
Programming
4200A-LPT-907-01 Rev. D May 2024

P4200A-LPT-907-01D
4200A-LPT-907-01D

 tek.com/keithley

Model 4200A-SCS
LPT Library

https://www.tek.com/products/keithley

LPT Library

Programming

Model 4200A-SCS

© 2024, Keithley Instruments

Cleveland, Ohio, U.S.A.

All rights reserved.

Any unauthorized reproduction, photocopy, or use of the information herein, in whole or in part,

without the prior written approval of Keithley Instruments is strictly prohibited.

 All Keithley Instruments product names are trademarks or registered trademarks of Keithley

Instruments, LLC. Other brand names are trademarks or registered trademarks of their

respective holders.

Actuate®

Copyright © 1993-2003 Actuate Corporation.

All Rights Reserved.

Microsoft, Visual C++, Excel, and Windows are either registered trademarks or trademarks of

Microsoft Corporation in the United States and/or other countries.

Document number: 4200A-LPT-907-01 Rev. D May 2024

 Safety precautions
The following safety precautions should be observed before using this product and any associated instrumentation. Although some
instruments and accessories would normally be used with nonhazardous voltages, there are situations where hazardous
conditions may be present.

This product is intended for use by personnel who recognize shock hazards and are familiar with the safety precautions required to
avoid possible injury. Read and follow all installation, operation, and maintenance information carefully before using the product.
Refer to the user documentation for complete product specifications.

If the product is used in a manner not specified, the protection provided by the product warranty may be impaired.

The types of product users are:

Responsible body is the individual or group responsible for the use and maintenance of equipment, for ensuring that the
equipment is operated within its specifications and operating limits, and for ensuring that operators are adequately trained.

Operators use the product for its intended function. They must be trained in electrical safety procedures and proper use of the
instrument. They must be protected from electric shock and contact with hazardous live circuits.

Maintenance personnel perform routine procedures on the product to keep it operating properly, for example, setting the line
voltage or replacing consumable materials. Maintenance procedures are described in the user documentation. The procedures
explicitly state if the operator may perform them. Otherwise, they should be performed only by service personnel.

Service personnel are trained to work on live circuits, perform safe installations, and repair products. Only properly trained service
personnel may perform installation and service procedures.

Keithley products are designed for use with electrical signals that are measurement, control, and data I/O connections, with low
transient overvoltages, and must not be directly connected to mains voltage or to voltage sources with high transient overvoltages.
Measurement Category II (as referenced in IEC 60664) connections require protection for high transient overvoltages often
associated with local AC mains connections. Certain Keithley measuring instruments may be connected to mains. These
instruments will be marked as category II or higher.

Unless explicitly allowed in the specifications, operating manual, and instrument labels, do not connect any instrument to mains.

Exercise extreme caution when a shock hazard is present. Lethal voltage may be present on cable connector jacks or test fixtures.
The American National Standards Institute (ANSI) states that a shock hazard exists when voltage levels greater than 30 V RMS,
42.4 V peak, or 60 VDC are present. A good safety practice is to expect that hazardous voltage is present in any unknown circuit
before measuring.

Operators of this product must be protected from electric shock at all times. The responsible body must ensure that operators are
prevented access and/or insulated from every connection point. In some cases, connections must be exposed to potential human
contact. Product operators in these circumstances must be trained to protect themselves from the risk of electric shock. If the circuit
is capable of operating at or above 1000 V, no conductive part of the circuit may be exposed.

Do not connect switching cards directly to unlimited power circuits. They are intended to be used with impedance-limited sources.
NEVER connect switching cards directly to AC mains. When connecting sources to switching cards, install protective devices to
limit fault current and voltage to the card.

Before operating an instrument, ensure that the line cord is connected to a properly-grounded power receptacle. Inspect the
connecting cables, test leads, and jumpers for possible wear, cracks, or breaks before each use.

When installing equipment where access to the main power cord is restricted, such as rack mounting, a separate main input power
disconnect device must be provided in close proximity to the equipment and within easy reach of the operator.

For maximum safety, do not touch the product, test cables, or any other instruments while power is applied to the circuit under test.
ALWAYS remove power from the entire test system and discharge any capacitors before connecting or disconnecting cables or
jumpers, installing or removing switching cards, or making internal changes, such as installing or removing jumpers.

Do not touch any object that could provide a current path to the common side of the circuit under test or power line (earth) ground.
Always make measurements with dry hands while standing on a dry, insulated surface capable of withstanding the voltage being
measured.

For safety, instruments and accessories must be used in accordance with the operating instructions. If the instruments or
accessories are used in a manner not specified in the operating instructions, the protection provided by the equipment may be
impaired.

Do not exceed the maximum signal levels of the instruments and accessories. Maximum signal levels are defined in the
specifications and operating information and shown on the instrument panels, test fixture panels, and switching cards.

When fuses are used in a product, replace with the same type and rating for continued protection against fire hazard.

Chassis connections must only be used as shield connections for measuring circuits, NOT as protective earth (safety ground)
connections.

If you are using a test fixture, keep the lid closed while power is applied to the device under test. Safe operation requires the use of
a lid interlock.

If a screw is present, connect it to protective earth (safety ground) using the wire recommended in the user documentation.

The symbol on an instrument means caution, risk of hazard. The user must refer to the operating instructions located in the
user documentation in all cases where the symbol is marked on the instrument.

The symbol on an instrument means warning, risk of electric shock. Use standard safety precautions to avoid personal
contact with these voltages.

The symbol on an instrument shows that the surface may be hot. Avoid personal contact to prevent burns.

The symbol indicates a connection terminal to the equipment frame.

If this symbol is on a product, it indicates that mercury is present in the display lamp. Please note that the lamp must be
properly disposed of according to federal, state, and local laws.

The WARNING heading in the user documentation explains hazards that might result in personal injury or death. Always read the
associated information very carefully before performing the indicated procedure.

The CAUTION heading in the user documentation explains hazards that could damage the instrument. Such damage may
invalidate the warranty.

The CAUTION heading with the symbol in the user documentation explains hazards that could result in moderate or minor
injury or damage the instrument. Always read the associated information very carefully before performing the indicated procedure.
Damage to the instrument may invalidate the warranty.

Instrumentation and accessories shall not be connected to humans.

Before performing any maintenance, disconnect the line cord and all test cables.

To maintain protection from electric shock and fire, replacement components in mains circuits — including the power transformer,
test leads, and input jacks — must be purchased from Keithley. Standard fuses with applicable national safety approvals may be
used if the rating and type are the same. The detachable mains power cord provided with the instrument may only be replaced with
a similarly rated power cord. Other components that are not safety-related may be purchased from other suppliers as long as they
are equivalent to the original component (note that selected parts should be purchased only through Keithley to maintain accuracy
and functionality of the product). If you are unsure about the applicability of a replacement component, call a Keithley office for
information.

Unless otherwise noted in product-specific literature, Keithley instruments are designed to operate indoors only, in the following
environment: Altitude at or below 2,000 m (6,562 ft); temperature 0 °C to 50 °C (32 °F to 122 °F); and pollution degree 1 or 2.

To clean an instrument, use a cloth dampened with deionized water or mild, water-based cleaner. Clean the exterior of the
instrument only. Do not apply cleaner directly to the instrument or allow liquids to enter or spill on the instrument. Products that
consist of a circuit board with no case or chassis (e.g., a data acquisition board for installation into a computer) should never require
cleaning if handled according to instructions. If the board becomes contaminated and operation is affected, the board should be
returned to the factory for proper cleaning/servicing.

Safety precaution revision as of June 2018.

 Introduction .. 1-1

LPT library reference .. 1-1

Lists of LPT library commands ... 1-2
General operation commands ... 1-2
Math operation commands .. 1-4
SMU commands .. 1-4
PGU (pulse only) and PMU (pulse and measure) commands ... 1-5
CVU commands .. 1-7
Switch commands ... 1-8

LPT Library Status and Error codes ... 1-8
Customized error texts .. 1-10
Code status or error titles .. 1-10
Large number reported readings and explanations ... 1-15

LPT library and Clarius interaction when using UTMs ... 1-16

 LPT commands for general operations .. 2-1

LPT commands for general operations .. 2-2
clrscn ... 2-2
clrtrg .. 2-3
delay ... 2-5
devint .. 2-6
disable ... 2-8
enable ... 2-8
execut ... 2-9
getinstattr .. 2-9
getinstid ... 2-11
getinstname... 2-11
GetKiteCycle ... 2-11
GetKiteDevice ... 2-12
GetKiteSite .. 2-12
GetKiteSubsite .. 2-12
GetKiteTest ... 2-13
getlpterr ... 2-13
imeast ... 2-14
inshld ... 2-14
kibcmd ... 2-14
kibdefclr ... 2-16
kibdefdelete ... 2-17
kibdefint ... 2-17
kibrcv ... 2-18
kibsnd .. 2-19
kibspl ... 2-20
kibsplw .. 2-21
kspcfg .. 2-21
kspdefclr .. 2-22
kspdefdelete .. 2-23
kspdefint .. 2-23
ksprcv .. 2-24
kspsnd ... 2-25
PostDataDouble .. 2-25
PostDataDoubleBuffer .. 2-27
PostDataInt ... 2-30
PostDataString .. 2-30

Table of contents

Table of contents Model 4200A-SCS LPT Library Programming

rdelay .. 2-31
rtfary .. 2-31
savgX .. 2-32
scnmeas .. 2-33
searchX ... 2-34
setmode .. 2-37
sintgX .. 2-39
smeasX ... 2-40
trigcomp .. 2-41
trigXg, trigXl... 2-42
tstdsl .. 2-44
tstsel .. 2-45

 LPT commands for math operations .. 3-1

LPT commands for math operations .. 3-1
kfpabs ... 3-1
kfpadd ... 3-2
kfpdiv ... 3-2
kfpexp ... 3-3
kfplog .. 3-4
kfpmul ... 3-4
kfpneg ... 3-5
kfppwr ... 3-6
kfpsqrt ... 3-7
kfpsub ... 3-8

 LPT commands for SMUs .. 4-1

LPT commands for SMUs .. 4-1
adelay ... 4-1
asweepX ... 4-2
avgX .. 4-4
bmeasX ... 4-5
bsweepX ... 4-7
devclr .. 4-9
devint .. 4-10
forceX .. 4-11
getstatus.. 4-13
intgX .. 4-15
limitX ... 4-17
lorangeX .. 4-18
measX ... 4-20
mpulse .. 4-21
pulseX ... 4-22
rangeX .. 4-25
rtfary .. 4-26
segment_sweepX_list ... 4-27
setauto .. 4-28
ssmeasx .. 4-29
sweepX ... 4-31

 LPT commands for CVUs .. 5-1

LPT commands for the CVUs .. 5-1
adelay ... 5-2
asweepv .. 5-3
bsweepX ... 5-4
cvu_custom_cable_comp .. 5-6

Model 4200A-SCS LPT Library Programming Table of contents

devclr .. 5-7
devint .. 5-7
dsweepf ... 5-9
dsweepv .. 5-10
forcev .. 5-12
getstatus.. 5-12
measf .. 5-14
meass ... 5-14
meast .. 5-15
measv ... 5-16
measz ... 5-17
rangei .. 5-18
rtfary .. 5-18
setauto .. 5-19
setfreq ... 5-20
setlevel .. 5-21
setmode (4210-CVU or 4215-CVU) .. 5-21
smeasf .. 5-23
smeasfRT .. 5-24
smeass .. 5-25
smeast .. 5-26
smeastRT .. 5-27
smeasv .. 5-27
smeasvRT ... 5-28
smeasz .. 5-29
smeaszRT ... 5-30
sweepf ... 5-31
sweepf_log .. 5-33
sweepv .. 5-34

Programming examples ... 5-35
Programming example #1 ... 5-35
Programming example #2 ... 5-36
Programming example #3 ... 5-37
Programming example #4 ... 5-38
Programming example #5 ... 5-39

 LPT commands for PGUs and PMUs .. 6-1

LPT commands for PGUs and PMUs .. 6-2
arb_array ... 6-3
arb_file .. 6-4
dev_abort .. 6-4
devclr .. 6-6
devint .. 6-6
getstatus.. 6-8
pg2_init ... 6-10
pmu_offset_current_comp... 6-11
pulse_burst_count ... 6-11
pulse_chan_status .. 6-12
pulse_conncomp ... 6-13
pulse_current_limit .. 6-14
pulse_dc_output .. 6-15
pulse_delay ... 6-16
pulse_exec .. 6-17
pulse_exec_status .. 6-19
pulse_fall ... 6-20
pulse_fetch .. 6-22
pulse_float ... 6-27
pulse_halt .. 6-27
pulse_init ... 6-28

Table of contents Model 4200A-SCS LPT Library Programming

pulse_limits ... 6-29
pulse_load ... 6-30
pulse_meas_sm .. 6-30
pulse_meas_timing ... 6-32
pulse_meas_wfm .. 6-33
pulse_measrt ... 6-34
pulse_output.. 6-36
pulse_output_mode ... 6-37
pulse_period.. 6-38
pulse_range .. 6-39
pulse_ranges ... 6-40
pulse_remove .. 6-42
pulse_rise .. 6-43
pulse_sample_rate .. 6-44
pulse_source_timing ... 6-45
pulse_ssrc ... 6-46
pulse_step_linear .. 6-48
pulse_sweep_linear .. 6-51
pulse_train... 6-54
pulse_trig... 6-55
pulse_trig_output ... 6-56
pulse_trig_polarity ... 6-57
pulse_trig_source .. 6-58
pulse_vhigh ... 6-60
pulse_vlow .. 6-61
pulse_width ... 6-63
rpm_config .. 6-64
seg_arb_define ... 6-65
seg_arb_file... 6-67
seg_arb_sequence .. 6-68
seg_arb_waveform .. 6-71
setmode (4225-PMU) .. 6-72

 LPT commands for switching ... 7-1

LPT commands for switching ... 7-1
addcon .. 7-1
clrcon .. 7-2
conpin ... 7-3
conpth ... 7-4
cviv_config .. 7-5
cviv_display_config ... 7-6
cviv_display_power ... 7-7
delcon ... 7-7
devint .. 7-8

In this section:

LPT library reference .. 1-1
Lists of LPT library commands ... 1-2
LPT Library Status and Error codes ... 1-8
LPT library and Clarius interaction when using UTMs 1-16

LPT library reference
The Keithley Instruments Linear Parametric Test Library (LPT library) is a high-speed data acquisition

and instrument control software library. It is the programmer’s lowest level of command interface to the

system instrumentation. You can use the library commands to configure the relay matrix and

instrumentation for parametric tests.

This section lists the commands included in the LPT library and describes how to use them. The

descriptions include:

• A brief description of the command.

• Usage, which shows how the command should be organized and descriptions of each parameter.

The parameters that you need to supply are shown in italics. For example, for the command

int delay(long n);, replace n with the duration of the delay.

• Detailed information about the command.

• Examples that show a typical use of the command in a test sequence.

The following conventions are used when explaining the commands:

• All LPT library commands are case-sensitive and must be entered as lower case when writing

program code.

• Period strings (...) indicate additional arguments or commands that can be added.

• Periods (.) indicate data not shown in an example because it is not necessary to help explain the

specific command.

• A capital letter X in a command name indicates that you must select from a list of replacement

suffixes. For example, in forceX, replace the X with either a v for voltage or i for current. The

following is a table of possible suffixes, the parameter each represents, and the units used

throughout the LPT library for that parameter.

 Suffix Parameter Unit

 i Current Amperes

 t Time Seconds

 v Voltage Volts

 f Frequency Hertz

Section 1

Introduction

Section 1: Introduction Model 4200A-SCS LPT Library Programming

1-2 4200A-LPT-907-01 Rev. D May 2024

Lists of LPT library commands
These topics list the LPT library commands that are available in the 4200A-SCS. A brief description

and links to full descriptions of each command are provided.

The LPT library commands are grouped as follows:

• General operation commands (on page 1-2)

• Math operation commands (on page 1-4)

• SMU commands (on page 1-4)

• PGU (pulse only) and PMU (pulse and measure) commands (on page 1-5)

• CVU commands (on page 1-7)

• Switch commands (on page 1-8)

General operation commands
General operation commands include commands to control timing, execution, communications, and

test status.

Command Description

clrscn (on page 2-2) Clears the measurement scan tables associated with a sweep.

clrtrg (on page 2-3) Clears the user-selected voltage or current level that is used to set trigger points. This
permits the use of the trigXl or trigXg command more than once with different

levels in a single test sequence.

delay (on page 2-5) Provides a user-programmable delay in a test sequence.

devint (on page 2-6) Resets all active instruments in the system to their default states.

disable (on page 2-8) Stops the timer and sets the time value to zero (0).

enable (on page 2-8) Provides correlation of real time to measurements of voltage, current, conductance,
and capacitance.

execut (on page 2-9) Causes the system to wait for the preceding test sequence to be executed.

getinstattr (on page 2-9) Returns configured instrument attributes.

getinstid (on page 2-11) Returns the instrument identifier (ID) from the instrument name string.

getinstname (on
page 2-11)

Returns the instrument name string from the instrument identifier (ID).

GetKiteCycle (on
page 2-11)

Returns the present Clarius cycle number.

GetKiteDevice (on
page 2-12)

Returns the device that Clarius is presently testing.

GetKiteSite (on
page 2-12)

Returns the site number for the site that Clarius is presently testing.

GetKiteSubsite (on
page 2-12)

Returns the subsite number for the site that Clarius is presently testing.

GetKiteTest (on
page 2-13)

Returns the test that Clarius is presently testing.

getlpterr (on page 2-13) Returns the first LPT library error since the last devint command.

imeast (on page 2-14) Forces a reading of the timer and returns the result.

Model 4200A-SCS LPT Library Programming Section 1: Introduction

4200A-LPT-907-01 Rev. D May 2024 1-3

Command Description

inshld (on page 2-14) Provided for compatibility with Model S400 LPT library.

kibcmd (on page 2-14) Enables universal, addressed, and unaddressed GPIB bus commands to be sent
through the GPIB interface.

kibdefclr (on page 2-16) Defines the device-dependent command sent to an instrument connected to the GPIB
interface.

kibdefdelete (on
page 2-17)

Deletes all command definitions previously made with the kibdefclr (Keithley

GPIB define device clear) and kibdefint (Keithley GPIB define device initialize)

commands.

kibdefint (on page 2-17) Defines a device-dependent command sent to an instrument connected to the GPIB
interface.

kibrcv (on page 2-18) Reads a device-dependent string from an instrument connected to the GPIB
interface.

kibsnd (on page 2-19) Sends a device-dependent command to an instrument connected to the GPIB
interface.

kibspl (on page 2-20) Serial polls an instrument connected to the GPIB interface.

kibsplw (on page 2-21) Synchronously serial polls an instrument connected to the GPIB interface.

kspcfg (on page 2-21) Configures and allocates a serial port for RS-232 communications.

kspdefclr (on page 2-22) Defines a device-dependent character string sent to an instrument connected to a
serial port.

kspdefdelete (on
page 2-23)

Deletes all command definitions previously made with the kspdefclr (Keithley

Serial Define Device Clear) and kspdefint (Keithley Serial Define Device Initialize)

commands.

kspdefint (on page 2-23) Defines a device-dependent character string sent to an instrument connected to a
serial port.

ksprcv (on page 2-24) Reads data from an instrument connected to a serial port.

kspsnd (on page 2-25) Sends a device-dependent command to an instrument attached to a RS-232 serial
port.

PostDataDouble (on
page 2-25)

Posts double-precision floating-point data from memory into the Clarius Analyze
sheet.

PostDataDoubleBuffer
(on page 2-27)

Posts data retrieved from the buffer into the Clarius Analyze sheet (large data sets).

PostDataInt (on page
2-30)

Posts an integer-type point from memory to the Clarius Analyze sheet in the user test
module and plots it on the graph.

PostDataString (on
page 2-30)

Transfers a string from memory into the Clarius Analyze sheet in the user test module
and plots it on the graph.

rdelay (on page 2-31) Sets a user-programmable delay.

rtfary (on page 2-31) Returns the force array determined by the instrument action.

savgX (on page 2-32) Makes an averaging measurement for every point in a sweep.

scnmeas (on page 2-33) Makes a single measurement on multiple instruments at the same time.

searchX (on page 2-34) Used to determine the voltage or current required to get a current or voltage.

setmode (on page 2-37) Sets instrument-specific operating mode parameters.

sintgX (on page 2-39) Makes an integrated measurement for every point in a sweep.

smeasX (on page 2-40) Allows a multiple measurements to be made by a specified instrument during a
sweepX command. The results of the measurements are stored in the defined array.

trigcomp (on page 2-41) Causes a trigger when an instrument goes in or out of compliance.

trigXg, trigXl (on
page 2-42)

Monitors for a predetermined level of voltage, current, or time.

tstdsl (on page 2-44) Deselects a test station.

tstsel (on page 2-45) Enables or disables a test station.

Section 1: Introduction Model 4200A-SCS LPT Library Programming

1-4 4200A-LPT-907-01 Rev. D May 2024

Math operation commands
Command Description

kfpabs (on page 3-1) Takes a user-specified positive or negative value and converts it into a positive value
that is returned to a specified variable.

kfpadd (on page 3-2) Adds two real numbers and stores the result in a specified variable.

kfpdiv (on page 3-2) Divides two real numbers and stores the result in a specified variable.

kfpexp (on page 3-3) Supplies the base of natural logarithms (e) raised to a specified power and stores the
result as a variable.

kfplog (on page 3-4) Returns the natural logarithm of a real number to the specified variable.

kfpmul (on page 3-4) Multiplies two real numbers and stores the result as a specified variable.

kfpneg (on page 3-5) Changes the sign of a value and stores the result as a specified variable.

kfppwr (on page 3-6) Raises a real number to a specified power and assigns the result to a specified
variable.

kfpsqrt (on page 3-7) Performs a square root operation on a real number and returns the result to the
specified variable.

kfpsub (on page 3-8) Subtracts two real numbers and stores their difference in a specified variable.

SMU commands
Command Description

adelay (on page 4-1) Specifies an array of delay points to use with asweepX command calls.

asweepX (on page 4-2) Generates a waveform based on a user-defined forcing array (logarithmic sweep or
other custom forcing commands).

avgX (on page 4-4) Makes a series of measurements and averages the results.

bmeasX (on page 4-5) Makes a series of readings as quickly as possible. This measurement mode allows for
waveform capture and analysis (within the resolution of the measurement
instrument).

bsweepX (on page 4-7) Supplies a series of ascending or descending voltages or currents and shuts down
the source when a trigger condition is encountered.

devclr (on page 4-9) Sets all sources to a zero state.

devint (on page 2-6) Resets all active instruments in the system to their default states.

forceX (on page 4-11) Programs a sourcing instrument to generate a voltage or current at a specific level.

getstatus (on page 4-13) Returns the operating state of a specified instrument.

intgX (on page 4-15) Performs voltage or current measurements averaged over a user-defined period
(usually one AC line cycle).

limitX (on page 4-17) Allows the programmer to specify a current or voltage limit other than the default limit
of the instrument.

lorangeX (on page 4-18) Defines the bottom autorange limit.

measX (on page 4-20) Allows the measurement of voltage, current, or time.

mpulse (on page 4-21) Uses a source-measure unit (SMU) to force a voltage pulse and measure both the
voltage and current for exact device loading.

pulseX (on page 4-22) Directs a SMU to force a voltage or current at a specific level for a predetermined
length of time.

rangeX (on page 4-25) Selects a range and prevents the selected instrument from autoranging.

rtfary (on page 2-31) Returns the array of force values used during the subsequent voltage or frequency
sweep.

segment_sweepX_list
(on page 4-27)

Creates and returns up to a 4-segment linear sweep force table based on
user-defined start, stop, and step values.

Model 4200A-SCS LPT Library Programming Section 1: Introduction

4200A-LPT-907-01 Rev. D May 2024 1-5

Command Description

adelay (on page 4-1) Specifies an array of delay points to use with asweepX command calls.

setauto (on page 4-28) Re-enables autoranging and cancels any previous rangeX command for the

specified instrument.

ssmeasX (on page 4-29) Makes a series of readings until the change (delta) between readings is within a
specified percentage.

sweepX (on page 4-31) Generates a ramp consisting of ascending or descending voltages or currents. The
sweep consists of a sequence of steps, each with a user-specified duration.

PGU (pulse only) and PMU (pulse and measure) commands
In the LPT commands, the pulse-only module (4220-PGU) is referred to as VPU1, VPU2, and so on.

The pulse-measure module (4225-PMU) is referred to as PMU1, PMU2, and so on. The 4210-CVU or

4215-CVU is referred to as CVU1, CVU2, and so on.

Note that the 4225-PMU and 4220-PGU support the PG2 commands.

Command Description

arb_array (on page 6-3) Used to define a full-arb waveform and name the file.

arb_file (on page 6-4) Loads a waveform from an existing full-arb waveform file.

dev_abort (on page 6-4) PGU, PMU. Programmatically ends (aborts) a test from within the user module
that was started with the pulse_exec command.

devclr (on page 4-9) Sets all sources to a zero state.

devint (on page 2-6) Resets all active instruments in the system to their default states.

getstatus (on page 4-13) Returns the operating state of a specified instrument.

pg2_init (on page 6-10) Initializes the pulse card to pulse mode or Segment Arb mode and its default
conditions.

pmu_offset_current_comp (on
page 6-11)

PMU. Collects offsets current constants from the 4225-PMU for offset
compensation measurements.

pulse_burst_count (on
page 6-11)

For the burst mode, this command sets the number of pulses to output during a
burst sequence.

pulse_chan_status (on
page 6-12)

PMU. Used to determine how many readings are stored in the data buffer for
the specified channel.

pulse_conncomp (on
page 6-13)

PMU. Enables or disables short connection compensation for the selected
channel.

pulse_current_limit (on
page 6-14)

Channel number of the pulse card: 1 or 2

pulse_dc_output (on page 6-15) Selects the DC output mode and sets the voltage level.

pulse_delay (on page 6-16) Sets the delay time from the trigger to when the pulse output starts.

pulse_exec (on page 6-17) PGU, PMU. Used to validate the test configuration and start test execution.

pulse_exec_status (on page
6-19)

PGU, PMU. Used to determine if a test is running or idle.

pulse_fall (on page 6-20) Sets the fall transition time for the pulse output.

pulse_fetch (on page 6-22) PMU. Retrieves enabled test data and temporarily stores it in the data buffer.

pulse_float (on page 6-27) PMU. Sets the state of the floating relay for the given pulse instrument

pulse_halt (on page 6-27) Stops all pulse output from the pulse card.

pulse_init (on page 6-28) Resets the pulse card to the default settings for the pulse mode that is
presently selected.

pulse_limits (on page 6-29) PMU. Sets measured voltage and current thresholds at the DUT and sets the
power threshold for each channel.

Section 1: Introduction Model 4200A-SCS LPT Library Programming

1-6 4200A-LPT-907-01 Rev. D May 2024

Command Description

pulse_load (on page 6-30) Sets the output impedance for the load (DUT).

pulse_meas_sm (on page 6-30) PMU. Configures spot mean measurements.

pulse_meas_timing (on
page 6-32)

PMU. Sets the spot mean measurement window.

pulse_meas_wfm (on
page 6-33)

PMU. Configures waveform measurements.

pulse_measrt (on page 6-34) PMU. Returns pulse source and measure data in pseudo real time.

pulse_output (on page 6-36) Sets the pulse output of a pulse card channel on or off.

pulse_output_mode (on
page 6-37)

Sets the pulse output mode of a pulse card channel.

pulse_period (on page 6-38) Sets the period for pulse output.

pulse_range (on page 6-39) Sets a pulse card channel for low voltage (high speed) or high voltage (low
speed).

pulse_ranges (on page 6-40) PGU, PMU. Sets the voltage pulse range and voltage/current measure ranges.

pulse_remove (on page 6-42) PGU, PMU. Removes a pulse channel from the test.

pulse_rise (on page 6-43) Sets the rise transition time for the pulse card pulse output.

pulse_sample_rate (on
page 6-44)

PMU. Sets the measurement sample rate.

pulse_source_timing (on
page 6-45)

PGU, PMU. Sets the pulse period, pulse width, rise time, fall time, and delay
time.

pulse_ssrc (on page 6-46) Controls the high-endurance output relay (HEOR) for each output channel of
the PGU.

pulse_step_linear
(on page 6-48)

PGU, PMU. Configures the pulse stepping type.

pulse_sweep_linear (on
page 6-51)

PGU, PMU. Configures the pulse sweeping type.

pulse_train (on page 6-54) PGU, PMU. Configures the pulse card to output a pulse train using fixed
voltage values.

pulse_trig (on page 6-55) Selects the trigger mode (continuous, burst, or trigger burst) and initiates the
start of pulse output or arms the pulse card.

pulse_trig_output (on
page 6-56)

Sets the output trigger on or off.

pulse_trig_polarity (on
page 6-57)

Sets the polarity (positive or negative) of the pulse card output trigger.

pulse_trig_source (on
page 6-58)

Sets the trigger source.

pulse_vhigh (on page 6-60) Sets the pulse voltage high level.

pulse_vlow (on page 6-61) Sets the pulse voltage low value.

pulse_width (on page 6-63) Sets the pulse width for pulse output.

rpm_config (on page 6-64) PMU with 4225-RPM. Sends switching commands to the 4225-RPM.

seg_arb_define (on page 6-65) Defines the parameters for a Segment Arb® waveform.

seg_arb_file (on page 6-67) Used to load a waveform from an existing Segment Arb® waveform file.

seg_arb_sequence (on
page 6-68)

PGU, PMU. Defines the parameters for a Segment Arb waveform
pulse-measure sequence.

seg_arb_waveform (on
page 6-71)

PGU, PMU. Creates a voltage segment waveform.

setmode (on page 6-72) PMU. Sets the number of iterations for load-line effect compensation (LLEC)
for the PMU. Also enables or disables offset current compensation.

Model 4200A-SCS LPT Library Programming Section 1: Introduction

4200A-LPT-907-01 Rev. D May 2024 1-7

CVU commands
Command Description

adelay (on page 4-1) Specifies an array of delay points to use with asweepX command calls.

asweepv (on page 5-3) Does a DC voltage sweep using an array of voltage values.

bsweepX (on page 4-7) Supplies a series of ascending or descending voltages or currents and shuts
down the source when a trigger condition is encountered.

cvu_custom_cable_comp (on
page 5-6)

Determines the delays needed to accommodate custom cable lengths.

devclr (on page 4-9) Sets all sources to a zero state.

devint (on page 2-6) Resets all active instruments in the system to their default states.

dsweepf (on page 5-9) Performs a dual frequency sweep.

dsweepv (on page 5-10) Performs a dual linear staircase voltage sweep.

forcev (on page 5-12) Sets the DC bias voltage level.

getstatus (on page 5-12) Returns parameters that describe the state of the 4210-CVU or 4215-CVU.

measf (on page 5-14) Returns the frequency sourced during a single measurement.

meass (on page 5-14) Returns the status referenced to a single measurement.

meast (on page 5-15) Returns a timestamp referenced to a measurement or a system timer.

measv (on page 5-16) Returns the DC bias voltage sourced during a single measurement.

measz (on page 5-17) Makes an impedance measurement.

rangei (on page 5-18) Selects an impedance measurement range.

rtfary (on page 4-26) Returns the array of force values used during the subsequent voltage or
frequency sweep.

setauto (on page 5-19) Selects the automatic measurement range.

setfreq (on page 5-20) Sets the frequency for the AC drive.

setlevel (on page 5-21) Sets the voltage level of the AC drive.

setmode (on page 5-21) Sets operating modes specific to the 4210-CVU or 4215-CVU.

smeasf (on page 5-23) Returns the frequencies used for a sweep.

smeasfRT (on page 5-24) Returns the sourced frequencies (in real time) for a sweep.

smeass (on page 5-25) Returns the measurement status values for every point in a sweep.

smeast (on page 5-26) Returns timestamps referenced to sweep measurements or a system timer.

smeastRT (on page 5-27) Returns timestamps (in real time) referenced to sweep measurements or a
system timer.

smeasv (on page 5-27) Returns the DC bias voltages used for a sweep.

smeasvRT (on page 5-28) Returns the sourced DC bias voltages (in real time) for a sweep.

smeasz (on page 5-29) Performs impedance measurements for a sweep.

smeaszRT (on page 5-30) Makes and returns impedance measurements for a voltage or frequency sweep
in real time.

sweepf (on page 5-31) Performs a frequency sweep.

sweepf_log (on page 5-33) Performs a logarithmic frequency sweep using a 4215-CVU instrument. This is
not available for the 4210-CVU.

sweepv (on page 5-34) Performs a linear staircase DC voltage sweep.

Section 1: Introduction Model 4200A-SCS LPT Library Programming

1-8 4200A-LPT-907-01 Rev. D May 2024

Switch commands
Command Description

addcon (on page 7-1) Adds connections without clearing existing connections.

clrcon (on page 7-2) Opens or de-energizes all device under test (DUT) pins and instrument matrix relays,
disconnecting all crosspoint connections.

conpin (on page 7-3) Connects pins and instruments.

conpth (on page 7-4) Connects pins and instruments using a specific pathway.

cviv_config (on page 7-5) Sends switching commands to the 4200A-CVIV Multi-Switch.

cviv_display_config (on
page 7-6)

Configures the LCD display on the 4200A-CVIV Multi-Switch.

cviv_display_power (on
page 7-7)

Sets the display state of the LCD display on the 4200A-CVIV.

delcon (on page 7-7) Removes specific matrix connections.

devint (on page 2-6) Resets all active instruments in the system to their default states.

LPT Library Status and Error codes
Error codes are displayed whenever an invalid parameter or configuration occurs. The messages

associated with the error codes describe the error condition to help the user module programmer or

user determine how to address the error. Once an error occurs, the response of the user module to the

error depends on how the user module is programmed. If a user module does not have any error

handling, an initial error could cause additional errors on following LPT commands.

Library status and error codes are reported in Clarius in the message area.

Model 4200A-SCS LPT Library Programming Section 1: Introduction

4200A-LPT-907-01 Rev. D May 2024 1-9

Figure 1: LPT error codes in the Clarius message areas

Codes with positive values are statuses or updates. Codes with negative values are errors and

warnings.

Each error code number is associated with a brief text explanation. However, many of the error texts

are customized with specific information, such as a particular SMU or ID number. See Customized

error texts (on page 1-10) for an explanation of the type of customized data.

In addition to error codes, some conditions may prevent a valid measurement condition. In these

cases, the reported measurement value reports a condition. This is usually a large number with an

exponent of 1022 or 1023. See Large number reported readings and explanations (on page 1-15) for the

conditions associated with these large numbers.

Section 1: Introduction Model 4200A-SCS LPT Library Programming

1-10 4200A-LPT-907-01 Rev. D May 2024

Customized error texts
Key Explanation

%d Signed decimal number; may be a parameter index or GPIB address

%g Double value

%i Signed decimal number

%s String, such as "SMU1" or other test resource

%u Unsigned integer

%04x Hexadecimal number, 4 places

%08x Hexadecimal number, 8 places

Code status or error titles
Code Status or error titles

2802 to 2807 RPM: Invalid Configuration Requested

2801 RPM: Returned ID Error Response

2800 RPM: Command Response Timeout

2702 PMU: Temperature Within Normal Range

2701 PMU: High Temperature Limit Exceeded

1905 PMU: Measure Program Error

1904 PMU: Source Program Error

1902 PMU: Transmission to analog from digital error

1901 PMU: Handshake from analog to digital error

1900 PMU: DA Communications Timeout

400 to 402 PMU: Invalid Attributes in SW Command

100 LPTLib is executing function %s on instrument ID %d.

55 %s is no longer in thermal shutdown.

54 %s VXIBus device busy (command ID %04x). Timed out after %g seconds.

53 %s VXIbus transaction recovered after %u timeouts.

52 %s VXIbus transaction (command ID %04x) timed out after %g seconds.

51 Interlock reset.

50 Interlock tripped.

40 %s

24 Config %d-%d complete for %s (%d).

23 Config %d-%d starting for %s (%d).

22 Binding %s (%d) to driver %s.

21 Loading driver %s.

20 Preloading model code %08x (%s).

15 Executor started.

14 %s channel closed.

13 %s channel starting.

12 TAPI services shutting down.

11 Starting TAPI services.

9 System configuration complete.

8 System configuration starting.

4 System initialization complete.

Model 4200A-SCS LPT Library Programming Section 1: Introduction

4200A-LPT-907-01 Rev. D May 2024 1-11

Code Status or error titles

1 The call was successful (no error).

0 The call was successful (no error).

−4 Too many instruments in configuration file %s.

−5 Memory allocation failure.

−6 Memory allocation error during configuration with configuration file %s.

−20 Command not executed because a previous error was encountered.

−21 Tester is in a fatal error state.

−22 Fatal condition detected while in testing state.

−23 Execution aborted by user.

−24 Too many arguments.

−25 %s is unavailable because it is in use by another test station.

−40 %s.

−87 Can not load library %s.

−88 Invalid configuration file %s.

−89 Duplicate IDs.

−90 Duplicate instrument addresses in configuration file %s.

−91 Duplicate instrument slots in configuration file %s.

−93 Unrecognized/missing interface for %s in configuration file %s.

−94 Unrecognized/missing PCI slot number for %s in configuration file %s.

−95 Unrecognized/missing GPIB address for %s in configuration file %s.

−96 GPIB Address out of range for %s was %i in configuration file %s.

−97 PCI slot number out of range for %s was %i in configuration file %s.

−98 Error attempting to load driver for model %s in configuration file %s.

−99 Unrecognized/missing instrument ID in configuration file %s.

−100 Invalid connection count, number of connections passed was %d.

−101 Argument #%d is not a pin in the current configuration.

−102 Multiple connections on %s.

−103 Dangerous connection using %s.

−104 Unrecognized instrument or terminal not connected to matrix, argument #%d.

−105 No pathway assigned to argument #%d.

−106 Path %d previously allocated.

−107 Not enough pathways to complete connection.

−108 Argument #%d is not defined by configuration.

−109 Illegal test station: %d.

−110 A ground connection MUST be made.

−111 Instrument low connection MUST be made.

−113 There are no switching instruments in the system configuration.

−114 Illegal connection.

−115 Operation not allowed on a connected pin: %d.

−116 No physical bias path from %s to %s.

−117 Connection cannot be made because a required bus is in use.

−118 Cannot switch to high current mode while sources are active.

−119 Pin %d in use.

−120 Illegal connection between %s and GNDU.

−121 Too many calls were made to trigXX.

−122 Illegal value for parameter #%d.

−124 Sweep/Scan measure table overflow.

Section 1: Introduction Model 4200A-SCS LPT Library Programming

1-12 4200A-LPT-907-01 Rev. D May 2024

Code Status or error titles

−126 Insufficient user RAM for dynamic allocation.

−129 Timer not enabled.

−137 Invalid value for modifier.

−138 Too many points specified in array.

−139 An error was encountered while accessing the file %s.

−140 %s unavailable while slaved to %s.

−141 Timestamp not available because no measurement was made.

−142 Cannot bind, instruments are incompatible.

−143 Cannot bind, services unavailable or in use.

−152 Function not supported by %s (%d).

−153 Instrument with ID %d is not in the current configuration.

−154 Unknown instrument name %s.

−155 Unknown instrument ID %i.

−158 VXI device in slot %d failed selftest (mfr ID: %04x, model number: %04x).

−159 VME device with logical address %d is either non-VXI or non-functional.

−160 Measurement cannot be performed because the source is not operational.

−161 Instrument in slot %d has non-functional dual-port RAM.

−164 VXI device in slot %d statically addressed at reserved address %d.

−165 Service not supported by %s (%d).

−166 Instrument with model code %08x is not recognized.

−167 Invalid instrument attribute %s.

−169 Instrument %s is not in the current configuration.

−190 Ill-formed connection.

−191 Mode conflict.

−192 Instrument sense connection MUST be made.

−200 Force value too big for highest range %g.

−202 I-limit value %g too small for specified range.

−203 I-limit value %g too large for specified range.

−204 I-range value %g too large for specified range.

−206 V-limit value %g too large for specified range.

−207 V-range value %g too large for specified range.

−213 Value too big for range selection, %g.

−218 Safe operating area for device exceeded.

−221 Thermal shutdown has occurred on device %s.

−224 Limit value %g too large for specified range.

−230 V-limit value %g too small for specified range.

−231 Range too small for force value.

−233 Cannot force when not connected.

−235 C-range value %g too large for specified range.

−236 G-range value %g too large for specified range.

−237 No bias source.

−238 VMTR not allocated to make the measurement.

−239 Timeout occurred attempting measurement.

−240 Power Limited to 20 W. Check voltage and current range settings.

−250 IEEE-488 time out during data transfer for addr %d.

−252 No IEEE-488 interface in configuration.

−253 IEEE-488 secondary address %d invalid for device.

Model 4200A-SCS LPT Library Programming Section 1: Introduction

4200A-LPT-907-01 Rev. D May 2024 1-13

Code Status or error titles

−254 IEEE-488 invalid primary address: %d.

−255 IEEE-488 receive buffer overflow for address %d.

−261 No SMU found, kelvin connection test not performed.

−262 SRU not responding.

−263 DMM not connected to SRU.

−264 GPIB communications problem.

−265 SRU not mechanically calibrated.

−266 Invalid SRU command.

−267 SRU hardware problem.

−268 SRU kelvin connection problem.

−269 SRU general error.

−270 Floating point divide by zero.

−271 Floating point log of zero or negative number.

−272 Floating point square root of negative number.

−273 Floating point pwr of negative number.

−280 Label #%d not defined.

−281 Label #%d redefined.

−282 Invalid label ID #%d.

−301 PCI ID read back on send error, slot.

−455 Protocol version mismatch.

−510 No command byte available (read) or SRQ not asserted.

−511 CAC conflict.

−512 Not CAC.

−513 Not SAC.

−514 IFC abort.

−515 GPIB timed out.

−516 Invalid function number.

−517 TCT timeout.

−518 No listeners on bus.

−519 Driver problem.

−520 Bad slot number.

−521 No listen address.

−522 No talk address.

−523 IBUP Software configuration error.

−524 No utility function.

−550 EEPROM checksum error in %s: %s.

−551 EEPROM read error in %s: %s.

−552 EEPROM write error in %s: %s.

−553 %s returned unexpected error code %d.

−601 System software internal error; contact the factory.

−602 Module load error: %s.

−603 Module format error: %s.

−604 Module not found: %s.

−610 Could not start %s.

−611 Network error.

−612 Protocol error.

−620 Driver load error. Could not load %s.

Section 1: Introduction Model 4200A-SCS LPT Library Programming

1-14 4200A-LPT-907-01 Rev. D May 2024

Code Status or error titles

−621 Driver configuration function not found. Driver is %s.

−640 %s serial number %s failed diagnostic test %d.

−641 %s serial number %s failed diagnostic test %d with a fatal fault.

−650 Request to open unknown channel type %08x.

−660 Invalid group ID %d.

−661 Invalid test ID %d.

−662 Ill-formed list.

−663 Executor is busy.

−664 Invalid unit ID %d.

−701 Error configuring serial port %s.

−702 Error opening serial port %s.

−703 Call kspcfg before using kspsnd or ksprcv.

−704 Error reading serial port.

−705 Timeout reading serial port.

−706 Terminator not received before read buffer filled.

−707 Error closing serial port %s.

−801 Exception code %d reported from VPU in slot %d, channel %d.

−802 VPU in slot %d has reached thermal limit.

−803 Start and stop values for defined segmented arb violate minimum slew rate.

−804 Function not valid in the present pulse mode.

−805 Too many points specified in array.

−806 Not enough points specified in array.

−807 Function not supported by 4200-VPU.

−808 Solid state relay control values ignored for 4200-VPU.

−809 Time Per Point must be between %g and %g.

−810 Attempts to control VPU trigger output are ignored by the 4200-VPU.

−811 Measure range not valid for %s.

−812 WARNING: Sequence %d, segment %d. Cannot measure with PGUs/VPUs.

−820 PMU segment start value %gV at index %d does not match previous segment stop value of
%gV.

−821 PMU segment stop time (%g) greater than segment duration (%g)

−822 PMU sequence error for entry %d. Start value %gV does not match previous stop value of
%gV.

−823 Start and stop window was specified for PMU segment %d, but no measurement type was set.

−824 Measurement type was specified for PMU segment %d, but start and stop window is invalid.

−825 %s set to post to column %s. Cannot fetch data that was registered as real-time.

−826 Cannot execute PMU test. No channels defined.

−827 Invalid pulse timing parameters in PMU Pulse IV test.

−828 Maximum number of segments per PMU channel exceeded (%d).

−829 The sum of base and amplitude voltages (%gV) exceeds maximum (%gV) for present range.

−830 Pulse waveform configuration exceeded output limits. Increase pulse period or reduce
amplitude or total time of pulsing.

−831 Maximum number of samples per channel (%d) exceeded for PMU%d-CH%d.

−832 Pulse slew rate is too low. Increase pulse amplitude or reduce pulse rise and fall time.

−833 Invalid trigger source for PIV test.

−834 Invalid pulse timing parameters.

−835 Using the specified sample rate of %g samples/s, the time (%g) for sequence %d is too short
for a measurement.

Model 4200A-SCS LPT Library Programming Section 1: Introduction

4200A-LPT-907-01 Rev. D May 2024 1-15

Code Status or error titles

−836 WARNING: Sequence %d, segment %d is attempting to measure while solid state relay is
open. Disabling measurement.

−837 No RPM connected to channel %d of PMU in slot %d.

−838 Timing parameters specify a pulse that is too short for a measurement using %g samples/s.

−839 Timing parameters contain measurement segments that are too short to measure using %g
samples/s.

−840 SSR cannot be opened when using RPM ranges. Please change SSR array to enable relay or
select PMU measure range.

−841 WARNING: SSR is open on segment immediately preceding sequence %d. Measurement will
be invalid for 25 μs while relay settles.

−842 This test has exceeded the system power limit by %g watts.

−843 Step size of %g is not evenly divisible by 10 ns.

−844 Invalid combination of start %g1, stop %g2 and step %g3.

−845 No pulse sweeper was configured − Test will not run.

−846 Maximum Source Voltage Reached: Requested voltage across DUT resistance exceeds
maximum voltage available.

−847 Output was not configured − Test will not run.

−848 Sweep step count mismatch for the sweeping channels. All sweeping channels must have
same # of steps.

−849 ILimit command is not supported for RPM in slot %d, channel %d.

−850 Sample Rate mismatch. All channels in test must have the sample rate.

−851 Invalid PxU stepper/sweeper configuration.

−900 Environment variable KI_PRB_CONFIG is not set. The prober drivers will be inaccessible.

−901 Environment variable KI_PRB_CONFIG contains an invalid path. The prober drivers will be
inaccessible.

−902 Prober configuration file not found. File was %s. The prober drivers will be inaccessible.

−903 Unable to copy the prober configuration %s to %s. The prober driver many not be available.

−10000 to
−20000

User Module (UTM) error codes. Refer to user module description (help) for details.

Large number reported readings and explanations
Measurement value Condition

1.0000E+22 or
10.0000E+21

SMU is in range compliance, where the reading is at the maximum of a fixed range.
See “Compliance limits” in the Model 4200A-SCS Source-Measure Unit (SMU) User's

Manual for details.

5.0000E+22 SMU is in range compliance while autoranging, where the reading is not at the
maximum voltage or current range.

7.0000E+22 SMU in real compliance. See “Compliance limits” in the Model 4200A-SCS
Source-Measure Unit (SMU) User's Manual for details.

1.0000E+23 Measurement aborted or cannot be performed, such as when using an LPT command
to make a measurement if the SMU output is not enabled.

Section 1: Introduction Model 4200A-SCS LPT Library Programming

1-16 4200A-LPT-907-01 Rev. D May 2024

LPT library and Clarius interaction when using UTMs
ITMs and UTMs are typically independent. However, an ITM and a UTM are not independent if the

UTM occurs before an ITM in the project and the UTM configures a switching matrix. Under these

conditions, the following occur:

• Clarius assumes that the ITM depends on the UTM-created switching configuration.

• Clarius maintains the UTM-created switching configuration during execution of the ITM.

Clarius actions affected by ITM and UTM sequence

Test sequence in the project Clarius action

A UTM precedes an ITM Before the ITM executes, the devint command initializes all devices,

except for the switching matrix (the switching configuration is preserved to

run the subsequent ITM).

A UTM precedes a UTM No initialization operations occur.

An ITM precedes an ITM No LPT library calls occur.

An ITM precedes a UTM Before the UTM executes, the devint command initializes all devices,

including the switching matrix.

In this section:

LPT commands for general operations 2-2
clrscn .. 2-2
clrtrg ... 2-3
delay .. 2-5
devint ... 2-6
disable .. 2-8
enable .. 2-8
execut .. 2-9
getinstattr ... 2-9
getinstid .. 2-11
getinstname.. 2-11
GetKiteCycle .. 2-11
GetKiteDevice .. 2-12
GetKiteSite ... 2-12
GetKiteSubsite ... 2-12
GetKiteTest .. 2-13
getlpterr .. 2-13
imeast .. 2-14
inshld .. 2-14
kibcmd .. 2-14
kibdefclr .. 2-16
kibdefdelete .. 2-17
kibdefint .. 2-17
kibrcv .. 2-18
kibsnd ... 2-19
kibspl .. 2-20
kibsplw ... 2-21
kspcfg ... 2-21
kspdefclr ... 2-22
kspdefdelete ... 2-23
kspdefint ... 2-23
ksprcv ... 2-24
kspsnd .. 2-25
PostDataDouble ... 2-25
PostDataDoubleBuffer ... 2-27
PostDataInt .. 2-30
PostDataString ... 2-30
rdelay ... 2-31
rtfary ... 2-31
savgX ... 2-32
scnmeas ... 2-33
searchX .. 2-34
setmode ... 2-37
sintgX ... 2-39
smeasX .. 2-40
trigcomp ... 2-41
trigXg, trigXl.. 2-42
tstdsl ... 2-44
tstsel ... 2-45

Section 2

LPT commands for general operations

Section 2: LPT commands for general operations Model 4200A-SCS LPT Library Programming

2-2 4200A-LPT-907-01 Rev. D May 2024

LPT commands for general operations
General operation commands include commands to control timing, execution, communications, and

test status.

clrscn
This command clears the measurement scan tables associated with a sweep.

Usage

int clrscn(void);

Details

When a single sweepX command is used in a test sequence, there is no need to program a clrscn

command because the execut command clears the table.

The clrscn command is only required when multiple sweeps and multiple sweep measurements are

used in a single test sequence.

Example

double res1[14], res2[14];

.

conpin(SMU1, 1, 0);

conpin(SMU2, 2, 0);

conpin(GND, 3, 0);

forcev(SMU1, 4.0); /* Apply 4 V to gate. */

smeasi(SMU2, res1); /* Measure drain current in */

 /* each step; store results */

 /* in res1 array. */

sweepv(SMU2, 0.0, 14.0, 13, 2.0E-2); /* Make */

 /* 14 measurements */

 /* over a range of 0 V to 14 V. */

clrscn(); /* Clear smeasi. */

forcev(SMU1, 5.0); /* Apply 5 V to gate. */

smeasi(SMU2, res2); /* Measure drain current in */

 /* each step; store results in */

 /* res2 array. */

sweepv(SMU2, 0.0, 14.0, 13, 2.0E-2); /* Perform */

 /*14 measurements */

 /* over a range 0 V through 14 V. */

Model 4200A-SCS LPT Library Programming Section 2: LPT commands for general operations

4200A-LPT-907-01 Rev. D May 2024 2-3

In this example, the sweepX command configures SMU2 to source a voltage that sweeps from 0 V through

+14 V in 14 steps. The results of the first sweepv command are stored in an array called res1. Because of

the clrscn command, the data and pointers associated with the first sweepv command are cleared. Then 5

V is forced to the gate, and the measurement process is repeated. Results from these second
measurements are stored in an array called res2.

This example gets the measurement data needed to create a graph showing the gate voltage-to-drain
current characteristics of a field-effect transistor (FET). The program samples the current generated by
SMU2 14 times. This is done in two phases: First with 4 V applied to the gate, and then with 5 V applied. The
gate voltages are generated by SMU1.

Also see

execut (on page 2-9)

sweepX (on page 4-31)

clrtrg
This command clears the user-selected voltage or current level that is used to set trigger points. This permits the

use of the trigXl or trigXg command more than once with different levels in a single test sequence.

Usage

int clrtrg(void);

Details

The searchX, sweepX, asweepX, or bsweepX command, each with different voltage or current levels,

may be used repeatedly within a command if each is separated by a clrtrg command.

Section 2: LPT commands for general operations Model 4200A-SCS LPT Library Programming

2-4 4200A-LPT-907-01 Rev. D May 2024

Example

double forcur[11], revcur[11]; /* Defines arrays. */

.

.

conpin(SMU1, 1, 0);

conpin(GND, 2, 0);

trigil(SMU1, 5.0e-3); /* Increase ramp to I = 5 mA.*/

smeasi(SMU1, forcur); /* Measure forward */

 /* characteristics; */

 /* return results to forcur */

 /* array. */

sweepv(SMU1, 0.0, 0.5, 10, 5.0e-3); /* Output */

 /* 0 V to 0.5 V in 11 */

 /* steps, each 5 ms duration. */

clrtrg(); /* Clear 5 mA trigger point. */

clrscn(); /* Clear sweepv. */

trigil(SMU1, -0.5e-3); /* Decrease ramp to */

 /* I = -0.5 mA. */

smeasi(SMU1, revcur); /* Measure reverse */

 /* characteristics; */

 /* return results to revcur */

 /* array. */

sweepv(SMU1, 0.0, -30.0, 10, 5.00e-3); /* Output */

 /* 0 V to -30 V in 11 steps */

 /* each 5 ms in duration. */

This example collects data and creates a graph that shows the forward and reverse conduction
characteristics of a diode. The clrtrg command allows multiple triggers to be programmed twice in the

same test sequence. Each result is returned to a separate array.

Also see

asweepX (on page 4-2)

bsweepX (on page 4-7)

searchX (on page 2-34)

sweepX (on page 4-31)

trigXg, trigXl (on page 2-42)

Model 4200A-SCS LPT Library Programming Section 2: LPT commands for general operations

4200A-LPT-907-01 Rev. D May 2024 2-5

delay
This command provides a user-programmable delay in a test sequence.

Usage

int delay(long n);

n The duration of the delay in milliseconds

Details

The delay command can be called anywhere in the test sequence.

Example

double ir4;

.

.

conpin(SMU1, 1, 0);

conpin(GND, 2, 0);

forcev(SMU1, 60.0); /* Generate 60 V from SMU1. */

delay(20); /* Pause for 20 ms. */

measi(SMU1, &ir4); /* Measure current; return */

 /* result to ir4. */

This example measures the leakage current of a variable-capacitance diode. SMU1 applies 60 V across the
diode. This device is always configured in the reverse bias mode, so the high side of SMU1 is connected to
the cathode. Because this type of diode has very high capacitance and low leakage current, a 20 ms delay is

added. After the delay, current through SMU1 is measured and stored in the variable IR4.

Also see

rdelay (on page 2-31)

Section 2: LPT commands for general operations Model 4200A-SCS LPT Library Programming

2-6 4200A-LPT-907-01 Rev. D May 2024

devint
This command resets all active instruments in the system to their default states.

Usage

int devint(void);

Details

Resets all active instruments, including the 4200A-CVIV, in the system to their default states. It clears

the system by opening all relays and disconnecting the pathways. Meters and sources are reset to

their default states. Refer to the hardware manuals for the instruments in your system for listings of

available ranges and the default conditions and ranges.

The devint command is implicitly called by the execut and tstdsl commands.

To abort a running pulse_exec pulse test, see dev_abort.

devint does the following:

1. Clears all sources by calling devclr.

2. Clears the matrix crosspoints by calling clrcon.

3. Clears the trigger tables by calling clrtrg.

4. Clears the sweep tables by calling clrscn.

5. Resets GPIB instruments by sending the string defined with kibdefint.

6. Resets the active instrument cards.

Instrument cards are reset in the following order:

1. SMU instrument cards

2. CVU instrument cards

3. Pulse instrument cards (4225-PMU or 4220-PGU)

The SMUs return to the following states:

• 100 μA and 10 V ranges

• Autorange on

• Voltage source

• 0 V DC bias

Model 4200A-SCS LPT Library Programming Section 2: LPT commands for general operations

4200A-LPT-907-01 Rev. D May 2024 2-7

The 4210-CVU or 4215-CVU returns to the following states:

• 30 mVRMS AC signal

• 0 V DC bias

• 100 kHz frequency

• Autorange on

• Cable length compensation set to 0 m

• Open/Short/Load compensation disabled

The 4225-PMU or 4220-PGU returns to the following states:

• The pulse mode is maintained. For example, if the pulse card is in Segment Arb mode, it is still in

Segment Arb mode after the devint process is complete.

• 5 V and 10 mA ranges

• If in pulse mode:

▪ Period of 1 μs

▪ Transition times (rise and fall) of 100 ns

▪ Width of 500 ns

▪ Voltage high and low of 0 V

▪ Load of 50 Ω

• If in segmented arb mode, Start Voltage is 0 V

• If in arbitrary waveform mode, Table Length is 100

Also see

clrcon (on page 7-2)

clrscn (on page 2-2)

clrtrg (on page 2-3)

dev_abort (on page 6-4)

devclr (on page 4-9)

kibdefint (on page 2-17)

Section 2: LPT commands for general operations Model 4200A-SCS LPT Library Programming

2-8 4200A-LPT-907-01 Rev. D May 2024

disable
This command stops the timer and sets the time value to zero (0).

Usage

int disable(int instr_id);

instr_id The instrument identification code of the timer module (TIMERn)

Details

Timer reading is also stopped.

Sending disable(TIMERn) stops the timer and resets the time value to zero (0).

Also see

enable (on page 2-8)

enable
This command provides correlation of real time to measurements of voltage, current, conductance, and

capacitance.

Usage

int enable(int instr_id);

instr_id The instrument identification code of the timer module (TIMERn)

Details

Sending enable(TIMERn) initializes and starts the timer and allows other measurements to read the

timer. The time starts at zero (0) at the time of the enable call.

Also see

disable (on page 2-8)

Model 4200A-SCS LPT Library Programming Section 2: LPT commands for general operations

4200A-LPT-907-01 Rev. D May 2024 2-9

execut
This command causes the system to wait for the preceding test sequence to be executed.

Usage

int execut(void);

Details

This command waits for all previous LPT library commands to complete and then sends the devint

command.

Also see

devint (on page 2-6)

getinstattr
This command returns configured instrument attributes.

Usage

int getinstattr(int instr_id, char *attrstr, char *attrvalstr);

instr_id The instrument identification code of the LPT library instrument

attrstr The instrument attribute name string

attrvalstr The value string of the requested attribute; see Details

Details

All instruments in the system configuration have specific attributes. GPIB address is an example of an

attribute. The values of these attributes change as the system configuration is changed. Therefore, by

getting the values of key attributes at run time, user modules can be developed in a

configuration-independent manner. Given an instrument identification code and an attribute name

string, this module returns the specified attribute value string.

If the attribute value string exists, the returned string will match one of the values shown in the Attribute

value string column of the following table. If the requested attribute does not exist, the attrvalstr

parameter is set to a null string.

Possible values for the getinstattr parameters are listed in the following table.

Section 2: LPT commands for general operations Model 4200A-SCS LPT Library Programming

2-10 4200A-LPT-907-01 Rev. D May 2024

getinstattr parameter values

Instrument identification code Attribute name string Attribute value string

GPIx

GPIBADDR 1 to 30

MODELNUM GPI 2-terminal

GPI 4-terminal

CMTRx

GPIBADDR 1 to 30

MODELNUM KI82

KI590

KI595

KI4284

KI4294

PGUx

GPIBADDR 1 to 30

MODELNUM KI3401

KI3402

HP8110

HP81110

SMUx MODELNUM KI4200

KI4210

MTRX1 MODELNUM KI707

KI708

TF1

MODELNUM KI8006

KI8007

NUMOFPINS 12

72

PRBR1

NUMOFPINS 2 to 72

MODELNUM FAKE

CC12K

CM500

MANL

MM40

PA200

MPI

CVUx MODELNUM KICVU4210

VPUx

VPUxCH1

VPUxCH2

MODELNUM KIVPU4220

PMUx

PMUxCH1

PMUxCH2

MODELNUM KIPMU4225

CVIVx MODELNUM KICVIV

GNDU MODELNUM GNDU

Also see

None

Model 4200A-SCS LPT Library Programming Section 2: LPT commands for general operations

4200A-LPT-907-01 Rev. D May 2024 2-11

getinstid
This command returns the instrument identifier (ID) from the instrument name string.

Usage

int getinstid(char *instr_name, int *instr_id);

instr_name The instrument name string

instr_id The instrument identification code

Also see

None

getinstname
This command returns the instrument name string from the instrument identifier (ID).

Usage

int getinstname(int *instr_id, char *inst_name);

instr_id The instrument identification code

inst_name The returned instrument name string

Also see

None

GetKiteCycle
This command returns the present Clarius cycle number.

Usage

int GetKiteCycle(void);

Details

If no cycling is active, GetKiteCycle returns 1.

Also see

None

Section 2: LPT commands for general operations Model 4200A-SCS LPT Library Programming

2-12 4200A-LPT-907-01 Rev. D May 2024

GetKiteDevice
This command returns the device that Clarius is presently testing.

Usage

int GetKiteDevice(void);

Example

char strVal[25];

GetKiteSubsite(strVal, 25);

printf("KiteSubsite = %s\n", strVal);

GetKiteDevice(strVal, 25);

printf("KiteDevice = %s\n", strVal);

GetKiteTest(strVal, 25);

printf("KiteTest = %s\n", strVal

A user test module (UTM) that returns the present subsite, device, and test.

Also see

None

GetKiteSite
This command returns the site number for the site that Clarius is presently testing.

Usage

int GetKiteSite(void);

Details

The site number is an integer that designates the relative numerical position of the presently tested

site in the prober site-visit sequence. However, users normally correlate Clarius site numbers with

prober site coordinates. GetKiteSite does not return prober site coordinates.

For more information about Clarius site numbers, refer to “Configure sites” in the Model 4200A-SCS

Clarius User’s Manual.

Also see

None

GetKiteSubsite
This command returns the subsite number for the site that Clarius is presently testing.

Usage

int GetKiteSubsite(void);

Model 4200A-SCS LPT Library Programming Section 2: LPT commands for general operations

4200A-LPT-907-01 Rev. D May 2024 2-13

Example

char strVal[25];

GetKiteSubsite(strVal, 25);

printf("KiteSubsite = %s\n", strVal);

GetKiteDevice(strVal, 25);

printf("KiteDevice = %s\n", strVal);

GetKiteTest(strVal, 25);

printf("KiteTest = %s\n", strVal

A user test module (UTM) that returns the present subsite, device, and test.

Also see

None

GetKiteTest
This command returns the test that Clarius is presently testing.

Usage

int GetKiteTest(void);

Example

char strVal[25];

GetKiteSubsite(strVal, 25);

printf("KiteSubsite = %s\n", strVal);

GetKiteDevice(strVal, 25);

printf("KiteDevice = %s\n", strVal);

GetKiteTest(strVal, 25);

printf("KiteTest = %s\n", strVal

A user test module (UTM) that returns the present subsite, device, and test.

Also see

None

getlpterr
This command returns the first LPT library error since the last devint command.

Usage

int getlpterr(void);

Details

This command returns the error code of the first error encountered since the last call to the devint

command.

Also see

devint (on page 2-6)

Section 2: LPT commands for general operations Model 4200A-SCS LPT Library Programming

2-14 4200A-LPT-907-01 Rev. D May 2024

imeast
This command forces a reading of the timer and returns the result.

Usage

int imeast(int instr_id, double *result);

instr_id The instrument identification code of the device

result The variable assigned to the measurement

Details

This command applies to all timers.

Also see

None

inshld
Provided for compatibility with Model S400 LPT library.

Usage

int inshld(void);

Also see

None

kibcmd
This command enables universal, addressed, and unaddressed GPIB bus commands to be sent through the

GPIB interface.

Usage

int kibcmd(unsigned int timeout, unsigned int numbytes, char* cmdbuffer);

timeout The timeout for transfer in 100 ms units (for example, a timeout of 40 = 4.0 s)

numbytes The number of bytes in cmdbuffer to send with the ATN line asserted

cmdbuffer The array that contains the bytes to transfer over the GPIB interface

Details

These commands can consist of any command that is valid with the ATN line asserted, such as DCL,

SDC, and GET. The following table lists these GPIB commands.

Model 4200A-SCS LPT Library Programming Section 2: LPT commands for general operations

4200A-LPT-907-01 Rev. D May 2024 2-15

kibcmd does the following:

1. Asserts attention (ATN).

2. Sends byte string (command buffer).

3. De-asserts ATN.

GPIB command list

GPIB command Data byte (Hex) Comments

Universal

LLO (local lockout)

DCL (device clear)

SPE (serial poll enable)

SPD (serial poll disable)

11

14

18

19

Locks out front-panel controls.

Returns instrument to default conditions.

Enables serial polling.

Disables serial polling.

Addressed

SDC (selective device clear)

GTL (go to local)

GET (group execute trigger)

04

01

08

Returns instrument to default conditions.

Sends go to local.

Triggers instrument for reading.

Unaddressed

UNL (unlisten)

UNT (untalk)

LAG (listen address group)

TAG (talk address group)

SCG (secondary command group)

3F

5F

20 to 3E

40 to 5E

60 to 7E

Removes all listeners from GPIB bus.

Removes any talkers from GPIB bus.

Place instrument at this primary address (0
through 30) in listen mode.

Place instrument at this primary address (0
through 30) in talk mode.

Place instrument at this secondary address
(0 through 30) in listen mode.

Example

int status;

char GPIBtrigger[5] = {0x3F, 0x2F, 0x08, 0x3F, 0x00};

/* Unlisten = 3F (UNL) */

/* Listen address = 32 + 15 = 2F */

/* Group Execute Trigger (GET) = 08 */

/* UNL */

/* Terminate string with NULL */

.

.

.

status = kibcmd(30, strlen(GPIBtrigger),GPIBtrigger);

/* Use 3s timeout */

This example illustrates how the kibcmd command could be used to issue a GPIB bus trigger command to a

GPIB instrument located at address 15.

Also see

None

Section 2: LPT commands for general operations Model 4200A-SCS LPT Library Programming

2-16 4200A-LPT-907-01 Rev. D May 2024

kibdefclr
This command defines the device-dependent command sent to an instrument connected to the GPIB interface.

Usage

int kibdefclr(int pri_addr, int sec_addr, unsigned int timeout, double delay, unsigned

int snd_size, char *sndbuffer);

pri_addr The primary address of the instrument (0 to 30; the controller uses address 31)

sec_addr The secondary address of the instrument (1 to 30; if the instrument device does not
support secondary addressing, this parameter must be −1)

timeout The GPIB timeout for the transfer in 100 ms units (for example, a
timeout of 40 = 4.0 s)

delay The time to wait after the device-dependent string is sent to the device, in seconds

snd_size The number of bytes to send over the GPIB interface

sndbuffer The physical byte buffer containing the data to send over the bus (the physical
CLEAR string); a maximum of 1024 bytes is allowed

Details

This string is sent during any normal tester-based devclr command. It ensures that if the tester is

calling the devclr command internally, any external GPIB device is cleared with the given string.

Each call to kibdefclr copies parameters into a data structure within the tester memory. These data

structures are allocated dynamically. After the execution of the command buffer using execut, these

tables are cleared. Any strings previously defined must be redefined.

The tester system allows you to define a maximum of 20 clear and 20 initialization strings. Each string

may contain up to a maximum of 1024 bytes. Once defined, these strings remain in effect until the

execut statement is processed.

Strings are sent over the GPIB interface in a first-in, first-out queue. This means that the first call to the

kibdefclr or kibdefint command is the first string sent over the GPIB. The devclr (kibdefclr)

strings are always sent before initialization.

The KIBLIB devclr strings are sent before the devclr and devint commands execute. This may

be a problem when communicating with any Keithley-supported GPIB instruments. This may also have

an effect on the bsweepX command, because the bsweepX command sends a call to the devclr

command to clear active sources. It is not recommended to use GPIB instruments when performing

tests with the bsweepX command.

Also see

bsweepX (on page 4-7)

devclr (on page 4-9)

devint (on page 2-6)

execut (on page 2-9)

kibdefint (on page 2-17)

Model 4200A-SCS LPT Library Programming Section 2: LPT commands for general operations

4200A-LPT-907-01 Rev. D May 2024 2-17

kibdefdelete
This command deletes all command definitions previously made with the kibdefclr (Keithley GPIB define device

clear) and kibdefint (Keithley GPIB define device initialize) commands.

Usage

int kibdefdelete(void);

Details

Once this command is issued, any previous definitions made using kibdefclr or kibdefint will no

longer occur at devint or devclr time.

You can override this command by re-issuing the kibdefint and kibdefclr commands.

Also see

None

kibdefint
This command defines a device-dependent command sent to an instrument connected to the GPIB interface.

Usage

int kibdefint(int pri_addr, int sec_addr, unsigned int timeout, double delay, unsigned

int snd_size, char *snd_buff);

pri_addr The primary address of the instrument (0 to 30; the controller uses address 31)

sec_addr The secondary address of the instrument (1 to 30; if the instrument device does not
support secondary addressing, this parameter must be −1)

timeout The GPIB timeout for the transfer in 100 ms units (for example, timeout = 40 = 4.0 s)

delay The time to wait after the device-dependent string is sent to the device, in seconds

snd_size The number of bytes to send over the GPIB interface

snd_buff The physical byte buffer containing the data to send over the bus (the INITIALIZE
string); a maximum of 1024 bytes is allowed

Details

This string is sent during any normal tester-based call to the devint command. It ensures that if the

tester is calling the devint command internally, any external GPIB device is initialized with the rest of

the known instruments.

Each call to kibdefclr copies parameters into a data structure within the tester memory. These data

structures are allocated dynamically. After the execution of the command buffer using execut, these

tables are cleared. Any strings previously defined must be redefined.

The tester system allows you to define a maximum of 20 clear and 20 initialization strings. Each string

may contain up to a maximum of 1024 bytes. Once defined, these strings remain in effect until the

execut statement is processed.

Section 2: LPT commands for general operations Model 4200A-SCS LPT Library Programming

2-18 4200A-LPT-907-01 Rev. D May 2024

Strings are sent over the GPIB interface in a first-in, first-out queue. This means that the first call to the

kibdefclr or kibdefint command is the first string sent over the GPIB. The devclr (kibdefclr)

strings are always sent before initialization.

The KIBLIB devclr strings are sent before the devclr and devint commands execute. This may

be a problem when communicating with any Keithley-supported GPIB instruments. This may also have

an effect on the bsweepX command, because the bsweepX command sends a call to the devclr

command to clear active sources. It is not recommended to use GPIB instruments when performing

tests with the bsweepX command.

Also see

bsweepX (on page 4-7)

devclr (on page 4-9)

devint (on page 2-6)

execut (on page 2-9)

kibdefclr (on page 2-16)

kibrcv
This command reads a device-dependent string from an instrument connected to the GPIB interface.

Usage

int kibrcv(int pri_addr, int sec_addr, char term, unsigned int timeout, unsigned int

rcv_size, unsigned int *rcv_len, char *rcv_buff);

pri_addr The primary address of the instrument (0 to 30; the controller uses address 31)

sec_addr The secondary address of the instrument (1 to 30; if the instrument device does not
support secondary addressing, this parameter must be −1)

term The ASCII delimiter character of the returned string; this is the byte used for
terminating data buffer reading

timeout The GPIB timeout for the transfer in 100 ms units (for example, timeout = 40 = 4.0 s)

rcv_size The physical size of the buffer that receives data; this is the maximum number of
bytes that can be read from the device

rcv_len The number of bytes that are read from the device on the GPIB interface; this variable
is returned by the tester after all bytes are read from the device

rcv_buff The physical byte buffer destined to receive the data from the device connected to the
GPIB interface

Details

The kibrcv command receives a buffer from the GPIB interface by doing the following:

1. Assert attention (ATN).

2. Send device LISTEN address.

3. Send device TALK address.

4. Send secondary address (if not −1).

5. De-assert ATN.

Model 4200A-SCS LPT Library Programming Section 2: LPT commands for general operations

4200A-LPT-907-01 Rev. D May 2024 2-19

6. Read byte array from the device rcv_buff parameter until end-or-identify (EOI) or the delimiter is

received.

7. Assert ATN.

8. Send UNTalk (UNT).

9. Send UNListen (UNL).

10. De-assert ATN.

The rcv_size parameter defines the maximum number of bytes physically allowed in the buffer. If

the rcv_size parameter is greater than the byte string returned by the instrument, the device is

short-cycled and only the maximum number of bytes is returned.

Also see

None

kibsnd
This command sends a device-dependent command to an instrument connected to the GPIB interface.

Usage

int kibsnd(int pri_addr, int sec_addr, unsigned int timeout, unsigned int send_len, char

*send_buff);

pri_addr The primary address of the instrument (0 to 30; the controller uses address 31)

sec_addr The secondary address of the instrument (1 to 30; if the instrument device does not
support secondary addressing, this parameter must be −1)

timeout The GPIB timeout for the transfer in 100 ms units (for example, timeout = 40 = 4.0 s)

send_len The number of bytes to send over the GPIB interface

send_buff The physical byte buffer containing the data to send over the bus

Details

The kibsnd command sends a buffer out through the GPIB interface by doing the following:

1. Assert attention (ATN).

2. Send device LISTEN address.

3. Send secondary address (if not −1).

4. Send my TALK address.

5. De-assert ATN.

6. Send the send_buff parameter with end-or-identify (EOI) asserted with the last byte.

7. Assert ATN.

8. Send UNTalk (UNT).

9. Send UNListen (UNL).

10. De-assert ATN.

Also see

None

Section 2: LPT commands for general operations Model 4200A-SCS LPT Library Programming

2-20 4200A-LPT-907-01 Rev. D May 2024

kibspl
This command serial polls an instrument connected to the GPIB interface.

Usage

int kibspl(int pri_addr, int sec_addr, unsigned int timeout,

int *serial_poll_byte);

pri_addr The primary address of the instrument (0 to 30; the controller uses address 31)

sec_addr The secondary address of the instrument (1 to 30; if the instrument device does not
support secondary addressing, this parameter must be −1)

timeout The GPIB polling timeout in 100 ms units (for example, timeout = 40 = 4.0 s)

serial_poll_byte The serial poll status byte returned by the device presently being polled

Details

The kibspl command does the following:

1. Assert attention (ATN).

2. Send serial poll enable (SPE).

3. Send LISTEN address.

4. Send device TALK address.

5. Send secondary address (if not −1).

6. De-assert ATN.

7. Poll GPIB interface until data is available.

8. Read the serial_poll_byte parameter from the device (if data is available), else

serial_poll_byte = 0 (indicating error; device not SRQing).

9. Assert ATN.

10. Send serial poll disable (SPD).

11. Send UNTalk (UNT).

12. Send UNListen (UNL).

13. De-assert ATN.

Also see

kibsplw (on page 2-21)

Model 4200A-SCS LPT Library Programming Section 2: LPT commands for general operations

4200A-LPT-907-01 Rev. D May 2024 2-21

kibsplw
This command synchronously serial polls an instrument connected to the GPIB interface.

Usage

int kibsplw(int pri_addr, int sec_addr, unsigned int timeout, int *serial_poll_byte);

pri_addr The primary address of the instrument (2 to 31)

sec_addr The secondary address of the instrument (1 to 31; if the instrument device does not
support secondary addressing, this parameter must be −1)

timeout The GPIB polling timeout in 100 ms units (for example, a timeout of 40 = 4.0 s)

serial_poll_byte The serial poll status byte variable name returned by the device presently
being polled

Details

This command waits for SRQ to be asserted on the GPIB by any device. After SRQ is asserted, a

serial poll sequence is initiated for the device and the serial poll status byte is returned.

The kibsplw command does the following:

1. Waits with timeout for general SRQ assertion on the GPIB.

2. Calls the kibspl command.

Also see

kibspl (on page 2-20)

kspcfg
This command configures and allocates a serial port for RS-232 communications.

Usage

int kspcfg(int port, int baud, int databits, int parity, int stopbits, int flowctl);

port The RS-232 port to be used; only port 1 is supported

baud The transmission rate to be used; valid rates are 2400, 4800, 9600, 14400, and
19200 baud

databits The number of data bits to be used; valid inputs are 7 or 8 bits

parity Determines whether or not parity bits will be transmitted; valid inputs are: 0 (no

parity), 1 (odd parity), or 2 (even parity)

stopbits Sets the number of stop bits to be transmitted; 1 or 2

flowctl Determines the type of flow control to be used: 0 (no flow control), 1 (XON/XOFF flow

control), or 2 (hardware)

Section 2: LPT commands for general operations Model 4200A-SCS LPT Library Programming

2-22 4200A-LPT-907-01 Rev. D May 2024

Details

Port 1 must not be allocated to another program or utility when using the ksp (Keithley Serial Port)

commands.

• The databits, parity, stopbits, and flowctl settings must match those on the instrument or device

that you wish to control.

• Using a flow control setting of 0 may result in buffer overruns if the device or instrument that you

are controlling has a high data rate.

• If you use a flow-control setting of 2 (hardware), you must make sure that the RS-232 cable has

enough wires to handle the RTS/CTS signals.

Example

int status;

.

.

.

status = kspcfg(1, 19200, 8, 1, 1, 1);/* port 1, 19200 baud,

 8 bits, odd parity,

 1 stop bit, and

 xon-xoff flow ctl */

This example uses kspcfg to set port 1 to 19200 baud, 8 data bits, odd parity, 1 stop bit, and XON/XOFF

flow control.

Also see

None

kspdefclr
This command defines a device-dependent character string sent to an instrument connected to a serial port.

Usage

int kspdefclr(int port, double timeout, double delay, int buffsize, char *buffer);

port The RS-232 port to be used; only port 1 is supported; this port must have been
configured for communications with the kspcfg command

timeout The serial communications timeout (0 s to 600 s)

delay The amount of time to delay after sending the string to the serial device (0 s to 600 s)

buffsize The length of the string to send to the serial device

buffer A character string that contains the data to send to the serial device

Details

This string is sent during the normal tester devclr process. It ensures that if the tester is calling

devclr internally, any device connected to the configured serial port will be cleared with the

given string.

Model 4200A-SCS LPT Library Programming Section 2: LPT commands for general operations

4200A-LPT-907-01 Rev. D May 2024 2-23

Before issuing this command, you must configure the serial port using the kspcfg command.

• The commands sent to the serial device are issued in the order in which they were defined using

the kspdefclr command.

• The kspdefdelete command can be used to delete any previous definitions.

• The kspdefclr and kspdefint command strings are sent before normal (for example, a SMU)

instrument devclr and devint execution.

Also see

kspcfg (on page 2-21)

kspdefdelete
This command deletes all command definitions previously made with the kspdefclr (Keithley Serial Define

Device Clear) and kspdefint (Keithley Serial Define Device Initialize) commands.

Usage

int kspdefdelete(void);

Details

Once this command is issued, any previous definitions made using kspdefclr or kspdefint will no

longer occur at devint or devclr time.

You can override this command by re-issuing the original kspdefint and kspdefclr commands.

Also see

None

kspdefint
This command defines a device-dependent character string sent to an instrument connected to a serial port.

Usage

int kspdefint(int port, double timeout, double delay, int buffsize, char *buffer);

port The RS-232 port to be used; only port 1 is supported; this port must have been
configured for communications with the kspcfg command

timeout The serial communications timeout (0 s to 600 s)

delay The amount of time to delay after sending the string to the serial device (0 s to 600 s)

buffsize The length of the string to send to the serial device

buffer A character string that contains the data to send to the serial device

Section 2: LPT commands for general operations Model 4200A-SCS LPT Library Programming

2-24 4200A-LPT-907-01 Rev. D May 2024

Details

This string is sent during the normal tester devint process. It ensures that if the tester is calling

devint internally, any device connected to the configured serial port will be cleared with the

given string.

Before issuing this command, you must configure the serial port using the kspcfg command.

• The commands sent to the serial device are issued in the order in which they were defined using

the kspdefclr command.

• The kspdefdelete command can be used to delete any previous definitions.

• The kspdefclr and kspdefint command strings are sent before normal (for example, a SMU)

instrument devclr and devint execution.

Also see

kspcfg (on page 2-21)

ksprcv
This command reads data from an instrument connected to a serial port.

Usage

int ksprcv(int port, char terminator, double timeout, int

rcvsize, int *rcv_len, char *rcv_buffer);

port The RS-232 port to be used; only port 1 is supported; this port must have been
configured for communications with the kspcfg command

terminator The ASCII terminator for the received data; this character is used to terminate the
read

timeout The serial communications timeout: 0 s to 600 s

rcvsize The physical buffer size; this is used to control the maximum number of characters
that can be read from the device

rcv_len The actual number of characters read from the device; this value is returned to the
ksprcv command by the software

rcv_buffer A character array in which to store the data returned from the serial device

Also see

kspcfg (on page 2-21)

Model 4200A-SCS LPT Library Programming Section 2: LPT commands for general operations

4200A-LPT-907-01 Rev. D May 2024 2-25

kspsnd
This command sends a device-dependent command to an instrument attached to a RS-232 serial port.

Usage

int kspsnd(int port, double timeout, int cmdlen, char *cmd);

port The RS-232 port to be used; only port 1 is supported; this port must have been
configured for communications with the kspcfg command

timeout The serial communications timeout: 0 s to 600 s

cmdlen The number of characters that you are sending out the serial port

cmd The character array containing the data that you want sent out of the serial port

Also see

None

PostDataDouble
This command posts double-precision floating-point data from memory into the Clarius Analyze sheet.

Usage

int PostDataDouble(char *ColName, double *array);

ColName Column name for the data array in the Clarius Analyze sheet

array An array of data values for the Clarius Analyze sheet

Details

You can use the PostDataDouble and PostDataDoubleBuffer commands to post

double-precision floating-point data into the Clarius Analyze sheet. Up to 65,535 points (rows) can be

posted into the Analyze sheet. These commands are used after one measurement is finished and a

data value is assigned to the corresponding output variable.

You can use either of these commands to post data into the sheet. However, you should use the

PostDataDoubleBuffer command to post the large data sets that are typically generated by PMU

waveform measurements.

If you do not need to analyze or manipulate the test data before posting it into the Analyze sheet, you

can use a smeasXRT command for CVUs or pulse_measrt for PMUs.

Section 2: LPT commands for general operations Model 4200A-SCS LPT Library Programming

2-26 4200A-LPT-907-01 Rev. D May 2024

Example

// Code to configure the PMU test here

// Start the test (no analysis)

pulse_exec(0);

// While loop (continues while test is still running), with delay

// (30 ms)

while(pulse_exec_status(&elapsedt) == 1)

{

 Sleep(30);

}

// Retrieve V and I data (no timestamp or status)

status = pulse_fetch(PMU1, 1, 0, 100, Vmeas, Imeas, NULL, NULL);

// Separate V & I measurements for high (amplitude) and

// low (base)

for (i = 0; i<100; i++)

{

 VmeasHi_sheet[i] = Vmeas[2*i];

 ImeasHi_sheet[i] = Imeas[2*i];

 VmeasLo_sheet[i] = Vmeas[2*i+1];

 ImeasLo_sheet[i] = Imeas[2*i+1];

 PostDataDouble("DrainVmeas", VmeasHi_sheet[i]);

 PostDataDouble("DrainImeas", ImeasHi_sheet[i]);

}

Posts spot mean measurement data into the Clarius Analyze sheet.

This example assumes that a PMU spot mean test is configured to perform 100 (or more) voltage and current
measurements for pulse high and low. Use pulse_meas_sm to configure the spot mean test.

The code:

▪ Starts the configured test.

▪ Uses a while loop to allow the spot mean test to finish.

▪ Retrieves voltage and current readings (100 points) from the buffer.

▪ Separates the voltage and current readings for high (amplitude) and low (base).

▪ Posts the high measurement data into the Clarius Analyze sheet. Low measurement data is not posted into
the sheet.

Also see

“Enabling real-time plotting for UTMs” in Model 4200A-SCS KULT and KULT Extension Programming

PostDataDoubleBuffer (on page 2-27)

pulse_fetch (on page 6-22)

pulse_meas_sm (on page 6-30)

pulse_measrt (on page 6-34)

smeasfRT (on page 5-24)

smeastRT (on page 5-27)

smeasvRT (on page 5-28)

smeaszRT (on page 5-30)

Model 4200A-SCS LPT Library Programming Section 2: LPT commands for general operations

4200A-LPT-907-01 Rev. D May 2024 2-27

PostDataDoubleBuffer
This buffer posts data retrieved from the buffer into the Clarius Analyze sheet (large data sets).

Usage

int PostDataDoubleBuffer(char *ColName, double *array, int length);

ColName Column name for the data array in the Clarius Analyze sheet

array An array of data values for the Clarius Analyze sheet

length Number of points (up to 65,535) to post into the Clarius Analyze sheet

Details

You can use the PostDataDouble and PostDataDoubleBuffer commands to post

double-precision floating-point data into the Clarius Analyze sheet. Up to 65,535 points (rows) can be

posted into the Analyze sheet. These commands are used after one measurement is finished and a

data value is assigned to the corresponding output variable.

You can use either of these commands to post data into the sheet. However, you should use the

PostDataDoubleBuffer command to post the large data sets that are typically generated by PMU

waveform measurements.

The following sequence summarizes the process to post data into the Analyze sheet:

• Run a test.

• Use pulse_fetch to retrieve the data from the buffer. You can analyze or manipulate the

retrieved data.

• Use PostDataDouble or PostDataDoubleBuffer to post data into the Analyze sheet.

When you use pulse_fetch, you can either wait until the test is finished before retrieving data or you

can retrieve blocks of data while the test is running, which is useful for a test that takes a long time.

Instead of waiting for the entire test to finish, you can retrieve blocks of data at prescribed intervals.

For details, see "Data retrieval options for pulse_fetch" in the pulse_fetch command Details

section.

If you do not need to analyze or manipulate the test data before posting it into the Analyze sheet in

Clarius, you can use pulse_measrt.

PostDataDoubleBuffer is not compatible with using KXCI to call user libraries remotely (see

“Calling KULT user libraries remotely” in Model 4200A-SCS KXCI Remote Control Programming).

Use PostDataDouble for user routines (UTMs) that will be called using KXCI.

Section 2: LPT commands for general operations Model 4200A-SCS LPT Library Programming

2-28 4200A-LPT-907-01 Rev. D May 2024

Example 1

// Code to configure the PMU test here

// Start the test (no analysis)

status = pulse_exec(0);

// While loop (continues while test is still running), with

// delay (30 ms)

while (pulse_exec_status(&elapsedt) == 1)

{

 Sleep(30);

}

// Retrieve V, I, and timestamp data (no status)

status = pulse_fetch(PMU1, 1, 0, 20e3, Vmeas, Imeas, Tstamp, NULL);

// Separate V, I, and timestamp measurements

for (i = 0; i<20e3; i++)

{

 Vmeas_sheet[i] = Vmeas[2*i];

 Imeas_sheet[i] = Imeas[2*i];

 Tstamp_sheet[i] = Tstamp[2*i];

}

PostDataDoubleBuffer("DrainVmeas", Vmeas_sheet, 20e3);

PostDataDoubleBuffer("DrainImeas", Imeas_sheet, 20e3);

PostDataDoubleBuffer("Timestamp", Tstamp_sheet, 20e3);

This example demonstrates use of PostDataDoubleBuffer with a PMU. Posts waveform measurement

data into the Analyze sheet. This example assumes that a PMU waveform test is configured to perform
20,000 (or more) voltage and current measurements. Use pulse_meas_wfm to configure the

waveform test.

The code:

▪ Starts the configured test.

▪ Uses a while loop to allow the waveform test to finish.

▪ Retrieves voltage, current, and timestamp readings (20,000 points) from the buffer.

▪ Separates the voltage, current, and timestamp readings.

▪ Posts the measurement data into the Clarius Analyze sheet.

Model 4200A-SCS LPT Library Programming Section 2: LPT commands for general operations

4200A-LPT-907-01 Rev. D May 2024 2-29

Example 2

// Code to configure the CVU test here

status = forcev(CVUid, 0);

t0 = 0;

smeasvRT(CVUid, DCV, "DCV");

smeaszRT(CVUid, RdgType, Speed, Real, "Real", Imag, "Imag");

smeass(CVUid, measStatus);

smeast(CVUid, tstampArray);

status = sweepv(CVUid, DCStart, DCStop, numpts, Delay);

if(status)

{

 return status;

}

t0 = tstampArray[0];

for (i=0; i<SampleCount; i++)

{

 RdgStatus[i] = (unsigned long) measStatus[i];

 Time[i] = tstampArray[i] - t0;

}

PostDataIntBuffer("RdgStatus", RdgStatus, SampleCount);

PostDataDoubleBuffer("Time", Time, SampleCount);

This example demonstrates use of PostDataDoubleBuffer with a CVU. It sweeps DC voltage on a
CVU Instrument.

Example 3

// Code to configure the SMU test here.

// Create the segment voltage list table.

status = segment_sweepi_list(startCurrent, stopArray, stepArray, steppts,

forceArray, Varraysize, numListpts);

 if (status)

 {

 PostDataInt("numListpts", *numListpts);

 return status;

 }

 forcev(Id, 0.0);

 rtfary(Programmed_I);

 smeasi(Id, Measured_V);

 status = asweepi(Id, *numListpts, delayValue, &forceArray[0]);

 if(status < 0)

 return status;

 PostDataDoubleBuffer("Programmed_I", Programmed_I, *numListpts);

 PostDataDoubleBuffer("Measured_V", Measured_V, *numListpts);

 PostDataInt("numListpts", *numListpts);

This example demonstrates use of PostDataDoubleBuffer with a SMU. This routine runs up to a four

segment current linear sweep. For each segment, a stop current and step size must be provided. This is only
supported for the 42x0-SMU instruments.

A force array is calculated from the provided input arrays and start current. This array is sent as a list sweep
down to the SMU.

Section 2: LPT commands for general operations Model 4200A-SCS LPT Library Programming

2-30 4200A-LPT-907-01 Rev. D May 2024

Also see

PostDataDouble (on page 2-25)

pulse_fetch (on page 6-22)

pulse_meas_wfm (on page 6-33)

pulse_measrt (on page 6-34)

PostDataInt
This command posts an integer-type point from memory to the Clarius Analyze sheet in the user test module and

plots it on the graph.

Usage

PostDataInt(char *variableName, int *variableValue);

variableName The variable name

variableValue The value of the variable to be transferred

Details

The first parameter is the variable name, defined as char *. For example, if the output variable name

is DrainI, then DrainI (with quotes) is first parameter.

The second parameter is the value of the variable to be transferred. For example, if DrainI[10] is

transferred, then you call PostDataInt("DrainI", DrainI[10]).

Also see

None

PostDataString
This command transfers a string from memory into the Clarius Analyze sheet in the user test module and plots it on

the graph.

Usage

PostDataString(char *variableName, char *variableValue);

variableName The variable name

variableValue The value of the variable to be transferred

Details

The first parameter is the variable name. For example, if the output variable name is DrainI, then

DrainI (with quotes) is first parameter.

The second parameter is the value of the variable to be transferred. For example, if DrainI[10] is

transferred, then you call PostDataString("DrainI", DrainI[10]).

Also see

None

Model 4200A-SCS LPT Library Programming Section 2: LPT commands for general operations

4200A-LPT-907-01 Rev. D May 2024 2-31

rdelay
This command sets a user-programmable delay.

Usage

int rdelay(double n);

n The delay duration in seconds

Example

double ir4;

.

.

conpin(SMU1, 1, 0);

conpin(GND, 2, 0);

forcev(SMU1, 60.0); /* Generate 60 V from SMU1. */

rdelay(0.02); /* Pause for 20 ms. */

measi(SMU1, &ir4); /* Measure current; return */

 /* result to ir4. */

This example measures the leakage current of a variable-capacitance diode. SMU1 presets 60 V across the
diode. The device is configured in reverse-bias mode with the high side of SMU1 connected to the cathode.
This type of diode has high capacitance and low-leakage current. Because of this, a 20 ms delay is added.
After the delay, current through SMU1 is measured and stored in the variable ir4.

Also see

delay (on page 2-5)

rtfary
This command returns the force array determined by the instrument action.

Usage

int rtfary(double *results);

results The floating-point array where the force values are stored

Details

This command eliminates the need to calculate the force array in the application.

When used with the bsweepX, sweepX, or searchX commands, you can determine the exact forced

value for each point in the sweep.

When the test sequence is executed, the sweep command initiates the first step of the voltage or

current sweep. The sweep then logs the force point that the buffer specified by the rtfary command.

Place the rtfary command before the sweep. The number of points returned by the rtfary

command is determined by the number of force points generated by the sweep.

Section 2: LPT commands for general operations Model 4200A-SCS LPT Library Programming

2-32 4200A-LPT-907-01 Rev. D May 2024

Example

Refer to the examples for the smeasX and sweepX commands.

Also see

smeasX (on page 2-40)

sweepX (on page 4-31)

savgX
This command makes an averaging measurement for every point in a sweep.

