tek.com/keithley

Model 4200A-SCS
KULT and KULT Extension

Programming

4200A-KULT-907-01 Rev. D May 2024

4200A-KULT-907-01D

KEITHLEY

A Tektronix Company

https://www.tek.com/products/keithley

Model 4200A-SCS
KULT and KULT Extension

Programming

© 2024, Keithley Instruments
Cleveland, Ohio, U.S.A.
All rights reserved.

Any unauthorized reproduction, photocopy, or use of the information herein, in whole or in part,
without the prior written approval of Keithley Instruments is strictly prohibited.

All Keithley Instruments product names are trademarks or registered trademarks of Keithley
Instruments, LLC. Other brand names are trademarks or registered trademarks of their
respective holders.

Actuate®
Copyright © 1993-2003 Actuate Corporation.
All Rights Reserved.

Microsoft, Visual C++, Excel, and Windows are either registered trademarks or trademarks of
Microsoft Corporation in the United States and/or other countries.

Document number: 4200A-KULT-907-01 Rev. D May 2024

A Tektronix Company Safety p recau t i O n S

The following safety precautions should be observed before using this product and any associated instrumentation. Although
some instruments and accessories would normally be used with nonhazardous voltages, there are situations where hazardous
conditions may be present.

This product is intended for use by personnel who recognize shock hazards and are familiar with the safety precautions required
to avoid possible injury. Read and follow all installation, operation, and maintenance information carefully before using the
product. Refer to the user documentation for complete product specifications.

If the product is used in a manner not specified, the protection provided by the product warranty may be impaired.
The types of product users are:

Responsible body is the individual or group responsible for the use and maintenance of equipment, for ensuring that the
equipment is operated within its specifications and operating limits, and for ensuring that operators are adequately trained.

Operators use the product for its intended function. They must be trained in electrical safety procedures and proper use of the
instrument. They must be protected from electric shock and contact with hazardous live circuits.

Maintenance personnel perform routine procedures on the product to keep it operating properly, for example, setting the line
voltage or replacing consumable materials. Maintenance procedures are described in the user documentation. The procedures
explicitly state if the operator may perform them. Otherwise, they should be performed only by service personnel.

Service personnel are trained to work on live circuits, perform safe installations, and repair products. Only properly trained
service personnel may perform installation and service procedures.

Keithley products are designed for use with electrical signals that are measurement, control, and data I/0O connections, with low
transient overvoltages, and must not be directly connected to mains voltage or to voltage sources with high transient
overvoltages. Measurement Category Il (as referenced in IEC 60664) connections require protection for high transient
overvoltages often associated with local AC mains connections. Certain Keithley measuring instruments may be connected to
mains. These instruments will be marked as category Il or higher.

Unless explicitly allowed in the specifications, operating manual, and instrument labels, do not connect any instrument to mains.

Exercise extreme caution when a shock hazard is present. Lethal voltage may be present on cable connector jacks or test
fixtures. The American National Standards Institute (ANSI) states that a shock hazard exists when voltage levels greater than
30 V RMS, 42.4 V peak, or 60 VDC are present. A good safety practice is to expect that hazardous voltage is present in any
unknown circuit before measuring.

Operators of this product must be protected from electric shock at all times. The responsible body must ensure that operators
are prevented access and/or insulated from every connection point. In some cases, connections must be exposed to potential
human contact. Product operators in these circumstances must be trained to protect themselves from the risk of electric shock. If
the circuit is capable of operating at or above 1000 V, no conductive part of the circuit may be exposed.

Do not connect switching cards directly to unlimited power circuits. They are intended to be used with impedance-limited
sources. NEVER connect switching cards directly to AC mains. When connecting sources to switching cards, install protective
devices to limit fault current and voltage to the card.

Before operating an instrument, ensure that the line cord is connected to a properly-grounded power receptacle. Inspect the
connecting cables, test leads, and jumpers for possible wear, cracks, or breaks before each use.

When installing equipment where access to the main power cord is restricted, such as rack mounting, a separate main input
power disconnect device must be provided in close proximity to the equipment and within easy reach of the operator.

For maximum safety, do not touch the product, test cables, or any other instruments while power is applied to the circuit under
test. ALWAYS remove power from the entire test system and discharge any capacitors before connecting or disconnecting
cables or jumpers, installing or removing switching cards, or making internal changes, such as installing or removing jumpers.

Do not touch any object that could provide a current path to the common side of the circuit under test or power line (earth)
ground. Always make measurements with dry hands while standing on a dry, insulated surface capable of withstanding the
voltage being measured.

For safety, instruments and accessories must be used in accordance with the operating instructions. If the instruments or
accessories are used in a manner not specified in the operating instructions, the protection provided by the equipment may be
impaired.

Do not exceed the maximum signal levels of the instruments and accessories. Maximum signal levels are defined in the
specifications and operating information and shown on the instrument panels, test fixture panels, and switching cards.

When fuses are used in a product, replace with the same type and rating for continued protection against fire hazard.

Chassis connections must only be used as shield connections for measuring circuits, NOT as protective earth (safety ground)
connections.

If you are using a test fixture, keep the lid closed while power is applied to the device under test. Safe operation requires the use
of a lid interlock.

If a @ screw is present, connect it to protective earth (safety ground) using the wire recommended in the user documentation.

The A symbol on an instrument means caution, risk of hazard. The user must refer to the operating instructions located in the
user documentation in all cases where the symbol is marked on the instrument.

The A symbol on an instrument means warning, risk of electric shock. Use standard safety precautions to avoid personal
contact with these voltages.

The & symbol on an instrument shows that the surface may be hot. Avoid personal contact to prevent burns.
The 1‘17 symbol indicates a connection terminal to the equipment frame.

If this symbol is on a product, it indicates that mercury is present in the display lamp. Please note that the lamp must be
properly disposed of according to federal, state, and local laws.

The WARNING heading in the user documentation explains hazards that might result in personal injury or death. Always read
the associated information very carefully before performing the indicated procedure.

The CAUTION heading in the user documentation explains hazards that could damage the instrument. Such damage may
invalidate the warranty.

The CAUTION heading with the A symbol in the user documentation explains hazards that could result in moderate or minor
injury or damage the instrument. Always read the associated information very carefully before performing the indicated
procedure. Damage to the instrument may invalidate the warranty.

Instrumentation and accessories shall not be connected to humans.
Before performing any maintenance, disconnect the line cord and all test cables.

To maintain protection from electric shock and fire, replacement components in mains circuits — including the power
transformer, test leads, and input jacks — must be purchased from Keithley. Standard fuses with applicable national safety
approvals may be used if the rating and type are the same. The detachable mains power cord provided with the instrument may
only be replaced with a similarly rated power cord. Other components that are not safety-related may be purchased from other
suppliers as long as they are equivalent to the original component (note that selected parts should be purchased only through
Keithley to maintain accuracy and functionality of the product). If you are unsure about the applicability of a replacement
component, call a Keithley office for information.

Unless otherwise noted in product-specific literature, Keithley instruments are designed to operate indoors only, in the following
environment: Altitude at or below 2,000 m (6,562 ft); temperature 0 °C to 50 °C (32 °F to 122 °F); and pollution degree 1 or 2.

To clean an instrument, use a cloth dampened with deionized water or mild, water-based cleaner. Clean the exterior of the
instrument only. Do not apply cleaner directly to the instrument or allow liquids to enter or spill on the instrument. Products that
consist of a circuit board with no case or chassis (e.g., a data acquisition board for installation into a computer) should never
require cleaning if handled according to instructions. If the board becomes contaminated and operation is affected, the board
should be returned to the factory for proper cleaning/servicing.

Safety precaution revision as of June 2018.

Table of contents

INEFOAUCTION L.ttt e e e e e e e e 1-1
[goTo [V ox o] o RO PSP PR PUPRPPRPPPRR 1-1
(U 0 ST ol o) o) o SRR 1-2
KULT interface deSCriPLIONcoiiuiiiiiiiiiie ettt e e 1-3
Module IdentifiCatioN @rEacoiiiiiiiiiiiie e e e 1-4
Module parameter diSPIAY BIrEacueiieiiiiiiiiiiiiie et 1-4
MOAUIE COUE-ENEIY AIBAveiieiiiieeee ettt e e e e e s annneee s 1-5
Terminating DIACE @Iciiiiiiiii ittt et e e et e s sbreeeeaaes 1-5
TAD BICAeeee ettt e e e e e e e e 1-5

Parameters tah @Ac.uiiiuiiiiii it 1-5
INCIUGES T8I @IE&8......eeiii ettt e e et e e 1-8
DESCIIPLON TAD @IBAciviie ettt ettt e et 1-9
BUIIA T BIrEa.....ceiieiiiii e 1-11
S =10 ST o - T SRS 1-11
Y =T 11 SO P PUPPPPPPPPTN 1-11
FIIE MU L.ttt e et e s e e e st bt e e et e e s b e e e e e 1-11
o 1000 1T o [OO PP PP PP PP PP PPPPPPPPRPN 1-14
(@7 o] 1 o] 0 IS30 0 0 T=T o 11 RSP 1-15
[L= o3 =T o T SO PRRPOTRI 1-16
Develop and Use USEr DIArIESoioiriiiiiieic et 1-16
Copy user MOdules and filES.........uu 1-17
Enabling real-time plotting fOr UTMS........iviiiiiiiiiiiiieiiieeeeeeeeeeeee et eeeeeeeeeeesasasaaenenenes 1-18
Using NI-VISA N USEr lIDFari©sc.evvveiiiiiee ittt e e e e e e e e e e 1-18
Add NI-VISA as a library dependency in KULTcceiiiiiiiiiiieiieee e 1-19
Add NI-VISA as a library dependency in the KULT EXtENSIONeeveeieeiiiiiiiiiiieeeeiiiieeeeenn 1-19
Include the NI-VISA header files in KULToooiiiiiiiiiie et 1-19
Include the NI-VISA header files in the KULT EXtENSION..........ccviiiiiiiiiiiiieeiiiiiiieeeee e 1-20
REMOVE INTEIISENSE EITOIS. ... ittt ettt e e e et e e e e e e e anbnees 1-20

KULT BULOTIAIS e 2-1
KULT TUEOTIAIS ...ttt ettt ettt et e st e e s e s 2-1
Tutorial: Creating a new user library and user module.................c..ccc . 2-3

SEANTING KULT ..ottt ettt e e e e ettt e e e e e e st b et e e e e e e e bbb e e e e e e e e e ansbeees 2-4
NaMING @ NEW USEI HDFAIY ...ttt e e e eeeeas 2-5
Creating @ NeW USEr MOGUIEooiiiiiiiiii ettt e e e et e e e e e e s enbneee e e e e e annns 2-5
ENLEring the FEIUMN By P .cc ittt e e e e e et e e e e e e e nabreeeeeeas 2-6
Entering USer MOAUIE COURcoiuiiiiiiiii ettt 2-7
) YT aTo l o F= T =Ty 4 1= (=T PSPPSR 2-7
ENtering header filES ... v 2-8
Documenting the USEr MOAUIEoiiiiiiiiii e 2-9
SaVINg the USEr MOGUIE ...ttt e e e e e e e e e s e e eaaens 2-10
Building the user library to include the new user moduleccccooiiiiiiiieiiiiiiie e, 2-10
FINAING DUIIA ©ITOTS ...t e e e e et e e e e e e e e nnbneeas 2-11
Checking the USEr MOAUIE............ooi e 2-12

Tutorial: Creating a user module that returns data arrayscccccceeeeeiiiiiieeeee e 2-14

Table of contents Model 4200A-SCS KULT and KULT Extension Programming

Naming new user library and new VSweep user module
Entering the VSweep user-module return type..........cccceeeevnnneen.
Entering the VSweep user-module code...............
Entering the VSweep user-module parameters.....
Entering the VSweep user-module header files
Documenting the VSweep USEr MOGUIEc.cooiiiiiiiiiee e
Saving the VSWeep USEr MOTUIEccoiiiiiiiieie e e e e e e e e e
Building the VSweep user module
Checking the VSweep user module

Tutorial: Creating a user module that returns data arrays in real timecccccevviveeen. 2-20
Naming new user library and new VSweepRT user module
Entering the VSweepRT user-module return type..........ccccveene
Entering the VSweepRT user-module code...............
Entering the VSweepRT user-module parameters....
Entering the VSweepRT user-module header files ...
Documenting the VSWeepRT USEr MOAUIEocuviiiiri et
Saving the VSWeepRT USEI MOAUIEueiiiiiiiiieiiiii ettt e e saeeeas
Building the VSweepRT user module....................
Checking the VSWeepRT USEr MOUUIEcoiiiiiiiiiiiiiiicce et

Tutorial: Calling one user module from within @anothercccccvviiei i,
Creating the VSweepBeep user module by copying an existing user module 2-25
Calling independent user module from VSweepBeep user module
Specifying user library dependencies in VSweepBeep user module...........ccccveveeeiviiiiinennennn.
Building the VSWeep USEr MOAUIEoiiiiiiiiiie e
Checking the VSweepBeep USEr MOAUIEoiiiiiiiiiiiiie e

Tutorial: Customizing a user test module (UTM) ...,
[©]07= o T (L] O T PP UUTT PP
Open the Kl42xxulib user library

Open the Rdson42XX user module
Copy Rdson42XX to RASONAVYcvvveerivveennnne
Open and modify the RdsonAvg user module.......
Save and build the modified library
Add the new UTM t0 the iVSWILCh PrOJECTccoiiiiiiiiiiie e

Tutorial: Creating a user module for stepping Or SWEEPINGeeverrvriieiiiiieeiiiieee e
Name @ NEW USEIr MOTUIEueiiiiiie et e e e e e e e e st e e e e e e e e nnenees
Entering the return type...................

Entering the user-module code
Entering the user-module parameters...................
Enter the user-module header files
Documenting the user module
Saving the user module
Building the user module............ccccoviiiiiiieiiiieens
Setting up the user interface of the user module
Check the user module iN CIAriUSooiiiiiii e

User module and library managementooiiiiiiiiiiiiiiiiiiiee e e 3-1
0T [T o) o SO PURER 3-1

MaNAGING USEI lIDFAITES ...ttt e s e e nnaeee s 3-1
Updating and copying user libraries using KULT command-line utilitieS............ccccvvveeeeeeninnnee. 3-1
Performing other KULT tasks using command-line commands............c.ccccecveeiiiiiienniieeieennee. 3-3

Dependent user modules and USEr Braries ... 3-9
Structuring dependencies hierarChiCally............c..uuiiiieiiiiiiii e 3-10
Building dependent user libraries in the correct Order.........cccvvevieeiiiiiiiiiiee e, 3-13

Formatting user module help for the Clarius Help panecccooeeiiie i, 3-14

Model 4200A-SCS KULT and KULT Extension Programming Table of contents

Creating ProJECT PrOMPLS . ..o ittt ettt e ettt e et e e e et e e e b e e e aneas 3-15
USING Al DOXES ...ttt 3-16
Dialog tESE @XAMPIESeeiieei ettt ettt e e e ettt e e e e e e ettt et e e e e e e e et e e e e e e e e e nnbreeaeaeeaaannenees 3-17

KULT Extension for Visual Studio COOeoouuuiiiiiiiiiieeieie e 4-1

a0 T [0 T 1o) o SRS 4-1

[0S 7= 1 =T o I PP 4-1
Download Visual StUIO COE.........ueiiiiiiieiiiiie ettt st e e e 4-2
INStall Visual STUAIO COUEviiiiiiiiiiiiiee ettt st e et e e 4-2
Install extensions with an internet CONNECHIONccoiiiiiiiiiiiii e 4-3
Install extensions without an iNnternet CONNECHIONoocuiiiiiiieiiieie e 4-4
Updating the KULT Extension after installing Clarius............cccuueeiiiioiiiiiiiiiieeeeeee e 4-6

Setting up Visual Studio Code for library developmentccccooieiiiie i, 4-9
Opening the user library in Visual Studio COUE...........cciiiiiiiiiiiieiit e 4-9
Creating the Visual Studio Code configuration filescccoiiiiiiiiii 4-9

Visual StUAIO COAE OVEIVIEWvviiiiiie ettt e e e e e et e e e e e s e s nnnenaeeeas 4-13
Opening VisSual StUAIO COUEoeiiiiiiieiieie et 4-13
Visual Studio COde USET INTEITACEeeieiiiiee e e e e 4-14
(7o) a1 aaT= LaTo I = o1 =Y i £ SRR 4-16
Settings iN ViSual StUAIO COUEcciueiieiiiiie ettt e e ettt e e eneee e e sneeeas 4-16

KULT SIA@ DA ...ttt ettt e e e e s skt e e e e e e s e sannbn e e e e e e e e aannnes 4-17

Working with user libraries in Visual Studio Codecccooeiiiiiii 4-18
Creating @ NEW NDIAIY ...ttt e et e e e e nae e e e nees 4-18
(070])Y/ 1010 1= W 1o - UV RSP

DElEtiNG @ lIDFAIY ...t et
Renaming a library
Setting library visibility

Entering library dependencies and environment variablesccocvveiiiii e 4-20
BUIIAING @ TDFAIY ..ottt e e e e et e e e e e e e anbnees 4-22
CleaNiNG @ lIBFAIYeeii et e e e e e e e s 4-25
Working with modules in Visual Studio Code ... 4-25
Creating @ NEW USEI MOGUIEooiiiiiiiiiiiiie ettt e et e e e e e e e e s e eeeeeeas 4-26

COPY @ USEE MOUUIE ...ttt e e e e e e e e e e e eeeeeens 4-26
RENAME 8 USEI MOAUIEcoiiiiiiiiiie et 4-26
Deleting @ USEr MOUUIEcouiiiiiiiii ettt e e e e e e e 4-27
Setting the return type of a USEr MOAUIEcueeiiiiiiiii e 4-27
INCIUAING NEAAET fIlES ...t 4-28
Editing MOAUIE PArGMELETSviiiiiieeiee ettt e e e 4-29
Reorder the user Mmodule PAramMetEerScuiiiiiiiiiiiie e 4-30
Editing the Module deSCHPLIONiii it e e e 4-31
(DT 010 o T [T Lo TR 11 T =T = PP PPPPPPPPRt 4-31
Debugger side bar and tOOIDATcooiiiiiii e 4-32
Setting UP the AEDUGGETcoi ittt e e e e e e e e e 4-33
Running code with the deDUGOET........coo e 4-34
ENding @ debugging SESSIONccoiuiiiiiiiiiieiiii ettt 4-35
Setting breakpoints iN MOAUIESc.cuuiiiiiiie e 4-35
EXPreSSIiON @VAIUALIONoiiiiiiieiiiii et e ettt e e e e e e e e 4-37
WaALChING VAINADIES ... 4-38
KULT EXTENSION tULOTIAIS ... 5-1
TULOTIAI OVEIVIEW ...ttt ettt ettt e e sttt e e e sbb e e e e snbaeeeeanbeeeaeanes 5-1

Tutorial: Creating a new user library and user modulecccccoiiiiiiiiiiie e 5-2

Table of contents Model 4200A-SCS KULT and KULT Extension Programming

Starting Visual STUGIO COUEviiiiiiiieiiieee e
Creating a new user library

Creating a new user module

Entering a return type..........cccceeeuee.

Entering user module code

ENTEIING PAIBMELEIS. ... eeiiiii ittt ettt et e e res
ENtering NEAUET fIlESvviiii i e e e e e e e e e r e e
Documenting the user module
SaViNg the USEr MOUUIEoeiiiiiie it e e es
BUIIAING the TIDFarYottt e e e e e et e e e e e e e nneeeeas
Finding code errors
Checking the user module in Clarius

Tutorial: Creating a user module that returns data arrayscccccoeveeeeiiieeeiniieee e
Creating a new user library and user module
Entering the return type for VSweepccccoee.....

Entering the VSweep user Module COUEcciiiiiiiiiiiii et
Entering the VSweep user module parameters...........c.eeeiiiiieiiiiee e
Entering the header files for the VSweep user module
Documenting the VSWeep USEr MOAUIEcooiiiiiiiiiiee e
Saving the VSWEEP USEr MOTUIEviiiiiiieiiiiee ettt
Building the VSweep user modulec.cceeenne

Checking the VSweep user module in Clarius

Tutorial: Calling one user module from another ...
Copying an existing USEr MOTUIEooiiiiieiiiiei et
Calling another user module from the VSweepBeep user module
Specifying user library dependenCies...........oouuiiiiiiiiiiiiiie et
BUIldING the USET [IDIAIY.....cooiiiiie et ee e e e e e snaeeeens
Checking the VSweepBeep USEr MOUIEoiiiiiiiiiiiiie e

Tutorial: Customizing a user test module (UTM)
Copy the Rdson42XX user module
Modify the RdsonAvg user module
Change a parameter name

Change the Module deSCIIPION.ciiiii e
Save and build the modified lIBrary ...
Add a new UTM t0 the iVSWItCN PrOJECTcuiiiiiiiiiiiiiie e

Tutorial: Debugging a user module...........cooooiiiiiiiii
Using copy to create the VSweepRes user module
Adding an average resistance calculation to VSweepRes
Adding a parameter to VSweepRes
Building the user library.............ccoee...
Checking the VSweepRes user module................
Starting the debugger and adding a breakpoint
DebUGQING the COUE ... e
Retest the VSweepRes user module in CIArUS.coiiiiiiiiiii e

Section 1

Introduction

In this section:

INEFOAUCTION ...t 1-1
KULT deSCHPLON.....ccoiiiiiiiee et 1-2
KULT interface description.........cccveeveeiiiiiiiiieecc e 1-3
Module identification areacc.eeeeeeeiiiiiiiiie e 1-4
Module parameter display area..........ccocvveeriieeeiiiieeeiiieee e 1-4
Module COE-ENtIY Greaccvveeiiiiiieiiiiie e 1-5
Terminating brace ar€accoccvvveiiiiieiiiiie e 1-5
TaD Area...ccivi i 1-5
SEAtUS DA 1-11
MENUS ..o 1-11
Develop and use user libraries.........ccccccvevicieiiiiie e 1-16
Copy user modules and fileS.........cocccceiiiieriiiiie e 1-17
Enabling real-time plotting for UTMScoocoviiiiiiiiiiiieee 1-18
Using NI-VISA in user libraries.........cccooovveiniiveiiiec e 1-18
Introduction

The Keithley User Library Tool (KULT) and the KULT Extension for Visual Studio Code are a
few of the software tools provided with the Keithley Instruments Model 4200A-SCS. The
4200A-SCS is a customizable and fully integrated parameter analyzer that provides
synchronized insight into current-voltage (I-V), capacitance-voltage (C-V), and ultra-fast
pulsed I-V characterization. Its advanced digital sweep parameter analyzer combines speed
and accuracy for deep sub-micron characterization.

The primary 4200A-SCS components and typical supported external components are
illustrated in the following figure.

Section 1: Introduction Model 4200A-SCS KULT and KULT Extension Programming

Figure 1: 4200A-SCS summary

4200A-SCS
e :
| Interactive User test !
| |test module | |module (UTM) Clarius* !
' {(ITM) library library arius |
I

:) 4 |
'l Clarius Keithley Keithley Keithley Keithley }
: User Configuration External Pulse ‘
| Library Utility Control Application |
| Tool (KCon) Interface (KPulse) |
| (KULT) (KXCI) |

A I
[e B . S et

| Preamps | < L
4200A-SCS [€|SMUs | w3 Switch
Optional Computer vv matrix > Prober
external |« PGUs/PMUs|- Pulses {> RBTs | ’—;
monitor < c/V A j\ A
T Pulses
Pulses
\; v \; v v) External
Video USB LAN Serial GPIB instrument
interface interface interface interface interface Y
¥ N
4200A-CVIV
USB devices Other external
control

KULT description

You can use the Keithley User Library Tool (KULT) and the KULT Extension for Visual
Studio Code to create and manage user libraries. A user library is a collection of user
modules. User modules are C programming language subroutines, also called functions.
User libraries are created to control instrumentation, analyze data, or perform any other
system automation task programmatically. Once a user library has been successfully built
using KULT, its user modules can be executed using the Clarius software tool.

KULT provides a simple user interface that helps you effectively enter code, build a user
module, and build a user library. KULT also provides management features for the user
library, including menu commands to copy modules, copy libraries, delete modules, and
delete library menu commands. KULT manages user libraries in a structured manner. You
can create your own user libraries to extend the capabilities of the 4200A-SCS.

1-2 4200A-SCS-KULT-907-01 Rev. D May 2024

Model 4200A-SCS KULT and KULT Extension Programming

Section 1: Introduction

The KULT Extension for Visual Studio Code gives you the ability to write, compile, and
debug user libraries outside of KULT. Combining the user-friendly Visual Studio Code editor
with KULT creates an integrated development environment (IDE).

To execute a KULT user module in Clarius, you create a Clarius user test module (UTM)
and connect it to the user module. Once this user module is connected to the UTM, the
following occurs each time Clarius executes the UTM:

(usrlib).

KULT interface description

The KULT interface is shown in the following figure. It provides all the menus, controls, and

user-entry areas that you need to create, edit, view, and build a user library and to create,

edit, view, and build a user module.

Menu bar—

Tab area—

Status bar——

Clarius dynamically loads the user module and the appropriate user library directory

Clarius passes the user-module parameters (stored in the UTM) to the user module.

Data generated by the user module is returned to the UTM for interactive analysis.

Figure 2: KULT interface overview

Module identification area

Library visible or

hidden display
@ KULT: Module "Rdsond2X§c” Library "Kld42owlib®, - x
File Edit Options Hel
Library: Kl42xsulib
Module: [Rdsond244 /7
Retwn Type [t =] Library Visible Apply M
odule-parameter
#include "ulib_internal.h" =11 dISp|Ely area
int Rdson42XX(double Vg, double Vdl, double Vd2, int GatePin, int =l
=] Module code-entry
// Verify parameters
if (GatePin > 72) /’ area
if (SourcePin > 72) , |
if (DrainPin > 72) return(INVAL_PARAM); =

if (BulkPin > 72) return (INVAL PARREM) ;
// Make the connections
if ((GatePin > 0) && (DrainPin > 0) && (SourcePin > 0))
{
// Switch matrix used.

AARRER (GMIT2 CaraDin N

Terminating-brace
area

L

/* End Rdson42XX.c

*/

| Descripion | Buid

| Paiameter Name Data Type /0 Default Min

Add

Vg
vl
vd2

double
double
double

Input 2
Input 3

10
10
10

Input 5

Delete
Apply

Module parameter view

Each feature of the KULT interface is explained in the following sections.

4200A-SCS-KULT-907-01 Rev. D May 2024

1-3

Section 1: Introduction Model 4200A-SCS KULT and KULT Extension Programming

Module identification area
The module identification area is directly below the menu bar and defines the presently open
user library and user module. The components of this area are as follows:
e Library: Displays the name of the presently open (active) user library.
e Module: Displays the name of the presently open user module.

e Return Type: Defines the data type of all codes that are returned by return (code)
statements in the user module. You can select one of the following variable types:

= char: Character data

= double: Double-precision data

= float: Single-precision floating point data
= int: Integer data

= long: 32-bit integer data

= void: No data returned

NOTE

When a user test module (UTM) is executed by Clarius, the value of the return (code)
statement is displayed on the Data worksheet in the column labeled with the module name.

e Library Visible/ Library Hidden: Displays whether or not the presently open user
library is available to Clarius. To change the hidden or visible status, select or clear the
Hide Library option in the Options menu (on page 1-15).

e Apply: Updates the presently open user module to reflect additions and changes.

Module parameter display area

The module parameter area is a display-only area that is directly below the module
identification area. In the module-parameter area, KULT displays:

e The C-language function prototype for the user module, reflecting the parameters that
are specified in the Parameters tab area, and the return (code) data type.

e The #include and #define statements that are specified in the Includes tab.

1-4 4200A-SCS-KULT-907-01 Rev. D May 2024

Model 4200A-SCS KULT and KULT Extension Programming Section 1: Introduction

Module code-entry area

The module code-entry area is below the module-parameter area. The module code-entry
area is where you enter, edit, or view the user-module C code. Scroll bars located to the
right and below the module-code entry area let you move through the code.

NOTE

Do not enter the following C-code items in the module code-entry area (KULT enters these
at special locations based on information in other places in KULT): #include and
#define statements; the function prototype; and the terminating brace. To control internal
or external instrumentation, use functions from the Linear Parametric Test Library (LPTLib).
For more information, refer to Model 4200A-SCS LPT Library Programming.

Terminating brace area

The terminating-brace area is a display-only area. KULT automatically enters and displays
the terminating brace for the user-module code when you select Apply.

Tab area

The Tab area includes the tabs:
e Parameters

e Includes

e Description

e Build

Parameters tab area

In the Parameters tab, you define and display parameters in the user module call. You can
define and display:

e Parameter name
e Parameter data type
e Input or output (I/0O) data direction

e Default, min, and max values for the parameter

These options are defined in the following text.

4200A-SCS-KULT-907-01 Rev. D May 2024 1-5

Section 1: Introduction Model 4200A-SCS KULT and KULT Extension Programming

The Parameters tab area is near the bottom of the KULT main screen. An example is
shown here.

Figure 3: Parameters tab for the Rdson42XX user module from the Ki42XX library

Parameters | Includes I Description | Build |

Parameter Name Data Type 1/0 Default Mi

n Max Add

Vg double Input 2 10 10 il Delete

Vd1 double Input 3 -10 10 A
pply

Vd2 double Input 5 10 10 ;I

NOTE

You can right-click anywhere in the Parameters tab area to access the Add, Delete, and
Apply options.

To add a parameter:
1. Select Add.
2. Enter the information as needed.

3. Select Apply.

To delete a parameter:
1. Select the parameter name or any of the adjacent fields.
2. Select Delete.

To make changes to the parameters:
1. Make changes in the appropriate field.
2. Select Apply.

Parameter name field

The parameter name field identifies the parameters that are passed to the user module.
These are the same parameters that are specified in the user-module function prototype.
KULT constructs the prototype from the Parameters tab entries when you select Apply, and
then displays it in the module-parameter display area.

1-6

4200A-SCS-KULT-907-01 Rev. D May 2024

Model 4200A-SCS KULT and KULT Extension Programming Section 1: Introduction

Data type field

The data type field specifies the parameter data type. Select the arrow at the right of the
data type field to choose from a list of the following data types:

e char: Character data

e char*: Pointer to character data

e float: Single-precision floating point data

o float*: Pointer to single-precision floating point data
e double: Double-precision data

e double*: Pointer to double-precision point data

e int: Integer data

e int*: Pointer to integer data

e |long: 32-bit integer data

e |long*: Pointer to 32-bit integer data

F_ARRAY_T: Floating point array type

I_ARRAY_T: Integer array type
e D _ARRAY_T: Double-precision array type

1/O field

The /O field defines whether the parameter is an input or output type. Select the arrow to
the right of the I/O field to select from the input and output selections.

Default, min, and max fields

The Default field specifies the default value for a nonarray (only) input parameter.

The Min field specifies the minimum recommended value for a nonarray (only) input
parameter. When the user module is used in a Clarius user test module (UTM),
configuration of the UTM with a parameter value smaller than the minimum value causes
Clarius to display an out-of-range message.

The Max field specifies the maximum recommended value for a nonarray (only) input
parameter. When the user module is used in a Clarius UTM, configuration of the UTM with a
parameter value larger than the maximum value causes Clarius to display an out-of-range
message.

The minimum value must be less than the maximum value.

4200A-SCS-KULT-907-01 Rev. D May 2024 1-7

Section 1: Introduction Model 4200A-SCS KULT and KULT Extension Programming

Includes tab area

The Includes tab, shown below, lists the header files used in the user module. This area can
be used to add #include and #define statements to the presently open user module.

Figure 4: Default Includes tab area

[} /* End TwoTonesTwice.c */
Parameters ncludesl Description I Build]
#include "keithley.h" -
User specified "#include's” and "#define's” KEITHLEY

By default, KULT automatically enters the keithley.h header file into the Includes tab.
The keithley.h header file includes the following frequently used
C-programming interfaces:

e #include <stdio.h>
e #include <stdlib.h>
e #include <string.h>
e #include <math.h>

e #include "windows.h"

In most cases, it is not necessary to add items to the Includes tab area, because
keithley.h provides access to the most common C functions. However, in some cases,

both of the following may apply:
e You do not want to include keithley.h

e You want to include only the header files specifically needed by your user module and all
the user modules on which it depends.

If so, you must minimally include the following header files and #define statements to
properly build user modules and user libraries:

#include "lptdef.h"

#include "lptdef lowercase.h"
#include "kilogmsg proto.h

#include "ktemalloc.h"

#include "usrlib proto.h"

#define PTexit exit

#define exit Unsupported Syntax
#define abort Unsupported Syntax
#define terminate Unsupported Syntax

1-8 4200A-SCS-KULT-907-01 Rev. D May 2024

Model 4200A-SCS KULT and KULT Extension Programming Section 1: Introduction

Description tab area

The Description tab, shown below, allows you to enter descriptive information for the
presently open user module. The information that is entered in this area documents the
module to the Clarius user and is used to create Clarius user library help.

Figure 5: Description tab area

Parameters Includes Description l Build]

<!--MarkdownExtra--> -
<link rel="stylesheet" type="text/css"
href="http://clariusweb/HelpPane/stylesheet.css">

MODULE

TwATAnaeTws ~a d
Module code view KEITHLEY

Do not use C-code comment designators (/*, */, or //) in the Description tab area. When the
user-module code is built, KULT also evaluates the text in this area. C-code comment
designators in the Description tab area can be misinterpreted, causing errors.

NOTE

Do not place a period in the first column (the left-most position) of any line in the
Description tab area. Any text after a first-column period will not be displayed in the
documentation area of a Clarius UTM definition document.

To enter a description:

1. Select in the Description tab area.

2. Enter the description.

3. Right-click in the Description tab area to open the menu shown here.

Figure 6: Edit menu for the Description tab area

Parameters I Includes Description I Build |

MODULE:| Edit Description =

TwoTonesTwice

DESCRIPTION: New

Execution results in sounding of four beep Include ting

user-settable frequencies. Each beeps soun Cut

INPUTS:

Framl (dmaukhlal ie rha frarmancr inm He ~f Copy PhivAd lhasn L]
Paste -
Select all IHEHH!EI‘

4200A-SCS-KULT-907-01 Rev. D May 2024 1-9

Section 1: Introduction Model 4200A-SCS KULT and KULT Extension Programming

The edit menu commands are:

e New: Deletes the present description from the description tab area, allowing you to enter
a new description.

e Include: Imports any file that you specify, typically a text file, into the document tab area.
Refer to Include (on page 1-10) for more information.

e Cut: Removes highlighted text from the Description tab and copies it to the clipboard.
The text on the clipboard can be restored to new locations, in or out of KULT, using the
paste function.

e Copy: Copies highlighted text from the description tab area to the clipboard. The text on
the clipboard can be placed at new locations, in or out of KULT, using the paste function.

e Paste: Places text from the clipboard at a selected location in the Description tab area.

e Select All: Selects everything in the Description tab area.

Include

Imports a * . c file that you specify into the module code-entry area only. This is typically a
text file. The file is imported into the document tab area.

The File > Include command inserts everything from the specified file. If the specified file is
the source file for a KULT user module <ModuleName.c>, everything that KULT saves into
the user module (not only the C code) is imported. Therefore, you must edit the entered text
to remove all but the needed information. In particular, you must remove any comments of
the form /* USRLIB MODULE ___ */

In some cases, it is more efficient to copy only the needed code text from the source file, then
paste it into the module code-entry area.

NOTE

To insert a text or other file into the document tab area, refer to Description tab area (on
page 1-9) for information about the Include menu option.

To import a *.c file:

1. Select Include. The Include Other File dialog opens.

2. Place the cursor where you want to place the new information.
3. Browse and select a file or enter a file name and path.
4

Select Open. The file is inserted at the cursor location.

1-10

4200A-SCS-KULT-907-01 Rev. D May 2024

Model 4200A-SCS KULT and KULT Extension Programming Section 1: Introduction

Build tab area

The Build tab area displays any error or warning messages that are generated during a code
build operation of the user library. When you select a build error message that is displayed
in the Build tab area, KULT highlights either the line of code where the error occurred or the
next line, depending on how the compiler caught the error. KULT also highlights the error
message. This helps you correct errors.

If no errors are found, the Build tab area displays:

No Errors/Warnings Reported. Compilation/Build was Successful.

Status bar

The status bar at the bottom of the KULT dialog displays a description of the area where the
cursor is located. For example, if the cursor is in the Parameters tab area, the status bar
describes that area, as shown in the following figure.

Figure 7: Example of description in status bar

Parameters Includes I Description I Build I
Parameter Name Data Type 170 Default Min Max Add |
Freq! K3 1000 800 | 1200 |~ Delete |

Freq2 long Input 400 300 500 Apply |

Parameter Entry: Name, Data Type, Input/Output, Default Value KEITHLEY

Menus

This section describes the menus on the menu bar, which is at the top of the KULT dialog.

File menu

All user libraries are stored in the C:\s4200\kiuser\usrlib directory. This directory is
referred to as Clarius/KULT user-library directory. It is the active user-library directory, which
is where Clarius and KULT look for user libraries and user modules.

The File menu includes options to work with libraries.

4200A-SCS-KULT-907-01 Rev. D May 2024 1-11

Section 1: Introduction Model 4200A-SCS KULT and KULT Extension Programming

New Library

The New Library menu option creates a new user library.

NOTE

Library names cannot start with a number.

To create a new user library:
1. Select New Library. The Enter library dialog opens.
2. Name the new user library.

3. Select OK. This initializes and opens the new user library in place of the presently open
library.

Open Library

Opens an existing user library in place of the presently open library.

To open alibrary:

1. Select Open Library to display the open library list.
2. Select an existing user library.

3. Select OK to open the selected library.

Copy Library

Creates a copy of the presently open user library.

To copy alibrary:
1. Select Copy Library. The Enter Library dialog opens.
2. Name the new user library into which to copy the presently open library.

3. Select OK to copy the open user library into the new library.

Delete Library

Deletes an existing user library and all its contents.

To delete a library:
1. Select Delete Library. The list of libraries is displayed.
2. Select the user library to be deleted.

3. Select OK to delete the selected library.

1-12 4200A-SCS-KULT-907-01 Rev. D May 2024

Model 4200A-SCS KULT and KULT Extension Programming Section 1: Introduction

New Module

This option creates a new user module. When you create a new user module, existing
module information in the KULT interface is cleared.

The name of the new module must not duplicate the name of any existing user module or
user library in the entire collection of user libraries.

To create a new user module:
1. Select New Module.
2. Enter a new user-module name in Module.

3. Select Apply.

Open Module

Opens an existing user module.

To open a module:
1. Select Open Module. The Open Module list is displayed.
2. Select an existing user module.

3. Select OK to open the selected module in place of the presently open module.

Save Module

Saves the open user module.

Copy Module

Creates a copy of the open user module.

The name of the new module must not duplicate the name of any existing user module or
user library in the entire collection of user libraries.

To copy the user module:

1. Select Copy Module. The list of libraries opens.

Select the user library in which to copy the presently open user module.
Select OK. The Enter New Module dialog opens.

Enter a unique user-module name.

a > N

Select OK. The presently open module is copied into the selected library under the new
name. The presently open module remains open.

4200A-SCS-KULT-907-01 Rev. D May 2024 1-13

Section 1: Introduction Model 4200A-SCS KULT and KULT Extension Programming

Delete Module

Deletes a user module from the open user library.

To delete a user module:

1.
2.
3.

Select Delete Module. The KULT: Library [OpenLibraryName] list is displayed.
Select the module to be deleted.

Select OK. The selected module is deleted. The open module continues to be displayed,
even if it is the module that you deleted.

NOTE

The executable user-library file, a dynamic link library (DLL), contains the deleted module
until you rebuild the library. Refer to Building the user library to include the new user
module (on page 2-10) for more information.

Print Module

Prints a text file that contains all the information for the presently open user module. The text
file is arranged in the form that KULT uses internally.

Exit

Exits KULT.

Edit menu

The Edit menu contains typical Microsoft® Windows® editing commands.

Edit menu commands:

Cut: Removes highlighted text and copies it to the clipboard. The text on the clipboard
can be restored to new locations, in or out of KULT, using the paste function.

Copy: Copies highlighted text to the clipboard. The text on the clipboard can be placed
at new locations, in or out of KULT, using the paste function.

Paste: Places the text from the clipboard to a selected location.
Select All: Selects everything in the module code-entry area.

Undo: Allows you to reverse up to the last ten changes made in the module
code-entry area.

Redo: Allows you to reverse up to the last ten undo operations in the module
code-entry area.

1-14

4200A-SCS-KULT-907-01 Rev. D May 2024

Model 4200A-SCS KULT and KULT Extension Programming

Section 1: Introduction

Options menu

The KULT Options menu is shown here.

Figure 8: KULT Options menu

@ KULT: Module "NoName" Library "BeeplLib”.

File Edit Options Help
Compile

Build Library

Hide Library =l

"

Library Dependencies...

il

Options menu commands:

e Build Library: When selected, adds the open user module (or updates changes) to the
open user library. All the modules in the open user library and any libraries on which the
open module depends are linked together. A dynamic link library (DLL) is created that is
accessible using user test modules (UTMs) in Clarius.

NOTE

Some Keithley Instruments-supplied user libraries contain dependencies. If you need to
build or rebuild such libraries, be sure that you specify the dependencies in the dialog
opened by Options > Library Dependencies. For more information, refer to descriptions in
the following and to details in the Dependent user modules and user libraries (on

page 3-9).

Otherwise, the Build Library function will fail. For example, ki82ulib depends on
KI590ulib and Winulib. You must specify these dependencies before rebuilding

kig82ulib after making changes.

e Hide Library: When selected, causes the present user library to be unavailable to
Clarius. For example, use Hide Library if you want to designate that a user library is only
to be called by another user library and is not to be connected to a UTM.

4200A-SCS-KULT-907-01 Rev. D May 2024

1-15

Section 1: Introduction Model 4200A-SCS KULT and KULT Extension Programming

e Library Dependencies: When selected, displays the Library Dependencies list, where
you specify each user library that is called by and that must be linked to the open user
library. You must make selections individually; do not hold down the control or shift key
to make multiple selections.

NOTE

The C:\s4200\kiuser\usrlib\<library name>\build folder is created when you
run the b1d 1ib subcommand or select the Build Library menu option. This folder can be
safely deleted for debugging purposes.

Help menu

The Help menu contains online help information about KULT:

e Contents: Allows access to the online KULT manual and other 4200A-SCS reference
information.

e About KULT: Displays the software version.

Develop and use user libraries

Clarius includes user libraries of user modules that contain precoded user modules for
commonly used external instruments. You can use these as-is, customize them, or create
new ones. Most user modules contain functions from the Keithley-supplied Linear
Parametric Test Library (LPT Library) and ANSI-C functions. All user modules are created
and built using KULT.

Additionally, using KULT, you can program custom user modules in C. The LPT Library
contains functions that are designed for parametric tests. However, any C routine that can
be built using KULT can be used as source code for a user module.

A user library is a dynamic link library (DLL) of user modules that are built and linked using
the Keithley User Library Tool (KULT).

1-16 4200A-SCS-KULT-907-01 Rev. D May 2024

Model 4200A-SCS KULT and KULT Extension Programming Section 1: Introduction

A user module is a C-language function that:

1. Typically calls functions from the LPT library and ANSI-C functions.
2. |s developed using the Keithley User Library Tool (KULT).

The default collection of KULT user libraries is stored in the directory
C:\s4200\kiuser\usrlib.

NOTE

User library names must not start with a number.

Copy user modules and files

You can use the KULT zip (on page 3-8) and unzip (on page 3-9) subcommands to copy
user libraries and other files. See Performing other KULT tasks using command-line
commands (on page 3-3) for more information.

The KULTArchive.exe utility is installed on your 4200A-SCS. You can copy this utility to a

Model 4200 or 4200A-SCS to archive or unzip a user library for use with an earlier version of
Clarius. This utility is located at C:\S4200\sys\bin\KULTArchive.exe.

If you use the KULTArchive.exe utility with a Model 4200, you must install the Microsoft

Visual C++ Redistributable. This file is available on your 4200A-SCS at
C:\s4200\sys\Microsoft\Microsoft Visual C++ 2017

Redistributable\c redistx86.exe.

Usage
kultarchive [subcommand]

Where:
<subcommand> is the zip or unzip operation.

KULTArchive zip subcommand
zip -1<library name> [password] <zipfile name>

The <library name> user library is created in the active user-library directory.
The [password] parameter is optional.

Example for zip without password

kultarchive zip -1<Libraryl> C:\temp\myzip.zip

4200A-SCS-KULT-907-01 Rev. D May 2024 1-17

Section 1: Introduction Model 4200A-SCS KULT and KULT Extension Programming

KULTArchive unzip subcommand

unzip [-dest path] [password] <zipfile name>

Where:

e [-dest path] is the target directory where the file will be unzipped.

e [password] is required if the file was compressed using the password parameter in the

z1ip subcommand.

The <zipfile name> archive is unzipped in the active user-library directory unless the [-
dest path] parameter is specified. The [-dest path] parameter should not be used
when you import a user library.

Example for unzip with password

kultarchive unzip -password -pwl234 C:\temp\myzip.zip

Enabling real-time plotting for UTMs

Using

To enable real-time plotting in a UTM, you use the following LPT library functions:
® PostDataDouble ()
® PostDatalInt ()

e PostDataString()
In these functions, the first parameter is the variable name, defined as char *.

When using the new functions to transfer data into the data sheet in real time, make sure the
data is already in the memory of the 4200A-SCS. Sweep measurements are not suitable for
real-time transfer because data is not ready until sweep finishes. The following tutorials
show how to enable real-time plotting for a UTM.

For more information on LPT library functions, refer to Model 4200A-SCS LPT Library
Programming.

NI-VISA in user libraries

You can use a user library to communicate with an external instrument that is connected
using a USB cable. The library requires the optional NI-VISA installation. To include
NI-VISA, a library dependency to visa32.1ib must be added first. This dependency
applies to all modules in a library and only needs to be completed once per library.

Clarius includes two libraries, generic visa ulib and the
dmm 6500 7510 temp ulib, as examples of using VISA commands to communicate with
USB controlled instruments.

1-18

4200A-SCS-KULT-907-01 Rev. D May 2024

Model 4200A-SCS KULT and KULT Extension Programming Section 1: Introduction

Add NI-VISA as a library dependency in KULT

To add NI-VISA as a library dependency in KULT:
1. Close KULT.
2. Gotothe kitt src folder for the library, such as
C: \54200\kiu_ser\BeepLib\lib_name\kitt_src.
Open the .mak file for the library in Notepad or another editor.
4. Inthe LIBS variable, between the quotes, enter visa32.1ib. Enter any other library
dependencies you may need.
Save the file.

Reopen the library in KULT.

NOTE

Modifying the library dependencies in KULT will overwrite NI-VISA. To add additional
dependencies without overwriting VISA, repeat the above process.

Add NI-VISA as alibrary dependency in the KULT Extension

In addition to the library dependency, all modules that use NI-VISA must also include the
visa.h and visatype.h header files.

To add NI-VISA as a library dependency in the KULT Extension:
1. Select the library in the KULT side bar.

2. Inthe Miscellaneous pane of the KULT side bar, select the 1ibrary name.mak file to
open it in the editor.

In the code editor, add the visa32.11ib file to the LIBS variable.
4. Save the file.

Include the NI-VISA header files in KULT

To include the NI-VISA header files in KULT:
1. Open the module in KULT.
2. Select the Includes tab at the bottom of the screen.

3. Add the following statements:
#include "visa.h"
#include "visatype.h"

4200A-SCS-KULT-907-01 Rev. D May 2024 1-19

Section 1: Introduction Model 4200A-SCS KULT and KULT Extension Programming

Include the NI-VISA header files in the KULT Extension

To include the NI-VISA header files in the KULT Extension:
1. Open the module in the editor.

2. Under the /* USRLIB MODULE PARAMETER LIST */ comment, add the following

statements:
#include "visa.h"
#include "visatype.h"

Remove Intellisense errors

If you are using the KULT Extension, including visa.h and visatype.h may cause an
Intellisense error, because the Intellisense configuration file cannot find the path to the
header files. This error will not affect building the library, but you can remove it by editing the

c_cpp properties.json file.

To remove Intellisense errors caused by the NI-VISA header files:
1. Openthe c cpp properties.json header file from the Miscellaneous pane of the
KULT side bar.

2. Inthe editor, add the path to the header files:
C:/Program Files (x86)/IVI Foundation/VISA/WinNT/include

Included paths should be enclosed in double quotes and separated by commas.

3. Save the file. This applies to all libraries in the working directory of Visual Studio Code.

NI-VISA commands must be used to communicate with the instrument. These commands
are documented in the NI-VISA Programmer Reference Manual. The most commonly used
commands are shown in the following table.

Commonly used VISA commands

Command Name Description

viOpenDefaultRM Initializes VISA. Must be called before any other VISA command.

viFindRsrc Finds available instruments and returns a list of their resource strings. The
list can be filtered to USB only using the format string USB? *

viFindNext Used to iterate through the returned list of instruments from viFindRsrc to
find an instrument.

viOpen Opens a session to the instrument specified by the VISA resource string.

viWrite Writes data to an external instrument.

viRead Reads a set number of characters as a string from the output buffer of the
external instrument.

viClose Closes a VISA session. Use this command before exiting a user module.

For more information on VISA command syntax, usage, and error codes, refer to the
NI-VISA Programmer Reference Manual, available at ni.com/.

1-20

4200A-SCS-KULT-907-01 Rev. D May 2024

https://www.ni.com/

Section 2

In this section:

KULT TULOTIAIS ..eeee e 2-1
Tutorial: Creating a new user library and user module............. 2-3
Tutorial: Creating a user module that returns data arrays...... 2-14
Tutorial: Creating a user module that returns data arrays

INTeAl fIME...c s 2-20
Tutorial: Calling one user module from within another 2-25
Tutorial: Customizing a user test module (UTM)..........cccuee.. 2-30

Tutorial: Creating a user module for stepping or sweeping 2-38

KULT Tutorials

KULT tutorials

The tutorials in this section provide step-by-step instructions for accomplishing common

tasks with KULT. The tutorials are summarized here.

Tutorial: Creating a new user library and new user module (on page 2-3)

e Name a new user library

e Name a new user module
e Enter areturn type

e Enter user module code

e Enter parameters

e Enter header files

e Document the user module
e Save the user module

e Build the user module

e Find code errors

e Build the user library to include the new user module

e Find build errors

e Check the user module

Section 2: KULT tutorials Model 4200A-SCS KULT and KULT Extension Programming

Tutorial: Creating a user module that returns data arrays (on page 2-14)

e Name a new user library and new vSweep user module
e Enter the vSweep user-module return type

e Enter the VvSweep user-module code

e Enter the vSweep user-module parameters

e Enter the VvSweep user-module header files

e Document the VSweep user module

e Save the VSweep user module

e Build the vSweep user module

e Check the vSsweep user module

Tutorial: Creating a user module that returns data arrays in real time (on page 2-20)

e Name a new user library and new vSweepRT user module
o Enter the vSweepRT user-module return type

e Enter the VSweepRT user-module code

e Enter the vSweepRT user-module parameters

e Enter the vSweepRT user-module header files

e Document the VSweepRT user module

e Save the VSweepRT user module

e Build the VvSweepRT user module

e Check the vSweepRT user module

Tutorial: Calling one user module from within another (on page 2-25)

e Create the VvSweepBeep user module by copying an existing user module
e Call an independent user module from the VvSweepBeep user module

e Specify user library dependencies in the VSweepBeep user module

e Build the vSweepBeep user module

e Check the vSweepBeep user module

2-2 4200A-SCS-KULT-907-01 Rev. D May 2024

Model 4200A-SCS KULT and KULT Extension Programming Section 2: KULT tutorials

Tutorial: Customizing a user test module (UTM) (on page 2-30)

e Copy the Rdson42xX user module to RdsonAvg
e Modify the RdsonAvg user module

e Change a parameter name

e Change the module description

e Save and build the library

e Add RdsonAvgtothe ivswitch project

Tutorial: Creating a user module for stepping or sweeping (on page 2-38)

e Name anew user library and new vds id step sweep user module
e Enterthe vds id step sweep user-module return type

e Enterthe vds id step sweep user-module code

e Enterthe vds id step sweep user-module parameters

e Enterthe vds id step sweep user-module header files

e Documentthe vds id step sweep user module

e Savethevds id step sweep user module

e Buildthe vds id step sweep user module

e Set up the user interface of the vds_id step sweep user module

e Checkthe vds_id step sweep user module in Clarius

Tutorial: Creating a new user library and user module

KULT is a tool that helps you develop user libraries. Each user library is comprised of one or
more user modules. Each user module is created using the C programming language.

This section contains a tutorial that shows you how to create a new user library and new
user module. A hands-on example is provided that illustrates how to create a user library
that contains a user module that activates the internal beeper of the 4200A-SCS.

4200A-SCS-KULT-907-01 Rev. D May 2024 2-3

Section 2: KULT tutorials

Model 4200A-SCS KULT and KULT Extension Programming

Starting KULT

To start KULT:

1.

Select KULT in the Microsoft® Windows® Start menu (Start > Keithley Instruments >
KULT).

A blank KULT dialog appears named KULT: Module "NoName" Library "NoName", as
shown in the following figure.

Figure 9: Blank KULT dialog

@ KULT: Module "NoName" Library “"NoName".
File Edit Options Help

Library: NoN ame
[
[~] Library Visible :l
< L
|
Parameters Ilncludes I Desciription] Build
| PacameterName | Dala Type | 10 | Defauk | Min | Max

| |

| |

|

|

_td |
| a] _Dele |
——0 =

2-4

4200A-SCS-KULT-907-01 Rev. D May 2024

Model 4200A-SCS KULT and KULT Extension Programming Section 2: KULT tutorials

Naming a new user library

NOTE

User library names cannot start with a number and cannot contain spaces.

To name a new user library:

1. In KULT, select File > New Library.

2. Enter the new user library name. For this tutorial, enter my 1st 1lib.
3. Select OK.

The dialog name changes to KULT: Module "NoName" Library "my 1st 1ib",
and the name next to library in the top left of the dialog is now my 1st 1ib, as
shown in the following figure.

Figure 10: KULT after naming a user library

@ KULT: Module "NoName" Library "my_1st_lib". - O X
File Edit Options Help

Library: my_1st_lib

Module: Il

Retun Type [void]| Library Visible Apply

Creating a new user module

NOTE

When naming a user module, conform to case-sensitive C programming language naming
conventions. Do not duplicate names of existing user modules or user libraries.

To create a new user module:
1. Select File > New Module.

2. Inthe Module text box at the top of the KULT dialog, enter the new user module name.
For this tutorial, enter TwoTonesTwice as the new user module name.

3. Select Apply.

4200A-SCS-KULT-907-01 Rev. D May 2024 2-5

Section 2: KULT tutorials

Model 4200A-SCS KULT and KULT Extension Programming

The KULT dialog changes as follows:

e The name of the dialog changes to KULT: Module "TwoTonesTwice.c" Library
"my lst 1ib".

e You see entries in the user-module parameters display area and in the terminating-brace
display. If you select the Includes tab, there is also an entry there, as shown in the
following figure.

Figure 11: KULT after naming a user module

@ KULT: Module "TwoTonesTwice.c” Library “my_1st_lib". - (| X

File Edit Options Help

Library: my_1st_lib

Module: | TwoTonesTwice

Retum Type [void = Libraty Visible Apply

/* USRLIB MODULE MAIN FUNCTION */ -]

void TwoTonesTwice()

{ v
-
=

< L

B /* End TwoTonesIwice.c */

Parameters | I Description I Build

$include "keithley.h" -
hd

KEITHLEY

NOTE

To view the entire module parameter display area, use the scroll bar.

Entering the return type

If your user module generates a return value, select the data type for the return value in the
Return Type box. The TwoTonesTwice user module does not produce a return value, so
keep the void default entry.

2-6

4200A-SCS-KULT-907-01 Rev. D May 2024

Model 4200A-SCS KULT and KULT Extension Programming Section 2: KULT tutorials

Entering user module code

Enter the C code into the module-code entry area.

NOTE

Refer to Model 4200A-SCS LPT Library Programming for a complete list of supported 1/0O
and SMU commands.

For the TwoTonesTwice user module, enter the code listed below. The code deliberately
contains a missing ; error to illustrate KULT debug capability.

/* Beeps four times at two alternating user-settable frequencies. */

/* Makes use of Windows Beep (frequency, duration) function. */
/* Frequency of beep is long integer, in units of Hz. */

/* Duration
Beep (Freql,
Beep (Freqg2,
Beep (Freql,
Beep (Freqg2,
Sleep (500)

of beep is long integer, in units of milliseconds. */
500); /* Beep at first frequency for 500 ms */

500); /* Beep at second frequency */

500) ;

500)

’

/* NOTE deliberately leave out semicolon */

Entering parameters

To enter the required parameters for the code:

1. Select the Parameters tab.

Select Add at the right side of the parameters tab area.

2
3. Under Parameter Name, enter Freql.
4

Select the Data Type cell and select long, as shown here. This is the C data type.

Figure 12: Data Type menu

Parameters I Includes I Description

Parameter Name Data Type

I char v I

long *
F_ARRAY_T
I_ARRAY_T

Freql

5. For this user module, the I/0 selection of Input is correct. If the Data Type is a pointer
or array, you could choose Input or Output.

4200A-SCS-KULT-907-01 Rev. D May 2024 2-7

Section 2: KULT tutorials Model 4200A-SCS KULT and KULT Extension Programming

6. Under Default, Min, and Max, enter default, minimum, and maximum values. These
values limit the choices the user sees. For the TwoTonesTwice user module, enter
1000, 800, and 1200, respectively.

7. Forthe TwoTonesTwice module, add one more parameter with the values:

Parameter name: Freqg2
Data type: long

I/O: Input

Default: 400

Min: 300

Max: 500

8. Select Apply. (The Apply buttons at the top and bottom of the dialog act identically.)

Figure 13: Parameter entries for the TwoTonesTwice user module

Parameters Ilncludes] Description I Build [

Parameter Name . Data Type . 170 Default Min Max Add

Freql | long | Input 1000 g0 | 1200 |~ Delete

Freq2 ' long '_ Input _ 400 300 _ 500
b4

NOTE

For an output parameter, only the following data types are acceptable: pointers (such as
char*, float*, and double) and arrays (I ARRAY T, F ARRAY T,0r D ARRAY T).

Entering header files

To enter the header files:

1. Select the Includes tab at the bottom of the dialog.

Figure 14: Default Includes tab area

[} /* End TwoTonesTwice.c */
Parameters I Description I Build
#include "keithley.h" -
User specified "#include's” and "#define's" KEITHLEY

4200A-SCS-KULT-907-01 Rev. D May 2024

Model 4200A-SCS KULT and KULT Extension Programming Section 2: KULT tutorials

2. Enter any additional header files that are needed by the user module. No additional
header files are needed for the TwoTonesTwice user module or for any of the user

libraries supplied by Keithley Instruments.
3. Select Apply.

