Download the Windows User Installer, either 32-bit or 64-bit.

3. If you are downloading from another computer, copy the installation file to a USB flash drive.

Install Visual Studio Code

To install Visual Studio Code:

1. If you downloaded the installation files to a USB flash drive, copy the files to the instrument.
2. Start the installer.

3. Complete the installation wizard.

4

On the Select Additional Tasks dialog, select Add to PATH (requires shell restart). This allows
Visual Studio Code to be called from the command line.

5. Make other selections as needed and complete the wizard.

Figure 44: Select additional tasks

!Q Setup - Microsoft Visual Studio Code (User) - X
Select Additional Tasks
Which additonal tasks should be performed?

Select the additional tasks you would like Setup to perform while instaling Visual Studio Code, then dick
Next.

Additional icons:

[Create a desktop icon
Other:

[[] Add "Open with Code" action to Windows Explorer file context menu

[[] Add "Open with Code" action to Windows Explorer directory context menu
£ Register Code as an editor for supported file types

£ Add to PATH (requres shell restart)

<gak [Next>]| coxcel

4-2 4200A-KULT-907-01 Rev. C March 2023

https://code.visualstudio.com/download
https://code.visualstudio.com/download

Model 4200A-SCS KULT and KULT Extension Programming Section 4: KULT Extension for Visual Studio Code

Install extensions with an internet connection

To install Visual Studio Code extensions:

1. From Visual Studio Code, select the Extensions icon in the left navigation. The Extensions

pane opens.

Figure 45: Extensions icon
2. Search for C++ in the Marketplace and select C/C++.

3. Select Install.

Figure 46: Install the C/C++ Extension

Termingl Help

o R
CAC+ + ImleliSeme, debuggeng and o
sl

C/C++ &=
- =]
=

€FCs + Clang Command Adogtel Duially Fambirs Conir

€+ + Intellisense

4200A-KULT-907-01 Rev. C March 2023

4-3

Section 4: KULT Extension for Visual Studio Code

Model 4200A-SCS KULT and KULT Extension Programming

4. Atthe top of the Extensions: Marketplace pane, select ... and select Install from VSIX.

Figure 47: Install from VSIX

») File Edit Selection View Go Run Terminal Help
ARKETPLA EED Exterssion: CC++ X

A
CfC++ n2e:
C/C++ IntelliSense, debugging, am Show Enabled Extensions 35
Microsoft Cicak Extension f
C++ Intellisense o:2:

{
C/C++ Intellisensa with the halp of i ; 3
i L Show Recommended Extensions
LfC+ = Clang Command Adapter SIS »
Completion and Diagnaostic for C/C e e N
Yasasaki MITAN _ s S
Cart By Bating
C/C++ Compile Run 157 S e L e
Compile & Run single c/c++ filese Sort By: Man
danielpintodzzb I:I
K Exle P

CfC++ Snippets oo Lok, .
Code snippets for C/C++ FHRUNE: AL PO SRR 0T
Batter C+ + Syntax 112 i AN s M P it
The bleeding edge of C-lfke syntax R e e
Beff Hylon n
Ls .+ Testhlate

5. Select C:\s4200\vscode\kult-extension.vsix.

6. Select Install. This installs the KULT Extension to Visual Studio Code.

Figure 48: Install the KULT Extension to Visual Studio Code

o

€« ™

Organize =

= Rt

Captures

Ll

3 Install from VSIX

» This PC » 42004-5C5(C) » =4200 » wscode

Mew folder

]

Mame

o] . .
[l_. kult-extension.vsix

7. Close Visual Studio Code and reopen to complete the installation and enable all extensions.

8. Continue to Set up Visual Studio Code for Library Development (on page 4-10).

4-4

4200A-KULT-907-01 Rev. C March 2023

Model 4200A-SCS KULT and KULT Extension Programming Section 4: KULT Extension for Visual Studio Code

Install extensions without an internet connection

If you do not have an internet connection, you need to use another computer to go the Visual Studio
Marketplace to download the Microsoft C/C++ Extension.

To download the Microsoft C/C++ Extension:

1. Go to the C/C++ page of the Visual Studio Marketplace
marketplace.visualstudio.com/items?itemName=ms-vscode.cpptools.

2. Scroll down to Offline Installation and select the link
https://github.com/Microsoft/vscode-cpptools/releases.

Figure 49: Offline installation options

Offline installation

The extensian has platfarm-zpecific binary dependencies, therefore installation wia the Marketplace requires an
Internet connection in order to download additional dependencies. If you are working on a computer that does not
have access to the Internet or is behind a strict firewall, you may need to use our platform-specific packages and
install them by running V5 Code's "Install from VSIX..." command. These "offline’ packages are available at

II".::.'.-' github.com/Micrasoft/vscode-cpptools/freleases.
Package Platform
cpptools-linux.vsix Linux 64-bit

cpptools-linux32.vsix Linux 32-bit (available up to version 0.27.0)
cpptools-osx.vsix macOs

cpptools-win32.vsix Windows 64-bit & 32-bit

4200A-KULT-907-01 Rev. C March 2023 4-5

https://marketplace.visualstudio.com/items?itemName=ms-vscode.cpptools
https://marketplace.visualstudio.com/items?itemName=ms-vscode.cpptools

Section 4: KULT Extension for Visual Studio Code

Model 4200A-SCS KULT and KULT Extension Programming

3. Find the version with the Latest Release tag that is verified. Select the version number to view the

files. An example is shown in the following graphic.

Figure 50: Example of a version tagged with Latest Release and Verified

0.29+D|

“ sean-mcmanus released this on Jul 15

Instructions

To use the "offline” wsix (that doesn't download O5-based deper
and run the “Install from V5IX" command in V5 Code.

Requirements

« V5 Code 1.44.0 or later.

* 32-bit x86 Linux is no longer supported. #5346

4. Download cpptools-win32.vsix.

Figure 51: Microsoft C/C++ extension

= Aggels 5

e - B L v

B

D cpplooks-osx.vix

M cpptoolks-win32.vsix

I{] Source code (zip)

M Seusce code (targ:

5.

Copy the file to a USB drive.

Install the Microsoft C/C++ Extension on the 4200A-SCS:

1.

Copy cpptools-win32.vsix from the USB drive to the C:\s4200\vscode folder on the

4200A-SCS.
Open Visual Studio Code.

Select the Extensions icon in the left navigation. The Extensions pane opens.

Figure 52: Extensions icon

5

4-6

4200A-KULT-907-01 Rev. C March 2023

Model 4200A-SCS KULT and KULT Extension Programming Section 4: KULT Extension for Visual Studio Code

4. Select ... at the top of the Extensions pane.
5. Select Install from VSIX.

6. Selectthe cpptools-win32.vsix file and select Install.

Figure 53: Install from VSIX with no internet connection

®] File Edit Selection View Go Run Terminal Help

") welcome

< POPULAR

=]

Select ... at the top of the Extensions pane again.
Select Install from VSIX.
Select the kult-extensions.vsix file and select Install.
10. Close Visual Studio Code and reopen to complete the installation and enable all extensions.

11. Continue to Set up Visual Studio Code for Library Development (on page 4-10).

Updating the KULT Extension after installing Clarius

If you installed a new version of Clarius, you must uninstall and reinstall the KULT Extension.

To uninstall the KULT Extension:
1. Open Visual Studio Code.

2. From Visual Studio Code, select the Extensions icon in the left navigation. The Extensions pane
opens.

Figure 54: Extensions icon

&5

4200A-KULT-907-01 Rev. C March 2023 4-7

Section 4: KULT Extension for Visual Studio Code Model 4200A-SCS KULT and KULT Extension Programming

3. Selectthe KULT Extension.

Figure 55: Visual Studio Code Extension Marketplace

C/C++

C/C+ + IntelliSense, debugc

Microsoft

KULT-Extension
Keithley Instruments KULT language e...

K t":lu_-:,' Instruments 'ﬁ}

4. Select Uninstall.

Figure 56: Uninstall the KULT Extension

KULT-Extension

Eerhiey Irnrumenis LT Lansjiage & @
o

Erfvdey fralyurmeely

5. Close Visual Studio Code.

To reinstall the KULT Extension:

1. From Visual Studio Code, select the Extensions icon in the left navigation. The Extensions pane

opens.

Figure 57: Extensions icon

&5

4-8 4200A-KULT-907-01 Rev. C March 2023

Model 4200A-SCS KULT and KULT Extension Programming

Section 4: KULT Extension for Visual Studio Code

2. Atthe top of the Extensions: Marketplace pane, select ... and select Install from VSIX.

Figure 58: Install from VSIX

») File Edit Selection View Go Run Terminal Help
ARKETPLA FD Extenision: CC++ X
b4 netalled Extensian
t=H
CfC++ n2a1
CfC++ InteliSenss, debugging, an Show Enabled Bdensions 35
Microsoft Disabled Extension I
C++ Intellisense o E |
{
CAC++ Intelficense with the halp of n
pUSTIn H n e m m
C/Cs+« Clang Command Adapter "0 Popuiar bxtenzion i
Completion and Diagnastic for CC Sart B I o
Yasuald MITAN)
. Sort By: Ratir
CfC++ Compile Run 1211
Compile & Run single c/c++ filese Sort By: Man
daniglpintodzzt I:I
= K Exle P
CfC++ Snippets oo Lok, .
Code snippets for C/C++ 1A0EE AUTC LIDdating Extenssdn
Batter C+ + Syntax 1143 DR o o
The bleeding edge of C-lfe syntax G Rk
Beff Hylon n
Ls .+ Testhlate

3. Select C:\s4200\vscode\kult-extension.vsix.

4. Select Install.

Figure 59: Install the KULT Extension to Visual Studio Code

3 Install from VSIX
= S ¥ This PC » 4200A-5C5(C) » =4200 » wvscode
Organize = Mew folder
&2 ZN ~ Mame B
Captures [kult-extension.vsix

5. Close Visual Studio Code and reopen to complete the installation and enable all extensions.

4200A-KULT-907-01 Rev. C March 2023

4-9

Section 4: KULT Extension for Visual Studio Code Model 4200A-SCS KULT and KULT Extension Programming

Setting up Visual Studio Code for library development

Before using Visual Studio Code for developing KULT libraries, you need to open the user library so
that you can access all the libraries without switching folders. You can open single user libraries by
opening the folder of the user library. On startup, Visual Studio Code reopens the last folder opened.

You also need to create the Visual Studio Configuration files before you open a single library. Visual
Studio Code configuration files adopt the features of Visual Studio Code to be used with Keithley
User Libraries.

Opening the user library in Visual Studio Code

To open the user library folder:

1. Goto File > Open Folder to select a folder to open in Visual Studio Code. You must select a
valid user library folder to use the KULT Extension.

Figure 60: Open folder dialog

] File Edit Selection View Go Debug

Mew File Ctrl+M
MNew Window Ctrl+5shift+M
Open File... Ctrl+0

Open Folder... Ctrl+K Ctrl+0

Open Workspace..

2. Open the usrlib folder C:\s4200\kiuser\usrlib.

Creating the Visual Studio Code configuration files

Visual Studio Code configuration files adopt the features of Visual Studio Code to be used with
Keithley User Libraries.

The c_cpp_properties. json configuration file controls the Intellisense features of the C/C++
Extension from Microsoft, such as compiler-specific syntax checking and header file paths.
Intellisense errors may occur if these features are not configured for Keithley user libraries. The errors
do not affect compilation or code execution in Clarius, but may make code difficult to troubleshoot.

The launch. json file has configuration settings for GNU Debugger (GDB), which is used when
debugging. Debugging attaches GDB to the Clarius running process UTMServer . exe.

4-10 4200A-KULT-907-01 Rev. C March 2023

Model 4200A-SCS KULT and KULT Extension Programming Section 4: KULT Extension for Visual Studio Code

A .vscode folder is created with the configuration files in the folder that is open (workspace path). All
files in the workspace path reference these configuration files. If the usrlib folder is open, the
configuration files can be created once, and all the libraries will use them. If you are opening
individual libraries, these files need to be created for each library the first time it is opened. Created
configuration files can be edited later. The file settings. json contains Visual Studio Code
workspace level configuration settings.

Create the C/C++ Intellisense configuration file

To create the C/C++ Intellisense configuration file:
1. Open the Command Palette by selecting View > Command Palette.
2. Search KULT to filter for KULT Extension commands.

3. Select the command KULT: Create C/C++ Intellisense Configuration File. This generates the
Cc_cpp_properties. json configuration file and places it in the .vscode folder in the working
directory. The command does not overwrite an existing configuration file.

Figure 61: Generate the c_cpp_properties configuration file

c_cpp_properties.json - usdib - Visual Studio Code

KULT: Create C/C++ Intellisense Confiquration File

KULT: Fe n Functions View ther command:
KULT: F

KULT: Fo

4. Open the KULT side pane by selecting KULT on the left side of the screen.
Select a library in the Libraries pane.

In the Miscellaneous pane at the bottom of the KULT side pane, select the
Cc_cpp_properties. json file. Add paths to header files in the includePath settings. Paths are
entered in quotes and separated by commas. This file can be updated at any time.

NOTE

The paths to the include folder, usrlib folder, and compiler are necessary for most user libraries and
are automatically entered. Deleting these paths causes Intellisense errors in factory-user libraries.

4200A-KULT-907-01 Rev. C March 2023 4-11

Section 4: KULT Extension for Visual Studio Code

Figure 62: c_cpp_properties

CEp_ o

ropertiesjson X

“configurations™: [
{
"name”: "KULT C Configuration”,
"includePath™: [
"Ci/sa200/ sys S include”,
i /54200 /kiuserfusrlib”,

"C:/Program Files (x86)/MinGW/®=*"

1.
"defines™: [
" _DEBUG",
“UNICODE™,
" _UNICODE™

1

"compilerPath™: "",
"el11",
"cppStandard”: "c++11",

"intelliSenseMode™:

“eStandard™:

pCC-n64"

Create the launch confi

To create the launch config

guration file

uration file:

1. Open the Debug side bar by selecting the debug icon on the left side.

2. Select Create a launch.json file.

Figure 63: Create a launch.json file

®] File Edit Selection View Go Run

Open a file which can be debugged

or rnin

To customize Run and Debug create
o & - T

a launch.json file.
>
= Show all automatic debug

configurations

Model 4200A-SCS KULT and KULT Extension Programming

4-12

4200A-KULT-907-01 Rev. C March 2023

Model 4200A-SCS KULT and KULT Extension Programming

Section 4: KULT Extension for Visual Studio Code

3. Select KULT Attach Process. The launch. json file is added with the settings to attach to the

UTM Server. The file can be accessed later in the Miscellaneous tab of the KULT side bar.

Figure 64: KULT Attach Process

Figure 65: Tab with launch.json

mmand : extension. getUTHServerPath}”,

mmand:extension.selectUtmServerProcess]}”,

Visual Studio code overview

The following topics describe the features of Visual Studio Code. To learn more about Visual Studio
Code as an editor, visit Visual Studio Code (code.visualstudio.com/).

4200A-KULT-907-01 Rev. C March 2023

4-13

https://code.visualstudio.com/
https://code.visualstudio.com/

Section 4: KULT Extension for Visual Studio Code Model 4200A-SCS KULT and KULT Extension Programming

Opening Visual Studio Code

To open Visual Studio Code, select the desktop icon or select Visual Studio Code in the Windows
Start Menu.

Figure 66: Visual Studio Code

Wisual Studio
Code

Visual Studio Code user interface

Important parts of the main user interface are labeled in the following figure.

Figure 67: Visual Studio Code user interface components

R e BeepCharge. - usrib - Vistal Studio Code 0Qo ® - o X
- C BeepCharge.c X Sy @ H O - LT Module
pL c Module BeepCharge Library BeepLib
1 L . T
5 Return Type void Library Visible Visible
a Parameters
- ™ Name Type /O Default Min Max
. £ T
s y s
9 J11C:54200sys/help/inforane/styleshest css™
10
1/ UK ILE HELP DESCRIPTE Module: BeepCharge
12 a
13 nk r type="text/css" href="file:///C Ay
14 Description
15 Hodule: BeepCharge
e This function sounds a comical battle cry with beeps through the default system speaker
17
18 pescription Inputs
19
2 Nene
2 is func s 2 battle cry
2w em speaker Return values
B} +- D@ x
ved.
PS C:\s4200\ :

Run Task shows all tasks available in Visual Studio Code. Run Build Task displays a
subset of the tasks specific to building. KULT build tasks are specific to a library that can
be selected by opening a library module.

1 | Terminal menu

2 | Side bar Displays views that assist you when editing. You can switch views using the icons in the
activity bar next to the side bar.
3 | Editor Displays open files. You can right-click the tabs to change the view and display

multiple files.

4 | KULT Module Make changes to the module parameters and code.

5 | Panels Manage user output. See Panels (on page 4-15) for more information.

4-14 4200A-KULT-907-01 Rev. C March 2023

Model 4200A-SCS KULT and KULT Extension Programming Section 4: KULT Extension for Visual Studio Code

Activity bar

The Visual Studio Code side bar includes an activity bar that allows you to switch between views and
additional context-specific indicators. An example of the activity bar is shown in the following figure.

Figure 68: Visual Studio Code activity bar with KULT Extension

Explorer
Search
Source Control

Debug

Extension Marketplace

@lKULT Extension

The activity bar includes:

Explorer: Displays all files in the Visual Studio Code working directory.

Search: Search and replace options for open files.

Source control: Not used by the KULT Extension.

Debug: Allows you to monitor variables, threads, and breakpoints during debug mode.
Extension marketplace: Install and uninstall extensions to Visual Studio Code.

KULT: Displays libraries and modules, build functions, and other useful tools for developing
libraries. See KULT side bar (on page 4-17) for additional information.

Panels

You can display panels below the editor region. Panels display information to the user, such as output
and debug information and errors.

To display panels, select View > Open View > Panel.

Panels include:

Output: Certain nonbuild KULT Extension functions, such as Clean Library, provide messages
here.

Terminal: Displays output from build tasks in the same format as KULT.
Debug Console: Used for expression evaluation and other tools during debugging.

Problems: Displays various errors found before and during compilation. Select an error message
in the Problems panel to display the line of code in the editor.

4200A-KULT-907-01 Rev. C March 2023 4-15

Section 4: KULT Extension for Visual Studio Code Model 4200A-SCS KULT and KULT Extension Programming

Command Palette

The Command Palette provides access to all Visual Studio Code commands, including the most
commonly used commands for the KULT Extension.

To open the Command Palette, select View > Command Palette from menu bar.

To display only KULT commands, type KULT in the search bar, as shown in the following figure.

Figure 69: Command Palette

KULT: Create C/C+ + Intelisense Configuration File recently used
KULT: Show Module View

KULT: New Libra

KULT: Mew Module

KULT: Focus on Functions View other commands
KULT: Focus on Libraries View

KULT: Focus on Miscellaneous \

KULT: Focus on Modules View

KULT: Mew Librar

KULT: Mew Module

view: Show KULT

Settings in Visual Studio Code

You can use the settings preferences to personalize Visual Studio Code. To access the settings,
select File > Preferences > Settings.

To make changes to KULT Extension features, search KULT in the settings.

Figure 70: KULT Extension settings

-~

t: Read Only Color

Kult: Show Generated Files

4-16 4200A-KULT-907-01 Rev. C March 2023

Model 4200A-SCS KULT and KULT Extension Programming Section 4: KULT Extension for Visual Studio Code

KULT side bar

The KULT Extension adds a side bar to Visual Studio Code that enables simplified access to libraries
and functions. The following figure shows an example of the KULT side bar. Descriptions of each
option are in the table below the figure.

Figure 71: KULT side bar

~ FUNCTIONS

Show Module View
Build Library Beeplib For Release

Build Library Beeplib For Debug

[7 - LIBRARIES

audlib

AVMControl

Beeplib
chargepumping
cvivulib

cvuCompulib

5

cvuulib
DLCP
flashulib

GateCharge
v MODULES

beep

5

BeepCharge
BeepDown
BeeplnfiniteLoop
BeepUp

MISCELLANEOQUS

Beeplib_modules.mak /@
launch.json

KULT side bar

1 Functions include options such as opening the KULT module and building a library.

2 Libraries includes all available libraries in alphabetical order.

3 Modules includes all user modules for the select library. Select a module to open it in the editor.
4 Miscellaneous includes files that are useful to library development.

4200A-KULT-907-01 Rev. C March 2023 4-17

Section 4: KULT Extension for Visual Studio Code Model 4200A-SCS KULT and KULT Extension Programming

Working with user libraries in Visual Studio Code

This section covers the basics of working with user libraries in the Visual Studio Code
KULT Extension.

NOTE

The KULT extension supports restricted mode in Visual Studio Code. If a workspace is untrusted,
you cannot compile UTMs. For more information on workspace trust in Visual Studio Code, refer to
https://code.visualstudio.com/docs/editor/workspace-trust
(code.visualstudio.com/docs/editor/workspace-trust).

To prevent malicious code execution, do not run a UTM if you have not verified the source.

Creating a new library

To create a new library:

1. Inthe KULT Extension Libraries side bar, select +.

Figure 72: Create a new library

" LIBRARIES E

2. Type a name for the library.

3. Press Enter.

Copying a library

When you copy a library, the user modules for the library are also copied. "Copy" is added to the
names of the copied library and user modules.

To copy alibrary:
1. Select the library.

2. Select the copy icon.
Figure 73: Copy a library or module
Beeplib IEI]]E]'

3. The copied library must be built before you can use it in Clarius. See Building a library (on
page 4-22).

4-18 4200A-KULT-907-01 Rev. C March 2023

https://code.visualstudio.com/docs/editor/workspace-trust
https://code.visualstudio.com/docs/editor/workspace-trust

Model 4200A-SCS KULT and KULT Extension Programming Section 4: KULT Extension for Visual Studio Code

Deleting a library

When you delete a library, all the modules and associated build files in the library are also deleted.

To delete a library:
1. Inthe Libraries side bar, select the library.

2. Select the delete icon.

Figure 74: Delete a library or module

Beeplib =] %

3. Select Yes.

Renaming a library

You can change the name of a library. However, you cannot change the case of the letters in a
library name.

To rename a library:
1. Select the library.

2. Select the change name icon.

Figure 75: Rename a library or module

Beeplib =h|—> 1

Type the new name.
Select Enter.

The renamed library must be built before you can use it in Clarius. See Building a library (on
page 4-22).

Setting library visibility

You can set a library to be available or unavailable to Clarius. For example, you can hide a library if
you want to designate that a user library is only to be called by another user library and is not to be
connected to a UTM.

4200A-KULT-907-01 Rev. C March 2023 4-19

Section 4: KULT Extension for Visual Studio Code Model 4200A-SCS KULT and KULT Extension Programming

To set the visibility of a library:
1. Inthe KULT side bar, select a library.
2. Select a module in the library.

3. Inthe KULT Module tab, change the setting of Library Visible as needed.

Figure 76: Select library visibility

Library Beeplib

Library Visible | |visible ¥

4. Select Apply.

Entering library dependencies and environment variables

Library dependencies allow a user library to call other libraries. You can edit library dependencies
directly in the .mak file of the library. Library files that are not in the workspace directory, such as
third-party libraries, can be added in the .mak file. The LIB environment variable of the system must
be updated with the path to this library. Users can also update the INCLUDE path environment
variable for header files located outside of the workspace directory.

To add a library dependency:
1. Select the library to edit in the KULT side bar.
2. Under Miscellaneous, select 1 itbName_modules.mak.

3. For the variable LIBS, type the name of the library between the quotes. To enter multiple libraries,
separate the library names with spaces. You can press Ctrl+Space to choose from a list of all
available libraries. Type the library name to filter the results. Press Enter to select a library.

Figure 77: Add a library dependency

You may add additional libraries here.

Libraries are specified by the library's 1ib file. Example: BeeplLib.lib.
Each entry must be separated by a space.

LIBS = "pmuulib.lib RPM Ilimit Control.lib bed”

&) BeepLib.1lib

4-20

4200A-KULT-907-01 Rev. C March 2023

Model 4200A-SCS KULT and KULT Extension Programming Section 4: KULT Extension for Visual Studio Code

To update the system environment variables for external libraries and headers:
1. Inthe Windows search bar, type Environment Variables.

2. Select Edit the system environment variables.

3. Select the Advanced tab.
4

Select Environment Variables.

Figure 78: Set environmental variables

Computer Name Hardware Advanced System Protection Remote

You must be Inaged on as an Administrator to make most of these changes
Perfomance

Visual effects, processor scheduling, memory usage, and virtual memory.

Settings.

User Profiles
Deskiop settings related to your signin

Settings...

Startup and Recovery
System startup, system failure, and debugging infermation

Settings...

Environment Vanables

0K Cancel Apply

5. Inthe System Variables box, select lib.
6. Select Edit.

Figure 79: Enter environmental variables

Environment Variables b4
User variables for kiadmin
Variable Value L
INCLUDE c i : AS42000
KI_DT_ICONHOME CASA200syshdat
KLKULT_PATH CASL200\kiuseAusrib
KLLOCK_LOC CASE200sys\lock
KI_PLATFORM 54200
KLPRE_CONFIG CASI200\5ysdatiprbeng dat
K| PRE FAKE OUTPUT OFF 2
. New... Edi... Delete
:
System variables
Variable Value -
KITMP Sitemp%
KIUSER C\S4200\kiuser
ib C\SA200\5y3\lib;C:\54200\sys'\openint\ib; C:\Program Files (xB6)\Mi
Ll :_FILE TSI sys\datilicense.dat
ND_LANG enusase
ND_PATH CASL20Nsys\dat
NUMBER OF PROCESSORS __4 2
oK Cancel

7. Select New and enter the path to the external library. You can repeat this process for any header
files by selecting the INCLUDES variable and entering in the path to the header file.

4200A-KULT-907-01 Rev. C March 2023 4-21

Section 4: KULT Extension for Visual Studio Code Model 4200A-SCS KULT and KULT Extension Programming

Figure 80: Edit environment variable

Edit environment vanable *

CAS200sys\openmint\lib

Ch\Program Files (x26)\MinGW\lib Edit

Browse...

Delete

Move Up

Mowve Down

Edit text...

Building a library

When building a library, you can build for debug or build for release. Building a library for debug
creates symbols that the debugger requires to watch variables. If you are not using the debugger, you
can build for release, which does not create these symbols.

You can build a library from the KULT Extension side bar or from the Terminal menu.

Build a library from the KULT Extension side bar

To build a library from the KULT Extension side bar:
1. Select the library.

2. Under Functions, select the run icon next to Build Library LibName for Release or Build
Library LibName for Debug in the Functions tab of the KULT side bar.

4-22 4200A-KULT-907-01 Rev. C March 2023

Model 4200A-SCS KULT and KULT Extension Programming Section 4: KULT Extension for Visual Studio Code

Figure 81: Run icon for Build Library

KULT

~ FUNCTIONS
Show Module View
Build Library Beeplib For Release

Build Library BeepLib For Debug

3. Select Terminal at the bottom of the screen to view the build status.

4. To view problems with the build, select Problems.

Figure 82: Build Terminal status

PROBLEMS OUTPUIT DEBUG COMSOLE TERMIMAL

» Executing task: fec kult bld lib -lBeepLib -compiler “"MinGW" -build type Release <

Errors, Nar‘nings or Messages:

Building BeepLib at C:\s428@\kiuser\usrlib\BeepLib\build ...
ieee_32m.lib;lptlib.lib;ktxesup.lib;ksox.1lib;kui.lib;ibup.lib;kdf.lib;idsnames.1ib;oicommo
ntf.lib;logginglib.lib;ktemalloc.1ib;libws2 32.a;libwsock32.a

-- Configuring done

-- Generating done

-- Build files have been written to; C:/s4208/kiuser/usrlib/BeepLib/build

Scanning dependencies of target Beeplib

[6%] Building C ocbject CMakeFiles/BeepLib.dir/BeepLib/kitt_src/dllmain.c.obj

[12%] Building C object (MakeFiles/BeepLib.dir/BeepLib/kitt_src/w_BeepCharge.c.obj

[18%] Building C object CMakeFiles/BeepLib.dir/BeepLib/kitt_src/w_BeepDown.c.obj

[25%] Building C object CMakeFiles/BeepLib.dir/Beeplib/kitt_src/w_BeepInfiniteLoop.c.obj
[31%] Building € object CMakeFiles/BeepLib.dir/BeepLib/kitt_src/w_Beeplp.c.obj

[37%] Building C ocbject CMakeFiles/BeepLib.dir/BeepLib/kitt_src/w_beep.c.obj

[43%] Building C object CMakeFiles/BeeplLib.dir/BeeplLib/kitt_src/w_beepMultiple.c.obj
[se¥] Building C object CMakeFiles/BeepLib.dir/Beeplib/kitt_src/w_newModule.c.obj

[56%] Building C object CMakeFiles/BeepLib.dir/BeepLib/src/BeepCharge.c.obj

[62%] Building € cbject CMakeFiles/BeepLib.dir/BeepLib/src/Beepbown.c.obj

[68%] Building € cbject CMakeFiles/BeeplLib.dir/BeeplLib/src/BeepInfiniteLoop.c.obj

[75%] Building C object (MakeFiles/BeepLib.dir/BeepLib/src/BeepUp.c.obj

[81%] Building C object CMakeFiles/BeepLib.dir/BeepLib/src/beep.c.obj

[87%] Building C object CMakeFiles/BeepLib.dir/BeepLib/src/beepiultiple.c.obj

[93%] Building C object CMakeFiles/BeepLib.dir/BeeplLib/src/newtodule.c.obj

[188%] Linking C shared library bin\release\BeepLib.dll

Copying to KULT directory

Copying files to C:/S54208/kiuserfusrlib...

[1@e%] Built target BeepLib

Build complete for BeeplLib.

Build SUCCESSFUL

Terminal will be reused by tasks, press any key to close it.

4200A-KULT-907-01 Rev. C March 2023 4-23

Section 4: KULT Extension for Visual Studio Code

Model 4200A-SCS KULT and KULT Extension Programming

Build a library from the Terminal menu

To build alibrary from the Terminal menu:

1.

2
3.
4

5.

Select the library.
From the Terminal menu, select Run Build Task.
Select the debug or release build option.

Select Terminal at the bottom of the screen to view the build status.

Figure 83: Build Terminal status

FROBLEMS OUTPLIT DEBUNG COMSOLE

TERMAIMAL

> Executing task: fc kult bld_lib -lBeepLib -compiler "MinGW" -build type Release <

Errors, Warnings or Messages:

Building BeeplLib at C:\s42ee\kiuser\usrlib\BeepLib\build ...
ieee_32m.lib;1ptlib.lib;ktxesup.libjksox.lib;kui.lib;ibup.lib;kdf.1ib; idsnames.1ib;oicommg
ntf.lib;Logginglib. lib;ktemalloc.1ib; libws2 32.a;libwsock32.a

-- Configuring done

-- Generating done

-- Build files have been written to: C:/s4208/kiuser/usrlib/8eepLib/build

scanning dependencies of target Beeplib

[6%] Building C cbject CMakeFiles/BeepLib.dir/BeepLib/kitt src/dllmain.c.obj

[12%] Building C ocbject CMakeFiles/Beeplib.dir/BeepLib/kitt_srec/w_BeepCharge.c.obj

[18%] Building C object (MakeFiles/BeepLib.dir/Beeplib/kitt_src/w_BeepDown.c.ob]j

[25%] Building € object CMakeFiles/BeeplLib.dir/BeeplLib/kitt_src/w_BeepInfinitelLoop.c.obj
[21¥%] Building € cbject CMakefiles/BeepLib.dir/BeepLib/kitt src/w Beeplp.c.obj

[37%] Building C object CMakeFiles/BeepLib.dir/BeepLib/kitt_src/w_beep.c.obj

[43%] Building C object (MakeFiles/BeepLib.dir/BeepLib/kitt_src/w_beepMultiple.c.obj
[5e¥] Building C object CMakeFiles/BeepLib.dir/BeepLib/kitt_src/w_newModule.c.obj

[56%] Building C object (MakeFiles/Beeplib.dir/BeepLib/src/BeepCharge.c.obj

[82%] Building € object CMakeFiles/BeepLib.dir/BeepLib/src/BeepDown.c.obj

[68%] Building C ocbject CMakeFiles/BeepLib.dir/BeepLib/src/BeepInfiniteLoop.c.obj

[75%] Building € ocbject CMakeFiles/BeeplLib.dir/BeeplLib/src/Beeplp.c.obj

[81%] Building C object CMakeFiles/BeepLib.dir/BeepLib/src/beep.c.obj

[87%] Building C object CMakeFiles/BeepLib.dir/BeepLib/src/beeptultiple.c.obj

[93%] Building C object (MakeFiles/BeepLib.dir/BeepLib/src/newtodule.c.obj

[186%] Linking € shared library bin\release\BeepLib.dll

Copying to KULT directory

Copying files to C:/s42e@/kiuser/usrlib...

[1@0%] Built target BeepLib

Build complete for BeepLib.

Build SUCCESSFUL

Terminal will be reused by tasks, press any key to close it.

To view problems with the build, select Problems.

4-24

4200A-KULT-907-01 Rev. C March 2023

Model 4200A-SCS KULT and KULT Extension Programming Section 4: KULT Extension for Visual Studio Code

Cleaning a library

Cleaning a library deletes all files that were generated by a build, leaving the source code. This is
useful if a build file gets corrupted.

NOTE

When you select Terminal > Run Task or Terminal > Run Build Task, the build tasks are added to
the Run Task history of recently used tasks. This list persists when you close and reopen Visual
Studio Code. If the list is too long, you can change the history size using the Manage option on the
lower left. Select Manage > User > Task > Quick Open: History.

To clean alibrary:

1. Select the library in the KULT Extension side bar.
From the Terminal menu, select Run Task.

Type KULT to limit the list to KULT tasks.

Select KULT: Clean Library “LibName”.

o > w DN

Select Output at the bottom of the window to review the actions.

Working with modules in Visual Studio Code

This section covers basics on working with KULT user modules in the Visual Studio Code
KULT Extension.

The KULT Extension displays the parameters and description of a module in the editor pane. To
display the module in a form, select Show Module View from the Functions in the KULT side bar.

NOTE

To view all KULT Extension features, you must open a user library in Visual Studio Code. See
Opening the user library directory in Visual Studio Code (on page 4-10) for instructions.

Creating a new user module

All user modules must have unique names to avoid conflicts in library dependencies.

To create a new module:
1. Inthe KULT Extension side bar, in Libraries, select the library that will contain the module.
2. In Modules, select +.

Figure 84: Create a new module

+ MODULES |

3. Type a name for the new module.
4, Select Enter.

4200A-KULT-907-01 Rev. C March 2023 4-25

Section 4: KULT Extension for Visual Studio Code Model 4200A-SCS KULT and KULT Extension Programming

Copy a user module

To copy a user module:
1. Select the user module.

2. Select the copy icon.

Figure 85: Copy a library or module

Beeplib E]j]ﬁ[

Rename a user module

All user modules must have uniqgue names to avoid conflicts in library dependencies.

To rename a user module:
1. Inthe KULT Extension side bar, select the module.

2. Select rename icon.

Figure 86: Rename a library or module

BeeplLib =i T

3. Type a name for the new module.
4, Select Enter.

Deleting a user module

To delete a module:
1. Inthe Modules of the sidebar, select the module.

2. Select the delete icon.

Figure 87: Delete a library or module

Beeplib =] %

3. Select Yes.

4-26 4200A-KULT-907-01 Rev. C March 2023

Model 4200A-SCS KULT and KULT Extension Programming Section 4: KULT Extension for Visual Studio Code

Setting the return type of a user module

The return type is set for user modules that return a value. The available return types are:

char: Character data

e float: Single-precision floating point data
e double: Double-precision data

e int: Integer data

e long: 32-bit integer data

e void: No return value

To set the return type of a user module:

1. Inthe KULT Extension Libraries side bar, select the Library that contains the module.
2. Under Modules, select the user module.

3. Inthe KULT Module, select the Return Type.

Figure 88: Select the return type of a user module

Module beep

Returm Type | |void ¥

4. Select Apply.

Including header files

Header files are included in the code before the main module function.

NOTE

Intellisense errors may appear in the Problems tab because paths to header files are not listed in the
Intellisense configuration file, c_cpp_properties. json. These errors do not affect compilation
and can be ignored, or you can follow the instructions below to prevent them.

4200A-KULT-907-01 Rev. C March 2023 4-27

Section 4: KULT Extension for Visual Studio Code Model 4200A-SCS KULT and KULT Extension Programming

To add a header file to a module:
1. Inthe KULT Extensions side bar, select the library that contains the user module.
2. Select the module. The module is displayed in the editor.

3. Add the header file directly below the comment USRLIB MODULE PARAMETER LIST using the
format #include "“headerName.h". An example is shown in the following figure.

Figure 89: Add a header file to a module

48 #include "keithley.h"

To remove Intellisense header file errors:

1. Create the c_cpp_properties.json file if it does not already exist in the .vscode folder. See

Creating the Visual Studio Code configuration (on page 4-10) files for instructions.

2. If the file already exists, or creating the file did not remove the errors, select the
c_cpp_properties. json file in the KULT Extension Miscellaneous side bar.

3. Add the header file to the includePath setting. File paths must be enclosed in quotes and
separated by commas.

Figure 90: Remove Intellisense header file errors

"name": "KULT C Configuration”,
"includePath™: [
"C: /54208 /sys/include”,
"oofs4208/kiuser/usrlib”,
"C:/Program Files (x86)/MinGh/**"

1.

NOTE

You may need to add header files to system environment variables in other places on the system.
See Entering Library Dependencies and Environment Variables (on page 4-20) for more information.

4-28 4200A-KULT-907-01 Rev. C March 2023

Model 4200A-SCS KULT and KULT Extension Programming

Section 4: KULT Extension for Visual Studio Code

Editing module parameters

You can change user module parameters in the KULT Module.

Figure 91: Edit user module parameters

KULT Module X

Module newModule

Return Type void v
Parameters
Name Type

.;'.:|||:": char

char *

float

float *

doubla

double *

int

int *

long

lang *

F_ARRAY T

I_ARRAY_T

D_ARRAY_T

Library BeepLib

Library Visible ~ Visible v

Default Min

| New [N Delote |

Max

To edit parameters:

1. Inthe KULT Extension side bar, select the library.

Select the module.

To:

2
3. If the KULT Module is not displayed, under Functions, select Show Module View.
4

= Add a parameter: Select New. Enter parameter values.

= Modify a parameter: Change the parameter value in the fields.

= Delete a parameter: Select a parameter, then select Delete.

Refer to the table below for detail on the parameter values

5. Select Apply to add the changes to the code. Changes are displayed in the gray read-only code

at the top of the module.

4200A-KULT-907-01 Rev. C March 2023

4-29

Section 4: KULT Extension for Visual Studio Code Model 4200A-SCS KULT and KULT Extension Programming

User module parameter values
Name Identifies the parameters that are passed to the user module.
Type The parameter data type; only pointer types can be used for output parameters:
® char: Character data
® char*: Pointer to character data
B float: Single-precision floating point data
" float*: Pointer to single-precision floating point data
® double: Double-precision data
® double*: Pointer to double-precision point data
® int: Integer data
® int*: Pointer to integer data
® long: 32-hit integer data
® long*: Pointer to 32-bit integer data
® F_ARRAY_T: Floating point array type
® | _ARRAY_T: Integer array type
® D _ARRAY_T: Double-precision array type

1/O Defines whether the parameter is an input or output type.
Default The default value for a nonarray (only) input parameter
Min The minimum recommended value for a nonarray (only) input parameter. When the user

module is used in a Clarius user test module (UTM), configuration of the UTM with a
parameter value smaller than the minimum value causes Clarius to display an out-of-range
message.

Max The maximum recommended value for a nonarray (only) input parameter. When the user
module is used in a Clarius UTM, configuration of the UTM with a parameter value larger
than the maximum value causes Clarius to display an out-of-range message.

Reorder the user module parameters

To change the order of the parameters:
1. Inthe KULT Extension side bar, select the library.
2. Select the module.

3. In KULT Module, select the parameter.

Figure 92: Reorder parameters

Parameters
Mame Type /o Default Min Max
g v nowr ¥ 2T8T
. o 1T 5 | | | 1

4. Select Up or Down to move the parameter to the new location.

5. Select Apply. The changes are shown in the read-only code at the top of the editor.

4-30 4200A-KULT-907-01 Rev. C March 2023

Model 4200A-SCS KULT and KULT Extension Programming Section 4: KULT Extension for Visual Studio Code

Editing the module description

The module description appears in the help pane in Clarius when the module is selected. You can
see a sample view of these descriptions in the KULT module in Visual Studio Code, beneath the
parameters. This view is automatically updated when the description code is edited.

Figure 93: Module description

Module: beep
Description

3 CUON B 3 Wiapper round the Windows AP Batp function
Inputs
frequency : Specifies the frequ

Surabon : Specties the durato
Return values

None

NOTE

For a complete list of supported commands, refer to Model 4200A-SCS LPT Library Programming.

To edit the module description:
1. Inthe KULT side bar, select the library.
2. Select the module. The module is displayed in the editor.

3. Edit the description code below the read-only gray code at the top of the module, inside the
comments for USRLIB MODULE HELP DESCRIPTION. The code uses Markdown syntax. For
more information, see markdownguide.org/.

Debugging libraries

In Visual Studio Code, you can attach a debugger to an execution process to monitor code execution
for debugging purposes. For Keithley User Libraries, Visual Studio Code uses the GNU debugger
(GDB) and attaches it to the UTMServer. Running the code as a UTM in Clarius allows the debugger
to watch and control execution in the UTMServer.

To run and debug modules in Visual Studio Code, a launch configuration (launch. json) must exist
in the .vscode folder. For instructions to set up a launch configuration, see Setting up Visual Studio
Code for Library Development (on page 4-10).

Debug limitation notes:

e While attached to the debugger, do not select Stop in Clarius. Selecting Stop may cause a
Clarius process to hang. If this happens, open Windows Task Manager and select End Task for
Clarius.exe, KiteServer.exe, and UTMServer .exe.

e The debugger is not available on the computer version of Clarius.

4200A-KULT-907-01 Rev. C March 2023 4-31

https://www.markdownguide.org/

Section 4: KULT Extension for Visual Studio Code Model 4200A-SCS KULT and KULT Extension Programming

Debugger side bar and toolbar

The debugger allows you to step through code, monitor variables, evaluate expressions, and
manipulate values. During debugging, the debug side bar and debug toolbar are visible.

The debug side bar gives you access to variable values, expressions, breakpoints, and threads for
multi-threaded debugging.

Figure 94: Debugging side bar

RUN D (gdb) Attach v | & &)

v VARIABLES
Vv Locals

vstep: 0.5

v: 0.5

i3 Al

sum: ©
Vstart: ©

Vstop: 5

v

Imeas: 0x75c60f0
NumIPoints: 11
> Vforce: 0x75c5d90

~ WATCH /@

sum: ©

Vforce[i]/Imeas[i]: 1.7812175212.

v BREAKPOINTS + & &

® ¥ VSweepRes.c my_2n

v CALL STACK

5 &

> Thread #1 PAUSED
> Thread #2 PAUSED
> Thread #3 PAUSED
> Thread #4 PAUSED
> Thread #5 PAUSED
> Thread #6 PAUSED
> Thread #7 PAUSED
Vv Thread #8 PAUSED ON STEP

my_2nd_1ib.d11!VSweepRes(double

Debugger side bar

1 Variables displays all variables. They are updated in real time as the code executes.
2 Watch allows you to add and monitor expressions and important variables.

3 Breakpoints allows you to add function breakpoints and manage other breakpoints.
4 Call Stack allows you watch the status of multiple threads.

4-32 4200A-KULT-907-01 Rev. C March 2023

Model 4200A-SCS KULT and KULT Extension Programming Section 4: KULT Extension for Visual Studio Code

The debug toolbar gives users control over the code execution to step over or into lines of code.

Figure 95: Debug toolbar

ppop P

—

Debugger toolbar

1 Execute until the next breakpoint or the end of the code
2 Step over functions

3 Step into functions

4 Step out of functions

5 Detach

Setting up the debugger

This procedure builds the library for the debugger, which creates extra symbols that the debugger
requires so that it can use breakpoints and watch variables.

NOTE

Libraries must be rebuilt after every change. Clarius can remain open but, the UTM must be
reloaded for changes to take effect. Reload the UTM by select a different test and returning to the
UTM, opening a different project and returning, or closing and reopening Clarius. Clarius must be
fully closed to load a new library or module for the first time. You do not need to change to a different
test if you are changing module content and not parameters of a module.

NOTE

When you start the debugger, breakpoints are unbound. The breakpoints automatically bind when
code execution begins.

To set up the debugger for a module:
In the KULT side bar, select the library that contains the module.
Select the module.

Set at least one breakpoint. See Setting breakpoints in modules (on page 4-35).

Under Functions, run Build Library LibName for Debug.

Open Clarius.

S T o

In Clarius, either configure a new test to run the module or open an existing test that uses
the module.

4200A-KULT-907-01 Rev. C March 2023 4-33

Secti

on 4: KULT Extension for Visual Studio Code

Model 4200A-SCS KULT and KULT Extension Programming

7. In Visual Studio Code, in the Debug side bar, select Run > (gdb) Attach. The debugger is
running when the status bar at the bottom of the Visual Studio Code window is orange and debug

toolbar is displayed.

Figure 96: Starting the debugger

B

 WARIABLES

pdb) Attach

Running code with the debugger

To run code with the debugger:

1. See the previous section to set up the debugger and the module in Clarius.

2. Runthe UTM from Clarius.

3. When code execution is paused, you can use debugging tools, step through the code line by line,
set additional breakpoints, or run to the next breakpoint using the debug toolbar.

Ending a debugging session

Do not abort a UTM in Clarius when execution is paused in Visual Studio Code. This causes a
conflict between the debugger and Clarius and causes Clarius to hang. End the debugging

session before aborting a UTM in Clarius.

To end a debugging session:

Select disconnect on the debug toolbar or type Ctrl+C into the terminal. This stops the running GNU

Debugger (GDB) process.

If the code was paused on a breakpoint, it continues execution in Clarius after the debugger is
disconnected. You can abort the module in Clarius after the debugger is disconnected.

4-34

4200A-KULT-907-01 Rev. C March 2023

Model 4200A-SCS KULT and KULT Extension Programming Section 4: KULT Extension for Visual Studio Code

Setting breakpoints in modules

Setting a breakpoint stops code execution and allows you to step through code line by line.
Breakpoints must be set on lines of code. They do not work on comments or blank lines. You must
set at least one breakpoint before attaching the debugger. You can set additional breakpoints during
debugging when the code is paused. Breakpoints are marked as unbound (gray hollow circle) after
starting until the code is executed.

The GDB environment allows the following breakpoints:
e Unconditional breakpoint: Pauses execution on a specific line
e Conditional breakpoint: Pauses execution on a specific line if a given statement is true

e Function breakpoint: Pauses execution at the first line of a function

Setting an unconditional breakpoint

To set an unconditional breakpoint:

1. Set up the debugger as described in Setting up the debugger (on page 4-33).

2. Before running the debugger, select the space to the left of the line number. A red dot indicates
the placed breakpoint. The breakpoint is also logged in the debug side bar under Breakpoints.
Under Functions, run Build Library LibName for Debug.

Open Clarius.

In Clarius, either configure a new test to run the module or open an existing test that uses the
module.

6. In Visual Studio Code, in the Debug side bar, select Run > (gdb) Attach. The debugger is
running when the status bar at the bottom of the Visual Studio Code window is orange and debug
toolbar is displayed. When code execution is paused by a breakpoint, additional breakpoints can
be added.

4200A-KULT-907-01 Rev. C March 2023 4-35

Section 4: KULT Extension for Visual Studio Code Model 4200A-SCS KULT and KULT Extension Programming

Setting a conditional breakpoint

To set a conditional breakpoint:

1.
2.
3.

Before running the debugger, right-click the space to the left of the line number.
Select Add Conditional Breakpoint.

Type in an expression to be evaluated in the editor. This expression is evaluated before the line is
executed and pauses execution if true.

49 while(sum<1@){
® 5@ Beep(frequency, duration);

Expression Y| i > 4

sum = sum + i;

The breakpoint is also logged in the debugging side bar under Breakpoints.
Under Functions, run Build Library LibName for Debug.
Open Clarius.

In Clarius, either configure a new test to run the module or open an existing test that uses
the module.

In Visual Studio Code, in the Debug side bar, select Run > (gdb) Attach. The debugger is
running when the status bar at the bottom of the Visual Studio Code window is orange and debug
toolbar is displayed. Once code execution is paused on a breakpoint, additional breakpoints can
be added.

Setting a function breakpoint

To set a function breakpoint:

1.
2.

In the debug side bar under Breakpoints, select + to add a function breakpoint.

Type the name of the function. The breakpoint is verified the first time the code is executed and
stops execution at the first line of the function.

Under Functions, run Build Library LibName for Debug.
Open Clarius.

In Clarius, either configure a new test to run the module or open an existing test that uses
the module.

In Visual Studio Code, in the Debug side bar, select Run > (gdb) Attach. The debugger is
running when the status bar at the bottom of the Visual Studio Code window is orange and debug
toolbar is displayed. Once code execution is paused on a breakpoint, additional breakpoints can
be added.

4-36

4200A-KULT-907-01 Rev. C March 2023

Model 4200A-SCS KULT and KULT Extension Programming Section 4: KULT Extension for Visual Studio Code

Expression evaluation

Visual Studio Code allows you to watch and evaluate expressions while code executes. You can also
modify variables. The modifications to variables remain for the rest of the execution.

Evaluating an expression once

When you evaluate an expression once, the value of the expression is output to the debug Console.

To evaluate an expression once:

1.

2
3.
4

Set up the debugger as described in Setting up the debugger (on page 4-33).

Set up at least one breakpoint to pause the code.
Run the code in Clarius.

While the code is paused on a breakpoint, enter the expression to be evaluated into the Debug
Console pane.

Evaluating an expression at every breakpoint

In this procedure the expression is evaluated every time the code is paused on a breakpoint.
Additional expressions can be added at any time.

To evaluate an expression at every breakpoint:

o g > w NP

Open the Debug side bar.
In the Debug side bar, select + in the Watch pane.

Enter the expression.

Set up the debugger as described in Setting up the debugger (on page 4-33).
Ensure at least one breakpoint is set to pause the code.

Run the code in Clarius.

Editing a variable value

Edited values are used for the remainder of the code execution.

To edit a variable value:

1.

2
3.
4

Set up the debugger as described in Setting up the debugger (on page 4-33).
Set up at least one breakpoint to pause the code.
Run the code in Clarius.

When the code is paused on a breakpoint, in the Watch pane, select +. You can also enter an
expression in the Debug Console.

Enter an expression to change the value of a variable (varName = newValue).

4200A-KULT-907-01 Rev. C March 2023 4-37

Section 4: KULT Extension for Visual Studio Code Model 4200A-SCS KULT and KULT Extension Programming

Watching variables

All variables are visible in the Variables pane of the Debug side bar. You can watch specific variables
by adding them to the Watch pane. Values are updated in real time.

To add a variable to the Watch pane:

1.

2
3.
4

Set up the debugger as indicated in Setting up the debugger (on page 4-33).

Set up at least on breakpoint to pause the code.
Run the code in Clarius.

When the code is paused on a breakpoint, right-click the variable in the Variables pane and select
Add to Watch.

4-38

4200A-KULT-907-01 Rev. C March 2023

Section 5

KULT Extension tutorials

In this section:

TULOTIAl OVEIVIEW ...t e 5-1
Tutorial: Creating a new user library and user module............. 5-2
Tutorial: Creating a user module that returns data arrays...... 5-12
Tutorial: Calling one user module from another 5-18
Tutorial: Customizing a user test module (UTM).................... 5-21
Tutorial: Debugging a user moduleccooocviiiiiieiiniiienen. 5-26

Tutorial overview

The KULT Extension is a tool for Visual Studio Code that helps you develop user libraries. Each user
library is comprised of one or more user modules. Each user module is created using the
C programming language.

The following tutorials provide step-by-step instructions for creating user libraries and user modules in
the KULT Extension.

The tutorials include:

Creating a new user library and user module (on page 5-2): This tutorial shows you how to create
a new user library and a new user module using the KULT Extension in Visual Basic Code. A
hands-on example is provided that shows you how to create a user library that contains a user
module that activates the internal beeper of the 4200A-SCS. You then build and run the module
in Clarius. This tutorial also explores some of the features of Visual Studio Code to assist with
writing code. This tutorial assumes a working knowledge of the C programming language.

Creating a user module that returns data arrays (on page 5-12): This tutorial demonstrates the
use of array variables in the KULT Extension. It also illustrates the use of return types (or codes),
and the use of two functions from the Keithley Linear Parametric Test Library (LPTLib).

Calling one user module from another (on page 5-18): This tutorial demonstrates how to set up
user modules to call other user modules from any user library. It also describes how to copy
a module.

Customizing a user test module (UTM) (on page 5-21): This tutorial demonstrates how to modify
a user module using the KULT Extension.

Debugqing a user module (on page 5-26): This tutorial demonstrates how to use the KULT
Extension in Visual Studio Code to debug code with the GNU Debugger (GDB). The tutorial
shows you how to pause execution, monitor variables and expressions, and step through code
one line at a time.

Section 5: KULT Extension tutorials Model 4200A-SCS KULT and KULT Extension Programming

Tutorial: Creating a new user library and user module

This tutorial shows you how to create a new user library and a new user module using the KULT
Extension in Visual Basic Code. A hands-on example is provided that shows you how to create a user
library that contains a user module that activates the internal beeper of the 4200A-SCS. You then
build and run the module in Clarius. This tutorial also explores some of the features of Visual Studio
Code to assist with writing code. This tutorial assumes a working knowledge of the C

programming language.

This tutorial does not generate data. For an example of a user module that returns data, see Tutorial:
Creating a user module that returns data arrays (on page 5-12).

Starting Visual Studio Code
NOTE

Complete Installation (on page 4-1) before using this tutorial.

To start Visual Studio Code:
1. Inthe Windows Start menu, select Visual Studio Code.
2. Selectthe KULT icon to open the KULT side bar.

Figure 97: Opening the KULT side bar in Visual Studio Code

) File Edit Selection View Go Run Te

~ FUNCTIONS

Show Module View

Build Library For Release

Build Library For Debug
~s LIBRARIES

ACS42Lib

AM3T73XX

AVMControl

Beeplib

pumping

charge

cvuCompulib
cvuulib
CV_ACS
DLCP

“~ MODULES

5-2 4200A-KULT-907-01 Rev. C March 2023

Model 4200A-SCS KULT and KULT Extension Programming Section 5: KULT Extension tutorials

Creating a new user library

To create a new user library:
1. Inthe KULT side bar, in Libraries, select +.

Figure 98: Add a new user library

~ LIBRARIES —+

AFG31000_examples_ulib

AvMControl

Beeplib
n

2. Entermy_1st_l1ib as the new user library name.

Figure 99: New library name

New Library
my_1st_lib

Enter name of the library. (Press 'Enter" to confirm or 'Escape’ to cancel)

3. Select Enter. The library is displayed in the list of libraries. The necessary build files are
automatically created.

Creating a new user module

The names for user modules must:
e Conform to case-sensitive C programming language naming conventions.

e Be unique. They cannot duplicate names of existing user modules or user libraries.

To create a new user module:

1. Inthe KULT side bar, from Libraries, select my_1st_l11ib. Under Modules, the modules in the
library are displayed.

Select Modules.
3. Select + to add a module to the selected library.

Figure 100: Create a new user module

~ MODULES -i-

4. Enter TwoTonesTwice as the new user module name.

Figure 101: Naming a new module

New Module
TwoTonesTw 1:5{

Enter name of the module. (Press ‘Enter’ to confirm or 'Escape’ to cancel)

Press Enter to apply the name. The module is displayed in the list of modules for the library.

Select the module in the KULT side bar. It is displayed in the Editor.

4200A-KULT-907-01 Rev. C March 2023 5-3

Section 5: KULT Extension tutorials Model 4200A-SCS KULT and KULT Extension Programming

Entering a return type

If your user module generates a return value, you would select the data type from the Return
Type list.

The TwoTonesTwice module does not produce a return value, so leave the Return Type at void.

Entering user module code

To add code to the module:

1. Enter the following comments that describe the purpose of the user module between comment
lines USRLIB MODULE CODE and USRLIB MODULE END.

/* Beeps four times at two alternating user-settable frequencies. */

/* Makes use of Windows Beep (frequency, duration) function. */

/* Frequency of beep is long integer, in units of Hz. */
/* Duration of beep is long integer, in units of milliseconds. */

2. Onthe next line, press Ctrl+Space to open a list of all code suggestions.

Figure 102: Add code to the module

/* Duration of beep is long integer, in units of milliseconds. */

&2 PMUL (enum instruments)PMUl = 4304 G
=2 pmul

=2 PMU1CH1
=2 PMU1CH2
=2 PMU2

@2 pmu2

&2 PMU3

=2 pmu3chl
=2 pmu6ch2
=2 pmu8

&° pmu9

@ PNA_init

3. Type Beep to filter the suggestions. The list filters as you type.
Figure 103: Add code to the module - filtered list

B

© Beep BOOL Beep(DWORD, DWORD) +1 overload G
/| BeepCharge
|l © BeepDown

o2 BEEPER1

=2 BEEPER2

=2 BEEPER3

=2 BEEPER4

@ BeepInfiniteloop

) BeepUp

(=) BEGIN_INTERFACE

(=) BEGIN_PATH

@ BeginDeferWindowPos

5-4 4200A-KULT-907-01 Rev. C March 2023

Model 4200A-SCS KULT and KULT Extension Programming Section 5: KULT Extension tutorials

4. Select Beep. The function name is filled in automatically.

5. Continue the line by typing. A function prototype model is displayed. The bold underlined
parameter is the next parameter to be entered.

Figure 104: Entering line of code

/¥ Frpsasencas ~£-heep
/® pu Beep(a, b) 2ep
Beep()

6. For a, type the parameter value Freql.

7. For b, type the parameter value 500.

8. End the function with a closing parenthesis and a semicolon.
9

Add the comment shown below:

Beep(Freql, 500); /* Beep at first frequency for 500 ms */

10. Note that there is now a problem in the Problems tab at the bottom. Open the tab and select the
problem.

11. The new line of code is highlighted and an indicator of the problem is displayed. In this case, the
parameter Freql is undefined. This is because Freql was not added as a parameter yet. This
will be defined later in the tutorial.

Figure 105: Identifier

5@

51 Beep(Freql, 560);
52
53 /* USRLIB MODUL
54 : * End
55

56

Ej m
- =

PROBLEMS (1 OUTPUT DEBUG CONSOLE TERMINAL

v C TwoTonesTwice.c my_1st_lib\src (1

® identifier "Freq1” is undefined [51, 1]

12. Hold the cursor over the new Beep function. Note that it expands to show details about
the function.

4200A-KULT-907-01 Rev. C March 2023 5-5

Section 5: KULT Extension tutorials

Model 4200A-SCS KULT and KULT Extension Programming

Figure 106: Function description details

vota 11 ‘ .,

Expands to:
ki Beep(Freql, 500);

Beep(Freql, 5€0);

#define Beep(a,b) ki Beep(a, b);

identifier "Freql" is undefined

Peek Problem No quick fixes available

ng us|
ey,
, in
in y

13. Enter the C code below. Note that the code deliberately contains a missing ; error to demonstrate

Beep(Freq2, 500); /* Beep at second frequency */

a build error.

Beep(Freql, 500);
Beep(Freg2, 500);

Sleep(500) /* NOTE deliberately forget semicolon */

Entering parameters

One of the parameters you enter is the data type; only pointer and array types can be used for output
parameters. The available data types are:

char: Character data

char*: Pointer to character data

float: Single-precision floating point data
float*: Pointer to single-precision floating point data
double: Double-precision data

double*: Pointer to double-precision point data
int: Integer data

int*: Pointer to integer data

long: 32-bit integer data

long*: Pointer to 32-bit integer data
F_ARRAY_T: Floating point array type
I_ARRAY_T: Integer array type

D_ARRAY_T: Double-precision array type

5-6

4200A-KULT-907-01 Rev. C March 2023

Model 4200A-SCS KULT and KULT Extension Programming

Section 5: KULT Extension tutorials

To enter the required parameters for the TwoTonesTwice user module:
In the KULT module, select New.

In the parameter name, enter Freql.

For Type, select long.

For I/O, select input.

For Default, enter 1000.

For Min, enter 800.

For Max, enter 1200.

N o g s~ w DR

Figure 107: Entering parameters

Parameters
MName Type fe] Default Min

leng L Input #

Max

|__Now NN Doicto [N Apply |

8. Add another parameter with the values:
= Parameter name: Freqg2

= Datatype: long

= 1/O: Input
= Default: 400
= Min: 300
= Max: 500
Figure 108: TwoTonesTwice parameters
Parameters
Mame Type /0 Default Min Max
long v lnput w BO0
||:-'1-; v Input w

___New [N Deleio [N Apply

9. Select Apply in the KULT Module. This adds the changes to the read-only code at the top of the

module. Note that this removes errors from the Problems pane.

Entering header files

Any header files that are required are entered below the gray comment line USRL1B MODULE
PARAMETER LIST. The header file keithley.h is added automatically when the module is created,

since it is most commonly used. No additional header files are needed for this tutorial.

4200A-KULT-907-01 Rev. C March 2023

Section 5: KULT Extension tutorials Model 4200A-SCS KULT and KULT Extension Programming

Documenting the user module

Module descriptions are entered between the comment lines USRLIB MODULE HELP DESCRIPTION
and END USRLIB MODULE HELP DESCRIPTION. Code entered here in markdown format will appear
in the Clarius help pane. To format the code, use Markdown, a web markup language. See
markdownguide.org for information on using Markdown.

Do not use C-code comment designators (/*, */ or //) in the Description area. When the user
module code is built, KULT evaluates the text in this area. C-code comment designators in
the Description area can be misinterpreted, causing errors.

For the TwoTonesTwice user module, enter the following in the Description area:

<link rel="stylesheet" type="text/css"
href="http://clariusweb/HelpPane/stylesheet.css">

MODULE

TwoTonesTwice

DESCRIPTION

Execution results in sounding of four beeps at two alternating user-settable
frequencies. Each beeps sounds for 500 ms.

INPUTS

Fregl (long) is the frequency, in Hz, of the first and third beep.
Freg2 (long) is the frequency, in Hz, of the second and fourth beep.

OUTPUTS

In the KULT module, the help information now appears below the parameters. The link at the top
provides the Markdown style sheet used by the factory-provided module help panes and is not
necessary for comments to be added to the help pane.

Saving the user module

From the File menu, select Save.

5-8 4200A-KULT-907-01 Rev. C March 2023

https://www.markdownguide.org/

Model 4200A-SCS KULT and KULT Extension Programming Section 5: KULT Extension tutorials

Building the library

To build the library:

1. Inthe KULT side bar, under Function, select the run icon next to the function Build Library
my 1st lib for Release.

Figure 109: Building a library

~ FUNCTIONS

Show Module View
Build Library my_1st_lib For Release E
Build Library my_1st_lib For Debug

2. Inthe Terminal tab at the bottom of the window, observe the build output. Note that it
was unsuccessful.

Finding code errors

In the Problems tab at the bottom of the window, you can review code errors. The error listing
indicates the line with the error and a description of the problem.

To find code errors in the TwoTonesTwice user module:

1. Select the Problems tab at the bottom of the screen. There are two errors, one generated by the
Intellisense feature and one generated by the build.

2. Select either of the problems. The line of code that caused the error is highlighted in the
code editor.

Figure 110: Use the Problems tab to find code errors

27
58 /¥ USRLIB MODULE END */
59 X /* End TwoTonesTwice.c */
60
61
PROBLEMS (2 OUTPUT DEBUG CONSOLE TERMINAL
v C TwoTonesTwice.c my_1st_lib\src (2
l ® expected ' before '} token [59, 1]
| ® expecteda"' [59, 1]

4200A-KULT-907-01 Rev. C March 2023 5-9

Section 5: KULT Extension tutorials Model 4200A-SCS KULT and KULT Extension Programming

The error description indicates the problem. In this case, there is a missing semicolon before the
closing brace. Correct the error by adding the missing semicolon (;).

Delete the error message. This also removes the Intellisense error. The build error is removed
after a successful build.

Build the user library again.

Checking the user module in Clarius

Check the user module in Clarius by setting up a user test module (UTM).

To check the module in Clarius:

© ©® N o o M 0w DN P

=
o

11.
12.
13.
14.
15.

Start Clarius.

Choose the Select pane.

Select Projects.

Select New Project.

Select Create. You are prompted to replace the existing project.
Select Yes.

Select Rename.

Enter UserModCheck and press Enter.

Select Actions.

. Drag Custom Action to the project tree. The action has a red triangle next to it to indicate that it

is not configured.

Select Rename.

Enter 2tones_twice_chk and press Enter.

Select Configure.

In the Test Settings pane, selectthe my_1st_lib user library.

From the User Modules list, select the TwoTonesTwice user module. A group of parameters are
displayed for the UTM as shown in the following figure. Accept the default parameters for now.
You can experiment later after you establish that the user module executes correctly.

5-10

4200A-KULT-907-01 Rev. C March 2023

Model 4200A-SCS KULT and KULT Extension Programming Section 5: KULT Extension tutorials

Figure 111: Configure the TwoTonesTwice UTM

[seodcheck-cirios -~ o5 x
o—
Do B > = B o O
Select Configure Analyze Aun Save Tools MyProjects MySetings Learning Center
- ~ = .
2 . Hel

@ % ;/// []]] 2tones_twice_chk#1 All Parameters @ elp
copy cCut Rename Delete

UserlodCheck 2tonestwice_chki1
&5 2tones_twice_chk User Libraries:

[mycrsuin I~

User Modules:

l TwoTonesTwice

feat [0 |

(D) Messages 2020/01/06 - 15:48:26: Clarius Hardware Server started.

16. Select Help to verify that the HTML in the Description tab is correctly formatted. An example is
shown in the following figure.

Figure 112: Example Help

BESCSEPTION

cution s in Boending of four Bpa ot e
enating Lser-sttabis fraguancen. [k beups sounde

TR VALLES

17. Select Save.
18. Select Run to execute the UTM. You should hear a sequence of four tones, sounded at

alternating frequencies.

5-11

4200A-KULT-907-01 Rev. C March 2023

Section 5: KULT Extension tutorials Model 4200A-SCS KULT and KULT Extension Programming

Tutorial: Creating a user module that returns data arrays

This tutorial demonstrates the use of array variables in the KULT Extension. It also illustrates the use
of return types (or codes), and the use of two functions from the Keithley Linear Parametric Test
Library (LPTLIib).

NOTE

Most of the basic steps that were detailed in Tutorial: Creating a new user library and user module
(on page 5-2) are abbreviated in this tutorial.

Creating a new user library and user module

To name a new user library and new VSweep user module:

Open Visual Studio Code.

Open the KULT side bar.

Under Libraries, select + to create a new library.

Name the library my_ 2nd_lib and press Enter.

Select the library name.

Under Modules, select + to create a new user module in the library.

Name the module VSweep and press Enter.

© N o g > w DN

Select the VSweep module to open it in the editor.

Entering the return type for VSweep

The VSweep user module generates an integer return value.

To set the return type of integer:
1. From the Return Type list, select int.

2. Select Apply.

Figure 113: VSweep Return Type setting

Module VSweep
Return Type ‘void v
char
Parameters float
Name double
it
long
| void

5-12 4200A-KULT-907-01 Rev. C March 2023

Model 4200A-SCS KULT and KULT Extension Programming Section 5: KULT Extension tutorials

Entering the VSweep user module code

In the editor, enter the following C code for the VSweep user module between the comment lines
USRLIB MODULE CODE and USRLIB MODULE END.

NOTE

When returning data using arrays, it is good practice to add a check to make sure that the points
returned from a sweep is less than the size of the array. This prevents memory errors. This is not
necessary here, since the array size is used as the number of points to calculate the step size. For
modules that specify step size, the number of measurement points is always one greater than the
number of steps.

double vstep, v; /* Declaration of module internal variables. */

int i;

if ((Vstart == Vstop)) /* Stops execution and returns -1 if */

return(-1); /* sweep range is zero. */

if ((NumlPoints = NumVPoints)) /* Stops execution and returns -2 if */

return(-2); /* V and 1 array sizes do not match. */

vstep = (Vstop-Vstart) / (NumVPoints -1); /* Calculates V-increment size. */
for(i=0, v = Vstart; i < NumlPoints; i++) /* Loops through specified number of */
/* data points. */

{
forcev(SMU1, v); /* LPTLib function forceX, which forces a V or 1. */

measi(SMU1, &lImeas[i]); /* LPTLib function measX, which measures a V or 1. */
/* Be sure to specify the *address* of the array. */

Vforce[i1] = v; /* Returns Vforce array for display in UTM Sheet. */

Vv = v + vstep; /* Increments the forced voltage. */

}

return(0); /* Returns zero iIf execution Ok.*/

Entering the VSweep user module parameters

This example uses the double-precision D_ARRAY_T array type. The D_ARRAY_T, I _ARRAY_T, and
F_ARRAY_T are special array types that are unique to Keithley User Libraries. For each of these

array types, you cannot enter values in the Default, Min, and Max fields. An extra parameter is
created to indicate the array size.

When executing the Vsweep user module in a Clarius UTM, the start and stop voltages (Vstart and
Vstop) must differ. Otherwise, the first return statement in the code halts execution and returns an
error number (-1). When a user module is executed using a Clarius UTM, this return code is stored in
the UTM Data worksheet. The return code is stored in a column that is labeled with the

user-module name.

When executing the VSweep user module in a Clarius UTM, the current and voltage array sizes must
match; NumlPoints must equal NumVPoints. If the sizes do not match, the second return
statement in the code halts execution and returns an error number (-2) in the VSweep column of the
UTM Data worksheet.

4200A-KULT-907-01 Rev. C March 2023 5-13

Section 5: KULT Extension tutorials Model 4200A-SCS KULT and KULT Extension Programming

To enter the required parameters:

1. Inthe KULT module, select New to create a new parameter.

Figure 114: Enter required code parameter

Paramuters
Harme Type [1+] Defauly Min Max
Sedm b L o - T I
Siebiat v g v f

[T T T

2. Create the parameters Vstart and Vstop using the information in the following table.

Parameter Name Type I/O Default Min Max
Vstart double Input 0 -20 20
Vstop double Input 5 -20 20

Select New to add a parameter for the measure current.
Enter the following parameter information:

= Name: Imeas

= Type:D_ARRAY_T

=]/O: Output
Figure 115: KULT module parameters

Parameters

Name Type /0 Default Min Max
Nstart double v lnput w b 20 Bo
;'v'-;l'.'u double r Input w , [20 z
Ii'll=.'.'~'.= I D ARRAY T » I Cutput » I I I I
.g:=<-“'l';,.‘~l-_'s.- nt r Input ¥ [. .
[__Up [Down | |__New

5. The array size variable parm0Size was automatically added. Change the name to NumlPoints.

6. For NumlPoints, set the Default to 11. You can also add Min and Max sizes if needed.

Figure 116: Specify the NumlIPoints parameters

Parameters

Name Type o] Default Min Max
Wstart double v | Input 1 F2o #i} .
f‘.-'s:-:-p double r Input k [20 20
meas D_ARRAY T v OQuiput v

MumiPoinks

5-14 4200A-KULT-907-01 Rev. C March 2023

Model 4200A-SCS KULT and KULT Extension Programming Section 5: KULT Extension tutorials

Select New.
8. Create a parameter for the forced voltage. Use the following settings:

= Name: Vforce

= Type:D_ARRAY_T

= 1/O: Output
9. Change the name of the automatically generated size parameter to NumVPoints.
10. For NumVPoints, set Default to 11.

11. Select Apply. The user module contains the parameters shown in the following figure.

Figure 117: VSweep parameters

Parameters
Mame Type /0 Default Min Max
start double ¥y Input = [20 20
Wstog double vy Input ¥
Was D_ARRAY T v Qutput v
MumiPaint im L lnput w
D ARRAY T v Ouiput

MumVPoints it ¥ |n|:!'\..l L 4

B ETTE TR

Entering the header files for the VSweep user module

You do not need to enter any header files for the VSweep user module. The default keithley.h
header file is sufficient.

Documenting the VSweep user module

Module descriptions are entered between the comment lines USRLIB MODULE HELP DESCRIPTION
and END USRLIB MODULE HELP DESCRIPTION. Code entered here in markdown format will appear
in the Clarius help pane. To format the code, use Markdown, a web markup language. See
markdownguide.org for information on using Markdown.

A sample description is shown below:

<link rel="stylesheet" type="text/css"
href="http://clariusweb/HelpPane/stylesheet.css">

VSweep module

Sweeps through a specified voltage range and measures current using a specified number
of points.

Places forced voltage and measured current values (Vforce and Imeas) in output arrays.

NOTE For n increments, specify n+l array size for both NumlPoints and NumVPoints.

4200A-KULT-907-01 Rev. C March 2023 5-15

https://www.markdownguide.org/

Section 5: KULT Extension tutorials Model 4200A-SCS KULT and KULT Extension Programming

Saving the VSweep user module

From the File menu, select Save.

Building the VSweep user module

To build the user module:
1. Select Build Library my_2nd_lib for Release.

2. Select the runicon.

Figure 118: Build the my_2nd_lib user library

“ FUNCTIONS

3. Check the status of the build output in the Terminal tab at the bottom of the window.

4. Correct any errors and rebuild the user module.

Checking the VSweep user module in Clarius

You can check the user module by adding it to a user test module (UTM) in Clarius and executing
the UTM.

This procedure uses the project that was created for Tutorial: Creating a new user library and user
module (on page 5-2).

To check the user module:

1. Connect a 1 kQ resistor between the FORCE terminal of the ground unit (GNDU) and the FORCE
terminal of SMU1.

Select the UserModCheck project.
Choose Select.

Select the Devices tab.

Select Resistor, 2 terminal.
Select Add.

Select the Tests tab.

Select Custom Test.

© ® N o o > w D

Select Choose atest from the pre-programmed library (UTM).

10. Select Add. The test has a red triangle next to it to indicate that it is not configured.

5-16 4200A-KULT-907-01 Rev. C March 2023

Model 4200A-SCS KULT and KULT Extension Programming

Section 5: KULT Extension tutorials

11.
12.
13.
14.
15.

16.
17.

Select Rename.

Enter the name v_sweep_chk and select Enter.

Select Configure.

In the right pane, from the User Libraries list, select the my_2nd_lLib library.

From the User Modules list, select VSweep. A default schematic and group of parameters are
displayed for the UTM.

Figure 119: Schematic and parameters for the v_sweep_chk UTM

[seodcheck-cirios - 8 X
e e > = B D O O
Select Configure Analyze Run save Tools lyProjects My Settings Learning Center
= > = -
R Hel
(G) % Y [| v_sweep_chki1 Al Parameters ® e
Copy Cut Aename Oelete
UserModCheck vsweep_chk#1
4w Dvireesistor [my20aio I~
v_sweep_chk User Modules:
[voween I~
=
oo [5]
(D) Messages 2020/01/07 -09:39:48: Clarius Hardware Server started.
N

Select Analyze.

18. After execution, review the results in the Analyze sheet. The results should be similar to the
results in the following figure. The current-to-voltage ratio for each row of results should be
approximately 1 mA/V.

In the first VSweep row, 0 is returned. This means that the user module executed without

any errors.

Figure 120: Example of results from a UTM in the Analyze sheet

VSweep Imeas Vforce
1 0 989.9920E-9 000.0000E-3
2 508.9770E-6 500.0000E-3
3 1.0186E-3 1.0000E+0
4 1.5273E-3 1.5000E+0
5 2.0365E-3 2.0000E+0

4200A-KULT-907-01 Rev. C March 2023

5-17

Section 5: KULT Extension tutorials Model 4200A-SCS KULT and KULT Extension Programming

Tutorial: Calling one user module from another

This tutorial demonstrates how to set up user modules to call other user modules from any user
library. It also describes how to copy a module.

In this tutorial, a new user module is created using the user modules created in the previous tutorials:

e Tutorial: Creating a new user library and user module (on page 5-2): The TwoTonesTwice user
module, in the my_1st_lib user library, which is the independent user library that is called by
the VSweep user module.

e Tutorial: Creating a user module that returns data arrays (on page 5-12): The VSweep user
module in the my_2nd_lib user library, a copy of which is used as the dependent user library.

A copy of the VSweep user module, VSweepBeep, calls the TwoTonesTwice user module to signal
the end of execution.

Copying an existing user module

In these steps, you copy the VSweep module to create the VSweepBeep module.

To copy the VSweep user module:

1. Start Visual Studio Code and open the KULT Extension.
2. From Libraries, select my_2nd_lib.

3. From Modules, select VSweep.

4. Select the copy icon next to the module to make a copy.

Figure 121: Copy the VSweep user module

my_2nd_lib = >

nvim
< MODULES .-
VSweep EIJIE[

5. Name the copied module VSweepBeep.

Copy Module

VSweepBeep

Enter new module name. (Press 'Enter’ to confirm or 'Escape’ to cancel)

6. Select Enter.

7. Select VSweepBeep in the side bar to open it in the editor.

5-18 4200A-KULT-907-01 Rev. C March 2023

Model 4200A-SCS KULT and KULT Extension Programming

Section 5: KULT Extension tutorials

Calling another user module from the VSweepBeep user module

To call the TwoTonesTwice user module at the end of the VSweepBeep user module:

1. Atthe end of VSweepBeep, before the return(0) statement, add the following statement:

TwoTonesTwice(Freql, Freq2); /* Beeps 4X at end of sweep. */
2. Onthe KULT module, add the Freql and Freq2 parameters shown in the following table and

figure.
Name Type I/O Default Min Max
Freql Long Input 1000 800 1200
Freq2 Long Input 400 300 500
Figure 122: VSweepBeep parameters
Parameters
Name Type /o Default Min Max
5ta doublba ¥ Input ¥
siof double v Input ¥ E
eas D_ARRAY T v Outpul v
JumlPoir int v lnput ¥
D_ARRAY T w Output v
MumVPoints int ¥ lnput ¥
1 lang v lnput ¥ |10 0 120
reql long v Input ¥

| Deictc I Avoly |

3. Select Apply to add the new parameters to the function prototype.

Specifying user library dependencies

Before building the open user module, you must specify all the user libraries on which the user

module depends.

The VSweepBeep user module depends on the my_1st_lib user library.

4200A-KULT-907-01 Rev. C March 2023

5-19

Section 5: KULT Extension tutorials

Model 4200A-SCS KULT and KULT Extension Programming

To specify the library dependency:

1. Inthe KULT side bar, under Miscellaneous, select my_2nd_lib_modules.mak to open itin

the editor.

Figure 123: Select the .mak file

« MISCELLANEQUS

2. Place your cursor next to the L1BS= variable.

3. Press Ctrl+Space to display all libraries or type my to automatically filter.

Figure 124: Add library dependency

7
8
9
10

Each entry must be separated by a space.

LIBS

= "my"
@ my_1st_lib.1lib
@ my_2nd_1ib.1ib

4. Selectmy 1st lib.

5. Select File > Save.

Building the user library

To build the user library:

1. To save the VSweepBeep module, select File > Save.

2. Under Functions, select Build library my_2nd_lib for Release and select the run icon.

Figure 125: Build the my_2nd_lib user library

" FUMNCTIONS
Show Module View
Build Library my_2nd_lib For Release @

Build Library my_2nd_lib For Debug

3. Check the build output for any errors.

5-20

4200A-KULT-907-01 Rev. C March 2023

Model 4200A-SCS KULT and KULT Extension Programming Section 5: KULT Extension tutorials

Checking the VSweepBeep user module

Check the user module by creating and executing a user test module (UTM) in Clarius. Refer to
Checking the user module. (on page 2-11)

This tutorial is almost identical to Tutorial: Creating a user module that returns data arrays (on page
5-12). The data produced should be the same as that tutorial. However, four beeps should sound at
the end of execution.

Before proceeding:

1. Connect a 1 kQ resistor between the FORCE terminal of the GNDU and the FORCE terminal of
SMUL.

2. Instead of creating a new project, reuse the UserModCheck project that you created in Tutorial:
Creating a new user library and user module (on page 5-2).

3. AddaUTM called v_sweep_bp_chk.

4. Configure the v_sweep_bp_chk UTM to execute the VSweepBeep user module, which is found
inthe my_2nd_Lib user library.

5. Runthe v_sweep_bp_chk UTM. Near the end of a successful execution, you should hear a
sequence of four tones, sounded at alternating frequencies.

6. At the conclusion of execution, review the results in the Analyze sheet. If you connected a 1 kQ
resistor between SMU1 and GNDU, used the default UTM parameter values, and executed the
UTM successfully, your results should be similar to the results shown in Checking the VSweep
user module in Clarius (on page 5-16). The current/voltage ratio for each row of results should be
approximately 1 mA/V.

Tutorial: Customizing a user test module (UTM)

This tutorial demonstrates how to modify a user module using the KULT Extension. In the ivswitch
project, there is a test named rdson. The rdson test measures the drain-to-source resistance of a
saturated N-channel MOSFET as follows:

1. Applies 2 V to the gate (Vg) to saturate the MOSFET.

2. Applies 3 V to the drain (Vd1) and performs a current measurement (Id1).

3. Applies 5V to the drain (Vd2) and performs another current measurement (1d2).
4. Calculates the drain-to-source resistance rdson as follows:

rdson = (Vd2-vdl) / (1d2-1d1)

The rdson test has a potential shortcoming. If the drain current is noisy, the two current

measurements may not be representative of the actual drain current. Therefore, the calculated
resistance may be incorrect.

4200A-KULT-907-01 Rev. C March 2023 5-21

Section 5: KULT Extension tutorials Model 4200A-SCS KULT and KULT Extension Programming

In this example, the user module is modified in Visual Studio Code so that ten current measurements
are made at Vd1 and ten more at Vd2. The current readings at Vd1 are averaged to yield 1d1, and the
current readings at Vd2 are averaged to yield 1d2. Using averaged current readings smooths out the
noise. The modified test, rdsonAvg, measures the drain-to-source resistance of a saturated
MOSFET. The MOSFET is tested as follows when rdsonAvg is executed:

Applies 2 V to the gate (Vg) to saturate the MOSFET.

Applies 3 V to the drain (Vd1) and makes ten current measurements.
Averages the 10 current readings to yield a single reading (1d1).

Applies 5 V to the drain (Vd2) and makes ten more current measurements.

Averages the ten current readings to yield a single reading (1d2).

o g~ w DN E

Calculates the drain-to-source resistance (rdsonAvg) as follows:
rdsonAvg = (Vd2-Vvdl) / (1d2-1d1)

Copy the Rdson42XX user module

When naming a user module, conform to case-sensitive C programming language naming
conventions. Do not duplicate names of existing user modules or user libraries.

To copy the user module:

1. Open Visual Studio Code and the KULT side bar.

2. On the side bar under Libraries, select Kl42xxulib.
3. Under Modules, select the Rdson42XX user module.
4

Select the copy icon.

Figure 126: Copy Rdson42XX module

~ LIBRARIES
HP&110ulib
ki340xulib
Kl42:owlib =f = i
kis90ulib
KI595ulib
ki622x_2182_ulib
kig2ulib
~~ MODULES +
Rdson42xX EIJ

5. Rename the copied module.

Figure 127: Name copied user module

Copy Module

RdsonAvg

Enter new module name. (Press 'Enter’ to confirm or 'Escape’ to cancel)

6. Press Enter to confirm the name.

7. Select the new module RdsonAvg to open it in the editor.

5-22 4200A-KULT-907-01 Rev. C March 2023

Model 4200A-SCS KULT and KULT Extension Programming Section 5: KULT Extension tutorials

Modify the RdsonAvg user module

In the user module code, you need to replace the measi commands with avgi commands. While a
measi command makes a single measurement, an avgi command makes a specified number of
measurements, and then calculates the average reading. For example:

avgi (SMU2, 1d1, 10, 0.01);

For the above command, SMU2 makes 10 current measurements and then calculates the average
reading (1d1). The 0.01 parameter is the delay between measurements (10 ms).

The source code for the module is in the module code area of the window. In this area, make the
following changes.

Under Force the first point and measure, change the line:
measi (SMU2, 1d1);

to

avgi(SMu2, I1d1, 10, 0.01); // Make averaged I measurement
Under Force the second point and measure, change the line:
measi (SMU2, 1d2);

to

avgi(SMU2, 1d2, 10, 0.01); // Make averaged I measurement
Change the line:

*Rdson = (Vd2-Vvdl)/(*1d2- *1dl); // Calculate Rdson

to

*RdsonAverage = (Vd2-Vdl)/(*1d2- *1dl); // Calculate RdsonAverage

Change a parameter name

Parameters must have name that is different than the name of the user module.

To change the name of the Rdson parameter:
1. From the side bar, select Show Module View.
2. Select the name of the Rdson parameter.

3. Enter RdsonAverage.

4200A-KULT-907-01 Rev. C March 2023 5-23

Section 5: KULT Extension tutorials Model 4200A-SCS KULT and KULT Extension Programming

Figure 128: Change the name of the Rdson parameter

BulkPin int v Input * @ [fr2
double v | Output
:ué double * v | Output v
Rdsonfverage double * v Output v
| New | | Aeply |

4. Select Apply.

Change the module description

In Clarius, any user test modules (UTMs) that are connected to this user module show the text that is
entered in the Description section in the Clarius help pane.

To change the module description:
1. Review the text between in the gray comments for MODULE HELP DESCRIPTION.

2. Replace all instances of Rdson with RdsonAverage.

Save and build the modified library

1. From the File menu, select Save.
2. Under Functions, select Build library Kl42xxulib for Release.

3. Select the run icon.

Figure 129: Build the Kl42xxulib library

“* FUMCTIONS
Show Module View
Build Library Kid42xxulib For Release @

Build Library Kl42xxulib For Debug

4. Check the build output for errors.

5-24 4200A-KULT-907-01 Rev. C March 2023

Model 4200A-SCS KULT and KULT Extension Programming

Section 5: KULT Extension tutorials

Add a new UTM to the ivswitch project

To add rdsonAvg to the ivswitch project:

1. Choose Select.

2. Select Projects.

3. Inthe Search box, enter ivswitch and select Search. The Library displays the I-V Switch Project
(fvswitch).

4. Select Create. The 1vswitch project replaces the previous project in the project tree.

5. Select the Tests tab.

6. For the Custom Test, select Choose a test from the pre-programmed library (UTM).

7. Drag Custom Test to the project tree. The test has a red triangle next to it to indicate that it is not
configured.
Select Rename.
Enter rdsonAvg and press Enter.

10. In the project tree, drag rdsonAvg to the 4terminal-n-fet device, after the rdson test.

11. Choose Configure.

12. In the Test Settings pane, from the User Libraries list, select KI42xxulib.

13. From the User Modules list, select Rdson42XX.

14. Select Save.

The project tree for the ivswitch project with rdsonAvg added is shown in the following figure.

Figure 130: Add a new UTM to the ivswitch project

- ™ e
oB¥ /7 1
Fepailch -
4 = &terminal-n-fet E

= Connect &

wis-id

subwt E

wysid

igvg
rdsan
rdsanieg

4200A-KULT-907-01 Rev. C March 2023

5-25

Section 5: KULT Extension tutorials Model 4200A-SCS KULT and KULT Extension Programming

Tutorial: Debugging a user module

This tutorial demonstrates how to use the KULT Extension in Visual Studio Code to debug code with
the GNU Debugger (GDB). The tutorial shows you how to pause execution, monitor variables and
expressions, and step through code one line at a time.

Using copy to create the VSweepRes user module

To create the VSweepRes user module using copy:

1. Start Visual Studio Code and open the KULT side bar.
2. From Libraries, select my_2nd_lib.

3. From Modules, select VSweep.
4

Select the copy icon.

Figure 131: Copy the VSweep user module

“ FUNCTIONS
Show Module View
Build Library Ki42xxulib For Release @
Build Library Kld2xxulib For Debug

5. Name the copied module VSweepRes.

Figure 132: Name the copied module VSweepRes

Copy Module

\’S‘.‘.'eepRes|

Enter new module name. (Press 'Enter’ to confirm or 'Escape’ to cancel)

6. Select Enter.

7. Select VSweepRes in the side bar to open it in the editor.

5-26 4200A-KULT-907-01 Rev. C March 2023

Model 4200A-SCS KULT and KULT Extension Programming Section 5: KULT Extension tutorials

Adding an average resistance calculation to VSweepRes

To add a calculation for the average resistance:
1. Atthe beginning of VSweepRes, after the line defining int i, add the following statement:
double sum = 0; /*Sum of all resistance measurements*/
2. Inside the for loop, after the line
v = v + vstep; /* Increments the forced voltage. */ add the following
statement:
sum =(Vforce[i]/Imeas[i]); /*Intentionally incorrect line*/
= That line is intentionally incorrect. We will find the error using the debugger later.
3. After the for loop, before the return statement, add the following statement:

*AvgRes = sum/(NumlPoints - 1); /*Divide by the number of measurements, not including
0 V, to get average. */

Adding a parameter to VSweepRes

To add a parameter to VSweepRes:

1. Onthe KULT module, add a new parameter, AvgRes, with the values shown in the following

table.
Name Type I/O Default Min Max
AvgRes Double* Output

2. Select Apply to add the new parameter.

Figure 133: Add a new parameter

Parameters
Mame Type I/ Default Min Max
Wstart double v Input « [200
Wstop doulbla v lnput ¥
Neas D_ARRAY T v Quiput v
MumiPaints int v Input =

D ARRAY T w Output v
Mum\Points int v lnput =

doukble * v Oulput »

4200A-KULT-907-01 Rev. C March 2023 5-27

Section 5: KULT Extension tutorials Model 4200A-SCS KULT and KULT Extension Programming

Building the user library

To build the user library:

1.
2.
3.

4.

From the File menu, select Save.
Under Functions, select Build library my_2nd_lib for Release.

Select the run icon.

Figure 134: Build my_2nd_lib library

" FUNCTIONS
Show Module View

Build Library my_2nd_lib For Release [>

Build Library my_2nd_lib For Debug

Check the build output for any errors. The build should be successful.

Checking the VSweepRes user module

Check the user module by creating and executing a user test module (UTM) in Clarius.

To check the user module:

1.

© ® N o o M 0w D

e~ e e =
g »h W N B O

Connect a 1 kQ resistor between the FORCE terminal of the ground unit (GNDU) and the FORCE
terminal of SMU1.

Select the UserModCheck project.
Choose Select.

Select the Devices tab.

Select Resistor, 2 terminal.
Select Add.

Select the Tests tab.

Select Custom Test.

Select Choose atest from the pre-programmed library (UTM).

. Select Add. The test has a red triangle next to it to indicate that it is not configured.
. Select Rename.

. Enter the name v_sweep_chk and select Enter.

. Select Configure.

. In the right pane, from the User Libraries list, select the my_2nd_l1ib library.

. From the User Modules list, select VSweepRes. A default schematic and group of parameters are

displayed for the UTM.

5-28

4200A-KULT-907-01 Rev. C March 2023

Model 4200A-SCS KULT and KULT Extension Programming Section 5: KULT Extension tutorials

16. Select Run.

17. Select Analyze.

18. Review the results in the Analyze sheet. The results should be similar to the results in the
following figure. Notice that there is a new value returned in the sheet, AvgRes, which is the
average calculated resistance. However, the value is incorrect. If you connected a 1 kQ resistor,

the value is closer to 100 Q. There is something wrong in the user module. In the next topic, you
use the debugger to help find the error.

Figure 135: Analyze results for v_sweep_res_chk

VSweepRes Imeas Viorce AvgRes
1 0 820.5520E-9 EIEID.EIEIIIIDE-S- 99 9235E+0
2 - | 499.??DGE-6I EDD.GUDDE-SI
3 - | ‘J.UDD'DE-SI 1.000[]E+0I

Starting the debugger and adding a breakpoint

At least one breakpoint must be set before running the debugger. Breakpoints bind when code
execution begins.

To start the debugger and add a breakpoint:

1. InVisual Studio Code, in the KULT side bar, select the library that contains the module.
2. Select the module.

3. Under Functions, select Build Library my_2nd_lib for Debug.

4

Select the run icon.

Figure 136: Build the library for debug

~ FUNCTIONS
Show Module View
Build Library my_2nd_lib For Relea

.l

Build Library my_2nd_lib For Debug m

5. In Clarius, reload the user module by selecting another test, then selecting
v_sweep_res_chk again.

6. Place an unconditional breakpoint by selecting the space to the left of the line that calculates the
V-increment size. Code execution will pause at this line.

4200A-KULT-907-01 Rev. C March 2023 5-29

Section 5: KULT Extension tutorials Model 4200A-SCS KULT and KULT Extension Programming

Figure 137: Unconditional breakpoint

44 return(-2); /* V and I array sizes do not match. */
® 45 vstep = (Vstop-Vstart) / (NumVPoints -1); /* Calculates V-increment size.
46 for(i=0, v = Vstart; i < NumIPoints; i++) /* Loops through specified numbg

7. In Visual Studio Code, in the Debug side bar, select Run > (gdb) Attach.

Figure 138: Starting the debugger

RUN b Jodn) Attach e &

 WARIABLES

8. Wait for the attach process to complete. The attach process is complete and the debugger is
running when the status bar at the bottom changes from blue to orange as shown in the
following figure.

Figure 139: Debug Console and status bar

@odE P ikl dnmn st el S UTA OUf O GO Cmigeeee F O

5-30 4200A-KULT-907-01 Rev. C March 2023

Model 4200A-SCS KULT and KULT Extension Programming

Section 5: KULT Extension tutorials

Debugging the code

Once the attach process is complete, the code can be executed.

The attach process causes any previously set breakpoints to temporarily unbind (turn gray). They

automatically rebind when code execution starts. You can change, add, or remove breakpoints when

the code execution is paused on

To debug the code:

an existing breakpoint.

1. In Clarius, select Run to start the code.

2. Return to Visual Studio Code. The code pauses on the breakpoint.

Figure 140: Code paused on breakpoint

o 45 vstep = (Vstop

44 return(-2); /* V and I array sizes

46 for(i=0, v = Vstart; i < NumIPoints;

do not match.

</

-Vstart) / (NumVPoints -1); /* Calculates V-increment size.

i++) /* Loops through specified numbe¢

3. Onthe Variables pane in the debug side bar, find the sum variable. Right-click the variable and
select Add to watch. The variable is shown in the watch pane on the side bar.

Figure 141: Add to watch, variables pane

v VARIABLES
Vv Locals

vstep:

> AvgRes:

2.1219957909652723e-313

v: 2.7813423231340017e-308

i: -50
sum: @
Vstart: (Set Value
WEGE < Copy Value
> Imeas: @)
Copy as Expression
NumIPoin
> Vforce: | Add to Watch

NumVPoinTsT IT

®x7cal7d8

Figure 142: Variable sum added to watch

4200A-KULT-907-01 Rev. C March 2023

5-31

Section 5: KULT Extension tutorials Model 4200A-SCS KULT and KULT Extension Programming

4. Select Step Over on the debug toolbar until you get to the line
sum =(Vforce[i]/Imeas[i]);. Atthat point, the code loops back to the top of the for loop.
Continue until you get to the sum line again.

Figure 143: Step over

l)“.’ T O ¢

5. Select Step Into. This line has now executed and the sum value has changed.

6. Select Debug Console at the bottom of the screen. Enter the formula below:
Vforce[i]/Imeas[i]

Figure 144: Enter formula in Debug Console

[New Thread 5440.0x53c]
> Vforce[i]/Imeas[i]

7. Press Enter. The value returned is the same as the value in sum and is approximately the value
of the resistor. This verifies that the correct resistance is calculated from the current
measurement.

Figure 145: Returned value

[New Thread 5440.9x53c]
Vforce[i]/Imeas[1i]

980.90135037686196

8. Continue stepping through the code until you get to the top of the For loop again. The value for
sum is not changing. Therefore, our sum formula must be incorrect.

9. Press F5 the Continue button on the debug toolbar. This will run the code until completion.

10. Select to the Terminal tab at the bottom.

11. Select the Disconnect button. This terminates the debug session.

12. Correct the sum line from:
sum =(Vforce[i]/Imeas[i]); /*Intentionally incorrect line*/
to
sum = sum + (Vforce[i]/Imeas[i]); /*Sum Resistances*/

13. Rebuild the library for release by selecting the command Build Library my_2nd_lib For Release
on the KULT side bar.

5-32 4200A-KULT-907-01 Rev. C March 2023

Model 4200A-SCS KULT and KULT Extension Programming

Section 5: KULT Extension tutorials

Retest the VSweepRes user module in Clarius

1. Return to Clarius. Click away from the v_sweep_res_chk test and back to reload the module.

2. Rerun the module with the same settings as before, 0 to 5 V with number of V and | points as 11.

3. Select the Analyze view. The resistance value is now correct.

Figure 146: Analyze the VSweepRes user module

VSweepRes Imeas Vforce AvgRes

1 0 810.1430E-9 000.0000E-3 999 6560E+0
2 | 499 73T0E-G 500.0000E-3 .

3 999.7240E-6 1.0000E+0

4 1.5000E-3 1.5000E+0

5 2.0005E-3 2.0000E+0 ‘

[2 5015E-3 2 5000E+0

7 3.0018E-3 3.'U'UODE+D1

8 3.501E-3 3.5ﬂ[lDE+U‘

9 4.0027E-3 4 000DE+0D

10 4.5030E-3 4.5'DO0E+EI1

1 5.0038E-3 5.0000E+0

4200A-KULT-907-01 Rev. C March 2023

5-33

Specifications are subject to change without notice.
All Keithley trademarks and trade names are the property of Keithley Instruments.
All other trademarks and trade names are the property of their respective companies.

Keithley Instruments < 28775 Aurora Road ¢ Cleveland, Ohio 44139 - 1-800-833-9200 - tek.com/keithley

KEITHLEY

A Tektronix Company

04/2022

https://www.tek.com/keithley

	Model 4200A-SCS KULT and KULT Extension Programming
	Safety precautions
	Table of contents
	1 Introduction
	Introduction
	KULT description
	KULT interface description
	Module identification area
	Module parameter display area
	Module code-entry area
	Terminating brace area
	Tab area
	Parameters tab area
	Parameter name field
	Data type field
	I/O field
	Default, min, and max fields

	Includes tab area
	Description tab area
	Include

	Build tab area

	Status bar
	Menus
	File menu
	New Library
	Open Library
	Copy Library
	Delete Library
	New Module
	Open Module
	Save Module
	Copy Module
	Delete Module
	Print Module
	Exit

	Edit menu
	Options menu
	Help menu

	Develop and use user libraries
	Copy user modules and files
	Enabling real-time plotting for UTMs
	Using NI-VISA in user libraries
	Add NI-VISA as a library dependency in KULT
	Add NI-VISA as a library dependency in the KULT Extension
	Include the NI-VISA header files in KULT
	Include the NI-VISA header files in the KULT Extension
	Remove Intellisense errors

	2 KULT tutorials
	KULT Tutorials
	Tutorial: Creating a new user library and user module
	Starting KULT
	Naming a new user library
	Creating a new user module
	Entering the return type
	Entering user module code
	Entering parameters
	Entering header files
	Documenting the user module
	Saving the user module
	Building the user library to include the new user module
	Finding build errors
	Checking the user module

	Tutorial: Creating a user module that returns data arrays
	Naming new user library and new VSweep user module
	Entering the VSweep user-module return type
	Entering the VSweep user-module code
	Entering the VSweep user-module parameters
	Entering the VSweep user-module header files
	Documenting the VSweep user module
	Saving the VSweep user module
	Building the VSweep user module
	Checking the VSweep user module

	Tutorial: Creating a user module that returns data arrays in real time
	Naming new user library and new VSweepRT user module
	Entering the VSweepRT user-module return type
	Entering the VSweepRT user-module code
	Entering the VSweepRT user-module parameters
	Entering the VSweepRT user-module header files
	Documenting the VSweepRT user module
	Saving the VSweepRT user module
	Building the VSweepRT user module
	Checking the VSweepRT user module

	Tutorial: Calling one user module from within another
	Creating the VSweepBeep user module by copying an existing user module
	Calling independent user module from VSweepBeep user module
	Specifying user library dependencies in VSweepBeep user module
	Building the VSweep user module
	Checking the VSweepBeep user module

	Tutorial: Customizing a user test module (UTM)
	Open KULT
	Open the KI42xxulib user library
	Open the Rdson42XX user module
	Copy Rdson42XX to RdsonAvg
	Open and modify the RdsonAvg user module
	Modify the user module code
	Change a parameter name
	Change the module description

	Save and build the modified library
	Add a new UTM to the ivswitch project

	Tutorial: Creating a user module for stepping or sweeping
	Name a new user module
	Entering the return type
	Entering the user-module code
	Entering the user-module parameters
	Enter the user-module header files
	Documenting the user module
	Saving the user module
	Building the user module
	Checking the user module

	3 User module and library management
	Introduction
	Managing user libraries
	Updating and copying user libraries using KULT command-line utilities
	Updating user libraries using kultupdate
	Copying user libraries using kultcopy

	Performing other KULT tasks using command-line commands
	gui subcommand
	new_lib subcommand
	bld_lib subcommand
	del_lib subcommand
	new_mod subcommand
	add_mod subcommand
	del_mod subcommand
	zip subcommand
	unzip subcommand
	help subcommand

	Dependent user modules and user libraries
	Structuring dependencies hierarchically
	Building dependent user libraries in the correct order

	Formatting user module help for the Clarius Help pane
	Creating project prompts
	Using dialog boxes
	Dialog formats

	Dialog test examples
	Example: Announce end of test

	4 KULT Extension for Visual Studio Code
	Introduction
	Installation
	Download Visual Studio Code
	Install Visual Studio Code
	Install extensions with an internet connection
	Install extensions without an internet connection
	Updating the KULT Extension after installing Clarius

	Setting up Visual Studio Code for library development
	Opening the user library in Visual Studio Code
	Creating the Visual Studio Code configuration files
	Create the C/C++ Intellisense configuration file
	Create the launch configuration file

	Visual Studio code overview
	Opening Visual Studio Code
	Visual Studio Code user interface
	Activity bar
	Panels

	Command Palette
	Settings in Visual Studio Code

	KULT side bar
	Working with user libraries in Visual Studio Code
	Creating a new library
	Copying a library
	Deleting a library
	Renaming a library
	Setting library visibility
	Entering library dependencies and environment variables
	Building a library
	Build a library from the KULT Extension side bar
	Build a library from the Terminal menu

	Cleaning a library

	Working with modules in Visual Studio Code
	Creating a new user module
	Copy a user module
	Rename a user module
	Deleting a user module
	Setting the return type of a user module
	Including header files
	Editing module parameters
	Reorder the user module parameters
	Editing the module description

	Debugging libraries
	Debugger side bar and toolbar
	Setting up the debugger
	Running code with the debugger
	Ending a debugging session
	Setting breakpoints in modules
	Setting an unconditional breakpoint
	Setting a conditional breakpoint
	Setting a function breakpoint

	Expression evaluation
	Evaluating an expression once
	Evaluating an expression at every breakpoint
	Editing a variable value

	Watching variables

	5 KULT Extension tutorials
	Tutorial overview
	Tutorial: Creating a new user library and user module
	Starting Visual Studio Code
	Creating a new user library
	Creating a new user module
	Entering a return type
	Entering user module code
	Entering parameters
	Entering header files
	Documenting the user module
	Saving the user module
	Building the library
	Finding code errors
	Checking the user module in Clarius

	Tutorial: Creating a user module that returns data arrays
	Creating a new user library and user module
	Entering the return type for VSweep
	Entering the VSweep user module code
	Entering the VSweep user module parameters
	Entering the header files for the VSweep user module
	Documenting the VSweep user module
	Saving the VSweep user module
	Building the VSweep user module
	Checking the VSweep user module in Clarius

	Tutorial: Calling one user module from another
	Copying an existing user module
	Calling another user module from the VSweepBeep user module
	Specifying user library dependencies
	Building the user library
	Checking the VSweepBeep user module

	Tutorial: Customizing a user test module (UTM)
	Copy the Rdson42XX user module
	Modify the RdsonAvg user module
	Change a parameter name
	Change the module description
	Save and build the modified library
	Add a new UTM to the ivswitch project

	Tutorial: Debugging a user module
	Using copy to create the VSweepRes user module
	Adding an average resistance calculation to VSweepRes
	Adding a parameter to VSweepRes
	Building the user library
	Checking the VSweepRes user module
	Starting the debugger and adding a breakpoint
	Debugging the code
	Retest the VSweepRes user module in Clarius

	Contact information

