
KDAC500 Data Acquisition and Control Software

Compiler Version for IBM, COMPAQ, and

100% Compatible Personal Computers

Publication Date: October 1991

Document Number: 501-915-01 Rev. C

Copyright Notice

The KDAC500 software and this documentation are copyrighted with all rights reserved by
Keithley Instruments, Inc., Cleveland, Ohio. No part of this product may be copied or repro-
duced by any mechanical, photographic, electronic or other method without prior written
consent of Keithley Instruments, Inc.

The KDAC500 software, including all files and data, and the diskettes on which it is con-
tained (the “Licensed Software”), is licensed to you, the end user, for your own use. You do
not obtain title to the licensed software. You may not sublicense, rent, lease, convey, modify,
translate, convert to another programming language, decompile, or disassemble the licensed
software for any purpose.

You may: a) use the software on a single machine; b) copy the software into any machine-
readable or printed form only for backup in support of your use of the program on the single
machine; and, c) transfer the programs and license to use to another party if the other party
agrees to accept the terms and conditions of the licensing agreement. If you transfer the pro-
grams, you must at the same time transfer all copies whether in printed or in machine-
readable form to the same party or destroy any copies not transferred.

The KDAC500 software has been thoroughly tested and the documentation reviewed. How-
ever, Keithley Instruments, Inc. does not warrant that the KDAC500 software will operate as
described in this manual in every hardware and software environment. Further, Keithley In-
struments, Inc. does not warrant the performance of the product for any particular purpose.

In no event is Keithley Instruments, Inc. liable for any damages resulting, directly or indi-
rectly, from the use of this product.

Copyright (0) July 1989
Keithley Metrabyte/Asyst/DAC
Data Acquisition Division
440 Myles Standish Blvd.
Taunton, MA 02780
1-508-880-3000

All Keithley product names are trademarks or registered trademarks of Keithley Instruments, Inc.
Other brand and product names are trademarks or registered trademarks of their representative holders.

Table of Contents

Introduction . i

Chapter 1 - Getting Started

WhatYouWillNeedtoRunKDAC500.. 1-3
InstallingKDAC500 ... 1-5
Running the CONFIG Program ... l-19
Methods of Creating a KDAC500 Program l-29
Methods of R unning a KDACSOO Program l-35
Operating more than One Data Acquisition System on a Single Computer l-37
Initializing Hardware at Power-up with HARDINIT l-39

Chapter 2 - KDACSOO System Features

KDAC500 Memory Management ... 2-3
Background/Foreground ... 2-7
Triggering .. 2-11
Engineering Units Conversion ... 2-19

Chapter 3 - KDAC500 Functions

Brief Listing of KDAC500 Functions 3-3
General Considerations .. 3-5
CommandFormat .. 3-9

Chapter 4 - KDACSOO Commands

Appendix A - Summary of KDAC500 Commands and Parameters

Appendix B - KDAC500 Error Messages

Appendix C - KDAC500 Function List

Appendix D - Engineering Unit Conversions

Appendix E - Running KDAC500/M Under the Microsoft QuickBASIC
Environment

Upgrade Notes For
KDAC500 Version 1.4

Changes in KDACSOO Version 1.4

The following changes have been made in KDACSOO Version 1.4. This information collectively covers interpreter
and compiler versions of the software as noted.

Enhanced language support in KDAGOO/M - The following Microsoft languages are supported by
KDACSOO/M:

Microsoft QuickBASIC 4.0 Microsoft Fortran 5.0
Microsoft QuickBASIC 4.5 Microsoft BASIC P.D.S. 7.0
Microsoft QuickPascal 1.0 Microsoft BASIC P.D.S. 7.1
Microsoft C 5.0,5.1,6.0

Enhanced language support in KDACSOO/B - The following Borland languages are now supported by
KDACSOO/B:

Turbo Pascal 5.0 Turbo C 1.0
Turbo Pascal 5.5 Turbo C 1.5
Turbo Pascal 6.0 Turbo C+ + 1.0

Documentation changes - The contents of previous KDACSOO/B and /M addenda have been integrated into the
KDACSOO Compiler Manual. There is no additional documentation other than this manual.

NOTES ON TURBO PASCAL:

The Turbo Pascal Unit for Turbo Pascal 5.0 is named KDAC5OO.T50.
The Turbo Pascal Unit for Turbo Pascal 5.5 is named KDAC5OO.T55.
The Turbo Pascal Unit for Turbo Pascal 6.0 is named KDACSWTPU.

In order for Turbo Pascal to find the KDACSOO TPU files they MUST have a .TPU extension. If you are
using Turbo Pascal 5.x you should delete KDACSOO.TPU from your installed version of the software and
rename KDACSOO.TSx to KDACSOO.TPU. DO NOT delete KDACSOO.TPU from the distribution disks!
If you use the wrong version of TPU file the Turbo Pascal compiler will generate an error message and
will not be able to compile your program.

The functional interface between all versions of Turbo Pascal is exactly the same. The format of the TPU
file is different, however.

KDACSOO 1.4 Upgrade Notes - 1

NOTES ON TURBO C+ +:

Turbo C+ + 1.0 is supported by KDACSOO/B. However, the KDAC500 interface library is a C style
library and not a C+ + library. In order to prevent Turbo C+ + from “mangling” the KDACSOO function
names you will need to include the following statements when including the KDAC500 header file:

#ifdef cplusplus
extern Y? {
#endif
#include “kdac5OO.h”
#ifdef _cplusplus

1
#endif

Since Turbo C+ + is also a C compiler, you can create C programs using KDACSOO with the same library
file. The Turbo C+ + library tile for KDACSOO is named TURB05OO.LIB. The file TURB05OO.LIB is
used for all versions of Turbo C as well as Turbo C+ + .

NOTES ON MICROSOFT BASIC PDS:

KDACSOO Version 1.4 is compatible with the Microsoft BASIC Professional Development System Version
7.0 and 7.1 for operation under DOS only. KDACSOO will not run under OS/2 or Microsoft Windows.
Libraries are included on the KDACSOO/M diskettes to facilitate running KDACSOCI under the BASIC 7
QBX environment:

KDACQBX.LIB
KDACQBX.QLB

The file KDACQBX.LlB contains the object modules that make up the KDACSOO interface. The file
KDACQBX.QLB is a quick library for the QuickBASIC Extended (QBX) environment. These files are
NOT compatible with Microsoft QuickBASIC.

All BASIC 7.x modules that are compiled for use with KDACSOO must use FAR STRINGS. This means
that they must be compiled using the /Fs option. According to the BASIC PDS Programmer’s Guide, “If
you are linking new code containing far strings with older code containing near strings, you must recompile
the old code using the /Fs option. Otherwise the program will return an error message “LOW LEVEL
INITIALIZATION and terminate.”

NOTES ON MICROSOFT QuickPascal:

KDACSOO Version 1.4 is compatible with the Microsoft Quick Pascal Version 1.0. Every place that Turbo
Pascal is referred to in the Kdac5OO/M manual also applies to QuickPascal. QuickPascal is functionally
equivalent to Turbo Pascal. All the Language Syntax statements for Turbo Pascal also apply to QuickPas-
cal.

The support unit for QuickPascal is named KDACSOO.QPU. This file should either be in your working
directory (it will automatically be copied there during installation) or in the QuickPascal UNIT
directory.

KDACSOO 1.4 Upgrade Notes - 2

CHANGES TO KDACSOO/I

The only significant changes in KDACSOO Version 1.4 apply to Borland Turbo Pascal support for
KDACSOO/B, and Microsoft Professional BASIC support for KDACSOO/M. The KDACSOO/I Version 1.3
manual, Revision C, also covers KDACSOO/I Version 1.4.

Changes in KDAC500 Version 1.3

The following changes have been made in KDACSOO Version 1.3. This information collectively covers interpreter
and compiler versions of the software as noted. The contents of the addenda for KDAC5OO/I and
KDACSOO/B/M differ slightly.

SUPPORT FOR THE WAVl MODULE (all versions) - KDACSOO V1.3 includes new commands for program-
ming the WAVl waveform generator module.

REVISED DOCUMENTATION -

Installation Section:

NEW INSTALL SECTION (all versions) - Previous addenda concerning the installation of KDACSOO
have been incorporated into a revised installation section for KDACSOO V1.3. Replace your existing
installation information with this new section.

“Methods...” Sections:

GENERAL NOTES, PLUS NEW INFORMATION FOR USING FORTRAN (KDACSOO/B/M only) -
The “Methods of Creating a KDAC500 Program” and “Methods of Running a KDAC500 Program” sec-
tions have been updated. Replace your existing pages with these new pages.

Command Section:

INTON (all versions) - Revised pages are included for the INTON command. Replace your existing
INTON pages with the new pages.

KDCLOCK (KDACSOO/B/M only) - A revised page for the KDCLCOK command is included for com-
piler versions of KDACSOO. The page includes an example for KDACSOO/M and QuickBASIC. Replace
your existing KDCLOCK page with this new page.

WAV and WAVSETUP (all versions) - New pages are included for the WAV and WAVSETUP com-
mands. Insert these pages at the end of the KDACSOO command section.

KDACSOO/M EXAMPLE PROGRAMS NOW INCLUDED (KDACSOO/B/M only) - An application note and
examples covering programming with KDACSOO/M and Microsoft QuickBASIC 4.5 have been added to
the KDACSOO/B/M (compiler version) manual. This information also discusses running KDACSOO/M
under the QuickBASIC environment. Add these pages to the end of the KDACSOO command section.

ENHANCEMENTS IN CONFIG.EXE (all versions) - The WAVl now appears in CONFIG’s list of available
modules.

KDACSOO 1.4 Upgrade Notes - 3

MICROSOFT BASIC 7 IS NOT SUPPORTED (KDACSOO/B/M only) - None of the Microsoft Professional
Development System BASIC Versions (6.0,7.0,7.1) are not supported for use with KDACSOO/M. You
can, however, use Microsoft Professional BASIC to perform low-level access to the Keithley hardware by
PEEKing and POKEing the data acquisition system command registers. In this case, KDACSOO is not
used.

TRIGGER/KDTIMER BUG FIXED (all versions) - A bug which prevented KDTIMER from waiting for a back-
ground trigger has been fried.

ANINQ BUG FIXED (all versions) - For multi-channel acquisition, the ANINQ command sometimes returned
incorrect data to the fust width in the data array. This has been faed.

PASSING PARAMETERS TO BASICA WORKS AS DOCUMENTED (KDACSOO/I only) - KDACSOO/I V1.3
now permits passing the BASIC interpreter start-up parameters such as number of files open, buffer size,
etc. These modifiers are added to the batch command used to start KDACSOO, e.g. “KDACSOO /F:5
/s:32”.

Changes in KDACSOO Version 1.2

The following changes were made in KDACSOCI Version 1.2. This information covers interpreter and compiler
versions of the software as noted.

KDACSOO/I EXAMPLE PROGRAMS NOW INCLUDED (KDAC5OO/I only) - The KDACSOO/I distribution dis-
kettes include several example programs which exercise most KDACSOO/I commands. The programs are
stored on both the 5 ” KDACSOO/I Library disk and the 3 ’ combined disk under the directory “EXAM-
PLES”. The programs are also listed in the KDACSOO/I manual (Rev. B or later) at the end of the com-
mand section.

SIMPLIFIED INSTALLATION (all versions) - The installation process now uses a single INSTALL.EXE tile to
copy files, test the system environment, and generate the necessary KDACSOO files. Previous KDAC500
versions used INSTALL.BAT and KINSTALLBXE to perform these functions.

NOTE: If you choose NM1 as the interrupt method, you must select and execute the NM1 Interlock Test.
On 2%-based (AT) computers, the NM1 Interlock Test will cycle the NM1 while displaying a window
showing test counts and remaining time. On SOS% and SO3%-based computers, INSTALL will set the
interrupt mask information, and then exit the test without exercising the interrupt test.

CHANGES IN THE INSTALL SCREEN (all versions) - The installation environment screen now shows the
speed determined for the master IBIN interface, rather than the system bus or clock speed. This informa-
tion is for reference, and will not affect how you perform the installation. If the installation environment
screen shows a negative amount for system memory, you have insufficient memory to do an installation.
640k of system RAM is recommended. Abort INSTALL by pressing <Escape > . Check your DOS
AUTOEXEC.BAT and CONPIG.SYS files for resident programs or other memory users, and eliminate
as many as possible. Rerun INSTALL.

KDACSOO 1.4 Upgrade Notes - 4

MORE ACCURATE ASSESSMENT OF PROCESSOR SPEED (all versions) - The new installation program
more accurately determines the computer processor speed, particularly in faster 2% and 3&based
machines. KDACSOO has been tested on 25MHz 3%based computers, and should be compatible with
33Mhz systems as well.

INTERNAL CHANGES IN KINSTALLKIF AND CLKSPD.COM (all versions) - The installation “KIF’ file
includes new parameters which record additional diagnostic information concerning system timing. The
new installation is not compatible with KIF files from earlier KDACSOO versions. If you have an earlier
version of the software, do not install KDACSOO 1.2 in the same directory or you may mix old and new
files.

The structure of the CLKSPD.COM file in KDAC.500 V1.2 differs from CLKSPD.COM in older versions.
Information concerning the location of various operating parameters and variables within older
CLKSPD.COM files is not valid for the V1.2 CLKSPD.COM.

ENHANCEMENTS IN CONFIG.EXE (all versions) - The CONFIG.EXE file has been recompiled for greater
speed. The handling of some modules has been improved. Minor problems in CONFIG have been cor-
rected.

Additional modules appear in the hardware set-up screen.
The AMMl module selection provides choices for AMMl or AMMlA.
The AIM3 module selection provides choices for AIM3 and AIM3A.
The single module designation “DIOl” covers both the DIOl and DIOlA.

IMPROVED HANDLING OF THE AIM3A IN CONFIG (all versions) - Previous versions of CONFIG permitted
the AIM3A to be assigned a cold-junction reference IONAME even though the AIM3A has no CJR or
channel 32. This could result in problems at run time. The V1.2 CONFIG program will no longer accept a
reference junction IONAME for the AIM3A. You may use an older CONFIG.TBL fde with KDACSOO
V1.2. However, any IONAMEs which reference channel 32 on an AIM3A will be ignored.

A bug affecting KDACSOO’s recognition of IONAMEs for the AIM3A has been fued.

CHANGES IN THE HANDLING OF THE TRGl MODULE IN CONFIG (all versions) - Two changes have been
made in how CONFIG handles the TRGl module:

Fist, KDACSOO V1.2 treats the TRGl module as an analog module. Previous KDACSOO versions treated
the TRGl as a digital module because of the TRGl’s digital trigger output signal.

If you are using a TRGl with KDACSOO V1.2, you must reinstall the module in CONFIG, and recreate the
TRGl IONAMEs. You may use an older CONFIG.TBL file with KDACSOO V1.2. However, any IONAMEs
which reference a TRGl will cause an error message when KDINIT is executed.

Second, the TRIG1 module can now be used as a single channel of differential analog input. Set up an
IONAME which references the TRIG1 input channel, and then include the IONAME in an analog input
command. The IONAME can include the following set-up parameters:

KDACSOO 1.4 Upgrade Notes - 5

Local gain of xl or x10. Default = xl.
Global gain of xl, x2, x5, or x10. Default = xl.
AC or DC coupling. Default = DC.
Filter of 3OOHz - 1Mhz. Default = 1MHz.

ENHANCEMENTS TO INTON (all versions) - The INTON command now accepts Hertz (HZ) and millihertz
(MILHZ) as time units. The legal ranges are O-65535 Hertz and O-65,535 millihertz. The maximum achiev-
able rate on a 3%-based computer is approximately 6,OOOHz; slower on 2% and XT type systems. Specifying
too high an interrupt rate may lock up the computer.

IMPROVED ACCURACY FOR TEMPERATURE CONVERSIONS (all versions) - In KDACSOO Vl.2, tempera-
ture EUF routines dynamically select temperature conversion constants based on thermocouple and
reference junction output voltages.

FIX IN GRAPHIC OVERLAYS (all versions) - When two identical graphics commands were issued consecutively
in a program, the second graphics command might not produce a graph. For example, if HGRAPHRT com-
mands were called in two consecutive program lines, only the first HGRAPHRT would plot a graph. This
problem has been corrected.

BACKING UP YOUR KDACSOO DISKE’ITES (all versions) - If you need to make back-up copies of the original
KDACSOO diskettes, do so with the DOS DISKCOPY command. Using a simple DOS COPY or XCOPY
command produces backups which will not function correctly when INSTALLEXE is executed.

KDACSOO 1.4 Upgrade Notes - 6

Updates and Errata

Please observe the following notes, errors, and updates pertaining to the KDACSOO manual.

Chapter 1, Getting Started:

1. * New Installation Section (all versions) - integrates all previous changes to the installation procedure into
a new replacement installation section for the manual.

2. * Methods of Creating a KDAC500 Program (KDACSOO/B/M only) - additional instructions have been
included for programming with Microsoft FORTRAN. These are contained in a new replacement section
for the manual.

3. * Methods of Running a KDACSOO Program (KDACSOO/B/M only) - notes and changes have been
included in a new replacement section for the manual.

Chapter 2, “Engineering Units Conversion” (KDACSOO/I only):

1. The Engineering Unit Flag for LVDT/RVDT sensors under KDACSOO/I is “C.AIM9.D” rather than
“CXM9D” which is shown in the KDACSCMl/I manual.

Chapter 4, “KDACSOO Commands” (all versions):

1. ARLOAD - A dummy string (up to 255 characters) must be created for the array name prior to running
ARLOAD. If the actual array name is shorter than the dummy string, the resulting array name will be
padded by spaces, with length equal to that of the dummy string.

For example, if the dummy name is defined as ARN$ = SPACE$(12) and the actual name is “DATA%“,
ARN$ will equal “DATA%” plus 7 spaces (“DATA% ’) after the ARLOAD.

2. ARGET/ARPUT - The ION$ parameter takes precedence over the WID% parameter. To identify a par-
ticular data set by its width parameter, set the ION$ parameter to “’ (two adjacent double quotes).

3. ARSAVE - The legal time units for ARSAVE now include HZ and MILHZ. If the file is saved in one of
the non-KDAC data formats using HZ or MILHZ as the time base, the time units column in the output file
will be represented as fractions of a second.

4. ARSTATUS - A dummy string (up to 255 characters) must be created for the array label prior to running
ARLOAD. If the actual array label is shorter than the associated dummy string, the resulting array label will
be padded by spaces, with length equal to that of the dummy string. See ARLOAD command information
listed above for similar requirements concerning the array name.

KDACSOO 1.4 Upgrade Notes - 7

5. INTON - The fast data point acquired after INTON is issued will be taken after the specified interrupt
period has elapsed.

6. KDCLOCK - Data returned for the year consists of four digits, e.g. “1990” rather than “90”.

7. KDINIT - a DIOlA module and the digital section of a Model 575 will be initialized as follows when
KDINIT is called: Ports A and B to logic 0; ports C and D to logic 1.

8. BGREAD and ARGET - If you intend to apply engineering units conversion, you should not mix
IONAMEs for different types of modules (e.g. AIM7 and AIMS) in the same BGREAD command. This will
cause the data from both types of modules to be stored in one KDACSOO array. When you issue an ARGET
command with engineering units conversion, an error will be generated. Separate BGREAD commands
should be used. If you plan to work exclusively in A/D counts or voltage, this limitation does not apply.

9. TRIGGER - The CHM parameter in the KDACSOO manual shows the values “OFF” and “ON” for digital
input. For interpreter BASIC and QuickBASIC only, these should be “OFF.” and “ON.”

10. KDCLOCK - The last line of the TIME%() parameter shows “Time%(50 year....“. This should read
“Tie%(S) year...“.

11. FGRE+AD - The RANGE$ parameter shows W.READ_RESET” and “P2.READ ONLY” for pulse
reading modes with PIMl and PIMZ. Correct syntax for BASICA and QuickBASIC is’P2.READ.RESET”
and “P2.READ.ONLY”.

Appendix A, “Installation of KDAC500/1 on a Dual 360K System” (KDACSOO/I only):

1. Under Step 3, Item 3 - KINSTALL.EXE is now INSTALL-EXE.

2. Under Step 4, Item 2 - KINSTALL.EXE is now INSTALLEXE.

KDACSOO 1.4 Upgrade Notes - 8

Introduction

Welcome to the world of workstation data acquisition and control with Keithley’s KDAC500,
and thank you for selecting a Keithley product.

WHAT IS KDACZOO?

KDAC500 is a family of software products for data acquisition and control using Keithley’s
5OOA, 5OOP, 575 and 570 Measurement and Control Systems and IBM, Compaq, or 100% com-
patible personal computers. The KDAC500 family consists of the following individual pack-
ages:

KDAC500/1- an interpreter-based version which runs under Microsoft GWBASIC, IBM Ad-
vanced BASIC (BASICA) and Compaq Advanced BASIC. KDAC500/1 is bundled with cer-
tain Keithley hardware.

KDAC5OO/B - a compiler version of KDAC500 which runs under Borland’s Turbo C and
Turbo Pascal. KDAC500/B is available as an option.

KDAC5OO/M - a compiler version of KDAC500 which runs under Microsoft’s C, QuickC,
Quick Pascal, QuickBASIC, and FORTRAN. KDAC5OO/M is available as an option.

Each package adds a number of new commands to its respective compatible language. Since
KDAC500/1 runs under BASICA, it provides an easy, entry-level approach to data acquisi-
tion programs under a language that is well-known and widely used. KDAC500/B and
KDAC5OO/M provide an easy migration path for users who wish to upgrade from BASICA
to faster, more structured compiler languages.

USING THIS MANUAL

In this manual you will find a complete description of the KDAC500 software package. This
manual does not duplicate information in the computer hardware documentation or pro-
gramming manuals except where necessary to explain specific features of KDAC500. This
manual will not teach you how to program. If you need more help with programming, con-
sult your local bookstore. There are numerous books available on programming languages
and personal computers.

Many users of KDAC500/B and KDAC500/M will have had experience programming in
Soft500, Quick500, or KDAC500/1. While these products are similar to KDAC500, there are
important differences. This manual will make occasional reference to older software packages
in order to call out some of those differences, and, hopefully, eliminate points of confusion for
the user who is converting to KDAC500/B or KDAC500/M. If this is your first experience in
programming for Keithley’s data acquisition systems, these comments will not concern you.

i

The first three chapters of this manual provide a quick introduction to the KDAC500 soft-
ware, and cover topics such as installation, creating the hardware configuration table, run-
ning KDAC500, etc. Chapter 4 includes a description of KDAC500 commands and an expla-
nation of how each command is used. The commands are referenced alphabetically, and a list
of all KDAC500 commands is included in the Appendix section. We recommend that you
read your compiler manual and the Keithley KDAC500 manual before you begin installation
and programmin g. Later, you can return to specific sections of the appropriate manual for
more careful study. After a while, most users of KDAC500 will only need to use the com-
mand reference section for finding the command, format, and the parameters to use with
KDAC500 commands.

Some Typographical Conventions

1. In this manual, ah KDAC500 command parameters and reserved words are given in up-
per case characters. Quoted strings, remarks and data statements will remain in the form
input by the programmer.

2. Any items enclosed by square brackets [...I are optional. However, none of the KDAC500
commands contain options within their parameter lists.

3. The characters “<‘I and ‘I>” delimit keystroke combinations, or file names which you
must include as part of a keyboard entry. The “<” and ‘I>” marks themselves must not be
entered. Examples include:

<ct.&c>

<Enter>

<Ctrl-Ah-Del>

<filename.ext>

<configuration table file name>

4. Any other punctuation that appears in the KDAC500 command format line must be en-
tered as shown. However, there is some flexibility in the delimiters used to separate pa-
rameters in a KDAC500 list. Valid delimiters are commas, spaces and tabs.

CHAPTER 1
Getting Started

What You Will Need to Run KDAC500

Installing KDAC500

Running the CONFIG Program

Operating Modes for KDAC500

Methods of Creating a KDAC500 Program

Methods of Running a KDAC500 Program

Operating more than One Data Acquisition System on a Single
Computer

Initializing Hardware at Power-up with HARDINIT

What You Will Need to Run KDAC500

You will require the following items to install and run KDAC500:

DOS

You should have a DOS version which is approved by the manufacturer for use with your
computer. Keithley recommends IBM PC-DOS 3.1 or later for IBM computers, Compaq DOS
3.0 or later for Compaq computers, and a manufacturer-approved version of MS-DOS 3.0 or
later for compatibles. All versions of MS-DOS are not alike. A version which is optimized for
use on one compatible may not operate properly on another. Versions of DOS earlier than the
recommended versions may cause problems and should not be used.

COMPUTER

The KDAC500 Software System was developed to run on IBM PC, XT, AT, and PS/2 comput-
ers, Compaq computers, and most compatibles. The INSTALL program used with KDAC500
performs an in-depth analysis of the computer, DOS, RAM workspace, and other hardware
parameters. INSTALL then creates batch files named KLOAD.BAT and KRUNBAT, and a
CLKSPD.COM file customized for the hardware environment. If INSTALL cannot accommo-
date the hardware, it will abort the installation process and issue an error message. If this
happens, contact the Keithley DAC applications department for assistance.

Your computer should have 640K of random access memory (RAM). A smaller RAM space
will detract from the amount of data that can be acquired. Since you will also be running a
compiler, make sure that your RAM space is also sufficient for that purpose. KDAC500 will
not run on a system which has less than 512K of RAM. KDAC500 will not take advantage of
L&l/EMS expanded memory or extended memory.

Your computer should have a fixed disk KDAC500 Compiler versions must be installed with,
and have ready access to, the compiler you’ve chosen. The total storage space for a typical
installation of KDAC500 plus compiler may be three megabytes or more. It is not realistic to
operate these packages from floppy-based systems.

To take advantage of the graphics capabilities of KDAC500, your computer should have a
suitable graphics adapter. This adapter may be an IBM Color Graphics Adapter, Hercules
Color Card, IBM Enhanced Graphics Adapter, IBM Video Graphics Array, or 100% equiva-
lent. If the adapter is non-IBM, it must be 100% compatible with its IBM counterpart. Compaq
portable computers and some Compaq desktop machines have a built-in combined text-and-
graphics adapter. This is also suitable for displaying KDAC500 graphics.

Some standard color graphics adapters have an NTSC composite color output which will dis-
play graphics (without color) on a composite input monochrome monitor. These adapter/
monitor combinations are also suitable, although some adapters may translate certain color
combinations into invisible or unreadable monochrome shades. Monochrome adapters can be
used with KDAC500, although they will not support graphics. This includes Hercules (mono-
chrome) Graphics cards and similar monochrome graphics cards.

l-3

Graphics adapters which require special driver programs, or which make non-standard use
of the computer’s non-maskable interrupt (NMI) will cause problems when KDAC500 is run.

A math coprocesser chip for the computer is optional. It will improve the speed of execution
of some KDAC500 commands, notably the commands which manipulate KDAC500 arrays
and do engineering units conversions. Compilers often take advantage of coprocessors, and
will deliver various performance improvements.

Installing KDAC500

Follow these instructions to in&ill the KDAC500 software on your computer system. These
steps cover all versions of KDAC500, including the interpreter and compiler versions. The
references to BASICA or GWBASIC concern installation of the interpreter version only, and
are noted as such where they appear. Reference to compilers concern only the /B and /M
versions.

Install the Keithley Data Acquisition Interface Card

Installation of the KDAC500 software is a dynamic process which actively checks various pa-
rameters within the computer. If you have not done so already,,open your computer and in-
stall your IBIN-A, IBIN-IS/Z, or System 570 interface card. Be sure to note all CAUTIONS
and WARNINGS for relevant safety information. If necessary, get a technician to assist you.

A 1 WARNING: UNPLUG ALL POWER CORDS TO THE COMPUTER AND DATA AC-
QUISITION HARDWARE BEFORE YOU ATTEMPT INSTALLATION.

KDAC500 is normally shipped as two 5-l /4”, 360K diskettes and one 3-l/2” 720K floppy
diskette. One of the 5-l/4” diskettes is labeled “Program Disk” and the other is labeled “Li-
brary Disk”. Both volumes are combined on the single 3-l/2” disk. The KDAC500 diskettes
and software manual contain all the support needed to make full use of your Keithley data
acquisition hardware.

The following instructions presume the use of 5-l/4” KDAC500 distribution diskettes unless
otherwise noted. References to 720K or 1.4M diskettes as drives A: or B: presume that your
computer’s standard A: or B: drives are 3-l /2” units.

You should not use the original KDAC500 diskettes for day-to-day operations. Install
KDAC500 on to another floppy diskette or hard disk as described below, If you anticipate
doing several installations, make and use a backup copy of the originals. In any case, store the
originals in a safe place.

You should use the DOS version recommended for your computer, but no version before
DOS 3.1 for IBM systems, DOS 3.0 for Compaq, or DOS 3.0 for compatibles running Microsoft
DOS.

The Installation Files

Installing KDAC500 involves running “INSTALL.EXE”. INSTALL.EXE may use other sup-
port files on the KDAC500 diskette set. The INSTALL.EXE file copies the necessary files to the
destination disk, then configures the software.

1-5

Pre-installation

Before you begin the actual installation of KDAC500, make sure that any other computer con-
figuration or memory-resident software has been installed and is operating properly.
KDAC500 can coexist with many other types of programs, but compatibility problems may
occur with some programs.

When you install KDAC500, you will specify an amount of system memory to be used for
data. T,his memory will be allocated when you run KDAC500. If you add memory resident
software to your operating environment after you have installed KDACSOO, you may have
insufficient memory left to nm KDAC500 with the designated array space. Keep track of
memory usage if you add memory-resident programs to your system, and reinstall KDAC500
if necessary.

Turn on your computer and load DOS.

Installations on Computers with Multiple Processing Speeds

Some computers have switchable CPU clock speeds. If your computer has a switchable CPU
clock speed, perform data acquisition only at the CPU clock speed which was set at the time
of installation.

Advanced BASIC (KDAC/I Only)

During installation of KDAC500/1, you will be prompted for the name and location of your
Advanced or GW-BASIC interpreter file. At that time, enter the disk drive letter, path (if any),
and complete filename of the BASIC interpreter. During installation, BASIC must be where
you specify or you will receive an error message.

Approved Compilers (KDAC/M and /B Only)

The KDAC500/B and KDAC500/M packages are designed to run under any of several ap-
proved compilers. The “/B” package is designed for Borland Turbo C and Turbo Pascal,
while the “/M” package is intended for Microsoft C, QuickC, QuickBASIC, Quick Pascal, and
FORTRAN. The supported revisions include:

KDAC500/B

Borland Turbo C Version 2.0
Borland Turbo Pascal Versions 5.0 and 5.5

KDAC500/M

Microsoft C: Versions 5.0 and 5.1
Microsoft Quickc: Versions 1.0 and 2.0

l-6

Microsoft QuickBASIC: Versions 4.0 and 4.5
Microsoft Quickl%scah Version 1 .O
Microsoft FORTRAN: Version 5.0

Earlier versions of these products are not supported and should not be used. Borland Turbo
BASIC is also not supported.

Support for other compilers will be added from time to time. If you are considering a compil-
er or version other than those listed, please call Keithley DAC for more information. The
KDAC500 packages do not include the compiler. You are free to purchase an approved com-
piler package for the language you desire.

Note that the installation for each of the various compilers may involve specialized path pa-
rameters, environment variables, library directories, or other special configurations needed
by the compiler. Make sure that your compiler is installed and operating properly before you
attempt to run KDAC500. Ideally, your system path, directories, and environment variables
should be organized such that you can run your compiler while working in the KDAC500
directory. See your compiler manual for more information on installing the compiler.

Disk Preparation

Most personal computers share one of a relatively few disk drive configurations. The drive
configuration will dictate which drive receives the installation, and which drive serves as the
source.

Installing KDAC500 requires two disk drives. The drive receiving the installation should be a
fixed disk, or a 720K, XXVI, or l&I floppy drive. The diskette drive holding the KDAC500
product diskette may be any type.

Depending on the compiler, KDAC500 may be run from a fixed disk or a high-capacity
floppy disk drive such as a 720K, 1 Z&I, or 1.4M drive.

Running KDAC500/1 from two 360K floppy diskette is not recommended. However, an in-
stallation for dual 360K floppies is outlined in the Appendix section of the KDAC500/1 man-
ual. A single 360K floppy does not have enough room for a working copy of KDAC500.

For KDAC500/B or /M, note that some compilers require a fixed disk because floppy disks
do not have enough room

Installing to a High-Capacity Floppy Diskette (KDAC50011, only)

These instructions assume that you have a 1.2M or 1.4M diskette drive as A: and any type of
drive as B:. If your high capacity diskette drive is Drive B: rather than A:, switch the A: and B:
designations in the following procedure.

l-7

These instructions also assume that you are installing KDAC500/1. Compiler versions plus
the required compiler will not fit on one floppy disk.

The HC diskette which receives KDAC500 must be formatted and should also be bootable.
KDACSOO may also be installed to a non-bootable floppy diskette. Doing so will save the
space on the diskette normally taken by the DOS system files at the expense of operating con-
venience. To format without copying the system files, omit the “/S” option.

To format a HC floppy diskette, place the blank HC diskette in the HC drive A: and your
DOS diskette in drive B:. Make B: the default drive and run FORMAT:

B: <Enten
FORMAT A: /S <Entee

Unless told otherwise, FORMAT assumes that a diskette formatted in a HC drive is a high-ca-
pacity diskette. The system will format the diskette in drive A: and copy over the DOS system
files.

Install KDACSOO/I in its own directory on the HC diskette. When you run INSTALL, the de-
sired target directory will be created automatically if it does not already exist.

Replace your DOS diskette in Drive B: with the KDAC500/1 Program Disk and continue with
the section ‘The INSTALL Environment”.

Installing KDACSOO on a Fixed Disk

Normally, the bootable fixed disk on a personal computer is drive C:. If you have two fixed
disks, or if your disk is divided into ‘logical” drives, you may also have drives D:, E:, F:, etc.
KDAC500 may be installed on any drive.

Fixed disk installation is recommended for all versions of KDAC, and provides maximum
convenience.

You should install KDAC500 in a separate directory on the fixed disk. When you run IN-
STALL, the desired target directory will be created automatically if it does not already exist.

Place the KDAC500 Program Disk in Drive A: and continue with the section ‘The INSTALL
Environment”.

The INSTALL Environment

The INSTALL program initially checks the computer hardware and then generates an infor-
mation screen with pull-down menus (see Figure l-1). The INSTALL environment will

l-8

prompt you for information. Some responses will require that you enter alpha or numeric
characters, while other responses will be simple menu selections. In both cases, the available
entries will be obvious or self explanatory. Figure l-2 is a map of the installation process. In-
terpretive BASIC will appear only for KDAC500/1.

Modify New Save Load Config Wit
Allows user to modify displayed parameters.

Keithley DAC KDACSDD Installation I

Array Space / Maximun Size: 64K / 182K
Master IBIN Timer Speed: 1.00 MHz
Machine Type: IBM AT or compatible

Processor Type: 80286
RTMDS Graphics: Disabled

Interface Board(s):
IBIN Address CONFIG File Name

cff8H -*- CONFIG (int lev = NMI)
(ni mask = 08)
(NM1 interlock fix OFF)

KDACSOO Uorking Directory:
C:\KEITHLEY\
Interpretive BASIC:
C:\DOS\BASICA.CW

Figure l-l. Main Installation Screen

l-9

INSTALL Dnodifiersl

(Copy'Files)

(Check System1

Specify Name‘of BASIC (2)

I
r

I
I I I

1
Modify New Save LOi

I
(Restart INSTALL
at @%heck System"

(Write .BAT Files to Disk)

I
(Write .KIF File to Disk)

t Specify array space (Load .K

I

F from Disk)

k RTM Graphics -,- Enable/Disable rtm
k Select Display (3) , CGA

/-- Specify Address L Select Display Size -,- 400 x 200 E :::

+ 400 x 350 t_ VGA (3)
+ 640 x 200 L Unknown
L 640 x 350

I I

I
ad Config Quit

I I
(Run CONFIG.EXE) (End INSTALL)

I I
Specify harduare (Auto reboot
configuration and if NM1 Interlock
IONAMES was detected)

c Interface Card(s) -I- Add - Specify address - (Check for card)

I
k Delete - Select address
/- Modify CONFIG

I
II

I

- Set IRP Level (4)

I
l- Change BASIC (2)

c NMI I Test for NM1 interlock (5)
+ Clock k (Set NM1 Reset Mask) (6)
k9or2 L (Set NM1 Interlock Fix ON/OFF) (6)

t:

NOTES:
1.
2.

3.

4.
5.
6.

Processes in parentheses () are performed by the installation software.
KDACSOO/I interpreter version, only. BASIC interpreter name may be respecified through the
Whange BASIC@@ option.
Installation automatically determines type of primary display, and will show WNKND~JN~~ if
display type is not recognized. VGA is not cospatible with RTM card.
IRQ is set only for the first interface card. IRP9 on an AT = IRQ2 on a PC/XT.
Must be performed by user if NW has been selected. See manual for details.
Hay also be modified manually.

Figure 1-2. Main Install Map

l-10

Running Install

The simplest method for running INSTALL is to make the floppy diskette holding the
KDAC500 distribution diskette the default, and then execute “INSTALL” at the DOS com-
mand line.

If you are using the 5-l/4” diskettes, insert the diskette marked “Program” into the disk
drive. Later, INSTALL will prompt you to change to the “Library” diskette. The 3-l/2” disk-
ette contains all the KDAC500 Program and Library files, and will not require a disk change.

The floppy disk volumne will typically be A: or B:. Change to the appropriate drive and run
INSTALL:

A: <Enter>
INSTALL <Enter>

The INSTALL program wilI respond with the following screen. If the source and destination
are correct, press <Enter>. If not, chang ‘9”’ to “N” and press <Enter>. You will then have an
opportunity to change the source and destination.

Data Acquisition & Control Install C2.00)

Setup
The Source Drive is: A:

The Destination Path is: C:\KEITHLEY\

KDACSOO Installation Screen

1 Is this correct? (Y/N) fYl,l[

When you accept the indicated setup, the INSTALL program will copy the files from the
KDAC500 diskette(s) to the target, and then run the remainder of the installation program.
Proceed to the next section “Modifying the Installation Parameters”.

l-11

You may specify the source and destination for the installation as part of the INSTALL com-
mand line. If you elect to use this method, you should specify source, destination, and direc-
tory on the INSTALL command line. The following optional syntax may be used:

NOTE: You must leave a space between all items entered in the INSTALL command line or
the installation will not be completed properly.

Make the drive holding the source diskette the default drive.

A: <Enter>

Enter the INSTALL command. The optional format is:

INSTALL <Source Drive7 [Destination Drive [Destination Path]]

where:

<Source Drive> is the drive containing the KDACSOO diskette (A:, B:, etc.). Source Drive
is required.

[Destination Drive] is the drive to which KDAC500 will be installed (C:, D:, etc.) Destina-
tion Drive is optional. If it is omitted, “C:” will be assumed.

[Destination Path] is the path to KDAC500. The path name must begin with the “\‘I back-
slash. Destination Path is optional. If it is omitted, KDAC500 will be installed to directory
KEITHLEY off the root directory of the destination drive.

If you want to install to a root directory, use “\” as the destination path. This is not recom-
mended for fixed disks, but may be desirable for a floppy disk installation.

If this is a floppy disk installation with the destination in drive A: and the source in Drive B:,
you can start the installation with the command:

INSTALL B: A:

If this is an installation to the root directory of a floppy disk in drive B: and the source is
Drive A:, start the installation with the command:

INSTALL A: B: \

Entering the Name and Path of Interpreter BASIC (KDACII, only)

For an installation of KDAC500/1, INSTALL will ask you for the name and location of your
BASIC interpreter. Typical names are BASICA.COM, BASICA.EXE, GWBASIC.EXE and GW-

l-12

BASICEXE. Specify the drive letter, complete path, and complete BASIC filename, then press
<Enter>. The installation will check your version of BASIC, during which the computer
screen will briefly go blank.

Modifying the Installation Parameters

SELECT “MODIFY” FROM THE PULL-DOWN MENU: After you have specified the name
and location of your BASIC interpreter, you will see the screen in Figure 2-1. If the menu is
not visible, it can be invoked by pressing the cEso key.

Once visible, any menu choice can be invoked by using the cursor keys to move the cursor to
the desired choice, and then pressing <Enter>. You may also press the first letter of the menu
word.

Select MODIFY - The cursor will drop down into the information screen and let you change
selected installation parameters. You may change any or all of the following items.

ARRAY SPACE - The Array Space line shows the following information:

Array Space / Maximum Size

“Array Space” shows what you have specified for the desired array workspace. “Maxi-
mum RAM” is a suggested maximum amount of RAM available for data arrays.

NOTE: For KDAC500/1, the suggested maximum is based on the sizes of IBM PC-DOS
3.3, GWBASIC 3.2, and the KDAC500 software. Your DOS and BASIC versions may re-
quire slight adjustment of the suggested maximum. Under some circumstances, you may
enter more than the suggested RAM size.

NOTE: If you specify too large an amount of RAM, you will receive an error message
when you run KDAC500, or run into other problems. For a first installation, it is best to
select a small array memory size, e.g. 64k for KDAC500/1, or 8-16k for a compiler version.
After you become familiar with the software, you can change the memory size.

Select ARRAY SPACE and press <Enter>. A box will appear on the screen, Type the size
of the array space you want and press <Enter>.

RTM GRAPHICS - If you have an RTM (Dataq WFS-200) waveform scroller card in-
stalled in your computer and would like to use it for KDAC500 graphics, select RTM
GRAPHICS and press <Enter>.

ENABLE/DISABLE - to enable use of the RTM card, move the cursor to this choice
and press <Enter>. The feature will toggle on or off. RTM cannot be enabled if the
detected monitor adapter is VGA.

l-13

SET DISPLAY TYPE - move the cursor to this option and Press <Enter>. Select the
type of monitor you will be using with the RTM (Dataq) WFS-200 waveform scroller
card. VGA video is not compatible with the WFS-200.

ADDRESS - select this option and press <Enter>. Type the hardware address of the
RTM card as installed in your system (see the RTM manual for more information)

DISPLAY SIZE - select this option and press <Enter>. Move the cursor to the de-
sired display size and press <Enter>. The only valid choice if you are using a CGA
card with the RTM card is 640x200. Note messages on the INSTALL screen for more
information.

INTERFACE CARD(S) -You must specify the address of each Keithley hardware
interface board installed in your computer. If you do not specify a hardware inter-
face, the software will not be able to access the data acquisition system connected to
that interface card. Select INTERFACE CARD(S) and press <Enter>.

NOTE: If you are installing to a ES/2 with Microchannel bus (I’S/2 Model 50,60,70,
and 80), the only parameter you may change under INTERFACE CARD(S) is “MOD-
IFY CONFIG”. The interrupt is set as part of the hardware installation using the ES/2
Reference Diskette.

ADD - Selecting “INTERFACE CARD(S)” when there are no cards shown will auto-
matically move to “ADD” and prompt you for an address. For additional interfaces,
select ADD and press <Enter>.

You will be prompted for the first two characters (in hexadecimal) of the boards ad-
dress. For example, if a board is installed at address CFF80 (hex), you would enter
“CF’.

After you add the first card, the menu moves directly to the “SET INTERRUPT
LEVEL” option.

Repeat the ADD step for each interface installed in your computer,

DELETE - to remove a board from the configuration, select DELETE and press <En-
ter>. Use the cursor keys to select the board for deletion and press <Enter>. Repeat
this step for each interface you want to remove from the configuration process.

MODIFY CONFIG - The default name of the configuration table file for the first in-
terface you identify is “CONFIG.TBL”. Additional boards will be named “CON-
FIGlTBL”, “CONFIG2.TBL”, etc. To specify a different name, select MODIFY CON-
FIG and press <Enter>. Use the cursor keys to select the name to be changed and
press <Enter>. Type the desired name and press <Enter>.

1-14

SET INTERRUPT LEVEL - This option selects a hardware interrupt within the PC
which will be used to control background (timed) data acquisition. The choices, in
order of system priority, are “NMI”, ” CLOCK”, 9,3, and 5. NMI is the computer’s
non-maskable (highest priority) interrupt. CLOCK is the computer system clock. If
you are using an 8088-based PC or XT, Level 9 corresponds to IRQ2 in the PC.

NM1 is the suggested method, but may not be compatible with all types of PC hard-
ware. Specifically, the NMI is used by some video adapters and by 80386 systems op-
erating in virtual 8086 mode. These systems will conflict with KDAC500 if it also at-
tempts to use the NMI.

NOTE: For non-Microchannel computers, you must select an interrupt method as
part of the installation. If you do not select an interrupt system, operating errors will
result when you run KDAC500.

Move the cursor over the desired choice and press <Enter>. If you select “NMI”, you
will receive a submenu with the following choices:

TEST FOR NMI INTERLOCK - This choice will check the computer micropro-
cessor for compatibility with use of NMI and Keithley interface, and then install
the NMI as the interrupt system for KDAC500.

SET NMI RESET MASK - The previous option “TEST FOR NMI INTERLOCK”
will normally set this parameter automatically if it is required. This option should
not normally be selected unless an installation problem requires you to manually
adjust an installation’s parameters. The NMI RESET MASK sets up an installa-
tion parameter which helps determine the software’s use of the computer’s non-
maskable interrupt.

NMI INTERLOCK FIX ON/OFF - The option “TEST FOR NMI INTERLOCK’
will normally set this parameter automatically if it is required. Some early 80286
microprocessors have an internal problem which causes background data acqui-
sition to spontaneously abort. NMI FIX will correct the problem through soft-
ware. NMI fix also disables the system clock, so BASIC commands such as
“TIMER” will not work when the NMI fix is in place.

CAUTION: You should not change the NM1 RESET MASK or NM1 FIX unless
you have experienced trouble with the installation, and have been instructed
by Keithley DAC technical support to do so. The following chart is for refer-
ence only.

NOTE: If the NMI interlock is detected on your computer, you may also choose
CLOCK or Level 9,3, or 5.

l-15

1 COMPUTER IMASK INMIFIX]

* Exhibits NMI Interlock, a defect in some early 80286 processor
chips can cause the computer system to spontaneously lose inter-
rupts when executing background programs. If this occurs, contact
Keithley DAC technical support.

RUN “CONFIG” FROM THE FULL-DOWN MENU: The “CONFIG” option will run the
CONFIG.EXE program which enables you to set up a hardware configuration table for each
system connected to an interface in your computer. The CONFIG option defaults to the first
interface in the INTERFACE CARD(S) list. To set up configuration tables for other interfaces,
select the proper modules and other information, and save the table under the name “CON-
FIGl”, “CONFIG2”, etc. See the section of this manual covering CONFIG.EXE for more infor-
mation of running CONFIG.

SAVE YOUR INSTALLATION: The “SAVE” option will create one or more of the following
files: KDAC500.BAT, KINSTALLKIF, KLOAD.BAT, and KRUN.BAT. KDAC500.BAT is used
to start KDAC500/1 in non-resident mode. KINSTALLKIF is a record of the all the informa-
tion which has been entered in the installation screen.

KLOAD.EXE is used to make the KDAC500 kernel memory resident. KRUN.BAT is used to
run compiled programs generated under compiler versions of KDAC500, and does not apply
to KDAC500/1.

SELECT “QUIT” FROM THE PULL-DOWN MENU The “QUIT” option will close the instal-
lation screen. If the NMI interlock problem was detected, the computer will automatically
reboot when you quit.

Other MENU Options

NEW - This option will reset all parameters on the installation screen. The current data
shown on the screen will be lost. This does not affect the information stored to disk unless
you execute SAVE.

LOAD - This option loads the last KINSTALLKIF file saved to disk. It enables you to make
minor changes to an existing installation without having to re-enter all the information.

For Future Installations

Once KDAC500 has been installed, you can change setup parameters by re-running IN-
STALL.EXE on the destination, or by running the INSTALL program directly.

1-16

The syntax for the INSTALL command is:

INSTALL 1 -f I [-mono I [-rtm<display_area><wfs_200_address>]

Any or all the modifiers may be used.

Details on the INSTALL command line modifiers are as follows:

-f The “-f” modifier tells KINSTALL to automatically load and use the set-up
information in the KINSTALLKIF file, rather than rechecking the system.
This option will permit you to modify parts of an installation without having
to re-enter all the information..

-mono

-RTM

The “-mono” modifier selects monochrome output. Normally, the program
is able to sense what type of display adaptor the computer has and adjust the
display accordingly. Where a composite monochrome monitor is being
driven by a CGA, the color pallet is translated into various shades and pat-
terns which may be unreadable under some circumstances. In these cases the
-mono modifier overrides the sensing of a display adaptor and improves the
readability of the screen.

The “-RTM” modifier can be used to specify all the set up information for the
RTM (Dataq WFS-ZOO) waveform scroller card. The full syntax for the RTM
modifier is:

-rtmcdisplay_area><wfs-ZOO_address>

There are four possible values for the display area:

LL = 400 pixels horizontal x 200 pixels vertical
HL = 640 pixels horizontal x 200 pixels vertical
LH = 400 pixels horizontal x 350 pixels vertical
HH = 640 pixels horizontal x 350 pixels vertical

When operating on a CGA the only valid display area specification is HL.
When no display area is specified a default of HI-I (for EGA or MONO) is
used.

The scroller card address is a number from 0 to 3f8 (hex) which must be
evenly divisible by 8. The default address is 308.

NOTE: in order to specify an alternate address, a display area must also be
specified.

The KINSTALL.KIF File

When you write an installation to disk with SAVE, a file named “KINSTALL.KIF” is also
written to disk. This file is a record of the information entered in the installation screen. This
information is valuable when you contact the applications department for help.

1-17

Installations Involving the 500GPIB Module

If your system includes a 5OOGPIB module, note that KDAC500 does not perform installation
steps for this module. The 500GPIB driver installation is outlined in the 500GPIB manual. It
requires that the user manually edit the DOS AUTOEXEC.BAT file to insert the required
command line.

If You Have Problems Installing KDACSOO

If you experience any problems with INSTALL, first review your work. If you must call
Keithley DAC for assistance, have available a printout of your KDAC500.BAT file
(KDAC500/1 only) and KINSTALLKIF (if they exist).

You should also have available the make and model of your computer and type of monitor
adapter. Also print out copies of your AUTOEXEC.BAT file and CONBIG.SYS file. If possible,
be near your computer so that you can supply additional information if it is requested.

l-18

Running the CONFIG Program

This section of the KDAC500 manual covers the creation of hardware configuration table
“CONFIG.TBL” with the KDAC500 program “CONFIG.EXE”. The following paragraphs dis-
cuss the purpose of the “CONFIG.TBL” file, explain the important run-time features of CON-
FIG, and provide a tutorial session using CONF’IG.

The Function of CONFIG.TBL

Keithley data acquisition and control systems are modular and expandable. The possible
combinations of modules, ranges, gains, and I/O configurations are practically unlimited.
KDAC500 must know the module names, switch settings, and related information in order to
control the hardware and acquire data. During installation, the INSTALL program can create
up to four configuration table filenames -- one for each interface card located in the computer
system. These names are CONFIG.TBL, CONFIGl.TBL,...CONFIG4.TBL. You must run CON-
FIG to create a configuration table file for each of the file names.

Setting Up Channel Information (IONAMEs)

The CONFIG.TBL file must also include the channel information for each channel accessed by
KDAC500. This information establishes a name for a channel, as well as the slot, channel
number, gain, and other parameters needed to fully describe the channel for input or output,
hence the term “IONAME”. KDAC500 itself does not provide for an IONAME command to
be used within the programming environment.

An important function of IONAMEs in the CONFIG.TBL file is that they set programmable
functions in many modules which otherwise lack hardware switches. An important example
is the programmable local gain on the AMMlA and AMM2 modules. In this case, IONAME
enables you to set the both local gain and global gain for any channel input of the AMM mod-
ule.

Menu Screens, Cursor Control, and Special Function Keys

All the functions of CONFIG are performed menu-style using tabular screens and the com-
puter’s cursor and special function keys. The screens are “HARDWARE SETUP” and
“CHANNEL SETUP” (see figures 1-3 and figure l-4). Each screen contains several columns
or windows which show instructions and menu choices for configuration.

Selections are made with various special function keys Fl-FlO. Each key controls one or more
functions depending on which screen or window is active. Some keys are not used.

The cursor appears as flashing text in reverse video block. Cursor keys on the right side of the
keyboard control the movement of the cursor around the screen. The left and right arrow

1-19

keys function only where choices are arranged in two or more columns. The up arrow and
down arrow keys control vertical movement, and will automatically move the cursor through
multiple columns.

========================== HARDWARE SETUP ===I============~~========

AMM2: 16SE/8DI than analog in, 16 bit A/D, global mux. Slot 1 only.

SLOT CARD SWITCH CONFIGURATION MODULES
--

1 AMM2 Range: lO.B, Filt: 100 KHZ, SING auto AIM6 AOM3 PCM2
2 TRGl ADMl AIM7 AOM4 PIMl
3 NONE ADM2 AIM8 AOM5 PIM2
4 AOM5 Default Range: -10. to 10.V AIM1 AIM9 DIM1 PROT
5 DIOl Port : A) IN B) IN C)OUT D)OUT AIM2 AMMl DIOl STPl
6 EXT AIM3 AMM2 DOMl STP2

AIM4 AOMl GPIB TRGl
AIM5 AOM2 PCMl NONE

FZ-FILE F3-MODULE F4-SWITCHES F5-CHANNELS
F9-LIST FlO-EXIT TO DOS
Wed Jul 5 13:39 Path: D:\KDAC500\

I

Figure 1-3 Hardware Setup

========================== CHANNEL SETUP ==============I===========

ANALOG1 : AMMZ, SL 1, CH 0, 16 BIT, LOCxl, GLOxl
, A FP 7.2

SLOT CHANNEL PORT IONAMES CHANNEL SETUP

1 0 8 ANALOG1
2 19
3 2 10
4 3 11
5 4 12
6 5 13

6 14
7 15

1) ADD IONAME 8) RESISTOR
2) COPY IONAME 9) FILTER
3) DELETE IONAME 10) OFFSET
4) RENAME IONAME 11) MODE/RANGE
5) ACCURACY 12) CONVERSION
6) LOCAL GAIN 13) DISPLAY FORMAT
7) GLOBAL GAIN

F2-SLOT F3-CHAN/PORT F4-IONAME
FlO-RETURN
Wed Jul 5 13:40 Path: D:\KDACSOOj

FS-CHANNELS

Figure Z-4. Channel Setup

l-20

Special Considerations for the Model 575 and System 570

The CONFIG program contains an option which automaticahy creates a configuration table
for the Model 575-1, Model 575-2, or System 570. This configuration table contains the factory
default module assignments, ranges, gains, and other setup information for these systems.

To automatically create a Model 575-l configuration table, type:

CONFIG 575-l

To automatically create a Model 575-2 configuration table, type:

CONFIG 575-2

To automatically create a System 570 configuration table, type:

CONFIG 570

Press <Enter>. CONFIG loads a default configuration table. Refer to the specific hardware
manual for more details on setting up the system hardware.

The modules in the Model 575 and System 570 cannot be changed, except for the option slot.
However, you can change hardware switches (if present), and other set-up information for
the virtual slots. If you add an option module or change the hardware configuration, run
CONFIG and update the configuration table to show these changes.

The CONFIG commands shown above should be run only once to create the desired configu-
ration table. Make subsequent changes to the table by running CONFIG. Then LOAD CON-
FIG.TBL, or the appropriate configuration table.

Running A Sample Configuration Session

The following instructions are a step-by-step tutorial through a typical configuration of
AMM2, AlM3, and DIOl modules installed in a 500A System. This exercise does not cover all
possible menu selections, and may not cover the particular hardware installed in your sys-
tem. However, it will provide enough familiarity with CONFIG that you can create any con-
figuration table that you will need.

This tutorial has five objectives:

1. Set up an AMM2 module in slot 1 with single-ended input, and +lOV A/D range.
2. Set up an AIM3 module in slot 6 with 16 differential inputs and a hardware gain of x100.
3. Set up a DIOl in slot 8 with channels O-15 configured as outputs and channels 1631 con-

figured as inputs.
4. Create several IONAMES within the configuration table, including a digital output

IONAME for the DIOl port A and a digital input IONAMX for channel 31.

1-21

This exercise will create a configuration table starting with a blank table, as is normally done
for a 500A.

Assigning Modules to Slots

To begin a practice session running CONFIG, make sure you have booted the system from a
KDAC500 Working Disk or fixed disk. From the DOS prompt, type:

CONFIG <Enter>

CONFIG will run and present the HARDWARE SETUP screen without any modules.

1. The cursor should be over 1 in the SLOT column. If necessary, use the cursor keys to
move the cursor to 1.

2. Press the special function F3 key to SELECT MODULE. The cursor will move to the
MODULES window.

3. Use the cursor keys to move the cursor over AMM2.
4. Press <Enter>. The cursor moves back to 1 in the SLOT column.
5. Move the cursor to the 6 position in the SLOT column.
6. Press F3 to SELECT MODULE. The cursor moves to the MODULES window.
7. Use the cursor keys to move the cursor over AIM3.
8. Press <Enter>. The cursor moves back to 6 in the SLOT column.
9. Move the cursor to the 8 position in the SLOT column.

10. Press F3 to SELECT MODULE. The cursor moves to the MODULES window.
11. Use the cursor keys to move the cursor over DIOl.
12. Press <Enter>. The cursor moves back to 8 in the SLOT column.

This completes the selection of modules for the configuration table.

Setting Configuration Switches and Options

The following instructions describe the entry of switch information for the modules already
entered into the configuration table.

1. This step begins the assignment of the flOV A/D range for the AMM2 analog inputs. The
cursor should be over 1 in the SLOT column. If necessary move the cursor to 1.

2. Press special function key F4 to SET SWITCHES. GAIN information replaces the MOD-
ULES window.

3. Use the cursor keys to move through the available range settings to -10. to +lO.V. The
Ah4M2 module is software-programmable for gain and range, so there are no hardware
switches to be set. Gain is set in the IONAME commands.

4. Press <Enter>. The filter selection window will appear. Move the cursor to 1OOkHz.
5. Press <Enter>. The SINGLE-ENDED/DIFFERENTIAL choices appear. Use the cursor

keys to toggle the cursor to SINGLE-ENDED.
6. Press <Enter>. This concludes setting for AMMZ.
7. This step begins the setting of switches on the AIM3. Configuration of the AIM3A mod-

ule is similar. Move the cursor to the 6 position in the SLOT column.

l-22

8. Press special function key F4 to SET SWITCHES. GAIN information replaces the MOD-
ULES window. Switch setting information appears in the AIM3 manual.

9. Use cursor keys to move through the available gain settings to x 100. Set the gain
switches on the AIM3 according to the switch information at the top of the screen.

10. Press <Enter>. The SINGLE-ENDED/DIFFERENTIAL choices appear in the GAIN win-
dow. Use the cursor keys to toggle the cursor to DIFFERENTIAL. Set the input mode
switches on the AIM3 for differential operation (both switches up).

11. Press <Enter>. The window shows a choice between AIM3 and AIM3A. Move the cursor
to AIM3 and press <Enter>. This concludes set-up of the AIM3 switches.

12. This step begins the setting of switches on the DIOl. Move the cursor to the 8 position in
the SLOT column.

13. Press F4 to SET SWITCHES. PORT information replaces the MODULES window. (A port
is 8 input or output channels.)

14. The cursor will rest on either INPUT or OUTPUT according to the present setting for port
A. The port or channel being affected is listed at the top of the PORT window. Use the
cursor keys to toggle to OUTPUT, and then press <Enter>.

15. Repeat step 17 to set port B to OUTPUT. Repeat step 17, except with the cursor on “IN-
PUT”, for ports C and D. After you configure the last port, the cursor will move back to 8
in the SLOT column.

The DIOl has a 4-bank DIP switch which is labeled “IN” and “OUT”. Set the DIP switches
for channels O-15 to “OUT”, and channels 16-31 to “IN”. This information is not repeated at
the top of the screen. The DIOlA module is software-programmable for I/O and does not
have switches.

This concludes switch settings for the system.

Programming IONAMES as Part of the Configuration Table

The next instructions explain how to program IONAMEs directly in the configuration table.
KDAC500 does not provide for an IONAME statement, so all channel information must be
set up through CONFIG.

Three IONAME’s will be set up:

l One IONAME for channel 2 of the AIM3 in slot 6 with differential input and global gain
(GA%) of 10.

l One IONAME for DIOl port A. KDAC500 will program these 8 lines for output as individ-
ual bits in a byte.

l One IONAME for the individual DIOl input channel 31.

During this operation, new options will appear in the CHANNEL SETUP window. These op-
tions deserve special note since some of their functions are not immediately obvious.

ADD IONAME - adds an IONAME for a slot/channel. Make sure the cursor is on ADD
IONAME. Press <Enter>. CONFIG prompts for the new IONAME. Type the name and press
<Enter>.

l-23

COPY IONAME - copies the contents of an existing IONAME to the IONAME which is
highlighted in the IONAME column. To select an IONAME for copying, press F4-SELECT
IONAME. Move the cursor to the desired IONAME. Press F5-CHANNEL SETUP to return to
the CHANNEL SETUP window. Move the cursor to COPY IONAME and press <Enter>.
CONFIG will prompt for the IONAME to be copied to the highlighted IONAME. Type the
name and press <Enter>.

DELETE IONAME - deletes the IONAME highlighted in the IONAME column. To select an
IONAME for deletion, press F4SELECT IONAME. Move cursor to the desired IONAME.
Press F5-CHANNEL SETUP to return to the CHANNEL SETUP window. Move the cursor to
DELETE IONAME and press <Enter>. CONFIG will prompt for a confirmation before it de-
letes the selected IONAME.

RENAME IONAME - renames the IONAME highlighted in the IONAME column. To select
an IONAME for renaming, press F4-SELECT IONAME. Move cursor to the desired
IONAME. Press F5-CHANNEL SETUP to return to the CHANNEL SETUP window. Move
the cursor to RENAME IONAME and press <Enter>. CONEIG will prompt for the new name.
Type the name and press <Enter>.

ACCURACY - specifies A/D resolution - 1214, or 16 bits. Move the cursor to ACCURACY
and press <Enter>. Toggle to 12,14, or 16 with the cursor keys and press <Enter>.

LOCAL GAIN - specifies hardware gain selected for analog input modules which have on-
board gain amplifiers. For gains which are set by hardware switches, CONFIG reads the
switch information you previously entered and updates LOCAL GAIN automatically. For
modules with software-programmable gain, LOCAL GAIN shows legal gain values. Move
the cursor to LOCAL GAIN and press <Enter>. Move the cursor to the desired gain and press
<Enter>.

GLOBAL GAIN - Gain applied by the master analog module global gain amplifier, but pro-
grammed on a slot-and-channel basis for any analog input modules. Legal values are xl, x2,
x5, and x10. Move the cursor to GLOBAL GAIN and press <Enter>. Move the cursor to the
desired gain and press <Enter>.

RESISTOR - The value of a resistor which you have installed on an analog input module for
current-to-voltage conversion. Move the cursor to RESISTOR and press <Enter>. CONFIG
will prompt for the resistor value in ohms. Type in the value (integer) and press <Enter>.

FILTER - For modules with software-programmable filters. Move the cursor to FILTER and
press <Enter>. Move the cursor to the desired filter and press <Enter>.

OFFSET - Enables or disables adjustable input offset feature of the AIM8. Move the cursor
to OFFSET and press <Enter>. Move the cursor to ENABLED or DISABLED as desired, and
press <Enter>.

MODE/RANGE - This menu selection set the mode of the PIM2 as either READ only, or
READ and RESET. This will either allow totalizing or not, depending on your application.
This command also sets the range of the AOM5 module.

l-24

CONVERSION - In general, this function allows you to define the type of conversion that
should be performed on the input signal. It currently does not cause the conversion to take
place but can be used for documentation of the type of signal or tranducer that you are using.
For AIM8 and AIM9 you can set the calibration factor and calibration measurement units
used to calibrate the card and transducer. Move cursor to CONVERSION and press <Enter>.
Then move to SPECIAL and press <Enter>. Then select either LVDT/RVDT or STRAIN
GAGE. CONFIG then prompts for the calibration factor in millivolts per volt excitation. Type
in factor to three decimal places and press <Enter>. CONFIG prompts for calibrating units of
measure. Type in units (integer) and press <Enter>.

DISPLAY FORMAT - This function does nothing for KDAC500. It will be used in future
products to allow you to define the data formats for hard copy printouts of data, and for com-
munication with analysis packages.

NOTE: The AIM6 module is supported in a different fashion from previous versions of CON-
FIG. To select the proper mode of operation for the AIM6, simply use the LOCAL gain menu
selection.

1. Before continuing, make sure the cursor is in the SLOT column of the initial HARD-
WARE SETUP screen. Press Esc several times if necessary to return to the HARDWARE
SETUP screen.

2. Use the cursor keys to move the cursor over 6 in the SLOT column. Press special function
key F5 for the CHANNEL SETUP screen.

3. Press F3 to SELECT CHAN/PORT. The cursor will move to 0 in the CHANNEL column.
4. Use the cursor keys to move the cursor to 2 in the CHANNEL column.
5. Press <Enter>. The cursor will move to ADD IONAME in the CHANNEL SETUP win-

dow.
6. Press <Enter>. CONFIG will prompt for an IONAME. This name can contain up to 8 let-

ters and numbers. In this case, type in ‘TEST” and press <Enter>.
7. Move the cursor to ACCURACY in the CHANNEL SETUP window.
8. Press <Enter>. A/D menu choices appear in the CHANNEL SETUP window. Use the

cursor keys to select 16 BIT and press <Enter>. The CHANNEL SETUP choices will reap-
pear.

9. Use the cursor keys to move the cursor to GLOBAL GAIN.
10. Press <Enter>. Global Gain choices will appear in the CHANNEL SETUP window. Use

the cursor keys to move the cursor to the x10 position. Press <Enter>.
11. This completes the configuration of IONAME parameters for the AIM3 module. Go di-

rectly to creating an IONAME for another slot by pressing F2 for SELECT SLOT.
12. The following instructions set up IONAME’s for the DIOl module port A and Channel

15. Use the cursor keys to move the cursor to 8 in the SLOT column.
13. Press F3 for SELECT CHAN/PORT. The cursor will move to the C HANNEL column.

Press F3 again to move to the PORT column.
14. Use the cursor keys to move the cursor to A in the PORT column.
15. Press <Enter>. The cursor will move to ADD IONAME in the CHANNEL SETUP col-

umn.
16. Press <Enter>. CONFIG will prompt for an IONAME. In this case, type in “OUTA” and

press <Enter>. (The only parameter you can enter for digital I/O is the name.)
17. Press F3 for SELECT CHAN/PORT. The cursor will return to the PORT column.
18. Press F3 for SELECT CHAN/PORT again. The cursor will move to the CHANNEL col-

umn.
19. Use the cursor keys to move the cursor to 31.
20. Press <Enter>. The cursor moves to ADD IONAME in the CHANNEL SETUP column.
21. Press <Enter>. CONFIG will prompt for an IONAME. In this case, type in “IN15” and

press <Enter>. (The only parameter you can enter for digital I/O is the name.)

1-25

22. This completes the assignment of IONAMES for the DIOl. Press F10 to return to the
HARDWARE SETUP screen.

File I/O - Saving the Configuration Table

These steps will save the configuration table to disk.

1. Press F2 for FILE operations. The MODULE window will be replaced by a FILE I/O
menu. It includes choices for loading, saving, and deleting files, and for changing default
drives and directory.

2. Use the cursor keys to move the cursor to SAVE FILE.
3. Press <Enter>. The FILE I/O window will show the drive, directory, and one or more

configuration file names. If no CONFIG filename exist, only “new file“ will be shown.
Use the cursor keys to move the cursor to CONFIG or “new file”.

4. Press <Enter>. If you indicated “new file”, you will be prompted for a filename. If so, en-
ter “CONFIG”. The file will be saved as CONFIG.TBL. The filename extension “.TBL” is
added automatically.

To save the table under another existing filename, move the cursor to that filename in place of
“CONFIG”. If there are more filenames than will fit in the window, press the cursor control
PgUp or PgDn keys to call up the additional filenames. Move the cursor to the desired file-
name and press <Enter>.

To specify a completely new filename, select the “new file” menu option. CONFIG will
prompt for a filename prefix, up to 8 characters. These characters must be legal DOS filename
characters. Enter only the filename prefix. Do not enter ,“TBL”.

This concludes a typical configuration.

File I/O - Loading a Configuration File

These instructions presume that CONFIG.EXE is running, and that you want to modify a con-
figuration table which resides on the disk. The desired file can be called back into the configu-
ration table selecting the LOAD FILE option under F2-FILE.

1. Press F2 for FILE I/O. The MODULES window will be replaced by the FILE I/O.
2. Use the cursor keys to move the cursor to LOAD FILE.
3. Press <Enter>. The FILE I/O window will show the drive, directory, and one or more

configuration file names. Use the cursor keys to move the cursor to the desired filename.
In this case select “CONFIG”. If there are more filenames that will first in the window,
press the cursor control PgUp or PgDn keys to call up the additional filenames. Move the
cursor to the desired filename.

4. Press <Enter>. The file will be loaded into the CONFIG program workspace. Make what-
ever changes you desire.

5. To preserve the changes refer to the instructions above for saving a configuration table
file. You can save the configuration table under the name CONFIG, or its original name,
or as a new name.

1-26

The configuration file thus loaded into memory will overwrite any configuration table that
may currently be in memory.

File I/O - Deleting a Configuration Table

These steps will delete a configuration file from the disk.

1. Press F2 for FILE operations. The MODULE window will be replaced by the FILE I/O
menu.

2. Use the cursor keys to move the cursor to DELETE FILE and press <Enter>.
3. CONFIG will list the configuration table file in the FILE I/O window. Move the cursor to

the filename to be deleted. If there are more filenames than will fit in the window, press
the cursor control PgUp or PgDn keys to call up the additional filenames. Move the cur-
sor to the desired filename.

4. Press <Enter>. CONFIG will prompt for a confirmation. Type ‘Y” and press <Enter>.

File l/O - Changing the Default Drive or Directory

1. Press F2 for FILE I/O.
2. To change the default drive, select CHANGE DRIVE from the FILE I/O window and

press <Enter>. CONFIG will prompt for the drive ID. Type only the letter of the drive (no
colon) and press <Enter>.

3. To select a different directory, select CHANGE DIRECTORY from the FILE I/O window
and press <Enter>. CONFIG will prompt for the directory name. Type an existing DOS
directory name and press <Enter>.

If the new directory name is on the current default drive, subsequent disk I/O will address
that directory. If the directory is on a drive other than the current directory drive, you must
also CHANGE DRIVE to make the new drive the default. Attempting a change to a nonexist-
ent drive or directory will produce an error message.

Generating a Configuration Table File Report

CONF’IG can generate a report of the configuration table and IONAME’s. The report can be
listed to the screen, written to a disk file, or sent to the printer.

1. Press F9 to LIST. The MODULES window changes to show the output destinations FILE,
PRINTER, or SCREEN.

2. Use the cursor key to select the desired destination for the report and press <Enter>. If
you select SCREEN, CONFIG will show a summary report of the configuration and
IONAMES. Press any key to return to the FILE, PRINTER, or SCREEN menu. If you se-
lect FILE, CONFIG will prompt for the filename. Type a legal DOS filename and press
<Enter>. The filename will overwrite any existing file with the same name. If you select
PRINTER, CONFIG wiIl prompt for confirmation that the printer is ready. Be sure that
the printer is connected and turned on. Type ‘Y” and press <Enter>.

3. Press Esc to return to the HARDWARE SETUP screen.

1-27

Leaving the Config Program

1. If necessary, press Esc several times or cFlO> to return to the HARDWARE SETUP
screen.

2. Press cFlO> to exit. The program will remind you to save the changes. If you have saved
them and want to end CONFIG, enter “Y” and press <Enter>. If you need to save the
configuration table and haven’t done so, press “N” and <Enter>. CONFIG will move di-
rectly to the SAVE menu. Save the table using the F2-FILE instructions before leaving
CONFIG.

Aborting a Configuration Session

You may abort a configuration session by repeatedly pressing the escape (“Esc”) key until the
HARDWARE SETUP screen reappears. Then, press cFlO> to exit to DOS and answer the
prompt ‘9” for Yes. If you do not save the configuration table, all configuration files stored
on the disk will remain unchanged, and any changes made to the configuration table in mem-
ory will be lost.

You may also abort a CONFIG session from anywhere in CONFIG by pressing <AltxFlO>.
No prompt will be given for exit verification.

1-28

Methods of Creating a KDACSOO
Program

General

Before you begin with KDAC500, you should become completely familiar with the program-
ming language package you have chosen and how to write, debug, and compile a program.
The KDAC500 documentation does not replace the compiler reference manual.

There are quite a few ways of creating and running KDAC500 programs. The following para-
graphs describe these methods. In each case it is assumed that access to the interface routines
is available. Before the K5OO.EXE kernel is loaded, KDAC500 programs can be compiled but
cannot be run.

Method for Creating Executable Test Programs

If you have experience in using Keithley’s Soft500, Quick500, or KDAC500/1 software, you
will note some major changes in how you approach programming with KDAC500/B and
KDAC500/M. The most important of these is that, under KDAC500/B and /M, you may not
be able to run and debug your program from within the compiler’s editor/environment (pro-
vided it has one). For example, Soft500 and KDAC500/1 programs are written, run, and de-
bugged entirely from within the BASIC interpreter environment.

In contrast, KDAC500/B and KDAC500/M operate with several compilers. The memory re-
quirements of these compilers leave very little free memory for arrays. Therefore, it is more
realistic to create your program source code with a text editor, and then compile the program
from the DOS prompt. Note that the QuickBASIC, Quick C, Microsoft C, and Borland Turbo
compilers have an editor/environment which enables you to write and edit source programs
and then proceed directly to the compile/link step. These environments automate many of
the steps which must be completed manually when compiling from the DOS prompt.

A second consideration for KDAC500 programmin g is that you must have a clear design for
your test program before you begin programmin g. This includes identifying the various in-
put and output channels, and then running CONFIG.EXE to set up the necessary IONAMEs
in the hardware configuration table. You will also need to identify the amount of data that
will be generated when the program runs. While some packages permit programming “on
the fly”, KDAC500 requires a more organized approach. In the long run, this approach will
result in better, more easily maintained test programs.

The general approach to creating executable files with KDAC500/B and KDAC500/M is as
follows:

3.

4.
5.

Install your compiler and the KDAC500 software on your computer system. Confirm that
the compiler can “find” any header or library files, and that it runs properly before you
attempt to write a KDAC500 programs.
Design your test program.
Run the KDAC500 CONFTG.EXE program to create the necessary hardware configuration
table for your DAC hardware. Decide on the channels of input and output, and set this

l-29

information up as IONAME data in the table. Note that there is no provision for setting
up IONAMEs directly within your test programs.

6. Run the compiler’s editor/environment and write or edit your program source code.
Note that you must “include” the appropriate KDAC500 langauge support file in your
program: KDAC500.BI for QuickBASIC programs, KDAC500.H for Microsoft C, Quick C,
and Borland Turbo C, “include ‘KDAC500.FI’ fl and “include ‘KDAC500.FD’ ” for
Microsoft FORTRAN, and the statement “uses KDAC500” for Borland Turbo Pascal.

7. Compile, link, etc. to produce an executable file. You can usually do this most conven-
iently from within the compiler environment. Most environments will aid in the debug-
ging process by identifying compile or link errors. You can normally compile and link
from the DOS command line as well, but without some of the benefits of the environment
(see your compiler manual for the correct DOS command line syntax and other proce-
dural details).

8. Run the successfully compiled program with the KDACSOO “KRUN” utilities. See the
next section ‘Methods of Running a KDAC500 Progam” for details.

9. Test the various program functions to make sure it does what you expect.
10. Repeat 48 until the program functions as desired.

QuickBASIC Programming

OBJECTIVE: Run the QuickBASIC editor/enviroment and create an executable (.EXE) pro-
gram. Generally speaking there is not enough RAM left with QuickBASIC, K500, your pro-
gram and a Quick Library all resident in memory at the same time, so it isn’t feasible to run
KDAC500 programs from within the QuickBASIC environment. However, the environment
is an excellent place for editing, debugging, and compiling your KDAC500 programs.

METHOD: First you must create a Quick Library that QuickBASIC can use. The library file
KDAC5OO.LIB is the file that will be used to make it. This need only be done one time. Once
the Quick Library has been created it can be used for all your QuickBASIC programs.

At the DOS prompt type:

link /QU KDAC500.LIB,,nul,BQLB45<enter>

The file BQLB45 is a library file that is supplied with version 4.5 of QuickBASIC. It is used to
create Quick libraries for version 4.5 of QuickBASIC. Refer to the section on Quick Libraries
in the QuickBASIC manual for more information.

Next, start QuickBASIC and load the KDAC500 Quick Library.

At the DOS prompt type:

qb /1 KDAC5OOcenter>

Write and edit your program using QuickBASIC’s smart editor and syntax checker. The in-
terfaces to the KDAC500 library are defined in the file KDAC500.BI which must be included
in your QuickBasic program with the statement:

l-30

‘$INCLUDE: ‘KDAC500.BI’.

When the program is satisfactory, use the QuickBASIC “ALT .R” command to access the
“RUN” pull-down menu.

Select the “Make EXE” option and complete the remaining QuickBASIC steps to produce a
compiled test program file on disk. Because the KDAC500 Quick Library was loaded when
QuickBASIC started, QuickBASIC “knows” to look for the KDAC500.LIB file automatically
when it creates the .EXE file. Leave QuickBASIC and execute the program with the KDAC500
“KRW utility; e.g. “KRUN <your program>“.

C Programming

OBJECTIVE: Run the Turbo C or QuickC editor/environment and create an executable pro-
gram. As with QuickBASIC, there is not enough RAM to execute your KDAC500 program
from within the environment. However, the benefits of the environment’s debugging and
editing facilities outweigh the drawbacks.

METHOD: First a file that defines the modules that make up your program must be created.
In Turbo C this is called a project file. In QuickC it is called a program list. You can use the
Turbo C editor to create a project file for your program. QuickC has a facility for creating
program lists. Let’s assume that our program is named TEST1.C.

The project file for TESTl.EXE (Turbo C) will contain two lines:

TEST1 .C
TLJRBO5OO.LIB

If TESTl.EXE was made of multiple modules each module would be entered into the project
file. See the Turbo C documentation for more information on project files. The important
thing to remember about project files used to create KDAC500 programs is the inclusion of
the TTJRBO5OO.LIB line. If it is not present, Turbo C does not know how to resolve the refer-
ences to KDAC500 functions. The interfaces to KDAC500 library are defined in the
KDAC500.H header file. This file must be included at the top of your program with any other
include’s that are needed.

The program list for TESTl.EXE (QuickC) will contain these two files:

TEST1 .C
KDAC5OO.LIB

If TESTl.EXE was made of multiple modules each module would be entered into the pro-
gram list. See the QuickC documentation for more information on program lists. The impor-
tant thing to remember about program lists used to create KDAC500 programs is the inclu-
sion of KDAC500.LIB. If it is not present, QuickC does not know how to resolve the refer-
ences to KDAC500 functions.

1-31

Complete the remaining steps to produce a compiled program on disk. Refer to the docu-
mentation for your compiler. The completed.EXE file can be executed from the DOS com-
mand line using the KDAC500 “KRUN” utility, e.g. “KRUN <your program>“.

Pascal Programming

OBJECTIVE: Run the Turbo Pascal or Quick Pascal editor/environment and create an exe-
cutable program. As with QuickBASIC, there is not enough RAh4 to execute your KDAC500
program from within the environment.

METHOD: KDAC500 is very easy to implement with Turbo Pascal or Quick Pascal. The only
requirement is the one statement:

uses KDAC500;

This command must be included within your Pascal program if you wish to access the
KDAC500 functions. Standard Pascal Units can be used in conjunction with KDAC500 (i.e.
uses Crt, DOS, KDAC500;). Refer to the Turbo Pascal or Quick Pascal documentation for more
information on Pascal Units. Run the completed EXE file from the DOS comman d line with
the KDAC500 “KRUN” utility, e.g. “RUN <your program9’.

FORTRAN Programming

OBJECTIVE: Create a program using the Microsoft FORTRAN 5.0 package.

METHOD: Creating an executable file using FORTRAN is quite easy. First, create the source
code with an ASCII-compatible word processor or notepad editor. The program must contain
the following lines at its beginning:

include ‘KDAC5OO.FI
include ‘KDAC5OO.FD

When the source code is complete, save it as an ASCII file. Compile the source by executing
the following command at the DOS prompt:

fl / c / AL&lename.ext>

The filename must be complete, including the filename extension. (The extension typically
used for FORTRAN program is “.FOR”).

Next, link the object module by executing the following command at the DOS prompt:

link &lename>,&lename>,nul,KDAC500

l-32

The first <filename> refers to the name of the .OBJ module created during the compile step.
The second <filename> refers to the name of the resulting .EXE file. Normally, both names
will be the same as the original FORTRAN source. The filename extensions are not used here.

Run the completed .EXE file from the DOS command line with the KDAC500 “KRT_JN” utility,
e.g. “KRLJN <your program>R.

Make Files

OBJECTIVE: Create an executable program using a program build utility such as MAKE.

METHOD: The only requirement for using a MAKE utility is to be sure to Iink with the cor-
rect library or there wiII be unresolved references. The stand alone Turbo Pascal and Quick
Pascal compilers are exceptions to this ruIe because the “Uses KDAC500;” statement tells the
compiler what to use. Unfortunately there is no way to teIl the other languages which library
to use that makes Iinking as easy as with Pascal. You must specify the name of the library at
link time.

TEST1 .EXE : TEST1 .C
tee -c -ms test1 .c
tlink cOs+testl,testl,nuI,cs + turbo500

TEST1 EXE : TEST1 .C
qcl -c test1 .c
Iink testl,testl,nuI,KDAC500

TESTl.EXE : TESTl.BAS
bc testl;
link testl,testl,nuI,KDAC500

TEST1 .EXE : TEST1 PAS
tpc testl.pas

TEST1 .EXE : TEST1 PAS
qpl testlpas

TESTl.EXE : TESTl.FOR
FL/C/AL Testl.FOR
LINK TESTl, TESTl, NUL,KDAC500

; Turbo C example
; small memory model

; QuickC example

; QuickBASIC example

; Turbo Pascal example

; Quick Pascal example

; Microsoft FORTRAN example

1-33

Methods of Running a KDACSOO
Program

Before you continue with this section, you must have installed KDAC500 and your compiler
on your computer, and also created a configuration table file for each data acquisition system
installed in the computer.

KDAC500 can be started and run in a number of different operating modes. To understand
these modes, it is important to note the functions of several files in the KDAC500 package.

KDAC500 FILES:

KDAC500,LIB - A library file which resolves the KDAC500 functions you include in a
KDAC500 program. KDAC500,LIB is the library of routines that is used with Microsoft C,
QuickC, QuickBASIC v4.x, and Microsoft FORTRAN 5.0. These statements communicate
with the data acquisition hardware. KDAC500.LIB must be on the disk and accessible when
you link your programs or error messages will result.

TURB0500.LIB - Same as KDAC500.LIB but used with Borland Turbo C 2.0

KDAC500.TPU - Same as KDAC500.LIB but used with Borland Turbo Pascal 6.0

KDAC500.T55 - Same as KDAC500.LIB but used with Borland Turbo Pascal 5.5

KDAC5OO.T50 - Same as KDAC500.LIB but used with Borland Turbo Pascal 5.0

KDAC500.QPU - Same as KDAC5OO.LIB but used with Microsoft Quick Pascal 1.0

K5OO.EXE - This is the memory-resident kernel which controls the data acquisition hard-
ware. K500 must be in memory in order for you to run any KDAC500 programs. IUWN.BAT
and KLOAD.BAT load K500.EXE into memory (see KRlJN.BAT and KLOAD.BAT descrip-
tions below). K500.EXE must be on the disk and accessible when you run KDAC500 pro-
grams

KRUN.BAT - KRUNBAT runs KDAC500 programs that have been compiled into DOS exe-
cutable form (EXE). KRUN will return to DOS when the program terminates. The KRUN file
loads the K500.EXE kernel into memory, and then runs thespecified KDAC500 program
(EXE file). KRLJN loads the KDAC500 KERNEL (K500.EXE) temporarily. Once the
KDAC500 program terminates, K500 removes itself from memory before returning to DOS.

The syntax for this command is:

KRUN <your program name> cargl> carg2>....

If there are any arguments to be appended to your program, enter them after the name of
your program.

1-35

KLOAD.BAT - This batch file loads the K500.EXE kernel and makes the kernel permanently
resident in memory. After K500.EXE has been made memory resident, KLOAD will return to
DOS where you can nm your compiled programs by simply entering the program name at
the DOS prompt.

The syntax for this command is:

KLOAD

136

Operating more than One Data
Acquisition System on a Single
Comwter

KDAC500 has the ability to run up to four data acquisition systems using one computer as a
host.

Set-up Procedure

You must adhere to the following setup procedure to operate more than one data acquisition
system on a single computer:

Each System Must Have its own Interface

Each data acquisition system must have its own interface plugged into the computer. (This
requires that the computer have enough expansion slots available.) The KDAC500 INSTALL
program will assign the first interface entered in the installation screen as the “master”. The
interrupts of the master interface card become the master interrupts and control the back-
ground data acquisition of all the interface cards. This is the case even though all of the inter-
faces are capable of generating interrupts for data acquisition.

Each Interface Must Have A Unique Address

Each interface you install must be set to a different address. Generally, the address ranges
CAF8OCFF80 and DOF80-DFF80 can be used successfully on both XT- and AT-class comput-
ers.

Each System Must Have A Separate Configuration Table File

For multiple acquisition systems, KDAC500 must have a method of accessing the specific
hardware in each system. This task is achieved by using a separate, unique configuration ta-
ble (“.TBL”) file for each interface. Accordingly, you must run CONFIG and create a hard-
ware configuration table file for each interface address. Each file must have a unique file
name. Normally, you should use the names provided for by the INSTALL program (CON-
FIG, CONFIGl, CONFIG2, CONFIG3).

Each configuration table file may be a duplicate of the others in terms of the hardware mod-
ules and placement within the slots. However, all IONAMEs which are set up within the
configuration table files must be different. No two tables may have duplicate IONAMEs. See
the section of running the configuration program CONFIG for more information.

1-37

The KDACBOO Installation Must Identify all the Interface Addresses and Config Filenames

If you have done an installation for one data acquisition system, and later want to add more
systems to one computer, you must do a re-installation with the addresses and the configura-
tion table filenames for each interface plugged into the computer.

Running Multiple Systems

To run KDAC500 with multiple systems, start KDAC500 as you normally would with a single
system. Write your test program. Observe that the memory in the computer is now serving
multiple acquisition systems. You may have to adjust the number or size of the data arrays in
order to fit ah data into the available memory.

l-38

Initializing Hardware at Power-up with
HARDINIT

(NOTE: This information describes how to set up the HARDINIT command. Please refer to
any other safety-related information concerning specific cards in your data acquisition sys-
tem.)

KDACSOO includes a utility program “HARDINlT.EXE” which can initialize all the digital
and analog output modules to a known state when the system is booted.

When you turn on the data acquisition system, some output modules may power up in a
“scrambled” state. This condition would normally exist until you load and run a data acquisi-
tion program which initializes the hardware. By inserting HARDINIT with the necessary pa-
rameters into the AUTOEXEC.BAT file, system initialization will occur when the computer
boots and executes AUTOEXEC.BAT. This occurs when the computer is turned on, or when
you do a warm reboot (CTRL-ALT-DEL).

You must observe a few precautions when you use HARDINIT:

1.

2.

3.

The data acquisition system(s) must be turned on at the time the ATJTOEXEC.BAT file
with HARDINIT is executed. HARDINIT will not initialize hardware which is turned off.
HARDINIT uses the configuration table files to identify and initialize output modules.
The configuration table filenames must include the drive letter and path corresponding to
their location on the fixed disk or floppy diskettes. Failure to do so will produce the error
message “Configuration file not found”, and the hardware will not be initialized.
The KDAC500 utility HARDLNIT.EXE must be accessible to ALJT.OEXEC.BAT, either di-
rectly, or in the search path. Install copies HARDINIT.EXE to the working diskette or
fixed disk directory along with the rest of KDAC500. For a fixed disk, it is easiest to sim-
ply recopy HARDLNIT.EXE to the fixed disk root directory.

Format of the HARDINTT command:

HARDINJT -c OxAA&4 <CONFIG table filename> -p

Where:

-c specifies that the following parameter is an interface address and configuration filename.

OxA4AA is the address of the interface. AA&4 represents the four most significant digits of
the address in hexadecimal notation.

<filename> is the complete configuration table filename (with full path spec.) corresponding
to the interface at AAAA.

1-39

-p is a “pause” option. Ending the HARDINIT command line with “-p” will type a reminder
to the screen that the data acquisition systems must be turned on. You will have to press the
<Enter> key before the initialization takes place.

The sequence “-c OxAAAA filename” must be entered for each data acquisition system that is
to be initialized. The -p option is used, it should be inserted at the end of the HARDINIT
command line and used only once per HARDlNlT command line.

An example of an ATJTOEXE.BAT containing one HARDINIT is as follows:

ECHO OFF
CLS
HARDINIT -c 0xAFF8 C:\K500\CONFIG.TBL -c OxCFF8 C:\K500\CONFIGl.TBL -p
DATE

This AUTOEXEC.BAT file will initialize two systems simultaneously: one at address AFF80
and one at address CFB80. It will also pause for a press of the <Enter> key.

An alternate technique for using HARDINIT is to enter a separate HARDINlT command for
each system. An example AUTOEXEC.BAT file containing two HARDINIT’s is as follows:

ECHO OFF
CLS
HARDINIT -c OxAFF8 C:\K500\CONFIG.TBL -p
HARDINIT -c OxCFF8 C:\K500\CONFIGlTBL -p
DATE
TIME

This ATJTOEXEC.BAT will initialize systems at address AFF80 and at address CFF80. The
systems will be initialized sequentially. HARDIN’IT will pause for a press of the <Enter> key
for each system.

l-40

CHAPTER 2
KDACSOO System Features

KDACSOO Memory Management

Background/Foreground

Triggering

Engineering Units Conversion

KDAC500 Memory Management

The KDAC500 Memory Management System provides an extremely flexible and sophisti-
cated memory management system which is well-suited for data acquisition and control ap-
plications.

Its main purposes are:

l To provide very large data arrays.
l To provide data structures with special features which make them particularly useful for

data acquisition and control applications.
l To free your program’s data space for your own applications.
l To allow you to implement two memory management systems at once (KDAC50O’s and

your compiler), each with its own advantages, and to be able to make the best use of each.

To understand the KDAC500 Memory Management System, a memory map is needed. The
following diagram represents the typical memory usage for IBM, Compaq, and MS-DOS Ver-
sions 3.0 or later.

The exact boundaries of the blocks containing the Disk Operating System, your program, and
K500.EXE may vary depending on their versions. The hardware shown in memory above
AOOO:OOOO will vary depending on the options installed in the computer.

When you install KDAC500, you must consider the information in the memory maps, includ-
ing the memory size of your computer. You must have a clear understanding of your ulti-
mate memory requirements when you run KDAC5OO’s INSTALL program. If you select too
large an array space, you will receive a variety of error messages from KDAC500, your appli-
cation, or both. Numbers for your system depend on the rev level and size of DOS, the size
the K500.EXE kernel, and any other memory-resident programs you may be running. These
are approximations, and should be verified for your particular hardware, software, and appli-
cation program.

The KDAC500 startup batch files KLOAD.BAT and KRUN.BAT contain a “-m” parameter
that specifies the amount of memory to be reserved for arrays. This parameter represents the
number of 16-byte memory segments that KDAC500 will have for data arrays. The KDAC500
INSTALL process sets the -m parameter according to your input at the time of installation.
The easiest way to alter the memory reserved for arrays is to rerun INSTALL. Alternately,
you can use an ASCII word processor or DOS’s EDLIN utility to modify the KLOAD or
KRUN batch files directly.

2-3

MEMORY MAP - IBM XT or AT WITH 640K AND FIXED DISK

HEXADDRESS
(SEGMENT:OFFSET)

:FFFF
:EOOO

_ K bytes:

ROM BIOS area
IBM BASIC-in-ROM

1024K

. 960K

EOOO:

DOOO:
:FF80

cooo:
:8000
:oooo

BOOO:

AOOO:

9000:

8000:

7000:

6000:

5000:

4000:

3000:

2000:
1000:

0000:

AT: 64K reserved memory area.
XT: available for IBIN (ExF80)

or E,MS memory (64K).’
896K

Available for IBIN (DxF80)
or EMS memory (64K)!

832K
AT: available for IBIN (CxF80).

XT: available for IBIN from
CAF80 to CFF80. ’

768K
Color Adapter Memory
Mono Adapter Memory

704K

Reserved for EGA (64K), but
available for IBIN (AxF80) if

no EGA is installed.1B2
640K

576K
User Program Memory.

--I
512K

Data array space as
specified during

K500.EXE KERNEL
CLKSPD.COM (timina software)

._-. _

128K
. _ I

1 64K
Disk Operating Svstem 3 I - _ _

’ OK

1. Any address in this block ending in “F80” can be chosen provided there
is no conflict with other hardware. Factory-suggested address for IBIN is CFF80.

2. ON IBM PC’s with 256K mother board, and on some compatible computers,
this space can also be populated with RAM to increase addressable system
RAM to 704K. (Not applicable for IBM Portable PC, XT, and AT, or systems
with EGA).

3. Varies in size depending on amount of RAM specified for array during
installation. A small portion of the DOS file COMMAND. COM resides
at the top of system RAM. It is not shown in this diagram.

2-4

Table 2-1. Approximate Array Space for KDAC500/B and KDACZOO/M

Total System RAM Available
RAM for Arravs

640K -300K
576K -236K
512K -172K

How Data Arrays are Created for KDAC500

NOTE: The following programming commands and examples are shown in QuickBASIC for-
mat, as would be used with KDACSOO/M. Coding conventions and punctuation (such as sin-
gle or double quotes, underscores, and periods), vary with from language to language. How-
ever, actual KDAC500 command names, general usage, and functionality are the same, re-
gardless of KDAC500 version.

KDAC500 input commands (BGREAD & ANINQ) create KDAC500 arrays automatically
when they are executed. KDAC500 arrays can also be created with the KDAC500 command
ARMAKE (ARray MAKE).

For example, the statement:

call armake(“arrayl”, 1000, “ION1 ION2”)

creates an array named array1 with 1000 elements and a width of 2 elements. The IONAMXs
after the array depth determine the array type. If ION1 is an analog channel, each element
will occupy two bytes of RAM. The name given to the array enables other KDAC500 com-
mands to access the array.

Using the array name, you may put values in the array, retrieve values from it, save/retrieve
the array to/from disk, and perform several other tasks on the array.

In the above example, the array type was determined by the IONAME. There are four types
of KDAC500 arrays:

BIT ARRAY - Packed bit arrays. Values stored as O’s and 1’s. Used with digital input and
output commands.
BYTE ARRAY - Elements of eight bits each. Values stored as unsigned bytes, 0 to 255.
Used especially with commands that access digital I/O ports.
INTEGER ARRAY - Elements two bytes long. Values stored as unsigned integers, 0 to
65535. Used especially with analog input and output commands.
LONG ARRAY - Elements four bytes long. Values stored as unsigned long integers, 0 to
4,294,967,295. Long arrays are used with the 32-bit pulse input commands.

2-5

Every time you create a KDAC500 array, the array type is determined by the IONAME list.
This information tells KDAC500 how much memory should be allocated or accessed for each
data point in the array, as welI as the intended use for the array.

KDAC500 can retrieve any value stored in a KDAC500 array as raw binary (i.e A/D counts
for analog data) or engineering units. Even though values are stored as integers, they may be
returned as volts, milliamperes, degrees C, or other engineering units according to the mod-
ule, transducer, and EUF parameter being used.

Aside from making arrays and accessing the data, KDAC500 provides many commands to
increase the usefulness of KDAC500 arrays. Arrays can be deleted (deallocated from RAM)
with the ARDEL command. A descriptive string may be associated with the array using AR-
LABEL, so that if it is saved to disk with ARSAVE, then loaded back into RAM with AR-
LOAD, any information in the string will remain associated with the array. ARSTATTJS will
return information to you regarding the array. ARLASTP will return the depth index of the
most recently (in real-time) sampled or output value in a KDAC500 array (see the command
reference section for more details).

Finally, KDAC500 graphics commands support KDAC500 arrays (GRAPH, GRAPHRT,
HGRAPHRT). In addition, these commands all support internal conversion to volts and engi-
neering units.

2-6

Background I Foreground

One of KDAC500’s most powerful features is its background/foreground processing. Back-
ground/foreground takes KDAC500 far beyond the abilities of simple programs, allowing
the Keithley data acquisition system to manage independent tasks at machine language
speeds - without machine-language programming.

The concept of KDAC50O’s background/foreground is easier to understand if one examines
the interface cards included with the Keithley data acquisition systems. The IBIN cards con-
tain interrupt-generating circuitry which works in conjunction with the computer’s interrupt
handling abilities. The KDAC500 function INTON (INTerrrupts ON), allows you to specify
the frequency with which you want interrupts to be generated. The command for generating
an interrupt every 100 milliseconds looks like this:

CALL INTON(100, MIL)

When the INTON function is called, the programmable interval timers on the Keithley inter-
face installed in the computer begin to generate interrupts at the specified interval. Each time
an interrupt occurs, the processor jumps from executing foreground tasks (your program or
foreground KDAC500 commands) to executing background tasks, Each background task is
checked to see if it requires handling on a given interrupt, and is executed appropriately.
When all the background tasks have been worked through, control is returned to the fore-
ground until the next interrupt.

The background acquisition tasks should have the highest priority. The KDAC500 installation
program permits you to specify NMI, CLOCK, or IRQ 9,3, or 5 as the interrupt controlling
background acquisition. All the time-critical data acquisition and control tasks are thus han-
dled at regular intervals. In order to maximize accuracy, special care is taken by KDAC50O’s
background controller to assure that samples and updates are not time-skewed. Most non-
background KDAC500 commands and all ordinary BASIC commands are classified as “fore-
ground” commands, and will be executed during free time when the system is not servicing
the interrupt-driven commands.

KDAC5OO’s background/foreground operation is a form of multitasking in that it allows the
computer to perform one high-priority task (background) and one low-priority task (fore-
ground) in a time-sharing fashion.

It is important to remember that although the foreground and the background appear to op-
erate simultaneously, the computer is really switching its attention back and forth between
two tasks. Foreground/background commands also operate independently. After a back-
ground command is issued, it is only possible for the foreground to know how the back-
ground commands are progressing through the use of various status commands.

Background/foreground processing gives the programmer considerable flexibility. While
data acquisition and control sequences execute in the background, the foreground can be
used to monitor the status of background tasks, to communicate with the operator or with

2-7

other peripheral devices, or to perform analysis on previously collected data. In fact, it is pos-
sible to have the KDAC500 program set up data acquisition sequences in the background,
then terminate and pass control back to DOS. Depending on the speed of acquisition and the
amount of free RAM, you may be able to run other application programs while the back-
ground tasks continue. Later, another KDAC500 program can be run which harvests the data
from the arrays filled by the first program.

Foreground and Background Communication

So far, we have discussed one basic way that the foreground communicates with the back-
ground: setting up task sequences with KDAC500 background commands. There are a num-
ber of other ways that the foreground can act on and track the background’s operations.

To begin with, KDAC500 offers a background triggering capability. This feature is covered
thoroughly elsewhere in this manual. However, we will examine it briefly here in the general
context of background operation. As we have discussed, once background commands have
been started by the foreground, they can proceed independently of the controlling program.
Background triggering allows acquisition and control sequences to be started independently
of the foreground.

The KDAC500 command, TRIGGER, can act as a background trigger. This command allows
the background to react directly to real-world events such as digital inputs or threshold val-
ues on analog channels.

Background commands such as BGREAD or BGWRlTE can be linked to TRIGGER with a spe-
cial parameter, the “trigger mode”. When KDAC500 encounters this parameter, the task is set
up in the background but not started. It remains latent until triggered, at which time the task
begins without foreground intervention.

One of the background’s most useful features is that once sequences are set up, they do not
require the attention of the controlling program. However, there are many instances when it
is useful for the foreground to be able to monitor ongoing background tasks. For example,
after acquiring data with BGREAD (BackGround READ), it is often desirable to save that data
to disk. However, before the foreground program can issue the ARSAVE command, it must
determine that the acquisition sequence is complete. Similarly, when alarm conditions are
detected, orderly shutdown procedures may need to know which sequences are active, and
which are waiting for triggers.

For situations like these, KDAC500 includes commands which allow the foreground to check
the progress of the background commands. In both of the above examples, the BGSTATLJS
command could be used to poll the background for the necessary information.

BGSTATUS assesses whether a background task is executing, waiting for a trigger, or fin-
ished. To facilitate this, all background commands have an optional parameter, the “back-
ground function name” (BFN) which allows tasks to be easily identified. A background task’s
parameter list should always include this parameter if it will be monitored from the fore-
ground.

2-8

There are also situations where it is necessary to know exactly how much of a data array has
been filled or output, or it may be desirable to synchronize computations in the foreground
with acquisitions in the background. In both cases, ARLASTP (ARray LAST Point> can pro-
vide the necessary data.

ARLASTP returns the depth index of the last point in an array which has been accessed by a
KDAC5OO background command. Remember that each width is associated with a particular
channel, and that depth levels are associated with the number of samples acquired. AR-
LASTP is particularly useful when you wish to perform some analysis on part of an array,
while the rest of the array is still being acquired. It can be used in conjunction with ARGET
(ARray GET) to retrieve one or more of the most recently acquired data points for computa-
tion. In process control applications, ARLASTP and ARGET can be used to synchronize data
logging and the acquisition of data for control loops.

The foreground program can also act to stop, clear, and restart the background, as well as to
stop ongoing tasks selectively. INTON (INTerrupts ON) starts the background, and can be
issued either before or after background commands have been set up. This allows it to start
any number of tasks simultaneously so that they are synchronized. Similarly, LNTOFF
UNTerrupts OFF) stops the background, whether or not tasks are currently running. When
INTOFF is issued, no tasks are cleared, so that the background can be temporarily halted and
then restarted from the same place (note, however, that all timers are cleared by this proce-
dure).

If desired, the background can be cleared of all active and latent tasks with the BGCLEAR
(BackGround CLEAR) command. The BGHALT command can be used to stop and clear
background tasks selectively.

The Singleground Mode

Foreground/background processing is extremely useful for most measurement and control
tasks. In some circumstances, however, it may be preferable to operate in KDAC50O’s
singleground mode. Singleground operation is very similar to foreground operation with the
exception that background functions are not allowed. This allows KDAC500 to operate as
fast as possible. In particular, the very high speed sampling provided by ANINQ (ANalog
INput Quick) and ANOUTQ (ANalog OUTput Quick) can only be achieved by suspending
background operation.

KDAC500’s Timers

Along with data acquisition and control functions, KDAC5OO’s timers also operate in the
background. Each time an interrupt occurs, all of the timers which are currently on will
“tick”. These timers require that the background be on in order to operate. If the background
is suspended (with INTOFF), updating of the software timers will stop and they will retain
their last values until they are restarted or interrupts are re-enabled. Turning interrupts on at
any time (with INTON) will clear all timers, and they will begin counting from zero.

2-9

Disk Access and Interrupts

KDAC500 permits disk access with ARSAVE and ARLOAD while interrupts are enabled.
Due to the way the PCs perform disk access, processing may be slowed during disk access. If
a background task is executing at this point, data sampling may be time-skewed, but the sys-
tem will not hang up.

2-10

Triggering

Conditional triggering is a very useful tool in data acquisition and control systems. It pro-
vides a means for external (environmental) and internal (program) conditions to elicit a pro-
grammed response.

An example of external triggering would be a case in which the opening or closing of a switch
activates a background command which then begins outputting a voltage to a piece of equip-
ment. In this case, the environment influences a program which in turn influences the envi-
ronment. This kind of bi-directional communication between the computer and the world is
extremely useful in process control applications.

An example of an internal trigger would be a case in which the completion of an analog input
task triggered the start of a digital output sequence. This kind of trigger is useful when two
background commands must operate in sequence.

In order to implement these examples and others, KDAC500 provides five types of condi-
tional triggers. Each has advantages and disadvantages, but together they offer a powerful
means of supporting every need for conditional triggering and response. The five types are
discussed below.

Polling

Polling will suspend execution of certain statements until a desired condition has been
reached.

One method of polling is shown in the following QuickBASIC example below. First, the vari-
able to which the reading will be returned is defined as outside the desired range:

Temp! = 0.0

Next, the conditional expression is set up and evaluated. When the temperature (Temp!)
reaches 100.0, processing will move on to the next statements.

WHILE Temp! c 100.0
CALL FGREAD(“tempinpuY’,NONE,VARSEG(Temp!),VARPTR(Temp!),C.THCU.J,NT)
WEND

Finally, the alternate decision path is taken when Temp! reaches 100.0.

OutVal! = (Temp! + 312.0) / Temp!
CALL FGWRIT.E(“channelO”, VAESEG(OUTVAL!), VARPTR(OUTVAL!),C.VOLTS, NT)

2-11

Advantages of Polling:

&Y programming or KDAC500 statements may be used to acquire the information on which
the decision will be made.

Any conditional expression(s) within your program may be used as the conditional expres-
sion on which the decision is made.

Any KDAC500 statement(s) or any statement(s) within your program may make up the alter-
nate path.

Disadvantages of Polling:

The speed of the loop in which the condition is tested and the response time of the trigger
may be slower than corresponding triggering operations handled exclusively by KDAC500
commands.

Execution of the foreground is suspended until the condition is met, wasting the
microprocessor’s time.

Foreground Triggering

The purpose of the foreground trigger is to suspend execution of your program, after the
KDAC500 foreground trigger command, until a desired condition is true.

Foreground triggering is implemented in two steps. First the KDAC500 trigger command is
called. This command’s parameter list specifies the condition for which the command will
wait. For example, the following example of the TRIGGER command will loop internally,
constantly checking digital input values, until the specified channel is “on” (high). The state-
ments which are to be executed when the condition is met are included after the TRIGGER
call, as shown in the following example:

CALLTRIGGER(“digchO”,O.O,O.O,ON,C.RAW.FLOAT,~,”“,l)
l’lUNT “ALARM”

Advantages of Foreground Triggering:

The polling rate at which the condition is tested is very fast as it is written entirely in assem-
bly language.

Any program statement or KDAC500 command may follow the trigger command.

Disadvantages of Foreground Triggering:

The information on which the decision will be made is limited to KDAC500 foreground trig-
ger commands, i.e. digital input, analog input and time delay.

2-12

Only certain conditional expressions may be implemented as they are limited to the capabili-
ties of the KDAC500 foreground trigger.

Execution of the foreground is suspended until the condition is met, wasting the
microprocessor’s time.

Singleground Triggering

The purpose of the singleground trigger is to suspend execution of a KDAC500 command
that must react immediately to a condition, until that condition is true.

Singleground triggering is implemented in two steps. First, a KDAC500 singleground trigger
command is called. This call sets up the information about the trigger (what kind of trigger
and what condition). Second, a KDAC500 command which uses a WST parameter (Wait on
Singleground Trigger) is issued. The WST command may be separated from the ST
(Singleground Trigger) command by any number of program lines (however, no other ST
command should intervene).

A section of a QuickBASIC program which implements singleground triggers might be:

CALL TRIGGER(“anchO”,5,6,BETW,C.VOLTS,ST,”S_Trig”,l~

CALL ANINQ(“speedy”,l0000,“anchO”,O,WST)

When the program is run, the ST task will not be activated when the command is first en-
countered. Instead, the task is set up for execution and control is passed directly to the next
command. Only when the WST command is encountered does the ST task begin checking for
the specified condition. When this condition is met, the WST task is triggered and the ST task
turns itself off. If interrupts are on when an ST task is set up, a warning message will be is-
sued. If interrupts are on when the WST task is called, background processing will be sus-
pended.

There are six KDAC500 commands which have wait-on-singleground-trigger capability:

mQ FGREAD FGWRITE
HREAD HWRlTE ANOUTQ

Advantages of Singleground Triggering:

The response time of the WST command to the trigger is relatively fast, a matter of a few mil-
liseconds. (This is especially critical for ANINQ and AOUTQ.).

The speed of the loop in which the condition is tested is very fast as it is written entirely in
assembly language.

2-13

Disadvantages of Singleground Triggering:

The information on which the decision will be made is limited to KDAC500 singleground
trigger commands.

Only certain conditional expressions may be implemented as they are limited to the capabili-
ties of KDAC500 singleground trigger commands.

The statements which respond immediately to the trigger are limited to KDAC500 commands
implementing the WST parameter.

Execution of the foreground is suspended until the condition is met, wasting the
microprocessor’s time.

Hardware Triggering

The purpose of the hardware trigger is to suspend execution of a KDAC500 command, that
must react immediately to a condition, until that condition is true.

Hardware triggering is implemented in two steps. First, a KDAC500 hardware trigger com-
mand is called. This call sets up the information about the trigger (what kind of trigger and
what condition). Second, a KDAC500 command which uses a WHT parameter (Wait on
Hardware Trigger) is issued. The WHT command may be separated from the hardware trig-
ger command by any number of program lines (however, no other hardware trigger com-
mand should intervene).

A section of a QuickBASIC program which implements hardware triggers might be:

CALL ANTRIG(“trigl”,l.5,TRG.LATCH,TRG.ABOVE)

CALL ANINQ’(“speedy”,100OOO,“anchO”,O,WHT)

When the program is run, the trigger task will not be activated when the command is first
encountered. Instead, the task is set up for execution and control is passed directly to the next
command. Only when the WI-IT command is encountered does the trigger task begin check-
ing for the specified condition. When this condition is met, the WHT task is triggered and the
trigger task turns itself off. If interrupts are on when a hardware trigger is set up, a warning
message will be issued. If interrupts are on when the WHT task is called, background proc-
essing will be suspended.

There is only one KDAC500 command with wait-on-hardware-trigger capability:

2-14

Advantages of Hardware Triggering:

The response time of the WHT command to the trigger is very fast, a matter of a few micro-
seconds. (This is especially critical for ANINQ).

The speed in which the condition is tested is extremely fast as it is implemented in hardware.

Disadvantages of Hardware Triggering:

The information on which the decision will be made is limited to the capabilities of the hard-
ware.

The statements which respond immediately to the trigger are limited to the KDAC500 com-
mand ANINQ.

Execution of the foreground is suspended until the condition is met, wasting the
microprocessDis time.

Background Triggering

The purpose of background triggering is to watch for a given condition without holding up
processing in the foreground. When the condition is met, the task to be triggered is activated
and the trigger task becomes inactive.

Background triggering is implemented in two steps. First, a KDAC500 trigger command is
called with the trigger mode set to “BT” (background trigger). This sets up information about
the trigger (what kind of trigger, what condition). Second, a KDAC500 command which uses
a WBT (Wait on Background Trigger) parameter is issued. The WBT command may be sepa-
rated from the BT (Background Trigger) command by any number of program lines, but no
other BT may intervene.

A section of a program in QuickBASIC which implements background triggers might be:

CALLTRIGGER(“switch”,O.O,O.O,ON,C.RAW.FLOAT,BT,“B_Trig”,l)
CALL BGWRlTE(“outarray “,“chO”,3,FOREVER,WBT,“BGFunc”)

When the program is run, the BT command will not be activated when it is first encountered.
The task is set up but not communicated to the background, and control is passed directly to
the next command. When the WBT command is encountered, the BT and WBT tasks are sent
to the background together, and the BT task will begin checking for the trigger condition as of
the next interrupt. It will check for the condition once every interrupt. When the condition is
met, the WBT task is triggered and the BT task turns itself off.

There are three KDAC500 commands which have background trigger capabilities:

2-15

TRIGGER BGREAD BGWlUTE

There are six KDAC500 commands which can wait on background trigger:

BGREAD BGWRITE KDTIMER
BGGO BGHALT

Interrupts need not be on when either the BT or WBT command is called. However, for the
BT and WBT tasks to execute, interrupts must be turned on. Interrupts may be turned on at
any time: before the BT and WBT commands, between them, or after them.

Advantages of Background Triggering:

The foreground is not held up by polling for a condition, as the condition is tested every in-
terrupt in the background.

The response tirne of the WBT command to the trigger is exceedingly fast, because the WBT
task immediately follows the BT task in the background execution sequence.

Disadvantages of Background Triggering:

The trigger decision can be made only on the basis of information available to KDAC500 com-
mands. However, certain KDAC500 background tasks can be configured to trigger upon
completion.

The statements which respond immediately to the trigger are limited to KDAC500 commands
implementing the WBT parameter.

BGGO Triggering

The KDAC500 BGGO command provides a means to trigger up to 16 background tasks si-
multaneously. Because BGGO itself can be triggered on a background trigger or on a fore-
ground trigger, the command provides very powerful capabilities.

BGGO triggering is implemented in two steps. First, from 1 to 16 WGO (Wait on BGGO) com-
mands are set up as background tasks. However, their status is not “on”, so that they are not
actually executed in the background.

Second, the BGGO command is called. The BGGO may be foreground, in which case it will
execute immediately, or it may be a WBT in the background, executing later in the back-
ground when triggered by its BT.

If BGGO is executed in the foreground it will turn on all previous WGO tasks immediately.
However, it must turn them all on without being interrupted, otherwise some would execute,

2-16

others not. Therefore, the BGGO command needs enough time between interrupts to turn on
all the pending tasks.

If the BGGO command is called with WBT as its trigger mode, it will execute in the back-
ground. In this case, all tasks that BGGO activates will start execution on the interrupt subse-
quent to the one in which the BGGO executed.

An example of foreground BGGO triggering is:

CALL BGRBAD(“ar1”,1000,“temp”,2,NONE,l,WGO,”tl”)
CALL BGWRITE(“ar2”,“voltsl”,4,1,WGO,“t2”)
CALL BGGO(NT,““)

Advantages of BGGO Triggering:

More than one event (task) can be triggered simultaneously.

When BGGO is triggered by a background trigger, it will have all the advantages of a back-
ground trigger. If BGGO is triggered by a foreground trigger, it will have all the advantages
of that type of trigger.

Disadvantages of BGGO Triggering:

When BGGO itself is triggered by another trigger, it assumes the disadvantages of that trig-
ger.

2-17

Engineering Units Conversion

One of the unique features of KDAC500 is its ability to convert raw binary values to engineer-
ing units. This allows KDAC500 to express analog data in volts, millivolts, milliamperes, de-
grees centigrade, percent, or others as the case requires. KDAC500 supports many popular
transducer types including various types of thermocouples, resistance temperature detectors
(RTD’s), strain gages, displacement transducers, and industrial current loop signals.

The automatic conversion of raw values to engineering units is a great advantage since the
programmer no longer has to approach analog data in terms of binary values returned by
analog to digital conversion. The conversion of these raw values is performed internally by
KDAC500 which takes into account the type of transducer, the signal range and accuracy, and
the applied signal conditioning. Because KDAC500 maintains a record of the complete cur-
rent hardware configuration of the system, including the placement of modules and the set-
ting of all switches, the conversion to engineering units takes into account all ihe hardware
attributes of the system.

In this way, DC voltages may be read directly and expressed in volts, with KDAC500 consid-
ering the module configuration and all relevant hardware and software selected attributes.
Or, a thermocouple may be connected directly to a Series 500 module and the measurement
results expressed in degrees centigrade. All the calculation for this conversion (amplification,
linearization, and compensation for the temperature of the cold reference junction) is carried
out by KDAC500.

The Engineering Units Flag

The conversion of raw values to engineering units is controlled by the EUF (engineering units
flag) parameter. This parameter is used by certain KDAC500 commands to indicate a particu-
lar conversion algorithm. When a KDAC500 command makes use of the engineering units
flag, the number assigned to the EUF parameter will determine what type of conversion is
required. The value C.RAW.INT indicates that no conversion will take place and that the
value will be in raw A/D counts. Some EUF flags specify a proportional conversion from raw
values to voltages, while other EUF flags may specify non-linear conversion algorithms for
special devices (thermocouples, for instance).

Direct and Indirect Conversion to Engineering Units

Certain KDAC500 commands support the use of engineering units without making use of the
EUF parameter in their own parameter lists. These commands support indirect conversion to
engineering units.

One example is the BGRBAD command, which samples one or more channels of analog input
and stores the measured values in a KDAC500 array. When these values are retrieved from
the array with the ARGET command, an engineering units flag may be set in the ARGET pa-
rameter list, causing the raw values from the array to be converted and expressed in engi-

2-19

neering units. The conversion of the data acquired by BGREAD occurs after the fact, hence,
indirectly. Because conversion is not performed in the time-critical background, no time is
wasted.

We can illustrate this use of indirect conversion by writing a short sample QuickBASIC pro-
gram. This program invokes the BGREAD command to take 1000 samples from a type J ther-
mocouple. These samples are acquired in real-time from the background and stored in the
array created by BGREAD. When the acquired data is retrieved from the array, ARGET con-
verts the raw values into results expressed in degrees Celsius. Theseresults are then printed
on the screen.

REM $INCLUDE: ‘KDAC500.BI
CALL KDINIT (BASIC.)
CALLBGREAD(“temp”,1000,“coldjunc,thermo”,l~O~,l,~,“t~kl”)
CALL INTON(100, MlL)
DO

CALL BGSTATUS(“taskl”, stat%)
LOOP UNTIL stat% = STDONE
CALL INTOFF
FOR i% = 1 to 1000

CALL ARGET(“temp”, i%, i%, “thermo”, -1, VARSEG(degrees!),_
VARl?TR(degrees!), C.THCU.J)
PRINT ‘Temperature at measurement “; i%; “was “; degrees!

NEXTi%

In the example above, the KDAC500 BGSTATUS command is used to check the status of the
background task accomplished by BGREAD. When BGREAD is done sampling, ARGET is
called to retrieve the data from the array “temp”. In the parameter list of ARGET, the engi-
neering units flag is assigned the value C.THCU. J, indicating a conversion appropriate for
type J thermocouples. Thus, the measurement values are returned in degrees Celsius.

Note that the cold junction reference channel (“coldjunc”) must be read separately in the
BGREAD command, and must be the first channel read. Thus,“coldjunc” is the first name in
the IONAME list. ARGET uses the cold junction reference value to calculate the readings of
the other channels in degrees Celsius.

The FGREAD co mmand is an example of a KDAC500 command that supports direct conver-
sion to engineering units. FGREAD is a foreground command used to sample analog input in
the foreground.The measurement result is returned as a variable. Depending on the value
assigned to the EUF parameter, FGREAD will return the measurement result as a raw value,
or express the result in volts or engineering units. Note that the conversion occurs as part of
the execution of FGREAD, so no separate conversion command is needed.

If we use FGREAD to take a measurement from the same type J thermocouple as before, a
simple QuickBASIC program would be:

REM $INCLUDE: ‘KDAC500,BI
CALL KDINlT (BASIC.)
CALL FGREAD(“thermo”, NONE, VARSEG(degrees!), VARPTR(degrees!),_
C.THCU. J, NT)
PRINT ‘The temperature is “; degrees!;“C”

2-20

Note that FGREAD, unlike BGREAD, performs an automatic cold junction reading without
having the cold junction reference specified in the parameter list.

The use of the engineering units flag with BGWRlTE and FGWRI’JX is completely analogous
to the use of that flag with BGREAD and FGREAD.

BGWRITE, in conjunction with ARBUT, supports indirect conversion to volts. BGWRITE is
used to output values from a KDAC500 array to some specified number of output channels.
The values can be put into a KDAC500 array using the ARPUT command. If the value
C.VOLTS is assigned to the EUF parameter in ARPUT’s parameter list, the programmer
specifies values in volts and has them converted to raw binary values by ARPUT. These raw
values will then be used by BGWRIIE to send output to the various output channels speci-
fied.

The following QuickBASIC program illustrates how BGWRITE and ARPUT may be used for
indirect engineering units conversion:

REM $INCLUDE: ‘KDAC500.BI
DIM VOLTS AS SINGLE, I AS INTEGER
CALL KDINIT (BASIC.)
CALL ARhUKE(“sawtooth”, 250, “chanout”)
I=0
FOR VOLTS = 0 TO 2.49 STEP 0.01

I=I+l
CALL ARPUT(“sawtooth”, I, I, “chanout”, -1, VARSEG (VOLTS),_
VARl?TR(VOLTS), C.VOLTS)

NEXT VOLTS
CALL BGWRlTE(“sawtooth”,“chanout”,l,FOREVER,NT,”ramp”)
CALL INTON(10, MIL)
END

This program creates a sawtooth voltage output to an analog output channel named
“chanout”, with an amplitude of 0 to 2.5 volts and a period of 2.5 seconds. Note that the EUF
parameter for ARPUT has been assigned the value C.VOLTS, indicating a conversion from
volts to raw binary values.

The use of FGWIUTE is analogous to the use of FGREAD, however the FGWRlTE command
performs a conversion from volts directly, as part of its own execution. The same C.VOLTS
EUF flag is used to indicated that a conversion from volts to raw binary values is desired.

In addition to input and output commands, several other KDAC500 commands make direct
use of the EUF parameter. These commands include GRAPH and GRAFHRT, which allow
the user to graph values expressed in volts or engineering units.

Engineering Units Flags

When connecting voltage and current sources and common transducers to the Series 500, cer-
tain requirements must be met to ensure correct operation. These requirements are summa-
rized below according to the value of the engineering units flag to which they apply.

2-21

NOTE: The syntax of Engineering Units Flags differs slightly for QuickBASIC and the
other languages. QuickBASIC EUFs contain periods while C, FORTRAN, and Pascal EUFs
contain underscores. If you are a KDACBOO/I user converting to KDACSOO/B or
KDAC500/M note that EUFs must not be bounded by quotation marks. Be sure to use the
correct format for your programming language or you will receive errors.

Raw Values

QuickBASIC: EUF = CRAWINT or CRAWFLOAT
C, FORTRAN, and Pascal: EUF = CRAWINT or C_RAW_FLOAT

Raw values are always positive integers ranging from 0 to 4095 for 12-bit converters, 0 to
16383 for 14-bit converters, or 0 to 65535 for X-bit converters. When using raw values,
KDAC500 does not take into account any gain or range information, because the data values
are simply proportional to whatever range is being used. C.RAW.INT and CRAW-TNT spec-
ify the data in integer format and CRAWFLOAT and C-RAW-FLOAT specify the data in
single-precision float format.

Voltage Inputs and Outputs

QuickBASIC: EUF = C.VOLTS, CMILVLT, or C.MICVLT
C, FORTRAN, and Pascal: EUF = C-VOLTS, C_MILVLT, or C_MICVLT

With these EUF parameters, the results of an A/D conversion can be read directly in voltage.
Similarly, voltage values can be written to analog output channels during D/A conversion.
The system automatically accounts for converter ranges, amplifications, software-selected
signal conditioning attributes, and converter resolutions.

Percent Full Scale

QuickBASIc: EUF = CPERCENT
C, FORTRAN, and Pascal: EUF = C-PERCENT

KDAC500 allows data to be returned as a percentage of full scale reading ranging from -100
to +lOO percent.

Thermocouples

QuickBASIc: EUF = C.THCU.J, C.THCU.K, C.THCU.S, C.THCU.T, C.THCU.E,
C.THCU.B, or C.THCU.R

C, FORTRAN, and Pascal: EUF = C_THCU J, C_THCU_K, C_THU_S, C_THCU_T,
C_THCU_E, C_THCU_B, or C_THCU_R

Seven popular thermocouple types (J, K, S, T, E, B, and R) are directly supported by
KDAC500. Thermocouples should be connected to the AlM7. If the hardware configuration
of the system indicates that a thermocouple is connected to a module which does not support
thermocouples, an error will be issued. The system automatically linearizes the output volt-

2-22

age using polynomial curve-fitting, while compensating for the cold junction temperature.
The result is returned in degrees Celsius.

While the A/D converter (AMM2, AMMIA) can be set to any of the available ranges, the
voltage output range of some thermocouples includes negative values. If an A/D unipolar
voltage range is set, an error may result if the thermocouple output goes negative.

Resistance Temperature Detectors (RTD’s)

QuickBASIC: EUF = C.RTD3175 or C.RTD3212
C, FORTRAN, and Pascal: EUF = C_RTD3175 or C_RTD3212

Two types of popuiar RTD’s can be used with the KDAC500 engineering units capability.
RTD’s with an alpha of 0.00385 and RTDs with an alpha of 0.00392 are specified by the two
values for the RTD flag. The result is returned or specified in degrees Celsius.

The system software uses a polynomial linearization technique appropriate for the device.
RTD’s must be used only with the AIM6 module; the use of any other module will result in
an error message.

Current excitation is provided by the AIM6 module directly, and both 2-wire and 3-wire
RTDs can be interfaced to the module.

For correct operation, the AIM6 should be set to the RTD mode and 50 should be chosen for
the special AIM6 gain. The A/D converter may be set to any bipolar range that accommo-
dates the transducer.

If the temperature being measured exceeds the specified range for RTD’S (-200 degrees C to
+700 degrees C), a warning message will be given, and the temperature returned will be the
last temperature within the range.

Strain Gages and Load Cells - AIM8

QuickBASIC: EUF = C&M&C or C.AIM8.D
C, FORTRAN, and Pascal: EUF = C_AIM8_C or C-AIMS-D

KDAC500 is capable of returning values directly in measurement units when using an AIM8.
If a calibration factor has been entered into the CONFIG.TBL via CONFIG.EXE, specifying
C.AIM8.D or C_AIM8_D as the EUF parameter will return load values in terms of the meas-
uring units (grams for example). If on the other hand you wish to calibrate the AIM8 from
within your program, specifying C.AIM8.C or C_AIM8_C as the EUF will calibrate the AIM8
to a known force. The value of the known force can be entered into the CONFIG.TBL via the
MODE function in CONFIG. Once the AIM8 has been calibrated, specifying C.AIM8.D or
C-AIMS-D as the EUF parameter will return values in units of the calibrating force.

2-23

QuickBASIC: EUF = C.AIM9.D
C, FORTRAN, and Pascal: EUF = C_AlM9_D

KDAC500 is capable of returning values directly in units of measure corresponding to the
calibration factor stored in the configuration table via CONFIG.EXE.

Semiconductor Temperature Sensors AD5901AC2626

QuickBASIC: EUF = C.AD590
C, FORTRAN, and Pascal: ETJF = CAD590

The popular and versatile semiconductor temperature sensors Analog Devices AD590 and
Analog Devices AC2626 are supported by KDAC500 with readings in degrees Celsius. These
transducers can be connected to the Ah4MlA, AMM2, AlM3, AIM5 or AlM6 modules. Using
the AD59O/AC2626 EUF with other modules will result in a warning error message. A 1000
ohm resistor must be used with the AMM modules, AIM3, and AlM5. To provide for individ-
ual channel calibration, a 950 ohm resistor can be used in series with a 100 ohm potentiome-
ter, allowing a 5% calibration adjustment. With the AlM6, a 210 ohm resistor must be used.
KDAC500 assumes that these resistor values are used in order to convert the transducer’s
current output signal into degrees Celsius. Excitation can be provided by the data acquisition
hardware. With the AlM6, the +lO volt excitation source can be used with AD59O’s. The level
of the excitation voltage will have no effect on calibration with these devices.

Current Loop Inputs

QuickBASIC: EUF = CM4420 (4-20mA only), or C.MILLIA
C, FORTRAN, and Pascal: EUF = C-MA420 (4-20mA only), or C_MILLJA

Industrial control signals with standard 4-20 mA outputs can be sensed by KDAC500, with
the result expressed in milliamps ranging from 4 to 20. This conversion is supported for back-
ward compatibility only. You may use the CMILLIA or C_MILLIA conversion for 420mA
measurements, which has the added advantage that the external resistor value can be defined
from within the CONFIG program on a channel by channel basis. For this type of conversion
the following resistor values are assumed.

Typically, a 25OQ resistor will be used with current inputs. However, when it is essential to
maintain a high compliance voltage (the voltage in the loop), it is necessary to minimize the
value of the shunt resistor, thereby lowering the voltage across the shunt resistor. A 25O!Z re-
sistor will drop five volts at full scale. However, a 25Q resistor will drop only 0.5 volt at full
scale in the loop. When the current transmitter is a 2-wire device that is powered from the
loop, it is important to observe the
mitter.

minimum voltage required to properly power the trans-

2-24

Table 2. Shunt Resistor Values with Current Loop Inputs

Resistor Total
Value Gain

250 ohms xl

25 ohms xl0

2.5 ohms xl00

Notes

default

AIM3, AIM4 only

AIM3, AIM4 only

Pulse Input

QuickBASIC: EUF = C.RAW.INT, C.RAW.FLOAT, C.COUNT
C, FORTRAN, and Pascal: EUF = C-RAW-NT, C_RAW_FLOAT, C_COUNT

Two types of pulse input modules are supported by KDAC500. If you are using a PIMl or
PIM2 module (X-bit mode) for event counting, use CXAWJNT, C.RAW.FLOAT,
C_RAW_INT, or C_RAW_FLOAT to retrieve data. If you are using a PM2 in 32-bit mode,
use C.COUNT or C-COUNT to retrieve data.

Frequency

QuickBASIC: EUF = CPREQ
C, FORTRAN, and Pascal: EUF = CJREQ

This Engineering Unit Flag allows data collected with the PlMl module in frequency mode to
be converted directly to frequency values expressed as Hertz.

2-25

CHAPTER 3
KDAC500 Functions

Brief Listing of KDAC500 Functions

General Considerations

Command Format

Brief Listing of KDACSOO Functions

FOREGROUND FUNCTIONS

=.w
anoutq
fgread
fgwrite
gethandle
hread
hwrite
kdclock
kdinit
kdpause
kdtimerrd
kdwam
softinit

antrig

BACKGROUND

bgclear
bggo
bghalt
bgread
bgstatus
bgtime
bgwrite
intoff
inton
kdtimer
trigger

FUNCTIONS

ARRAY MANAGEMENT

aravail
ardel
arget
arptr
arput
arlabel
a&I&p
arload
armake
arstatus
arsave

- fast analog read
- fast analog write
- foreground read
- foreground write
- return a pointer to an ioname
- foreground read with handles
- foreground write with handles
- read the real-time clock
- initialize the system
- real-time delay
- read the software timer values
- turn warning messages on or off
- initialize system software only. Hardware, any running

program, and any existing data arrays are not disturbed.
- setup a hardware trigger

- clear all background tasks
- start a background task waiting for f
- stop a background task
-background read
- get the status of a background task
- compute time of background task
-background write
- stop interrupts
- turn interrupts on
- set up software timers
- set up a background trigger

SO

- get available array space
- delete an array
- get data from an array
- return the segment and offset of a KDAC500 array.
- put data into an array
- put a description on an array
- get the last point accessed
- load an array from disk
- create an array
- get information about an array
- save an array to disk

3-3

stpabsloc
stpmaxsP
stpmoveabs
stpmoverel
&preset
stpset
stpspeed
stpstatus

- define motors position
- set stepper motor’s max speed
- move to an absolute position
- move to a relative position
- reset a stepper motor
- configure stepper controller
- sets stepper motor speed
- get stepper motor status

GRAPHICS FUNCTIONS

graph - graph data after acquisition
graphrt - graph data during acquisition
grlabel - put a label on a graph
hgraphrt - high-res graphing during acquisition

USER-DEFINED ERROR HANDLING

glerror
GetKJJACMsg
SetErrHandler

- KDAC500 error handler
- return error message text
- set user-defined error handler (Turbo Pascal and Quick
Pascal only)

General Considerations

As we have mentioned earlier, KDAC500 commands are given specific information and in-
structions by means of command parameters. Most KDAC500 commands expect to be given
certain parameters when the command is issued. These parameters are included in a
KDAC500 parameter list, which is enclosed by parentheses.

All parameters are identified by parameter names, short mnemonic labels that indicate to the
programmer the function of that particular parameter. In this manual, we use the parameter
name to refer to the parameter itself, as, for example, when we speak of the ARRNM pa-
rameter (meaning the parameter that specifies the ARRay NaMe). It is a matter of conven-
ience to use the parameter name in this way, as it allows us to describe in a general way the
properties of a given parameter.

KDACSOO parameters are subject to certain conventions and restrictions, summarized below:

1. KDAC500 input parameters may be specified by variables or by constants. KDAC500 out-
put parameters must be variables or arrays which must be passed by reference, i.e. a
pointer. In QuickBASIC this is achieved by the QuickBASIC Functions VARSEGO and
VAIWTRO which can be embedded in the call statements to the KDAC functions. For
more information on VARSEGO or VARMR() please refer to your QuickBASIC Reference
Manual. In FORTRAN, the LOCFAR Function is used to pass parameters by reference.
Please refer to your FORTRAN users manual for more information,

2. Parameters must be of a specific type, indicated in the description of the parameter name.
There are six parameter types used by KDAC500.

string- variables of type string differ from language to language. It is imperative that
the correct language type is specified when the KDAC500 command KDINIT or SOF-
TINIT is called. QuickBASIC handles strings by way of a string descriptor, C strings are
terminated by a null byte, and Pascal strings store the length of a string in the first byte of
the string. If the wrong language is specified, KDAC500 will have no way of determining
what the string’s value is. FORTRAN must use C-style strings or KDAC500 will not be
able to handle the strings (example: ‘STRING’C)

integer - variables of type integer are X-bits long. They may be signed or unsigned
depending on usage. This corresponds to the FORTRAN type INTEGER?. The default
integer type in FORTRAN is INTEGER*4 so INTEGER without the size should not be
used. See the description under Special Considerations for more information.

long - variables of type long are 32 bit integers. The FORTRAN type is INTEGER*4.
They may signed or unsigned depending on usage.

single precision real - variables of this type conform to the IEEE standard for single
precision floating point numbers. The Pascal REAL type is not supported. Any single
precision real variables must be of type SINGLE.

double precision real - variables of this type conform to the IEEE standard for double
precision floating point numbers.

pointer - a pointer is a 32 bit far address stored as segment:offset. All the supported
languages have facilities for passing pointers. In QuickBASIC, the VARMR and VAR-

3-5

SEG commands are used. In Pascal and C the address operators (8 and & respectively)
are used. In FORTRAN the LOCFAR command is used.

3. Depending on the type of the variable or constant, a certain format must be observed.
The following list summarizes the correct form for each parameter type. Exceptions to
these rules are described in the individual reference sections for each parameter.

STRING: A string may contain between 1 and 255 significant characters. This limitation is im-
posed by KDAC500, not necessarily the language your programs are written in. QuickBAS-
IC, for instance, can handle strings up to 32767 characters. Since strings only reference
IONAMEs and arrays, this limitation should never be a problem. All FORTRAN strings must
be defined as C-style strings. This is accomplished by following the string with the letter C.
Refer to the Microsoft FORTRAN manual for more information.

Special considerations apply to KDAC500 parameters, depending on their usage:

A. NAMES: The ION (IOName) and BFN (Background Function Name) parameters.
Only the first 8 characters are significant.

The ARRNM (ARRay NaMe) parameter has a minimum length of 1 character, and a
maximum of 255 characters, although only the first 8 characters are significant.

KDAC500 names may not contain any delimiter characters (comma, blank, tab, right
parenthesis, double quote). With the exception of array names, KDAC500 names may
not contain symbols ($,%,!, &, 8, #).

B. LISTS A KDAC500 list is a string consisting of one or more names (ioname list, back-
ground function name list) separated by delimiters. Valid delimiters for KDAC500
name lists include commas, spaces, tabs, or any combination of these characters.

C. INTEGERS

KDAC500 integer arrays are treated as arrays of unsigned integers (not signed inte-
gers). Thus, although the range for standard integer values are -32768 to 32767 (de-
pending on the application), the range of values stored in KDAC500 integer arrays is
0 to 65535. In Pascal the unsigned integer type is WORD. QuickBASIC and FOR-
TRAN do not support unsigned integers, and it is the job of the programmer to rec-
ognize and handle this limitation.

The co mmand ARPUT (with C_RAW_INT as the engineering units flag) will trans-
late all integers to unsigned integers for word arrays, and similarly, ARGET (with
C_RAW_INT as the engineering units flag) will only return unsigned values from
these arrays. Since the primary use of KDAC500 word arrays is the storage of raw
values for analog input and output, the unsigned interpretation is appropriate.

D. REALS Reals refer to single precision real numbers, not to the Pascal REAL type.

E. DOUBLE-PRECISION REALS Double-precision reals refer to floating point number
values stored in 8 bytes of memory (real number values are stored in 4 bytes).

It is crucial to know exactly which parameter should fall where in the parameter list. Memo-
rizing the parameter list for many KDAC500 commands would be a considerable inconven-

3-6

ience, therefore this manual uses a notation which allows the programmer to determine at a
glance the parameter list for any KDAC500 command.

For Quick Basic Programmers: You must include the KDAC500 interface header at the top of
your program file prior to any other BASIC commands. The file KDAC500.BI contains all
KDAC function and constant declarations and is included by the following statement:

‘$INCLUDE: ‘KDAC500.BI’ or REM $INCLUDE: ‘KDAC5OO.BI

For C Programmers: You must include the KDAC500 header file (KDAC500.H) at the top of
your C program. This file contains all KDAC function and constant declarations which are
necessary to correctly use KDAC500. KDAC500.H is included by the statement:

#include “kdac5OO.h”

For Pascal Programmers: To correctly interface to KDAC500 functions you must include this
statement at the beginning of your program:

uses KDAC500;

The files KDAC5OO.TIW for Turbo Pascal or KDAC500.QPU for Quick Pascal provides all the
necessary definitions for KDAC500 procedures and constants.

For FORTRAN Programmers: There are two header files which you must include to correctly
interface to the KDAC library. The first is the INTERFACE file (KDAC5OO.FI). This file must
be included at the top of each FORTRAN module. It provides interface information to the
compiler for each KDAC500 function. The second file that must be referenced is the DEFINI-
TION file (KDAC5OO.FD). This file provides definitions for all the constants needed by the
KDAC function. KDAC5OO.FD must be included by the main FORTRAN program as well as
any subroutines that require access to the KDACSOO library functions. Use the FORTRAN
include statement to include the contents of these header files in your program.

INCLUDE ‘KDAC5OO.FI
INCLUDE ‘KDAC5OO.FD

Each command will be described using the format as shown on the next page.

3-7

COMMAND FORMAT

Purpose

Language Syntax

BASIC:

c:

FORTRAN:

Pascal:

Parameter 1 description

Parameter 2 description

Notes Additional information of a general nature

A description of the command and its intended use.

call command(parameter 1, parameter 2,...)

command(parameter 1, parameter 2,...);

call command (parameter 1, parameter 2, . ..)

command(parameter 1, parameter 2,...);

The text of the parameter describes the parameters function. AR-
RNM means “Array name”, IONL means ‘?/O name list”, etc. We
use this kind of notation because many of the parameter types are
repeated in several different KDAC500 functions. For example, all
of the array management commands require the name of the array
to be supplied. You will note that they all require a string to specify
this name, all the trigger modes are integers, etc. The type of the
parameter is specified under its description. For more specific lan-
guage interface information refer to the header files for the lan-
guage you are interested in.

KDAC500.h
KDAC5OO.bi
KDAC5OO.doc
KDAC5OO.FI
KDAC5OO.FD

C header file
QuickBASIC header file
Pascal Unit documentation
FORTRAN Fur&on Interface File
FORTRAN Function and constant
Definition header File

Pascal in the language syntax above describes both the Turbo Pascal
and Microsoft Quick Pascal calling sequence.

3-9

CHAPTER 4
KDACSOO Commands

ANINQ

Purpose ANINQ is a “quick” version of BGBBAD, providing highspeed
sampling of up to 64 channels of analog input. The ANINQ com-
mand is designed for singleground execution only, and for this rea-
son, is able to achieve very high sampling rates for a single channel
(50 KHz with an AT-class or 386 computer). When executed,
ANINQ causes measurements to be taken at a specified interval
from a specified number of channels, and creates a KDAC500 array
in which to store the data from these measurements.

ANINQ is best used with the AMMIA, AMMZ, AlM2, and AIM3
analog input modules. Generally, the AlM4, AIM5, AIMG, AIM’/,
AlM8, and AIM9 modules require longer settling times, especially
when higher gains are programmed. Thus, the readings returned
from these modules by ANINQ may be incorrect.

Language Syntax

QuickBASIC:

c:

FORTRAN:

Pascal :

ARRYNM

NUhGAMP

IONL

SIN-IV

call aninq (arfynm, numsamp, ionl, sintv, tm)

aninq(arrynm, num_samp, ioni, sintv, tm);

call aninq (artynm, numsamp, ionl, sintv, tm)

aninq(arrynm, num_samp, ionl, sintv, tm);

(string) The ARRYNM parameter is a standard KDAC500 array
name given to the array created by the execution of the ANINQ
command. KDAC500 arrays are accessible through KDAC500 array
management commands only. (See ARGET).

(long) The NUMber of SAMPles parameter indicates the depth of
the array created by ANINQ. This value corresponds to the number
of times each channel is sampled when ANINQ is executed.

(string) The IOName List parameter may include from 1 to 64
IONAMES.

(integer) By assigning a value to the SINTV parameter, the user
specifies the interval between samples as a multiple of 10 microsec-
onds. The SINTV parameter has legal values from O-6400. Not all
these values are appropriate, however, and the user must deter-
mine whether a specified interval will allow enough time between
A/D conversions. The required interval depends on the class of
computer which is used (AT-class vs PC-class).

43

Notes

SPECIAL USE OF ANINQ: SINTV may be given the value 0, and
ANINQ wilI sample as quickly as possible for as many channels as
are included in the IONAME list.

(integer) The Trigger Mode parameter allows ANINQ to be ttig-
gered by the execution of some other KDAC500 command. The
only valid values for this parameter are:

WST Wait for Singleground Trigger. When TM is given this
value the ANINQ function will be associated with the
most recent KDAC500 command with an ST in its para-
meter list.

Wait for Hardware Trigger. When TM is given this
value the ANINQ function will be associated with the
most recent KDAC500 hardware trigger command.

NT No Trigger.

The singleground and hardware triggers for ANINQ are very exact.
There is very little delay between the recognition of the trigger con-
dition and the execution of the high-speed ANINQ command.

ANINQ should be used to access the AMMlA, AMMZ, AIM2, and
AIM3 modules unless you are sure that settling times are of no con-
sequence with other modules. When used with the AIM3, the
switch-selectable gains must be set to xl. If the external mode is se-
lected and a gain-progr amming resistor in&&d on these modules,
ANINQ may not be able to compensate for the settling time of the
components.

High-Speed Acquisition Mode with the AMMlA and AMM2

The ANINQ command can operate the AMMlA and AMM2 mod-
ule in a high-speed “autc+acquire” mode at an aggregate through-
put of up to 50 KHz. Auto-acquire applies to single or multiple
channels. For multiple channels, the per-channel scan rate equals
50 KHz divided by the number of channels.

The analog input modules AIM2 and AIM3 can also provide up to
50 KHz throughput when these modules are used in a system con-
taining an AMM2 or AMMlA.

To operate the AMMlA and AMM2 in auto-acquire mode, you
must adhere to the following requirements:

4-4

l The analog input channels sampled by ANINQ may be on an
AMM2, AMMlA, AlM2, or AlM3.

l All the channels sampled by the ANINQ command must be on
one module.

l If the input channels are on an AIM3, the AIM3 must be set to xl
gain.

l If the input channels are on an AMM2 or AMMIA, the input filter
must be set to 100 KHz.

If any of these conditions cannot be met, the speed of the ANINQ
command will revert to the speed of a normal BGREAD command.
Under these circumstances, it is better to use BGREAD to take ad-
vantage of background/foreground mode.

Consult the following chart for approximate ANINQ speeds for
various computer and input configurations.

Single Multi-channel Multi-channel
Channel on 1 card on s-1 card

6hJHz AT 5oKHz 5oKHz 6KHz
8MHz PC 4oKH.z 3oKHz 4KHz
4.77 MHZ PC 33KHz 25KHz 3Ia-Iz

CONDITIONS:

1.
2.

3.

All channels requested must be on the same card.
Module and channels must be capable of listed speed; filters and
higher gains may slow acquistion.
Selected gains must allow for listed speeds. Higher gains re-
quire longer settling times.

45

ANOUTQ

Purpose ANOUTQ is a “quick” version of BGWRlTE, providing highspeed
output of up to 64 analog channels. The ANOUTQ command is de-
signed for singleground execution only, and for this reason, is able
to achieve very high output rates for a single channel (>50 KHz).
When executed, ANOUTQ causes output to be generated at a speci-
fied interval from a specified number of channels, and reads from a
KDAC500 array to get the data for these outputs.

ANOUTQ can be used with any of the AOM modules.

Language Syntax

QuickBASIC:

c:

FORTRAN:

Pascal:

ARRYNM

IONL

SINTV

call anoutq (arrynm, ionl, sintv, cycle, tm)

anoutq(artynm, ionl, sintv, cycle, tm);

call anoutq (anynm, ionl, sintv, cycle, tm)

anoutq(arrynm, ionl, sintv, cycle, tm);

(string) The ARRYNM parameter is a standard KDAC500 array
name given to the array created by the execution of a BGREAD,
ANlNQorARMAKE command. KDAC500 arrays are accessible
through KDAC500 array management commands only. (See AR-
GET/ARI’UT).

(string) The ION ame List parameter may include from 1 to 64
IONAMES. The IONAMES are mapped 1 to 1 to the widths in AR-
RYNM. THE IONAMES SPECIFIED DO NOT HAVE TO BE THE
IONAMES THAT CREATED THE ARRAY. In this way data ac-
quired with BGREAD or ANlNQ can be directly output from the
same array. (AOM5 data must be converted.)

(integer) By assigning a value to the SINTV parameter, the user
specifies the interval between samples as a multiple of 10 microsec-
onds. The SINTV parameter has legal values from O-6400. Not all
these values are appropriate, however, and the user must deter-
mine whether a specified interval will allow enough time between
D/A conversions. The required interval depends on the class of
computer which is used (AT-class vs PC-class).

SPECIAL USE OF ANOUTQ: SINTV may be given the value 0, and
ANOUTQ will output as quickly as possible for as many channels
as are included in the IONAME list.

CYCLE (unsigned integer) The cycle parameter will allow multiple output
of the same KDAC500 array. Legal values are 0 to 65535. Specify-
ing 0 for the cycle will cause the same array to be output 65536
times. To output the data only one time cycle should be set to 1.

NOTE: When cycle is any value other than 1, a maximum of 32767
data points per channel can be output. Only when cycle is 1 can
the entire KDAC500 array be output.

(integer) The Trigger Mode parameter allows ANOUTQ to be trig-
gered by the execution of some other KDAC500 command. The
only valid values for this parameter are:

WST Wait for Singleground Trigger. When TM is given this
value the ANOUTQ function will be associated with
the most recent KDAC500 command with an ST in its
parameter list.

NT No Trigger.

The singleground trigger for ANOUTQ is very exact. There is very
little delay between the recognition of the trigger condition and the
execution of the high-speed ANOUTQ command.

4-7

ANTRIG

Purpose ANTRIG is the hardware trigger setup command, providing hard-
ware triggering for the ANINQ command.

Language Syntax

QuickBASIC:

c:

FORTRAN:

Pascal:

ION

THRESHOLD

ACTION

call antrig (ion, threshold, action, mode)

antrig(ion, threshold, action, mode);

call antrig (ion, threshold, action, mode)

antrig(ion, threshold, action, mode);

&ring> The IOName parameter is the name of the channel which is
to be used as the trigger input signal. This may be the name of any
analog input channel provided the associate ANINQ command is a
single channel acquisition and the IOName is the same in both the
ANTRIG and the ANlNQ commands, or the IOName that of the
external trigger channel assigned to the TRGl module in the slot
designated to this ANTRIG function call.

The ANTRIG command may be issued once for each TRGl module
in the system, thus allowing a maximum of two hardware triggers
to be set. The first ANTlUG co mmand is associated with the TRGl
module in slot 2 and the second to the TRGl module in slot 3.

(double) The threshold parameter indicates at what voltage level
the trigger condition will become true. Valid thresholds are be-
tween -10 and +lO volts.

(integer) The action parameter determines whether the trigger con-
dition must be met after each sample or only once.

Valid trigger actions are:

TRGJATCH - once the trigger condition becomes true, it stays
true until all data is collected for the associated ANINQ.

TRG_FOLLOW - the trigger condition must be met for each saxn-
ple acquired by the associated ANINQ.

LANGUAGE ACTION PARAMETERS

QuickBASIC TRGLATCH
TRG.FOLLOW

c/rascal & TRG_LATCH
FORTRAN TRG_FOLLOW

MODE (integer) The mode parameter is a bit mask which establishes filter-
ing, coupling, and level sensitivity. This mask can be achieved by
logically oring one selection from each of the three following cate-
gories together.

LANGUAGE FILTER COUPLING SENSITIVITY

QuickBASIC TRG.lM TRG.AC TRG.ABOVE
TRG300K TRGDC TRG.BELOW
TRG.lOOK
TRG30K
TRG.lOK
TRG3K
TRG.lK
TRG.300

C/Pascal &
FORTRAN

TRG_lM TRG_AC TRG_ABOVE
TRG_3OOK TRG_DC TRG_BELOW
TRG_lOOK
TRGJOK
TRG_lOK
TRG_3K
TRG_lK
TRGJOO

Notes The ANTRIG command will have no effect on acquisition of the
ANINQ command if ail conditions for HIGH SPEED ACQUISI-
TION are not satisfied. (See ANINQ for HIGH SPEED ACQUISI-
TION considerations.)

For accurate triggering, hardware jumpers must be set properly, see
hardware documentation for specifics of jumper positions. To abort
the ANINQ command while it is waiting on a hardware trigger
condition to occur, press any key on the keyboard.

4-9

ARAVAIL

Purpose The ARAVAK function returns the size of the largest free block of
contiguous memory that currently exists in the KDAC500 memory-
management system. The size will be expressed as a number of
bytes.

Language Syntax

QuickBASIC:

c:

FORTRAN:

Pascal:

SIZE

Notes

call aravail(size)

aravail(&size);

call aravail(size)

aravail(size);

(long) The SIZE of the largest free block of contiguous memory will
be returned to the SIZE parameter by the ARAVAIL command. The
value assigned to SIZE by ARAVAIL will be given as some number
of bytes.

For multi-channel acquisitions, the largest number of samples that
will fit an available block of memory can be calculated as:

SIZE-(No. of Channels -1) x 64)
Samples =

No. of channels x bytes per sample

The number “samples” corresponds to the number of scans that can
be made through the complete channel list.

4-10

ARDEL

Purpose The ARDEL command deletes (de-allocates) a KDAC500 array from
KDAC500 memory. ARDEL allows the user to free blocks of mem-
ory previously occupied by KDAC500 arrays.

Language Syntax

QuickBASIC: call ardel (arrnm)

c: ardel(arrnm);

FORTRAN: call ardel (arrnm)

Pascal: ardel(arrnm);

(string) The ARRay NaMe parameter identifies the KDAC500 array
to be deleted from system memory. The ARRNM parameter must
refer to a KDAC500 array created by the ARMAKE command or by
a KDAC500 input routine.

If the user tries to delete an array which does not exist, KDAC500
will return an error message.

Notes The ARDEL command is used for de-allocating KDAC500 arrays
only. AKDEL cannot be used to delete arrays within your pro-
gYEUIlS.

There is a link between KDAC500 arrays and the background that
will cause the background task that is acquiring data into an array
to be cleared if the corresponding array is deleted. This fact can be
used to clear specific groups of tasks from the background. Keep in
mind, however, that if a task is removed from the background, the
relative timing of the tasks may change.

4-11

ARGET

Purpose The ARGET command allows you to quickly transfer blocks of data
from a KDAC500 array to a local array. ARGET internally loops
through the algorithm that converts KDACSOO data values into en-
gineering units. The data blocks must be expressed as raw binary
values, or in terms of engineering units.

Language Syntax

QuickBASIC:

c:

FORTRAN:

Pascal:

DEPl,DEI’2

ION

EXTARRY

call arget(arrnm,depl ,dep2,ion,wid,varseg(extarty(O)),
varptr(extany(O)),euf)

arget(arrnm,depl ,dep2,ion,wid,&extarry[O],euf);

call arget(arrnm,depl ,dep2,ion,wid, LOCFAR (extarry(l)),euf)

arget(arrnm,depl ,dep2,ion,wid, @extarry[O], euf);

<string> The ARRay NaMe parameter identifies the array from
which ARGOT gets the specified data. The array name must refer
to a KDAC500 array, created previously by ARMAKE or by a
KDAC500 input command (ANINQ or BGREAD).

(long) The DEPthl and DEPth2 parameters delimit a subset of the
named KDAC500 array. AKGET will retrieve values from the indi-
cated area. The subset extends from the lower depth index (given
by DEPl) to the higher index (DEB2). Setting DEPI to a value
higher than DEM will result in an error.

(string) The ION ame parameter is used to get a specific channel’s
data. The ION parameter refers to the IOName that was used when
the array was created.

(integer) The width index of a specific channel’s data. Set ION to be
an empty string (““1 to use the WID parameter.

(Pointer to a float, integer, or long) When ARGET is executed, the
block of values in the specified KDAC500 array will be transferred
to the array designated by EXTARRAY. The array must be of type
integer if an EUF flag of C_RAW_INT is specified, type long if
C_COUNT is specified and type float otherwise. Depending on the
value assigned to the engineering units flag, the values will be re-
turned as raw binary, volts, or engineering units.

4-12

NOTE: Because the Engineering Units Flag determines the type of
returned data, there is no way for the compiler to insure that the
type of the array specified will match the type of the returned data.
Therefore it is up to the user to make sure the EXTARRY is of the
correct type. If it is the wrong type, at best the data will be incorrect
and at worst the system may hang.

EUF (integer) The engineering units conversion flag is used to specify
that raw values be converted to volts, frequency, or engineering
tits. See the EUF section for a complete description of the engi-
neering units flag.

4-13

ARPTR

Purpose ARMR returns the segment and offset address of the first byte of a
KDAC5OO array, making it possible to access the array directly in-
stead of through ARGET and ARPUT. ARPTR is useful for word
and byte arrays. Bit arrays require more complex calculations, and
are better left to the ARGET and ARPUT commands.

Language Syntax

QuickBASIC:

c:

FORTRAN:

Pascal:

IONAME

Notes The ARRMR parameter should be defined and used as follows:

call arptr (arrnm, ioname, wid, arrptr)

arptr (arrnm, ioname,, wid, &arrptr);

call arptr (arrnm, ioname, wid, arrptr)

arptr (arrnm, ioname, wid, Qarrptr);

Wring) ARRay NaMe is a standard KDAC500 array name whose
address is to be returned by ARPTR. The array must have been pre-
viously created by ARMAKE, BGREAD, or ANINQ.

(string) The IONAME parameter identifies a specific channel’s data
according to the IONAME that was used when the array was cre-
ated. If IONAME is used, WID must be set to -1.

(integer) The WID parameter indicates the index into a KDAC500
Array of a particular channel’s data. WID starts at 1 and can be set
to a maximum of the number of channels in the array. If WID is
used, IONAME must be set to a null string (““) (“C in FORTRAN).

(far pointer, long) The ARRay PoinTeR holds the far address to the
KDAC500 array. The result returned will occupy 4 bytes.

QuickBASIc:

c:

Pascal:

DIM ARRPTR AS LONG
SEGMENT = ARRPTR / 65536
OFFSET = ARRPTR AND 65535
DEF SEG = SEGMENT
VALUE = PEEK (OFFSET)

unsigned int (or char) far *arrptr;
value = *arrptr;

or
value = arrptr[il; where i is an index variable

arrptr : “word (or “byte)
value := arrptr”;

414

FORTRAN:
Does not support pointers or peek/poke operations.

4-15

ARPUT

Purpose The ARRJT command allows you to quickly transfer blocks of data
from a local array to a KDAC500 array. ARPUT internally loops
through the algorithm that converts data values into a format us-
able by KDAC500. The data blocks may be expressed as raw binary
values or in terms of engineering units.

Language Syntax

QuickBASIC:

c:

FORTRAN:

Pascal:

DEPl,DEl’2

ION

EXTARRY

call arput(arrnm,depl ,dep2,ion,wid,varseg(extarry(O)),
varptr(extarry(O)),euf)

arput(arrnm,depl ,dep2,ion,wid,&extarry[O],euf);

call arput(arrnm,depl ,dep2,ion,wid,LOCFAR(exarry(i)),euf)

arput (arrnm, depl, dep2, ion, wid, @extarry[O], euf);

(string) The AKKay NaM e parameter identifies the array to which
ARPUT puts the specified data. The array name must refer to a
KDAC500 array, created previously by ARMAKE or by a KDAC500
input command (ANINQ or BGREAD).

(long) The DEPthl and DEPth2 parameters delimit a subset of the
named KDAC500 array. ARPUT will store values in the indicated
area. The subset extends from the lower depth index (given by
DEPl) to the higher index (DEP2). Setting DEPl to a value higher
than DEP2 will result in an error.

(string> The ION ame parameter is used to put a specific channel’s
data. The ION parameter refers to the IOName that was used when
the array was created.

(integer) The width index of a specific channel’s data. Set ION to be
an empty string (““1 to use the WID parameter.

(Pointer to a float, integer, or long) When ARPUT is executed, the
block of values in the EXTARRY will be transferred to the specified
KDAC500 array. The array must be of type integer if an EUF flag of
C_RAW_INT is specified, type long if C_COUNT is specified and
type float otherwise. Depending on the value assigned to the engi-
neering units flag, the values can be sent as raw binary, volts, or
engineering units.

4-16

NOTE: Because the Engineering Units Flag determines the type of
expected data, there is no way for the compiler to insure that the
type of the array specified will match the type of the data being
sent. Therefore it is up to the user to make sure the EXTARRY is of
the correct type. If it is the wrong type the data stored in the
KDAC500 array will be incorrect.

ETJF (integer) The engineering units conversion flag is used to specify
that raw values be converted to volts, frequency, or engineering
units. See the EUF section for a complete description of the engi-
neering units flag.

4-17

ARLABEL

Purpose The ARLABEL command associates a descriptive string with a
specified KDAC500 array. This string will be saved with the array
(ARSAVE) and loaded with the array CARLOAD). ARLABEL is
very useful for storing miscellaneous information about an array
with the array itself.

Language Syntax

QuickBASIC: call at-label (arrnm,labl)

c: arlabel(arrnm, labl);

FORTRAN: call arlabel (arrnm,labl)

Pascal: arlabel(arrnm, labl);

(string) The ARRay NaMe parameter indicates the array which will
receive the label when the ARLABEL command is executed. The
array name must refer to a KDAC500 array that currently resides in
memory.

LABL (string) The LABeL parameter should be assigned a descriptive
string, identifying the array and providing any other miscellaneous
information that the user would like included. The string assigned
to the LABL parameter will be stored with the array when the array
is saved with the ARSAVE command. The label may be l-255 char-
acters in length.

418

ARLASTP

Purpose The ARLASTP command returns the depth index of the last point
accessed by a KDAC500 background routine. Note that ARLASTP
does not return the data value of this point, but only its depth in the
array.

If ARLASTP is executed on an array that has not been used by a
KDAC500 background I/O routine (BGREAD, ANINQ, BGWRITE),
the depth index returned (the “last point”) will be 0. Only the rou-
tines mentioned above will set the pointer that is used to the depth
of the last point accessed. (If the array has been filled by ANINQ,
however, ARLASTP will return the index of the maximum depth of
the array, since ANINQ must always finish before any other func-
tion is called.)

Language Syntax

QuickBASIC: call arlastp (arrnm, Ip)

c: arlastp(arrnm, &Ip);

FORTRAN: call arlastp (arrnm, Ip)

Pascal: arlastp(arrnm, Ip);

(string) The ARRay NaMe parameter is given the name of the
KDAC500 array from which ARLASTP finds the depth of the last
point accessed. The array name must refer to a KDAC500 array that
currently resides in memory.

LP (long) ARLASTP will find the depth index of the last point in the
array accessed by a KDAC500 background routine and return the
depth to the LP parameter. Note that LB is not assigned the value of
the last data point (that could be found easily with ARGET), but
only the depth of that point in the array.

Notes ARLXXI? duplicates one part of the ABSTATUS command, but is
easier to use. ARLASTP is particularly useful in process control ap-
plications.

4-19

ARLOAD

Purpose The ARLOAD command loads a specified KDAC500 array from
disk into memory. The array accessed must have been saved earlier
with the ARSAVE command.

ARLOAD is a foreground routine. It can be executed when inter-
rupts are on, although time skewing of the data may result at the
faster interrupt rates.

Language Syntax

QuickBASIC:

c:

FORTRAN:

Pascal:

DOSFILE

Notes

call arload (arrnm, DOSfile)

arload(arrnm, DOSfile);

call arload (arrnm, DOSfile)

arload(arrnm, DOSfile);

&ring> The ARRay NaM e parameter identifies the KDAC500 array
loaded into memory when ARLOAD is executed. Note that AR-
RNM is assigned a value by ARLOAD. When the ARLOAD com-
mand is given, the name of the array will be returned to the AR-
RNM parameter. This means that ARRNM must be initialized to a
length that will be long enough to hold the returned string. In
QuickBASIC this can be accomplished by:

ARRNM$ = SPACE$(255)

In C or Pascal declare ARRNM to be a 256 element array of char. In
FORTRAN declare ARRNM as CHARACTER?256 ARRNM.

(string) The DOSFILE parameter should be assigned the standard
DOS file name given to the file created when the array was first
saved with ARSAVE. This file name will appear in the directory of
the disk.

When ARLOAD is executed, all information pertaining to the speci-
fied array is loaded with the array into memory. This information
includes associated IONAMEs, the array label, the internal pointers,
and all other information saved by the ARSAVE command.

4-20

ARSAVE and ARLOAD conform to DOS conventions for save and
load operations. There are several errors that may result from im-
proper disk access. The following table summarizes the conditions
that will cause KDAC500 to return an error message:

4. File does not exist
5. Filename not completely specified
6. Invalid drive designator
7. Invalid filename
8. Filename specified is not a KDAC500 file

Other errors that may OCN:

9. Insufficient memory (allocation is necessary, since ARLOAD
essentially recreates the array in memory).

10. Array is still in memory, and must be deleted before reloading.

The actual ARRNM string in FORTRAN can be retrieved using the
scan0 function and FORTRAN’s substring command. For example:

ARRNM (l:scAN(ARRNM ,CI-LwO)))

In QuickBASIC, the RTRIh@O command can be used.

RTRIM$@RRNM)

Pascal & C do not need special treatment

4-21

ARMAKE

Purpose The ARMAKE command creates a KDAC500 array in the KDAC500
memory.

Every KDAC500 array has two dimensions; width and depth. The
depth of the array refers to the number of values associated with
each width. An array with depth 1000 might be used to send 1000
consecutive bit values to a specified number of digital output chan-
nels.

The width is related to the number of channels accessed by
KDAC500 commands that make use of the array. For example, an
array created with 5 channels has a width of 5.

Language Syntax

QuickBASIC:

c:

FORTRAN:

Pascal :

DEP

call armake (arrnm, dep, ionl)

armake(arrnm, dep, ion1);

call armake (arrnm, dep, ionl)

armake(arrnm, dep, ionl);

(string) The ARRay NaM e parameter allows the user to assign a
name to the array created by ARMAKE. Certain conventions must
be followed when assigning an array name:

1. The name can have up to 255 characters however only the first 8
characters will be significant. Hence, the given name “ABCDEF-
GHlJKLMN%” will be truncated to “ABCDEFGH”.

2. The array name may not include spaces, commas, tabs or control
characters.

<long> The DEPth parameter defines the depth of the array created
by ARMAKE. The DEP parameter may be assigned values of 1 or
greater. Note, however, that the maximum depth for any array is
always limited by the largest free block of contiguous memory in
the system. Note also that the amount of memory taken by an array
will depend both on the depth and on the type of the array, that is,
a byte array with depth 1000 will take up 8 times as much memory
as a bit array with depth 1000. The array type is determined by the
IOName List parameter.

4-22

IONL (string) The ION name List parameter is used to set the array width.
All the IONAMJ3 specified must be of the same type (i.e. analog
output, analog input, digital port, digital channel, etc.). Any refer-
ences to the array can then be made-by IONAME. (See ARGET/
ARPUT).

Notes If an array is to be used for analog output, the IONAMB’s used to
create the array do not have to be the IONAME’s actually used
when the output is done. This allows an array created by BGREAD,
AFMAKB or ANINQ to be used for output without having to copy
the contents of the array into another array.

4-23

ARSTATUS

Purpose The ARSTATUS command returns various information about a
given KDAC500 array, including the depth of the array, the width,
the last point accessed by a KDAC500 background routine, and the
descriptive label (if any) associated with the array.

Language Syntax

QuickBASIC:

c:

FORTRAN:

Pascal:

DEP

LP

LABL

call arstatus (arrnm, dep, wid, Ip, labl)

arstatus(arrnm, &dep, &wid, alp, labl);

call arstatus (arrnm, dep, wid, Ip, labl)

arstatus(arrnm,dep,wid,lp,labl);

(string) The ARRay NaMe parameter is assigned the name of a
KDAC500 array; this name identifies the array whose status will be
returned by ARSTATTJS. The array name must refer to a KDAC500
array that is currently in memory.

(long) The DEPth of the array is returned by ARSTATUS to the DEI?
parameter.

(integer) The WIDth of the array is returned to the WID parameter.

(long) ARSTATUS returns the depth of the last point accessed by a
KDAC500 background routine to the LP parameter. The LP pa-
rameter is especially useful for determining the depth of the last
point of input taken by input routines (BGRBAD), or the last point
output by KDAC500 output routines (BGWRITE).

If the user wants to know the depth of the last point accessed and
doesn’t need any additional information, the ARLASTI? command
will return the value of the LP parameter and nothing else (see AR-
LASTI?).

(string) The LABeL parameter will hold the descriptive label given
to the array with the ARLABEL command. This string must be
initialized to a length long enough to hold the returned string. If
LABL is longer than the descriptive label then LABL will be padded
with spaces.

4-24

NOTE to C and FORTRAN programmers: LABL is assumed to be
an array of char and is long enough to hold the returned string.
The entire string is always returned to LABL when C or FORTRAN
is the language type.

Notes ARSTATUS is particularly useful for determining information
about an array that has just been loaded into memory from disk.

4-25

ARSAVE

Purpose The ARSAVE command saves a KDAC500 array on floppy or fixed
disk in a number of different formats. ARSAVE will save a memory
array of any size; the only limitation is the amount of space on the
disk.

ARSAVE makes it easier to export data to spreadsheets, word proc-
essors, data bases, and analysis programs. The data can be saved in
ASCII, DADiSP, Lotus 123, Asyst, or Keithley format.

Language Syntax

QuickBASIC:

c:

FORTRAN:

Pascal:

DOSFILE

EUF

ITYPE

call arsave (arrnm, DOSfile, euf, ftype, samprate, tunits)

arsave (arrnm, DOSfile, euf, ftype, samprate, twits);

call arsave (arrnm, DOSfile, euf, ftype, samprate, tunits)

arsave (arrnm, DOSfile, euf, ftype, samprate, tunits);

(string) The ARRay NaMe identifies the KDAC500 array that will
be saved to disk when this command is executed. The ARRNM pa-
rameter must refer to a KDAC500 array which is resident in mem-
ory. If the specified array is not found, KDAC500 will return an er-
ror.

(string) The DOSFILE parameter allows the user to assign a stan-
dard DOS filename to the data file stored to disk. The filename will
be added to the disk directory and treated like any other DOS file.

<integer) The Engineering Units Flag parameter causes the engi-
neering units conversion to be applied to the data before it is saved
to the disk. If EUF is set to C_RAW_INT or CRAWFLOAT, the
data in the array will be saved in a raw A/D count data format.

(integer) The File TYPE parameter indicates which filetype is de-
sired:

QuickBASIC C, Pascal, or FORTRAN

FT.KDAC FT_KDAC
FI.ASCII FT_ASCII
Fr.BIN16 ET-BIN16

Keithley binary format
ASCII file
Binary file with 16-byte ASCII
header

426

FT.DADiSI’ FT_DADiSP DADiSP binary format

FT.LOT123

FI’.ASYST

FI_LOT123

FT_ASYST

ASCII importable into Lotus 123 as
a .PRN file
ASYST binary format

SAh4PRATE (integer) The SAMPIe RATE parameter is the rate at which data
was collected. Set SAMPRATB to equal IR x BINTV (interrupt rate
times background interval).

TUNITS (integer) The Time UNITS parameter that was specified for collect-
ing data in the INTON command:

HMlC

SEC

Hundereds of microseconds
MiIIiseconds
Seconds
Minutes

Notes ARSAVE is a foreground routine. If it is executed when interrupts
are on and operating at the fastest rates, time skewing of the data
acquisition may occur.

There are several errors that may result from improper disk access
with ABSAVE. The following table summarizes the conditions that
wiII cause KDAC500 to return an error message.

1. No space in file directory.
2. Filename not completely specified
3. Invalid filename.
4. Disk full.

The above errors wiII interrupt the command.

If the filename already exists, it wiII be overwritten by the new data.

Only files saved with FT.KDAC or IT_KDAC can be loaded by the
ARLOAD command.

4-27

BGCLEAR

Purpose BGCLEAR kills all current background functions. Any background
functions that may have been set up earlier will be cleared by this
command.

Language Syntax

QuickBASIC:

c:

FORTRAN:

Pascal:

Notes

call bgclear

bgclear();

call bgclear()

bgclear;

If a BGTIMX command is executed after BGCLEAR has been called,
BGTIME will not return 0, as might be expected, but a small num-
ber that represents the time taken by the interrupt processing rou-
tines.

428

BGGO

Purpose The BGGO command allows the user to trigger up to 16 back-
ground routines that have been assigned the trigger mode WGO -
Waiting for BGGO. When BGGO is executed, all such KDAC500
background routines will be started simultaneously.

When the TM parameter is assigned the value WBT, BGGO can it-
self be triggered by another KDAC500 background function config-
ured as background trigger (BT >.

Language Syntax

QuickBASIC: call bggo(tm, bfn)

c:

FORTRAN:

Pascal:

bggo(tm, M-0;

call bggo(tm, bfn)

bggo(tm, bfn);

TM (integer> The Trigger Mode parameter can be used to set up a back-
ground trigger for the BGGO command. There are two valid
strings for this parameter:

WBT* Wait for Background Trigger
NT No Trigger

Setting TM to NT will execute BGGO in the foreground.

BFN (string) The Background Frmction Name is a standard KDAC500
parameter that allows the user to name the background task or
tasks accomplished by the BGGO command.

Note that the BFN parameter may be used only when the BGGO
command is set up as a background function (when the TM pa-
rameter is set to WBT). When not used, set BFN equal to the null
string (““>.

Notes BGGO is a particukarly useful function that can be used to start
many functions simultaneously on a single trigger. Routines with
WGO in the parameter list will be started by the first BGGO that

4-29

follows. This will be true whether that particular BGGO command
is executed immediately, or is itself waiting for a background trig-
ger. In the latter case, the WGO routines in the background will
only be triggered by BGGO when BGGO itself is triggered in the
background by a BT Background Trigger command.

When BGGO is used as a background routine, the functions that are
Waiting for BGGO will not be started until the interrupt after the
execution of the BGGO command. This means that there will be a
delay between the trigger and the routine that is triggered. The de-
lay will be approximately equal to the time between interrupts.

4-30

BGHALT

Purpose

Language Syntax

QuickBASIC:

c:

FORTRAN:

Pascal:

BFNL

TM

BFN

The BGHALT command halts execution of up to 16 specified back-
ground tasks with assigned background function names. BGHALT
can be triggered by another background function or by the BGGO
command.

Depending on the value assigned to the TM (trigger mode) parame-
ter, BGHALT can be a foreground or a background function.

call bghalt (bfnl ,tm ,bfn)

bghalt(bfnl, tm, bfn);

call bghalt (bfnl ,tm ,bfn)

bghalt(bfnl, tm, bfn);

(string) The Background Function Name List parameter is used by
BGHALT to halt execution of the named tasks. This parameter may
include up to 16 background function names, created earlier by the
commands that set up the background tasks.

(integer) The Trigger Mode parameter can be given three valid val-
ues in this command:

WJ3T Wait for Background Trigger
WGO Wait for BGGO
NT No Trigger

If TM is set equal to NT, BGHALT will act as a foreground com-
mand, immediately halting the specified background tasks. If the
TM parameter is equal to WBT or WGO, BGHALT will be set up as
a background command.

(string) The Back gr o und Function Name is a standard KDAC500
parameter that allows the user to name the task accomplished by
the BGHALT command. Note that this parameter may be used only
when BGHALT is set up as a background routine, i.e., when the TM
parameter is set to WBT or WGO. If a BGHALT command will be
accessed by a BGSTATUS command or by another BGHALT, the
BFN parameter must be included, when not used, set BFN equal to
a null string (““1, or (9 for Turbo Pascal.

431

Notes BGHALT is essentially a command to “kill” background execution,
irrevocably halting the background tasks identified &I the name list.

BGHALT can be extremely useful when set up as a background
function waiting for a BT. When used in this way, BGHALT will
wait for some specified background trigger until the triggering con-
dition occurs. BGHALT will then halt execution of the specified
background tasks.

Note that one BGHALT may halt another.

When BGHALT is used as a background routine, the functions
specified will not be halted until the interrupt after the execution of
the BGHALT command. This means that there will be a delay be-
tween the trigger that executes the BGHALT command and the ac-
tual halting of the routine. The delay will be approximately equal to
the time between interrupts.

432

BGREAD

Purpose BGREAD is a background routine for sampling up to 64 channels of
input. The BGREAD command causes measurements to be taken at
a specified interval from a specified number of channels, and cre-
ates a KDAC500 array in which to store the acquired data. BGREAD
can be triggered or can act as a trigger for another KDAC500 com-
mand.

Language Syntax

QuickBASIC: call bgread(arrynm,numsamp,ionl,bintv,range,cyc,tm,bfn)

c: bgread(arrynm,num_samp,ionl,bintv,range,cyc,tm,bfn);

FORTRAN: call bgread(arrynm,numsamp,ionl,bintv,range,cyc,tm,bfn)

Pascal: bgread(arrynm,num_samp,ionl,bintv,range,cyc,tm,bfn);

ARRYNM (string) The AEEaY NaMe parameter is a standard KDAC500 array
name given to the array created by the execution of the BGEEAD
command. KDAC500 arrays are accessible through KDAC500 array
management commands only (see ARGET).

NUMSAMl?

IONL

BlNTV

RANGE

(long) The NUMber of SAMPIes parameter indicates the number of
samples to be taken from each channel.

(string) The ION ame List parameter includes 1-64 names, where
each name refers to a specific channel of input. The programmer
can achieve a burst effect by using the same name several times in
the name list. This will cause BGREAD to sample the channel sev-
eral times on every execution of the command; once for every oc-
currence of the name. Note that the number of names in the
IONAME list specifies the width of the array being created.

(integer) The Background INTerVal parameter determines the time
interval between each sample in terms of the interrupt period. The
integer value given to the BINTV parameter multiplied by the inter-
rupt period will yield the interval between each sample as some
number of milliseconds. For example, if BINTV is set at 5, each
channel will be sampled on every 5th interrupt. If the interrupt pe-
riod is 10 milliseconds, the interval between samples will be 50 mil-
liseconds.

(integer) The RANGE parameter is only used when reading pulse
or frequency channels. When the input channel is not a pulse or
frequency channel set RANGE = NONE.

433

When measuring frequency, the RANGE parameter indicates the
maximum frequency expected on the channels being measured.
RANGE should be assigned a vaiue according to the table on the
next page. Note that the value given to RANGE affects the length
of time taken by BGREAD to complete the measurement of each
channel (gate time). In turn, the gate time affects the accuracy
(resolution) of the measurement. Closely matching RANGE to your
expected maximum frequency wi.lI result in the highest resolution
possible.

When counting pulses RANGE specifies the type of pulse counting
that wiB be used. The PIMl can be configured to count in the nor-
mal mode or in gated mode. In normaI mode ail events occurring
on a specified input channel wiB be monitored. In gated mode, two
channels are monitored on the PIMl: channel n and channel n+4.
Channel n represents the pulse input channel as specified in the
IONL parameter. Channel n+4 acts as a gate for channel n. When
channel n+4 is high BGREAD wiB count events occurring on chan-
nel n. When channel n+4 is low, events wiI.i not be counted. In this
way the counting of events on channel n is made conditional on
some other event or condition as defined by the state of channel
n+4. When using the gated mode, the pulse input channel (channel
n) must be channel 0, 1,2, or 3. For more information on the PIMl
refer to the PIMl reference manual.

The counters on the PIM2 can be read and left alone or read and
reset back to 0. RANGE specifies which mode to use.

Range
C, Pascal, or

QuickBASIC FORTRAN
MAX

I-EQ Gate Time Resolution

F.62K
F.125K
F.250K
F.5OOK
F.lM
F.2M
F.4M
F.8M

F-62K 62.5 KHz
FJ25K 125 KHz
F-250K 250 KHz
F-500K 500 KHZ
FJM lMH2
F-N 2MHz

4MI-k
8MHz

1028.576 mS l.OHz
524.288 mS 1.9 Hz
262.144 mS 3.7 Hz
131.072 mS 7.5 Hz
65.536 mS 15.0 Hz
32.768 mS 30.0 Hz
16.384 mS 61.0 Hz
8.192 mS 122.0 Hz

Range
C, Pascal or

QuickBASIC FORTRAN Pulse Mode

I’1 .NORMAL Pl-NORMAL Normal pulse read on PIMl
Pl.GATED PI-GATED Gated pulse input on PIMl
P2.DEFAULT P2-DEFAULT Default mode for PIM2
P2.READ.RESET IQREAD_RESET Read and Reset for PIM2
P2.READ.ONLY P2-READ-ONLY Read only mode for PI&I2

4-34

Range

NONE any mode that is not pulse or frequency

CYC (integer) The Cycling parameter determines the number of times
the BGREAD task will cycle. If CYC is given the value 50, the
BGREAD task will execute for 50 cycles. If CYC is given the value
FOREVER, BGREAD will be executed repeatedly until halted by a
BGHALT, BGCLEAR, or KDINlT command. The cycling BGREAD
command is very useful for repeatedly reading analog input in the
background without having to store vast arrays of information.
Hence, it is well adapted for process control applications and real-
time graphing.

TM (integer) The Trigger Mode parameter indicates whether the
BGREAD command is associated with some other command, either
as a trigger for that command, or as a function to be triggered.
There are four valid values for this parameter:

BT
WBT
WGO
NT

Background Trigger
Wait for Background Trigger
Wait for BGGO
No Trigger

BFN (string) The Background Function Name parameter is used to name
the background task being performed by BGREAD.

If a background function name is not used, you must set this pa-
rameter equal to a string of zero length (i.e. ‘IN or ‘9.

Notes When BGREAD is used to measure signals produced by thermo-
couples, it will be necessary to give an I/O name to Channel 32 of
the TC module to which the thermocouples are connected. Channel
32 accesses the cold junction compensation circuitry. This channel
must be read whenever thermocouple inputs are connected. The
I/O name given to Channel 32 must be the first name in the I/O
name list. The values returned from reading Channel 32 will be
stored along with all other data collected with the BGREAD com-
mand. When ARGET retrieves data from the KDAC500 array, it
will assume the cold junction compensation values are the first
width of the array and apply them to the values taken from the
thermocouple inputs. In this way, the ARGET command is able to
return an accurate measurement of the thermocouple signal, by
converting the raw values to volts or degrees celsius.

4-35

BGSTATUS

Purpose BGSTATUS is a foreground function that returns the current status
of a specified background routine. The BGSTATUS command re-
turns a value to the STAT parameter, indicating whether the back-
ground function is off, on, waiting for a background trigger (WBT),
or waiting for BGGO (WGO).

Language Syntax

QuickBASIC:

c:

FORTRAN:

Pascal:

BFN

STAT

call bgstatus (bfn, stat)

bgstatus(bfn, &stat);

call bgstatus (bfn, stat)

bgstatus(bfn, stat);

(string) The B a ck ground Function Name parameter indicates the
background function whose status is returned by the BGSTATUS
command. If the background function name does not match the
names of any background tasks currently set up by KDAC500, the
BGSTATUS command will return a value indicating that the func-
tion is not active.

(integer) The STATus of the specified background function will be
returned in the STAT parameter. This parameter will be assigned
one of four values:

ST-DONE The function is off or not found.
STDONE KjuickBASIC)

STJXECUTE
ST.EXECUTE

The function is on (executing).
(QuickBASIC)

ST-WBT
ST.WBT

The function is waiting for a background trigger.
(QuickBASIC)

ST-WGO
ST.WGO

The function is waiting for a BGGO command.
QuickBASIC)

BGTIME

Purpose The BGTIME function returns the amount of time taken up by all
the KDAC500 routines set up in the background. BGTIME meas-
ures the time taken from the moment a Series 500 interrupt occurs
to the moment when control is returned to normal foreground exe-
cution. This time includes the time taken by the interrupt process-
ing routine and other internal tasks.

Language Syntax

QuickBASIC: call bgtime (time)

c: bgtime(&time);

FORTRAN: call bgtime (time)

Pascal : bgtime(time);

(float) The amount of time taken by the background is returned to
the TIME parameter as a variable expressed in milliseconds. This
value will have three significant decimal places. For example,
BGTIME might return the value 6.391362; this should be interpreted
as 6.391 milliseconds.

4-37

BGWRITE

Purpose BGWRITE is the background routine that writes specified values to
digital, or analog, channels or ports. If the output channels are ana-
log the user can specify the output as raw values or in engineering
units. BGWRlTE gets its values from a KDAC500 array.

Language Syntax

QuickBASIC:

c:

FORTRAN:

Pascal :

ARRYNM

IONL

BIN-IV

CYC

call bgwrite(arrynm,ionl,bintv,cyc,tm,bfn)

bgwrite(arrynm,ionl,bintv,cyc,tm,bfn);

call bgwrite(arrynm,ionI,bintv,cyc,tm,bfn)

bgwrite(arrynm,ionl,bintv,cyc,tm,bfn);

(string) The ARRaY NaM e parameter is a standard KDAC500 array
name given to the array created by the execution of a BGWRlTE,
ANINQorARMAKE command. KDAC500 arrays are accessible
through KDAC500 array management commands only (see AR-
GET, ARPUT).

(string) The ION ame List parameter may include from 1 to 64
IONAMES. The IONAMES are mapped 1 to 1 to the widths in AR-
RYNM. The IONAMES specified do not have to be the IONAMES
that created the array. In this way data acquired with BGWRlTE or
ANINQ can be directly output from the same array. (AOM5 data
must be converted.)

(integer) The Background INTerVal parameter determines the time
interval between each sampie in terms of the interrupt period. The
integer value given to the BINTV parameter multiplied by the inter-
rupt period will yield the interval between each sample as some
number of milliseconds. For example, if BINTV is set at 5, each
channel will be sampled on every 5th interrupt. If the interrupt pe-
riod is 10 milliseconds, the interval between samples will be 50 mil-
liseconds.

(integer) The Cycling parameter determines the number of times
the BGWRlTE task will cycle. If CYC is given the value 50, the
BGWRlTE task will execute for 50 cycles. If CYC is given the value
FOREVER, BGWRITE will be executed repeatedly until halted by a
BGHALT, BGCLEAR, or KDINIT command. The cycling
BGWRlTE command is very useful for repeatedly outputting data
in the background without having to store vast arrays of informa-

4-38

tion. Hence, it is well adapted for process control applications and
real-time graphing.

(integer) The Trigger Mode parameter indicates whether the
BGWRITE command is associated with some other command,
either as a trigger for that command, or as a function to be trig-
gered. There are four valid values for this parameter:

BT Background Trigger
WBT Wait for Background Trigger
WGO Wait for BGGO
NT No Trigger

BFN (string) The B ac k ground Function Name parameter is used to name
the background task being performed by BGWRITE.

If a background function name is not used, you must set this pa-
rameter equal to a null string (i.e. “” or ‘7.

439

BLANK

Purpose BLANK is a foreground graphics command that is used to clear the
screen. It supports the DATAQ waveform scroller card, and will
also clear the screen when doing IBM CGA graphics. If the
waveform scroller is used, BLANK will only clear the graphics pro-
duced by the scroller, not the text produced by the program.

Language Syntax

QuickBASIC: call blank

c: blank();

FORTRAN: call blank0

Pascal : blank;

4-40

FGREAD

Purpose FGREAD is the foreground routine that samples digital, analog,
pulse, and frequency inputs. FGREAD returns values directly to
the calling language for easy access.

Language Syntax

QuickBASIC: call fgread(ionl, range, varseg(vl(O)), varptr(vl(O)), euf, tm)

c: fgread (ionl, range, &vl[O], euf, tm);

FORTRAN: call fgread(ionl, range, LOCFAR(vI(l)), euf, tm)

Pascal: fgread (ionl, range, @vl[O], euf, tm);

IONL (string) The Ioname list is made up of IONAMES separated by com-
mas, spaces or both. An ioname is a standard parameter used to
indicate which channel or port of input will be read by the
FGREAD command. These names must have been created earlier
with the CONFIG program.

RANGE (integer) The RANGE parameter is only used when reading pulse
or frequency channels. When the input channel is not a pulse or
frequency channel set RANGE = NONE.

men measuring frequency, the RANGE parameter indicates the
maximum frequency expected on the channels being measured.
RANGE should be assigned a value according to the table on the
next page. Note that the value given to RANGE affects the length
of time taken by FGREAD to complete the measurement of each
channel (gate time). In turn, the gate time affects the accuracy
(resolution) of the measurement. Closely matching RANGE to your
expected maximum frequency will result in the highest resolution
possible.

When counting pulses RANGE specifies the type of pulse counting
that will be used. The PIMl can be configured to count in the nor-
mal mode or in gated mode. In normal mode all events occurring
on a specified input channel will be monitored. In gated mode, two
channels are monitored on the PlMl: channel n and channel n+4.
Channel n represents the pulse input channel as specified in the
IONL parameter. Channel n-+4 acts as a gate for channel n. When
channel n+4 is high FGREAD will count events occurring on chan-
nel n. When channel n+4 is low, events will not be counted. In this
way the counting of events on channel n is made conditional on

4-41

some other event or condition as defined by the state of channel
n+4. When using the gated mode, the pulse input channel (channel
n) must be channel 0, 1,2, or 3. For more information on the PIMl
refer to the PlMl reference manual.

The counters on the PIM2 can be read, or read and reset back to 0.
RANGE specifies which mode to use.

Range

C, Pascal or
QuickBASIC FORTRAN FREQ Gate Time Resolution

F.62K
F.125K
F.250K
F.500K
FSM
F.2M
F.4M
F.8M

F-62K
F.J25K
FJ50K
F-500K
F-1M
F-N
F-M
F-8M

62.5 KHz
125 KHz
25OKHZ
500 KHZ

1MJsz
2MHz
4MHz
8MHz

1028.576 mS
524.283 mS
262.144 mS
131.072 mS
65.536 mS
32.768 mS
16.334 mS
8.192 mS

l.OHZ
1.9 Hz
3.7 Hz
7.5 Hz

15.0 Hz
30.0 Hz
61.0 Hz

122.0 Hz

Range
C, Pascal or

QuickBASIC FORTRAN Pulse Mode

Pl .NORMAL Pl-NORMAL Normal pulse read on PIMl
Pl .G ATED l’l-GATED Gated pulse input on PIMl
l’2.DEFAULT IQ-DEFAULT Default mode for PlM2
l%READ.RESET IQ-READ-RESET Read and Reset for PIM2
I?.READ.ONLY M-READ-ONLY Read only mode for PIM2

Range

NONE any mode that is not pulse or frequency

(Pointer to a float, single, or long) This variable (or array) holds the
results of the readings. If more than one ioname is specified in
IONL then VL must be an array with a depth at least as large as the
number of entries in the IONL parameter. The values will appear
in the array in the same order as the channels or ports were listed in
the ioname list.

ANALOG CHANNELS - When the EUI? parameter is set to
C-RAWJNT or CJUWJLOAT, VL will hold raw values from
O-4095 (for systems with 12 bit A/D’s), O-16383 (for systems with 14
bit A/D’s), or O-65535 (for systems with 16 bit A/D’s). The EUF
parameter can also be set to return values expressed as volts or en-
gineering units.

DIGITAL CHANNE LS or PORTS - When FGREAD samples a digi-
tal channel the status of that channel will be returned as a 0 or a
l(off or on; ITL low or high). If FGREAD samples a port, the status
of the port will be returned as a decimal number from 0 to 255. This
number can be looked at as an 8 bit binary value where the status of
each bit represents the status of one channel.

Consider the following example:

FGREAD reads a port of digital input from a DIOl module and re-
turns the decimal value 100. When this value is converted to a bi-
nary number (01100100), the status of each bit corresponds to the
status of one channel:

Ch7 Ch6 Ch5 Ch4 Ch3 Ch2 Chl ChO
0 1 1 0 0 1 0 0
Off on on off off on off off

FREQUENCY CHANN-E LS -When EUF is set to CRAWJNT,
C.RAW.FLOAT, C-IUW-INT, or C-RAW-FLOAT, FGREAD will
return raw values from 0 to 65535 (a reading of 65535 indicates that
the frequency is above the limit specified by RANGE). By setting
the engineering flag to C.FREQ or C-FREQ, values can be returned
as some number of Hertz.

PULSE CHANNELS - Each entry in VL will contain an unsigned
long integer which holds the input channels count value. The count
will be in the range O-4294967295. EUF should be set to C-COUNT
or C.COUNT for pulse channels.

EUF (integer) The engineering units conversion flag is used to specify
that raw values be converted to volts, frequency, or engineering
units. See the EUF section for a complete description of the engi-
neering units flag.

(integer) The trigger mode parameter allows FGREAD to be trig-
gered by the execution of another KDAC500 command. There are
only two valid trigger modes for this command:

WST Wait for Singleground Trigger
NT No Trigger

Note that when WST is used, FGREAD is used as a singleground
function. If the user specifies WST when the background is on, a
warning error will be given. If NT is specified FGREAD will oper-
ate in the foreground.

4-43

FGREAD may be called as a foreground routine if a background
routine is active, however, if there is not enough time left in the
foreground to do the sampling without being interrupted, an inter-
rupt will be shipped.

Cold junction compensation is automatically provided when the
IONL parameter specifies a channel on a thermocouple module and
the EUF parameter is given a value that indicates a thermocouple is
being used. Excitation is provided automatically when the IONL
parameter specifies a channel on an AIM8 and the EUF parameter is
set to C4IM8C, C-AIMB-D, C.AIMB.C, or C.AIM8.D.

The IONAhJE list may include a single channel mentioned multiple
times. This would allow the user to take a burst of readings from a
single channel during the execution of one foreground routine.

FGWRITE

Purpose

Language Syntax

QuickBASIC:

c:

FORTRAN:

Pascal:

IONL

VL

FGWRITE is the foreground routine that writes specified values to
digital, or analog, channels or ports. If the output channels are ana-
log the user can specify the output as raw values or in engineering
units. FGWRITE gets its values from a variable or array passed to it
from the calling language.

call fgwrite(ionl, varseg(vl(O)), varptr(vl(O)), euf, tm)

fgwrite (ionl, &vl[O], euf, tm);

call fgwrite(ionl, LOCFAR(vI(l)), euf, tm)

fgwrite (ionl, @vl[O], euf, tm);

(string) The ION ame list is made up of IONAMES separated by
commas, spaces or both. An IONAME is a standard parameter
used to indicate which channel or port will be written to by the
FGWRITE command. These names must have been created earlier
with the CONFIG program.

(Pointer to a float, or integer) This variable (or array) holds the
value(s) to be written. If more than one ioname is specified in
IONL then VL must be an array with a depth at least as large as the
number of entries in the IONL parameter. The values should ap-
pear in the array in the same order as the channels or ports were
listed in the IONAh4E list.

ANALOG CHANNELS - When the EUF parameter is set to
C.RAW.INT,C.RAW.FLOAT, CJAWJNT, or C-RAWJLOAT,
VL should hold raw values from 04095 (for systems with 12 bit D/
A’s) or O-65535 (for systems with 16 bit D/A’s). The EUF parameter
can also be set so values can be expressed as volts or engineering
units.

DIGITAL CHANNELS or PORTS - When the elements of VL are
not integer numbers, they will be rounded to the nearest whole
number when the values are transmitted. When FGWRITE accesses
digital channels the elements of VL should be assigned the values 1
or 0, indicating the on and off (high and low) status of that channel.
When accessing ports, the value assigned the elements of VL must
be from 0 to 255. When these numbers are converted to 8-bit binary
values, the status of each bit will correspond to the status of one of
the 8 channels of the digital output port.

4-45

EUF

Notes

Suppose the user wishes to to write to port B on a DIOl module,
turning channels 8-14 on and turning channel 15 off. the corre-
sponding element of VL is assigned the value 127.0 (OlllllllB),
representing the status of the channels as follows:

Ch15 Ch14 Ch13 Ch12 Chll ChlO Ch9 Ch8
0 1 1 1 1 1 1 1
off on on on on on on on

(integer> The engineering units conversion flag is used to specify
that input values are specified in volts or engineering units. The
EUF parameter is only used for analog channels. Set EUF =
C.RAW.INT or C-RAWINT if the outputs channels are digital or if
the output values are raw D/A values. See the EUF section for a
complete description of the engineering units flag.

(integer) The trigger mode parameter allows FGWRIIE to be trig-
gered by the execution of another KDAC500 command. There are
only two valid trigger modes for this command:

WST Wait for Singleground Trigger
NT No Trigger

Note that when WST is used, FGWRII’E will be executed immedi-
ately following the execution of a command with ST (Singleground
Trigger) in its parameter list. If the user specifies WST when the
background is on, a warning error wiU be given. If NT is specified
FGWRITE will operate in the foreground.

FGWRITE may be called as a foreground routine when a back-
ground routine is active. However, if there is not enough time left
in the foreground to do the sampling without being interrupted, an
interrupt will be skipped.

446

GETHANDLE

Purpose The GETHANDLE command transfers the KDAC5OO “handle” as-
sociated with an IONAME to an integer variable. GETHANDLE is
a support command for the “handle-using” foreground functions
HREAD and HWRITE.

Internally KDAC500 identifies every IONAME with an integer
value called a “handle” Everytime a foreground read or write
command is executed (FGREAD, FGWRITE) KDAC500 searches its
list of IONAMES for a string that matches the one found in the
IONL parameter of the command. Each IONAME has a unique
“handle” value assigned to it by KDAC500 when it is defined by
CONFIG. This value remains unchanged throughout the execution
of a KDAC500 program.

If the same channel is being accessed multiple times from the fore-
ground, the IONAME string search will occur every time. This
multiple string search can be avoided by acquiring the “handle”
value one time using GETHAND LE at the start of the program.
Once acquired, the “handle” can be used in the “handle-using’
foreground commands. Depending on how often the channel is
accessed, and the total number of IONAMES in the system, the per-
formance increase can be appreciable.

Language Syntax

QuickBASIC: call gethandle(ionl,varseg(handles(O)),varptr(handles(O)))

c: gethandle (ionl, &handles[O]);

FORTRAN: call gethandle(ionl,handles)

Pascal: gethandle (ionl, handles[O]);

IONL (string) The Ioname list is made up of IONAMES separated by com-
mas, spaces or both. An ioname is a standard parameter used to
indicate which channel or port of input will be accessed by a
KDAC500 command. These names must have been created earlier
with the CONFIG program.

HANDLES (Pointer to an integer array) The GETHANDLE command will re-
turn the values of the “handles” associated with the given IONL
into the HANDLES array. If a particular IONAME is not found, a
value of 0 will be returned in the corresponding location in Hand-
lelist. After the last IONAME, a value of 0 is placed in handles.

4-47

Notes

Therefore, handles should be dimensioned to 1 Iarger than the
number of IONAMES.

The performance increase yielded with the “handle-using” com-
mands can only be realized when the interrupts are off. If the inter-
rupts are on, the normal foreground read and write commands
have the same performance characteristics as the “handle-using”
read and write commands. The “handle-using” read and write
commands yield the greatest performance improvement over the
normal foreground read and write commands when three situ-
ations are coincident: the interrupts are off, the number of
IONAMES is large, and a large number of foreground reads and
writes are desired that deal with the same channel or group of
channels.

4-48

GRAPH

Purpose GRAPH is a foreground routine that provides horizontal, linear
graphing of data values stored in KDAC500 arrays. The GRAPH
command will support several sets of data, graphing each set in a
specified color.

GRAPH may be used to graph analog or digital values from any
KDAC500 array, or any part of a KDAC500 array specified by DEPl
and DEP2. By setting the engineering units flag, the user may spec-
ify an internal conversion of raw binary values to volts or engineer-
ing units.

GEAEH also has the option of data magnification or reduction, by
which a set of data points may be magnified or reduced on the
screen.

Language Syntax

QuickBASIC: call graph (arrnm, varseg(widl(O)), varptr(widl(O)), varseg(coll(O)),
varptr(coll(O)), displm, miny, maxy, mrm, res, depl, dep2, euf)

c: graph(arrnm, &widl[O], &coll[O], displm, miny, maxy, mrm, res,depl,
dep2, euf);

FORTRAN: call graph (arrnm, LOCFAR(widl(l)), LOCFAR(coll(l)), displm,
miny, maxy, mrm, res, depl, dep2, euf)

Pascal: graph(arrnm, widl[O], coll[O], displm, miny, maxy, mrm, resdepl,
dep2, euf);

(string) The ARRay NaM e parameter should be given the name of
the array to be accessed by the GRAPH command. From this array,
the user may specify several sub-arrays (given as widths in the ar-
ray) for graphing. The number of sub-arrays to be graphed will be
determined by the number of widths included in the width list
(WIDL) parameter.

All sub-arrays will be of the same type as the array indicated by the
ARRNM parameter.

WlDL (Pointer to a 16 element integer array) The WIDth List parameter
will specify those sub-arrays to be graphed by the GRAPH com-
mand.

4-49

COLL

The WlDL parameter is an array of 16 elements. Each element of
the array should be assigned the integer values of the widths to be
accessed by GRAPH. After the entry of the last channel to be
graphed, the WIDL should be set to -1 to indicate the end of the list.
The following C statements specify widths one, three, and five:

WIDL[O] = 1; /* assign width 1 */
WIDL[l] = 3; /*assign width 3 */
WDL[2] = 5; /* assign width 4 */
WIDL[3] = -1; /* terminate the list */

The GRAPH command will treat each width in the width list as a
separate sub-array.

Since different widths in an array correspond to different channels
from which samples were taken, the WIDL parameter is a useful
way of specifying only those channels that the user wants to graph.
These widths may be specified in any order.

The number of widths that may be graphed at one time is deter-
mined by the type of the array. The maximum widths for each type
are summarized below:

Type of Array Number of Widths

bit arrays 16
byte arrays 2*
integer arrays 8
long arrays 8

*Note that a byte array will be graphed as 8 individual bits.
Thus, hvo sub-byte arrays will be graphed as 16 bit sub-arrays.

NOTE: The WIDth List MUST be dimensioned to 16 elements even
if only one channel is being graphed.

(Pointer to a 16 element integer array) The nth width in the width
list will be graphed using the nth color in the COLor List. If there
are more colors than widths, the extra colors will be ignored. If
there are more widths than colors, then colors will be assigned to
widths until the color list has been exhausted. The next width will
be graphed using the first color again, the following width with the
second color, and so on, until every width has been assigned a
color. After the entry of the last color, the COLor List should be set
to -1 to indicate the end of the list. The following table shows the
legal color values:

Q-50

IBM CGA Graphics

Pallette 0 Pallette 1

0 background background
1 green cyan
2 red magenta
3 brown white

DATAQ Waveform Scroller Card

black
blue
green

?gg red
light magenta
yellow
bright yellow

NOTE: The COLor List MUST be dimensioned to 16 elements even
if only one channel is being graphed.

DISPLM (integer) The DISPLay Mode parameter specifies how the graph
will be presented on the screen, whether scrolled, paged, overlaid
(IBM style) left to right or right to left (DATAQ style>.

IBM CGA Graphics

SCROLL Scroll; the graph will be scrolled across the window.

PAGEC Page Clear; the graph will be paged, i.e. the window
wiII be cleared after each window is filled.

PAGE0 Page Overlay; The graph will be paged, but the win-
dow will not be cleared after the window is filled nor
when the command is first given.

Note that when DISPLM is assigned either PAGEC or SCROLL the
screen will be cleared on the very first execution of GRAPH, before
new data is graphed. If DISPLM is set to PAGEO, the screen will
not be cleared at all.

DATAQ Waveform Scroller Card

L-SCROLL Scroll left to right
LSCROLL K@ickBASIC)

4-51

R-SCROLL Scroll right to left
R-SCROLL (QuickBASIC)

(double) The MINimum value of the Y coordinate parameter sets
the minimum value of the Y coordinate of the graph.

When accessing a bit or byte array (created for digital values),
MINY must be set to 0 and MAXY set to 1. If they are not set to
these values, a fatal error will be given.

When accessing a word array (created for analog values), MINY
may be any number less than or equal to MAXY. In the special case
when MINY is set equal to MAXY (only legal for word arrays),
KDAC5OO will provide automatic range finding based on the mini-
mum and maximum data values stored in the sub-array (or seg-
ment of the sub-array) being graphed.

When accessing an array filled with analog data, MINY will be in-
terpreted in terms of engineering units. See EUF for more informa-
tion.

(double) The MAXimum value of the Y coordinate parameter sets
the maximum value of the Y coordinate of the graph.

When accessing a bit or byte array (created for digital values),
MAXY must be set to 1. When accessing a word or real array,
MAXY may be any number greater than or equal to MINY. In the
special case when MAXY equals MINY, KDAC500 will provide
automatic range finding based on the minimum and maximum data
values stored in the sub-array (or segment of the sub-array) being
graphed.

When accessing an array filled with analog data, MAXY will be in-
terpreted in terms of engineering units. See EUF for more informa-
tion.

(integer) The Magnification/Reduction Mode must be used with
the RES parameter. The MRM parameter gives the user the option
of magnifying or reducing the number of data points plotted by
GRAPH.

There are three valid values for this parameter:

MAGNIFY Magnify data by some factor
REDUCE Reduce data by some factor
NORMAL Plot data as-is

4-52

The factor of magnification or reduction is given by the RES pa-
rameter.

When MRM equals MAGNIFY the GRAPH command will pull the
data points apart and draw straight lines between them, thereby
extending the graph so that it has a greater expanse along the x axis.
When MRM equals REDUCE the GRAPH command will take
groups of data points and average them. These averages will be
plotted rather than the original data results. In this way, the graph
will be reduced by some factor.

The factor of magnification or reduction is given by the RES pa-
rameter, which indicates how many data points to average to pro-
duce a single new result (reduction mode), or how many screen co-
ordinates to add between data points (magnification mode).

RJ3 (integer) The RESolution must be used with the MRM parameter.
The RES parameter should be assigned a value to specify the factor
by which the graph will be magnified or reduced. If, for example,
MRM is set for REDUCE and RES is assigned the value 10, the
graph will be reduced by a factor of 10.

The RES parameter may be assigned any integer value from l-100,
or -1. When RES is given the special value -1, the graph will auto-
matically be modified to fit a single window.

If MRM is set to NORMAL then RES is not used and should be set
to 1.

DEPl, DEl’2 (lqng) The DEPth 1 and DEPth 2 parameters must be used together.
By assigning values to DEFY and DEM, the user may specify that
only some segment of the sub-array will be graphed. DEPl and
DEP2 cause GRAPH to plot only that segment of the array begin-
ning at depth 1 and ending at depth 2.

To plot all the points, DEPl should equal 1 and DEB2 should equal
the depth of the array.

EUF (integer) The Engineering Units Flag parameter determines how to
interpret the MINY and MAXY values. A value of C.RAW.FLOAT
or C-RAW-FLOAT indicates that MINY and MAXY are expressed
as raw binary values. Refer to the ETJF section for the complete list
of values that may be assigned to this parameter.

NOTE: The EUF value C.RAW.INT or CRAW-lNT is interpreted
the same as BLOAT for h4INY and MAXY becaue h4INY and MAXY
are always single precision real values.

4-53

To terminate graphing at any time, press the escape key (ESC). This
will completely halt the GRAPH command and cause the program
to continue with the next program line. To re-create the graph, a
new GRAPH command must be given. The command will also wait
at the end of a disply of one full screen of data for a keyboard input
before displaying the next page of data.

GRAPHRT

Purpose GRAPHRT is a foreground routine that provides realtime, horizon-
tal graphing of one to several channels accessed by the following
background routines: BGREAD and BGWRlTE. With analog chan-
nels, the user may set the engineering units flag, specifying an in-
ternal conversion of raw binary values to volts or engineering units.

Language Syntax

QuickBASIC: call graphrt (arrnm, varseg(widl(O)), varptr(widl(O)), varseg(coll(O)),
varptr(coll(O)), displm, miny, maxy, npts, euf)

c: graphrt(arrnm, &widl[O], &coll[O], displm, miny, maxy, npts, euf);

FORTRAN: call graphrt (arrnm, LOCFAR(widl(l)), LOCFAR(coll(l)), displm,
miny, maxy, npts, euf)

Pascal: graphrt(arrnm, widl[O], coll[O], displm, miny, maxy, npts, euf);

(string) The ARRay NaM e parameter should be given the name of
the array to be accessed by the GRAJ?HRT command. From this ar-
ray, the user may specify several sub-arrays (given as widths in the
array) for graphing. The number of sub-arrays to be graphed will be
determined by the number of widths included in the width list
(WIDL) parameter.

All sub-arrays wiU be of the same type as the array indicated by the
ARRNM parameter.

WIDL (Pointer to a 16 element integer array) The WTDth List parameter
will specify those sub-arrays to be graphed by the GRAPHRT com-
mand.

The WTDL parameter is an array of 16 elements. Each element of
the array should be assigned the integer values of the widths to be
accessed by GRAPHRT. After the entry of the last channel to be
graphed, the WIDL should be set to -1 to indicate the end of the list.
The following C statements specify widths one, three, and five:

WJDL[Ol = 1;
WIDL[l] = 3;
WIDL[2] = 5;
WIDL[S] = -1;

/* assign width 1 */
/” assign width 3 */
/* assign width 4 */
/*terminate the list */

4-55

Since different widths in an array correspond to different channels
from which samples were taken, the WTDL parameter is a useful
way of specifying only those channels that the user wants to graph.
These widths may be specified in any order.

The number of widths that may be graphed at one time is deter-
mined by the type of the array. The maximum widths for each type
are summarized below:

Type of Array Number of Widths

bit arrays 16
byte arrays 2*
integer arrays 8
long arrays 8

*Note that a byte array will be graphed as 8 individual bits.
Thus, two sub-byte arrays will be graphed as 16 bit sub-arrays.

NOTE: The WIDth List MUST be dimensioned to 16 elements even
if only one channel is being graphed.

COLL (Point to a 16 element integer array) The nth width in the width list
will be graphed using the nth color in the COLor List. If there are
more colors than widths, the extra colors will be ignored. If there
are more widths than colors, then colors will be assigned to widths
until the color list has been exhausted. The next width will be
graphed using the first color again, the following width with the
second color, and so on, until every width has been assigned a
color. After the entry of the last color, the COLor List should be set
to -1 to indicate the end of the list. The following table shows the
legal color values:

IBM CGA Graphics

Pallette 0 Pallette 1

0 background background
1 green cyan
2 red magenta
3 brown white

DATAQ Waveform Scroller Card

black
blue
green

?gE red
light magenta
yellow
bright yellow

4-56

NOTE: The COLor List MUST be dimensioned to 16 elements even
if only one channel is being graphed.

DISPLM (integer) The DISPLay Mode parameter specifies how the graph
will be presented on the screen, whether scrolled, paged, overlaid
(IBM style) left to right or right to left (DATAQ style).

IBM CGA Graphics

SCROLL Scroll; the graph will be scrolled across the window.

PAGEC Page Clear; the graph will be paged, i.e. the window
will be cleared after each window is filled.

PAGE0 Page Overlay; The graph will be paged, but the win-
dow will not be cleared after the window is filled nor
when the command is first given.

Note that when DISPLM is assigned either PAGEC or SCROLL the
screen will be cleared on the very first execution of GRAPJXRT, be-
fore new data is graphed. If DISPLM is set to PAGEO, the screen
will not be cleared at all.

DATAQ Waveform Scroller Card

L-SCRdLL Scroll,left to right
LSCROLL (QuickBASIC)

R-SCROLL Scroll right to left
RSCROLL (QuickBASIC)

(double) The MINimum value of the Y coordinate parameter sets
the minimum value of the Y coordinate of the graph.

When accessing a bit or byte array (created for digital values),
MINY must be set to 0 and MAXY set to 1. If they are not set to
these values, a fatal error will be given.

When accessing a word array (created for analog values), MINY
may be any number less than MAXY. Note that MINY may not be
set equal to MAXY in GlUPHRT. If they are set equal, a fatal error
will be given.

When accessing an array filled with analog data, MINY will be in-
terpreted in terms of engineering units. See EUF for more informa-
tion.

457

(double) The MAXimum value of the Y coordinate parameter sets
the maximum value of the Y coordinate of the graph.

When accessing a bit or byte array (created for digital values),
MAXY must be set to 1. When accessing a word or real array,
MAXY may be any number greater than MINY. Note that h4TNY
may not be set equal to MAXY in GRAPHRT. If they are set equal,
a fatal error will be given.

When accessing an array filled with analog data, MAXY will be in-
terpreted in terms of engineering units. See EUF for more informa-
tion.

NITS (long) The Number of PomTS parameter is used to specify the num-
ber of points which will be graphed before the GRAPHRT com-
mand is halted. By assigning a number to NETS, the user can deter-
mine in advance how many points will be graphed.

The NETS parameter may be given legal values from 1 on up, or
FOREVER, which indicates that GRAPHRT will continue to graph
data points until the background task is halted.

EUF (integer) The Engineering Units Flag parameter determines how to
interpret the MLNY and h4AXY values. A value of C.RAW.FLOAT
or C-RAW-FL,OAT indicates that MINY and MAXY are expressed
as raw binary values. Refer to the EUF section for the complete list
of values that may be assigned to this parameter.

NOTE: The EUF value C.RAW.JNT or C-RAw_INT is interpreted
the same as FLOAT for MINY and MAXY becaue MINY and MAXY
are always single precision real values.

Notes To terminate graphing at any time, press the escape key (ESQ. This
will completely halt the GRAPHRT command and cause the pro-
gram to continue with the next program line. To m-create the
graph, a new GRAPHRT command must be given.

Since GRAPHRT is a foreground routine, it is interrupted by the
function it is graphing (and any others in the background). Thus, if
the proportion of background time to foreground time is high,
GRAPHRT will not run as smoothly as it would if there were more
time for it in the foreground (i.e., more data points will be skipped
over in graphing).

The speed of the real-time graphing for analog data is affected by
EUF as follows :

4-58

1. EUF is set to CRAW. FLOAT, C.IUW.INT, C-RAW-FLOAT or
C-RAW-NT, raw binary (fastest).

2. EUF set to anything but thermocouple or RTD types (fast).
3. EUF set to thermcouple or RTD types (slow).

There are two side effects you may notice when running GRAPHRT
at optimal speed. They are generally noticeable only when graph-
ing a signal that is changing rapidly:

1.

2.

If SCROLL is specified, once scrolling begins the graphed signal
may appear fragmented. This is because the data points sampled
while scrolling are missed by the graphing routine. This appar-
ent fragmentation can be avoided by specifying PAGEC (page
clear) for the DISPLM parameter.
If the interrupt rate is not sufficiently fast, the graphing routine
may “extend” the last data point sampled into a short horizontal
line while waiting for a new sample to plot. This can be elimi-
nated by increasing the interrupt rate (decreasing the interval).

4-59

GRLABEL

Purpose The GRLABEL command prints the text statements when the high-
resolution graphics screen is on, allowing you to label graphs cre-
ated with the HGRAPHRT command. The label can be for the hori-
zontal or the vertical axis.

Language Syntax

QuickBASIC:

c:

FORTRAN:

Pascal :

LABL

LOG1

call grlabel (labl, win, nwin, loci , 10~2)

grlabel(labl, win, nwin, loci , loc2);

call grlabel (labl, win, nwin, loci, 10~2)

grlabel(labl, win, nwin, loci , loc2);

k&ing> The LABeL parameter is the string that will be displayed on
the graphics screen. When labeling the horizontal axis LABL can be
up to 64 characters long. The maximum number of vertical charac-
ters is 21 with one window displayed, 10 with two windows, and 6
with three windows. Any printable character is legal.

(integer> The WINd ow position (integer); input. Assign a value to
the WIN parameter in order to specify the window that should be
labelled with the string of the LABL parameter. There are three le-
gal values for this parameter:

3. Window at the bottom of the screen.
4. Middle window (top window if only 2).
5. Window at top of screen.

The number assigned to WIN should be less than or equal to the
total number of windows being graphed in (i.e., less than or equal
to the NWIN parameter).

(integer) The Number of WINdows parameter indicates the total
number of windows being used (1,2, or 3). This number should be
the same as the WND parameter in the HGRAPHRT command list.

(integer) The LOCation 1 parameter allows you to position the text
string either at the top, bottom, or to the left of the desired window.
The legal values for this parameter are:

LEFT Position the text to the left of the window (aligned on
the vertical plane).

4-60

TOP Position the text at the top of the window (aligned on
the horizontal plane).

BOTTOM Position the text at the bottom of the window (aligned
on the horizontal plane).

The BOTTOM location for window 2 is the same as the TOP loca-
tion for window 1. The BOTTOM location for window 3 is the
same as the TOP of window 2. The line last written to a location
will prevail, and will overwrite any label previously written to that
location.

LOC2 (integer) The LOCation 2 parameter gives you the option of justify-
ing the text string. If the text is at the top or bottom of the window,
use one of the following strings:

RIGHT Right justify the text

LEFT Left justify the text

Center the text on the horizontal plane

If the text is to the left of the window, use:

TOP Top justify the text

BOTTOM Bottom justify the text

Center the text on the vertical plane

The LOCl and LOC2 parameters combine to allow you to position
the text string exactly where you want it on the screen, without the
trial-and-error. Text positioned with parameters will not be over-
written when points are plotted on the desired graph.

Notes The GRLABEL routine does not put the display adapter into graph-
ics mode. The user must do this within his own program.

4-61

HGRAPHRT

Purpose HGRAPHRT is a foreground routine that utilizes the high-resolu-
tion graphics page to provide realtime, horizontal graphing of one
or more channels accessed by the background acquisition routines
MNLN, BGREAD) and the output command BGWRITE.

With the ANTN and ANOUT, you may set a list of engineering
units flags, specifying an internal conversion of raw binary values
to voltage, temperature or other engineering unit values.

HGRAPHRT also allows you to specify up to three windows, with
one of four display modes and an optional grid. Up to 12 channels
of analog or 16 channels of digital data may be displayed.

Language Syntax

QuickBASIC:

c:

FORTRAN:

Pascal:

WIDL

call hgraphrt(arrnm , varseg(widl(O)),varptr(widl(O)), displm,
varseg(minyl(O)), varptr(minyl(O)), varseg(maxyl(O)), varptr
(maxyl(O)), varseg(eufI(O)), varptr(eufl(O)), npts, wnd, grid)

hgraphrt(arrnm, &widl[O], displm, &minyl[O], &maxyl[O], &eufl[O],
npts, wnd, grid);

call hgraphrt(arrnm , LOCFAR(widl(l)), displm, LOCFAR(minyl(l)),
LOCFAR(maxyl(l)), LOCFAR(eufl(l)), npts, wnd, grid)

hgraphrt(arrnm, widl[O], displm, minyl[O], maxyl[O], eufl[O], npts,
wnd, grid);

Wring) The ARRay NaM e parameter should be given the name of
the array to be accessed by the HGRAPHRT command. From this
array, the user may specify several sub-arrays (given as widths in
the array) for graphing. The number of subarrays to be graphed
will be determined bythe number of widths included in the width
list (WIDL) parameter.

(Point to a 16 element integer array) The WIDth List parameter
specifies those channels to be graphed by the HGRAPHRT com-
mand.

The WIDL parameter is an array of 16 elements. Each element of
the array should be assigned the integer values of the widths to be
accessed by HGRAPHRT. After the entry of the last channel to be
graphed, the WIDL should be set to -1 to indicate the end of the list.
The following C statements specify widths one, three, and five:

4-62

wlDL[O] = 1; /* assign width 1 */
wIDL[l] = 3; /* assign width 3 */
wIDLI21 = 5; /” assign width 4 */
wrDL[3] = -1; /* terminate the list */

Since different widths in an array correspond to the different chan-
nels from which samples were taken, the WlDL parameter is a use-
ful way of specifying only those channels that the user wants to
graph. These widths may be specified in any order.

NOTE: The WJDth List MUST be dimensioned to 16 elements even
if only one channel is being graphed.

NOTE: The number of channels that can be graphed is limited by
the number of windows you use (see the WND parameter, below).
The channels will be limited as follow:

IBM CGA Graphics

No. of Windows No. of Digital No. of Analog
Displayed Channels Channels

1 16 12
2 16 12
3 12 12

DATAQ Waveform Scroller Graphics

No. of Windows No. of Digital No. of Analog
Displayed Channels Channels

1 1
2 2 :
3 2 2

4 4 5 2 :
6 4 4
7 4 4
8 8 8
9 4 4
10 8 8

DISPLM (integer) The DISPLay Mode parameter specifies how the graph
will be presented on the screen, whether scrolled, paged, overlaid
(IBM style), scrolled right to left or left to right (DATAQ style). The
valid values for this parameter are:

4-63

IBM CGA Graphics

SCROLL Screen is scrolled as data is added to the display

FAST
or PAGEC The old data is cleared off the screen at the end of

each screenful.

PAGE0 The screen is not cleared, and new data is graphed
over the old.

DATAQ Waveform Scroller Graphics

R-SCROLL Scroll screen right to left
RSCROLL (QuickBASIC)

LJSCROLL Scroll screen left to right
L.SCROLL (QuickBASIC)

(16 element array of float) The MINimum Y-coordinate List sets a
minimum value of the Y-coordinate of the graph for each width
(channel) being graphed. The minimum value for each channel
may be assigned any number, as long as it is smaller than the maxi-
mum Y-coordinate value for that width.

NOTE: All 16 elements of the MINYL parameter should be as-
signed values even if only one channel is being graphed.

(16 element array of float) The MAXimum Y-coordinate List sets a
maximum value of the Y-coordinate of the graph for each width
(channel) being graphed. The maximum value for each channel
may be assigned any number, as long as it is larger than the mini-
mum Y-coordinate value for that width.

NOTE: All 16 elements of the MAXYL parameter should be as-
signed values even if only one channel is being graphed.

The minimum and maximum y-coordinate values for each width
are used together to scale the analog values. If, for example, values
in an array range from 0 to 4095 (12-bit resolution), then set the
minimum Y-coordinate value to 0 and the maximum to 4095. If
most of the values lie between 1000 and 2000, then set the minimum
Y value to 1000 and the maximum to 2000.

Similarly, MINYL and MAXYL for each width together scale digital
values. Since these values can only be 0 or 1, the minimum Y value
must be set to 0, and the maximum to 1.

EUFL (16 element integer array) The Engineering Units Flag List deter-
mines whether each channel to be graphed will be raw binary, volt-
age, or other engineering unit value. A separate engineering units
flag must be set up for each channel, so that the first one graphed
could be in volts, the second in A/D counts, and so on.

NOTE: All 16 elements of the EUFL parameter should be assigned
values even if only one channel is being graphed.

See the EUF section for a summary of engineering units flag values.

NPTS (long) The Number of PoinTS parameter specifies the number of
points to be graphed. When HGRAPHRT has charted this number
of points, graphing will stop. Note that only one number of points
can be specified; HGRAPHRT will graph the same number of
points for each channel indicated.

Legal values for the NPTS parameter include any positive non-zero
whole number, and FOREVER. Giving NPTS a value of FOREVER
means that HGRAPHRT will continue graphing points until the
background function is halted.

(integer) The number of WiNDows Flag parameter determines the
number of windows to be displayed. The legal values are as fol-
lows:

IBM CGA Graphics

You may assign an integer value between one and three to the
WND parameter, indicating the number of windows you wish to
have displayed. The channels being graphed will be divided be-
tween the selected number of windows.

For example, if you are graphing four channels in three windows,
two channels will be graphed in window 1, and one each in win-
dows 2 and 3.

DATAQ Waveform Scroller Graphics

You may assign an integer value between one and ten to the WND
parameter, indicating the window format you wish to have dis-
played. Refer to the following page for display organizations.

GRlD (integer) The GRID parameter to specifies whether or not a grid
should be drawn in the displayed window(s). The legal values are:

4-65

Notes

GRID Apply grids to the display
NOGRID Do not apply grids to the display

The HGRAPHRT command uses the high resolution graphics
screen. HGRAPHRT does not turn on the graphics screen, so before
the command is given, you must put the screen into graphics mode.
After graphing is complete you can return the screen to text mode.

4-66

DATAQ SCROLLER MODULE DISPLAY ORGANIZATION

DISPLAY
FORMAT 1

DISPLAY
FORMAT 3

DISPLAY
FORMAT 5

DISPLAY
FORMAT 7

DISPLAY
FORMAT 9

DISPLAY
FORMAT 2

DISPLAY
FORMAT 4

DISPLAY
FORMAT 6

DISPLAY
FORMAT 8

DISPLRV
FORMAT 10

4-67

HREAD

Purpose I3READ is the “handle-using” foreground routine that samples
digital, analog, pulse, and frequency inputs. HREAD returns val-
ues directly to the calling language for easy access.

Language Syntax

QuickBASIC: call hread(varseg(handles(O)), varptr(handles(O)),range,
varseg(vl(O)), varptr(vl(O)), euf, tm)

c: hread (&handles[O], range, &vl[O], euf, tm);

FORTRAN: call hread (handles, range, LOCFAR(vI(i)), euf, tm)

Pascal: hread (handles[O], range, @vl[Ol, euf, tm);

HANDLES (integer array) HANDLES is the array of integer values returned
by the GETHANDLE command and is used to indicate which chan-
nel or port of input will be read by the HREAD command. Follow-
ing the last channel “handle” in HANDLES the value 0 should be
entered to mark the end of the array.

RANGE (integer) The RANGE parameter is only used when reading pulse
or frequency channels. When the input channel is not a pulse or
frequency channel set RANGE = NONE.

When measuring frequency, the RANGE parameter indicates the
maximum frequency expected on the channels being measured.
RANGE should be assigned a value according to the table on the
next page. Note that the value given to RANGE affects the length
of time taken by HREAD to complete the measurement of each
channel (gate time). In turn, the gate time affects the accuracy
(resolution) of the measurement. Closely matching RANGE to your
expected maximum frequency will result in the highest resolution
possible.

When counting pulses RANGE specifies the type of pulse counting
that will be used. The PIMl can be configured to count in the nor-
mal mode or in gated mode. In normal mode all events occurring
on a specified input channel will be monitored. In gated mode, two
channels are monitored on the PIMl: channel n and channel n+4.
Channel n represents the pulse input channel as specified in the
IONL parameter. Channel n+4 acts as a gate for channel n. When
channel n+4 is high HREAD wiU count events occurring on channel

4-68

n. When channel n+4 is low, events will not be counted. In this
way the counting of events on channel n is made conditional on
some other event or condition as defined by the state of channel
n& When using the gated mode, the pulse input channel (channel
n> must be channel 0, 1,2, or 3. For more information on the PlMl
refer to the PIMl reference manual.

The counters on the PlM2 can be read and left alone or read and
reset back to 0. RANGE specifies which mode to use.

Range
C, Pascal or

QuickBASIC FORTRAN F=Q Gate Time Resolution

F.62K
F.125K
F.250K
F.5OOK
F.lM
F.2M
F.4M
F.SM

F-62K
F-125K
F-250K
F-500K
F-1M
F-m
F-M
F-8M

62.5 KHz
125 KHz
250 KHz
500 KHZ

1MHZ
2MHz
4MHz
8MHz

1028.576 mS
524.288 mS
262.144 mS
131.072 mS
65.536 mS
32.768 mS
16.384 mS
8.192 mS

Range
C, Pascal or

QuickBASIC FORTRAN Pulse Mode

l.OHz
1.9 Hz
3.7 Hz
7.5 Hz

15.0 Hz
30.0 Hz
61.0 Hz

122.0 Hz

l’l .NORMAL PI-NORh4AL Normal pulse read on PI&l1
Pl .GATED Pl-GATED Gated pulse input on PIMl
P2.DEFAULT M-DEFAULT Default mode for PIM2
l%READ.RESET l?2-READ-RESET Read and Reset for PIM2
M.READ.ONLY I?!-READ-ONLY Read only mode for PIM2

Range

NONE any mode that is not pulse or frequency

VL (Pointer to a float, integer, or long) This variable (or array) holds the
results of the readings. If more than one ioname is specified in
IONL then VL must be an array with a depth at least as large as the
number of entries in the IONL parameter. The values will appear
in the array in the same order as the channels or ports were listed in
the ioname list.

ANALOG CHANNE LS - When the ELJF parameter is set to
C.RAW.INT or C-RAW-INT., VL will hold raw values from O-4095
(for systems with 12 bit A/D’s), O-16383 (for systems with 14 bit
A/D’s), or O-65535 (for systems with 16 bit A/D’s). The EUF pa-
rameter can also be set to return values expressed as volts or engi-
neering units.

4-69

EUF

DIGITAL CHANNE LS or PORTS - When FGREAD samples a digi-
tal channel the status of that channel will be returned as a 0 or a
1 (off or on; TTL low or high). If FGREAD samples a port, the status
of the port will be returned as a decimal number from 0 to 255. This
number can be looked at as an 8 bit binary value where the status of
each bit represents the status of one channel.

Consider the following example:

FGREAD reads a port of digital input from a DIOl module and re-
tums the decimal value 100. When this value is converted to a bi-
nary number (01100100), the status of each bit corresponds to the
status of one channel:

Ch7 Ch6 Ch5 Ch4 Ch3 Ch2 Chl ChO
0 1 1 0 0 1 0 0
off on on off off on Off off

FREQUENCY CHANNE LS -When EUF is set to C.RAW.INT,
C.RAW.FLOAT, C-RAW-INT, or C-RAW-FLOAT, HREAD will
return raw values from 0 to 65535 (a reading of 65535 indicates that
the frequency is above the limit specified by RANGE). By setting
the engineering flag to C.FREQ or CJREQ, values can be returned
as Hertz.

PULSE CHANNELS - Each entry in VL will contain an unsigned
long integer which holds the input channels count value. The count
will be in the range O-4294967295. EUF should be set to C-COUNT
or C.COUNT for pulse input on a PIM2 in 32-bit mode.

(integer) The engineering units conversion flag is used to specify
that raw values be converted to volts, frequency, or engineering
units. See Chapter 2 for a complete description of the engineering
units flag.

(integer) The trigger mode parameter allows HREAD to be trig-
gered by the execution of another KDAC500 command. There are
only two valid trigger modes for this command:

WST Wait for Singleground Trigger

NT No Trigger

Note that when WST is used, HREAD is used as a singleground
function. If the user specifies WST when the background is on, a

470

warning error will be given. If NT is specified HREAD will operate
in the foreground.

Notes HREAD may be called as a foreground routine if a background rou-
tine is active, however, if there is not enough time left in the fore-
ground to do the sampling without being interrupted, an interrupt
will be skipped.

Cold junction compensation is automatically provided when the
IONL parameter specifies a channel on an AIM3, AIh45, or AIM7
(preferred for TC’s) and the EUF parameter is given a value that
indicates a thermocouple is being used.

The IONAME list may include a single channel mentioned multiple
times. This would allow the user to take a burst of readings from a
single channel during the execution of one foreground routine.

HWRITE

Purpose HWRITE is the “handle-using” foreground routine that writes
specified values to digital, or analog, channels or ports. If the out-
put channels are analog the user can specify the output as raw val-
ues or in engineering units. HWRITE gets its values from a variable
or array passed to it from the calling language.

Language Syntax

QuickBASIC:

c:

FORTRAN:

Pascal:

HANDLES

VL

call hwrite(varseg(handles(O)), varptr(handles(O)),varseg(vi(O)),
varptr(vl(O)), euf, tm)

hwrite (&handles[O], &vl[O], euf, tm);

call hwrite(handles, LOCFAR(vI(l)), euf, tm)

hwrite (handles[O], @vl[O], euf, tm);

(Pointer to an integer array) HANDLES is the array of integer val-
ues returned by the GE THANDLE command and is used to indi-
cate which channel or port will be accessed by the HWRITE com-
mand. Following the last channel “handle” the value 0 should be
placed to mark the end of the array.

(Pointer to a float, integer) This variable (or array) holds the
value(s) to be written. If more than one handle is specified in
HANDLES then VL must be an array with a depth at least as large
as the number of entries in the HANDLES parameter. The values
should appear in the array in the same order as the channels or
ports were listed in the handle array.

ANALOG CHANNE LS - When the EUF parameter is set to
CRAWJNT or CJUW-INT, VL should hold raw values from
O-4095 (for systems with 12 bit D/A’s) or 065535 (for systems with
16 bit D/A’s). The EUF parameter can also be set so values can be
expressed as volts or engineering units.

DIGITAL CHANNE LS or PORTS - When the elements of VL are
not integer numbers, they will be rounded to the nearest whole
number when the values are transmitted. When HWRITE accesses
digital channels the elements of VL should be assigned the values 1
or 0, indicating the on and off (high and low) status of that channel.
When accessing ports, the value assigned the elements of VL must
be from 0 to 255. When these numbers are converted to &bit binary
values, the status of each bit will correspond to the status of one of
the 8 channels of the digital output port.

472

Suppose the user wishes to to write to port B on a DIOl corre-
sponding element of VL is assigned the value 127.0 (OlllllllB),
representing the status of the channels as folIows:

Ch15 Ch14 Ch13 Ch12 Chll ChlO Ch9 Ch8
0 1 1 1 1 1 1 1
Off on on on on on on on

EUF (integer) The engineering units conversion flag is used to specify
that input values are specified in volts or engineering units. The
EUF parameter is only used for analog channels. Set EUF =
C.RAW.INT or C-RAW-INT if the outputs channels are digital or
if the output values are raw D/A values. See the EUF section for a
complete description of the engineering units flag.

(integer) The trigger mode parameter allows HWRITE! to be trig-
gered by the execution of another KDAC500 command. There are
only two valid trigger modes for this command:

WST Wait for Singleground Trigger

NT No Trigger

Note that when WST is used, HWRlTE will be executed immedi-
ately following the execution of a command with ST (Singleground
Trigger) in its parameter list. ‘If the user specifies WST when the
background is on, a warning error wiU be given. If NT is specified
HWRITE wili operate in the foreground.

Notes HWRITE may be called as a foreground routine while a back-
ground routine is active. However, if there is not enough time in
the foreground’to do the sampling without being interrupted, an
interrupt will be skipped.

473

INTOFF

Purpose INTOFF disables interrupts, halting execution of all background
functions. This command does not clear the list of background func-
tions. Note, however, that when interrupts are enabled again with
the INTON command, INTON will reset all software and hardware
timers, hence, the phase of signal input and output will be lost.

Language Syntax

QuickBASIC: call intoff

c: intoff 0;

FORTRAN: call intoff ()

Pascal: intoff;

Notes INTOFF disables interrupts but does not clear the list of back-
ground tasks. Clearing the background can be accomplished by the
BGCLEWR command, or by KDINlT.

4-74

INTON

Purpose INTON turns on interrupts and sets the interrupt rate according to
a value specified by the user. The INTON command must be issued
to implement foreground/background execution. Note, however,
that the background may be set up before interrupts are enabled. In
this case, background routines will not run until the INTON com-
mand is given.

Language Syntax

Quick BASIC: call inton(ir, tu)

c: call inton(ir, tu)

FORTRAN: call inton(ir, tu)

Pascal: inton(ir, tu)

IR (integer) The Interrupt Rate parameter is used to specify the period
of the interrupt. The range of legal values for IRrate is dependent
on the value assigned to TUunit (see below).

Tu (integer) The Time Unit has four valid values, indicating the time
units to use when interpreting the value assigned to the IRrate pa-
rameter:

HM.IC hundreds of microseconds; IR = l-32767.
milliseconds; IR = l-32767.

SEC seconds; IR = 1400.
minutes; IR = 1-74

Hz hertz; IR = O-65535
MITXZ millihertz; IR = O-65535

Notes INTON can be used at any time to enable interrupts (assuming that
interrupts are not already enabled). By enabling interrupts after the
background has been set up, INTON can be used somewhat like a
trigger.

HMIC is only applicable to AT-class (ie. high speed) computers.

The maximum interrupt rate, when specified through the HZ time
unit, is approximately 6OOOHz for a 386-class computer, or slower
on XT and AT systems.

4-75

KDCLOCK

Purpose

Language Syntax

Quick BASIC:

C:

FORTRAN:

Pascal:

TIME

Programming
Example

The KDCLOCK command allows the user to access the time and
date from within a KDAC500 program. KDCLOCK will read the
date from the battery-backed clock on the mother board of an AT-
or PS/Z type computer, from the older 500-IBIN interface, or from a
“slotless” SMARTWATCH clock/calendar module (Dallas semi-
conductor p.n, DS1216E).

call kdclock(time)

kdclock (&time);

call kdclock(time)

kdclock (time);

(Pointer to time-strut) is a structure (user defined type in BASIC)
that holds the results of the KDCLOCKd call. Data is returned to
TIME in the following structure:

struct time-strut {
int hour
int minute
int second
hit day
int month
int Ye=

1

PO-12 or O-23 hours */
/*O-59 minutes */
PO-59 seconds */
/*l-31 day of the month */
/*l-12 month */
/*OO-99 last two digits of the year*/

The structure is defined in the appropriate include file for the lan-
guage being used.

‘$INCLUDE: ‘KDAC5OO.BI
CALL kdinit(BASIC.1
CALL sofiinit (BASIC.)
CLS
‘Set up array to hold time/date info
DIM timdat AS timestruc
CALL kdclock (timdat)

PFUNT timdat.hour
PRINT timdatminute
PRINT timdat.second
PRINT timdat.month
PRINT timdat.day
PRINT timdat.year
END

4-76

KDINIT

Purpose The KDINIT command initializes the KDAC500 environment by
setting up memory management and other system functions. The
KDINIT command returns the Series 500 hardware and the
KDAC500 operating environment to a known state (its original
starting state).

Language Syntax

QuickBASIC: call kdinit(BASIC.)

c: kdinit(-C-);

FORTRAN: call kdinit(FORTRAN_)

Pascal: kdinit(PASCAL-);

Language (Integer constant) The particular value used for language depends
on the programmin g language used to interface to KDAC500. Each
language has its own include file. Within each include file all the
language types are defined. It is entirely up to the user to deter-
mine which is appropriate for his needs. The purpose of telling
KDAC500 the type of language it is interfacing with determines
KDAC5OO’s method of interpreting string variables. BASIC uses a
string descriptor. C strings are terminated with a null byte. Pascal
strings are either fixed length or the first byte of the string deter-
mines its length.

usefs language

QuickBASIC ver 4.x
Turbo Pascal ver 5.0
Microsoft c (QuickC)
Borland Int’l Turbo,C
Microsoft FORTRAN
Quick PascaI ver 1 .O

Language

BASIC.
I’ASCAL-
C --
C

FOklXAN~
1 PASCAL-

Notes KDINIT is the command for system initialization. When executed,
KDINIT resets the KDAC500 memory management system, so that
access to all KDAC500 arrays created within the program are lost.
KDINlT also resets all 8 software timers.

KDINIT calls an internal INTOFF and an internal BGCLEAR, com-
pletely re-initializing the background. Warning messages are
turned on. KDINlT initializes the hardware according to the follow-
ing:

4-!?7

1. All analog outputs are set to 0 volts.
2. All digital outputs are set to LOGIC 0.
3. If a DIOl or DIOlA is in the system and port C or D is set for

output, the outputs for those ports are set to logic 1

Calling KDINlT at the beginning of a program will ensure that the
system is at a known, reset state at the start of every program. If
more than one program is written to perform independent tasks
within the same KDAC500 context (same background functions,
same arrays, etc.), the KDINIT command should only be issued in
the first program that will be executed. SOFTINIT may be used in
the second program. Proceeding programs can check the status of
previously initiated background functions, gather data from previ-
ously declared KDAC500 arrays, etc. A call to KDINlT removes all
references to any KDAC500 command operation previously exe-
cuted, making program-to-program interaction impossible.

AMMIA/AMM2 A/D-calibration During KDINIT

The AMM2 module performs a calibration of the A/D gain and
range each time KDINIT is called. KDAC500 executes the KDINlT
function automatically each time it is loaded. KDAC500 will expect
an AMM module in the system if the configuration file (CON-
FIG.TBL) shows an AMM2 in slot 1. If the software cannot com-
plete the calibration, it will issue an error message such as ‘Unable
to calibrate A/D module”. If this occurs, check that:

1. The data acquisition hardware is turned on.
2. The cable between the hardware and the host computer is con-

nected.
3. An AMM module is mounted in slot 1 of the data acquisition

system.

4-78

KDPAUSE

Purpose The KDPAUSE command delays execution of the program for a
specified amount of time. This time is specified as a number of sec-
onds or minutes, depending on the value assigned to the TU (Time
Units) parameter.

KDPAUSE creates a waiting loop by accessing one of the three tim-
ers on the Series 500 interface card. In this way, KDPAUSE deter-
mines the amount of time to wait before continuing with program
execution.

Note that KDPAUSE is a singleground routine, i.e. it may not be
used when interrupts are on.

Language Syntax

QuickBASIC: call kdpause(time, tu)

c: kdpause(time, tu);

FORTRAN: call kdpause(time, tu)

Pascal: kdpause(time, tu);

(integer) The TIME parameter specifies the number of time units to
wait before continuing with foreground execution. The actual time
taken by the KDPAUSE command will depend upon this parame-
ter and upon the TU parameter that specifies the time units.

The TIME parameter can be given values of l-59 when specifying
minutes (TLJ = MINI, or values 13000 when specifying seconds (TU
= SEC).

Tu (integer> The Time Units parameter specifies the units of time used
to determine the actual time paused when the KDPAUSE command
is executed. There are two valid values for this parameter:

SEC Seconds
Minutes

The actual time paused is determined by the TIME parameter and
the TU parameter.

4-79

The KDPAUSE command creates a waiting loop in the foreground
that holds up execution of other foreground furidions for a speci-
fied amount of time. KDPAUSE may not be used when interrupts
are on. If the KDPAUSE command is given when interrupts are on,
KDAC5CKl will give a warning message.

Note that once KDPAUSE becomes active, the user cannot break its
execution. The system will be “locked up” until the specified time
period expires.

4-80

KDTIMER

Purpose KDTIMER enables the user to initialize (set to 0) any or all of the 8
KDAC500 timers; the timers are incremented at the occurrence of
every interrupt, hence, the resolution of the timers is determined by
the interrupt rate. When interrupts occur every millisecond, timers
will have millisecond resolution.

Language Syntax

QuickBASIC:

c:

FORTRAN:

Pascal:

TM

BFN

call kdtimer(varseg(tim(O)), varptr(tim(O)), tm, bfn)

kdtimer(&tim[O], tm, bfn);

call kdtimer(tim, tm, bfn)

kdtimer(tim[O], tm, bfn);

(Pointer to an integer array) The TIMer Array parameter is a one-
dimensional, &element integer array, corresponding to timers O-7 in
the KDAC500 system. Placing a specified value into an element of
TIM affects the corresponding timer. The valid values and their af-
fects on a tuner are as follows:

QuickBASIC C, PASCAL or
FORTRAN

TIMERSTOP TlMER_STOP Stop the corresponding timer
and hold the present value.

TIMERNUL TIMER-NUL Do nothing to the correspond-
ing timer.

TIMER.START TIMER-START Reset the corresponding timer
and enable counting.

(integer) The Trigger Mode allows the KDTIMER command to be
triggered by another background command, or by the KDAC500
BGGO command. There are three valid strings for this parameter:

WBT Wait on Background Trigger
WGO Wait on BGGO
NT No Trigger

(string) The Background Functi on Name parameter allows the user
to assign a name to the background task performed by KDTIMER.
This name is necessary if the task is to be accessed by BGHALT or
BGSTATUS. If not used, set BFN equal to a null string (““I.

4-81

Notes The KDTIMER command accessess 8 software timers built into the
KDAC500 software system. Since these timers are incremented
upon the occurrence of an interrupt, their operation depends on
interrupts being enabled. For this reason, the KDTIMEIR and
KDTJMERRD functions will not execute properly when the back-
ground is not on. If interrupts are disabled at any time after execu-
tion of a KDTIh4ER command, the timers will no longer be incre-
mented.

4-82

KDTIMERRD

Purpose KDTIMERRD enables the user to read the 8 KDAC500 timers. Once
started, the timers are incremented at the occurrence of every inter-
rupt, hence, the resolution of the timers is determined by the inter-
rupt rate. When interrupts occur every millisecond, timers will
have millisecond resolution.

Language Syntax

QuickBASIC: call kdtimerrd(varseg(timr(O)),varptr(timr(O)))

c: kdtimerrd(&timr[O]);

FORTRAN: call kdtimerrd(timr)

Pascal: kdtimerrd(timr[O]);

(Pointer to an 8-element long array) The TlMR parameter is a one-
dimensional, 8-element unsigned long integer array, representing
the values associated with timers O-7. The values returned in the
elements of the array will represent the elapsed time of each timer
in terms of the interrupt period. To find the total elasped time for
any one timer, multiply the value by the interrupt period. If inter-
rupts have been set to occur every 10 milliseconds, and the TIMR[7]
parameter returns the value 16785, the total elapsed time is the
product of these two values:

16785 * 10 mS = 167850 milliseconds, or 167.85 seconds.

The timer number corresponds to the index into the TlhJR array.
For example, TlMR[O] holds the value of timer 0, and TIMR[ll
holds the value of timer 1.

Note also that the maximum value returned to the elements of
TIMR is 232 - 1 (which equals 4,294,967,295), hence, the capacity of
any one timer is (232 - 1) times the maximum interrupt period.
When interrupts occur every millisecond, the maximum capacity of
one timer will be about 50 days. Lf timers do overflow, they will
simply start over, beginning the count from 0.

Notes The KDTIMERRD command accesses 8 software timers built into
the KDAC500 software system. Since these timers are incremented
upon the occurrence of an interrupt, their operation depends on
interrupts being enabled. For this reason, the KDTIMER and
KDTIMERRD functions will not execute properly when the back-

4-83

ground is not on. If KD TMERRD is executed when the back-
ground is not on, KDAC500 will return a warning error message. If
interrupts are disabled at any time after execution of a KDTIMER
command, the timers will no longer be incremented.

Because they are incremented once every interrupt, the KDAC500
timers do not measure absolute time, but rather indicate the num-
ber of interrupts that have occurred since the timer was started.

4-84

KDWARN

Purpose The KDWARN command is used to suppress/reactivate KDAC500
warning error messages. Warning errors are non-fatal errors that
do not halt normal program execution.

Language Syntax

QuickBASIC: call kdwarn(warnlevel)

c: kdwarn(warnlevel);

FORTRAN: call kdwarn(warnlevel)

Pascal : kdwarn(warnlevel);

WARNLEVEL (integer) The WARNing LEVEL specifies whether warning mes-
sages are to be turned on or off. There are two legal values:

WARNON enables warning messages
WARNOF’F disables warning messages

Notes The user may want to suppress non-fatal error messages in cases
when errors have been identified and deemed unimportant. The
ability to turn error messages on and off may be useful where a
noncritical situation might produce an error. The user can sup-
presqwarning errors after that segment of the program has been
executed. When the KDINIT command is executed (at the begin-
ning of each program), warning error messages are enabled.

485

Purpose The SOFTlNlT command initializes KDAC5OO’s internal software
system pointers for the programming language so that KDAC500
can communicate with the language. This function is also per-
formed by KDINTT, with the difference that KDINlT also initializes
all hardware, resets any background tasks, and clears memory.

Language Syntax

QuickBASIC: call softinit (BASIC.)

c: softinit CC_>;

FORTRAN: call softinit (FORTRAN_)

Pascal: softinit (PASCAL_);

Language (Integer constant) The particular value used for language depends
on the programmin g language used to interface to KDAC500. Each
language has its own include file. Within each include file all the
language types are defined. It is entirely up to the user to deter-
mine which is appropriate for his needs. The purpose of telling
KDAC500 the type of language it is interfacing with determines
KDAC5OO’s method of interpreting string variables. BASIC uses a
string descriptor. C strings are terminated with a null byte. Pascal
strings are either fixed length or the first byte of the string deter-
mines its length.

user% language

QuickBASIC ver 4.x
Turbo Pascal ver 5.0
Microsoft c (QuickC) __
Borland Int’l Turbo C
Microsoft Quick rascal
Microsoft FORTRAN

C
k&AL
FORti

Notes The SOl!TINlT command does not effect the hardware, nor does it
have any effect on user-declared KDAC500 parameters such as
IONAMEs, arrays, or background functions. SOFTINlT must be
used if you m-enter KDAC500 from DOS while it is acquiring data
in the background.

4-M

STPABSLOC

Purpose The STPABSLOC command associates the specified motor’s present
position to an absolute location. This is an initialization command
for absolute positioning that tells the motor controller “you are
here”.

Language Syntax

QuickBASIC: call stpabsloc(step2ion, lot)

c: ’ $Jpabsloc(stepeion, lot);

FORTRAN: call stpabsloc(step2ion, lot)

Pascal: stpabsloc(step2ion, lot);

STEl’2ION &ring) The STEP2 ION ame parameter indicates the stepper motor
channel that will be used by STPABSLOC.

LOC (integer) The LOCation within the 65536 step motion space that the
selected motor will be assigned to. Valid integers are -32768 to
+32767.

Note When using the STPMOVEABS command, the new location that
the motor will move to will be relative to that value assigned by this
command.

4-87

STPMAXSP

Purpose This command sets the maximum speed the specified motor can
achieve while processing positioning commands (to prevent motor
stalling). This command does not affect the speed control command
CXI’Sl?EED).

Language Syntax

QuickBASIC:

c:

FORTRAN:

Pascal:

STEl’2ION

call stpmaxsp(step2ion, maxspeed

stpmaxsp(step2ion, maxspeed);

call stpmaxsp(step2ion, maxspeed

stpmaxsp(step2ion, maxspeed);

Mring) The STEP2 ION ame parameter indicates the stepper motor
channel that will be used by STPMAXSP.

MAXSPEED

Notes

(integer) The MAXimum SPEED a motor will be permitted to attain
during a positioning operation, expressed in steps per second. Valid
integers are 1 to 16000.

The maximum speed set by this command does not limit the
steady-state motor speed during speed control. This command only
affects the speed attainable when doing position control. Maximum
speed must be set at least once, and before any positioning com-
mands.

4-88

STPMOVEABS

Purpose This command moves the selected motor to the specified position.
The motor is presently located at the position that it was last moved
to by a previous STPMOVEABS command or at the location as-
signed by the STPABSLOC command.

Language Syntax

QuickBASIC:

c:

FORTRAN:

Pascal:

STEl’2ION

POSITION

Notes

call stpmoveabs(step2ion,position)

stpmoveabs(step2ion, position);

call stpmoveabs(step2ion,position)

stpmoveabs(step2ion, position);

(string) The STEP2 IOName parameter indicates the stepper motor
channel that will be used by STPMOVEABS.

(integer). This integer designates the position the motor will go to.
Valid integers are -32768 to +32767.

If the motor was assigned a position of 0 by a CALL STPABSLOC
command and then directed to move absolute by a CALL
STPMOVEABS command to position 10, the motor would move 10
steps in the CW direction.

489

STPMOVEREL

Purpose This command moves the selected motor the specified number of
steps in the specified direction.

Language Syntax

QuickBASIC: call stpmoverel (stepeion, steps, direction)

c: stpmoverel(step2ion, steps, direction);

FORTRAN: call stpmoverel (step2ion, steps, direction)

Pascal: stpmoverel(step2ion, steps, direction);

STEl’2ION

STEPS

DIRECTION

Mring) The STEM ION ame parameter indicates the stepper motor
channel that will be used by STPMOVFXEL.

(long) The STEPS parameter designates the number of steps to be
taken in the specified direction. Valid values are 0 to 65535.

(integer) The DIRECTION parameter designates the motor direc-
tion. Valid values are:

clockwise
counter-clockwise

490

STPRESET

Purpose

Langauge Syntax

QuickBASIC:

c:

FORTRAN:

Pascal:

STEMION

Notes

The STPRESET command resets the specified motor to a known
state.

call stpreset (step2ion)

stpreset(step2ion);

call stpreset (step2ion)

stpreset(step2ion);

(string) The STEP2 ION ame parameter indicates the stepper motor
channel that will be used by STPRESET.

This command is used under two circumstances...

1. If a motor has tripped a limit condition, STPRESET purges any
unexecuted commands for this motor, clears the limit condition,
and reenables the motor even if the STEP2 LIMIT input is still
active.

2. If STPRESET is called while the motor is running, the motor is
halted immediately, without deceleration ramping, and alI unex-
ecuted commands for this motor are purged.

4-91

STPSET

Purpose The STPSET command sets up the ramp rate on the specified STEP1
module. This function affects the acceleration/deceleration rates for
ah of the STEP2’s associated with the specified STEP1 module.

Language Syntax

QuickBASIC:

c:

FORTRAN:

Pascal:

STEPlION

RAMrILKrE

Notes

call stpset (step1 ion, ramprate)

stpset(step1 ion, ramprate);

call stpset (step1 ion, ramprate)

stpset(step1 ion, ramprate);

(string) The STEP1 IOName parameter indicates the stepper motor
controller that wiU be accessed by this function.

(integer) The RAMP RATE parameter designates the desired ramp
rate used for accelerating and decelerating ah motors associated
with the specified STEP1 module. Valid values are:

Ramp Rate
C, PASCAL or Acceleration in

Quick BASIC FORTRAN Steps/Second

RR.4096 RR-4096
RR.4369 RR-4369
RR.4681 RR-4681
RR.5041 RR-5041
RR.5461 RR-5461
RR.5957 RR-5957
RR.6553 RR-6553
RR.7281 RR-7281
RR.8192 RR-8192
RR.9362 RR-9362
RR.10922 RR-10922
RR.13107 RR-13107
RR.16384 RR-16384
RR.21845 RR-21845
RR.32768 RR-32768

4096 spss
4369 spss
4681 spss
5041 spss
5461 spss
5957 spss
6553 spss
7281 spss
8192spss
9362 spss
10922 spss
13107 spss
16384 spss
21845 spss
32768 spss

This comman d is directed to the STEPl. It affects aU STEP2’s asso-
ciated with the STEP1 module.

Ramp rate is an initiahzing function. It must be set at least once in a
program, and before any stepper commands.

492

STPSPEED

Purpose

Language Syntax

QuickBASIC: call stpspeed (step2ion,speed,direction)

c: stpspeed(step2ion, speed, direction);

FORTRAN: call stpspeed (step2ion,speed,direction)

Pascal : stpspeed(step2ion, speed, direction);

STEP2ION (string) The STEM ION ame parameter indicates the stepper motor
channel that will be used by STPSPEED.

SPEED

DIRECTION

This command performs speed control on the specified motor chan-
nel. STPSPEED sets a selected motor to a specified speed.

(long) The motor SPEED parameter specifies the desired speed
which the motor achieves, expressed in steps per second. Valid val-
ues are 0 to 65535.

(integer) The DIRECTION parameter designates the motor direc-
tion. Valid values are:

CW
ccw

clockwise
counter-clockwise

4-93

Purpose The STF’STATUS command returns the status of the specified mo-
tor.

Language Syntax

QuickBASIC:

c:

FORTRAN:

Pascal:

STEl’2ION

MOCOMP

LIMIT

DIR

call stpstatus (step2ion,mocomp,Iimit,dir,posit)

stpstatus(step2ion, &mocomp, &limit, &dir, &posit);

call stpstatus (step2ion,mocomp,Iimit,dir,posit)

stpstatus(step2ion, mocomp, limit, dir, posit);

(siring) The STEP2 IOName parameter indicates the stepper motor
channel that will be used by STPSTATUS.

(Pointer to an integer) The Motion COMPlete boolean. The value
returned is:

1 if motion is complete
0 if stilI processing.

(Pointer to an integer) The LlMlT has been reached boolean. The
value returned is:

1 if in limit condition
0 if not in limit condition.

(Pointer to an integer) The motor DIRection. The value returned is:

1 ifcw
0 if ccw

Posrr (Pointer to an integer) The POSITioning mode The value returned
is:

1 if in relative positioning mode
0 if in absolute positioning mode.

TRIGGER

Purpose The TRIGGER command reads a single channel of input and deter-
mines whether the signal has met a specified condition, for exam-
ple, whether it has exceeded a threshold level. TRIGGER will sam-
ple continuously until the specified condition is true; when the con-
dition is met, TRIGGER will cause the execution of some other
process associated with the TRIGGER via the trigger mode pa-
rameter. TRIGGER will operate as a foreground, background, or
singleground trigger. TRIGGER supports all analog and digital in-
put modules.

Language Syntax

QuickBASIC:

c:

FORTRAN:

Pascal:

ION

THRL

CHM

call trigger (ion, thrl, thrh, chm, euf, tm, bfn, cyc)

trigger(ion, thrl, thrh, chm, euf, bfn, cyc);

call trigger (ion, thrl, thrh, chm, euf, tm, bfn, cyc)

trigger(ion, thrl, thrh, chm, euf, bfn, cyc);

(string) The IONAME parameter indicates the channel or port of
input to be read by TRIGGER. The name must refer to a channel or
port of analog or digital input.

(double) The Threshold Low parameter sets the lower threshold
level of the analog signal being monitored. This parameter specifies
the first part of the trigger condition. If the input being monitored
is a digital port then tiggering occurs when the port value is equal
to THRL. If the input being monitored is a digital channel then
THRL is not used and should be set to 0.

(double) The Threshold High parameter sets the higher threshold
level of the analog signal being monitored. THRH must be set
higher than THRL. THRH is not used by digital inputs and should
be set to 0.

(integer) The Change Mode parameter allows the user to specify the
state of the signal being monitored that is to cause the trigger to be
implemented. There are four valid values for this parameter with
analog inputs:

ABOVE The signal is above or equal to TI3FU-I.

495

EUF

BFN

CYC

BELOW The signal is below or equal to mL.
BETW The signal is between THRH and THRL but not

equal to either.
NOTBETW The signal is below or equal ‘to THRL, or above or

equal to THRH.

There are three valid values for digital input:

OFF
ON
PORT

triggering occurs when the channel goes low.
triggering occurs when the channel goes high
triggering occurs when the port value is equal to
THRL described above.

TRIGGER will sample continuously until the specified signal condi-
tion is met, and then will trigger its associated KDAC.500 command.

(integer) The Engineering Units Flag can be used to pass the THRL
and THRH parameters in engineering units values; these values
include raw binary, voltage, and all other engineering units except
temperature. For A/D counts, EUF should be set equal to
C.RAW.FLOAT or CRAW-FLOAT.

(integer> The Trigger Mode parameter indicates whether the TRIG-
GER will be used in the foreground, background, or singleground
mode. There are three valid strings for this parameter:

BT Background Trigger
ST Singleground Trigger
NT No Trigger

Note that if TM is set to NT, TRIGGER will function as a fore-
ground command, halting program execution until the condition is
met.

Warning: When TRIGGER is used as a foreground or singleground
trigger, the expected trigger condition must be met before the pro-
gram can continue or break. There is no way to escape once the
TRIGGER begins, except by finding the trigger or rebooting the sys-
tem.

(string) The B a ck ground Function Name allows the user to name
the background task being done by TRIGGER This parameter may
be used only when TRIGGER is set up as a background function,
that is when the TM parameter is assigned the value: BT. If not
used, set BFN equal to a null string (““I.

(integer) The CYCling boolean parameter. When TRIGGER moni-
tors a signal, it is deactivated once the signal reaches the specified

threshold state. If the signal is constantly changing you may want
to trigger another command only when the trigger signal meets the
specified threshold requirements, i.e., you may not want the TRIG-
GER deactivated after the first occurence of the threshold state. If
this is the case, assign the CYC parameter the value 1; this initializes
the TRIGGER as a cycling trigger. Note that 1 is the only valid pa-
rameter for CYC. If you do not want a cycling TRIGGER, set CYC
equal to 0.

The Cycling parameter in TRIGGER is different from the cycling
parameter in the other background functions. CYC is a boolean in
TRIGGER. This means it can be either TRUE (1) or FALSE (0).
TRIGGER cannot be cycled a specific number of times as with stan-
dard background functions. TRIGGER either cycles forever or just
once.

Notes A Schmitt trigger refers to a system with two thresholds, where
state transitions are measured in a way that eliminates problems
associated with noise or small variations in the signal. With a stan-
dard Schmitt trigger, once a signal exceeds the high threshold it is
considered high until it drops below the low threshold; once it
drops below the low threshold, it is considered low until it exceeds
the high threshold. This allows you to accurately assess the iransi-
tion history of a signal.

497

WAV

Purpose The WAV command causes a WAVl module to output a waveform
with user-specified frequency, amplitude, offset, and duty cycle.
The mode (wave ON, OFF, or haver waveform) can also be speci-
fied. A WAVSETUP command must be issued before WAV.

Language Syntax

Quick BASIC: CALL WAV(FREQ#, AMPL#, OFFS#, DUTY#,
MODE%)

c: CALL WAV(FREQ, AMPL, OFFS, DUTY, MODE)

FORTRAN: CALL WAV(FREQ, AMPL, OFFS, DUTY, MODE)

CALL WAV(FREQ, AMPL, OFFS, -DUTY, MODE)

(double). The FREQ parameter specifies the desired output fre-
quency. The frequency must lie within the limits of the FRNG pa-
rameter specified in the WAVSETUP command. If frequency
autoranging is used in the WAVSETUP command, then FREQ may
be any value from 0 to 200000 (duty cycle permitting). Frequency
cannot be set to a negative value or an error will result.

AMPL (double). The AMPL parameter specifies the desired peak-to-peak
amplitude of the waveform. Note that the range of maximum out-
put of the WAVl is controlled by a switch on the module. Settings
of 1V and 1OV give a nominal 2V or 20V peak-to-peak. The actual
maximum is 1 bit less, or 1.9951V and 19.951V, respectively. Ampli-
tude cannot be set to a negative value or an error will result.

OFFS!

DUTY!

MODE (integer). Sets the output condition of the WAVl module:

(double). The OFFS parameter specifies the desired offset of the
WAVl module waveform. When KDAC500 is initialized, the
WAVl output assumes OV. The OFFS parameter permits this base
line to be shifted up to 1V or 1OV (nominal) in a positive or negative
direction, depending on the position of the WAVl output range
switch.

(double). The DUTY parameter specifies the duty cycle of the out-
put waveform. The legal range for DUTY is between 0 to 100, corre-
sponding to O-100%.

4-98

C, Pascal QuickBASIC Function

wv~0TJTPuT~0FF wv.oTJTPuT.oFF sets output to
0.

WV~OUTPUT~ON WV.OTJTPUT.ON WAVl outputs
the waveform
defined by the
WAVSETUP
and WAV
parameters.

WV-OUTPTJTJIAVER WV.OTJTPUT.HAVER WAVl gener-
ates one cycle
of the defined
waveform.

Notes The WAV command must be used in conjunction with the WAV-
SETUP command, Typically, a WAVSETUP command will be is-
sued immediately before a corresponding WAV command. If only
one WAVSETUP is needed in a program, the command can be
placed at the beginning of the program. However, it is not possible
to cluster several WAVSETUI? commands for different WAV mod-
ules, frequency ranges, functions, etc. at the beginning of a pro-
gram. The last WAVSETUP command will take priority.

Duty cycle and frequency place constraints on each other within
any given frequency range. It is possible to request a frequency and
duty cycle which are mutually exclusive, in which case an error
message results. If you are using duty cycles other than 50%,
AUTORANGING may be used to provide the optimum selection of
frequency range for a desired duty cycle. With AUTORANGING,
the maximum frequency for a 5% or 95% duty cycle is 2OkHz set on
the 2OOkHz range. Higher frequencies will require duty cycles pro-
gressively nearer 50%.

When progr amming haver waveforms, note that the first haver
pulse will start at OV and end at the minimum amplitude of the
waveform. Subsequent haver pulses will start and end to the mini-
mum amplitude. If may be desirable to fire one haver pulse at the
beginning of a program to set the WAVl output to a minimum.

It is possible to specify an offset and amplitude which result in the
waveform being clipped. For instance, specifying 15Vp-p amplitude
and 1OV offset would result in a waveform with maxima and min-
ima of 17.5V and 2.5V, respectively. The WAV module would clip
at the maximum at 9.9951V. No error message results

4-99

WAVSETUP

Purpose The WAVSETUP command configures a WAVl module for a de-
sired frequency range and output function. The WAVSETUP com-
mand includes an IONAME which identifies a WAVl module in a
given system slot.

Language Syntax

Quick BASIC: CALL WAVSETUP(ION, FRNG, FUNC, 0,O)

C: CALL WAVSETUP(ION, FRNG, FUNC, (void far)*O)

FORTRAN: CALL WAVSETUP(ION, FRNG, FUNC, 0)

Pascal: CALL WAVSETUP(ION, FRNG, FUNC, nil)

ION$ (string). The ION (IONAME) parameter refers to a channel name
previously set up in the KDAC500 CONFIG table. For the WAVl
module, the ION parameter can consist of only one IONAME at a
time.

FRNG$ (integer). The FRNG (FREQUENCY RANGE) parameter identifies
the desired frequency range of the WAVl module:

C, Pascal QuickBASIC Function

WVJXNG~AUTO
WVJXNG-2
WVJXNG-20
WV-FRNG-200
W_muUGJK
WV-FRNG-20K
WV-FRNG-200K

WV.FRNG.AUTO
WV.FRNG.2
WV.FRNG.20
WV.FRNG.200
WV.FRNG.2K
WV.FRNG.20K
WV.FRNG.2OOK

Autorange
2Hz range
2OHz range
2OOHz range
2kHz range
2OkHz range
2OOkHz range

KJNC$ (integer). The FUNC (FUNCTION) parameter identifies the desired
waveform to be output by the WAVl module:

C, Pascal QuickBASIC Function

WV-NONE
WVJ3NE
~JXPJ=
W-TRIANGLE

WV.NONE
WVSINE
WV.SQUARE
WV.TRIANGLE

DC output
Sine wave output
Square wave output
Triangle wave output.

4-100

Notes The WAVSETUF command must be used in conjunction with the
WAV command, and will specify the hardware setup by the WAV
command. Typically, a WAVSETUP command will be issued imme-
diately before a corresponding WAV command. If only one WAV-
SETUP is needed in a program, the command can be placed at the
beginning of the program. However, it is not possible to cluster sev-
eral WAVSETTJP commands for different WAV modules, frequency
ranges, functions, etc. at the beginning of a program. The last WAV-
SETUP command will take priority.

The autorange option for FRNG causes the software to automati-
cally choose the best range to provide a desired frequency. (The
frequency is specified as part of the WAV command.)

The parameter(s) after FUNC in the KDAC500 V1.3 WAVSETUI?
command references a dummy array which is reserved for future
use.

4-101

User Defined Error Handling

GLERROR

GetKDACMsg

SetErrHandler

4103

GLERROR

Purpose User defined error handling in the KDAC500 system varies de-
pending on the language being used. However the underlying
method of implementing your own handler is straight foreward
and relatively simple.

KDAC500 includes a function called GLERROR. This function dis-
plays warning and error messages and terminates your program if
an error occurs. Many times it may not be necessary to terminate a
program if the error can be corrected and the operation tried again.
If you want to do all the error handling yourself all you need to do
is write a replacement routine for GLERROR. The new GLERROR
is linked in with your program so that the GLERROR in the
KDAC500 library is not used. (Turbo Pascal is an exception to this.
Refer to the Turbo Pascal specific section for more information).

GLERROR is never called directly. It is called by the interface func-
tions when an error or warning has been detected.

Language Syntax

QuickBASIC: declare sub glerror (byval ernum, byval fcnum)

c: void Pascal far glerror(int ernum, int fcnum);

FORTRAN: subroutine glerror (ernum,fcnum)

Pascal : procedure glerror (ernum, fcnum : integer); external;

ERNUM (Integer) This is the actual error code. Error codes range from 1 to
211. If the error code is greater than 1000, then ernum is a warning
code. Warning codes range from 1025 to 1236. Refer to the appen-
dix for a description of the error codes. Warnings are potential er-
rors. The meaning of the warning code is the same as the meaning
of the error code. By default, however, errors cause immediate ter-
mination of your program and warnings only print a message and
continue.

FCNUM (Integer) This is a code that indicates which function the error or
warning occured in. The valid values for fcnum are 0 to 50. Refer
to the appendix for a listing of the functions and their codes.

4-105

GLERROR in QuickBASIC A QuickBASIC program does not directly support variables passed
by value. It expects everything to be passed by reference. The bad
news is the GLERROR routine is passed the emum and fcnum by
value. The good news is the VARPTR function can be used to get
their values. A simple GLERROR replacement for QuickBASIC
might look like this:

SUB GLERROR(emum AS INTEGER, fcnum AS INTEGER)
DIM ercode AS INTEGER
DIM fcode AS INTEGER

ercode = VARl?TR(emum 1
fcode = VARPTR(fcnum >
ermsg$ = SPACE$(255 >
fcn$ = Sl?ACE$(255 1
IF ercode > 1000 THEN

ercode = ercode - 1024
PRINT “Warning in “;
CALL GetKDACMsg(ercode, fcode, ermsg$, fcn$)
PRINT RTRIM$(fcn$ >; “: “; RTRIM$(ermsg$ >

ELSE
PRINT “Error in “;
CALL GetKDACMsg(ercode, fcode, ermsg$, fcn$)
PRINT RTRJM$(fcn$ 1; “: “;
BEEP
PRINT RTRIM$(ermsg!$ 1
END

ENDIF
END SUB

GLERROR in C A simple GLERROR replacement for C might look like this:

void Pascal far GLERRORf int ercode, int fcode)
I

char ermsgl2551,
fcn[l5];

if(ercode > 1000 11:
ercode -= 1024;
GetKDACMsg(ercode, fcode, ermsg, fen);
printf(‘Warning in %s: %s\n”, fen, ermsg);

I
else {

GetKDACMsg(ercode, fcode, ernxsg, fen);
printf(“Error in %s:\OO7 %s\n”, fen, ermsg);
exit(1 >;

I

4-106

GLERROR in Pascal Turbo or Quick Pascal will not support a direct replacement of
GLERROR due to the way the Pascal Unit was created. The GLER-
ROR function itself, however remains the same. A special function
called SetErrHandler is used to tell the Pascal interface to use a dif-
ferent error handler than the default one supplied. A simple GLER-
ROR replacement for Pascal might look like this:

($F+) {Force FAR calls)
procedure GLERROR(ercode, fcode : integer 1;
VZU

begin
ermsg, fen : string;

if ercode > 1000 then
begin

ercode := ercode - 1024;
GetKDACMsg(ercode, fcode, ermsg, fen);
writeln(‘Warning in ‘, fen, ‘: ‘, ermsg);

end
else
begin

end;

GetKDACMsg(ercode, fcode, ermsg, fen);
writeln(‘Error in ‘, fen, ‘: ‘, ermsg);
halt(1 >;

end;

GLERROR in FORTRAN SUBROUTINE GLERROR [PASCAL] (ercode, fcode)
INTEGER? ercode
INTEGER? fcode
include ‘kdadOO.fd

CHARACTER~56 ermsg
CHARACTER’20 fname
CHARACTER*1 BEEP, NULL
PARAMETER (BEEP = CHAR(7))
PARAMETER (NULL = CHAR(O))

IF (ercode .GT. 1000 1 THEN
ercode = ercode - 1024
CALL GetKdacMsg (er code, fcode, ermsg, fname)
WRITE (*, 100) fname(l:SCAN(fname,NULL)-11,

+ ermsg(l:SCAN(ermsg,NULL)-1)
ELSE

CALL GetKdacMsg(ercode, fcode, ermsg, fname >
WRITE (*, 200) fname(l:SCAN(fname,NULL~l), BEEP,

+ ermsg(l:SCAN(ermsg,NULLkl)
STOP

ENDIF

100
200

FORMAT(‘Wamingin’,A’,‘:‘,A)
FORMAT (’ Error in ‘, A, ‘:‘, Al, A >
END

4-107

GetKDACMsg

Purpos The purpose of this function is to translate error numbers into text.
Once the numbers have been translated, the error message can be
displayed.

Language Syntax:

QuickBASIC:

c:

FORTRAN:

Pascal:

ERNUM

FCNUM

ERMSG

call GetKDACMsg(ernum, fcnum, ermsg, fcnmsg)

GetKDACMsg(ernum, fcnum, &ermsg[O], &fcnmsg[O]);

call GetKDACMsg(ernum, fcnum, ermsg, fcnmsg)

GetKDACMsg(ernum, fcnum, ermsg, fcnmsg);

(integer) The ERror NUMber parameter is the error code returned
from the KDAC500 kernel. There are 211 different error codes that
can be returned from the kernel. Refer to the appendix for an error
code summary.

(integer) The Function NUMber parameter is the code number of
the function that the error occured in. Refer to the appendix for a
summary of the function codes.

(string) The ERror M e sa S G e parameter is a string that holds the re-
turned error text. ERMSG must be long enough to hold the re-
turned string.

In QuickBASIC, the string should be initialized with spaces as fol-
lows:

ERMSG$ = SPACE$(255)

The string can then be trimmed with the RTlUM$ command.

In C, ermsg should be defined:

char ermsg[256];

In FORTRAN, ermsg should be defined:

CHARACTERV56 ermsg

4-108

the string can be obtained by locating the null byte and using the
substring command:

ennsg(l:SCAN(ermsg,CHAR(O))-1)

see the glerror example for FORTRAN.

And in Pascal:

ermsg : string;

FCNMSG (string) The FunCtioN M e sa S G e parameter is a string that holds the
name of the function the error occured in. FCNMSG must be long
enough to hold the returned string.

Notes The KDAC500 kernel treats strings differently depending on how
the KDINIT or SOFTINlT function is called. If the language type is
C or FORTRAN the returned string will be terminated by a null
byte. If the language type is Pascal, the length of the string is deter-
mined by the first byte of the string. And if the language is BASIC,
the string length is not modified and the user should remove trail-
ing spaces.

KDINIT or SOFIINIT must be called with a valid language type or
GetKDACMsg will return unpredictable messages, or result in a
system lock-up.

4-109

SetErrHandler

Purpose The purpose of this function is to setup the KDAC500 error han-
dling routine in Turbo or Quick Pascal.

THIS IS A PASCAL FUNCTION ONLY!

Language Syntax

SetErrHandler(GJGLERROR 1;

GLERROR (far pointer to a function) This parameter points to the GLERROR
routine that was described earlier.

Notes If GLERROR is defined in an external module, for example,
gloerror.tpu, the call would be:

SetErrHandler (@GLOERROR.GLERROR)

4110

APPENDIX A
Summary of KDACSOO Commands

and Parameters

KDACSOO COMMANDS

The following KDAC500 commands are shown in a generic format. See the Command Sec-
tion for complete descriptions.

FOREGROUND

&cl
anoutq
antrig
fgread
fgwrite
gethandle
hread
hwrite
kdclock
kdinit
kdpause
kdtimerrd
kdwam
softhit

(arrynm, numsamp, ionl, sintv, tm)
(anynm, ionl, sintv, cycle, tm)
(ion, theshold, action, mode)
(ion.& range, vl(), euf, tm)
(ionl, ~10, euf, tm)
(ion& handles())
(handle& range, ~10, euf, txn)
(handled), ~10, euf, t-m)
ttin-4)
(language)
the, tu)
oidl)
(warnlevel)
(language)

BACKGROUND

bgclear
k%o
bghalt
bgread
bgstatus
bgtime
bgwrite
intoff
inton
kdtimer
trigger

tin bfn)
(bfr;l, tm, bfd
(anynm, numsamp, ionl, bintv, range, cycle,tm, bfn)
(bfn, stat)
(time>
[yrynm, ionl, bintv, cycle, tm, bfn)

(ir, tu)
(t-id, tm, bfn)
(ion, thrl, thrh, chm, euf, tm, bfn, cycle)

A-l

ARRAY

aravail
ardel
arget
arlabel
a&i&p
arload
armake
arph
=-Put
ax-save
arstatus

STEPPER

stpabsloc
stpmaxsp
stpmoveabs
stpmoverel
&preset
stpset
stpspeed
stpstatus

GRAPHICS

blank
graph
graphrt
grlabel
hgraphrt

(size)
(-)
(arrynm, depl, dep2, ion, wid, extarray0, euf)
hnynm, labl)
by=-b $4
(arrynm, dosfile)
bnynm, dep, id)
G-qm-t, ion, w3, arptr)
(arrynm, depl, dep2, ion, wid, extarray0, euf)
hymn, dosfile, euf, ftype, srate, tunits)
k-ymn, dep, wid, lp, labl)

(stp2ion, lot)
@@Zion, maxspeed)
Mp2ion, position)
M@ion, steps, direc)
(stp2ion)
(stplion, rmprate)
(stp2ion, speed, direc)
@Qion, mocomp, limit, direc, posit)

c-a W+IO, COUO, displm, miny, maxy, nun, res, de& depZ euf)
(~ITJWII, WidlO, coll0, displm, miny, maxy, npb euf)
(labl, wind, nwin, locl,loc2)
(arrynm, widl0, displm, minyl0, maxyl0, eufk npts, *4 grid)

KDACSOO PARAMETERS

For QuickBASIC, replace underscores 0 with periods (.). For example C-RAW-NT, is
C.RAW.INT in QuickBASIC.

ENGINEERING UNIT FLAGS

CJL4W~IN.T C-THCU J
C-RAW-FLOAT C-THCU-K
c_voLTs cJHcu~s
C-MILVLT C-THCU-T

C~THCU~R CJVIA~~O
C-RTD3175 C-J=EQ
C-RTD3212 CJuM8~C
C-STGA30 c-AIM8-D

A-2

CJJILLIA CJI-ICU-B
C-PERCENT

TRIGGER MODES

BT ST
WBT WST

GRAPHICS MOVEMENTS

SCROLL PAGEC
R-SCROLL L-SCROLL

GRAPHICS LOCATIONS

LEFT TOP
BOTTOM

GRAPHICS MODES

GRID MAGNIFY
NOGRID

TIME UNITS

HMIC
MIC

STEPPER MOTOR DIRECTIONS

ccw cw

TRIGGER DEFINITIONS

BELOW ABOVE
ON OFF

C-AD590

WGO

PAGE0

RIGHT

REDUCE

SEC

BETW
EQUAL

C~COUNT

NT

FAST

CTR

NORMAL

NOTBETW
PORT

A-3

NONE F-62K
F-500K F-1M
F-8M Pl-NORMAL
I’2-READ-RESET I’2JEAD-ONLY

STEPPER RAMP RATES

m-4096 RR-4369
RR_5461 RR-5957
RR-8192 RR-9362
RR-16384 RR-21845

ARSAVE FILE FORMATS

FT-KDAC R-ASCII
=-LOT123 FT-ASYST

WARNING LEVELS

WARNON WARNOFF

TRGl CONSTANTS

TRG-1M TRGJOOK
TlXG-1OK TRG-3K
TRG-DC TRG-AC
TRG-LATCH TRG-FOLLOW

FJ25K
F-M
PI-GATED

RR-4681
m-6553
RR-10922
RR-32768

Fr-BIN16

TRGJOOK
TRGJK
TRG-BELOW
TRG-EVENT

F-250K
F-M
pZ_DEFAULT

RR-5041
RR-7281
RR_13107

FT-DADISP

TRG-30K
TRG-300
TRG-ABOVE

A-4

APPENDIX B
KDACSOO Error Messages

*+ I Data Tables For Error Text
. .
I* (c) Copyright Keithley Data Acquisition and Control 1989 ;

Error 000
Error 001
Error 002
Error 003
Error 004
Error 005

Error 006
Error 007
Error 008
Error 009
Error 010
Error 011
Error 012
Error 013
Error 014
Error 015
Error 016
Error 017
Error 018
Error 019
Error 020
Error 021
Error 022
Error 023
Error 024
Error 025
Error 026
Error 027
Error 028
Error 029
Error 030
Error 031
Error 032
Error 033
Error 034
Error 035

system error - unknown error code

ADMl and/or ADM2 must be removed first.
ADMl or 2 must be in this slot
ADMn must go in slot 2 or 3
AIM1 or AMMn must be defined in slot 1 before
ADMn
AMMn or AIM1 must go in slot 1
ANREAD - system error during the read
cannot open configuration file
unable to open the file
channel records deleted
configuration information saved to disc
directory changed
drive changed
drive not installed
drive not ready
enter a value less than 5000.0
file deleted
file not deleted
file saved
filter not allowed for this module
for deleting channels only
invalid engineering units flag
illegal resistor value (64900 ohms max.)
insert an a/d into the system
invalid channel/port for this module
invalid command for this module
invalid drive specification
invalid filter selected
invalid gain combination
invalid global gain -use 1,2,5,10
invalid hardware segment in RTMDS.BIN
invalid ioclass was detected
invalid module specified
invalid offset selected
invalid range

B-l

Error 036
Error 037
Error 038
Error 039
Error 040
Error 041
Error 042
Error 043
Error 044
Error 045
Error 046
Error 047
Error 048
Error 049
Error 050
Error 051
Error 052
Error 053
Error 054
Error 055
Error 056
Error 05
Error 058
Error 059
Error 060
Error 061
Error 062
Error 063
Error 064
Error 065
Error 066
Error 067
Error 068
Error 069

Error 070
Error 071
Error 072
Error 073
Error 074
Error 075
Error 076
Error 077
Error 078
Error 079
Error 080
Error 081
Error 082
Error 084
Error 085
Error 100
Error 101
Error 102
Error 103
Error 104

invalid range/gain for this module
invalid RTMDSBIN file
invalid slot number
ioname not found
limit of 4 STl?2s per STl?l reached
limit of eight ionames
max of channels reached
maximum version of datafile reached
module must be in slot 2 to 10
module types are not the same.
A/D module in slot 3 must be removed first
must install correct A/D module
must select a channel name first.
no channel names found
no channels on this module
no datafile selected
no files found in this directory
no RTMDS channels selected
no switch settings on this module
not a legal conversion
not valid for selected module
only one ADMn allowed per system
other error
path not found
printer not ready
RTMDS.BIN file not found
select a channel first
select a channel to be named first
selected file is not compatible
setting up i/o
STPl must be defined before STM
STP2 must be placed below STPl /STM
ST??2(s) in lower slot(s) must be removed first.
STP2(s) must be removed before a module can be
inserted in this slot
system error allocating memory
system error freeing memory
system error invalid i/o call
that accuracy not available
this ioname is already being used, try another
this is a major goof
this module may not be removed
unable to read data from disc
unable to write data to disc
used for analog input modules only
used for aomn and ADMn modules only
used for digital modules only
loading overlay
invalid hardware segment
unable to calibrate A/D module
a trigger must be set up first
a trigger target has not been declared
array must have a width > 1
array width must be even to convert
background operation no longer supported

B-2

Error 105
Error 106
Error 107
Error 108
Error 109
Error 110
Error 111
Error 112
Error 113
Error 114
Error 115
Error 116
Error 117
Error 118
Error 119
Error 120
Error 121
Error 122
Error 123
Error 124
Error 125
Error 126
Error 127
Error 128
Error 129
Error 130
Error 131
Error 132
Error 133
Error 13
Error 135
Error 136
Error 137
Error 138
Error 139
Error 140
Error 141
Error 142
Error 143
Error 144
Error 145
Error 146
Error 147
Error 148
Error 149
Error 150
Error 151
Error 152
Error 153
Error 154
Error 155
Error 156
Error 157
Error 158
Error 159

cannot perform function on one point
channel list not supported
convert - illegal range specified
depth values out of bounds of basic array
depth values out of bounds of source array
engineering units conversion not allowed
error in setting system clock.
error while setting up clock read
first depth value exceeds second value
first depth value is out of range
GR4PHRT not supported by DATAQ card
in width or channel list
interrupts should be disabled
interrupts should be enabled
invalid accuracy specified
invalid array - unable to setup i/o
invalid array type
invalid call to backclear
invalid channel record pointer
invalid date.
invalid digital module type
invalid display format
invalid display mode
invalid gate time detected
invalid hardware segment.
invalid hour.
invalid loci parameter
invalid loc2 parameter
invalid minutes.
invalid mode selected
invalid month.
invalid of channels
invalid of windows
invalid option.
invalid resolution
invalid time units specified.
invalid trigger mode selected
invalid type in get-data.
invalid window
invalid windows parameter
invalid year.
ioname has been previously defined
miny must be less than maxy
must use channel 0 --> 3 in gate mode
second depth value is out of range
specified ioname does not match array
system error during i/o setup
system error during read
system error during write
this function is no longer supported
too many options for this module
unable to compute the backtime
unable to convert from real to integer
unable to convert integer to real
unable to execute setclock.

B-3

Error 160
Error 161
Error 162
Error 163
Error 164
Error 165
Error 166
Error 167
Error 168
Error 169
Error 170
Error 171
Error 172
Error 173
Error 200
Error 201
Error 202
Error 20
Error 204
Error 205
Error 206
Error 207
Error 20
Error 209
Error 210
Error 211

width value is out of range
wst can be used with quick mode only
not installed for RTM graphics
long counter values cannot be truncated
trigger threshold out of bounds
timeout specified out of range
invalid trigger channel specified
invalid trigger channel for multi-channel aninq
invalid trigger action
invalid antrig call
WHI’ can be used with quick mode only
invalid trigger mode for aninq setup
invalid number of samples requested
KDINlT or SOFT’INIT must be the first function called
array already exists, cant be created again
mixed iotypes or ioname not foun
trigger mode unrecognize
unrecognized array name
unrecognized display mode
unrecognized magnify/reduce mode
unrecognized location string
unrecognized grid mode
unrecognized time units
unrecognized direction
System Kernel must be in memory
unrecognized language - not supported

APPENDIX C
KDACSOO Function List

.* , Data Tables For Function Name Text

.*
I* (c) Copyright Keithley Data Acquisition and Control 1989 ;*
.*
I

Function 00
Function 01
Function 02
Function 03
Function 04
Function 05
Function 06
Function 07
Function 08
Function 09
Function 10
Function 11
Function 12
Function 13
Function 14
Function 15
Function 16
Function 17
Function 18
Function 19
Function 20
Function 21
Function 22
Function 23
Function 24
Function 25
Function 26
Function 27
Function 28
Function 29
Function 30
Function 31
Function 32
Function 33
Function 34
Function 35

KDCLOCK
FGREAD
FGWRITE
GETHANDLE
HREAD
HWRITE
KDINTT
KDPAUSE
BGSTATUS
KDTIMERRD
KDWARN
ANnvQ
BGCLEAR
BGTIME
BGREAD
BGWRITE
BGGO
BGHALT
INTOFF
INTON
KDTIMER
TRIGGER
ARDEL
ARGET
ARPUT
ARLABEL
ARLASTP
ARLOAD

ARSTATUS
ARSAVE
ARAVAIL
STPABSLOC
STPMAXSP
STPMOVEABS
STPMOVEREL

C-l

Function 36
Function 37
Function 38
Function 39
Function 44
Function 45
Function 4.6
Function 47
Function 48
Function 49
Function 50
Function 51

STI’RESET
STPSET
STPSPEED
STPSTATUS
BLANK
GRAPH
GRAPHRT
HGRAPHRT
GRLABEL
ANOUTQ
ANTRIG
SOFl-INIT

C-2

APPENDIX D
Engineering Unit Conversions

*EUFs shown in C, Pascal, and FORTRAN format. For QuickBASIC, underscores 0 must be replaced by
periods (.). Exam7 >le: C-RAW_FLOAT becomes C.lUW.FL,OAT.

Transducer

None

None

None

None

None

None

Thermocouple J

Thermocouple K

Thermocouple S

Thermocouple T

Thermocouple E

Thermocouple B

Thermocouple R

RTD

EUF+

c-RAWJNT
CRAW-FLOAT

C-VOLTS

C-MlLVLT

C&IICVLT

C-hJILLL4

C_pERcENT

C-THCU J

C-THCU-K

CJI-KLJ~S

C-THCU-T

C-THCU-E

C-THCU-B

C-THCU-R

C-RTD3175

Modules
Supported

AIMI-7, AMMIJ
AOMl-4,I’IMl

AIMI-7, AMh41,2,
AOM1,2,4

AIMI-7,AMM1,2,
AOM1-4

AIMI-7,AMMl,2,
AOM1-4

AIMl-4,AMMl,2,
AOM3

AIMl-7,AMh41,2,
AIMl-4

AIM3/5,7

AIM3#5,7

AlM3#5,7

AIM3587

AIM3#5,7

AIM3#5,7

AIM35,7

AIh46

Voltage
Range
Supported

all

all

all

all

all

all

all

all

all

all

all

all

all

+2.5V
g.ov
+lO.OV

Units

Raw integer
Raw float

Raw>Volts
Volts>Raw

Raw>mV
mV>RAW

&WV
kV>RaW

Raw>ma
ma>Raw

%offull
scale of
A/D

‘C

‘C

‘C

‘C

‘C

‘C

‘C

‘C

Interfacing
Reauirements

None, all gains supported

None, all gains supported

None, all gains supported

None, all gains supported

For current measurement, install
path-to-ground or input high-to-low
shunt resistor and enter resistor value
in KDAC500 config table. Typical
value 1K ohm.

None, all gains supported

Path-to-Ground Resistor and xl00 lo-
cal gain required with AIM3.

Path-to-Ground Resistor and xl00 lo-
cal gain required with AIM3.

Path-to-Ground Resistor and xl00 lo-
cal gain required with AIM3.

Path-toGround Resistor and xl00 lo-
cal gain required with AIM3.

Path-to-Ground Resistor and xl00 lo-
cal gain required with AIM3.

Path-&Ground Resistor and xl00 lo-
cal gain required with AIM3.

Path-to-Ground Resistor and xl00 lo-
cal gain required with AIMS.

IONAME must invoke alpha=0.00335
RTD mode with local gain of x50
(STRG%=ll

Transducer EUF%

RTD C-RTD3212

Modules
Supported

AIM6

Voltage
Range Interfacing
Supported Units Requirements

&2.5v “C IONAME must invoke alpha=O.O0392
&2.5V mode with local gain x50 (STRG%=l)
~lO.OV

Strain Gage,
*3omv

C-STGA30 AIM6 22.w
gLov
*lO.OV

-100 to
+lOO%

IONAME must invoke Strain Gage
mode with gain of x166 (STRG%=2)

Strain Gage,
+lOOmV

B-STGAlOO AIM6 &2.5V
+5.ov
&lO.OV

-100 to
+lOO%

IONAME must invoke Strain Gage
mode with gain of x50 (STRG%=3)

AD590/AC2626 C-AD590
Sl?nSOrS

4-20mA Current C-MA420
Loop Inputs

4-20mA Current C-MA420
Loopoutput

~L3,5,5,6, all “C 1000 ohms shunt resistor (210 for AIM61
AMMl,Z

Am414, AMMlJ 0-5.ov RawxnA Local Gain of 1 with a 250 ohm shunt
typical

AOM3 +lO.OV mA>Raw
o-5.ov
o-lO.OV

None

Strain Gage

Strain Gage

CJREQ

C-AIMS-C

C-AIM8-D

PIMl

AIM8

AIMS

all

all

all

Hz WI-I2 maximum frequency input

None Sets calibration factor for a strain gage

Units of Specifies that data retrieve will be in
Measure units of measure corresponding to units
parameters
or cal fac-

of the strain gage cal factor

tor in
IONAME

LVDT/RVDT

None

CJJh49-D

C-COUNT

AIM9

Pm42

all

32 Bit

cal factor in
the

Specifies that data retrieved will be in
units of measure corresponding to units

IONAME of the transducer cal factor.

Specify to read 32-bit data value from
PIM.2 counters in 32-bit mode.

Note: All engineering tits conversion supports the 12-bit, 14bit, and 16-bit resolution.

D-2

APPENDIX E
Running KDAWOO/M Under the

Microsoft QuickBASIC Environment

Keithley’s KDACSOO/I software for BASICA and
GWBASIC interpreters is currently bundled with the
Models 5OOA, 5OOP, and 575 data acquisition systems.
KDACSOO is also available as an option for various Micro-
soft and Borland compilers as KDACSOO/M and
KDACSOO/B, respectively. KDACSOO/M is compatible
with Microsoft BASIC PDS, Quick BASIC, Quick C,
Quick Pascal, C, and Fortran, while KDACSOO/B is com-
patible with Borland Turbo C and Turbo Pascal.

The similarities between KDACSOO and its predecessors,
Soft500 and QuicWOO, are evident in the structure and use
of the software. KDACSOO/M and Quick500 are perhaps
most alike, but do differ in an important area. Quick500
was originally designed so that programs could be written,
executed, and compiled under the QuickBASIC environ-
ment. Conversely, the KDACSOO manual instructs that
when KDACSOO/M is used with QuickBASIC, programs
may be written and compiled under the QuickBASIC
environment, but should be executed from the DOS com-
mand line using KDACSOO’s KRUN or KLOAD utilities.

The reason for not running KDACSOO/M programs under
the QuickBASIC environment is that QuickBASIC and
KDACSOO consume nearly all the available system
memory, leaving only a few kbytes for data arrays. During
an installation of KDACSOO, the user specifies the desired
array memory size. While 300k or more may be shown as
available, only 16-2Ok may actually be available when
QuickBASIC and KDACSOO are both loaded (this was
also the case with Quick500). Further, some types of

errors can cause KDACSOCI and QuickBASIC to abort and
return to the DOS prompt. This is not a true “crash” since
the user can rerun QuickBASIC and KDACSOO. However,
it does behoove the user to save work often.

Despite these limitations, it can be useful to write and
execute KDACSOO/M programs under the QuickBASIC
environment. One example is developing and debugging
programs where a small array memory is sufficient to
prove out a technique. A second example is a KDACSOO
program which uses only foreground commands, and thus
requires no KDACSOO array memory at all.
The following steps will aid you in installing KDACSOO/M
and QuickBASIC 4.5 so that programs can be run under
the QuickBASIC environment. They presume the use of
Microsoft QuickBASIC 4.5. Refer to the QuickBASIC
documentation for more information on installing and
running QuickBASIC.

1. Using the installation instructions in the KDACSOO
manual, install KDACSOO/M for a & array memory,
e.g. about 16k for a 640k system. Also indicate the address
and desired interrupt method for your interface card.
SAVE the installation and QUIT installation.

2. From the DOS comamnd line, run CONFIG.EXE. If
you have a Model 570, issue the command “CONFIG 570”.
If you are using a Model 575, issue the command “CON-
FIG 575-1” or “CONFIG 575-2” according to the A/D
module (AMMlA or AMM2) in slot 1. If you have a
Model 500A or 5OOP, simply issue “CONFIG”, and then
indicate your modules and their slot locations.

3. If you have a specific application in mind at this point,
create IONAMEs for the channels you will be using in
your application program. If not, skip this step for now.

4. Save the CONFIG table.

5. Install QuickBASIC 4.5 to the same directory contain-
ing KDACSOO/M. This is the easiest way to assure that all
the necessary QuickBASIC files will be accessible to
KDACSOO/M. You may also have separate directories for
KDACSOO/M and QuickBASIC as long as the DOS path,
environment variables, etc. are set up properly. See the
QuickBASIC documentation for details.

6. Make the necessary KDACSOO/M Quick library. Enter
the following command at the DOS command line:

LINK /QU KDACSOO.LIB,,NUL,BQLB45

10. To compile the program (.EXE tile), press <Alt R >
to invoke the QuickBASIC “Run” menu, and then “x” to
compile the program. Follow the various QB prompts and
supply a file name. Compile the file as “.EXE requiring
BRUN45.EXE”.

11. To run the .EXE file from the DOS command line,
first leave QuickBASIC with cAlt F> and then “x”. Run
the program by issuing “KRUN <your file > . See the
KDACSOO manual for information on KRUN and
KLOAD.

12. You can now develop your program using the remain-
ing KDACSOO and QuickBASIC commands. Add
IONAMEs to the CONFIG table if you have not done so
already. Rerun KDACSOO as you did in step 7. Since an
error may send you back to DOS, save your work often. If
there will be several executable tiles on one disk, compile
your programs as “.EXE requiring BRUN45.EXE”. Com-
piling “Stand-alone” will produce longer .EXE files which
ultimately use more much disk space.

7. Start KDACSOO/M. Enter the following at the DOS
command line:

Suggestions for Designing KDACSOO Programs
KRUN [drive:\path\]QB /L KDACSOO.QLB

If QB.EXE is in another directory, include [drive:\path\]
as part of the QB file name. You may want to create a
batch file containing this command to simplify running
KDACSOO and QuickBASIC. After a few moments, you
should see the QuickBASIC environmnent on-screen.

8. Enter the following test program. Note the first three
lines. These must be included in all KDACSOO/Quick-
BASIC programs.

‘$INCLUDE: ‘KDACSOO.BI
CALL KDINIT(BASIC.)
CALL SOFTINIT(BASIC.)
CALL INTON(100, MIL)
T! = TIMER: WHILE TIMER-T! c 3: WEND
CALL INTOFF

9. To run the program, press <Ah R> to invoke the
QuickBASIC “Run” menu, and then “S” to start the pro-
gram, The the “ON LINE” lamp on the data acquisition
hardware should flash briefly, after which the program will
terminate.

Producing robust test programs is easy with KDACSOO/M
and QuickBASIC, although there are a few considerations
which will aid in the process. These suggestions apply to
all versions of KDACSOO, not just QuickBASIC and
ICDACSOO/M.

The fast suggestion concerns the order of commnads in a
program. If a program uses background read (BGREAD)
or background write (BGWRITE) commands, these com-
mands should all be placed before the CALL INTON
command which starts them. When interrupts are
enabled, KDACSOO allots a specific amount of back-
ground time to handle the tasks listed before CALL
INTON. If interrupts are enabled and then the back-
ground calls are issued, KDAC500 may not be able to deal
with the added background overhead, and problems will
result.

The second suggestion concerns embedding background
commands in a loop. Under the right circumstances, the
background processing time can increase with each pass
through the loop, resulting in foreground routines running
more and more slowly. This will cause a noticeable slow-
ing of screen updates, for example. The slowing wiIl
become more severe with each pass through the loop until

E-2

the system either aborts the interrupts or crashes entirely.
If it is absolutely necessary to run background routines in
a loop, try to include a CALL KDINIT command at the
begin&g of the loop, and then reissue the background
commands. You will have to pay close attention to the
handling of data, since a CALL KDINIT will wipe out any
KDACSOO array currently in memory. It is best to avoid
this type of programming altogether.

Third, interrupts should not repeatedly be turned on and
off in a program. An example is a FOR-NEXT loop con-
taining CALL INTON and CALL INTOFF commands.

Under some circumstances, KDACSCKI may fail to trap a
an interrupt, which may then get through to DOS. If this
occurs, the computer may crash. While it may take thou-
sands of passes through the loop for this to occur, it is best
to avoid the practice entirely.

In any of these situations, it is helpful to use KDACSOO’s
BGTIME command to keep track of the background pro-
cessing time. In a well-designed program, the background
time should remain stable for a given INTON rate.

E-3

Example Programs for KDAGOO/M and Microsoft QuickBASIC

The following programs illustrate the use of KDACSOO/M with QuickBASIC Version 4.5. Note that some of the
programs involve several commands. In these cases, each command is used in a short block of code which can be
used as a model, or lifted for inclusion in your own programs.

HEADER.BAS

ANALOGIO.BAS

ANINQ.BAS

BGREAD.BAS

DIGIO.BAS

KDCLOCK.BAS

WAV1.BAS

AMMPOKE.BAS

Shows a standard header which should be included at the beginning of
KDACSOO/QuickBASIC programs to initialize the software and hardware.

Shows the use of FGREAD, FGWRITE, BGREAD, and BGWRITE for analog I/O.
Each command is demonstrated in a short block of code which can be lifted and used
in other programs. BGSTATUS, ARGET, ARMAKE, and ARGET are also
demonstrated.

Shows the use of ANINQ for high-speed acquisition, as well as ARGET, and
ARSAVE for inspecting and saving data.

Shows the use of BGREAD, HGRAPRT, AND GRLABEL for thermocouple
measurements and real-time graphing.

Shows the use of FGREAD, FGWRITE, BGREAD, and BGWRITE for digital I/O.
Each command is demonstrated in a short block of code which can be lifted and used
in other programs. BGSTATUS, ARGET, ARMAKE, and ARGET are also
demonstrated.

Shows the use of KDCLOCK command.

Shows programming of the WAVl module using WAVSETUP and WAV commands.

Shows how to use the AMML4 or AMM2 modules by PEEKing and POKEing the
command registers. Program is useful for writing a low-level driver for the AMM
modules.

E-4

~************
*

* SUMMARY - SET-UP INFORMATION FOR RUNNING KDACSOO/M UNDER THE
* MICROSOFT QUICKBASIC 4.5 ENVIRONMENT.
*

To run KDACSOO/M under the QuickBASIC environment, follow these instructions:

1. Install KDACSOO for a small array memory, e.g. 16k for a 640k system.

2. Run CONFIG and create IONAMES as the application requires.

3. Copy QuickBASIC to the KDACSOO/M directory. This is the “easy way. You
may also have separate directories for KDACSOO and QuickBASIC as long as
the DOS path, environment variables, etc. are set up properly. This is
a bit more complex, and may make it more difficult to discern any
QuickBASIC problems from KDACSOO problems which may occur during the
initial set-up of KDACSOO.

REQUIRED QUICKBASIC FILES:

BCEXE BCOM45.LIB QB.INI
BQLB45.LIB BRUN45.EXE QB.LIB
BRUN45.LIB LINK.EXE QB.QLB
QB.BI QB.EXE

4. Make the necessary Quick library by executing at the DOS command line:

LINK /QU KADCSOO.LIB,,NUL,BQLB45

5. Start KDACSOO by executing at the DOS command line (this command may be
placed in a batch file for convenience. Drive and path to QB are optional):

KRUN QB /L KDACSOO.QLB

6. Include as the first executable line of code in the program:

‘$INCLUDE: ‘KDACSOO.BI’

NOTE: KDACSOO errors encountered in this mode of operation may cause
BASIC to abort back to DOS. This is not a “crash”. You may restart KDACSOO
and reload your program. Save your program often to guard against losing
your most recent changes.

NOTE: If you are upgrading from KDACSOO/I to a compiler version, you must
keep the versions of KDACSOO separate. It is best to install them in
different directories.

E-5

I*******************t******************~*~**~**********~**********~**********~~*

I*

'* HEADER.BAS
I*

'* STANDARD PROGRAM HEADER FOR KDACSOO/M UITH QUICKBASIC. 10/15/90
I*
I* If the WNCLUDE:.... I8 line is omnited, error Wnrecognized Language"
I* wilt result.
t*
I**~*************~************

'SINCLUDE: 'kdac500.bi'

CALL kdinit(BASIC.1
CALL softinit(BASIC.1
CLS

1 Your program goes here.....

I For example . . .

CALL inton(l0, MIL)
FOR t = 1 TO 10000: NEXT
CALL intoff

END

E-6

,**

I*

'* ANALOGIO.BAS
I*
'* EXAMPLE KDACSOO/M AND PUICKBASIC PROGRAM FOR ANALOG I/O. 10/15/90

:= IONAMEs in CONFIG.TBL are SLl-CHO for input and SLS-CHO for output.
I*
,*t**

' HEADER

'SINCLUDE: lkdacSOO.bi'
CALL kdinit(BASIC.1
CALL softinit(BASIC.1

DEFINT A-Z
CLS

1 Exan@e of analog input foreground commd (AMM2 in slot 1)

DIM voltsin!(DIM countsin!
voltsin! = 0: countsin! = 0

WHILE INKEYS =)111
CALL fgread(%ll ch08' NONE, VARSEG(voltsin!(Oll, VARPTR(voltsin!(O)), C.VOLTS, NT)
LOCATE 1, 1: PRINT 6ltage input from AMMZ, channel D = II; voltsin!
CALL fgread(%ll ch0"
LOCATE 3, 1: PRINT

NONE, VARSEG(countsin!(O)), VARPTR(countsin!(O)), C.RAW.FLOAT, NT)
"AjD Counts input from AMM2, channel 0 = 'I; countsin!

LOCATE 24, 1: PRINT OIPress any key to continue";
UEND

I Example of foreground comnands for analog output (AC+41 in slot 5)

DIM voltsout!
voltsout! q 3.3
CALL fgurite(%lS chO", VARSEG(voltsout!(O)), VARPTR(voltsout!(O)), C.VOLTS, NT)
LOCATE 5, 1: PRINT 88Slot 5 channel 0 output is 3.3W
LOCATE 24, 1: PRINT 88Press any key to continue';

WHILE INKEYS = "": WEND

voltsout!(0) = -5
CALL fgwrite(%lS chOl', VARSEG(voltsout!(O)), VARPTR(voltsout!(O)), C.VOLTS, NT)
LOCATE 7, 1: PRINT 18Slot 5 channel 0 output is -5.OW
LOCATE 24, 1: PRINT "Press any key to continuel';

UHILE INKEYS q "": WEND
CLS

(Example of background comand for analog input. Acquire 10 analog readings
1 at 5 readings/second and store them in an array named 18inarray%8t

CALL bgread(l~inarray%H, lo!, %ll-chO1l, 1, NONE, 1, NT, JOaninmfi)

PRINT : PRINT "Press any key to start background analog input...10
WHILE INKEYS = "": UEND

CALL inton(200, MIL)

E-7

PRINT : PRINT "Taking data and checking status...11

stat% = -1
UHILE stat% *> ST.DONE

CALL bgstatus(Paninw, stat%)
LOCATE 6, 1: PRINT ?3atus = It; stat%

UEND

CALL intoff

PRINT : PRINT PAnaLog input is completed.ll

I Read voltage values back from array with ARGET

DIM results!(l)
results!(O) = 0

FOR depth& = 1 TO IO
CALL arget(tOinarray%mU, depth&, depth&, ~$ll-chO@~, NONE, VARSEG(results!(O)), VARPTR(results!(O)), C.VOLTS)
PRINT ItVolts at depth II; depth&; II = II; results!(D)

NEXT depth&

PRINT

I Do it again as A/D counts

FOR depth& q 1 TO IO
CALL arget("inarraw, depth&, depth&, 9.11 chow, NONE, VARSEG(results!(O)), VARPTR(results!(O)), C.RAW.FLOAT)
PRINT "A/D counts at depth $I; depth&; I0 = IIT results!(O)

NEXT depth&

LOCATE 24, 1: PRINT "Press any key to continueml;
WHILE INKEYS = "": WEND
CLS

1 Example of background ccmand for analog output.

I First make a BASIC array containing a 1000~point ramp from 0 to IO

DIM basarray!(10001
FOR T! = D TO 999
basarray!(T!) = T! / 100

NEXT T!

1 Rake KDACSDO array...

CALL armake(lMoutarray%w, 10008, *bs15-chOw)
CALL arput(m10utarray%81, I&, lOOO&, "~15 ch0" - I NONE, VARSEG(basarray!(O)), VARPTR(basarray!(O)), C.VOLTS)

1 Set up background write for IO cycles through the array...

CALL bgwrite(woutarray%w, 18s15-chOB1, 1, 10, NT, l@anoutw)

PRINT : PRINT *'Press any key to start background output...m0
UHILE INKEYS = "": WEND

CALL intonC1, HIL)

PRINT : PRINT IlOutputting IO sawtooth pulses..."

stat% = -1: lp& = 0

WHILE stat% <> ST.DONE
CALL bgstatus(wanouti8, stat%)

E-8

CALL arlastp(Bgoutarray%‘i, lp&)
LOCATE 6, 1: PRINT @@Status = II; stat%
LOCATE 8, 1: PRINT “Last point accessed = II; lp&

WEND

CALL intoff

END

E-9

1**

I*

'* ANINP.BAS

:= EXAMPLE KDAC5OO/M AND QUICKBASIC PROGRAM FOR ANINP. 10/15/90
I*
I* IONAME in CONFIG.TBL is SLI-CHO for input.
,*
,**

' HEADER

'SINCLUDE: ~kdac500.bi~

CALL kdinit(BAS1C.j
CALL softinit(BASIC.1

CLS

I.........................----.......................---.......................

I Call ANINP to take 100 points into an array named 81data.array%18

CALL aninq(18data.array%", IOO!, %Ll-chO", 0, NT)

I Look through the array, one point at a time, with ARGET

LOCATE 1, 1
DIM value!(l)
value!(O) = 0

FOR depth& = 1 TO 100
CALL arget(81data.array%m', depth&, depth&, %ll chO", 1, VARSEG(value!(O)), VARPTR(value!(O)), c.vo1t.s)
PRINT "Data value at depth I*; depth&; I8 = II; value!

NEXT depth&

1 Transfer entire KDAC array to a BASIC array with ARGET, and then look
I through the BASIC array

DIM aLtvaIues!(100)

CALL arget("data.arraw, 18, lOO&, %ll-chOP, 1, VARSEG(alLvaLues!(O)), VARPTR(aLLvalues!(O)), c.volts)

8 Look through the BASIC array, one point at a time. Depths of 0 to
1 99 are used because the BASIC array begins with element 0.

LOCATE 1, 1

FOR depth& = 0 TO 99
PRINT "Data value at depth II; depth&; aI = I@; altvalues!(depth&)

NEXT depth&

t Save the KDAC500 array in KDAC, ASCII, and LOTUS formats using ARSAVE

(NOTE: The AMMZ module was run at maximun speed, which is 50kHz (62.5kHz
I for the AMMlA).

CALL arsave(18data.array%18, 88KDACFRHT.DAT88,
CALL arsave(11data.array%4', 18ASCIFRMT.DAT88,

c-volts, FT.KDAC, 50000!, HZ)
c.volts, FT.ASCII, 50000!, HZ)

CALL arsave(11data.array%18, @@123FRMT.DATP, c.volts, FT.LOT123, 50000!, HZ)

END

E-10

,**

I*

'* BGREAD.BAS
I*
'* EXAMPLE BGREAD PROGRAM lD/l5/90
I*
I* Purpose: Demonstrates KDAC500 Background Read (BGREAD) for thermocouple
I* measurement, and graphs data.
I*
'* IONAMEs "J TC O", "J TC I", and VJRW1 are set up in the CONFIG table for
a* srot3, cha:ne'is 0, I, and 32, respectively.
,*
,**********************t***

' HEADER

1 Intitialize system

'SINCLUDE: 'KDAC500.BI'

CALL kdinit(BASIC.1
CALL softinit(BASIC.1

CLS

1 Set up some arrays containing parameters needed for the HGRAPHRT comnand

1 Specify array widths to be graphed. We want to look at 2 and 3 because the
1 cold junction reference takes position 1 in the KDAC500 array.

DIM uidl(l6) AS INTEGER
widl(D) = 2: widl(1) q 3

1 Presuning a test at room temperature...
1 Specify the lower limit of the graph as 15 degrees C

DIM miny(l6) AS SINGLE
minyl(0) = 15: minyl(1) q 15

1 Specify the upper limit of the graph as 25 degrees C

DIM msxyl(l6) AS SINGLE
maxyl(D) = 30: maxyl(l) = 30

1 Specify the engineering units flags for the thermocouple types (J)
1 Change last letter of each EUF to your TC type

DIM eufl(l6) AS INTEGER
eufl(D) = c.thcu.j: eufl(1) = c.thcu.j

1 Set up the BGREAD cmnd to take 1000 readings.
8 (Note that parmameter list is all one line)

CALL bgread(@'arrayl%l', 10008, "cjr j-tc-0, j-tc-188, 1, none, 1, NT, 18readstatus18)

1 Change to 640x200 color graphics screen and set up the graph conmmnd

SCREEN 2
LOCATE 1, 1: PRINT "Press <Escape> to quit..."

E-11

I Label the graph axis

CALL GRLABEL(D04', 1, 1, Left, top)
CALL GRLAgEL(881588, 1, 1, left, bottom)

' Turn on interrupts

CALL inton(lO0, mil)

CALL hgraphrt(l'arrayl%", VARSEG(widl(O)), VARPTR(widl(O)), Scroll, VARSEG(minYl(O)), VARPTR(minYl(O)),
VARSEG(MXY~(O)), VARPTR(IIBX~~(~)), VARSEG(eUfL(O)), VARPWeufl(O1). lOOO&, 1, grid)

i The hgraphrt comnand will execute until the data array has been graphed conpletely.

I Now that it's all over, turn off interrutpts.

CALL intoff

END

E-12

I**~********************~********~*****

I*

'* DIGIO.BAS
IC
‘* EXAMPLE KDAC500/H AND QUICKBASIC PROGRAM FOR DIGITAL I/O. 10/15/90

:= IONAMEs in CONFIG.TBL are DIGI 0 for input via channel 0 of a DIOI module,
I* and DIG0 16 for output via chaEne1 16 of the same module.
I*
,**

' HEADER

ISINCLUDE: lkdac500.bi'

CALL kdinit(BASIC.1
CALL softinit(BASIC.)

DEFINT A-i!

I Example of foreground com~nd for digital input...

DIM inval%(l)
invalX(0) = 0

WHILE INKEYS = 1111
CALL fgread("digi 011, NONE, VARSEG(inval%(D)), VARPTR(inval%(O)), C.RAlJ.INT, NT)
LOCATE 1, 1: PRINT "Digital input from DIOl, channel 0 = I'; inVal%W

UEND

1 Example of foreground comnand for digital output . . .

DIM outval%(l)
outval%(O) = 1

CALL fgwrite(88DIG0 16", VARSEG(outval%(D)), VARPTR(outval%(D)), C.RAU.INT, NT)
LOCATE 3, 1: PRINT-llOutput channel is HIGH"
LOCATE 4, 1: PRINT "Press any key to toggle output..."

UHILE INKEYS = "": WEND

outval%(O) = 0

CALL fgwrite(88DIG0 1611, VARSEG(outval%(O)), VARPTR(outval%(O)), C.RAU.INT, NT)
LOCATE 3, 1: PRINT-810utput channel is LOU II
LOCATE 4, 1: PRINT "Press any key to continue...)I

UHILE INKEYS = "": VEND

I Example of background conmmnd for digital input. Acquire 10 digital
I readings and store them in an array named 18digin%18

CALL bgread(1'inarray%18, lo!, itdigi-018, 1, NONE, 1, NT, l'digin.job")

PRINT : PRINT "Press any key to start background digital input..."
UHILE INKEYt = "": WEND

CALL inton(100, mill

E-13

PRINT : PRINT "Taking Data...88

stat% = -1

UHILE stat% *a ST.DONE
CALL bgstatus(lldigin.jobll , stat%)

UEND

CALL intoff

PRINT : PRINT 18Digital input is conpleted.8B

1 Read values back from array uith ARGET

DIM results(l) AS INTEGER

FOR depths = 1 TO 10
CALL arget("inarraw, depth&, depth&, Pdigi-O1O, NONE, VARSEG(results(O)), VARPTR(results(O)), C.RAU.INT)
PRINT "Result at depth II; depth&; I8 q II; results(O)

NEXT depth&

I Example of background comssnd for digital output.
) First make a BASIC array containing a 8111B and a @lOll

DIM outvals(2) AS INTEGER
outvats(0) = 0: outvals(1) = 1

I Make KDACSOO array...

CALL armake(lloutarray%l', 2&, 18DIG0-?611)
CALL arput(000utarray%4B, l&, 2&, 1°DIGO-1611, NONE, VARSEG(outvals(O)), VARPTR(outvals(O)), C.RAU.INT)

I Set up background write for 20 cycles through the array...

CALL bgwrite(180utarray%18, ~~DIGO-16~~, 1, 20, NT, lldigout.jobll)

PRINT : PRINT I'Press any key to start background output...18
UHILE INKEYS = "": UENO

CALL inton(500, mil)

PRINT Wutputting 20 square wave pulses...10

stat% = -1
UHILE stat% *a ST.DONE

CALL bgstatus(8gdigout.job01 , stat%)
UEND

CALL intoff

E-14

,**

I*

'* KDCLOCK.BAS
a*
'* EXAMPLE PROGRAM FOR KDCLOCK COMMAND 10/15/90
I*
,*****************t*****************t***

' HEADER

1 Intitialize system

'BINCLUDE: 'KDAC500.61'

CALL kdinit(BASIC.1
CALL softinit(BASIC.1

CLS

fi Set up array to hold time/date info

DIM timdat AS timestruc

CALL kdclock(timdat)

PRINT timdat.hour
PRINT timdat.minute
PRINT timdat.second
PRINT timdat.month
PRINT timdat.day
PRINT timdat.year

EN0

E-15

,**

I*

I* WAVl Example Program 10/15/90

:= Demonstrates use of the UAVSETUP and WAV calls to control1 a UAVl module.
I* The IONAME t1Uav181 has been set up in the CONFIG table.
I*
I* NOTE: The WAVl requires that either:
I* a. An AMMx module be installed in slot 1 of the system, or
I* b. A resistor be added to the UAVl to supply a reference voltage.
I*
I* See the UAVI manual for details.
I*
,**

' HEADER

'SINCLUDE: 'kdac500.bi'

CLS
CALL kdinit(BASIC.1
CALL softinit(BASIC.1

' SET UP THE WAVI

1 Set up the WAVI for 2kHz range and sine output. The 1'0, Ow parameters at
1 end of the parameter list mark the positions of parameters reserved for
1 a future release of KDACSOO. These have no effect in KDACSOO Vl.3, and
1 should be left as 0, 0.

I CALL WavSetup(IONS , FREQ-RNG%, FUNCT'X, 0, 0)

CALL UavSetup(wwavlll, WV.FRNG.Zk, wv.sin, 0, 0)

' OUTPUT THE UAVEFORM

I CALL wav(FRP, AMPL, OFFS, DUTY, MODE)

CALL Uav(1000, 5, 0, 0, wv.output.on)

a NOTE: Uhere two or more WAVl modules are used in a system, UAV should be
I called immediately after the WAVSETUP associated with it. Any WAV call will
I autametically assune the setup described in the last WAVSETUP command.

END

E-16

,*************************************t**************************************

I*

'* AMMPOKE.BAS
I*
I* EXAMPLE QUICKBASIC PROGRAM FOR POKING THE AMMlA or AHMZ. 10/15/90

:= This program uses POKES exclusively and does not require KDACSDD
I* assuses that the interface card is Het to address CFFBO(h). The AMM

It

I* module must be located in slot 1.
I*
,**

(Do a set-up for the AMM module...

CLS : KEY OFF
DEF SEG = 8HCFF8 I Set segment address of interface.

1 Reset and recalibrate the A/D converter...

POKE &HO, 0
POKE SHI, 0
POKE SHIA, 255

1 Wait for conversion done

WHILE PEEK(&HlB) > 127: WEND

Set up a byte for a write to CMDA which will select channel, single-
ended mode, local gain of 1, regular acquire mode, and filter
See MM manual for other legal values for each bit.

Bit pattern q (MSB) 8 7 6 5 4 3 2 1 (LSB)

Calculations as BIT POSITION UEIGHT x DESIRED PROGRAMMING VALUE
-_--________-__---__--------------- --------\,------------------
Select channel 0 -- 0 * 1 = 0 (bit 1, 2, 3, 4)
Select single-ended mode -- 16 * 1 = 16 (bit 5)
Select local gain 1 -- 32 * 0 = (bit 6)
Regular acquire mode -- 64 l 0 = ii (bit 7)
Filter 1OOk -- 128 * 0 = 0 (bit 8)

------__-

Total 16

Set up a byte for write to CMDB which uill set up slot, CMDA read
mode, range, and global gain

Select slot -- 1 * 1 = 1
CMDA read mode -- 16 * 1 for data read = 16

m: ;; 2, 3, 4)

Range select +/-IO -- 32 * 1 q 32 (bit 6)
Global gain is Xl -- 64 * 0 and 128 * 0 = 0 (bit 7, 8)

_---______

Total 49

I Do the set-up writes...

POKE &HO, 16
POKE &HI, 49

I CMDA urite
I CMDB urite

I Set up a DO loop and do PEEKS and POKES while keyboard is inactive...

DO

E-17

I Start an A/D conversion...

POKE &HlB, 255

I Check status of the AMM to see if conversion is done...

WHILE PEEKfBHlBI > 127: WEND

a Read registers...

DHIGH = PEEKCLHl)
DLOU = PEEK(&HO)

I Reconstruct the data (+/-IOV range assuned)...

DRES! = 256 * DHIGH + DLOU
DVOLTS! = (20 * DRES! / 65536!) - 10

LOCATE 1, 1: PRINT "A/D counts = "; DRES!; w II
LOCATE 3, 1: PRINT Woltage = II ; DVOLTS!; U II

I If keyboard is still inactive, loop around and do it again...

LOOP UHILE INKEYS q 11U

END

E-18

Service Form

Model No.

Name and Telephone No.

Company

Serial No. Date

List all control settings, describe problem and check boxes that apply to problem.

Q Intermittent

m IEEE failure

0 Front panel operational

Display or output (check one)

a Drifts
m Unstable

a Overload

m Analog output follows display

m Obvious problem on power-up

u All ranges or functions are bad

m Unable to zero
m Will not read applied input

a Particular range or function bad; specify

u Batteries and fuses are OK

a Checked all cables

u Calibration only

D Data required

u Certificate of calibration required

(attach any additional sheets as necessary)

Show a block diagram of your measurement system including all instruments connected (whether power is turned on or not).
Also, describe signal source.

Where is the measurement being performed? (factory, controlled laboratory, out-of-doors, etc.)

What power line voltage is used? Ambient temperature? “F

Relative humidity? Other?

Any additional information. (If special modifications have been made by the user, please describe.)

Be sure to include your name and phone number on this service form.

	ToC:

