
F0.R -.488
MANUAL

0 c COPYRIGHT 1985 BY METRABYTE CORPORATION

I WARRANTY

I
All products manufactured by MetraEyte are warranted

against defective materials and workmanship for a period
of One Year from the date of delivery to the original
purchaser. Any product that is founds to be defective
uithin the warranty period will, at the option of
MetraByte, be repaired or replaced. This luereanty '~does
not apply to products damaged by impr;qReruse.

! WARNING !

i MetraB~yte Corporation assumes no liability to damages

I
consequent to the use of this product. This product is
not designed with components of a level of reliability

I
suitable for use in life support systems.

MetraByte Corporation, 440 Myles Standish Boulevard, Taunton
Mass. 02780 U.S.A. Phone: (617) - 880 - 3000 Telex: 503989

1 .o INTRODUCTION ------------------------------- 1

2.0 GPIB (IEEE-4881 DOS RESIDENT DRIVER --------

2.1 GPIElDVR.COM PROGRAM OVERVIEW ---------------
2.2 LOADING THE GPIBDVR.COM FILE ---------------

2

2
2

3.0 ENTRANCE REQUIREMENTS FOR ALL HIGH
LEVEL LANGUAGES _---___-------_-_----------- 4

3.1

3.2

3.3

3.4

ENTRANCE REQUIREMENTS FOR ROMSEG:OOOOH
ENTRY POINT --------------------------------

ENTRANCE REQUIREMENTS FOR ROMSEG:0006H
ENTRY POINT --------------------------------

ENTRANCE REQUIREMENTS FOR ROMSEG:OOOAH
ENTRY POINT --------------------------------

ENTRANCE REQUIREMENTS FOR ROMSEG:0074H
ENTRY POINT --------------------------------

4

9

10

11

4.0

4.1

i::
4.4

LIBRARY OVERVIEW __-_----------------------- 18

IMAGE SPECIFIERS __------------------------

IMAGE TERMINATORS --------------------------

FLAG RETURN CODES ___-----__-_______________

USER COMMANDS (FORTRAN LIBRARY) ------------

ABORT --------------------------------------

CLEAR devl, dev2, devN -------------

CONFIG TALK=dl/MTA,LISTEN=devZ,.,tMLA) ---
ENTER dev.secad Cimagel _____________--_-

EOI devtimagel _---------------_-------

LOCAL devl, dev2, . . . devN --------------

LOCKOUT devl, dev2, . . . devN --------------
OUTPUT devl, dev2, . . . devN Cimagel ------

PARPOL _----_-_--_-____-____________________

PASCTL dev ---_-_____---------------------

PPCONF dev -------_-----------------------

PPUNCF dev __________-_-_-_---------------

REMOTE devl, dev2, devN -------------

REQUEST (I) -_-----_------_----------------

RXCTL --------------------------------------

STATUS dev.secad ____________________-----

SYSCON MAD=dev, CIC=n, NOB=n, EAO=al, BAI =a2 -
TIMEOUT --_-_-------------------------------

20
22
23
24

INDEX

::
25
26
26
27

;;
29
30
31
32
33
34
35
36

TRIGGER devl, dev2, devN ------------- 38

INDEX

-*- FORTRAN LIBRARY FUNCTIONS ONLY ---

ITEST (var, #NUM) -__---_________-_-_-___

PRINT/h (var, Nob) --------_-______________

5.0 HIGH LEVEL LANGUAGE LIBRARIES --------------

5.1 FORTRAN LIBRARY ----------------------------

5.2 PASCAL / TURBO PASCAL LIBRARY ^---^---------

6.0 CHANGING THE ROM SEGMENT CCHGVEC.EXEl -__-__

7.0 PROGRAMMING EXAMPLES -----------------------

7.1 FORTRAN EXAMPLES -------------------________

39
40

41

::

43

44

44

1.0 INTRODUCTION

The GPIEDVR.COM program~is a DOS .resident driver Extension
for use with the MetraByte IE-488 interface card. The resident
driver provides all the same functions and commands as the Basic
ROM Interpreter plus the additional capability of linking to all
high Level and Low level languages on the market today. The
resident driver Extension is written in 8086/8088 assembly
language and uill run an any MS-DOS (1) compatible computer using
the 8088/8086 instruction set.

The driver is accessed via a software interrupt in the range
of Fl to FF (hex). This minimizes the effects of using a large
portion of compiler code area when using the interpreter.

The following sections will describe how to load the driver
extension and change the entrance characteristics for full multi-
user / multi-task operation. The driver is capable of handling
two IE-488 boards under a multi-user I multi-task environment.
All COMMAND STRING formats are the same as explained in the IE-
480 manual. This manual will explain the variations of the
different string and variable pointer constraints of the various
compilers on the market. This manual has a separate operation
section for each of the languages specified CFORTRAN,TURBO
PASCAL, and LARGE/SMALL models).

(1) MS-DOS is a trade mark of Microsoft Corp. page 1

2.0 GPIB (IEEE-4881 RESIDENT DOS DRIVER FOR IE488 INTERFACE

2.1 GPIBDVR.COI OVERVIEW

The file GPIBDVR.COM is the main DOS resident driver
extension. This fi.le should be loaded once during power up or
before the IE-488 board is used. The functions and commands the
DOS resident driver extension will recognize are the same as
shown in Chapter 4.0 (USERS COMMANDS) in this manual and the IE-
488 manual. The DOS resident driver extension intercepts the ROM
interpreter at the entry point and conditions the variable
pointe~rs on the STACK to conform to the ROM command tine
interpreter. This way only a small patch is required to link to
any new compiler presented on the market today or in the future.
This resident interpreter will in fact plink to any language with
very little programming. The libraries included are FORTRAN and
BASIC libraries which setup the pointers to the variables in
various ways and save special registers like SI and DI that may
be used with different compilers such as the new Microsoft C
compiler version 3.0. TURBO PASCAL (trade name of Borland
International) file is included CIE488TUR.COM) and may be changed
to IE488.COM when compiling the .PAS program. There is a
separate section on TURBO PASCAL programming in this manual.

2.2 LOADING THE GPIBDVR.COI FILE

Loading the file is straightforward. The default vector
link is set at Fl hex. This means an INT OFIH instruction wi 11
enter the extension. Once the driver extension is loaded only
restarting the system (powerup) will remove the driver extension.
The resident driver extension cannot be reloaded at the same
vector, an error message will be displayed acknowledging this
action. Entering the following wi 11 load and keep resident the
driver interpreter.

A>GPIBDVR <enter>
METRABYTE GPIB DRIVER LOADED Cc) 1985
A>

The driver is now part of the DOS system and is accessed
via the Fl hex vector software interrupt.

LOADING AT A DIFFERENT VECTOR

To load the GPIBDVR.COM interpreter at a different vector
between Fl and FF hex just enter the vector after the file name.

page 2

2.0 GPIB (IEEE-4881 RESIDENT DOS DRIVER FOR IE488 INTERFACE

A>GPIBDVR F3 <enter>

METRABYTE GPIB DRIVER LOADED Cc)- 1985

A>
The driver is loaded and may be accessed via the F3 hex

software interrupt. This VECTOR is loaded in the IE488 ROM
interpreter card when initialized in order to inform the ROM
interpreter where the driver is located. Access to the driver is
automatic when the interpreter is called.

If the driver is reloaded at the same vector such as:

A>GPIBDVR F3 center>

METRABYTE GPIB DRIVER ALREADY INSTALLED.

A>

page 3

3.0 ENTRANCE REQUIREMENTS FOR ALL HIGH LEVEL LANGUAGES

The DOS resident driver Extension is setup for4 variations
of linking. One of the main differences between different types
of compilers is the way STRING variables are handled. The FORTRAN
compiler (Microsoft ver 3.2) does not pass the byte count for the
character variable. This is a fixed length string assignment. The
TURBO PASCAL (Borland Int.) and the MicrSoft PASCAL pass the
byte count as the first byte in the string. The BASIC Compiler
CNicroSoft) uses a four byte STRING DESCRIPTER where the first
word is the byte count and the second word is the offset pointing
to the first character. The BASIC Interpreter (Microsoft) uses a
three byte string descripter where the first byte is the byte
count (255 max.) and the 2nd and 3rd byte are the offset pointer
to the first character in the string. Some compilers pass the
variable data on the stack while others pass either offsets (2
byte pointers) or both segments and offsets (4 byte pointers).
The variations are endless and can become confusing to over come
in a multi-language environment. The DOS resident driver
extension software provides the basic tools to link to all types
of compilers while maintaining full command string similarity.
Thisallows easy upgrades in the event the compiler manufacturers
change the assembly language link requirements to the compiler.

The ROM interpreter has five entry points and two coded return
points for reseting the variables on the STACK before returning
with a FAR RET instruction. The following is a description of the
interpreter entrance requirements.

The entrance offsets are:

1: FULL STRING DESCRIPTER 2 BYTE POINTERS CDS = DATA SEGMENT)
DOS RESIDENT DRIVER EXTENSION NOT REQUIRED
ASSEMBLY LANGUAGE PREFERRED LINK ENTRY

ROHSEG:OOOOH --- BASIC INTERPRETER (3 byte string desc.)
ROISE6:0002H --- BASIC COMPILER (4 byte string desc.)

2: NO STRING DESCRIPTER 4 BYTE VARIABLE POINTERS
Crequi'res DOS resident driver extension)
LIBRARY FILE -- IE488LR6.LIB

ROMSEG:0006H --- LARGE MODEL CSEG:OFF variable pointers)

3: NO STRING DESCRIPTER 2 BYTE VARIABLE POINTERS
(requires DOS resident driver extension)
LIBRARY FILE -- IE488SML.LIB

ROWEG:OOOAH --- SMALL MODEL (OFFSET variable pointers)
DS = data segment for all variables

4: SPECIAL CASE ENTRANCE FOR ADVANCED PROGRAMMERS

CHDLINE --- USER SOFTWARE LOADS COMMANDS STRING
AND DATA/FLAG SEGMENTS THEN EXECUTES.

page 4

3.0 ENTRANCE REQUIREMENTS FOR ALL HIGH LEVEL LANGUAGES

ROM/RAM MEHORY HAP

The following is a memory layout of the 16 K byte IE488
interpreter. The GPIB Interpreter contains 12K byte of ROM and 4K
bytes of static ram. Entry points 0006 8 OOOA requirethe DOS
resident driver extension. Entry points 0000,0002,0074 are fully
implemented in the ROM interpreter and do not require the DOS
driver extension.

GPIB IEEE488 16 K BYTE INTERPRETER MAP

HEX ADDRESS

ROMSEG:OOOO

ROMSEG:0002

ROMSEG:0006

ROMSEG:OOOA

ROMSEG:0074

ROMSEG:3000

ROMSEG:3800

ROMSEG:3FFF

3 byte string descripter entrance point

4 byte string descripter entrance point

No string desc. (4 byte variable pointers)

No string desc. (2 byte variable pointers)

command line interpreter entry point
vseg:voff, fseg:foff variables set

advanced programming entry point

Cl2 K ROM interpreter)

------__-___ RAM BUFFER BEGINS _________-__-_

INTERNAL RAM BUFFERS FOR INTERPRETER
2 Kbytes

TCH PAD USER RAM AREA FOR SCRA
2048 bytes

NOT USED BY INTERPRETER
.--------- END OF RAM BUFFERS ---------------

ROUSE6 = is the switch address the user selected at
installation.This is on a 16K boundary anywhere in the 1 Megbyte
address space.

page 5

3.0 ENTRANCE REQUIREMENTS FOR ALL HIGH LEVEL LANGUAGES

3.1 ENTRANCE REPUIREHE~NTS FOR RO~SEG:0000H HIGH LEVEL LANGUAGES

Thisentry.point requires the use of a full string descripter
of the three byte type. The first byte will contain the byte
count and the next two bytes contain the offset into the DS data
segment of the first character in the string. The FLAG and
BASE-ADDR variables are always 2 byte integers and are pointed to
by the offset pushed on the stack. The last variable is the DATA
VARIABLE which~ may be string or integer. If the VARIABLE is a
string then the offset into the DS segment will point to the
three byte string descripter. The first variable COMMAND is
always a string and is decoded that way. The command string wi 11
contain a character which will define the VARIABLE type when
interpreted, (see COMMANDS in the IE488 manual chapter 4.0). The
BASIC Interpreter uses this entry point uhen a CALL IE488Cvar...)
is executed.

ASSEMBLY LANGUAGE LINK

TheIE488 interface card also allows the user to use all the user
commands as described in section 4.0 (USER COMMANDS) using the
same parameter passing conventions as the BASIC Interpreter. The
user should be familiar with the 8086/8088 assembly language
format before attempting to utilize this function. The user will
initiate a FAR CALL to the ROM (the address of the switch
settings selected for the ROM segment on the IE488). The Stack is
used to transfer all variable pointers and data. The DS register
is the data segment pointer for the variable. The segment wi 11
be the same value as the switch setting on the IE488 interface
board. The user should save any register contents which he does
not want destroyed. The interface to the ROM Interpreter has two
entry points, the first starting at the ROM-SEG:OOOO and the
second at ROM SEG:0002. The main difference between the two is
the way in whi<h the string variables are interpreted. The first
entry at ROM SEG:OOOO expects the string descripter to be three
bytes. This Timits the string length to 255 bytes. The second
entry point at ROM SEG:0002 expects the string descripter to be
four bytes long, t?ius allowing a maximum of 32767 bytes for a
string length (15 bits). The example fo~llowing uses the first
entry and sets up the string descripter accordingly. The second
entry point is primarily used for the IBM Basic Compiler link
which uses a four byte string descripter. The interpreter assumes
that DS is the only data segment for the variables passed to it
and a correct DS should be insured before entry to the
Interpreter.

There is also available an assembly language macro library for
the IEEE488 interface board which allows the use of MACRO's
similar to the Basic CALL statement for all the commands. This
IEEE488 MACRO library allows the user to link to assembly
language with the same format as the command string.

3.0 ENTRANCE REQUIREMENTS FOR ALL HIGH LEVEL LANGUAGES

EXAMPLE:

DATA SEGMENT DATA
~;------------------------ BOARD CONTROL DATA -------------------

IE488 ROM-SEG DD OCOOOOOOOH ; COOO:OOOO pointer to ROMS -

RTN FLAG DW 0000 ;return flag code variable
BASK ADDRESS DW 0000 ;board number 0 (first board) -

.------------------------ , COMMAND STRING _-------____-_-_____--

I string descripter same as the Basic Interpreter

CMD STRING DB ‘OUTPUT 11,12,14C$,2,151' -

CMD-DESCRP DB $- CMD STRING ;Byte count
DW CMD STRTNG -

;--------------- STRING DESCRIPTER / DATA ARRAY _____-----------

; string descripter same as the Basic Interpreter

DATA ARRAY DE 'THIS ISTHEDATATOTRANSFER',10,12 -

DATA DESCRP DB S- DATA ARRAY ;byte count -
DW DATA ARRSiY ;pointer to data -

;------------------- VARIABLE POINTERS FOR COMMAND -------------

VARIABLE 1 DW OFFSET CMD DESCRPT 'command
VARIABLE-2 DW OFFSET STRTNG DATA 'data string
VARIABLE-3 DW OFFSET RTN FLsiG 'return flags
VARIABLE14 DW OFFSET BASSADDRESS 'board number

DATA ENDS

;-..-------------'-- SETUP STACK AND EXECUTE COMMAND ------------

IE488 PROC NEAR

MOV SI,OFFSET VARIABLE 1 ;get pointers -
PUSH CSII ;stack command
PUSH CSIt21 ;stack variable
PUSH CSIt41 ;stack flag
PUSH CSIt61 ;stack base address
CALL DWORD PTR IE488-ROM-SEG ;call device driver

RETURN: CMP RTN FLAG,00 *any errors on return ? I
JNE ERRoR HANDLER ;exit to error handler

. . . . continue users program

IE488 ENDP

page 7

3.0 ENTRANCE REQUIRERENTS FOR ALL HIGH LEVEL LANGUAGES

The stack FRAME or STRUCTURE at the ROM, entry point is
shown. This structure must not be changed in any way. The data
segment for all pointers is assumed to be the DS segment
register. This register must be set before the CALL FAR to the
rom segment.

STACK FRAME STRUC -

BASE ADDR ESS DD ;base' addrew pointer
RTN FLAG DW ;flag return pointer
STRTNG DATA DW ;variable pointer
CMD-DEFCRPT DW ;command variable pointer

STACK-FRAME ENDS

The resident DOS interpreter assumes a Segment and offset for
each variable passed in the CALL statement.

page 8

3.0 ENTRANCE REQUIREMENTS FOR ALL HIGH LEVEL LANGUAGES

3.2 ENTRANCE REQUIREMENTS FOR ROWSEG:0006H HI6H LEVEL LANGUAGES

This entrance is used uith the DOS resident driver expansion
and must be installed to function. If the DOS expansion is not
installed an error message will be displayed on the screen and
the system will halt.

This entrance assumes the pointers on the stack are four
byte type SEGMENT:OFFSET pointers. If strings are used the
variable pointers point to the first character in the string. All
strings are enclosed in quotatidn marks, ("thi.$-is a string").
Fortran uses apostrophe marks f'...') to d~lefine a string,
therefore to define a string the user would enclose the quotation
marks in apostrophe marks, ('"this is a string"'). This allows
variable string lengths of up to 64k bytes in size. The DMA
vectors allow string transfer sizes up to 64k bytes also. Since
Fortran only allous 127 byte string length, the user may use an
integer array and convert it at a later date, this technique is
allowed by the interpreter. All output commands using string
variables must use the enclosed quotation technique else an error
message uill be generated. No string descripter is used for
this entrance. This entrance is considered a LARGE model library
and has the file name IE488LRG.LIB. This is the link the FORTRAN
compiler uses to connect to FORTRAN (Microsoft ver 3.2). The
Large C compiler ver3.0 may be configured to handle this type of
string and stack format easily.

THE INTERPRETER IS EXPECTING THE STACK TO HE SET AS FOLLOWS WITH
NO DEVIATIONS.

GPIB-FRAME STRUC

BASE ADDR ESS DD ;base address
RTN FLAG

pointer
DD ;flag return pointer

STRTNG DATA DD ;variable pointer
CflD DEsCRPT DD ;command variable pointer -

GPIB-FRAME ENDS

All string variables are handled in the same manor. The VARIABLE
string pointer will point to the first character of the string,
and the string will be enclosed in quotes ("..."I. The maximum
length for output is 127 bytes maximum.

This method was designed to accommodate the different compilers
which do not pass string descripter pointers to assembly language
subroutines such as the Fortran Compiler.

page 9

3.0 ENTRANCE REQUIRERENTS FOR ALL HIGH LEVEL LANGUAGES

3.3 ENTRANCE REQUIRERENTS FOR ROISEG:OOOAH HIGH LEVEL LANGUAGES

.This entry point is similar to the previous ROMSEG:0006H
except the variable pointers on the stack are tuo byte offsets
which pointto the variables passed in the call statement. The
segment is assumed to be the DS segment register. This is
considered a small model linker which allows only one data
segment and one code segment. ALL string variables are handled in
the same manner as the LARGE model entry point.

THE INTERPRETER IS EXPECTING THE STACK TO HE SET AS FOLLOWS WITH
NO DEVIATIONS.

GPIB-FRAME STRUC

BASE ADDRESS DD
RTN FTAG

;base address pointer
DY ;flag return pointer

STRTNG DATA DY ;variable pointer
CMD-DESCRPT DY ;command variable pointer

GPIB-FRAME ENDS

ALL string variables are handled in the same manner. The VARIABLE
string pointer will point to the first character of the string,
and the string will be enclosed in quotes t"..."). The maximum
length for output is 127 bytes maximum.

The DOS resident driver expansion must be installed for this link
to function properly. An error message ui 11 be displayed and the
system will halt if entry is attempted with no DOS driver.

page IO

3.0 ENTRANCE REQUIRERENTS FOR ALL HIGH LEVEL LANGUAGES

3.4 ENTRANCE REQUIREMENTS FOR ROMSEG:0074H HIGH LEVEL LANGUAGES

This entry point requires some advanced programming
experience to use. It is the command line interpre~ter parse
section. The ROM interpreter consists of three partitions, the
Command Line Interpreter, The Command Line device builder, and
the command execution module. These three modules are very
independent functioning modules which share a common variable
array of RAM memory starting at offset 3UOOh and ending at 37FFh.
The RAM stores the initial command string transmitted by the
compiler and the four byte variable pointers to the data
VARIABLE and the four byte pointer to the return FLAG variable.
The board BASE ADDRESS is decoded and stored as a word in the RAM
buffer. If the above links are not suitable for the current
compiler being used, users may write their own. The user is
required to complete three section of code:-

1. store the command string in the interpreter's
command string buffer and add the ll*w character at
the end of the string.

2. set the data VARIABLE's segment and offset pointers
in the RAM buffer.

3. set a group of interpreter flags to identify the
return type from the interpreter and insure the
return address Csegment:offset) is on the stack.

Once the above has been completed the user may enter the
interpreter and execute the specified command. A list of the
pointer offsets of the RAM are specified for custom applications.

IE488 INTERPRETER RAM BUFFER POINTERS

VARIABLE OFFSET DESCRIPTION
NAME HEX

RAMPTR
BASADR
CMPLR
FLGSEG
FLGOFF
VAROFF
VARSEG
TPASC
IEEBSY
CMDSTR

3000
3ooc
300A
300E
3010
3012
3014
30A2
30AE
30D8

;First buffer location
;base address or board #
.compiler type flag ,
;FLAG variable segment pointer
'FLAG variable offset pointer ,
*data I VARIABLE offset pointer
;data VARIABLE segment pointer
;type of PASCAL compiler
;interpreter busy flag
;interpreter command string pointer

ROMENTRY DD OXXXX0074H ; entry point for ROM
;xxxx = THE SELECTED ROM SEGMENT

The following example uses this technique to intercept the ROM
interpreter and initialize the ROM interpreter for string
variables where the first character in the string is the byte
count. This is typical of programs like PASCAL and TURBO

page 11

3.0 ENTRANCE REPUIREHENTS FOR ALL HIGH LEVEL LANGUAGES

PASCAL(l). Due to the unique external call procedure that Turbo
Pascal uses this~ would be a good example of the advanced level
i:nte~rface.

There are tuo constraints the external procedure in Turbo Pascal
hasto over come. The first is the relative position of the IP
register for the procedure which leads to the second. All
references to variables in the external procedure must be with
the DS register or the Stack. This is due to the SEGMENT
technique used by the 8086/88/286 type processor series. The
problem is to get the IP register contents at the entry point of
the external procedure. Since the IP register cannot be pushed on
the stack and any near call is absolute IP this can create a
problem. The GPIBDVR.COM resident DOS driver has a program to
return the CS:IP registers to the user upon request. This is
accomplished by loading the AX register with 8iFl hex and issuing

an interrupt to where the GPIGDVR driver was loaded. In this
example it was assumed loaded at OF1 hex. This interrupt function
Will return the CS:IP register in DX:DI of the next instruction
to be executed. This utility may be used by any program to
obtain the CS:IP registers. All variables internal to the
procedure will be referenced as CDIl+variable.

page 12

3.0 ENTRANCE REQUIREMENTS FOR ALL HIGH LEVEL LANGUAGES

PAGE 58,132
TITLE ** IEEE-488 TURBO PASCAL MODEL ~LIBRARY (STRNG LENGTH) **
SUBTTL - --;------ GENERAL DESCRIPTION ------------~ -

COMMBNT \

This driver library is designed for any compiler which
uses a FOUR byte pointer on the stack. The library wi 11 use
string descripter to get the byte count and point to the first
character of the string. The variable pointer wi 11 point to the
stringy descripter. The first byte of the string descripter wi 11
contain the string byte count and bytes 2 and 3 wi 11 point to
the first character of the string to be processed.

The library links to the ROM's via a FAR JUMP to ROMSEG:0002
hex. The ROM segment may be changed by the user, however it is
set at OCOOO:OOOO hex by default. The program CHGVEC.EXE wi 11
allow the user to change the segment if required.

The library link sets up the stack to look like a basic
interpreter and runs accordingly. This means making one pass
through the command string to see if the variable is a string,
and if yes then set up a string descripter.

CALL SEQUENCE:

type
CMD = string C1271;
DAX = string 1501;
FLG =Integer;
BAD = Integer;

var
C:COMMAND = 'OUTPUT 12CSl'
F:FLG = 0
B:BAD = 0
V:VAX ='

begin

IE488cvar C:CMD,var V:VAX,var F:FLG,var B:BAD);external IE488.COM

end
If the DOS resident driver is not installed then an error

message will be displayed and the program will halt.

The compilers this model will work with are:

TURBO PASCAL Ver 2.0 and higher

e.c.\

page 13

3.0 ENTRANCE REPUIREUENTS FOR ALL HIGH LEVEL LANGUAGES

PAGE
SUBTTL * LINK SEGMENT INITIAL
SUBTTL

ZATION FOR SMALL MODEL *

;------------ STACK VARIABLE DATA STRUCTURE -_____________

FRAME STRUC

SAVEBP DW ? ;BP register
RETURN ADDRESS DW ? ;return address pointer
BRDADDF DD ? ;board address pointer
FLAG DD ? ;flag variable pointer
VARIABLE DD ? ;data variable pointer
COMMAND DD ? ;command string pointer

FRAME ENDS

.--------------- SEGMENT IDENTIFIERS , ---------------------

DATA SEGMENT PUBLIC 'DATA'
DATA ENDS

IE488TUR SEGMENT BYTE 'CODE'
DGROUP GROUP DATA

ASSUME CS:IE488TUR, DS:DGROUP, ES:DGROUP, SS:DGROUP

;-------------------------'-------------------------------------

PAGE
SUBTTL **** MAIN TURBO PASCAL LINK CODE ****
SUBTTL

IE488 PROC NEAR

MOV AX,81FlH
I'NT

;get IP in DI
OFIH ;get this IP group

JMP CONECT ;execute group

.----- VARIABLE DATA POINTERS AND IDENTIFIERS -_------_-_-- I

RAMPTR EQU
TPASC EQU
CMPLR EQU
IEEBSY EQU
CMDSTR EQU
ERFLG EQU
ERSEG EQU
VAROFF EQU
VARSEG EQU

3000H
30A2H
300AH
30AEH
30D8H
3010H
300EH
3012H
3014H

;Interpreter ram pointer
;pascal compiler code pointer
;reset compiler flag
;ROM busy flag
;command string pointer
;error flag offset pointer
-error flag segment pointer
lvariable offset pointer
;data segment pointer

page 14

3.0 ENTRANCE REPUIREUENTS FOR ALL HIGH LEVEL LANGUAGES

BASADR EQU 300CH ;base address of board

;---------- ROM INTERPRETER SEGMENT:OFFSET ------_-_______

PTRCOD DB 'ROMSEGS' ;rom segment ID

ROMOFF DW 0074H 'ram segment pointer ,
ROMSEG DW OCOOOH

VARPTR DB OOH ;variable string count
DW STGBUF ;variable pointer offset

STGBUF DB IOOH DUP(0) ;string buffer for Pascal

TPSTRG DW OOOOH ;pascal string flag

;---

CONECT: PUSH
MOV
PUSH
SUB
PUSH
MOV
MOV
MOV
CMP
JE
LES
MOV
MOV
POP
POP
POP
RET

GPIBOK: LDS
SUB
MOV
PUSH
INC
MOV
MOV
MOV
MOV
INC
CLD

REP MOVS
MOV
POP
LES

LPX: CMP
JE
INC

BP
BP,SP
DS
DI,0005H
DI
BX,CS:ROMSEGCDIl
ES,BX
DI,IEEBSY
ES:WORD PTRCDIl,OOOOH
GPIBOK
GX,CBPl+FLAG
AX,0060H
ES:WORD PTRCBXl,AX
DI
DS
BP
16

