
CTM-05
User’s Guide

CTM-05
User’s Guide

Revision D - December 1993
Part Number: 71930

The information contained in this manual is believed to be accurate and reliable. However. the
manufacturer assumes no responsibility for its use; nor for any infringements or patents or other rights
of third parties that may result from its use. No license is granted by implication or otherwise under any
patent rights of the manufacturer.

THE MANUFACTURER SHALL NOT BE LIABLE FOR ANY SPECIAL. INCIDENTAL. OR
CONSEQUENTIAL DAMAGES RELATED TO THE USE OF THIS PRODUCT. THIS PRODUCT
IS NOT DESIGNED WITH COMPONENTS OF A LEVEL OF RELIABILITY THAT IS SUITED
FOR USE IN LIFE SUPPORT OR CRITICAL APPLICATIONS.

All brand and product names are trademarks or registered trademarks of their respective companies.

0 Copyright Keithley Instruments, Inc., 1993.

All rights reserved. Reproduction or adaptation of any part of this documentation beyond that permitted
by Section I I7 of the 1976 United States Copyright Act without permission of the Copyright owner is
unlwful.

Contents

CHAPTER 1

I.1
1.2
1.3
1.4
1.5
1.6

INTRODUCTION

General .
Features. . . .
Applications
Block Diagram
Optional l/O Accessories
Specilications .

CHAPTER 2

2.1
2.2

INSTALLATION

General
Copying The Distribution Software

2.3
2.4
2.5
2.6
2.7

To Copy Distribution Software To Another Diskette
To Copy Distribution Software To The PC Hard Drive

Unpacking & Inspecting . . .
Selecting & Setting The Base Address .
Setting The Interrupt Level . . .
Hardware Installation
I/O Connector Pin Assignments . .

CHAPTER 3 REGISTER FUNCTIONS & LOCATIONS

3.1
3.2
3.3
3.4
3.5
3.6

I/O Map . .
Introduction To The 9513 .
Master Mode Register . . .
Counter Mode Registers
Digital I/O . .
Interrupt Input

.

CHAPTER 4 CALIBRATION

CHAPTER 5 PROGRAMMING

5.1
5.2
5.3
5.4
5.5

General
Loading The CTM5BIN Driver Routine (BASIC)
CALL Statement Format (BASIC)
Use Of The CALL Routine . . .
MODE CALL Descriptions . . .

MODE 0 - Initialize
MODE 1 - Set A Counter Mode Register.
MODE 2 - Multiple Counter Control Commands
MODE 3 -Load Counter Load Register . . .
MODE 4 Read Selected Counter Hold Register
MODE 5 - Read The Digital Input Port
MODE 6 -Write To Digital Output Port.
MODE 7 - Latch Counters & Save On Interrupt
MODE 8 - Return Status Of lntermpts
MODE 9 -Transfer Data During/After Interrupt

. .

. .

.

.

.

.

l-l
,1-l
,1-i
.l-2
.1-2
.I-2

.2-l
2-1
2-1
2-l

.2-l

.2-2

.2-2

.2-3

.2-3

.3-l
3-l

,3-4
,3-7
.3-7
3-6

5-1
5-l
5-3

.5-4
,5-5
.5-s
.5-7
.5-0
.5-9
5-10
5-10
5-11
5-11
5-13
5-14

- 11, -

Contents

5.6
5.7
5.8
5.9
5.10

MODE IO - Measure Frequency. . . .
MODE 11 - Latch Counters & Save On Interrupt; Dump Data To

Selected Offset & Segment, . .
Summary Of Error Codes . . .
Assembly Language Programs 8. Calls In Other Languages
Multiple CTM-05s In One System. .
Example Programs
Integer Variable Storage.

APPENDIX A INSTRUCTIONS FOR PCF-CTMOS CALLABLE DRIVER

5-15

5-16
5-18
5-18
5-19
5-19
5-20

. . .

iv

Chapter 1

INTRODUCTION

1.1 GENERAL
The CTM-05 is a multi-function counter-timer and digital expansion board for the IBM PC and
compatibles. ‘Ihe board offers five 16-bit up/down counters, a 1MHz crystal timebase with
divider, and separate general-purpose &bit ‘ITL input/output (I/O) ports. An Advanced
Micro Devices AMD-9513 System Timing Controller IC (Integrated Circuit) supports the
board’s counting and timing functions.

1.2 FEATURES
l Five independent 16-bit up/down counters.

l 7 MHz maximum input frequency.

l Binary or BCD counting.

l 1 MHz internal crystal oscillator with tapped scaler.

l Programmable frequency output.

l Time-Of-Day option.

l Alarm comparators on Counters 1 and 2.

l Complex-duty-cycle outposts.

l One-shot or continuous outputs.

l Programmable count gate/source selection.

l Programmable input and output polarities.

l Programmable gate functions.

Additional functions separate from the counter-timer include the following:

l Eight bits of ‘ITL/DTL digital input with latch.

l Eight bits of ‘lTL/DTL digital output with latch

l Level-selectable interrupt input channel.

1.3 APPLICATIONS
l Event counting for pulse-output devices (flowmeters, wattmeters, etc.).

l Programmed frequency synthesis.

INTRODUCTION 1 - 1

l Coincidence alarms.

l Frequency measurements.

l F/V conversion and pulse accumulation.

l Period and pulse duration measurements.

l Time delay generation.

l Periodic interrupt generation.

l Frequency Shift Keying (FSK).

1.4

1.5 OPTIONAL I/O ACCESSORIES
To simplify complex I/O connections, an optional screw-connector board (STA-U) connects to
the CTIv-05 Board I/O connector via a flat-insulation displacement cable (C-1800).

1.6 SPECIFICATIONS
Counter Timer AM9513 (Advanced Micro Devices)

Five counter/timers:
l Independent or Cascadable.
l Programmable as up or down counters in either Binary or

Binary Coded Decimal (BCD).
l Programmable to count on positive or negative edge.
l Programmable output polarity.
l Programmable gating on either logic level or edge.
l Selectable counter input clock.

1-2 CTM-05 USER GUIDE

Time Base 1 .OOMHz (k&01% from 0 to 70°C.).

External Inputs 7.OOMHz Max TTL.

Digital I/O Latched LSTTL.

Ext. Int. &Enable ITL.

Power Consumption 5.OV @ 450mA typical.

Size & Weight 5” (12.7cm) by 4.25” (10.8&m).

Environmental 0 to 7O”C,
0 to 90% Humidity (Non-condensing).

INTRODUCTION 1 - 3

cl

a

l-4 CTM-05 USER GUIDE

Chapter 2

INSTALLATION

2.1 GENERAL
CTM-05 distribution software is on 5.25”, 360K floppy disketie(s) and on a 3.5” diskette (DOS
2.10 format). This software is licensed to permit multiple copies for non-commercial use, not
for resale.

Installation of your CTM-05 Software will require the following procedures:

l Making a working copy of your CTM-05 Distribution diskette(s)

l Unpacking and inspecting the board.

l Selecting a Base Address for your CTM-05 driver board.

l Installation.

2.2 COPYING THE DISTRIBUTION SOFTWARE
As soon as possible, make a back-up copy of your Distribution Software. With one (or more,
as needed) formatted diskettes on hand, place your Distribution Software diskette in your
PC’s A Drive and log to that drive by typing A: Then, make your backup using the DOS
COPY or DISKCOPY command, as described in your DOS reference manual (DISKCOPY is
preferred because it copies diskette identification, too).

2.3 INSPECTING
After you remove the wrapped board from its outer shipping carton, proceed as follows:

1. Place one hand firmly on a metal portion of the computer chassis (the computer must be
turned Off and grounded). You place your hand on the chassis to drain off static
electricity from the package and your body, thereby preventing damage to board
components.

2. Allow a moment for static electricity discharge; carefully unwrap the board from its anti-
static wrapping material.

3. Inspect the board for signs of damage. If any damage is apparent, return the board to the
factory.

4. Check the contents of your CI’M-05 package against its packing list to be sure the order is
complete. Report any missing items to the manufacturer immediately.

INSTALLATION 2 - 1

2.4 SELECTING AND SETTING THE BASE ADDRESS
The CTM-05 requires four consecutive address .ccws5 m*II Y* I_
locations in I/O space. Since some I/O address
lo&i&s are already occupied by internal l/O and
other peripheral cards, you have the option of
resetting the CTM-05 I/O base address by means
of an on-board Base Address DIP switch. The
Base Addressswitchislocated asshowninFigure
2-1, and it appears as shown in Figure 2-2.
Referring to Figure 2-2, you set the base address on a four-byte boundary to 3FC Hex (300 Hex
is shown).

F&me 2-2. Base Address switch.

The board is preset for a base address of 300 HEX. If this address is not satisfactory, your
distribution software contains a program called called DIPSW.EXE that asks for base address
and shows a picture of the DIP switch setting. Use this program by logging to its location (to
the floppy drive containing the distribution diskette or to the hard-drive directory nmtaining
your distribution files) and typing DIPSW

When the computer responds with Desired baseaddress?, type your choice in decimal or IBM
&HP format and press < Enter >

2.5 SETTING THE INTERRUPT LEVEL
The Interrupt Jumper Block is above the board’s edge connector. If your application does not
require interrupts, place the Interrupt Jumper in the rightmost position of the Jumper Block
(Position X in the block diagram of Chapter 1; X = inactive position). If you wish to use
interrupts, select the level from Positions 2-7 of the Jumper Block.

Avoid using a level already in use by another device (for cxample, Level 6 is always used by
the floppy-disk drives), unless you are using programming that allows several devices to
share one level.

The tri-state driver is enabled by taking the Interrupt Enable (Pin 2) to a logic low level. A
positive edge on the Interrupt input (Pin 1) will then generate an interrupt after the 825Y
Interrupt Controller is enabled.

The use of interrupts implies that the user has installed an Interrupt Service Routine and
Interrupt Vectors to the Service Routine. it also implies that the user has enabled the 8259
Mask Register for the selected level. You must use Assembly Language to set up an Interrupt
Service Routine, as it is impossible to program this function in the BASIC Language.

2-2 CTM-05 USER GUIDE

2.6 HARDWARE INSTALLATION
To install the CTM05 in a PC, proceed as follows.

WARNING: ANY ATTEMPT TO INSERT OR REMOVE ANY
ADAPTER BOARD WITH THE COMPUTER POWER ON COULD
DAMAGE YOUR COMPUTER!

1. Turn Off power to the PC and all attached equipment.

2. Remove the cover of the PC as follows: First remove the cover-mounting screws from the
rear panel of the computer. Then, slide the cover of the computer about 3/4 of the way
forward. Finally, tilt the cover upwards and remove.

3. Choose an available option slot. Loosen and remove the screw at the top of the blank
adapter plate. Then slide the plate up and out to remove.

4. Hold the CTM-05 board in one hand placing your other hand on any metallic part of the
PC chassis (but not on any components). This will safely discharge any static electricity
from your body.

5. Make sure the board switches have been properly set (refer to the preceding section).

5. Align the board connector with the desired accessory slot and with the corresponding
rear-panel slot. Gently press the board downward into the socket. Secure the board in
place by inserting the rear-panel adapter-plate screw.

7. Replace the computer’s cover. Tilt the cover up and slide it onto the system’s base,
making sure the front of the cover is under the rail along the front of the frame. Replace
the mounting screws.

8. Plug in all cords and cables. Turn the power to the computer back on.

2.7 I/O CONNECTOR PIN ASSIGNMENTS
Pin assignments of the 37-pin, D, male connector are as follows:

PIN NO. SIGNAL

19 Source 2
18 Counter 2 Gate
17 Source 3
lb Counter 3 Gate
15 Source 4
14 Counter 4 Gate
13 Source 5
I2 Counter 5 Gate
II Digital Common
10 OPO
9 OPI
8 OP2
7 OP3
6 OP4
5 OP5
4 OPb
3 OP7
2 /Interrupt Enable
I Interrupt Input

PIN NO. SIGNAL

37 Counter 1 Gare
36 Source 1
35 Counter I Outpul
34 Coutwr 2 output
33 Counter 3 Output
32 Cotmer 4 Outpa
31 counter 5 output
30 FOUT
29 IPO
28 IPI
27 IF?.
26 IP3
25 IP4
?A IP5
23 IPb
22 IP7
21 Input strobe
20 t5V Power (from PC)

INSTALLATION 2 - 3

The mating connector must be a 37-pin, D, female. Specifically, the connector must be a
solder-cup type ITT/Cannon DC-37s (or #SFC-37 from the manufacturer). Cabling must be
flat-cable type Amp #74.5242-l.

. . .

2-4 CTM-05 USER GUIDE

Chapter 3

REGISTER FUNCTIONS & LOCATIONS

3.1 I/O MAP
The CTM-05 uses four consecutive addresses in the PC’s I/O address space. The base (or
starting) address is set by the Base Address Switch (see Chapter 2) and automatically falls on rl
4-bit boundary. Once the base address is set, the four consecutive addresses are used as
follows:

FUNCTION
II0 ADDRESS WRITE READ

Base +0 9513 Dataln
+I 95 13 Command Reg.
+2 -_-
+3 OPO-7 Digital Output.

9513 Data Out
9513 Status Reg.
PO-7 Digital Input

IBM PC-AT users should note that all ports are S-bit (one byte) and should perform byte
oriented read/write operations rather than word (16-bit) operations. When performing
consecutive byte transfers to the same PC-AT I/O port kommon with 9513 architecture), the
IBM PC-AT Technical Reference Manual recommends the following Assembly Language
statements to allow sufficient recovery time for the AT I/O circuits.

OUT IO-ADD&AL ‘WRITE LOW BYTE
JMP NBXT 'DELAY

NEXT: MOV AL,AH 'FETCH HIGH BYTE
OUT IO-ADDR,AL 'WAITE HIGH BYTE

3.2 INTRODUCTION TO THE 9513
This section provides general information on how the 9513 counter/timer is used on the CTM-
05 and PCF-CTM-05. For detailed information on programming the 9513, refer to the AM9513
technical manual, available from the following source: Advanced Micro Devices, 901
Thompson Place, PO Box 3453, Sunnyvale, CA 94088, 800/538-8450. All data transfers to the
9513 timer-counter use two I/O ports. Data transfer uses the port at the Base address; for
example, loading and reading counters and counter mode registers. The port at Base address
+l carries addressing, command, control, and status. The many internal registers of the 9513
require an indirect system of access using a Data Pointer Register, which is reached via the
Command Register. The Command Register also performs other functions such as loading
and enabling the counters, latching counter contents, etc. Acceptable Command Register
codes are listed in the following table.

REGISTER FUNCTIONS & LOCATIONS 3-1

COMMAND CODE
Cl C6 C5 c4 c3 c2 CI co FUNCTION

0 0

0 0
0 1
0 I
I 0
I 0
I I

I I
I 1
I 1

I 1
MM14).
I I
I 1
I I
MM14).
I I
I I
I I

0

1
0
I
0
1
0

I
I
I

I

I
I
I

I
I
I

E2

S5
SS
S5
S5
S5
SS

0
0
I

0

0
0
0

0
0
I

El

s4
s4
s4
s4
s4
s4

0
I
0

0

0
0
I

I
I
I

G4 G2 Gl

s3 s2 Sl
s3 s2 SI
s3 s2 Sl
s3 s2 Sl
s3 s2 Sl
s3 s2 Sl

N4 N2 Nl
N4 N2 Nl
N4 N2 Nl

0 0 0

I 1 0
I I I
0 0 0

1 I 0
I I I
I I I

Load Data Pointer Register with E % G.

Arm counting for selected counters (S = I).
Load source into specified counter.
Load and arm specified counters.
Disarm and save all selected counters.
Save selected counters in hold registers.
Disarm all selected counters.

Clear Output Bit (001 <= N <= 101).
Set Output Bit N (001 <= N <= 101).
Step CounterN (001 <= N <= 101).

Enable Data Pointer sequencing (clear

Gate FOUTon (clear MMl2).
Enter 8-bit bus mode (clear MM13).
Disable Data Pointer sequencing (set

Gate FOUT off (set MMl2).
Enter 16-bit bus mode (set MMl3).
Master reset.

Note the following logical structure in the command codes:

l All codes beginning with 000: Reference Data Pointer Register.

l Codes from 001 to 110: Reference counter operations.

l Codes beginning with 111 and ending with 001-101: Perform single-bit counter functions

l Codes beginning with 111 and ending with Ooo or 110-111: Perform master control
functions (all these functions can also be activated by writing the Master Mode Register).

Those codes that reference counter operations USC a linear select S5-Sl. Only the counters
with the appropriate S bit set are affected. This is a powerful feahlre in that it allows
simultanwus loading, latching, enabling, etc. of any combination of the Y513 internal
counters.

Rchwning to command codes that commence with OCO. These codes select the internal
registers according to E and G fields that set the Internal Data Pointer Register. The 9513 has
one Master Mode Register that controls the operation of all counters and the scaler. This must
be set in the initialization sequence of your program. In addition, each counter has its own
mode, load, and hold registers. These registers are accessed through the data port at the Base
address after setting the Internal Data Pointer Register tp address the desired register. The
data format of the Data Pointer Register is as follows:

3-2 CTM-05 USER GUIDE

$2 El E4 aa al, Be
I I I-Byte Pointer
I I

I Group Pointer

Element Pointer

These pointers are defined as follows:

Byte Pointer 1 = Least significant byte transferred next.
0 = Most significant byte transferrxl next.

Group Pointer G4, G2, and Gl:
Ooo - Illegal
001 -Counter Group 1
010 - Counter Group 2
011 -Counter Group 3
100 - Counter Group 4
101 - Counter Group 5
110 - Illegal

G4, G2, and Cl:
Ill- Always for control group.

Element Pointer Counter Group E2 and El:
00 -Mode Register
01 - Load Register
10 - Hold Register
11 -Hold Register/Hold Cycle lncremcnt

Control Group E2 and El:
00 Alarm Register 1
01 - Alarm Register 2
10 -Master Mode Register
11 -Status Register/No Increment

The Data Pointer consists of a Z-bit Element Pointer(E), a 3-bit Group Pointer CC), and a l-bit
Byte Pointer(B). The Byte Pointer bit indicates which byte of a 16-bit register is to be
transfer& on the next access through the data port. Whenever the Data Pointer is loaded, the
Byte Pointer (B) is set to 1, indicating a least significant byte of data is expected next. With an
X-bit data bus (as used on the IBM PC), the Byte Pointer toggles after each B-bit data transfer
Master Mode Bit MM13 = 0). The Element and Group Pointers together select the internal
register that is to be accessible through the data port. Although the Element and Group
Pointers in the Data Pointer Register cannot be read, the Byte Pointer is available as a bit in the
Status Register.

Random access to any internal location can be achieved by loading the Data Pointer (through
Base address cl) and then reading or writing to the location through the data port (at Base
address) as appropriate. The Counter Registers are all 16-bit and after loading the pointer,
data is transferred in low-byte/high-byte sequence. The following example shows loading
Counter 3 Load Register (using BASIC):

REGISTER FUNCTIONS & LOCATIONS 3 - 3

xxx10 OUT BASE + 1, kH13 'write 000 10 011 to commnd rag.
XXX20 OUT BASE, 0 'low byte = 0
xxx30 OUT BASE, &HBO 'high byte I 128 register loaded

'with 33,768

Many programs contain a pattern of loading the Counter Mode Register, the Load Register,
and the Hold Register in sequence or setting Alarm Register 1, Alarm Register 2, and the
Master Mode Register. The Element Pointers are arranged to auto-increment on each 2-byte
data transfer if Master Mode Bit 14 (MM14) = 0. This saves writing to the Command Register
between items of data and, depending on your preferences, is a feature that you may wish to
use for brevity of code or to ignore for clarity of code.

In general, most programs will consist of an initialization section that sets the overall
operation of the 9513 through the Master Mode Register, then sets each counter operating
configuration through its individual mode register, and finally loads initial data into the
counters through the Load or Hold Registers. Following the initialization, the counters are
usually enabled using the Command Register, possibly latched and read using the Command
and Hold Registers, etc. or disabled, re-loaded, and re-enabled, etc. Most ‘Iwavy” work in
programming is in the initialization; subsequent reading and writing operations arc much
simpler. An example of CTM-Cl5 set up as a straight, 5-channel, up counter is in program
COUNT2.BAS.

3.3 MASTER MODE REGISTER
The Master Mode Register controls the overall operation of the 9513 and should be the first
register initialized by your program. The register is lh-bits that function as follows:

MM15 MM14 MM13 ~h!Mll!4MlO MM9 MMaEm7 wM6 wb5 w w m n
I I I I I I I I I
I I I I I I I I I

scaler I Data I POUT Divider POUT sourccl compare I Tim0

Control I Bus POUT a I Of
I Width Gate Enable I Day

Data COrnpar Mode
Pointer 1
control Enable

These bits function as follows:

Scaler Control 0 = Binary Division
1 = BCD Division

Data Pointer Control 0 = Enable Increment
1 = Disable Increment

Data Bus Width fl = &Bit Data Bus
1 = 16-Bit Data Bus

FOUT Gate O=FOUTOn
1 = FOUT Off (Low to Ground)

3-4 CTM-05 USER GUIDE

FOUT Divider

FOUT Source

CO00 Divide By 16
0001 - Divide By 1
0010 -Divide By 2
0011 -Divide By 3
0100 -Divide By 4
0101 -Divide By 5
0110 - Divide By 6
0111 -Divide By 7
1OLM - Divide By 8
1001 - Divide By 9
1010 -Divide By 10
1011 - Divide By 11
1100 - Divide By 12
1101 - Divide By 13
1110 -Divide By 14
1111 -DivideBy

LX00 - Fl
WOl - Source 1
0010 -Source 2
0011 -Source 3
0100 Source 4
0101 - Source 5
0110 -Gate 1
Olll-Gate2
loo0 - Gate 3
1001 -Gate 4
1010 -Gate 5
1011 - Fl
1100.FZ
1101 - F3
lllO-F4
1111 -F5

Compare 2 Enable 0 = Disabled
1 = Enabled

Compare 1 Enable 0 = Disabled
1 = Enabled

Time Of Day Mode 00 = TOD Disabled
01 = TOD Enabled /5 Input
10 = TOD Enabled /6 Input
11 = TOD Enabled /lO Input

MM15 selects the dividers for the four counters in the Crystal Oscillator Scaler. The Scaler
stages can divide by either 10 or 16 (BCD or binary) according to whether MM15 is 1 or 0. The
fundamental crystal frequency Fl (1MHz) and each of the scaler outputs F2, F3, F4, and F5 can
bc routed to any of the counters and the FOUT divider by software control. For instance with
MM15 = 1 (BCD), the frequencies will be:

REGISTER FUNCTIONS & LOCATIONS 3-5

El

IMHZ

E2 E3 I?.4 Is

100KHz 10KHz 1Khz 100Hz

The structure of the Oscillator Scaler is shown below.

MM14 selects automatic incrementing of the Data Pointer Register. MM14 can also be
individually controlled via the Command Register.

MM13 selects the Data Bus Width and for IBM PC operation should always be zero @-bit bus).
MM13 can also be individually controlled by the Command Register.

MM12 controls operation of FOUT (Pin 30 on the CTM-05). When MM12 is low, FOUT is
enabled. When MM12 is high, FOUT is at a logic low (note this is not a tristate output).
MM12 can also be individually controlled via the Command Register.

MM11 through MM8 set the divider modulus for the FOUT divider (not to be confused with
the oscillator scaler). This is a 4-bit divider counter ahead of the FOUT output. Any modulus
from 1 to 1 is possible.

MM7 through MM4 set the input source of the FOUT divider. This can be any of the
Oscillator Scaler outputs Fl-F5, any of the Counter Gate inputs GATE 1 5, or any of the
external source inputs SOURCE 1 - 5. Truly flexible!

MM3 and MM2 set the comparison modes for Counters 2 and 1. If these bits are set, the
comparator outputs are substituted for the normal counter outputs on Counter Out 1 and 2
(Pins 35 and 34). The comparator output will be active high if the Output Control Field of the
Counter Mode Register is 001 or 010 and active low for a code of 101. Once the Compare
output is true, it will remain so until the count changes and the comparison therefore goes
false.

Finally, MM1 and MM0 set the optional Time Of Day Mode for Counters 1 and 2. When both
these bits are zero, Counters 1 and 2 operate in exactly the same way as all the other counters.
For other combinations of these bits, the counter division ratios are set so that the most
significant byte of Counter 2 is hours, the less significant byte is minutes and the most
significant byte of Counter 1 is seconds. The least significant byte section of Counter 1
becomes a pre-scaler in this mode and can divide by 50,60, or 100 for 5OHz, 6OHz, or 1OOHz
(crystal) input frequencies.

3-6 CTM-05 USER GUIDE

3.4 COUNTER MODE REGISTERS
Each counter has its own mode-register controls to control its operation. The Counter Mode
Registers should be initialized after the Master Mode Register. Each register is 16 bits, as
f01l0ws.

CM15 CM14 ClalZ CM12 CM11 CM10 CX9 CKQ -7 CM6 CM5 CM4 Cm m CM1 Cl&
I I 1 I
I I I I

Gatlng count COUNT output
control source Control Control

selection

CM%15 control the effect of the GATE inputs on the selected counter. The gate input can bc
disabled (000) or enabled in a variety of ways. The counter can be gated for counting from the
previous counter (TCN-I = Terminal Count of Counter - 1); for example, Counter 3 could be
gatcd by the output of Counter 2. Alternatively, the counter can be gated from its own gate
input (GATE N) or adjacent gate inputs (GATE N-l or N+l). This last configuration allows 2
or 3 adjacent counters to share the same gate control input provided the gate is level triggend.
If only the counter’s own gate input is used, it may be level-triggered (active high or low) or
edge-triggered (positive or negative).

CM8-12 control the clock input source for the counter. You can select whether you count on
the positive or negative input edge and select any of the SOURCE inputs, GATE inputs or
Crystal Scaler outputs (Fl-F5). Note that this lets you connect several counters to the same
source or a standard frequency input just through software! For cascading counters, you can
connect to the terminal count output of the next lower counter; for example, for 32 or 48 bit
counters, etc.

CM3-7 control how the counter will operate. Essentially each bit performs a specific function.

CMO-2 control the terminal count output characteristics. It may be permanently low, high
impedance, active low pulse, active high pulse, or toggled on terminal count.

3.5 DIGITAL 110
Totally separate from the AMD-9513 counter, are two &bit digital I/O ports with latches.
These I/O ports can be used for any purpose independent of the counter.1

The port at Base address +2 provides eight bits of TTL and lTL/LS compatible digital input.
This input port uses a transparent 8-bit latch (74LS373), while the STROBE line is high, data
passes through the latch. Data present when the STROBE line is taken low will bc latched and
held as long as the STROBE line remains low.

The port at Base address +3 is an 8-bit ‘ITL digital output port. Each output can sink up to
8mA and can drive five standard ?TL loads or 20 low-power schottky ‘ITL loads.

REGISTER FUNCTIONS & LOCATIONS 3-7

3.6 INTERRUPT INPUT
A rising edge-triggered flip-flop (buffered by Schmitt trigger invert& indicates the
occurrence of an interrupt on the INTERRUPT INPUT signal at Pin 1. The interrupt can be
read at Base 15 and is cleared by a write to Base +4. A pending interrupt will cause an
interrupt to the computer only if an Interrupt Level was selected during Programmable
Option Select (Interrupts 3,5, 7,9,10, 11,12, 15, or disabled are available choices) and if the
INTERRUPT ENABLE (Pin 2) is logic low. Both INTERRUPT INPUT and INTERRUPT
ENABLE are pulled to logic high with a 10 Kohm resistor. The UCCTMU5 Micro Channel
interrupt circuitry fully conforms to the IBM requirements for level sensitive interrupt sharing
(refer to the PS/2 Technical Reference Manual for more details).

Typically the counter outputs can be jumpered into the INTJN, and the INT.ENABLE might
be controlled by one of the digital port outputs OPO-7. This would allow periodic interrupts.
Alternatively the input can be used for other purposes such as transferring data into and out
of the computer on external events.

. . .

3-8 CTM-05 USER GUIDE

Chapter 4

CALIBRATION

The CTM-05 Board does not require calibration. The Board’s timebase is crystal-controlled and
has no frequency adjustment. The following specifications determine the accuracy of the
timebase.

FREQUENCY: l.OOOOMhz

FREQUENCY STABILITY: kO.Ol% (0 to 70 OC; +5V +0.5V)

The crystal accuracy can be monitored with a frequency counter at the FOUT signal (Pin XI)
and digital common (Pin 11) by setting FOUT to 1 MHz with the following BASIC
commands.

OUT ElASE+l,a3

OUT BASE,0

OUT BASE.1

. . .

CALIBRATION 4-1

4-2 CTM-05 USER GUIDE

Chapter 5

PROGRAMMING

5.1 GENERAL
The CTM-05 is programmable at the lowest level using input and output instructions. In
BASIC these are the lNP(X) and OUT X,Y functions. Assembly language and most other high
level languages have equivalent instructions.

To simplify program generation, the distribution software contains the I/O driver routine
CTM5BIN. This routine is accessible from BASIC using a single-line CALL statement, as
follows:

100 CALL CTM5 (MD%, DIO%(O), FLAG%)

The 11 operating modes (MD%) of the CAL routine select most of the uCCTM-05 functions,
transfer counter data to and from BASIC variables (array DIO%(O)), check for errors (FLAG%),
and perform complex operations such as measuring frequency or transferrtng the counter
contents to memory on periodic interrupts. Note, however, that BASIC has no interrupt or
DMA processing functions, and so-called background data collection using these methods is
available only by using the CALL routines.

Because of the large number of 9513 operating modes, the CTM5.BlN driver is a cornprom&
between simplicity and flexibility. The driver can perform many of the more common
operations that CfM-05 is likely to be used for, but it will require programming with INP and
OUT statements for some of the less common operations.

5.2 LOADING THE CTM5.BIN DRIVER ROUTINE (BASIC)
To use CALL routine CTM5.BIN, you must first load it into memory. Avoid loading it over
any part of memory that is in use by another program (BASIC, print spoolers, or Disk-RAM).
If you interfere with another program’s use of memory, CALL routine will not work and your
PC will probably hang up (Turn off power and wait a few seconds before turning on again).
Note that the information given in this section is general; it applies to loading any CALL or
USR routine and supplements the limited information in Appendix C of the “IBM BASIC
MANUAL”. For further enlightenment on this subject see “The 8088 Connection” by Dan
Rollins, page 398 of “Byte” magazine, July 1983.

You have two options depending on the size of available memory: (1) loading outside BASICS
normal workspace or (2) contracting BASIC’s workspace and loading at the end of the
reduced workspace. The second method is somewhat more complicated but required if you
have limited memory and if BASIC is initially unable to find 64K of workspace (the maximum
it can use). If BASIC is using its maximum &1K, you get the following message on power-up
or from DOS by entering BASIC(A)

PROGRAMMING 5 - 1

BASICA Tho IBM Personal Computer Basic
(DOS 3.0) Version A3.00 Copyright IBM Corp. 1981, 1982, 1983, 1984

60451 Bytes free
Ok

When the number of free memory bytes is less than that shown above for the version of
BASIC in use, your PC’s memory is already fully used, and BASIC adjusts to this condition by
using less than its possible 64K maximum. If this is the case, you must load the CALL routine
by further forced con&action of the BASIC workspace and loading the routine at the end of
the newly defined workspace. CTM-5.BIN occupies about 1.8K bytes, but for simplification
let’s clear a 2K space for it.

Step 1 is to work out how much memory BASIC is actually using. Let’s assume you see
“XXXXX Bytes free” after loading BASIC as above. Now subhxt 4096 (4K) from the above
number. The result is the maximum amount of working space that can be allocated to BASIC
with the CALL routine loaded. (You always have the option to allocate less working space if
you wish.) Let’s call the size of the workspace WS. This space can be allocated either when
loading BASIC from DOS, as follows:

BASIC(A) /M:WS

or usually more conveniently by using CLEAR at the beginning of a program, as follows:

xxx10 CLEAR, ws

Next, we need to know what segment BASIC is occupying in memory. This can be found
from the contents of memory locations &H511 and &H510 which hold the current BASIC
segment which we can call SC. SC can be determined as follows:

xxx20 DEP SEQ = 0 'define code ssgment = 0000 bofora
'reading absolute addresses
‘0000:0510 h 0000:0511

xxx30 SD I 256*PEEK(hH511) + PEEK(LH510)

The segment address at which we can now load the CALL routine will be at the end of the
working space, that is

xxx40 SQ = WS/16 + SQ 'remember sogmont addresses are on
'16-bit boundaries

The routine can now be loaded as follows:

xxx50 DEP SEQ 3 so
xxx60 BLOAD "CTM5.BIN",O 'loads routine e,t SO10000

A BLOAD must be used as we arc loading a binary (machine language) program. Once
loaded, the CALL can be entered as many times as needed in the program after initializing the
call parameters MD%, DIO%, FLAG% prior to the CALL sequence as follows:

xxx70 DEP SE6 - SO
xxx80 CTM5 = 0
xxx90 DIM DIO%(9)
xx100 CALL CTM5 (MD%, DIO%(O), FLAG%)

5-2 CTM-05 USER GUIDE

Note that Cl’M5 is a variable that specifies the memory offset of the starting address of the
CALL routine from the current BASIC segment. We have chosen CTM5 as n name as it makes
CALL CTM5 easy to remember and would distinguish it from any other CALL to some other
routine that might be in the same program. This is purely a matter of choice and
programming style, just easier to remember than writing CALL X (.....) or CALL AB(3) (.....)
etc.. The variable CTM5 is the offset (actually zero) from the current segment as defined by
the last DEF SEG statement that tells your BASIC interpreter where the CALL routine is
located. Be careful that you do not inadvertently redefine the current segment somewhere in
a program before entering the CALL. It is good practice to immediately preccdc the CALL
statement by the appropriate DEF SEG statement (the same one you preceded your BLOAD
with) even at the cost of duplication. This precaution can save a lot of wasted time and
frustration from crashing your computer!

Another important detail is that CLEAR sets working space from the bottom of the BASIC
working area up whereas we must set aside space for our subroutine from the top of available
memory down. If we attempt to CLEAR more space than is actually available, we will end up
loading our routine over the end of the BASIC program, data space and stack and will hang
up the computer. Be careful this does not happen inadvertently if you are memory limited
and later load BASIC with DEBUG or some other co resident program without making a
compensating reduction in the workspace (WS) declaration in the CLEAR statement. If
possible, setting up a workspace that is a considerable amount less than the maximum
available is a simple precaution.

The second option is somewhat simpler to follow and applies when you have plenty of
memory and are able to load the CALL routine outside the BASIC workspace. In this case,
choose a segment that has 2K bytes clear at its beginning. For example we might choose
&H2OOU which is at 128K on a machine with a minimum of 192K memory. Then proceed as
follows:

xxx10 DEP SEQ = HI2000 'Ssts up load segment
xxx20 BLOAD "CTM5.BIN",O 'Loads at 200010000
xxx30 cTM5 - 0

An example of this approach is also contained in file LOADCALL.BAS. Before you try
loading outside the workspace, be sure you really have an unused 2K of memory at 128K.
You can change the DEF SEC statements in line xxx10 and experiment with loading the CALL
routine at other locations. Usually any clash with another program’s use of the same memory
results in obliteration of some of the routine code and a failure to exit and return from the
routine. The computer hangs up, and the only cure is to switch off, wait a few seconds and
turn on the power again.

5.3 CALL STATEMENT FORMAT (BASIC)
Prior to entering the CALL, the DEF SEG=SG statement sets the segment address at which the
CALL subroutine is located. The CALL statement for the CTM5.BlN driver must use the
form:

xxxxx CALL CTM5WD%, D%(O), FLAQ%)

PROGRAMMING 5 - 3

CTM5 is the address offset from the current segment of memory, as defined in the last DEF
SEG statement. In all the examples, the current segment is defined to correspond with the
starting address of the CALL routine. This offset is therefore zero and CTM5=0.

The three variables within brackets are known as the CALL parameters; their meaning
depends on the Mode, as described in the following sections. On executing the CALL, the
addresses of the variables (pointers) are passed in the sequence written to BASIC’s stack. The
CALL routine unloads these pointers from the stack and uses them to locate the variables in
BASIC’s data space so data can be exchanged. Four important format requirements must be
met:

1. The CALL parameters are positional. The subroutine knows nothing of the names of the
variables, just their locations from the order of their pointers on the stack. The parameters
must always be written in the correct order:

(mode, data, errors)

2. The CALL routine expects its parameters to be integer-type variables and will write and
read to the variables on this basis.

3. You cannot perform any arithmetic functions within the parameter list brackets of the
CALL statement. For example, the following is an illegal statement:

CALL CTM5(MD%+2,D%(O) *&FLAG%)

4. You cannot use constants for any of the parameters in the CALL statement. For example,
the following is an illegal statement:

CALL CTM5(7,2,FLAG%)

This must be programmed as

XXX10 MD% = 7
XXX20 DIO%(O) = 2
XXX30 CALL CTM5 (MD%, DlO%(O), FLAG%)

Apart from these restrictions, you can name the integer variables what you want; the names in
the examples are just convenient conventions. Strictly, you should declare the variables
before executing the CALL.

5.4 USE OF THE CALL ROUTINE
The following subsections contain details and examples of using the CALL routine in all
twelve CTM-05 Modes. The Modes are selected by the MD% parameter in the CALL as
follows:

MODE (MD%) FUNCTION

0 Initialize, set Master Mode Register and Base I/O address.

1 Set a Counter Mode Register.

2 Multiple counter control commands, arm, load, latch, etc.

3 Load a selected Counter Load Register data.

5-4 CTM-05 USER GUIDE

4 Read a selected Counter Hold Register.

5 Read Digital Input Port IPO-7.

6 Write Digital Output Port OPO-7.

7 Latch counter(s) and store data on interrupt.

8 Return status of interrupts.

9 Unload Interrupt data from memory and transfer to BASIC array variable.

10 Measure frequency of up to nine inputs.

11 Latch Counter(s) and store Segment and Offset on Interrupt.

5.5 MODE CALL DESCRIPTIONS

MODE 0 - Initialize

Mode 0 checks that the base I/O address is in the legal range of 256 - 1020 (Hex 100 - 3FC) for
the IBM P.C.. If not, an error exit occurs. If OK, the Base I/O address is stored for use by
other modes on re-entry to the CALL.

Mode 0 must be executed as an initializing step before any of the other modes are selected.
Selecting any other mode without having entered mode 0 will give error code 1 as the driver
will not be aware of the I/O location of the CTM5.

After storing the base I/O address, the 9513 Master Mode Register is loaded according to the
contents of DIO%(l)-DI0%(5). A few default conditions are assumed:

1. MM15=1 scaler set to BCD. Since a 1MHz crystal is used as standard, BCD scaling gives
round number sub-multiples:

Fl = 1MHz
F2 = 1 OOKHz
F3 = 1OKHz
F4=1KHz
F5 = 1OOHz

2. MM14=1 data pointer automatic increment disabled. Automatic increment is not used by
the driver.

3. MM13=0 8 bit data bus is required by the hardware.

4. MM12=0 Foot is permanently on.

The remaining master mode register bits are controlled by the input variables.

Entrance data is as follows:

DlO%(O) = Base I/O address (lOOH - 3FCH)

DIO%(l) = Foot divider ratio (0 - 15) 0 = /16 otherwise N = /Nl

PROGRAMMING 5 - 5

DI0%(2) = Foot source (0 - 15)

O= Fl

1 = SOURCE 1

2 = SOURCE 2

3 = SOURCE 3

4 = SOURCE 4

5 = SOURCE 5

6=GATEl

7=GATE2

8=GATE3

9=GATE4

lO=GATE5

11 =Fl

12=F2

13=F3

14 = F4

15 = F5

D10%(3) = Compare 2 disable/enable (O/l)

DI0%(4) = Compare 1 disable/enable (O/l)

D10%(5) = Time of day mode control (0 3)

Exit data is as follows:

DIO%(O-9) - Unchanged

The following error codes apply to MODE 0:

FLAG% = 0 (no error, OK)
= 2 (mode number out of range, <O or >ll)
= 3 (base address out of range ~256 or >1020)
= 11 thru 19 (DIO%(l) thru (D10%(9) out of range): D10%(2) wrong gives error #
12

Note that error 3 will occur if you have specified an I/O address that is less than 256 (Hex 100)
or greater than 1020 (Hex 3FC). I/O addresses below Hex 100 are all used internally by
devices on the IBM PC. system board and would always cause an address conflict with CTM-
5 and addresses above Hex 3FF are not exclusively decoded by other peripherals on the IBM
PC.

5-6 CTM-05 USER GUIDE

MODE 1 - Set A Counter Mode Register

Mode 1 is used to configure each individual counter by setting the associated mode register.
After mode 0, mode 1 usually is a necessary second level of initialization.

Entrance data:

DlO%(O) =Counter number (1 - 5)

DIO%(l) = Gating control (0 7)
0 No gating
1 - Active high level TCN-1
2 - Active high level GATE Ncl
3 - Active high level GATE N-l
4 - Active high level GATE N
5 - Active low level GATE N
6 - Active high edge GATE N
7 - Active low edge GATE N]

Dl0%(2) = Count edge positive/negative (O/l)

Dl0%(3) = Count source selection (0 15)
0 - TCN-1
1 - SOURCE 1
2 - SOURCE 2
3 SOURCE 3
4 - SOURCE 4
5 - SOURCE 5
6-GATE1
7-GATE2
B-GATE3
Y-GATE4
lo-GATE5
11 -Fl
12-F2
13-F3
14-F4
15-F5

D10%(4) = Disable/enable special gate (O/l)

Di0%(5) = Reload from load/Reload from load or hold (O/l)

D10%(6) = Count once/count repetitively (O/l)

D10%(7) = Binary count/B.C.D. count (O/l)

DIO%(S) = Count down/count up (O/l)

D10%(9) = Output control (0 - 5, except 3)
0 Inactive, output low
1 - Active high terminal count pulse
2 -Terminal count toggled
3 - Illegal
4 - Inactive, output high impedance
5 - Active low terminal count pulse

PROGRAMMING 5 - 7

Exit data:

DIO%(O-9) - Unchanged

The following error codes apply to MODE 1:

FLAG% = 0 (no error, OK)
= 1 (Base Address unknown)
= 2 (MODE number out of range, <O or >l 1)
= 10 thru 19 (DlO%(O) thru (D10%(9) out of range) e.g. DIO%(2) wrong gives
Error 12

MODE 2 - Multiple Counter Control Commands

MODE 2 allows you to perform operations such as loading, latching and saving, enabling, and
disabling on individual or multiple counters simultaneously. A linear select using DIO%(l)
thru DI0%(5) for Counters 1 5 performs the counter addressing. This is a powerful feature
of the 9513. If you wish to operate on a counter, the corresponding DlO%O variable should be
set to 1; otherwise it should be set to 0. The chosen command (I-6) is set by the value of
DlO%(O). Note the following:

1. The terms ARM and DISARM are synonymous with ENABLE and DISABLE. A disarmed
counter will not count or respond to its clock and gate inputs.

2. Each counter has an associated Load and a Hold Register. To load a counter, use MODE 3
to load its Load Register. The Load Register(s) can then be transferred into the counter(s)
using Commands 2 or 3 of this MODE. Similarly, counter contents can be transferred into
the Hold Register(s) using Commands 4 or 5 of this MODE. Note that this is a
simultaneous transfer for all selected counters, and in the case of Command 5, the
counting process is not disturbed, allowing you to read any of the counters
simultaneously “on the fly.” Finally, the contents of the Hold Registers can be read at
leisure using MODE 4.

3. The operation of unselected counters is not disturbed in any way by operations on
selected counters.

Entrance data:

DlO%(O) = Command (1 - 6) as follows:
1 Arm selected counter
2 - Load source to counter
3 - Load and arm counter
4 - Disarm and save counter
5 - Latch counter to Hold Register
6 Disarm counter

DlO%(l) = Select Counter 1 (O/l)

Dl0%(2) = Select Counter 2 (O/l)

D10%(3) = Select Counter 3 (O/l)

D10%(4) = Select Counter 4 (O/l)

5-0 CTM-05 USER GUIDE

__

DI0%(5) = Select Counter 5 (O/l)

D10%(6-9) - Not used, don’t care

Exit data:

DIO%(O-9) - Unchanged

The following error codes apply to MODE 2:

FLAG% = 0 (no error, OK)
= 1 (Base Address unknown)
= 2 (MODE number out of range, <O or >ll)
= 10 (Command Number out of range, cl or >6)
= 11 (Counter 1 select not 0 or 1)
= 12 (Counter 2 select not 0 or 1)
= 13 (Counter 3 select not 0 or 1)
= 14 (Counter 4 select not 0 or 1)
= 15 (Counter 5 select not 0 or 1)1

MODE 3 - Load Counter Load Register

MODE 3 is used to place data in any selected counter’s load register. Note that this mode
does not physically load the counter until MODE 2 performs a Load and Arm (Enable) or
Load command, which transfers data from the Load Register into the counter. This method
allows counters to be simultaneously loaded and started even though data enters sequentially
into each Load Register.

Entrance data:

DIO%(O) = Counter number (1 - 5)

DIO%(lf = Load data (-32768 to +32767)

DI0%(2 - 9) -Not used, don’t care

Exit data:

DIO%(O-9) - Unchanged

The following error codes apply to MODE 3:

FLAG% = 0 (no error, OK)
= 1 (Base Address unknown)
= 2 (MODE number out of range, <O or >l 1)
= 10 (counter number out of range, <l or >5)

PROGRAMMING 5 - 9

MODE 4 - Read Selected Counter Hold Register

MODE 4 allows the reading of a selected counter’s Hold Register. Note that this MODE does
not read the contents of the counter directly. A counter’s contents must be transferred to its
Hold Register using MODE 2 before entering MODE 4 to read the counter contents indirectly.
There is no direct method of reading a counter.

Entrance data:

DIO%(O) = Counter number (1 - 5)

DlO%(I) = Data Read variable, value does not matter

Dl0%(2 9) -Not used, don’t care

Exit data:

DIO%(O) = Counter number (I 5)

DlO%(I) = Counter data (-32768 to +32767)

D10%(2 9) =Unchanged

The following error codes apply to MODE 4:

FLAG% = 0 (no error, OK)
= I (Base Address unknown)
= 2 (MODE number out of range, <O or >I I)
= IO (counter number out of range, <I or >5)

MODE 5 - Read The Digital Input Port

MODE 5 allows you to read the state of the Digital Input Port IPO-IP7. This port is consists of
a 74LS373N transparent latch and has a hardware strobe input on Pin 21 of the rear connector.
When the STROBE INPUT is high, data at the inputs may bc read directly; when the STROBE
INPUT is taken low, data at IPI-IP7 is latched and reading the port yields the latched data
regardless of the state of the inputs. B-bit data (range O-255) is returned in DlO%(O).

Note that the Digital Input Port is entirely independent of the 9513 counter. MODE 5 is
equivalent to a Basic INP (Base +2) instruction.

Entrance data:

DlO%(O) = Data Read variable, value does not matter

DlO%(I - 9) - Not used, don’t care

Exit data:

DIO%(O) = Input port data (0 - 255)

DlO%(I-9) - Unchanged

5-10 CTM-05 USER GUIDE

The following error codes apply to MODE 5:

FLAG% = 0 (no error, OK)
= I (Base Address unknown)
= 2 (MODE number out of range, ~0 or >II)

MODE 6 - Write To Digital Output Port

MODE 6 allows you to write data to the B-bit Digital Output Port OPO-OP7. Data should be in
the range 0 to 255 decimal, corresponding to eight binary bits. MODE 6 performs an
equivalent function to Basic’s OUT BASE + 3, DIO%(O). The output port is entirely
independent of the 9513 counter.

Entrance data:
DIO%(O) = Output data, range 0 - 255 (8 bit)

DlO%(I 9) =Not used, don’t care]

Exit data:

Dl0%09) =Unchanged

The following error codes apply to MODE 6:

FLAG% = 0 (no error, OK)
= I (Base Address unknown)
= 2 (MODE number out of range, ~0 or >I I)
= IO (output data out of range, ~0 or >255)

MODE 7 - Latch Counters & Save On Interrupt

MODE 7 is complex in that it transfers selected counter contents “on the fly” to buffer
memory each time an interrupt occurs. A typical application might drive the interrupt input
from the FOUT pin or a counter in Divide-By-N MODE, so that interrupts are generated at a
constant rate. Any combination of the remaining counters can be set up to transfer their
contents on each interrupt to individual buffer areas outside BASIC’s workspace. This is
especially useful when you need to measure the change in frequency versus time and also
accumulate the total count. On each interrupt, the counters are simultaneously latched and
data transferred to a selected segment (see MODE II to select offset). The next interrupt
transfers data to (memory address + 2) so that a series of words builds up in memory to make
a “snapshot” of the counter contents versus time. Each counter is allocated an individual
segment of memory that may be up to 64K bytes in length, sufficient for 32,767 interrupts (a
I6-bit counter uses 2 bytes or a word to store its data). The DlO%(I) - D10%(5) variables
control allocation of the buffer segment for each counter. Segments should be chosen outside
BASIC’s workspace to avoid writing over program/stack area and causing a crash.

PROGRAMMING s- 11

If you enter a value of -1 in any of the Counter parameters (DlO%(l) - D10%(5)), you must call
MODE 11 with each counter having a memory segment and offset to dump data.

Before selecting MODE 7, decide on the Interrupt Level you wish to assign the CTM-05 and
place the Interrupt Jumper accordingly (on Jumper Block 12).

MODE 7 initiates the following sequence of actions:

1. Loads interrupt vectors into memory for the selected level and stores any old vectors for
subsequent automatic restitution at the end of interrupts.

2. Enables interrupt handler routine.

3. Initializes 8259 interrupt controller and enables 8259 interrupt mask register for the
selected level. Interrupts are generated by a low to high transition on the INTERRLJM
INPUT (Pin 1). This input is enabled when the INTERRUPT ENABLE (Pin 2) is held low.

4. Selects which counters are to be dumped on interrupt according to DlO%(l) thou
D10%(5), which control the dump segments in memory for each counter. If any of these
variables is zero, dumping for that counter is be disabled.

5. Performs the number of interrupts (up to 32,767) set by DIO%(O) and then disables further
interrupts and restores old vectors.

Notes on the hardware operation of MODE 7:

A. After setting interrupts running, exit takes place from MODE 7 to the following program.
The data continues to be collected as a ‘background” operation. The progress of this
operation can be monitored using MODE 8. The foreground program can be
analyzing/manipulating data as it is collected.]

B. Because of the finite time that the interrupt handler takes to execute, the interrupt rate
should not exceed 4000 per second. As the rate increases, more and more of the processor
time is taken servicing the interrupts and less is available for servicing foreground tasks
until eventually no time at all is available for the foreground behwen operations and
interrupts may be skipped.

C. Latency, or the uncertainty of the instant of time when the interrupt is serviced may cause
small variations or jitter in the sampling intervals. A mapr contributor to this jitter are
other interrupts in the PS/2, especially the timer interrupt occurring 18 times/s on Level
0. If necessary this interrupt can be suppressed by reading the 8259 interrupt mask
register and disabling the timer interrupt. This can be performed by the following BASIC
code before entering MODE 7:

xxx00 IYR% - INP(&H21)
xxx10 OUT &H21, (II4Rs6 OR &HOl)

As the disk drives use the timer for run up, it should be re-enabled after interrupts by:

xxx20 OUT hH2l.IMRs6

Other interrupts can be avoided by not using the keyboard or COMW ports during data
collection. Suppressing interrupts will reduce latency to the variation of a few clock
cycles or a few microseconds.

5-12 CTM-05 USER GUIDE

Entrance data:

DlO%(O) = Number of interrupts (1 - 327673

DIO%(l) = Memory segment to dump data for Counter 1 (0 65535)

D10%(2) = Memory segment to dump data for Counter 2 (0 - 65535)

D10%(3) = Memory segment to dump data for Counter 3 (0 - 65535)

D10%(4) = Memory segment to dump data for Counter 4 (0 - 65535)

DI0%(5) = Memory segment to dump data for Counter 5 (0 65535)

D10%(6) = Start on IF0 disabled/enabled (O/l)

D10%(7) = Interrupt level (2 - 7)

DIO%(R-9) =Not used, value does not matter

NOTE: If any of the dump segments DlO%(l-5) is set to zero, then dumping of that
counter’s data is disabled. This provides a means of sclccting which counter’s data
will be stored on interrupt.

Exit data:

DlO%(O-9) Unchanged

NOTE: Hardware gating of the interrupt operation may be performed with the
INTERRUPT ENABLE input, Pin 2.

The following error codes apply to MODE 7:

FLAG% = 0 (no error, OK)
= 1 (Base Address unknown)
= 2 (MODE number out of range, <O or >ll)
= 10 (interrupt count out of range, <=O)l

MODE 8 - Return Status Of Interrupts

MODE 8 provides a means of determining the progress of an interrupt operation initiated by
MODE 7. DIO%(O) returns the stahls in terms of whether the interrupts are still active or
finished, and DIO%(l) returns the current word count (number of interrupts).

Entrance data:

DIO%(O-9) = Value irrelevant

Exit data:

DIO%(l) = Interrupt active/finished (l/O)

DI0%(2) = Current word count

PROGRAMMING 5-13

DIO%@9) - Unchanged

The following error codes apply to MODE 8:

FLAG% = 0 (no error, OK)
= 1 (Base Address unknown)
= 2 (MODE number out of range, <O or >ll)

MODE 9 -Transfer Data During/After Interrupt

MODE 9 is a general-purpose block-transfer routine that moves any number of words from
any position in any memory segment to a suitably dimensioned integer array in BASIC. Data
may be transferred in small blocks, piece-by-piece, and when it is not possible to dimension a
large integer array (to hold 32,767 words because of limitations in BASIC’s workspace).
MODE 9 is faster than using BASIC PEEK’s, which perform the same function. MODE 9 is
usually used to retrieve data after Interrupt MODE 7 has placed data in memory.

Entrance data:
DIO%(O) - Number of words to transfer (1 - 32767)

jDIO%,(l) -Starting word number (0 - DIO%(O))

DI0%(2) -Memory segment to transfer from

Dl0%(3) Starting integer array element address (offset) to transfer data to.

Dl0%(4-9) Not used, value does not matter.

NOTE: The pointer to the starting element in each array is provided by BASIC’s VARlTR
function, as follows:

DIO%(3) = VARPTR(ARWiY%(N))

It is the programmer’s responsibility to insure that integer data arrays are adequately
dimensioned to receive the data. Overrunning the array may have strange effects and cause
program crashes.

DIO%(O-9) - Unchanged. Data transferred to selected array

The following error codes apply to MODE 9:

FLAG% = 0 (no error, OK)
= 1 (Base Address unknown)
= 2 (MODE number out of range, <O or 111)
= 10 (number of words <=O)
= 11 (starting word number CO)]

5-14 CTM-05 USER GUIDE

MODE 10 - Measure Frequency

MODE 10 uses several of the unique features of the AMD9513 to measure up to nine external
frequency inputs. The TTL-compatible input signals are applied to any or all of SOURCES 1
5 or GATES 1 4.

The measurement technique makes use of a pair of counters. Counter 4 operates as a
timebase in the toggled MODE. Its input is internally gated to the F4 crystal divider source.
On the CTM-05 in BCD (default) this is a 1KHz signal. This timebase counter is loaded in
Countdown MODE with the gating interval, so that the toggled output is alternately high for
the gate interval and then low for the gate interval. Counter 5 is used to accumulate pulses
during the gate interval. Its gate (GATE 5 -Pin 12) must be connected externally to the output
of Counter 4 (COUNTER 4 OUTPUT - Pin 32) and its clock input can select from any of the
nine SOURCE or GATE inputs. While its gate is high, Counter 5 accumulates input pulses.
The state of Counter 4’s output and hence Counter 5’s gate is sensed in the routine by reading
the 9513 status register through the control port.

A measurement is performed as follows:

1. Set the MODE registers of Counters 4 and 5.

2. Load and continuously run the Timebase Counter 4.

3. Wait for the Timebase Counter output to go from high to low by reading the Status
Register.

4. Load counter 5 with zero. Counter 5 is in the count up MODE and is now disabled as its
gate is low.

5. Wait for Counter 5’s gate to go high and then low again by reading the Status Register for
Counter 4’s output. Counter 5 now contains the accumulated count in the gatlng interval.

6. Read Counter 5 and transfer data to D10%(2).

7. Return to BASIC.

Note the following features and limitations:

A. The gate interval can be from lms to 32.767s as set by DIO%(O).

8. The accumulating counter has a 16.bit resolution (1 part in 65,535). For a given frequency
range of input, the gate interval should be chosen to use this resolution effectively (that is,
don’t use a 1mS gate with a 1OKHz signal (10 counts) or a 1s gate with a 5MHz signal
(5,OOO,OL?O counts)). In the event of a counter overflow, the counter will continue counting
but there is no way of ascertaining the number of times it overflows.

C. Due to the measurement algorithm used, it can take up to three gate intervals to return a
result. With longer gate intervals (10 seconds), your computer may appear to have hung
up when it is simply waiting for the result.

D. Nine separate frequency sources can be connected to the GATE and SOURCE inputs of
the CTM5 at the same time. Measurements are, however, performed on one source at a
time. In effect, the 9513 is used to multiplex the input signals as well as count them. The
selected source is controlled by DIO%(l). Counters 1 thru 3 are unaffected by MODE 10
and can be used for other purposes.

PROGRAMMING 5-15

E. COUNTER 5 GATE must be externally jumpered to COUNTER 4 OUTPUT. This requires
an external jumper on the CTM-05 connector from Pin 12 to Pin 32.

F. The crystal oscillator precision is better than 0.01% after adjustment of the trimmer
capacitor; otherwise it will be within 0.1% (see Calibration in the manual). The maximum
frequency input of the 9513 with optimum 50% duty cycle is 7MHz.

C. The manufacturer reminds you that this is a method (not necessarily the best method) of
using the 9513 to measure frequency. You can modify this MODE to cascade accumulator
counters to 32 bits for more precision, etc. There are many possibilities.

Entrance data:

DIO%(O) = Gate interval in ms (1 - 32767)

DlO%(l) = Selects input signal source (1 - 9)
1= SOURCE 1
2 = SOURCE 2
3 = SOURCE 3
4 = SOURCE 4
5 = SOURCE 5
6=GATEl
7=GATE2
8=GATE3
9=GATE4

D10%(2-9) -Not used, value does not matter]

Exit data:

DlO%(O-1) - Unchanged

Dl0%(2) - Counts accumulated in gating interval

Dl0%(3-9) - Unchanged

The following error codes apply to MODE 10:

FLAG% = 0 (no error, OK)
= 1 (Base Address unknown)
= 2 (MODE number out of range, <O or >ll)
= 10 (gate interval out of range <l or >32,767)
= 11 (source input out of range <l or >9)

MODE 11 - Latch Counters & Save On Interrupt; Dump Data
To Selected Offset & Segment

MODE 11 is the same as MODE 7 except that the caller can pass both segment and offset for
data that is to be dumped (MODE 7 can pass only a segment). MODE 11 may be used only
after MODE 7 has been called.

MODE 11 uses the following MODE 7 parameters:

DIO%(O) =Number of interrupts (l-32767).

DI0%(6) =Start on IPO Disabled/Enabled (O/l)

5-16 CTM-05 USER GUIDE

DI0%(7) =Interrupt Level (2-7)

In addition, the caller must pass a value of -1 in any one parameter (DlO%(l) - D10%(5)) in
MODE 7 to indicate that an offset and segment will be passed in MODE 11.

Read Section 5.5 (MODE 7) for a general description of Mode 11.

Entrance data:

DIO%(O) =Memory offset for a Counter 1 data dump.

DlO%(l) =Memory segment for a Counter 1 data dump.

DI0%(2) =Memory offset for a Counter 2 data dump.

D10%(3) =Memory segment for a Counter 2 data dump.

D10%(4) =Memory offset for a Counter 3 data dump.

DI0%(5) =Memory segment for a Counter 3 data dump.

D10%(6) =Memory offset for a Counter 4 data dump.

D10%(7) =Memory segment for a Counter 4 data dump.

D10%(8) =Memory offset for a Counter 5 data dump.

Dl0%(9) =Memory segment for a Counter 5 data dump.

NOTE: Setting any of the dump segments (DlO%(l), DI0%(3), DlO%(S), D10%(7), or
D10%(9)) to zero disables that counter’s data dump. This features thus provides a
means for selecting the counter data to be stored on interrupt.

Exit data:

DIO%(O-9) =Unchanged.

NOTE: Hardware gating of the intermpt operation may be performed with the Interrupt
Enable Input (Pin 2).

Error codes for MODE 11 are as follows:

Flag% = 0 (no error, OK).
= 1 (Base Address unknown).
= 2 (MODE number out of range, < 0 or > 11).
= 10 (Interrupt count out of range).
= 17 (Interrupt Level not between 2 and 7).
= 21 (Counter 1 segment wraparound).
= 22 (Counter 2 segment wraparound).
= 23 (Counter 3 segment wraparound).
= 24 (Counter 4 segment wraparound).
= 25 (Counter 5 segment wraparound).

5.6 SUMMARY OF ERROR CODES
If for any reason the FLAG% variable is returned non-zero, then an error has occurred in the
input of data to the CALL routine. Checking for valid data occurs first in the routine and no
action occurs if an error condition exists; an immediate return takes place with the error
specified in the FLAG% variable.

A list of error codes follows:

ERROR FAULT

1 Base Address unknown. Failure to initialize Base Address using MODE 0.

2 MODE number out of range. Specifying MD% less than 0 or greater than
10.

3 Base Address out of range. Invalid base I/O address. Valid addresses must
be in range 256 thro 1020 (Hex 100 to 3FC).

10-19 These error codes apply to the data parameters being out of range for the
particular MODE selected. If D10%(4) is incorrect, Error Code 14 is
generated; or, in general, Error Code 10 + N is generated when DIO%(N)
is wrong. See each MODE for the specific error conditions.

21-25 These error codes apply only in MODE 11, when the offset added to the
word count crosses the segment boundary.

Error detection after the CALL routine is easily implemented, as follows:

Xxx10 CALL CTM5 (MD%, DIO%(O), FLAG%)
xxx20 IF FLAG% <> 0 THEN GOSUB yyyyy
. . .
. . ,
yyyyy REWr Error handling subroutine
. . .
. . .

This program is useful while debugging a new program. With a suitable error handling
subroutine, it can be left permanently in place in the program.

5.7 ASSEMBLY LANGUAGE PROGRAMS
81 CALLS IN OTHER LANGUAGES

For assembly language progmmmers, the fully commented source code for CTMS.BlN is on
the CTM-05 software distribution disk, in a file named CTMS.ASM. This source listing an
excellent starting point for adapting or customizing routines to special requirements. Any
word processor can be used to modify CTMS.ASM to your specific requirements. It can then
be assembled and turned into a loadable BASIC machine language subroutine. For detailed
instructions on using the DOS UTILITIES and MACRO-ASSEMBLER for this, print out the file
HOWTO.DOC on the distribution disk. Assembly language programming should be
attempted only by experienced programmers who are fully conversant with the hardware and
software features of the computer. The manufacturer cannot support modified drivers or
software.

6-16 CTM-05 USER GUIDE

To facilitate use of the I/O driver CALL routines with compiled BASIC, the assembly object
code file CTM5.0BJ is provided. This was assembled using the IBM Macro Assembler and
may be linked to other object modules from compilers, etc.. When using the linker, the
routine’s public name is CTM5 (see next paragraph concerning use of BASIC COMPILERI.

One quick fix to improve the speed of an interpreted BASIC program is to compile it using the
BASIC COMPILER. When you compile a BASIC program the significance of the CTM5 in the
CALL statement is no longer the same:

XXX10 CALL CT945 (MD%, X0%(0), FLAG%)

CTM5 is not interpreted by the compiler as a variable. It becomes the public name of the
subroutine that you wish to call. Before compiling your program remove lines that BLOAD
the CTM5.BIN routine and all DEF SEG statements that control the location of the routine.
These are not required as the linker will locate the CTM5 mutine in memory automatically.
After compiling your program, run the linking session as follows:

LINX yourprog.obj + ctm5.obj

CTh45.OBJ is on your distribution disk for this purpose.

5.8 MULTIPLE CTM-05s IN ONE SYSTEM
What if you wish to operate more than one CI’M-05 in a system? To avoid conflicts, each
CTM-05 must have a different Base Address and a different interrupt level (if interrupts arc
used. If on a common level, each board’s interrupt can be enabled only one at n time. F2ch
board must also be assigned its own CALL routine. To do this, first load the CTM5.BIN
routine at different locations in memory:

xxx10 DEP SEC = SO1
xxx20 BLOAD "CTM5.BIN",O
xxx30 soa = SD1 + 2048/16 'allow 2K for each routine
xXx40 DE,? SEQ = SW
xxx50 BLOAD "CTM5.BIN",O
xxx60 SO3 = SG2 + 2048/16 'etc. for other boards]

Now the CALL appropriate to eachboard can be entered as required. Note that each CALL is
preceded by a DEF SEC appropriate to that board:

yyyl0 DEP SEQ = SQl
yyy20 CALL CT-M51 (MD%, DIO%(O), FLAG%)
yyy30 DEF SEQ = SW
yyy40 CALL CTM52 (MD%, DIO%(O), FLAG%) 'etc.1

5.9 EXAMPLE PROGRAMS
The distribution disk contains several example programs:

COUNTl.BAS A five channel up counter using BASIC commands only (Dots
not use CTM5.BIN).

LOADCALL.BAS Examples of loading and initializing using the CTM5.BIN driver.

PROGRAMMING 5.19

SETFREQ.BAS

FREQ.BAS

Setting a counter to output a specific frequency.

Measuring frequency of up to 9 sources using MODE 10 of the
driver.

lNT.BAS

COUNTZBAS

QBCNT2.BAS

MSCMCNT2.C

TCMCNT2.C

MSFCNTZFOR

Sampling frequencies using interrupts.

A program equivalent to COUNTl.BAS using the aM5.BIN
driver. This is an interesting comparison with COUNT1 .BAS.

A program equivalent to COUNT2.BAS using QuickBASIC

A program equivalent to COUNT2.BAS using Microsoft C.

A program equivalent to COUNT2.BAS using Turbo C.

A program equivalent to COUNT2.BAS using Microsoft
FORTRAN.

MSl’CNT2PAS A program equivalent to COUNTZPAS using Microsoft
PASCAL.

TP5CNT2.PAS

MSCL-1NT.C

A program equivalent to COUNTZBAS using Turbo PASCAL,

An example Interrupt program using Microsoft C (Large Model)
and working through MODES 7 and 11.

5.10 INTEGER VARIABLE STORAGE
BASIC stores data in integer variables of two bytes that hold signed data in the range -32,768
to +32,767. Frequently, you will need to load counters with unsigned (positive only), 16-bit
(or 2 byte) data in the range 0 - 65,535. This section explains how to convert from the signed to
the unsigned form and vice versa.]

The signed representation used in BASIC integer variables (% type) is 2’s Complement. Each
integer variable uses 16 bits or two bytes of memory, and 16 binary bits of data is equivalent
to values from 0 to 65,535 decimal. The 2’s Complement convention interprets the most
significant bit as a sign bit so the range becomes -32,768 to +32,767 (a span of 65,535).
Numbers are represented as follows:

HIGH BYTE LOW BY-
D7 D6 D5 04 03 Da Dl DO D7 D6 D5 D4 D3 Da Dl DO

+32.76-J 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

+lO. 000 0 0 1 0 0 1 1 1 0 0 010 0 0 0
.

+l 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

-1 1 1111111 11111111
. .

-10,000 1 1 0 1 1 0 0 0 11110 0 0 0
.

-32,768 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
n

Sign Bit
1 if negative, 0 if positive

5-20 CTM-05 USER GUIDE

Integer variables are the most compact form of variable storage and so to conserve memory
and disk space and optimize execution speed, all data exchange via the CALL is through
integer type variables. This poses a programming problem when handling unsigned numbers
in the range 32,76X to 65,535.

If you wish to input or output an unsigned integer greater than 32,767 then it is nccess.wy to
work out what its 2’s Compliment signed equivalent is. As an example, assume we want to
load a 16 bit counter with 50,000 decimal. An easy way of turning this to binary is to enter
BASIC and execute PRINT HEX$(50000). This returns C350 or binary:

50,000 (Hex C350) Binary 1100 0011 0101 0000

Since the most significant bit is 1, this is stored as a negative integer and in fact the correct
integer variable value is 50,000 - 65,536 = -15,536. The programming steps for switching
between integer and real variables for representation of unsigned numbers between 0 and
65,535 is therefore:

From real variable N (0 <= N <= 65,535) to integer variable N%

xxx10 If N<+32767 then N% - N ELSE N% I N - 655361

From Integer variable N% to real variable N:

xxx10 if N% .- 0 then N-N% else N . N% + 655361

. . .

PROGRAMMING 5- 21

P

P

u

5-22 CTM-05 USER GUIDE

Appendix A

Instructions For PCF-CTMOS Callable Driver

Contents

PART 1

1.1
1.2

INTRODUCTION

Overview . . . A-3
Implementation . . A-3

PART 2

2.1

2.2

2.3

2.4

2.5

2.6

2.7

INTERFACE DRIVERS

Microsoft C & QuickC
Small Model . . .
Medium Model. .
Large Model . .
Microsoft C Example . . .

Borland Turbo.
Small Model .
Medium Model, . . .
Large Model . .
Turbo C Example .

Microsoft PASCAL
Medium Model. . .
Microsoft PASCAL Example

Borland Turbo PASCAL
Compact Model .
Large Model
Turbo PASCAL Example . . .

Microsoft FORTRAN
Large Model
FORTRAN Example.
Integer (Default) Function Or Subroutine
Microsoft FORTRAN Example .

Interpreted BASIC (GW, Compaq, IBM, Etc.)
Medium Model (Only Model Available) .
QuickBASIC

CTM5.LIB General Purpose Library

PART 3 DISTRIBUTION FILES

.
.

.

.

.

. .

.

.

.

A-5
A-5
A-6
A-6
A-7
A-6
A-0
A-9

A-10
A-11
A-11
A-11
A-12
A-13
A-13
A-14
A-15
A-16
A-16
A-16
A-17
A-17
A-16
A-1 6
A-20
A-22

. . .

Instructions For PCF-CTMO5 A - 1

a

A-2 CTM-05 USER GUIDE

PART 1: INTRODUCTION

1.1 OVERVIEW
The PCF-CTMOS software is for Pascal, C, and Fortran programmers writing data acquisition
and control routines using CI’M-05 boards. PCF-CTM05 supports all memory models for the
following languages;

l Microsoft C (V4.0 - 6.0)

l Microsoft QuickC (V1.0 - 2.0)

l Borland Turbo C (Vl .O 2.0)

l Microsoft PASCAL (V3.0 - 4.0)

l Borland Turbo PASCAL (V3.0 - 5.0)

l Microsoft FORTRAN (V4.0 - 4.1)

l QuickBASIC (V4.0 & higher)

l GW, COMPAQ, and IBM BASIC (V2.0 & higher)

The PCF-CTM05 consists of several assembly language drivers for the various supported
languages along with example programs for each language. This manual is structured to
illustrate memory model usage for each of the above languages and to include a brief example
program at the end of each language section. Full source listings are included on the supplied
disk.

This manual is not an introduction or operating guide to the supported CTM-05 board. You
should be familiar with the boards’ various operating MODES, PARAMETERS, and ERROR
codes before attempting PCF-CTM05 implementation. Refer to the main chapters of this
manual.

1.2 IMPLEMENTATION
Software drivers in the PCF-CTMO5 packages support the CTM-05. As such, WC urge you to
become familiar with the board you are using before working with this interface package.
Example programs herein do not assume any knowledge of these boards since the programs
are general in nature and do not actually implement features of any specific board. They are
limited to the actual language interface for the various languages supported.

In the following chapter, each interface driver (implemented via a CALL statement) consists
of three position-dependent parameters. These are MODE, ARGUMENT (or PARAM), and
FLAG, as follows:

MODE Type of function to be executed by the CTM-05

PARAM Function dependent arguments required for execution

FLAG Error number, if any, corresponding to selected MODE

Instructions For PCF-CTMO5 A - 3

0

A-4 CTM-05 USER GUIDE

PART 2: INTERFACE DRIVERS

2.1 MICROSOFT C (V4.0 - 6.0) 81 QUICKC (V1.0 - 2.0)

Small Model

Model: Small (“/AS”) switch on command line

PCSS3: word size pointers (offset, no DS register)

Sequence: Arguments Passed Right to Left

Default Call Convention: Arguments Passed by Value (Passing painters to a subroutine is
considered pass-by-value convention)

Example

'c'call: mscs_CTMS (&Mode, P&u-~Iw, &Flag) ;

‘c’ De&ration: extern void mscs_CTMS tint*, int’) ;

.ASM Subroutine:
The following assembly code shows how the driver handles user arguments:

3necs~CTM5 pr-oc Imar
push bp ; save base pointer
mov bp, ep I save stack pointer
. ; [bp+41 holds offset of Mode
. i Ibp+61 holds offset of Params
. i [bp+81 holds offset of Flag
. ; Program execution hero
. i
. i
POP W irestore bp & sp prior to oxit
ret ; return

3nscs~CTM5 endp

Other:

This information is provided for those wishing to create their own drivers:

l -mscs_CTM5 is declared “PUBLIC” in the .ASM file

l mscs_CTM5 is declared “extern” in the “c” file

l The .ASM file contains the “model small” directive (MASM & TASM only)

l Add leading underscore “-” to all mscs~CTh45 occurrences in .ASM file

l mscs-CTM5 is a near call

l mscs-CTM5 must be in a segment fname_TEXT (where fname is the name of the file where
mscs-CTM5 resides) if .ASM file contains mixed model procedures.

Instructions For PCF-CTMO5 A-5

Medium Model

Model: Medium (“/AM”) switch on command line

Passes: Word-size pointers (offset, no DS register)

Sequence: Arguments Passed Right to Left

Default Call Convention: Arguments Passed by V&w

Example

'c' Call: mscm-CTMS (&Mode, Params, &Flag) ;

‘c’ Declaration: extern void mscm_CTMS (int *, int * , int l) ;

.ASM Subroutine:
The following assembly code shows how the driver handles user arguments:

9EmT-cTM5 proc far ; far CALL (dword return address)
push bp ; save base pointer
mov bp,sp I sa"e atack pointer
. ; [bs.+61 holds offast of Mode
. i [bp+El holds offset of Params
. i [bp+lOl holds offset of Flag
. ; Program execution hero

POP bp
ret ireturn

-mscm_CTM5 sndp

irestore bp & sp prior to exit

Other:

This information is provided for those wishing to create their own drivers:

l -mscm-CTM5 is declared “PUBLIC” in the .ASM file

l mscm-CTM5 is declared “extern” in the “c” file

l The .ASM file contains the “model medium” directive (MASM & TASM only)

l Add leading underscore “-” to all mscm-CTM5 occurrences in .ASM file

l mscm-CTM5 is a far call

l mscm-CTM5 must be in a segment fname_TEXT (where fname is the name of the file
where mscm-CTM5 resides), else Linker returns a” error.

Large Model

Model: Large (“/AL”) switch on command line

Passes: dword size pointers (offset and DS register)

Sequence: Arguments Passed Right to Left

Default Call Convention: Arguments Passed by Value

A-6 CTM-05 USER GUIDE

Example

‘c’ Call: mscl_CTMS (&Mode, Params, &Flag) ;

‘c’ Declaration: extern void mscl_CTMS tint*, int*, int*) ;

.ASM Subroutine:
The following assembly code shows how the driver handles user arguments:

-mecl_CTl45 proc far i far CALL (dword return address)
push bp i save bass pointer
mov bp, sp ; save stack pointer
. ; [bp+Sl holds offset of Mode
. ; [bp+lOl holds offset of Params
. i [bp+Ul holds offset of Flag
. ; Program execution here

POP bp
ret I return

mscl-CTM5 ondp

ire&ore bp 6r sp prior to exit

Other:

This information is provided for those wishing to create their own drivers:

l -mscl_ffM5 is declared “PUBLIC” in the .ASM file

l mscl_CTM5 is declared “extem” in the “c” file

l The .ASM file contains the “model large” dire&w (MASM & TASM only)

l Add leading underscore “-” to all mscl~CTM5 occurrences in .ASM file

l Both code and data use dword (segment/offset) pointers

l mscl-CTM5 must be in a segment fname_TEXT (where fname is the name of the file whcrc
mscl-CTM5 rcsidcs), clsc Linker returns an wror.

Microsoft ‘C’ Example

i*tds~E-PLE.c *I
I’CTM-05 EXAMPLE OF MODE 0 l /
/*USING MICROSOFT C MEDIUM MODEL '/
,t**ttt~t~~ttt~tt~tt~.~~.~~~~~~.~..~..~...~.....~..~......*.....*.....~...,

#include "std1o.h"
#include "conio.h"

extern mecm_CTM5(int',int*,int'); /' declare driver call l /

main (1
(:

int Mode, Flag, Params[151;

/' Initialize CTM-05 using Mode 0 */

Instructions For PCF-CTMO5 A-7

Mode = 0;
Params~O]=768 /* Bass Address of Board 'I
Params[1]=101 /' POUT Divider Ratio of 10 '/
PuraIns[a1=151 /’ POUT Scur‘ce ‘I
Paranls[3]-0r I' Compare 2 Disabled */
Paranls[4]=0; I' Com~aro 1 Disabled */
ParaIns[5].Or /" Time Of Day Disabled l /

mscm_CTM5(&Modo, Params, &Flag);

if(Plag 1.0)
(

Drintf("\\n\\nMods 0 Errcr PLag . %d\\n",Flag)i
1

/* REMAINDER OF CODE */

2.2 BORLAND TURBO ‘C’ (Vl .O - 2.0)

Small Model

Model: Small C’ms”) switch on command line

hSSf3: word size pointers (offset, no DS register)

Sequence: Arguments Passed Right to Left

Default Call Convention: Arguments Passed by Value

Example

‘2’ Call: tcs-CTM5 (&Mode, Params, &Flag) :

‘C’Declaration: extern void tcs_CTM5(int*,int*,int*);

.ASM Subroutine:
The following assembly code shows how the driver handles u.ser arguments:

-tcs_cTM5 proc ne*r
push bp ; Save base DOinter

mov bp,sF ; BaVS stack DCilltor

. ; [bg+4] holds offset of Mode

. ; [bp+S] holds offset of Params

. i [bF+81 holds offset of Flag

. ; Program execution here

POP bD
ret ;return

-tcs-CTM5 endp

irestore bp .Q SP prior tc exit

A-8 CTM-05 USER GUIDE

Other:

This information is provided for those wishing to create their own drivers:

l -tcs_CTM5 is declared “PUBLIC” in the .ASM file

l tcs-CTM5 is declared “extern” in the “C” file

l The .ASM file contains the “model small” directive (MASM & TASM only)

l Add leading underscore “_” to all tcs-0245 occurrences in .ASM file

l tcs-CTM5 is a near call

l tcs-CTM5 must be in a segment fname_TEXT (where fname is the name of the file where
tcs-CTM5 resides), else Linker returns an error.

Medium Model

Model: Medium (“-mm”) switch on command line

Passes: word size pointers (offset, no DS register)

Sequence: Arguments Passed Right to Left

Default Call Convention: Arguments Passed by Value

Example

‘C’Call: tam-CT&f5 (&Mode, Params, &Flag):

‘C’Declaration: extern void tcm_CTM5(int*,int*,int*);

.ASMSubroutine:
The following assembly code shows how the driver handles user arguments:

-tCI,-CTM5 DXCC far ; dword pointer return address
Push bp ; eavo base pointer
mov bg,sg ; Save atack DChtOX

. ; [bp+61 holds offset of Mode

. ; [bp+Bl holds offset of Params

. ; tbD+lOl hold8 offset of Flag

. i Program execution hors

. i

. I
POP bp ;reStcra bp & sp DXiCX to exit
r*t irsturn

-tcm_CTl45 endp

Other:

This information is provided for those wishing to create their own drivers:

l -tcm-CTM5 is declared “PUBLIC” in the .ASM file

l tcm-CTM5 is declared “extern” in the “c” file

l The .ASM file contains the “model medium” directive (MASM & TASM only)

l Add leading underscore “-” to all tcm-CTM5 occurrences in .ASM file

Instructions For PCF-CTMOS A - 9

l tcm-CTM5 must be in a segment fname_TEXT (where fname is the name of the file where
tcm_CTM5 resides), else Linker returns an error.

Large Model

Model: Large (“-ml”) switch on command line

l%SSW dword size pointers (offset and DS register)

Sequence: Arguments Passed Right to Left

Default Call Convention: Arguments Passed by Value

Example

'C'Calkextern void tcm_CTM5(int*,int*,int+);

‘C’Declaration: extern void tcl_CTM5(int*,int*,int*);

.ASMSubroutine:
The following assembly code shows how the driver handles user arguments:

_tcl_CTM5 proc far ; dword pointer rsturn address
push bp I save base pointer
mo" bp,sp 1 save stack pointer
. i [bp+61 holds offset of Mode
. ; [bp+lOl holds offset of Params
. ; [bD+14] holds offset of Flag
. ; Program execution hero

POP bp
rat ireturn

-tcl_CTM5 endP

;restoro bp 6r sp prior to exit

Other:

This information is provided for those wishing to create their own drivers:

l _tcl_CTM5 is declared “PUBLIC” in the .ASM file

l tcl_CTM5 is declared “extem” in the “c” file

l The .ASM file contains the “model large” directive (MASM & TASM only)

l Add leading underscore “-” to all tcl-CTM5 occurrences in .ASM file

l Both code &data use dword (segment/offset) pointers

l tcl-CTM5 must be in a segment fname_TEXT (where fname is the name of the file where
tcl-CTM5 resides),clsc Linker returns an error.

A - 10 CTM-05 USER GUIDE

Turbo ‘Cl’ Example

#include "8tdio.h"
#include "coni0.h"

extern tcm~CTM5(int*,int',int')r /' declare driver call

main0
(

int Mode, nag, Params115lr

/' initialize Cm-05 using Mode 0 */

Mode = 0;
Params[01=768; /' Base Address of Board l /
Paranls[ll=lO; /' POUT Divider Ratio of lo.*/
Params[2]=15; /’ POUT Source l /
Paralns[3l=OJ /* Compare 2 Disabled l /
Paranw[41=01 I’ Co111pare 1 Disabled *I
Paranw[5]0; /’ Time Of Day Disabled ‘1

tcm_CTM5(hModo, Params, &Flag)i
if(Flag I-0)

(
printf("\\n\\nMode 0 Error PLag - %d\\n",Flag)l

1

/' REMAINDER OF CODE '/

i

2.3 MICROSOFT PASCAL (V3.0 - 4.0)

Medium Model

Model: Medium

l%SSES word size pointers (offset address only)

Sequence: Arguments Passed Left to Right

Default Call Convention: Arguments Passed by Value

Example

PASCALCall: Result: = map-CT&f5 (Varl, Var2, Var3);

‘c’ Declaration: FUNCTION msp-CTMS WAR Varl: integer;VAZ Var2;VAR
var3 : integer):integer;external;

Instructions For PCF-CTMO5 A- 11

.ASM Subrtwtlne:

The following assembly code shows how the driver handles user arguments:

msp-CTM5 proc far ; far call (dword return address)
push bg , SlVs bass pointer
mov bp,sp I save stack Pointer
. i [bp+41 holds offset of Mode
. i tbp+61 holds offset of Params
. ; [bp+S] holds offset of Flag
. i Program execution here
. i

mov *x,n ; Roturn Value for Function In ax register
POP bD I
ret 6 i return and POP hp h SP values prior to exit

msD_CTMS endp

Other:

This information is provided for those wishing to create their own drivers:

l msp-CTM5 is declared “PUBLIC” in the .ASM file

l msp-CTM5 is declared external in the calling program

l msp-CTM5 resides in segment-TEXT (default of the .model command)

Microsoft PASCAL Example
(tt*t*tt*tt*.tt~tt*.*******“.***.*”.*””***”*....***..)
(*MCPEXAMPL.PAS ')
(*CT%!-05 EXAMPLE OF MODE 0 *,
("USING MICROSOFT PASCAL ')
(**************t~*t~~~*~~~~~~**~~~~,~~~*~**~~*~**~~*~)

Parray = array[l..l61 of word;

PF02WllS : PaLTrILyI
Mode,Plag : integer;
Result : integer;

(' Define Driver Function Call l)

FUNCTION msQ_CTM5WAR Mode:intogeriVAR Params:Parray;VAR Plagrinteger):
1NTZQER;EXTZRNi

(’ MAIN l ,

BEGIN
Mode:. 0;
Params[ll:- 768;
Params121:. 101
ParamsI31:= 15;
Param.[41:= 0;
Params[51:= 08
Params[61:=0;

* Base Address of Board *)
* POUT Divider Ratio of 10 '1
* COmDILrB 2 Disabled *)
* Compare 2. Disabled l)
* Compare 1 Disabled *)
l Time Of Day Disabled l)

Result:= msp_Cna5(Modo,ParMIs,Plag);

A - 12 CTM-05 USER GUIDE

if(Res"lt <> 0) then
WritsLn('Modo 0 Error # I ',Rssult)i

(* RFMAINDER OF CODE ')

END.

2.4 BORLAND TURBO PASCAL (VER 3.0 - 4.0)
Borland’s Turbo PASCAL supports a compact and a large memory model. The compact
model supports one code segment and multiple data segments. In this model, the code
segment is limited to 64K with assembly routine calls being near calls. The data segment is
unlimited. The large model permits unlimited code and data segments with assembly calls
and data access being far calls.

The program U’INST.EXE) shipped with TURBO PASCAL can change the calling convention
so that the user may not know which convention they are using. The default state is “OFF’ 01
compact mode. In order to ascertain which mode you are using, run the ‘TINST.EXE”
pIDgT*ITl.

Compact Model

Model: Compact (Forces far call “OFF” in TINST.EXE)

Passes: dword size pointers (offset and segment)

Sequence: Arguments Passed Left to Right

Default Call Convention: Arguments Passed by Value

Example

PASCAL Call: Result: = tp_CTMS (Varl, Var2, Var3) ;

PASCALDeclaration: FUNCTION tg-CTMS(VAR Varl:integer;VAR Var2;VAR
Var3 : 1nteger):integer;sxternal;

.ASM Subroutine(Either Model):

The following assembly code shows how the driver handles user arguments:

tp-CTl45proc n**r ; mar call (single word return addrws)
push bp ; savs base pointer
mov bp,sp : savs stack pointer
. ; [bp+41 holds offset of VAR3

i [bp+61 holds offset of 'JAR2
: i [bp+81 holds offset of VARl
. i Program oxocution hers
. i
. i
mov *Lx,n ; return Value for Function In ax rsgister
POP bp
rat 12 J return P pop values prior to exit

tp_CTXSendp

Instructions For PCF-CTMO5 A- 13

Other:

This information is provided for those wishing to create their own drivers:

l Use the !$L ‘Metacommand’ to link the object file containing external function Q-CTM5, i.e.
($1 tpucCTM5I (Link to file tpucCTM5,obj).

l The VAR declarative forces pass by reference (address of variable) in the function
declaration. Default is pass by value (pushing the actual integer value onto the stack).

l tp-CTM5 is declared external in the calling program along with the type of return value
(integer). Remember that in PASCAL, functions return a value whereas procedurc~ never
do.

l The .ASM file contains an explicit declaration of the code segment containing tp-CTM5.
Turbo PASCAL handles segments in a primitive manner which is not compatible with the
‘model’ statements available in MASM or TASM. The function tp-CTM5 must reside in a
segment called ‘CODE’! Turbo PASCAL will not accept any other segment name. If
tp-CTM5 is not in segment “CODE”, the linker returns an “unresolved external” error. The
Segment Declaration for “CODE” in the .ASM file must appear as:

CODESEGMENTWORDPUBLIC
ASSUMF,CS:CODE

;CODEGOESHERE

CODE ENDS

Large Model

Model: Large (Forces far call “ON” in TINST.EXE)

Passes: dword size pointers (offset and segment)

Sequence: Arguments Passed Left to Right

Default Call Convention: Arguments Passed by Value

Example

PASCALCall: Result: = tg_CTMS (Varl, VarZ, Var3) ;
PASCALDeclaration: FUNCTION tp_CTI45(VAR Varl:integer;VAR Var2;VAR
var3: integer):integer:external;

.ASM Subroutine (Either Model):
The following assembly code shows how the driver handles user arguments:

tp-CTM5proc far t far call (dword return address)
gush bp i save base pointer
no" bp,sp ; savs stack pointer
. i [bp+41 holds dword of VAR3
. i [bp+81 holds dword of VAR2
, ; [bp+l2] holds dword of VARl
. ; Program execution hero
. i

mov ax,n
POP bp
ret 12

tFpCTld5ondp

1 re.turn value for Function In ax register

; rsturn a pop values prior to exit

A - 14 CTM-05 USER GUIDE

Other:

This information is provided for those wishing to create their own drivers:

l Use the $L ‘Metacommand’ to link the object file containing external function tp-CTM5.
For example; ($1 tpucCTM5) (Link file tpucCTM5.obj).

l The VAR declarative forces pass by reference (address of variable) in the function
declaration. Default is pass by value (pushing the actual integer value onto the stack).

l tp-CTM5 is declared external in the calling program along with the type of return value
(integer). Remember, in PASCAL, functions rehlrn a value procedures don’t.

l The .ASM file contains an explicit declaration of the code segment containing tp_CTMS.

Turbo PASCAL Example
TtSSR-1
($I-)
(Se+)
;g+;
($L TOCTM5)
f$M 65500, 16384, 655360)

~*TP~~PLE.PAS
(*cTM-o5 EXAMPLE OP MODE 0

l)’ ‘I
("WIN0 TURBO PASCAL l , (tt***ttt***t*ttt*tt***********************~**”****.****.**.****)
Type
Parray = array[l..l61 of word;
Var

Parma i Parray;
Modo,Flag : integer;
Result : intogsri

(* Define Driver punction Call ')
FUNCTION tp_CTM5(VAR ModerintsgeriVAR ParamstParray~VAR Plagginteger):

1NTEQER;EXTERNj

(' MAIN *)
BEGIN

Mode:= 0; (* Use Mode 0 l)
Parms[ll:= 768; (' Bzis~ Addrops of Board l)
Parms[21:= 10; (* POUT Divider Ratio of 10
Parms[31:= 15; (’ BOUT Source l)
Pmxuns[41:= 0; (* Compare 2 Disr&blod '1
Paralns[5]:= 0; (* Compare 1 Disabled *)
Paranw[61:= 0; (* Time Of Day Disabled l)

Result:= tp_CTldS(Mode,Params,Flag)i
if(Result <> 0) then

WriteLn('Modc 0 Error # = ',Result);

(* REMAINDER OF CODE *)

END.

instructions For PCF-CTMO5 A - 15

2.5 MICROSOFT FORTRAN (V4.0 AND UP)

Large Model

Model: Large

PaSSeS: dword size pointers (offset and DS register)

Sequence: Arguments Passed Left to Right

Default Call Convention: Arguments Passed by Reference

C
c

FORTRAN Call:

FORTRAN Declaration:

call fCTbfS(Var1, Var2, Vat3);

None necessary in FORTRAN source file (Fortran assumes that
undeclared subroutines or functions are external. It is left to the
linking process to provide the required .LIB or .OBJ files.
However, the function name should conform to ANSI
FORTRAN rules for integer functions.

.ASM Subroutines:
NOTE: FORTRAN integer functions (beginning with letters i, j, or k) return results in the

ax register whereas non-integer functions reserve 4 bytes on the calling stack for a
far pointer to the result. Non-integer functions pass their arguments starting at
location bp+lO after the “push bp” and “mov bp,sp” instructions have been
executed. The FORTRAN <--> Assembly routines predominantly use type integer
to avoid the non-integer problem. Using non-integer functions may be a problem
when returning pointers, floating point results, long integers, etc. The user should
use the IMPLICIT INTEGER (A-Z) declaration causing all Functions and Variables
to be implicitly type integer unless declared otherwix?. Also note that FORTRAN
calls by Reference. This method places the address of the passed parameters
(rather than the parameters themselves) onto the stack at the time of the call to any
function or subroutine. As a convenience, PCF-CTM05 provides two functions
(INBYT and OUTBYT) for directly addressing the registers (see example below for
syntax and usage).

FORTRAN Example
INOUT. FOR
Example for using INBYT 6r OUTBYT Functions

program inout
integer*2 port,outdat
integer'1 indat

port=0
outdat-0

do 35 i=l,lO,l
writs (",lO)

lOformat('Enter Port Addross(Decinml)i ')

rsad(*,lS) DOk-t
15fomat(13)

A-16 CTM-05 USER GUIDE

write(*,20)
aoforlnat(' Enter data to write(-1 - sxit) ')

read(=,25) outdat
25 format(i3)

iftoutdat .ZQ. -1) go to 45

write (',30) outdat
30 format (’ Data Written I ',z)

call outbyt(port,outdat)
indat=inbyt(port)

35write(*,40) indat
40format(' Data Read - ',z)
45ond

Integer (Default) Function or Subroutine

The following assembly code shows how the driver handles user arguments:

fCTM5 proc far i dword pointer return address
push bp ; ~a"o base pointer
mov bD,sp ; save stack pointer
. i [bp+61 holds offset of 'JAR3
. i [bp+lOl holds offset of 'JAB2
. ; [bp+l41 holds offset of VABl
. : Program execution hero
. i

mov aLx,n I return Value for Function In ax register
POP bp
ret i

fCTld5 ondg

NOTES:

1. VAR3 =RetumValueofFunction

2. Function fCTM5 must be declared asaninteger'2 function.

Microsoft FORTRAN Example
~““‘**‘*~.‘**~‘*‘**“*~~~.~~*“‘*.*~.~..~~~~~.~~~~~...~~~.~*..~~~~**~
C” MSFEXAMPLZ.FOR
c* CTM-05 EXAMPLE OF MODE 0
C* USING MICROSOFT FORTRAN

integer*2 Paranw(16), Mode, Flag, fCTM5

Mode = 0; (* "so Mode 0 ')
Params(l 768; (' Base Address of Board *)
Paranw(a)r= 101 (* POUT Divider Ratio of 10 ')
Paranls(3):= 151 (* POUT Source ')
Params(4):= OJ (* Compare 2 Disabled ')
Paranw(5):= 01 (* Compare 1 Disabled l)
Paranw(6):. 0~ (* Time Of Day Disabled ')

Instructions For PCF-CTMO5 A- 17

call fCTM5(Modo, Params(Flag);

if (Flag .NE. 0) then
print *,'Modo 0 Error # r',Plag

REmINDER OF CODE

2.6 INTERPRETED BASIC (GW, COMPAQ, IBM, ETC.)

Medium Model (Only Model Available)

Model: Medium (Far Calls, Single Data)

l%SS~S: word size pointers (offset and no DS Register)

sequence: Arguments Passed Left to Right

Default Call Convention: Arguments Passed by Reference

Example

BASlC Call:

BASIC Declaration:

12500 CALL CTM5(MODE%, PARAIdS%(FLAG%)

NONE NECESSARY IN BASIC SOURCE CODE. Howcvcr, a
“BLOAD” (Binary load of .BIN file) of the binary file containing
the external subroutine must be done prior to calling that
subroutine.

.ASM Subroutine:
The following assembly code shows how the driver handles user arguments:

Location 0 (Beginning of Code Segment)

jrnp cm5

CTMS proc far i far call (dword return address)
Push bp ; have base pointer
mo” bp, SD 2 save stack pointer
. ; [bp+61 holds offset of Mods
. i [bp+81 holds offset of Parme
. i [bD+lOl holds offset of Flag

. ; Program execution hero

~09 bp i restore bp 6 sp prior to exit
ret

cTM5 endp

NOTE BASIC requires that the .BIN file containing the callable subroutine
“CTM5(Mode%, I’arams%(O), Flag%)” reside at location 0 in the .ASM segment or
to “imp” (unconditional jump) to the .BIN file. A BASIC “imp ” will always jump to
location 0 in the .ASM code segment.

A - 18 CTM-05 USER GUIDE

Creation of a .BIN file is accomplished as follows:

1. Create the .ASM Source Code File ‘EXAMPLE.ASM’

2. Assemble ‘EXAMl’LE.ASM’ thus creating ‘EXAMPLE.OBJ’

3. Link ‘EXAMPLE.OBJ’ to create ‘EXAMPLE.EXE

4. Run EXE2BIN on ‘EXAMPLE.EXE’ (DOS Utility) to create
‘EXAMPLE.COM’

5. Run MAKEBIN.EXE (CTM-05 Software Utility) on ‘EXAMPLECOM to
create

‘EXAMPLE.BIN

MASM EXAMPLE :

LINK EXAMPLE ;

EXEZBIN EXAMPLE.BXE FXAMPLE.COM

MAKEBIN EXAMPLE.COM

The .BIN file is loaded at a certain location within a specified segment defined by
the “DEF SEC” command. This location is then supplied to IBM BASIC via a
pointer residing at locations &h510 and &H511. This allows the user to perform a
BLOAD at a known address in relation to BASIC’s starting address. CW-BASIC
does not supply this information so that the user must specify the address when
BLOADing the .BIN file. Notice that the example program arbitrarily uses
&HSooO for the BLOAD segment. Caution should be exercised, however, to avoid
overwriting any existing programs loaded in high memory.

The Following Example Program Illustrates a BASIC CALL:

100 ‘ttt****“**“tt*.*ttt************~.*..*...**.*********...*.**..**.**...
I.10 "BASEXAMP.BAS
la0 "CTM-05 EXAMPLE OF MODE 0
130 '*USING BASIC
140 ~**tt*tt***ttt****t***~~.**.*.*****..*~*,**~**~.~..**.**.***~.*..*..**
150 SC = &Hs000
160 DEP SEG = SD
170 BLOAD "CTMS.BIN", 0
180 DIM PARAMS%(15)
190 MODE% = 0 'USE MODE 0
200 PARAMS% = 768 'BASE ADDRESS
210 PARAMS% I 10 'POUT DIVIDER RATIO OP 10
220 PARWJ%i2, = 15
222 PARAMS%(3) - 0

'POUT SOURCE
'COMPARE 2 DISABLED

324 PARAMS%(4) = 0 'COMPARE 1 DISABLBD
226 PARAMS%(5) = 0 'TIMB OF DAY DISABLED
a30 CALL CTM5(YODE%,PARAMS%,PLAG%) 'CALL M DRIVER
--- ' 2dO
250 IF FLAG <> 0 THEN PRINT "MODE 0 ERROR #",FIAG
260 B
270 .
as0 .

etc.

Instructions For PCF-CTMO5 A - 19

QUICKBASIC

Medium Model (Only Model Avallable)

Model: Medium (Far Calls, Single Data)

Passes: word size pointers (offset and no DS Register)

Scquencc: Arguments Passed Left to Right

Default Call Convention: Arguments Passed by Reference

Example

BASIC Call:

BASIC Declaration:

CALL QBCTMS(MODE%, PAF~IMS%(O), FLAG%)

The Declaration tells QuickBASIC that the subroutine expects
three arguments and that the middle argument is to be passed
by value. Remember that BASIC normally passes all arguments
by reference (address). This is the only method for passing an
array to a subroutine in BASIC: passing the value of the address
of the array in effect passes the array by reference. To make use
of the callable assembly routine, a “.QLB” (Quick Library) file is
created out of the original .ASM source file. Although the
format of the subroutine is identical to those used by interpreted
BASIC packages, both the Quick BASK integrated development
environment (QB.EXE) and the command line comelier (BCEXE)
expect the subroutine to be in a specially formatted .QLB library
file. Unlike interpreted BASIC packages, Quick BASIC actually
links to the assembly .QLB library file so it is not necessary to
include the “jmp QBCTMY inshwtion at location 0 (of the
source file) as in interpreted BASIC.

.ASM Subroutine:
The following assembly code shows how the driver handles user arguments:

QBCTMS proc far ; far call (dword roturn address)
Push bg ; save bass pointer
mav bp,sg ; save stack pointer
. ; [bp+61 holds offset of Mode
. j [bp+81 holds offset of Parms
. i tbp+lOl holds offset of Flag

. i Program execution here

POP bp
ret

QBCTMS endp

i restore bp & sp prior to exit

NOTE When creating a .QLB file, it is good practice to make a .LIB of the same version as
a backup file.

Creation of a .QLB file is accomplished as follows:

1. Create the .ASM Source Code File ‘EXAMI’LE.ASM’

2. Assemble ‘EXAMPLE.ASM’ thus creating ‘EXAMPLE.OBJ’

A-20 CTM-05 USER GUIDE

3. Link ‘EXAMPLE.OBJ’ with the “/q” option to create ‘EXAMPLE.QLB

MASM EXAMPLE ;

LINK /q EXAMPLE ;

A .LIB file is created by:

1. Create the .ASM Source Code File ‘EXAMPLE.ASM’

2. Assemble ‘EXAMPLE.ASM’ thus creating ‘EXAMPLE.OBJ’

3. Use Utility LIB.EXE to add EXAMPLE.OBJ to ‘EXAMPLE.LIB

(Remove old EXAMPLE.OBJ from Library)

LIB EXAMl’LE.LIB -EXAMPLE

(Create New .OBJ) MASM EXAMPLE ;

(Add New .OBJ to Library) LIB FXAMPLE,LlB +EXAMPLE ;

4. To use the .QLB file in the QB integrated environment/editor, invoke
QB.EXE with the /I option (QB /I qlbname.qlb,) where qlbname.qlb is the file
containing BASICsub.

5. To use the .LIB file with the command line comelier (BCEXE), simply
specify “EXAMPLE.LIB” in the link process.

The Following Example Program Illustrates a QuickBASIC CALL:

~*ttt*ttttt***************~**.**.****************~~~*.~.**********.,.....*~
'*QBEXAMP.BAS
'*CT&l-05 EXAMPLE OF MODE 0
"USINQ QuickBASIC
Itt*t*~******t*******""."*******.*****.**."..*****.~*********~.....~....**.

DIM PABAMS%(15)
COMldON SHARED PARAMS%()

DECLARE SUB QBCTM5(MODE%, BYVAL DUKtdY%, FLAG%)

MODE% = 0 ‘USE MODE 0
PARAMS% = 768 'BASE ADDRESS OF BOARD
PARAMS% = 10 'FOVT DIVIDER RATIO OP 10
PAFcAMS%(2, = 15 'POUT SOURCE
PABAMS%(3) = 0 'COMPARE 2 DISABLED
PARAMS% = 0 'COMPARE 1 DISABLED
PAWS%(5) P 0 'TIME OF DAY DISABLED

CALL QBCTM5(MODE%,VARPTR(PARAMS%(O)),FLAOs6) 'CALL TO DRIVER

IF PLAC <>0 THE PRINT "MODE 0 ERROR #",PwLGf

IdORE CODE

2.7 CTMSLIB GENERAL PURPOSE LIBRARY
CTM5.LIB This is a general purpose library file which provides control of

the CTM-05. This file can be linked with programs written in C,
PASCAL, FORTRAN, or QuickBASIC to provide access to the
CTM-05 operating modes.

NOTE: This library cannot be used with Turbo PASCAL. However, Turbo PASCAL
may be used with Turbopsobj (see below).

The following is a brief description of the available call routines:

mscs_ctm5(mode,param,flag) Call from Microsoft C Small Model
mscm_ctm5(mode,param,flag) Call from Microsoft C Medium Model
mscl_ctm5(mode,param,flag) Call from Microsoft C Large Model
tcs_ctm5(mode,param,flag) Call from Turbo C Small Model
tcm_ctm5(mode,param,flag) Call from Turbo C Medium Model
tcl_ctm5(mode,param,flag) Call from Turbo C Large Model
msp_ctm5(mode,param,flag) Call from Microsoft PASCAL
qbctm5(mode,param,flag) Call from Microsoft QuickBASIC
fctm5(mode,param,flag) Call from Microsoft FORTRAN

Linking the Library “CTM5.lib” to the user program is accomplished after program
compilation by including it in the link line as follows:

link usergrog.obj,usergrog,,user.lib-ctm5.LIB;

userprog.obj is an object module produced by compilation of the user progmm.
userprog should be used for the resultant executable .EXE file.
userJib is any other user library, if applicable.

For Turbo PASCAL, the entry point is:

tp_ctmS (mode,param, flag) : Call from Turbo PASCAL prognmc,

The user program should have the directive

($L tpctm5) if using the PCP-CTMOS

. . .

A-22 CTM-05 USER GUIDE

PART 3: DISTRIBUTION FILES

The following is a listing, by name and category, of the files that should be on PCF-CTM05:

Drlver Source Flies

FILE NAME- DESCRIPTION

CTM5.ASM Source code for Driver MODES l-1 1.

CTM5PCF.ASM Source code of Language Interface Routines.

TPCTM5.ASM Source code for Turbo PASCAL Interface Routines.

Driver .LIB and .OBJ Files

FILE NAME -

CTM5.LIB

TPCTM5.0BJ

DESCRIPTION

Driver for C, PASCAL and FORTRAN.

CTM-05 driver for Turbo PASCAL.

Documentatlon and Executable Programs:

FILE NAME- DESCRIPTION

FILESDCC A list of all the distribution files in this package.

README.DOC Information about current software version.

HOWTOEXE.DOC information on how to create .EXE files from some of the
available files.

CTM5.DOC C, PASCAL, and FORTRAN Language Interface Info file.

ECONFIG.EXE Used to modify the CONFlG.SYS file.

Source C, PASCAL, and FORTRAN Programs

Refer to FILESDOC on the distribution diskette(s) for a complete listing of example
programs.

Documentation Flies

FILE NAME-

FILES.DOC

CTM5.DOC

READMEDOC

DESCRIPTION

A list of all the distribution files in this package.

C, PASCAL, and FORTRAN language interface info file.

Information about current sofhvarc version.

. . .

Instructions For PCF-CTMO5 A - 23

0

A-24 CTM-05 USER GUIDE

	TOC:

