
Programming
4200A-KULT-907-01 Rev. D May 2024

P4200A-KULT-907-01D
4200A-KULT-907-01D

 tek.com/keithley

Model 4200A-SCS
KULT and KULT Extension

https://www.tek.com/products/keithley

KULT and KULT Extension

Programming

Model 4200A-SCS

© 2024, Keithley Instruments

Cleveland, Ohio, U.S.A.

All rights reserved.

Any unauthorized reproduction, photocopy, or use of the information herein, in whole or in part,

without the prior written approval of Keithley Instruments is strictly prohibited.

 All Keithley Instruments product names are trademarks or registered trademarks of Keithley

Instruments, LLC. Other brand names are trademarks or registered trademarks of their

respective holders.

Actuate®

Copyright © 1993-2003 Actuate Corporation.

All Rights Reserved.

Microsoft, Visual C++, Excel, and Windows are either registered trademarks or trademarks of

Microsoft Corporation in the United States and/or other countries.

Document number: 4200A-KULT-907-01 Rev. D May 2024

 Safety precautions

The following safety precautions should be observed before using this product and any associated instrumentation. Although
some instruments and accessories would normally be used with nonhazardous voltages, there are situations where hazardous
conditions may be present.

This product is intended for use by personnel who recognize shock hazards and are familiar with the safety precautions required
to avoid possible injury. Read and follow all installation, operation, and maintenance information carefully before using the
product. Refer to the user documentation for complete product specifications.

If the product is used in a manner not specified, the protection provided by the product warranty may be impaired.

The types of product users are:

Responsible body is the individual or group responsible for the use and maintenance of equipment, for ensuring that the
equipment is operated within its specifications and operating limits, and for ensuring that operators are adequately trained.

Operators use the product for its intended function. They must be trained in electrical safety procedures and proper use of the
instrument. They must be protected from electric shock and contact with hazardous live circuits.

Maintenance personnel perform routine procedures on the product to keep it operating properly, for example, setting the line
voltage or replacing consumable materials. Maintenance procedures are described in the user documentation. The procedures
explicitly state if the operator may perform them. Otherwise, they should be performed only by service personnel.

Service personnel are trained to work on live circuits, perform safe installations, and repair products. Only properly trained
service personnel may perform installation and service procedures.

Keithley products are designed for use with electrical signals that are measurement, control, and data I/O connections, with low
transient overvoltages, and must not be directly connected to mains voltage or to voltage sources with high transient
overvoltages. Measurement Category II (as referenced in IEC 60664) connections require protection for high transient
overvoltages often associated with local AC mains connections. Certain Keithley measuring instruments may be connected to
mains. These instruments will be marked as category II or higher.

Unless explicitly allowed in the specifications, operating manual, and instrument labels, do not connect any instrument to mains.

Exercise extreme caution when a shock hazard is present. Lethal voltage may be present on cable connector jacks or test
fixtures. The American National Standards Institute (ANSI) states that a shock hazard exists when voltage levels greater than
30 V RMS, 42.4 V peak, or 60 VDC are present. A good safety practice is to expect that hazardous voltage is present in any
unknown circuit before measuring.

Operators of this product must be protected from electric shock at all times. The responsible body must ensure that operators
are prevented access and/or insulated from every connection point. In some cases, connections must be exposed to potential
human contact. Product operators in these circumstances must be trained to protect themselves from the risk of electric shock. If
the circuit is capable of operating at or above 1000 V, no conductive part of the circuit may be exposed.

Do not connect switching cards directly to unlimited power circuits. They are intended to be used with impedance-limited
sources. NEVER connect switching cards directly to AC mains. When connecting sources to switching cards, install protective
devices to limit fault current and voltage to the card.

Before operating an instrument, ensure that the line cord is connected to a properly-grounded power receptacle. Inspect the
connecting cables, test leads, and jumpers for possible wear, cracks, or breaks before each use.

When installing equipment where access to the main power cord is restricted, such as rack mounting, a separate main input
power disconnect device must be provided in close proximity to the equipment and within easy reach of the operator.

For maximum safety, do not touch the product, test cables, or any other instruments while power is applied to the circuit under
test. ALWAYS remove power from the entire test system and discharge any capacitors before connecting or disconnecting
cables or jumpers, installing or removing switching cards, or making internal changes, such as installing or removing jumpers.

Do not touch any object that could provide a current path to the common side of the circuit under test or power line (earth)
ground. Always make measurements with dry hands while standing on a dry, insulated surface capable of withstanding the
voltage being measured.

For safety, instruments and accessories must be used in accordance with the operating instructions. If the instruments or
accessories are used in a manner not specified in the operating instructions, the protection provided by the equipment may be
impaired.

Do not exceed the maximum signal levels of the instruments and accessories. Maximum signal levels are defined in the
specifications and operating information and shown on the instrument panels, test fixture panels, and switching cards.

When fuses are used in a product, replace with the same type and rating for continued protection against fire hazard.

Chassis connections must only be used as shield connections for measuring circuits, NOT as protective earth (safety ground)
connections.

If you are using a test fixture, keep the lid closed while power is applied to the device under test. Safe operation requires the use
of a lid interlock.

If a screw is present, connect it to protective earth (safety ground) using the wire recommended in the user documentation.

The symbol on an instrument means caution, risk of hazard. The user must refer to the operating instructions located in the
user documentation in all cases where the symbol is marked on the instrument.

The symbol on an instrument means warning, risk of electric shock. Use standard safety precautions to avoid personal
contact with these voltages.

The symbol on an instrument shows that the surface may be hot. Avoid personal contact to prevent burns.

The symbol indicates a connection terminal to the equipment frame.

If this symbol is on a product, it indicates that mercury is present in the display lamp. Please note that the lamp must be
properly disposed of according to federal, state, and local laws.

The WARNING heading in the user documentation explains hazards that might result in personal injury or death. Always read
the associated information very carefully before performing the indicated procedure.

The CAUTION heading in the user documentation explains hazards that could damage the instrument. Such damage may
invalidate the warranty.

The CAUTION heading with the symbol in the user documentation explains hazards that could result in moderate or minor
injury or damage the instrument. Always read the associated information very carefully before performing the indicated
procedure. Damage to the instrument may invalidate the warranty.

Instrumentation and accessories shall not be connected to humans.

Before performing any maintenance, disconnect the line cord and all test cables.

To maintain protection from electric shock and fire, replacement components in mains circuits — including the power
transformer, test leads, and input jacks — must be purchased from Keithley. Standard fuses with applicable national safety
approvals may be used if the rating and type are the same. The detachable mains power cord provided with the instrument may
only be replaced with a similarly rated power cord. Other components that are not safety-related may be purchased from other
suppliers as long as they are equivalent to the original component (note that selected parts should be purchased only through
Keithley to maintain accuracy and functionality of the product). If you are unsure about the applicability of a replacement
component, call a Keithley office for information.

Unless otherwise noted in product-specific literature, Keithley instruments are designed to operate indoors only, in the following
environment: Altitude at or below 2,000 m (6,562 ft); temperature 0 °C to 50 °C (32 °F to 122 °F); and pollution degree 1 or 2.

To clean an instrument, use a cloth dampened with deionized water or mild, water-based cleaner. Clean the exterior of the
instrument only. Do not apply cleaner directly to the instrument or allow liquids to enter or spill on the instrument. Products that
consist of a circuit board with no case or chassis (e.g., a data acquisition board for installation into a computer) should never
require cleaning if handled according to instructions. If the board becomes contaminated and operation is affected, the board
should be returned to the factory for proper cleaning/servicing.

Safety precaution revision as of June 2018.

 Introduction ... 1-1

Introduction .. 1-1

KULT description .. 1-2

KULT interface description ... 1-3

Module identification area .. 1-4

Module parameter display area ... 1-4

Module code-entry area ... 1-5

Terminating brace area .. 1-5

Tab area ... 1-5
Parameters tab area ... 1-5
Includes tab area ... 1-8
Description tab area .. 1-9
Build tab area .. 1-11

Status bar ... 1-11

Menus... 1-11
File menu .. 1-11
Edit menu .. 1-14
Options menu .. 1-15
Help menu ... 1-16

Develop and use user libraries .. 1-16

Copy user modules and files .. 1-17

Enabling real-time plotting for UTMs .. 1-18

Using NI-VISA in user libraries .. 1-18
Add NI-VISA as a library dependency in KULT ... 1-19
Add NI-VISA as a library dependency in the KULT Extension .. 1-19
Include the NI-VISA header files in KULT ... 1-19
Include the NI-VISA header files in the KULT Extension ... 1-20
Remove Intellisense errors.. 1-20

 KULT tutorials ... 2-1

KULT Tutorials ... 2-1

Tutorial: Creating a new user library and user module .. 2-3
Starting KULT .. 2-4
Naming a new user library... 2-5
Creating a new user module ... 2-5
Entering the return type ... 2-6
Entering user module code ... 2-7
Entering parameters .. 2-7
Entering header files ... 2-8
Documenting the user module .. 2-9
Saving the user module .. 2-10
Building the user library to include the new user module .. 2-10
Finding build errors ... 2-11
Checking the user module... 2-12

Tutorial: Creating a user module that returns data arrays ... 2-14

Table of contents

Table of contents Model 4200A-SCS KULT and KULT Extension Programming

Naming new user library and new VSweep user module .. 2-14
Entering the VSweep user-module return type.. 2-14
Entering the VSweep user-module code ... 2-14
Entering the VSweep user-module parameters... 2-15
Entering the VSweep user-module header files .. 2-18
Documenting the VSweep user module .. 2-18
Saving the VSweep user module .. 2-18
Building the VSweep user module .. 2-18
Checking the VSweep user module .. 2-18

Tutorial: Creating a user module that returns data arrays in real time 2-20
Naming new user library and new VSweepRT user module ... 2-20
Entering the VSweepRT user-module return type ... 2-20
Entering the VSweepRT user-module code .. 2-21
Entering the VSweepRT user-module parameters .. 2-21
Entering the VSweepRT user-module header files ... 2-23
Documenting the VSweepRT user module ... 2-23
Saving the VSweepRT user module ... 2-23
Building the VSweepRT user module .. 2-23
Checking the VSweepRT user module ... 2-23

Tutorial: Calling one user module from within another .. 2-25
Creating the VSweepBeep user module by copying an existing user module 2-25
Calling independent user module from VSweepBeep user module .. 2-27
Specifying user library dependencies in VSweepBeep user module 2-28
Building the VSweep user module .. 2-29
Checking the VSweepBeep user module .. 2-30

Tutorial: Customizing a user test module (UTM) ... 2-30
Open KULT ... 2-31
Open the KI42xxulib user library ... 2-32
Open the Rdson42XX user module ... 2-32
Copy Rdson42XX to RdsonAvg .. 2-33
Open and modify the RdsonAvg user module ... 2-34
Save and build the modified library ... 2-36
Add the new UTM to the ivswitch project .. 2-36

Tutorial: Creating a user module for stepping or sweeping ... 2-38
Name a new user module ... 2-38
Entering the return type ... 2-38
Entering the user-module code ... 2-38
Entering the user-module parameters ... 2-40
Enter the user-module header files ... 2-41
Documenting the user module .. 2-41
Saving the user module .. 2-41
Building the user module ... 2-41
Setting up the user interface of the user module ... 2-41
Check the user module in Clarius ... 2-45

 User module and library management .. 3-1

Introduction .. 3-1

Managing user libraries .. 3-1
Updating and copying user libraries using KULT command-line utilities 3-1
Performing other KULT tasks using command-line commands... 3-3

Dependent user modules and user libraries .. 3-9
Structuring dependencies hierarchically .. 3-10
Building dependent user libraries in the correct order ... 3-13

Formatting user module help for the Clarius Help pane .. 3-14

Model 4200A-SCS KULT and KULT Extension Programming Table of contents

Creating project prompts .. 3-15
Using dialog boxes .. 3-16
Dialog test examples ... 3-17

 KULT Extension for Visual Studio Code ... 4-1

Introduction .. 4-1

Installation .. 4-1
Download Visual Studio Code ... 4-2
Install Visual Studio Code ... 4-2
Install extensions with an internet connection ... 4-3
Install extensions without an internet connection .. 4-4
Updating the KULT Extension after installing Clarius .. 4-6

Setting up Visual Studio Code for library development ... 4-9
Opening the user library in Visual Studio Code ... 4-9
Creating the Visual Studio Code configuration files .. 4-9

Visual Studio code overview .. 4-13
Opening Visual Studio Code ... 4-13
Visual Studio Code user interface ... 4-14
Command Palette ... 4-16
Settings in Visual Studio Code .. 4-16

KULT side bar .. 4-17

Working with user libraries in Visual Studio Code ... 4-18
Creating a new library ... 4-18
Copying a library ... 4-18
Deleting a library ... 4-19
Renaming a library .. 4-19
Setting library visibility ... 4-19
Entering library dependencies and environment variables .. 4-20
Building a library .. 4-22
Cleaning a library .. 4-25

Working with modules in Visual Studio Code .. 4-25
Creating a new user module ... 4-26
Copy a user module .. 4-26
Rename a user module ... 4-26
Deleting a user module ... 4-27
Setting the return type of a user module ... 4-27
Including header files .. 4-28
Editing module parameters ... 4-29
Reorder the user module parameters ... 4-30
Editing the module description .. 4-31

Debugging libraries .. 4-31
Debugger side bar and toolbar .. 4-32
Setting up the debugger .. 4-33
Running code with the debugger ... 4-34
Ending a debugging session ... 4-35
Setting breakpoints in modules ... 4-35
Expression evaluation ... 4-37
Watching variables .. 4-38

 KULT Extension tutorials ... 5-1

Tutorial overview .. 5-1

Tutorial: Creating a new user library and user module .. 5-2

Table of contents Model 4200A-SCS KULT and KULT Extension Programming

Starting Visual Studio Code .. 5-2
Creating a new user library ... 5-3
Creating a new user module ... 5-4
Entering a return type .. 5-4
Entering user module code ... 5-5
Entering parameters .. 5-7
Entering header files ... 5-8
Documenting the user module .. 5-9
Saving the user module .. 5-9
Building the library ... 5-10
Finding code errors ... 5-10
Checking the user module in Clarius ... 5-11

Tutorial: Creating a user module that returns data arrays ... 5-13
Creating a new user library and user module .. 5-13
Entering the return type for VSweep ... 5-13
Entering the VSweep user module code ... 5-14
Entering the VSweep user module parameters ... 5-14
Entering the header files for the VSweep user module ... 5-16
Documenting the VSweep user module .. 5-17
Saving the VSweep user module .. 5-17
Building the VSweep user module .. 5-17
Checking the VSweep user module in Clarius .. 5-18

Tutorial: Calling one user module from another ... 5-20
Copying an existing user module .. 5-20
Calling another user module from the VSweepBeep user module .. 5-21
Specifying user library dependencies .. 5-21
Building the user library ... 5-22
Checking the VSweepBeep user module .. 5-23

Tutorial: Customizing a user test module (UTM) ... 5-23
Copy the Rdson42XX user module ... 5-24
Modify the RdsonAvg user module ... 5-25
Change a parameter name ... 5-26
Change the module description... 5-26
Save and build the modified library ... 5-26
Add a new UTM to the ivswitch project ... 5-27

Tutorial: Debugging a user module .. 5-28
Using copy to create the VSweepRes user module .. 5-28
Adding an average resistance calculation to VSweepRes .. 5-29
Adding a parameter to VSweepRes .. 5-29
Building the user library ... 5-30
Checking the VSweepRes user module .. 5-30
Starting the debugger and adding a breakpoint .. 5-31
Debugging the code .. 5-32
Retest the VSweepRes user module in Clarius ... 5-35

In this section:

Introduction .. 1-1
KULT description .. 1-2
KULT interface description ... 1-3
Module identification area .. 1-4
Module parameter display area .. 1-4
Module code-entry area ... 1-5
Terminating brace area .. 1-5
Tab area ... 1-5
Status bar ... 1-11
Menus .. 1-11
Develop and use user libraries ... 1-16
Copy user modules and files .. 1-17
Enabling real-time plotting for UTMs 1-18
Using NI-VISA in user libraries ... 1-18

Introduction

The Keithley User Library Tool (KULT) and the KULT Extension for Visual Studio Code are a

few of the software tools provided with the Keithley Instruments Model 4200A-SCS. The

4200A-SCS is a customizable and fully integrated parameter analyzer that provides

synchronized insight into current-voltage (I-V), capacitance-voltage (C-V), and ultra-fast

pulsed I-V characterization. Its advanced digital sweep parameter analyzer combines speed

and accuracy for deep sub-micron characterization.

The primary 4200A-SCS components and typical supported external components are

illustrated in the following figure.

Section 1

Introduction

Section 1: Introduction Model 4200A-SCS KULT and KULT Extension Programming

1-2 4200A-SCS-KULT-907-01 Rev. D May 2024

Figure 1: 4200A-SCS summary

KULT description

You can use the Keithley User Library Tool (KULT) and the KULT Extension for Visual

Studio Code to create and manage user libraries. A user library is a collection of user

modules. User modules are C programming language subroutines, also called functions.

User libraries are created to control instrumentation, analyze data, or perform any other

system automation task programmatically. Once a user library has been successfully built

using KULT, its user modules can be executed using the Clarius software tool.

KULT provides a simple user interface that helps you effectively enter code, build a user

module, and build a user library. KULT also provides management features for the user

library, including menu commands to copy modules, copy libraries, delete modules, and

delete library menu commands. KULT manages user libraries in a structured manner. You

can create your own user libraries to extend the capabilities of the 4200A-SCS.

Model 4200A-SCS KULT and KULT Extension Programming Section 1: Introduction

4200A-SCS-KULT-907-01 Rev. D May 2024 1-3

The KULT Extension for Visual Studio Code gives you the ability to write, compile, and

debug user libraries outside of KULT. Combining the user-friendly Visual Studio Code editor

with KULT creates an integrated development environment (IDE).

To execute a KULT user module in Clarius, you create a Clarius user test module (UTM)

and connect it to the user module. Once this user module is connected to the UTM, the

following occurs each time Clarius executes the UTM:

• Clarius dynamically loads the user module and the appropriate user library directory

(usrlib).

• Clarius passes the user-module parameters (stored in the UTM) to the user module.

• Data generated by the user module is returned to the UTM for interactive analysis.

KULT interface description

The KULT interface is shown in the following figure. It provides all the menus, controls, and

user-entry areas that you need to create, edit, view, and build a user library and to create,

edit, view, and build a user module.

Figure 2: KULT interface overview

Each feature of the KULT interface is explained in the following sections.

Section 1: Introduction Model 4200A-SCS KULT and KULT Extension Programming

1-4 4200A-SCS-KULT-907-01 Rev. D May 2024

Module identification area

The module identification area is directly below the menu bar and defines the presently open

user library and user module. The components of this area are as follows:

• Library: Displays the name of the presently open (active) user library.

• Module: Displays the name of the presently open user module.

• Return Type: Defines the data type of all codes that are returned by return(code)

statements in the user module. You can select one of the following variable types:

▪ char: Character data

▪ double: Double-precision data

▪ float: Single-precision floating point data

▪ int: Integer data

▪ long: 32-bit integer data

▪ void: No data returned

When a user test module (UTM) is executed by Clarius, the value of the return(code)

statement is displayed on the Data worksheet in the column labeled with the module name.

• Library Visible / Library Hidden: Displays whether or not the presently open user

library is available to Clarius. To change the hidden or visible status, select or clear the

Hide Library option in the Options menu (on page 1-15).

• Apply: Updates the presently open user module to reflect additions and changes.

Module parameter display area

The module parameter area is a display-only area that is directly below the module

identification area. In the module-parameter area, KULT displays:

• The C-language function prototype for the user module, reflecting the parameters that

are specified in the Parameters tab area, and the return(code) data type.

• The #include and #define statements that are specified in the Includes tab.

Model 4200A-SCS KULT and KULT Extension Programming Section 1: Introduction

4200A-SCS-KULT-907-01 Rev. D May 2024 1-5

Module code-entry area

The module code-entry area is below the module-parameter area. The module code-entry

area is where you enter, edit, or view the user-module C code. Scroll bars located to the

right and below the module-code entry area let you move through the code.

Do not enter the following C-code items in the module code-entry area (KULT enters these

at special locations based on information in other places in KULT): #include and

#define statements; the function prototype; and the terminating brace. To control internal

or external instrumentation, use functions from the Linear Parametric Test Library (LPTLib).

For more information, refer to Model 4200A-SCS LPT Library Programming.

Terminating brace area

The terminating-brace area is a display-only area. KULT automatically enters and displays

the terminating brace for the user-module code when you select Apply.

Tab area

The Tab area includes the tabs:

• Parameters

• Includes

• Description

• Build

Parameters tab area

In the Parameters tab, you define and display parameters in the user module call. You can

define and display:

• Parameter name

• Parameter data type

• Input or output (I/O) data direction

• Default, min, and max values for the parameter

These options are defined in the following text.

Section 1: Introduction Model 4200A-SCS KULT and KULT Extension Programming

1-6 4200A-SCS-KULT-907-01 Rev. D May 2024

The Parameters tab area is near the bottom of the KULT main screen. An example is

shown here.

Figure 3: Parameters tab for the Rdson42XX user module from the KI42XX library

You can right-click anywhere in the Parameters tab area to access the Add, Delete, and

Apply options.

To add a parameter:

1. Select Add.

2. Enter the information as needed.

3. Select Apply.

To delete a parameter:

1. Select the parameter name or any of the adjacent fields.

2. Select Delete.

To make changes to the parameters:

1. Make changes in the appropriate field.

2. Select Apply.

Parameter name field

The parameter name field identifies the parameters that are passed to the user module.

These are the same parameters that are specified in the user-module function prototype.

KULT constructs the prototype from the Parameters tab entries when you select Apply, and

then displays it in the module-parameter display area.

Model 4200A-SCS KULT and KULT Extension Programming Section 1: Introduction

4200A-SCS-KULT-907-01 Rev. D May 2024 1-7

Data type field

The data type field specifies the parameter data type. Select the arrow at the right of the

data type field to choose from a list of the following data types:

• char: Character data

• char*: Pointer to character data

• float: Single-precision floating point data

• float*: Pointer to single-precision floating point data

• double: Double-precision data

• double*: Pointer to double-precision point data

• int: Integer data

• int*: Pointer to integer data

• long: 32-bit integer data

• long*: Pointer to 32-bit integer data

• F_ARRAY_T: Floating point array type

• I_ARRAY_T: Integer array type

• D_ARRAY_T: Double-precision array type

I/O field

The I/O field defines whether the parameter is an input or output type. Select the arrow to

the right of the I/O field to select from the input and output selections.

Default, min, and max fields

The Default field specifies the default value for a nonarray (only) input parameter.

The Min field specifies the minimum recommended value for a nonarray (only) input

parameter. When the user module is used in a Clarius user test module (UTM),

configuration of the UTM with a parameter value smaller than the minimum value causes

Clarius to display an out-of-range message.

The Max field specifies the maximum recommended value for a nonarray (only) input

parameter. When the user module is used in a Clarius UTM, configuration of the UTM with a

parameter value larger than the maximum value causes Clarius to display an out-of-range

message.

The minimum value must be less than the maximum value.

Section 1: Introduction Model 4200A-SCS KULT and KULT Extension Programming

1-8 4200A-SCS-KULT-907-01 Rev. D May 2024

Includes tab area

The Includes tab, shown below, lists the header files used in the user module. This area can
be used to add #include and #define statements to the presently open user module.

Figure 4: Default Includes tab area

By default, KULT automatically enters the keithley.h header file into the Includes tab.

The keithley.h header file includes the following frequently used

C-programming interfaces:

• #include <stdio.h>

• #include <stdlib.h>

• #include <string.h>

• #include <math.h>

• #include "windows.h"

In most cases, it is not necessary to add items to the Includes tab area, because

keithley.h provides access to the most common C functions. However, in some cases,

both of the following may apply:

• You do not want to include keithley.h

• You want to include only the header files specifically needed by your user module and all

the user modules on which it depends.

If so, you must minimally include the following header files and #define statements to

properly build user modules and user libraries:

#include "lptdef.h"

#include "lptdef_lowercase.h"

#include "kilogmsg_proto.h

#include "ktemalloc.h"

#include "usrlib_proto.h"

#define PTexit _exit

#define exit Unsupported Syntax

#define abort Unsupported Syntax

#define terminate Unsupported Syntax

Model 4200A-SCS KULT and KULT Extension Programming Section 1: Introduction

4200A-SCS-KULT-907-01 Rev. D May 2024 1-9

Description tab area

The Description tab, shown below, allows you to enter descriptive information for the

presently open user module. The information that is entered in this area documents the

module to the Clarius user and is used to create Clarius user library help.

Figure 5: Description tab area

Do not use C-code comment designators (/*, */, or //) in the Description tab area. When the

user-module code is built, KULT also evaluates the text in this area. C-code comment

designators in the Description tab area can be misinterpreted, causing errors.

Do not place a period in the first column (the left-most position) of any line in the

Description tab area. Any text after a first-column period will not be displayed in the

documentation area of a Clarius UTM definition document.

To enter a description:

1. Select in the Description tab area.

2. Enter the description.

3. Right-click in the Description tab area to open the menu shown here.

Figure 6: Edit menu for the Description tab area

Section 1: Introduction Model 4200A-SCS KULT and KULT Extension Programming

1-10 4200A-SCS-KULT-907-01 Rev. D May 2024

The edit menu commands are:

• New: Deletes the present description from the description tab area, allowing you to enter

a new description.

• Include: Imports any file that you specify, typically a text file, into the document tab area.

Refer to Include (on page 1-10) for more information.

• Cut: Removes highlighted text from the Description tab and copies it to the clipboard.

The text on the clipboard can be restored to new locations, in or out of KULT, using the

paste function.

• Copy: Copies highlighted text from the description tab area to the clipboard. The text on

the clipboard can be placed at new locations, in or out of KULT, using the paste function.

• Paste: Places text from the clipboard at a selected location in the Description tab area.

• Select All: Selects everything in the Description tab area.

Include

Imports a *.c file that you specify into the module code-entry area only. This is typically a

text file. The file is imported into the document tab area.

The File > Include command inserts everything from the specified file. If the specified file is

the source file for a KULT user module <ModuleName.c>, everything that KULT saves into

the user module (not only the C code) is imported. Therefore, you must edit the entered text

to remove all but the needed information. In particular, you must remove any comments of

the form /* USRLIB MODULE ___*/.

In some cases, it is more efficient to copy only the needed code text from the source file, then

paste it into the module code-entry area.

To insert a text or other file into the document tab area, refer to Description tab area (on

page 1-9) for information about the Include menu option.

To import a *.c file:

1. Select Include. The Include Other File dialog opens.

2. Place the cursor where you want to place the new information.

3. Browse and select a file or enter a file name and path.

4. Select Open. The file is inserted at the cursor location.

Model 4200A-SCS KULT and KULT Extension Programming Section 1: Introduction

4200A-SCS-KULT-907-01 Rev. D May 2024 1-11

Build tab area

The Build tab area displays any error or warning messages that are generated during a code

build operation of the user library. When you select a build error message that is displayed

in the Build tab area, KULT highlights either the line of code where the error occurred or the

next line, depending on how the compiler caught the error. KULT also highlights the error

message. This helps you correct errors.

If no errors are found, the Build tab area displays:

No Errors/Warnings Reported. Compilation/Build was Successful.

Status bar

The status bar at the bottom of the KULT dialog displays a description of the area where the

cursor is located. For example, if the cursor is in the Parameters tab area, the status bar

describes that area, as shown in the following figure.

Figure 7: Example of description in status bar

Menus

This section describes the menus on the menu bar, which is at the top of the KULT dialog.

File menu

All user libraries are stored in the C:\s4200\kiuser\usrlib directory. This directory is

referred to as Clarius/KULT user-library directory. It is the active user-library directory, which

is where Clarius and KULT look for user libraries and user modules.

The File menu includes options to work with libraries.

Section 1: Introduction Model 4200A-SCS KULT and KULT Extension Programming

1-12 4200A-SCS-KULT-907-01 Rev. D May 2024

New Library

The New Library menu option creates a new user library.

Library names cannot start with a number.

To create a new user library:

1. Select New Library. The Enter library dialog opens.

2. Name the new user library.

3. Select OK. This initializes and opens the new user library in place of the presently open

library.

Open Library

Opens an existing user library in place of the presently open library.

To open a library:

1. Select Open Library to display the open library list.

2. Select an existing user library.

3. Select OK to open the selected library.

Copy Library

Creates a copy of the presently open user library.

To copy a library:

1. Select Copy Library. The Enter Library dialog opens.

2. Name the new user library into which to copy the presently open library.

3. Select OK to copy the open user library into the new library.

Delete Library

Deletes an existing user library and all its contents.

To delete a library:

1. Select Delete Library. The list of libraries is displayed.

2. Select the user library to be deleted.

3. Select OK to delete the selected library.

Model 4200A-SCS KULT and KULT Extension Programming Section 1: Introduction

4200A-SCS-KULT-907-01 Rev. D May 2024 1-13

New Module

This option creates a new user module. When you create a new user module, existing

module information in the KULT interface is cleared.

The name of the new module must not duplicate the name of any existing user module or

user library in the entire collection of user libraries.

To create a new user module:

1. Select New Module.

2. Enter a new user-module name in Module.

3. Select Apply.

Open Module

Opens an existing user module.

To open a module:

1. Select Open Module. The Open Module list is displayed.

2. Select an existing user module.

3. Select OK to open the selected module in place of the presently open module.

Save Module

Saves the open user module.

Copy Module

Creates a copy of the open user module.

The name of the new module must not duplicate the name of any existing user module or

user library in the entire collection of user libraries.

To copy the user module:

1. Select Copy Module. The list of libraries opens.

2. Select the user library in which to copy the presently open user module.

3. Select OK. The Enter New Module dialog opens.

4. Enter a unique user-module name.

5. Select OK. The presently open module is copied into the selected library under the new

name. The presently open module remains open.

Section 1: Introduction Model 4200A-SCS KULT and KULT Extension Programming

1-14 4200A-SCS-KULT-907-01 Rev. D May 2024

Delete Module

Deletes a user module from the open user library.

To delete a user module:

1. Select Delete Module. The KULT: Library [OpenLibraryName] list is displayed.

2. Select the module to be deleted.

3. Select OK. The selected module is deleted. The open module continues to be displayed,

even if it is the module that you deleted.

The executable user-library file, a dynamic link library (DLL), contains the deleted module

until you rebuild the library. Refer to Building the user library to include the new user

module (on page 2-10) for more information.

Print Module

Prints a text file that contains all the information for the presently open user module. The text

file is arranged in the form that KULT uses internally.

Exit

Exits KULT.

Edit menu

The Edit menu contains typical Microsoft® Windows® editing commands.

Edit menu commands:

• Cut: Removes highlighted text and copies it to the clipboard. The text on the clipboard

can be restored to new locations, in or out of KULT, using the paste function.

• Copy: Copies highlighted text to the clipboard. The text on the clipboard can be placed

at new locations, in or out of KULT, using the paste function.

• Paste: Places the text from the clipboard to a selected location.

• Select All: Selects everything in the module code-entry area.

• Undo: Allows you to reverse up to the last ten changes made in the module

code-entry area.

• Redo: Allows you to reverse up to the last ten undo operations in the module

code-entry area.

Model 4200A-SCS KULT and KULT Extension Programming Section 1: Introduction

4200A-SCS-KULT-907-01 Rev. D May 2024 1-15

Options menu

The KULT Options menu is shown here.

Figure 8: KULT Options menu

Options menu commands:

• Build Library: When selected, adds the open user module (or updates changes) to the

open user library. All the modules in the open user library and any libraries on which the

open module depends are linked together. A dynamic link library (DLL) is created that is

accessible using user test modules (UTMs) in Clarius.

Some Keithley Instruments-supplied user libraries contain dependencies. If you need to

build or rebuild such libraries, be sure that you specify the dependencies in the dialog

opened by Options > Library Dependencies. For more information, refer to descriptions in

the following and to details in the Dependent user modules and user libraries (on

page 3-9).

Otherwise, the Build Library function will fail. For example, ki82ulib depends on

KI590ulib and Winulib. You must specify these dependencies before rebuilding

ki82ulib after making changes.

• Hide Library: When selected, causes the present user library to be unavailable to

Clarius. For example, use Hide Library if you want to designate that a user library is only

to be called by another user library and is not to be connected to a UTM.

Section 1: Introduction Model 4200A-SCS KULT and KULT Extension Programming

1-16 4200A-SCS-KULT-907-01 Rev. D May 2024

• Library Dependencies: When selected, displays the Library Dependencies list, where

you specify each user library that is called by and that must be linked to the open user

library. You must make selections individually; do not hold down the control or shift key

to make multiple selections.

The C:\s4200\kiuser\usrlib\<library name>\build folder is created when you

run the bld_lib subcommand or select the Build Library menu option. This folder can be

safely deleted for debugging purposes.

Help menu

The Help menu contains online help information about KULT:

• Contents: Allows access to the online KULT manual and other 4200A-SCS reference

information.

• About KULT: Displays the software version.

Develop and use user libraries

Clarius includes user libraries of user modules that contain precoded user modules for

commonly used external instruments. You can use these as-is, customize them, or create

new ones. Most user modules contain functions from the Keithley-supplied Linear

Parametric Test Library (LPT Library) and ANSI-C functions. All user modules are created

and built using KULT.

Additionally, using KULT, you can program custom user modules in C. The LPT Library

contains functions that are designed for parametric tests. However, any C routine that can

be built using KULT can be used as source code for a user module.

A user library is a dynamic link library (DLL) of user modules that are built and linked using

the Keithley User Library Tool (KULT).

Model 4200A-SCS KULT and KULT Extension Programming Section 1: Introduction

4200A-SCS-KULT-907-01 Rev. D May 2024 1-17

A user module is a C-language function that:

1. Typically calls functions from the LPT library and ANSI-C functions.

2. Is developed using the Keithley User Library Tool (KULT).

The default collection of KULT user libraries is stored in the directory

C:\s4200\kiuser\usrlib.

User library names must not start with a number.

Copy user modules and files

You can use the KULT zip (on page 3-8) and unzip (on page 3-9) subcommands to copy

user libraries and other files. See Performing other KULT tasks using command-line

commands (on page 3-3) for more information.

The KULTArchive.exe utility is installed on your 4200A-SCS. You can copy this utility to a

Model 4200 or 4200A-SCS to archive or unzip a user library for use with an earlier version of

Clarius. This utility is located at C:\S4200\sys\bin\KULTArchive.exe.

If you use the KULTArchive.exe utility with a Model 4200, you must install the Microsoft

Visual C++ Redistributable. This file is available on your 4200A-SCS at

C:\s4200\sys\Microsoft\Microsoft Visual C++ 2017

Redistributable\c_redistx86.exe.

Usage

kultarchive [subcommand]

Where:

<subcommand> is the zip or unzip operation.

KULTArchive zip subcommand

zip -l<library_name> [password] <zipfile_name>

The <library_name> user library is created in the active user-library directory.

The [password] parameter is optional.

Example for zip without password

kultarchive zip -l<Library1> C:\temp\myzip.zip

Section 1: Introduction Model 4200A-SCS KULT and KULT Extension Programming

1-18 4200A-SCS-KULT-907-01 Rev. D May 2024

KULTArchive unzip subcommand

unzip [-dest_path] [password] <zipfile_name>

Where:

• [-dest_path] is the target directory where the file will be unzipped.

• [password] is required if the file was compressed using the password parameter in the

zip subcommand.

The <zipfile_name> archive is unzipped in the active user-library directory unless the [-

dest_path] parameter is specified. The [-dest_path] parameter should not be used

when you import a user library.

Example for unzip with password

kultarchive unzip -password -pw1234 C:\temp\myzip.zip

Enabling real-time plotting for UTMs
To enable real-time plotting in a UTM, you use the following LPT library functions:

• PostDataDouble()

• PostDataInt()

• PostDataString()

In these functions, the first parameter is the variable name, defined as char *.

When using the new functions to transfer data into the data sheet in real time, make sure the

data is already in the memory of the 4200A-SCS. Sweep measurements are not suitable for

real-time transfer because data is not ready until sweep finishes. The following tutorials

show how to enable real-time plotting for a UTM.

For more information on LPT library functions, refer to Model 4200A-SCS LPT Library

Programming.

Using NI-VISA in user libraries

You can use a user library to communicate with an external instrument that is connected

using a USB cable. The library requires the optional NI-VISA installation. To include

NI-VISA, a library dependency to visa32.lib must be added first. This dependency

applies to all modules in a library and only needs to be completed once per library.

Clarius includes two libraries, generic_visa_ulib and the

dmm_6500_7510_temp_ulib, as examples of using VISA commands to communicate with

USB controlled instruments.

Model 4200A-SCS KULT and KULT Extension Programming Section 1: Introduction

4200A-SCS-KULT-907-01 Rev. D May 2024 1-19

Add NI-VISA as a library dependency in KULT

To add NI-VISA as a library dependency in KULT:

1. Close KULT.

2. Go to the kitt_src folder for the library, such as

C:\s4200\kiuser\BeepLib\lib_name\kitt_src.

3. Open the .mak file for the library in Notepad or another editor.

4. In the LIBS variable, between the quotes, enter visa32.lib. Enter any other library

dependencies you may need.

5. Save the file.

6. Reopen the library in KULT.

Modifying the library dependencies in KULT will overwrite NI-VISA. To add additional

dependencies without overwriting VISA, repeat the above process.

Add NI-VISA as a library dependency in the KULT Extension

In addition to the library dependency, all modules that use NI-VISA must also include the

visa.h and visatype.h header files.

To add NI-VISA as a library dependency in the KULT Extension:

1. Select the library in the KULT side bar.

2. In the Miscellaneous pane of the KULT side bar, select the library_name.mak file to

open it in the editor.

3. In the code editor, add the visa32.lib file to the LIBS variable.

4. Save the file.

Include the NI-VISA header files in KULT

To include the NI-VISA header files in KULT:

1. Open the module in KULT.

2. Select the Includes tab at the bottom of the screen.

3. Add the following statements:

#include "visa.h"

#include "visatype.h"

Section 1: Introduction Model 4200A-SCS KULT and KULT Extension Programming

1-20 4200A-SCS-KULT-907-01 Rev. D May 2024

Include the NI-VISA header files in the KULT Extension

To include the NI-VISA header files in the KULT Extension:

1. Open the module in the editor.

2. Under the /* USRLIB MODULE PARAMETER LIST */ comment, add the following

statements:

#include "visa.h"

#include "visatype.h"

Remove Intellisense errors

If you are using the KULT Extension, including visa.h and visatype.h may cause an

Intellisense error, because the Intellisense configuration file cannot find the path to the

header files. This error will not affect building the library, but you can remove it by editing the

c_cpp_properties.json file.

To remove Intellisense errors caused by the NI-VISA header files:

1. Open the c_cpp_properties.json header file from the Miscellaneous pane of the

KULT side bar.

2. In the editor, add the path to the header files:

C:/Program Files (x86)/IVI Foundation/VISA/WinNT/include

Included paths should be enclosed in double quotes and separated by commas.

3. Save the file. This applies to all libraries in the working directory of Visual Studio Code.

NI-VISA commands must be used to communicate with the instrument. These commands

are documented in the NI-VISA Programmer Reference Manual. The most commonly used

commands are shown in the following table.

Commonly used VISA commands

Command Name Description

viOpenDefaultRM Initializes VISA. Must be called before any other VISA command.

viFindRsrc Finds available instruments and returns a list of their resource strings. The
list can be filtered to USB only using the format string USB?*

viFindNext Used to iterate through the returned list of instruments from viFindRsrc to
find an instrument.

viOpen Opens a session to the instrument specified by the VISA resource string.

viWrite Writes data to an external instrument.

viRead Reads a set number of characters as a string from the output buffer of the
external instrument.

viClose Closes a VISA session. Use this command before exiting a user module.

For more information on VISA command syntax, usage, and error codes, refer to the

NI-VISA Programmer Reference Manual, available at ni.com/.

https://www.ni.com/

In this section:

KULT Tutorials ... 2-1
Tutorial: Creating a new user library and user module 2-3
Tutorial: Creating a user module that returns data arrays 2-14
Tutorial: Creating a user module that returns data arrays
 in real time.. 2-20
Tutorial: Calling one user module from within another 2-25
Tutorial: Customizing a user test module (UTM) 2-30
Tutorial: Creating a user module for stepping or sweeping 2-38

KULT Tutorials

The tutorials in this section provide step-by-step instructions for accomplishing common

tasks with KULT. The tutorials are summarized here.

Tutorial: Creating a new user library and new user module (on page 2-3)

• Name a new user library

• Name a new user module

• Enter a return type

• Enter user module code

• Enter parameters

• Enter header files

• Document the user module

• Save the user module

• Build the user module

• Find code errors

• Build the user library to include the new user module

• Find build errors

• Check the user module

Section 2

KULT tutorials

Section 2: KULT tutorials Model 4200A-SCS KULT and KULT Extension Programming

2-2 4200A-SCS-KULT-907-01 Rev. D May 2024

Tutorial: Creating a user module that returns data arrays (on page 2-14)

• Name a new user library and new VSweep user module

• Enter the VSweep user-module return type

• Enter the VSweep user-module code

• Enter the VSweep user-module parameters

• Enter the VSweep user-module header files

• Document the VSweep user module

• Save the VSweep user module

• Build the VSweep user module

• Check the VSweep user module

Tutorial: Creating a user module that returns data arrays in real time (on page 2-20)

• Name a new user library and new VSweepRT user module

• Enter the VSweepRT user-module return type

• Enter the VSweepRT user-module code

• Enter the VSweepRT user-module parameters

• Enter the VSweepRT user-module header files

• Document the VSweepRT user module

• Save the VSweepRT user module

• Build the VSweepRT user module

• Check the VSweepRT user module

Tutorial: Calling one user module from within another (on page 2-25)

• Create the VSweepBeep user module by copying an existing user module

• Call an independent user module from the VSweepBeep user module

• Specify user library dependencies in the VSweepBeep user module

• Build the VSweepBeep user module

• Check the VSweepBeep user module

Model 4200A-SCS KULT and KULT Extension Programming Section 2: KULT tutorials

4200A-SCS-KULT-907-01 Rev. D May 2024 2-3

Tutorial: Customizing a user test module (UTM) (on page 2-30)

• Copy the Rdson42XX user module to RdsonAvg

• Modify the RdsonAvg user module

• Change a parameter name

• Change the module description

• Save and build the library

• Add RdsonAvg to the ivswitch project

Tutorial: Creating a user module for stepping or sweeping (on page 2-38)

• Name a new user library and new vds_id_step_sweep user module

• Enter the vds_id_step_sweep user-module return type

• Enter the vds_id_step_sweep user-module code

• Enter the vds_id_step_sweep user-module parameters

• Enter the vds_id_step_sweep user-module header files

• Document the vds_id_step_sweep user module

• Save the vds_id_step_sweep user module

• Build the vds_id_step_sweep user module

• Set up the user interface of the vds_id_step_sweep user module

• Check the vds_id_step_sweep user module in Clarius

Tutorial: Creating a new user library and user module

KULT is a tool that helps you develop user libraries. Each user library is comprised of one or

more user modules. Each user module is created using the C programming language.

This section contains a tutorial that shows you how to create a new user library and new

user module. A hands-on example is provided that illustrates how to create a user library

that contains a user module that activates the internal beeper of the 4200A-SCS.

Section 2: KULT tutorials Model 4200A-SCS KULT and KULT Extension Programming

2-4 4200A-SCS-KULT-907-01 Rev. D May 2024

Starting KULT

To start KULT:

1. Select KULT in the Microsoft® Windows® Start menu (Start > Keithley Instruments >

KULT).

2. A blank KULT dialog appears named KULT: Module "NoName" Library "NoName", as

shown in the following figure.

Figure 9: Blank KULT dialog

Model 4200A-SCS KULT and KULT Extension Programming Section 2: KULT tutorials

4200A-SCS-KULT-907-01 Rev. D May 2024 2-5

Naming a new user library

User library names cannot start with a number and cannot contain spaces.

To name a new user library:

1. In KULT, select File > New Library.

2. Enter the new user library name. For this tutorial, enter my_1st_lib.

3. Select OK.

The dialog name changes to KULT: Module "NoName" Library "my_1st_lib",

and the name next to library in the top left of the dialog is now my_1st_lib, as

shown in the following figure.

Figure 10: KULT after naming a user library

Creating a new user module

When naming a user module, conform to case-sensitive C programming language naming

conventions. Do not duplicate names of existing user modules or user libraries.

To create a new user module:

1. Select File > New Module.

2. In the Module text box at the top of the KULT dialog, enter the new user module name.

For this tutorial, enter TwoTonesTwice as the new user module name.

3. Select Apply.

Section 2: KULT tutorials Model 4200A-SCS KULT and KULT Extension Programming

2-6 4200A-SCS-KULT-907-01 Rev. D May 2024

The KULT dialog changes as follows:

• The name of the dialog changes to KULT: Module "TwoTonesTwice.c" Library

"my_1st_lib".

• You see entries in the user-module parameters display area and in the terminating-brace

display. If you select the Includes tab, there is also an entry there, as shown in the

following figure.

Figure 11: KULT after naming a user module

To view the entire module parameter display area, use the scroll bar.

Entering the return type

If your user module generates a return value, select the data type for the return value in the

Return Type box. The TwoTonesTwice user module does not produce a return value, so

keep the void default entry.

Model 4200A-SCS KULT and KULT Extension Programming Section 2: KULT tutorials

4200A-SCS-KULT-907-01 Rev. D May 2024 2-7

Entering user module code

Enter the C code into the module-code entry area.

Refer to Model 4200A-SCS LPT Library Programming for a complete list of supported I/O

and SMU commands.

For the TwoTonesTwice user module, enter the code listed below. The code deliberately

contains a missing ; error to illustrate KULT debug capability.

/* Beeps four times at two alternating user-settable frequencies. */

/* Makes use of Windows Beep (frequency, duration) function. */

/* Frequency of beep is long integer, in units of Hz. */

/* Duration of beep is long integer, in units of milliseconds. */

Beep(Freq1, 500); /* Beep at first frequency for 500 ms */

Beep(Freq2, 500); /* Beep at second frequency */

Beep(Freq1, 500);

Beep(Freq2, 500);

Sleep(500) /* NOTE deliberately leave out semicolon */

Entering parameters

To enter the required parameters for the code:

1. Select the Parameters tab.

2. Select Add at the right side of the parameters tab area.

3. Under Parameter Name, enter Freq1.

4. Select the Data Type cell and select long, as shown here. This is the C data type.

Figure 12: Data Type menu

5. For this user module, the I/O selection of Input is correct. If the Data Type is a pointer

or array, you could choose Input or Output.

Section 2: KULT tutorials Model 4200A-SCS KULT and KULT Extension Programming

2-8 4200A-SCS-KULT-907-01 Rev. D May 2024

6. Under Default, Min, and Max, enter default, minimum, and maximum values. These

values limit the choices the user sees. For the TwoTonesTwice user module, enter

1000, 800, and 1200, respectively.

7. For the TwoTonesTwice module, add one more parameter with the values:

▪ Parameter name: Freq2

▪ Data type: long

▪ I/O: Input

▪ Default: 400

▪ Min: 300

▪ Max: 500

8. Select Apply. (The Apply buttons at the top and bottom of the dialog act identically.)

Figure 13: Parameter entries for the TwoTonesTwice user module

For an output parameter, only the following data types are acceptable: pointers (such as

char*, float*, and double) and arrays (I_ARRAY_T, F_ARRAY_T, or D_ARRAY_T).

Entering header files

To enter the header files:

1. Select the Includes tab at the bottom of the dialog.

Figure 14: Default Includes tab area

Model 4200A-SCS KULT and KULT Extension Programming Section 2: KULT tutorials

4200A-SCS-KULT-907-01 Rev. D May 2024 2-9

2. Enter any additional header files that are needed by the user module. No additional

header files are needed for the TwoTonesTwice user module or for any of the user

libraries supplied by Keithley Instruments.

3. Select Apply.

Documenting the user module

To document the user module:

1. Select the Description tab at the bottom of the dialog.

2. Enter any text needed to adequately document the user module to the Clarius user.

Do not use C-code comment designators (/*, */, or //) in the Description tab area. When the

user-module code is built, KULT also evaluates the text in this area. C-code comment

designators in the Description tab area can be misinterpreted, causing errors.

Do not place a period in the first column (the left-most position) of any line in the

Description tab area. Any text after a first-column period will not be displayed in the

documentation area of a Clarius UTM definition document.

3. For the TwoTonesTwice user module, copy the following information into the

Description tab:

<!--MarkdownExtra-->

<link rel="stylesheet" type="text/css"

href="http://clariusweb/HelpPane/stylesheet.css">

MODULE

======

TwoTonesTwice

DESCRIPTION

Execution results in sounding of four beeps at two alternating user-settable

frequencies. Each beeps sounds for 500 ms.

INPUTS

Freq1 (double) is the frequency, in Hz, of the first and third beep.

Freq2 (double) is the frequency, in Hz, of the second and fourth beep.

OUTPUTS

None

RETURN VALUES

None

Section 2: KULT tutorials Model 4200A-SCS KULT and KULT Extension Programming

2-10 4200A-SCS-KULT-907-01 Rev. D May 2024

Figure 15: Description tab area

Saving the user module

Select the File menu, then select Save Module.

Building the user library to include the new user module

Build the user library to include the module.

To build the user library:

1. Select the Build tab.

2. From the Options menu, select Build Library. The following occurs:

▪ The user library is built. All the user modules in the presently open user library and

any libraries on which the presently open user module depends are linked together.

▪ A DLL is created that is accessible using UTMs in Clarius.

▪ The KULT Build Library message box indicates the build progress. If problems are

encountered, this message box displays error messages. When you build the

TwoTonesTwice user module, you should see an error.

Model 4200A-SCS KULT and KULT Extension Programming Section 2: KULT tutorials

4200A-SCS-KULT-907-01 Rev. D May 2024 2-11

Finding build errors

To find code errors for the TwoTonesTwice user module:

1. Review the error in the Build tab.

Figure 16: Find a code error

2. Add the missing semicolon at the end of the code [Sleep(500);] and delete the

comment about the missing semicolon.

3. Select File > Save Module.

4. Select Options > Build Library.

▪ The KULT Build message box should now display no error messages.

▪ The Build tab area should display “No errors or warnings reported: Library was

successfully built.”

Section 2: KULT tutorials Model 4200A-SCS KULT and KULT Extension Programming

2-12 4200A-SCS-KULT-907-01 Rev. D May 2024

Checking the user module

To check a user module, you need to create and execute a user test module (UTM) in

Clarius. Create a simple Clarius project to check the user module.

To check the user module in Clarius:

1. Start Clarius. If Clarius is already running, restart it.

2. Choose the Select pane.

3. Select the Projects tab.

4. Select New Project.

5. Select Create. You are prompted to replace the existing project.

6. Select Yes.

7. Select Rename.

8. Enter UserModCheck and press Enter.

9. Choose Select.

10. Select the Actions tab.

11. Drag Custom Action to the project tree. The action has a red triangle next to it to

indicate that it is not configured.

12. Select Rename.

13. Enter 2tones_twice_chk and press Enter.

14. Select Configure.

15. In the Test Settings pane, select the my_1st_lib user library.

16. From the User Modules list, select the TwoTonesTwice user module. A group of

parameters are displayed for the UTM as shown in the following figure. Accept the

default parameters for now. You can experiment later after you establish that the user

module executes correctly.

Model 4200A-SCS KULT and KULT Extension Programming Section 2: KULT tutorials

4200A-SCS-KULT-907-01 Rev. D May 2024 2-13

Figure 17: Configured UTM

17. Select Help to verify that the HTML in the Description tab is correctly formatted. An

example is shown in the following figure.

Figure 18: Example of help formatted as HTML for a user module

18. Select Save.

19. Execute the UTM by selecting Run. You should hear a sequence of four tones, sounded

at alternating frequencies.

This tutorial generates no data. For an example of numerical data, see Tutorial: Creating a

user module that returns data arrays (on page 2-14).

Section 2: KULT tutorials Model 4200A-SCS KULT and KULT Extension Programming

2-14 4200A-SCS-KULT-907-01 Rev. D May 2024

Tutorial: Creating a user module that returns data arrays

This section provides a tutorial that helps you use array variables in KULT. It also illustrates

the use of return types (or codes), and the use of two functions from the Keithley Linear

Parametric Test Library (LPTLib).

Most of the basic steps that were detailed in Tutorial: Creating a new user library and user

module (on page 2-3) are abbreviated in this tutorial.

Naming new user library and new VSweep user module

To name new user library and new VSweep user module:

1. Start KULT.

2. Select File > New Library.

3. In the Enter Library dialog that appears, enter my_2nd_lib as the new user library

name.

4. Select OK.

5. Select File > New Module.

6. In the Module text box at the top of the KULT dialog, enter VSweep as the new module

name.

7. Select Apply.

Entering the VSweep user-module return type

Select int from the Return Type list. This configures the VSweep user module to generate

an integer return value.

Entering the VSweep user-module code

In the module code-entry area, enter the C code below for the VSweep user module. Open

the KULT dialog to full screen view to simplify code entry.

Model 4200A-SCS KULT and KULT Extension Programming Section 2: KULT tutorials

4200A-SCS-KULT-907-01 Rev. D May 2024 2-15

/* VSweep module

Sweeps through specified V range & measures I, using specified number of points.

Places forced voltage & measured current values (Vforce and Imeas) in output

arrays.

NOTE For n increments, specify n+1 array size (for both NumIPoints and NumVPoints).

*/

double vstep, v; /* Declaration of module internal variables. */

int i;

if ((Vstart == Vstop)) /* Stops execution and returns -1 if */

 return(-1); /* sweep range is zero. */

if ((NumIPoints != NumVPoints)) /* Stops execution and returns -2 if */

 return(-2); /* V and I array sizes do not match. */

vstep = (Vstop-Vstart) / (NumVPoints -1); /* Calculates V-increment size. */

for(i=0, v = Vstart; i < NumIPoints; i++) /* Loops through specified number of */

 /* points. */

{

forcev(SMU1, v); /* LPTLib function forceX, which forces a V or I. */

measi(SMU1, &Imeas[i]); /* LPTLib function measX, which measures a V or I. */

 /* Be sure to specify the *address* of the array. */

Vforce[i] = v; /* Returns Vforce array for display in UTM Sheet. */

v = v + vstep; /* Increments the forced voltage. */

 }

return(0); /* Returns zero if execution Ok.*/

Entering the VSweep user-module parameters

This example uses the double-precision D_ARRAY_T array type. The D_ARRAY_T,

I_ARRAY_T, and F_ARRAY_T are special array types that are unique to KULT. For each of

these array types, you cannot enter values in the Default, Min, and Max fields. On the scroll

bar in the Parameters tab area, there is a space below the slider. This space indicates a

hidden fourth line of incomplete parameter information for the array-size parameter

specification.

When executing the Vsweep user module in a UTM, the start and stop voltages (Vstart and

Vstop) must differ. Otherwise, the first return statement in the code halts execution and

returns an error number (-1). When a user module is executed using a Clarius UTM, this

return code is stored in the UTM Data worksheet. The return code is stored in a column that

is labeled with the user-module name.

Section 2: KULT tutorials Model 4200A-SCS KULT and KULT Extension Programming

2-16 4200A-SCS-KULT-907-01 Rev. D May 2024

To enter the required parameters for the code:

1. Select the Parameters tab.

2. Enter the information for the two voltage input parameters, as shown in the following

table. Select the Add button before adding each new parameter.

Parameter name Data type I/O Default Min Max

Vstart double Input 0 −200 200

Vstop double Input 5 −200 200

3. Select Add.

4. Enter the following measured-current parameter information:

▪ Parameter Name: Imeas

▪ Data type: D_ARRAY_T

▪ I/O: Output

5. Scroll down to display line 4 of the Parameters tab area. KULT enters the array size

parameter in this line automatically for the array that is specified on line 3, as shown in

the following figure.

Figure 19: KULT-entered array-size parameters

6. Under Parameter Name, change ArrSizeForParm3 to NumIPoints. The default

Parameter Name entry is only a description of the required array size parameter. You

must replace it with an appropriate array size parameter, as required by the user

module code.

7. Leave the Data Type and I/O entries as is.

8. Under Default, enter the number 11 for the default current-array size. You can also add

Min and Max array sizes if needed.

9. Select Add.

10. Enter the following forced-voltage parameter information:

▪ Parameter Name: Vforce

▪ Data type: D_ARRAY_T

▪ I/O: Output

11. Under Parameter Name, change ArrSizeForParm5 to NumVPoints.

Model 4200A-SCS KULT and KULT Extension Programming Section 2: KULT tutorials

4200A-SCS-KULT-907-01 Rev. D May 2024 2-17

12. Under Default, enter the number 11 for the default voltage array size.

When executing the VSweep user module in a UTM, the current and voltage array sizes

must match; NumIPoints must equal NumVPoints. If the sizes do not match, the second

return statement in the code halts execution and returns an error number (-2) in the

VSweep column of the UTM Data worksheet.

13. Select Apply. In the module-parameter display area, the function prototype now includes

the declared parameters, as shown in the following figure.

Figure 20: VSweep user-module dialog after entering and applying code and

parameters

Section 2: KULT tutorials Model 4200A-SCS KULT and KULT Extension Programming

2-18 4200A-SCS-KULT-907-01 Rev. D May 2024

Entering the VSweep user-module header files

You do not need to enter any header files for the VSweep user module. The default

keithley.h header file is sufficient.

Documenting the VSweep user module

Select the Description tab and enter documentation for the user module, based on the

comments provided in the code and other information about the module.

Saving the VSweep user module

From the File menu, select Save Module.

Building the VSweep user module

To build the user module:

1. Select the Build tab at the bottom of the dialog to open the Build tab area.

2. In the Options menu, select Build Library. The user library builds. You should not see

error messages.

If you do see error messages, check for typographic errors, then fix and rebuild the user

module. If necessary, review Finding build errors (on page 2-11).

Checking the VSweep user module

Check the user module by creating and executing a UTM in Clarius.

To check the user module:

1. Connect a 1 kΩ resistor between the FORCE terminal of the ground unit (GNDU) and

the FORCE terminal of SMU1.

2. Instead of creating a new project, reuse the UserModCheck project that you created in

Tutorial: Creating a new user library and user module (on page 2-3).

3. Choose Select.

4. Select the Devices tab.

5. Select the 2-wire-resistor.

6. Choose Select.

7. Select the Tests tab.

Model 4200A-SCS KULT and KULT Extension Programming Section 2: KULT tutorials

4200A-SCS-KULT-907-01 Rev. D May 2024 2-19

8. For the Custom Test, select Choose a test from the pre-programmed library (UTM).

9. Drag Custom Test to the project tree. The test has a red triangle next to it to indicate

that it is not configured.

10. Select Rename.

11. Enter the name v_sweep_chk. You will use this UTM test to execute the VSweep user

module.

12. Select Configure.

13. In the right pane Test Settings tab, from the User Libraries list, select my_2nd_lib.

14. From the User Modules list, select the Vsweep user module. A default schematic and

group of parameters are displayed for the UTM.

15. For Vstart, enter the sweep values.

16. Select Run.

17. Select Analyze.

At the conclusion of execution, review the results in the Analyze sheet. If you connected a

1 kΩ resistor between SMU1 and GNDU, used the default UTM parameter values, and

executed the UTM successfully, the results should be similar to the results in the following

figure. The current/voltage ratio for each row of results should be approximately 1 mA / V.

In the example in the following figure, a code of 0 is returned. This means that the user

module executed with no errors.

Figure 21: Checking the VSweep user module

Section 2: KULT tutorials Model 4200A-SCS KULT and KULT Extension Programming

2-20 4200A-SCS-KULT-907-01 Rev. D May 2024

Tutorial: Creating a user module that returns data arrays in
real time

This tutorial helps you use array variables in KULT and return real-time data. It also

illustrates the use of return types (or codes), and the use of two functions from the Keithley

Linear Parametric Test Library (LPTLib).

The steps that were detailed in Tutorial: Creating a new user library and user module (on

page 2-3) are abbreviated in this tutorial.

Naming new user library and new VSweepRT user module

To name new user library and new VSweep user module:

1. Start KULT.

2. Select File > New Library.

3. In the Enter Library dialog that appears, enter my_2nd_lib as the new user library

name.

4. Select OK.

5. Select File > New Module.

6. In the Module text box at the top of the KULT dialog, enter VSweepRT as the new

module name.

7. Select Apply.

Entering the VSweepRT user-module return type

Select int from the Return Type list. This configures the VSweepRT user module to

generate an integer return value.

Model 4200A-SCS KULT and KULT Extension Programming Section 2: KULT tutorials

4200A-SCS-KULT-907-01 Rev. D May 2024 2-21

Entering the VSweepRT user-module code

In the module code-entry area, enter the C code below for the VSweep user module. To

simplify code entry, open the KULT dialog to full screen view.

/* VSweep module

Sweeps through specified V range & measures I, using specified number of points.

Places forced voltage & measured current values (Vforce and Imeas) in output

arrays.

*/

double vstep, v; /* Declaration of module internal variables. */

int i;

if ((Vstart == Vstop)) /* Stops execution and returns -1 if */

 return(-1); /* sweep range is zero. */

vstep = (Vstop-Vstart) / (NumVPoints -1); /* Calculates V-increment size. */

for(i=0, v = Vstart; i < NumVPoints; i++) /* Loops through specified number of */

 /* points. */

{

forcev(SMU1, v); /* LPTLib function forceX, which forces a V or I. */

measi(SMU1, Imeas); /* LPTLib function measX, which measures a V or I. */

PostDataDouble("Vforce", v); /* Returns Vforce for display in UTM Sheet. */

v = v + vstep; /* Increments the forced voltage. */

 }

return(0); /* Returns zero if execution is OK. */

Entering the VSweepRT user-module parameters

This example uses the double-precision D_ARRAY_T array type. The D_ARRAY_T,

I_ARRAY_T, and F_ARRAY_T are special array types that are unique to KULT. For each of

these array types, you cannot enter values in the Default, Min, and Max fields.

When executing the Vsweep user module in a UTM, the start and stop voltages (Vstart and

Vstop) must differ. Otherwise, the first return statement in the code halts execution and

returns an error number (−1). When a user module is executed using a Clarius UTM, this

return code is stored in the UTM Data worksheet. The return code is stored in a column that

is labeled with the user-module name.

Section 2: KULT tutorials Model 4200A-SCS KULT and KULT Extension Programming

2-22 4200A-SCS-KULT-907-01 Rev. D May 2024

To enter the parameters for the code:

1. Select the Parameters tab.

2. Enter the information for the two voltage input parameters, as shown in the following

table. Select the Add button before adding each new parameter.

Parameter name Data type I/O Default Min Max

Vstart double Input 0 −200 200

Vstop double Input 5 −200 200

NumVPoints int Input 50 2 65535

Vforce double * Output — — —

Imeas double * Output — — —

3. Select Apply. In the Parameters tab, the function prototype now includes the declared

parameters, as shown in the following figure.

Figure 22: VSweepRT user-module dialog after entering and applying code and

parameters

Model 4200A-SCS KULT and KULT Extension Programming Section 2: KULT tutorials

4200A-SCS-KULT-907-01 Rev. D May 2024 2-23

Entering the VSweepRT user-module header files

You do not need to enter any header files for the VSweepRT user module. The default

keithley.h header file is sufficient.

Documenting the VSweepRT user module

Select the Description tab and enter documentation for the user module, based on the

comments provided in the code and other information about the module.

Saving the VSweepRT user module

From the File menu, select Save Module.

Building the VSweepRT user module

To build the user module:

1. Select the Build tab at the bottom of the dialog to open the Build tab area.

2. In the Options menu, select Build Library. You should not see error messages.

If you do see error messages, check for typographic errors, then fix and rebuild the user

module. If necessary, review Finding build errors (on page 2-11).

Checking the VSweepRT user module

Check the user module by creating and executing a UTM in Clarius.

To check the user module:

1. Connect a 1 kΩ resistor between the FORCE terminal of the ground unit (GNDU) and

the FORCE terminal of SMU1.

2. Instead of creating a new project, reuse the UserModCheck project that you created in

Tutorial: Creating a new user library and user module (on page 2-3).

3. Choose Select.

4. Select the Devices tab.

5. Select the 2-wire-resistor.

6. Choose Select.

7. Select the Tests tab.

Section 2: KULT tutorials Model 4200A-SCS KULT and KULT Extension Programming

2-24 4200A-SCS-KULT-907-01 Rev. D May 2024

8. For the Custom Test, select Choose a test from the pre-programmed library (UTM).

9. Drag Custom Test to the project tree. The test has a red triangle next to it to indicate

that it is not configured.

10. Select Rename.

11. Enter the name v_sweepRT_chk. You will use this UTM test to execute the VSweepRT

user module.

12. Select Configure.

13. In the right pane Test Settings tab, from the User Libraries list, select my_2nd_lib.

14. From the User Modules list, select the VsweepRT user module. A default schematic and

group of parameters are displayed for the UTM.

15. For Vstart, enter the sweep values.

16. Select Run.

17. Select Analyze.

At the conclusion of execution, review the results in the Analyze sheet. If you connected a

1 kΩ resistor between SMU1 and GNDU, used the default UTM parameter values, and

executed the UTM successfully, the results should be similar to the results in the following

figure. The current/voltage ratio for each row of results should be approximately 1 mA / V.

In the example in the following figure, a code of 0 is returned. This means that the user

module executed with no errors.

Figure 23: Checking the VSweep user module

Model 4200A-SCS KULT and KULT Extension Programming Section 2: KULT tutorials

4200A-SCS-KULT-907-01 Rev. D May 2024 2-25

Tutorial: Calling one user module from within another

KULT allows a user module to call other user modules. A called user module may be in the

same user library as the calling module or may be in another user library. This section

provides a brief tutorial that illustrates application of such dependencies. It also illustrates

the File > Copy Module command.

In this tutorial, you create a new user module using two user modules that were created in

the previous tutorials: Creating a new user library and user module (on page 2-3) and

Creating a user module that returns data arrays (on page 2-14):

• The VSweep user module in the my_2nd_lib user library, a copy of which is used as

the dependent user library.

• The TwoTonesTwice user module, in the my_1st_lib user library, which is the

independent user library that will be called by the VSweep user module.

A copy of the VSweep user module, called VSweepBeep, calls the TwoTonesTwice user

module to signal the end of execution.

Creating the VSweepBeep user module by copying an existing
user module

Open the Vsweep user module:

1. Start KULT.

2. Select File > Open Library.

3. Select my_2nd_lib from the list.

4. Select OK.

5. Select File > Open Module.

6. Select VSweep.c from the list.

7. Select OK.

Section 2: KULT tutorials Model 4200A-SCS KULT and KULT Extension Programming

2-26 4200A-SCS-KULT-907-01 Rev. D May 2024

Copy VSweep.c to the new user module VSweepBeep:

1. Select File > Copy Module. The Copy Module list shown in the following figure opens.

Figure 24: Copy Module list

2. Select my_2nd_lib (in this case, the user library for the copy is the same as the user

library for the source).

3. Select OK. The Enter New Module dialog opens, as shown here.

Figure 25: Enter New Module dialog

4. Enter the name VSweepBeep.

5. Select OK.

Model 4200A-SCS KULT and KULT Extension Programming Section 2: KULT tutorials

4200A-SCS-KULT-907-01 Rev. D May 2024 2-27

The name of the user module must not duplicate the name of any existing user module or

user library in the entire collection of user libraries.

More than one collection of user libraries can be maintained and accessed, each collection

residing in a separate usrlib. However, only one usrlib can be active at a time. For

more information, refer to the Managing user libraries (on page 3-1).

KULT creates a copy of the user module under the new name and displays a message

indicating the need to rebuild the user library. You can skip the rebuild for now. Continue

with the next step.

Open the new VSweepBeep user module:

1. Select File > Open Module.

2. Select VSweepBeep.c from the list. The KULT dialog displays the VSweepBeep user

module.

You can also create a copy of the presently open user module in the same user library as

follows:

1. Enter a new name in the User Module text box.

2. Select Apply. Before using the user module, you must save and rebuild the user library.

Calling independent user module from VSweepBeep user module

To call the TwoTonesTwice user module at the end of the VSweepBeep user module:

1. At the end of VSweepBeep, immediately before the return(0) statement, add the

following statement:

 TwoTonesTwice(Freq1, Freq2); /* Beeps 4X at end of sweep. */

2. In the Parameters tab area, add the Freq1 and Freq2 parameters with the values shown

in the following table, as you did when you created the TwoTonesTwice user module,

changing the Default, Min, and Max values as needed.

Parameter entries for the called user module, TwoTonesTwice

Parameter name Data type I/O Default Min Max

Freq1 long Input 1000 800 1200

Freq2 long Input 400 300 500

Section 2: KULT tutorials Model 4200A-SCS KULT and KULT Extension Programming

2-28 4200A-SCS-KULT-907-01 Rev. D May 2024

3. Select Apply. The Freq1 and Freq2 parameters are added to the function prototype as

shown in the following figure.

Figure 26: Completed VSweepBeep user module

Specifying user library dependencies in VSweepBeep user
module

Before building the presently open user module, you must specify all user libraries on which

the user module depends (the other user libraries that contain user modules that are called).

The VSweepBeep user module depends on the my_1st_lib user library.

Model 4200A-SCS KULT and KULT Extension Programming Section 2: KULT tutorials

4200A-SCS-KULT-907-01 Rev. D May 2024 2-29

To specify this dependency:

1. In the Options menu, select Library Dependencies. The Library Dependencies list

opens, as shown here.

Figure 27: Library Dependencies list

In general, in the Library Dependencies list box, select all user libraries on which the

presently open user module depends (each selection toggles on and off). For the

VSweepBeep module, select my_1st_lib.

2. Select Apply.

Building the VSweep user module

To build the VSweepBeep user module:

1. Save the VSweepBeep user module.

2. Select the Build tab at the bottom of the dialog to open the Build tab area.

3. In the Options menu, select Build Library. The user library builds. You should not see

error messages.

If you see error messages, check for typographical errors; then fix and rebuild the module.

If necessary, review Finding build errors (on page 2-11).

Section 2: KULT tutorials Model 4200A-SCS KULT and KULT Extension Programming

2-30 4200A-SCS-KULT-907-01 Rev. D May 2024

Checking the VSweepBeep user module

Check the user module as you did in the previous tutorials by creating and executing a user

test module (UTM) in Clarius. Refer to Checking the user module (on page 2-12) for details.

This tutorial is almost identical to Tutorial: Creating a user module that returns data arrays

(on page 2-14) except that four beeps should sound at the end of execution.

Before proceeding:

1. Connect a 1 kΩ resistor between the FORCE terminal of the GNDU and the FORCE

terminal of SMU1.

2. Instead of creating a new project, reuse the UserModCheck project that you created in

Tutorial: Creating a new user library and user module (on page 2-3). Add to this project a

UTM called v_sweep_bp_chk.

3. Configure the v_sweep_bp_chk UTM to execute the VSweepBeep user module, which

is found in the my_2nd_lib user library.

4. Run the v_sweep_bp_chk UTM. Near the end of a successful execution, you should

hear a sequence of four tones, sounded at alternating frequencies.

5. At the conclusion of execution, review the results in the Analyze sheet (or the Graph

document, if configured). If you connected a 1 kΩ resistor between SMU1 and GNDU,

used the default UTM parameter values, and executed the UTM successfully, your

results should be similar to the results shown in Checking the VSweep user module (on

page 2-18). The current/voltage ratio for each row of results should be approximately

1 mA/V.

Tutorial: Customizing a user test module (UTM)

This tutorial demonstrates how to modify a user module using KULT. In the ivswitch

project, there is a test named rdson. The rdson test measures the drain-to-source

resistance of a saturated N-channel MOSFET as follows:

1. Applies 2 V to the gate (Vg) to saturate the MOSFET.

2. Applies 3 V to the drain (Vd1) and performs a current measurement (Id1).

3. Applies 5 V to the drain (Vd2) and performs another current measurement (Id2).

Calculates the drain-to-source resistance rdson as follows:

rdson = (Vd2-Vd1) / (Id2-Id1)

The rdson test has a potential shortcoming. If the drain current is noisy, the two current

measurements may not be representative of the actual drain current. Therefore, the

calculated resistance may be incorrect.

Model 4200A-SCS KULT and KULT Extension Programming Section 2: KULT tutorials

4200A-SCS-KULT-907-01 Rev. D May 2024 2-31

In this example, the user module is modified in KULT so that ten current measurements are

made at Vd1 and ten more at Vd2. The current readings at Vd1 are averaged to yield Id1, and

the current readings at Vd2 are averaged to yield Id2. Using averaged current readings

smooths out the noise.

The modified test, rdsonAvg, measures the drain-to-source resistance of a saturated

MOSFET. The MOSFET is tested as follows when rdsonAvg is executed:

1. Applies 2 V to the gate (Vg) to saturate the MOSFET.

2. Applies 3 V to the drain (Vd1) and makes ten current measurements.

3. Averages the 10 current readings to yield a single reading (Id1).

4. Applies 5 V to the drain (Vd2) and makes ten more current measurements.

5. Averages the ten current readings to yield a single reading (Id2).

6. Calculates the drain-to-source resistance (rdsonAvg) as follows:

rdsonAvg = (Vd2-Vd1) / (Id2-Id1)

Open KULT

From the desktop, open the KULT tool by double-clicking the KULT icon. The KULT main

dialog is shown in the following figure.

Figure 28: KULT main dialog

Section 2: KULT tutorials Model 4200A-SCS KULT and KULT Extension Programming

2-32 4200A-SCS-KULT-907-01 Rev. D May 2024

Open the KI42xxulib user library

1. Select File > Open Library.

2. From the Open Library dialog, select KI42xxulib.

Figure 29: KULT Open Library dialog

3. Select OK.

Open the Rdson42XX user module

1. From the File menu, select Open Module.

2. From the Open Module dialog, select Rdson42XX.c, as shown in the following figure.

Model 4200A-SCS KULT and KULT Extension Programming Section 2: KULT tutorials

4200A-SCS-KULT-907-01 Rev. D May 2024 2-33

Figure 30: KULT Open Module dialog

3. Select OK. The Rdson42XX module opens.

Copy Rdson42XX to RdsonAvg

You create the new module by copying the Rdson42XX module to a module named

RdsonAvg and then making the appropriate changes to the test module.

When naming a user module, conform to case-sensitive C programming language naming

conventions. Do not duplicate names of existing user modules or user libraries.

To create the new module:

1. From the File menu, select Copy Module.

2. Select the library for the module. From the Copy Module dialog, select KI42xxulib.

3. Select OK.

4. In the Enter New Module dialog, type in RdsonAvg.

Figure 31: Enter New Module Name dialog

Section 2: KULT tutorials Model 4200A-SCS KULT and KULT Extension Programming

2-34 4200A-SCS-KULT-907-01 Rev. D May 2024

5. Select OK. A reminder that the library using the new module needs to be built is

displayed.

6. Select OK.

Open and modify the RdsonAvg user module

To open the user module:

1. From the File menu, select Open Module.

2. Select RdsonAvg.c from the Open Module dialog.

The RdsonAvg module is shown in the following figure.

Figure 32: KULT module dialog

Model 4200A-SCS KULT and KULT Extension Programming Section 2: KULT tutorials

4200A-SCS-KULT-907-01 Rev. D May 2024 2-35

Modify the user module code

In the user module code, you need to replace the measi commands with avgi commands.

While a measi command makes a single measurement, an avgi command makes a

specified number of measurements, and then calculates the average reading. For example:

avgi(SMU2, Id1, 10, 0.01);

For the above command, SMU2 makes 10 current measurements and then calculates the

average reading (Id1). The 0.01 parameter is the delay between measurements (10 ms).

The source code for the module is in the module code area of the dialog. In this area, make

the following changes.

Under Force the first point and measure, change the line:

measi(SMU2, Id1);

to

avgi(SMU2, Id1, 10, 0.01); // Make averaged I measurement

Under Force the second point and measure, change the line:

measi(SMU2, Id2);

to

avgi(SMU2, Id2, 10, 0.01); // Make averaged I measurement

Change the line:

*Rdson = (Vd2-Vd1)/(*Id2- *Id1); // Calculate Rdson

to

*RdsonAvg = (Vd2-Vd1)/(*Id2- *Id1); // Calculate RdsonAvg

Change a parameter name

Change the name of the Rdson parameter:

1. Select the Parameters tab.

2. Scroll down to the parameter Rdson.

3. Select the name and change it to RdsonAvg.

4. Select Apply.

Section 2: KULT tutorials Model 4200A-SCS KULT and KULT Extension Programming

2-36 4200A-SCS-KULT-907-01 Rev. D May 2024

Change the module description

In Clarius, any user test modules (UTMs) that are connected to this user module show the

text that is entered on the Description tab in KULT.

To change the module description:

1. Select the Description tab.

2. Above DESCRIPTION, change MODULE: Rdson42xx to MODULE: RdsonAvg, as

shown in the following figure.

3. Replace all occurrences of Rdson with RdsonAvg.

Figure 33: User module description

Save and build the modified library

You must save and also rebuild the library to ensure that the new module is available for use

by Clarius user test modules (UTMs).

To save and build the user module and library:

1. Select File > Save Module.

2. Select Options > Build Library. A dialog is displayed that indicates the build is in

process.

Add the new UTM to the ivswitch project

To add rdsonAvg to the ivswitch project:

1. Choose Select.

2. Select Projects.

3. In the Search box, enter ivswitch and select Search. The Library displays the I-V

Switch Project (ivswitch).

4. Select Create. The ivswitch project replaces the previous project in the project tree.

5. Select the Tests tab.

Model 4200A-SCS KULT and KULT Extension Programming Section 2: KULT tutorials

4200A-SCS-KULT-907-01 Rev. D May 2024 2-37

6. For the Custom Test, select Choose a test from the pre-programmed library (UTM).

7. Drag Custom Test to the project tree. The test has a red triangle next to it to indicate

that it is not configured.

8. Select Rename.

9. Enter rdsonAvg and press Enter.

10. In the project tree, drag rdsonAvg to the 4terminal-n-fet device, after the

rdson test.

11. Choose Configure.

12. In the Test Settings pane, from the User Libraries list, select KI42xxulib.

13. From the User Modules list, select Rdson42XX.

14. Select Save.

The project tree for the ivswitch project with rdsonAvg added is shown in the

following figure.

Figure 34: Project tree with rdsonAvg added to 4terminal-n-fet device

Section 2: KULT tutorials Model 4200A-SCS KULT and KULT Extension Programming

2-38 4200A-SCS-KULT-907-01 Rev. D May 2024

Tutorial: Creating a user module for stepping or sweeping

This section provides a tutorial that helps you set up a user test module (UTM) that supports

stepping or sweeping. This example is similar to the vds-id test. For each gate voltage

step, the test sweeps the drain voltage.

Most of the basic steps that were detailed in Tutorial: Creating a new user library and user

module (on page 2-3) are abbreviated in this tutorial. This tutorial adds a user module to the

library my_2nd_lib, which was created in Tutorial: Creating a user module that returns

data arrays (on page 2-14).

Name a new user module

To name new user library and new user module:

1. Start KULT.

2. Select File > Open Library.

3. Select my_2nd_lib.

4. Select OK.

5. Select File > New Module.

6. For Module, enter vds_id_step_sweep.

7. Select Apply.

Entering the return type

From the Return Type list, select int. This configures the user module to generate an integer

return value.

Entering the user-module code

In the module code-entry area, enter the C language code below for the user module. To

simplify code entry, open the KULT dialog to full-screen view.

Model 4200A-SCS KULT and KULT Extension Programming Section 2: KULT tutorials

4200A-SCS-KULT-907-01 Rev. D May 2024 2-39

int retCode = 0; // This module returns an error or success code to Clarius (shown

in the first column of the data grid).

int stepSteps = 1;

int sweepSteps = 8;

int i = 0;

int j = 0;

int stepperID = 1;

double vg = VgStart;

double stepSimTime = 5000.0; // The time to simulate acquisition of one step data.

double pointDelay = 1.0; // Simulated delay between single data points.

double vd = VdStart;

double id = vd / 1e6; // Simulate id current.

double vgScale = 1.0; // Simulate shift in id data between different steps.

char vgName[32]; // Output names for PostDataDouble data transfer to Clarius.

char vdName[32];

char idName[32];

if (VdStep == 0.0 || VgStep == 0.0)

{

return -1; // Invalid input parameters

}

stepSteps = fabs((VgStop - VgStart) / VgStep) + 1;

sweepSteps = fabs((VdStop - VdStart) / VdStep) + 1;

pointDelay = stepSimTime / sweepSteps;

for (i = 0; i < stepSteps; i++)

{

vd = VdStart;

id = vd / 1e6;

// Define output column names for each step (must include stepperID).

stepperID = i + 1;

sprintf(vgName, "OutVg(%d)", stepperID);

sprintf(vdName, "OutVd(%d)", stepperID);

sprintf(idName, "OutId(%d)", stepperID);

for (j = 0; j < sweepSteps; j++)

{

PostDataDouble(vgName, vg);

PostDataDouble(vdName, vd);

PostDataDouble(idName, id);

Sleep(pointDelay);

vd += VdStep;

id = sqrt(vd * vgScale) / 1e6;

}

vg += VgStep;

vgScale += 0.2;

}

return retCode;

Section 2: KULT tutorials Model 4200A-SCS KULT and KULT Extension Programming

2-40 4200A-SCS-KULT-907-01 Rev. D May 2024

Entering the user-module parameters

When the user module is executed in a UTM, the start and stop voltages must differ.

Otherwise, the first return statement in the code halts execution and returns an error

number (−1). This return code is stored in the Analyze sheet for the test, in a column that is

labeled with the user-module name.

To enter the parameters for the code:

1. Select the Parameters tab.

2. Enter the information for the two voltage input parameters, as shown in the following

table. Select the Add button before adding each new parameter.

Parameter name Data type I/O Default Min Max

VdStart double Input 0 −2000 2000

VdStop double Input 10 −2000 2000

VdStep double Input 0.2 −1000 1000

VgStart double Input 1 −20 20

VgStop double Input 5 −20 20

VgStep double Input 1 −10 10

OutVg double * Output — — —

OutVd double * Output — — —

OutId double * Output — — —

3. Select Apply. In the Parameters tab, the function prototype now includes the declared

parameters, as shown in the following figure.

Figure 35: Parameters for the vds_id_step_sweep user module

Model 4200A-SCS KULT and KULT Extension Programming Section 2: KULT tutorials

4200A-SCS-KULT-907-01 Rev. D May 2024 2-41

Enter the user-module header files

You do not need to enter any header files for the vds_id_step_sweep user module. The

default keithley.h header file is sufficient.

Documenting the user module

Select the Description tab and enter documentation for the user module, based on the

comments provided in the code and other information about the module.

Saving the user module

From the File menu, select Save Module.

Building the user module

To build the user module:

1. Select the Build tab at the bottom of the dialog to open the Build tab area.

2. In the Options menu, select Build Library.

3. Scroll down in the KULT Build Library dialog. You should not see error messages.

4. Select OK.

If you do see error messages, check for typographical errors, then fix and rebuild the user

module. If necessary, review Finding build errors (on page 2-11).

Setting up the user interface of the user module

On the Clarius Configure pane, the default user interface for a user module shows an image

of the test device and all parameters in one group. You can change the image and how the

parameters are grouped using the UTM UI Editor tool.

This example briefly describes how to use the UTM UI Editor tool. For more detail, refer to

“Define the UTM user interface” in the Model 4200A-SCS Clarius User’s Manual.

Section 2: KULT tutorials Model 4200A-SCS KULT and KULT Extension Programming

2-42 4200A-SCS-KULT-907-01 Rev. D May 2024

To set up the user interface:

1. Close Clarius.

2. From the Windows Start menu, select Keithley Instruments > UTM UI Editor. The

UTM UI Editor application opens, as shown in the following figure.

Figure 36: UTM UI Editor application

3. In the right pane Test Settings tab, from the User Libraries list, select my_2nd_lib.

4. From the User Modules list, select the vds_id_step_sweep user module. A default

schematic and group of parameters are displayed for the UTM.

5. Select the header of a group of parameters.

6. Select Edit Group. The Edit Group dialog with the default settings is displayed, as

shown in the following figure.

Model 4200A-SCS KULT and KULT Extension Programming Section 2: KULT tutorials

4200A-SCS-KULT-907-01 Rev. D May 2024 2-43

Figure 37: UTM UI Editor with Group 1 selected

7. In Group Title, enter Vg Stepper.

8. Set the Group Position to Clarius Center Pane and West.

9. Delete the VdStart, VdStop, and VdStep parameters from this group.

10. Select OK to close the Edit Group dialog.

11. Select Add Group.

12. In Group Title, enter Vd Sweeper.

13. Set the Group Position to Clarius Center Pane and East.

14. Select Add three times. This adds the VdStart, VdStop, and VdStep parameters to this

group, as shown in the following figure.

Section 2: KULT tutorials Model 4200A-SCS KULT and KULT Extension Programming

2-44 4200A-SCS-KULT-907-01 Rev. D May 2024

Figure 38: Vd Sweeper group in the UTM UI Editor

15. Select OK.

16. Select Stepper Settings. The Edit Steppers dialog is displayed.

17. Select Add. The Vd Sweeper parameters are added.

18. Select OK.

Figure 39: Edit UTM UI for a stepper

Model 4200A-SCS KULT and KULT Extension Programming Section 2: KULT tutorials

4200A-SCS-KULT-907-01 Rev. D May 2024 2-45

19. Select OK. The new groups are displayed.

Figure 40: vds_id_step_sweep in Configure

Check the user module in Clarius

Check the user module by creating and executing a UTM in Clarius.

To check the user module:

1. Open the UserModCheck project that you created in Tutorial: Creating a new user

library and user module (on page 2-3).

2. Choose Select.

3. Select Devices.

4. Select MOSFET, n-type, t terminal (4terminal-n-fet).

5. Choose Select.

6. Select the Tests tab.

7. For the Custom Test, select Choose a test from the pre-programmed library (UTM).

8. Drag Custom Test to the project tree. The test has a red triangle next to it to indicate

that it is not configured.

9. Select Rename.

10. Enter the name vds_id_step_sweep. Use this UTM test to execute the new user

module.

11. Select Configure.

12. In the right pane Test Settings tab, from the User Libraries list, select my_2nd_lib.

13. From the User Module list, select vds_id_step_sweep.

14. Select Run.

15. Select Analyze to review the results. Each output parameter is repeated based on the

number of steps.

In this section:

Introduction .. 3-1
Managing user libraries .. 3-1
Dependent user modules and user libraries 3-9
Formatting user module help for the Clarius Help pane 3-14
Creating project prompts .. 3-15

Introduction

Additional features of KULT include:

• Tools to manage user libraries (on page 3-1)

• Dependent user modules and user libraries (on page 3-9)

• Ability to format user module help for the Clarius Help pane (on page 3-14)

• Ability to create project prompts (on page 3-15)

Managing user libraries

This section addresses the following topics:

• Updating and copying user libraries using KULT command-line utilities (on page 3-1)

describes two command-line utilities. One utility provides a command-line method to

copy user libraries. The other utility provides a means to update user libraries after they

are copied.

• Performing other KULT tasks using command-line commands (on page 3-3) describes a

series of command-line commands. These commands can be used individually or in a

batch file to perform various KULT tasks without opening the KULT user interface.

Updating and copying user libraries using KULT command-line
utilities

This section describes the command-line utilities kultupdate and kultcopy.

Section 3

User module and library management

Section 3: User module and library management Model 4200A-SCS KULT and KULT Extension Programming

3-2 4200A-SCS-KULT-907-01 Rev. D May 2024

Updating user libraries using kultupdate

If you copy user libraries to a new storage location (another user directory or drive), you

must use the kultupdate utility to update the user libraries. User libraries must be updated

to ensure the correctness of all path information, which is built into the library. The

kultupdate utility rebuilds each user module in the library and also rebuilds the library.

Usage

kultupdate <library_name> [options]

Options

You can place any of the following options at the [options] position in the command:

• -dep <library_dep_1>...[library_dep_6]

Specifies up to six libraries on which library_name depends.

• -hide

Hides library_name so that it is not visible in Clarius.

• +hide

Shows library_name so that it is visible in Clarius.

Example

Update the KI590ulib library in the active user-library directory, which depends on the

Winulib library:

C:\>kultupdate KI590ulib -dep Winulib

Copying user libraries using kultcopy

The kultcopy utility copies any user library from any accessible storage location to the

active user-library directory. The kultcopy utility:

• Performs kultupdate so that the user library is immediately ready for use. Refer to

Updating user libraries using kultupdate (on page 3-2) for more information.

• Copies the user library that is specified by the "Start-In" user-library directory, which is

the directory in which you start the kultcopy command.

To successfully copy a user library to the active user-library directory, you must start

kultcopy in the following directory:

<source_lib_path>\<source_lib_name>\src

This directory is called the "Start-In" directory, where:

• <source_lib_path> is any accessible user-library directory.

• <source_lib_name> is the name of the specific user library to be copied.

Model 4200A-SCS KULT and KULT Extension Programming Section 3: User module and library management

4200A-SCS-KULT-907-01 Rev. D May 2024 3-3

Usage

kultcopy <library_name> [options]

Options

Any of the following options may be placed at the [options] position in the command:

• -dep <library_dep_1>...[library_dep_6]

Specifies up to six libraries on which library_name depends.

• -hide

Hides library_name so that it is not visible in Clarius.

• +hide

Shows library_name so that it is visible in Clarius.

You can use kultcopy restore the original userlib directory. A backup copy of the userlib

directory is provided at c:\s4200\sys\factory\usrlib.

If there are images linked to the original UTMs, the new modules point to the images in the

original directory, even though the files for the images were moved. You need to manually

change the path to the new directory.

Performing other KULT tasks using command-line commands

The KULT command-line interface lets you load, build, or delete user libraries and add or

delete user modules without opening the KULT user interface. This feature is useful when

developing and managing user libraries. The commands can be used individually or in a

batch file.

The general format for a command line instruction is as follows:

kult subcommand -l<library_name> [options] [module]

The individual items in the instruction are as follows:

• The item subcommand may be any one of these subcommands:

▪ add_mod

▪ bld_lib

▪ del_lib

▪ del_mod

▪ gui

▪ help

Section 3: User module and library management Model 4200A-SCS KULT and KULT Extension Programming

3-4 4200A-SCS-KULT-907-01 Rev. D May 2024

▪ new_lib

▪ new_mod

▪ unzip

▪ zip

• The item <library_name> specifies the name of the library involved in the

commanded action.

• The item [options] includes one or more of these options:

▪ -d<directory_name>

▪ -hide

▪ +hide

▪ -dep <library_dep_1>.....[library_dep_6]

▪ build_type

• These options are described in the following descriptions of individual subcommands.

• If appropriate to the commanded action, [module] specifies the name of the involved

user module.

The sections that follow describe the subcommands.

gui subcommand

The gui subcommand launches the KULT editor.

Usage

kult gui [option] [type]

The -build_type option may be placed at the [options] position in the command. The

following [type] options are available:

• Release

Default option. This option builds the library more efficiently than the Debug option.

• Debug

Use this option if you want to use an integrated development environment, such as

Visual Studio Code, to debug your source code.

Example

kult gui -build_type Release

Model 4200A-SCS KULT and KULT Extension Programming Section 3: User module and library management

4200A-SCS-KULT-907-01 Rev. D May 2024 3-5

new_lib subcommand

The new_lib subcommand lets you create a new user library without any user modules. Its

action is equivalent to the following steps in KULT:

• Starting KULT

• Selecting File > New Library

• Entering a new library name

• Selecting OK

• Selecting File > Exit

Usage

kult new_lib -l<library_name>

The <library_name> user library is created in the active user-library directory.

bld_lib subcommand

The bld_lib subcommand lets you build a user library from the command line. Its action is

equivalent to the following steps in KULT:

• Starting KULT

• Selecting File > Open Library

• Selecting the <library_name> user library

• Selecting OK, selecting Options > Build Library

• After the build is completed, selecting File > Exit

Usage

kult bld_lib -l<library_name> [options]

Builds the <library_name> user library in the active user-library directory.

Any of the following may be placed at the [options] position in the command:

• -dep <library_dep_1>...[library_dep_6]

Specifies up to six user libraries upon which library_name depends.

Dependent user libraries must be in the active user-library directory. For more information

about dependent libraries, refer to Dependent user modules and user libraries (on

page 3-9).

Section 3: User module and library management Model 4200A-SCS KULT and KULT Extension Programming

3-6 4200A-SCS-KULT-907-01 Rev. D May 2024

• +hide

Hides library_name so that it is not visible in Clarius.

• -hide

Shows library_name so that it is visible in Clarius.

The C:\s4200\kiuser\usrlib\<library name>\build folder is created when you

run the bld_lib subcommand or select the Build Library menu option. This folder can be

safely deleted for debugging purposes.

del_lib subcommand

The del_lib subcommand lets you delete a library from the command line. Its action is

equivalent to the following steps in KULT:

• Starting KULT

• Selecting File > Delete Library

• Selecting a user library to be deleted

• Selecting OK

• Selecting File > Exit

Usage

kult del_lib -l<library_name>

The <library_name> user library is deleted from the active user-library directory.

new_mod subcommand

The new_mod subcommand lets you create a new module in a user library. Its action is

equivalent to the following steps in KULT:

• Starting KULT

• Selecting File > Open Library > <library_name>

• Select OK

• Selecting File > New Module

• Entering a new module name

• Selecting Apply

• Selecting File > Exit

Model 4200A-SCS KULT and KULT Extension Programming Section 3: User module and library management

4200A-SCS-KULT-907-01 Rev. D May 2024 3-7

Usage

kult new_mod -l<library_name> <module>

The <module> module is created in the <library_name> library.

Where:

• <library_name> is the target library into which <module> is to be created. It must be

in the active user-library directory.

• <module> is the new module name.

add_mod subcommand

The add_mod subcommand lets you add or copy a user module from one user library

(source) to another library (target). Its action is equivalent to the following KULT steps:

• Starting KULT

• Selecting File > Open Library

• Selecting the <source_lib_name> source library

• Selecting File > Open Module

• Selecting the <module> source module

• Selecting File > Copy Module

• Selecting the <library_name> target library

• Entering a target-module name

• Selecting File > Exit

All user modules must be named uniquely, even if they are duplicates that reside in

different user libraries. The add_mod subcommand automatically assigns a target-module

name that is a derivative of the source-module name. The naming convention is as follows:

<source_library_name>_<module>.

Usage

kult add_mod -l<library_name> [-d<source_lib_path>\source_lib_name>\src] <module>

Where:

• <library_name> is the target library into which <module> is to be copied. It must be

in the active user-library directory.

• <source_lib_path> is any accessible user-library directory.

Section 3: User module and library management Model 4200A-SCS KULT and KULT Extension Programming

3-8 4200A-SCS-KULT-907-01 Rev. D May 2024

• <source_lib_name> is the name of the specific user library from which <module> is

to be copied.

• <module> is the source user module.

You must use the -d option when you execute add_mod in a directory other than

<source_lib_path>\<source_lib_name>.

del_mod subcommand

The del_mod subcommand lets you delete a module from the command line. Its action is

equivalent to the following steps in KULT:

• Starting KULT

• Selecting File > Delete Module

• Selecting a user module to be deleted

• Selecting OK

• Selecting File > Exit

Usage

kult del_mod -l<library_name> <module>

Where:

• <library_name> is the target library from where <module> will be deleted. It must be

in the active user-library directory.

• <module> is the name of the module to be deleted.

zip subcommand

The zip subcommand creates a .zip file for a user library.

Usage

kult zip -l<library_name> [password] <zipfile_name>

The <library_name> user library is created in the active user-library directory.

The [password] parameter is optional.

Model 4200A-SCS KULT and KULT Extension Programming Section 3: User module and library management

4200A-SCS-KULT-907-01 Rev. D May 2024 3-9

unzip subcommand

The unzip subcommand unzips a file containing a KULT library.

Usage

kult unzip [-dest_path] [password] <zipfile_name>

Where:

• [-dest_path] is the target directory where the file will be unzipped.

• [password] is required if the file was compressed using the password parameter in the

zip subcommand.

The <zipfile_name> archive is unzipped in the active user-library directory unless the [-

dest_path] parameter is specified. The [-dest_path] parameter should not be used

when you import a user library.

help subcommand

The help subcommand displays all usage information for subcommands and options.

Usage

kult help

Dependent user modules and user libraries

KULT allows a user module to call other user modules. A called user module can be in the

same user library as the calling module or can be in another user library. When the module

that you are creating calls a module in another user library, you must:

1. Select Options > Library Dependencies.

2. Specify each called library from the list that is displayed.

You must select user module and user-library dependencies carefully. Observe

the following:

• Try to put user modules with interdependencies in the same user library and minimize

the interdependencies between libraries. This practice helps to avoid problematic user

library dependency loops (Lib1 relies on Lib2, Lib2 relies on Lib3, Lib3 relies on

Lib1).

• If a user module in one user library must depend on user modules in other user libraries,

take care when selecting the user libraries to be linked with the user module under

development. The next section provides guidance.

Section 3: User module and library management Model 4200A-SCS KULT and KULT Extension Programming

3-10 4200A-SCS-KULT-907-01 Rev. D May 2024

The user libraries to be linked are saved so that future rebuilds do not require the

dependencies to be selected again. This information is stored in the

<library_name>_modules.mak file in the

%KI_KULT_PATH%\<library_name>\kitt_obj directory.

• Structure dependencies hierarchically to avoid circular dependencies, and then build the

dependent user libraries in the correct order. The next two sections provide guidance.

Structuring dependencies hierarchically

You can avoid user library circular dependency by calling user libraries in a hierarchical

design, as illustrated in "Hierarchical design for user-library dependencies" below.

Observe the following:

• Design lower-level user modules in the calling hierarchy so that they do not require

support from higher-level modules. That is, lower-level user modules should not require

calls to higher-level modules to perform their required tasks.

• Use several general-purpose low-level-library user modules to do a task rather than a

single, do-all, higher-level-library user module.

You may find it helpful to prefix user modules with the user-library name as an identifier, for

example, liba_ModuleName for user modules in liba. This avoids duplicate user module

names and prevents confusion with similarly named modules that are in other user libraries

and source files. When you execute the File > Copy Library command, KULT automatically

appends the user library name to each user module in the new user library name. KULT also

appends the library name, as a suggestion, when you execute the File > Copy Module

command.

In the following table, the series of coded user modules amplifies the hierarchical

dependencies shown in the following figure.

Model 4200A-SCS KULT and KULT Extension Programming Section 3: User module and library management

4200A-SCS-KULT-907-01 Rev. D May 2024 3-11

Coded user modules illustrating the use of hierarchical user library dependencies

Hierarchy
level

User-library
name

User-module
name User-module code

0 liba Test void Test(void)

{

 printf("In liba, calling CalledA1()\n");

 CalledA1();

}

1 liba1 CalledA1 void CalledA1(void)

{

 printf("In liba1, calling CalledA2()\n");

 CalledA2();

}

2 liba2 CalledA2 void CalledA2(void)

{

 printf("In liba2, calling CalledA3()\n");

 CalledA3();

}

3 liba3 CalledA3 void CalledA3(void)

{

 printf("In liba3, making no calls()\n");

}

A user module in liba calls a user module in libal. In turn, a user module in liba1 calls

a user module in liba2. Finally, a user module in liba2 calls a user module in liba3.

Section 3: User module and library management Model 4200A-SCS KULT and KULT Extension Programming

3-12 4200A-SCS-KULT-907-01 Rev. D May 2024

Figure 41: Hierarchical design for user library dependencies

Model 4200A-SCS KULT and KULT Extension Programming Section 3: User module and library management

4200A-SCS-KULT-907-01 Rev. D May 2024 3-13

Building dependent user libraries in the correct order

When KULT builds a user library that depends on other user libraries, it must link to each of

these libraries. For example, when KULT builds liba, the following linkages occur: liba is

linked with liba1, the liba/liba1 pair is linked with liba2, the liba/liba1/liba2

trio is linked with liba3, and so on. Therefore, a series of hierarchical dependencies

requires a reverse hierarchical build order, starting first with the lowest-level user library.

Before building any dependent user library, you must first successfully build each library on

which it depends, as illustrated below:

• If liba depends on liba1, liba cannot successfully build until liba1 has been built.

• If, additionally, liba1 depends on liba2, both liba and liba1 cannot successfully

build until liba2 has been built.

• Finally, if liba2 depends on liba3, then the three higher level user libraries (liba,

liba1, and liba2) cannot successfully build until liba3 has been built.

The following procedure illustrates the correct reverse build order for the dependencies

shown in the table and figure in Structuring dependencies hierarchically (on page 3-10). This

is a general procedure based on the assumption that each of the interdependent user

modules are newly created or were edited since the last build. You do not need to repeat

builds that are already complete up to a given level of dependency.

Build the Level 3 user module and user library:

1. Build the saved CalledA3 user module, which is in the liba3 user library (in the KULT

Options menu, select Build).

2. Build the liba3 user library (in the KULT Options menu, select Build).

Build and set dependencies for the Level 2 user module and user library:

1. Build the saved CalledA2 user module, which is in the liba2 user library.

2. Select Options > Library Dependencies.

3. Select liba3 from the Library Dependencies list box.

4. Select Apply.

5. Build the liba2 user library.

Section 3: User module and library management Model 4200A-SCS KULT and KULT Extension Programming

3-14 4200A-SCS-KULT-907-01 Rev. D May 2024

Build and set dependencies for the Level 1 user module and user library:

1. Build the saved CalledA1 user module, which is in the liba1 user library.

2. Select Options > Library Dependencies.

3. Select liba2 from the Library Dependencies list box.

4. Select Apply.

5. Build the liba1 user library.

Build and set dependencies for the Level 0 user module and user library:

1. Build the saved Test user module, which is in the liba user library.

2. Select Options > Library Dependencies.

3. Select liba1 from the Library Dependencies list box.

4. Select Apply.

5. Build the liba user library.

This reverse hierarchical build order results in a linking scheme that satisfies the dynamic

linking requirements of Microsoft® Windows®.

Formatting user module help for the Clarius Help pane

If your user module includes a help description, but it is not set up for HTML, when you

create a UTM in Clarius, the Help pane displays the Open UTM Comments button. If you

select this button, text from the Description tab in KULT is displayed in an ASCII

browser dialog.

You can set up this help to display as formatted HTML in the Help pane using PHP

Markdown Extra tools. On the first line of the description, add the following stylesheet and

MarkdownExtra code:

<!--MarkdownExtra-->

<link rel="stylesheet" type="text/css"

href="http://clariusweb/HelpPane/stylesheet.css">

In order to see the help in Clarius, you must build the UTM and rebuild the library after

entering the Markdown code.

Model 4200A-SCS KULT and KULT Extension Programming Section 3: User module and library management

4200A-SCS-KULT-907-01 Rev. D May 2024 3-15

To format the text, you can use some of the following options:

• Create a first level heading: Place ===== under a line to center and bold the line.

(You can use any number of = characters.)

• Create a second level heading: Place -------- under a line to bold the line. (You

can use any number of - characters.)

• To create list: Insert a blank line before the start of the list, then use 1., 2., and so on to

number each item in the list.

• Italicize text: Place * before and after the text to be italicized.

• Display text in a fixed-width font: Put six spaces before each line of the text or use

four tilde characters (~~~~) before and after the lines of text.

You can make changes to the .c file of the user module with KULT or a text editor. After

saving changes, to view the changes, select another project tree object and then return to

the UTM.

An example of the code entered in the Description tab is shown in Documenting the user

module (on page 2-9). An example of the result in the Help pane in Clarius is shown in

Checking the user module (on page 2-12).

For information on additional formatting options, refer to the PHP Markdown Extra website of

Michel Fortin (michelf.ca/projects/php-markdown/extra/).

PHP Markdown Lib Copyright © 2004-2015 Michel Fortin (michelf.ca/). All rights reserved.

Based on Markdown. Copyright © 2003-2005 John Gruber, Daring Fireball

(daringfireball.net/). All rights reserved.

Creating project prompts
KULT provides user modules that you can use to create dialogs to pause a test sequence

with a prompt. These dialogs are available as user modules, shown in the following table.

You define the text message for the prompt. When one of these user modules is run, the

test sequence pauses. The test sequence continues when a button on the dialog is selected.

Winulib user library

User module Description

AbortRetryIgnoreDialog Pause test sequence with a prompt to Abort, Retry or Ignore

InputOkCancelDialog Pause test sequence for an input prompt; enter input data (OK) or Cancel

OkCancelDialog Pause test sequence with a prompt to continue (OK) or Cancel

OkDialog Pause test sequence with a prompt to continue (OK)

RetryCancelDialog Pause test sequence with a prompt to Retry or Cancel

YesNoCancelDialog Pause test sequence with a Yes, No, or Cancel decision prompt

YesNoDialog Pause test sequence with a Yes or No decision prompt

https://michelf.ca/projects/php-markdown/extra/
https://michelf.ca/projects/php-markdown/extra/
https://michelf.ca/
https://michelf.ca/
https://daringfireball.net/
https://daringfireball.net/

Section 3: User module and library management Model 4200A-SCS KULT and KULT Extension Programming

3-16 4200A-SCS-KULT-907-01 Rev. D May 2024

Using dialog boxes

The Winulib user library has user modules for six action or decision dialogs and one input

dialog. The dialog, with example prompts, are shown in Dialog formats (on page 3-16).

The text message for a prompt is entered by the user into the user module. See “Winulib

user-library reference” in the Model 4200A-SCS Clarius User's Manual for details on the

user modules.

An example using the OK dialog is provided in Dialog test examples (on page 3-17).

Dialog formats

The OK dialog in the following figures has only one button. You can use this dialog to pause

a test sequence to make an announcement (for example, "Test Finished"), or prompt for an

action (for example, "Connect 590 to DUT"). When OK is selected, the test sequence

continues.

The other dialogs have two or three buttons, as shown in the following examples. When a

button on a dialog is selected, a status value that corresponds to that button is placed in the

Analyze sheet for the action. If there are input parameters, the entries for the input

parameters are placed in the Analyze sheet. You can pass a parameter value into a user-

created routine.

Model 4200A-SCS KULT and KULT Extension Programming Section 3: User module and library management

4200A-SCS-KULT-907-01 Rev. D May 2024 3-17

To pass parameters, the dialog user module must be called from another user-created user

module that is designed for parameter passing. A parameter that is in the Analyze sheet is

passed to a routine in the user-created user module to perform the appropriate operation or

action.

An example to demonstrate parameter passing is provided in Dialog test examples (on

page 3-17).

Dialog test examples

The following examples demonstrate how you can use dialogs in a test sequence.

Example: Announce end of test

For this example, you will create a user test module (UTM) that uses the OK dialog user

module. This dialog announces the end of a test sequence. You can use this UTM in any

project at the end of any test sequence.

To create an end-of-test announcement:

1. In the Clarius project tree, select the last test. The announcement occurs after this test.

2. Choose Select.

3. Select the Tests tab.

4. For the Custom Test, select Choose a test from the pre-programmed library (UTM).

5. Drag Custom Test to the project tree. The test has a red triangle next to it to indicate

that it is not configured.

6. Select Rename.

7. Enter the name End of test prompt.

8. Select Configure.

9. In the Test Setting pane on the right, set the User Libraries to Winulib.

Section 3: User module and library management Model 4200A-SCS KULT and KULT Extension Programming

3-18 4200A-SCS-KULT-907-01 Rev. D May 2024

10. Set User Modules to OkDialog.

11. For NumberOfMessages, enter 2.

12. For Message1Text, enter Test Finished.

13. For Message2Text, enter Click OK to continue. An example is shown in the

following figure.

Figure 42: New UTM using OkDialog user module

14. Select Save.

When you run the test sequence, the end of test dialog displayed, as shown in the following

figure. Select OK to continue.

In this section:

Introduction .. 4-1
Installation .. 4-1
Setting up Visual Studio Code for library development 4-9
Visual Studio code overview .. 4-13
KULT side bar .. 4-17
Working with user libraries in Visual Studio Code 4-18
Working with modules in Visual Studio Code 4-25
Debugging libraries .. 4-31

Introduction

The Keithley KULT Extension for Visual Studio Code gives you the ability to write, compile,

and debug user libraries outside of KULT. Combining the user-friendly Visual Studio Code

editor with KULT creates an integrated development environment (IDE).

This section describes how to download, install, and set up Visual Studio Code and the

KULT Extension.

You can use the KULT Extension for Visual Studio Code on a computer with Clarius V1.8 or

higher installed. All features for the KULT Extension are available on the computer version

of Clarius except the debugging tool. Installation and setup instructions are the same on the

4200A and the computer.

The documentation in this section was verified against Visual Studio Code version 1.71.

Installation

You can install Visual Studio Code and the KULT Extension with or without a connection to

the internet on the instrument.

These instructions provide information on installing the KULT Extension for the first time and

for updating it if Clarius was reinstalled.

Section 4

KULT Extension for Visual Studio Code

Section 4: KULT Extension for Visual Studio Code Model 4200A-SCS KULT and KULT Extension Programming

4-2 4200A-SCS-KULT-907-01 Rev. D May 2024

Download Visual Studio Code

If you cannot connect to the internet from the instrument, use another computer to download

Visual Studio Code.

To download Visual Studio Code:

1. Go to the Visual Studio Code download site (code.visualstudio.com/download).

2. Download the Windows User Installer, either 32-bit or 64-bit.

3. If you are downloading from another computer, copy the installation file to a USB

flash drive.

Install Visual Studio Code

To install Visual Studio Code:

1. If you downloaded the installation files to a USB flash drive, copy the files to the

instrument.

2. Start the installer.

3. Complete the installation wizard.

4. On the Select Additional Tasks dialog, select Add to PATH (requires shell restart).

This allows Visual Studio Code to be called from the command line.

5. Make other selections as needed and complete the wizard.

Figure 43: Select additional tasks

https://code.visualstudio.com/download
https://code.visualstudio.com/download

Model 4200A-SCS KULT and KULT Extension Programming Section 4: KULT Extension for Visual Studio Code

4200A-SCS-KULT-907-01 Rev. D May 2024 4-3

Install extensions with an internet connection

To install Visual Studio Code extensions:

1. From Visual Studio Code, select the Extensions icon in the left navigation. The

Extensions pane opens.

Figure 44: Extensions icon

2. Search for C++ in the Marketplace and select C/C++.

3. Select Install.

Figure 45: Install the C/C++ Extension

4. At the top of the Extensions: Marketplace pane, select ... and select Install from VSIX.

Figure 46: Install from VSIX

Section 4: KULT Extension for Visual Studio Code Model 4200A-SCS KULT and KULT Extension Programming

4-4 4200A-SCS-KULT-907-01 Rev. D May 2024

5. Select C:\s4200\vscode\kult-extension.vsix.

6. Select Install. This installs the KULT Extension to Visual Studio Code.

Figure 47: Install the KULT Extension to Visual Studio Code

7. Close Visual Studio Code and reopen to complete the installation and enable all

extensions.

8. Continue to Set up Visual Studio Code for Library Development (on page 4-9).

Install extensions without an internet connection

If you do not have an internet connection, you need to use another computer to go the

Visual Studio Marketplace to download the Microsoft C/C++ Extension.

To download the Microsoft C/C++ Extension:

1. Go to the C/C++ page of the Visual Studio Marketplace

marketplace.visualstudio.com/items?itemName=ms-vscode.cpptools.

2. Scroll down to Offline Installation and select the link

https://github.com/Microsoft/vscode-cpptools/releases.

Figure 48: Offline installation options

https://marketplace.visualstudio.com/items?itemName=ms-vscode.cpptools
https://marketplace.visualstudio.com/items?itemName=ms-vscode.cpptools

Model 4200A-SCS KULT and KULT Extension Programming Section 4: KULT Extension for Visual Studio Code

4200A-SCS-KULT-907-01 Rev. D May 2024 4-5

3. Find the version with the Latest Release tag that is verified. Select the version number to

view the files. An example is shown in the following graphic.

Figure 49: Example of a version tagged with Latest Release and Verified

4. Download cpptools-win32.vsix.

Figure 50: Microsoft C/C++ extension

5. Copy the file to a USB drive.

Install the Microsoft C/C++ Extension on the 4200A-SCS:

1. Copy cpptools-win32.vsix from the USB drive to the C:\s4200\vscode folder on

the 4200A-SCS.

2. Open Visual Studio Code.

3. Select the Extensions icon in the left navigation. The Extensions pane opens.

Figure 51: Extensions icon

Section 4: KULT Extension for Visual Studio Code Model 4200A-SCS KULT and KULT Extension Programming

4-6 4200A-SCS-KULT-907-01 Rev. D May 2024

4. Select … at the top of the Extensions pane.

5. Select Install from VSIX.

6. Select the cpptools-win32.vsix file and select Install.

Figure 52: Install from VSIX with no internet connection

7. Select … at the top of the Extensions pane again.

8. Select Install from VSIX.

9. Select the kult-extensions.vsix file and select Install.

10. Close Visual Studio Code and reopen to complete the installation and enable all

extensions.

11. Continue to Set up Visual Studio Code for Library Development (on page 4-9).

Updating the KULT Extension after installing Clarius

If you installed a new version of Clarius, you must uninstall and reinstall the KULT

Extension.

To uninstall the KULT Extension:

1. Open Visual Studio Code.

2. From Visual Studio Code, select the Extensions icon in the left navigation. The

Extensions pane opens.

Figure 53: Extensions icon

Model 4200A-SCS KULT and KULT Extension Programming Section 4: KULT Extension for Visual Studio Code

4200A-SCS-KULT-907-01 Rev. D May 2024 4-7

3. Select the KULT Extension.

Figure 54: Visual Studio Code Extension Marketplace

4. Select Uninstall.

Figure 55: Uninstall the KULT Extension

5. Close Visual Studio Code.

To reinstall the KULT Extension:

1. From Visual Studio Code, select the Extensions icon in the left navigation. The

Extensions pane opens.

Figure 56: Extensions icon

Section 4: KULT Extension for Visual Studio Code Model 4200A-SCS KULT and KULT Extension Programming

4-8 4200A-SCS-KULT-907-01 Rev. D May 2024

2. At the top of the Extensions: Marketplace pane, select ... and select Install from VSIX.

Figure 57: Install from VSIX

3. Select C:\s4200\vscode\kult-extension.vsix.

4. Select Install.

Figure 58: Install the KULT Extension to Visual Studio Code

5. Close Visual Studio Code and reopen to complete the installation and enable all

extensions.

Model 4200A-SCS KULT and KULT Extension Programming Section 4: KULT Extension for Visual Studio Code

4200A-SCS-KULT-907-01 Rev. D May 2024 4-9

Setting up Visual Studio Code for library development

Before using Visual Studio Code for developing KULT libraries, you need to open the user

library so that you can access all the libraries without switching folders. You can open single

user libraries by opening the folder of the user library. On startup, Visual Studio Code

reopens the last folder opened.

You also need to create the Visual Studio Configuration files before you open a single

library. Visual Studio Code configuration files adopt the features of Visual Studio Code to be

used with Keithley User Libraries.

Opening the user library in Visual Studio Code

To open the user library folder:

1. Go to File > Open Folder to select a folder to open in Visual Studio Code. You must

select a valid user library folder to use the KULT Extension.

Figure 59: Open folder dialog

2. Open the usrlib folder C:\s4200\kiuser\usrlib.

Creating the Visual Studio Code configuration files

Visual Studio Code configuration files adopt the features of Visual Studio Code to be used

with Keithley User Libraries.

The c_cpp_properties.json configuration file controls the Intellisense features of the

C/C++ Extension from Microsoft, such as compiler-specific syntax checking and header file

paths. Intellisense errors may occur if these features are not configured for Keithley user

libraries. The errors do not affect compilation or code execution in Clarius, but may make

code difficult to troubleshoot.

Section 4: KULT Extension for Visual Studio Code Model 4200A-SCS KULT and KULT Extension Programming

4-10 4200A-SCS-KULT-907-01 Rev. D May 2024

The launch.json file has configuration settings for GNU Debugger (GDB), which is used

when debugging. Debugging attaches GDB to the Clarius running process

UTMServer.exe.

A .vscode folder is created with the configuration files in the folder that is open (workspace

path). All files in the workspace path reference these configuration files. If the usrlib folder

is open, the configuration files can be created once, and all the libraries will use them. If you

are opening individual libraries, these files need to be created for each library the first time it

is opened. Created configuration files can be edited later. The file settings.json

contains Visual Studio Code workspace level configuration settings.

Create the C/C++ Intellisense configuration file

To create the C/C++ Intellisense configuration file:

1. Open the Command Palette by selecting View > Command Palette.

2. Search KULT to filter for KULT Extension commands.

3. Select the command KULT: Create C/C++ Intellisense Configuration File. This

generates the c_cpp_properties.json configuration file and places it in the

.vscode folder in the working directory. The command does not overwrite an existing

configuration file.

Figure 60: Generate the c_cpp_properties configuration file

4. Open the KULT side pane by selecting KULT on the left side of the screen.

5. Select a library in the Libraries pane.

6. In the Miscellaneous pane at the bottom of the KULT side pane, select the

c_cpp_properties.json file. Add paths to header files in the includePath settings.

Paths are entered in quotes and separated by commas. This file can be updated at

any time.

Model 4200A-SCS KULT and KULT Extension Programming Section 4: KULT Extension for Visual Studio Code

4200A-SCS-KULT-907-01 Rev. D May 2024 4-11

The paths to the include folder, usrlib folder, and compiler are necessary for most user

libraries and are automatically entered. Deleting these paths causes Intellisense errors in

factory-user libraries.

Figure 61: c_cpp_properties

Create the launch configuration file

To create the launch configuration file:

1. Open the Debug side bar by selecting the debug icon on the left side.

2. Select Create a launch.json file.

Section 4: KULT Extension for Visual Studio Code Model 4200A-SCS KULT and KULT Extension Programming

4-12 4200A-SCS-KULT-907-01 Rev. D May 2024

Figure 62: Create a launch.json file

3. Select KULT Attach Process. The launch.json file is added with the settings to

attach to the UTM Server. The file can be accessed later in the Miscellaneous tab of the

KULT side bar.

Figure 63: KULT Attach Process

Model 4200A-SCS KULT and KULT Extension Programming Section 4: KULT Extension for Visual Studio Code

4200A-SCS-KULT-907-01 Rev. D May 2024 4-13

Figure 64: Tab with launch.json

Visual Studio code overview

The following topics describe the features of Visual Studio Code. To learn more about Visual

Studio Code as an editor, visit Visual Studio Code (code.visualstudio.com/).

Opening Visual Studio Code

To open Visual Studio Code, select the desktop icon or select Visual Studio Code in the

Windows Start Menu.

Figure 65: Visual Studio Code

https://code.visualstudio.com/
https://code.visualstudio.com/

Section 4: KULT Extension for Visual Studio Code Model 4200A-SCS KULT and KULT Extension Programming

4-14 4200A-SCS-KULT-907-01 Rev. D May 2024

Visual Studio Code user interface

Important parts of the main user interface are labeled in the following figure.

Figure 66: Visual Studio Code user interface components

1 Terminal menu Run Task shows all tasks available in Visual Studio Code. Run Build Task displays a
subset of the tasks specific to building. KULT build tasks are specific to a library that can

be selected by opening a library module.

2 Side bar Displays views that assist you when editing. You can switch views using the icons in the
activity bar next to the side bar.

3 Editor Displays open files. You can right-click the tabs to change the view and display multiple
files.

4 KULT Module Make changes to the module parameters and code.

5 Panels Manage user output. See Panels (on page 4-15) for more information.

Activity bar

The Visual Studio Code side bar includes an activity bar that allows you to switch between

views and additional context-specific indicators. An example of the activity bar is shown in

the following figure.

Model 4200A-SCS KULT and KULT Extension Programming Section 4: KULT Extension for Visual Studio Code

4200A-SCS-KULT-907-01 Rev. D May 2024 4-15

Figure 67: Visual Studio Code activity bar with KULT Extension

The activity bar includes:

• Explorer: Displays all files in the Visual Studio Code working directory.

• Search: Search and replace options for open files.

• Source control: Not used by the KULT Extension.

• Debug: Allows you to monitor variables, threads, and breakpoints during debug mode.

• Extension marketplace: Install and uninstall extensions to Visual Studio Code.

• KULT: Displays libraries and modules, build functions, and other useful tools for

developing libraries. See KULT side bar (on page 4-17) for additional information.

Panels

You can display panels below the editor region. Panels display information to the user, such

as output and debug information and errors.

To display panels, select View > Open View > Panel.

Panels include:

• Output: Certain nonbuild KULT Extension functions, such as Clean Library, provide

messages here.

• Terminal: Displays output from build tasks in the same format as KULT.

• Debug Console: Used for expression evaluation and other tools during debugging.

• Problems: Displays various errors found before and during compilation. Select an error

message in the Problems panel to display the line of code in the editor.

Section 4: KULT Extension for Visual Studio Code Model 4200A-SCS KULT and KULT Extension Programming

4-16 4200A-SCS-KULT-907-01 Rev. D May 2024

Command Palette

The Command Palette provides access to all Visual Studio Code commands, including the

most commonly used commands for the KULT Extension.

To open the Command Palette, select View > Command Palette from menu bar.

To display only KULT commands, type KULT in the search bar, as shown in the

following figure.

Figure 68: Command Palette

Settings in Visual Studio Code

You can use the settings preferences to personalize Visual Studio Code. To access the

settings, select File > Preferences > Settings.

To make changes to KULT Extension features, search KULT in the settings.

Figure 69: KULT Extension settings

Model 4200A-SCS KULT and KULT Extension Programming Section 4: KULT Extension for Visual Studio Code

4200A-SCS-KULT-907-01 Rev. D May 2024 4-17

KULT side bar

The KULT Extension adds a side bar to Visual Studio Code that enables simplified access to

libraries and functions. The following figure shows an example of the KULT side bar.

Descriptions of each option are in the table below the figure.

Figure 70: KULT side bar

KULT side bar

1 Functions include options such as opening the KULT module and building a library.

2 Libraries includes all available libraries in alphabetical order.

3 Modules includes all user modules for the select library. Select a module to open it in the editor.

4 Miscellaneous includes files that are useful to library development.

Section 4: KULT Extension for Visual Studio Code Model 4200A-SCS KULT and KULT Extension Programming

4-18 4200A-SCS-KULT-907-01 Rev. D May 2024

Working with user libraries in Visual Studio Code

This section covers the basics of working with user libraries in the Visual Studio Code

KULT Extension.

The KULT extension supports restricted mode in Visual Studio Code. If a workspace is

untrusted, you cannot compile UTMs. For more information on workspace trust in

Visual Studio Code, refer to https://code.visualstudio.com/docs/editor/workspace-trust.

To prevent malicious code execution, do not run a UTM if you have not verified the source.

Creating a new library

To create a new library:

1. In the KULT Extension Libraries side bar, select +.

Figure 71: Create a new library

2. Type a name for the library.

3. Press Enter.

Copying a library

When you copy a library, the user modules for the library are also copied. "Copy" is added to

the names of the copied library and user modules.

To copy a library:

1. Select the library.

2. Select the copy icon.

Figure 72: Copy a library or module

3. The copied library must be built before you can use it in Clarius. See Building a library

(on page 4-22).

https://code.visualstudio.com/docs/editor/workspace-trust
https://code.visualstudio.com/docs/editor/workspace-trust

Model 4200A-SCS KULT and KULT Extension Programming Section 4: KULT Extension for Visual Studio Code

4200A-SCS-KULT-907-01 Rev. D May 2024 4-19

Deleting a library

When you delete a library, all the modules and associated build files in the library are

also deleted.

To delete a library:

1. In the Libraries side bar, select the library.

2. Select the delete icon.

Figure 73: Delete a library or module

3. Select Yes.

Renaming a library

You can change the name of a library. However, you cannot change the case of the letters

in a library name.

To rename a library:

1. Select the library.

2. Select the change name icon.

Figure 74: Rename a library or module

3. Type the new name.

4. Select Enter.

5. The renamed library must be built before you can use it in Clarius. See Building a library

(on page 4-22).

Setting library visibility

You can set a library to be available or unavailable to Clarius. For example, you can hide a

library if you want to designate that a user library is only to be called by another user library

and is not to be connected to a UTM.

Section 4: KULT Extension for Visual Studio Code Model 4200A-SCS KULT and KULT Extension Programming

4-20 4200A-SCS-KULT-907-01 Rev. D May 2024

To set the visibility of a library:

1. In the KULT side bar, select a library.

2. Select a module in the library.

3. In the KULT Module tab, change the setting of Library Visible as needed.

Figure 75: Select library visibility

4. Select Apply.

Entering library dependencies and environment variables

Library dependencies allow a user library to call other libraries. You can edit library

dependencies directly in the .mak file of the library. Library files that are not in the

workspace directory, such as third-party libraries, can be added in the .mak file. The LIB

environment variable of the system must be updated with the path to this library. Users can

also update the INCLUDE path environment variable for header files located outside of the

workspace directory.

To add a library dependency:

1. Select the library to edit in the KULT side bar.

2. Under Miscellaneous, select libName_modules.mak.

3. For the variable LIBS, type the name of the library between the quotes. To enter multiple

libraries, separate the library names with spaces. You can press Ctrl+Space to choose

from a list of all available libraries. Type the library name to filter the results. Press Enter

to select a library.

Figure 76: Add a library dependency

Model 4200A-SCS KULT and KULT Extension Programming Section 4: KULT Extension for Visual Studio Code

4200A-SCS-KULT-907-01 Rev. D May 2024 4-21

To update the system environment variables for external libraries and headers:

1. In the Windows search bar, type Environment Variables.

2. Select Edit the system environment variables.

3. Select the Advanced tab.

4. Select Environment Variables.

Figure 77: Set environmental variables

5. In the System Variables box, select lib.

6. Select Edit.

Figure 78: Enter environmental variables

Section 4: KULT Extension for Visual Studio Code Model 4200A-SCS KULT and KULT Extension Programming

4-22 4200A-SCS-KULT-907-01 Rev. D May 2024

7. Select New and enter the path to the external library. You can repeat this process for

any header files by selecting the INCLUDES variable and entering in the path to the

header file.

Figure 79: Edit environment variable

Building a library

When building a library, you can build for debug or build for release. Building a library for

debug creates symbols that the debugger requires to watch variables. If you are not using

the debugger, you can build for release, which does not create these symbols.

You can build a library from the KULT Extension side bar or from the Terminal menu.

Model 4200A-SCS KULT and KULT Extension Programming Section 4: KULT Extension for Visual Studio Code

4200A-SCS-KULT-907-01 Rev. D May 2024 4-23

Build a library from the KULT Extension side bar

To build a library from the KULT Extension side bar:

1. Select the library.

2. Under Functions, select the run icon next to Build Library LibName for

Release or Build Library LibName for Debug in the Functions tab of the KULT

side bar.

Figure 80: Run icon for Build Library

3. Select Terminal at the bottom of the screen to view the build status.

4. To view problems with the build, select Problems.

Build a library from the Terminal menu

To build a library from the Terminal menu:

1. Select the library.

2. From the Terminal menu, select Run Build Task.

3. Select the debug or release build option.

4. Select Terminal at the bottom of the screen to view the build status.

Section 4: KULT Extension for Visual Studio Code Model 4200A-SCS KULT and KULT Extension Programming

4-24 4200A-SCS-KULT-907-01 Rev. D May 2024

Figure 81: Build Terminal status

5. To view problems with the build, select Problems.

Model 4200A-SCS KULT and KULT Extension Programming Section 4: KULT Extension for Visual Studio Code

4200A-SCS-KULT-907-01 Rev. D May 2024 4-25

Cleaning a library

Cleaning a library deletes all files that were generated by a build, leaving the source code.

This is useful if a build file gets corrupted.

When you select Terminal > Run Task or Terminal > Run Build Task, the build tasks are

added to the Run Task history of recently used tasks. This list persists when you close and

reopen Visual Studio Code. If the list is too long, you can change the history size using the

Manage option on the lower left. Select Manage > User > Task > Quick Open: History.

To clean a library:

1. Select the library in the KULT Extension side bar.

2. From the Terminal menu, select Run Task.

3. Type KULT to limit the list to KULT tasks.

4. Select KULT: Clean Library “LibName”.

5. Select Output at the bottom of the window to review the actions.

Working with modules in Visual Studio Code

This section covers basics on working with KULT user modules in the Visual Studio Code

KULT Extension.

The KULT Extension displays the parameters and description of a module in the editor

pane. To display the module in a form, select Show Module View from the Functions in the

KULT side bar.

To view all KULT Extension features, you must open a user library in Visual Studio Code.

See Opening the user library directory in Visual Studio Code (on page 4-9) for instructions.

Section 4: KULT Extension for Visual Studio Code Model 4200A-SCS KULT and KULT Extension Programming

4-26 4200A-SCS-KULT-907-01 Rev. D May 2024

Creating a new user module

All user modules must have unique names to avoid conflicts in library dependencies.

To create a new module:

1. In the KULT Extension side bar, in Libraries, select the library that will contain the

module.

2. In Modules, select +.

Figure 82: Create a new module

3. Type a name for the new module.

4. Select Enter.

Copy a user module

To copy a user module:

1. Select the user module.

2. Select the copy icon.

Figure 83: Copy a library or module

Rename a user module

All user modules must have unique names to avoid conflicts in library dependencies.

To rename a user module:

1. In the KULT Extension side bar, select the module.

2. Select rename icon.

Figure 84: Rename a library or module

3. Type a name for the new module.

4. Select Enter.

Model 4200A-SCS KULT and KULT Extension Programming Section 4: KULT Extension for Visual Studio Code

4200A-SCS-KULT-907-01 Rev. D May 2024 4-27

Deleting a user module

To delete a module:

1. In the Modules of the sidebar, select the module.

2. Select the delete icon.

Figure 85: Delete a library or module

3. Select Yes.

Setting the return type of a user module

The return type is set for user modules that return a value. The available return types are:

• char: Character data

• float: Single-precision floating point data

• double: Double-precision data

• int: Integer data

• long: 32-bit integer data

• void: No return value

To set the return type of a user module:

1. In the KULT Extension Libraries side bar, select the Library that contains the module.

2. Under Modules, select the user module.

3. In the KULT Module, select the Return Type.

Figure 86: Select the return type of a user module

4. Select Apply.

Section 4: KULT Extension for Visual Studio Code Model 4200A-SCS KULT and KULT Extension Programming

4-28 4200A-SCS-KULT-907-01 Rev. D May 2024

Including header files

Header files are included in the code before the main module function.

Intellisense errors may appear in the Problems tab because paths to header files are not

listed in the Intellisense configuration file, c_cpp_properties.json. These errors do not

affect compilation and can be ignored, or you can follow the instructions below to

prevent them.

To add a header file to a module:

1. In the KULT Extensions side bar, select the library that contains the user module.

2. Select the module. The module is displayed in the editor.

3. Add the header file directly below the comment USRLIB MODULE PARAMETER LIST

using the format #include "headerName.h". An example is shown in the

following figure.

Figure 87: Add a header file to a module

To remove Intellisense header file errors:

1. Create the c_cpp_properties.json file if it does not already exist in the .vscode

folder. See Creating the Visual Studio Code configuration (on page 4-9) files for

instructions.

2. If the file already exists, or creating the file did not remove the errors, select the

c_cpp_properties.json file in the KULT Extension Miscellaneous side bar.

3. Add the header file to the includePath setting. File paths must be enclosed in quotes

and separated by commas.

Figure 88: Remove Intellisense header file errors

Model 4200A-SCS KULT and KULT Extension Programming Section 4: KULT Extension for Visual Studio Code

4200A-SCS-KULT-907-01 Rev. D May 2024 4-29

You may need to add header files to system environment variables in other places on the

system. See Entering Library Dependencies and Environment Variables (on page 4-20) for

more information.

Editing module parameters

You can change user module parameters in the KULT Module.

Figure 89: Edit user module parameters

To edit parameters:

1. In the KULT Extension side bar, select the library.

2. Select the module.

3. If the KULT Module is not displayed, under Functions, select Show Module View.

4. To:

▪ Add a parameter: Select New. Enter parameter values.

▪ Modify a parameter: Change the parameter value in the fields.

▪ Delete a parameter: Select a parameter, then select Delete.

Refer to the following table for detail on the parameter values

5. Select Apply to add the changes to the code. Changes are displayed in the gray read-

only code at the top of the module.

Section 4: KULT Extension for Visual Studio Code Model 4200A-SCS KULT and KULT Extension Programming

4-30 4200A-SCS-KULT-907-01 Rev. D May 2024

User module parameter values

Name Identifies the parameters that are passed to the user module.

Type The parameter data type; only pointer types can be used for output parameters:

▪ char: Character data

▪ char*: Pointer to character data

▪ float: Single-precision floating point data

▪ float*: Pointer to single-precision floating point data

▪ double: Double-precision data

▪ double*: Pointer to double-precision point data

▪ int: Integer data

▪ int*: Pointer to integer data

▪ long: 32-bit integer data

▪ long*: Pointer to 32-bit integer data

▪ F_ARRAY_T: Floating point array type

▪ I_ARRAY_T: Integer array type

▪ D_ARRAY_T: Double-precision array type

I/O Defines whether the parameter is an input or output type.

Default The default value for a nonarray (only) input parameter

Min The minimum recommended value for a nonarray (only) input parameter. When the user
module is used in a Clarius user test module (UTM), configuration of the UTM with a
parameter value smaller than the minimum value causes Clarius to display an out-of-range
message.

Max The maximum recommended value for a nonarray (only) input parameter. When the user
module is used in a Clarius UTM, configuration of the UTM with a parameter value larger
than the maximum value causes Clarius to display an out-of-range message.

Reorder the user module parameters

To change the order of the parameters:

1. In the KULT Extension side bar, select the library.

2. Select the module.

3. In KULT Module, select the parameter.

Figure 90: Reorder parameters

4. Select Up or Down to move the parameter to the new location.

5. Select Apply. The changes are shown in the read-only code at the top of the editor.

Model 4200A-SCS KULT and KULT Extension Programming Section 4: KULT Extension for Visual Studio Code

4200A-SCS-KULT-907-01 Rev. D May 2024 4-31

Editing the module description

The module description appears in the help pane in Clarius when the module is selected.

You can see a sample view of these descriptions in the KULT module in Visual Studio Code,

beneath the parameters. This view is automatically updated when the description is edited.

Figure 91: Module description

For a list of supported commands, refer to Model 4200A-SCS LPT Library Programming.

To edit the module description:

1. In the KULT side bar, select the library.

2. Select the module. The module is displayed in the editor.

3. Edit the description code below the read-only gray code at the top of the module, inside

the comments for USRLIB MODULE HELP DESCRIPTION. The code uses Markdown

syntax. For more information, see markdownguide.org.

Debugging libraries
In Visual Studio Code, you can attach a debugger to an execution process to monitor code

execution for debugging purposes. For Keithley User Libraries, Visual Studio Code uses the

GNU debugger (GDB) and attaches it to the UTMServer. Running the code as a UTM in

Clarius allows the debugger to watch and control execution in the UTMServer.

To run and debug modules in Visual Studio Code, a launch configuration (launch.json)

must exist in the .vscode folder. For instructions to set up a launch configuration, see

Setting up Visual Studio Code for Library Development (on page 4-9).

Debug limitation notes:

• While attached to the debugger, do not select Stop in Clarius. Selecting Stop may cause

a Clarius process to hang. If this happens, open Windows Task Manager and select End

Task for Clarius.exe, KiteServer.exe, and UTMServer.exe.

• The debugger is not available on the computer version of Clarius.

https://www.markdownguide.org/

Section 4: KULT Extension for Visual Studio Code Model 4200A-SCS KULT and KULT Extension Programming

4-32 4200A-SCS-KULT-907-01 Rev. D May 2024

Debugger side bar and toolbar

The debugger allows you to step through code, monitor variables, evaluate expressions, and

manipulate values. During debugging, the debug side bar and debug toolbar are visible.

The debug side bar gives you access to variable values, expressions, breakpoints, and

threads for multi-threaded debugging.

Figure 92: Debugger side bar

Debugger side bar

1 Variables displays all variables. They are updated in real time as the code executes.

2 Watch allows you to add and monitor expressions and important variables.

3 Breakpoints allows you to add function breakpoints and manage other breakpoints.

4 Call Stack allows you watch the status of multiple threads.

Model 4200A-SCS KULT and KULT Extension Programming Section 4: KULT Extension for Visual Studio Code

4200A-SCS-KULT-907-01 Rev. D May 2024 4-33

The debugger toolbar gives users control over the code execution to step over or into lines

of code.

Figure 93: Debugger toolbar

Debugger toolbar

1 Execute until the next breakpoint or the end of the code

2 Step over functions

3 Step into functions

4 Step out of functions

5 Detach

Setting up the debugger

This procedure builds the library for the debugger, which creates extra symbols that the

debugger requires so that it can use breakpoints and watch variables.

Libraries must be rebuilt after every change. Clarius can remain open but, the UTM must be

reloaded for changes to take effect. Reload the UTM by select a different test and returning

to the UTM, opening a different project and returning, or closing and reopening Clarius.

Clarius must be fully closed to load a new library or module for the first time. You do not

need to change to a different test if you are changing module content and not parameters of

a module.

When you start the debugger, breakpoints are unbound. The breakpoints automatically bind

when code execution begins.

Section 4: KULT Extension for Visual Studio Code Model 4200A-SCS KULT and KULT Extension Programming

4-34 4200A-SCS-KULT-907-01 Rev. D May 2024

To set up the debugger for a module:

1. In the KULT side bar, select the library that contains the module.

2. Select the module.

3. Set at least one breakpoint. See Setting breakpoints in modules (on page 4-35).

4. Under Functions, run Build Library LibName for Debug.

5. Open Clarius.

6. In Clarius, either configure a new test to run the module or open an existing test that

uses the module.

7. In Visual Studio Code, in the Debug side bar, select Run > (gdb) Attach. The debugger

is running when the status bar at the bottom of the Visual Studio Code window is orange

and debug toolbar is displayed.

Figure 94: Starting the debugger

Running code with the debugger

To run code with the debugger:

1. See the previous section to set up the debugger and the module in Clarius.

2. Run the UTM from Clarius.

3. When code execution is paused, you can use debugging tools, step through the code

line by line, set additional breakpoints, or run to the next breakpoint using the debug

toolbar.

Model 4200A-SCS KULT and KULT Extension Programming Section 4: KULT Extension for Visual Studio Code

4200A-SCS-KULT-907-01 Rev. D May 2024 4-35

Ending a debugging session

Do not abort a UTM in Clarius when execution is paused in Visual Studio Code. This causes a

conflict between the debugger and Clarius and causes Clarius to hang. End the debugging

session before aborting a UTM in Clarius.

To end a debugging session:

Select disconnect on the debug toolbar or type Ctrl+C into the terminal. This stops the

running GNU Debugger (GDB) process.

If the code was paused on a breakpoint, it continues execution in Clarius after the debugger

is disconnected. You can abort the module in Clarius after the debugger is disconnected.

Setting breakpoints in modules

Setting a breakpoint stops code execution and allows you to step through code line by line.

Breakpoints must be set on lines of code. They do not work on comments or blank lines.

You must set at least one breakpoint before attaching the debugger. You can set additional

breakpoints during debugging when the code is paused. Breakpoints are marked as

unbound (gray hollow circle) after starting until the code is executed.

The GDB environment allows the following breakpoints:

• Unconditional breakpoint: Pauses execution on a specific line

• Conditional breakpoint: Pauses execution on a specific line if a given statement is true

• Function breakpoint: Pauses execution at the first line of a function

Setting an unconditional breakpoint

To set an unconditional breakpoint:

1. Set up the debugger as described in Setting up the debugger (on page 4-33).

2. Before running the debugger, select the space to the left of the line number. A red dot

indicates the placed breakpoint. The breakpoint is also logged in the debug side bar

under Breakpoints.

3. Under Functions, run Build Library LibName for Debug.

4. Open Clarius.

5. In Clarius, either configure a new test to run the module or open an existing test that

uses the module.

6. In Visual Studio Code, in the Debug side bar, select Run > (gdb) Attach. The debugger

is running when the status bar at the bottom of the Visual Studio Code window is orange

and debug toolbar is displayed. When code execution is paused by a breakpoint,

additional breakpoints can be added.

Section 4: KULT Extension for Visual Studio Code Model 4200A-SCS KULT and KULT Extension Programming

4-36 4200A-SCS-KULT-907-01 Rev. D May 2024

Setting a conditional breakpoint

To set a conditional breakpoint:

1. Before running the debugger, right-click the space to the left of the line number.

2. Select Add Conditional Breakpoint.

3. Type in an expression to be evaluated in the editor. This expression is evaluated before

the line is executed and pauses execution if true.

The breakpoint is also logged in the debugging side bar under Breakpoints.

4. Under Functions, run Build Library LibName for Debug.

5. Open Clarius.

6. In Clarius, either configure a new test to run the module or open an existing test that

uses the module.

7. In Visual Studio Code, in the Debug side bar, select Run > (gdb) Attach. The debugger

is running when the status bar at the bottom of the Visual Studio Code window is orange

and debug toolbar is displayed. Once code execution is paused on a breakpoint,

additional breakpoints can be added.

Setting a function breakpoint

To set a function breakpoint:

1. In the debug side bar under Breakpoints, select + to add a function breakpoint.

2. Type the name of the function. The breakpoint is verified the first time the code is

executed and stops execution at the first line of the function.

3. Under Functions, run Build Library LibName for Debug.

4. Open Clarius.

5. In Clarius, either configure a new test to run the module or open an existing test that

uses the module.

6. In Visual Studio Code, in the Debug side bar, select Run > (gdb) Attach. The debugger

is running when the status bar at the bottom of the Visual Studio Code window is orange

and debug toolbar is displayed. Once code execution is paused on a breakpoint,

additional breakpoints can be added.

Model 4200A-SCS KULT and KULT Extension Programming Section 4: KULT Extension for Visual Studio Code

4200A-SCS-KULT-907-01 Rev. D May 2024 4-37

Expression evaluation

Visual Studio Code allows you to watch and evaluate expressions while code executes. You

can also modify variables. The modifications to variables remain for the rest of

the execution.

Evaluating an expression once

When you evaluate an expression once, the value of the expression is output to the debug

Console.

To evaluate an expression once:

1. Set up the debugger as described in Setting up the debugger (on page 4-33).

2. Set up at least one breakpoint to pause the code.

3. Run the code in Clarius.

4. While the code is paused on a breakpoint, enter the expression to be evaluated into the

Debug Console pane.

Evaluating an expression at every breakpoint

In this procedure the expression is evaluated every time the code is paused on a breakpoint.

Additional expressions can be added at any time.

To evaluate an expression at every breakpoint:

1. Open the Debug side bar.

2. In the Debug side bar, select + in the Watch pane.

3. Enter the expression.

4. Set up the debugger as described in Setting up the debugger (on page 4-33).

5. Ensure at least one breakpoint is set to pause the code.

6. Run the code in Clarius.

Section 4: KULT Extension for Visual Studio Code Model 4200A-SCS KULT and KULT Extension Programming

4-38 4200A-SCS-KULT-907-01 Rev. D May 2024

Editing a variable value

Edited values are used for the remainder of the code execution.

To edit a variable value:

1. Set up the debugger as described in Setting up the debugger (on page 4-33).

2. Set up at least one breakpoint to pause the code.

3. Run the code in Clarius.

4. When the code is paused on a breakpoint, in the Watch pane, select +. You can also

enter an expression in the Debug Console.

5. Enter an expression to change the value of a variable (varName = newValue).

Watching variables

All variables are visible in the Variables pane of the Debug side bar. You can watch specific

variables by adding them to the Watch pane. Values are updated in real time.

To add a variable to the Watch pane:

1. Set up the debugger as indicated in Setting up the debugger (on page 4-33).

2. Set up at least on breakpoint to pause the code.

3. Run the code in Clarius.

4. When the code is paused on a breakpoint, right-click the variable in the Variables pane

and select Add to Watch.

In this section:

Tutorial overview .. 5-1
Tutorial: Creating a new user library and user module 5-2
Tutorial: Creating a user module that returns data arrays 5-13
Tutorial: Calling one user module from another 5-20
Tutorial: Customizing a user test module (UTM) 5-23
Tutorial: Debugging a user module .. 5-28

Tutorial overview

The KULT Extension is a tool for Visual Studio Code that helps you develop user libraries.

Each user library is comprised of one or more user modules. Each user module is created

using the C programming language.

The following tutorials provide step-by-step instructions for creating user libraries and user

modules in the KULT Extension.

The tutorials include:

• Creating a new user library and user module (on page 5-2): This tutorial shows you how

to create a new user library and a new user module using the KULT Extension in Visual

Basic Code. A hands-on example is provided that shows you how to create a user library

that contains a user module that activates the internal beeper of the 4200A-SCS. You

then build and run the module in Clarius. This tutorial also explores some of the features

of Visual Studio Code to assist with writing code. This tutorial assumes a working

knowledge of the C programming language.

• Creating a user module that returns data arrays (on page 5-13): This tutorial

demonstrates the use of array variables in the KULT Extension. It also illustrates the use

of return types (or codes), and the use of two functions from the Keithley Linear

Parametric Test Library (LPTLib).

• Calling one user module from another (on page 5-20): This tutorial demonstrates how to

set up user modules to call other user modules from any user library. It also describes

how to copy a module.

• Customizing a user test module (UTM) (on page 5-23): This tutorial demonstrates how to

modify a user module using the KULT Extension.

Section 5

KULT Extension tutorials

Section 5: KULT Extension tutorials Model 4200A-SCS KULT and KULT Extension Programming

5-2 4200A-SCS-KULT-907-01 Rev. D May 2024

• Debugging a user module (on page 5-28): This tutorial demonstrates how to use the

KULT Extension in Visual Studio Code to debug code with the GNU Debugger (GDB).

The tutorial shows you how to pause execution, monitor variables and expressions, and

step through code one line at a time.

Tutorial: Creating a new user library and user module

This tutorial shows you how to create a new user library and a new user module using the

KULT Extension in Visual Basic Code. A hands-on example is provided that shows you how

to create a user library that contains a user module that activates the internal beeper of the

4200A-SCS. You then build and run the module in Clarius. This tutorial also explores some

of the features of Visual Studio Code to assist with writing code. This tutorial assumes a

working knowledge of the C programming language.

This tutorial does not generate data. For an example of a user module that returns data, see

Tutorial: Creating a user module that returns data arrays (on page 5-13).

Starting Visual Studio Code

Complete Installation (on page 4-1) before using this tutorial.

To start Visual Studio Code:

1. In the Windows Start menu, select Visual Studio Code.

2. Select the KULT icon to open the KULT side bar.

Model 4200A-SCS KULT and KULT Extension Programming Section 5: KULT Extension tutorials

4200A-SCS-KULT-907-01 Rev. D May 2024 5-3

Figure 95: Opening the KULT side bar in Visual Studio Code

Creating a new user library

To create a new user library:

1. In the KULT side bar, in Libraries, select +.

Figure 96: Add a new user library

2. Enter my_1st_lib as the new user library name.

Figure 97: New library name

3. Select Enter. The library is displayed in the list of libraries. The necessary build files are

automatically created.

Section 5: KULT Extension tutorials Model 4200A-SCS KULT and KULT Extension Programming

5-4 4200A-SCS-KULT-907-01 Rev. D May 2024

Creating a new user module

The names for user modules must:

• Conform to case-sensitive C programming language naming conventions.

• Be unique. They cannot duplicate names of existing user modules or user libraries.

To create a new user module:

1. In the KULT side bar, from Libraries, select my_1st_lib. Under Modules, the modules

in the library are displayed.

2. Select Modules.

3. Select + to add a module to the selected library.

Figure 98: Create a new user module

4. Enter TwoTonesTwice as the new user module name.

Figure 99: Naming a new module

5. Press Enter to apply the name. The module is displayed in the list of modules for

the library.

6. Select the module in the KULT side bar. It is displayed in the Editor.

Entering a return type

If your user module generates a return value, you would select the data type from the Return

Type list.

The TwoTonesTwice module does not produce a return value, so leave the Return Type

at void.

Model 4200A-SCS KULT and KULT Extension Programming Section 5: KULT Extension tutorials

4200A-SCS-KULT-907-01 Rev. D May 2024 5-5

Entering user module code

To add code to the module:

1. Enter the following comments that describe the purpose of the user module between

comment lines USRLIB MODULE CODE and USRLIB MODULE END.

/* Beeps four times at two alternating user-settable frequencies. */

/* Makes use of Windows Beep (frequency, duration) function. */

/* Frequency of beep is long integer, in units of Hz. */

/* Duration of beep is long integer, in units of milliseconds. */

2. On the next line, press Ctrl+Space to open a list of all code suggestions.

Figure 100: Add code to the module

3. Type Beep to filter the suggestions. The list filters as you type.

Figure 101: Add code to the module - filtered list

Section 5: KULT Extension tutorials Model 4200A-SCS KULT and KULT Extension Programming

5-6 4200A-SCS-KULT-907-01 Rev. D May 2024

4. Select Beep. The function name is filled in automatically.

5. Continue the line by typing. A function prototype model is displayed. The bold underlined

parameter is the next parameter to be entered.

Figure 102: Entering line of code

6. For a, type the parameter value Freq1.

7. For b, type the parameter value 500.

8. End the function with a closing parenthesis and a semicolon.

9. Add the comment shown below:

Beep(Freq1, 500); /* Beep at first frequency for 500 ms */

10. Note that there is now a problem in the Problems tab at the bottom. Open the tab and

select the problem.

11. The new line of code is highlighted and an indicator of the problem is displayed. In this

case, the parameter Freq1 is undefined. This is because Freq1 was not added as a

parameter yet. This will be defined later in the tutorial.

Figure 103: Identifier

Model 4200A-SCS KULT and KULT Extension Programming Section 5: KULT Extension tutorials

4200A-SCS-KULT-907-01 Rev. D May 2024 5-7

12. Hold the cursor over the new Beep function. Note that it expands to show details about

the function.

Figure 104: Function description details

13. Enter the C code below. Note that the code deliberately contains a missing ; error to

demonstrate a build error.

Beep(Freq2, 500); /* Beep at second frequency */

Beep(Freq1, 500);

Beep(Freq2, 500);

Sleep(500) /* NOTE deliberately forget semicolon */

Entering parameters

One of the parameters you enter is the data type; only pointer and array types can be used

for output parameters. The available data types are:

• char: Character data

• char*: Pointer to character data

• float: Single-precision floating point data

• float*: Pointer to single-precision floating point data

• double: Double-precision data

• double*: Pointer to double-precision point data

• int: Integer data

• int*: Pointer to integer data

• long: 32-bit integer data

• long*: Pointer to 32-bit integer data

• F_ARRAY_T: Floating point array type

• I_ARRAY_T: Integer array type

• D_ARRAY_T: Double-precision array type

Section 5: KULT Extension tutorials Model 4200A-SCS KULT and KULT Extension Programming

5-8 4200A-SCS-KULT-907-01 Rev. D May 2024

To enter the required parameters for the TwoTonesTwice user module:

1. In the KULT module, select New.

2. In the parameter name, enter Freq1.

3. For Type, select long.

4. For I/O, select input.

5. For Default, enter 1000.

6. For Min, enter 800.

7. For Max, enter 1200.

Figure 105: Entering parameters

8. Add another parameter with the values:

▪ Parameter name: Freq2

▪ Data type: long

▪ I/O: Input

▪ Default: 400

▪ Min: 300

▪ Max: 500

Figure 106: TwoTonesTwice parameters

9. Select Apply in the KULT Module. This adds the changes to the read-only code at the

top of the module. Note that this removes errors from the Problems pane.

Entering header files

Any header files that are required are entered below the gray comment line USRLIB

MODULE PARAMETER LIST. The header file keithley.h is added automatically when the

module is created, since it is most commonly used. No additional header files are needed for

this tutorial.

Model 4200A-SCS KULT and KULT Extension Programming Section 5: KULT Extension tutorials

4200A-SCS-KULT-907-01 Rev. D May 2024 5-9

Documenting the user module

Module descriptions are entered between the comment lines USRLIB MODULE HELP

DESCRIPTION and END USRLIB MODULE HELP DESCRIPTION. Code entered here in

markdown format will appear in the Clarius help pane. To format the code, use Markdown, a

web markup language. See markdownguide.org for information on using Markdown.

Do not use C-code comment designators (/*, */ or //) in the Description area. When the user

module code is built, KULT evaluates the text in this area. C-code comment designators in

the Description area can be misinterpreted, causing errors.

For the TwoTonesTwice user module, enter the following in the Description area:

<link rel="stylesheet" type="text/css"

href="http://clariusweb/HelpPane/stylesheet.css">

MODULE

======

TwoTonesTwice

DESCRIPTION

Execution results in sounding of four beeps at two alternating user-settable

frequencies. Each beeps sounds for 500 ms.

INPUTS

Freq1 (long) is the frequency, in Hz, of the first and third beep.

Freq2 (long) is the frequency, in Hz, of the second and fourth beep.

OUTPUTS

None

RETURN VALUES

None

In the KULT module, the help information now appears below the parameters. The link at

the top provides the Markdown style sheet used by the factory-provided module help panes

and is not necessary for comments to be added to the help pane.

Saving the user module

From the File menu, select Save.

https://www.markdownguide.org/

Section 5: KULT Extension tutorials Model 4200A-SCS KULT and KULT Extension Programming

5-10 4200A-SCS-KULT-907-01 Rev. D May 2024

Building the library

To build the library:

1. In the KULT side bar, under Function, select the run icon next to the function Build

Library my_1st_lib for Release.

Figure 107: Building a library

2. In the Terminal tab at the bottom of the window, observe the build output. Note that it

was unsuccessful.

Finding code errors

In the Problems tab at the bottom of the window, you can review code errors. The error

listing indicates the line with the error and a description of the problem.

To find code errors in the TwoTonesTwice user module:

1. Select the Problems tab at the bottom of the screen. There are two errors, one

generated by the Intellisense feature and one generated by the build.

2. Select either of the problems. The line of code that caused the error is highlighted in the

code editor.

Figure 108: Use the Problems tab to find code errors

Model 4200A-SCS KULT and KULT Extension Programming Section 5: KULT Extension tutorials

4200A-SCS-KULT-907-01 Rev. D May 2024 5-11

3. The error description indicates the problem. In this case, there is a missing semicolon

before the closing brace. Correct the error by adding the missing semicolon (;).

4. Delete the error message. This also removes the Intellisense error. The build error is

removed after a successful build.

5. Build the user library again.

Checking the user module in Clarius

Check the user module in Clarius by setting up a user test module (UTM).

To check the module in Clarius:

1. Start Clarius.

2. Choose the Select pane.

3. Select Projects.

4. Select New Project.

5. Select Create. You are prompted to replace the existing project.

6. Select Yes.

7. Select Rename.

8. Enter UserModCheck and press Enter.

9. Select Actions.

10. Drag Custom Action to the project tree. The action has a red triangle next to it to

indicate that it is not configured.

11. Select Rename.

12. Enter 2tones_twice_chk and press Enter.

13. Select Configure.

14. In the Test Settings pane, select the my_1st_lib user library.

15. From the User Modules list, select the TwoTonesTwice user module. A group of

parameters are displayed for the UTM as shown in the following figure. Accept the

default parameters for now. You can experiment later after you establish that the user

module executes correctly.

Section 5: KULT Extension tutorials Model 4200A-SCS KULT and KULT Extension Programming

5-12 4200A-SCS-KULT-907-01 Rev. D May 2024

Figure 109: Configure the TwoTonesTwice UTM

16. Select Help to verify that the HTML in the Description tab is correctly formatted. An

example is shown in the following figure.

Figure 110: Example Help

17. Select Save.

18. Select Run to execute the UTM. You should hear a sequence of four tones, sounded at

alternating frequencies.

Model 4200A-SCS KULT and KULT Extension Programming Section 5: KULT Extension tutorials

4200A-SCS-KULT-907-01 Rev. D May 2024 5-13

Tutorial: Creating a user module that returns data arrays

This tutorial demonstrates the use of array variables in the KULT Extension. It also

illustrates the use of return types (or codes), and the use of two functions from the Keithley

Linear Parametric Test Library (LPTLib).

Most of the basic steps that were detailed in Tutorial: Creating a new user library and user

module (on page 5-2) are abbreviated in this tutorial.

Creating a new user library and user module

To name a new user library and new VSweep user module:

1. Open Visual Studio Code.

2. Open the KULT side bar.

3. Under Libraries, select + to create a new library.

4. Name the library my_2nd_lib and press Enter.

5. Select the library name.

6. Under Modules, select + to create a new user module in the library.

7. Name the module VSweep and press Enter.

8. Select the VSweep module to open it in the editor.

Entering the return type for VSweep

The VSweep user module generates an integer return value.

To set the return type of integer:

1. From the Return Type list, select int.

2. Select Apply.

Figure 111: VSweep Return Type setting

Section 5: KULT Extension tutorials Model 4200A-SCS KULT and KULT Extension Programming

5-14 4200A-SCS-KULT-907-01 Rev. D May 2024

Entering the VSweep user module code

In the editor, enter the following C code for the VSweep user module between the comment

lines USRLIB MODULE CODE and USRLIB MODULE END.

When returning data using arrays, it is good practice to add a check to make sure that the

points returned from a sweep is less than the size of the array. This prevents memory

errors. This is not necessary here, since the array size is used as the number of points to

calculate the step size. For modules that specify step size, the number of measurement

points is always one greater than the number of steps.

double vstep, v; /* Declaration of module internal variables. */

int i;

if ((Vstart == Vstop)) /* Stops execution and returns -1 if */

return(-1); /* sweep range is zero. */

if ((NumIPoints != NumVPoints)) /* Stops execution and returns -2 if */

return(-2); /* V and I array sizes do not match. */

vstep = (Vstop-Vstart) / (NumVPoints -1); /* Calculates V-increment size. */

for(i=0, v = Vstart; i < NumIPoints; i++) /* Loops through specified number of */

/* data points. */

{

forcev(SMU1, v); /* LPTLib function forceX, which forces a V or I. */

measi(SMU1, &Imeas[i]); /* LPTLib function measX, which measures a V or I. */

/* Be sure to specify the *address* of the array. */

Vforce[i] = v; /* Returns Vforce array for display in UTM Sheet. */

v = v + vstep; /* Increments the forced voltage. */

}

return(0); /* Returns zero if execution Ok.*/

Entering the VSweep user module parameters

This example uses the double-precision D_ARRAY_T array type. The D_ARRAY_T,

I_ARRAY_T, and F_ARRAY_T are special array types that are unique to Keithley User

Libraries. For each of these array types, you cannot enter values in the Default, Min, and

Max fields. An extra parameter is created to indicate the array size.

When executing the Vsweep user module in a Clarius UTM, the start and stop voltages

(Vstart and Vstop) must differ. Otherwise, the first return statement in the code halts

execution and returns an error number (-1). When a user module is executed using a Clarius

UTM, this return code is stored in the UTM Data worksheet. The return code is stored in a

column that is labeled with the user-module name.

Model 4200A-SCS KULT and KULT Extension Programming Section 5: KULT Extension tutorials

4200A-SCS-KULT-907-01 Rev. D May 2024 5-15

When executing the VSweep user module in a Clarius UTM, the current and voltage array

sizes must match; NumIPoints must equal NumVPoints. If the sizes do not match, the

second return statement in the code halts execution and returns an error number (−2) in the

VSweep column of the UTM Data worksheet.

To enter the required parameters:

1. In the KULT module, select New to create a new parameter.

Figure 112: Enter required code parameter

2. Create the parameters Vstart and Vstop using the information in the following table.

Parameter Name Type I/O Default Min Max

Vstart double Input 0 −20 20

Vstop double Input 5 −20 20

3. Select New to add a parameter for the measure current.

4. Enter the following parameter information:

▪ Name: Imeas

▪ Type: D_ARRAY_T

▪ I/O: Output

Figure 113: KULT module parameters

5. The array size variable parm0Size was automatically added. Change the name to

NumIPoints.

Section 5: KULT Extension tutorials Model 4200A-SCS KULT and KULT Extension Programming

5-16 4200A-SCS-KULT-907-01 Rev. D May 2024

6. For NumIPoints, set the Default to 11. You can also add Min and Max sizes if needed.

Figure 114: Specify the NumIPoints parameters

7. Select New.

8. Create a parameter for the forced voltage. Use the following settings:

▪ Name: Vforce

▪ Type: D_ARRAY_T

▪ I/O: Output

9. Change the name of the automatically generated size parameter to NumVPoints.

10. For NumVPoints, set Default to 11.

11. Select Apply. The user module contains the parameters shown in the following figure.

Figure 115: VSweep parameters

Entering the header files for the VSweep user module

You do not need to enter any header files for the VSweep user module. The default

keithley.h header file is sufficient.

Model 4200A-SCS KULT and KULT Extension Programming Section 5: KULT Extension tutorials

4200A-SCS-KULT-907-01 Rev. D May 2024 5-17

Documenting the VSweep user module

Module descriptions are entered between the comment lines USRLIB MODULE HELP

DESCRIPTION and END USRLIB MODULE HELP DESCRIPTION. Code entered here in

markdown format will appear in the Clarius help pane. To format the code, use Markdown, a

web markup language. See markdownguide.org for information on using Markdown.

A sample description is shown below:

<link rel="stylesheet" type="text/css"

href="http://clariusweb/HelpPane/stylesheet.css">

VSweep module

Sweeps through a specified voltage range and measures current using a specified

number of points.

Places forced voltage and measured current values (Vforce and Imeas) in output

arrays.

NOTE For n increments, specify n+1 array size for both NumIPoints and NumVPoints.

Saving the VSweep user module

From the File menu, select Save.

Building the VSweep user module

To build the user module:

1. Under Functions, select Build library my_2nd_lib for Release.

2. Select the run icon.

Figure 116: Build the my_2nd_lib user library

3. Check the status of the build output in the Terminal tab at the bottom of the window.

4. Correct any errors and rebuild the user module.

https://www.markdownguide.org/

Section 5: KULT Extension tutorials Model 4200A-SCS KULT and KULT Extension Programming

5-18 4200A-SCS-KULT-907-01 Rev. D May 2024

Checking the VSweep user module in Clarius

You can check the user module by adding it to a user test module (UTM) in Clarius and

executing the UTM.

This procedure uses the project that was created for Tutorial: Creating a new user library

and user module (on page 5-2).

To check the user module:

1. Connect a 1 kΩ resistor between the FORCE terminal of the ground unit (GNDU) and

the FORCE terminal of SMU1.

2. Select the UserModCheck project.

3. Choose Select.

4. Select the Devices tab.

5. Select Resistor, 2 terminal.

6. Select Add.

7. Select the Tests tab.

8. Select Custom Test.

9. Select Choose a test from the pre-programmed library (UTM).

10. Select Add. The test has a red triangle next to it to indicate that it is not configured.

11. Select Rename.

12. Enter the name v_sweep_chk and select Enter.

13. Select Configure.

14. In the right pane, from the User Libraries list, select the my_2nd_lib library.

15. From the User Modules list, select VSweep. A default schematic and group of

parameters are displayed for the UTM.

Model 4200A-SCS KULT and KULT Extension Programming Section 5: KULT Extension tutorials

4200A-SCS-KULT-907-01 Rev. D May 2024 5-19

Figure 117: Schematic and parameters for the v_sweep_chk UTM

16. Select Run.

17. Select Analyze.

18. After execution, review the results in the Analyze sheet. The results should be similar to

the results in the following figure. The current-to-voltage ratio for each row of results

should be approximately 1 mA/V.

In the first VSweep row, 0 is returned. This means that the user module executed

without any errors.

Figure 118: Example of results from a UTM in the Analyze sheet

Section 5: KULT Extension tutorials Model 4200A-SCS KULT and KULT Extension Programming

5-20 4200A-SCS-KULT-907-01 Rev. D May 2024

Tutorial: Calling one user module from another

This tutorial demonstrates how to set up user modules to call other user modules from any

user library. It also describes how to copy a module.

In this tutorial, a new user module is created using the user modules created in the

previous tutorials:

• Tutorial: Creating a new user library and user module (on page 5-2): The

TwoTonesTwice user module, in the my_1st_lib user library, which is the

independent user library that is called by the VSweep user module.

• Tutorial: Creating a user module that returns data arrays (on page 5-13): The VSweep

user module in the my_2nd_lib user library, a copy of which is used as the dependent

user library.

A copy of the VSweep user module, VSweepBeep, calls the TwoTonesTwice user module

to signal the end of execution.

Copying an existing user module

In these steps, you copy the VSweep module to create the VSweepBeep module.

To copy the VSweep user module:

1. Start Visual Studio Code and open the KULT Extension.

2. From Libraries, select my_2nd_lib.

3. From Modules, select VSweep.

4. Select the copy icon next to the module to make a copy.

Figure 119: Copy the VSweep user module

5. Name the copied module VSweepBeep.

6. Select Enter.

7. Select VSweepBeep in the side bar to open it in the editor.

Model 4200A-SCS KULT and KULT Extension Programming Section 5: KULT Extension tutorials

4200A-SCS-KULT-907-01 Rev. D May 2024 5-21

Calling another user module from the VSweepBeep user module

To call the TwoTonesTwice user module at the end of the VSweepBeep user module:

1. At the end of VSweepBeep, before the return(0) statement, add the following

statement:

TwoTonesTwice(Freq1, Freq2); /* Beeps 4X at end of sweep. */

2. On the KULT module, add the Freq1 and Freq2 parameters shown in the following

table and figure.

Name Type I/O Default Min Max

Freq1 Long Input 1000 800 1200

Freq2 Long Input 400 300 500

Figure 120: VSweepBeep parameters

3. Select Apply to add the new parameters to the function prototype.

Specifying user library dependencies

Before building the open user module, you must specify all the user libraries on which the

user module depends.

The VSweepBeep user module depends on the my_1st_lib user library.

Section 5: KULT Extension tutorials Model 4200A-SCS KULT and KULT Extension Programming

5-22 4200A-SCS-KULT-907-01 Rev. D May 2024

To specify the library dependency:

1. In the KULT side bar, under Miscellaneous, select my_2nd_lib_modules.mak to open

it in the editor.

Figure 121: Select the .mak file

2. Place your cursor next to the LIBS= variable.

3. Press Ctrl+Space to display all libraries or type my to automatically filter.

Figure 122: Add library dependency

4. Select my_1st_lib.

5. Select File > Save.

Building the user library

To build the user library:

1. To save the VSweepBeep module, select File > Save.

2. Under Functions, select Build library my_2nd_lib for Release.

3. Select the run icon.

Figure 123: Build the my_2nd_lib user library

4. Check the build output for any errors.

Model 4200A-SCS KULT and KULT Extension Programming Section 5: KULT Extension tutorials

4200A-SCS-KULT-907-01 Rev. D May 2024 5-23

Checking the VSweepBeep user module

Check the user module by creating and executing a user test module (UTM) in Clarius.

Refer to Checking the user module. (on page 2-12)

This tutorial is almost identical to Tutorial: Creating a user module that returns data arrays

(on page 5-13). The data produced should be the same as that tutorial. However, four beeps

should sound at the end of execution.

Before proceeding:

1. Connect a 1 kΩ resistor between the FORCE terminal of the GNDU and the FORCE

terminal of SMU1.

2. Instead of creating a new project, reuse the UserModCheck project that you created in

Tutorial: Creating a new user library and user module (on page 5-2).

3. Add a UTM called v_sweep_bp_chk.

4. Configure the v_sweep_bp_chk UTM to execute the VSweepBeep user module, which

is found in the my_2nd_lib user library.

5. Run the v_sweep_bp_chk UTM. Near the end of a successful execution, you should

hear a sequence of four tones, sounded at alternating frequencies.

6. At the conclusion of execution, review the results in the Analyze sheet. If you connected

a 1 kΩ resistor between SMU1 and GNDU, used the default UTM parameter values, and

executed the UTM successfully, your results should be similar to the results shown in

Checking the VSweep user module in Clarius (on page 5-18). The current/voltage ratio

for each row of results should be approximately 1 mA/V.

Tutorial: Customizing a user test module (UTM)

This tutorial demonstrates how to modify a user module using the KULT Extension. In the

ivswitch project, there is a test named rdson. The rdson test measures the drain-to-

source resistance of a saturated N-channel MOSFET as follows:

1. Applies 2 V to the gate (Vg) to saturate the MOSFET.

2. Applies 3 V to the drain (Vd1) and performs a current measurement (Id1).

3. Applies 5 V to the drain (Vd2) and performs another current measurement (Id2).

4. Calculates the drain-to-source resistance rdson as follows:

rdson = (Vd2-Vd1) / (Id2-Id1)

Section 5: KULT Extension tutorials Model 4200A-SCS KULT and KULT Extension Programming

5-24 4200A-SCS-KULT-907-01 Rev. D May 2024

The rdson test has a potential shortcoming. If the drain current is noisy, the two current

measurements may not be representative of the actual drain current. Therefore, the

calculated resistance may be incorrect.

In this example, the user module is modified in Visual Studio Code so that ten current

measurements are made at Vd1 and ten more at Vd2. The current readings at Vd1 are

averaged to yield Id1, and the current readings at Vd2 are averaged to yield Id2. Using

averaged current readings smooths out the noise. The modified test, rdsonAvg, measures

the drain-to-source resistance of a saturated MOSFET. The MOSFET is tested as follows

when rdsonAvg is executed:

1. Applies 2 V to the gate (Vg) to saturate the MOSFET.

2. Applies 3 V to the drain (Vd1) and makes ten current measurements.

3. Averages the 10 current readings to yield a single reading (Id1).

4. Applies 5 V to the drain (Vd2) and makes ten more current measurements.

5. Averages the ten current readings to yield a single reading (Id2).

6. Calculates the drain-to-source resistance (rdsonAvg) as follows:

rdsonAvg = (Vd2-Vd1) / (Id2-Id1)

Copy the Rdson42XX user module

When naming a user module, conform to case-sensitive C programming language naming

conventions. Do not duplicate names of existing user modules or user libraries.

To copy the user module:

1. Open Visual Studio Code and the KULT side bar.

2. On the side bar under Libraries, select KI42xxulib.

3. Under Modules, select the Rdson42XX user module.

4. Select the copy icon.

Figure 124: Copy Rdson42XX module

Model 4200A-SCS KULT and KULT Extension Programming Section 5: KULT Extension tutorials

4200A-SCS-KULT-907-01 Rev. D May 2024 5-25

5. Rename the copied module.

Figure 125: Name copied user module

6. Press Enter to confirm the name.

7. Select the new module RdsonAvg to open it in the editor.

Modify the RdsonAvg user module

In the user module code, you need to replace the measi commands with avgi commands.

While a measi command makes a single measurement, an avgi command makes a

specified number of measurements, and then calculates the average reading. For example:

avgi(SMU2, Id1, 10, 0.01);

For the above command, SMU2 makes 10 current measurements and then calculates the

average reading (Id1). The 0.01 parameter is the delay between measurements (10 ms).

The source code for the module is in the module code area of the window. In this area,

make the following changes.

Under Force the first point and measure, change the line:

measi(SMU2, Id1);

to

avgi(SMU2, Id1, 10, 0.01); // Make averaged I measurement

Under Force the second point and measure, change the line:

measi(SMU2, Id2);

to

avgi(SMU2, Id2, 10, 0.01); // Make averaged I measurement

Change the line:

*Rdson = (Vd2-Vd1)/(*Id2- *Id1); // Calculate Rdson

to

*RdsonAverage = (Vd2-Vd1)/(*Id2- *Id1); // Calculate RdsonAverage

Section 5: KULT Extension tutorials Model 4200A-SCS KULT and KULT Extension Programming

5-26 4200A-SCS-KULT-907-01 Rev. D May 2024

Change a parameter name

Parameters must have name that is different than the name of the user module.

To change the name of the Rdson parameter:

1. From the side bar, select Show Module View.

2. Select the name of the Rdson parameter.

3. Enter RdsonAverage.

Figure 126: Change the name of the Rdson parameter

4. Select Apply.

Change the module description

In Clarius, any user test modules (UTMs) that are connected to this user module show the

text that is entered in the Description section in the Clarius help pane.

To change the module description:

1. Review the text between in the gray comments for MODULE HELP DESCRIPTION.

2. Replace all instances of Rdson with RdsonAverage.

Save and build the modified library

1. From the File menu, select Save.

2. Under Functions, select Build library KI42xxulib for Release.

3. Select the run icon.

Figure 127: Build the KI42xxulib library

4. Check the build output for errors.

Model 4200A-SCS KULT and KULT Extension Programming Section 5: KULT Extension tutorials

4200A-SCS-KULT-907-01 Rev. D May 2024 5-27

Add a new UTM to the ivswitch project

To add rdsonAvg to the ivswitch project:

1. Choose Select.

2. Select Projects.

3. In the Search box, enter ivswitch and select Search. The Library displays the I-V

Switch Project (ivswitch).

4. Select Create. The ivswitch project replaces the previous project in the project tree.

5. Select the Tests tab.

6. For the Custom Test, select Choose a test from the pre-programmed library (UTM).

7. Drag Custom Test to the project tree. The test has a red triangle next to it to indicate

that it is not configured.

8. Select Rename.

9. Enter rdsonAvg and press Enter.

10. In the project tree, drag rdsonAvg to the 4terminal-n-fet device, after the

rdson test.

11. Choose Configure.

12. In the Test Settings pane, from the User Libraries list, select KI42xxulib.

13. From the User Modules list, select Rdson42XX.

14. Select Save.

The project tree for the ivswitch project with rdsonAvg added is shown in the

following figure.

Figure 128: Add a new UTM to the ivswitch project

Section 5: KULT Extension tutorials Model 4200A-SCS KULT and KULT Extension Programming

5-28 4200A-SCS-KULT-907-01 Rev. D May 2024

Tutorial: Debugging a user module

This tutorial demonstrates how to use the KULT Extension in Visual Studio Code to debug

code with the GNU Debugger (GDB). The tutorial shows you how to pause execution,

monitor variables and expressions, and step through code one line at a time.

Using copy to create the VSweepRes user module

To create the VSweepRes user module using copy:

1. Start Visual Studio Code and open the KULT side bar.

2. From Libraries, select my_2nd_lib.

3. From Modules, select VSweep.

4. Select the copy icon.

Figure 129: Copy the VSweep user module

5. Name the copied module VSweepRes.

Figure 130: Name the copied module VSweepRes

6. Select Enter.

7. Select VSweepRes in the side bar to open it in the editor.

Model 4200A-SCS KULT and KULT Extension Programming Section 5: KULT Extension tutorials

4200A-SCS-KULT-907-01 Rev. D May 2024 5-29

Adding an average resistance calculation to VSweepRes

To add a calculation for the average resistance:

1. At the beginning of VSweepRes, after the line defining int i, add the following

statement:

double sum = 0; /*Sum of all resistance measurements*/

2. Inside the for loop, after the line

v = v + vstep; /* Increments the forced voltage. */ add the following

statement:

sum =(Vforce[i]/Imeas[i]); /*Intentionally incorrect line*/

▪ That line is intentionally incorrect. We will find the error using the debugger later.

3. After the for loop, before the return statement, add the following statement:

*AvgRes = sum/(NumIPoints - 1); /*Divide by the number of measurements, not

including 0 V, to get average. */

Adding a parameter to VSweepRes

To add a parameter to VSweepRes:

1. On the KULT module, add a new parameter, AvgRes, with the values shown in the

following table.

Name Type I/O Default Min Max

AvgRes Double* Output

2. Select Apply to add the new parameter.

Figure 131: Add a new parameter

Section 5: KULT Extension tutorials Model 4200A-SCS KULT and KULT Extension Programming

5-30 4200A-SCS-KULT-907-01 Rev. D May 2024

Building the user library

To build the user library:

1. From the File menu, select Save.

2. Under Functions, select Build library my_2nd_lib for Release.

3. Select the run icon.

Figure 132: Build my_2nd_lib library

4. Check the build output for any errors. The build should be successful.

Checking the VSweepRes user module

Check the user module by creating and executing a user test module (UTM) in Clarius.

To check the user module:

1. Connect a 1 kΩ resistor between the FORCE terminal of the ground unit (GNDU) and

the FORCE terminal of SMU1.

2. Select the UserModCheck project.

3. Choose Select.

4. Select the Devices tab.

5. Select Resistor, 2 terminal.

6. Select Add.

7. Select the Tests tab.

8. Select Custom Test.

9. Select Choose a test from the pre-programmed library (UTM).

10. Select Add. The test has a red triangle next to it to indicate that it is not configured.

11. Select Rename.

12. Enter the name v_sweep_chk and select Enter.

13. Select Configure.

14. In the right pane, from the User Libraries list, select the my_2nd_lib library.

Model 4200A-SCS KULT and KULT Extension Programming Section 5: KULT Extension tutorials

4200A-SCS-KULT-907-01 Rev. D May 2024 5-31

15. From the User Modules list, select VSweepRes. A default schematic and group of

parameters are displayed for the UTM.

16. Select Run.

17. Select Analyze.

18. Review the results in the Analyze sheet. The results should be similar to the results in

the following figure. Notice that there is a new value returned in the sheet, AvgRes,

which is the average calculated resistance. However, the value is incorrect. If you

connected a 1 kΩ resistor, the value is closer to 100 Ω. There is something wrong in the

user module. In the next topic, you use the debugger to help find the error.

Figure 133: Analyze results for v_sweep_res_chk

Starting the debugger and adding a breakpoint

At least one breakpoint must be set before running the debugger. Breakpoints bind when

code execution begins.

To start the debugger and add a breakpoint:

1. In Visual Studio Code, in the KULT side bar, select the library that contains the module.

2. Select the module.

3. Under Functions, select Build Library my_2nd_lib for Debug.

4. Select the run icon.

Figure 134: Build the library for debug

5. In Clarius, reload the user module by selecting another test, then selecting

v_sweep_res_chk again.

6. Place an unconditional breakpoint by selecting the space to the left of the line that

calculates the V-increment size. Code execution will pause at this line.

Section 5: KULT Extension tutorials Model 4200A-SCS KULT and KULT Extension Programming

5-32 4200A-SCS-KULT-907-01 Rev. D May 2024

Figure 135: Unconditional breakpoint

7. In Visual Studio Code, in the Debug side bar, select Run > (gdb) Attach.

Figure 136: Starting the debugger

8. Wait for the attach process to complete. The attach process is complete and the

debugger is running when the status bar at the bottom changes from blue to orange as

shown in the following figure.

Figure 137: Debug Console and status bar

Debugging the code

Once the attach process is complete, the code can be executed.

The attach process causes any previously set breakpoints to temporarily unbind (turn gray).

They automatically rebind when code execution starts. You can change, add, or remove

breakpoints when the code execution is paused on an existing breakpoint.

Model 4200A-SCS KULT and KULT Extension Programming Section 5: KULT Extension tutorials

4200A-SCS-KULT-907-01 Rev. D May 2024 5-33

To debug the code:

1. In Clarius, select Run to start the code.

2. Return to Visual Studio Code. The code pauses on the breakpoint.

Figure 138: Code paused on breakpoint

3. On the Variables pane in the debugger side bar, find the sum variable. Right-click the

variable and select Add to watch. The variable is shown in the watch pane on the

side bar.

Figure 139: Add to watch, variables pane

Figure 140: Variable sum added to watch

Section 5: KULT Extension tutorials Model 4200A-SCS KULT and KULT Extension Programming

5-34 4200A-SCS-KULT-907-01 Rev. D May 2024

4. Select Step Over on the debugger toolbar until you get to the line

sum =(Vforce[i]/Imeas[i]);. At that point, the code loops back to the top of the

for loop. Continue until you get to the sum line again.

Figure 141: Step over

5. Select Step Into. This line has now executed and the sum value has changed.

6. Select Debug Console at the bottom of the screen. Enter the formula below:

Vforce[i]/Imeas[i]

Figure 142: Enter formula in Debug Console

7. Press Enter. The value returned is the same as the value in sum and is approximately

the value of the resistor. This verifies that the correct resistance is calculated from the

current measurement.

Figure 143: Returned value

8. Continue stepping through the code until you get to the top of the for loop again. The

value for sum is not changing. Therefore, our sum formula must be incorrect.

9. Press F5 the Continue button on the debug toolbar. This will run the code until

completion.

10. Select to the Terminal tab at the bottom.

11. Select the Disconnect button. This terminates the debugging session.

12. Correct the sum line from:

sum =(Vforce[i]/Imeas[i]); /*Intentionally incorrect line*/

to

sum = sum + (Vforce[i]/Imeas[i]); /*Sum Resistances*/

13. Rebuild the library for release by selecting the command Build Library my_2nd_lib For

Release on the KULT side bar.

Model 4200A-SCS KULT and KULT Extension Programming Section 5: KULT Extension tutorials

4200A-SCS-KULT-907-01 Rev. D May 2024 5-35

Retest the VSweepRes user module in Clarius

1. Return to Clarius. Click away from the v_sweep_res_chk test and back to reload

the module.

2. Rerun the module with the same settings as before, 0 to 5 V with number of V and I

points as 11.

3. Select the Analyze view. The resistance value is now correct.

Figure 144: Analyze the VSweepRes user module

Specifications are subject to change without notice.
All Keithley trademarks and trade names are the property of Keithley Instruments.

All other trademarks and trade names are the property of their respective companies.

Keithley Instruments • 28775 Aurora Road • Cleveland, Ohio 44139 • 1-800-833-9200 • tek.com/keithley

04/2022

https://www.tek.com/keithley

	Model 4200A-SCS KULT and KULT Extension Programming
	Safety precautions
	Contents
	1 Introduction
	Introduction
	KULT description
	KULT interface description
	Module identification area
	Module parameter display area
	Module code-entry area
	Terminating brace area
	Tab area
	Parameters tab area
	Parameter name field
	Data type field
	I/O field
	Default, min, and max fields

	Includes tab area
	Description tab area
	Include

	Build tab area

	Status bar
	Menus
	File menu
	New Library
	Open Library
	Copy Library
	Delete Library
	New Module
	Open Module
	Save Module
	Copy Module
	Delete Module
	Print Module
	Exit

	Edit menu
	Options menu
	Help menu

	Develop and use user libraries
	Copy user modules and files
	Enabling real-time plotting for UTMs
	Using NI-VISA in user libraries
	Add NI-VISA as a library dependency in KULT
	Add NI-VISA as a library dependency in the KULT Extension
	Include the NI-VISA header files in KULT
	Include the NI-VISA header files in the KULT Extension
	Remove Intellisense errors

	2 KULT tutorials
	KULT Tutorials
	Tutorial: Creating a new user library and user module
	Starting KULT
	Naming a new user library
	Creating a new user module
	Entering the return type
	Entering user module code
	Entering parameters
	Entering header files
	Documenting the user module
	Saving the user module
	Building the user library to include the new user module
	Finding build errors
	Checking the user module

	Tutorial: Creating a user module that returns data arrays
	Naming new user library and new VSweep user module
	Entering the VSweep user-module return type
	Entering the VSweep user-module code
	Entering the VSweep user-module parameters
	Entering the VSweep user-module header files
	Documenting the VSweep user module
	Saving the VSweep user module
	Building the VSweep user module
	Checking the VSweep user module

	Tutorial: Creating a user module that returns data arrays in real time
	Naming new user library and new VSweepRT user module
	Entering the VSweepRT user-module return type
	Entering the VSweepRT user-module code
	Entering the VSweepRT user-module parameters
	Entering the VSweepRT user-module header files
	Documenting the VSweepRT user module
	Saving the VSweepRT user module
	Building the VSweepRT user module
	Checking the VSweepRT user module

	Tutorial: Calling one user module from within another
	Creating the VSweepBeep user module by copying an existing user module
	Calling independent user module from VSweepBeep user module
	Specifying user library dependencies in VSweepBeep user module
	Building the VSweep user module
	Checking the VSweepBeep user module

	Tutorial: Customizing a user test module (UTM)
	Open KULT
	Open the KI42xxulib user library
	Open the Rdson42XX user module
	Copy Rdson42XX to RdsonAvg
	Open and modify the RdsonAvg user module
	Modify the user module code
	Change a parameter name
	Change the module description

	Save and build the modified library
	Add the new UTM to the ivswitch project

	Tutorial: Creating a user module for stepping or sweeping
	Name a new user module
	Entering the return type
	Entering the user-module code
	Entering the user-module parameters
	Enter the user-module header files
	Documenting the user module
	Saving the user module
	Building the user module
	Setting up the user interface of the user module
	Check the user module in Clarius

	3 User module and library management
	Introduction
	Managing user libraries
	Updating and copying user libraries using KULT command-line utilities
	Updating user libraries using kultupdate
	Copying user libraries using kultcopy

	Performing other KULT tasks using command-line commands
	gui subcommand
	new_lib subcommand
	bld_lib subcommand
	del_lib subcommand
	new_mod subcommand
	add_mod subcommand
	del_mod subcommand
	zip subcommand
	unzip subcommand
	help subcommand

	Dependent user modules and user libraries
	Structuring dependencies hierarchically
	Building dependent user libraries in the correct order

	Formatting user module help for the Clarius Help pane
	Creating project prompts
	Using dialog boxes
	Dialog formats

	Dialog test examples
	Example: Announce end of test

	4 KULT Extension for Visual Studio Code
	Introduction
	Installation
	Download Visual Studio Code
	Install Visual Studio Code
	Install extensions with an internet connection
	Install extensions without an internet connection
	Updating the KULT Extension after installing Clarius

	Setting up Visual Studio Code for library development
	Opening the user library in Visual Studio Code
	Creating the Visual Studio Code configuration files
	Create the C/C++ Intellisense configuration file
	Create the launch configuration file

	Visual Studio code overview
	Opening Visual Studio Code
	Visual Studio Code user interface
	Activity bar
	Panels

	Command Palette
	Settings in Visual Studio Code

	KULT side bar
	Working with user libraries in Visual Studio Code
	Creating a new library
	Copying a library
	Deleting a library
	Renaming a library
	Setting library visibility
	Entering library dependencies and environment variables
	Building a library
	Build a library from the KULT Extension side bar
	Build a library from the Terminal menu

	Cleaning a library

	Working with modules in Visual Studio Code
	Creating a new user module
	Copy a user module
	Rename a user module
	Deleting a user module
	Setting the return type of a user module
	Including header files
	Editing module parameters
	Reorder the user module parameters
	Editing the module description

	Debugging libraries
	Debugger side bar and toolbar
	Setting up the debugger
	Running code with the debugger
	Ending a debugging session
	Setting breakpoints in modules
	Setting an unconditional breakpoint
	Setting a conditional breakpoint
	Setting a function breakpoint

	Expression evaluation
	Evaluating an expression once
	Evaluating an expression at every breakpoint
	Editing a variable value

	Watching variables

	5 KULT Extension tutorials
	Tutorial overview
	Tutorial: Creating a new user library and user module
	Starting Visual Studio Code
	Creating a new user library
	Creating a new user module
	Entering a return type
	Entering user module code
	Entering parameters
	Entering header files
	Documenting the user module
	Saving the user module
	Building the library
	Finding code errors
	Checking the user module in Clarius

	Tutorial: Creating a user module that returns data arrays
	Creating a new user library and user module
	Entering the return type for VSweep
	Entering the VSweep user module code
	Entering the VSweep user module parameters
	Entering the header files for the VSweep user module
	Documenting the VSweep user module
	Saving the VSweep user module
	Building the VSweep user module
	Checking the VSweep user module in Clarius

	Tutorial: Calling one user module from another
	Copying an existing user module
	Calling another user module from the VSweepBeep user module
	Specifying user library dependencies
	Building the user library
	Checking the VSweepBeep user module

	Tutorial: Customizing a user test module (UTM)
	Copy the Rdson42XX user module
	Modify the RdsonAvg user module
	Change a parameter name
	Change the module description
	Save and build the modified library
	Add a new UTM to the ivswitch project

	Tutorial: Debugging a user module
	Using copy to create the VSweepRes user module
	Adding an average resistance calculation to VSweepRes
	Adding a parameter to VSweepRes
	Building the user library
	Checking the VSweepRes user module
	Starting the debugger and adding a breakpoint
	Debugging the code
	Retest the VSweepRes user module in Clarius

	Contact information