SI,CBPl+COMMAND
cx,cx
CL,DS:BYTE PTRCBXI
cx
SI
BX,CS:ROMSEGCDIl
ES,BX
DI,CMDSTRCDIl
ES:BYTE PTRCDIl,CL
DI

*save BP register I

;point to the variables

;adjustment for IP
;save for later
;get pointer
;point to ROM's
;busy flag
;are we busy ?
;a11 ok
;set flag to busy code
;busy code
-set flag I

; restore ds
;restore bp
;return to caller

;point to command string

;string count
;save it
;point to first byte
;set seg
;get es:di rom segment
;command string pointer
;put in byte count
-point I to first byte
;set count direction

BYTE PTR ES:CDIl,DS:CSIl;move command string
DS:BYTE PTRCDIl,'*' ;term. of command string
cx ;restore byte count
BX,CBPl+COMMAND ;point to command string

ES:BYTE PTRCBXl,'S' ;the variable a string ?
EXTSTR ;exit if match
BX ;bump pointer +I

page 15

3.0 ENTRANCE REPUIREMENTS FOR ALL HIGH LEVEL LANGUAGES

LOOP
POP
PUSH
JMP

EXTSTR: LES
MOV
MOV
MOV
MOV
MOV
MOV
INC
INC
MOV
AND
MOV
MOV

STGLP: MOV
MOV
INC
INC
DEC
JNZ
JMP

VARINT: LES
MOV
MOV
MOV
MOV
MOV

SETFLG: LES
MOV
MOV
MOV
MOV
MOV
LES
MOV
MOV
MOV
MOV
MOV
MOV
MOV

LPX ;more to come
SI ;restore IP
SKI ;save it for later
SHORT VARINT ;integer variable ok

BX,CBPl+VARIABLE ;get data pointer
AX,ES ;can't move direct
DI,VARSEG ;point to data seg ROM
DS:CDIl,AX ;save data segment ptr
DI,OFFSET CS:VARPTRCSIl ;getstring descript ptr
AL,ES:BYTE PTRCBXI ;get byte count
CS:BYTE PTRCDIl,AL ;set string byte count
DI ;point first character
GX ;point first character
CL,AL ;get byte count
CX,OOFFH ;<255 BYTES
DI,OFFSET CS:STGBUFCSII ;initialize buffers

CS:WORD PTR TPSTRGCSIl,Ol ;init. strg flg

AL,ES:BYTE PTRCBXI
CS:BYTE PTR CDIl,AL
BX
DI
cx
STGLP
SHORT SETFLG

BX,CBPl+VARIABLE
AX,ES
DI,VARSEG
DS:CDIl,AX
DI,VAROFF
DS:CDII,BX

BX,CBPl+FLAG
AX,ES
DI,ERFLG
DS:WORD PTRCDI3,BX
DI,ERSEG
DS:WORD PTRCDIl,AX
BX,CBPl+BRDADDR
AX,ES:CGXl
DI,BASADR
DS:WORD PTRCDIl,AX
DI,CMPLR
DS:WORD PTRCDIl,OOOOH
DI,TPASC
DS:WORD PTRCDIl,OOOOH

;get byte
;put in buffer

;bump pointers
;byte count -1
;more to come
;set flag pointers

;get data pointer
;can't move direct
;point data seg in ROM
;save data seg ptr
;pointer offset
;point to data

;get flag pointer
;not allowed direct
;offset
;point to data
;segment pointer
;segment set
;get board address
;get address
;RAM ptr to BASE ADDRESS
;set base address
;reset flags
;compiler flag clear
;pascal flag
;flag clear

;setup dummy stack for ROM interpreter return procedure

PUSH DX ;variable 1
PUSH DX ;variable 2
PUSH DX ;variable 3
PUSH DX ;variable 4

page 16

3.0 ENTRANCE REQUIRERENTS FOR ALL HIGH LEVEL LANGUAGES

PUSH
MOV
PUSH
PUSH
PUSH
PUSH
PUSH
JMP

RXTN: POP
CMP
JE
LES
MOV
MOV
MOV
INC

RTNLP: MOV
MOV
INC
INC
DEC
JNZ

TBRTN: POP
POP
RET

TBRTN: POP
POP
RET

IE488
IE488TUR

cs
BX
BX

,OFFSET RXTNCSII

BP
ES
ss
DS
DWORD PTR ROMOFFCSII

SI
CS:TPSTRGCSIl,OO
TBRTN
BX,CBPl+VARIABLE
DI,OFFSET CS:VARPTRCSIl
CL,CS:BYTE PTRCDII
DI,OFFSET CS:STGBUFCSIl
BX

AL.CS:BYTE PTRCDII
ESIBYTE PTRCBXl,AL
GX
DI
cx
RTNLP

DS
BP
16

DS
BP
16

ENDP
ENDS
END

;return pointer
;CS:IP return on stack
;simulates ROM stack
;pointers

,

;execute

;restore IP offset
;is it a string =I
;return to user
;get variable
;get pointer
;byte count
;buffer
-initialize pointer ,

;get byte
;put it in PASCAL BUFFER

;bump pointers
;more to come ?

;yes

;return to caller

;return to caller

;pop variables
;restore BP
;return to caller

page 17

4.0 LIBRARY OVERVIEW

The disk is shipped with several files on it. The .main file
GPIBDVR.COM is t he DOS resident driver. The ~file-CHGVEC.EXE is
for changing the vector to call the library. The remaining f~iles
have the extensi on .LIB which are the individual library files
for the specifi ed compiler. All the .LIB files begin with
IE488xxx.LIB where xxx is the three letter code for the
particular compiler.

LIBRARY FILE NAME: IE488xxx.LIB

where: xxx is the library identifier

FOR -- FORTRAN Microsoft version 3.2
TBP -- TURBO PASCAL version 2.0/3.0 (IE488TUR.COM)
SML -- SMALL MODEL COMPILER ENTRANCE
LRG -- LARGE MODEL COMPILER ENTRANCE
BAS -- BASICA COMPILER Microsoft version l.xx12.x~

The commands included in the library are shown in the table
below and are explained in the following sections.

ABORT
CLEAR
CONFIG
ENTER
EOI
LOCAL
LOCKOUT
OUTPUT
PARPOL
PASCTL
PPCONF
PPUNCF
REMOTE
REQUEST
RXCTL
STATUS
SYSCON
TIMEOUT
TRIGGER
ITEST
PRINT/h

devl, dev2, -... devN
TALK=devl/MTA, LISTEN=devZ, dev3,...,(MLA)
dev.secad Cimagel
devtimagel
devl, dev2, . . . devN
devl, dev2, . . . devN
devl, dev2, . . . devN Cimagel

dev
dev
dev
devl, dev2, devN
(I)

dev.secad
MAD=dev,CIC=0/l/2/3,NOB=l/2,BAO=EHddd,BAl=8Hddd

devl, devt, devN
(var, #NUM)
(var, Nob)

page 18

4.0 LIBRARY OVERVIEY

All modes of operation are determined by an ASCII STRING
in a command (COMMAND or CMD) referenced within a CALL statement.
The variable is declared a CHARACTER COMMAND*127 at the beginning:
of the program. All non character variables are INTEGER*2 type
and must be declared as such. The CALL statement format is:

CALL IE488 (COllf4AND, var, FLAG, BASADR 1

or if used as a FUNCTION:
if IE488 (COMMAND, var. FLAG, BASADR 1 then goto ERRORS

where:

COWAND - is the COMMAND including device addresses or
secondary commands and C image terminators I. This
is always a STRING and is decoded by the Command Line
Interpreter in the IE-488 library. The COMMAND is
separated from the operands (devices etc.) by one or
more SPACES, any other delimiters wi 11 cause a SYNTAX
error in command line. The separator for devices is
alwaysthe comma "," and secondary address is always
a period "." . The IMAGE string isidentified by
brackets "Cl". The Command Line Interpreter is
relatively tolerant of syntax error identification
and wi 11 send back the appropriate error code to
isolate the error. The format is:-

CMD = “‘COMMAND devl, dev2,devn timage]“’

The [image1 specifier allows the user to specify the
variable field operations for the beginning and end
of the data transfer variable. The variable may be a
variable name, array identifier, numeric data value
or a string. The user must match the image to the
data type or an error will be generated in the data
transfer. No check is made in the match of the image
to the variable type, this is the responsibility of
the user. The Cimagel codings are explained in
section 3.1 (IMAGE SPECIFIERS).

var ------ isthe data variable OUTPUT/INPUT to be transferred
f romlto. Datais transferred as specified by the
image terminator/specifier. If the image specifier
isnot used the data is treated as anINTEGER*2. The
data may be of String or Integer type.

FLAG ---- is the transfer status of the CALL statement. If an
error occurs FLAG wi 11 contain a HEX number
representing the error condition. A set of error and
transfer message codes are generated at the
completion of each CALL. Type is INTEGER*2 only.

BASADR -- is the address of the interface board being used.
BASADRX may be 0 or 1, or actual base address e.g. 768.
The type is INTEGER*2 only.

page 19

4.0 LIBRARY OVERVIEW

4.1 IMAGE SPECIFIER

The main reason for the IMAGE specifier is to allow the ROM
interpreter to identify the DATA type of VARIABLE in the CALL
statement. It is the users responsibility to insure that strings
and integer data types are declared in the image specifier. The
IMAGE specifier will also condition the data with odd/even or no
parity if the variable is a string, or allow transfer to the high
or low byte of an integer variable, or sequential bytes if the
variable is a 16 bit word. Also the user may transfer a portion
of the variable by selecting the starting and ending limits. The
Interpreter will check the starting and ending limits of all
VARIABLE strings and return the appropriate error code if the
limits are exceeded. The Interpreter will use the IMAGE specifier
to identify the VARIABLE data type and transfer the data. It is
the programmers responsibility to insure the data types match the
IMAGE specifier. The IMAGE specifier also determines the data
transfer type either program control or DMA transfer. The
following are the codes for the IMAGE specifier.

CS(p)<x),a,r~ - Input/Output the number of Bytes to/from the
variable string starting at position m and
ending at position z, with parity p (E=even,
O=odd, none). If m, z and p are omitted the
entire string will be output as in the string
variable.% as specified by the image terminator
(x) without parity. If no terminator is used
then the string will end with EOI.

CB<H/L)<x),m,rl- Input/Output the specified H/L number of Bytes
to or from the the specified integer variable
array starting at (m) array location and ending
at the (z) position. The data transferred will
not change the the other half of the 16 bit
integer, only the byte specified is changed on
an ENTER command. There is no change to the data
with the OUTPUT command. CGL#,2,107 wi 11
transfer the low byte of ,position 2 thru
position IO of the integer variable array. Note,
the number of bytes transferred is nine,
position two and ten are included'. Transfer
termination is specified by the image
terminator. It is the user's responsibility to
insure that the array size and the type of array
are correct. No check is made on data types. The
values of m and x may be reversed which will
transfer data in the reverse order. If m and z
arethe same then only one word is transferred.
If m and z are omittedthenthe integer variable
is not considered an array and the variable is
transferred with or without an EOI depending on
the image terminator (x).

page 20

4.0 LIBRARY OVERVIEW

CU(x),m,zl - Input / Output the specified number of 16 bit
w~ords to / from the specified integer variable
(array) starting with position Cm) and ending
with position (2). The number of words
transferred is defined as Cz - m + I).
Termination is specified by the image
terminator. It is the user's responsibility to
insure that the array size and type of array are
correct. No check is made on data types. The
values of m and z may be reversed which will
transfer data in the reverse order. If m and z
are the same then only one word istransferred.
Ifm and z are omitted then the integer variable
is not considered an array and the variable is
transferredwith or without an EOI depending on
the image terminator (x1.

page 21

4.0 LIBRARY OVERVIEY

4.2 IMAGES TERMINATORS

X(t) The X image terminator cancels both the
carriage return, line feed and EOI terminators
during an OUTPUT command execution. During an
INPUT command the entry will terminate when the
array size or the input count is reached Cm +
count = z) or EOI.

#(t)

+tt>

(t)

The # image terminator ends the data output with
an EOI only. No carriage return or tine feed is
inserted at the end of the data output transfer.
The data is terminated by an EOI during the INPUT
or OUTPUT command. The ENTER also terminates if
the last item in data list is entered which sets
the FLAG% variable with an error code of &H0020.

The + image terminator adds a carriage return,
tine feed and EOI during an OUTPUT command only.
The INPUT command is in the default mode (INPUT
terminates with EOI or last entry). If carriage
return and line feed are part of the data being
transferred they will be sent as normal data.

No image terminator code defaults to an EOI only
at the last byte to be transferred. The operation
is the same as the # terminator.

The transfer terminator t determines the type
of transfer the GPIB is to perform. The following
transfer codes are available. If this specifier
is not used the data transfer is under program
control.

D = Direct Memory Access (DMA) to the specified
array. The m and a specifiers must be used
with this type of transfer. Structure
programming must be used when this mode is
active. All variables must be assigned before
the CALL is executed and no new variables are
allowed to be introduced after the execution
of the CALL statement.See APPENDIX A for
details on DMA transfers.

page 22

4.0 LIBRARY OVERVIEW

4.3 FLAG RETURN CODES

The following codes are returned in the FLAG% variable
upon completion of the CALL statement. The flag return codes are
grouped into,3 categories.

DECIMAL HEX DESCRIPTION

00000 #OOOO = TRANSFERRED OK
00032 #0020 = NO INPUT EOI or LINE FEED
00048 #0030 = DEVICE TIME OUT
00064 -#0040 = RESERVED
00080 #0050 = DMA CHANNEL BUSY
00096 #0060 = GPIB BUSY

*ttt*t************** HARDWARE **t******************

DECIMAL HEX DESCRIPTION

00256 #OlOO = HARDWARE FAILURE
00512 #0200 = TIME OUT ON DATA TRANSFER
00768 #0300 = DEVICE NOT ACTIVE CONTROLLER
01024 tfo400 = IBM-PC ACTIVE CONTROLLER
01280 #OS00 = SYSTEM NOT INITIALIZED
01536 #0600 = CONFIGURATION ERROR

*****t*t*********t* FORMAT l *****t***************

DECIMAL HEX DESCRIPTION

04096 #IO00 = UNDEFINED COMMAND
04352 #I100 = SYNTAX ERROR IN COMMAND LINE
08192 #2000 = UNDEFINED IMAGE
12288 #3000 = DEVICE RANGE ERROR
12544 #3100 = TOO MANY DEVICES
12880 #3200 = TALKER/LISTENER CONFLICT
16384 #4000 = COMMAND/DATA OUT OF RANGE
20480 #SO00 = COMMAND REQUIRES DEVICE
24576 #6000 = UNDEFINED DEVICE CODE
28672 #7000 = INPUT ARRAY NOT INITIALIZED

-28672 #9000 = IBM MUST BE TALKER or LISTENER

page 23

4.0 LIBRARY OVERVIEW

4.4 USER COWANDS

The following set of commands explain the use of the FORTRAN
driver only in the applications. The use of other compilers will
only change the CALL sequence to a specified PROCEDURE and
type/var pseudo operators to call the device.

The following user commands are available. The string
variable COMMAND is the same string format as described in the
Fortran manual. All command strings must end enclosed in quotes
(II ") typical command string would be as fo~llows. l?lease note
that all commands must be assigned in string form before using
the CALL statement. The single quotes define a string in Fortran
while the double quotes mark the begining and end of the string
for the resident interpreter. Since Fortran does not pass the
byte count of the string to the subroutine this method was
incorporated.

COMMAND= "'OUTPUT 03.13.20,05CWD#,2,201"'

This command string would output integer words (16 bit) two thru
and including word 20 to device primary address 03 with secondary
addresses 13 and 20 and also to device primary address 05. The
data transfer uses the DMA mode for fast access. The device
codes must be in decimal within the range of 00 to 30. This
allows the user a maximum of 31 device addresses to choose from.
However the maximum number of devices which may physically be
connected to the bus is 15.

The transfer of String data is limited to single element arrays
and must be initialized. The Maximum string size is 127 bytes as
defined inthis Users manual.

page 24

4.0 LIBRARY OVERVIEY

ABORT - Terminate the current command issued by the IBM. The
command executes an IFC and resets the IBM board
addressed. DMA and Interrupts are disabled. The
IBM-PC is assumed to be the main system controller
and unconditionally takes control of the bus and
remains the controller in charge until PASCTL
command is executedHo device is necessary.

COMMAND$ FORMAT:

“ABORT”

EXAMPLE:

CALL IE488 ('"ABORT"', VAR, FLG, BRD) 'execute command
IFCFLG .EQ. 0) GOT0 100 'test for errors ?
WRITEC*,C\C 'ERROR IN ABORT'))) FLG
STOP
END

100 user program continues

CLEAR - Clear or Reset the selected devices or all devices. If
no device is given the GPIB is cleared. The IBM PC
must be the active controller or an error message wilt
be generated.

COMMANDS FORMAT:

“CLEAR devl ,dev2 ,..-.-. devN”

EXAMPLE:

CALL IE488 ("'CLEAR 10,12,14.22"', VAR, FLG, BRD)

CONFIG - Configure the GPIB to the devices specified in the
command string. The GPIB will remain in this state
until reconfigured by issuing an ENTER or OUTPUT
command. The VAR variable is not changed in this
command. If the TALK = devl is omitted the IBM-PC is

assumed to be the controller only. The user may enter
MTA to make the IBM-PC the talker or enter the actual
device number using the TALK variable name. The IBM-PC
may be addressed as a listener by using the name MLA
as the last device in the COMMAND string. The FLAG
variable will contain the error code if any conflicts
occur.

COMMAND FORMAT:

“CONFIG (TALK=devl /ITA,)LISTEN=dev2,dev3,..,(nLA)”

page 25

4.0 LIBRARY OVERVIEW

EN~TER - Input GPIB data from selected talker to specified
string array. The string array must have been
previously dimensioned. The FLAG vi 11 contain error
codes if an error occurs. The IBM - PC must have
been previously programmed as a listener.If the IBM -
PC is not the controller then the ENTER comman~d will
return error code 9000H to inform the caller that the
IBM is not in the listen mode. The command may be
re-entered unti 1 the controller in charge programs
the IBM to listen. Only one device is allowed with
this cornman&.