Documenting the user module
To document the user module:
1. Select the Description tab at the bottom of the dialog.
2. Enter any text needed to adequately document the user module to the Clarius user.

Do not use C-code comment designators (/*, */, or //) in the Description tab area. When the
user-module code is built, KULT also evaluates the text in this area. C-code comment
designators in the Description tab area can be misinterpreted, causing errors.

NOTE

Do not place a period in the first column (the left-most position) of any line in the
Description tab area. Any text after a first-column period will not be displayed in the
documentation area of a Clarius UTM definition document.

3. Forthe TwoTonesTwice user module, copy the following information into the
Description tab:

<!--MarkdownExtra-->
<link rel="stylesheet" type="text/css"
href="http://clariusweb/HelpPane/stylesheet.css">

MODULE

TwoTonesTwice

DESCRIPTION

Execution results in sounding of four beeps at two alternating user-settable
frequencies. Each beeps sounds for 500 ms.

INPUTS

Fregl (double) is the frequency, in Hz, of the first and third beep.
Freg2 (double) is the frequency, in Hz, of the second and fourth beep.

OUTPUTS

4200A-SCS-KULT-907-01 Rev. D May 2024 2-9

Section 2: KULT tutorials

Model 4200A-SCS KULT and KULT Extension Programming

Figure 15: Description tab area

Parameters] Includes Desciiption l Build I

<!=--MarkdownExtra--> -
<link rel="stylesheet" type="text/css"
href="http://clariusweb/HelpPane/stylesheet.css">

MODULE

TrwATAnaoTui ~a j
Module code view KEITHLEY

Saving the user module

Select the File menu, then select Save Module.

Building the user library to include the new user module

Build the user library to include the module.

To build the user library:
1. Select the Build tab.

2. From the Options menu, select Build Library. The following occurs:

The user library is built. All the user modules in the presently open user library and
any libraries on which the presently open user module depends are linked together.

A DLL is created that is accessible using UTMs in Clarius.

The KULT Build Library message box indicates the build progress. If problems are
encountered, this message box displays error messages. When you build the
TwoTonesTwice user module, you should see an error.

2-10

4200A-SCS-KULT-907-01 Rev. D May 2024

Model 4200A-SCS KULT and KULT Extension Programming Section 2: KULT tutorials

Finding build errors

To find code errors for the TwoTonesTwice user module:

1. Review the error in the Build tab.

Figure 16: Find a code error

File Edit Options Help

Library: my_1st_lib

Module;: [TwoTonesTwice
Retum Type [void =]

Library Visible Apply

/* USRLIB MODULE MAIN FUNCTION */

void TwoTonesTwice(long Fregl, long Freg2)
{

L«

/* Beeps four times at two alternating user-settable frequencies. */
/* Makes use of Windows Beep (frequency, duration) function. */

/* Frequency of beep is long integer, in units of Hz. */

/* Duration of beep is= long integer, in units of milliseconds. */
Beep (Freqgl, 500); /* Beep at first frequency for 500 ms */

Beep (Freq2, 500); /* Beep at second frequency */

Beep (Freql, 500);

Beep (Freq2, 500);

Sleep(500);

=
< [»[
I } /* End TwoTonesTwice.c */
Parameters] Includes] Description Build]
C:\s42000kiuser\usilib\my_1st_lib\sic\TwoT onesTwice.c:55:1: enor: expected ;' before '}’ token =
|
| o
Module code view KEITHLEY

2. Add the missing semicolon at the end of the code [S1eep (500) ;] and delete the
comment about the missing semicolon.

Select File > Save Module.
Select Options > Build Library.

= The KULT Build message box should now display no error messages.

The Build tab area should display “No errors or warnings reported: Library was
successfully built.”

4200A-SCS-KULT-907-01 Rev. D May 2024 2-11

Section 2: KULT tutorials Model 4200A-SCS KULT and KULT Extension Programming

Checking the user module

To check a user module, you need to create and execute a user test module (UTM) in
Clarius. Create a simple Clarius project to check the user module.

To check the user module in Clarius:

© 0 N o g b~ 0w NP

e
R O

12.
13.
14.
15.
16.

Start Clarius. If Clarius is already running, restart it.

Choose the Select pane.

Select the Projects tab.

Select New Project.

Select Create. You are prompted to replace the existing project.
Select Yes.

Select Rename.

Enter UserModCheck and press Enter.

Choose Select.

. Select the Actions tab.
. Drag Custom Action to the project tree. The action has a red triangle next to it to

indicate that it is not configured.

Select Rename.

Enter 2tones _twice chk and press Enter.

Select Configure.

In the Test Settings pane, selectthe my 1st 1ib user library.

From the User Modules list, select the TwoTonesTwice user module. A group of
parameters are displayed for the UTM as shown in the following figure. Accept the

default parameters for now. You can experiment later after you establish that the user
module executes correctly.

2-12

4200A-SCS-KULT-907-01 Rev. D May 2024

Model 4200A-SCS KULT and KULT Extension Programming

Section 2: KULT tutorials

Figure 17: Configured UTM

two_tones_twice_check#s1

A Parameiery

D) 7est settings R
Ewolorms_twice_checks1

User Librarsrn

vyl -

[EFRERS T

Freny ™ paned T e

17. Select Help to verify that the HTML in the Description tab is correctly formatted. An
example is shown in the following figure.

Figure 18: Example of help formatted as HTML for a user module

18. Select Save.

@ Test Settings

MODULE

TwoTonesTwice

DESCRIPTION

Execution results in sounding of four beeps at two
alternating user-settable frequencies. Each beeps sounds
for 500 ms

Freql (double) is the frequency, in Hz, of the first and third
beep.

Freq2 (double) is the frequency, in Hz, of the second and
fourth beep,

OUTPUTS

19. Execute the UTM by selecting Run. You should hear a sequence of four tones, sounded
at alternating frequencies.

This tutorial generates no data. For an example of numerical data, see Tutorial: Creating a
user module that returns data arrays (on page 2-14).

4200A-SCS-KULT-907-01 Rev. D May 2024

2-13

Section 2: KULT tutorials Model 4200A-SCS KULT and KULT Extension Programming

Tutorial: Creating a user module that returns data arrays

This section provides a tutorial that helps you use array variables in KULT. It also illustrates
the use of return types (or codes), and the use of two functions from the Keithley Linear
Parametric Test Library (LPTLIib).

NOTE

Most of the basic steps that were detailed in Tutorial: Creating a new user library and user
module (on page 2-3) are abbreviated in this tutorial.

Naming new user library and new VSweep user module

To name new user library and new VSweep user module:
1. Start KULT.
2. Select File > New Library.

3. Inthe Enter Library dialog that appears, enter my 2nd_1lib as the new user library
name.

4. Select OK.
Select File > New Module.

In the Module text box at the top of the KULT dialog, enter vSweep as the new module
name.

7. Select Apply.

Entering the VSweep user-module return type

Select int from the Return Type list. This configures the VSweep user module to generate
an integer return value.

Entering the VSweep user-module code

In the module code-entry area, enter the C code below for the VSweep user module. Open
the KULT dialog to full screen view to simplify code entry.

2-14 4200A-SCS-KULT-907-01 Rev. D May 2024

Model 4200A-SCS KULT and KULT Extension Programming Section 2: KULT tutorials

/* VSweep module

Sweeps through specified V range & measures I, using specified number of points.

Places forced voltage & measured current values (Vforce and Imeas) in output
arrays.

NOTE For n increments, specify n+l array size (for both NumIPoints and NumVPoints) .

#

double vstep, v; /* Declaration of module internal variables. */

int 1i;

if ((Vstart == Vstop)) /* Stops execution and returns -1 if */
return(-1); /* sweep range 1S zero. i/

if ((NumIPoints != NumVPoints)) /* Stops execution and returns -2 if */
return(-2); /* V and I array sizes do not match. */

vstep = (Vstop-Vstart) / (NumVPoints -1); /* Calculates V-increment size. */

for (i=0, v = Vstart; 1 < NumIPoints; i++) /* Loops through specified number of */

/* points. */

{

forcev (SMU1, v); /* LPTLib function forceX, which forces a V or I. */

measi (SMUl, &Imeas[i]); /* LPTLib function measX, which measures a V or I. */
/* Be sure to specify the *address* of the array. */

Vforcel[i] = v; /* Returns Vforce array for display in UTM Sheet. */
vV = Vv + vstep; /* Increments the forced voltage. */

}
return(0); /* Returns zero if execution Ok.*/

Entering the VSweep user-module parameters

This example uses the double-precision D ARRAY T array type. The D ARRAY T,

I ARRAY T,and F_ARRAY T are special array types that are unique to KULT. For each of
these array types, you cannot enter values in the Default, Min, and Max fields. On the scroll
bar in the Parameters tab area, there is a space below the slider. This space indicates a
hidden fourth line of incomplete parameter information for the array-size parameter
specification.

NOTE

When executing the Vsweep user module in a UTM, the start and stop voltages (Vstart and
Vstop) must differ. Otherwise, the first return statement in the code halts execution and
returns an error number (-1). When a user module is executed using a Clarius UTM, this
return code is stored in the UTM Data worksheet. The return code is stored in a column that
is labeled with the user-module name.

4200A-SCS-KULT-907-01 Rev. D May 2024 2-15

Section 2: KULT tutorials Model 4200A-SCS KULT and KULT Extension Programming

To enter the required parameters for the code:
1. Select the Parameters tab.

2. Enter the information for the two voltage input parameters, as shown in the following
table. Select the Add button before adding each new parameter.

Parameter name Data type I/0 Default Min Max
Vstart double Input 0 -200 200
Vstop double Input 5 -200 200
Select Add.

Enter the following measured-current parameter information:
= Parameter Name: Imeas

= Datatype: D ARRAY T

= |/O: Output

5. Scroll down to display line 4 of the Parameters tab area. KULT enters the array size
parameter in this line automatically for the array that is specified on line 3, as shown in
the following figure.

Figure 19: KULT-entered array-size parameters

Parameters I Includes I Description I Build]
Parameter Name Data Type 1/0 Default Min Max Add
Wstop double Input 5 -200 200 ;I Delete

Imeas D_ARRAY_T Output Apply
AnSizeForParm3 _lnput—l -

6. Under Parameter Name, change ArrSizeForParm3 to NumIPoints. The default
Parameter Name entry is only a description of the required array size parameter. You
must replace it with an appropriate array size parameter, as required by the user
module code.

Leave the Data Type and I/O entries as is.

Under Default, enter the number 11 for the default current-array size. You can also add
Min and Max array sizes if needed.

9. Select Add.
10. Enter the following forced-voltage parameter information:
= Parameter Name: Vforce
= Datatype: D ARRAY T
= |/O: Output
11. Under Parameter Name, change ArrSizeForParm5 to NumVPoints.

2-16 4200A-SCS-KULT-907-01 Rev. D May 2024

Model 4200A-SCS KULT and KULT Extension Programming Section 2: KULT tutorials

12. Under Default, enter the number 11 for the default voltage array size.

NOTE

When executing the vSweep user module in a UTM, the current and voltage array sizes
must match; NumIPoints must equal NumvPoints. If the sizes do not match, the second
return statement in the code halts execution and returns an error number (-2) in the
VSweep column of the UTM Data worksheet.

13. Select Apply. In the module-parameter display area, the function prototype now includes
the declared parameters, as shown in the following figure.

Figure 20: VSweep user-module dialog after entering and applying code and

parameters
{® KULT: Module "VSweep.c” Library "my_2nd_lib". —~ O X
File Edit Options Help
Library: my_2nd_lib
Module: [VSweep
Retun Type [int =] Library Visible Apply |
int VSweep(double Vstart, double Vstop, double *Imeas, int -~
NumIPoints, double *Vforce, int NumVPoints)
{ -

{ -
forcev(SMU1l, v); /* LPTLib function forceX, which forces a V or I. */
measi (SMU1, &Imeas([i]); /* LPTLib function measX, which measures a V or
/* Be sure to specify the *address* of the array. */

Vforce[i] = v; /* Returns Vforce array for display in UTM Sheet. */
v = v 4+ vstep; /* Increments the forced wvoltage. */
}
return(0); /* Returns zero if execution Ok.*/
| | >
|} /* End VSweep.c */
Parameters Ilncludes I Description] Build I
Parameter Name] Data Type I 170 Default j Min J Max Add
Imeas | D_ARRAY_T | Output | | [<] _Dekw |
NumlPoints | int | Input I I —J
Viorce | D_ARRAY_T | Output | | -

4200A-SCS-KULT-907-01 Rev. D May 2024 2-17

Section 2: KULT tutorials Model 4200A-SCS KULT and KULT Extension Programming

Entering the VSweep user-module header files

You do not need to enter any header files for the VSweep user module. The default
keithley.h header file is sufficient.

Documenting the VSweep user module

Select the Description tab and enter documentation for the user module, based on the
comments provided in the code and other information about the module.

Saving the VSweep user module

From the File menu, select Save Module.

Building the VSweep user module

To build the user module:
1. Select the Build tab at the bottom of the dialog to open the Build tab area.

2. Inthe Options menu, select Build Library. The user library builds. You should not see
error messages.

NOTE

If you do see error messages, check for typographic errors, then fix and rebuild the user
module. If necessary, review Finding build errors (on page 2-11).

Checking the VSweep user module

Check the user module by creating and executing a UTM in Clarius.

To check the user module:

1. Connect a 1 kQ resistor between the FORCE terminal of the ground unit (GNDU) and
the FORCE terminal of SMUL.

2. Instead of creating a new project, reuse the UserModCheck project that you created in
Tutorial: Creating a new user library and user module (on page 2-3).

Choose Select.

Select the Devices tab.
Select the 2-wire-resistor.
Choose Select.

Select the Tests tab.

N o g s~ w

2-18 4200A-SCS-KULT-907-01 Rev. D May 2024

Model 4200A-SCS KULT and KULT Extension Programming Section 2: KULT tutorials

10.
11.

12.
13.
14.

15.
16.
17.

For the Custom Test, select Choose a test from the pre-programmed library (UTM).

Drag Custom Test to the project tree. The test has a red triangle next to it to indicate
that it is not configured.

Select Rename.

Enter the name v_sweep chk. You will use this UTM test to execute the VSweep user
module.

Select Configure.

In the right pane Test Settings tab, from the User Libraries list, select my 2nd 1lib.
From the User Modules list, select the Vsweep user module. A default schematic and
group of parameters are displayed for the UTM.

For Vstart, enter the sweep values.

Select Run.

Select Analyze.

At the conclusion of execution, review the results in the Analyze sheet. If you connected a
1 kQ resistor between SMU1 and GNDU, used the default UTM parameter values, and

executed the UTM successfully, the results should be similar to the results in the following
figure. The current/voltage ratio for each row of results should be approximately 1 mA / V.

In the example in the following figure, a code of 0 is returned. This means that the user

module executed with no errors.

Figure 21: Checking the VSweep user module

\

T B C
1 VSweep | Imeas Vorce
s 0/-623 4750E-8 000 .0000E-3
3 501 7580E-6 500 0000E-3
4 1.0036E-3 1.0000CE+D
5 1.8028E-3 1.5000E-+H]
6 20045E-3 2 0000E+D
7 25040E-3 2 5000E+D
8 30054E-3. 3.0000E+D
9 35065E-3 35000E+D
10 4 007EE-3 4 O0DOE+D
11 45071E-3 4 5000E+D
12 5.0077E-3. 5.0000E+D

4200A-SCS-KULT-907-01 Rev. D May 2024 2-19

Section 2: KULT tutorials Model 4200A-SCS KULT and KULT Extension Programming

Tutorial: Creating a user module that returns data arrays in
real time
This tutorial helps you use array variables in KULT and return real-time data. It also

illustrates the use of return types (or codes), and the use of two functions from the Keithley
Linear Parametric Test Library (LPTLib).

NOTE

The steps that were detailed in Tutorial: Creating a new user library and user module (on
page 2-3) are abbreviated in this tutorial.

Naming new user library and new VSweepRT user module

To name new user library and new VSweep user module:

1.
2.
3.

Start KULT.
Select File > New Library.

In the Enter Library dialog that appears, enter my 2nd_1ib as the new user library
name.

Select OK.
Select File > New Module.

In the Module text box at the top of the KULT dialog, enter VvSweepRT as the new
module name.

Select Apply.

Entering the VSweepRT user-module return type

Select int from the Return Type list. This configures the VSweepRT user module to
generate an integer return value.

2-20

4200A-SCS-KULT-907-01 Rev. D May 2024

Model 4200A-SCS KULT and KULT Extension Programming Section 2: KULT tutorials

Entering the VSweepRT user-module code

In the module code-entry area, enter the C code below for the VSweep user module. To
simplify code entry, open the KULT dialog to full screen view.

/* VSweep module
Sweeps through specified V range & measures I, using specified number of points.
Places forced voltage & measured current values (Vforce and Imeas) in output

arrays.
#
double vstep, v; /* Declaration of module internal variables. */
int 1i;
if ((Vstart == Vstop)) /* Stops execution and returns -1 if */
return(-1); /* sweep range is zero. */
vstep = (Vstop-Vstart) / (NumVPoints -1); /* Calculates V-increment size. */
for(i=0, v = Vstart; i < NumVPoints; i++) /* Loops through specified number of */

/* points. */
{

forcev (SMU1, v); /* LPTLib function forceX, which forces a V or I. */
measi (SMU1l, Imeas); /* LPTLib function measX, which measures a V or I. */
PostDataDouble ("Vforce", v); /* Returns Vforce for display in UTM Sheet. */
vV = Vv + vstep; /* Increments the forced voltage. */

}
return(0); /* Returns zero if execution is OK. */

Entering the VSweepRT user-module parameters

This example uses the double-precision D ARRAY T array type. The D ARRAY T,
I ARRAY T,and F ARRAY T are special array types that are unique to KULT. For each of
these array types, you cannot enter values in the Default, Min, and Max fields.

NOTE

When executing the Vsweep user module in a UTM, the start and stop voltages (Vstart and
Vstop) must differ. Otherwise, the first return statement in the code halts execution and
returns an error number (-1). When a user module is executed using a Clarius UTM, this
return code is stored in the UTM Data worksheet. The return code is stored in a column that
is labeled with the user-module name.

4200A-SCS-KULT-907-01 Rev. D May 2024 2-21

Section 2: KULT tutorials

Model 4200A-SCS KULT and KULT

Extension Programming

To enter the parameters for the code:
1. Select the Parameters tab.

2. Enter the information for the two voltage input parameters, as shown
table. Select the Add button before adding each new parameter.

Parameter name Data type I/0 Default Min
Vstart double Input 0 -200
Vstop double Input 5 -200
NumVPoints int Input 50 2
Vforce double * Output — —
Imeas double * Output — —

in the following

Max
200
200
65535

3. Select Apply. In the Parameters tab, the function prototype now includes the declared

parameters, as shown in the following figure.

Figure 22: VSweepRT user-module dialog after entering and app
parameters

lying code and

@ KULT: Module "VSweepRT.c” Library "my_2nd_lib". -
File Edit Options Help

Libeary: my_2nd_kb
Modue: |VSweepRT
Retum Type [=l Library Visble
int VSweepRT(double Vstart, double Vstop, int NumVPoints, double *Vforce, double *“Imeas A
)
{ -
/* VSweep module A
Sweeps through specified V range & measures I, using specified number of points.
Places forced voltage & measured current values (Vforce and Imeas) in output arrays.
o/ 4
double wvstep, v: /* Declaration of module internal variables. */
int 1i;
if ((Vstart == Vstop)) /* Stops execution and returns -1 if +/
return(-1); /* sweep range is zero. */
vstep = (Vstop-Vstart) / (NumVPoints -1); /* Calculates V-increment size. */
for(i=0, v = Vstart; i < NumVPoints; i++) I' Loops through specified number of */
/* points. */
{
forcev(SMU1, v):; /* LPTLib function forceX, which forces a Vor I. */
measi (SMU1, Imeas); /* LPTLib function measX, which measures a Vor I. */
PostDataDouble ("Vfoxce™, v):; /* Returns Vforce for display in UIM Sheet. */
v = v + vstep; /* Increments the forced voltage. */
}
return(0); /* Returns zero if execution is OK. */
-
< oy
|y /* End VSweepRT.c */
Parameters Includes | Description I Build I
IPuomeletNome Data Type 10 Defaut Min Max Add I
NumVPoints P Input 50 2 65535 |a] _ Delete |
Viotce double * Output Apply I
Imeas double Output v
Module code view KEITHLEY

2-22

4200A-SCS-KULT-9

07-01 Rev. D May 2024

Model 4200A-SCS KULT and KULT Extension Programming Section 2: KULT tutorials

Entering the VSweepRT user-module header files

You do not need to enter any header files for the VSweepRT user module. The default
keithley.h header file is sufficient.

Documenting the VSweepRT user module

Select the Description tab and enter documentation for the user module, based on the
comments provided in the code and other information about the module.

Saving the VSweepRT user module

From the File menu, select Save Module.

Building the VSweepRT user module

To build the user module:
1. Select the Build tab at the bottom of the dialog to open the Build tab area.
2. Inthe Options menu, select Build Library. You should not see error messages.

NOTE

If you do see error messages, check for typographic errors, then fix and rebuild the user
module. If necessary, review Finding build errors (on page 2-11).

Checking the VSweepRT user module

Check the user module by creating and executing a UTM in Clarius.

To check the user module:

1. Connect a 1 kQ resistor between the FORCE terminal of the ground unit (GNDU) and
the FORCE terminal of SMUL.

2. Instead of creating a new project, reuse the UserModCheck project that you created in
Tutorial: Creating a new user library and user module (on page 2-3).

Choose Select.

Select the Devices tab.
Select the 2-wire-resistor.
Choose Select.

Select the Tests tab.

N o 0o bk~ w

4200A-SCS-KULT-907-01 Rev. D May 2024 2-23

Section 2: KULT tutorials Model 4200A-SCS KULT and KULT Extension Programming

10.
11.

12.
13.
14.

15.
16.
17.

For the Custom Test, select Choose a test from the pre-programmed library (UTM).

Drag Custom Test to the project tree. The test has a red triangle next to it to indicate
that it is not configured.

Select Rename.

Enter the name v_sweepRT chk. You will use this UTM test to execute the VSweepRT
user module.

Select Configure.

In the right pane Test Settings tab, from the User Libraries list, select my 2nd 1lib.
From the User Modules list, select the VvsweepRT user module. A default schematic and
group of parameters are displayed for the UTM.

For Vstart, enter the sweep values.

Select Run.

Select Analyze.

At the conclusion of execution, review the results in the Analyze sheet. If you connected a
1 kQ resistor between SMU1 and GNDU, used the default UTM parameter values, and

executed the UTM successfully, the results should be similar to the results in the following
figure. The current/voltage ratio for each row of results should be approximately 1 mA / V.

In the example in the following figure, a code of 0 is returned. This means that the user

module executed with no errors.

Figure 23: Checking the VSweep user module

\

T B C
1 VSweep | Imeas Vorce
s 0/-623 4750E-8 000 .0000E-3
3 501 7580E-6 500 0000E-3
4 1.0036E-3 1.0000CE+D
5 1.8028E-3 1.5000E-+H]
6 20045E-3 2 0000E+D
7 25040E-3 2 5000E+D
8 30054E-3. 3.0000E+D
9 35065E-3 35000E+D
10 4 007EE-3 4 O0DOE+D
11 45071E-3 4 5000E+D
12 5.0077E-3. 5.0000E+D

2-24

4200A-SCS-KULT-907-01 Rev. D May 2024

Model 4200A-SCS KULT and KULT Extension Programming Section 2: KULT tutorials

Tutorial: Calling one user module from within another

KULT allows a user module to call other user modules. A called user module may be in the
same user library as the calling module or may be in another user library. This section
provides a brief tutorial that illustrates application of such dependencies. It also illustrates
the File > Copy Module command.

In this tutorial, you create a new user module using two user modules that were created in
the previous tutorials: Creating a new user library and user module (on page 2-3) and
Creating a user module that returns data arrays (on page 2-14):

e The VSweep user module in the my 2nd 1ib user library, a copy of which is used as
the dependent user library.

e The TwoTonesTwice user module, inthemy 1st 1ib user library, which is the
independent user library that will be called by the VSweep user module.

A copy of the VSweep user module, called VSweepBeep, calls the TwoTonesTwice user
module to signal the end of execution.

Creating the VSweepBeep user module by copying an existing
user module

Open the Vsweep user module:

Start KULT.

Select File > Open Library.
Selectmy 2nd 1ib from the list.
Select OK.

Select File > Open Module.
Select VSweep.c from the list.
Select OK.

N oo gk~ w0 DdPRE

4200A-SCS-KULT-907-01 Rev. D May 2024 2-25

Section 2: KULT tutorials

Model 4200A-SCS KULT and KULT Extension Programming

Copy VSweep. cto the new user module VSweepBeep:

1. Select File > Copy Module. The Copy Module list shown in the following figure opens.

Figure 24: Copy Module list

Copy Module...

Select Library

HP4284ulib
HP4294ulib
HP8110ulib
ki340xulib
KI42xxulib
ki530ulib
KI595ulib
ki622x_2182_ulb
kig2ulib

L5 336ulib
math_utils
Matrizulib
MultiSegmentSweep_ulib

k

2. Selectmy 2nd 1ib (in this case, the user library for the copy is the same as the user

library for the source).

3. Select OK. The Enter New Module dialog opens, as shown here.

Figure 25: Enter New Module dialog

Enter New Module ...

9 Enter New Module Name:

0K

4. Enter the name VSweepBeep.

5. Select OK.

2-26

4200A-SCS-KULT-907-01 Rev. D May 2024

Model 4200A-SCS KULT and KULT Extension Programming Section 2: KULT tutorials

NOTE

The name of the user module must not duplicate the name of any existing user module or
user library in the entire collection of user libraries.

More than one collection of user libraries can be maintained and accessed, each collection
residing in a separate usrlib. However, only one usrlib can be active at a time. For
more information, refer to the Managing user libraries (on page 3-1).

KULT creates a copy of the user module under the new name and displays a message
indicating the need to rebuild the user library. You can skip the rebuild for now. Continue
with the next step.

Open the new VSweepBeep user module:
1. Select File > Open Module.

2. Select VSweepBeep.c from the list. The KULT dialog displays the VSweepBeep user
module.

NOTE

You can also create a copy of the presently open user module in the same user library as
follows:

1. Enter a new name in the User Module text box.

2. Select Apply. Before using the user module, you must save and rebuild the user library.

Calling independent user module from VSweepBeep user module

To call the TwoTonesTwice user module at the end of the VSweepBeep user module:

1. Atthe end of vSweepBeep, immediately before the return (0) statement, add the
following statement:
TwoTonesTwice (Freql, Freg2); /* Beeps 4X at end of sweep. */

2. Inthe Parameters tab area, add the Freql and Freq2 parameters with the values shown
in the following table, as you did when you created the TwoTonesTwice user module,

changing the Default, Min, and Max values as needed.

Parameter entries for the called user module, TwoTonesTwice

Parameter name Data type 110 Default Min Max
Freql long Input 1000 800 1200
Freq2 long Input 400 300 500

4200A-SCS-KULT-907-01 Rev. D May 2024 2-27

Section 2: KULT tutorials

Model 4200A-SCS KULT and KULT Extension Programming

3. Select Apply. The Freql and Freq2 parameters are added to the function prototype as
shown in the following figure.

Figure 26: Completed VSweepBeep user module

Libwary: me_2red_b

Options Help

Module:

| WSwespBasp

Fietumn Type [t

x| Library Visibhe

J

int VSweepBeep(double Vatart,
HumIPoints,

double Vatop, double *Imeas, int
double *Viorce, int HumVPoints, long Fregl, long Fregqg2)

|l lb

Viorce[i]

}

4

forcew(SMULl, w): /* LPTLib function forcaX,
measi (SHUL, &Imeas[i]):
/* Be sure to specify cthe waddrass* of the Array.

v o=y & vatep;
TwoToneaTwice (Freql,

return(0):

which forces a V or I.
f* LPTLib function measX,

*/ -
which measures a V oz
wf

= yv: f* Returns Viorce array for display in UTM Sheet. *f

f* Increments the forced wvoltage. */F

Freq2): /* Beeps 4X at end of sweep. */

/* Returns zero if execution Ok.*/

M

|:

f* End ViweepBaep.c */

Farameters Includes | Dessipion | Buld |

|F‘4w'rrd:ﬁNm Data Type Fin] Defandt M Max Add |
Murrh/Fairis iri Irpust 1 (2] Delele
Freql loreg Irput 1000 BOO | 1200 ey I
Freq2 lareg | Input 400 00 |50 [«

Module code view

KEITHLEY

Specifying user library dependencies in VSweepBeep user
module

Before building the presently open user module, you must specify all user libraries on which
the user module depends (the other user libraries that contain user modules that are called).

The VsweepBeep user module depends onthe my 1st 1ib user library.

2-28

4200A-SCS-KULT-907-01 Rev. D May 2024

Model 4200A-SCS KULT and KULT Extension Programming Section 2: KULT tutorials

To specify this dependency:

1. Inthe Options menu, select Library Dependencies. The Library Dependencies list
opens, as shown here.

Figure 27: Library Dependencies list

Library Dependencies... %

User Libraries I

L5336ulb 4]
Matrixulib
MultiSegmentSweep_ulib

] my_Tst_lib

nvm
OvPControl

parlib |
pmuCompulib

pmuulib

PMU_examples_ulib

PMU_freq_time_ulib

PMU_PCRAM_ulib

PRBCC12K

PRBCMS00 2
1 | >

Apply | Cancel

In general, in the Library Dependencies list box, select all user libraries on which the
presently open user module depends (each selection toggles on and off). For the
VSweepBeep module, selectmy 1st 1lib.

2. Select Apply.

Building the VSweep user module

To build the vSweepBeep user module:
1. Save the VSweepBeep user module.
2. Select the Build tab at the bottom of the dialog to open the Build tab area.

3. Inthe Options menu, select Build Library. The user library builds. You should not see
error messages.

NOTE

If you see error messages, check for typographical errors; then fix and rebuild the module.
If necessary, review Finding build errors (on page 2-11).

4200A-SCS-KULT-907-01 Rev. D May 2024 2-29

Section 2: KULT tutorials Model 4200A-SCS KULT and KULT Extension Programming

Checking the VSweepBeep user module

Check the user module as you did in the previous tutorials by creating and executing a user
test module (UTM) in Clarius. Refer to Checking the user module (on page 2-12) for details.

This tutorial is almost identical to Tutorial: Creating a user module that returns data arrays
(on page 2-14) except that four beeps should sound at the end of execution.

Before proceeding:

1. Connect a 1 kQ resistor between the FORCE terminal of the GNDU and the FORCE
terminal of SMUL1.

2. Instead of creating a new project, reuse the UserModCheck project that you created in

Tutorial: Creating a new user library and user module (on page 2-3). Add to this project a
UTM called v_sweep bp chk.

3. Configure the v_sweep bp chk UTM to execute the VSweepBeep user module, which
is found in the my 2nd 1ib user library.

4. Runthe v_sweep bp chk UTM. Near the end of a successful execution, you should
hear a sequence of four tones, sounded at alternating frequencies.

5. At the conclusion of execution, review the results in the Analyze sheet (or the Graph
document, if configured). If you connected a 1 kQ resistor between SMU1 and GNDU,
used the default UTM parameter values, and executed the UTM successfully, your
results should be similar to the results shown in Checking the VSweep user module (on
page 2-18). The current/voltage ratio for each row of results should be approximately
1 mA/V.

Tutorial: Customizing a user test module (UTM)

This tutorial demonstrates how to modify a user module using KULT. In the ivswitch
project, there is a test named rdson. The rdson test measures the drain-to-source
resistance of a saturated N-channel MOSFET as follows:

Applies 2 V to the gate (V,) to saturate the MOSFET.
Applies 3 V to the drain (Vg1) and performs a current measurement (lq1).
3. Applies 5V to the drain (V42) and performs another current measurement (lq2).

Calculates the drain-to-source resistance rdson as follows:
rdson = (Va2-Va1) / (la2-ld1)

The rdson test has a potential shortcoming. If the drain current is noisy, the two current

measurements may not be representative of the actual drain current. Therefore, the
calculated resistance may be incorrect.

2-30

4200A-SCS-KULT-907-01 Rev. D May 2024

Model 4200A-SCS KULT and KULT Extension Programming Section 2: KULT tutorials

In this example, the user module is modified in KULT so that ten current measurements are
made at V41 and ten more at Vg2. The current readings at Vq: are averaged to yield lq1, and
the current readings at V4, are averaged to yield lqo. Using averaged current readings
smooths out the noise.

The modified test, rdsonAvg, measures the drain-to-source resistance of a saturated
MOSFET. The MOSFET is tested as follows when rdsonAvg is executed:

Applies 2 V to the gate (V) to saturate the MOSFET.

Applies 3 V to the drain (V41) and makes ten current measurements.
Averages the 10 current readings to yield a single reading (lq1).

Applies 5 V to the drain (Vg42) and makes ten more current measurements.

Averages the ten current readings to yield a single reading (lq2).

S e o

Calculates the drain-to-source resistance (rdsonAvg) as follows:
rdsonaAvg = (Va2-Va1) / (la2-ld1)

Open KULT

From the desktop, open the KULT tool by double-clicking the KULT icon. The KULT main
dialog is shown in the following figure.

Figure 28: KULT main dialog

®) KULT: Module "NoName" Library "NoName". - O X
File Edit Options Help
Library: NoName

|

[< | Library Visible :I
< L
I
Parameters Includes] Description I Buid
| Parameter Name Data Type 1/0 Default Min Max

KEITHLEY

4200A-SCS-KULT-907-01 Rev. D May 2024 2-31

Section 2: KULT tutorials

Model 4200A-SCS KULT and KULT Extension Programming

Open the Kl42xxulib user library

1. Select File > Open Library.

2. From the Open Library dialog, select Kl42xxulib.

3. Select OK.

Figure 29: KULT Open Library dialog

Open Library

Open Library
HP4284ulib -]
HP4234ulib
HP8110ulib
kiZa0wulit
i ——

kiS30ulib

KI595ulib
ki622x_2182_ulb
kiB2ulib

LS 336ulib

math_utils

Matrixulib
MultiSegmentSweep_ulib
my_Tst_lib

my_2nd_lib

nvm

-
[P g [
4 I »

Open the Rdson42XX user module

1. From the File menu, select Open Module.

2. From the Open Module dialog, select Rdson42XX.c, as shown in the following figure.

2-32

4200A-SCS-KULT-907-01 Rev. D May 2024

Model 4200A-SCS KULT and KULT Extension Programming Section 2: KULT tutorials

Figure 30: KULT Open Module dialog

KULT: Library “Kl42xxulib”.

Open Module

2

Cancel |

3. Select OK. The Rdson42XX module opens.

Copy Rdson42XX to RdsonAvg

You create the new module by copying the Rdson42XxX module to a module named
RdsonAvg and then making the appropriate changes to the test module.

NOTE

When naming a user module, conform to case-sensitive C programming language naming
conventions. Do not duplicate names of existing user modules or user libraries.

To create the new module:

1. From the File menu, select Copy Module.

2. Select the library for the module. From the Copy Module dialog, select Kl42xxulib.
3. Select OK.

4. In the Enter New Module dialog, type in RdsonAvg.

Figure 31: Enter New Module Name dialog

Enter New Module ...

? Enter New Module Name:

| Rdsondvg

Cancel | 0K

4200A-SCS-KULT-907-01 Rev. D May 2024 2-33

Section 2: KULT tutorials Model 4200A-SCS KULT and KULT Extension Programming

5. Select OK. A reminder that the library using the new module needs to be built is
displayed.

6. Select OK.

Open and modify the RdsonAvg user module

To open the user module:
1. From the File menu, select Open Module.
2. Select RdsonAvg.c from the Open Module dialog.

The RdsonAvg module is shown in the following figure.

Figure 32: KULT module dialog

File Edit Options Help

Library: Ki42xxulib
Module: [Rdsondvg

Return Type [int = | Library Visible Apply
*Rdson) ;I
| =

// Force the first point and measure
forcev(SMU1, 0.0):
forcev(SMU4, 0.0):
forcev (SMU3, Vg):
forcewv (SMU2, Vdil):
measi (SMU2, Idl);

E—

// Force the second point and measure
forcev (3MU2, Vd2):
measi (SMU2, Id2):

rs
=
ld

|E /* End RdsonAvg.c */

1| Includes Description I Build I

| Parameter Name Data Type 170 Default

‘ Min | Max add_|
Id1 | double * | Dutput _ \ [4] Delete |
1d2 double * Output | T |
Rdson | double * | Output \ -

[remniev]

2-34 4200A-SCS-KULT-907-01 Rev. D May 2024

Model 4200A-SCS KULT and KULT Extension Programming Section 2: KULT tutorials

Modify the user module code

In the user module code, you need to replace the measi commands with avgi commands.
While a measi command makes a single measurement, an avgi command makes a
specified number of measurements, and then calculates the average reading. For example:

avgi (sMU2, 1dl, 10, 0.01);

For the above command, SMU2 makes 10 current measurements and then calculates the
average reading (Id1). The 0.01 parameter is the delay between measurements (10 ms).

The source code for the module is in the module code area of the dialog. In this area, make
the following changes.

Under Force the first point and measure, change the line:
measi (SMU2, Idl):;

to

avgi (SMU2, Idl, 10, 0.01); // Make averaged I measurement
Under Force the second point and measure, change the line:
measi (SMU2, Id2);

to

avgi (SMU2, Id2, 10, 0.01); // Make averaged I measurement

Change the line:

*Rdson = (Vd2-Vdl)/ (*Id2- *Idl); // Calculate Rdson
to
*RdsonAvg = (Vd2-vdl)/ (*Id2- *Idl); // Calculate RdsonAvg

Change a parameter name

Change the name of the Rdson parameter:

1. Select the Parameters tab.

2. Scroll down to the parameter Rdson.

3. Select the name and change it to RdsonAvg.
4

Select Apply.

4200A-SCS-KULT-907-01 Rev. D May 2024 2-35

Section 2: KULT tutorials Model 4200A-SCS KULT and KULT Extension Programming

Change the module description

In Clarius, any user test modules (UTMs) that are connected to this user module show the
text that is entered on the Description tab in KULT.

To change the module description:

1.
2.

Select the Description tab.

Above DESCRIPTION, change MODULE: Rdson42xx to MODULE: RdsonAvg, as
shown in the following figure.

Replace all occurrences of Rdson with RdsonAvg.

Figure 33: User module description

Parameters I Includes Descuptlonl Build]

Module: RdsonAvg _:J
Description

Measures the drain to source resistance of a saturated MOSFET.

Thieoe o ammcrAamnlsiohad hars j

Save and build the modified library

You must save and also rebuild the library to ensure that the new module is available for use
by Clarius user test modules (UTMs).

To save and build the user module and library:

1.
2.

Select File > Save Module.

Select Options > Build Library. A dialog is displayed that indicates the build is in
process.

Add the new UTM to the ivswitch project

To add rdsonAvg to the ivswitch project:

1.
2.
3.

Choose Select.
Select Projects.

In the Search box, enter ivswitch and select Search. The Library displays the I-V
Switch Project (ivswitch).

Select Create. The ivswitch project replaces the previous project in the project tree.

Select the Tests tab.

2-36

4200A-SCS-KULT-907-01 Rev. D May 2024

Model 4200A-SCS KULT and KULT Extension Programming Section 2: KULT tutorials

6. Forthe Custom Test, select Choose a test from the pre-programmed library (UTM).

7. Drag Custom Test to the project tree. The test has a red triangle next to it to indicate
that it is not configured.

Select Rename.
Enter rdsonAvg and press Enter.

10. In the project tree, drag rdsonAvg to the 4terminal-n-fet device, after the
rdson test.

11. Choose Configure.

12. In the Test Settings pane, from the User Libraries list, select Kl42xxulib.
13. From the User Modules list, select Rdson42XX.

14. Select Save.

The project tree for the ivswitch project with rdsonAvg added is shown in the
following figure.

Figure 34: Project tree with rdsonAvg added to 4terminal-n-fet device

Project: ivswitch
4 - fterminal-n-fet
&= connect 1
vds-id
subvt
vgs-id
ig-vg
rdson
rdsonAvg

4200A-SCS-KULT-907-01 Rev. D May 2024 2-37

Section 2: KULT tutorials Model 4200A-SCS KULT and KULT Extension Programming

Tutorial: Creating a user module for stepping or sweeping

This section provides a tutorial that helps you set up a user test module (UTM) that supports
stepping or sweeping. This example is similar to the vds-id test. For each gate voltage
step, the test sweeps the drain voltage.

NOTE

Most of the basic steps that were detailed in Tutorial: Creating a new user library and user
module (on page 2-3) are abbreviated in this tutorial. This tutorial adds a user module to the
library my 2nd 1ib, which was created in Tutorial: Creating a user module that returns

data arrays (on page 2-14).

Name a new user module

To name new user library and new user module:

1. Start KULT.

2. Select File > Open Library.

3. Select my_2nd_lib.

4. Select OK.

5. Select File > New Module.

6. For Module, enter vds_id_step_sweep.
7. Select Apply.

Entering the return type

From the Return Type list, select int. This configures the user module to generate an integer
return value.

Entering the user-module code

In the module code-entry area, enter the C language code below for the user module. To
simplify code entry, open the KULT dialog to full-screen view.

2-38 4200A-SCS-KULT-907-01 Rev. D May 2024

Model 4200A-SCS KULT and KULT Extension Programming Section 2: KULT tutorials

int retCode = 0; // This module returns an error or success code to Clarius (shown
in the first column of the data grid).

int stepSteps = 1;

int sweepSteps = 8;

int 1 = 0;

int j = 0;

int stepperID = 1;

double vg = VgStart;

double stepSimTime = 5000.0; // The time to simulate acquisition of one step data.

double pointDelay = 1.0; // Simulated delay between single data points.

double vd = VdStart;

double id = vd / le6; // Simulate id current.

double vgScale = 1.0; // Simulate shift in id data between different steps.

char vgName[32]; // Output names for PostDataDouble data transfer to Clarius.

char vdName[32];

char idName[32];

if (VdStep == 0.0 || VgStep == 0.0)
{
return -1; // Invalid input parameters

}

stepSteps = fabs((VgStop - VgStart) / VgStep) + 1;
sweepSteps = fabs ((VdStop - VdStart) / VdStep) + 1;
pointDelay = stepSimTime / sweepSteps;

for (i = 0; i < stepSteps; i++)

{

vd VdStart;

id = vd / leé6;

// Define output column names for each step (must include stepperID).

stepperID = 1 + 1;

sprintf (vgName, "OutVg(%d)", stepperlD);
sprintf (vdName, "Outvd(%d)", stepperlD);
sprintf (idName, "OutId(%d)", stepperlD);

for (j = 0; J < sweepSteps; Jj++)
{

PostDataDouble (vgName, vgqg);
PostDataDouble (vdName, vd) ;
PostDataDouble (idName, id);
Sleep (pointDelay) ;

vd += VdStep;

id = sqgrt(vd * vgScale) / 1le6;
}

vg += VgStep;

vgScale += 0.2;

}

return retCode;

4200A-SCS-KULT-907-01 Rev. D May 2024 2-39

Section 2: KULT tutorials Model 4200A-SCS KULT and KULT Extension Programming

Entering the user-module parameters

NOTE

When the user module is executed in a UTM, the start and stop voltages must differ.
Otherwise, the first return statement in the code halts execution and returns an error
number (-1). This return code is stored in the Analyze sheet for the test, in a column that is
labeled with the user-module name.

To enter the parameters for the code:
1. Select the Parameters tab.

2. Enter the information for the two voltage input parameters, as shown in the following
table. Select the Add button before adding each new parameter.

Parameter name Data type 1/0 Default Min Max
VdStart double Input 0 -2000 2000
VdStop double Input 10 -2000 2000
VdStep double Input 0.2 -1000 1000
VgStart double Input 1 -20 20
VgStop double Input 5 -20 20
VgStep double Input 1 -10 10
OutVg double * Output — — —
Outvd double * Output — — —
Outld double * Output — — —

3. Select Apply. In the Parameters tab, the function prototype now includes the declared
parameters, as shown in the following figure.

Figure 35: Parameters for the vds_id_step_sweep user module

@& KULT: Module "vds_id_step_sweep.c" Library "my_2nd_lib". — m] x
P p. ¥,
File Edit Options Help

Librany: my_2nd_lib

Module: [wds_id_step_sweep

Retun Type [int - Library Yisible Apply

int vds id step_sweep(double VdStart, double VdStop, double VdStep,
double VgStart, double VgStop, double VgStep, double *CutVg, double
*QutVd, double *Cutld)

Pl |

PostDataDouble (idName, id):
Sleep(pointDelay) ;

vd += VdStep:

id = sgrt(vd * vgScale) / leé;
}

vg += VgStep:

vgScale += 0.2;
}
return retCode; =i
4| | 3
[+ /= End vds_id step_sweep.c */
Parameters Inchudes | Desciiption | Buid |
| Pararngter Mame Data Type 110 Drefault Min Max Add
VgStap double Input 5 20 E
“aStep double Input 1 -10 10
Outtg double Output

2-40 4200A-SCS-KULT-907-01 Rev. D May 2024

Model 4200A-SCS KULT and KULT Extension Programming Section 2: KULT tutorials

Enter the user-module header files

You do not need to enter any header files for the vds_id_step_sweep user module. The
default keithley.h header file is sufficient.

Documenting the user module

Select the Description tab and enter documentation for the user module, based on the
comments provided in the code and other information about the module.

Saving the user module

From the File menu, select Save Module.

Building the user module

To build the user module:

1. Select the Build tab at the bottom of the dialog to open the Build tab area.

2. Inthe Options menu, select Build Library.

3. Scroll down in the KULT Build Library dialog. You should not see error messages.
4. Select OK.

NOTE

If you do see error messages, check for typographical errors, then fix and rebuild the user
module. If necessary, review Finding build errors (on page 2-11).

Setting up the user interface of the user module

On the Clarius Configure pane, the default user interface for a user module shows an image
of the test device and all parameters in one group. You can change the image and how the
parameters are grouped using the UTM Ul Editor tool.

This example briefly describes how to use the UTM Ul Editor tool. For more detalil, refer to
“Define the UTM user interface” in the Model 4200A-SCS Clarius User’s Manual.

4200A-SCS-KULT-907-01 Rev. D May 2024 2-41

Section 2: KULT tutorials Model 4200A-SCS KULT and KULT Extension Programming

To set up the user interface:
1. Close Clarius.

2. From the Windows Start menu, select Keithley Instruments > UTM Ul Editor. The
UTM Ul Editor application opens, as shown in the following figure.

Figure 36: UTM Ul Editor application

[CIrE - o8 X

] i > > > .

M i o i Hel|
The UTHA U Editor allows you to change the | | tpy \y) confiquration#1 m— (©) Test Setiings JGEN

presentation of user test module (UTM)
parameters in the Clarius Configuration pane.
Brief descriptions of the UTM Ul Editor options
are provided here. More detail is in the Clarius
Leaming Center. User Library

UTMUI_Configuration#1

101P3 INWLN (2)

In the user interface (Ul), parameters are
organized into groups. Changing a group does
not change the characteristics of the
parameters. To select a group, select the group
header. The header of the selected group is ‘ v
highlighted.

User Module

The Stepper Settings option allows you to
define the start, stop, and step values for the
user madule. The Output Settings optien
allows you to assign an alias name to the UTM
outputs, You can also set visibility constraints.
for stepper options and outputs, which
determine when the stepper option or eutput is
displayed in Clarius.

The Verify Rules option allows you to define
rules and display error messages if the UTh
configuration does not match the rules,

Keithley user libraries include factory default Ul

ig To restore the Ul to
the factory default, select Restore Default UL All Ul
changes are discarded and replaced with the

factory defaults.

(® Messages

In the right pane Test Settings tab, from the User Libraries list, select my 2nd 1ib.
4. From the User Modules list, selectthe vds id step sweep user module. A default

schematic and group of parameters are displayed for the UTM.

Select the header of a group of parameters.

Select Edit Group. The Edit Group dialog with the default settings is displayed, as
shown in the following figure.

2-42 4200A-SCS-KULT-907-01 Rev. D May 2024

Model 4200A-SCS KULT and KULT Extension Programming

Section 2: KULT tutorials

Figure 37: UTM Ul Editor with Group 1 selected

@ edit Group

Group Title Group Position

Group Parameters

Clarius Center Pane

Parameter Aliag Name
Vdstart
VdStop
VdStep
VgStart
VgStop

VgStep

Control Type

Edit Box
Edit Box
Edit Box
Edit Box
Edit Box

Edit Box

i ==

7. In Group Title, enter vg Stepper.

8. Set the Group Position to Clarius Center Pane and West.

9. Delete the VdStart, VdStop, and VdStep parameters from this group.

10. Select OK to close the Edit Group dialog.
11. Select Add Group.
12.In Group Title, enter Vvd Sweeper.

13. Set the Group Position to Clarius Center Pane and East.

14. Select Add three times. This adds the VdStart, VdStop, and VdStep parameters to this

group, as shown in the following figure.

4200A-SCS-KULT-907-01 Rev. D May 2024

2-43

Section 2: KULT tutorials

Model 4200A-SCS KULT and KULT Extension Programming

Figure 38: Vd Sweeper group in the UTM Ul Editor

W ot Group x
Group Title Group Position Group Width
Vd Sweeper Clarius CenterPane | w | |East | 1 Unit Width |~
o=, »
Group Parameters 0 []]] Y
4
Add Delete Edit
Parameter Alias Name Control Type Units
Vdstart Edit Box
VdStop Edit Box
VdStep Edit Box
=

15. Select OK.

16. Select Stepper Settings. The Edit Steppers dialog is displayed.

17. Select Add. The Vd Sweeper parameters are added.

18. Select OK.

Figure 39: Edit UTM Ul for a stepper

[cait Seeppers

UTM Steppers

G0

Add Delete

Start Parameter Stop Parameter Step Parameter

Visibility Constraints

VdStan |* ‘ Ivasmp | > ‘ Ivusmp

"l 1

2-44

4200A-SCS-KULT-907-01 Rev. D May 2024

Model 4200A-SCS KULT and KULT Extension Programming Section 2: KULT tutorials

19. Select OK. The new groups are displayed.

Figure 40: vds_id_step_sweep in Configure

UTM_UI_Configuration#1 All Parameters

Vg Stepper Vd Sweeper

VgStart | 1 VdStart | 0

VgStop | 5 VdStop | 10

VgStep | 1 VdStep | 0.2

Check the user module in Clarius

Check the user module by creating and executing a UTM in Clarius.

To check the user module:

1.

© N o g bk~ wDN

10.

11.
12.

13.
14.
15.

Open the UserModCheck project that you created in Tutorial: Creating a new user
library and user module (on page 2-3).

Choose Select.

Select Devices.

Select MOSFET, n-type, t terminal (4terminal-n-fet).

Choose Select.

Select the Tests tab.

For the Custom Test, select Choose a test from the pre-programmed library (UTM).

Drag Custom Test to the project tree. The test has a red triangle next to it to indicate
that it is not configured.

Select Rename.

Enter the name vds_id step sweep. Use this UTM test to execute the new user
module.

Select Configure.

In the right pane Test Settings tab, from the User Libraries list, select my 2nd 1ib.
From the User Module list, select vds id step sweep.

Select Run.

Select Analyze to review the results. Each output parameter is repeated based on the
number of steps.

4200A-SCS-KULT-907-01 Rev. D May 2024 2-45

Section 3

User module and library management

In this section:

INTFOAUCTION L. 3-1
Managing user libraries..........ccoccvvvvieeeiiiiieee e 3-1
Dependent user modules and user libraries...........cccccceeeeeenn. 3-9
Formatting user module help for the Clarius Help pane.......... 3-14
Creating project ProMPLS......ccoocviieriieeeiiiiee e 3-15

Introduction

Additional features of KULT include:

e Tools to manage user libraries (on page 3-1)

e Dependent user modules and user libraries (on page 3-9)

e Ability to format user module help for the Clarius Help pane (on page 3-14)

e Ability to create project prompts (on page 3-15)

Managing user libraries

This section addresses the following topics:

e Updating and copying user libraries using KULT command-line utilities (on page 3-1)
describes two command-line utilities. One utility provides a command-line method to
copy user libraries. The other utility provides a means to update user libraries after they
are copied.

e Performing other KULT tasks using command-line commands (on page 3-3) describes a
series of command-line commands. These commands can be used individually or in a
batch file to perform various KULT tasks without opening the KULT user interface.

Updating and copying user libraries using KULT command-line
utilities

This section describes the command-line utilities kultupdate and kultcopy.

Section 3: User module and library management Model 4200A-SCS KULT and KULT Extension Programming

Updating user libraries using kultupdate

If you copy user libraries to a new storage location (another user directory or drive), you
must use the kultupdate utility to update the user libraries. User libraries must be updated
to ensure the correctness of all path information, which is built into the library. The
kultupdate utility rebuilds each user module in the library and also rebuilds the library.
Usage

kultupdate <Ilibrary name> [options]

Options

You can place any of the following options at the [options] position in the command:

e -dep <library dep 1>...[library dep 6]
Specifies up to six libraries on which 1ibrary name depends.

e -hide
Hides l1ibrary name so that it is not visible in Clarius.

e +hide
Shows library name so thatitis visible in Clarius.

Example

Update the KI590ulib library in the active user-library directory, which depends on the
Winulib library:

C:\>kultupdate KI590ulib -dep Winulib

Copying user libraries using kultcopy

The kultcopy utility copies any user library from any accessible storage location to the
active user-library directory. The kultcopy utility:

e Performs kultupdate so that the user library is immediately ready for use. Refer to
Updating user libraries using kultupdate (on page 3-2) for more information.

e Copies the user library that is specified by the "Start-In" user-library directory, which is
the directory in which you start the kultcopy command.

To successfully copy a user library to the active user-library directory, you must start
kultcopy in the following directory:

<source 1lib path>\<source 1lib name>\src
This directory is called the "Start-In" directory, where:
e <source lib path>is any accessible user-library directory.

e <source lib name> is the name of the specific user library to be copied.

3-2 4200A-SCS-KULT-907-01 Rev. D May 2024

Model 4200A-SCS KULT and KULT Extension Programming Section 3: User module and library management

Usage
kultcopy <library name> [options]
Options
Any of the following options may be placed at the [options] position in the command:
e -dep <library dep 1>...[library dep 6]
Specifies up to six libraries on which 1ibrary name depends.
e -hide
Hides l1ibrary name so that it is not visible in Clarius.
e +hide
Shows I1ibrary name so thatitis visible in Clarius.

You can use kultcopy restore the original userlib directory. A backup copy of the userlib
directory is provided at c:\s4200\sys\factory\usrlib.

NOTE

If there are images linked to the original UTMs, the new modules point to the images in the
original directory, even though the files for the images were moved. You need to manually
change the path to the new directory.

Performing other KULT tasks using command-line commands

The KULT command-line interface lets you load, build, or delete user libraries and add or
delete user modules without opening the KULT user interface. This feature is useful when
developing and managing user libraries. The commands can be used individually or in a
batch file.

The general format for a command line instruction is as follows:
kult subcommand -1<library name> [options] [module]

The individual items in the instruction are as follows:

e The item subcommand may be any one of these subcommands:

= add mod
= bld 1lib
= del 1lib
= del mod
= gui

= help

4200A-SCS-KULT-907-01 Rev. D May 2024 3-3

Section 3: User module and library management

Model 4200A-SCS KULT and KULT Extension Programming

gui

new lib
new mod

unzip

zip

e Theitem <library name> specifies the name of the library involved in the
commanded action.

e Theitem [options] includes one or more of these options:

-d<directory name>

-hide

+hide

-dep <library dep 1>..... [library dep 6]
build type

e These options are described in the following descriptions of individual subcommands.

e |f appropriate to the commanded action, [module] specifies the name of the involved
user module.

The sections that follow describe the subcommands.

subcommand

The gui subcommand launches the KULT editor.

Usage

kult gui [option] [type]

The -build type option may be placed at the [options] position in the command. The
following [type] options are available:

® Release
Default option. This option builds the library more efficiently than the Debug option.

e Debug
Use this option if you want to use an integrated development environment, such as
Visual Studio Code, to debug your source code.

Example

kult gui -build type Release

4200A-SCS-KULT-907-01 Rev. D May 2024

Model 4200A-SCS KULT and KULT Extension Programming Section 3: User module and library management

new_lib subcommand

The new 1ib subcommand lets you create a new user library without any user modules. Its
action is equivalent to the following steps in KULT:

e Starting KULT

e Selecting File > New Library
e Entering a new library name
e Selecting OK

e Selecting File > Exit
Usage
kult new lib -1<library name>

The <library name> user library is created in the active user-library directory.

bld_lib subcommand

The bld 1ib subcommand lets you build a user library from the command line. Its action is
equivalent to the following steps in KULT:

e Starting KULT

e Selecting File > Open Library

e Selecting the <Iibrary name> user library

e Selecting OK, selecting Options > Build Library

e After the build is completed, selecting File > Exit
Usage
kult bld 1lib -1<library name> [options]

Builds the <I1ibrary name> user library in the active user-library directory.

Any of the following may be placed at the [options] position in the command:

e -dep <library dep 1>...[library dep 6]
Specifies up to six user libraries upon which I1ibrary name depends.

NOTE

Dependent user libraries must be in the active user-library directory. For more information
about dependent libraries, refer to Dependent user modules and user libraries (on
page 3-9).

4200A-SCS-KULT-907-01 Rev. D May 2024 3-5

Section 3: User module and library management Model 4200A-SCS KULT and KULT Extension Programming

e +hide

Hides Iibrary name so that it is not visible in Clarius.
e -hide

Shows I1ibrary name so thatitis visible in Clarius.

NOTE

The C:\s4200\kiuser\usrlib\<library name>\build folder is created when you
run the b1d 1ib subcommand or select the Build Library menu option. This folder can be
safely deleted for debugging purposes.

del lib subcommand

The del 1ib subcommand lets you delete a library from the command line. Its action is
equivalent to the following steps in KULT:

e Starting KULT

e Selecting File > Delete Library

e Selecting a user library to be deleted

e Selecting OK

e Selecting File > Exit

Usage
kult del 1lib -1<library name>

The <library name> user library is deleted from the active user-library directory.

new_mod subcommand
The new mod subcommand lets you create a new module in a user library. Its action is
equivalent to the following steps in KULT:
e Starting KULT
e Selecting File > Open Library > <library_name>
e Select OK
e Selecting File > New Module
e Entering a new module name
e Selecting Apply

e Selecting File > Exit

3-6 4200A-SCS-KULT-907-01 Rev. D May 2024

Model 4200A-SCS KULT and KULT Extension Programming Section 3: User module and library management

Usage
kult new mod -1<library name> <module>

The <module>module is created in the <Iibrary name> library.

Where:

e <library name> is the target library into which <module> is to be created. It must be
in the active user-library directory.

e <module> is the new module name.

add_mod subcommand
The add mod subcommand lets you add or copy a user module from one user library
(source) ?o another library (target). Its action is equivalent to the following KULT steps:
e Starting KULT
e Selecting File > Open Library
e Selecting the <source 1ib name> source library
e Selecting File > Open Module
e Selecting the <module> source module
e Selecting File > Copy Module
e Selecting the <library name> target library
e Entering a target-module name

e Selecting File > Exit

NOTE

All user modules must be named uniquely, even if they are duplicates that reside in
different user libraries. The add mod subcommand automatically assigns a target-module
name that is a derivative of the source-module name. The naming convention is as follows:

<source library name>_<module>.

Usage
kult add mod -1<library name> [-d<source lib path>\source lib name>\src] <module>
Where:

e <library name> is the target library into which <module> is to be copied. It must be
in the active user-library directory.

e <source lib path>is any accessible user-library directory.

4200A-SCS-KULT-907-01 Rev. D May 2024 3-7

Section 3: User module and library management Model 4200A-SCS KULT and KULT Extension Programming

e <source lib name> is the name of the specific user library from which <module> is
to be copied.

e <module> is the source user module.

You must use the -d option when you execute add_mod in a directory other than

<source 1lib path>\<source 1lib name>.

del_mod subcommand

The del mod subcommand lets you delete a module from the command line. Its action is
equivalent to the following steps in KULT:

e Starting KULT

e Selecting File > Delete Module

e Selecting a user module to be deleted
e Selecting OK

e Selecting File > Exit

Usage

kult del mod -1<library name> <module>

Where:

e <library name> is the target library from where <module> will be deleted. It must be
in the active user-library directory.

e <module> is the name of the module to be deleted.

zip subcommand

The zip subcommand creates a . zip file for a user library.

Usage
kult zip -1<library name> [password] <zipfile name>

The <Ilibrary name> user library is created in the active user-library directory.

The [password] parameter is optional.

3-8 4200A-SCS-KULT-907-01 Rev. D May 2024

Model 4200A-SCS KULT and KULT Extension Programming Section 3: User module and library management

unzip subcommand

The unzip subcommand unzips a file containing a KULT library.

Usage

kult unzip [-dest path] [password] <zipfile name>

Where:

e [-dest path] is the target directory where the file will be unzipped.

e [password] is required if the file was compressed using the password parameter in the

zip subcommand.

The <zipfile name> archive is unzipped in the active user-library directory unless the [-
dest path] parameter is specified. The [-dest path] parameter should not be used
when you import a user library.

help subcommand

The help subcommand displays all usage information for subcommands and options.

Usage

kult help

Dependent user modules and user libraries

KULT allows a user module to call other user modules. A called user module can be in the
same user library as the calling module or can be in another user library. When the module
that you are creating calls a module in another user library, you must:

1. Select Options > Library Dependencies.
2. Specify each called library from the list that is displayed.

You must select user module and user-library dependencies carefully. Observe
the following:

e Try to put user modules with interdependencies in the same user library and minimize
the interdependencies between libraries. This practice helps to avoid problematic user
library dependency loops (Lib1 relies on Lib2, Lib2 relies on Lib3, Lib3 relies on
Libl).

e |f a user module in one user library must depend on user modules in other user libraries,

take care when selecting the user libraries to be linked with the user module under
development. The next section provides guidance.

4200A-SCS-KULT-907-01 Rev. D May 2024 3-9

Section 3: User module and library management Model 4200A-SCS KULT and KULT Extension Programming

NOTE

The user libraries to be linked are saved so that future rebuilds do not require the
dependencies to be selected again. This information is stored in the
<library name> modules.mak file in the

$KI_KULT PATH$\<library name>\kitt obj directory.

e Structure dependencies hierarchically to avoid circular dependencies, and then build the
dependent user libraries in the correct order. The next two sections provide guidance.

Structuring dependencies hierarchically

You can avoid user library circular dependency by calling user libraries in a hierarchical
design, as illustrated in "Hierarchical design for user-library dependencies" below.

Observe the following:

e Design lower-level user modules in the calling hierarchy so that they do not require
support from higher-level modules. That is, lower-level user modules should not require
calls to higher-level modules to perform their required tasks.

e Use several general-purpose low-level-library user modules to do a task rather than a
single, do-all, higher-level-library user module.

You may find it helpful to prefix user modules with the user-library name as an identifier, for
example, 1iba ModuleName for user modules in 1iba. This avoids duplicate user module
names and prevents confusion with similarly named modules that are in other user libraries
and source files. When you execute the File > Copy Library command, KULT automatically
appends the user library name to each user module in the new user library name. KULT also
appends the library name, as a suggestion, when you execute the File > Copy Module
command.

In the following table, the series of coded user modules amplifies the hierarchical
dependencies shown in the following figure.

3-10 4200A-SCS-KULT-907-01 Rev. D May 2024

Model 4200A-SCS KULT and KULT Extension Programming Section 3: User module and library management

Coded user modules illustrating the use of hierarchical user library dependencies

Hierarchy |User-library 'User-module
level name name User-module code
0 liba Test void Test (void)

{
printf ("In liba, calling CalledAl () \n");

CalledAl () ;
}
1 libal CalledAl void CalledAl (void)

{
printf ("In libal, calling CalledA2()\n");

CalledA2 () ;
}
2 liba2 CalledA2 void CalledA2 (void)

{
printf ("In liba2, calling CalledA3()\n");

CalledA3 () ;
}
3 liba3 CalledA3 void CalledA3 (void)

{
printf ("In liba3, making no calls()\n");

}

A user module in 1iba calls a user module in 1ibal. In turn, a user module in 1ibal calls
a user module in 1iba2. Finally, a user module in 1iba2 calls a user module in 1iba3.

4200A-SCS-KULT-907-01 Rev. D May 2024 3-11

Section 3: User module and library management

Model 4200A-SCS KULT and KULT Extension Programming

Figure 41: Hierarchical design for user library dependencies

LEVEL O
Dependent user
library
liba
(Library)
Test
(Module)
|
LEVEL 1
Dependent user
library
libal
(Library)

CalledAl

(Module)

Create, edit, and save

interdependent user libraries:
highest-level modules first

LEVEL 2
Dependent user
library

Using selections in the

KULT options menu, do

the following for each

module, lowest level first:

1. Compile the module

2. In the Library Dependencies
list, select its library
(such as 1iba3).

3. Build its library

liba?2
(Library)

CalledA2

(Module)

LEVEL 3
Dependent user
library

liba3
(Library)

CalledA3

(Module)

3-12

4200A-SCS-KULT-907-01 Rev. D May 2024

Model 4200A-SCS KULT and KULT Extension Programming Section 3: User module and library management

Building dependent user libraries in the correct order

When KULT builds a user library that depends on other user libraries, it must link to each of
these libraries. For example, when KULT builds 1iba, the following linkages occur: 1iba is
linked with 1ibal, the 1iba/libal pair is linked with 1iba2,the liba/libal/liba?2
trio is linked with 1iba3, and so on. Therefore, a series of hierarchical dependencies
requires a reverse hierarchical build order, starting first with the lowest-level user library.
Before building any dependent user library, you must first successfully build each library on
which it depends, as illustrated below:

e |If 1iba depends on 1ibal, 1iba cannot successfully build until 1iba1l has been built.

e If, additionally, 1ibal depends on 1iba2, both 1iba and 1ibal cannot successfully
build until 1iba2 has been built.

e Finally, if 1iba2 depends on 1iba3, then the three higher level user libraries (1iba,
libal, and 1iba?2) cannot successfully build until 1iba3 has been built.

The following procedure illustrates the correct reverse build order for the dependencies
shown in the table and figure in Structuring dependencies hierarchically (on page 3-10). This
is a general procedure based on the assumption that each of the interdependent user
modules are newly created or were edited since the last build. You do not need to repeat
builds that are already complete up to a given level of dependency.

Build the Level 3 user module and user library:

1. Build the saved CalledA3 user module, which is in the 1iba3 user library (in the KULT
Options menu, select Build).

2. Build the 1iba3 user library (in the KULT Options menu, select Build).

Build and set dependencies for the Level 2 user module and user library:

1. Build the saved CalledA2 user module, which is in the 1iba2 user library.
2. Select Options > Library Dependencies.

3. Select 1iba3 from the Library Dependencies list box.

4. Select Apply.

5. Build the 1iba2 user library.

4200A-SCS-KULT-907-01 Rev. D May 2024 3-13

Section 3: User module and library management Model 4200A-SCS KULT and KULT Extension Programming

Build and set dependencies for the Level 1 user module and user library:

1. Build the saved CalledAl user module, which is in the 1ibal user library.
2. Select Options > Library Dependencies.

3. Select liba2 from the Library Dependencies list box.

4. Select Apply.

5. Build the 1iba1l user library.

Build and set dependencies for the Level 0 user module and user library:
1. Build the saved Test user module, which is in the 1iba user library.
2. Select Options > Library Dependencies.

3. Select libal from the Library Dependencies list box.

4. Select Apply.

5. Build the 1iba user library.

This reverse hierarchical build order results in a linking scheme that satisfies the dynamic
linking requirements of Microsoft® Windows®.

Formatting user module help for the Clarius Help pane

If your user module includes a help description, but it is not set up for HTML, when you
create a UTM in Clarius, the Help pane displays the Open UTM Comments button. If you
select this button, text from the Description tab in KULT is displayed in an ASCII

browser dialog.

You can set up this help to display as formatted HTML in the Help pane using PHP
Markdown Extra tools. On the first line of the description, add the following stylesheet and
MarkdownExtra code:

<!--MarkdownExtra-->

<link rel="stylesheet" type="text/css"
href="http://clariusweb/HelpPane/stylesheet.css">

In order to see the help in Clarius, you must build the UTM and rebuild the library after
entering the Markdown code.

3-14 4200A-SCS-KULT-907-01 Rev. D May 2024

Model 4200A-SCS KULT and KULT Extension Programming Section 3: User module and library management

To format the text, you can use some of the following options:
e Create afirst level heading: Place ===== under a line to center and bold the line.
(You can use any number of = characters.)

e Create a second level heading: Place ——------ under a line to bold the line. (You
can use any number of - characters.)

e To create list: Insert a blank line before the start of the list, then use 1., 2., and so on to
number each item in the list.
e |talicize text: Place * before and after the text to be italicized.

e Display text in a fixed-width font: Put six spaces before each line of the text or use
four tilde characters (~~~~) before and after the lines of text.

You can make changes to the . c file of the user module with KULT or a text editor. After

saving changes, to view the changes, select another project tree object and then return to
the UTM.

An example of the code entered in the Description tab is shown in Documenting the user
module (on page 2-9). An example of the result in the Help pane in Clarius is shown in
Checking the user module (on page 2-12).

For information on additional formatting options, refer to the PHP Markdown Extra website of
Michel Fortin (michelf.ca/projects/php-markdown/extra/).

PHP Markdown Lib Copyright © 2004-2015 Michel Fortin (michelf.ca/). All rights reserved.

Based on Markdown. Copyright © 2003-2005 John Gruber, Daring Fireball
(daringfireball.net/). All rights reserved.

Creating project prompts

KULT provides user modules that you can use to create dialogs to pause a test sequence
with a prompt. These dialogs are available as user modules, shown in the following table.

You define the text message for the prompt. When one of these user modules is run, the
test sequence pauses. The test sequence continues when a button on the dialog is selected.

Winulib user library

User module Description

AbortRetryIgnoreDialog Pause test sequence with a prompt to Abort, Retry or Ignore
InputOkCancelDialog Pause test sequence for an input prompt; enter input data (OK) or Cancel
OkCancelDialog Pause test sequence with a prompt to continue (OK) or Cancel
OkDialog Pause test sequence with a prompt to continue (OK)
RetryCancelDialog Pause test sequence with a prompt to Retry or Cancel
YesNoCancelDialog Pause test sequence with a Yes, No, or Cancel decision prompt
YesNoDialog Pause test sequence with a Yes or No decision prompt

4200A-SCS-KULT-907-01 Rev. D May 2024 3-15

https://michelf.ca/projects/php-markdown/extra/
https://michelf.ca/projects/php-markdown/extra/
https://michelf.ca/
https://michelf.ca/
https://daringfireball.net/
https://daringfireball.net/

Section 3: User module and library management Model 4200A-SCS KULT and KULT Extension Programming

Using dialog boxes

The winulib user library has user modules for six action or decision dialogs and one input
dialog. The dialog, with example prompts, are shown in Dialog formats (on page 3-16).

The text message for a prompt is entered by the user into the user module. See “Winulib

user-library reference” in the Model 4200A-SCS Clarius User's Manual for details on the
user modules.

NOTE

An example using the OK dialog is provided in Dialog test examples (on page 3-17).

Dialog formats

The OK dialog in the following figures has only one button. You can use this dialog to pause
a test sequence to make an announcement (for example, "Test Finished"), or prompt for an

action (for example, "Connect 590 to DUT"). When OK is selected, the test sequence
continues.

B Action Required b

Test Complete.
l Click QK to continue.

ok |

The other dialogs have two or three buttons, as shown in the following examples. When a
button on a dialog is selected, a status value that corresponds to that button is placed in the
Analyze sheet for the action. If there are input parameters, the entries for the input

parameters are placed in the Analyze sheet. You can pass a parameter value into a user-
created routine.

First test run complete.
| Continue to second run?

Yes Mo

3-16 4200A-SCS-KULT-907-01 Rev. D May 2024

Model 4200A-SCS KULT and KULT Extension Programming Section 3: User module and library management

B Action Reguired X

Test 2 failed
Repeat Test 27
Select Cancel to cancel all tests.

eg | Na | Cancel J

To pass parameters, the dialog user module must be called from another user-created user
module that is designed for parameter passing. A parameter that is in the Analyze sheet is
passed to a routine in the user-created user module to perform the appropriate operation or
action.

NOTE

An example to demonstrate parameter passing is provided in Dialog test examples (on
page 3-17).

Dialog test examples

The following examples demonstrate how you can use dialogs in a test sequence.

Example: Announce end of test

For this example, you will create a user test module (UTM) that uses the OK dialog user
module. This dialog announces the end of a test sequence. You can use this UTM in any
project at the end of any test sequence.

To create an end-of-test announcement:

1. Inthe Clarius project tree, select the last test. The announcement occurs after this test.
Choose Select.

Select the Tests tab.

For the Custom Test, select Choose a test from the pre-programmed library (UTM).

o &~ DN

Drag Custom Test to the project tree. The test has a red triangle next to it to indicate
that it is not configured.

Select Rename.
Enter the name End of test prompt.

Select Configure.

© ©® N o

In the Test Setting pane on the right, set the User Libraries to Winulib.

4200A-SCS-KULT-907-01 Rev. D May 2024 3-17

Section 3: User module and library management Model 4200A-SCS KULT and KULT Extension Programming

10. Set User Modules to OkDialog.
11. For NumberOfMessages, enter 2.
12. For MessagelText, enter Test Finished.

13. For Message2Text, enter Click OK to continue. An example is shown in the
following figure.

Figure 42: New UTM using OkDialog user module

ings gy
End of test prompt#1 All Parameters ©) or

End of test prompt#1

User Libraries:

Winulib [+

User Modules:

OkDialog ‘ v

Dialog Settings

NumberOfMessages

[N}

MessagelText | Test Finished

Message3Text

MessagedText

Message2Text | Click OK to continuel |

14. Select Save.

When you run the test sequence, the end of test dialog displayed, as shown in the following
figure. Select OK to continue.

B’ Action Required b

Test Complete.
l b Click OK to continue.

OK |

3-18

4200A-SCS-KULT-907-01 Rev. D May 2024

Section 4

KULT Extension for Visual Studio Code

In this section:

INTFOAUCTION L. 4-1
INSEAIALION ...t 4-1
Setting up Visual Studio Code for library development............ 4-9
Visual Studio cOde OVEIVIEWccceeeeieeeieieee e, 4-13
KULT SId€ DA ...t 4-17
Working with user libraries in Visual Studio Code.................. 4-18
Working with modules in Visual Studio Code.......................... 4-25
Debugging librariescccceeeeeiiiiiiiiee e 4-31
Introduction

The Keithley KULT Extension for Visual Studio Code gives you the ability to write, compile,
and debug user libraries outside of KULT. Combining the user-friendly Visual Studio Code
editor with KULT creates an integrated development environment (IDE).

This section describes how to download, install, and set up Visual Studio Code and the
KULT Extension.

You can use the KULT Extension for Visual Studio Code on a computer with Clarius V1.8 or
higher installed. All features for the KULT Extension are available on the computer version
of Clarius except the debugging tool. Installation and setup instructions are the same on the
4200A and the computer.

NOTE

The documentation in this section was verified against Visual Studio Code version 1.71.

Installation

You can install Visual Studio Code and the KULT Extension with or without a connection to
the internet on the instrument.

These instructions provide information on installing the KULT Extension for the first time and
for updating it if Clarius was reinstalled.

Section 4: KULT Extension for Visual Studio Code Model 4200A-SCS KULT and KULT Extension Programming

Download Visual Studio Code

If you cannot connect to the internet from the instrument, use another computer to download
Visual Studio Code.

To download Visual Studio Code:

1. Go to the Visual Studio Code download site (code.visualstudio.com/download).

2. Download the Windows User Installer, either 32-bit or 64-bit.

3. If you are downloading from another computer, copy the installation file to a USB
flash drive.

Install Visual Studio Code

To install Visual Studio Code:

1. If you downloaded the installation files to a USB flash drive, copy the files to the
instrument.

Start the installer.
Complete the installation wizard.

On the Select Additional Tasks dialog, select Add to PATH (requires shell restart).
This allows Visual Studio Code to be called from the command line.

5. Make other selections as needed and complete the wizard.

Figure 43: Select additional tasks

ia Setup - Microsoft Visual Studio Code (User) - X
Select Additional Tasks
Which additional tasks should be performed?

Select the additional tasks you would lie Setup to perform whie instaling Visual Studio Code, then dick
Next.

Additonal icons:

[[] Create a desktop icon

Other:

[[] Add "Open with Code" action to Windows Explorer file context menu

[[] Add "Open with Code" action to Windows Explorer directory context menu
[Register Code as an editor for supported fie types

4 Add to PATH (requires shel restart)

<gock [met> || conce

4200A-SCS-KULT-907-01 Rev. D May 2024

https://code.visualstudio.com/download
https://code.visualstudio.com/download

Model 4200A-SCS KULT and KULT Extension Programming Section 4: KULT Extension for Visual Studio Code

Install extensions with an internet connection

To install Visual Studio Code extensions:

1. From Visual Studio Code, select the Extensions icon in the left navigation. The

Extensions pane opens.

Figure 44: Extensions icon
2. Search for Cc++ in the Marketplace and select C/C++.

3. Select Install.
Figure 45: Install the C/C++ Extension

W The ot Sdection View GO Run Terminal MNelp

C/Ces panr
C/C++ InteidSeme. debugang and .
Mcronaft wrzat

C+ + Intellisense

C/C + Clang Command Adapter Detall Featurs

4. At the top of the Extensions: Marketplace pane, select ... and select Install from VSIX.

Figure 46: Install from VSIX

] File Edit Selection View Go Run Terminal Help

C/Ce+

C/C++ IinteliSense, debugging, ani

Microsoft how Disabled Extenssor
C+ + Intellisense

CJ/C nsense with the help ot

C/C+ + Clang Command Adapter

Compietion and Diagnostic

Code snippets for C/C++

Die All instatied tx

Better C+ + Syntax
The bleeding edge of C-hike syntax

Seff Hykin L

Show Installed Exter

SRt L Sort By: Install Count
C/C++ Compile Run il it

Compile & Run single c/c+ + files "
danielpinto8zzb n

C/C++ Snippets oc 14 ' =

4200A-SCS-KULT-907-01 Rev. D May 2024

4-3

Section 4: KULT Extension for Visual Studio Code

Model 4200A-SCS KULT and KULT Extension Programming

5. Select C:\s4200\vscode\kult-extension.vsix.

6. Select Install. This installs the KULT Extension to Visual Studio Code.

Figure 47: Install the KULT Extension to Visual Studio Code

- . A
Organize «

a2 2\

Leal

) Install from VSIX

Captures

y ThisPC » 42004-5C5(C) » 4200 » wscode

Mew folder

2 Mame

] . .
[l_. kult-extension.vsix

7. Close Visual Studio Code and reopen to complete the installation and enable all

extensions.

8. Continue to Set up Visual Studio Code for Library Development (on page 4-9).

Install extensions without an internet connection

If you do not have an internet connection, you need to use another computer to go the
Visual Studio Marketplace to download the Microsoft C/C++ Extension.

To download the Microsoft C/C++ Extension:

1. Goto the C/C++ page of the Visual Studio Marketplace
marketplace.visualstudio.com/items?itemName=ms-vscode.cpptools.

2. Scroll down to Offline Installation and select the link
https://github.com/Microsoft/vscode-cpptools/releases.

Figure 48: Offline installation options

Offline installation

onnection In

to the internet

ris behind a strict firewall, you may need to use

install them by running VS Code’s "Install from VSIX..."

our platform-specific packages and

command. These “offline’ packages are available at

Ir-'.';,

Package
cpptools-linux.vsix
cpptools-linux32.vsix
cpptools-osx.vsix

cpptools-win32.vsix

Platform

Linux 64-bit

Linux 32-bit (available up to version 0.27.0)
macOS

Windows 64-bit & 32-bit

4-4

4200A-SCS-KULT-907-01 Rev. D May 2024

https://marketplace.visualstudio.com/items?itemName=ms-vscode.cpptools
https://marketplace.visualstudio.com/items?itemName=ms-vscode.cpptools

Model 4200A-SCS KULT and KULT Extension Programming Section 4: KULT Extension for Visual Studio Code

3. Find the version with the Latest Release tag that is verified. Select the version number to
view the files. An example is shown in the following graphic.

Figure 49: Example of a version tagged with Latest Release and Verified

Latest release

0.29.0

R “ sean-mcmanus released this on Jul 15
O~ 360122 S

Verified

Instructions

Compare v

To use the “offline” .vsix (that doesn't download OS-based deper
and run the “Install from VSIX" command in VS Code.

Requirements

e VS Code 1.44.0 or later.

¢ 32-bit x86 Linux is no longer supported. #5346

4. Download cpptools-win32.vsix.

Figure 50: Microsoft C/C++ extension

* fAszels 5

B epptaaks-limvsi

D cpplooks-osx.wsix

D cpplooks-wind 2 vsix

:I Lource code (zip)

:I Source code (Targ:

5. Copy the file to a USB drive.

Install the Microsoft C/C++ Extension on the 4200A-SCS:

1. Copy cpptools-win32.vsix from the USB drive to the C:\s4200\vscode folder on

the 4200A-SCS.
Open Visual Studio Code.

3. Select the Extensions icon in the left navigation. The Extensions pane opens.

Figure 51: Extensions icon

4200A-SCS-KULT-907-01 Rev. D May 2024 4-5

Section 4: KULT Extension for Visual Studio Code Model 4200A-SCS KULT and KULT Extension Programming

4. Select ... at the top of the Extensions pane.
5. Select Install from VSIX.
6. Select the cpptools-win32.vsix file and select Install.

Figure 52: Install from VSIX with no internet connection

File Edit Selection View Go Run Terminal Help

’G Welcome

v POPULAR 2]

7. Select ... at the top of the Extensions pane again.
8. Select Install from VSIX.
9. Selectthe kult-extensions.vsix file and select Install.

10. Close Visual Studio Code and reopen to complete the installation and enable all
extensions.

11. Continue to Set up Visual Studio Code for Library Development (on page 4-9).

Updating the KULT Extension after installing Clarius

If you installed a new version of Clarius, you must uninstall and reinstall the KULT
Extension.

To uninstall the KULT Extension:
1. Open Visual Studio Code.

2. From Visual Studio Code, select the Extensions icon in the left navigation. The
Extensions pane opens.

Figure 53: Extensions icon

H:I|:|

4-6 4200A-SCS-KULT-907-01 Rev. D May 2024

Model 4200A-SCS KULT and KULT Extension Programming Section 4: KULT Extension for Visual Studio Code

3. Select the KULT Extension.

Figure 54: Visual Studio Code Extension Marketplace

KULT-Extension
Keithley Instruments KULT language e..

Keithley-Instruments ‘E}

B

4. Select Uninstall.

Figure 55: Uninstall the KULT Extension

Efas

KULT-Extension

it

ml@l'

a

WULT-Exienalon 141
Eithiey Inanrumenis LT Langeisge &

iy bt

5. Close Visual Studio Code.

To reinstall the KULT Extension:

1. From Visual Studio Code, select the Extensions icon in the left navigation. The
Extensions pane opens.

Figure 56: Extensions icon

H_L:I

4200A-SCS-KULT-907-01 Rev. D May 2024 4-7

Section 4: KULT Extension for Visual Studio Code Model 4200A-SCS KULT and KULT Extension Programming

2. At the top of the Extensions: Marketplace pane, select ... and select Install from VSIX.

Figure 57: Install from VSIX

] rFile Edit Selection View Go Run Teminal Help

e D

m

tencion C/C++)
xtension: C/C A

& Show Installed Extensions
.H
C/Ce»
C/C++ IntelhSense deb aging, ye
Microsoft o REE— i
C+ + Intellisense & Ll
C/C++ Intellisense with the help of n
sustin L Show Recommend
C/C++ Clang Command Adapter v
Compietion and Diagnostic for C/C art By inetall Count
Yasuaki MITAN n Sont B all Cot
Sort By: Rating
C/C++ Compile Run) .
Compsle & Run single c/c++ files & Sort By: Name
.'.‘.nrri;nw'..;,:», n
jt

C/C+ + Snippets

pde snippets for C/C++

Better C+ + Syntax

3. Select C:\s4200\vscode\kult-extension.vsix.

4. Select Install.

Figure 58: Install the KULT Extension to Visual Studio Code

) Install from VSIX
— v A » This PC » 4200A-5C5(C) » =4200 » wscode
Organize « Mew folder
&2 Z:\ A Name B
Captures [-3 kult-extension.vsix

5. Close Visual Studio Code and reopen to complete the installation and enable all
extensions.

4-8 4200A-SCS-KULT-907-01 Rev. D May 2024

Model 4200A-SCS KULT and KULT Extension Programming Section 4: KULT Extension for Visual Studio Code

Setting up Visual Studio Code for library development

Before using Visual Studio Code for developing KULT libraries, you need to open the user
library so that you can access all the libraries without switching folders. You can open single
user libraries by opening the folder of the user library. On startup, Visual Studio Code
reopens the last folder opened.

You also need to create the Visual Studio Configuration files before you open a single

library. Visual Studio Code configuration files adopt the features of Visual Studio Code to be
used with Keithley User Libraries.

Opening the user library in Visual Studio Code

To open the user library folder:

1. Goto File > Open Folder to select a folder to open in Visual Studio Code. You must
select a valid user library folder to use the KULT Extension.

Figure 59: Open folder dialog

®J File Edit Selection View Go Debud

Mew File Crl+M

r"\ = I'.-""-'I.P ':l:"lu'\' ':trl T Slﬂ ft T r"\

Open File... Ctrl+C

Open Folder... Ctr+K Cir+O

Open Workspace..

2. Open the usrlib folder C:\s4200\kiuser\usrlib.

Creating the Visual Studio Code configuration files

Visual Studio Code configuration files adopt the features of Visual Studio Code to be used
with Keithley User Libraries.

The c_cpp properties.json configuration file controls the Intellisense features of the
C/C++ Extension from Microsoft, such as compiler-specific syntax checking and header file
paths. Intellisense errors may occur if these features are not configured for Keithley user

libraries. The errors do not affect compilation or code execution in Clarius, but may make
code difficult to troubleshoot.

4200A-SCS-KULT-907-01 Rev. D May 2024 4-9

Section 4: KULT Extension for Visual Studio Code Model 4200A-SCS KULT and KULT Extension Programming

The 1aunch. json file has configuration settings for GNU Debugger (GDB), which is used
when debugging. Debugging attaches GDB to the Clarius running process
UTMServer.exe.

A .vscode folder is created with the configuration files in the folder that is open (workspace
path). All files in the workspace path reference these configuration files. If the usr1ib folder
is open, the configuration files can be created once, and all the libraries will use them. If you
are opening individual libraries, these files need to be created for each library the first time it
is opened. Created configuration files can be edited later. The file settings.json
contains Visual Studio Code workspace level configuration settings.

Create the C/C++ Intellisense configuration file

To create the C/C++ Intellisense configuration file:
1. Open the Command Palette by selecting View > Command Palette.
2. Search KULT to filter for KULT Extension commands.

3. Select the command KULT: Create C/C++ Intellisense Configuration File. This
generates the ¢_cpp properties.json configuration file and places it in the
.vscode folder in the working directory. The command does not overwrite an existing
configuration file.

Figure 60: Generate the c_cpp_properties configuration file

C_cpp_properties.json - usrib - Visual Studic Code

KULT: Create C/C++ Intellisense Configurat :
KULT: Focus on Functions View e
KULT: |
KULT: Fo

4. Open the KULT side pane by selecting KULT on the left side of the screen.
Select a library in the Libraries pane.
In the Miscellaneous pane at the bottom of the KULT side pane, select the
c_cpp_properties.json file. Add paths to header files in the includePath settings.

Paths are entered in quotes and separated by commas. This file can be updated at
any time.

4-10 4200A-SCS-KULT-907-01 Rev. D May 2024

Model 4200A-SCS KULT and KULT Extension Programming

Section 4: KULT Extension for Visual Studio Code

NOTE

The paths to the include folder, usrlib folder, and compiler are necessary for most user
libraries and are automatically entered. Deleting these paths causes Intellisense errors in

factory-user libraries.

Figure 61: c_cpp_properties

“cStandard"”: “ci1"”

"cppStandard”: "

Create the launch configuration file

To create the launch configuration file:

1. Open the Debug side bar by selecting the debug icon on the left side.

2. Select Create a launch.json file.

4200A-SCS-KULT-907-01 Rev. D May 2024

4-11

Section 4: KULT Extension for Visual Studio Code

Model 4200A-SCS KULT and KULT Extension Programming

Figure 62: Create a launch.json file

@] File Edit Selection View Go Run

Open a file which can be debugged

or run

3. Select KULT Attach Process. The 1aunch. json file is added with the settings to
attach to the UTM Server. The file can be accessed later in the Miscellaneous tab of the

KULT side bar.

Figure 63: KULT Attach Process

4-12

4200A-SCS-KULT-907-01 Rev. D May 2024

Model 4200A-SCS KULT and KULT Extension Programming Section 4: KULT Extension for Visual Studio Code

Figure 64: Tab with launch.json

"program”: "${command:extension.getUTMServerPath}”,

"processId™: "§{command:extension.selectUtmServerProcess}”,

“&{command : extension. getgdbPath}”™,

“description™: "Enable pretty-printing for gdb”,
"text™: "-enable-pretty-printing”,
"ignorefailures™: true

Visual Studio code overview

The following topics describe the features of Visual Studio Code. To learn more about Visual
Studio Code as an editor, visit Visual Studio Code (code.visualstudio.com/).

Opening Visual Studio Code

To open Visual Studio Code, select the desktop icon or select Visual Studio Code in the
Windows Start Menu.

Figure 65: Visual Studio Code

Wisual Studio
Code

4200A-SCS-KULT-907-01 Rev. D May 2024 4-13

https://code.visualstudio.com/
https://code.visualstudio.com/

Section 4: KULT Extension for Visual Studio Code Model 4200A-SCS KULT and KULT Extension Programming

Visual Studio Code user interface

Important parts of the main user interface are labeled in the following figure.

Figure 66: Visual Studio Code user interface components

T Module: BeepCharge

: e tylesheet™ t text rehs 4 - Description
2 This function sounds 3 comical batthe cry with beeps through the default system speaker.
) i Inputs @

Return values

®

1 | Terminal menu | Run Task shows all tasks available in Visual Studio Code. Run Build Task displays a
subset of the tasks specific to building. KULT build tasks are specific to a library that can
be selected by opening a library module.

2 | Side bar Displays views that assist you when editing. You can switch views using the icons in the
activity bar next to the side bar.

3 | Editor Displays open files. You can right-click the tabs to change the view and display multiple
files.

4 | KULT Module Make changes to the module parameters and code.

5 | Panels Manage user output. See Panels (on page 4-15) for more information.

Activity bar

The Visual Studio Code side bar includes an activity bar that allows you to switch between
views and additional context-specific indicators. An example of the activity bar is shown in
the following figure.

4-14 4200A-SCS-KULT-907-01 Rev. D May 2024

Model 4200A-SCS KULT and KULT Extension Programming Section 4: KULT Extension for Visual Studio Code

Figure 67: Visual Studio Code activity bar with KULT Extension

Explorer
Search
Source Control

Debug

Extension Marketplace

@l ULT Extension

The activity bar includes:

Explorer: Displays all files in the Visual Studio Code working directory.

Search: Search and replace options for open files.

Source control: Not used by the KULT Extension.

Debug: Allows you to monitor variables, threads, and breakpoints during debug mode.
Extension marketplace: Install and uninstall extensions to Visual Studio Code.

KULT: Displays libraries and modules, build functions, and other useful tools for
developing libraries. See KULT side bar (on page 4-17) for additional information.

Panels

You can display panels below the editor region. Panels display information to the user, such
as output and debug information and errors.

To display panels, select View > Open View > Panel.

Panels include:

Output: Certain nonbuild KULT Extension functions, such as Clean Library, provide
messages here.

Terminal: Displays output from build tasks in the same format as KULT.
Debug Console: Used for expression evaluation and other tools during debugging.

Problems: Displays various errors found before and during compilation. Select an error
message in the Problems panel to display the line of code in the editor.

4200A-SCS-KULT-907-01 Rev. D May 2024 4-15

Section 4: KULT Extension for Visual Studio Code Model 4200A-SCS KULT and KULT Extension Programming

Command Palette

The Command Palette provides access to all Visual Studio Code commands, including the
most commonly used commands for the KULT Extension.

To open the Command Palette, select View > Command Palette from menu bar.

To display only KULT commands, type KULT in the search bar, as shown in the
following figure.

Figure 68: Command Palette

KULT: Create C/C+ + Intelisense Configuration File recenthy
KULT: Show Module View

KULT: New Libra

KULT: New Module

KULT: Focus on Functions View other commands
KULT: Focus on Libraries View

KULT: Focus on Misce

KULT: Focus on Modules View

KULT: New Libran

KULT: New Module

View: Show KULT

Settings in Visual Studio Code

You can use the settings preferences to personalize Visual Studio Code. To access the
settings, select File > Preferences > Settings.

To make changes to KULT Extension features, search KULT in the settings.

Figure 69: KULT Extension settings

Kult: Read Only Color

Kult: Show Generated Files

4-16 4200A-SCS-KULT-907-01 Rev. D May 2024

Model 4200A-SCS KULT and KULT Extension Programming Section 4: KULT Extension for Visual Studio Code

KULT side bar

The KULT Extension adds a side bar to Visual Studio Code that enables simplified access to
libraries and functions. The following figure shows an example of the KULT side bar.
Descriptions of each option are in the table below the figure.

Figure 70: KULT side bar

~ FUNCTIONS
Show Module View
Build Library BeepLib For Release ’/®
Build Library BeepLib For Debug
V.l UBRARIES
audlib
AVMControl

Beeplib

chargepumping
cvivulib
mpulib

cvuulib

5

DLCP
flashulib

GateCharge
~ MODULES

5

BeepCharge
BeepDown
BeeplinfinitaLoop

BeepUp

[MISCELLANEOUS

Beeplib_modules.mak _,—’@
launch.json

KULT side bar

1 Functions include options such as opening the KULT module and building a library.

2 Libraries includes all available libraries in alphabetical order.

3 Modules includes all user modules for the select library. Select a module to open it in the editor.
4 Miscellaneous includes files that are useful to library development.

4200A-SCS-KULT-907-01 Rev. D May 2024 4-17

Section 4: KULT Extension for Visual Studio Code Model 4200A-SCS KULT and KULT Extension Programming

Working with user libraries in Visual Studio Code

This section covers the basics of working with user libraries in the Visual Studio Code
KULT Extension.

NOTE

The KULT extension supports restricted mode in Visual Studio Code. If a workspace is
untrusted, you cannot compile UTMs. For more information on workspace trust in
Visual Studio Code, refer to https://code.visualstudio.com/docs/editor/workspace-trust.

To prevent malicious code execution, do not run a UTM if you have not verified the source.

Creating a new library

To create a new library:

1. Inthe KULT Extension Libraries side bar, select +.

Figure 71: Create a new library

" LIBRARIES E

2. Type a name for the library.
3. Press Enter.

Copying alibrary

When you copy a library, the user modules for the library are also copied. "Copy" is added to
the names of the copied library and user modules.

To copy alibrary:
1. Select the library.

2. Select the copy icon.

Figure 72: Copy alibrary or module

Beeplib E:[]@[

3. The copied library must be built before you can use it in Clarius. See Building a library
(on page 4-22).

4-18 4200A-SCS-KULT-907-01 Rev. D May 2024

https://code.visualstudio.com/docs/editor/workspace-trust
https://code.visualstudio.com/docs/editor/workspace-trust

Model 4200A-SCS KULT and KULT Extension Programming Section 4: KULT Extension for Visual Studio Code

Deleting a library

When you delete a library, all the modules and associated build files in the library are
also deleted.

To delete a library:
1. Inthe Libraries side bar, select the library.

2. Select the delete icon.

Figure 73: Delete a library or module

Beeplib =] J/

3. Select Yes.

Renaming a library

You can change the name of a library. However, you cannot change the case of the letters
in a library name.

To rename a library:
1. Select the library.

2. Select the change name icon.
Figure 74: Rename a library or module
Beeplib —} i

Type the new name.

Select Enter.

The renamed library must be built before you can use it in Clarius. See Building a library
(on page 4-22).

Setting library visibility

You can set a library to be available or unavailable to Clarius. For example, you can hide a
library if you want to designate that a user library is only to be called by another user library
and is not to be connected to a UTM.

4200A-SCS-KULT-907-01 Rev. D May 2024 4-19

Section 4: KULT Extension for Visual Studio Code Model 4200A-SCS KULT and KULT Extension Programming

To set the visibility of alibrary:

1. Inthe KULT side bar, select a library.

2. Select a module in the library.

3. Inthe KULT Module tab, change the setting of Library Visible as needed.

Figure 75: Select library visibility

Library Beeplib

Library Visible | | visible ¥

B

Select Apply.

Entering library dependencies and environment variables

Library dependencies allow a user library to call other libraries. You can edit library
dependencies directly in the .mak file of the library. Library files that are not in the
workspace directory, such as third-party libraries, can be added in the .mak file. The LIB
environment variable of the system must be updated with the path to this library. Users can
also update the INCLUDE path environment variable for header files located outside of the
workspace directory.

To add a library dependency:
1. Select the library to edit in the KULT side bar.
2. Under Miscellaneous, select 1ibName modules.mak.

3. For the variable LIBS, type the name of the library between the quotes. To enter multiple
libraries, separate the library names with spaces. You can press Ctrl+Space to choose
from a list of all available libraries. Type the library name to filter the results. Press Enter
to select a library.

Figure 76: Add a library dependency

You may add additional libraries here.
Libraries are specified by the library’s lib file. Example: Beeplib.lib.
Each entry must be separated by a space.
LIBS = "pmuulib.lib RPM Ilimit Control.lib bed“
) BeepLib.1lib

4-20 4200A-SCS-KULT-907-01 Rev. D May 2024

Model 4200A-SCS KULT and KULT Extension Programming

Section 4: KULT Extension for Visual Studio Code

To update the system environment variables for external libraries and headers:

1. Inthe Windows search bar, type Environment Variables.

2. Select Edit the system environment variables.
3. Select the Advanced tab.
4

Select Environment Variables.

Figure 77: Set environmental variables

Computer Name ~ Hardware Advanced System Protection Remote

You must be logged on as an Administrator to make most of these changes
Performance
Visual effects, processor scheduling, memory usage. and vitual memory

Settings.
User Profiles [,\\)
Desktop settings related to your sign-n

Settings...
Startup and Recovery
System startup, system failure, and debugging information

Settings

Environmentt Varizbles

OK Cancel

5. Inthe System Variables box, select lib.

6. Select Edit.

Figure 78: Enter environmental variables

Environment Variables

User variables for kiadmin

Variable Value
INCLUDE C CASAZ00N
KLDT_ICONHOME CAS4200sys\dat
KLKULT_PATH CAS4200Muserusdib
KLLOCK_LOC CAS420Msys\lock
KI_PLATFORM 54200
KLPRE_CONFIG CAS4200Nsys\dat\prbenfg.dat
K| PRE FAKE OUTPUT OFF
5 New.. Edit.. Delete
RS
System variables
Vanable Value
KITMP Fitemp%

KIUSER CASA200\Kiuser

C\S4200\sys\lib; C:\ 54200\ sys\ open:
ys\datiicense.dat

int\lib;C:\Program Files (xB5}\Mi.

5 2 ™
ND_LANG enusasc
ND_PATH C:\S4200\sys\dat
NUMBER OF PROCESSORS 4

b3

4200A-SCS-KULT-907-01 Rev. D May 2024

4-21

Section 4: KULT Extension for Visual Studio Code Model 4200A-SCS KULT and KULT Extension Programming

7. Select New and enter the path to the external library. You can repeat this process for
any header files by selecting the INCLUDES variable and entering in the path to the

header file.
Figure 79: Edit environment variable
Edit envirenment vanable *

C:\S4200\sys\lib | E

CAS42000sys\openinth/ib

CAProgram Files (x86)\MinGW\lib Edit
Browse...

Delete
Mowve Up
Move Down

Edit text...

Building a library

When building a library, you can build for debug or build for release. Building a library for
debug creates symbols that the debugger requires to watch variables. If you are not using
the debugger, you can build for release, which does not create these symbols.

You can build a library from the KULT Extension side bar or from the Terminal menu.

4-22 4200A-SCS-KULT-907-01 Rev. D May 2024

Model 4200A-SCS KULT and KULT Extension Programming Section 4: KULT Extension for Visual Studio Code

Build a library from the KULT Extension side bar

To build alibrary from the KULT Extension side bar:
1. Select the library.

2. Under Functions, select the run icon nextto Build Library LibName for
Release Or Build Library LibName for Debug in the Functions tab of the KULT
side bar.

Figure 80: Run icon for Build Library

KULT

~ FUNCTIONS

Show Module View

Build Library Beeplib For Release
Build Library Beeplib For Debug

3. Select Terminal at the bottom of the screen to view the build status.
4. To view problems with the build, select Problems.

Build a library from the Terminal menu

To build alibrary from the Terminal menu:

1. Select the library.

2. From the Terminal menu, select Run Build Task.

3. Select the debug or release build option.

4. Select Terminal at the bottom of the screen to view the build status.

4200A-SCS-KULT-907-01 Rev. D May 2024 4-23

Section 4: KULT Extension for Visual Studio Code Model 4200A-SCS KULT and KULT Extension Programming

Figure 81: Build Terminal status

PROBLEMS OUTPUT DEBUG CONSOLE TERMINAL

> Executing task: /c kult bld_lib -1BeepLib -compiler "MinGW" -build_type Release <

Errors, Warnings or Messages:

SnDoosoInEnoIoEsIIoan

Building BeeplLib at C:\s420@\kiuser\usrlib\BeepLib\build .
ieee 32m.lib;1ptlib.lib;ktxesup.lib;ksox.1lib;kui.lib;ibup. 11b ;kdf.1ib; idsnames.1ib;o0icommq
ntf.lib;LoggingLib.lib;ktemalloc.lib;libw52_32.a;1ibwsock32.a

-- Configuring done

-- Generating done

-- Build files have been written to: C:/s4208/kiuser/usrlib/BeeplLib/build

Scanning dependencies of target BeeplLib

6%] Building C object (MakeFiles/BeepLib.dir/BeepLib/kitt_src/dllmain.c.obj

12%] Building C object CMakeFiles/BeepLib.dir/BeepLib/kitt_src/w_BeepCharge.c.obj

18%] Building C object C(MakeFiles/BeepLib.dir/BeepLib/kitt_src/w_BeepDown.c.obj

25%) Building C object (MakeFiles/BeepLib.dir/BeepLib/kitt_src/w_BeepInfiniteloop.c.obj
[31%] Building C object (MakeFiles/Beeplib.dir/BeepLib/kitt_src/w_BeepUp.c.obj

[37%] Building C object CMakeFiles/BeepLib.dir/BeepLib/kitt_src/w_beep.c.obj

43%] Building C object (MakeFiles/BeepLib.dir/BeepLib/kitt_src/w_beepMultiple.c.obj

Se%] Building C object CMakeFiles/BeepLib.dir/BeeplLib/kitt_src/w_newtodule.c.obj

S6%] Building C object (MakeFiles/BeepLib.dir/BeeplLib/src/BeepCharge.c.obj

[62%] Building C object (MakeFiles/BeeplLib.dir/BeepLib/src/BeepDown.c.obj

[68%] Building C object (MakeFiles/BeeplLib.dir/BeeplLib/src/BeepInfiniteloop.c.obj

[

[

75%] Building C object CMakeFiles/BeepLib.dir/BeepLib/src/BeepUp.c.obj
81%] Building C object CMakeFiles/BeepLib.dir/BeepLib/src/beep.c.obj
[87%] Building C object (MakeFiles/Beeplib.dir/BeepLib/src/beepMultiple.c.obj
[93%] Building C object (MakeFiles/BeeplLib.dir/BeepLib/src/newtodule.c.obj
[100%] Linking C shared library bin\release\BeepLib.dll
Copying to KULT directory
Copying files to C:/S42@9/kiuser/usrlib...
[10@%] Built target BeepLib
Build complete for BeeplLib.

Build SUCCESSFUL

Terminal will be reused by tasks, press any key to close it.

5. To view problems with the build, select Problems.

4-24 4200A-SCS-KULT-907-01 Rev. D May 2024

Model 4200A-SCS KULT and KULT Extension Programming Section 4: KULT Extension for Visual Studio Code

Cleaning a library

Cleaning a library deletes all files that were generated by a build, leaving the source code.
This is useful if a build file gets corrupted.

NOTE

When you select Terminal > Run Task or Terminal > Run Build Task, the build tasks are
added to the Run Task history of recently used tasks. This list persists when you close and
reopen Visual Studio Code. If the list is too long, you can change the history size using the
Manage option on the lower left. Select Manage > User > Task > Quick Open: History.

To clean alibrary:

1. Select the library in the KULT Extension side bar.

From the Terminal menu, select Run Task.

Type KULT to limit the list to KULT tasks.

Select KULT: Clean Library “LibName”.

Select Output at the bottom of the window to review the actions.

o &~ 0NN

Working with modules in Visual Studio Code

This section covers basics on working with KULT user modules in the Visual Studio Code
KULT Extension.

The KULT Extension displays the parameters and description of a module in the editor
pane. To display the module in a form, select Show Module View from the Functions in the
KULT side bar.

NOTE

To view all KULT Extension features, you must open a user library in Visual Studio Code.
See Opening the user library directory in Visual Studio Code (on page 4-9) for instructions.

4200A-SCS-KULT-907-01 Rev. D May 2024 4-25

Section 4: KULT Extension for Visual Studio Code Model 4200A-SCS KULT and KULT Extension Programming

Creating a new user module

All user modules must have unique names to avoid conflicts in library dependencies.

To create a new module:

1. Inthe KULT Extension side bar, in Libraries, select the library that will contain the
module.

2. In Modules, select +.

Figure 82: Create a new module

v MODULES |
3. Type a name for the new module.
4. Select Enter.

Copy a user module

To copy a user module:
1. Select the user module.

2. Select the copy icon.

Figure 83: Copy a library or module

Beeplib E]j]ﬁ[

Rename a user module

All user modules must have unique names to avoid conflicts in library dependencies.

To rename a user module:
1. Inthe KULT Extension side bar, select the module.
2. Select rename icon.

Figure 84: Rename a library or module
Beeplib % il

3. Type a name for the new module.
4. Select Enter.

4-26 4200A-SCS-KULT-907-01 Rev. D May 2024

Model 4200A-SCS KULT and KULT Extension Programming Section 4: KULT Extension for Visual Studio Code

Deleting a user module

To delete a module:
1. Inthe Modules of the sidebar, select the module.

2. Select the delete icon.

Figure 85: Delete a library or module

Beeplib =l %

3. Select Yes.

Setting the return type of a user module

The return type is set for user modules that return a value. The available return types are:

e char: Character data

e float: Single-precision floating point data
e double: Double-precision data

e int: Integer data

e |long: 32-bit integer data

e void: No return value

To set the return type of a user module:

1. Inthe KULT Extension Libraries side bar, select the Library that contains the module.
2. Under Modules, select the user module.

3. Inthe KULT Module, select the Return Type.

Figure 86: Select the return type of a user module

Module beep

Return Type | |void ¥

»

Select Apply.

4200A-SCS-KULT-907-01 Rev. D May 2024 4-27

Section 4: KULT Extension for Visual Studio Code Model 4200A-SCS KULT and KULT Extension Programming

Including header files

Header files are included in the code before the main module function.

NOTE

Intellisense errors may appear in the Problems tab because paths to header files are not
listed in the Intellisense configuration file, ¢ cpp properties.json. These errors do not
affect compilation and can be ignored, or you can follow the instructions below to

prevent them.

To add a header file to a module:
1. Inthe KULT Extensions side bar, select the library that contains the user module.
2. Select the module. The module is displayed in the editor.

3. Add the header file directly below the comment USRLIB MODULE PARAMETER LIST
using the format #include "headerName.h".An example is shown in the
following figure.

Figure 87: Add a header file to a module

48 #include "keithley.h"

To remove Intellisense header file errors:
1. Createthe c cpp properties.json fileif it does not already existin the .vscode

folder. See Creating the Visual Studio Code configuration (on page 4-9) files for
instructions.

2. If the file already exists, or creating the file did not remove the errors, select the
c_cpp properties.json file in the KULT Extension Miscellaneous side bar.

3. Add the header file to the includePath setting. File paths must be enclosed in quotes
and separated by commas.

Figure 88: Remove Intellisense header file errors

"nama": "KULT C Configuration”,
"includePath": [
"C: /54268 sys/include™,
"r1/s4268 /kiuser/usrlib”,
"C:/Program Files (x88)/MinGw/**"

1.

4-28 4200A-SCS-KULT-907-01 Rev. D May 2024

Model 4200A-SCS KULT and KULT Extension Programming

Section 4: KULT Extension for Visual Studio Code

NOTE

You may need to add header files to system environment variables in other places on the
system. See Entering Library Dependencies and Environment Variables (on page 4-20) for

more information.

Editing module parameters

You can change user module parameters in the KULT Module.

Figure 89: Edit user module parameters

KULT Module X

Module newModule

Return Type void v

Parameters

parml char

char *

float

float *
doubla
double *

int

int *

long

lang *
F_ARRAY_T
I_ARRAY_T
D_ARRAY T

Mame Type

Library Beeplib

Library Visible visible v

Default Min

___New [N Delete |

Max

To edit parameters:

1. Inthe KULT Extension side bar, select the library.

Select the module.

To:

= Add a parameter: Select New. Enter parameter values.

= Modify a parameter: Change the parameter value in the fields.

= Delete a parameter: Select a parameter, then select Delete.
Refer to the following table for detail on the parameter values

2
3. If the KULT Module is not displayed, under Functions, select Show Module View.
4

5. Select Apply to add the changes to the code. Changes are displayed in the gray read-

only code at the top of the module.

4200A-SCS-KULT-907-01 Rev. D May 2024

4-29

Section 4: KULT Extension for Visual Studio Code

Model 4200A-SCS KULT and KULT Extension Programming

User module parameter values
Name Identifies the parameters that are passed to the user module.

Type The parameter data type; only pointer types can be used for output parameters:

® char: Character data

® char*: Pointer to character data

® float: Single-precision floating point data

® float*: Pointer to single-precision floating point data
® double: Double-precision data

® double*: Pointer to double-precision point data
® int: Integer data

® int*: Pointer to integer data

® long: 32-bit integer data

® Jong*: Pointer to 32-bit integer data

® F_ARRAY_T: Floating point array type

® |_ARRAY_T: Integer array type

® D_ARRAY_T: Double-precision array type

/O Defines whether the parameter is an input or output type.
Default The default value for a nonarray (only) input parameter
Min The minimum recommended value for a nonarray (only) input parameter. When the user

module is used in a Clarius user test module (UTM), configuration of the UTM with a
parameter value smaller than the minimum value causes Clarius to display an out-of-range

message.

Max The maximum recommended value for a nonarray (only) input parameter. When the user
module is used in a Clarius UTM, configuration of the UTM with a parameter value larger
than the maximum value causes Clarius to display an out-of-range message.

Reorder the user module parameters

To change the order of the parameters:
1. Inthe KULT Extension side bar, select the library.
2. Select the module.

3. In KULT Module, select the parameter.

Figure 90: Reorder parameters

Parameters
Mame Type o Default Min
= - : =

I - Ia-2 "I":‘u‘- 'II” I I
D

4. Select Up or Down to move the parameter to the new location.

5. Select Apply. The changes are shown in the read-only code at the top of the editor.

4-30

4200A-SCS-KULT-907-01 Rev. D May 2024

Model 4200A-SCS KULT and KULT Extension Programming Section 4: KULT Extension for Visual Studio Code

Editing the module description

The module description appears in the help pane in Clarius when the module is selected.
You can see a sample view of these descriptions in the KULT module in Visual Studio Code,
beneath the parameters. This view is automatically updated when the description is edited.

Figure 91: Module description

Module: beep

Description

Return values

NOTE

For a list of supported commands, refer to Model 4200A-SCS LPT Library Programming.

To edit the module description:
1. Inthe KULT side bar, select the library.
2. Select the module. The module is displayed in the editor.

3. Edit the description code below the read-only gray code at the top of the module, inside
the comments for USRLIB MODULE HELP DESCRIPTION. The code uses Markdown
syntax. For more information, see markdownguide.org.

Debugging libraries
In Visual Studio Code, you can attach a debugger to an execution process to monitor code
execution for debugging purposes. For Keithley User Libraries, Visual Studio Code uses the
GNU debugger (GDB) and attaches it to the UTMServer. Running the code as a UTM in
Clarius allows the debugger to watch and control execution in the UTMServer.

To run and debug modules in Visual Studio Code, a launch configuration (1aunch. json)
must exist in the . vscode folder. For instructions to set up a launch configuration, see
Setting up Visual Studio Code for Library Development (on page 4-9).

Debug limitation notes:

e While attached to the debugger, do not select Stop in Clarius. Selecting Stop may cause
a Clarius process to hang. If this happens, open Windows Task Manager and select End

Task for Clarius.exe, KiteServer.exe, and UTMServer.exe.

e The debugger is not available on the computer version of Clarius.

4200A-SCS-KULT-907-01 Rev. D May 2024 4-31

https://www.markdownguide.org/

Section 4: KULT Extension for Visual Studio Code Model 4200A-SCS KULT and KULT Extension Programming

Debugger side bar and toolbar

The debugger allows you to step through code, monitor variables, evaluate expressions, and
manipulate values. During debugging, the debug side bar and debug toolbar are visible.

The debug side bar gives you access to variable values, expressions, breakpoints, and
threads for multi-threaded debugging.

Figure 92: Debugger side bar

RUN D (gdb) Attach ~ & &1

~ VARIABLES
“ Locals

vstep: 0.5

v: 9.5
i: 1
sum: @
Vstart: @
Vstop: 5

> Imeas: @x75c60f0
NumIPoints: 11

> Vforce: @x75c5d9e

~ WATCH ’/@

sum: @

Vforce[i]/Imeas[i]: 1.7812175212.]

s BREAKPOINTS + & @

® ¥ VSweepRes.c

v CALL STACK

> Thread #1 PAUSED
> Thread #2 PAUSED
> Thread #3 PAUSED
> Thread #4 PAUSED
> Thread #5 PAUSED
> Thread #6 PAUSED
> Thread #7 PAUSED
~ Thread #8 PAUSED ON STEP

my_2nd_lib.d11!VSweepRes(double

Debugger side bar

1 Variables displays all variables. They are updated in real time as the code executes.
2 Watch allows you to add and monitor expressions and important variables.

3 Breakpoints allows you to add function breakpoints and manage other breakpoints.
4 Call Stack allows you watch the status of multiple threads.

4-32 4200A-SCS-KULT-907-01 Rev. D May 2024

Model 4200A-SCS KULT and KULT Extension Programming Section 4: KULT Extension for Visual Studio Code

The debugger toolbar gives users control over the code execution to step over or into lines
of code.

Figure 93: Debugger toolbar

PPPY P

—
—l

Debugger toolbar

1 Execute until the next breakpoint or the end of the code
2 Step over functions

3 Step into functions

4 Step out of functions

5 Detach

Setting up the debugger

This procedure builds the library for the debugger, which creates extra symbols that the
debugger requires so that it can use breakpoints and watch variables.

NOTE

Libraries must be rebuilt after every change. Clarius can remain open but, the UTM must be
reloaded for changes to take effect. Reload the UTM by select a different test and returning
to the UTM, opening a different project and returning, or closing and reopening Clarius.
Clarius must be fully closed to load a new library or module for the first time. You do not
need to change to a different test if you are changing module content and not parameters of
a module.

NOTE

When you start the debugger, breakpoints are unbound. The breakpoints automatically bind
when code execution begins.

4200A-SCS-KULT-907-01 Rev. D May 2024 4-33

Section 4: KULT Extension for Visual Studio Code

Model 4200A-SCS KULT and KULT Extension Programming

To set up the debugger for a module:

I T o

In the KULT side bar, select the library that contains the module.

Select the module.

Set at least one breakpoint. See Setting breakpoints in modules (on page 4-35).

Under Functions, run Build Library LibName for Debug.

Open Clarius.

In Clarius, either configure a new test to run the module or open an existing test that

uses the module.

In Visual Studio Code, in the Debug side bar, select Run > (gdb) Attach. The debugger
is running when the status bar at the bottom of the Visual Studio Code window is orange

and debug toolbar is displayed.

Figure 94: Starting the debugger

B

“ VARIABLES

.
pdb) Attach i {1-|

Running code with the debugger

To run code with the debugger:

1.
2.
3.

See the previous section to set up the debugger and the module in Clarius.

Run the UTM from Clarius.

When code execution is paused, you can use debugging tools, step through the code
line by line, set additional breakpoints, or run to the next breakpoint using the debug

toolbar.

4-34

4200A-SCS-KULT-907-01 Rev. D May 2024

Model 4200A-SCS KULT and KULT Extension Programming Section 4: KULT Extension for Visual Studio Code

Ending a debugging session

Do not abort a UTM in Clarius when execution is paused in Visual Studio Code. This causes a
conflict between the debugger and Clarius and causes Clarius to hang. End the debugging
session before aborting a UTM in Clarius.

To end a debugging session:
Select disconnect on the debug toolbar or type Ctrl+C into the terminal. This stops the
running GNU Debugger (GDB) process.

If the code was paused on a breakpoint, it continues execution in Clarius after the debugger
is disconnected. You can abort the module in Clarius after the debugger is disconnected.

Setting breakpoints in modules

Setting a breakpoint stops code execution and allows you to step through code line by line.
Breakpoints must be set on lines of code. They do not work on comments or blank lines.
You must set at least one breakpoint before attaching the debugger. You can set additional
breakpoints during debugging when the code is paused. Breakpoints are marked as
unbound (gray hollow circle) after starting until the code is executed.

The GDB environment allows the following breakpoints:
e Unconditional breakpoint: Pauses execution on a specific line
e Conditional breakpoint: Pauses execution on a specific line if a given statement is true

e Function breakpoint: Pauses execution at the first line of a function

Setting an unconditional breakpoint
To set an unconditional breakpoint:

1. Set up the debugger as described in Setting up the debugger (on page 4-33).

2. Before running the debugger, select the space to the left of the line number. A red dot
indicates the placed breakpoint. The breakpoint is also logged in the debug side bar
under Breakpoints.

Under Functions, run Build Library LibName for Debug.
Open Clarius.

In Clarius, either configure a new test to run the module or open an existing test that
uses the module.

6. In Visual Studio Code, in the Debug side bar, select Run > (gdb) Attach. The debugger
is running when the status bar at the bottom of the Visual Studio Code window is orange
and debug toolbar is displayed. When code execution is paused by a breakpoint,
additional breakpoints can be added.

4200A-SCS-KULT-907-01 Rev. D May 2024 4-35

Section 4: KULT Extension for Visual Studio Code Model 4200A-SCS KULT and KULT Extension Programming

Setting a conditional breakpoint

To set a conditional breakpoint:

1.
2.
3.

Before running the debugger, right-click the space to the left of the line number.
Select Add Conditional Breakpoint.

Type in an expression to be evaluated in the editor. This expression is evaluated before
the line is executed and pauses execution if true.

49 while(sum<1@){
® 5@ Beep(frequency, duration);

Expression Y| i >2|

sum = sum + i;

The breakpoint is also logged in the debugging side bar under Breakpoints.
Under Functions, run Build Library LibName for Debug.
Open Clarius.

In Clarius, either configure a new test to run the module or open an existing test that
uses the module.

In Visual Studio Code, in the Debug side bar, select Run > (gdb) Attach. The debugger
is running when the status bar at the bottom of the Visual Studio Code window is orange
and debug toolbar is displayed. Once code execution is paused on a breakpoint,
additional breakpoints can be added.

Setting a function breakpoint

To set a function breakpoint:

1.
2.

In the debug side bar under Breakpoints, select + to add a function breakpoint.

Type the name of the function. The breakpoint is verified the first time the code is
executed and stops execution at the first line of the function.

Under Functions, run Build Library LibName for Debug.
Open Clarius.

In Clarius, either configure a new test to run the module or open an existing test that
uses the module.

In Visual Studio Code, in the Debug side bar, select Run > (gdb) Attach. The debugger
is running when the status bar at the bottom of the Visual Studio Code window is orange
and debug toolbar is displayed. Once code execution is paused on a breakpoint,
additional breakpoints can be added.

4-36

4200A-SCS-KULT-907-01 Rev. D May 2024

Model 4200A-SCS KULT and KULT Extension Programming Section 4: KULT Extension for Visual Studio Code

Expression evaluation

Visual Studio Code allows you to watch and evaluate expressions while code executes. You
can also modify variables. The modifications to variables remain for the rest of
the execution.

Evaluating an expression once

When you evaluate an expression once, the value of the expression is output to the debug
Console.

To evaluate an expression once:

1.

2
3.
4

Set up the debugger as described in Setting up the debugger (on page 4-33).

Set up at least one breakpoint to pause the code.
Run the code in Clarius.

While the code is paused on a breakpoint, enter the expression to be evaluated into the
Debug Console pane.

Evaluating an expression at every breakpoint

In this procedure the expression is evaluated every time the code is paused on a breakpoint.
Additional expressions can be added at any time.

To evaluate an expression at every breakpoint:

S e o

Open the Debug side bar.
In the Debug side bar, select + in the Watch pane.
Enter the expression.

Set up the debugger as described in Setting up the debugger (on page 4-33).

Ensure at least one breakpoint is set to pause the code.

Run the code in Clarius.

4200A-SCS-KULT-907-01 Rev. D May 2024 4-37

Section 4: KULT Extension for Visual Studio Code Model 4200A-SCS KULT and KULT Extension Programming

Editing a variable value

Edited values are used for the remainder of the code execution.

To edit a variable value:

1.

2
3.
4

Set up the debugger as described in Setting up the debugger (on page 4-33).

Set up at least one breakpoint to pause the code.
Run the code in Clarius.

When the code is paused on a breakpoint, in the Watch pane, select +. You can also
enter an expression in the Debug Console.

Enter an expression to change the value of a variable (varName = newValue).

Watching variables

All variables are visible in the Variables pane of the Debug side bar. You can watch specific
variables by adding them to the Watch pane. Values are updated in real time.

To add a variable to the Watch pane:

1.

2
3.
4

Set up the debugger as indicated in Setting up the debugger (on page 4-33).

Set up at least on breakpoint to pause the code.
Run the code in Clarius.

When the code is paused on a breakpoint, right-click the variable in the Variables pane
and select Add to Watch.

4-38

4200A-SCS-KULT-907-01 Rev. D May 2024

Section 5

KULT Extension tutorials

In this section:

TULOMAl OVEIVIEWeiiiiiiie it 5-1
Tutorial: Creating a new user library and user module............. 5-2
Tutorial: Creating a user module that returns data arrays...... 5-13
Tutorial: Calling one user module from another 5-20
Tutorial: Customizing a user test module (UTM)..........ccceeee. 5-23
Tutorial: Debugging a user modulecccooccviiiiieeeniiinneen. 5-28

Tutorial overview

The KULT Extension is a tool for Visual Studio Code that helps you develop user libraries.
Each user library is comprised of one or more user modules. Each user module is created
using the C programming language.

The following tutorials provide step-by-step instructions for creating user libraries and user
modules in the KULT Extension.

The tutorials include:

Creating a new user library and user module (on page 5-2): This tutorial shows you how
to create a new user library and a new user module using the KULT Extension in Visual
Basic Code. A hands-on example is provided that shows you how to create a user library
that contains a user module that activates the internal beeper of the 4200A-SCS. You
then build and run the module in Clarius. This tutorial also explores some of the features
of Visual Studio Code to assist with writing code. This tutorial assumes a working
knowledge of the C programming language.

Creating a user module that returns data arrays (on page 5-13): This tutorial
demonstrates the use of array variables in the KULT Extension. It also illustrates the use
of return types (or codes), and the use of two functions from the Keithley Linear
Parametric Test Library (LPTLib).

Calling one user module from another (on page 5-20): This tutorial demonstrates how to
set up user modules to call other user modules from any user library. It also describes
how to copy a module.

Customizing a user test module (UTM) (on page 5-23): This tutorial demonstrates how to
modify a user module using the KULT Extension.

Section 5: KULT Extension tutorials Model 4200A-SCS KULT and KULT Extension Programming

e Debugging a user module (on page 5-28): This tutorial demonstrates how to use the
KULT Extension in Visual Studio Code to debug code with the GNU Debugger (GDB).
The tutorial shows you how to pause execution, monitor variables and expressions, and
step through code one line at a time.

Tutorial: Creating a new user library and user module

This tutorial shows you how to create a new user library and a new user module using the
KULT Extension in Visual Basic Code. A hands-on example is provided that shows you how
to create a user library that contains a user module that activates the internal beeper of the
4200A-SCS. You then build and run the module in Clarius. This tutorial also explores some
of the features of Visual Studio Code to assist with writing code. This tutorial assumes a
working knowledge of the C programming language.

This tutorial does not generate data. For an example of a user module that returns data, see
Tutorial: Creating a user module that returns data arrays (on page 5-13).

Starting Visual Studio Code
NOTE

Complete Installation (on page 4-1) before using this tutorial.

To start Visual Studio Code:
1. Inthe Windows Start menu, select Visual Studio Code.
2. Select the KULT icon to open the KULT side bar.

5-2 4200A-SCS-KULT-907-01 Rev. D May 2024

Model 4200A-SCS KULT and KULT Extension Programming Section 5: KULT Extension tutorials

Figure 95: Opening the KULT side bar in Visual Studio Code

)O File Edit Selection View Go Run Te

v FUNCTIONS

Show Module View

Build Library For Release

Build Library For Debug

v LIBRARIES

ACS42Lib

cvuCompulib

cvuulib
CV_ACS
DLCP

v MODULES

Creating a new user library

To create a new user library:

1. Inthe KULT side bar, in Libraries, select +.

Figure 96: Add a new user library

~ LIBRARIES —+

AFG31000_examples_ulib
AVMControl
Beeplib

"

2. Entermy 1st 1ib asthe new user library name.

Figure 97: New library name

New Library

my_1st_libj

Enter name of the library. (Press ‘Enter’ to confirm or "Escape’ to cancel)

3. Select Enter. The library is displayed in the list of libraries. The necessary build files are
automatically created.

4200A-SCS-KULT-907-01 Rev. D May 2024 5-3

Section 5: KULT Extension tutorials Model 4200A-SCS KULT and KULT Extension Programming

Creating a new user module

The names for user modules must:
e Conform to case-sensitive C programming language naming conventions.

e Be unique. They cannot duplicate names of existing user modules or user libraries.

To create a new user module:
1. Inthe KULT side bar, from Libraries, selectmy 1st 1ib. Under Modules, the modules
in the library are displayed.

Select Modules.

Select + to add a module to the selected library.

Figure 98: Create a new user module

~ MODULES --

4. Enter TwoTonesTwice as the new user module name.

Figure 99: Naming a new module

New Module

TwoTonesTw \[EI

Enter name of the module. (Press 'Enter' to confirm or 'Escape’ to cancel)

5. Press Enter to apply the name. The module is displayed in the list of modules for
the library.

6. Select the module in the KULT side bar. It is displayed in the Editor.

Entering a return type

If your user module generates a return value, you would select the data type from the Return
Type list.

The TwoTonesTwice module does not produce a return value, so leave the Return Type
at void.

5-4 4200A-SCS-KULT-907-01 Rev. D May 2024

Model 4200A-SCS KULT and KULT Extension Programming Section 5: KULT Extension tutorials

Entering user module code

To add code to the module:

1. Enter the following comments that describe the purpose of the user module between
comment lines USRLIB MODULE CODE and USRLIB MODULE END.

/*
/*
/*
/*

Beeps four times at two alternating user-settable frequencies. */
Makes use of Windows Beep (frequency, duration) function. */
Frequency of beep is long integer, in units of Hz. */

Duration of beep is long integer, in units of milliseconds. */

2. On the next line, press Ctrl+Space to open a list of all code suggestions.

Figure 100: Add code to the module

/* Duration of beep is long integer, in units of milliseconds. */

=2 PMUL (enum instruments)PMUl = 4304 G
=2 pmul

=2 PMU1CH1
=2 PMULCH2
& PMU2

=2 pmu2

=2 PMU3

=2 pmu3chl
=2 pmu6ch2
=° pmu8

=2 pmu9

@ PNA_init

3. Type Beep to filter the suggestions. The list filters as you type.

Figure 101: Add code to the module - filtered list

B

) Beep BOOL Beep(DWORD, DWORD) +1 overload (@
/) BeepCharge
|}/ © BeepDown

= BEEPER1

2 BEEPER2

=2 BEEPER3

=° BEEPER4

@ BeepInfiniteloop

) BeepUp

(=) BEGIN_INTERFACE

(=) BEGIN_PATH

) BeginDeferWindowPos

4200A-SCS-KULT-907-01 Rev. D May 2024 5-5

Section 5: KULT Extension tutorials Model 4200A-SCS KULT and KULT Extension Programming

4. Select Beep. The function name is filled in automatically.

5. Continue the line by typing. A function prototype model is displayed. The bold underlined
parameter is the next parameter to be entered.

Figure 102: Entering line of code

/* Friggiescas ~L£bheep
/® pu Beep(a, b)aep
Beep()

For a, type the parameter value Freql.
For b, type the parameter value 500.

End the function with a closing parenthesis and a semicolon.

© ©® N o

Add the comment shown below:
Beep (Freqgl, 500); /* Beep at first frequency for 500 ms */
10. Note that there is now a problem in the Problems tab at the bottom. Open the tab and
select the problem.
11. The new line of code is highlighted and an indicator of the problem is displayed. In this
case, the parameter Freql is undefined. This is because Fregl was not added as a
parameter yet. This will be defined later in the tutorial.

Figure 103: Identifier

5@

51 Beep(Freql, 500);

52

53 /* USRLIB MODULE END /

54 } /* End TwoTonesTwice.c */

S5

56

PROBLEMS (1 OUTPUT DEBUG CONSOLE TERMINAL
v € TwoTonesTwice.c my_1st_lib\src {{

F ® identifier "Freq1” is undefined [51, 1]

5-6 4200A-SCS-KULT-907-01 Rev. D May 2024

Model 4200A-SCS KULT and KULT Extension Programming Section 5: KULT Extension tutorials

12. Hold the cursor over the new Beep function. Note that it expands to show details about

the function.

Figure 104: Function description details

vota 171 . 7
#define Beep(a,b) ki _Beep(a, b);

Expands to:

g us|
ki Beep(Freql, 500); ey,

, in
identifier "Freql" is undefined 14 o

Peek Problem No quick fixes available

Beep(Freql, 5€9);

13. Enter the C code below. Note that the code deliberately contains a missing ; error to

demonstrate a build error.

Beep (Freg2, 500); /* Beep at second frequency */
Beep (Fregl, 500);

Beep (Freg2, 500);

Sleep (500) /* NOTE deliberately forget semicolon */

Entering parameters

One of the parameters you enter is the data type; only pointer and array types can be used
for output parameters. The available data types are:

char: Character data

char*: Pointer to character data

float: Single-precision floating point data
float*: Pointer to single-precision floating point data
double: Double-precision data

double*: Pointer to double-precision point data
int: Integer data

int*: Pointer to integer data

long: 32-bit integer data

long*: Pointer to 32-bit integer data
F_ARRAY_T: Floating point array type
I_ARRAY_T: Integer array type

D_ARRAY_T: Double-precision array type

4200A-SCS-KULT-907-01 Rev. D May 2024 5-7

Section 5: KULT Extension tutorials

Model 4200A-SCS KULT and KULT Extension Programming

To enter the required parameters for the TwoTonesTwice user module:
In the KULT module, select New.

In the parameter name, enter Freql.

For Type, select long.

For I/O, select input.

For Default, enter 1000.

For Min, enter 800.

For Max, enter 1200.

N o ok w N RE

Figure 105: Entering parameters

Parameters
Mame Type 4] Default Min Max
lonig L Inpit # |1 F
[New | | Apply |
8. Add another parameter with the values:
= Parameter name: Freqg2
= Datatype: long
= |/O: Input
= Default: 400
= Min: 300
= Max: 500
Figure 106: TwoTonesTwice parameters
FParameters
Mame Type Ijo Default Min Max
leng L4 Input w (0] B0
leng v Input w 3010
[New L Apply

9. Select Apply in the KULT Module. This adds the changes to the read-only code at the

top of the module. Note that this removes errors from the Problems pane.

Entering header files

Any header files that are required are entered below the gray comment line USRLIB

MODULE PARAMETER LIST. The header file keithley.h is added automatically when the
module is created, since it is most commonly used. No additional header files are needed for

this tutorial.

5-8

4200A-SCS-KULT-907-01 Rev. D May 2024

Model 4200A-SCS KULT and KULT Extension Programming Section 5: KULT Extension tutorials

Documenting the user module

Module descriptions are entered between the comment lines USRLIB MODULE HELP
DESCRIPTION and END USRLIB MODULE HELP DESCRIPTION. Code entered here in
markdown format will appear in the Clarius help pane. To format the code, use Markdown, a
web markup language. See markdownguide.org for information on using Markdown.

Do not use C-code comment designators (/*, */ or //) in the Description area. When the user
module code is built, KULT evaluates the text in this area. C-code comment designators in
the Description area can be misinterpreted, causing errors.

For the TwoTonesTwice user module, enter the following in the Description area:

<link rel="stylesheet" type="text/css"
href="http://clariusweb/HelpPane/stylesheet.css">

MODULE

TwoTonesTwice

DESCRIPTION

Execution results in sounding of four beeps at two alternating user-settable
frequencies. Each beeps sounds for 500 ms.

INPUTS

Freql (long) is the frequency, in Hz, of the first and third beep.
Freg2 (long) is the frequency, in Hz, of the second and fourth beep.

OUTPUTS

In the KULT module, the help information now appears below the parameters. The link at
the top provides the Markdown style sheet used by the factory-provided module help panes
and is not necessary for comments to be added to the help pane.

Saving the user module

From the File menu, select Save.

4200A-SCS-KULT-907-01 Rev. D May 2024 5-9

https://www.markdownguide.org/

Section 5: KULT Extension tutorials

Model 4200A-SCS KULT and KULT Extension Programming

Building the library

To build the library:

1. Inthe KULT side bar, under Function, select the run icon next to the function Build

Library my lst lib for Release.

Figure 107: Building a library

~ FUMNCTIONS

Show Module View

Build Library my_1st_lib For Release E]

Build Library my_1st_lib For Debug

2. Inthe Terminal tab at the bottom of the window, observe the build output. Note that it

was unsuccessful.

Finding code errors

In the Problems tab at the bottom of the window, you can review code errors. The error
listing indicates the line with the error and a description of the problem.

To find code errors in the TwoTonesTwice user module:

1. Select the Problems tab at the bottom of the screen. There are two errors, one
generated by the Intellisense feature and one generated by the build.

2. Select either of the problems. The line of code that caused the error is highlighted in the

code editor.

Figure 108: Use the Problems tab to find code errors

27

59

60
61

PROBLEMS (2 OUTPU

® expected a "' [59

58 USRLIB MODI

v C TwoTonesTwice.c my_

| ® expected %' before '}’ token [59, 1]

..............

2

5-10

4200A-SCS-KULT-907-01 Rev. D May 2024

Model 4200A-SCS KULT and KULT Extension Programming Section 5: KULT Extension tutorials

3. The error description indicates the problem. In this case, there is a missing semicolon
before the closing brace. Correct the error by adding the missing semicolon (;).

4. Delete the error message. This also removes the Intellisense error. The build error is
removed after a successful build.

5. Build the user library again.

Checking the user module in Clarius

Check the user module in Clarius by setting up a user test module (UTM).

To check the module in Clarius:

Start Clarius.

Choose the Select pane.

Select Projects.

Select New Project.

Select Create. You are prompted to replace the existing project.
Select Yes.

Select Rename.

Enter UserModCheck and press Enter.

© 00 N o g A~ wDdPE

Select Actions.

[N
o

. Drag Custom Action to the project tree. The action has a red triangle next to it to
indicate that it is not configured.

11. Select Rename.

12. Enter 2tones_twice chk and press Enter.

13. Select Configure.

14. In the Test Settings pane, select the my 1st 1ib user library.

15. From the User Modules list, select the TwoTonesTwice user module. A group of
parameters are displayed for the UTM as shown in the following figure. Accept the

default parameters for now. You can experiment later after you establish that the user
module executes correctly.

4200A-SCS-KULT-907-01 Rev. D May 2024 5-11

Model 4200A-SCS KULT and KULT Extension Programming

Section 5: KULT Extension tutorials

Figure 109: Configure the TwoTonesTwice UTM

X

> R B0 8 O

All Parameters.

|]1] 2tones_twice_chk#1
e Ztonestwice_chk#]
i 2tones_twice_chk User Librasies:
my_1sis -
User Modules:
TwoTonesTwice M
=3
Freal | 1000
Freq2 | 400

(A) Messages 2020/01/06 - 15:48:26: Clarius Hardware Server started.
.

16. Select Help to verify that the HTML in the Description tab is correctly formatted. An
example is shown in the following figure.

Figure 110: Example Help

BESCREETION

mecuticn st in Boumding of 1ur Bpa B b
memaring Laie-attabis frequanciey. [aok beepa poundy

17. Select Save.
18. Select Run to execute the UTM. You should hear a sequence of four tones, sounded at

alternating frequencies.

5-12

4200A-SCS-KULT-907-01 Rev. D May 2024

Model 4200A-SCS KULT and KULT Extension Programming Section 5: KULT Extension tutorials

Tutorial: Creating a user module that returns data arrays

This tutorial demonstrates the use of array variables in the KULT Extension. It also
illustrates the use of return types (or codes), and the use of two functions from the Keithley
Linear Parametric Test Library (LPTLib).

NOTE

Most of the basic steps that were detailed in Tutorial: Creating a new user library and user
module (on page 5-2) are abbreviated in this tutorial.

Creating a new user library and user module

To name a new user library and new VSweep user module:

Open Visual Studio Code.

Open the KULT side bar.

Under Libraries, select + to create a new library.

Name the library my 2nd 1ib and press Enter.

Select the library name.

Under Modules, select + to create a new user module in the library.

Name the module VvSweep and press Enter.

© N o g bk w N PRE

Select the VvSweep module to open it in the editor.

Entering the return type for VSweep

The VSweep user module generates an integer return value.

To set the return type of integer:
1. From the Return Type list, select int.
2. Select Apply.

Figure 111: VSweep Return Type setting

Module VSweep
Return Type void ¥
char
Parameters float
Name double
it |
long
 void

4200A-SCS-KULT-907-01 Rev. D May 2024 5-13

Section 5: KULT Extension tutorials Model 4200A-SCS KULT and KULT Extension Programming

Entering the VSweep user module code

In the editor, enter the following C code for the VSweep user module between the comment
lines USRLIB MODULE CODE and USRLIB MODULE END.

NOTE

When returning data using arrays, it is good practice to add a check to make sure that the
points returned from a sweep is less than the size of the array. This prevents memory
errors. This is not necessary here, since the array size is used as the number of points to
calculate the step size. For modules that specify step size, the number of measurement
points is always one greater than the number of steps.

double vstep, v; /* Declaration of module internal variables. */

int 1i;

if ((Vstart == Vstop)) /* Stops execution and returns -1 if */

return(-1); /* sweep range is zero. */

if ((NumIPoints != NumVPoints)) /* Stops execution and returns -2 if */
return(-2); /* V and I array sizes do not match. */

vstep = (Vstop-Vstart) / (NumVPoints -1); /* Calculates V-increment size. */

for (i=0, v = Vstart; i < NumIPoints; i++) /* Loops through specified number of */
/* data points. */
{

forcev (SMU1l, v); /* LPTLib function forceX, which forces a V or I. */

measi (SMUl, &Imeas[i]); /* LPTLib function measX, which measures a V or I. */
/* Be sure to specify the *address* of the array. */
Vforce[i] = v; /* Returns Vforce array for display in UTM Sheet. */

v = v + vstep; /* Increments the forced voltage. */

}

return(0); /* Returns zero if execution Ok.*/

Entering the VSweep user module parameters

This example uses the double-precision D ARRAY T array type. The D ARRAY T,
I ARRAY T,and F ARRAY T are special array types that are unique to Keithley User

Libraries. For each of these array types, you cannot enter values in the Default, Min, and
Max fields. An extra parameter is created to indicate the array size.

When executing the Vsweep user module in a Clarius UTM, the start and stop voltages
(vstart and Vstop) must differ. Otherwise, the first return statement in the code halts
execution and returns an error number (-1). When a user module is executed using a Clarius
UTM, this return code is stored in the UTM Data worksheet. The return code is stored in a
column that is labeled with the user-module name.

5-14 4200A-SCS-KULT-907-01 Rev. D May 2024

Model 4200A-SCS KULT and KULT Extension Programming

Section 5: KULT Extension tutorials

When executing the VSweep user module in a Clarius UTM, the current and voltage array
sizes must match; NumIPoints must equal NumvPoints. If the sizes do not match, the
second return statement in the code halts execution and returns an error number (-2) in the

VSweep column of the UTM Data worksheet.

To enter the required parameters:

1. Inthe KULT module, select New to create a new parameter.

Figure 112: Enter required code parameter

Parameters
Mamae

Defaiilt

2. Create the parameters Vstart and Vstop using the information in the following table.

Parameter Name Type 1/0 Default Max

Vstart double Input 0 -20 20

Vstop double Input 5 -20 20

Select New to add a parameter for the measure current.

Enter the following parameter information:

= Name: Imeas

= Type:D ARRAY T

= |/O: Output

Figure 113: KULT module parameters
Parameters
MName Type /0 Default Min Max

Vstart double v lnput w i [20 20
.‘\-'-;I'.'L- double v lmput w 3 [20 20

parmiSize int r

I|'||;||_|'I L

I:J_F-.RRAT_T L I Cutput * I

[|

5. The array size variable parm0Size was automatically added. Change the name to

NumIPoints.

4200A-SCS-KULT-907-01 Rev. D May 2024

5-15

Section 5: KULT Extension tutorials Model 4200A-SCS KULT and KULT Extension Programming

6. For NumIPoints, setthe Defaultto 11. You can also add Min and Max sizes if needed.

Figure 114: Specify the NumlIPoints parameters

Parameters
Name Type /o Default Min Max
Wetart double v lnput ¥ [20 B0
.‘."s.l'.'-p doubla v lnput ¥ 3 [20 20
Imeas D _ARRAY T v Quiput v

MumlPoints

|__Up [Down | B KT ETE

7. Select New.
8. Create a parameter for the forced voltage. Use the following settings:
= Name: Vforce
= Type:D ARRAY T
= |/O: Output
9. Change the name of the automatically generated size parameter to NumvPoints.
10. For NumVPoints, set Default to 11.

11. Select Apply. The user module contains the parameters shown in the following figure.

Figure 115: VSweep parameters

Parameters

Name Type I/o Default Min Max
Vstart double v lnput ¥ o [20 Bo
.‘v'-:t::-p double v lnput ¥ 3 20 20
Imeas D_ARRAY T v OQutput »
MumlPgints int ¥ Input ¥ 1
NForce D ARRAY T v Output v
MurmVPaints i v lnput ¥ T

[Now [Doetc

Entering the header files for the VSweep user module

You do not need to enter any header files for the VSweep user module. The default
keithley.h header file is sufficient.

5-16 4200A-SCS-KULT-907-01 Rev. D May 2024

Model 4200A-SCS KULT and KULT Extension Programming

Section 5: KULT Extension tutorials

Documenting the VSweep user module

Module descriptions are entered between the comment lines USRLIB MODULE HELP
DESCRIPTION and END USRLIB MODULE HELP DESCRIPTION. Code entered here in
markdown format will appear in the Clarius help pane. To format the code, use Markdown, a
web markup language. See markdownguide.org for information on using Markdown.

A sample description is shown below:

<link rel="stylesheet" type="text/css"
href="http://clariusweb/HelpPane/stylesheet.css">

VSweep module

Sweeps through a specified voltage range and measures current using a specified

number of points.

Places forced voltage and measured current values

arrays.

(Vforce and Imeas) in output

NOTE For n increments, specify n+l array size for both NumIPoints and NumVPoints.

Saving the VSweep user module

From the File menu, select Save.

Building the VSweep user module

To build the user module:

1. Under Functions, select Build library my_2nd_lib for Release.

2. Select the runicon.

Figure 116: Build the my_2nd_lib user library

< FUMCTIONS

VA e
diy MYy _.£
¥ J

3. Check the status of the build output in the Terminal tab at the bottom of the window.

4. Correct any errors and rebuild the user module.

4200A-SCS-KULT-907-01 Rev. D May 2024

5-17

https://www.markdownguide.org/

Section 5: KULT Extension tutorials Model 4200A-SCS KULT and KULT Extension Programming

Checking the VSweep user module in Clarius

You can check the user module by adding it to a user test module (UTM) in Clarius and
executing the UTM.

This procedure uses the project that was created for Tutorial: Creating a new user library
and user module (on page 5-2).

To check the user module:

1. Connect a 1 kQ resistor between the FORCE terminal of the ground unit (GNDU) and
the FORCE terminal of SMUL.

Select the UserModCheck project.
Choose Select.

Select the Devices tab.

Select Resistor, 2 terminal.
Select Add.

Select the Tests tab.

Select Custom Test.

© ©® N o g A~ D

Select Choose atest from the pre-programmed library (UTM).

=
o

. Select Add. The test has a red triangle next to it to indicate that it is not configured.

[EEN
[EEN

. Select Rename.

=
N

. Enter the name v_sweep chk and select Enter.

=
w

. Select Configure.

=
N

. In the right pane, from the User Libraries list, select the my 2nd 1ib library.

[N
(921

. From the User Modules list, select VSweep. A default schematic and group of
parameters are displayed for the UTM.

5-18 4200A-SCS-KULT-907-01 Rev. D May 2024

Model 4200A-SCS KULT and KULT Extension Programming Section 5: KULT Extension tutorials

Figure 117: Schematic and parameters for the v_sweep_chk UTM

- S
= o T e .
S-E-© >» B RO B O
»]) elr
& [| v_sweep_chks Al Parameters ® i
vsweep_chk#1
User Librories
my_zna s =
e e User Modules:
=2

Vit | 0
Vsiop | §
NumiPoints | 11

MumVPoints | 11

() Messages 2020/01/07 -09:39:48: Clarius Hardware Server started.

16. Select Run.
17. Select Analyze.

18. After execution, review the results in the Analyze sheet. The results should be similar to
the results in the following figure. The current-to-voltage ratio for each row of results
should be approximately 1 mA/V.

In the first VSweep row, 0 is returned. This means that the user module executed
without any errors.

Figure 118: Example of results from a UTM in the Analyze sheet

VSweep Imeas Vforce

1 0 989.9920E-9 000.0000E-3

508.9770E-6 500.0000E-3

1.0186E-3 1.0000E+0

1.5273E-3 1.5000E+0

N | bW N

2.0365E-3 2.0000E+0

4200A-SCS-KULT-907-01 Rev. D May 2024 5-19

Section 5: KULT Extension tutorials Model 4200A-SCS KULT and KULT Extension Programming

Tutorial: Calling one user module from another

This tutorial demonstrates how to set up user modules to call other user modules from any
user library. It also describes how to copy a module.

In this tutorial, a new user module is created using the user modules created in the

previous tutorials:

e Tutorial: Creating a new user library and user module (on page 5-2): The
TwoTonesTwice user module, inthe my 1st 1ib user library, which is the
independent user library that is called by the vSweep user module.

e Tutorial: Creating a user module that returns data arrays (on page 5-13): The VSweep
user module inthe my 2nd 1ib user library, a copy of which is used as the dependent
user library.

A copy of the VvSweep user module, VSweepBeep, calls the TwoTonesTwice user module
to signal the end of execution.

Copying an existing user module

In these steps, you copy the VSweep module to create the VSweepBeep module.

To copy the VSweep user module:

1. Start Visual Studio Code and open the KULT Extension.
2. From Libraries, select my_2nd_lib.

3. From Modules, select VSweep.

4. Select the copy icon next to the module to make a copy.

Figure 119: Copy the VSweep user module

my_2nd_lib =h > W

NI
+ MODULES r
'.I.' i‘;".'.'i'{‘i: IEIJ@

5. Name the copied module VSweepBeep.

Copy Module

VSweepBeep

6. Select Enter.

7. Select VSweepBeep in the side bar to open it in the editor.

5-20 4200A-SCS-KULT-907-01 Rev. D May 2024

Model 4200A-SCS KULT and KULT Extension Programming Section 5: KULT Extension tutorials

Calling another user module from the VSweepBeep user module

To call the TwoTonesTwice user module at the end of the VSweepBeep user module:

1. Atthe end of VSweepBeep, before the return (0) statement, add the following
statement:

TwoTonesTwice (Freql, Freqg2); /* Beeps 4X at end of sweep. */

2. Onthe KULT module, add the Freql and Freg2 parameters shown in the following
table and figure.

Name Type 1/0 Default Min Max
Freql Long Input 1000 800 1200
Freq2 Long Input 400 300 500

Figure 120: VSweepBeep parameters

Parameters
Mame Type /o Default Min Max
hrstart doubla v Input ¥ i [20 Bo
Wrstop doublea v Input ¥ E
meas D_ARRAY T v Output »
MumlPgints int v | lnput » |11
D ARRAY T » Output w
.‘.l,:':l"."i-'-; nks int L Inpul: L .I 1
Freqi lang v lnput ¥ fooo B0 [iza0
Fraq2 lang v lnput w 400 R0 00
[New | [ooty |

3. Select Apply to add the new parameters to the function prototype.

Specifying user library dependencies

Before building the open user module, you must specify all the user libraries on which the
user module depends.

The VSweepBeep user module depends onthemy 1st 1ib user library.

4200A-SCS-KULT-907-01 Rev. D May 2024 5-21

Section 5: KULT Extension tutorials Model 4200A-SCS KULT and KULT Extension Programming

To specify the library dependency:
1. Inthe KULT side bar, under Miscellaneous, select my 2nd 1ib modules.mak to open
it in the editor.

Figure 121: Select the .mak file

= MISCELLAMEQOUS

2. Place your cursor next to the LIBS= variable.

3. Press Ctrl+Space to display all libraries or type my to automatically filter.

Figure 122: Add library dependency

7 # Each entry must be separated by a space.
8 LIBS = "my"
9 @ my_1st_1ib.lib
1e @ my_2nd_lib.1ib

4. Selectmy 1st 1lib.

Select File > Save.

Building the user library

To build the user library:
1. To save the VSweepBeep module, select File > Save.

2. Under Functions, select Build library my_2nd_lib for Release.

3. Select the runicon.

Figure 123: Build the my_2nd_lib user library

~ FUMCTIOMS
Show Module View
Build Library my_2nd_lib For Release E

Build Library my_2nd_lib For Debug

4. Check the build output for any errors.

5-22 4200A-SCS-KULT-907-01 Rev. D May 2024

Model 4200A-SCS KULT and KULT Extension Programming Section 5: KULT Extension tutorials

Checking the VSweepBeep user module

Check the user module by creating and executing a user test module (UTM) in Clarius.
Refer to Checking the user module. (on page 2-12)

This tutorial is almost identical to Tutorial: Creating a user module that returns data arrays
(on page 5-13). The data produced should be the same as that tutorial. However, four beeps
should sound at the end of execution.

Before proceeding:

1.

Connect a 1 kQ resistor between the FORCE terminal of the GNDU and the FORCE
terminal of SMUL.

Instead of creating a new project, reuse the UserModCheck project that you created in
Tutorial: Creating a new user library and user module (on page 5-2).

Add a UTM called v_sweep bp_ chk.

Configure the v_sweep bp chk UTM to execute the VSweepBeep user module, which
is found inthe my 2nd 1ib user library.

Runthe v_sweep bp chk UTM. Near the end of a successful execution, you should
hear a sequence of four tones, sounded at alternating frequencies.

At the conclusion of execution, review the results in the Analyze sheet. If you connected
a 1 kQ resistor between SMU1 and GNDU, used the default UTM parameter values, and
executed the UTM successfully, your results should be similar to the results shown in
Checking the VSweep user module in Clarius (on page 5-18). The current/voltage ratio
for each row of results should be approximately 1 mA/V.

Tutorial: Customizing a user test module (UTM)

This tutorial demonstrates how to modify a user module using the KULT Extension. In the
ivswitch project, there is atest named rdson. The rdson test measures the drain-to-
source resistance of a saturated N-channel MOSFET as follows:

1.
2.
3.
4.

Applies 2 V to the gate (VQ) to saturate the MOSFET.
Applies 3 V to the drain (Vd1l) and performs a current measurement (Id1).
Applies 5 V to the drain (Vd2) and performs another current measurement (1d2).

Calculates the drain-to-source resistance rdson as follows:
rdson = (Vd2-vdl) / (Id2-Id1l)

4200A-SCS-KULT-907-01 Rev. D May 2024 5-23

Section 5: KULT Extension tutorials Model 4200A-SCS KULT and KULT Extension Programming

The rdson test has a potential shortcoming. If the drain current is noisy, the two current
measurements may not be representative of the actual drain current. Therefore, the
calculated resistance may be incorrect.

In this example, the user module is modified in Visual Studio Code so that ten current
measurements are made at Vd1 and ten more at VVd2. The current readings at Vd1 are
averaged to yield Id1, and the current readings at Vd2 are averaged to yield 1d2. Using
averaged current readings smooths out the noise. The modified test, rdsonAvg, measures
the drain-to-source resistance of a saturated MOSFET. The MOSFET is tested as follows
when rdsonAvg is executed:

o gk~ wbh e

Applies 2 V to the gate (VQ) to saturate the MOSFET.

Applies 3 V to the drain (Vd1) and makes ten current measurements.
Averages the 10 current readings to yield a single reading (Id1).

Applies 5 V to the drain (Vd2) and makes ten more current measurements.
Averages the ten current readings to yield a single reading (1d2).
Calculates the drain-to-source resistance (rdsonAvg) as follows:

rdsonAvg = (Vd2-vdl) / (Id2-Idl)

Copy the Rdson42XX user module

When naming a user module, conform to case-sensitive C programming language naming
conventions. Do not duplicate names of existing user modules or user libraries.

To copy the user module:

1.

2
3.
4

Open Visual Studio Code and the KULT side bar.
On the side bar under Libraries, select Kl42xxulib.
Under Modules, select the Rdson42XX user module.

Select the copy icon.

Figure 124: Copy Rdson42XX module

~ LIBRARIES
HP2110ulib
ki340xulib
Kla2xxulib == W
ki580ulib
Ki595ulib
kig22x_2182_ulib
kigzulib
~ MODULES +
Rdsond2XX EI]

5-24

4200A-SCS-KULT-907-01 Rev. D May 2024

Model 4200A-SCS KULT and KULT Extension Programming Section 5: KULT Extension tutorials

5. Rename the copied module.

Figure 125: Name copied user module

Copy Module

RdsonAvg

Enter new module name. (Press 'Enter’ to confirm or ‘Escape’ to cancel)

6. Press Enter to confirm the name.
7. Select the new module RdsonAvg to open it in the editor.

Modify the RdsonAvg user module

In the user module code, you need to replace the measi commands with avgi commands.
While a measi command makes a single measurement, an avgi command makes a
specified number of measurements, and then calculates the average reading. For example:

avgi (sMU2, 1d1i, 10, 0.01);

For the above command, SMU2 makes 10 current measurements and then calculates the
average reading (1d1). The 0.01 parameter is the delay between measurements (10 ms).

The source code for the module is in the module code area of the window. In this area,
make the following changes.

Under Force the first point and measure, change the line:
measi (SMU2, Idl):;

to

avgi (SMU2, Idl, 10, 0.01); // Make averaged I measurement
Under Force the second point and measure, change the line:
measi (SMU2, Id2):;

to

avgi (SMU2, Id2, 10, 0.01); // Make averaged I measurement

Change the line:

*Rdson = (Vd2-vdl)/ (*Id2- *Idl); // Calculate Rdson
to
*RdsonAverage = (Vd2-vdl)/ (*Id2- *Idl); // Calculate RdsonAverage

4200A-SCS-KULT-907-01 Rev. D May 2024 5-25

Section 5: KULT Extension tutorials Model 4200A-SCS KULT and KULT Extension Programming

Change a parameter name

Parameters must have name that is different than the name of the user module.

To change the name of the Rdson parameter:
1. From the side bar, select Show Module View.
2. Select the name of the Rdson parameter.
3. Enter RdsonAverage.
Figure 126: Change the name of the Rdson parameter

BulkPin int v Input ¥ . T2
a1 double v | Qutput v
ez double * v Output v
.ql!'.-u"-"-'-'-.1-.l:..'-'.' double * v Output w
~New "oy

4. Select Apply.

Change the module description

In Clarius, any user test modules (UTMs) that are connected to this user module show the
text that is entered in the Description section in the Clarius help pane.

To change the module description:
1. Review the text between in the gray comments for MODULE HELP DESCRIPTION.

2. Replace all instances of Rdson with RdsonAverage.

Save and build the modified library
1. From the File menu, select Save.
2. Under Functions, select Build library Kl42xxulib for Release.
3. Select the run icon.
Figure 127: Build the Kl42xxulib library

“ FUNCTIONS
Show Module View
Build Library Kld42xxulib For Release @

Build Library Kl42xxulib For Debug

4. Check the build output for errors.

5-26 4200A-SCS-KULT-907-01 Rev. D May 2024

Model 4200A-SCS KULT and KULT Extension Programming Section 5: KULT Extension tutorials

Add a new UTM to the ivswitch project

To add rdsonAvg to the ivswitch project:

1.
2.

N o g &

10.

11.
12.
13.
14.

Choose Select.
Select Projects.

In the Search box, enter ivswitch and select Search. The Library displays the I-V
Switch Project (ivswitch).

Select Create. The ivswitch project replaces the previous project in the project tree.
Select the Tests tab.
For the Custom Test, select Choose a test from the pre-programmed library (UTM).

Drag Custom Test to the project tree. The test has a red triangle next to it to indicate
that it is not configured.

Select Rename.

Enter rdsonAvg and press Enter.

In the project tree, drag rdsonAvg to the 4terminal-n-fet device, after the
rdson test.

Choose Configure.

In the Test Settings pane, from the User Libraries list, select Kl42xxulib.

From the User Modules list, select Rdson42XX.

Select Save.

The project tree for the ivswitch project with rdsonAvg added is shown in the
following figure.

Figure 128: Add a new UTM to the ivswitch project

o@¥ 7 1
el Rename Detere

meienich =

A = dterminal-n-fet H
& connest &
wis-id
subwt /|
—_
igvg
niSan
rdsondvg

4200A-SCS-KULT-907-01 Rev. D May 2024 5-27

Section 5: KULT Extension tutorials Model 4200A-SCS KULT and KULT Extension Programming

Tutorial: Debugging a user module

This tutorial demonstrates how to use the KULT Extension in Visual Studio Code to debug
code with the GNU Debugger (GDB). The tutorial shows you how to pause execution,
monitor variables and expressions, and step through code one line at a time.

Using copy to create the VSweepRes user module

To create the VSweepRes user module using copy:

1. Start Visual Studio Code and open the KULT side bar.
2. From Libraries, select my_2nd_lib.

3. From Modules, select VSweep.
4

Select the copy icon.

Figure 129: Copy the VSweep user module

“ FUMCTIONS
Show Module View
Build Library Kl42xxulib For Release @
Build Library Kl42xxulib For Debug

5. Name the copied module VSweepRes.

Figure 130: Name the copied module VSweepRes

Copy Module

‘.‘S-,-,eepReﬂ

Enter new module name. (Press 'Enter' to confirm or 'Escape’ to cancel)

6. Select Enter.

7. Select VSweepRes in the side bar to open it in the editor.

5-28 4200A-SCS-KULT-907-01 Rev. D May 2024

Model 4200A-SCS KULT and KULT Extension Programming Section 5: KULT Extension tutorials

Adding an average resistance calculation to VSweepRes

To add a calculation for the average resistance:
1. Atthe beginning of vSweepRes, after the line defining int i, add the following
statement:
double sum = 0; /*Sum of all resistance measurements*/
2. Inside the for loop, after the line
v = v + vstep; /* Increments the forced voltage. */ add the following
statement:
sum = (Vforce[i]/Imeas[i]); /*Intentionally incorrect line*/

= That line is intentionally incorrect. We will find the error using the debugger later.

3. After the for loop, before the return statement, add the following statement:

*AvgRes = sum/ (NumIPoints - 1); /*Divide by the number of measurements, not
including 0 V, to get average. */

Adding a parameter to VSweepRes

To add a parameter to VSweepRes:

1. Onthe KULT module, add a new parameter, AvgRes, with the values shown in the
following table.
Name Type 1/O Default Min Max
AvgRes Double* Output

2. Select Apply to add the new parameter.

Figure 131: Add a new parameter

Parameters
Mame Type I/ Default Min Max
Wstart double v Input « 0 200 Boo
Vstop double ¥ Inpit ¥ 5 200
meas D_ARKRAY T v Qutput v
MurnlPaints int vy lnput
D_ARRAY Tw Output v
imVPaints int v Input w
BvogFes double * r | Quiput v
| New | ___Apply |

4200A-SCS-KULT-907-01 Rev. D May 2024 5-29

Section 5: KULT Extension tutorials Model 4200A-SCS KULT and KULT Extension Programming

Building the user library

To build the user library:
1. From the File menu, select Save.
2. Under Functions, select Build library my_2nd_lib for Release.

3. Select the runicon.

Figure 132: Build my_2nd_lib library

v FUNCTIONS

Build Library my_2nd_lib For Release D

Library my_2nd_lib For Debug

— oS AL LS

Build

4. Check the build output for any errors. The build should be successful.

Checking the VSweepRes user module
Check the user module by creating and executing a user test module (UTM) in Clarius.

To check the user module:

1. Connect a 1 kQ resistor between the FORCE terminal of the ground unit (GNDU) and
the FORCE terminal of SMUL.

2. Select the UserModCheck project.

3. Choose Select.

4. Select the Devices tab.

5. Select Resistor, 2 terminal.

6. Select Add.

7. Select the Tests tab.

8. Select Custom Test.

9. Select Choose atest from the pre-programmed library (UTM).

10. Select Add. The test has a red triangle next to it to indicate that it is not configured.
11. Select Rename.

12. Enter the name v_sweep_chk and select Enter.

13. Select Configure.

14. In the right pane, from the User Libraries list, select the my 2nd 1ib library.

5-30 4200A-SCS-KULT-907-01 Rev. D May 2024

Model 4200A-SCS KULT and KULT Extension Programming Section 5: KULT Extension tutorials

15. From the User Modules list, select vSweepRes. A default schematic and group of
parameters are displayed for the UTM.

16. Select Run.
17. Select Analyze.

18. Review the results in the Analyze sheet. The results should be similar to the results in
the following figure. Notice that there is a new value returned in the sheet, AvgRes,
which is the average calculated resistance. However, the value is incorrect. If you
connected a 1 kQ resistor, the value is closer to 100 Q. There is something wrong in the
user module. In the next topic, you use the debugger to help find the error.

Figure 133: Analyze results for v_sweep_res_chk

VSweepRes Imeas Viorce AvgRes
1 0 820.5520E-9 000.0000E-3 99.9235e+0
2 | 499.?TDDE-6I .’:UD.CIUDDE-SI
3 - | ‘J.UUDDE-BI 1.000[]E+E}I

Starting the debugger and adding a breakpoint

At least one breakpoint must be set before running the debugger. Breakpoints bind when
code execution begins.

To start the debugger and add a breakpoint:

1. In Visual Studio Code, in the KULT side bar, select the library that contains the module.
2. Select the module.

3. Under Functions, select Build Library my_2nd_lib for Debug.

4

Select the run icon.

Figure 134: Build the library for debug

v FUNCTIONS

Build Library my_2nd_lib For Rel

ease
bug [E

5. In Clarius, reload the user module by selecting another test, then selecting
v_sweep_res_chk again.

or Re
Build Library my_2nd_lib For De

6. Place an unconditional breakpoint by selecting the space to the left of the line that
calculates the V-increment size. Code execution will pause at this line.

4200A-SCS-KULT-907-01 Rev. D May 2024 5-31

Section 5: KULT Extension tutorials Model 4200A-SCS KULT and KULT Extension Programming

Figure 135: Unconditional breakpoint

»

vstep = (Vstop-Vstart) / (NumVPoints -1); /* Calculates V-increment size.
6 for(i=0, v = Vstart; i < NumIPoints; i++) /* Loops through specified numb¢

L J
»

4 return(-2); /* V and I array sizes do not match. */
S

»

7. In Visual Studio Code, in the Debug side bar, select Run > (gdb) Attach.

Figure 136: Starting the debugger

&
s

RUM [Qodb) Attach
S—

“ VARIABLES

8. Wait for the attach process to complete. The attach process is complete and the
debugger is running when the status bar at the bottom changes from blue to orange as

shown in the following figure.

Figure 137: Debug Console and status bar

BEOHY St UM DN O NITCOmipene RO

DoAY P i Anas aetts

Debugging the code
Once the attach process is complete, the code can be executed.
The attach process causes any previously set breakpoints to temporarily unbind (turn gray).

They automatically rebind when code execution starts. You can change, add, or remove
breakpoints when the code execution is paused on an existing breakpoint.

5-32 4200A-SCS-KULT-907-01 Rev. D May 2024

Model 4200A-SCS KULT and KULT Extension Programming Section 5: KULT Extension tutorials

To debug the code:
1. In Clarius, select Run to start the code.

2. Return to Visual Studio Code. The code pauses on the breakpoint.

Figure 138: Code paused on breakpoint

44 return(-2); /* V and I array sizes do not match. */
o 45 vstep = (Vstop-Vstart) / (NumVPoints -1); /* Calculates V-increment size.
46 for(i=0, v = Vstart; i < NumIPoints; i++) /* Loops through specified numb¢g

3. On the Variables pane in the debugger side bar, find the sum variable. Right-click the
variable and select Add to watch. The variable is shown in the watch pane on the
side bar.

Figure 139: Add to watch, variables pane

v VARIABLES

Vv Locals
vstep: 2.1219957909652723e-313
v: 2.7813423231340017e-308

i: -59
sum: ©
Vstart: { Set Value
pSLoPRS Copy Value
> Imeas: O]
Copy as Expression
NumIPoin

> Vforce: | Add to Watch

NumVPoinTsST I

> AvgRes: ©x7cal7d8

Figure 140: Variable sum added to watch

v WATCH

sum: @

4200A-SCS-KULT-907-01 Rev. D May 2024 5-33

Section 5: KULT Extension tutorials Model 4200A-SCS KULT and KULT Extension Programming

4. Select Step Over on the debugger toolbar until you get to the line
sum = (Vforce[i]/Imeas[1]) ;. Atthat point, the code loops back to the top of the
for loop. Continue until you get to the sum line again.

Figure 141: Step over

lb‘f’ T O F

5. Select Step Into. This line has now executed and the sum value has changed.

6. Select Debug Console at the bottom of the screen. Enter the formula below:
Vforce[i]/Imeas[1i]

Figure 142: Enter formula in Debug Console

[New Thread 5440.0x53c]
> Vforce[i]/Imeas[i]

7. Press Enter. The value returned is the same as the value in sum and is approximately
the value of the resistor. This verifies that the correct resistance is calculated from the
current measurement.

Figure 143: Returned value

[New Thread 5440.0x53c]
Vforce[i]/Imeas[i]

980.90135037686196

8. Continue stepping through the code until you get to the top of the for loop again. The
value for sum is not changing. Therefore, our sum formula must be incorrect.

9. Press F5 the Continue button on the debug toolbar. This will run the code until
completion.

10. Select to the Terminal tab at the bottom.

11. Select the Disconnect button. This terminates the debugging session.

12. Correct the sum line from:

sum =(Vforce[i]/Imeas[1]); /*Intentionally incorrect line*/
to
sum = sum + (Vforce[i]/Imeas[1i]); /*Sum Resistances*/

13. Rebuild the library for release by selecting the command Build Library my_2nd_lib For
Release on the KULT side bar.

5-34 4200A-SCS-KULT-907-01 Rev. D May 2024

Model 4200A-SCS KULT and KULT Extension Programming Section 5: KULT Extension tutorials

Retest the VSweepRes user module in Clarius

1. Return to Clarius. Click away from the v_sweep res chk test and back to reload
the module.

2. Rerun the module with the same settings as before, 0 to 5 V with number of V and |
points as 11.

3. Select the Analyze view. The resistance value is now correct.

Figure 144: Analyze the VSweepRes user module

VSweepRes Imeas Vforce AvgRes
i i 810.1430E-9 000.0000E-3| 999 6560E+D
2 I 499.7370E-6 500.0000 E-3.
3 999.7240E-6 1.0000E+0
4 1.5000€E-3 1.5000E+0
5 ‘ 2.0005E-3 2.ﬂﬂ00E+D‘
6 2 5015E-3 2 5000E+0
7 3.0018E-3 3.0000E+0
8 ‘ 3.501E-3 3.5009E+D‘
9 4.0027E-3 4. 0000E+0D
10 ‘ 4.5030€E-3 4.5'000E+D1
11 5.0038E-3 5.0000E+0

4200A-SCS-KULT-907-01 Rev. D May 2024 5-35

Specifications are subject to change without notice.
All Keithley trademarks and trade names are the property of Keithley Instruments.
All other trademarks and trade names are the property of their respective companies.

Keithley Instruments < 28775 Aurora Road ¢ Cleveland, Ohio 44139 - 1-800-833-9200 - tek.com/keithley

KEITHLEY

A Tektronix Company

04/2022

https://www.tek.com/keithley

	Model 4200A-SCS KULT and KULT Extension Programming
	Safety precautions
	Contents
	1 Introduction
	Introduction
	KULT description
	KULT interface description
	Module identification area
	Module parameter display area
	Module code-entry area
	Terminating brace area
	Tab area
	Parameters tab area
	Parameter name field
	Data type field
	I/O field
	Default, min, and max fields

	Includes tab area
	Description tab area
	Include

	Build tab area

	Status bar
	Menus
	File menu
	New Library
	Open Library
	Copy Library
	Delete Library
	New Module
	Open Module
	Save Module
	Copy Module
	Delete Module
	Print Module
	Exit

	Edit menu
	Options menu
	Help menu

	Develop and use user libraries
	Copy user modules and files
	Enabling real-time plotting for UTMs
	Using NI-VISA in user libraries
	Add NI-VISA as a library dependency in KULT
	Add NI-VISA as a library dependency in the KULT Extension
	Include the NI-VISA header files in KULT
	Include the NI-VISA header files in the KULT Extension
	Remove Intellisense errors

	2 KULT tutorials
	KULT Tutorials
	Tutorial: Creating a new user library and user module
	Starting KULT
	Naming a new user library
	Creating a new user module
	Entering the return type
	Entering user module code
	Entering parameters
	Entering header files
	Documenting the user module
	Saving the user module
	Building the user library to include the new user module
	Finding build errors
	Checking the user module

	Tutorial: Creating a user module that returns data arrays
	Naming new user library and new VSweep user module
	Entering the VSweep user-module return type
	Entering the VSweep user-module code
	Entering the VSweep user-module parameters
	Entering the VSweep user-module header files
	Documenting the VSweep user module
	Saving the VSweep user module
	Building the VSweep user module
	Checking the VSweep user module

	Tutorial: Creating a user module that returns data arrays in real time
	Naming new user library and new VSweepRT user module
	Entering the VSweepRT user-module return type
	Entering the VSweepRT user-module code
	Entering the VSweepRT user-module parameters
	Entering the VSweepRT user-module header files
	Documenting the VSweepRT user module
	Saving the VSweepRT user module
	Building the VSweepRT user module
	Checking the VSweepRT user module

	Tutorial: Calling one user module from within another
	Creating the VSweepBeep user module by copying an existing user module
	Calling independent user module from VSweepBeep user module
	Specifying user library dependencies in VSweepBeep user module
	Building the VSweep user module
	Checking the VSweepBeep user module

	Tutorial: Customizing a user test module (UTM)
	Open KULT
	Open the KI42xxulib user library
	Open the Rdson42XX user module
	Copy Rdson42XX to RdsonAvg
	Open and modify the RdsonAvg user module
	Modify the user module code
	Change a parameter name
	Change the module description

	Save and build the modified library
	Add the new UTM to the ivswitch project

	Tutorial: Creating a user module for stepping or sweeping
	Name a new user module
	Entering the return type
	Entering the user-module code
	Entering the user-module parameters
	Enter the user-module header files
	Documenting the user module
	Saving the user module
	Building the user module
	Setting up the user interface of the user module
	Check the user module in Clarius

	3 User module and library management
	Introduction
	Managing user libraries
	Updating and copying user libraries using KULT command-line utilities
	Updating user libraries using kultupdate
	Copying user libraries using kultcopy

	Performing other KULT tasks using command-line commands
	gui subcommand
	new_lib subcommand
	bld_lib subcommand
	del_lib subcommand
	new_mod subcommand
	add_mod subcommand
	del_mod subcommand
	zip subcommand
	unzip subcommand
	help subcommand

	Dependent user modules and user libraries
	Structuring dependencies hierarchically
	Building dependent user libraries in the correct order

	Formatting user module help for the Clarius Help pane
	Creating project prompts
	Using dialog boxes
	Dialog formats

	Dialog test examples
	Example: Announce end of test

	4 KULT Extension for Visual Studio Code
	Introduction
	Installation
	Download Visual Studio Code
	Install Visual Studio Code
	Install extensions with an internet connection
	Install extensions without an internet connection
	Updating the KULT Extension after installing Clarius

	Setting up Visual Studio Code for library development
	Opening the user library in Visual Studio Code
	Creating the Visual Studio Code configuration files
	Create the C/C++ Intellisense configuration file
	Create the launch configuration file

	Visual Studio code overview
	Opening Visual Studio Code
	Visual Studio Code user interface
	Activity bar
	Panels

	Command Palette
	Settings in Visual Studio Code

	KULT side bar
	Working with user libraries in Visual Studio Code
	Creating a new library
	Copying a library
	Deleting a library
	Renaming a library
	Setting library visibility
	Entering library dependencies and environment variables
	Building a library
	Build a library from the KULT Extension side bar
	Build a library from the Terminal menu

	Cleaning a library

	Working with modules in Visual Studio Code
	Creating a new user module
	Copy a user module
	Rename a user module
	Deleting a user module
	Setting the return type of a user module
	Including header files
	Editing module parameters
	Reorder the user module parameters
	Editing the module description

	Debugging libraries
	Debugger side bar and toolbar
	Setting up the debugger
	Running code with the debugger
	Ending a debugging session
	Setting breakpoints in modules
	Setting an unconditional breakpoint
	Setting a conditional breakpoint
	Setting a function breakpoint

	Expression evaluation
	Evaluating an expression once
	Evaluating an expression at every breakpoint
	Editing a variable value

	Watching variables

	5 KULT Extension tutorials
	Tutorial overview
	Tutorial: Creating a new user library and user module
	Starting Visual Studio Code
	Creating a new user library
	Creating a new user module
	Entering a return type
	Entering user module code
	Entering parameters
	Entering header files
	Documenting the user module
	Saving the user module
	Building the library
	Finding code errors
	Checking the user module in Clarius

	Tutorial: Creating a user module that returns data arrays
	Creating a new user library and user module
	Entering the return type for VSweep
	Entering the VSweep user module code
	Entering the VSweep user module parameters
	Entering the header files for the VSweep user module
	Documenting the VSweep user module
	Saving the VSweep user module
	Building the VSweep user module
	Checking the VSweep user module in Clarius

	Tutorial: Calling one user module from another
	Copying an existing user module
	Calling another user module from the VSweepBeep user module
	Specifying user library dependencies
	Building the user library
	Checking the VSweepBeep user module

	Tutorial: Customizing a user test module (UTM)
	Copy the Rdson42XX user module
	Modify the RdsonAvg user module
	Change a parameter name
	Change the module description
	Save and build the modified library
	Add a new UTM to the ivswitch project

	Tutorial: Debugging a user module
	Using copy to create the VSweepRes user module
	Adding an average resistance calculation to VSweepRes
	Adding a parameter to VSweepRes
	Building the user library
	Checking the VSweepRes user module
	Starting the debugger and adding a breakpoint
	Debugging the code
	Retest the VSweepRes user module in Clarius

	Contact information