Usage

int savgi(int instr_id, double *result, long count, double delay);

int savgv(int instr_id, double *result, long count, double delay);

instr_id The instrument identification code of the measuring instrument

result The floating-point array where the results are stored

count The number of measurements made at each point before the average is computed

delay The time delay in seconds between each measurement within a given ramp step

Details

This command creates an entry in the measurement scan table. During any of the sweeping

commands, a measurement scan is done for every force point in the sweep. During each scan, a

measurement is made for every entry in the scan table. The measurements are made in the same

order in which the entries were made in the scan table.

The savgX command sets up the new scan table entry to make an averaging measurement. The

measurement results are stored in the array specified by the result parameter. Each time a

measurement scan is made, a new measurement result is stored at the next location in the result

array. If the scan table is not cleared, performing multiple sweeps will continue adding new

measurement results to the end of the array. Make sure the result array is large enough to hold all

measurements made before the scan table is cleared. The scan table is cleared by an explicit call to

the clrscn command or implicitly when the devint or execut command is called.

When making each averaged measurement, the number of actual measurements specified by the

count parameter is made on the instrument at the interval specified by the delay parameter, and

then the average is calculated. This average is the value that is stored in the results array.

Model 4200A-SCS LPT Library Programming Section 2: LPT commands for general operations

4200A-LPT-907-01 Rev. D May 2024 2-33

Example

double res1[26];

.

.

conpin(GND, 3, 2, 0);

conpin(SMU1, 4, 0);

savgi(SMU1, res1, 8, 1.0E-3); /* Measure average */

 /* current 8 times per */

 /* sample; return results to */

 /* res1 array. */

sweepv(SMU1, 0.0, -50.0, 25, 2.0E-2); /* Generate */

 /* a voltage from 0 V */

 /* to -50 V over 25 steps.*/

This example gets the measurement data that is needed to create a graph that shows the capacitance
versus voltage characteristics of a variable-capacitance diode. This diode is operated in reverse-biased
mode. SMU1 outputs a voltage that sweeps from 0 through −50 V. Capacitance is measured 26 times during
the sweep. The results are stored in an array called res1.

Also see

clrscn (on page 2-2)

devint (on page 2-6)

scnmeas
This command makes a single measurement on multiple instruments at the same time.

Usage

int scnmeas(void);

Details

This command behaves like a single point sweep. It makes a single measurement on multiple

instruments at the same time. Any forcing or delaying must be done before calling scnmeas.

smeasX, sintgX, or savgX must be used to set up result arrays just as is done for a sweep call. Each

call to scanmeas adds one element to the end of each array.

Calls to scnmeas may be mixed with calls to sweepX, and all results are appended to the result arrays

in the same way multiple sweepX calls behave.

Also see

savgX (on page 2-32)

sintgX (on page 2-39)

smeasX (on page 2-40)

Section 2: LPT commands for general operations Model 4200A-SCS LPT Library Programming

2-34 4200A-LPT-907-01 Rev. D May 2024

searchX
This command is used to determine the voltage or current required to get a current or voltage. It is useful in finding

initial threshold points such as junction breakdown or transistor turn on.

Usage

int searchi(int instr_id, double min_val, double max_val, long iterate_no, double

iterate_time, double *result);

int searchv(int instr_id, double min_val, double max_val, long iterate_no, double

iterate_time, double *result);

instr_id The instrument identification code of the sourcing instrument

min_val The lower limit of the source range

max_val The upper limit of the source range

iterate_no The number of separate current or voltage levels to generate; the range of iterations
is from 1 through 16

iterate_time The duration, in seconds, of each iteration

result The floating-point variable assigned to the search operation result; it represents the
voltage, with the searchv command, or current, with the searchi command,

applied during the last search operation

Details

The trigXg or trigXl command must be used with the searchX command. Triggers and the

searchX command together initiate a search operation consisting of a series of steps referred to as

iterations. During each iteration, the following events occur:

• A voltage or current is applied to a circuit node of the device under test (DUT).

• All triggers are evaluated.

• If the triggers evaluate true, the source value is moved toward the value specified in the min_val

parameter. If the triggers do not evaluate true, the source value is moved toward the value

specified in the max_val parameter. The source range is then divided in half for the next iteration.

A total of 16 iterations can be programmed. When all iterations are completed, a value of voltage or

current is returned as the result of the search operation. This value is the voltage or current level

required to match the trigger point.

The following example shows all binary search possibilities where the minimum and maximum source

values are 0 and 20 V, respectively. Note the following:

• Three iterations, numbered one through three, are shown. Within a given iteration, the values of

possible sourcing voltages are indicated.

• During the first iteration of the binary search process, 10 V is applied. This represents the midpoint

of the minimum and maximum values.

• At the end of each iteration, the program determines whether to increase or decrease the source

voltage. The determination is dependent on the evaluation of the trigger point.

Model 4200A-SCS LPT Library Programming Section 2: LPT commands for general operations

4200A-LPT-907-01 Rev. D May 2024 2-35

Figure 2: Minimum and maximum source values

The question mark (?) is the true or false determination.

As shown in the above figure, the true or false decision determines the voltage generated in the next

step of the binary progression.

Because the command initiates a current or voltage from a source, its placement in a test sequence is

critical. Therefore:

• Call the limitX and rangeX commands before the searchX command when all three refer to

the same instrument.

• Call the trigXg or trigXl command before the searchX command.

The search operation determines the source voltage or current required at one circuit node to generate

a trigger point value at a second node. The resolution of the result depends on the number of iterations

or steps and the actual current or voltage range used by the instrument.

For example, assume the minimum and maximum values of the source range are from 0 V to 20 V,

and the number of iterations is 16. The 20 V level automatically initiates a source-measure unit (SMU)

20 V source range. As a result, the resolution of the final source voltage returned is:

Section 2: LPT commands for general operations Model 4200A-SCS LPT Library Programming

2-36 4200A-LPT-907-01 Rev. D May 2024

Changing the source mode of the SMU can modify the measure range. If the sourcing mode is

changed from voltage to current sourcing (or from current to voltage sourcing), the measure range

may be changed to minimize variations in the SMU output level. See rangeX (on page 4-25) for

recommended command order.

Example

double ssbiasv, vgs1, vds1;

.

conpin(SMU1, 1, 0);

conpin(SMU2, 2, 0);

conpin(SMU3, 3, 0);

conpin(GND, 4, 0);

trigig(SMU2, +l.0E-6); /* Set trigger point for 1 uA. */

forcev(SMU3, ssbiasv); /* Apply a substrate bias */

 /* voltage ssbiasv. */

forcev(SMU2, vds1); /* Apply a drain voltage of */

 /* vds1. */

searchv(SMU1, 0.6, 1.7, 8, 1.0E-3, &vgs1); /* Set */

 /* for 8 steps from 0.6 to */

 /* 1.7 V at 1 ms.*/

 /* per iteration; return the */

 /* result to vgs1. */

This example searches for the gate voltage required to generate a drain current of 1 μA. Eight separate gate
voltages within the range of 0.6 V through 1.7 V are specified by the searchv command. After the eight

iterations complete, the drain current is close to 1 μA, and the searchv operation is terminated. The gate

voltage generated at this time by SMU1 is returned in the variable vgs1.

Also see

None

Model 4200A-SCS LPT Library Programming Section 2: LPT commands for general operations

4200A-LPT-907-01 Rev. D May 2024 2-37

setmode
This command sets instrument-specific operating mode parameters.

Usage

int setmode(int instr_id, long modifier, double value);

instr_id The instrument identification code of the instrument being operated on

modifier The instrument-specific operating characteristic to change; see Details

value The specified value of the operating parameter

Details

The setmode command allows you to control certain instrument-specific operating characteristics.

A special instrument ID named KI_SYSTEM is used to set operating characteristics of the system.

The following table describes setmode modifier parameters that are supported for KI_SYSTEM.

modifier value Comment

KI_TRIGMODE KI_MEASX

KI_INTEGRATE

KI_AVERAGE

KI_ABSOLUTE

KI_NORMAL

Redefines all existing triggers to use a new method of
measurement.

KI_AVGNUMBER <value> Number of readings to make when KI_TRIGMODE is

set to KI_AVERAGE.

KI_AVGTIME <value>

(in units of seconds)

Time between readings when KI_TRIGMODE is set to

KI_AVERAGE.

The following KI_SYSTEM modifier parameters are accepted, but do no operations in the

4200A-SCS. They are included for compatibility so that existing S530 or S600 programs that use

setmode can be ported to the 4200A-SCS without generating errors.

• KI_MX_DEFMODE

• KI_HICURRENT

• KI_CC_AUTO

• KI_CC_SRC_DLY

• KI_CC_COMP_DLY

• KI_CC_MEAS_DLY

Section 2: LPT commands for general operations Model 4200A-SCS LPT Library Programming

2-38 4200A-LPT-907-01 Rev. D May 2024

The following setmode modifier parameters are supported for SMU instruments.

modifier value
Comment

KI_INTGPLC <value>

(in units of line cycles)

Specifies the integration time the SMU will use for the
intgX and sintgX commands. The default devint

value is 1.0. The valid range is 0.01 to 10.0.

KI_AVGMODE KI_MEASX

KI_INTEGRATE

Controls what kind of readings are taken for avgX

calls. The devint default value is KI_MEASX. When

KI_INTEGRATE is specified, the integration time

used is that specified by the KI_INTGPLC setmode

call.

KI_DELAY_FACTOR <value> This factor scales the internal delay times used by the
SMU. A value larger than one increases the delays; a
value less than one decreases the delays. A
minimum delay is enforced by the SMU.

This command should not be used when setting the
SMU speed to FAST, NORMAL, or QUIET modes;
the delay factor is set internally by these modes, so
changing the value while using one of the predefined
modes corrupts the speed settings or the delay
factor.

KI_LIM_INDCTR Any Controls the measure value that is returned if the
SMU is at its programmed limit. The devint default

is SOURCE_LIMIT (7.0e22).

NOTE: The SMU always returns INST_OVERRANGE

(1.0e22) if it is on a fixed range that is too low for the
signal being measured.

KI_LIM_MODE KI_INDICATOR

KI_VALUE

Controls whether the SMU returns an indicator value
when in limit or overrange, or the actual value
measured. The default mode after a devint is to

return an indicator value.

KI_OUTP_RELAY_STATE KI_OUTP_HIZ

KI_OUTP_NORM

Only available if there are no preamplifiers.

KI_OUTP_HIZ sets the state to high impedance

(open).

KI_OUTP_NORM sets the state to normal (closed,

force V 0).

The following SMU modifier parameters are accepted but do no operations in the 4200A-SCS. They

are included for compatibility so that existing S530 or S600 programs that use setmode can be ported

to the 4200A-SCS without generating errors.

• KI_IMTR

• KI_VMTR

Also see

None

Model 4200A-SCS LPT Library Programming Section 2: LPT commands for general operations

4200A-LPT-907-01 Rev. D May 2024 2-39

sintgX
This command makes an integrated measurement for every point in a sweep.

Usage

int sintgi(int instr_id, double *result);

int sintgv(int instr_id, double *result);

instr_id The instrument identification code of the measuring instrument

result The floating-point array where the results are stored

Details

Use this command to create an entry in the measurement scan table. During any of the sweeping

commands, a measurement scan is performed for every force point in the sweep. During each scan, a

measurement is made for every entry in the scan table. The measurements are made in the same

order in which the entries were made in the scan table.

The sintgX command sets up the new scan table entry to make an integrated measurement. The

measurement results are stored in the array, specified by the result parameter. Each time a

measurement scan is made, a new measurement result is stored at the next location in the results

array. If the scan table is not cleared, making multiple sweeps will continue to add new measurement

results to the end of the array. Care must be taken that the results array is large enough to hold all

measurements that are made before the scan table is cleared. The scan table is cleared by an explicit

call to the clrscn command or implicitly when the devint or execut command is called.

Example

double idss[16];

.

.

conpin(SMU1, 2, 0);

conpin(GND, 5, 4, 3, 0);

limiti(SMU1, 1.5E-8);

rangei(SMU1, 2.0E-8); /* Select range for 20 nA. */

sintgi(SMU1, idss); /* Measure current with SMU1;*/

 /* return results to idss. */

.

.

sweepv(SMU1, 0.0, 25.0, 15, /* Perform 16 measurements */

 1.0E-3); /* (steps) from 0 through */

. /* 25 V; each step 1 ms in */

. /* duration. */

Section 2: LPT commands for general operations Model 4200A-SCS LPT Library Programming

2-40 4200A-LPT-907-01 Rev. D May 2024

This example collects information on the low-level gate leakage current of a metal-oxide field-effect transistor
(MOSFET). Sixteen integrated measurements are made as the voltage is increased from 0 V to 25 V.

Also see

clrscn (on page 2-2)

devint (on page 2-6)

execut (on page 2-9)

sweepX (on page 4-31)

smeasX
This command allows a multiple measurements to be made by a specified instrument during a sweepX command.

The results of the measurements are stored in the defined array.

Usage

int smeasi(int instr_id, double *result);

int smeast(int instr_id, double *result);

int smeasv(int instr_id, double *result);

instr_id The instrument identification code of the measuring instrument

result The floating-point array that stores the results

Details

This command creates an entry in the measurement scan table. During any of the sweep functions, a

measurement scan is done for every force point in the sweep. During each scan, a measurement is

made for every entry in the scan table. The measurements are made in the same order in which the

entries were made in the scan table.

The smeasX command sets up the new scan table entry to make an ordinary measurement. The

measurement results are stored in the array specified by the result parameter. Each time a

measurement scan is made, a new measurement result is stored at the next location in the result

array. If the scan table is not cleared, doing multiple sweeps continues adding new measurement

results to the end of the array. Care must be taken that the results array is large enough to hold all

measurements that are made before the scan table is cleared. The scan table is cleared by an explicit

call to the clrscn command or implicitly when the devint or execut command is called.

Model 4200A-SCS LPT Library Programming Section 2: LPT commands for general operations

4200A-LPT-907-01 Rev. D May 2024 2-41

Example

double resi[13]; /* Defines array. */

double vf[13];

.

.

.

conpin(SMU1, l, 0);

conpin(GND, 2, 0);

rtfary(vf); /* Return the voltage force array*/

smeasi(SMU1, resi); /* Make a series of */

 /* measurements; */

. /* return the results to the */

. /* resi array. */

sweepv(SMU1, 0.0, 0.3, 12,

 25.0E-3); /* Make 13 measurements as the */

 /* voltage ranges from 0 V to */

 /* 0.3 V. */

This example determines the measurement data needed to create a graph showing the negative resistance
characteristics of a tunnel diode. SMU1 generates a voltage ramp ranging from 0 to 0.3 V. The current through
the diode is sampled 13 times with a duration of 25 ms at each step. The results are stored in an array named
resi.

Also see

clrscn (on page 2-2)

devint (on page 2-6)

execut (on page 2-9)

sweepX (on page 4-31)

trigcomp
This command causes a trigger when an instrument goes in or out of compliance.

Usage

int trigcomp(int instr_id, int mode);

instr_id The instrument identification code the trigger is set to

mode Specifies whether to trigger when an instrument is in or out of compliance:

▪ 1: Trigger when in compliance

▪ 0: Trigger when out of compliance

Section 2: LPT commands for general operations Model 4200A-SCS LPT Library Programming

2-42 4200A-LPT-907-01 Rev. D May 2024

Details

This command monitors the given instrument for compliance. A trigger can be set when the instrument

is either in compliance or out of compliance, based on the specified mode.

Also see

None

trigXg, trigXl
This command monitors for a predetermined level of voltage, current, or time.

Usage

int trigig(int instr_id, double value);

int trigil(int instr_id, double value);

int trigtg(int instr_id, double value);

int trigtl(int instr_id, double value);

int trigvg(int instr_id, double value);

int trigvl(int instr_id, double value);

instr_id The instrument identification code of the monitoring instrument

value The voltage, current, or time specified as the trigger point; this trigger point value is
reached when either of the following occurs:

▪ The measured value is equal to or greater than the value argument of the
trigXg command

▪ The measured value is less than the value argument of the trigXl command

Details

The trigXl and trigXg commands are used with the searchX command or with one of the sweep

measurement commands: smeasX, sintgX, or savgX.

• The trigXg or trigXl command provides the sweepX command the digital feedback to allow for

the increase or decrease in sourcing values.

• The trigXl and trigXg commands must be located before any associated searchX

commands.

• Triggers are not automatically reset by the searchX or sweepX command. A single call to the

trigXl or trigXg command can be followed by two or more calls to the searchX or sweepX

commands.

The specified trigger point is automatically cleared when a clrtrg, execut, or devint command is

executed.

Model 4200A-SCS LPT Library Programming Section 2: LPT commands for general operations

4200A-LPT-907-01 Rev. D May 2024 2-43

Example 1

double res22, vcc8;

.

.

conpin(SMU1, 3, 0);

conpin(SMU2, 2, 0);

conpin(GND, 1, 0);

forcev(SMU2, vcc8); /* Apply collector voltage to vcc8. */

trigig(SMU2, +5.0E-3); /* Search for a collector */

 /* current of 5 mA. */

searchi(SMU1, 5.0E-5, 2.0E-4, 15, 1.0E-3, &res22); /* Generate */

 /* a current ranging */

 /* from 50 uA to 200 uA in */

 /* 15 iterations. Return the */

 /* current resulting from the */

 /* last iteration as res22. */

This example uses the trigig and searchi commands together to generate and search for a specific

current level. A search is initiated to find the base current needed to produce 5 mA of collector current. The
collector-emitter voltage supplied by SMU2 is defined by the variable vcc8. The searchi command

generates the base current from SMU1. This current ranges between 50 mA and 200 mA in 15 iterations.
The trigig command continuously monitors the current through SMU1. The base current supplied by

SMU1 is stored as the result res22.

Example 2

double res1[20];

.

.

conpin(SMU1, 1, 0);

conpin(GND,2, 0);

trigil(SMU1, +4.0E-3); /* If less than +4 mA, */

 /* stop ramping. */

smeasi(SMU1, res1); /* Measure current at each of */

 /* the 19 levels; return */

 /* results to the res1 array. */

sweepv(SMU1, 0.0, 0.6, 18, 1.00E-3); /* Generate */

 /* 0.0 V to 0.6 V */

 /* in 18 steps. */

Section 2: LPT commands for general operations Model 4200A-SCS LPT Library Programming

2-44 4200A-LPT-907-01 Rev. D May 2024

This example sets up and generates a sweep from 0.6 V to 0.0 V in 19 steps.

Also see

savgX (on page 2-32)

searchX (on page 2-34)

sintgX (on page 2-39)

smeasX (on page 2-40)

sweepX (on page 4-31)

tstdsl
This command deselects a test station.

Usage

tstdsl(void);

Details

To relinquish control of an individual test station, a new test station must be selected using tstsel

before any subsequent test control commands are run.

The tstdsl command has the same effect as the tstsel(0) command.

tstdsl is not required for use in a user test module (UTM).

Example

tstdsl(); /* Disables test station.*/

Also see

tstsel (on page 2-45)

Model 4200A-SCS LPT Library Programming Section 2: LPT commands for general operations

4200A-LPT-907-01 Rev. D May 2024 2-45

tstsel
This command enables or disables a test station.

Usage

tstsel(int x);

x The test station number: 0 or 1

Details

tstsel is normally called at the beginning of a test program.

tstsel(1) selects the first test station and loads the instrumentation configuration.

The tstsel command is not required for use in a user test module (UTM).

Also see

tstdsl (on page 2-44)

In this section:

LPT commands for math operations .. 3-1
kfpabs .. 3-1
kfpadd .. 3-2
kfpdiv .. 3-2
kfpexp .. 3-3
kfplog ... 3-4
kfpmul .. 3-4
kfpneg .. 3-5
kfppwr .. 3-6
kfpsqrt .. 3-7
kfpsub .. 3-8

LPT commands for math operations
The following commands provide math operations.

kfpabs
This command takes a user-specified positive or negative value and converts it into a positive value that is returned

to a specified variable.

Usage

int kfpabs(double *x, double *z);

x Pointer to the variable to be converted to an absolute value

z Pointer to the variable where the result is stored

Example

double ares2, vb1;

.

.

forcev(SMU1, vb1);/* Output vb1 from SMU1. */

measi(SMU1, &ares2);/* Measure SMU1 current; */

/* store in ares2. */

kfpabs(&ares2, &ares2);/* Convert ares2 to absolute */

/* value; return result to ares2*/

This example takes the absolute value of a current reading. forcev outputs vb1 volts from SMU1. This

current is measured with measi, and the result is stored in location ares2. The absolute value of ares2 is

then calculated and stored as ares2.

Also see

None

Section 3

LPT commands for math operations

Section 3: LPT commands for math operations Model 4200A-SCS LPT Library Programming

3-2 4200A-LPT-907-01 Rev. D May 2024

kfpadd
This command adds two real numbers and stores the result in a specified variable.

Usage

int kfpadd(double *x, double *y, double *z);

x The first of two values to add

y The second of two values to add

z A variable in which the sum x + y is stored

Details

The values referenced by x and y are summed and the result is stored in the location pointed to by z.

If an overflow occurs, the result is ±Inf. If an underflow occurs, the result is zero (0).

Example

double res1, res2, resia;

.

.

measv(SMU1, &res1);/* Measure SMU1 voltage; store */

/* in res1. */

measi(SMU2, &res2);/* Measure SMU2 current; store */

/* in res2. */

kfpadd(&res1, &res2, &resia);/* Adds res1 and res2; return */

/* result to resia. */

.

.

This example adds the data in res1 to the data in res2. The result is stored in the resia variable.

Also see

None

kfpdiv
This command divides two real numbers and stores the result in a specified variable.

Usage

int kfpdiv(double *x, double *y, double *z);

x The dividend

y The divisor

z A variable where the result of x/y is stored

Details

The value referenced by x is divided by the value referenced by y. The result is stored in the location

pointed to by z. If an overflow occurs, the result is ±Inf. If an underflow occurs, the result is zero (0).

Model 4200A-SCS LPT Library Programming Section 3: LPT commands for math operations

4200A-LPT-907-01 Rev. D May 2024 3-3

Example

double res1, res2, resia;

.

.

measv(SMU1, &res1);/* Measure SMU1 voltage; store */

/* in res1. */

measi(SMU2, &res2);/* Measure SMU2 current; store */

/* in res2. */

kfpdiv(&res1, &res2, &resia);/* Divide res1 by res2; return */

/* result to resia. */

.

.

This example divides the data in res1 by the data in res2. The result is stored in the resia variable.

Also see

None

kfpexp
This command supplies the base of natural logarithms (e) raised to a specified power and stores the result as a

variable.

Usage

int kfpexp(double *x, double *z);

x The exponent

z The variable where the result of ex is stored

Details

e raised to the power of the value referenced by x is stored in the location pointed to by z. If an

overflow occurs, the result is ±Inf. If an underflow occurs, the result is zero (0).

Example

double res4, res4e;

.

.

measv(SMU1, &res4);/* Raise the base of natural */

/* logarithms e to the power */

/* res4; */

kfpexp(&res4, &res4e;/* return the result to res4e. */

.

.

In this example, kfpexp raises the base of natural logarithms to the power specified by the exponent res4.

The result is stored in res4e.

Also see

None

Section 3: LPT commands for math operations Model 4200A-SCS LPT Library Programming

3-4 4200A-LPT-907-01 Rev. D May 2024

kfplog
This command returns the natural logarithm of a real number to the specified variable.

Usage

int kfplog(double *x, double *z);

x A variable containing a floating-point number

z A variable where the result of ln (x) is stored

Details

This command returns a natural logarithm, not a common logarithm. The natural logarithm of the value

referenced by x is stored in the location pointed to by z.

If a negative value or zero (0) is supplied for x, a log of negative value or zero (0) error is generated

and the result is NaN (not a number).

Example

double res1, logres;

.

.

measv(SMU1, &res1);/* Measure SMU1; store in res1. */

kfplog(&res1, &logres);/* Convert res1 to a natural */

/* LOG and store in logres. */

.

This example calculates the natural logarithm of a real number (res1). The result is stored in logres.

Also see

None

kfpmul
This command multiplies two real numbers and stores the result as a specified variable.

Usage

int kfpmul(double *x, double *y, double *z);

x A variable containing the multiplicand

y A variable containing the multiplier

z The variable where the result of x*y is stored

Details

The value referenced by x is multiplied by the value referenced by y, and the result is stored in the

location pointed to by z. If an overflow occurs, the result is ±Inf. If an underflow occurs, the result is

zero (0).

Model 4200A-SCS LPT Library Programming Section 3: LPT commands for math operations

4200A-LPT-907-01 Rev. D May 2024 3-5

Example

double res1, res2, pwr2;

.

.

measi(SMU1, &res1);/* Measure SMU1 current; */

/* store in res1. */

measv(SMU1, &res2);/* Measure SMU1 voltage; */

/* store in res2. */

kfpmul(&res1, &res2, &pwr2);/* Multiply res1 by res2; */

/* return result to pwr2. */

.

.

This example multiplies variables res1 and res2. The result is stored in the variable pwr2.

Also see

None

kfpneg
This command changes the sign of a value and stores the result as a specified variable.

Usage

int kfpneg(double *x, double *z);

x A variable containing the number to be converted

z A variable where the result of −x is stored

Details

If the value is positive, it is converted to a negative. If the value is negative, it is converted to a positive.

Example

double res4;

.

.

forcev(SMU1, 10.0);/* Output 10 V from SMU1. */

measi(SMU1, &res4);/* Measure SMU1 current; store */

/* in res4. */

kfpneg(&res4, &res4);/* Convert sign of res4; */

./* return results to res4. */

.

This example changes the sign of a positive voltage reading. forcev outputs a positive 10 V from SMU1.

The current is measured with measi and the result is stored as res4. The kfpneg command reads res4

and converts the data to a negative value. res4 is then overwritten with the converted value.

Also see

None

Section 3: LPT commands for math operations Model 4200A-SCS LPT Library Programming

3-6 4200A-LPT-907-01 Rev. D May 2024

kfppwr
This command raises a real number to a specified power and assigns the result to a specified variable.

Usage

int kfppwr(double *x, double *y, double *z);

x A variable that contains a floating-point number

y A variable that contains the exponent

z A variable where the result of xy is stored

Details

The value referenced by x is raised to the power of the value referenced by y, and the result is stored

in the location pointed to by z. If an overflow occurs, the result is ±Inf. If an underflow occurs, the

result is zero (0).

If x points to a negative number, a power of a negative number error is generated, and the result

returned is -Inf.

If x points to a value of zero (0) and y points to a negative number, a divide by zero (0) error is

generated, and the result returned is +Inf.

If x points to a value of 1.0, the result is 1.0, regardless of the exponent.

Example

double res2, pwres2, power=3.0;

.

.

measv(SMU1, &res2);/* Measure SMU1; store */

/* result in res2. */

kfppwr(&res2, &power,

 &pwres2);/* res2 to the third power; */

/* return result to pwres2. */

.

Raises the variable res2 by the power of three. The result is stored in pwres2.

Also see

None

Model 4200A-SCS LPT Library Programming Section 3: LPT commands for math operations

4200A-LPT-907-01 Rev. D May 2024 3-7

kfpsqrt
This command performs a square root operation on a real number and returns the result to the specified variable.

Usage

int kfpsqrt(double *x, double *z);

x A variable that contains a floating-point number

z A variable where the result, the square root of x, is stored

Details

The square root of the value referenced by x is stored in the location pointed to by z.

If x points to a negative number, a square root of negative number error is generated, and the result is

NaN (not a number).

Example

double res1, sqres2;

.

.

measv(SMU1, &res1);/* Measure SMU1; store result */

./* in res1. */

kfpsqrt(&res1, &sqres2);/* Find square root of res1; */

/* return result to sqres2. */

.

This example converts a real number (res1) into its square root. The result is stored in sqres2.

Also see

None

Section 3: LPT commands for math operations Model 4200A-SCS LPT Library Programming

3-8 4200A-LPT-907-01 Rev. D May 2024

kfpsub
This command subtracts two real numbers and stores their difference in a specified variable.

Usage

int kfpsub(double *x, double *y, double *z);

x A variable containing the minuend

y A variable containing the subtrahend

z The variable where the result of x - y is stored

Details

The value referenced by y is subtracted from the value referenced by x. The result is stored in the

location pointed to by z. If an overflow occurs, the result is ±Inf. If an underflow occurs, the result is

zero (0).

Example

double res1, res2, diff2;

.

.

measv(SMU1, &res1);/* Measure SMU1; store result */

/* in res1. */

measv(SMU2, &res2);/* Measure SMU2; store result */

/* in res2. */

kfpsub(&res1, &res2, &diff2);/* Subtract res2 from res1; */

./* return the place with */

/* result to diff2. */

This example subtracts res2 from res1. The result is returned to diff2.

Also see

None

In this section:

LPT commands for SMUs .. 4-1
adelay .. 4-1
asweepX .. 4-2
avgX ... 4-4
bmeasX .. 4-5
bsweepX .. 4-7
devclr ... 4-9
devint ... 4-10
forceX ... 4-11
getstatus... 4-13
intgX ... 4-15
limitX .. 4-17
lorangeX ... 4-18
measX .. 4-20
mpulse ... 4-21
pulseX .. 4-22
rangeX ... 4-25
rtfary ... 4-26
segment_sweepX_list .. 4-27
setauto ... 4-28
ssmeasx ... 4-29
sweepX .. 4-31

LPT commands for SMUs
The following information explains the commands in the LPT library for the SMUs.

adelay
This command specifies an array of delay points to use with asweepX command calls.

Usage

int adelay(long delaypoints, double *delayarray);

delaypoints The number of separate delay points defined in the array

delayarray The name of the array defining the delay points; this is a single-dimension
floating-point array that is delaypoints long and contains the individual delay

times; units of the delays are seconds

Section 4

LPT commands for SMUs

Section 4: LPT commands for SMUs Model 4200A-SCS LPT Library Programming

4-2 4200A-LPT-907-01 Rev. D May 2024

Details

The delay is specified in units of seconds, with a resolution of 1 ms. The minimum delay is 0 s.

Each delay in the array is added to the delay specified in the asweepX command. For example, if the

array contains four delays (0.04 s, 0.05 s, 0.06 s, and 0.07 s) and the delay specified in the asweepX

command is 0.1 s, then the resulting delays are 0.14 s, 0.15 s, 0.16 s, and 0.17 s.

Also see

asweepX (on page 4-2)

asweepX
This command generates a waveform based on a user-defined forcing array (logarithmic sweep or other custom

forcing commands).

Usage

int asweepi(int instr_id, long num_points, double delay_time, double *force_array);

int asweepv(int instr_id, long num_points, double delay_time, double *force_array);

instr_id The instrument identification code of the sourcing instrument

num_points The number of separate current and voltage force points defined in the array

delay_time The delay, in seconds, between each step and the measurements defined by the
active measure list

force_array The name of the user-defined force array; this is a single dimension array that
contains all force points

Details

The asweepX command is used with the smeasX, sintgX, or savgX commands.

The trigXl or trigXg command can also be used with the asweepX command. However, once a

trigger point is reached, the sourcing device stops moving through the array. The output is held at the

last forced point for the duration of the asweepX command. Data resulting from each step is stored in

an array, as noted above, with smeasX. After the trigger point is reached, measurements are made at

each subsequent point. Results are approximately equal because the source is held at a

constant output.

The asweepv and asweepi commands are sourcing-type commands. When called, an automatic

limit is imposed on the sourcing device. Refer to the limitX command for additional information.

The maximum number of times data is measured (using the smeasX, sintgX, or savgX command) is

determined by the num_points argument in the asweepX command. A one-dimensional result array

with the same number of data elements as the selected value of the num_points parameter must be

defined in the test program.

When multiple calls to the asweepX command are executed in the same test sequence, the smeasX,

sintgX, or savgX arrays are loaded sequentially. This appends the measurements from the second

Model 4200A-SCS LPT Library Programming Section 4: LPT commands for SMUs

4200A-LPT-907-01 Rev. D May 2024 4-3

asweepX command to the previous results. If the arrays are not dimensioned correctly, access

violations occur. The measurement table remains intact until the devint or clrscn command is

executed.

Defining new test sequences using the smeasX, sintgX, or savgX command appends the command

to the active measure list. Previous measures are still defined and will be used. The clrscn command

is used to eliminate previous buffers for the second sweep. Using the smeasX, sintgX, and savgX

commands after calling the clrscn or execut command causes the appropriate new measures to be

defined and used.

Changing the source mode of the SMU can modify the measure range. If the sourcing mode is

changed from voltage to current sourcing (or from current to voltage sourcing), the measure range

may be changed to minimize variations in the SMU output level. See rangeX for the recommended

command order.

If adelay is called before asweepX, each adelay value is added to the asweepX delay_time. This

sum is compared to the maximum delay for the configured instrument card and if any value is larger,

an error occurs. The SMU maximum delay is 2,147.483 s. The CVU maximum is 999 s.

Example

double icmeas[10], ifrc[10];

.

.

ifrc[0]=1.0e-10;

for (i=1; i<10; i++) /* Create decade array from */

 /* 1.0E-10 to 1.0E-1. */

 ifrc[i]=10.0*ifrc[i-1];

.

.

conpin(SMU1, 1, 0); /* Base connection. */

conpin(SMU2, 2, 0); /* Collector connection. */

conpin(GND, 3, 0);

limiti(SMU2, 200.0E-3); /* Reset I limit to maximum. */

smeasi(SMU2, icmeas); /* Define collector current */

 /* array. */

forcev(SMU2, 5.0); /* Force vce bias. */

asweepi(SMU1, 10, 10.0E-3, ifrc); /* SweepIB, 10 points, 10 ms */

 /* apart. */

This example gathers data to construct a graph showing the gain of a bipolar device over a wide range of base
currents. A fixed collector-emitter bias is generated by SMU2. A logarithmic base current from 1.0E−10 A to
1.0E−1 A is generated by SMU1 using the asweepi command. The collector current applied by SMU2 is

measured 10 times by the smeasi command. The data gathered is then stored in the icmeas array.

Section 4: LPT commands for SMUs Model 4200A-SCS LPT Library Programming

4-4 4200A-LPT-907-01 Rev. D May 2024

Also see

limitX (on page 4-17)

rangeX (on page 4-25)

savgX (on page 2-32)

sintgX (on page 2-39)

smeasX (on page 2-40)

trigXg, trigXI (on page 2-42)

avgX
This command makes a series of measurements and averages the results.

Usage

int avgi(int instr_id, double *result, long stepno, double steptime);

int avgv(int instr_id, double *result, long stepno, double steptime);

instr_id The instrument identification code of the measuring instrument

result The variable assigned to the result of the measurement

stepno The number of steps averaged in the measurement (1 to 32,767)

steptime The interval in seconds between each measurement; the minimum practical time is
approximately 2.5 ms

Details

The avgX command is used primarily to get measurements when:

• The device under test (DUT) being tested acts in an unstable manner.

• Electrical interference is higher than can be tolerated if the measX command is used.

The programmer specifies the number of samples and the duration between each sample.

After this command executes, all closed relay matrix connections remain closed and the sources

continue to generate voltage or current. This allows additional sequential measurements.

In general, measurement commands that return multiple results are more efficient than performing

multiple measurement commands.

The rangeX command directly affects the operation of the avgX command. The use of the rangeX

command prevents the addressed instrument from automatically changing ranges. This can result in

an overrange condition similar to what would occur when measuring 10.0 V on a 4.0 V range. An

overrange condition returns the value 1.0e+22 as the result of the measurement.

If the rangeX command is not in the test sequence before the avgX call, the measurements

performed automatically select the optimum range.

A compliance limit setting goes into effect when the SMU is on a measure range that can

accommodate the limit value. For manual ranging, the rangeX command is used to select the range.

For autoranging, the avgi or avgv commands triggers a needed range change before the

measurement is made. See “Compliance limits” in the Model 4200A-SCS Source-Measure Unit (SMU)

User's Manual for details.

Model 4200A-SCS LPT Library Programming Section 4: LPT commands for SMUs

4200A-LPT-907-01 Rev. D May 2024 4-5

Example

double leakage;

.

.

limiti(SMU1, 1.0e-06); /* Limit the maximum current */

 /* to 1 uA */

forcev(SMU1, 10.0); /* Force 10 V across the DUT */

delay(100); /* Delay 100 ms to allow for */

 /* device settling */

avgi(SMU1, &leakage, 5, 0.01); /* Average 5 readings, delay */

 /* 10 ms per measurement */

This example illustrates how to use the avgX command to make five current readings and return the average

of the measurements to the variable leakage.

Also see

measX (on page 4-20)

rangeX (on page 4-25)

bmeasX
This command makes a series of readings as quickly as possible. This measurement mode allows for waveform

capture and analysis (within the resolution of the measurement instrument).

Usage

int bmeasi(int instr_id, double *result, long numrdg,

double delay, int timerid, double *timerdata);

int bmeasv(int instr_id, double *result, long numrdg,

double delay, int timerid, double *timerdata);

instr_id The instrument identification code of the measuring instrument

result The result name of the array to receive readings; the array must be large enough to
hold the readings

numrdg The number of readings to return in the array

delay The delay between points to wait (in seconds)

timerid The device name of the timer to use (0 = no timer data)

timerdata The array used to receive the time points at which the readings were made; if
timerID = 0, the timer is not read and this array is not updated; if used, the array

must be large enough to hold the readings

Details

This command collects data using the presently selected range. The measurement range is typically

the same as the force range. If you need a different range, you must change the measurement range

before calling the bmeasX command.

When used with the time module, the measurements and the times for each measurement are stored.

The specific timer is defined in the command, and the time array is returned with the

timerdata array.

Section 4: LPT commands for SMUs Model 4200A-SCS LPT Library Programming

4-6 4200A-LPT-907-01 Rev. D May 2024

Example 1

double irange, volts, rdng[5], timer[5];

:

.

.

enable(TIMER1); /* Enable the timer module. */

.

.

conpin(GND, 11, 0); /* Make connections. */

conpin(SMU3, 14, 0);

.

.

forcev(SMU3, volts); /* Perform the test. */

measi(SMU3, &irange); /* Set the I range of the SMU based */

rangei(SMU3, irange); /* on the initial measurement. */

.

forcev(SMU3, volts);

bmeasi(SMU3, rdng, 5, 0.0001, TIMER1, timer); /* gather a block of measurements

*/

 /* I measurement of 5 */

 /* readings using SMU3 with */

 /* 100 us delay between */

 /* readings, using TIMER1 with */

 /* time data labeled timer. */

This example shows how the bmeasX command is used with a timer. Each measurement is associated with

a timestamp. This timestamp marks the interval when each reading is made. This information is useful when
determining how much time was required to obtain a specific reading.

Example 2

double volts, rdng[5];

:

.

conpin(GND, 11, 0); /* Make connections. */

conpin(SMU3, 14, 0);

.

forcev(SMU3, volts); /* Perform the test. */

.

bmeasi(SMU3, rdng, 5, 0, 0, 0); /* Block current measurement */

 /* of 5 readings using SMU3. */

This example shows how the bmeasX command is used without a timer. When used without a timer, the

returned measurement is not associated with a timestamp.

Also see

None

Model 4200A-SCS LPT Library Programming Section 4: LPT commands for SMUs

4200A-LPT-907-01 Rev. D May 2024 4-7

bsweepX
This command supplies a series of ascending or descending voltages or currents and shuts down the source when

a trigger condition is encountered.

Usage

int bsweepi(int instr_id, double startval, double endval, long num_points, double

delay_time, double *result);

int bsweepv(int instr_id, double startval, double endval, long num_points, double

delay_time, double *result);

instr_id The instrument identification code of the sourcing instrument

startval The initial voltage or current level applied as the first step in the sweep; this value can
be positive or negative

endval The final voltage or current level applied as the last step in the sweep; this value can
be positive or negative

num_points The number of separate current and voltage force points between the startval and

endval parameters (1 to 32,767)

delay_time The delay in seconds between each step and the measurements defined by the
active measure list

result Assigned to the result of the trigger; this value represents the source value applied at
the time of the trigger or breakdown

Details

bsweepi is only available for SMUs.

The bsweepX command is used with the trigXg, trigXl, or trigcomp command. These trigger

commands provide the termination point for the sweep. At the time of trigger or breakdown, all sources

are shut down to prevent damage to the device under test. Typically, this termination point is the test

current required for a given breakdown voltage.

Once triggered, the bsweepX command terminates the sweep and clears all sources by executing a

devclr command internally. The standard sweepX command continues to force the last value. This is

useful for device characterization curves but can cause problems when used in device breakdown

conditions.

The bsweepX command can also be used with the smeasX, sintgX, savgX, or rtfary command.

Measurements are stored in a one-dimensional array in the order in which they were made.

The system maintains a measurement scan table consisting of devices to test. This table is maintained

using calls to the smeasX, sintgX, savgX, or clrscn command. As multiple calls to sweepX

commands are made, these commands are appended to the measurement scan table. Measurements

are made after the time programmed by the delay_time parameter has elapsed at the beginning of

each bsweepX command step.

Section 4: LPT commands for SMUs Model 4200A-SCS LPT Library Programming

4-8 4200A-LPT-907-01 Rev. D May 2024

When multiple calls to the bsweepX command are executed in the same test sequence, the arrays

defined by calls to the smeasX, sintgX, or savgX command are all loaded sequentially. The results

from the second call to the bsweepX command are appended to the results of the previous bsweepX

command call. This can cause access violation errors if the arrays were not dimensioned for the

absolute total. The measurement scan table remains intact until a devint, execut, or clrscn

command completes.

Defining new test sequences using the smeasX, sintgX, or savgX command adds the command to

the active measure list. The previous measurements are still defined and used; however, previous

measurements for the second sweep can be eliminated by calling the clrscn command. New

measurements are defined and used by calling the smeasX, sintgX, or savgX command after a

clrscn command.

Note that changing the source mode of the SMU can modify the measure range. If the sourcing mode

is changed from voltage to current sourcing (or from current to voltage sourcing), the measure range

may be changed to minimize variations in the SMU output level. See rangeX for recommended

command order.

It is recommended that you do not use GPIB instruments when doing sweeps with the bsweepX

command. Refer to kibdefint for additional information.

Example

double bvdss;

.

.

conpin(SMU1, 1, 0);

conpin(GND, 2, 3, 0);

limiti(SMU1, 100e-6); /* Define the I limit for the device. */

rangei(SMU1, 100e-6); /* Select a fixed range */

 /* measurement. */

trigil(SMU1, -10e-6); /* Set the trigger point to -10 uA. */

bsweepv(SMU1, 10.0, 50.0, 40, 10.0e-3, &bvdss); /* Sweep */

 /* from 10 V to 50 V in 40 */

 /* steps with 10 ms settling */

 /* time per step. */

This example measures the drain to source breakdown voltage of a field-effect transistor (FET). A linear
voltage sweep is generated from 10.0 V to 50.0 V by SMU1 using the bsweepv command. The breakdown

current is set to 10 mA by using the trigil command. The voltage at which this current is exceeded is

stored in the variable bvdss.

Model 4200A-SCS LPT Library Programming Section 4: LPT commands for SMUs

4200A-LPT-907-01 Rev. D May 2024 4-9

Also see

clrscn (on page 2-2)

devclr (on page 4-9)

execut (on page 2-9)

kibdefint (on page 2-17)

rangeX (on page 4-25)

rtfary (on page 2-31)

savgX (on page 2-32)

sintgX (on page 2-39)

smeasX (on page 2-40)

sweepX (on page 4-31)

trigXg, trigXl (on page 2-42)

trigcomp (on page 2-41)

devclr
This command sets all sources to a zero state.

Usage

int devclr(void);

Details

This command clears all sources sequentially in the reverse order from which they were originally

forced. Before clearing all Keithley supported instruments, GPIB-based instruments are cleared by

sending all strings defined with the kibdefclr command. devclr is implicitly called by clrcon,

devint, execut, and tstdsl.

For C-V testing, this command turns off the DC bias voltage.

Also see

clrcon (on page 7-2)

devint (on page 2-6)

execut (on page 2-9)

kibdefclr (on page 2-16)

tstdsl (on page 2-44)

Section 4: LPT commands for SMUs Model 4200A-SCS LPT Library Programming

4-10 4200A-LPT-907-01 Rev. D May 2024

devint
This command resets all active instruments in the system to their default states.

Usage

int devint(void);

Details

Resets all active instruments, including the 4200A-CVIV, in the system to their default states. It clears

the system by opening all relays and disconnecting the pathways. Meters and sources are reset to

their default states. Refer to the hardware manuals for the instruments in your system for listings of

available ranges and the default conditions and ranges.

The devint command is implicitly called by the execut and tstdsl commands.

To abort a running pulse_exec pulse test, see dev_abort.

devint does the following:

1. Clears all sources by calling devclr.

2. Clears the matrix crosspoints by calling clrcon.

3. Clears the trigger tables by calling clrtrg.

4. Clears the sweep tables by calling clrscn.

5. Resets GPIB instruments by sending the string defined with kibdefint.

6. Resets the active instrument cards.

Instrument cards are reset in the following order:

1. SMU instrument cards

2. CVU instrument cards

3. Pulse instrument cards (4225-PMU or 4220-PGU)

The SMUs return to the following states:

• 100 μA and 10 V ranges

• Autorange on

• Voltage source

• 0 V DC bias

Model 4200A-SCS LPT Library Programming Section 4: LPT commands for SMUs

4200A-LPT-907-01 Rev. D May 2024 4-11

The 4210-CVU or 4215-CVU returns to the following states:

• 30 mVRMS AC signal

• 0 V DC bias

• 100 kHz frequency

• Autorange on

• Cable length compensation set to 0 m

• Open/Short/Load compensation disabled

The 4225-PMU or 4220-PGU returns to the following states:

• The pulse mode is maintained. For example, if the pulse card is in Segment Arb mode, it is still in

Segment Arb mode after the devint process is complete.

• 5 V and 10 mA ranges

• If in pulse mode:

▪ Period of 1 μs

▪ Transition times (rise and fall) of 100 ns

▪ Width of 500 ns

▪ Voltage high and low of 0 V

▪ Load of 50 Ω

• If in segmented arb mode, Start Voltage is 0 V

• If in arbitrary waveform mode, Table Length is 100

Also see

clrcon (on page 7-2)

clrscn (on page 2-2)

clrtrg (on page 2-3)

dev_abort (on page 6-4)

devclr (on page 4-9)

kibdefint (on page 2-17)

forceX
This command programs a sourcing instrument to generate a voltage or current at a specific level.

Usage

int forcei(int instr_id, double value);

int forcev(int instr_id, double value);

instr_id The instrument identification code

value The level of the bipolar voltage or current forced in volts or amperes

Section 4: LPT commands for SMUs Model 4200A-SCS LPT Library Programming

4-12 4200A-LPT-907-01 Rev. D May 2024

Details

The forcev and forcei commands generate either a positive or negative voltage, as directed by the

sign of the value argument. With both forcev and forcei commands:

• Positive values generate positive voltage or current from the high terminal of the source relative to

the low terminal.

• Negative values generate negative voltage or current from the high terminal of the source relative

to the low terminal.

The forcev command accepts both CMTR1H and CMTR1L for the instr_id parameter to support

differential CVU biasing. By forcing one polarity on CMTR1H and an opposite polarity on CMTR1L,

total bias can be up to 60 V, centered in relationship to ground. Note that it is not possible to exceed ±

30 V in relationship to ground.

When using the limitX, rangeX, and forceX commands on the same source at the same time in a

test sequence, call the limitX and rangeX commands before the forceX command. See

“Compliance limits” in the Model 4200A-SCS Source-Measure Unit (SMU) User's Manual for details.

The ranges of currents and voltages available from a voltage or current source vary with the

instrument type. For more detailed information, refer to the hardware manual for each instrument.

To force zero current with a higher voltage limit than the 20 V default, include one of the following calls

ahead of the forcei call:

• A measv call, which causes the 4200A-SCS to autorange to a higher voltage limit.

• A rangev call to an appropriate fixed voltage, which results in a fixed voltage limit.

To force zero volts with a higher current limit than the 10 mA default, include one of the following calls

ahead of the forcev call:

• A measi call, which causes the 4200A-SCS to autorange to a higher current limit.

• A rangei call to an appropriate fixed current, which results in a fixed current limit.

If you change the source mode of the source-measure unit (SMU), it can modify the measure range. If

the source mode is changed from voltage to current source (or from current to voltage source), the

measure range may be changed to minimize variations in the SMU output level. See rangeX for the

recommended command order.

Model 4200A-SCS LPT Library Programming Section 4: LPT commands for SMUs

4200A-LPT-907-01 Rev. D May 2024 4-13

Example

double ir12;

.

.

conpin(2, GND, 0);

conpin(SMU1, 1, 0);

limiti(SMU1, 2.0e-4); /* Limit 1 mA to 200 uA. */

forcev(SMU1, 40.0); /* Apply 40.0 V. */

measi(SMU1, &ir12); /* Measure leakage; */

 /* return results to ir12. */

The reverse bias leakage of a diode is measured after applying 40.0 V to the junction.

Also see

rangeX (on page 4-25)

getstatus
This command returns the operating state of a specified instrument.

Usage

int getstatus(int instr_id, long parameter, double *result);

instr_id The instrument identification code

parameter The parameter of query; see Details

result The data returned from the instrument; the getstatus command returns one item

Details

If the UT_INVLDPRM invalid parameter error is returned from the getstatus command, it indicates

that the status item parameter is illegal for this device. The requested status code is invalid for the

selected device.

A list of supported getstatus command values for parameter for a source-measure unit (SMU)

and a pulse card (VPU) are provided in the following tables.

No status values are provided for measurement-specific conditions.

Section 4: LPT commands for SMUs Model 4200A-SCS LPT Library Programming

4-14 4200A-LPT-907-01 Rev. D May 2024

Supported SMU getstatus query parameters

SMU parameter Returns Comment

KI_IPVALUE The presently programmed
output value

Current value (I output value)

KI_VPVALUE Voltage value (V output value)

KI_IPRANGE The presently programmed
range

Current range (full-scale range value, or 0.0 for
autorange)

KI_VPRANGE Voltage range (full-scale range value, or 0.0 for
autorange)

KI_IARANGE The presently active range Current range (full-scale range value)

KI_VARANGE Voltage range (full-scale range value)

KI_COMPLNC Compliance status of last
reading

Bitmapped values:

2 = LIMIT (at the compliance limit set by
limitX)

4 = RANGE (at the top of the range set by
rangeX)

KI_MAX_VOLTAGE The presently programmed
maximum voltage

For systems with 2657A source-measure units
(SMUs) only; a value between 300 V and 3000 V

KI_RANGE_COMPLIANCE Range compliance status of
last reading

Returns 1 if in range compliance

Supported pulse card getstatus query parameters

Parameter Returns Comment

General parameters

KI_VPU_PERIOD Pulse period Pulse period value in seconds

KI_VPU_TRIG_POLARITY Trigger polarity Rising or falling edge

KI_VPU_CARD_STATUS Card status Card level status

KI_VPU_TRIG_SOURCE Trigger source Trigger source value

Channel-based parameters

KI_VPU_CH1_RANGE Source range Channel 1 range value in volts (5.0 or 20.0)

KI_VPU_CH2_RANGE Source range Channel 2 range value in volts (5.0 or 20.0)

KI_VPU_CH1_RISE Rise time Channel 1 rise time value in seconds

KI_VPU_CH2_RISE Rise time Channel 2 rise time value in seconds

KI_VPU_CH1_FALL Fall time Channel 1 fall time value in seconds

KI_VPU_CH2_FALL Fall time Channel 2 fall time value in seconds

KI_VPU_CH1_WIDTH Pulse width Channel 1 pulse width value in seconds

KI_VPU_CH2_WIDTH Pulse width Channel 2 pulse width value in seconds

KI_VPU_CH1_VHIGH Pulse high Channel 1 pulse high level value in volts

KI_VPU_CH2_VHIGH Pulse high Channel 2 pulse high level value in volts

KI_VPU_CH1_VLOW Pulse low Channel 1 pulse low level value in volts

KI_VPU_CH2_VLOW Pulse low Channel 2 pulse low level value in volts

KI_VPU_CH1_DELAY Pulse delay Channel 1 pulse delay from trigger value in seconds

KI_VPU_CH2_DELAY Pulse delay Channel 2 pulse delay from trigger value in seconds

KI_VPU_CH1_ILIMIT Current limit Channel 1 current Limit value in amps

KI_VPU_CH2_ILIMIT Current limit Channel 2 current Limit value in amps

KI_VPU_CH1_BURST_COUNT Burst count Channel 1 burst count value

KI_VPU_CH2_BURST_COUNT Burst count Channel 2 burst count value

Model 4200A-SCS LPT Library Programming Section 4: LPT commands for SMUs

4200A-LPT-907-01 Rev. D May 2024 4-15

Supported pulse card getstatus query parameters

Parameter Returns Comment

KI_VPU_CH1_TEST_STATUS Status Channel 1 test status

KI_VPU_CH2_TEST_STATUS Status Channel 2 test status

KI_VPU_CH1_DC_OUTPUT DC output Channel 1 DC output value

KI_VPU_CH2_DC_OUTPUT DC output Channel 2 DC output value

KI_VPU_CH1_LOAD Pulse load Channel 1 pulse load value

KI_VPU_CH2_LOAD Pulse load Channel 2 pulse load value

Also see

getinstid (on page 2-11)

intgX
This command performs voltage or current measurements averaged over a user-defined period (usually one AC

line cycle).

Usage

int intgi(int instr_id, double *result);

int intgv(int instr_id, double *result);

instr_id The instrument identification code of the measuring instrument, such as SMU1

result The variable assigned to the result of the measurement

Details

The averaging is done in hardware by integration of the analog measurement signal over a specified

period of time. The integration is automatically corrected for 50 Hz or 60 Hz power mains.

For a measurement conversion, the signal is sampled for a specific period of time. This sampling time

for measurement is called the integration time. For the intgX command, the default integration time is

set to 1 PLC. For 60 Hz line power, 1 PLC = 16.67 ms (1 PLC/60 Hz). For 50 Hz line power, 1 PLC =

20 ms (1 PLC/50 Hz).

The default integration time is one AC line cycle (1 PLC). This default time can be overridden with the

KI_INTGPLC option of setmode. The integration time can be set from 0.01 PLC to 10.0 PLC. The

devint command resets the integration time to the one AC line cycle default value.

The only difference between measX and intgX is the integration time. For measX, the integration

time is fixed at 0.01 PLC. For intgX, the default integration time is 1 PLC but can set to any PLC

value between 0.01 and 10.0 by using the setmode command.

Section 4: LPT commands for SMUs Model 4200A-SCS LPT Library Programming

4-16 4200A-LPT-907-01 Rev. D May 2024

rangeX directly affects the operation of intgX. The use of rangeX prevents the instrument

addressed from automatically changing ranges. This can result in an overrange condition that would

occur when measuring 10.0 V on a 4.0 V range. An overrange condition returns the value 1.0E+22 as

the measurement result.

If used, rangeX must be in the test sequence before the associated intgX command.

In general, measurement commands that return multiple results are more efficient than sending

multiple measurement commands.

A compliance limit setting goes into effect when the SMU is on a measure range that can

accommodate the limit value. For manual ranging, the rangeX command is used to select the range.

For autoranging, intgi or intgv triggers a needed range change before the measurement is made.

See “Compliance limits” in the Model 4200A-SCS Source-Measure Unit (SMU) User's Manual

for details.

Example

double idss;

.

.

conpin(GND, 5, 4, 3, 0);

conpin(SMU1, 2, 0);

limiti(SMU1, 2.0E-8); /* Limits to 20.0 nA. */

rangei(SMU1, 2.0E-8); /* Select range for 20.0 nA */

forcev(SMU1, 25.0); /* Apply 25 V to the gate. */

intgi(SMU1, &idss); /* Measure gate leakage; */

 /* return results to idss. */

This example measures the relatively low leakage current of a metal-oxide semiconductor field-effect
transistor (MOSFET).

Also see

devint (on page 2-6)

measX (on page 4-20)

rangeX (on page 4-25)

setmode (on page 2-37)

Model 4200A-SCS LPT Library Programming Section 4: LPT commands for SMUs

4200A-LPT-907-01 Rev. D May 2024 4-17

limitX
This command allows the programmer to specify a current or voltage limit other than the default limit of

the instrument.

Usage

int limiti(int instr_id, double limit_val);

int limitv(int instr_id, double limit_val);

instr_id The instrument identification code of the instrument on which to impose a source
value limit

limit_val The maximum level of the current or voltage; see Details

Details

The parameter limit_val is bidirectional. For example, the command limitv(SMU1, 10.0) limits

the voltage of the current source SMU1 to ±10.0 V. The command limiti(SMU1, 1.5e-3) limits the

current of the voltage source SMU1 to ±1.5 mA.

Use the limiti command to limit the current of a voltage source. Use the limitv command to limit

the voltage of a current source.

If the instrument is ranged below the programmed limit value, the instrument temporarily limits to full

scale of range.

This command must be called in the test sequence before the associated forceX, pulseX, bsweepX,

sweepX, or searchX command is used to generate the voltage or current. The limitX command

also sets the top measurement range of an autoranged measurement.

The limits set within a particular test sequence are cleared when the devint or execut command

is called.

If you need a voltage limit greater than 20 V at a source-measure unit (SMU) that is set to force zero

current, call the measv command to set the SMU to autorange to a higher range, or use the rangev

command to set a higher voltage range. Similarly, if you need a current limit of greater than 10 mA at a

SMU that is set to force zero volts, call the measi command to set the SMU to autorange to a higher

range or use the rangev command to set a higher current range.

Section 4: LPT commands for SMUs Model 4200A-SCS LPT Library Programming

4-18 4200A-LPT-907-01 Rev. D May 2024

Example

double ibceo, vbceo;

.

.

conpin(2, 3, GND, 0);

conpin(SMU1, 1, 0);

limitv(SMU1, 150.0); /* Limit voltage at 150 V. */

forcei(SMU1, ibceo); /* Force current through the DUT. */

measv(SMU1, &vbceo); /* Measure breakdown voltage; */

. /* return results to vbceo. */

.

This example measures the breakdown voltage of a device. The limit is set at 150 V. This limit is necessary
to override the default limit of the SMU, which would otherwise be in effect.

Also see

bsweepX (on page 4-7)

devint (on page 2-6)

execut (on page 2-9)

forceX (on page 4-11)

measX (on page 4-20)

pulseX (on page 4-22)

rangeX (on page 4-25)

searchX (on page 2-34)

sweepX (on page 4-31)

lorangeX
This command defines the bottom autorange limit.

Usage

int lorangei(int instr_id, double range);

int lorangev(int instr_id, double range);

instr_id The instrument identification code

range The value of the instrument range, in volts or amperes

Model 4200A-SCS LPT Library Programming Section 4: LPT commands for SMUs

4200A-LPT-907-01 Rev. D May 2024 4-19

Details

The lorangeX command is used with autoranging to limit the number of range changes, which saves

test time.

If the instrument is on a range lower than the one specified by the lorangeX command, the range is

changed. The 4200A-SCS automatically provides any settling delay for the range change that may be

necessary due to this potential range change.

Once defined, the lorangeX command is in effect until a devclr, devint, execut, or another

lorangeX command executes.

Example

double idatrg[25];

.

.

conpin(SMU1, 10, 0);

conpin(SMU2, 11, 0):

conpin(12, GND, 0);

lorangei(SMU1, 2.0E-6); /* Select 2 uA as minimum */

 /* range during autoranging. */

smeasi(SMU1, idatvg); /* Set up sweep measurement */

 /* of IDS. */

sweepv(SMU2, 0.0, 2.5, 24, 0.002); /* Sweep */

 /* gate from 0 V to 2.5 V. */

This example illustrates how you would select the bottom autorange limit.

Also see

devclr (on page 4-9)

devint (on page 2-6)

execut (on page 2-9)

Section 4: LPT commands for SMUs Model 4200A-SCS LPT Library Programming

4-20 4200A-LPT-907-01 Rev. D May 2024

measX
This command allows the measurement of voltage, current, or time.

Usage

int meast(int instr_id, double *result);

int measi(int instr_id, double *result);

int measv(int instr_id, double *result);

instr_id The instrument identification code

result The variable assigned to the result of the measurement

Details

For a measurement conversion, the signal is sampled for a specific period of time. This sampling time

for measurement is called the integration time. For the measX command, the integration time is fixed at

0.01 PLC. For 60 Hz line power, 0.01 PLC = 166.67 μs (0.01 PLC/60 Hz). For 50 Hz line power,

0.01 PLC = 200 μs (0.01 PLC/50 Hz).

The only difference between measX and intgX is the integration time. For measX, the integration

time is fixed at 0.01 PLC. For intgX, the default integration time is 1 PLC, but can set to any PLC

value between 0.01 and 10.0.

After the command is called, all relay matrix connections remain closed, and the sources continue to

generate voltage or current. For this reason, two or more measurements can be made in sequence.

The rangeX command directly affects the operation of the measX command. The use of the rangeX

command prevents the instrument addressed from automatically changing ranges when the measX

command is called. This can result in an overrange condition such that would occur when measuring

10 V on a 4.0 V range. An overrange condition returns the value 1.0E+22 as the result of

the measurement.

If used, the rangeX command must be in the test sequence before the associated measX command.

All measurements except the meast command invoke a timer snapshot measurement to be made by

all enabled timers. This timer snapshot can then be read with the meast command.

In general, measurement commands that return multiple results are more efficient than making

multiple measurement commands.

A compliance limit setting goes into effect when the SMU is on a measure range that can

accommodate the limit value. For manual ranging, the rangeX command is used to select the range.

For autoranging, the measi or measv command will trigger a needed range change before the

measurement is performed. See “Compliance limits” in the Model 4200A-SCS Source-Measure Unit

(SMU) User's Manual for details.

Model 4200A-SCS LPT Library Programming Section 4: LPT commands for SMUs

4200A-LPT-907-01 Rev. D May 2024 4-21

Example

double if46, vf47;

.

.

if46 = 50e-3;

.

.

conpin(3, GND, 0);

conpin(SMU1, 2, 0);

forcei(SMU1, if46); /* Forward bias the diode; */

 /* set SMU current */

 /* limit to 50 mA. */

measv(SMU1, &vf47); /* Measure forward bias; */

 /* return result to vf47. */

In this example, the forward bias voltage of the diode is obtained from a single source-measure unit (SMU).

Also see

intgX (on page 4-15)

rangeX (on page 4-25)

mpulse
This command uses a source-measure unit (SMU) to force a voltage pulse and measure both the voltage and

current for exact device loading.

Usage

int mpulse(long instr_id, double pulse_amplitude, double pulse_duration, double

*v_meas, double *i_meas);

instr_id The instrument identification code of the instrument under control

pulse_amplitude The pulse height in volts

pulse_duration The pulse width in seconds; the measurements are made at the end of the pulse
before the mpulse command is shut down

v_meas The variable used to receive the voltage on the output of the instrument at the time
the pulse terminates

i_meas The variable used to receive the current drawn from the instrument; this
measurement is made simultaneously with the voltage, so the combined values are
an exact representation of the device load at pulse termination

Section 4: LPT commands for SMUs Model 4200A-SCS LPT Library Programming

4-22 4200A-LPT-907-01 Rev. D May 2024

Details

Voltage and current are measured just before the pulse terminates. Pulsing is useful for devices that

exhibit self-heating, which could damage the device or shift operating characteristics. Examples are

high-power GaAs transistors or BJTs and some silicon devices.

Example

double vdsat, idsat, vds;

.

.

mpulse(SMU1, vds, l.0E-3, &vdsat, &idsat);

 /* Pulse output of SMU1. */

This example measures the drain current of a metal-oxide semiconductor field-effect transistor (MOSFET)
when drain-source voltage (VDS) equals gate-source voltage (VGS). A voltage pulse, VDS, is applied to the
drain. The pulse duration is 1 ms. Voltage across the MOS transistor, VDSAT, and drain current, IDSAT, are
measured.

Also see

None

pulseX
This command directs a SMU to force a voltage or current at a specific level for a predetermined length of time.

Usage

int pulsei(int instr_id, double forceval, double time);

int pulsev(int instr_id, double forceval, double time);

instr_id The instrument identification code

forceval The level of voltage in volts or current in amperes to force; see Details

time The pulse duration in seconds; for example, a time of 0.5 initiates a time of 0.5 s, and
a time of 2.0e-2 initiates a time of 20 ms; the minimum practical time for a
source-measure unit (SMU) source is dependent on the voltage or current level being

sourced and the impedance of the device under test (DUT)

Model 4200A-SCS LPT Library Programming Section 4: LPT commands for SMUs

4200A-LPT-907-01 Rev. D May 2024 4-23

Details

The forceval parameter can be positive or negative. For example, sending pulsev(SMU1, 10.0,

10e-3) generates +10 V for 10 ms, and sending pulsei(SMU1, -1.5e-3, 10e-3) generates

−1.5 mA for 10 ms.

The ranges of current and voltage available vary with the instrument type. For more detailed

information, refer to the hardware manuals of the instruments in your system.

After pulseX is executed, the output is turned off. In order to make measurements, the output must be

turned on again. measX can measure:

• Residual voltage or current as it decays after removal of the initial application.

• Capacitance between DUT pins as the residual voltage or current decays.

All measurements made using the pulseX and measX commands are made after the pulse

has completed.

When the source is not operating, measurements are not allowed.

Whenever pulseX is executed, either a default or a programmed current or voltage limit is in effect.

Refer to the limitX command for additional information.

When using limitX, rangeX, and pulseX on the same source at the same time in a test sequence,

call limitX, then rangeX, then pulseX.

Changing the source mode of the SMU can modify the measure range. If the sourcing mode is

changed from voltage to current sourcing (or from current to voltage sourcing), the measure range

may be changed to minimize variations in the SMU output level. See rangeX for recommended

command order.

Section 4: LPT commands for SMUs Model 4200A-SCS LPT Library Programming

4-24 4200A-LPT-907-01 Rev. D May 2024

Example

double res1, res2;

.

.

conpin(GND, 2, 3, 0);

conpin(SMU1, 1, 0);

conpin(SMU2, 4, 0);

forcev(SMU1, .5);

trigig(SMU1, +1.E-5); /* Set the trigger point for */

 /* 10 mA. */

searchv(SMU2, 0.0, 3.0, 7, 2.0E-5, &res1); /* Increase */

 /* voltage until */

 /* trigger point occurs. */

 /* Return results to res1. */

pulsev(SMU2, 20.0, 5.E-1); /* Apply a 20 V pulse to the */

 /* gate for 500 ms. */

searchv(SMU2, 0.0, 3.0, 7, 2.0E-5, &res2); /* Increase */

 /* voltage until */

 /* trigger point occurs. */

 /* Return results to res2. */

This example measures the threshold voltage shift of an FET by calling two searchv commands:

1. The searchv command measures the gate voltage required to initiate a drain current of 10 μA.

2. The searchv command measures the gate voltage required to initiate a drain current of 10 μA

immediately after a 20 V pulse is applied to the gate.

Note that the second searchv command was called without reprogramming the trigig command. This is

possible because the clear trigger command (clrtrg) was not used.

Also see

limitX (on page 4-17)

rangeX (on page 4-25)

Model 4200A-SCS LPT Library Programming Section 4: LPT commands for SMUs

4200A-LPT-907-01 Rev. D May 2024 4-25

rangeX
This command selects a range and prevents the selected instrument from autoranging.

Usage

int rangei(int instr_id, double range);

int rangev(int instr_id, double range);

instr_id The instrument identification code

range The value of the highest measurement to be made (the most appropriate range for
this measurement is selected); if range is set to 0, the instrument selects a

range automatically

Details

Use the rangeX command to eliminate the time required by automatic range selection on a measuring

instrument. Because the rangeX command prevents autoranging, an overrange condition can occur

(for example, when measuring 10 V on a 2 V range). The value 1.0e+22 is returned when this occurs.

The rangeX command can also reference a source, because a source-measure unit (SMU) can be

either of the following:

• Simultaneously a voltage source, voltmeter, and ammeter.

• Simultaneously a current source, ammeter, and voltmeter.

The range of a SMU is the same for the source and the measure commands.

When selecting a range below the limit value, whether it is explicitly programmed or the default value,

an instrument temporarily uses the full-scale value of the range as the limit. This does not change the

programmed limit value, and if the instrument range is restored to a value higher than the programmed

limit value, the instrument again uses the programmed limit value. See “Compliance limits” in the

Model 4200A-SCS Source-Measure Unit (SMU) User's Manual for details.

When changing the instrument range, be careful not to overrange the instrument. For example, a test

initially performed on the 10 mA range with a 5 mA limit is changed to test in the 1 mA range with a

1 mA limit. Notice that the limit is lowered from 5 mA to 1 mA to avoid overranging the 1 mA setting.

When source mode of the SMU changes, the measure range may change. This change minimizes

variations in the SMU output level. The source mode of the SMU refers to its voltage sourcing or

current sourcing capability. Changing the source mode means using a command (such as forceX) to

change the SMU mode from forcing voltage to forcing current (or from forcing current to forcing

voltage). For example, if the SMU is programmed to force voltage (forcev), and then is programmed

with to force current (forcei), to ensure a consistent output signal, the previously programmed

current measure range may change. Make sure the correct measure range is set by sending the

rangeX command after switching the source mode. The commands that can change the source mode

are asweepX, bsweepX, forceX, pulseX, searchX, and sweepX.

Section 4: LPT commands for SMUs Model 4200A-SCS LPT Library Programming

4-26 4200A-LPT-907-01 Rev. D May 2024

Example

double icer2;

.

.

conpin(GND, 3, 2, 0);

conpin(SMU1, 4, 0);

limiti(SMU1, 1.0E-3); /* Limit current to 1.0 mA. */

rangei(SMU1, 2.0E-3); /* Select range for 2 mA. */

forcev(SMU1, 35.0); /* Force 35 V. */

measi(SMU1, &icer2); /* Measure leakage; return */

 /* results to icer2. */

This example specifies connections, sets a 1 mA limit on the 2 mA range and forces 35 V, then measures
current leakage and returns the results to the variable icer2.

Also see

asweepX (on page 4-2)

bsweepX (on page 4-7)

forceX (on page 4-11)

pulseX (on page 4-22)

searchX (on page 2-34)

sweepX (on page 4-31)

rtfary
This command returns the array of force values used during the subsequent voltage or frequency sweep.

Usage

int rtfary(double *forceArray);

forceArray Array of force values for voltage or frequency

Details

This command returns an array of voltage or frequency force values for a sweep. Send this command

before calling any sweep command.

To prevent a memory exception error, make sure that the array that will receive the sourced values is

large enough.

Model 4200A-SCS LPT Library Programming Section 4: LPT commands for SMUs

4200A-LPT-907-01 Rev. D May 2024 4-27

The following examples show the proper command sequence for using rtfary:

Example 1: Valid command sequence for voltage
sweep

Example 2: Valid command sequence for frequency
sweep

smeasz smeasz

smeast rtfary

rtfary dsweepf

dsweepv

Example

Programming example #2 (on page 5-36) returns the array of force values for the voltage sweep.

Also see

None

segment_sweepX_list
This command creates and returns up to a 4-segment linear sweep force table based on user-defined start, stop,

and step values.

Usage

int segment_sweepv_list (double startVal, double *stopArray, double *stepArray, int

numSegments, double *forceArray, int forceArraysize, int *numListpts);

int segment_sweepi_list (double startVal, double *stopArray, double *stepArray, int

numSegments, double *forceArray, int forceArraysize, int *numListpts);

startVal Starting voltage value

stopArray A single dimension array containing stop values

stepArray A single dimension array containing step values

numSegments Number of segments

forceArray A single dimension array returned with force values

forceArraysize Size allocated for forceArray

numListpts Number of total points in returned forceArray

Details

The segment_sweepX command is used with the asweepX command.

A forcing table is created with the segment_sweepX_list command and the force array table is sent

using the asweepX command.

Section 4: LPT commands for SMUs Model 4200A-SCS LPT Library Programming

4-28 4200A-LPT-907-01 Rev. D May 2024

Example

startVoltage = 0.0V

stopArray[] = {5.0, -5.0, 0}

stepArray[] = {0.1, -0.5, 0.25}

segmentpts = 3

arraysize = 1000

 segment_sweepv_list(startVoltage, stopArray, stepArray, segmentpts, forceArray,

arraysize, numListpts);

 forcev(SMU1, 0.0);

 rtfary(Programmed_V);

 smeasi(SMU1, Measured_I);

 asweepv(SMU1, *numListpts, delayValue, &forceArray[0]);

Also see

asweepX (on page 4-2)

forceX (on page 4-11)

rtfary (on page 4-26)

smeasX (on page 2-40)

setauto
This command re-enables autoranging and cancels any previous rangeX command for the specified instrument.

Usage

int setauto(int instr_id);

instr_id The instrument identification code

Details

When an instrument is returned to the autorange mode, it remains in its present range for

measurement purposes. The source range changes immediately.

Due to the dual-mode operation of the SMU (voltage versus current), setauto places both voltage

and current ranges in autorange mode.

Example

double icer1;

double idatvg[25];

.

.

rangei(SMU1, 2.0E-9); /* Select manual range. */

delay(200); /* Delay after range change. */

measi(SMU1, &icer1); /* Measure leakage. */

.

.

setauto(SMU1); /* Enable autorange mode. */

lorangei(SMU1, 2.0E-6); /* Select 2 uA as minimum range */

 /* during autoranging. */

delay(200); /* Delay after range change. */

smeasi(SMU1, idatvg); /* Setup sweep measurement */

 /* of IDS. */

sweepv(SMU2, 0.0, 2.5, 24, 0.002); /* Sweep gate from 0 V to 2.5 V. */

Model 4200A-SCS LPT Library Programming Section 4: LPT commands for SMUs

4200A-LPT-907-01 Rev. D May 2024 4-29

Also see

None

ssmeasx
This command makes a series of readings until the change (delta) between readings is within a

specified percentage.

Usage

int ssmeasi(int instr_id, double *result, double delta, unsigned int max_read, double

delay);

int ssmeasv(int instr_id, double *result, double delta, unsigned int max_read, double

delay);

instr_id The instrument identification code of the measuring instrument

result The floating-point variable assigned to the result of the measurement

delta The termination definition, which is the percentage of the first reading that defines the
steady-state condition

max_read The maximum number of readings made to determine whether or not the reading is
steady

delay The delay between readings to wait in seconds

Details

This command is used when device stability is uncertain. It continually reads the instrument until the

resulting measurement is stable and provides the fastest measurement possible.

If the reading never stabilizes because of factors such as oscillations or charge and discharge, this

reading count expires and a reading of MEAS_NOT_PERFORMED (1.00E23) is returned.

Any instrument that uses the measX command can use the ssmeasX command. This command calls

the measX command for each reading. Any rangeX command rule applies to this command.

The ssmeasX command is used when making single-point readings. It is not used for any of the

combination measurements, such as the XsweepY and trigXY commands.

Under certain test conditions, the ssmeasX command is not ideal. For example, an oscillation where

two contiguous measurements are within the given percentage will return a stable reading, even

though the device cannot be measured.

Section 4: LPT commands for SMUs Model 4200A-SCS LPT Library Programming

4-30 4200A-LPT-907-01 Rev. D May 2024

Example

double meascur;

.

.

conpin(SMU3, 12, 0); /* Make connections. */

conpin(SMU2, 10, 0);

setimtr(SMU2);

.

.

forcev(SMU3, 0.1); /* Perform the test. */

ssmeasi(SMU2, &meascur, 0.1, 300, 0.015); /* Steady */

 /* state measurement /*

 /* with delta of 0.1%, with */

 /* maximum of 300 readings */

. /* before error, wait 15 ms */

. /* between readings. */

This example makes a series of measurements and tests to verify if the present measurement and the
previous measurement are within 0.1%. If the measurements are within 0.1%, the result of the last
measurement is stored and the program continues. If the measurements are not within 0.1%, the program
waits 15 ms before making another measurement. It then compares this measurement with previous
measurements. If the measurements are within 0.1%, the result of the last measurement is stored and the
program continues. If the measurements are not within 0.1% it repeats the comparison until the change is
within 0.1%. If, after 300 attempts, the change is not within the specified limit, the following error is returned:
MEAS_NOT_PERFORMED (l.000E23)

Also see

measX (on page 4-20)

rangeX (on page 4-25)

smeasX (on page 2-40)

Model 4200A-SCS LPT Library Programming Section 4: LPT commands for SMUs

4200A-LPT-907-01 Rev. D May 2024 4-31

sweepX
This command generates a ramp consisting of ascending or descending voltages or currents. The sweep consists

of a sequence of steps, each with a user-specified duration.

Usage

int sweepi(int instr_id, double startval, double endval, long stepno, double

step_delay);

int sweepv(int instr_id, double startval, double endval, long stepno, double

step_delay);

instr_id The instrument identification code of the sourcing instrument

startval The initial voltage or current level output from the sourcing instrument, which is
applied for the first sweep measurement; this value can be positive or negative

endval The final voltage or current level applied in the last step of the sweep; this value can
be positive or negative

stepno The number of current or voltage changes in the sweep; the actual number of forced
points is one greater than the number of steps specified

step_delay The delay in seconds between each step and the measurements defined by the
active measure list

Details

The sweepX command is always used with the smeasX, sintgX, savgX, or rtfary command.

The sweepX command causes a sourcing instrument to generate a series of ascending or descending

voltages or current changes called steps. During this source time, a measurement scan is done at

each step.

The actual number of forced points is one more than the number of steps specified. This means that

the number of measurements made is the number of steps specified plus one. This is important when

dimensioning the size of the results array. Failure to make sure the array is big enough will produce

operating system access violation errors.

Measurements are stored in a one-dimensional array in the order they were made.

The trigXg, trigXl, and trigcomp commands can be used with the sweepX command, even

though they are also used with the smeasX, sintgX, or savgX commands. In this case, data resulting

from each of the steps is stored in an array, as noted above. However, once a trigger point (for

example, a level of current or voltage) is reached, the sourcing device stops incrementing or

decrementing and is held at a steady output level for the remainder of the sweep.

The system maintains a measurement scan table consisting of devices to measure. This table is

maintained by calls to the smeasX, sintgX, savgX, or clrscn command. As multiple calls to these

commands are made, the commands are appended to this table.

Section 4: LPT commands for SMUs Model 4200A-SCS LPT Library Programming

4-32 4200A-LPT-907-01 Rev. D May 2024

When multiple calls to the sweepX command are executed in the same test sequence, the smeasX,

sintgX, or savgX arrays are loaded sequentially. This appends the measurements from the second

sweepX call to the previous results. If the arrays are not dimensioned correctly, access violations

occur. The measurement table remains intact until the clrscn, execut, or devint command

is executed.

Defining new test sequences using the smeasX, sintgX, or savgX commands adds commands to

the active measure list. The previous measures are still defined and used. The clrscn command is

used to eliminate the previous measures for the second sweep. Using the smeasX, sintgX, or savgX

command after a clrscn command causes the appropriate new measures to be defined and used.

When the first sweep point is nonzero, it may be necessary to precharge the circuit so that the sweepX

command will return a stable value for the first measured point without penalizing remaining points in

the sweep. For example:

double ires[6];

conpin(SMU1, 10, 0);

conpin(2, GND 0);

forcev(SMU1, 5.0); /* Force 5 V to charge. */

delay(10); /* Wait for precharge. */

smeasi(SMU1, ires); /* Set up measurement. */

sweepv(SMU1, 5.0, 10.0, 5, 2.5E-3); /* Make the real measurement. */

If you change the source mode of the source-measure unit (SMU), it can modify the measure range. If

the source mode is changed from voltage to current source (or from current to voltage source), the

measure range may be changed to minimize variations in the SMU output level. See rangeX for the

recommended command order.

Example

double resi[11], ssbiasv;

double vds[11];

.

conpin(SMU1, 1, 0);

conpin(SMU2, 2, 0);

conpin(SMU3, 3, 0);

conpin(GND, 4, 0);

forcev(SMU3, ssbiasv); /* Apply substrate bias */

 /* voltage SSBIASV. */

forcev(SMU1, -0.1); /* Apply a gate-to-source */

 /* voltage of -0.1V. */

rtfary(vds); /* Return force array*/

smeasi(SMU2, resi); /* Perform a series of current */

 /* measurements; return */

 /* the results to the array */

 /* resi. */

sweepv(SMU2, 0.0, 5.0, 10, 2.5E-3); /* Generate */

 /* 11 steps and 11 */

 /* points each 2.5 ms duration, */

 /* ranging from 0 to 5 V. */

Model 4200A-SCS LPT Library Programming Section 4: LPT commands for SMUs

4200A-LPT-907-01 Rev. D May 2024 4-33

This example gathers data to create a graph showing the common drain-source characteristics of a
field-effect transistor (FET). A fixed gate-to-source voltage is generated by SMU1. A voltage ramp from 0 V
to 5 V is generated by SMU2. Drain current applied by SMU2 is measured 11 times by the smeasi

command. Data is stored in the array resi.

Also see

rangeX (on page 4-25)

rtfary (on page 2-31)

savgX (on page 2-32)

sintgX (on page 2-39)

smeasX (on page 2-40)

In this section:

LPT commands for the CVUs ... 5-1
adelay .. 5-2
asweepv ... 5-3
bsweepX .. 5-4
cvu_custom_cable_comp ... 5-6
devclr ... 5-7
devint ... 5-7
dsweepf .. 5-9
dsweepv ... 5-10
forcev ... 5-12
getstatus... 5-12
measf ... 5-14
meass .. 5-14
meast ... 5-15
measv .. 5-16
measz .. 5-17
rangei ... 5-18
rtfary ... 5-18
setauto ... 5-19
setfreq .. 5-20
setlevel ... 5-21
setmode (4210-CVU or 4215-CVU) 5-21
smeasf ... 5-23
smeasfRT ... 5-24
smeass ... 5-25
smeast ... 5-26
smeastRT ... 5-27
smeasv ... 5-27
smeasvRT .. 5-28
smeasz ... 5-29
smeaszRT .. 5-30
sweepf .. 5-31
sweepf_log ... 5-33
sweepv ... 5-34
Programming examples ... 5-35

LPT commands for the CVUs
The LPT commands for the 4210-CVU or 4215-CVU are listed in CVU commands (on page 1-7). LPT

command details are presented here in alphabetic order.

Section 5

LPT commands for CVUs

Section 5: LPT commands for CVUs Model 4200A-SCS LPT Library Programming

5-2 4200A-LPT-907-01 Rev. D May 2024

adelay
This command specifies an array of delay points to use with asweepX command calls.

Usage

int adelay(long numberOfPoints, double *delayArray);

numberOfPoints Total number of sweep points

delayArray An array of delay values (in seconds)

Details

This command can be used with any of the asweepX commands. The following information pertains

specifically to the 4210-CVU or 4215-CVU.

This command is used to define an array of delay values for the points in a voltage array sweep

(asweepv). Each delay in the array is added to the delay time specified in asweepv. For example, if

the array contained four delays (0.04 s, 0.05 s, 0.06 s, and 0.07 s) and the delay time specified in

asweepv is 0.1 s, then the resulting delays are (0.14 s, 0.15 s, 0.16 s, and 0.17 s).

The number of delay values must match the number of points in the voltage array sweep. For example:

Assume asweepv is configured to sweep four points, and the following delay times need to be set: 0.5

s, 0.25 s, 0.5 s, 0.25 s (in that order). With the delay time for asweepv set for 0 s, the array for the

adelay command would be configured as follows:

delayArray(0) = 0.5

delayArray(1) = 0.25

delayArray(2) = 0.5

delayArray(3) = 0.25

Example

See Programming example #5 (on page 5-39), which shows how to set up an array of delay times for a

voltage array sweep.

Also see

asweepX (on page 4-2)

Model 4200A-SCS LPT Library Programming Section 5: LPT commands for CVUs

4200A-LPT-907-01 Rev. D May 2024 5-3

asweepv
This command does a DC voltage sweep using an array of voltage values.

Usage

int asweepv(int instr_id, long numberOfPoints, double delayTime, double *forceArray);

instr_id The instrument identification code of the 4210-CVU or 4215-CVU: CVU1

numberOfPoints Total number of sweep points (1 to 4096)

delayTime Delay time before each measurement in seconds (0 to 999)

forceArray Array of DC voltage values

Details

The following supplemental information on the voltage array sweep pertains specifically to the

4210-CVU or 4215-CVU. See asweepX in LPT commands for SMUs and general operations (on

page 4-1) for additional information.

This command performs a DC voltage sweep using an array of voltage values. The number of voltage

values in the array must match the numberOfPoints parameter value.

The delayTime parameter sets the user-programmed delay before each measurement. Note that

there is an additional inherent system delay that occurs at the start of each step.

If different delay times are needed in the sweep, an array of delay time values can be set to adjust the

delay times at each step (see adelay for details).

Use the setfreq and setlevel commands to set the AC drive frequency and voltage for the sweep.

Example

Refer to Programming example #4 (on page 5-38) for an example of a voltage array sweep.

Also see

adelay (on page 5-2)

asweepX (on page 4-2)

dsweepf (on page 5-9)

dsweepv (on page 5-10)

sweepf (on page 5-31)

setfreq (on page 5-20)

setlevel (on page 5-21)

sweepv (on page 5-34)

Section 5: LPT commands for CVUs Model 4200A-SCS LPT Library Programming

5-4 4200A-LPT-907-01 Rev. D May 2024

bsweepX
This command supplies a series of ascending or descending voltages or currents and shuts down the source when

a trigger condition is encountered.

Usage

int bsweepi(int instr_id, double startval, double endval, long num_points, double

delay_time, double *result);

int bsweepv(int instr_id, double startval, double endval, long num_points, double

delay_time, double *result);

instr_id The instrument identification code of the sourcing instrument

startval The initial voltage or current level applied as the first step in the sweep; this value can
be positive or negative

endval The final voltage or current level applied as the last step in the sweep; this value can
be positive or negative

num_points The number of separate current and voltage force points between the startval and

endval parameters (1 to 32,767)

delay_time The delay in seconds between each step and the measurements defined by the
active measure list

result Assigned to the result of the trigger; this value represents the source value applied at
the time of the trigger or breakdown

Details

bsweepi is only available for SMUs.

The bsweepX command is used with the trigXg, trigXl, or trigcomp command. These trigger

commands provide the termination point for the sweep. At the time of trigger or breakdown, all sources

are shut down to prevent damage to the device under test. Typically, this termination point is the test

current required for a given breakdown voltage.

Once triggered, the bsweepX command terminates the sweep and clears all sources by executing a

devclr command internally. The standard sweepX command continues to force the last value. This is

useful for device characterization curves but can cause problems when used in device

breakdown conditions.

The bsweepX command can also be used with the smeasX, sintgX, savgX, or rtfary command.

Measurements are stored in a one-dimensional array in the order in which they were made.

The system maintains a measurement scan table consisting of devices to test. This table is maintained

using calls to the smeasX, sintgX, savgX, or clrscn command. As multiple calls to sweepX

commands are made, these commands are appended to the measurement scan table. Measurements

are made after the time programmed by the delay_time parameter has elapsed at the beginning of

each bsweepX command step.

Model 4200A-SCS LPT Library Programming Section 5: LPT commands for CVUs

4200A-LPT-907-01 Rev. D May 2024 5-5

When multiple calls to the bsweepX command are executed in the same test sequence, the arrays

defined by calls to the smeasX, sintgX, or savgX command are all loaded sequentially. The results

from the second call to the bsweepX command are appended to the results of the previous bsweepX

command call. This can cause access violation errors if the arrays were not dimensioned for the

absolute total. The measurement scan table remains intact until a devint, execut, or clrscn

command completes.

Defining new test sequences using the smeasX, sintgX, or savgX command adds the command to

the active measure list. The previous measurements are still defined and used; however, previous

measurements for the second sweep can be eliminated by calling the clrscn command. New

measurements are defined and used by calling the smeasX, sintgX, or savgX command after a

clrscn command.

Note that changing the source mode of the SMU can modify the measure range. If the sourcing mode

is changed from voltage to current sourcing (or from current to voltage sourcing), the measure range

may be changed to minimize variations in the SMU output level. See rangeX for recommended

command order.

It is recommended that you do not use GPIB instruments when doing sweeps with the bsweepX

command. Refer to kibdefint for additional information.

Example

double bvdss;

.

.

conpin(SMU1, 1, 0);

conpin(GND, 2, 3, 0);

limiti(SMU1, 100e-6); /* Define the I limit for the device. */

rangei(SMU1, 100e-6); /* Select a fixed range */

 /* measurement. */

trigil(SMU1, -10e-6); /* Set the trigger point to -10 uA. */

bsweepv(SMU1, 10.0, 50.0, 40, 10.0e-3, &bvdss); /* Sweep */

 /* from 10 V to 50 V in 40 */

 /* steps with 10 ms settling */

 /* time per step. */

This example measures the drain to source breakdown voltage of a field-effect transistor (FET). A linear
voltage sweep is generated from 10.0 V to 50.0 V by SMU1 using the bsweepv command. The breakdown

current is set to 10 mA by using the trigil command. The voltage at which this current is exceeded is

stored in the variable bvdss.

Section 5: LPT commands for CVUs Model 4200A-SCS LPT Library Programming

5-6 4200A-LPT-907-01 Rev. D May 2024

Also see

clrscn (on page 2-2)

devclr (on page 4-9)

execut (on page 2-9)

kibdefint (on page 2-17)

rangeX (on page 4-25)

rtfary (on page 2-31)

savgX (on page 2-32)

sintgX (on page 2-39)

smeasX (on page 2-40)

sweepX (on page 4-31)

trigXg, trigXl (on page 2-42)

trigcomp (on page 2-41)

cvu_custom_cable_comp
This command determines the delays needed to accommodate custom cable lengths.

Usage

cvu_custom_cable_comp(int instr_id);

instr_id The instrument identification code of the CVU (CVU1)

Details

The custom cable length measure gathers a specific set of timing coefficients to be applied during the

C-V testing for a custom length cable. They are used to compensate the calibrated measurements

made from the CVU.

Custom cable lengths are any lengths that are not 0 m, 1.5 m, or 3 m.

Once this command is run, these values are applied if you select a cable length of Custom in Clarius

Tools > CVU Connection Compensation.

Possible return values are:

• 0: OK

• -907: LPOT/LCUR fail

• -908: HPOT/HCUR fail

Also see

“Connection compensation” in the Model 4200A-SCS Capacitance-Voltage Unit (CVU) User’s Manual

Model 4200A-SCS LPT Library Programming Section 5: LPT commands for CVUs

4200A-LPT-907-01 Rev. D May 2024 5-7

devclr
This command sets all sources to a zero state.

Usage

int devclr(void);

Details

This command clears all sources sequentially in the reverse order from which they were originally

forced. Before clearing all Keithley supported instruments, GPIB-based instruments are cleared by

sending all strings defined with the kibdefclr command. devclr is implicitly called by clrcon,

devint, execut, and tstdsl.

For C-V testing, this command turns off the DC bias voltage.

Also see

clrcon (on page 7-2)

devint (on page 2-6)

execut (on page 2-9)

kibdefclr (on page 2-16)

tstdsl (on page 2-44)

devint
This command resets all active instruments in the system to their default states.

Usage

int devint(void);

Details

Resets all active instruments, including the 4200A-CVIV, in the system to their default states. It clears

the system by opening all relays and disconnecting the pathways. Meters and sources are reset to

their default states. Refer to the hardware manuals for the instruments in your system for listings of

available ranges and the default conditions and ranges.

The devint command is implicitly called by the execut and tstdsl commands.

To abort a running pulse_exec pulse test, see dev_abort.

devint does the following:

1. Clears all sources by calling devclr.

2. Clears the matrix crosspoints by calling clrcon.

3. Clears the trigger tables by calling clrtrg.

4. Clears the sweep tables by calling clrscn.

5. Resets GPIB instruments by sending the string defined with kibdefint.

6. Resets the active instrument cards.

Section 5: LPT commands for CVUs Model 4200A-SCS LPT Library Programming

5-8 4200A-LPT-907-01 Rev. D May 2024

Instrument cards are reset in the following order:

1. SMU instrument cards

2. CVU instrument cards

3. Pulse instrument cards (4225-PMU or 4220-PGU)

The SMUs return to the following states:

• 100 μA and 10 V ranges

• Autorange on

• Voltage source

• 0 V DC bias

The 4210-CVU or 4215-CVU returns to the following states:

• 30 mVRMS AC signal

• 0 V DC bias

• 100 kHz frequency

• Autorange on

• Cable length compensation set to 0 m

• Open/Short/Load compensation disabled

The 4225-PMU or 4220-PGU returns to the following states:

• The pulse mode is maintained. For example, if the pulse card is in Segment Arb mode, it is still in

Segment Arb mode after the devint process is complete.

• 5 V and 10 mA ranges

• If in pulse mode:

▪ Period of 1 μs

▪ Transition times (rise and fall) of 100 ns

▪ Width of 500 ns

▪ Voltage high and low of 0 V

▪ Load of 50 Ω

• If in segmented arb mode, Start Voltage is 0 V

• If in arbitrary waveform mode, Table Length is 100

Also see

clrcon (on page 7-2)

clrscn (on page 2-2)

clrtrg (on page 2-3)

dev_abort (on page 6-4)

devclr (on page 4-9)

kibdefint (on page 2-17)

Model 4200A-SCS LPT Library Programming Section 5: LPT commands for CVUs

4200A-LPT-907-01 Rev. D May 2024 5-9

dsweepf
This command performs a dual frequency sweep.

Usage

int dsweepf(int instr_id, double startf, double stopf, long *NumPts, double delaytime);

instr_id The instrument identification code of the 4210-CVU or 4215-CVU: CVU1

startf Initial frequency for the sweep

stopf Final frequency for the first sweep

NumPts Variable to receive the number of points sourced during the sweep

delaytime Delay before each measurement (0 to 999 s)

Details

Use the sweepf command to perform a single frequency sweep.

The CVU provides test frequencies from 1 kHz to 10 MHz. For the 4210-CVU, the frequencies are in

the following steps:

• 1 kHz through 10 kHz in 1 kHz steps

• 10 kHz to 100 kHz in 10 kHz steps

• 100 kHz to 1 MHz in 100 kHz steps

• 1 MHz to 10 MHz in 1 MHz steps

If you are using a 4215-CVU, you can apply a resolution of 1 kHz to frequency values within the 1 kHz

to 10 MHz limits. To set a frequency step size, set the setmode KI_CVU_FREQ_STEPSIZE modifier

before calling dsweepf(). If KI_CVU_FREQ_STEPSIZE, is set to 0, dsweepf() uses the

discrete frequencies.

The frequency points to sweep are set using the startf and stopf parameters. If an entered value

is not a supported frequency, the closest supported frequency is selected (for example, 15 kHz input

selects 20 kHz). If a specified frequency is equidistant from two adjacent frequencies, it is rounded up

to the higher frequency. The sweep can step forward (low frequency to high frequency) or it can step in

reverse (high frequency to low frequency).

When the sweep is started, the CVU steps through all the supported frequency points from start to

stop for the first sweep, and then repeats (in the reverse direction) from stop to start for the second

sweep. For example, if the 4210-CVU start frequency is 800 kHz and the stop frequency is 3 MHz, the

CVU steps through the frequency points 800 kHz, 900 kHz, 1 MHz, 2 MHz, 3 MHz, 3 MHz, 2 MHz,

1 MHz, 900 kHz, and 800 kHz.

The total number of sweep points is returned in the NumPts parameter. For the above example,

NumPts is assigned a value of 10.

Section 5: LPT commands for CVUs Model 4200A-SCS LPT Library Programming

5-10 4200A-LPT-907-01 Rev. D May 2024

The delayTime parameter sets the delay that occurs before each measurement. Note that there is an

inherent system overhead delay on each frequency step of the sweep.

Use the forcev command to set the DC bias level and setlevel command to set the AC

drive voltage.

Example

Figure 3: Dual frequency sweep example

Also see

forcev (on page 5-12)

setlevel (on page 5-21)

setmode (on page 5-21)

sweepf (on page 5-31)

dsweepv
This command performs a dual linear staircase voltage sweep.

Usage

int dsweepv(int instr_id, double startv, double stopv, long numSteps, double delaytime);

instr_id The instrument identification code of the 4210-CVU or 4215-CVU: CVU1

startv Initial force value for the sweep in volts (-30 to 30)

stopv Final force value for the first sweep in volts (-30 to 30)

numSteps Sets the number of points in the sweep (1 to 4096); see Details

delaytime Delay before each measurement in seconds (0 to 999)

Details

This command is used to perform a dual staircase sweep (see the figure below). The linear step size

to sweep is set using the startv, stopv, and NumSteps parameters. The linear step size for the

sweep is then calculated as follows:

StepSize (in volts) = (stopv – startv) / (numSteps)

numSteps describes the first half of the sweep. For example, to do a dual sweep from 1 V to 10 V and

back down in 1 V steps, set numSteps to 10. The result is a 20-point sweep (10 up and 10 down).

Model 4200A-SCS LPT Library Programming Section 5: LPT commands for CVUs

4200A-LPT-907-01 Rev. D May 2024 5-11

The first sweep can step forward (low voltage to high voltage) or it can step in reverse (high voltage to

low voltage). After performing the first sweep, the second sweep will repeat in the reverse direction.

For example, if configured to sweep from 1 V to 10 V, the second sweep will start at 10 V and step

down to 1 V.

The delayTime parameter sets the delay that occurs before each measurement. Note that there is an

inherent system overhead delay on each step of the sweep.

Use the setfreq and setlevel commands to set the AC drive frequency and voltage for the sweep.

Use the sweepv command to perform a single linear staircase voltage sweep.

Example

Also see

asweepv (on page 5-3)

dsweepf (on page 5-9)

setfreq (on page 5-20)

setlevel (on page 5-21)

sweepf (on page 5-31)

sweepv (on page 5-34)

Section 5: LPT commands for CVUs Model 4200A-SCS LPT Library Programming

5-12 4200A-LPT-907-01 Rev. D May 2024

forcev
This command sets the DC bias voltage level.

Usage

int forcev(int instr_id, double voltage);

instr_id The instrument identification code of the 4210-CVU or 4215-CVU: CVU1

voltage The DC bias voltage level in volts (−30 to 30)

Details

This command sets a DC bias level for a single impedance measurement and a frequency sweep. Use

the setfreq and setlevel commands to set the AC drive frequency and AC voltage for the sweep.

The DC source operates independently of the AC source. Changes to the level and state of the DC

source take effect immediately; the AC frequency and source value are only used during

measz operations.

Example

Programming example #1 (on page 5-35) makes a single impedance measurement. Note that the

rdelay command provides a settling time before the measurement.

Also see

measz (on page 5-17)

setfreq (on page 5-20)

setlevel (on page 5-21)

getstatus
This command returns parameters that describe the state of the 4210-CVU or 4215-CVU.

Usage

int getstatus(int instr_id, long parameter, double *value);

instr_id The instrument identification code of the 4210-CVU or 4215-CVU: CVU1

parameter Parameter to be queried; the macros for the KI_CVU parameters are defined in

lptparam.h; see Details

value Returned value for the queried parameter

Model 4200A-SCS LPT Library Programming Section 5: LPT commands for CVUs

4200A-LPT-907-01 Rev. D May 2024 5-13

Details

Parameter: Returns:

KI_CVU_LOAD_COMPENSATE Load compensation: ON or OFF

KI_CVU_OPEN_COMPENSATE Open compensation: ON or OFF

KI_CVU_SHORT_COMPENSATE Short compensation: ON or OFF

KI_CVU_CABLE_CORRECT Length setting for which the CVU card is correcting: 0, 1.5, or 3

KI_CVU_ACI_RANGE AC current range in amps: 0 for autorange, or 1.5e-6, 50e-6 ,

or 1.5e-3 for fixed range (1.5 μA, 50 μA ,or 1.5 mA)

KI_CVU_ACI_PRESENT_RANGE AC current range in amps: 1.5e-6, 50e-6 ,or 1.5e-3 (1.5 μA, 50 μA, or

1.5 mA); returns range used for last measurement, even if on autorange

KI_CVU_ACV_LEVEL AC voltage level in volts:

▪ 4210-CVU: 0.01 to 0.1 (10 mVRMS to 100 mVRMS)

▪ 4215-CVU: 0.01 to 1.0 (10 mVRMS to 1 VRMS)

KI_CVU_APERTURE A/D aperture time in PLCs: 0.006 to 10.002

KI_CVU_DCV_LEVEL DC bias voltage level in volts: -30 to 30

KI_CVU_DELAY_FACTOR Delay factor: 0 to 100

KI_CVU_FILTER_FACTOR Filter factor: 0 to 707

KI_CVU_FREQUENCY Drive frequency in hertz: 1e3 to 10e6 (1 kHz to 10 MHz)

KI_CVU_MEASURE_MODEL Impedance measure model: 0 through 5; see "Measurement model

parameter values" table below)

KI_CVU_MEASURE_SPEED Measurement speed (fast, normal, quiet, or custom)

KI_CVU_MEASURE_STATUS Measurement status (for last reading); the measurement status codes are
listed and explained in “Status codes” in the Model 4200A-SCS Clarius
User's Manual

KI_CVU_MEASURE_TSTAMP Measurement timestamp (for last reading)

Measurement model parameter values

Measurement model Parameter value

ZTH Impedance (Z) and phase (θ in degrees) KI_CVU_TYPE_ZTH or 0

RjX Resistance and reactance KI_CVU_TYPE_RJX or 1

CpGp Parallel capacitance and conductance KI_CVU_TYPE_CPGP or 2

CsRs Series capacitance and resistance KI_CVU_TYPE_CSRS or 3

CpD Parallel capacitance and dissipation factor KI_CVU_TYPE_CPD or 4

CsD Series capacitance and dissipation factor KI_CVU_TYPE_CSD or 5

Y YTH Admittance (1/Z) and phase (θ in degrees) KI_CVU_TYPE_YTH or 7

Also see

None

Section 5: LPT commands for CVUs Model 4200A-SCS LPT Library Programming

5-14 4200A-LPT-907-01 Rev. D May 2024

measf
This command returns the frequency sourced during a single measurement.

Usage

int measf(int instr_id, double *freq);

instr_id The instrument identification code of the 4210-CVU or 4215-CVU: CVU1

freq Returned frequency

Details

This command returns the present test frequency being used for a single impedance measurement.

Use the measz command to make a single measurement.

Use the smeasf or smeasfRT command to return the frequencies used for a sweep.

Also see

measz (on page 5-17)

smeasf (on page 5-23)

smeasfRT (on page 5-24)

meass
This command returns the status referenced to a single measurement.

Usage

int meass(INSTR_ID instr_id, double* result);

instr_id The instrument identification code for the 4210-CVU or 4215-CVU: CVU1

result Returned 32-bit measurement status

Details

This command returns the measurement status for a single measurement. See the following table for

the results key.

This command returns the status in integer format. To compare this result to the Status Codes

provided by Clarius, you must convert the values to hexadecimal.

Model 4200A-SCS LPT Library Programming Section 5: LPT commands for CVUs

4200A-LPT-907-01 Rev. D May 2024 5-15

Measurement status results key

Bit Description Value

31 Measurement timeout Fault: 1

OK: 0

30 to 28 Not used 0

27 CVH1 ABB lock fault Fault: 1

OK: 0

26 Not used 0

25 to 24 CVH1 overflow indicator (voltage and current) Fault: 1

OK: 0

23 to 20 Not used 0

19 CVL1 ABB Lock Fault Fault: 1

OK: 0

18 Not used 0

17 to 16 CVL1 overflow indicator (voltage and current) Fault: 1

OK: 0

15 to 2 Not used 0

1 to 0 Current AC measurement range index 1.5 μA: 00

50 μA: 01

1.5 mA: 02

Use the measz command to make a single measurement. Use the smeass command to return the

measurement status values used for a sweep.

Also see

measz (on page 5-17)

smeass (on page 5-25)

meast
This command returns a timestamp referenced to a measurement or a system timer.

Usage

int meast(long timerID, double *timestamp);

timerID The instrument identification code: CVU1, TIMER1, TIMER2, and so on

timestamp Returned timestamp

Details

This command is used acquire the timestamp of the last single measurement, or return a timestamp

referenced to a system timer.

When the timerID parameter is set for CVU1, calling the meast command after the call to perform a

measurement (measz command) will return the timestamp for that measurement.

Section 5: LPT commands for CVUs Model 4200A-SCS LPT Library Programming

5-16 4200A-LPT-907-01 Rev. D May 2024

When the timerID parameter is set for a timer, the meast command can be called at any time and

will return a timestamp that is referenced to a system timer. The enable command is used to start the

timer (starts at zero when called).

Use the smeast or smeastRT command to acquire timestamps for a sweep.

Examples

Programming example #1 (on page 5-35) acquires a timestamp for the measurement.

Programming example #2 (on page 5-36) measures the execution time of the code.

Also see

smeast (on page 5-26)

smeastRT (on page 5-27)

measv
This command returns the DC bias voltage sourced during a single measurement.

Usage

int measv(int instr_id, double *biasV);

instr_id The instrument identification code of the 4210-CVU or 4215-CVU: CVU1

biasV Returned DC bias voltage

Details

This command returns the DC bias voltage presently being used for a single measurement.

Use the measz command to make a single measurement.

Use the smeasv or smeasvRT command to return the DC bias voltages used for a sweep.

Also see

measz (on page 5-17)

smeasv (on page 5-27)

smeasvRT (on page 5-28)

Model 4200A-SCS LPT Library Programming Section 5: LPT commands for CVUs

4200A-LPT-907-01 Rev. D May 2024 5-17

measz
This command makes an impedance measurement.

Usage

int measz(int instr_id, int model, int speed, double *result1 double *result2);

instr_id The instrument identification code of the 4210-CVU or 4215-CVU: CVU1

model Measurement model; see table in Details

speed Measure speed:

▪ KI_CVU_SPEED_FAST: Fast measurements (higher noise)

▪ KI_CVU_SPEED_NORMAL: Selects a balance between speed and low noise

▪ KI_CVU_SPEED_QUIET: Low-noise measurements

▪ KI_CVU_SPEED_CUSTOM: Selects custom settings; the delay factor, filter

factor, and aperture are set using the setmode command

result1 First result of the selected measure model

result2 Second result of the selected measure model

Details

This command makes a single impedance measurement.

Before calling measz, use the forcev command to set the DC bias level, the setfreq command to

set the AC drive frequency, and the setlevel command to set the AC drive voltage.

The parameter values for the measurement model are listed in the following table.

Measurement model parameter values

Measurement model Parameter value

ZTH Impedance (Z) and phase (θ in degrees) KI_CVU_TYPE_ZTH or 0

RjX Resistance and reactance KI_CVU_TYPE_RJX or 1

CpGp Parallel capacitance and conductance KI_CVU_TYPE_CPGP or 2

CsRs Series capacitance and resistance KI_CVU_TYPE_CSRS or 3

CpD Parallel capacitance and dissipation factor KI_CVU_TYPE_CPD or 4

CsD Series capacitance and dissipation factor KI_CVU_TYPE_CSD or 5

Y YTH Admittance (1/Z) and phase (θ in degrees) KI_CVU_TYPE_YTH or 7

Use the smeasz or smeaszRT command to measure and return the impedance readings for a sweep.

Also see

forcev (on page 5-12)

setfreq (on page 5-20)

setlevel (on page 5-21)

setmode (on page 5-21)

smeasz (on page 5-29)

smeaszRT (on page 5-30)

Section 5: LPT commands for CVUs Model 4200A-SCS LPT Library Programming

5-18 4200A-LPT-907-01 Rev. D May 2024

rangei
This command selects an impedance measurement range.

Usage

int rangei(int instr_id, double range);

instr_id The instrument identification code of the CVU: CVU1

range Impedance measure range in amps: 0, 1e−6, 30e-6, or 1e−3 (0, 1 μA, 30 μA,

or 1 mA)

Details

Use this command to set the CVU to a current measure range for impedance measurements. To

select autorange, set range to 0. The CVU automatically goes to the most sensitive (optimum) range

to make the measurement. This is the same as calling the setauto command.

The other range parameter values select a fixed measure range. The CVU remains on the fixed

range until autorange is enabled or the CVU is reset (devint called).

Example

Programming example #1 (on page 5-35) uses the 1 mA measure range for the impedance

measurement.

Also see

devint (on page 2-6)

setauto (on page 5-19)

rtfary
This command returns the array of force values used during the subsequent voltage or frequency sweep.

Usage

int rtfary(double *forceArray);

forceArray Array of force values for voltage or frequency

Details

This command returns an array of voltage or frequency force values for a sweep. Send this command

before calling any sweep command.

To prevent a memory exception error, make sure that the array that will receive the sourced values is

large enough.

Model 4200A-SCS LPT Library Programming Section 5: LPT commands for CVUs

4200A-LPT-907-01 Rev. D May 2024 5-19

The following examples show the proper command sequence for using rtfary:

Example 1:
Valid command sequence for voltage sweep

Example 2:
Valid command sequence for frequency sweep

smeasz smeasz

smeast rtfary

rtfary dsweepf

dsweepv

Example

Programming example #2 (on page 5-36) returns the array of force values for the voltage sweep.

Also see

None

setauto
This command selects the automatic measurement range.

Usage

int setauto(int instr_id);

instr_id The instrument identification code of the CVU: CVU1

Details

This command sets the CVU for autorange measurements. When setauto is called, the CVU goes to

the most sensitive range to make the measurement. Calling devint also selects autorange.

You can also use the rangei command to enable autorange or select a fixed measurement range.

Autorange remains enabled until a fixed range is selected.

Example

Programming examples (on page 5-35) 2 through 5 use autorange for impedance measurements.

Also see

devint (on page 2-6)

rangei (on page 5-18)

Section 5: LPT commands for CVUs Model 4200A-SCS LPT Library Programming

5-20 4200A-LPT-907-01 Rev. D May 2024

setfreq
This command sets the frequency for the AC drive.

Usage

int setfreq(int instr_id, double frequency);

instr_id The instrument identification code of the CVU: CVU1

frequency Frequency of the AC drive

Details

The CVU provides test frequencies from 1 kHz to 10 MHz. For the 4210-CVU, the frequencies are in

the following steps:

• 1 kHz through 10 kHz in 1 kHz steps

• 10 kHz to 100 kHz in 10 kHz steps

• 100 kHz to 1 MHz in 100 kHz steps

• 1 MHz to 10 MHz in 1 MHz steps

If you are using a 4215-CVU, you can apply a resolution of 1 kHz to frequency values within the 1 kHz

to 10 MHz limits.

If an entered value is not a supported frequency, the closest supported frequency is selected (for

example, with the 4210-CVU, 15 kHz input selects 20 kHz). You can use the getstatus command to

retrieve the selected frequency value.

The AC drive (AC voltage level and frequency) does not turn on until a measurement is made. The AC

drive turns off after the measurement is completed. Note that the DC voltage source stays on for the

whole test.

Example

Programming examples (on page 5-35) 1, 2, 4 and 5 use the setfreq command to set the AC

drive frequency.

Also see

getstatus (on page 5-12)

setlevel (on page 5-21)

Model 4200A-SCS LPT Library Programming Section 5: LPT commands for CVUs

4200A-LPT-907-01 Rev. D May 2024 5-21

setlevel
This command sets the voltage level of the AC drive.

Usage

int setlevel(int instr_id, double signalLevel);

instr_id The instrument identification code of the CVU: CVU1

signalLevel Voltage level of the AC drive in volts:

▪ 4210-CVU: 10 mV to 100 mVRMS

▪ 4215-CVU: 10 mV to 1 VRMS

Details

The AC drive (AC voltage level and frequency) does not turn on until a measurement is made. The AC

drive turns off after the measurement is completed. The DC voltage source stays on for the whole test.

Example

All the Programming examples (on page 5-35) use the setlevel command to set the AC

drive voltage.

Also see

setfreq (on page 5-20)

setmode (4210-CVU or 4215-CVU)
This command sets operating modes specific to the 4210-CVU or 4215-CVU.

Usage

int setmode(int instr_id, long modifier, double value);

instr_id The instrument identification code of the CVU: CVU1

modifier Specific operating characteristic to change; see table in Details

value Parameter value for the modifier

Details

The following information is specific to CVUs. For details on using setmode for other instruments,

see the setmode (on page 2-37) command.

Section 5: LPT commands for CVUs Model 4200A-SCS LPT Library Programming

5-22 4200A-LPT-907-01 Rev. D May 2024

The setmode command allows control over the following CVU operating characteristics:

• Connection compensation control for open, short and load. When disabled, saved compensation

constants are not applied to the measurements. Whenever the connection setup has changed,

connection compensation needs to be performed to acquire and save new compensation

constants. Connection compensation is performed from Clarius. You must send devint() before

changing the compensation constants.

• Setting for cable length compensation (0 m, 1.5 m, or 3 m). This setting is made from the window

that is used to enable compensation.

• 4215-CVU only: Setting the step size for a frequency sweep. Must be called before sweepf()

or dsweepf().

• Settings (delay factor, filter factor and aperture) for KI_CUSTOM measurement speed, which is set

by measz, smeasz, or smeaszRT.

For detail on connection compensation, refer to “Connection compensation” in the Model 4200A-SCS

Capacitance-Voltage Unit (CVU) User’s Manual.

Parameters for modifier and value

modifier value Comment

KI_CVU_OPEN_COMPENSATE 0 = OFF

1 = ON

Enable or disable compensation
constants for open.

KI_CVU_SHORT_COMPENSATE 0 = OFF

1 = ON

Enable or disable compensation
constants for short.

KI_CVU_LOAD_COMPENSATE 0 = OFF

1 = ON

Enable or disable compensation
constants for load.

KI_CVU_CABLE_CORRECT Cable length setting:

0.0 No cable compensation.

1.5 1.5 m CVU cable.

3.0 3.0 m CVU cable.

5.0 1.5 m CVIV cable; 2-wire mode.

6.0 1.5 m CVU to CVIV cable with
0.75 m CVIV to DUT cable;
4-wire mode.

7.0 1.5 m CVU to CVIV cable with
0.61 m CVIV to DUT cable;

4-wire mode.

KI_CVU_SET_CONSTANT_FILE 0 to 1000 The number in the file name that
contains the open, short, and load
compensation values for the CVU.

KI_CVU_MEASURE_SPEED KI_CVU_SPEED_FAST Fast measurements
(higher noise).

KI_CVU_SPEED_NORMAL Balance between speed and
low-noise.

KI_CVU_SPEED_QUIET Low-noise measurements.

KI_CVU_SPEED_CUSTOM Custom settings (see the
following modifiers).

Model 4200A-SCS LPT Library Programming Section 5: LPT commands for CVUs

4200A-LPT-907-01 Rev. D May 2024 5-23

Parameters for modifier and value

modifier value Comment

KI_CVU_APERTURE

KI_CVU_DELAY_FACTOR

KI_CVU_FILTER_FACTOR

0.006 to 10.002 PLCs

0 to 100

0 to 707

Settings for the CUSTOM speed

setting (see previous modifier).

KI_CVU_AC_SRC_HI

KI_CVU_AC_MEAS_LO

1 or 2 (setting HI side to 1 sets LO

side to 2, and vice versa)

Use to specify the AC source HI
slice and AC source LO side.

KI_CVU_DC_SRC_HI

KI_CVU_DC_SRC_LO

1 or 2 (setting HI side to 1 sets LO

side to 2, and vice versa)

Use to specify the DC source HI
slice and DC source LO side.

KI_CVU_DCV_OFFSET −30 to +30 (default is 0) Sets the DC bias offset (in volts).

KI_CVU_FREQ_STEPSIZE 0 to use discrete frequencies

1000 to 9.999e6

4215-CVU only. A devint() call

resets the size to the default. If
setmode() is not called before

sweepf(), sweepf() uses the

discrete frequencies.

KI_CVU_MEASURE_MODEL KI_CVU_TYPE_ZTH Impedance and phase (degrees).

KI_CVU_TYPE_RJX Resistance and reactance.

KI_CVU_TYPE_CPGP Parallel capacitance and
conductance.

KI_CVU_TYPE_CSRS Series capacitance and
resistance.

KI_CVU_TYPE_CPD Parallel capacitance and
dissipation factor.

KI_CVU_TYPE_CSD Series capacitance and dissipation
factor.

KI_CVU_TYPE_YTH 1/X.

Also see

dsweepf (on page 5-9)

measz (on page 5-17)

setmode (on page 2-37)

smeasz (on page 5-29)

smeaszRT (on page 5-30)

sweepf (on page 5-31)

smeasf
This command returns the frequencies used for a sweep.

Usage

int smeasf(int instr_id, double *freq_arr);

instr_id The instrument identification code of the CVU: CVU1

freq_arr Returned array of test frequencies

Details

This command returns the present test frequencies used for a sweep. The frequency values are

returned in an array. The frequency values are posted to Clarius in Analyze after the test has finished.

Section 5: LPT commands for CVUs Model 4200A-SCS LPT Library Programming

5-24 4200A-LPT-907-01 Rev. D May 2024

You can use the smeasfRT command to return sourced sweep frequency values in an array. It posts

the frequency values to Clarius in real time.

Use the measf command to return the frequency used for a single measurement.

Also see

measf (on page 5-14)

smeasfRT (on page 5-24)

smeasfRT
This command returns the sourced frequencies (in real time) for a sweep.

Usage

int smeasfRT(int instr_id, double *freq_arr, char *colname);

instr_id The instrument identification code of the CVU: CVU1

freq_arr Returned array of test frequencies

colname Column name (character string) to pass into Clarius for the data sheet column

Details

Like the smeasf command, the test frequencies for a sweep are returned in an array. However, the

frequency values are posted to the Clarius Analyze sheet and graph in real time (after each step of the

sweep is executed).

Note that the values are only available in real time if Clarius is running. Otherwise, they are stored in

an array in the usual fashion.

Example

smeasfRT(CVU1, freq_arr, "freq_arr");

This command posts the frequency values into the Clarius Analyze sheet under a column named freq_arr.

Also see

smeasf (on page 5-23)

Model 4200A-SCS LPT Library Programming Section 5: LPT commands for CVUs

4200A-LPT-907-01 Rev. D May 2024 5-25

smeass
This command returns the measurement status values for every point in a sweep.

Usage

int meass(INSTR_ID instr_id, double* result);

instr_id The instrument identification code for the CVU: CVU1

result Returned array of 32-bit measurement status values

Details

This command returns the measurement status values for every point in a sweep. The values are

returned in an array. See the following table for the results key.

This command returns the status in integer format. To compare this result to the Status Codes

provided by Clarius, you must convert the values to hexadecimal.

Measurement status results key

Bit Description Value

31 Measurement timeout Fault: 1

OK: 0

30 to 28 Not used 0

27 CVH1 ABB lock fault Fault: 1

OK: 0

26 Not used 0

25 to 24 CVH1 overflow indicator (voltage and current) Fault: 1

OK: 0

23 to 20 Not used 0

19 CVL1 ABB Lock Fault Fault: 1

OK: 0

18 Not used 0

17 to 16 CVL1 overflow indicator (voltage and current) Fault: 1

OK: 0

15 to 2 Not used 0

1 to 0 Current AC measurement range index 1.5 μA: 00

50 μA: 01

1.5 mA: 02

Use the meass command to return the measurement status for a single measurement.

Also see

meass (on page 5-14)

Section 5: LPT commands for CVUs Model 4200A-SCS LPT Library Programming

5-26 4200A-LPT-907-01 Rev. D May 2024

smeast
This command returns timestamps referenced to sweep measurements or a system timer.

Usage

int meast(long timerID, double *tarray);

timerID The ID of the CVU or timer: CVU1, TIMER1, TIMER2, and so on

tarray Returned array of timestamps

Details

This command acquires the timestamp for each measurement step of a sweep. The timestamps are

returned in an array. The timestamps are posted to Clarius Analyze after the test has finished.

You can also use the smeastRT command to return timestamps in an array. It posts the frequency

values to Clarius in real time.

The timestamp can be referenced to the CVU (timerID = CVU1) or to a system timer (for example,

timerID = TIMER1). This command is similar to the meast command, but is synchronized with a

sweep to return a timestamp referenced to each measurement. If you need a timestamp for a single

measurement, use the meast command.

LPT maintains a list of measurements to be done at each sweep point after the forcing instrument has

stepped its source (V, I, or F). The smeasX and smeasXRT commands register the measurement with

a master list. If the time measurement precedes the Z measurement, then the wrong timestamp is

returned (the one from the previous measurement).

Example

Programming example #2 (on page 5-36) acquires a timestamp for each measurement in the sweep.

Also see

meast (on page 5-15)

smeastRT (on page 5-27)

Model 4200A-SCS LPT Library Programming Section 5: LPT commands for CVUs

4200A-LPT-907-01 Rev. D May 2024 5-27

smeastRT
This command returns timestamps (in real time) referenced to sweep measurements or a system timer.

Usage

int meastRT(long timerID, double *tarray, char *colname);

timerID The ID of the CVU or timer: CVU1, TIMER1, TIMER2, and so on

tarray Returned array of timestamps

colname Column name to pass into Clarius (case-sensitive character string)

Details

Returns the timestamps are returned in an array and posts the timestamps to the Clarius Analyze

sheet and graph in real time. Each timestamp appears in the sheet and graph after each measurement

is made.

Note that the values are only available in real time if Clarius is running. Otherwise, they are stored in

an array.

The colname parameter specifies the name for the data sheet column in Clarius.

LPT maintains a list of measurements to be done at each sweep point after the forcing instrument has

stepped its source (V, I, or F). The smeasX and smeasXRT commands register the measurement with

a master list. If the time measurement precedes the Z measurement, then the wrong timestamp is

returned (the one from the previous measurement).

Example

smeastRT(CVU1, time_arr, "time_arr");

This command posts the timestamp values into the Clarius Analyze sheet in the column named time_arr.

Also see

smeast (on page 5-26)

smeasv
This command returns the DC bias voltages used for a sweep.

Usage

int smeasv(int instr_id, double *varray);

instr_id The instrument identification code of the CVU: CVU1

varray Returned array of DC bias voltages

Section 5: LPT commands for CVUs Model 4200A-SCS LPT Library Programming

5-28 4200A-LPT-907-01 Rev. D May 2024

Details

This command returns the DC bias voltages used in a sweep. The values are returned in an array. The

voltage values are posted to the Clarius Analyze sheet and graph after the test has finished.

You can also use the smeasvRT command to return sourced sweep DC bias voltage values in an

array. It posts the voltage values to Clarius in real time.

Use the measv command to return the DC bias voltage used for a single measurement.

Also see

measv (on page 5-16)

smeasvRT (on page 5-28)

smeasvRT
This command returns the sourced DC bias voltages (in real time) for a sweep.

Usage

int smeasvRT(int instr_id, double *varray, char *colname);

instr_id The instrument identification code of the CVU: CVU1

varray Returned array of DC bias voltages

colname Column name to pass into Clarius (character string)

Details

This command is similar to smeasv command. It returns the sourced DC bias voltages for a sweep in

an array. However, the voltage values are posted to the Clarius Analyze sheet and graph in real time.

Each voltage value appears in the sheet and graph after each step of the sweep is executed.

Note that the values are only available in real time if Clarius is running. Otherwise, they are stored in

an array.

The colname parameter specifies a name for the data sheet column in Clarius.

Example

smeasvRT(CVU1, volt_arr, "volt_arr");

This command posts the voltage values into the Clarius data sheet under a column named volt_arr.

Also see

smeasv (on page 5-27)

Model 4200A-SCS LPT Library Programming Section 5: LPT commands for CVUs

4200A-LPT-907-01 Rev. D May 2024 5-29

smeasz
This command performs impedance measurements for a sweep.

Usage

int smeasz(int instr_id, long model, long speed, double *result1, double *result2);

instr_id The instrument identification code of the CVU: CVU1

model Measure model; refer to "Measurement model parameter values" table in the Details

speed Speed settings:

▪ KI_CVU_SPEED_FAST: Fast measurements (higher noise)

▪ KI_CVU_SPEED_NORMAL: Selects a balance between speed and low noise

▪ KI_CVU_SPEED_QUIET: Low-noise measurements

▪ KI_CVU_SPEED_CUSTOM: Selects custom settings; the delay factor, filter

factor, and aperture are set using the setmode command

result1 Array of the first result of the selected measure model

result2 Array of the second result of the selected measure model

Details

This command makes an impedance measurement on each step of a voltage or frequency sweep.

The measured values for a sweep are returned in arrays. The measured readings are posted to the

Clarius Analyze sheet and graph after the test has finished.

Before calling smeasz, use the forcev command to set the DC bias level, the setfreq command to

set the AC drive frequency and the setlevel command to set the AC drive voltage.

Measurement model parameter values

Measurement model Parameter value

ZTH Impedance (Z) and phase (θ in degrees) KI_CVU_TYPE_ZTH or 0

RjX Resistance and reactance KI_CVU_TYPE_RJX or 1

CpGp Parallel capacitance and conductance KI_CVU_TYPE_CPGP or 2

CsRs Series capacitance and resistance KI_CVU_TYPE_CSRS or 3

CpD Parallel capacitance and dissipation factor KI_CVU_TYPE_CPD or 4

CsD Series capacitance and dissipation factor KI_CVU_TYPE_CSD or 5

Y YTH Admittance (1/Z) and phase (θ in degrees) KI_CVU_TYPE_YTH or 7

You can also use the smeaszRT command to measure and return sweep impedance measurements.

It posts the measured readings to Clarius in real time.

To return a single impedance measurement, use measz.

Section 5: LPT commands for CVUs Model 4200A-SCS LPT Library Programming

5-30 4200A-LPT-907-01 Rev. D May 2024

Example

Programming examples (on page 5-35) 2 through 5 use the smeasz command for impedance

measurements.

Also see

forcev (on page 5-12)

measz (on page 5-17)

setfreq (on page 5-20)

setlevel (on page 5-21)

setmode (on page 5-21)

smeaszRT (on page 5-30)

smeaszRT
This command makes and returns impedance measurements for a voltage or frequency sweep in real time.

Usage

int smeaszRT(int instr_id, long model, long speed, double *result1, char *colname1,

double *result2, char *colname2);

instr_id The instrument identification code of the CVU: CVU1

model Measure model (see "Measurement model parameter values" table in Details)

speed Speed settings:

▪ KI_CVU_SPEED_FAST: Fast measurements (higher noise)

▪ KI_CVU_SPEED_NORMAL: Selects a balance between speed and low noise

▪ KI_CVU_SPEED_QUIET: Low-noise measurements

▪ KI_CVU_SPEED_CUSTOM: Selects custom settings; the delay factor, filter

factor, and aperture are set using the setmode command

result1 Array of the first result of the selected measure model

colname1 Column name to pass into Clarius for result1 array (character string)

result2 Array of the second result of the selected measure model

colname2 Column name to pass into Clarius for result2 array (character string)

Details

This command is similar to the smeasz command; both commands return the measured impedance

readings for a sweep returned in arrays. However, the readings from smeaszRT are posted to the

Clarius Analyze sheet and graph in real time. Two measurement results appear in the sheet and graph

after each step of the sweep is executed.

Note that the values are only available in real-time if Clarius is running. Otherwise, they are stored in

an array.

The colname1 and colname2 parameters specify names for data sheet columns in Clarius.

Model 4200A-SCS LPT Library Programming Section 5: LPT commands for CVUs

4200A-LPT-907-01 Rev. D May 2024 5-31

Measurement model parameter values

Measurement model Parameter value

ZTH Impedance (Z) and phase (θ in degrees) KI_CVU_TYPE_ZTH or 0

RjX Resistance and reactance KI_CVU_TYPE_RJX or 1

CpGp Parallel capacitance and conductance KI_CVU_TYPE_CPGP or 2

CsRs Series capacitance and resistance KI_CVU_TYPE_CSRS or 3

CpD Parallel capacitance and dissipation factor KI_CVU_TYPE_CPD or 4

CsD Series capacitance and dissipation factor KI_CVU_TYPE_CSD or 5

Y YTH Admittance (1/Z) and phase (θ in degrees) KI_CVU_TYPE_YTH or 7

Example

smeaszRT(CVU1, 2, KI_NORMAL, result1, "result1", result2, "result2");

This command posts the results into the Clarius data sheet under columns named result1_arr and

result2_arr.

Also see

smeasz (on page 5-29)

sweepf
This command performs a frequency sweep.

Usage

int sweepf(int instr_id, double startf, double stopf, long *NumPts, double delaytime);

instr_id The instrument identification code of the CVU: CVU1

startf Initial frequency for the sweep in hertz

stopf Final frequency for the sweep in hertz

NumPts Query the number of sweep points

delayTime Delay before each measurement in seconds: 0 to 999

Details

The CVU provides test frequencies from 1 kHz to 10 MHz. For the 4210-CVU, the frequencies are in

the following steps:

• 1 kHz through 10 kHz in 1 kHz steps

• 10 kHz to 100 kHz in 10 kHz steps

• 100 kHz to 1 MHz in 100 kHz steps

• 1 MHz to 10 MHz in 1 MHz steps

If you are using a 4215-CVU, you can apply a resolution of 1 kHz to frequency values within the 1 kHz

to 10 MHz limits. To set a frequency step size, set the setmode KI_CVU_FREQ_STEPSIZE modifier

before calling sweepf(). If KI_CVU_FREQ_STEPSIZE is set to 0, sweepf() uses the

discrete frequencies.

Section 5: LPT commands for CVUs Model 4200A-SCS LPT Library Programming

5-32 4200A-LPT-907-01 Rev. D May 2024

The frequency points to sweep are set using the startf and stopf parameters. If an entered value

is not a supported frequency, the closest supported frequency is selected (for example, 15 kHz input

selects 20 kHz). The sweep can step forward from low frequency to high frequency or it can step in

reverse from high frequency to low frequency.

When the sweep is started, the CVU steps through all the supported frequency points from start to

stop. For example, if the 4210-CVU start frequency is 800 kHz and the stop frequency is 3 MHz, the

CVU steps through the frequency points 800 kHz, 900 kHz, 1 MHz, 2 MHz, and 3 MHz.

The NumPts query returns the total number of sweep points. For the above example, NumPts

returns 5.

The delayTime parameter sets the delay that occurs before each measurement. Note that there is an

inherent system overhead delay on each frequency step of the sweep.

Use the forcev command to set the DC bias level and setlevel command to set the AC

drive voltage.

Use the dsweepf command to perform a dual frequency sweep.

Example

Programming example #3 (on page 5-37) performs a frequency sweep.

Also see

asweepv (on page 5-3)

dsweepf (on page 5-9)

dsweepv (on page 5-10)

forcev (on page 5-12)

setlevel (on page 5-21)

setmode (CVU) (on page 5-21)

sweepv (on page 5-34)

Model 4200A-SCS LPT Library Programming Section 5: LPT commands for CVUs

4200A-LPT-907-01 Rev. D May 2024 5-33

sweepf_log
This command performs a logarithmic frequency sweep using a 4215-CVU instrument. This is not available for the

4210-CVU.

Usage

int sweepf_log(int instr_id, double startf, double stopf, long *numPoints, double

delaytime);

instr_id The instrument identification code of the 4215-CVU: CVU1

startf Initial frequency for the sweep

stopf Final frequency for the sweep

numPoints The number of sweep points

delayTime Delay before each measurement in seconds: 0 to 999

Details

This command is used to perform a logarithmic base 10 frequency sweep.

The frequency points to sweep are set using the startf and stopf parameters. If an entered value

is not a supported frequency, the closest supported frequency is selected. The sweep can step

forward from low frequency to high frequency or it can step in reverse from high frequency to

low frequency.

When the sweep is started, the CVU steps through all the supported frequency points from start to

stop. You can apply a resolution of 1 kHz to frequency values within the 1 kHz to 10 MHz limits

The delayTime parameter sets the delay that occurs before each measurement. Note that there is an

inherent system overhead delay on each frequency step of the sweep.

Use the forcev command to set the DC bias level and setlevel command to set the AC

drive voltage.

A logarithmic sweep is also provided through the cvuulib user library.

Also see

asweepv (on page 5-3)

forcev (on page 5-12)

setlevel (on page 5-21)

setmode (4210-CVU or 4215-CVU) (on page 5-21)

sweepv (on page 5-34)

Section 5: LPT commands for CVUs Model 4200A-SCS LPT Library Programming

5-34 4200A-LPT-907-01 Rev. D May 2024

sweepv
This command performs a linear staircase DC voltage sweep.

Usage

int sweepv(int instr_id, double startv, double stopv, long NumSteps, double delaytime);

instr_id The instrument identification code of the CVU: CVU1

startv Initial force value for the sweep in volts: −30 to 30

stopv Final force value for the sweep in volts: −30 to 30

NumSteps Number of steps in the sweep: 1 to 4096

delaytime Delay before each measurement in seconds: 0 to 999

Details

This command is used to perform a staircase sweep. The linear step size to sweep is set using the

startv, stopv, and NumSteps parameters. The linear step size for the sweep is calculated

as follows:

Step size (in volts) = (stopv – startv) / NumSteps

The sweep can step forward (low voltage to high voltage) or it can step in reverse (high voltage to

low voltage).

The delaytime parameter sets the delay that occurs before each measurement. Note that there is an

inherent system overhead delay on each step of the sweep.

Use the setfreq and setlevel commands to set the AC drive frequency and voltage for the sweep.

Use the dsweepv command to do a dual linear staircase voltage sweep.

Example

Refer to Programming example #2 (on page 5-36) for an example of a single staircase voltage sweep.

Also see

asweepv (on page 5-3)

dsweepf (on page 5-9)

dsweepv (on page 5-10)

setfreq (on page 5-20)

setlevel (on page 5-21)

sweepf (on page 5-31)

Model 4200A-SCS LPT Library Programming Section 5: LPT commands for CVUs

4200A-LPT-907-01 Rev. D May 2024 5-35

Programming examples
These programming examples provide examples of how to use LPT commands to:

• Make a single CsRs impedance measurement: Programming example #1 (on page 5-35)

• Do a single staircase sweep and measure CpGp for each step: Programming example #2 (on

page 5-36)

• Do a single frequency sweep and measure CpGp for each step: Programming example #3 (on

page 5-37)

• Do a voltage array sweep: Programming example #4 (on page 5-38)

• Do a voltage array sweeps with an array of delay values used for the sweep: Programming

example #5 (on page 5-39)

Programming example #1
Performs a single CsRs impedance measurement. Test parameters:

• DC bias voltage = 1 V

• AC drive frequency = 100 kHz

• AC drive voltage = 15 mVRMS

• Measure model = CsRs

This example also acquires a timestamp for the measurement.

double result1, result2, timeStamp;

forcev(CVU1, 1); /* Set DC bias to 1 V. */

setfreq(CVU1, 100e3); /* Set AC drive frequency to 100 kHz. */

setlevel(CVU1, 15e-3); /* Set AC drive voltage to 15 mV RMS. */

rdelay(0.1); /* Set settling time to 100 ms. */

rangei(CVU1, 1.0e-3); /* Select 1 mA measure range. */

measz(CVU1, KI_CVU_TYPE_CSRS, KI_CVU_SPEED_NORMAL, &result1, &result2);

 /* Measure CsRs. */

meast(CVU1, &timeStamp); /* Return timestamp for measurement. */

devint(); /* Reset CVU. */

Section 5: LPT commands for CVUs Model 4200A-SCS LPT Library Programming

5-36 4200A-LPT-907-01 Rev. D May 2024

Programming example #2
Performs a single staircase voltage sweep, as shown in the figure below.

Figure 4: Voltage sweep example

CpGp is measured on each step of the sweep.

Test parameters:

• AC drive frequency = 100 kHz

• AC drive voltage = 15 mVRMS

• Measure model = CpGp

• Measure range = Auto

• Sweep mode = single

• Start voltage = 1 V

• Stop voltage = 3 V

• Number of steps = 3

• Delay = 50 ms

This example also returns a timestamp for each measurement and measures the execution time of

the code.

double result1[4], result2[4], timeStamp1[4], timeStamp2;

enable(TIMER1); /* Start timer at 0 seconds. */

setfreq(CVU1, 100e3); /* Set AC drive frequency to 100 kHz. */

setlevel(CVU1, 15e-3); /* Set AC drive voltage to 15 mV RMS. */

setauto(CVU1); /* Select auto measure range. */

smeasz(CVU1, KI_CVU_TYPE_CPGP, KI_CVU_SPEED_NORMAL, result1, result2);

 /* Configure CpGp measurements. */

smeast(CVU1, timeStamp1); /* Return timestamps for all measurements. */

rtfary(forceArray); /* Return array of force voltages. */

sweepv(CVU1, 1, 3, 3, 0.05); /* Configure and perform sweep. */

meast(TIMER1, &timeStamp2); /* Return execution time for above. */

 /* block of code. */

devint(); /* Reset CVU. */

Model 4200A-SCS LPT Library Programming Section 5: LPT commands for CVUs

4200A-LPT-907-01 Rev. D May 2024 5-37

Programming example #3
Performs a single frequency sweep shown in the following figure.

Figure 5: Frequency sweep example

CpGp is measured on each frequency step of the sweep.

Test parameters:

• AC drive voltage = 15 mVRMS

• Measure mode = CpGp

• Measure range = Auto

• Start frequency = 100 kHz

• Stop frequency = 300 kHz

• Number of frequency steps = 3 (this value is returned from the command to the NumPts variable,

and not passed by the user)

• Delay = 50 ms

double result1[6], result2[6], forceArray[6];

long NumPts;

setlevel(CVU1, 15e-3); /* Set AC drive voltage to 15 mV RMS. */

setauto(CVU1); /* Select auto measure range. */

smeasz(CVU1, KI_CVU_TYPE_CPGP, KI_CVU_SPEED_NORMAL, result1, result2);

 /* Configure CpGp measurements. */

rtfary(forceArray); /* Return array of force frequencies. */

dsweepf(CVU1, 100e3, 300e3, &NumPts, 0.05); /* Configure and perform sweep. */

devint(); /* Reset CVU. */

Section 5: LPT commands for CVUs Model 4200A-SCS LPT Library Programming

5-38 4200A-LPT-907-01 Rev. D May 2024

Programming example #4
This example performs a voltage array sweep as shown in the figure below.

Figure 6: Voltage array sweep example

The above figure shows an example of a voltage array sweep using the following voltage values: 1 V,

-2 V, 3 V, -4 V. The voltage array is configured as follows:

forceArray[0] = 1

forceArray[1] = -2

forceArray[2] = 3

forceArray[3] = -4

Model 4200A-SCS LPT Library Programming Section 5: LPT commands for CVUs

4200A-LPT-907-01 Rev. D May 2024 5-39

CpGp is measured on each point of the sweep.

Test parameters:

• AC drive frequency = 100 kHz

• AC drive voltage = 15 mVRMS

• Measure model = CpGp

• Measure range = Auto

• Force array = 1 V, -2 V, 3 V, -4 V

• Number of sweep points = 4

• Delay = 50 ms

double result1[4], result2[4], forceArray[4];

setfreq(CVU1, 100e3); /* Set AC drive frequency to 100 kHz. */

setlevel(CVU1, 15e-3); /* Set AC drive voltage to 15 mV RMS. */

setauto(CVU1); /* Select auto measure range. */

smeasz(CVU1, KI_CVU_TYPE_CPGP, KI_CVU_SPEED_NORMAL, result1, result2);

 /* Configure CpGp measurements. */

asweepv(CVU1, 4, 0.05, forceArray); /* Configure and perform sweep. */

devint(); /* Reset CVU. */

Programming example #5
Similar to Programming example #4 (on page 5-38), but the Delay is set to 0 s, and an array of delay

values is used for the sweep (0.5 s, 0.25 s, 0.5 s, and 0.25 s).

double result1[4], result2[4], forceArray[4], delayArray[4];

setfreq(CVU1, 100e3); /* Set AC drive frequency to 100 kHz. */

setlevel(CVU1, 15e-3); /* Set AC drive voltage to 15 mV RMS. */

setauto(CVU1); /* Select auto measure range. */

smeasz(CVU1, KI_CVU_TYPE_CPGP, KI_CVU_SPEED_NORMAL, result1, result2);

 /* Configure CpGp measurements. */

adelay(4, delayArray); /* Call a delay array for asweepv. */

asweepv(CVU1, 4, 0, forceArray); /* Configure and perform sweep. */

devint(); /* Reset CVU. */

In this section:

LPT commands for PGUs and PMUs 6-2
arb_array .. 6-3
arb_file ... 6-4
dev_abort ... 6-4
devclr ... 6-6
devint ... 6-6
getstatus... 6-8
pg2_init .. 6-10
pmu_offset_current_comp.. 6-11
pulse_burst_count .. 6-11
pulse_chan_status ... 6-12
pulse_conncomp .. 6-13
pulse_current_limit ... 6-14
pulse_dc_output ... 6-15
pulse_delay .. 6-16
pulse_exec ... 6-17
pulse_exec_status ... 6-19
pulse_fall .. 6-20
pulse_fetch ... 6-22
pulse_float .. 6-27
pulse_halt ... 6-27
pulse_init .. 6-28
pulse_limits .. 6-29
pulse_load .. 6-30
pulse_meas_sm ... 6-30
pulse_meas_timing .. 6-32
pulse_meas_wfm ... 6-33
pulse_measrt .. 6-34
pulse_output... 6-36
pulse_output_mode .. 6-37
pulse_period... 6-38
pulse_range ... 6-39
pulse_ranges .. 6-40
pulse_remove ... 6-42
pulse_rise ... 6-43
pulse_sample_rate ... 6-44
pulse_source_timing .. 6-45
pulse_ssrc .. 6-46
pulse_step_linear ... 6-48
pulse_sweep_linear ... 6-51
pulse_train.. 6-54
pulse_trig.. 6-55
pulse_trig_output .. 6-56
pulse_trig_polarity .. 6-57
pulse_trig_source ... 6-58
pulse_vhigh .. 6-60
pulse_vlow ... 6-61
pulse_width .. 6-63
rpm_config ... 6-64

Section 6

LPT commands for PGUs and PMUs

Section 6: LPT commands for PGUs and PMUs Model 4200A-SCS LPT Library Programming

6-2 4200A-LPT-907-01 Rev. D May 2024

seg_arb_define .. 6-65
seg_arb_file.. 6-67
seg_arb_sequence ... 6-68
seg_arb_waveform ... 6-71
setmode (4225-PMU) ... 6-72

LPT commands for PGUs and PMUs
The following information explains the commands in the LPT library for the 4220-PGU and 4225-PMU.

The model names are abbreviated as PGU (pulse-generator unit) and PMU (pulse-measure unit). The

PGU functions only as a pulse generator. The PMU has both pulse and measurement capabilities.

The pulse commands for the 4220-PGU and 4225-PMU require pulse_exec to execute. In addition,

they support external triggering, but do not support trigger input from external input signals or

instruments.

The PGU and PMU support the following pulse modes:

• Standard pulse mode: For this two-level pulse mode, the user defines an amplitude and base

level for the pulse output.

• Segment Arb pulse mode: For this multi-level pulse mode, you define a pulse waveform that

consists of three or more line segments. Segment Arb pulse mode for the PGU and PMU also

includes sequencing and sequence looping. See seg_arb_sequence (on page 6-68) and

seg_arb_waveform (on page 6-71) for the PGU and PMU.

• Full arb pulse mode: For this multilevel pulse mode, the waveform consists of a number of

user-defined points. See arb_array (on page 6-3) and arb_file (on page 6-4).

Use the following instrument ID (identification) for LPT commands for the PGU and PMU:

• 4220-PGU: The instrument ID is VPU (VPU1, VPU2, and so on)

• 4225-PMU: The instrument ID is PMU (PMU1, PMU2, and so on)

See PGU (pulse only) and PMU (pulse and measure) group (on page 1-5) for a summary of the

functions for the PGU and PMU.

The 4200A-SCS has built-in project tests that use the PGU and PMU LPT commands. In Clarius, see

the pmu-dut-examples project for a simple example of coding a PMU user test module (UTM).

The 4220-PGU and 4225-PMU support the pulsing and external triggering commands of the obsolete

4205-PG2.

Model 4200A-SCS LPT Library Programming Section 6: LPT commands for PGUs and PMUs

4200A-LPT-907-01 Rev. D May 2024 6-3

arb_array
This command is used to define a full-arb waveform and name the file.

Usage

int arb_array(int instr_id, long ch, double TimePerPt, long length, double *levelArr,

char *fname);

instr_id The instrument identification code, such as VPU1 or VPU2

ch The pulse card channel: 1 or 2

TimePerPt Sets the time interval between waveform points in seconds: 20e-9 to 1

length The number of waveform points (values): 262,144 maximum for each channel

levelArr An array of voltage values for each point in the waveform (see Details)

fname A name for the full-arb waveform

Pulse modes

Full Arb

Details

A Full Arb waveform can be defined for each pulse card channel. A Full Arb waveform is made up of

user-defined points. A time interval is set to control the time between the waveform points.

This command defines the number of points in a waveform, the time interval between points, and the

voltage value at each point.

The load time for a full-arb waveform is proportional to the number of points. The total time to load

full-size full-arb waveforms for both channels is about one minute.

Once loaded, use pulse_output to turn on the appropriate channels, and then use pulse_trig to

select the trigger mode and start (or arm) pulse output.

For additional information on this pulse mode and an example of a Full Arb waveform, refer to “Full arb

waveform” in the Model 4200A-SCS Pulse Card (PGU and PMU) User's Manual.

.kaf waveform file for KPulse: You can copy the arbitrary waveform data defined by the arb_file

command into a .kaf file. Use a text editor to format the file. You can then import the .kaf file into

KPulse. By default, .kaf waveform files for KPulse are saved in the ArbFiles folder at the command

path location C:\s4200\kiuser\KPulse\ArbFiles.

Also see

“KPulse (for Keithley Pulse Cards)” in the Model 4200A-SCS Pulse Card (PGU and PMU) User's Manual

arb_file (on page 6-4)

pulse_output (on page 6-36)

pulse_trig (on page 6-55)

seg_arb_define (on page 6-65)

Section 6: LPT commands for PGUs and PMUs Model 4200A-SCS LPT Library Programming

6-4 4200A-LPT-907-01 Rev. D May 2024

arb_file
This command loads a waveform from an existing full-arb waveform file.

Usage

int arb_file(int instr_id, long chan, char *fname);

instr_id The instrument identification code of the pulse card: VPU1, VPU2, and so on

chan Channel number of the pulse card: 1 or 2

fname The name of the waveform file; the name must be in quotes

Details

Use this command to load a waveform from an existing full-arb .kaf waveform file into the pulse card.

You can load a full-arb waveform for each channel of the pulse card. Once loaded, use

pulse_output to turn on the appropriate channel, and then use pulse_trig to select the trigger

mode and start (or arm) pulse output.

When specifying the fname, include the full command path with the file name. Existing .kaf

waveforms are typically saved in the ArbFiles folder at the following command path location:

C:\s4200\kiuser\KPulse\ArbFiles

You can create a full-arb waveform using KPulse and then save it as a .kaf waveform file.

You can modify a waveform in an existing .kaf file using a text editor or KPulse.

Example

arb_file(VPU1, 1, "C:\\s4200\\kiuser\\KPulse\\ArbFiles\\SINE.kaf")

This example loads a full-arb file named SINE.kaf (saved in the ArbFiles folder) into the pulse card for

channel 1.

Also see

“KPulse (for Keithley Pulse Cards)” in the Model 4200A-SCS Pulse Card (PGU and PMU) User's Manual

arb_array (on page 6-3)

pulse_output (on page 6-36)

pulse_trig (on page 6-55)

seg_arb_file (on page 6-67)

seg_arb_define (on page 6-65)

dev_abort
This command programmatically ends (aborts) a test from within the user module that was started with the

pulse_exec command.

Usage

int dev_abort(NULL);

Pulsers

4220-PGU

4225-PMU

Model 4200A-SCS LPT Library Programming Section 6: LPT commands for PGUs and PMUs

4200A-LPT-907-01 Rev. D May 2024 6-5

Pulse mode

Standard and Segment Arb

Details

This command is useful during a longer pulse_exec test.

Because pulse_exec is nonblocking, you can fetch data during a longer test. An example of this is a

long stress/measure test, using seg_arb_sequence and seg_arb_waveform, that evaluates

degradation data during the test. Evaluating this data from within the user module may determine that

a test should end. For example, if the degradation is greater than ten percent (>10%), then end the test

to save test time.

Example

// Place code to configure the PMU test here

//

// Start the test (for seg-arb testing, or for standard pulsing

// with no ranging, LLEC, or I/V/P threshold detection)

status = pulse_exec(PULSE_MODE_SIMPLE);

 if (status)

 {

 // Minimal error handling, release memory used to

 // fetch results and stop test

 Free_Used_Arrays();

 return status;

 }

// loop to fetch data, while waiting for test complete

abort_sent = 0;

while(pulse_exec_status(&elapsedt) == 1)

 {

 // Code to fetch and evaluate data here

 if (abort_sent == 0)

 {

 // Code to fetch PMU data

 // Code to evaluate data

 // Code to determine if an abort is required

 }

 // If the test must be aborted, send dev_abort

 if (abort_required && abort_sent == 0)

 {

 dev_abort(NULL);

 abort_sent = 1;

 }

 Sleep(100);

 }

This example illustrates placement of this command in a code a fragment. Note that after the dev_abort

command is sent it is still necessary to use pulse_exec_status to poll and wait for the test to be ended.

Also see

None

Section 6: LPT commands for PGUs and PMUs Model 4200A-SCS LPT Library Programming

6-6 4200A-LPT-907-01 Rev. D May 2024

devclr
This command sets all sources to a zero state.

Usage

int devclr(void);

Details

This command clears all sources sequentially in the reverse order from which they were originally

forced. Before clearing all Keithley supported instruments, GPIB-based instruments are cleared by

sending all strings defined with the kibdefclr command. devclr is implicitly called by clrcon,

devint, execut, and tstdsl.

For C-V testing, this command turns off the DC bias voltage.

Also see

clrcon (on page 7-2)

devint (on page 2-6)

execut (on page 2-9)

kibdefclr (on page 2-16)

tstdsl (on page 2-44)

devint
This command resets all active instruments in the system to their default states.

Usage

int devint(void);

Details

Resets all active instruments, including the 4200A-CVIV, in the system to their default states. It clears

the system by opening all relays and disconnecting the pathways. Meters and sources are reset to

their default states. Refer to the hardware manuals for the instruments in your system for listings of

available ranges and the default conditions and ranges.

The devint command is implicitly called by the execut and tstdsl commands.

To abort a running pulse_exec pulse test, see dev_abort.

devint does the following:

1. Clears all sources by calling devclr.

2. Clears the matrix crosspoints by calling clrcon.

3. Clears the trigger tables by calling clrtrg.

4. Clears the sweep tables by calling clrscn.

5. Resets GPIB instruments by sending the string defined with kibdefint.

6. Resets the active instrument cards.

Model 4200A-SCS LPT Library Programming Section 6: LPT commands for PGUs and PMUs

4200A-LPT-907-01 Rev. D May 2024 6-7

Instrument cards are reset in the following order:

1. SMU instrument cards

2. CVU instrument cards

3. Pulse instrument cards (4225-PMU or 4220-PGU)

The SMUs return to the following states:

• 100 μA and 10 V ranges

• Autorange on

• Voltage source

• 0 V DC bias

The 4210-CVU or 4215-CVU returns to the following states:

• 30 mVRMS AC signal

• 0 V DC bias

• 100 kHz frequency

• Autorange on

• Cable length compensation set to 0 m

• Open/Short/Load compensation disabled

The 4225-PMU or 4220-PGU returns to the following states:

• The pulse mode is maintained. For example, if the pulse card is in Segment Arb mode, it is still in

Segment Arb mode after the devint process is complete.

• 5 V and 10 mA ranges

• If in pulse mode:

▪ Period of 1 μs

▪ Transition times (rise and fall) of 100 ns

▪ Width of 500 ns

▪ Voltage high and low of 0 V

▪ Load of 50 Ω

• If in segmented arb mode, Start Voltage is 0 V

• If in arbitrary waveform mode, Table Length is 100

Also see

clrcon (on page 7-2)

clrscn (on page 2-2)

clrtrg (on page 2-3)

dev_abort (on page 6-4)

devclr (on page 4-9)

kibdefint (on page 2-17)

Section 6: LPT commands for PGUs and PMUs Model 4200A-SCS LPT Library Programming

6-8 4200A-LPT-907-01 Rev. D May 2024

getstatus
This command returns the operating state of a specified instrument.

Usage

int getstatus(int instr_id, long parameter, double *result);

instr_id The instrument identification code

parameter The parameter of query; see Details

result The data returned from the instrument; the getstatus command returns one item

Details

If the UT_INVLDPRM invalid parameter error is returned from the getstatus command, it indicates

that the status item parameter is illegal for this device. The requested status code is invalid for the

selected device.

A list of supported getstatus command values for parameter for a source-measure unit (SMU)

and a pulse card (VPU) are provided in the following tables.

No status values are provided for measurement-specific conditions.

Supported SMU getstatus query parameters

SMU parameter Returns Comment

KI_IPVALUE The presently programmed
output value

Current value (I output value)

KI_VPVALUE Voltage value (V output value)

KI_IPRANGE The presently programmed
range

Current range (full-scale range value, or 0.0
for autorange)

KI_VPRANGE Voltage range (full-scale range value, or 0.0
for autorange)

KI_IARANGE The presently active range Current range (full-scale range value)

KI_VARANGE Voltage range (full-scale range value)

KI_COMPLNC Compliance status of last
reading

Bitmapped values:

2 = LIMIT (at the compliance limit set
by limitX)

4 = RANGE (at the top of the range set
by rangeX)

KI_MAX_VOLTAGE The presently programmed
maximum voltage

For systems with 2657A source-measure units
(SMUs) only; a value between 300 V and 3000 V

KI_RANGE_COMPLIANCE Range compliance status of
last reading

Returns 1 if in range compliance

Model 4200A-SCS LPT Library Programming Section 6: LPT commands for PGUs and PMUs

4200A-LPT-907-01 Rev. D May 2024 6-9

Supported pulse card getstatus query parameters

Parameter Returns Comment

General parameters

KI_VPU_PERIOD Pulse period Pulse period value in seconds

KI_VPU_TRIG_POLARITY Trigger polarity Rising or falling edge

KI_VPU_CARD_STATUS Card status Card level status

KI_VPU_TRIG_SOURCE Trigger source Trigger source value

Channel-based parameters

KI_VPU_CH1_RANGE Source range Channel 1 range value in volts (5.0 or 20.0)

KI_VPU_CH2_RANGE Source range Channel 2 range value in volts (5.0 or 20.0)

KI_VPU_CH1_RISE Rise time Channel 1 rise time value in seconds

KI_VPU_CH2_RISE Rise time Channel 2 rise time value in seconds

KI_VPU_CH1_FALL Fall time Channel 1 fall time value in seconds

KI_VPU_CH2_FALL Fall time Channel 2 fall time value in seconds

KI_VPU_CH1_WIDTH Pulse width Channel 1 pulse width value in seconds

KI_VPU_CH2_WIDTH Pulse width Channel 2 pulse width value in seconds

KI_VPU_CH1_VHIGH Pulse high Channel 1 pulse high level value in volts

KI_VPU_CH2_VHIGH Pulse high Channel 2 pulse high level value in volts

KI_VPU_CH1_VLOW Pulse low Channel 1 pulse low level value in volts

KI_VPU_CH2_VLOW Pulse low Channel 2 pulse low level value in volts

KI_VPU_CH1_DELAY Pulse delay Channel 1 pulse delay from trigger value in seconds

KI_VPU_CH2_DELAY Pulse delay Channel 2 pulse delay from trigger value in seconds

KI_VPU_CH1_ILIMIT Current limit Channel 1 current Limit value in amps

KI_VPU_CH2_ILIMIT Current limit Channel 2 current Limit value in amps

KI_VPU_CH1_BURST_COUNT Burst count Channel 1 burst count value

KI_VPU_CH2_BURST_COUNT Burst count Channel 2 burst count value

KI_VPU_CH1_TEST_STATUS Status Channel 1 test status

KI_VPU_CH2_TEST_STATUS Status Channel 2 test status

KI_VPU_CH1_DC_OUTPUT DC output Channel 1 DC output value

KI_VPU_CH2_DC_OUTPUT DC output Channel 2 DC output value

KI_VPU_CH1_LOAD Pulse load Channel 1 pulse load value

KI_VPU_CH2_LOAD Pulse load Channel 2 pulse load value

Also see

getinstid (on page 2-11)

Section 6: LPT commands for PGUs and PMUs Model 4200A-SCS LPT Library Programming

6-10 4200A-LPT-907-01 Rev. D May 2024

pg2_init
This command initializes the pulse card to pulse mode or Segment Arb mode and its default conditions.

Usage

int pg2_init(int instr_id, long mode);

instr_id The instrument identification code of the pulse card, such as VPU1 or VPU2

mode The pulse mode:

▪ Standard pulse: 0

▪ Segment Arb: 1

▪ Full Arb: 2

Pulse modes

Standard, Full Arb, Segment Arb

Details

This command resets both channels of the pulse card to the default settings of the specified pulse

mode. The default settings for each parameter are listed in the following table.

If you want to reset the pulse card for the presently selected pulse mode, use the

pulse_init command.

Standard pulse defaults Full Arb and Segment Arb pulse defaults

Pulse high and pulse low = 0 V

Source range = 5 V high speed

Pulse period = 1e−6 s

Pulse width = 500e−9 s

Pulse count = 1

Rise and fall time = 10e−9 s

Pulse delay = 0 s

Pulse load = 50 Ω

Pulse trigger source = Software

Pulse trigger mode = Continuous

Pulse trigger output = On*

Trigger polarity = Positive

Complement mode = Normal pulse

Current limit = 105e−3 A

Pulse output = Off

Source range = 5 V high speed

Pulse count = 1

Pulse delay = 0 s

Pulse load = 50 Ω

Pulse trigger source = Software

Pulse trigger mode = Continuous

Pulse trigger output = Off*

Trigger polarity = Positive

Current limit = 105e−3 A

Pulse output = Off

* Turns on when a pulse is initiated with pulse_trig

Example

pg2_init(VPU1, 1)

Resets the pulse card to the Segment Arb pulse mode and its default settings.

Also see

pulse_init (on page 6-28)

Model 4200A-SCS LPT Library Programming Section 6: LPT commands for PGUs and PMUs

4200A-LPT-907-01 Rev. D May 2024 6-11

pmu_offset_current_comp
This command is used to collect offset current constants from the 4225-PMU. The offset (open) correction readings

are stored in a local file.

Usage

int pmu_offset_current_comp(int instr_id);

instr_id The instrument identification code of the pulse generator: PMU1, PMU2, and so on.

Pulsers

4225-PMU

Pulse mode

Segment Arb

Details

Use this command to collect current constants for offset current compensation. The correction

readings are stored in a file. You can then use the setmode command to configure the state of the

offset current compensation.

Example

int pmu_offset_current_comp(PMU1)

This example collects offset current constants from a 4225-PMU assigned PMU1.

Also see

setmode (4225-PMU) (on page 6-72)

pulse_burst_count
For the burst mode, this command sets the number of pulses to output during a burst sequence.

Usage

int pulse_burst_count(int instr_id, long chan, unsigned long count);

instr_id The instrument identification code of the pulse card, such as VPU1 or VPU2

chan Channel number of the pulse card: 1 or 2

count Number of pulses to output: 1 to (232-1); default 1

Pulse modes

Standard, Full Arb, Segment Arb

Section 6: LPT commands for PGUs and PMUs Model 4200A-SCS LPT Library Programming

6-12 4200A-LPT-907-01 Rev. D May 2024

Details

Each channel of the pulse card can have a unique burst count. When a burst sequence is triggered,

the card outputs the specified number of pulses and then stops. The pulse_trig command is used

to start (or arm) the burst sequence (Burst or Trig Burst).

You can set burst count independently for each pulse card channel.

This command can also be used with pulse_exec.

With an external trigger source selected, the burst count for channel 1 cannot be less than the burst

count for channel 2. Setting the burst count for channel 2 higher than the burst count for channel 1

may cause your system to stop responding when pulse output is triggered to start. Also, when using

one channel, set the unused channel to the same burst count value. See pulse_trig_source for

details on selecting an external trigger source.

Example

pulse_burst_count(VPU1, 1, 10)

Sets the burst count for the pulse card channel 1 to a count of 10.

Also see

pulse_exec (on page 6-17)

pulse_trig (on page 6-55)

pulse_trig_source (on page 6-58)

pulse_chan_status
This command is used to determine how many readings are stored in the data buffer for the specified channel.

Usage

int pulse_chan_status(int instr_id, int chan, int *buffersize);

instr_id The instrument identification code: PMU1, PMU2, and so on

chan Channel number of the pulse card: 1 or 2

buffersize User-defined name for the returned size value

Pulsers

4225-PMU

Pulse mode

Standard and Segment Arb

Model 4200A-SCS LPT Library Programming Section 6: LPT commands for PGUs and PMUs

4200A-LPT-907-01 Rev. D May 2024 6-13

Details

Use this command to return the number of readings presently stored in the data buffer. This command

can be called while a sweep is in progress or after it is completed.

For a short sweep (test time in seconds to a minute or more), this command is typically called after the

sweep is complete to determine the total number of readings stored in the buffer. For a long test, you

can use this command to track the progress of the test. A long test is typically Segment Arb with test

time in minutes, hours, or days.

Example

pulse_chan_status(PMU1, 1, buffersize);

This command returns the number of readings stored in the buffer for channel 1.

Also see

None

pulse_conncomp
This command enables or disables short connection compensation for the selected channel.

Usage

int pulse_conncomp(int instr_id, int chan, int 1, int index);

instr_id The instrument identification code: PMU1, PMU2, and so on

chan Channel number of the PMU: 1 or 2

index Connection compensation values:

▪ Disable all connection compensation: 0

▪ Selects the default connection compensation values for a setup that uses the
PMU only: 1

▪ Selects the default connection compensation values for a setup that uses the
PMU and the RPM: 2

▪ Selects the custom connection compensation values (see Details): 3

Pulsers

4225-PMU

Pulse mode

Standard and Segment Arb

Section 6: LPT commands for PGUs and PMUs Model 4200A-SCS LPT Library Programming

6-14 4200A-LPT-907-01 Rev. D May 2024

Details

Errors caused by the connections and cable length between the 4225-PMU and the device under test

(DUT) can be corrected by using connection compensation. When connection compensation is

enabled, the compensation values are factored into each DUT measurement.

Use this command to control connection compensation. You can use either default connection

compensation values (PMU or RPM) or custom connection compensation values. The default values

provide compensation for simple connection setups that use the supplied cables. The custom

connection compensated values are generated when connection compensation is performed. The

custom values provide optimum compensation.

Custom connection compensation is a two-part process:

1. Perform connection compensation from the Clarius interface. Connection compensation data is

generated. The compensation values are stored in tables.

2. Use this command to enable the custom connection compensation values.

When a test is run, each measurement factors in the enabled compensation values. If connection

compensation is disabled, the compensation values are not used by the test.

For detail on performing connection compensation, refer to “Perform connection compensation” in the

Model 4200A-SCS Pulse Card (PGU and PMU) User's Manual.

Example

pulse_conncomp(PMU1, 1, 1, 3);

This example assumes connection compensation was done using the Clarius interface. This command
enables short connection compensation using the custom compensation values.

Also see

setmode (on page 6-72)

pulse_current_limit
This command sets the current limit of the pulse card.

Usage

int pulse_current_limit(int instr_id, long chan, double ilimit);

instr_id The instrument identification code of the pulse card, such as VPU1 or VPU2

chan Channel number of the pulse card: 1 or 2

ilimit Current limit value (in amps; range and load dependent):

▪ 5 V range, 50 Ω load : −0.2 to +0.2

▪ 20 V range, 50 Ω load: −0.4 to +0.4

▪ 20 V range: −0.8 to +0.8

Default is 5 V range, 105e−3 A (105 mA)

Model 4200A-SCS LPT Library Programming Section 6: LPT commands for PGUs and PMUs

4200A-LPT-907-01 Rev. D May 2024 6-15

Pulse modes

Standard, Full Arb, Segment Arb

Details

You can set the current limit independently for each pulse card channel.

Current limit protects the DUT by using the specified DUT load to calculate the voltage required to

reach the current limit. A pulse card channel will not exceed the voltage required to reach the set

current limit value at the specified DUT load.

For information on the effect of loading on the limits, refer to the Model 4200A-SCS Pulse Card (PGU

and PMU) User's Manual, “DUT resistance determines pulse voltage across DUT.” For an example

and values for load-line effect, refer to “Example 5: Maximum voltage and current, high voltage range.”

Example

pulse_current_limit(VPU1, 1, 1e-3)

Sets the current limit of pulse card channel 1 to 1 mA.

Also see

pulse_load (on page 6-30)

pulse_dc_output
This command selects the DC output mode and sets the voltage level.

Usage

int pulse_dc_output(int instr_id, long chan, double dcvalue);

instr_id The instrument identification code of the pulse card, such as VPU1 or VPU2

chan Channel number of the pulse card: 1 or 2

dcvalue The DC voltage output value (in volts; range and load dependent):

▪ 5 V range: −5 to +5

▪ 20 V range: −20 to +20 (50 Ω load)

▪ Default: Not applicable

Pulse modes

Standard

Details

You can set each pulse card channel to output a fixed DC voltage level instead of pulses.

The maximum and minimum output voltage is range dependent. See pulse_vhigh and

pulse_vlow for details.

Section 6: LPT commands for PGUs and PMUs Model 4200A-SCS LPT Library Programming

6-16 4200A-LPT-907-01 Rev. D May 2024

The pulse_vlow, pulse_vhigh, and pulse_dc_output commands set the voltage value

output by the pulse channel when it is turned on (using pulse_output). If the output is

already enabled, these commands change the voltage level immediately, before the pulsing is

started with a pulse_trig command.

Example

pulse_dc_output(VPU1, 1, 10)

Selects the DC voltage output for channel 1 and sets the voltage to +10 V.

Also see

pulse_load (on page 6-30)

pulse_vhigh (on page 6-60)

pulse_vlow (on page 6-61)

pulse_delay
This command sets the delay time from the trigger to when the pulse output starts.

Usage

int pulse_delay(int instr_id, long chan, double delay);

instr_id The instrument identification code of the pulse card, such as VPU1 or VPU2

chan Channel number of the pulse card: 1 or 2

delay Time delay in seconds:

▪ High speed: 0 to (Period − 10e−9)

▪ Low speed: 0 to (Period − 10e−9)

▪ Default: 0

Pulse modes

Standard, Full Arb, Segment Arb

Details

Use the pulse_source_timing command to set the pulse delay time for the 4220-PGU and

4225-PMU.

Pulse delay can be set independently for each pulse card channel. For both speeds, pulse delay can

be set from 0 ns to (Period – 10 ns). The pulse delay is set in 10 ns increments. The pulse_range

command is used to set pulse speed.

Model 4200A-SCS LPT Library Programming Section 6: LPT commands for PGUs and PMUs

4200A-LPT-907-01 Rev. D May 2024 6-17

As shown below, pulse delay is the time from pulse trigger initiation to the start of the rise

transition time.

The maximum pulse delay that can be set depends on the presently set period for the pulse. For

example, if the period is set for 500 ns, the maximum pulse delay that can be set is 490 ns

(500 ns – 10 ns = 490 ns).

Example

pulse_delay(VPU1, 1, 300e-9)

Sets the pulse delay for channel 1 to 300 ns.

Also see

pulse_period (on page 6-38)

pulse_range (on page 6-39)

pulse_source_timing (on page 6-45)

pulse_trig (on page 6-55)

pulse_exec
This command is used to validate the test configuration and start test execution.

Usage

int pulse_exec(long mode);

mode The mode of execution:

▪ PULSE_MODE_SIMPLE or 0: No analysis performed during testing; no ranging,

no load-line effect compensation, and no threshold checking

▪ PULSE_MODE_ADVANCED or 1: Enables the analytical sweep engine and

incorporates the use of any combination of the options for the standard
(2-level) pulse mode

Pulsers

4220-PGU

4225-PMU

Pulse mode

Standard and Segment Arb

Section 6: LPT commands for PGUs and PMUs Model 4200A-SCS LPT Library Programming

6-18 4200A-LPT-907-01 Rev. D May 2024

Details

Use this command to validate the test configuration, select the simple or advanced mode, and execute

the test. If there are any problems with the test configuration, the validation stops and the test is

not executed.

The pulse_exec command is nonblocking, which means that if this command is called to execute the

test, the program continues and does not wait for the test to finish. Therefore, after calling

pulse_exec, the pulse_exec_status command must be called in a while loop to ensure the test

is complete before fetching data or exiting the user test module (UTM).

There are two commands that affect a pulse test while it is running:

• The pulse_remove command removes a PMU channel from the test.

• The dev_abort command aborts the test.

The Internal Trigger Bus trigger source (see the pulse_trig_source command) is used only by

the 4220-PGU and 4225-PMU for triggering. The pulse_exec command automatically uses the

internal trigger bus. A trigger input to start a pulse_exec test is not available.

Do not exit the user module while the test is still running. Incorrect readings or device damage

may result.

Example

// Code to configure the PMU test here

// Start the test (no analysis)

pulse_exec(0);

// while loop and short delay (10 ms)

while (pulse_exec_status(&elapsedt) == 1)

{

 Sleep(10);

}

// Retrieve all data

status = pulse_fetch(PMU1, 1, 0, 49, Drain_Vmeas, Drain_Imeas,

NULL, NULL);

// Code for data handling here

This example uses pulse_exec to set the execution type to simple two-level pulse operation (no analysis)

and execute the test. The code pauses the program to monitor the status of the test. It uses a while loop to
check the returned value of pulse_exec_status. When the test is completed, the program drops out of

the loop and calls pulse_fetch to retrieve all the test data.

Also see

dev_abort (on page 6-4)

pulse_remove (on page 6-42)

pulse_trig_source (on page 6-58)

Model 4200A-SCS LPT Library Programming Section 6: LPT commands for PGUs and PMUs

4200A-LPT-907-01 Rev. D May 2024 6-19

pulse_exec_status
This command is used to determine if a test is running or idle.

Usage

int pulse_exec_status(double *elapsedt);

elapsedt Name of the user-defined pointer for elapsed time

Pulsers

4220-PGU

4225-PMU

Pulse mode

Standard and Segment Arb

Details

This command is required to determine when a test is complete or what is occurring during a test. The

return value indicates whether the test is still running (PMU_TEST_STATUS_RUNNING or 1) or idle

(PMU_TEST_STATUS_IDLE or 0). The primary use of this command is to ensure that the test is

completed before fetching PMU data or ending the test.

The elapsed time is the Clarius test time, not the PMU or VPU card test time. For short test times, the

returned elapsed time is longer than the actual time required on-card.

This command is typically used in a while loop to allow the test to finish before retrieving the data

using the pulse_fetch command.

It is the responsibility of the user test module (UTM) programmer to ensure that the pulse test is

complete before exiting the UTM. If the UTM program ends before the test is complete, Clarius

responds with two messages. These messages are displayed in the Clarius messages area:

1. Five seconds after the UTM ends prematurely (before the pulse test is finished), the message

"UTMname ended before the test was complete. Waiting for test to finish (max wait = 5 minutes)"

is displayed.

2. Clarius continues to wait for the UTM to finish, interrupting further test execution.

3. After the default of five minutes, the UTM is terminated and the following message is displayed,

"UTMname did not finish before the maximum wait period. UTM aborted."

4. After this five minute wait, Clarius releases control to the user interface or to the next test in the

project (if using repeat executing or looping).

Section 6: LPT commands for PGUs and PMUs Model 4200A-SCS LPT Library Programming

6-20 4200A-LPT-907-01 Rev. D May 2024

Example

// Code to configure the PMU test here

// Start the test (no analysis)

pulse_exec(0);

// while loop and short delay (10 ms)

while (pulse_exec_status(&elapsedt) == 1)

{

 Sleep(10);

}

// Retrieve all data

status = pulse_fetch(PMU1, 1, 0, 49, Drain_Vmeas, Drain_Imeas,

NULL, NULL);

// Code for data handling here

This example uses pulse_exec to set the execution type to simple two-level pulse operation (no analysis)

and execute the test. The code pauses the program to monitor the status of the test. It uses a while loop to
check the returned value of pulse_exec_status. When the test is completed, the program drops out of

the loop and calls pulse_fetch to retrieve all the test data.

Also see

pulse_exec (on page 6-17)

pulse_fetch (on page 6-22)

pulse_fall
This command sets the fall transition time for the pulse output.

Usage

int pulse_fall(int instr_id, long chan, double fallt);

instr_id The instrument identification code of the pulse card, such as VPU1 or VPU2

chan Channel number of the pulse card: 1 or 2

fallt Pulse fall time in seconds (floating-point number):

▪ PGU high speed: 10e-9 to 33e-3 (10 ns to 33 ms)

▪ PMU high speed: 20e-9 to 33e-3 (20 ns to 33 ms)

▪ Low speed: 4220-PGU and 4225-PMU: 50e-9 to 33e-3 (50 ns to 33 ms)

▪ Default: 100e-9 (100 ns)

Pulse modes

Standard

Details

Rise and fall transition time can be set independently for each pulse card channel. There is a minimum

slew rate for both the rise and fall transitions. For the high speed range, the minimum is 362 μV/μs, or

1 V/2.7 ms. For the high voltage range, the minimum slew rate is 1.8 mV/μs, or 1 V/500 μs. The

pulse_range command sets the pulse speed.

Model 4200A-SCS LPT Library Programming Section 6: LPT commands for PGUs and PMUs

4200A-LPT-907-01 Rev. D May 2024 6-21

As shown below, the pulse fall time occurs between the 100 percent and 0 percent amplitude points on

the falling edge of the pulse, where the amplitude is the difference between the V High and V Low

pulse values.

The pulse fall time setting takes effect immediately during continuous pulse output. Otherwise, the fall

time setting takes effect when the next trigger is initiated. The pulse_trig command is used to

trigger continuous or burst output.

For high voltage, the minimum transition time for pulse source only (no measurement) on the 40 V

range is 50 ns for the 4225-PMU and 4220-PGU.

Use the pulse_source_timing command to set the pulse fall time for the 4220-PGU and

4225-PMU.

Example

pulse_fall(VPU1, 1, 50e-9)

For high speed, the sets the pulse fall time for channel 1 of the pulse card to 50 ns.

Also see

pulse_range (on page 6-39)

pulse_rise (on page 6-43)

pulse_source_timing (on page 6-45)

pulse_trig (on page 6-55)

Section 6: LPT commands for PGUs and PMUs Model 4200A-SCS LPT Library Programming

6-22 4200A-LPT-907-01 Rev. D May 2024

pulse_fetch
This command retrieves enabled test data and temporarily stores it in the data buffer.

Usage

int pulse_fetch(int instr_id, int chan, int StartIndex, int StopIndex, double *Vmeas,

double *Imeas, double *Timestamp, unsigned long *Status);

instr_id The instrument identification code: PMU1, PMU2, and so on

chan Channel number of the pulse card: 1 or 2

StartIndex Start index point for data (within the overall set of data)

StopIndex Final index point to be retrieved

Vmeas Name of the user-defined array for retrieved voltage measure readings; this is a
single-dimension array

Imeas Name of the user-defined array for retrieved current measure readings; this is a
single-dimension array

Timestamp Name of the user-defined array for retrieved timestamps; this is a single-dimension
array

Status Name of the user-defined array for retrieved status for the channel

Pulsers

4225-PMU

Pulse mode

Standard and Segment Arb

Details

When using pulse_fetch to retrieve data, you need to pause the program to allow time for the buffer

to fill. You can use the sleep command to pause for a specified time, or you can use the

pulse_exec_status command in a while loop to wait until the test is completed.

Use this command to retrieve a block of newly generated test data in pseudo real time and temporarily

store it in the data buffer. The stored data can then be analyzed and manipulated as needed before

posting it to the Clarius Analyze sheet.

Typically, this command is used with the pulse_exec_status command to allow the test to finish

before retrieving the data.

The block of data to be retrieved is set by the StartIndex and StopIndex parameters. The start

index parameter specifies the first index number in the buffer. The stop index parameter specifies the

final index number. For example, assume there are 1000 data test points for a test, and you want to

retrieve the first 50 points. The start index value is set to zero (0) and the stop index is set to 49.

The Vmeas, Imeas, Timestamp, and Status parameters are array names defined by the user. If you

do not want to retrieve the timestamp or status, NULL can be passed as valid parameters for

these fields.

Model 4200A-SCS LPT Library Programming Section 6: LPT commands for PGUs and PMUs

4200A-LPT-907-01 Rev. D May 2024 6-23

The return of all readings must be enabled by the pulse_meas_sm command. If disabled, the arrays

are not retrieved.

For spot mean measurements, data can be mixed; the amplitude and base level readings are returned

in the same array buffer area and must be separated (or parsed) after the measurement cycle is

complete. See the pulse_meas_sm command for details on spot mean measurements. The number

of measurements returned is determined by the spot means enabled in pulse_meas_sm. With both

amplitude and base measurements enabled, there will be two voltage and two current readings for

each pulse (with spot mean discrete) or each pulse burst (with spot mean average). Voltage and

current readings are returned in individual arrays: Vmeas, Imeas. When both amplitude and base

readings are enabled, the readings alternate. For example, the Vmeas array: Vampl_1, Vbase_1,

Vampl_2, Vbase_2, Vampl_3, Vbase_3, and so on. To plot the amplitude values, separate the

amplitude and base measurements into individual arrays before using PostDataDouble to post the

measurements to the sheet.

The timestamps pertain to either per spot mean reading or per sample. Status is returned as a 32-bit

word. The status code bit map is shown in the following table.

If you do not need to analyze or manipulate the test data before posting it to the Clarius Analyze sheet,

you can use the pulse_measrt command. The pulse_measrt command retrieves all the test data

in pseudo real time and automatically posts it into the Clarius Analyze sheet.

Status-code bit map for pulse_fetch

Bit Summary or description Value (bit pattern)

31 Reserved Reserved bit for future use

30 Sweep skipped 0 = Not skipped

1 = Skipped

29 Load-line effect compensation (LLEC)
enabled (only valid when LLEC is enabled)

0 = Failed

1 = Successful

28 LLEC status 0 = Disabled

1 = Enabled

27 to 24 RPM mode settings 0 (0000) = No RPM

1 (0001) = RPM

2 (0010) = Bypass; PMU

3 (0011) = Bypass; SMU

4 (0100) = Bypass; CVU

All other values (bit patterns) reserved

23 to 20 Reserved Reserved bits for future use

19 to 16 Measurement type 1 (0001) = Spot mean

2 (0010) = Waveform

All other values (bit patterns) reserved

Section 6: LPT commands for PGUs and PMUs Model 4200A-SCS LPT Library Programming

6-24 4200A-LPT-907-01 Rev. D May 2024

Status-code bit map for pulse_fetch

Bit Summary or description Value (bit pattern)

15 to 12 Current threshold, voltage threshold, power
threshold, and source compliance

0 (0000) = None

1 (0001) = Source compliance

2 (0010) = Current threshold reached or surpassed

4 (0100) = Voltage threshold reached or surpassed

8 (1000) = Power threshold reached or surpassed

11 to 10 Current measure overflow 0 (00) = No overflow

1 (01) = Negative overflow

2 (10) = Positive overflow

9 to 8 Voltage measure overflow 0 (00) = No overflow

1 (01) = Negative overflow

2 (10) = Positive overflow

7 to 4 Current measure range 0 (0000) = 100 nA (RPM only)

1 (0001) = 1 μA (RPM only)

2 (0010) = 10 μA (RPM only)

3 (0011) = 100 μA

4 (0100) = 1 mA (RPM only)

5 (0101) = 10 mA

6 (0110) = 200 mA

7 (0111) = 800 mA

All other values (bit patterns) reserved

3 to 2 Voltage measure range 0 (00) = 10 V

1 (01) = 40 V

1 to 0 Channel number 1 (01) = Ch1

2 (10) = Ch2

Value 0 (00) not used

Data retrieval options for pulse_fetch

There are two options to retrieve data:

• Wait until the test is completed

• Retrieve blocks of data while the test is running

Because pulse_exec is a nonblocking command, the running user test module (UTM) will continue

after it is called to start the test. This means that the program will not automatically pause to allow the

pulse-measure test to finish.

The programmer must ensure that the test program does not finish or return to Clarius before

the test is complete. Erroneous results and damage to test devices may occur.

If pulse_fetch is inadvertently called before the test is completed, the data buffer may not fill with all

the requested readings. Array entries are designated as zero for test data that is not yet available.

Model 4200A-SCS LPT Library Programming Section 6: LPT commands for PGUs and PMUs

4200A-LPT-907-01 Rev. D May 2024 6-25

Wait until the test is complete before retrieving data

An effective method to pause the program is to monitor the status of the test by using a while loop to

check the returned value of pulse_exec_status. When the test is completed, the program drops

out of the loop and calls pulse_fetch to retrieve all the test data. The following program fragment

shows how to use a while loop.

Program fragment 1

// Code to configure the PMU test here

// Start the test (no analysis)

pulse_exec(0);

// while loop and short delay (10 ms)

while (pulse_exec_status(&elapsedt) == 1)

{

 Sleep(10);

}

// Retrieve all data

status = pulse_fetch(PMU1, 1, 0, 49, Drain_Vmeas, Drain_Imeas, NULL, NULL);

// Code for data handling here

After all the data is retrieved, it can be analyzed, manipulated, and then posted into the Clarius

Analyze sheet. Use the PostDataDouble or PostDataDoubleBuffer command to post the data.

Retrieve blocks of data while the test is running

An advantage of the pulse_exec command being nonblocking is that it allows you to retrieve test

data before the test is completed, which is useful for a test that takes a long time. Instead of waiting for

the entire test to finish, you can retrieve blocks of data at prescribed intervals. The interval can be

controlled by using the sleep command as shown in the following program fragment.

Program fragment 2

// Code to initialize the data arrays

for (i = 0; i < array_size; i++)

{

 Drain_Vmeas = 0.0;

 Drain_Imeas = 0.0;

}

// Code to configure the PMU test here

// Start the test and pause for 20 seconds

pulse_exec(0);

Sleep(20000);

// Retrieve a block of test data:

pulse_fetch(PMU1, 1, 0, 10e3, Drain_Vmeas, Drain_Imeas, 1, NULL);

// Code for data handling here

After retrieving a block of data, loop back to the sleep command to allow the next block of data to

become available before fetching it. Repeat this loop until all the data is retrieved.

Section 6: LPT commands for PGUs and PMUs Model 4200A-SCS LPT Library Programming

6-26 4200A-LPT-907-01 Rev. D May 2024

The pulse_fetch command will return all data available at the time of the call. The remaining array

space will not be modified. To determine how much data was retrieved, it is recommended to initialize

the arrays. Program fragment 2 initializes the results arrays to 0.0, but other values may be used.

After the retrieving the data, search the array for the first entry with this initialized value.

Retrieved blocks of data can be analyzed and manipulated while the test is still running. After data

handling is completed, use the PostDataDoubleBuffer command to post the data to the Clarius

Analyze sheet.

Example 1

// Code to configure the PMU test here

// Start the test (no analysis)

pulse_exec(0);

// while loop and short delay (10 ms)

while (pulse_exec_status(&elapsedt) == 1)

{

 Sleep(10);

}

// Retrieve all data

status = pulse_fetch(PMU1, 1, 0, 49, Drain_Vmeas, Drain_Imeas,

NULL, NULL);

// Code for data handling here

This example uses pulse_exec to set the execution type to simple two-level pulse operation (no analysis)

and execute the test. The code pauses the program to monitor the status of the test. It uses a while loop to
check the returned value of pulse_exec_status. When the test is completed, the program drops out of

the loop and calls pulse_fetch to retrieve all the test data.

Example 2

pulse_fetch(PMU1, 1, 0, 49, Drain_Vmeas, Drain_Imeas, T_Stamp, NULL);

This command retrieves 50 points of data from the buffer, where:

▪ Instr_id = PMU1

▪ chan = 1 (channel 1)

▪ StartIndex = 0

▪ StopIndex = 49

▪ Vmeas = Drain_Vmeas (name of array)

▪ Imeas = Drain_Imeas (name of array)

▪ Timestamp = T_Stamp (name of array)

▪ Status = NULL (not retrieved)

Also see

PostDataDouble (on page 2-25)

PostDataDoubleBuffer (on page 2-27)

pulse_meas_sm (on page 6-30)

pulse_measrt (on page 6-34)

Model 4200A-SCS LPT Library Programming Section 6: LPT commands for PGUs and PMUs

4200A-LPT-907-01 Rev. D May 2024 6-27

pulse_float
This command sets the state of the floating relay for the given pulse instrument.

Usage

int pulse_float(int instr_id, int state);

instr_id The instrument identification code of the pulse card, such as PMU1 or PMU2

state State of the relay:

▪ OFF (default)

▪ ON (float)

Pulsers

4220-PGU, 4225-PMU

Pulse mode

Standard

Details

This command is used to float the PGU/PMU card.

Example

pulse_float(PMU1, OFF);

This turns off the floating relay on PMU1 instrument.

Also see

None

pulse_halt
This command stops all pulse output from the pulse card.

Usage

int pulse_halt(int instr_id);

instr_id The instrument identification code of the pulse card, such as VPU1 or VPU2

Pulse modes

Standard, Full Arb, Segment Arb

Details

This command stops all pulse output from the pulse card and turns the pulse card channels off. Pulse

output can be restarted by turning the outputs on with pulse_output and then using the

pulse_trig command to restart the test.

Section 6: LPT commands for PGUs and PMUs Model 4200A-SCS LPT Library Programming

6-28 4200A-LPT-907-01 Rev. D May 2024

Example

pulse_halt(VPU1)

Stops pulse output.

Also see

pulse_output (on page 6-36)

pulse_trig (on page 6-55)

pulse_init
This command resets the pulse card to the default settings for the pulse mode that is presently selected.

Usage

int pulse_init(int instr_id);

instr_id The instrument identification code of the pulse card, such as VPU1 or VPU2

Pulse modes

Standard, Full Arb, Segment Arb

Details

This command resets both channels of the pulse card to the default settings. The default settings are

listed in the following table.

If you want to specify the pulse mode to reset, use the pg2_init command.

Standard pulse defaults Full Arb and Segment Arb pulse defaults

Pulse high and pulse low = 0 V

Source range = 5 V high speed

Pulse period = 1e−6 s

Pulse width = 500e−9 s

Pulse count = 1

Rise and fall time = 10e−9 s

Pulse delay = 0 s

Pulse load = 50 Ω

Pulse trigger source = Software

Pulse trigger mode = Continuous

Pulse trigger output = On*

Trigger polarity = Positive

Complement mode = Normal pulse

Current limit = 105e−3 A

Pulse output = Off

Source range = 5 V high speed

Pulse count = 1

Pulse delay = 0 s

Pulse load = 50 Ω

Pulse trigger source = Software

Pulse trigger mode = Continuous

Pulse trigger output = Off*

Trigger polarity = Positive

Current limit = 105e−3 A

Pulse output = Off

* Turns on when a pulse is initiated with pulse_trig

Example

pulse_init(VPU1)

Resets the pulse card to the default settings for the presently selected pulse mode.

Also see

pg2_init (on page 6-10)

Model 4200A-SCS LPT Library Programming Section 6: LPT commands for PGUs and PMUs

4200A-LPT-907-01 Rev. D May 2024 6-29

pulse_limits
This command sets measured voltage and current thresholds at the DUT and sets the power threshold for

each channel.

Usage

int pulse_limits(int instr_id, int chan, double V_Limit, double I_Limit, double

Power_Limit);

instr_id The instrument identification code: PMU1, PMU2, and so on

chan Channel number of the pulse card: 1 or 2

V_Limit Measured voltage (V) threshold at the DUT

I_Limit Measured current (A) threshold at the DUT

Power_Limit Power (W) threshold for the channel (Power = Vmeas × Imeas)

Pulsers

4225-PMU

Pulse mode

Standard

Details

This feature differs from a SMU compliance setting in that threshold checking is done after each burst

of pulses, using the spot mean values to compare to the specified thresholds. The thresholds are

checked against all enabled measurements for the channel. If a threshold is reached or exceeded, the

present sweep is stopped and testing continues with any subsequent sweeps.

This feature does not prevent the set thresholds from being reached or exceeded. After detecting a

threshold breach, it aborts the sweep.

Maximum power for each PMU source range:

High-speed voltage source (10 V) range: Maximum power = 5 V × 0.1 A = 0.5 W

High-voltage source (40 V) range: Maximum power = 20 V × 0.4 A = 8 W

Example

pulse_limits(PMU1, 1, 42, 1, 10);

This example sets thresholds for channel 1 of the PMU, where:

▪ instr_id = PMU1

▪ chan = Channel 1

▪ V_Limit = 42 V

▪ I_Limit = 1 A

▪ Power_Limit = 10 W

Also see

None

Section 6: LPT commands for PGUs and PMUs Model 4200A-SCS LPT Library Programming

6-30 4200A-LPT-907-01 Rev. D May 2024

pulse_load
This command sets the output impedance for the load (DUT).

Usage

int pulse_load(int instr_id, long chan, double impedance);

instr_id The instrument identification code of the pulse card, such as VPU1 or VPU2

chan Channel number of the pulse card: 1 or 2

impedance Output impedance (in ohms): 1 to 10e6 (default 50)

Pulse modes

Standard, Full Arb, Segment Arb

Details

You may need to set the DUT load so the 4200A-SCS can correctly calculate the PMU output levels

for a specific DUT. The calculations will adjust the pulse levels to the PMU output impedance of 50 Ω.

For example, if the DUT load used by default is 1 MΩ, but the actual DUT load has a low impedance of

50 Ω, setting a voltage level of 4 V results in a 2 V pulse at the DUT. Setting the DUT load to 50 Ω

permits the set voltage to match the actual voltage, so setting a 4 V level results in a 4 V pulse on DUT,

with the pulse card taking the DUT impedance into account.

Example

pulse_load(VPU1, 1, 100)

Sets the output impedance of pulse card channel 1 to 100 Ω.

Also see

None

pulse_meas_sm
This command configures spot mean measurements.

Usage

int pulse_meas_sm(int instr_id, int chan, Int AcquireType, int AcquireMeasVAmpl, int

AcquireMeasVBase, int AcquireMeasIAmpl, int AquireMeasIBase, int AquireTimeStamp,

int LLEComp);

instr_id The instrument identification code of the pulse card, such as VPU1 or VPU2

chan Channel number of the pulse card: 1 or 2

AcquireType Acquisition type:

▪ Discrete: 0

▪ Average: 1

Model 4200A-SCS LPT Library Programming Section 6: LPT commands for PGUs and PMUs

4200A-LPT-907-01 Rev. D May 2024 6-31

AcquireMeasVAmpl Return amplitude voltage measurements:

▪ Disable: 0

▪ Enable: 1

AcquireMeasVBase Return base level voltage measurements:

▪ Disable: 0

▪ Enable: 1

AcquireMeasIAmpl Return amplitude current measurements:

▪ Disable: 0

▪ Enable: 1

AcquireMeasIBase Return base current level measurements:

▪ Disable: 0

▪ Enable: 1

AcquireTimeStamp Return timestamp readings:

▪ Disable: 0

▪ Enable: 1

LLEComp Load-line effect compensation (LLEC):

▪ All LLEC disabled: 0

▪ Voltage LLEC on for pulse amplitude only: 1

Pulsers

4225-PMU

Pulse modes

Standard

Details

To use this command to configure spot mean measurements, you select the data acquisition type, set

the readings to be returned, enable or disable timestamps, and set load-line effect compensation

(LLEC).

LLEC is only performed for standard pulse I-V testing using PMU measure ranges. It is not performed

when using 4225-RPM measure ranges. The active RPM circuitry provides its own analog LLEC

(assuming a short cable from the RPM to the DUT).

Also see

Model 4200A-SCS Pulse Card (PGU and PMU) User's Manual, “Load-line effect compensation,”

 “Measurement types,”

 “Spot mean measurements,”

 and “Waveform measurements”

Section 6: LPT commands for PGUs and PMUs Model 4200A-SCS LPT Library Programming

6-32 4200A-LPT-907-01 Rev. D May 2024

pulse_meas_timing
This command sets the spot mean measurement window.

Usage

int pulse_meas_timing(int instr_id, int chan, double, StartPercent, double StopPercent,

int NumPulses);

instr_id The instrument identification code of the pulse card, such as VPU1 or VPU2

chan Channel number of the pulse card: 1 or 2

StartPercent Start location for measurements:

▪ Spot mean measurements: Start location, specified as a percentage of the
widths for the amplitude and base level (see Details)

▪ Waveform: Pre-data for the amplitude, specified as a percentage of the
amplitude pulse duration (see Details)

StopPercent Stop location for measurements:

▪ Spot mean measurements: Stop location, specified as a percentage of the
widths for the amplitude and base level (see Details)

▪ Waveform: Post-data for the amplitude, specified as a percentage of the
amplitude pulse duration (see Details)

NumPulses Number of pulses to output and measure (1 to 10,000)

Pulsers

4225-PMU

Pulse modes

Standard

Details

Use this command to set measurement timing. For spot mean measurements, portions of the

amplitude and base levels are specified for sampling. For pre-data and post-data waveform

measurements, a percentage of the entire pulse duration is specified.

The following figure shows example start and stop locations when spot mean measurements are

made. Three measured samples are taken on the amplitude and six samples are taken on the base

level. The start and stop percentage values indicate the portions of the pulse that are sampled.

Figure 7: Spot mean measurements example

Model 4200A-SCS LPT Library Programming Section 6: LPT commands for PGUs and PMUs

4200A-LPT-907-01 Rev. D May 2024 6-33

The figure below shows example a waveform measurement with pre-data and post-data. Pre-data is

extra data taken before the rise time of the pulse; post-data is extra data taken after the fall time.

Figure 8: Waveform measurements with pre-data and post-data

Use the pulse_sample_rate command to set the sampling rate for pulse measurements.

Before calling the pulse_meas_timing command, use the pulse_meas_sm or pulse_meas_wfm

command to configure the measurement type.

Also see

Model 4200A-SCS Pulse Card (PGU and PMU) User's Manual, “Measurement timing” and “

Measurement types”

pulse_meas_sm (on page 6-30)

pulse_sample_rate (on page 6-44)

pulse_meas_wfm (on page 6-33)

pulse_meas_wfm
This command configures waveform measurements.

Usage

int pulse_meas_wfm(int instr_id, int chan, int AcquireType, int AcquireMeasV, int

AcquireMeasI, int AquireTimeStamp, int LLEComp);

instr_id The instrument identification code of the PMU, such as PMU1 or PMU2

chan Channel number of the pulse card: 1 or 2

AcquireType Acquisition type:

▪ Discrete: 0

▪ Average: 1

AcquireMeasV Return voltage measurements:

▪ Disable: 0

▪ Enable: 1

Section 6: LPT commands for PGUs and PMUs Model 4200A-SCS LPT Library Programming

6-34 4200A-LPT-907-01 Rev. D May 2024

AcquireMeasI Return current measurements:

▪ Disable: 0

▪ Enable: 1

AcquireTimeStamp Return timestamp readings (must be enabled to measure waveforms):

▪ Disable: 0

▪ Enable: 1

LLEComp Load line effect compensation (LLEC):

▪ LLEC disabled: 0

▪ LLEC enabled: 1

Pulsers

4225-PMU

Pulse modes

Standard

Details

To use the pulse_meas_wfm command to configure waveform measurements, you select the data

acquisition type, set the readings to be returned, enable or disable timestamps, and set load-line effect

compensation (LLEC).

LLEC is only performed for standard pulse I-V testing using PMU measure ranges. It is not performed

when using 4225-RPM measure ranges. The active RPM circuitry provides its own analog LLEC

(assuming a short cable from the RPM to the DUT).

Also see

Model 4200A-SCS Pulse Card (PGU and PMU) User's Manual, “Load-line effect compensation,”

 “Measurement types,”

 “Spot mean measurements,”

 and “Waveform measurements”

pulse_measrt
This command returns pulse source and measure data in pseudo real time.

Usage

int pulse_measrt(int instr_id, int chan, char *VMeasColName, char *IMeasColName, char

*TimeStampColName, char *StatusColName);

instr_id The instrument identification code: PMU1, PMU2, and so on

chan Channel number of the pulse card: 1 or 2

VMeasColName Column name for V-measure data in the Clarius Analyze sheet

IMeasColName Column name for I-measure data in the Clarius Analyze sheet

TimeStampColName Column name for the timestamp data in the Clarius Analyze sheet

StatusColName Column name for the status data in the Clarius Analyze sheet

Model 4200A-SCS LPT Library Programming Section 6: LPT commands for PGUs and PMUs

4200A-LPT-907-01 Rev. D May 2024 6-35

Pulsers

4225-PMU

Pulse mode

Standard and Segment Arb

Details

Use this command to return and display test data. The card returns data:

• If the time between measurements is very long.

• If the storage of the internal card (FIFO) is full.

• If a stepper is present, when the sweep is completed.

• At end of test.

The data is automatically placed in the Clarius Analyze sheet.

This command is also used to name the columns in the Clarius Analyze sheet.

This command must be called before calling pulse_exec to start the test.

The pulse_measrt command is not compatible with using KXCI to call user libraries remotely (see

“Calling KULT user libraries remotely” in Model 4200A-SCS KXCI Remote Control Programming).

Use PostDataDouble for user test modules (UTMs) that will be called using KXCI.

Example

pulse_measrt(PMU1, 1, "V-Measure", "I-Measure", "Timestamp", "Status");

This example configures channel 1 of PMU1 to return data in pseudo real time.

Also see

pulse_exec (on page 6-17)

pulse_fetch (on page 6-22)

Section 6: LPT commands for PGUs and PMUs Model 4200A-SCS LPT Library Programming

6-36 4200A-LPT-907-01 Rev. D May 2024

pulse_output
This command sets the pulse output of a pulse card channel on or off.

Usage

int pulse_output(int instr_id, long chan, long out_state);

instr_id The instrument identification code of the pulse card, such as VPU1 or VPU2

chan Channel number of the pulse card: 1 or 2

out_state Pulse output state:

▪ Off: 0 (default)

▪ On: 1

Pulse modes

Standard, Full Arb, Segment Arb

Details

This command configures the channel to output and closes the output relay.

If no 4225-RPM is used, this command connects the source to the device under test (DUT). The

command devclr resets the pulse card source and disconnects the source from the DUT. The

command pulse_output(PMUx, chan, 0) clears the physical connection to the DUT and resets

the PMU source.

If a 4225-RPM is used with the PMU, this command prepares the pulse source when using a PMU with

RPMs, but it does not close the output relay. The rpm_config command establishes the physical

connection to the DUT. The clrcon command clears the physical connection to the DUT.

You can control each channel of the pulse card individually (on or off). When the channel is off, the

output is in a high-impedance (open) state. After a channel is turned on, pulse output starts when a

pulse trigger is initiated. Note that if a pulse delay has been set, pulse output starts after the delay

period expires.

It is good practice to routinely turn off the outputs of the pulse card after a test has been completed.

The pulse_ssrc command controls the high-endurance output relays (HEORs), and the

seg_arb_define command defines a Segment Arb® waveform, which includes HEOR control.

Example

pulse_output(VPU1, 1, 0)

Turns off the output for pulse card channel 1.

Model 4200A-SCS LPT Library Programming Section 6: LPT commands for PGUs and PMUs

4200A-LPT-907-01 Rev. D May 2024 6-37

Also see

clrcon (on page 7-2)

devclr (on page 4-9)

pulse_delay (on page 6-16)

pulse_ssrc (on page 6-46)

pulse_trig (on page 6-55)

pulse_current_limit (on page 6-14)

rpm_config (on page 6-64)

seg_arb_define (on page 6-65)

pulse_output_mode
This command sets the pulse output mode of a pulse card channel.

Usage

int pulse_output_mode(int instr_id, long chan, long mode);

instr_id The instrument identification code of the pulse card, such as VPU1 or VPU2

chan Channel number of the pulse card: 1 or 2

mode Pulse output state:

▪ NORMAL or 0 (default)

▪ COMPLEMENT or 1

Pulse modes

Standard

Details

When a pulse card channel is set to COMPLEMENT, the V Low and V High voltage settings

are swapped.

As shown in the following figure, when pulse is complemented, low pulse goes to the high level, and

high pulse goes to the low level.

Example

pulse_output_mode(VPU1, 1, COMPLEMENT)

Sets the output mode for pulse card channel 1 to COMPLEMENT.

Also see

None

Section 6: LPT commands for PGUs and PMUs Model 4200A-SCS LPT Library Programming

6-38 4200A-LPT-907-01 Rev. D May 2024

pulse_period
This command sets the period for pulse output.

Usage

int pulse_period(int instr_id, double period);

instr_id The instrument identification code of the pulse card, such as VPU1 or VPU2

period Pulse period (in seconds):

▪ PGU 5 V range: 20e-9 to 1 (20 ns to 1 s)

▪ PMU 5 V range: 60e-9 (60 ns to 1 s)

▪ 20 V range: 500e-9 to 1 (500 ns to 1 s)

▪ Default: 1e-6 (1 μs)

Pulse modes

Standard

Details

This command sets the pulse period for both channels of the pulse card. As shown below, the pulse

period is measured at the median point (50 percent between the high and low pulse values) from the

rising transition of the pulse to the rising transition of the next pulse.

Figure 9: Pulse period

The pulse period setting takes effect immediately during continuous pulse output. Otherwise, the

period setting takes effect when the next trigger is initiated. The pulse_trig command is used to

trigger continuous or burst output.

Example

pulse_period(VPU1, 200e-9)

Sets the pulse period of the pulse card to 200 ns.

Also see

pulse_trig (on page 6-55)

Model 4200A-SCS LPT Library Programming Section 6: LPT commands for PGUs and PMUs

4200A-LPT-907-01 Rev. D May 2024 6-39

pulse_range
This command sets a pulse card channel for low voltage (high speed) or high voltage (low speed).

Usage

int pulse_range(int instr_id, long chan, double range);

instr_id The instrument identification code of the pulse card, such as VPU1 or VPU2

chan Channel number of the pulse card: 1 or 2

range Pulse range (in volts): 10 or 40 (default 10 V)

Details

Setting the pulse range of a pulse card channel to 10 V selects the low-voltage range, which also

selects high speed for pulse output. For high speed, the minimum pulse width that can be set is 10 ns,

and minimum rise and fall times can be set to 10 ns.

Setting the pulse range of a pulse card channel to 40 V selects the high-voltage range, which also

selects low speed for pulse output. For low speed, the minimum pulse width that can be set is 250 ns,

and the minimum rise and fall times can be set to 100 ns.

This setting takes effect when the next trigger is initiated. The following pulse parameters are then

checked: period, width, rise time, fall time, and high and low voltage levels. If any of these parameters

is out of bounds, it is reset to the default value.

Use pulse_range before setting the voltage levels. When you use the pulse_range command, if

you change the source range after setting the voltage levels in any pulse mode, it may result in

voltage levels that are invalid for the new range setting.

This command can also be used to set the voltage source range of the 4220-PGU and 4225-PMU.

Use the pulse_ranges command to set the source and measure ranges of the 4225-PMU.

Example

pulse_range(VPU1, 1, 40)

Selects the high-voltage range for pulse card channel 1.

Also see

pulse_fall (on page 6-20)

pulse_vhigh (on page 6-60)

pulse_vlow (on page 6-61)

pulse_period (on page 6-38)

pulse_ranges (on page 6-40)

pulse_rise (on page 6-43)

pulse_width (on page 6-63)

Section 6: LPT commands for PGUs and PMUs Model 4200A-SCS LPT Library Programming

6-40 4200A-LPT-907-01 Rev. D May 2024

pulse_ranges
This command sets the voltage pulse range and voltage/current measure ranges.

Usage

int pulse_ranges(int instr_id, int chan, double VSrcRange, int Vrange_type, double

Vrange, int Irange_type, double Irange);

instr_id The instrument identification code, such as VPU1, VPU2, PMU1, or PMU2

chan Channel number of the pulse card: 1 or 2

VSrcRange Pulse range (in volts): 10 or 40 (default 10 V)

Vrange_type Voltage measure range type (PMU):

▪ Auto: 0

▪ Limited auto: 1

▪ Fixed: 2

Vrange Voltage measure range (PMU) in volts: 10 or 40; ignored if autorange is selected

Irange_type Current measure range type (PMU):

▪ Auto: 0

▪ Limited auto: 1

▪ Fixed: 2

Irange Current measure range in amps; see Details; ignored if autorange is selected

Pulsers

4220-PGU

4225-PMU

4225-RPM

Pulse modes

Standard, Full Arb, Segment Arb

Details

The Vrange_type, Vrange, Irange_type, and Irange parameters are ignored by the PGU.

The Segment Arb pulse mode does not allow range changes in a Segment Arb® waveform definition.

Only fixed ranging is available, so autorange (0) and limited autorange (1) are not valid for the

Segment Arb pulse mode.

You can set the source range independently for each PGU channel. There are two ranges for the

output level: 10 V and 40 V. Selecting the 10 V range also selects high-speed pulse output. For the 10

V high-speed range, the pulse period can be as short as 20 ns and pulse width can be set as short as

10 ns. This setting takes effect when the next pulse trigger is initiated.

For the PGU, use this command to set the voltage source range for pulse output.

Model 4200A-SCS LPT Library Programming Section 6: LPT commands for PGUs and PMUs

4200A-LPT-907-01 Rev. D May 2024 6-41

For the PMU, use this command to:

• Set the voltage source range for pulse output.

• Set the voltage and current measure range types.

• Set the actual voltage and current measure ranges.

The measure range types for the PMU are:

• Fixed: Use this range type to specify a fixed measure range (Vrange or Irange).

• Limited Auto: Select this range type to use the fixed measure as the lowest range that will be used

for automatic ranging.

• Auto: Use this range type to automatically select the optimum measure range. The specified fixed

measure range (Vrange or Irange) is not used when autorange is enabled but must be a

valid range.

The current ranges available depend on the source range and whether the system includes a

4225-RPM, as shown in the following table.

Current measure range (A) PMU source range (V) RPM source range (V)

0.8 n/a 40

0.2 10 n/a

0.01 10 10 or 40

0.001 n/a 10

0.0001 n/a 10 or 40

0.00001 n/a 10

0.000001 n/a 10

0.0000001 n/a 10

Auto or limited autoranging is available only when using the advanced mode in the pulse_exec

command. Ranging is controlled per channel and may be combined with load-line effect compensation

(LLEC) and thresholds. See pulse_limits command for thresholds.

Example

pulse_ranges(PMU1, 1, 10, 0, 10, 0, 0.2);

This example sets the source-measure ranges for channel 1 of PMU1, where:

▪ Instr_id = PMU1

▪ chan = 1 (channel 1)

▪ VSrcRange = 10 V

▪ Vrange_type = Auto (0)

▪ Vrange = 10 V (value ignored because voltage measure autorange is set)

▪ Irange_type = Auto (0)

▪ Irange = 200 mA (value ignored because current measure autorange is set)

Section 6: LPT commands for PGUs and PMUs Model 4200A-SCS LPT Library Programming

6-42 4200A-LPT-907-01 Rev. D May 2024

Also see

Model 4200A-SCS Pulse Card (PGU and PMU) User's Manual, “Setting up PMUs and PGUs in Clarius”

pulse_exec (on page 6-17)

pulse_limits (on page 6-29)

rpm_config (on page 6-64)

pulse_remove
This command removes a pulse channel from the test.

Usage

int pulse_remove(int instr_id, int chan, double voltage, unsigned long state);

instr_id The instrument identification code: VPU1, VPU2, PMU1, PMU2, and so on

chan Channel number of the pulse card: 1 or 2

voltage Voltage to output when removing a channel

state Output relay state:

▪ PULSE OUTPUT OFF or 0: Open (disconnected)

▪ PULSE OUTPUT ON or 1: Close (connected)

Pulsers

4220-PGU

4225-PMU

Pulse mode

Standard and Segment Arb

Details

This command is useful if you need one less channel for a pulse test that already exists. For example,

you can use it to remove a channel from a long-term reliability test while allowing other channels to

continue running.

Use the voltage and state parameters to remove a channel from a test that is running. Use the

voltage parameter to set the output voltage. For example, you may want to set the output voltage to

zero (0) when removing the channel. Use the state parameter to connect or disconnect the channel.

When you remove a channel from a test that is not running, the voltage and state parameters

are ignored.

Example

pulse_remove(PMU2, 1, 0, 0);

This example removes channel 1 for PMU2, sets the voltage to 0 V, and opens the output relay.

Also see

None

Model 4200A-SCS LPT Library Programming Section 6: LPT commands for PGUs and PMUs

4200A-LPT-907-01 Rev. D May 2024 6-43

pulse_rise
This command sets the rise transition time for the pulse card pulse output.

Usage

int pulse_fall(int instr_id, long chan, double riset);

instr_id The instrument identification code of the pulse card, such as VPU1 or VPU2

chan Channel number of the pulse card: 1 or 2

riset Pulse rise time in seconds (floating-point number):

▪ PGU high speed: 10e-9 to 33e-3 (10 ns to 33 ms)

▪ PMU high speed: 20e-9 to 33e-3 (20 ns to 33 ms)

▪ Low speed, 4220-PGU and 4225-PMU: 50e-9 to 33e-3 (50 ns to 33 ms)

▪ Default: 100e-9 (100 ns)

Pulse modes

Standard

Details

Rise and fall transition time can be set independently for each pulse card channel. There is a minimum

slew rate for both the rise and fall transitions. For the high-speed range, the minimum is 362 μV/μs, or

1 V/2.7 ms. For the high-voltage range, the minimum slew rate is 1.8 mV/µs, or 1 V/500 μs. The

pulse_range command sets the pulse speed.

As shown in the following figure, the pulse rise time occurs between the 0 percent and 100 percent

amplitude points on the rising edge of the pulse, where the amplitude is the difference between the V

High and V Low pulse values.

The pulse rise time setting takes effect immediately during continuous pulse output. Otherwise, the

rise time setting takes effect when the next trigger is initiated. The pulse_trig command is used to

trigger continuous or burst output.

For low speed, the minimum transition time for pulse source only (no measurement) on the 40 V range

is 50 ns for the 4225-PMU and 4220-PGU.

Section 6: LPT commands for PGUs and PMUs Model 4200A-SCS LPT Library Programming

6-44 4200A-LPT-907-01 Rev. D May 2024

Use the pulse_source_timing command to set the pulse fall time for the 4220-PGU

and 4225-PMU.

Example

pulse_rise(VPU1, 1, 50e-9)

For high speed, the sets the pulse rise time for channel 1 of the pulse card to 50 ns.

Also see

pulse_fall (on page 6-20)

pulse_range (on page 6-39)

pulse_source_timing (on page 6-45)

pulse_trig (on page 6-55)

pulse_sample_rate
This command sets the measurement sample rate.

Usage

int pulse_sample_rate(INSTR_ID instr_id, double Sample_rate);

instr_id The instrument identification code: PMU1, PMU2, and so on

Sample_rate Sample rate: 200e6, 100e6, 50e6, 40e6, 33e6, 29e6, ... 1e3

Pulsers

4225-PMU

Pulse mode

Standard and Segment Arb

Details

Use this card-based command to set the measurement sample rate. The sample rate is the number of

measurements (per second) that are performed by the PMU. The sample rate can be set from 200e6

to 200e6/n, where n = 1 to 200,000. The minimum sampling rate is 1E3 samples per second. The

sample rate is a fixed rate (not adjustable within a test). For multi-card tests, set all cards to the same

sample rate.

If a requested sample rate does not match an available rate, the next higher rate is used. For example,

if 90e6 samples per second are sent, the sampling rate is set to 100e6 samples per second (200e6/2).

Example

pulse_sample_rate(PMU1, 100E6);

This example command sets the sampling rate of the PMU to 100e6 samples per second.

Also see

None

Model 4200A-SCS LPT Library Programming Section 6: LPT commands for PGUs and PMUs

4200A-LPT-907-01 Rev. D May 2024 6-45

pulse_source_timing
This command sets the pulse period, pulse width, rise time, fall time, and delay time.

Usage

int pulse_source_timing(int instr_id, int chan, double period, double delay, double

width, double rise, double fall);

instr_id The instrument identification code: VPU1, VPU2, PMU1, PMU2, and so on

chan Channel number of the pulse card: 1 or 2

period Pulse period (in seconds) for both channels

delay Delay time (in seconds) for the selected channel

width Pulse width (in seconds) for the selected channel

rise Rise time (in seconds) for the selected channel

fall Fall time (in seconds) for the selected channel

Pulsers

4220-PGU

4225-PMU

Pulse mode

Standard

Details

Use this command to set the timing parameters for the test. Pulse width, rise time, fall time, and delay

are individually set for the selected channel. The pulse period setting applies to both channels.

This command returns errors if there is an invalid setting or combination of settings. The rise time of a

pulse cannot be longer than the pulse width. The minimum time allowed for parameters width, rise,

and fall is 20 ns. The minimum value for delay is 0 ns. When setting timing for a sample (waveform

capture), setting the delay to a small value allows the PMU to better capture the rising edge of the

pulse. This value is sample rate dependent, but for the 200 MSa/s rate, a pulse delay of 20 ns to 100

ns allows the rising edge of the pulse to be captured.

Another internally enforced limit is the minimum off time. This is calculated as:

minimum off time = period − delay − width − 0.5 × (rise + fall)

The minimum off time may not be less than 40 ns. To see the whole pulse transition to high when

capturing waveform data, use a small nonzero value like 10 ns for pulse_delay.

When a source timing parameter is already set to step or sweep, the step or sweep parameter

overrides the timing parameter set by this command. For details, see pulse_step_linear and

pulse_sweep_linear.

For example, if the SWEEP_PERIOD_SP parameter type is selected for the pulse_sweep_linear

command, the period values for the sweep override the period setting for this command.

Section 6: LPT commands for PGUs and PMUs Model 4200A-SCS LPT Library Programming

6-46 4200A-LPT-907-01 Rev. D May 2024

Example

pulse_source_timing(PMU1, 1, 0.02, 0.005, 0.01, 0.001, 0.001);

This example the following pulse source timing settings for the PMU, where:

▪ instr_id = PMU1

▪ chan = 1

▪ period = 0.02 (20 ms)

▪ delay = 0.005 (5 ms)

▪ width = 0.01 (10 ms)

▪ rise = 0.001 (1 ms)

▪ fall = 0.001 (1 ms)

Also see

Model 4200A-SCS Pulse Card (PGU and PMU) User's Manual, “PMU Test Settings”

pulse_step_linear (on page 6-48)

pulse_sweep_linear (on page 6-48)

pulse_ssrc
This command controls the high-endurance output relay (HEOR) for each output channel of the PGU.

Usage

int pulse_ssrc(int instr_id, long chan, long state, long ctrl);

instr_id The instrument identification code of the pulse card, such as VPU1 or VPU2

chan Channel number of the pulse card: 1 or 2

state Open: 0

Closed: 1 (default)

ctrl How the HEOR will be controlled:

▪ Auto (the Segment Arb pulse mode controls the HEOR): 0 (default)

▪ Manual (state parameter opens or closes relay): 1

▪ Trigger out driven (relay state follows the trigger output): 2

Pulse modes

Standard, Full Arb, Segment Arb

Details

The high-endurance output relay (HEOR) is a solid-state relay (SSR) on each channel of the pulse

card. Note that this setting is independent of the output relay (see pulse_output). A simplified

schematic showing the relays is shown here.

Model 4200A-SCS LPT Library Programming Section 6: LPT commands for PGUs and PMUs

4200A-LPT-907-01 Rev. D May 2024 6-47

Figure 10: Simplified schematic of a 4220-PGU channel

Example

pulse_ssrc(VPU1, 1, 0, 1)

Selects manual control and opens the relay.

Also see

pulse_output (on page 6-36)

seg_arb_define (on page 6-65)

seg_arb_file (on page 6-67)

Section 6: LPT commands for PGUs and PMUs Model 4200A-SCS LPT Library Programming

6-48 4200A-LPT-907-01 Rev. D May 2024

pulse_step_linear
This command configures the pulse stepping type.

Usage

int pulse_step_linear(int instr_id, int chan, int StepType, double start, double stop,

double step);

instr_id The instrument identification code: VPU1, VPU2, PMU1, PMU2, and so on

chan Channel number of the pulse generator: 1 or 2

StepType Step type:

▪ PULSE_AMPLITUDE_SP: Sweeps pulse voltage amplitude

▪ PULSE_BASE_SP: Sweeps base voltage level

▪ PULSE_DC_SP: Sweeps DC voltage level

▪ PULSE_PERIOD_SP: Sweeps pulse period

▪ PULSE_RISE_SP: Sweeps pulse rise time

▪ PULSE_FALL_SP: Sweeps pulse fall time

▪ PULSE_WIDTH_SP: Sweeps full-width half-maximum pulse width

▪ PULSE_DUAL_BASE_SP: Dual sweeps base voltage level

▪ PULSE_DUAL_AMPLITUDE_SP: Dual sweeps pulse voltage amplitude

▪ PULSE_DUAL_DC_SP: Dual sweeps DC voltage level

start Initial value for stepping

stop Final value for stepping

step Step size for stepping

Pulsers

4220-PGU

4225-PMU

Pulse mode

Standard

Details

The relationship between a step function and a sweep function for pulsing is similar to the same

functions for SMUs. While a terminal of a device is at a pulse step, a pulse sweep is performed on

another terminal.

A pulse_step_linear function cannot be used by itself. At least one PMU channel in a test must be

a valid pulse_sweep_linear function call. The PULSE_DUAL options are for pulse dual sweeps.

When you enable Dual Sweep, the instrument sweeps from start to stop, then from stop to start. When

you disable Dual Sweep, the instrument sweeps from start to stop only.

Model 4200A-SCS LPT Library Programming Section 6: LPT commands for PGUs and PMUs

4200A-LPT-907-01 Rev. D May 2024 6-49

Use the start, stop, and step parameters to configure stepping. In addition, ensure that all pulse

parameters are set before calling the pulse_sweep_linear or pulse_step_linear function. For

example, when performing a pulse amplitude sweep (PULSE_AMPLITUDE_SP), use pulse_vlow to

set the base voltage.

Amplitude and base level:

The pulse card can step or sweep amplitude (with base level fixed) or step or sweep base level (with

amplitude fixed). Examples:

• PULSE_AMPLITUDE_SP (stepping or sweeping): Start = 1 V, stop = 5 V, step = 1 V

Voltage amplitudes for pulse output sequence: 1 V, 2 V, 3 V, 4 V, and 5 V

Use the pulse_vlow function to set the base level voltage.

• PULSE_BASE_SP (stepping or sweeping): Start = 5 V, stop = 1 V, step = -1 V

Voltage base levels for pulse output sequence: 5 V, 4 V, 3 V, 2 V, and 1 V

Use the pulse_vhigh function to set the amplitude voltage.

The DC voltage level: The pulse card can step or sweep a DC level. For example:

PULSE_DC_SP (stepping or sweeping): Start = 1 V, stop = 5 V, step = 1 V

The DC voltage output sequence: 1 V, 2 V, 3 V, 4 V, and 5 V

Pulse period:

The pulse period is the time interval between the start of the rising transition edge of consecutive

output pulses, as shown in the following figure. To minimize self-heating effects, set a pulse period that

is 10 to 100 times longer than the pulse width to produce a duty cycle that is 1 percent to 10 percent.

Figure 11: Pulse period

Pulse period example:

PULSE_PERIOD_SP (stepping or sweeping): Start = 0.01 s, stop = 0.05 s, step = 0.01 s

Pulse periods for output sequence: 0.01 s, 0.02 s, 0.03 s, 0.04 s, and 0.05 s

Section 6: LPT commands for PGUs and PMUs Model 4200A-SCS LPT Library Programming

6-50 4200A-LPT-907-01 Rev. D May 2024

Pulse rise time and fall time:

Pulse rise time is the transition time (in seconds) from pulse low to pulse high. Pulse fall time is the

transition time from pulse high to pulse low. The transition time is the interval between corresponding

0% and 100% amplitude points on the rising and falling edge of the pulse, as shown in the

following figure.

Figure 12: Transition time

Examples:

PULSE_RISE_SP (stepping or sweeping): Start = 0.001 s, stop = 0.005 s, step = 0.001 s

Rise times for pulse output sequence: 0.001 s, 0.002 s, 0.003 s, 0.004 s, and 0.005 s

PULSE_FALL_SP (stepping or sweeping): Start = 0.001 s, stop = 0.005 s, step = 0.001 s

Fall times for pulse output sequence: 0.001 s, 0.002 s, 0.003 s, 0.004 s, and 0.005 s

Pulse width:

The width of a pulse (in seconds) is measured at full-width half-maximum. For example:

PULSE_WIDTH_SP (stepping or sweeping): Start = 0.01 s, stop = 0.05 s,

step = 0.01 s

Pulse widths for pulse output sequence: 0.01 s, 0.02 s, 0.03 s, 0.04 s, and 0.05 s

Dual Sweep:

The dual sweep allows for a voltage level sweep that goes up and down based on the voltage start

stop and step. For example, a voltage amplitude sweep from 0 V to 4 V in 1 V steps. A single sweep

(PULSE_AMPLITUDE_SP) would output 5 points: 0 V, 1 V, 2 V, 3 V, 4 V. A dual sweep version

(PULSE_DUAL_AMPLITUDE_SP) outputs 10 points: 0 V, 1 V, 2 V, 3 V, 4 V, 4 V, 3 V, 2 V, 1 V, 0 V.

Also see

pulse_sweep_linear (on page 6-51)

pulse_vhigh (on page 6-60)

pulse_vlow (on page 6-61)

“Dual Sweep Option” in the Model 4200A-SCS Clarius User's Manual

“Operation mode timing diagrams” in the Model 4200A-SCS Source-Measure Unit (SMU) User's Manual

“PMU operation modes (PMU)” in the Model 4200A-SCS Clarius User's Manual

“Pulse width” in the Model 4200A-SCS Clarius User's Manual

Model 4200A-SCS LPT Library Programming Section 6: LPT commands for PGUs and PMUs

4200A-LPT-907-01 Rev. D May 2024 6-51

pulse_sweep_linear
This command configures the pulse sweeping type.

Usage

int pulse_sweep_linear(int instr_id, int chan, int SweepType, double start, double stop,

double step);

instr_id The instrument identification code: VPU1, VPU2, PMU1, PMU2, and so on

chan Channel number of the pulse generator: 1 or 2

SweepType Sweep type:

▪ PULSE_AMPLITUDE_SP: Sweeps pulse voltage amplitude

▪ PULSE_BASE_SP: Sweeps base voltage level

▪ PULSE_DC_SP: Sweeps DC voltage level

▪ PULSE_PERIOD_SP: Sweeps pulse period

▪ PULSE_RISE_SP: Sweeps pulse rise time

▪ PULSE_FALL_SP: Sweeps pulse fall time

▪ PULSE_WIDTH_SP: Sweeps full-width half-maximum pulse width

▪ PULSE_DUAL_BASE_SP: Dual sweeps base voltage level

▪ PULSE_DUAL_AMPLITUDE_SP: Dual sweeps pulse voltage amplitude

▪ PULSE_DUAL_DC_SP: Dual sweeps DC voltage level

start Initial value for sweeping

stop Final value for sweeping

step Step size for sweeping

Pulsers

4220-PGU

4225-PMU

Pulse mode

Standard

Details

The relationship between a step function and a sweep function for pulsing is similar to the same

functions for SMUs. While a terminal of a device is at a pulse step, a pulse sweep is performed on

another terminal.

A pulse_step_linear function cannot be used by itself. At least one PMU channel in a test must be

a valid pulse_sweep_linear function call. The PULSE_DUAL options are for pulse dual sweeps.

When you enable Dual Sweep, the instrument sweeps from start to stop, then from stop to start. When

you disable Dual Sweep, the instrument sweeps from start to stop only.

Section 6: LPT commands for PGUs and PMUs Model 4200A-SCS LPT Library Programming

6-52 4200A-LPT-907-01 Rev. D May 2024

Use the start, stop, and step parameters to configure stepping. In addition, ensure that all pulse

parameters are set before calling the pulse_sweep_linear or pulse_step_linear function. For

example, when performing a pulse amplitude sweep (PULSE_AMPLITUDE_SP), use pulse_vlow to

set the base voltage.

Amplitude and base level:

The pulse card can step or sweep amplitude (with base level fixed) or step or sweep base level (with

amplitude fixed). Examples:

• PULSE_AMPLITUDE_SP (stepping or sweeping): Start = 1 V, stop = 5 V, step = 1 V

Voltage amplitudes for pulse output sequence: 1 V, 2 V, 3 V, 4 V, and 5 V

Use the pulse_vlow function to set the base level voltage.

• PULSE_BASE_SP (stepping or sweeping): Start = 5 V, stop = 1 V, step = -1 V

Voltage base levels for pulse output sequence: 5 V, 4 V, 3 V, 2 V, and 1 V

Use the pulse_vhigh function to set the amplitude voltage.

The DC voltage level: The pulse card can step or sweep a DC level. For example:

PULSE_DC_SP (stepping or sweeping): Start = 1 V, stop = 5 V, step = 1 V

The DC voltage output sequence: 1 V, 2 V, 3 V, 4 V, and 5 V

Pulse period:

The pulse period is the time interval between the start of the rising transition edge of consecutive

output pulses, as shown in the following figure. To minimize self-heating effects, set a pulse period that

is 10 to 100 times longer than the pulse width to produce a duty cycle that is 1 percent to 10 percent.

Figure 13: Pulse period

Pulse period example:

PULSE_PERIOD_SP (stepping or sweeping): Start = 0.01 s, stop = 0.05 s, step = 0.01 s

Pulse periods for output sequence: 0.01 s, 0.02 s, 0.03 s, 0.04 s, and 0.05 s

Model 4200A-SCS LPT Library Programming Section 6: LPT commands for PGUs and PMUs

4200A-LPT-907-01 Rev. D May 2024 6-53

Pulse rise time and fall time:

Pulse rise time is the transition time (in seconds) from pulse low to pulse high. Pulse fall time is the

transition time from pulse high to pulse low. The transition time is the interval between corresponding

0% and 100% amplitude points on the rising and falling edge of the pulse, as shown in the

following figure.

Figure 14: Transition time

Examples:

PULSE_RISE_SP (stepping or sweeping): Start = 0.001 s, stop = 0.005 s, step = 0.001 s

Rise times for pulse output sequence: 0.001 s, 0.002 s, 0.003 s, 0.004 s, and 0.005 s

PULSE_FALL_SP (stepping or sweeping): Start = 0.001 s, stop = 0.005 s, step = 0.001 s

Fall times for pulse output sequence: 0.001 s, 0.002 s, 0.003 s, 0.004 s, and 0.005 s

Pulse width:

The width of a pulse (in seconds) is measured at full-width half-maximum. For example:

PULSE_WIDTH_SP (stepping or sweeping): Start = 0.01 s, stop = 0.05 s,

step = 0.01 s

Pulse widths for pulse output sequence: 0.01 s, 0.02 s, 0.03 s, 0.04 s, and 0.05 s

Dual Sweep:

The dual sweep allows for a voltage level sweep that goes up and down based on the voltage start

stop and step. For example, a voltage amplitude sweep from 0 V to 4 V in 1 V steps. A single sweep

(PULSE_AMPLITUDE_SP) would output 5 points: 0 V, 1 V, 2 V, 3 V, 4 V. A dual sweep version

(PULSE_DUAL_AMPLITUDE_SP) outputs 10 points: 0 V, 1 V, 2 V, 3 V, 4 V, 4 V, 3 V, 2 V, 1 V, 0 V.

Example

pulse_sweep_linear(PMU1, 1, PULSE_AMPLITUDE_SP, 1, 5, 1);

This example configures channel 1 of the PMU to perform an amplitude sweep from 1 V to 5 V in 1 V steps.

Section 6: LPT commands for PGUs and PMUs Model 4200A-SCS LPT Library Programming

6-54 4200A-LPT-907-01 Rev. D May 2024

Also see

pulse_step_linear (on page 6-48)

pulse_vhigh (on page 6-60)

pulse_vlow (on page 6-61)

“Dual Sweep Option” in the Model 4200A-SCS Clarius User's Manual

“Operation mode timing diagrams” in the Model 4200A-SCS Source-Measure Unit (SMU) User's Manual

“PMU operation modes (PMU)” in the Model 4200A-SCS Clarius User's Manual

“Pulse width” in the Model 4200A-SCS Clarius User's Manual

pulse_train
This command configures the pulse card to output a pulse train using fixed voltage values.

Usage

int pulse_train(int instr_id, int chan, double Vbase, double Vamplitude);

instr_id The instrument identification code: VPU1, VPU2, PMU1, PMU2, and so on

chan Channel number of the pulse card: 1 or 2

Vbase Voltage level for pulse base level

Vamplitude Voltage level for pulse amplitude

Pulsers

4220-PGU

4225-PMU

Pulse mode

Standard

Details

The configured pulse train will not change for the selected channel, but any sweep or step timing

changes will affect the timing parameters of the train. For details on timing, see pulse_step_linear

and pulse_sweep_linear. A pulse_train command cannot be used by itself in a test. When

using a PMU, at least one PMU channel in a test must be a valid pulse_sweep_linear function call.

Example

pulse_train(PMU1, 1, 0, 5);

This example configures channel 1 of the PMU to output a 0 to 5 V pulse train.

Also see

pulse_step_linear (on page 6-48)

pulse_sweep_linear (on page 6-48)

Model 4200A-SCS LPT Library Programming Section 6: LPT commands for PGUs and PMUs

4200A-LPT-907-01 Rev. D May 2024 6-55

pulse_trig
This command selects the trigger mode (continuous, burst, or trigger burst) and initiates the start of pulse output or

arms the pulse card.

Usage

int pulse_trig(int instr_id, long mode);

instr_id The instrument identification code of the pulse card, such as VPU1 or VPU2

mode Trigger mode:

▪ Burst: 0

▪ Continuous: 1

▪ Trigger burst: 2

Pulse modes

Standard, Full Arb, Segment Arb

Details

With the software trigger source selected, this command sets the trigger mode (continuous, burst, or

trig burst) for both pulse card channels, and initiates the start of pulse output.

A burst is a finite number of pulses (1 to 232−1). The only difference between burst and trig burst is the

behavior of trigger output. When using the burst or trig burst trigger mode, make sure to first set the

pulse count before starting pulse output. The pulse_burst_count command is used to set the burst

count.

If pulse delay is set to zero (0), pulse output will start immediately after it is triggered. If pulse delay is

more than 0, pulse output will start after the delay period expires

This setting affects both output channels.

Example

pulse_trig(VPU1, 0)

Initiates (triggers) burst pulse output.

Also see

pulse_burst_count (on page 6-11)

pulse_delay (on page 6-16)

pulse_halt (on page 6-27)

pulse_output (on page 6-36)

pulse_trig_source (on page 6-58)

“Triggering” in the Model 4200A-SCS Pulse Card (PGU and PMU) User's Manual

Section 6: LPT commands for PGUs and PMUs Model 4200A-SCS LPT Library Programming

6-56 4200A-LPT-907-01 Rev. D May 2024

pulse_trig_output
This command sets the output trigger on or off.

Usage

int pulse_trig_output(int instr_id, long state);

instr_id The instrument identification code of the pulse card, such as VPU1 or VPU2

state Output trigger state:

▪ Off: 0 (default for Segment Arb and full arb)

▪ On: 1 (default for standard pulse)

Pulse modes

Standard, Full Arb, Segment Arb

Details

This command turns the TTL-level trigger output pulse on or off. The pulse is used to synchronize

pulse output with the operations of an external instrument. When connected to a scope, each output

pulse of triggers a scope waveform measurement.

When output trigger is enabled, an output pulse will initiate a TTL-level, 50% duty cycle output trigger

pulse. The trigger pulses are available at the TRIGGER OUT connector of the pulse generator card.

The figure below shows the behavior of output triggers (TO) for the three trigger modes. Notice that for

the Burst mode, output triggers continue even though pulse output has stopped. For the trigger burst

mode, output triggers stop when the pulse output stops.

Figure 15: Pulse generator card output trigger

Example

pulse_trig_output(VPU1, 1)

Sets the pulse card trigger output on.

Model 4200A-SCS LPT Library Programming Section 6: LPT commands for PGUs and PMUs

4200A-LPT-907-01 Rev. D May 2024 6-57

Also see

“Triggering” in the Model 4200A-SCS Pulse Card (PGU and PMU) User's Manual

pulse_trig_polarity (on page 6-57)

pulse_trig_polarity
This command sets the polarity (positive or negative) of the pulse card output trigger.

Usage

int pulse_trig_polarity(int instr_id, long polarity);

instr_id The instrument identification code of the pulse card, such as VPU1 or VPU2

polarity Output trigger polarity:

▪ Negative, falling edge: 0

▪ Positive, rising edge: 1

▪ Default: 1

Pulse modes

Standard, Full Arb, Segment Arb

Details

Trigger output provides a TTL-level output that is at the same frequency (period) as the pulse card

output channels, but has a 50% duty cycle. It is used to synchronize pulse outputs with the operations

of an external instrument.

The external instrument that is connected to the pulse card external trigger may require a

positive-going (rising-edge) pulse or a negative-going (falling-edge) pulse for triggering.

If a polarity value other than 0 or 1 is sent, it will map to 0 or 1 in the following manner:

if(polarity <= 0)

 pol = NEGATIVE;

else

 pol = POSITIVE;

4220-PGU and 4225-PMU: Do not use the two external falling trigger sources

(pulse_trig_source function) with the positive trigger output polarity (pulse_trig_polarity

function) on the master card that triggers itself and other subordinate cards. These two falling trigger

sources should only be used when an external piece of equipment is used to supply the trigger pulses

to the 4220-PGU and 4225-PMU. This applies to all three pulse modes (standard pulse, Segment Arb,

and full arb).

Example

pulse_trig_polarity(VPU1, 0)

Sets the pulse card trigger output for negative polarity.

Section 6: LPT commands for PGUs and PMUs Model 4200A-SCS LPT Library Programming

6-58 4200A-LPT-907-01 Rev. D May 2024

Also see

pulse_trig_output (on page 6-56)

pulse_trig_source (on page 6-58)

“Triggering” in the Model 4200A-SCS Pulse Card (PGU and PMU) User's Manual

pulse_trig_source
This command sets the trigger source.

Usage

int pulse_trig_source(int instr_id, long source);

instr_id The instrument identification code of the pulse card, such as VPU1 or VPU2

source Trigger source:

▪ Software: 0 (default)

▪ External – initial trigger only – rising: 1

▪ External – initial trigger only – falling: 2

▪ External – trigger per pulse – rising: 3

▪ External – trigger per pulse – falling: 4

▪ Internal trigger bus: 5

Pulse modes

Standard, Full Arb, Segment Arb

Details

This command sets the trigger source that is used to trigger the pulse card to start its output.

If the software trigger source selected, the pulse_trig command will select the trigger mode

(continuous, burst, or trig burst), and initiate the start of pulse output.

If an external trigger source selected, the pulse_trig command will select the trigger mode and arm

pulse output. Pulse output will start when the required external trigger pulse is applied to the Trigger In

connector of the pulse card. There is a trigger-in delay of 560 ns. This is the delay from the trigger-in

pulse to the time of the rising edge of the output pulse.

4220-PGU and 4225-PMU: Do not use the two external falling trigger sources

(pulse_trig_source function) with the positive trigger output polarity (pulse_trig_polarity

function) on the master card that triggers itself and other subordinate cards. These two falling trigger

sources should only be used when an external piece of equipment is used to supply the trigger pulses

to the 4220-PGU and 4225-PMU. This applies to all three pulse modes (standard pulse, Segment Arb,

and full arb).

Model 4200A-SCS LPT Library Programming Section 6: LPT commands for PGUs and PMUs

4200A-LPT-907-01 Rev. D May 2024 6-59

Because trigger source is a card-level setting and not a channel setting, using channel 1 or 2 will set

the card to the specified source card 1. Similarly, channel 3 or 4 will set the source for card 2.

For an initial trigger only setting, only the first rising or falling trigger pulse will start and control

pulse output.

For a trigger per pulse setting, rising or falling edge trigger pulses will start and control pulse output.

After the initial pulse, the pulse output, either continuous or burst, will be output based on the internal

pulse generator clock. If pulse-to-pulse synchronization is required over higher count pulse trains, use

the trigger per pulse mode.

The Trigger In sources are:

• External, initial trigger only (rising): The first rising-edge trigger pulse applied to TRIGGER In

will start and control pulse output.

• External, initial trigger only (falling): Same as above, except the initial falling-edge trigger will

start and control pulse output.

• External, trigger per pulse (rising): Rising-edge trigger pulses applied to TRIGGER IN will start

and control pulse output.

• External, trigger per pulse (falling): Same as above, except falling-edge triggers will start and

control pulse output.

• Internal Trigger Bus: The internal bus trigger source is used for synchronizing multiple PMU/PGU

cards for standard pulse using the legacy pulse commands (pulse_vhigh, pulse_vlow,

pulse_width, and so on). This trigger source is used only by the 4220-PGU and 4225-PMU.

The internal bus trigger source is used for synchronizing multiple PMU/PGU cards for standard pulse

using the legacy pulse commands (pulse_vhigh, pulse_vlow, pulse_width, and so on). This

trigger source is used only by the 4220-PGU and 4225-PMU.

Example

pulse_trig_source(VPU1, 1)

Sets the trigger source to external – initial trigger only – rising.

Also see

pulse_trig (on page 6-55)

pulse_trig_polarity (on page 6-57)

Section 6: LPT commands for PGUs and PMUs Model 4200A-SCS LPT Library Programming

6-60 4200A-LPT-907-01 Rev. D May 2024

pulse_vhigh
This command sets the pulse voltage high level.

Usage

int pulse_vhigh(INSTR_ID instr_id, long chan, double vhigh);

instr_id The instrument identification code, such as VPU1 or VPU2

chan Channel number of the pulse card: 1 or 2

vhigh Pulse voltage high value in volts (floating-point number):

▪ High speed: −5 to +5

▪ Low speed: −20 to +20

▪ Default: 0

Pulse modes

Standard

Details

Pulse voltage high can be set independently for each pulse card channel.

For a 50 Ω load:

• 5 V range (lower voltages and higher transitions): Pulse high and pulse low can be set from −5 V

to +5 V.

• 20 V range (higher voltages and lower transitions): Pulse high and pulse low can be set from

−20 V to +20 V.

For a 1 MΩ load:

• 5 V range (high speed): Pulse high and pulse low can be set from −10 V to +10 V.

• 20 V range (high voltage): Pulse high and pulse low can be set from −40 V to +40 V.

The pulse_range command sets the pulse voltage range.

Set the pulse_range command before setting the voltage levels. When using the pulse_range

command, changing the source range after setting voltage levels (in any pulse mode) will result in

voltage levels that are invalid for the new range setting.

As shown in the following figure, the pulse voltage high is typically set as the greater pulse voltage

value. However, voltage high can be any valid voltage value. That means pulse voltage high can be

less than voltage low. When started, the pulse transitions from voltage low to voltage high and then

back to voltage low. The voltage remains at voltage low for the remainder of the pulse period.

Model 4200A-SCS LPT Library Programming Section 6: LPT commands for PGUs and PMUs

4200A-LPT-907-01 Rev. D May 2024 6-61

Figure 16: Pulse V Low and Pulse V High

The pulse voltage high setting takes effect immediately during continuous pulse output. Otherwise, the

voltage high setting takes effect when the next trigger is initiated. The pulse_trig command is used

to trigger continuous or burst output.

The pulse_vlow, pulse_vhigh, and pulse_dc_output commands set the voltage value

output by the pulse channel when it is turned on (using pulse_output). If the output is

already enabled, these commands change the voltage level immediately, before the pulsing is

started with a pulse_trig command.

Example

pulse_vhigh(VPU1, 1, 2.5)

Sets the pulse voltage high value for channel 1 of the pulse card to 2.5 V.

Also see

pulse_dc_output (on page 6-15)

pulse_output (on page 6-36)

pulse_range (on page 6-39)

pulse_trig (on page 6-55)

pulse_vlow (on page 6-61)

pulse_vlow
This command sets the pulse voltage low value.

Pulse modes

Standard

Usage

int pulse_lhigh(int instr_id, long chan, double vlow);

instr_id The instrument identification code of the pulse card, such as VPU1 or VPU2

chan Channel number of the pulse card: 1 or 2

vlow Pulse voltage low value in volts (floating-point number):

▪ High speed: −5 to +5

▪ Low speed: −20 to +20

▪ Default: 0

Section 6: LPT commands for PGUs and PMUs Model 4200A-SCS LPT Library Programming

6-62 4200A-LPT-907-01 Rev. D May 2024

Details

Pulse voltage low can be set independently for each pulse card channel.

For a 50 Ω load:

• 5 V range (lower voltages and higher transitions): Pulse high and pulse low can be set from −5 V

to +5 V.

• 20 V range (higher voltages and lower transitions): Pulse high and pulse low can be set from

−20 V to +20 V.

For a 1 MΩ load:

• 5 V range (high speed): Pulse high and pulse low can be set from −10 V to +10 V.

• 20 V range (high voltage): Pulse high and pulse low can be set from −40 V to +40 V.

The pulse_range command determines the pulse voltage range.

Set the pulse_range command before setting the voltage levels. When using the pulse_range

command, changing the source range after setting voltage levels (in any pulse mode) will result in

voltage levels that are invalid for the new range setting.

As shown below, the pulse voltage low is typically set as the lower pulse voltage value. However,

voltage low can be any valid voltage value. That means pulse voltage low can be less than voltage

high. When started, the pulse transitions from voltage low to voltage high and then back to voltage low.

The voltage remains at voltage low for the remainder of the pulse period.

Figure 17: Pulse V Low and Pulse V High

The pulse voltage low setting takes effect immediately during continuous pulse output. Otherwise, the

voltage low setting takes effect when the next trigger is initiated. The pulse_trig command is used

to trigger continuous or burst output.

The pulse_vlow, pulse_vhigh, and pulse_dc_output commands set the voltage value

output by the pulse channel when it is turned on (using pulse_output). If the output is

already enabled, these commands change the voltage level immediately, before the pulsing is

started with a pulse_trig command.

Model 4200A-SCS LPT Library Programming Section 6: LPT commands for PGUs and PMUs

4200A-LPT-907-01 Rev. D May 2024 6-63

Example

pulse_vlow(VPU1, 1, 0.5)

Sets the pulse voltage low value for channel 1 of the pulse card to 0.5 V.

Also see

pulse_dc_output (on page 6-15)

pulse_output (on page 6-36)

pulse_range (on page 6-39)

pulse_trig (on page 6-55)

pulse_vhigh (on page 6-60)

pulse_width
This command sets the pulse width for pulse output.

Usage

int pulse_width(int instr_id, long chan, double width);

instr_id The instrument identification code of the pulse card, such as VPU1 or VPU2

chan Channel number of the pulse card: 1 or 2

width Pulse width in seconds:

▪ PGU high speed (5 V): 10e−9 to (Period − 10e−9)

▪ PMU high speed (5 V): 40e−9 to (Period − 10e−9)

▪ Low speed (20 V): 250e−9 to (Period − 10e−9)

▪ Default: 500e−9 (500 ns)

Pulse modes

Standard

Details

Use the pulse_source_timing command to set the pulse width for the 4220-PGU and 4225-PMU.

You can set the pulse width independently for each pulse card channel. The pulse_range command

sets the pulse speed.

The pulse card pulse width is based on the full width at half-maximum method (FWHM). As shown

below, the pulse width is measured at the median (50 percent amplitude) point from the rising edge of

the pulse to the falling edge of the pulse.

Section 6: LPT commands for PGUs and PMUs Model 4200A-SCS LPT Library Programming

6-64 4200A-LPT-907-01 Rev. D May 2024

The maximum pulse width that can be set depends on the selected period for the pulse. For example,

if the period is set for 500 ns, the maximum pulse width that can be set for the high speed is 490 ns

(500 ns − 10 ns = 490 ns).

The pulse width setting takes effect immediately during continuous pulse output. Otherwise, the width

setting takes effect when the next trigger is initiated. The pulse_trig command is used to trigger

continuous or burst output.

Example

pulse_width(VPU1, 1, 250e-9)

Sets the pulse width for channel 1 to 250 ns.

Also see

pulse_period (on page 6-38)

pulse_range (on page 6-39)

pulse_source_timing (on page 6-45)

pulse_trig (on page 6-55)

rpm_config
This command sends switching commands to the 4225-RPM.

Usage

int rpm_config(int instr_id, long chan, long modifier, long value);

instr_id The instrument identification code: Identifier such as PMU1, SMU1, CVU1, PMU2, or
SMU2

chan Channel number of the pulse generator: 1 or 2

modifier Parameter to modify: KI_RPM_PATHWAY

value Value to set modifier:

▪ KI_RPM_PULSE or 0: Selects pulsing (4225-RPM)

▪ KI_RPM_CV_2W or 1: Selects 2-wire CVU

▪ KI_RPM_CV_4W or 2: Selects 4-wire CVU

▪ KI_RPM_SMU or 3: Selects SMU (4200-SMU or 4201-SMU)

Pulsers

4225-PMU with the 4225-RPM

Model 4200A-SCS LPT Library Programming Section 6: LPT commands for PGUs and PMUs

4200A-LPT-907-01 Rev. D May 2024 6-65

Pulse mode

Standard (two-level pulsing), Segment Arb, and full arb

Details

The 4225-RPM includes input connections for the CVU and SMU. Use this command to control

switching inside the RPM to connect the PMU, CVU, or SMU to the output.

When using the PMU with the RPM, rpm_config must be called to connect the pulse source to the

RPM output. Note that if there is no RPM connected to the PMU channel, the rpm_config command

will not cause an error. The RPM connection is cleared by the clrcon command.

The ID of instrument to be used in the test sequence should be used as the setting for the

instr_id parameter.

Example

rpm_config(PMU1, 1, KI_RPM_PATHWAY, KI_RPM_PULSE);

This example sets channel 1 of the RPM for pulsing.

Also see

clrcon (on page 7-2)

seg_arb_define
This command defines the parameters for a Segment Arb® waveform.

Usage

int seg_arb_define(int instr_id, long chan, long nsegments, double *startvals, double

*stopvals, double *timevals, long *triggervals, long *outputRelayVals);

instr_id The instrument identification code of the pulse card, such as VPU1 or VPU2

chan Channel number of the pulse card: 1 or 2

nsegments The number of values in each of the arrays (1024 maximum)

startvals An array of start voltage values for each segment (in volts)

stopvals An array of stop voltage values for each segment (in volts)

timevals An array of time values for each segment: 20e−9 (20 ns) minimum

triggervals An array of trigger values:

▪ Trigger low: 0

▪ Trigger high: 1

outputRelayVals An array of values to control the high endurance output relay:

▪ Open: 0

▪ Closed: 1

Pulsers

4220-PGU

4225-PMU

Section 6: LPT commands for PGUs and PMUs Model 4200A-SCS LPT Library Programming

6-66 4200A-LPT-907-01 Rev. D May 2024

Pulse modes

Source, Segment Arb

Details

You can configure each channel to output its own unique Segment Arb waveform. A Segment Arb

waveform is made up of user-defined segments. Each segment can have a unique time interval, start

value, stop value, output trigger level (TTL high or low), and output relay state (open or closed).

To configure each channel to output a unique Segment Arb® waveform, refer to seg_arb_sequence

(on page 6-68).

The following arrays are required for the example Segment Arb waveform shown here.

Figure 18: Segment Arb sequence example

Start Stop Time Trigger Output relay

startvals[0] = 0.0 stopvals[0] = 1.0 timevals[0] = 50e-9 triggervals[0] = 1 outputRelayVals[0] = 0

startvals[1] = 1.0 stopvals[1] = 1.0 timevals[1] = 100e-9 triggervals[1] = 1 outputRelayVals[1] = 0

startvals[2] = 1.0 stopvals[2] = 1.5 timevals[2] = 20e-9 triggervals[2] = 1 outputRelayVals[2] = 0

startvals[3] = 1.5 stopvals[3] = 1.5 timevals[3] = 150e-9 triggervals[3] = 0 outputRelayVals[3] = 0

startvals[4] = 1.5 stopvals[4] = 0.0 timevals[4] = 50e-9 triggervals[4] = 0 outputRelayVals[4] = 0

startvals[5] = 0.0 stopvals[5] = 0.0 timevals[5] = 500e-9 triggervals[5] = 0 outputRelayVals[5] = 0

startvals[6] = 0.0 stopvals[6] = 0.0 timevals[6] = 130e-9 triggervals[6] = 0 outputRelayVals[6] = 1

Model 4200A-SCS LPT Library Programming Section 6: LPT commands for PGUs and PMUs

4200A-LPT-907-01 Rev. D May 2024 6-67

Also see

arb_file (on page 6-4)

arb_array (on page 6-3)

seg_arb_file (on page 6-67)

“Pulse-measure synchronization” in the Model 4200A-SCS Pulse Card (PGU and PMU) User's Manual

“Segment Arb waveform” in the Model 4200A-SCS Pulse Card (PGU and PMU) User's Manual

seg_arb_file
This command is used to load a waveform from an existing Segment Arb® waveform file.

Usage

int seg_arb_file(INSTR_ID instr_id, long chan, char *fname);

instr_id The instrument identification code of the pulse card, such as VPU1 or VPU2

chan Channel number of the pulse card: 1 or 2

fname The name of the waveform file; name must be in quotes

Pulse modes

Source only, Segment Arb

Details

This command loads a waveform from an existing Segment Arb.ksf waveform file into the pulse card.

A Segment Arb waveform can be loaded for each channel of the pulse card. Once loaded, use

pulse_output to turn on the appropriate channel. Use pulse_trig to select the trigger mode and

start (or arm) pulse output.

When specifying the file name, include the full command path with the file name. Existing .ksf

waveforms are typically saved in the SarbFiles folder at the following command path location:

C:\s4200\kiuser\KPulse\SarbFiles

A Segment Arb waveform can be created using KPulse and saved as a .ksf waveform file.

You can modify a waveform in an existing .ksf file using a text editor.

Example

seg_arb_file(VPU1, 1, "C:\\s4200\\kiuser\\KPulse\\SarbFiles\\sarb3.ksf")

Loads a Segment Arb file named sarb3.ksf (saved in the SarbFiles folder) into the pulse card for

channel 1.

Also see

arb_array (on page 6-3)

arb_file (on page 6-4)

“KPulse (for Keithley Pulse Cards)” in the Model 4200A-SCS Pulse Card (PGU and PMU) User's Manual

pulse_output (on page 6-36)

pulse_trig (on page 6-55)

seg_arb_define (on page 6-65)

Section 6: LPT commands for PGUs and PMUs Model 4200A-SCS LPT Library Programming

6-68 4200A-LPT-907-01 Rev. D May 2024

seg_arb_sequence
This command defines the parameters for a Segment Arb waveform pulse-measure sequence.

Usage

int seg_arb_sequence(int instr_id, long chan, long SeqNum, long NumSegments, double

*StartV, double *StopV, double *SegTime, long *TrigOut, long *SSR, long *MeasType,

double *MeasStart, double *MeasStop);

instr_id The instrument identification code of the pulse card, such as VPU1 or VPU2

chan Channel number of the pulse card: 1 or 2

SeqNum Sequence ID number (1 to 512, per channel) to uniquely identify this sequence

NumSegments Total number of segments in this sequence

StartV An array of start voltage levels

StopV An array of stop voltage levels

SegTime An array of segment time durations (in seconds with 10 ns resolution, 20 ns
minimum)

TrigOut An array of trigger values (for trigger output only):

▪ Trigger low: 0

▪ Trigger high: 1

SSR An array of values to control the high endurance output relay:

▪ Open: 0

▪ Closed: 1

MeasType PGU: 0

PMU: An array of measure modes:

▪ No measurements for this segment: 0

▪ Spot mean discrete: 1

▪ Waveform discrete: 2

▪ Spot mean average: 3

▪ Waveform average: 4

MeasStart PGU: 0

PMU: An array of start measurement times (in seconds, with 10 ns resolution); a zero
(0) second setting sets measure to start at the beginning of the segment

MeasStop PGU: 0

PMU: An array of stop measurement times (in seconds, with 10 ns resolution); this is

the elapsed time, within the segment, when the measurement stops

Pulsers

4220-PGU

4225-PMU

Pulse mode

Segment Arb

Model 4200A-SCS LPT Library Programming Section 6: LPT commands for PGUs and PMUs

4200A-LPT-907-01 Rev. D May 2024 6-69

Details

Use this command to configure each channel to output a unique Segment Arb® waveform. For the

PMU, this also configures each channel to make measurements.

A Segment Arb sequence is made up of user-defined segments (up to 2048 per channel). Each

sequence can have a unique start voltage, stop voltage, time interval, output trigger level (TTL high or

low), and output relay state (open or closed). For PMUs, each can have a unique pulse measurement

type, measurement start time, and measurement stop time.

A defined sequence is uniquely identified by its specified channel number and sequence ID number.

This command defines the sequences, or building blocks, that are typically used for a BTI (bias

temperature instability semiconductor reliability) test.

A sequence is defined as three or more segments with seamless voltage transitions. Seamless means

that there are no voltage differences — the voltage level for the last point in a segment must equal the

voltage level for the first point of the next segment. Note that all segment transitions must be seamless.

The minimum time per sequence is 20 ns.

One or more defined sequences are combined into a Segment Arb waveform using the

seg_arb_waveform command. All sequence transitions must also be seamless. The example below

shows an example of a waveform that consists of three sequences.

The 4220-PGU does not have pulse-measure capability. When this command for the PGU is called,

the parameter values for MeasType, MeasStart, and MeasStop are ignored.

Example

This command defines the Segment Arb sequence shown in the following figure.

seg_arb_sequence(PMU1, 1, 1, 7, Start_Volt, Stop_Volt, Time_Interval, Trig_Level,

Output_Relay, Meas_Type, Meas_Start, Meas_Stop);

The arrays for the seg_arb_function are:

double Start_Volt[7] = {0, 1, 1, 1.5, 1.5, 0, 0};

double Stop_Volt[7] = {1, 1, 1.5, 1.5, 0, 0, 0};

double Time_Interval[7] = {50e-9, 100e-9, 20e-9, 150e-9, 50e-9, 500e-9, 130e-9};

int Trig_Level[7] = {1, 1, 1, 0, 0, 0, 0};

int Output_Relay[7] = {1, 1, 1, 1, 1, 1, 0};

int Meas_Type[7] = {0, 1, 0, 1, 0, 0, 0};

double Meas_Start[7] = {0, 25e-9, 0, 50e-9, 0, 0, 0};

double Meas_Stop[7] = {0, 75e-9, 0, 100e-9, 0, 0, 0};

The following figure shows an example of a Segment Arb sequence defined by the

seg_arb_sequence command. Spot mean discrete measurements are performed on segments two

and four.

Section 6: LPT commands for PGUs and PMUs Model 4200A-SCS LPT Library Programming

6-70 4200A-LPT-907-01 Rev. D May 2024

Figure 19: Segment Arb sequence example

This table lists the seg_arb_sequence parameter arrays for the Segment Arb sequence shown in

the example.

Parameter arrays for the seg_arb_sequence example

Parameter and

Array Name Value

SegNum

Seg_Num 1 2 3 4 5 6 7

StartV

Start_Volt 0 V 1 V 1 V 1.5 V 1.5 V 0 V 0 V

StopV

Stop_Volt 1 V 1 V 1.5 V 1.5 V 0 V 0 V 0 V

Time

Time_Interval 50e-9 s 100e-9 s 20e-9 s 150e-9 s 50e-9 s 500e-9 s 130e-9 s

Trig

Trigger_Level 1 (high) 1 (high) 1 (high) 0 (low) 0 (low) 0 (low) 0 (low)

SSR

Output_Relay 1 (closed) 1 (closed) 1 (closed) 1 (closed) 1 (closed) 1 (closed) 0 (open)

MeasType

Meas_Type 0 (none)
1 (spot
mean) 0 (none)

1 (spot
mean) 0 (none) 0 (none) 0 (none)

Model 4200A-SCS LPT Library Programming Section 6: LPT commands for PGUs and PMUs

4200A-LPT-907-01 Rev. D May 2024 6-71

Parameter arrays for the seg_arb_sequence example

Parameter and

Array Name Value

MeasStart

Meas_Start 0 s 25e-9 s 0 s 50e-9 s 0 s 0 s 0 s

MeasStop

Meas_Stop 0 s 75e-9 s 0 s 100e-9 s 0 s 0 s 0 s

Also see

seg_arb_waveform (on page 6-71)

“Measurement types” in the Model 4200A-SCS Pulse Card (PGU and PMU) User's Manual

“Segment Arb waveforms” in the Model 4200A-SCS Pulse Card (PGU and PMU) User's Manual

seg_arb_waveform
This command creates a voltage segment waveform.

Usage

int seg_arb_waveform(int instr_id, long chan, long NumSeq, long *SeqList, double

*SeqLoops);

instr_id The instrument identification code, such as VPU1 or VPU2

chan Channel number of the pulse card: 1 or 2

NumSeq Total number of sequences in waveform definition (512 maximum)

SeqList An array of sequences using the sequence number ID

SeqLoops An array of loop values (number of times to output a sequence); loop value range is 1
to 1E12

Pulsers

4220-PGU

4225-PMU

Pulse modes

Segment Arb

Details

Use this command to create a voltage segment waveform from the sequences defined by the

seg_arb_sequence command. The NumSeq parameter defines the number of sequences that make

up the waveform. The Seq parameter is an array that indicates the identification (ID) number for each

sequence in the waveform. The sequence ID numbers are set by the seg_arb_sequence command.

You can use this command to configure a waveform that repeats one or more of its sequences with the

SeqLoopCount parameter.

Section 6: LPT commands for PGUs and PMUs Model 4200A-SCS LPT Library Programming

6-72 4200A-LPT-907-01 Rev. D May 2024

All sequence transitions must be seamless. Seamless means that the voltage level for the last point in

a sequence must equal the voltage level on the first point of the next sequence. The figure below

shows an example of a three-sequence waveform that uses looping (Sequence 1 is repeated). Notice

that the start and stop voltage values between sequences are the same, making it seamless.

Example

seg_arb_waveform(PMU1, 1, 3, Seq_Num, Seq_Loop_Count);

This function configures channel 1 of the PMU for a single three-sequence Segment Arb® waveform (as
shown in the figure in the Details). This example assumes that the three sequences shown in the figure have
already been defined by the seg_arb_sequence command.

The arrays for the waveform are:
int Seq_Num[3] = {2, 3, 1};

double Seq_Loop_Count[3] = {1, 1, 2};

Also see

seg_arb_sequence (on page 6-68)

setmode (4225-PMU)
This command sets operating modes specific to the PMU.

Usage

int setmode(int instr_id, long modifier, double value);

instr_id The instrument identification code of the pulse generator, such as PMU1, PMU

modifier Specific operating characteristic to change; see table in Details

value Parameter value for the modifier; see table in Details

Pulsers

4225-PMU

Pulse mode

Standard

Model 4200A-SCS LPT Library Programming Section 6: LPT commands for PGUs and PMUs

4200A-LPT-907-01 Rev. D May 2024 6-73

Details

The setmode command allows control over the 4225-PMU operating characteristics load-line effect

compensation (LLEC) and offset current compensation.

LLEC is an algorithm that runs on each PMU in the test. It adjusts the output of the PMU to respond to

the device-under-test (DUT) resistance and reach the programmed output value at the DUT. This

algorithm is not guaranteed to reach the programmed target value. Therefore, there are controls to

fine-tune the LLEC performance.

When enabled, the LLEC algorithm performs a number of iterations to determine the appropriate

output voltage. The pulse_meas_sm and pulse_meas_wfm commands enable or disable LLEC.

LLEC is configured by setting the number of maximum iterations that will be performed and setting an

acceptance window for one or both PMU channels. LLEC continues until either the output voltage to

the DUT falls within the acceptance window or until the maximum number of iterations are performed.

The LLEC tolerance window is:

LLEC window = LLC_TOLERANCE × Preferred Voltage + LLC_OFFSET

The LLEC is satisfied when:

Measured voltage < Preferred voltage ± LLEC Window

For example, assume the programmed pulse output is 1 V and the acceptance window is set to 0.1

(10%) and offset to 10 mV. LLEC performs iterations until the output voltage falls within the 0.9 V to

1.1 V window. Note that setting a smaller tolerance results in voltage steps that are much closer to the

preferred voltage steps sizes, but at the expense of longer test times.

The offset current compensation method is configured by collecting offset current constants from the

4225-PMU and then enabling the constants. Use the pmu_offset_current_comp command to

collect constants and then enable the constants with the KI_PMU_CHx_OFFSET_CURR_COMP

parameter.

Section 6: LPT commands for PGUs and PMUs Model 4200A-SCS LPT Library Programming

6-74 4200A-LPT-907-01 Rev. D May 2024

Parameters

modifier value Comment

KI_PXU_LLC_MAX_ITERATIONS 1 to 1000; 20 to 30 typical Set the maximum number of LLEC
iterations

KI_PXU_CH1_LLC_TOLERANCE

KI_PXU_CH2_LLC_TOLERANCE

0.0001 to 1 (0.01% to 100%);
typical range is 0.001 to 0.01
(0.1% to 1%). The typical value is

0.003 (0.3%)

Set the gain of the channel 1 or
channel 2 LLEC tolerance window
as a percentage of the target

signal level.

KI_PXU_CH1_LLC_OFFSET

KI_PXU_CH2_LLC_OFFSET

0 to 1.0 Sets the channel 1 or channel 2
LLEC DC bias offset.

KI_PMU_CH1_OFFSET_CURR_COMP

KI_PMU_CH2_OFFSET_CURR_COMP

0 = OFF

1 = ON

Enable or disable constants for
channel 1 or channel 2 offset
current compensation.

KI_PXU_CH1_EXECUTE_STANDBY

KI_PXU_CH2_EXECUTE_STANDBY

 Call the commands to configure
and set up the segmented arbitrary
waveform and channel before the
setmode with the execute standby
modifier for the channels involved
in test. The setmode must be
called before and outside the loop
of the pulse execution. For pulse
execution to operate properly, call
pxu_chan_bind() inside

the loop.

When selecting and configuring an LLEC iteration method, testing speed is affected by the maximum

number of iterations and the tolerance window. Choosing a high maximum number of iterations and a

tight tolerance results in much longer test times.

Example

setmode(PMU1, KI_PXU_CH1_LLC_TOLERANCE, 0.01);

This command sets the LLEC for channel 1 of the PMU for a 1% acceptance window.

Also see

“Load-line effect compensation (LLEC) for the PMU” in the Model 4200A-SCS Pulse Card (PGU and PMU) User's

Manual

pmu_offset_current_comp (on page 6-11)

pulse_meas_sm (on page 6-30)

pulse_meas_wfm (on page 6-33)

setmode (on page 6-72) (SMU)

setmode (on page 5-21) (4210-CVU)

In this section:

LPT commands for switching ... 7-1
addcon ... 7-1
clrcon ... 7-2
conpin .. 7-3
conpth .. 7-4
cviv_config ... 7-5
cviv_display_config .. 7-6
cviv_display_power .. 7-7
delcon .. 7-7
devint ... 7-8

LPT commands for switching
These LPT commands are used with the Series 700 Switching System, the 4200A-CVIV Multi-Switch,

and the 4225-RPM.

addcon
This command adds connections without clearing existing connections.

Usage

int addcon(int exist_connect, int connect1, [connectn, [...]] 0);

exist_connect An instrument terminal ID; this instrument or terminal may have been, but is not
required to have been, previously connected with the addcon, conpin, or conpth

command

connect1 A pin number or an instrument terminal ID

connectn A pin number or an instrument terminal ID

Details

addcon can be used to make additional connections on a matrix. addcon will connect every item in

the argument list together, and there is no real distinction between exist_connect and the rest of

the connection list. addcon behaves like the conpin command, except previous connections are

never cleared.

The value -1 will be ignored by addcon and is considered a valid entry in the connection list. However,

exist_connect may not be -1.

Section 7

LPT commands for switching

Section 7: LPT commands for switching Model 4200A-SCS LPT Library Programming

7-2 4200A-LPT-907-01 Rev. D May 2024

With the row-column connection scheme, only one instrument terminal may be connected to a pin.

Before making the new connections, the addcon command clears all active sources by calling the

devclr command.

Also see

clrcon (on page 7-2)

conpin (on page 7-3)

conpth (on page 7-4)

delcon (on page 7-7)

clrcon
This command opens or de-energizes all device under test (DUT) pins and instrument matrix relays, disconnecting

all crosspoint connections.

Usage

int clrcon(void);

Details

The clrcon command is called automatically by the devint, pulse_output (only for RPMs), and

execut commands. The first in a series of one or more connection-type commands automatically

calls a clrcon command. Because this command is automatically called, it is not normally used by a

programmer.

If any sources are actively generating current or voltage, the devclr command is automatically called

before the relay matrix is de-energized.

Also see

devclr (on page 4-9)

devint (on page 2-6)

execut (on page 2-9)

pulse_output (on page 6-36)

Model 4200A-SCS LPT Library Programming Section 7: LPT commands for switching

4200A-LPT-907-01 Rev. D May 2024 7-3

conpin
This command connects pins and instruments.

Usage

int conpin(int InstrTermID, int connect1, [connectn, [...]] 0);

InstrTermID The instrument terminal ID, such as SMU1, GNDU, or PMU1CH1

connect1 A pin number or an instrument terminal ID

connectn A pin number or an instrument terminal ID

Details

conpin connects every item in the argument list together. If no connection rules are violated, the pin

or terminal is connected to the additional items, along with everything to which it is already connected.

The first conpin or conpth after any other LPT library call clears all sources by calling devclr and

then clears all matrix connections by calling clrcon before making the new connections.

The value -1 is ignored by conpin and is considered a valid entry in the connection list.

With the row-column connection scheme, only one instrument terminal may be connected to a pin.

Example

conpin(3, GND, 0); /* Connect pin 3 to SMU1 */

 /* and ground. */

conpin(2, SMU1, 0); /* Connect pin 2 to SMU1. */

.

.

Also see

addcon (on page 7-1)

clrcon (on page 7-2)

conpth (on page 7-4)

delcon (on page 7-7)

devclr (on page 4-9)

Section 7: LPT commands for switching Model 4200A-SCS LPT Library Programming

7-4 4200A-LPT-907-01 Rev. D May 2024

conpth
This command connects pins and instruments using a specific pathway.

Usage

int conpth(int path, int connect1, int connect2, [connectn, [...]] 0);

path Pathway number to use for the connections

connect1 A pin number or an instrument terminal ID

connect2 A pin number or an instrument terminal ID

connectn A pin number or an instrument terminal ID

Details

You can force the system to use a particular pathway by using conpth instead of conpin. This might

be done to provide additional electrical isolation between two connections. The eight pathways are

numbered 1 through 8.

The first conpin or conpth command after any other LPT library call clears all sources by calling the

devclr command and then clears all matrix connections by calling the clrcon command before

making the new connections.

The value -1 for any item in the connection list is ignored by conpth and is considered a valid entry in

the connection list.

When the matrix is configured for remote sense, the only valid path values are 1, 3, 5, and 7.

Also see

addcon (on page 7-1)

clrcon (on page 7-2)

conpin (on page 7-3)

delcon (on page 7-7)

devclr (on page 4-9)

Model 4200A-SCS LPT Library Programming Section 7: LPT commands for switching

4200A-LPT-907-01 Rev. D May 2024 7-5

cviv_config
This command sends switching commands to the 4200A-CVIV Multi-Switch.

Usage

int cviv_config(int instr_id, int channel, int mode);

instr_id The instrument identification code of the 4200A-CVIV: CVIV1

channel 4200A-CVIV channel: 1 to 4

4200A-CVIV all channels: 5

mode For channels 1 to 4, the switch settings for the selected channel:

▪ Open connection to output terminal: KI_CVIV_OPEN or 0

▪ Connect channel to SMU (4200-SMU, 4201-SMU, 4210-SMU, or 4211-SMU):
KI_CVIV_SMU or 1

▪ Connect channel to CVU HI (4210-CVU or 4215-CVU: KI_CVIV_CVH or 2

▪ Connect channel to CVU LO (4210-CVU or 4215-CVU): KI_CVIV_CVL or 3

▪ Connect CV guard to the output connector shell with AC ground to center:
KI_CVIV_CV_GRD or 4

▪ Connect channel to ground unit: KI_CVIV_GNDU or 5

▪ Connect channel to AC-coupled AC ground: KI_CVIV_AC_COUPLED_AC_GND or 6

▪ Connect channel to bias tee SMU CV HI: KI_CVIV_BT_CVH or 7

▪ Connect channel to bias tee SMU CV LO: KI_CVIV_BT_CVL or 8

▪ Connect channel to bias tee low current SMU CV HI: KI_CVIV_BT_LOI_CVH or 9

▪ Connect channel to bias tee low current SMU CV LO: KI_CVIV_BT_LOI_CVL or 10

▪ Connect channel to bias tee AC ground: KI_CVIV_BT_AC_GND or 11

If channel is set to 5 (all channels), the switch settings for the 4200A-CVIV instrument are:

▪ All CV channels to C-V 2-wire: KI_CVIV_CVU_2WIRE or 1

▪ All CV channels to C-V 4-wire: KI_CVIV_CVU_4WIRE or 0

Details

The 4200A-CVIV includes input connections for four SMU cards and one CVU card. Use this

command to control switching inside the 4200A-CVIV to connect the SMU and CVU instruments to the

output terminals.

The 4200A-CVIV connections are cleared by the clrcon command.

Example

cviv_config(CVIV1, 1, KI_CVIV_SMU);

This command connects channel 1 of the CVIV to a SMU.

Also see

clrcon (on page 7-2)

cviv_display_config (on page 7-6)

cviv_display_power (on page 7-7)

Section 7: LPT commands for switching Model 4200A-SCS LPT Library Programming

7-6 4200A-LPT-907-01 Rev. D May 2024

cviv_display_config
This command configures the LCD display on the 4200A-CVIV Multi-Switch.

Usage

int cviv_display_config(int instr_id, int channel, int identifier, char *value);

instr_id The instrument identification code of the 4200A-CVIV: CVIV1

channel 4200A-CVIV channel (use to set a terminal name): 1 to 4

4200A-CVIV virtual channel (use to set the test name): 5

See Details

identifier Display the name of the terminal: KI_CVIV_TERMINAL_NAME or 1

Display the name of the test: KI_CVIV_TEST_NAME or 0

See Details

value A string that defines the name (up to 16 characters for a test name or 6 characters for
a terminal name)

Details

Sets the name for the channel terminal or test that is displayed on the 4200A-CVIV for the selected

channel.

The channel and identifier settings must be set for either terminal or test name. For example, if

channel is set to 2, identifier must be set to KI_CVIV_TERMINAL_NAME.

If the clrcon command is sent, the 4200A-CVIV display is updated to show the change in

connections. If the 4200A-CVIV display is turned off, it remains off after a clrcon.

Example

cviv_display_config(CVIV1, 2, KI_CVIV_TERMINAL_NAME, "Source");

This command sets the name of the channel 2 terminal on the 4200A-CVIV display.

Also see

clrcon (on page 7-2)

cviv_config (on page 7-5)

cviv_display_power (on page 7-7)

Model 4200A-SCS LPT Library Programming Section 7: LPT commands for switching

4200A-LPT-907-01 Rev. D May 2024 7-7

cviv_display_power
This command sets the display state of the LCD display on the 4200A-CVIV.

Usage

int cviv_display_power(int instr_id, int state);

instr_id The instrument identification code of the 4200A-CVIV: CVIV1

state Display on: KI_CVIV_DISPLAY_ON or 1

Display off: KI_CVIV_DISPLAY_OFF or 0

Details

This command turns the display of the 4200A-CVIV on or off.

When the display is turned off, the 4200A-CVIV clears the displays. A small green circle is displayed to

indicate that the 4200A-CVIV instrument is powered.

When the display is turned on, the latest configuration is displayed.

If the clrcon command is sent, the 4200A-CVIV display is updated to show the change in

connections. If the 4200A-CVIV display is turned off, it remains off after a clrcon.

Example

cviv_display_power(CVIV1, KI_CVIV_DISPLAY_OFF);

Turns off the 4200A-CVIV display.

Also see

cviv_config (on page 7-5)

cviv_display_config (on page 7-6)

delcon
This command removes specific matrix connections.

Usage

int delcon(int InstrTermID, int exist_connect, [int exist_connectn, [...]] 0);

InstrTermID The instrument terminal ID, such as SMU1, GNDU, or PMU1CH1

exist_connect A pin number or an instrument terminal ID

exist_connectn A pin number or an instrument terminal ID

Details

This command disconnects all connections to each terminal or pin listed. Before disconnecting the

pins or terminals, the delcon command clears all active sources by calling the devclr command.

If a SMU remains connected, GND must be reconnected using addcon or an error is generated when

the first LPT library command after the connection sequence executes.

Section 7: LPT commands for switching Model 4200A-SCS LPT Library Programming

7-8 4200A-LPT-907-01 Rev. D May 2024

A programmer can run a series of tests in a single test sequence using the addcon and delcon

commands together without breaking existing connections. Only the required terminal and pin

changes are made before the next sourcing and measuring operations.

Example

double i1, i2;

conpin(3, GND, 0);

conpin(1, SMU1, 0);

conpin(2, SMU2, 0);

forcev(SMU1, 1.0);

forcei(SMU2, 0.001);

measi(SMU1, &i1);

delcon(SMU2, 0); /* Remove SMU2 from the circuit */

forcev(SMU1, 1.0); /* because delcon cleared sources. */

measi(SMU1, &i2);

Also see

addcon (on page 7-1)

clrcon (on page 7-2)

conpin (on page 7-3)

conpth (on page 7-4)

devclr (on page 4-9)

devint
This command resets all active instruments in the system to their default states.

Usage

int devint(void);

Details

Resets all active instruments, including the 4200A-CVIV, in the system to their default states. It clears

the system by opening all relays and disconnecting the pathways. Meters and sources are reset to

their default states. Refer to the hardware manuals for the instruments in your system for listings of

available ranges and the default conditions and ranges.

The devint command is implicitly called by the execut and tstdsl commands.

To abort a running pulse_exec pulse test, see dev_abort.

devint does the following:

1. Clears all sources by calling devclr.

2. Clears the matrix crosspoints by calling clrcon.

3. Clears the trigger tables by calling clrtrg.

4. Clears the sweep tables by calling clrscn.

5. Resets GPIB instruments by sending the string defined with kibdefint.

6. Resets the active instrument cards.

Model 4200A-SCS LPT Library Programming Section 7: LPT commands for switching

4200A-LPT-907-01 Rev. D May 2024 7-9

Instrument cards are reset in the following order:

1. SMU instrument cards

2. CVU instrument cards

3. Pulse instrument cards (4225-PMU or 4220-PGU)

The SMUs return to the following states:

• 100 μA and 10 V ranges

• Autorange on

• Voltage source

• 0 V DC bias

The 4210-CVU or 4215-CVU returns to the following states:

• 30 mVRMS AC signal

• 0 V DC bias

• 100 kHz frequency

• Autorange on

• Cable length compensation set to 0 m

• Open/Short/Load compensation disabled

The 4225-PMU or 4220-PGU returns to the following states:

• The pulse mode is maintained. For example, if the pulse card is in Segment Arb mode, it is still in

Segment Arb mode after the devint process is complete.

• 5 V and 10 mA ranges

• If in pulse mode:

▪ Period of 1 μs

▪ Transition times (rise and fall) of 100 ns

▪ Width of 500 ns

▪ Voltage high and low of 0 V

▪ Load of 50 Ω

• If in segmented arb mode, Start Voltage is 0 V

• If in arbitrary waveform mode, Table Length is 100

Also see

clrcon (on page 7-2)

clrscn (on page 2-2)

clrtrg (on page 2-3)

dev_abort (on page 6-4)

devclr (on page 4-9)

kibdefint (on page 2-17)

Specifications are subject to change without notice.
All Keithley trademarks and trade names are the property of Keithley Instruments.

All other trademarks and trade names are the property of their respective companies.

Keithley Instruments • 28775 Aurora Road • Cleveland, Ohio 44139 • 1-800-833-9200 • tek.com/keithley

04/2022

https://www.tek.com/keithley

	Model 4200A-SCS LPT Library Programming
	Safety precautions
	Table of contents
	1 Introduction
	LPT library reference
	Lists of LPT library commands
	General operation commands
	Math operation commands
	SMU commands
	PGU (pulse only) and PMU (pulse and measure) commands
	CVU commands
	Switch commands

	LPT Library Status and Error codes
	Customized error texts
	Code status or error titles
	Large number reported readings and explanations

	LPT library and Clarius interaction when using UTMs

	2 LPT commands for general operations
	LPT commands for general operations
	clrscn
	clrtrg
	delay
	devint
	disable
	enable
	execut
	getinstattr
	getinstid
	getinstname
	GetKiteCycle
	GetKiteDevice
	GetKiteSite
	GetKiteSubsite
	GetKiteTest
	getlpterr
	imeast
	inshld
	kibcmd
	kibdefclr
	kibdefdelete
	kibdefint
	kibrcv
	kibsnd
	kibspl
	kibsplw
	kspcfg
	kspdefclr
	kspdefdelete
	kspdefint
	ksprcv
	kspsnd
	PostDataDouble
	PostDataDoubleBuffer
	PostDataInt
	PostDataString
	rdelay
	rtfary
	savgX
	scnmeas
	searchX
	setmode
	sintgX
	smeasX
	trigcomp
	trigXg, trigXl
	tstdsl
	tstsel

	3 LPT commands for math operations
	LPT commands for math operations
	kfpabs
	kfpadd
	kfpdiv
	kfpexp
	kfplog
	kfpmul
	kfpneg
	kfppwr
	kfpsqrt
	kfpsub

	4 LPT commands for SMUs
	LPT commands for SMUs
	adelay
	asweepX
	avgX
	bmeasX
	bsweepX
	devclr
	devint
	forceX
	getstatus
	intgX
	limitX
	lorangeX
	measX
	mpulse
	pulseX
	rangeX
	rtfary
	segment_sweepX_list
	setauto
	ssmeasx
	sweepX

	5 LPT commands for CVUs
	LPT commands for the CVUs
	adelay
	asweepv
	bsweepX
	cvu_custom_cable_comp
	devclr
	devint
	dsweepf
	dsweepv
	forcev
	getstatus
	measf
	meass
	meast
	measv
	measz
	rangei
	rtfary
	setauto
	setfreq
	setlevel
	setmode (4210-CVU or 4215-CVU)
	smeasf
	smeasfRT
	smeass
	smeast
	smeastRT
	smeasv
	smeasvRT
	smeasz
	smeaszRT
	sweepf
	sweepf_log
	sweepv

	Programming examples
	Programming example #1
	Programming example #2
	Programming example #3
	Programming example #4
	Programming example #5

	6 LPT commands for PGUs and PMUs
	LPT commands for PGUs and PMUs
	arb_array
	arb_file
	dev_abort
	devclr
	devint
	getstatus
	pg2_init
	pmu_offset_current_comp
	pulse_burst_count
	pulse_chan_status
	pulse_conncomp
	pulse_current_limit
	pulse_dc_output
	pulse_delay
	pulse_exec
	pulse_exec_status
	pulse_fall
	pulse_fetch
	pulse_float
	pulse_halt
	pulse_init
	pulse_limits
	pulse_load
	pulse_meas_sm
	pulse_meas_timing
	pulse_meas_wfm
	pulse_measrt
	pulse_output
	pulse_output_mode
	pulse_period
	pulse_range
	pulse_ranges
	pulse_remove
	pulse_rise
	pulse_sample_rate
	pulse_source_timing
	pulse_ssrc
	pulse_step_linear
	pulse_sweep_linear
	pulse_train
	pulse_trig
	pulse_trig_output
	pulse_trig_polarity
	pulse_trig_source
	pulse_vhigh
	pulse_vlow
	pulse_width
	rpm_config
	seg_arb_define
	seg_arb_file
	seg_arb_sequence
	seg_arb_waveform
	setmode (4225-PMU)

	7 LPT commands for switching
	LPT commands for switching
	addcon
	clrcon
	conpin
	conpth
	cviv_config
	cviv_display_config
	cviv_display_power
	delcon
	devint

	Contact information