COMMAND FORMAT:

"ENTER dev.secad Cimage3”

CALL IE488 ("'ENTER 12.05CSl"', DVM, FLG, BRD)

EOI - Sends a data byte on the selected device with EOI
asserted. The bus must have been programmed to talk
before the command is executed. The variable contains
the data to be transferred. It is the users
responsibility to insure the data and type match. If a
string variable is used the entire string is
transferred ending with an EOI. If Integer mode is
used only one transfer (byte) or two (word) will be
executed. The limit parameters are ignored. Only one
device is allowed. No device is generally required if
the Talker (IBM-PC) has been previously programmed to
talk by the controller in charge. If the IBM-PC is not
the controller in charge and not programmed as a
talker then an error code &h9000 wit 1 be returned
unti 1 the controller in charge programs th,e IBM-PC as
a talker before data is transferred.

COMMAND FORMAT:

“EOI dev Cimage1"

EXAMPLE:

VAR = "'THIS IS A ""STRING"" WITH QUOTES"'
C 'define last byte to transfer

CMD = "'EOI 12C$l"' 'define command
CALL IE488 CCMD, VAR, FLG, BRD)
IF (FLG .EQ. 0) GOT0 200
WRITE C*Ca\C'ERROR IN LINE 120'))) FLG
STOP
END

200 continue users program

page 26

4.0 LIBRARY OVERVIEW

. . -r

This routine will transfer the STRING in the VAR variable and
issue an EOI command uith then last byte of the STRING to signal
the receiver on the bus that the data transfer will end.

The image specifiers for the removal of the line feeds and
carriage returns are ignored during the command, no parity is
used.

LOCAL - Set selected device(s) to the Local state. If no device
is specified then all devices on the bus are set to
local. The IBM-PC must be the active controller or an
error message wit 1 be generated.

COMMAND FORMAT:

“LOCAL devl ,devZ , . I I I . I devN”

EXAMPLE:

CMD = "'LOCAL 10,11,12,14"' 'define command
120 CALL IE488 (CMD, VAR, FLG, BRDI 'execute command

IF (FLG . EQ. 0 1 GOT0 200 'test for errors
WRITE (*,\('ERROR IN LINE 120'))) FLG
STOP
END

xx200 continue users program

The above program sets devices 10,11,12,14 to the local state and
returns to the user's program. The LOCKOUT command is very
similar in structure to the LOCAL command except the LOCKOUT does
not allow the user to manually select the device to local.

LOCKOUT - Local Lockout the specified device. If no device is
given all devices on the bus will be set to local
lockout. The IBM-PC must be the active controller or
an error message will be generated. The devices cannot
be set to local except by the GPIB controller. The
FLGZ variable contain the error code.

COMMAND FORMAT:

“LOCKOUT devl ,dev2 ,..... devN”

This command is the same as the LOCAL command except the user is
NOT allowed to manually select the device to local.

page 27

4.0 LIBRARY OVERVIEY

OUTPUT - Output selected string to selected listener(s) on
GPIB. The variable xi~ll contain the .data to be
transferred. The image speFifier wil~l contain the data
type and terminators. The FLAG wi 11 contain the error
codes if an error occurs. Up to 14 devices may be
accessed in the list. If the IBM-PC is not the
controller in charge, the IBM-PC must be programmed by
the controller in charge before data is transferred.

COMMAND FORMAT:

"OUTPUT d8vl.secad,dev2...Cimagel"

EXAMPLE:

VAR = "'THIS IS A TEST"' 'define bytes to transfer
CMD = "'OUTPUT 12,11C$E3"' 'define command

120 CALL IE488 (CMD, VAR, FLG, BRD)
IF (FLG .EQ. 0) GOT0 200
WRITE (*(\('ERR~R IN LINE 120'))) FLG
STOP
END

'This command line will output the entire string "THIS IS A TEST"
'with out the quotes using even parity and ending with a EOI code
'to show the end of 'the string. The FLG variable will have any
'error transfer codes 'if an error was detected during transfer.
'All string transfers must be enclosed in ,quotes.

200 continue users program

DIM MYDATA (2,400) 'my integer data array
CMD = "'OUTPUT 12,11CEL,0,1001"' 'setup image

C output data in 2,O from element 0 to 300 low byte only
420 CALL IE488 (CMD, MYDATA(Z,O), FLG, BRD)

IFCFLG .EQ. 0) GOT0 500
WRITE (*(\('ERR~R IN LINE 420'))) FLG
STOP
END

.I continue users program.......
500 'setup for DMA transfer

CMD = "'OUTPUT 12,10,15CWD,0,81921"' 'DECIMAL ONLY

' transfer data in DMA mode

550 CALL IE488 (CMD, MYDATA(Z,O), FLG, BRD)
IF (FLG . EQ. 0) GOT0 600
WRITE (*(\('ERROR IN LINE 550'))) FLG
STOP
END

'If error code in DMA is not EH50 or 0 then issue an ABORT
command to clear interface device.

600 user program continues

page 28

4.0 LIBRARY OVERVIEY

PARPOL - Reads the 8 Status Bit messages for the devices on the
GPIB which have been set for paral let pot 1
configuration. The VAR will contain the 8 bit message.
The IBR-PC must be the active controller or an error
will occur.

COMMAND FORMAT:

“PARPOL”

PROGRAMMING EXAMPLE:

VAR = 0 'Parallel Poll return byte initialized
CMD = "'PARPOL"'

120 CALL IE488 (CMD, VAR, FLG, BRDI
IF (FLG .EQ. 0 1 GOT0 200

'if error , the flag is printed out.

WRITE (*(\('ERROR IN LINE 120'))) FLG
STOP
END

200 'process parallel poll return byte code in character VAR
.
.

This command responds as programmed in the parallel configuration
command. The VAR ui 11 contain the eight bit poll response. See
the Parallel Poll Configure command (PPCONF) for the details of
the bit pattern.

page 29

4.0 LIBRARY OVERVIEY

P ‘ASCTL - The Active control of the GPIB is transferred to the
specified devi-ce address and the IBM-PC becomes the
standard Listener/talker but not controller. The IBM -
PC must be the active controller or an error uilt
occur. The IBM-PC is not allowed to Talk until
programmed by the controller in charge.

COMMAND FORMAT:

“PASCTL dev”

EXAMPLE:

CMD = "'PASCTL 6"'
110 CALL IEE488 (CMD, X, FLG, BRD)

IF (FLG .EQ. 0) ~0~0 200
WRITE (*(\('ERRoR IN LINE 110’))) FLG
STOP
END

200 continue users program

The IBM-PC is inactive at this point and no
controller commands are allowed. To receive control
back the command RXCTL must be used as follows.

CMD = "'RXCTL"' 'define command
VAR = 0 'set VARS to false

330 CALL IE488 (CMD, VAR, FLG, BRD) 'test for control
IF (FLG .EQ. 0 1 GOT0 360
WRITE (*(\('ERROR IN LINE 330'))) FLG
STOP
END

360 user continues program
IF VAR = -1 THEN THE CONTROL IS BACK ELSE NOT IN CONTROL

.

Note: It is the responsibility of the cbntrol ter in charge to
program the IBM-PC to the talk mode before the transfer of
control is executed.

page 30

4.0 LIBRARY OVERVIEW

PPCONF - Sets up the desired parallel poll bus configuration
for the user. The VAR integer contains the pot1
sequence (OO-FF). IBM--PC must be the active controller
oran error uill occur.
COMMAND"FORMAT:

“PPCONF dev”

The PARALLEL POLL function provides a means of sending
one bit of status information if the controller is
requesting the response. Unlike SERIAL POLL, which is
initiated by the device, the parallel poll is
initiated by the controller in charge. There are two
methods to configure a device for paral Let poll,
remote and Local configurations. In remote
configuration (PPI), he controller uses the following
bit codes to configure the device addressed.

msb 1 86 1 85 1 84 1 83 1 B2 1 El 1 tsb

l--;--1--;-1--;-/
I-p;-,-p;-,-p;--

Were Pn = the device bit code 0 to 7 for PPRI to PPR8
and S is the Send of the Parallel Poll Response, S =
response. Adevice may be configured so that it never
responds to a paraltet pot 1. PPD c&H701 is the
parallel poll disable command, which places the device
in the parallet poll idle state (PPISI. The value of
the individual status (ISTI can be set by bit 84 in
the VAR byte.

EXAMPLE:

84 = 0 IST = Parallel Poll Flag
I34 = 1 IST = SRQS

BRD = 0
A = 19 'parallel configure bit code for dev 14
CMD = “‘PPCONF 14”’

140 CALL IE488 (CMD, A, FLG, BRD)
IF (FLG .EQ. 0 1 GOT0 170
WRITE (*(\('ERROR IN LINE 140'))) FLG
STOP
END

170 continue program

In the local configuration (~~21, the specifications
are made from the device. Writing 0 11 IJ S P3 P2 PI to
the VAR configures the controller for a Parallel Poll
Response. When U = 0,this command is the LPE (Local
poll enable) local message. When U = 1, the TLC does
not respond to the poll. The TLC is configured in the
S bit. The PPRn will be sent true only if the Parallel
Poll FLag (IST individual status Coca 1 message)
matches this bit. During normal operation, The value
of VAR on entry wilt set or clear PPF (IST if 84 = 0)
according to the device's need for service.

page 31

4.0 LIBRARY OVERVIEW

PPUNCF - Resets the parallel poll: type configuration of the
selected .device; The IBM-PC must be the active
controller or an error wilt occur. The specified

,,.* device wilt not respond to a parallel poll command.

COMMAND FORMAT:

“PPUNCF dev”

PROGRAMMING EXAMPLE:

RRD =0
A
CMD== '~~;PUNCF 14"'

130 CALL IE488 (CMD, A, FLG, BRD)
IF (FLG .EQ. 0) GOT0 300

1 error is processed here
WRITE (*(\('ERROR IN LINE 130'))> FLG
STOP
END

300 'program continues here if ok
.

.*.................

This routine wit1 only disable device 14 to respond to a Parallel
Poll command. If no device code is used the entire bus is
disabled.

page 32

4.0 LIBRARY OVERVIEU

REMOTE - Sets the selected devices or device one the GPIR
into the remote position.

to go
The IBM must be theactive

controller or an error will occur. If an erroroccurs
the FLAG% ui 11 contain the error code.

COMMAND FORMAT:

"REMOTE devl,devZ,.......devN"

EXAMPLE:

VAR = 0 'dummy variable not used
RRD = 0 'define board number
CMD = "'REMOTE 10,12,14" 'define command

140 CALL IE488 (CMD, VAR, FLG, GRD I
IF CFLG .EQ. 0) GOT0 200
WRITE (*(\('ERRoR IN LINE 140'))) FLG
STOP
END

200 continue users program

This command is the counterpart to the LOCAL command. Devices
10,12,14 are set in the remote state and ready for a command
sequence. The error flag FLGX will contain any error codes if an
error was detected.

page 33

4.0 LIBRARY OVERVIEU

REQUEST - The GPIB may request service from the active
controller on the bus by executing the "REQUEST nw
command. This command has two modes. the first when
"n" is omitted which may be executed any time to
monitor the status of the IBM interface board. The
VAR (INTEGER) contains the status bits for the GPIB
board addressed, CHi Byte 3 = on board hardware
registers, [Lo Byte] contains the IBM GPIB serial poll
register status byte. The second mode when n is any
number (O-31). This allows the user to set a serial
poll status word to the controller in charge. The Low
byte of the variable wi It contain the STATUS byte to
be transferred to the controller.

msb GPIB ON BOARD SERIAL POLL REGISTER tsb
----------------____----------- ____-_-__----------------------

I

15 14 13 12 11 IO 09 08 107 06 05 04 03 02 01 00
_--------------_____----------- -------------------------------

BIT 08 =
BIT 09 =
BIT 10 =

BIT 11 =
BIT 12 =
BIT 13 =
BIT 14 =
BIT 15 =

INTERRUPT ENABLED 1 = on BIT 00 = SO BIT
DMA ENABLED 1 = on BIT 01 = Sl BIT
DNA CHANNEL BIT 02 = S2 BIT
l=chan #I, O=chan #3 BIT 03 = s3 BIT
INTERRUPT vector Level (1) BIT 04 = S4 BIT
INTERRUPT vector Level (2) BIT 05 = s5 BIT
INTERRUPT vector level (4) BIT 06 = rsv on send
srq (CIC=l) PEND bit (CIC=O) PEND on receive
Controller In Charge (CIC) BIT 07 = s7 BIT
1 = yes, 0 = not in charge

EXAMPLE 1: ------- IBM NOT IN CONTROL --------

BRD =0
X = (SERIAL POLL BIT PATTERN)
CMD = "'REQUEST 1"'

130 CALL IE488 (CMD, X, FLG, BRDI
IF (FLG . EQ. 0) GOT0 200
WRITE (*(\C'ERR~R~ IN LINE 130'))) FLG
STOP
END

. process status flag code
200 WRITE (*(\('REQUEST 1 FLAG CODE = '1)) x

page 34

4.0 LIBRARY OVERVIEU

EXAMPLE 2: -------- IBM IS CONTROLLER IN CHARGE ---------

BRD =0
CMD = '"REQUEST"'

130 CALL IE488 (CMD, X, FLG, BRD)
IF (FLG .EQ. 0) GOTO 300
WRITE (*(\('ERROR IN LINE 130'))) FLG
STOP
END

300 WRITE (*(\('REPUEST STATUS CODE = ')I) X

Bit 09 uoutd be used to determine if the DMA data transfer is
complete (0 = off, 1 q on). The user may use the instruction at
any time to monitor the state of the IBM-PC GPIB.

140 IF ITEST(X, #0200) THEN 130 ' this will Loop until the DMA is
' done.

RXCTL - Receive control of the bus.The VAR (integer) is set
true if the IBM regains control of the bus else VAR
is false.

COMMAND FORMAT: rC T-

“RXCTL”

EXAMPLE:

ERD = 0 'define board number
CMD = "'RXCTL"' 'define command

150 CALL IE488 (CMD, VAR, FLG, BRD)

IF (FLG .EQ. 0) GOT0 200
WRITE (*(\('ERROR IN LINE 150'))) FLG
STOP
END

200 . . . continue users program until IBM is controller . . .
IF (VAR .EQ. 0 1 GOT0 150

' the Last instruction before control
300 THIS IS WHERE THE PROGRAM WILL CONTINUE

. WHEN THE IBM RECEIVES CONTROL
. user program continues

.

When control is received the IBM may issue all commands as
outlined. The RXCTL command may be issued at any time to
determine the state of the IEEE488 BUS.

page 35

4.0 LIBRARY OVERVIEY

STATUS - A serial polLed devices status byte is read into the
selectedvariable. The va~riable will contain the
Statusbyte of the device specified as a serial poll.
TheIBM-PC must be the active controller or an error
will occur. Only one device is allowed with one
secondary address. If no device is specified an error
will occur.

COMMAND FORMAT:

“STATUS dev.secad”

EXAMPLE:

I three command sequence for Keithly Model 175 DVM
BRD q 0
A = '"M33)(" I

CMD = "'REMOTE 12"'
DVMEOI = "'EOI lZC$l"'
DVMSTATIJS = "'STATUS 12"'

160 CALL IE488 (CMD, A, FLG, BRD)
IF (FLG .EQ. 0) GOT0 190
WRITE (*(\('ERROR IN LINE 160'))) FLG
STOP
END

C
190 CALL IE488 (DVMEOI, A, FLG, BRD)

IF (FLG .EQ. 0) GOT0 220
WRITE (*(\('ERROR IN LINE 1 90))) FLG
STOP
END

C
C Status command issued here
220 CALL IE488 (DVMSTATUS, X, F

IF (FLG .EQ. 0) GOT0 250
LG, BRD)

WRITE (*C\('ERROR IN LINE 220'))) FLG
STOP
END

C
250 WRITE (*(\(IsTATus BYTE CODE RETURNED 1s = '1)) x

STOP
END

The above routine selects the DVM, sends out Set status info
"M33X" then the status (serial poll) is executed on the device.

page 36

4.0 LIBRARY OVERVIEY

SYSCON - SYStem CONfiguration and initialization of the GPIB.
The user must run this command once before using the
GPIB. IF this is not run first an error uill~be
generated. Base address data BAx is in HEX(&H) or
DECIMAL. The SYSCON command checks for the conflict of
all parameters if tuo boards are used. These are the
BASO, BASI, interrupt vector and DMA channel settings
which must be different. The BRDX and data variable
are not used in this CALL since they have been defined
in the COMMAND string.

COMMAND FORNAT:

“SYSCON ~AD=dev,CIC=~0/1/2/3~,NOB=<1/2~,BAO=&Hddd~,BAl=&Hddd~”

where:
dav = the address of the IBM 00 to 30 decimal
MAD = My (IBM) device address
NOB = number of IE488 boards (1 or 2)
BAO = base address for board 1
BAI = base address for board 2
CIC = controller in charge, O=none, l=brd#l, 2=brd#2,

3=(brd#l and brd#Z) (separate GPIB busses).

EXAMPLE:

CMD = '"SYSCON MAD=3, CIC=l, NOB=l, tlAO=&H300"'
130 CALL IE488 (CMD, A, FLG, BRD)

IF (FLG .EQ. 0) GOTO 200
WRITE (*(\('ERROR IN LINE 130'))) FLG
STOP
END

'The above lines of initialization code should always be placed
'at the beginning of your programs and precede any use of the IE-
‘488.

200 continue users program
.............
.............

page 37

4.0 LIBRARY OVERVIEW

TIllEOUT - Sets the time out duration when transferring data
to/from the devices. The Variable integer VARX is set
to a number from 0000 to 65000. The approximate time
is the VARX * 1.5 seconds for the IBM-PC/AT and VARX *
3.5 for the IBM-PC/XT. No error flag is returned.

COMMAND5 FORMAT:
"TIMEOUT"

EXAMPLE:

100 TIMESET = "TIMEOUT"
110 DURATION% = 10 'approximately 30 seconds for PC
120 CALL IE488X C TIMESET5, DURATION%, FLAG%, BASADRX)
130 ' continue user program time out is set until changed.

TRIGGER - Sends a trigger message to the selected device or a
group of devices. The IBM-PC must be the active
controller or an error will occur.

COMMAND5 FORMAT:

"TRIGGER devl, dev2,......... devN"

EXAMPLE:

xx120 BRDX = 0 'define board number
xx140 CMD5 = "TRIGGER 11,12,15" 'define command
xx150 CALL IE488bCCMD5, VARX, FLG%, 8RD%)

. devices 11,12,13 are triggered at the same time

xx160 IF NOT FLGX THEN 200
xx170 PRINT "ERROR ";HEX$CFLG%);" IN LINE 160" : END

xx200 I . . continue users program

page 38

4.0 LIBRARY OVERVIEW

DATA SUPPORT FUNCTIONS

THESE FUNCTIONS ARE ONLY AVAILABLE FOR THE FORTRAN LIBRARY

The follouing functions were added to the IE488FOR.LIB
library file to allow the user to handle string functions and
string/integer logical functions uith out declaring the variable
as a LOGICAL. The addition of a PRINT(h) (VAR, NOB) function for
outputing integer arrays which are used as string arrays for GPIB

transfer. data

ITEST Cvar, num)
^

This function allows the user to TEST any bit(s) in the
ified "var" byte. The variables are all INTEGER*2 however the
tion only uorks on the INTEGER and returns the integer to the
ified variable. The function performs a logical AND on the
ifiedvariable integer without changing the contents of the

variable. The returned integer is the logical AND of the variable
integer. This allous the user to single out any bit in the
integer for a set/not set condition uithout the declaration of a
LOGICAL type command.

spec
func
spec
spec

EXAMPLE:

C **** SETUP VARIABLES *****
INTEGER*2 VARI, LNUM, ITEST, RTNUM

C
VARI = #13AB
LNUM = #0081
RTNUM =0

RTNUM = ITEST C VARI, LNUM 1
C
C **** FUNCTIONS RETURNS HEX 81 SINCE THESE BITS WERE SE1
C AND THE VARI VALUE REMAINS UNCHANGED.
C

IF C ITESTf VARI, #80) .NE. 0 1 GOT0 100
C
C . . . WILL EXECUTE THIS LINE IF BIT 8 IS NOT
C SET CMSB OF THE BYTE)
C

100 PROGRAM WILL BEGIN HERE IF VARI BIT 8 IS SET

page 39

4.0 LIBRARY OVERVIEY

PRINT(H) (var, Nob 1

ihis subroutine allows.the user to print a variable or array in
hex or ASCII form. The user must define the type of print
desired. PRINT outputs the data in ASCII form as characters in
the range 00 to 255. PRINTH outputs the characters in two byte
HEX format COO to FF). The Nob variable is the number of bytes
transferred to the console. The range is (0000 to 65535).

EXAMPLE:

C ****** SET THE VARIABLES AND DIMENSIONS *****
C

INTEGER*2 ARRAY, NUM, I
CHARACTER ASCIIB*lZO

C
DIMENSION ARRAYC2,lOO)

C
DO 01 I,l,lOO
ARRAYCl,I)

01 CONTINUE
C
C **** ARRAY HAS ASCII CHARACTERS IN IT ***
C

DO 02 I = 1, 100
ARRAY (2,I) = 65+1

02 CONTINUE
C

PRINT CARRAYCZ,l), 100)
C
C *** THIS WILL PRINT THE ARRAY (2,l) FIRST 100 BYTES IN ASCII
C ON THE SCREEN
C

PRINTH CARRAY(l,l), 100)
C
C *** THIS WILL PRINT THE ARRAY (1,l) FIRST 100 BYTES IN HEX
C 2 BYTE FORMAT NO SPACES. CFFADFGHH)
C

STOP
END

page 40

5.0 HIGH LEVEL LANGUAGES

5.0 HIGH LEVEL LANGUAGiS

This section explains how to use the different libraries for
different languages. Not all the languages are covered for this
release, however as the languages evolve the updates will be
available for them. For the latest release and delivery in the
future contact MetraByte Corporation.

Due to the various language differences a library has been
generated for each language. A program has been generated to
change the starting ROM segment of the IE-488 board at which the
library accesses the resident driver. This program is called
CHGVEC.EXE and examples are shown in Chapter 6 of this manual.
All the libraries supplied have a default ROM segment of OCOOO
hex and need not be changed unless a conflict with other third
party software exists.

5.1 FORTRAN LIBRARY

This library is for the Microsoft Fortran compiler version
3.xx and has a library name of IE488FOR.LIB. The Fortran library
includes the functions ITESTCvar, #"urn) as a means of performing
a logical AND function on any type variable and return the
logical AND of the comparison as the return variable. This
function would be used when using the REQUEST function for the
controllers hardware status register (16 bit integer).

To use the Fortran CIE488FOR.LIB) library, just compile the
Fortran source as described in the Fortran users manual. The
compiled Fortran ui 11 produce .OBJ files which must be linked
together to generate an executable file (.EXE).

C>Link <enter>
Microsoft Linker version x.xx etc.

Object modules c.0~~7: fi lespec
Run File Cfilespec.EXEl: <return>
List Map C NUL.MAP 1: <return>
Libraries C .LIB I: IE488FOR <enter>

At this point the file IE488FOR.LIB will automatically be
linked with the Fortran library and include all the necessary
subroutines to generate an executable file Cfilespec.EXE).

C>filespec
this will execute the compiled program.

page 41

5.0 HIGH LEVEL LANGUAGES

.

5.3 TURBO PASCAL (2)

The file named IE488TUR.COM is the Turbo Pascal
compile time rename this file IE488.COM so the Pascal
will knou which external file to link in the code. All
are available to the user. The user should use the var
parameter identifi,er to pass a four byte pointer on the

CALL SEQUENCE:

type
CMD = string C1273;
DAX = string [SO];
FLG = Integer;
BAD = Integer;

var
C:COMMAND = 'OUTPUT 12C$l'
F:FLG = 0
B:BAD = 0
V:VAX = '

begin

IE488Cvar C:CMD,var V:VAX,var F:FLG,var B:BAD);external

end

file. At
compiler

commands
variable

stack.

IE488.COM

The DOS driver extension is not necessary for the TURBO
PASCAL link since the (IE488.COM) program simulates the basic
interpreter link.

The compilers this model will work with are:

TURBO PASCAL Ver 2.0 and higher

page 42

6.0 CHANGING THE ENTRY SEGMENT CCHGVEC.EXEl

6.0 CHANGING THE ENTRY SEGMENT CCHGVEC.EXEl

This section explains the use of the program file CHGVEC.EXE
which allows the-user.to set the library file segment pointers to
where the user set the memory address switches. The IE488 board
is shipped with the SEGMENT switches set a OCOOO:OOOO hex
address. If the user desires a different address then the program
CHGVEC.EXE must be run to change the starting locating. If no
address change is anticipated then this section may be ignored.

The library file must reside in the current directory for
proper operation. The CHGVEC program does not support the PATH
directory function. The user may change the library file name
before starting to eliminate confusion. The procedure following
will suggest a method for easy identification of the library.

EXAMPLE:
Change the starting ROM address from OCOOO hex to OCEOO
hex for the FORTRAN library IE488FOR.LIB.

C>COPY IE488FOR.LIB IE488FCC.LIB

The library duplication for FCC is Fortran Start CC.

C>\utiLity\CHGVEC.EXE
load the change vector from the utility directory
follow the directions the program requests,

IE488.LIB SEGMENT ADDRESS UPDATE PROGRAM

ENTER FILE TO UPDATE Cd:filespec.ext) [DIR for DIRECTORY1 ? DIR
ENTER DRIVE LETTER AS CA,B,C,D,E,F) ? A

IE488FOR.LIB IE488SML.LIB IE488LRG.LIB IE488TUR.COM
CHGVEC .EXE IE488FCC.LIB

ENTERFILETOUPDATE Cd:filespec.ext) CDIRforDIRECTORYl?
A:IE488FCC.LIB

THE CURRENT
DO YOU WISH

SELECT ONE
1 = coo0
2 = c400
3 q cc00 ‘̂

4 = DOOB
5 = D400

SEGMENT IS HEX coo0
TO CHANGE THE SEGMENT (Y/N) ? Y
OF THE FOLLOWING

6 = D800 11 = EC00
7 = DC00
8 = EOOO
9 = E400

IO = E800

PLEASE ENTER THE SELECTION OR 0 TO END ? 3
SEGMENT START ADDRESS NOW CHANGED.
c>

The file is now changed and ready to be linked to your program.

page 43

710 PROGRAMING EXAMPLE3 ‘-

7.0 PROGRANRING. EXAMPLES i ‘~ -d.,d,’

The following examples uses a Kiethly 175 DVM to’collkct data
into a string and display the string on the console. The DVM
address is set to device number 12 decimal.

PROGRAM DVM175

C
C

C
C
C
C
C
C
C

C

Declare variable integer I string types

INTEGER*2 FLG, BRD, IVAR

The character strings for the command string are variable
length and are preassigned at 127 bytes in length. The
user may assign any length as long as the entire string will

fit into the length. ALL command strings begin and end in
QUOTES C".....")

CHARACTER*127 SYSCON, REMOTE, ENTER, SVAR

C Initialize variables
C

BRD = 0
FLG = 0
IVAR = 0
SYSCON = "'SYSCON NAD=3, CIC=l, NOB=l, BAO=&H300"'
REMOTE = "'REMOTE 12"'
ENTl?# = "'ENTER 12C$l"'

C
C Initialize the IE-488 interface board the firat time only
C

CALL IE488 (SYSCON, IVAR, FLG, BRD)
C
C Set the DVM to remote for data collection
c

CALL IE488 (REROTE, IVAR, FLG, BRD)
C
C Initialize string and Collect the DVN data. The variable
C SVAR is initialized each time to insure data integrity.
C

01 SVAR = ' I

CALL IE488 (ENTER, SVAR, FLG, BRD)
C
C Display the data on the screen with the PRINT C VAR, #bytes)
C

CALL PRINT C SVAR, 19)
C
C request to repeat the function
C

WRITE (*,'(A\)') '+Type 0 to End, 1 to Repeat data ? '
READ (*,I11 IVAR
IF CIVAR .NE. 0) GOTO 01
STOP
END

page 44

	TOC:

