|

DAS-1800 Series

Function Call Driver
User’s Guide

-

_—

@fains Operating and/Pfogramming Information

B<CITHLEY




Warranty

Hardware

Keithley Instruments, Inc. warrants that, for a period of one (1) year from
the date of shipment (2 years for Model 199 and 3 years for Models 2000,
2001, 2002, and 2010), the Keithley Hardware product will be free from
defects in materials or workmanship. This warranty will be honored
provided the defect has not been caused by use of the Keithley Hardware
not in accordance with the instructions for the produet. This warranty
shall be null and void upon: (1) any madification of Keithley Hardware
that is made by other than Keithley and not approved in writing by
Keithley or (2) operation of the Keithley Hardware outside of the
environmental specifications therefore,

Upon receiving notification of a defect in the Keithley Hardware during
the warranty period, Keithley will, at its option, either repair or replace
such Keithley Hardware. During the first ninety days of the warranty
period, Keithley will, at its option, supply the necessary on site labor to
return the product to the condition prior to the notification of a defect.
Failure to notify Keithley of a defect during the warranty shall relieve
Keithley of its obligations and liabilities under this warranty.

Other Hardware

The portion of the product that is not manufactured by Keithley (Other
Hardware) shall not be covered by this warranty, and Keithley shall have
no duty of obligation to enforce any manufacturers’ warranties on behalf
of the customer. On those other manufacturers’ products that Keithley
purchases for resale, Keithley shall have no duty of abligation to enforce
any manufacturers’ warranties on behalf of the customer.



Software

Keithley warrants that for a period of one (1) year from date of shipment
(2 years for Model 199 and 3 years for Models 2000, 2001, 2002, and
2010), the Keithley produced portion of the software or firmware
(Keithley Software) will conform in all material respects with the
published specifications provided such Keithley Software is used on the
product for which it is intended and otherwise in accordance with the
instructions therefore. Keithley does not warrant that operation of the
Keithley Software will be uninterrupted or error-free and/or that the
Keithley Software will be adequate for the customer's intended
application and/or use. This warranty shall be null and void upon any
modification of the Keithley Software that is made by other than Keithley
and not approved in writing by Keithley.

If Keithley receives notification of a Keithley Software nonconformity
that is covered by this warranty during the warranty period, Keithley will
review the conditions described in such notice. Such notice must state the
published specification(s) to which the Keithley Software fails to conform
and the manner in which the Keithley Software fails to conform to such
published specification(s} with sufficient specificity to permit Keithley to
correct such nonconformity. If Keithley determines that the Keithley
Software does not conform with the published specifications, Keithley
will, at its option, provide either the programming services necessary 1o
correct such nonconformity or develop a program change to bypass such
nonconformity in the Keithley Software. Failure to notify Keithley of a
nonconformity during the warranty shall relieve Keithley of its
obligations and liabilities under this warranty.

Other Software

OEM software that is not produced by Keithley (Other Software) shall not
be covered by this warranty, and Keithley shalt have no duty or obligation
to enforce any OEM's warranties on behalf of the customer.

Other Items

Keithley warrants the following items for 90 days from the date of
shipment: probes, cables, rechargeable batteries, diskettes, and
documentation.



Items not Covered under Warranty

This warranty does not apply to fuses, non-rechargeable batteries,
damage from battery leakage, or problems arising from normal wear or
failure to follow instructions.

Limitation of Warranty

This warranty does not apply to defects resulting from product
modification made by Purchaser without Keithley's express written
consent, or by misuse of any product or part,

Disclaimer of Warranties

EXCEPT FOR THE EXPRESS WARRANTIES ABOVE KEITHLEY
DISCLAIMS ALL OTHER WARRANTIES, EXPRESS OR IMPLIED,
INCLUDING WITHOUT LIMITATION, ALL IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
PARTICULAR PURPOSE. KEITHLEY DISCLAIMS ALL
WARRANTIES WITH RESPECT TO THE OTHER HARDWARE AND
OTHER SOFTWARE.

Limitation of Liability

KEITHLEY INSTRUMENTS SHALL IN NO EVENT, REGARDLESS
OF CAUSE, ASSUME RESPONSIBILITY FOR OR BE LIABLE FOR:
(1) ECONOMICAL, INCIDENTAL, CONSEQUENTIAL, INDIRECT,
SPECIAL, PUNITIVE OR EXEMPLARY DAMAGES, WHETHER
CLAIMED UNDER CONTRACT, TORT OR ANY OTHER LEGAL
THEORY, (2) 1.OSS OF OR DAMAGE TO THE CUSTOMER'S DATA
OR PROGRAMMING, OR (3) PENALTIES OR PENALTY CLAUSES
OF ANY DESCRIPTION OR INDEMNIFICATION OF THE
CUSTOMER OR OTHERS FOR COSTS, DAMAGES, OR EXPENSES
RELATED TO THE GOODS OR SERVICES PROVIDED UNDER
THIS WARRANTY.



DAS-1800 Series
Function Call Driver
User’s Guide

©1997, Keithley Instruments, Inc.
Al rights reserved.
Cleveland, Ohio, U.S.A.
Third Printing, August 1997
Document Number: 77160 Rev, C



Worldwide Addresses

Keithley Instruments, Inc.
28775 Aurora Road
Cleveland, Ohio 44139
(440) 248-0400

Fax: (440) 248-6168
http://www.keithley.com

CHINA

Keithley Instruments China

Yuan Chen Xin Building, Room 705
No. 12 Yumin Road, Dewei, Madian
Beijing, China 100029
8610-2022856

Fax: 8610-2022892

FRANCE

Keithley Instruments SARL
BP 60

3 allée des Garays

91122 Palaiseau Cédex
31-6-0115155

Fax: 31-6-0117726

GERMANY

Keithley Instruments GmbH
Landsberger Swraie 65

82110 Germering
49-89-849307-0

Fax: 49-89-84930759

GREAT BRITAIN

Keithley Instruments, Ltd.
The Minster

58 Portman Road

Reading, Berkshire RG30 1EA
44-01734-5756606

Fax: 44-01734-596469

ITALY

Keithley Instruments SRL
Viale 8. Gimignano 38
20146 Milano
39-2-48303008

Fax: 39-2-48302274

NETHERLANDS
Keithley Instruments BV
Avelingen West 49

4202 MS Gorinchem
31-(0)183-635333

Fax: 31-(0)183-630821

SWITZERLAND
Keithley Instruments SA
Kriesbachstrasse 4

8600 Diibendorf
41-1-8219444

Fax: 41-1-8203081

TAIWAN

Keithley Instruments Taiwan
1, Ming-Yu First Street
Hsinchu. Taiwan, R.O.C.
886-35-778462

Fax: 886-35-778455



Manual Print History

The print history shown below lists the printing dates of all Revisions and Addenda created for
this manual. The Revision Level letter increases alphabetically as the manual undergoes
subsequent updates. Addenda, which are released between Revisions, contain important
change information that the user should incorporate immediately into the manual. Addenda
are numbered sequentially. When a new Revision is created, all Addenda associated with the
previous Revision of the manual are incorporated into the new Revision of the manual. Each
new Revision includes a revised copy of this print history page.

Revision B (Document Number 77160 Rev. B) ...........c..ccocevvenvenn.. April 1994
Revision C (Document Number 77160 RFV. C) v, August 1997
|

All Keithley product names are trademarks or registered trademarks of Keithley Instruments, Inc.

Other brand and product names are trademarks or registered trademarks of their respective holders.



Safety Precautions

The following safety precautions should be observed before using this
product and any associated instrumentation. Although some instruments
and accessories would normally be used with non-hazardous voltages,
there are situations where hazardous conditions may be present.

This product is intended for use by qualified personnel who recognize
shock hazards and are familiar with the safety precautions required to
avoid possible injury. Read the operating information carefully before
using the product.

The types of product users are:

Responsible body is the individual or group responsible for the use and
maintenance of equipment, and for ensuring that operators are adequately
trained.

Operators use the product for its intended function. They must be trained
in electrical safety procedures and proper use of the instrument. They
must be protected from electric shock and contact with hazardous live
circuits.

Maintenance personnel perform routine procedures on the product to
keep it operating, for example, setting the line voltage or replacing
consumable materials. Maintenance procedures are described in the
manual. The procedures explicitly state if the operator may perform them.
Otherwise, they should be performed only by service personnel.

Service personnel are trained to work on live circuits, and perform safe
installations and repairs of products. Only properly trained service
personnel may perform installation and service procedures.



Exercise extreme caution when a shock hazard is present. Lethal voltage
may be present on cable connector jacks or test fixtures. The American
National Standards Institute (ANSI) states that a shock hazard exists
when voltage levels greater than 30V RMS, 42.4V peak, or 60VDC are
present. A good safety practice is to expect that hazardous voltage is
present in any unknown circuit before measuring.

Users of this product must be protected from electric shock at all times.
The responsibie body must ensure that users are prevented access andfor
insulated from every connection point. In some cases, connections must
be exposed to potential hurman contact. Product users in these
circumstances must be trained to protect themselves from the risk of
electric shock. If the circuit is capable of operating at or above 1000 volts,
no conductive part of the circuit may be exposed.

As described in the International Electrotechnical Commission (IEC)
Standard IEC 664, digital multimeter measuring circuits (e.g., Keithley
Models 175A, 199, 2000, 2001, 2002, and 2010) measuring circuits are
Installation Category II. All other instruments’ signal terminals are
Installation Category I and must not be connected to mains.

Do not connect switching cards directly to unlimited power circuits. They
are intended to be used with impedance limited sources. NEVER connect
switching cards directly to AC mains. When connecting sources to
switching cards, install protective devices to limit fault current and
voltage to the card.

Before operating an instrument, make sure the line cord is connected to a
properly grounded power receptacle. Inspect the connecting cables, test
leads, and jumpers for possible wear, cracks, or breaks before each use.

For maximum safety, do not touch the product, test cables, or any other
instruments while power is applied to the circuit under test. ALWAYS
remove power from the entire test system and discharge any capacitors
before: connecting or disconnecting cables or jumpers, installing or
removing switching cards, or making internal changes, such as instailing
o removing jumpers.

Do not touch any object that could provide a current path to the common
side of the circuit under test or power line (earth) ground. Always make
measurements with dry hands while standing on a dry, insulated surface
capable of withstanding the voltage being measured.



Do not exceed the maximum signal levels of the instruments and
accessories, as defined in the specifications and operating information,
and as shown on the instrument or test fixture panels, or switching card.

When fuses are used in a product, replace with same type and rating for
continued protection against fire hazard.

Chassis connections must only be used as shield connections for
measuring circuits, NOT as safety earth ground connections.

If you are using a test fixture, keep the lid closed while power is applied to
the device under test. Safe operation requires the use of a lid interlock.

Ifa @ screw is present, connect it to safety earth ground using the wire
recommended in the user documentation.

The A symbol on an instrument indicates that the user should refer to
the operating instructions located in the manual.

The A symbol on an instrument shows that it can source or measure
1000 volts or more, including the combined effect of normal and common
mode voltages. Use standard safety precautions to avoid personal contact
with these voltages.

The WARNING heading in a manual explains dangers that might result
in personal injury or death. Always read the associated information very
carefully before performing the indicated procedure.

The CAUTION heading in a manual explains hazards that could damage
the instrument. Such damage may invalidate the warranty,

Instrumentation and accessories shall not be connected to humans.

Before performing any maintenance, disconnect the line cord and all test
cables,

To maintain protection from electric shock and fire, replacement
components in mains circuits, including the power transformer, test leads,
and input jacks, must be purchased from Keithley Instruments. Standard
fuses, with applicable national safety approvals, may be used if the rating
and type are the same. Other components that are not safety related may
be purchased from other suppliers as long as they are equivalent to the
original component. (Note that selected parts should be purchased only



through Keithley Instruments to maintain accuracy and functionality of
the product.) If you are unsure about the applicability of a replacement
component, call a Keithley Instruments office for information.

To clean the instrument, use a damp cloth or mild, water based cleaner.
Clean the exterior of the instrument only, Do not apply cleaner directly to
the instrument or allow liquids to enter or spill on the instrument.



The information contained in this manual is believed to be accurate and reliable. However, Keithley
Instruments, Inc., assumes no responsibility for its use or for any infringements of patents or other rights
of third parties that may result from its use. No license is granted by implication or otherwise under any
patent rights of Keithley Instruments, Inc.

KEITHLEY INSTRUMENTS, INC., SHALL NOT BE LIABLE FOR ANY SPECIAL, INCIDENTAL,
OR CONSEQUENTIAL DAMAGES RELATED TO THE USE OF THIS PRODUCT, THIS
PRODUCT IS NOT DESIGNED WITH COMPONENTS OF A LEVEL OF RELIABILITY
SUITABLE FOR USE IN LIFE SUPPORT OR CRITICAL APPLICATIONS.

Refer to your Keithley Instruments license agreement and Conditions of Sale document for specific
warranty and lability information.

Keithley is a trademark of Keithley Instruments, Inc. All other brand and product names are trademarks
or registered trademarks of their respective companies.

@ Copyright Keithley Instruments, Inc., 1991, 1993, 1994,

All rights reserved. Reproduction or adaptation of any part of this documentation beyond that permitted
by Section 117 of the 1976 United States Copyright Act without permission of the Copyright owner is
unlawful.

Keithley Instruments, Inc,
28775 Aurora Road Cleveland, OH 44139
Telephone: (440) 248-0400 ¢ FAX: (440) 248-6168



Table of Contents

Preface
Getting Started
Technical Support. . ... ... .. . 1-4
Available Operations
System OperationS . . . ... ...t 2-1
Initializing the Driver . ........ ... .. .. ... ... ... .22
InitalizingaBoard . ....... ... ... ... ... L 22
Retrieving RevisionLevels . .. ....... .. ... ... ... ... .2-4
Handling Errors. .. ... ... .. .. ... o o L 2-4
Analog Input Operations . ......... ... ... ... ., .2-4
OperationModes. .. ... .. ... . ... . . .2-5
Memory Allocation and Management. . . .............. .2-6
GainS . . o e e .2-9
Channels . ... ... .. o i i 2-10
Specifying Channels When Using EXP-1800 Expansion
Boards (DAS-1800ST/HR Series Only). .. ......... 2-11
Acquiring Samples from a Single Channel ... ... .. .. 2-13
Acquiring Samples from a Group of Consecutive
Channels. ... ... . . . i 2-13
Acquiring Samples Using a Channel-Gain Queue. . . .. 2-14
ConversionModes. .. ....... ... ... ... .. 2-15
Clock Sources .. ... .o i 2-15
PacerClock. ... ... ... ... i 2-16
Burst Mode Conversion Clock. . .................. 2-17
BufferingModes . . ... ... ... ... oo 2-18
Triggers ... 2-19
TriggerSources ..., ... .. i 2-19
Internal Trigger ... ....... ... .. ... ... 2-19
Analog Trigger ... ........ .. ... ... . ..... 2-20
Digital Trigger. . .. ... ... i i . 2-22 |
Post-Trigger Acquisition ........................ 2-23
Pre-Trigger Acquisition .. ....................... 2-24
About-Trigger Acquisition. . ..................... 2-25
Hardware Gates. . ........ ... .. ... .. .. .. .., .2-25
Analog Output Operations (DAS-1800HC Series Only). .. .. L 2-26




Operation Modes. ................................ 2-27
Memory Allocation and Management ................ 2-27
Channels . ... .. ... . 2-28
Clock Source. ..o 2-29
BufferingModes .. .................... ... ... ... 2-30
Digital I/O Operations . ... .........o0vviiniiiniin.. 2-31
Operation Modes. . .............. ... ... ... 2-31
Memory Allocation and Management ................ 2-33
Digital Input Channel .. ........................... 2-34
Digital Output Channel . ... ........................ 2-35
Clock Source......... ... i, 2-36
BufferingModes........... ... ... ... ... 2-38
Programming with the Function Call Driver
How the Driver Works. . ........ ... ..., .3-1
Programming Overview..................... ...l 3-10
Preliminary Tasks. .. ... ...t 3-11
Operation-Specific Programming Tasks . ................] 3-11
Analog Input Operations. .. ...............cooovuiun. 3-11
SingleMode........... ... .. 3-12
InterruptMode . .. ....... ... .. 3-12
DMAMode ... i 3-15
Analog Output Operations (DAS-1800HC Series Only) . . [3-18
Single Mode. ... ... ... 3-18
Interrupt Mode . ......... ... 3-18
Digital I/O Operations. ... ........... oo vivinni., 3-20
SingleMode. ........oooii i 3-20 |
InterruptMode .. ......... .. .. . 3-21
Language-Specific Programming Information ............. 3-22
C/CH Languages . . . ..ovviine i 3-23
Allocating and Assigning Dynamicaily Allocated
Memory Buffers . ..... ... ... .. L. 3-23
Single Memory Buffer ........................ 3-23
Multiple Memory Buffers. .. ................... 3-24
Accessingthe Data ........................... 3-25
Dimensioning and Assigning Local Arrays........... 3-25
Single Array . .......... ... 3-26
Multiple Arrays. ........ ... .. . i 13-26 |
Creating a Channel-Gain Queue ................... 3-27
Programming in Microsoft C/C++. . ................ 3-28
Programming in Borland C/C++ .. ................. 3-29
Programming in Microsoft QuickC for Windows . . .. .. 3-30




Programming in Microsoft Visual C++.............
PascalLanguages . ....................cciinnnn..
Allocating and Assigning Dynamically Allocated
Memory Buffers ............................
Reducing the Memory Heap . ..................
Single Memory Buffer .......................
Multiple Memory Buffers. ....................
AccessingtheData . .........................
Dimensioning and Assigning Local Arrays..........
Single Array .............. ... ... .. ...
Multiple Arrays. ..........ooiiii i,
Creating a Channel-Gain Queue ..................
Programming in Borland Turbo Pascal (for DOS). . ...
Programming in Borland Turbo Pascal for Windows . .
Microsoft Visual Basic for Windows .................
Allocating and Assigning Dynamically Allocated
Memory Buffers . .............. ... ... . ...,
Single Memory Buffer .......................
Muitiple Memory Buffers.....................
AccessingtheData ..........................
Dimensioning and Assigning Local Arrays..........
Single Array . .......... .. e
Multiple Arrays. ........ ... . ... .o
Creating a Channel-Gain Queue ..................
Programming in Microsoft Visual Basic for Windows ,
BASIC Languages. . ............coiiiiinnneiain.
Allocating and Assigning Dynamically Allocated
Memory Buffers . ...........................
Reducing the Memory Heap...................
Single Memory Buffer .......................
Multiple Memory Buffers. . ...................
Accessingthe Data . .........................
Dimensioning and Assigning Local Arrays..........
Single Array ....... ... o e
Multiple Arrays. ........... ... ... ...
Creating a Channel-Gain Queue ..................
Programming in Microsoft QuickBasic (Version 4.0). .
Programming in Microsoft QuickBasic (Version 4.5) . .
Programming in Microsoft Professional Basic
(Version 7.0) . ..o oo
Programming in Microsoft Visual Basic for DOS. . ...

3-31
3-31

3-32
3-32

3-33

3-34

3-35
3-35

3-36
3-36

3-37

3-38

3-39

3-40

3-40
3-40

3-41

3-42
3-42
3-42

3-43

3-44

3-45

3-46

3-46
3-46
3-46

3-47

3-48
3-48

3-49
3-49

3-50

3-51

3-52

3-53

3-55




Vi

Function Reference

DASI800 DevOpen ... ..o .4-8
DASI1800_GetDevHandle . . ........ ...t e 4-11
K. ADRead. . ... . e 4-14
K BufListAdd .. ... e e 4-17
K_BufListReset . ..........coiiinniiiiii i 14-21
K _ClearFrame . ........oi ittt et ne i nenennd 4-23
K _CloseDriver. . ..ot e e e 4-25
K_ClrAboutTrig. .. ... e 4-27
K _CIrADFreeRun . ................ .o 4-29
K ClrContRun. ... 4-31
K DASDevInit ........ ... ... .o 4-33
K DAWIte ... e 4-35
K. DIRead ....... ... ... .0 4-38
K DMAAlloc ... i 4-41
K DMAFTeE . ..o e e e 4-45
K o DMAStart . . . e e e e 4-47
K DMAStatus . ... i e 4-49
K DMASIOp ..o e e 4-53
K DOWHLE ... . o 4-56
K FormatChnGAry. ... ... ... i 4-59
K FreeDevHandle. ............ ... 4-61
K _FreeFrame. .. ... ... 0t cnen o 4-63
K GetAboutTrig ... oov i e 4-65
K_GetADCommonMode. . ........... ..., 4-67
K_GetADConfig .. ... i 4-69
K GetADRrame. ..o e e e 4-71
K GetADFreeRun. ....... ... iiiiiniiaenn, 4-73
K GtADMoOde .. ..o ee e e 4-76
K GetADTrig ... oo e e 4-78
K GetBul. .. ... e 4-82
K GetBurstTicks . .. ... i e 4-85
Ko GetChn ..o e e e 4-38
K GetChnGAry. ..o e e 4-91
K o GetClK. ..o e 4-93
K GetCIKRAte . .. ..o e e e e e 4-96
K.GetContRun .......... ..., 4-99
K GetDAFrame, .. .....oov ittt iiienie e, 4-102
K GetDevHandle, .............. ... ..., 4-105
K GetDIFrame . ......... it 4-107
K _GetDITrig . ..o e e 4-110
K GetDOCurVal . ... . i i i i, 4-113




K GetDOFrame. .. .o it e e it eieereianns
K GetBrrMSsg. . ..o e e e e e
K GetExtCIKEdge . ... ..o e e e e s
L
Ko GetGate . . oot e e e e e
K GetShellVer. . ... ... i i
K GetSSH . ... i e e e
K_GetStartStopChn. ... ... ..o oo
K GetStartStopG .. ..ot i e
G £ =1 I ¢ P
K_GetTrigHyst. . ... o e
K o GetVer. .o i e e it
K IntALOC. ..o e e e e e
K ImtBree. . . i i i i et e e e e
K oIntStart. ... i e e e
KoIntStatus ...t i e i e et e
KoIntStop. o e e
KMakeDMABuUf ......... ...t iiinanans
K MoveArrayToBuf .......... ... .. ... ... ot
K_MoveBufToArray ....... ..o,
K OpenDriver .. ..o i
K _RestoreChaGAry. . ..o
K_SetAboutTrig. .. ... ... i
K SetADCommonMode . ........... ..
K_SetADConfig. . .....ocvvii i
K SetADFreeRun . ...........cciiiiiiiiiiinienn.
K SetADMode ... ..ot i
K SetADTrIg. ..o i i e e
K SetBuf..........co e
K SetBufl .. ... i e
K_SetBurstTicks . ...t i e
K SetChn, ... e
K SetChnGAry .. ..ot i e it
Ko Stk . o e e e e
K SetClkRate .. ..ot ittt eie e
K SetContRun. ...t
K SetDITrig. . .o e e e e e
K SetDMABuf . ... e i eeeeens

{4-116
[4-119
{4-121
14-124

4-126
4-129
4-132
4-135
4-138
4-142
4-145
4-148
4-151
4-154
4-156
4-158
4-162
4-165
4-167
4-169
4-171
4-174
4-176
4-179
4-181
4-183
4-185
4-187
4-191
4-194
4-196
4-198

4-201

4-204

4-207

4-210

4-212

4-215
4-218

4-220

4-222

4-224

vii



viii

K SetStartStopChn . .......... ... ..o i

K_SetStartStopG . ... o i e
K o SetTrig. ..o i e e e
K SetTrigHyst. ... .. o i e

| Error/Status Codes|

Data Formats

Converting Raw Countsto Voltage . . ................... .
Converting Voltage toRaw Counts .. ................... .

Specifying an Analog Output Value

MAS-1800HC Serjesonly) . .......oov i, .

Specifying an Analog TriggerLevel. .. ... ............

Specifying a Hysteresis Value. .. .................... .

Index

List of Figures

Figure 2-1. Example of Logical Channel Assignments . . ..
Figure 2-2. Trigger Events for Analog Triggers .........
Figure 2-3. Using a Hysteresis Value. .. ...............
Figure 2-4. Trigger Events For Digital Triggers ... ......
Figure 2-5. DigitalInput Bits.................. ... ...
Figure 2-6. Digital Output Bits. . . ....................

Figure 3-1. Single-Mode Function. ................... .
Figure 3-2. Interrupt-Mode Operation . ................ .

B-1

.B-3

.B-3

B-4

,2-12

. 2-20

. 2-22

2-23

. 2-34

. 2-35

.3-2

.33




List of Tables

Table 2-1.
Table 2-2.
Table 3-1.
Table 3-2.
Table 3-3.
Table 3-4,
Table 3-5.

Table 3-6.
Table 3-7.
Table 3-8,
Table 4-1.
Table 4-2.

Table A-1.
Table B-1.

Supported Operations .....................
AnalogInputRanges......................,

A/DFrameElements., .. ................... .
D/A FrameElements. .. .............covv... .
DIFrameElements .. ..................... .
DO Framc Elements ...................... .

Setup Functions for Interrupt-Mode

Analog Input Operations . .. ................
Setup Functions for DMA-Mode

Analog Input Operations . . .................
Setup Functions for Interrupt-Mode

Analog Output Operations. . ................
Setup Functions for Interrupt-Mode

Digital Input and Digital Output Operations. . . .

Functions.............. .. i, .
Data Type Prefixes ................covvutn .

Error/Status Codes. .. ........ oo vin...

Span Values For Data Conversion Equations . . ...

2-10







Preface

The DAS-1800 Series Function Call Driver User’s Guide describes how
to write application programs for DAS- 1800 Series boards using the
DAS-1800 Series Function Call Driver. The DAS-1800 Series Function
Cail Driver supports the following DOS-based languages:

e Microsoft® QuickBasic™ (Versions 4.0 and 4.5)

e Microsoft Professional Basic (Version 7.0 and higher)

e Microsoft Visual Basic™ for DOS (Version 1,0)

e Microsoft C/C++ (Version 4.0 and higher)

e Boriand® C/C++ (Version 1.0 and higher)

¢ Borland Turbo Pascal® for DOS (Version 6.0 and higher)
The DAS-1800 Series Function Call Driver also supports the following
Windows™-based languages:

e Microsoft Visual Basic for Windows (Version 1.0 and higher)
s Microsoft QuickC® for Windows (Version 1.0)

o Microsoft Visual C++™ (Version 1.0)

¢ Borland Turbo Pascal for Windows (Version 1.(} and higher)

Xi



xii

The manual is intended for application programmers using a DAS-1800
Series board in an IBM® PC AT® or compatible computer. It is assumed
that users have read the user’s guide for their board to familiarize
themselves with the board’s features, and that they have completed the
appropriate hardware installation and configuration. It is also assumed
that users are experienced in programming in their selected language and
that they are familiar with data acquisition principles.

The DAS-1800 Series Function Call Driver User’s Guide is organized as
follows:

Chapter | contains the information needed to install the DAS-1800
Series Function Call Driver and to get help.

Chapter 2 contains the background information needed to use the
functions included in the DAS-1800 Series Function Call Driver.

Chapter 3 contains programming guidelines and language-specific
information related to using the DAS-1800 Series Function Call
Driver.

Chapter 4 contains detailed descriptions of the DAS-1800 Series
Function Call Driver functions, arranged in alphabetical order.

Appendix A contains a list of the error codes returned by DAS-1800
Series Function Call Driver functions.

Appendix B contains instructions for converting raw counts to
voltage and for converting voltage to raw counts.

An index completes this manual.

Keep the following conventions in mind as you use this manual:

References to DAS-1800 Series boards apply to all members of the
DAS-1800 family, When a feature applies to a particular board, that
board’s name is used.

References 1o BASIC apply to all DOS-based BASIC languages
(Microsoft QuickBasic, Microsoft Professional Basic, and Microsoft
Visual Basic for DOS). When a feature applies to a specific language,
the complete language name is used, References to Visual Basic for
Windows apply to Microsoft Visual Basic for Windows.

Keyhoard keys are enclosed in square brackets ({]).



1

Getting Started

The DAS-1800 Series Function Call Driver is a library of data acquisition
and control functions (referred to as the Function Call Driver or FCD
functions). It is part of the following two software packages:

o DAS-1800 standard software package - This is the software
package that is shipped with DAS-1800 Series boards; it includes the
following:

Libraries of FCD functions for Microsoft QuickBasic, Microsoft
Professional Basic, and Microsoft Visual Basic for DOS.

Support files, containing such program elements as function
prototypes and definitions of variable types, which are required
by the FCD functions.

Utility programs, running under DOS, that allow you to
configure, calibrate, and test the functions of DAS-1800 Series
boards.

Language-specific example programs.

e ASO-1800 software package - This is the Advanced Software
Option for DAS-1800 Series boards. You purchase the ASO-1800
software package separately from the board, it includes the following:

Libraries of FCD functions for Microsoft C/C++, Borland
C/C++, and Borland Turbo Pascal.

Dynamic Link Libraries (DLLs) of FCD functions for Microsoft
Visual Basic for Windows, Microsoft QuickC for Windows,
Microsoft Visual C++, and Borland Turbo Pascal for Windows.

Support files, containing program elements, such as function
prototypes and definitions of variable types, that are required by
the FCD functions,

1-1



1-2

- Utility programs, running under DOS and Windows, that allow
you to configure, calibrate, and test the functions of DAS-1800
Series boards.

— Language-specific example programs,

Before you use the Function Call Driver, make sure that you have
installed the software, set up the board, and created a configuration file
using the setup and installation procedures described in Chapter 3 of the
user's guide for your DAS-1800 Series board.

If you need help installing or vsing the DAS-1800 Series Function Call
Driver, call your local sales office or the Keithley Instruments, Inc.

Annlicatione Fnoinaarine Danartment at:
Appiications BEngineering Department att

(440) 248-1520
Monday - Friday, 8:00 a.m. - 6:00 pMm., Eastern Time

Getting Started



An applications engineer will help you diagnose and resolve your

problem over the telephone. Please make sure that you have the following
information available before you call:

DAS-1800ST/HR
Series Board
Configuration

Computer

Operating System

Software package

Compiler
(if applicable)

Accessories

Model

Serial #

Revision code

Base address setting
Interrupt level setting
Number of channels
Input (S.E. or Diff.)
Mode (uni. or bip.)
DMA chan(s)
Number of SSH-8s
Number of EXPs.

Manufacturer

CPU type

Clock speed (MHz)
KB of RAM

Video system
BIOS type

DOS version
Windows version
Windows mode

Name

Serial #
Version
Invoice/Order #

Language
Manufacturer
Version

Type
Type
Type
Type
Type
Type
Type
Type

1-3



Technical Support

Before returning any equipment for repair, call Keithley Instruments, Inc.,
for technical support at:

(440) 248-1520
Monday - Friday, 8:00 A.M. - 6:00 P.M., Eastern Time

An applications engineer will help you diagnose and resolve your
problem over the telephone.

If a telephone resofution is not possible, the applications engineer will
issue you a Return Material Authorization (RMA) number and ask you to
return the equipment. Include the RMA number with any documentation
regarding the equipment.

When returning equipment for repair, include the following information:
e Your name, address, and telephone number.

e The invoice or order number and date of equipment purchase.

e A description of the problem or its symptoms.

e The RMA number on the outside of the package.

Repackage the equipment using the original anti-static wrapping, if
possibie, and handle it with ground protection. Ship the equipment to:

ATTN: RMA #

Repair Department
Keithley Instruments, Inc.
31300 Bainbridge Road
Cleveland, OH 44139

Telephone {440) 248-1520
FAX (440) 248-6168

Note: If you are submitting your equipment for repair under warranty,
you must include the invoice number and date of purchase.

To enable Keithley Instruments, Inc., to respond as quickly as possible,
you must include the RMA number on the outside of the package.

Getting Started



2

Available Operations

This chapter contains the background information you need to use the
FCD functions to perform operations on DAS-1800 Series boards. The
supported operations are listed in Table 2-1.

Table 2-1. Supported Operations

Operation Page Reference

System page 2-1

Analog output page 2-26

System Operations

This section describes the miscellaneous operations and general

maintenance operations that apply to DAS-1300 Series boards and to the
DAS-1800 Series Function Call Driver. It includes information on

initializing a driver, initializing a board, retrieving revision levels, and
handling errors.

2-1



Initializing the Driver

Before you can use any of the functions included in the DAS-1800 Series
Function Call Driver, you must initialize the driver using one of the
following driver initialization functions:

Board-specific driver initialization function - If you want to
initialize the DAS-1800 Series Function Call Driver only, use the
board-specific driver initialization function DAS1800 DevOpen.
You specify a configuration file; DAS1800_DevOpen initializes the
driver according to the configuration file you specify.

Generic driver initialization function - If you want to initialize
several different Keithley DAS Function Call Drivers from the same
application program, use the generic driver initialization function
K_OpenDriver. You specify the Keithley DAS board you are using,
the configuration file that defines this particular use of the driver, and
the driver handle (a name that uniquely identifies the particular use of
the driver). You can specify a maximum of 30 driver handles for all
the Keithley DAS boards accessed from your application program.

If a particular use of a driver is no longer required and you want to
free some memory or if you have used all 30 driver handles, you can
use the K_CloseDriver function to free a driver handle and close the
associated use of the driver,

If the driver handle you free is the last driver handle specified for a
Function Call Driver, the driver is shut down, {For Windows-based
languages only, the DLLs associated with the Function Call Driver
are shut down and unloaded from memory.)

Initializing a Board

The DAS-1800 Series Function Call Driver supports up to three boards.
You must use a board initialization function to specify the board(s) you
want to use and the name you want to use to identify each board; this
name is called the board handle. Board handles allow you to
communicate with more than one board. You use the board handle you
specify in the board initialization function in all subsequent function calls
related to the board.

Available Operations



The DAS-1800 Series Function Call Driver provides the following board
initialization functions:

Board-specific board initialization function - If you want to
initialize a DAS-1800 Series board only, use the board-specific board
initialization function DAS1800_GetDevHandle.

Generic board initialization function - If you want to initialize
several different Keithley DAS boards from the same application
program, use the generic board initialization function
K_GetDevHandle. You can specify a maximum of 30 board handles
for all the Keithley DAS boards accessed from your application
program.

If a board is no longer being used and you want to free some memory
or if you have uscd all 30 board handles, you can use the
K_FreeDevHandle function to free a board handle.

To reinitialize a board during an operation, use the K_DASDevInit
function, which performs the following tasks:

Abort all operations currently in progress that are associated with the
board identified by the board handle.

Verify that the board identified by the board handle is the board
specified in the configuration file.



Retrieving Revision Levels

If you are using functions from different Keithley DAS Function Call
Drivers in the same application program or if you are having problems
with your application program, you may want to verify which versions of
the Function Call Driver, Keithley DAS Driver Specification, and
Keithiey DAS Shell are installed on your board. The K_GetVer function
allows you to get both the revision number of the DAS-1800 Series
Function Call Driver and the revision number of the Keithley DAS Driver
Specification to which the driver conforms. The K_GetShellVer function
allows you to get the revision number of the Keithley DAS Shell (the
Keithley DAS Shell is a group of functions that are shared by alt DAS
boards).

Handling Errors

Each FCD function returns a code indicating the status of the function. To
ensure that your application program runs successfully, it is recommended
that you check the returned code after the execution of each function. If
the status code equals 0, the function executed successfully and your
program can proceed. If the status code does not equal 0, an error
occurred; ensure that your application program takes the appropriate
action. Refer to Appendix A for a complete list of error codes.

For C-language application programs only, the DAS-1800 Series
Function Call Driver provides the K_GetErrMsg function, which gets
the address of the string corresponding to an error code.

Analog Input Operations

2-4

This section describes the following:

e Analog input operation modes available.

s How to allocate and manage memory for analog input operations.

o How to specify the following for an analog input operation: channels

and gains, a conversion mode, a clock source, a buffering mode, a
trigger source, and a hardware gate.

Available Qperations



Operation Modes

The operation mode determines which attributes you can specify for an
analog input operation and how data is transferred from the board to the
computer. You can perform analog input operations in one of the
following modes:

o Single mode - In single mode, the board acquires a single sample
from an analog input channel. The driver initiates conversions; you
cannot perform any other operation until the single-mode operation is
complete.

Use the K_ADRead function to start an analog input operation in
single mode. You specify the board you want to use, the analog input
channel, the gain at which you want to read the signal, and the
variable in which to store the converted data.

« Interrupt mode - In interrupt mode, the board acquires a single
sample or multiple samples from one or more analog input channels.
A hardware clock initiates conversions. Once the analog input
operation begins, control returns o your application program. The
hardware temporarily stores the acquired data in the onboard FIFO
(first-in, first-out data buffer) and then transfers the data to a
user-defined buffer in the computer using an interrupt service routine.

Use the K_IntStart function to start an analog input operation in
interrupt mode. You specify the board, analog input chamnel(s),
gain(s), clock source, buffering mode, buffer address(es), trigger
source, and gate use.

You can specify either single-cycle or continuous buffering mode for
interrupt-mode operations. Refer to page 2-18 for more information
on buffering modes. Use the K_IntStop function to stop a
continuous-mode interrupt operation. Use the K_IntStatus function
to determine the current status of an interrupt operation.

¢ DMA mode - In DMA mode, the board acquires a single sample or
multiple samples from one or more analog input channels. A
hardware clock initiates conversions. Once the analog input operation
begins, control returns to your application program, The hardware
temporarily stores the acquired data in the onboard FIFO (first-in,



first-out data buffer) and then transfers the data 1o a user-defined
DMA buffer i the computer.

Note: You can perform an analog input operation in single-DMA
mode or dual-DMA mode, depending on whether you specified one
or two DMA channels in your configuration file. Refer to your
DAS-1800 Series board user’s guide for more information.

Use the K_DMAStart function to start an analog input operation in
DMA mode. You specify the board, analog input channel(s), gain(s},
clock source, buffering mode, buffer address(es), trigger source, and
gale use,

You can specify either single-cycle or continuous buffering mode for
DMA-mode operations. Refer to page 2-18 for more information on
buffering modes. Use the K DMAStop function to stop a
continuous-mode DMA operation. Use the K DM AStatus function
to determine the current status of a DMA operation.

The converted data are stored as raw counts, For information on
converting raw counts to voltage, refer to Appendix B.

Memory Allocation and Management

2-6

Interrupt-mode and DM A-mode analog input operations require memory
buffers in which to store the acquired data. You can reserve a single
memory buffer, or you can reserve multiple buffers (up to a maximum of
150) to increase the number of samples you can acquire. The maximum
number of samples each memory buffer can store (32K or 64K) depends
on the language you are using. See “Language-Specific Programming
Information” on page 3-22 for more information.

Available Operations



You can reserve the required memory buffer(s} in one of the following
ways:

s Within your application program’s memory area - The simplest
way to reserve memory buffers is to dimension arrays within your
application program, The advantage of this method is that the arrays
are directly accessible to your application program. The limitations of
this method are as follows;

—  Certain programming languages limit the size of local arrays.
- Local arrays may not be suitable for DMA-mode operations.

— Local arrays occupy permanent memory areas; these memory
areas cannot be freed to make them available to other programs or
processes.

Since the DAS-1800 Series Function Call Driver stores data in 16-bit
integers, you must dimension all local arrays as integers.

¢ Outside of your application program’s memory area - This is the
recommended way to reserve memory buffers. The advantages of this
method are as follows:

—  The number of butfers and the size of each butfer are limited by
the amount of free physical memory available in your computer
at run-time,

— The dynamically allocated memory buffers can be freed to make
them available to other programs or processes.

The limitation of this method is that, for BASIC and Visual Basic
languages, the data in a dynamically allocated memory buffer is not
directly accessible by your program. (The DAS-1800 Series Function
Call Driver provides a function, K_MoveBufToArray, to make this
data accessible; refer to page 4-169 for more information.)

2-7



Use the K_IntAlloc function to allocate memory dynamically for
interrupt-mode operations and the K_DMA Alloc function to allocate
memory dynamically for DMA-mode operations. You specify the
operation requiring the buffer, the number of samples to store in the
buffer, the variable to store the starting address of the buffer, and the
name you want to use to identify the buffer (this name is called the
memory handle). When the buffer is no longer required, you can free
the buffer for another use by specifying this memory handle in the
K_IntFree function (for interrupt-mode operations) or the
K_DMAFree function (for DMA-mode operations).

Notes: For DOS-based languages, the area used for dynamically
allocated memory buffers is referred to as the far heap; for
Windows-based languages, this area is referred to as the global heap.
These heaps are areas of memory left unoccupied as your application
program and other programs run.

For DOS-based languages, the K_IntAlloc and K DM A Alloc
functions use the DOS Int 21H function 48H to dynamically allocate
far heap memory. For Windows-based languages, the K_IntAlloc and
K_DMAAlloc functions call the GlobalAlloe API function to
allocate the desired buffer size from the global heap.

For Windows-based languages, dynamically allocated memory is
guaranteed to be fixed and locked in memory,

To eliminate page wrap conditions and to guarantee that dynamically
allocated memory is suitable for use by the computer’s 8237 DMA
controller, K_DMA Alloc may allocate an area twice as large as
actually needed. Once the data in this buffer is processed and/or saved
elsewhere, use K_DMAFree to free the memory for other uses.

Available Operations



Gains

After you allocate your buffer(s), you must assign the starting address of
the buffer(s} and the number of samples to store in the buffer(s). Each
supported programming language requires a particular procedure for
allocating memory buffers and assigning starting addresses. Refer to page
3-23 for information when programming in C. Refer to page 3-31 for
information when programming in Pascal. Refer to page 3-40 for
information when programming in Visual Basic for Windows. Refer to
page 3-46 for information when programming in BASIC.

If you are using multiple buffers, use the K_BufListAdd function to add
each buffer to the list of multiple buffers associated with each operation
and to assign the starting address of each buffer. Use the K_BufListReset
function to clear the list of multiple buffers.

Note: If you are using multiple buffers, it is recommended that you use
the Keithley Memory Manager before you begin programming to ensure
that you can allocate large enough buffers. Refer to your DAS-1800
Series board user’s guide for more information about the Keithley
Memory Manager.

Each channel on a DAS-1800 Series board can measure analog input
signals in one of four, software-selectable unipolar or bipolar analog input
ranges. The input range type (unipolar or bipolar) is initially set according
to your configuration file; use K_SetADMode to reset the input range
type. Refer to your DAS-1800 Series board user’s guide for more
information.

Table 2-2 lists the analog input ranges supported by DAS-1800 Series
boards and the gain and gain code associated with each range. (The gain
code is used by the FCD functions to represent the gain.)



Channels

2-10

Table 2-2. Analog Input Ranges

Analog Input Range

Gain
Boards Bipolar Unipolar Gain Code
DAS-1801HC 5V Oto5V
DAS-1801ST S

+100 mV

DAS-1802HC
DAS-18028T
DAS-1802HR

Ot 10V 1 0

0to25V

(ILEINEY 50 4

DAS-18018T with
EXP-1800 attached

DAS-18028T with | 0.2V Oto02V 50 4
EXP-1800 anached; S

DAS-1802HR with i :
EXP-1800 attached | +5 mV OtoSmV 200 6

DAS-1800HC Series boards are configured with either 64 single-ended or
32 differential analog input channels, depending on the input
configuration specified in your configuration file. DAS-1800ST/HR
Series boards are configured with either 16 onboard single-ended or 8
onboard differential analog input channels. On DAS-1800ST/HR Series
boards, you can increase the number of channels to 256 single-ended or
128 differential channels using the EXP-1800 expansion board, described
in the next section.

Available Operations



The input channel configuration is initially set according to the
configuration file; use K_SetADConfig to reset the input channel
configuration. Use K_SetADCommonMode to set the common-mode
ground reference for DAS-1800ST/HR Series boards in single-ended
input channel configuration.

You can perform an analog input operation on a single channel or on a
group of multiple channels. The following subsections describe how to
specify the channel(s) you are using.

Specifying Channels When Using EXP-1800 Expansion Boards
(DAS-1800ST/HR Series Only)

To increase the number of analog input channels, you can attach up to 16
EXP-1800 expansion boards to the DAS-1800 Series board. Each
EXP-1800 board has 16 analog input channels. 1f you are using

N EXP-1800 boards, you must attach them to DAS-1800 channels O to
N-1. Refer to the DAS-1800ST/HR Series User’s Guide for information on
connecting EXP-1800 boards to DAS-18005T/HR Series boards.

The analog input channel connections on a DAS-1800 Series board or
EXP-1800 board are labelled with white-on-green numbers from 0 to 15.
These numbers are the physical channel numbers. If a system includes a
DAS-1800 Series board and one or more EXP-1300 boards, then that
systemn contains duplicate physical channel numbers. To uniquely identify
a physical channel, the Function Call Driver uses a scheme of logical
channel numbers. The channel# argument for any FCD function must be
specified as a logical channel number.

2-11



2-12

The logical channel number corresponding to a particular physical
channel number is given by one of the following equations:

If the physical channel is on a DAS-1800 Series board:
LogicalChan#t = PhysicalChan# + (15 X NumEXPs)

If the physical channel is on an EXP-1800 board:
LogicalChan# = PhysicalChan# + (16 X EXP#)

where

NumEXPs is an integer from O to 15 that identifies the number of
EXP-1800 boards connected to the DAS-1800 Series board, and

EXP# is an integer from O to 15 that indicates on which EXP-1800
board the physical channel is located (0 indicates the first EXP-1800

board).

For example, consider the system illustrated in Figure 2-1, in which three
EXP-1800 boards are connected to a DAS-13015T.

0

1 2 .. 15
EXP #0

=

DAS-1801ST

D - O

16

o

1 2 .. 15
EXP #1

]

i 2 .15
EXP #2

e I e

Logical Channel 48

Logical Channel 60

Logical Channels 0 to 15

Logical Channeis 16 o 31

Logical Channels 32 to 47

Figure 2-1. Example of Logical Channel Assignments

Available Operations



The logical channel that identifies channel 3 on the DAS-1801 board is
given by:

LogicalChan# =3+ (15x3) =3 +45 =48

The logical channel that identifies channel 15 on the third EXP-1800
board is given by:

LogicalChan# = 15+ (16 x2) = 15+32 =47

Acquiring Samples from a Single Channel

You can acquire a single sample or multiple samples from a single analog
input channel.

For single-mode analog input operations, you can acquire a single sample
from a single analog input channel. Use the K_ADRead function to
specify the channel and the gain code.

For interrupt-mode and DMA-mode analog input operations, you can
acquire a single sample or multiple samples from a single analog input
channel. Use the K_SetChn function to specify the channel and the

K _SetG function to specify the gain code.

Acquiring Samples from a Group of Consecutive Channels

For interrupt-mode and DMA-mode analog input operations, you can
acquire samples from a group of consecutive channels, Use the
K_SetStartStopChn function to specify the first and last channels in the
group. The channels are sampled in order from first to last; the channels
are then sampled again until the required number of samples are read.

For example, assume that the start channel is 14, the stop channel is 17,
and you want to acquire five samples. Your program reads data first from
channel 14, then from channels 15, 16, and 17, and finally from channel
14 again.

You can specify a start channel that is higher than the stop channel. For
example, assume that you are using a differential input configuration, the
start channel is 31, the stop channel is 2, and you want to acquire five
samples. Your program reads data first from channel 31, then from
channels 0, 1, and 2, and finally from channel 31 again.

2-13



Use the K_SetG function to specify the gain code for all channels in the
group. (All channels must use the same gain code.) Use the
K_SetStartStopG function to specify the gain code, the start channel,
and the stop channel in a single function call.

Refer to Table 2-2 on page 2-10 for a list of the analog input ranges
supported by DAS-1800 Series boards and the gain code associated with
each range.

Acquiring Samples Using a Channel-Gain Queue

For interrupt-mode and DMA-mode analog input operations, you can
acquire samples from channels in a hardware channel-gain queue. In the
channel-gain queue, you specify the channels you want to sample, the
order in which you want to sample them, and a gain code for each
channel.

You can set up the channels in a channel-gain queuc either in consecutive
order or in nonconsecutive order. You can also specify the same channei
more than once (up to a total of 64 entries in the queue for a
DAS-1800HC Series board, and up to 256 entries for a DAS-1800ST/HR
Series board).

The channels are sampled in order from the first channel in the queue to
the last channel in the queue; the channels in the queue are then sampled
again until the board reads the specified number of samples.

Refer to Table 2-2 on page 2-10 for a list of the analog input ranges
supported by DAS-1800 Series boards and the gain code associated with
each range.

The way that you specify the channels and gains in a channel-gain queue
depends on the language you are using. Refer to page 3-27 for
information when programming in C or C++. Refer to page 3-37 for
information when programming in Pascal. Refer to page 3-44 for
information when programming in Visual Basic for Windows. Refer to
page 3-50 for information when programming in BASIC.

After you create the channel-gain queue in your program, use the

K_SetChnGAry function to transfer the contents of the channel-gain
queue to the driver/board.

Available Operations



Conversion Modes

The conversion mode determines how the board regulates the timing of
conversions when you are acquiring multiple samples from a single
channel or from a group of multiple channels (known as a scan). For
interrupt-mode and DMA-mode analog input operations, you can specify
one of the following conversion modes:

o Paced mode - Use paced mode if you want to accurately control the
period between conversions of individual channels in a scan, Paced
mode is the default conversion mode,

e Burst mode - Use burst mode if you want to accurately control both
the period between conversions of individual channels in a scan and
the period between conversions of the entire scan, Use the
K_SetADFreeRun function to specify burst mode,

Use burst mode with SSH if you want to simultancously sample all
channels in a scan using the SSH-8 accessory board. Use the
K_SetSSH function to specify burst mode with SSH.

Note: If you use an SSH-8 accessory board, you must use burst mode
with SSH. One extra tick of the burst mode conversion clock is
required to allow the SSH-8 board to sample and hold the values.
Refer to the SSH-8 board documentation for more information.

Refer to your DAS-1800 Series board user’s guide for more information
about conversion modes.

Clock Sources

DAS-1800 Series boards provide two clock sources: a pacer clock and a
burst mode conversion clock. Each clock has a dedicated use. When
performing interrupt-mode and DMA-mode analog input operations in
paced mode, you use only the pacer clock; when performing
interrupt-mode and DMA-mode analog input operations in burst mode
and burst mode with SSH, you use both the pacer clock and the burst
mode conversion clock. These clock sources are described in the
following subsections.

2-15



Pacer Clock

In paced mode, the pacer clock determines the period between the
conversion of one channel and the conversion of the next channel. In
burst mode and burst mode with SSH, the pacer clock determines the
period between the conversions of one scan and the conversions of the
next scan, Use the K_SetClk function to specify an internal or an external
pacer clock. The internal pacer clock is the default pacer clock.

The internal and external pacer clocks are described as follows:

Internal pacer clock - The internal pacer clock uses two cascaded
counters of the onboard counterftimer circuitry, The counters are
normally in an idle state. When you start the analog input operation
(using K_IntStart or K_DMAStart), a conversion is initiated. Note
that a slight time delay occurs between the time the operation is
started and the time conversions begin.

After the first conversion is initiated, the counters are loaded with a
count vatue and begin counting down. When the counters count down
to 0, another conversion is initiated and the process repeats.

Because the counters use a 5 MHz time base, each count represents
0.2 ps. Use the K_SetClkRate function to specify the number of
counts (clock ticks) between conversions. For example, if you specify
a count of 30, the period between cenversions is 6 ps

(166.67 ksamples/s); if you specify a count of 87654, the period
between conversions is 17.53 ms (57 samples/s).

You can specify a count between 15 and 4,294,967,295. The period
between conversions ranges from 3 s to 14.3 minutes,

When using an internal pacer clock, use the following formula to
determine the number of counts to specify:

5 MHz time base
conversion rate

counts =

Available Operations



For example, if you want a conversion rate of 10 ksamples/s, specify
a count of 500, as shown in the following equation:

5,000, 000

10,000 500

o External pacer clock - You connect an external pacer clock to the
DI0/XPCLK pin (pin B39} on the main I/O connector of the
DAS-1800HC Series board or to the XPCLK pin (pin 44) on the main
I/O connector of DAS-1800ST/HR Series boards. When you start an
analog input operation (using K_IntStart or K_DMAStart),
conversions are armed. At the next active edge of the external pacer
clock (and at every subsequent active edge of the external pacer
clock), a conversion is initiated, Use the K_SetExtClkEdge function
to specify the active edge (rising or falling) of the external pacer
clock. A falling edge is the default active edge for the external pacer
clock,

Note: The rate at which the computer can reliably read data from the
board depends on a number of factors, including your computer, the
operating system/environment, the gains of the channels, and other
software issues. If you are using an external pacer clock, make sure that
the clock initiates conversions at a rate that the analog-to-digital converter
can handle.

Refer to your DAS-1800 Series board user’s guide for more information
about the pacer clock.

Burst Mode Conversion Clock

In burst mode and burst mode with SSH, the burst mode conversion clock
determines the period between the conversion of one channel in a scan
and the conversion of the next channel in the scan.

Because the burst mode conversion clock uses a 1 MHz time base, each
clock tick represents | ps. Use the K_SetBurstTicks function to specify
the number of clock ticks between conversions. For example, if you
specify 30 clock ticks, the period between conversions is 30 us

(33.33 ksamples/s).



You can specify between 3 and 255 clock ticks. The period between
conversions ranges from 3 ps to 0.255 ms.

When using the burst mode conversion clock, use the following formula
to determine the number of clock ticks to specify:

I MHz time base
burst mode conversion rate

clock ticks =

For example, if you want a burst mode conversion rate of 10 ksamples/s,
specify 100 clock ticks, as shown in the following equation:

1, 000, 000

10,000 — 100

Refer to your DAS-1800 Series board user’s guide for more information
about the burst mode conversion clock,

Buffering Modes

2-18

The buffering mode determines how the driver stores the converted data
in the buffer. For interrupt-mode and DMA-mode analog input
operations, you can specify onc of the following buffering modes:

e Single-cycle mode - In single-cycle mode, after the board converts
the specified number of samples and stores them in the buffer, the
operation stops automatically. Single-cycle mode is the default
buffering mode.

o Continuous mode - In continuous mode, the board continuously
converts samples and stores them in the buffer until it receives a stop
function; any values already stored in the buffer are overwritten. Use
the K_SetContRun function to specify continuous buffering mode.

Available Operations



Triggers

A trigger is an event that starts or stops an interrupt-mode or DMA-mode
analog input operation. An operation can use either one or two triggers,
Every operation must have a start trigger that marks the beginning of the
operation. You can use an optional second trigger, the about trigger, to
define when the operation stops. If you specify an about trigger, the
operation stops when a specified number of samples has been acquired
after the occurrence of the about-trigger event.

A post-trigger acquisition refers to an operation that only uses a start
trigger. The about trigger provides the capability to define operations that
acquire data before a trigger event (pre-trigger acquisition) and operations
that acquire data about (before and after) a trigger event (about-trigger
acquisition).

The following subsections describe the supported trigger sources and
post-, pre-, and about-trigger acquisitions.

Trigger Sources

The Function Call Driver supports three sources of triggers: internal,
analog, and digital. For interrupt-mode and DM A-mode analog input
operations, use K_SetTrig to specify the trigger source. The trigger
events for each trigger source are described below. Note that the trigger
event is not significant until the operation the trigger governs has been
enabled (using K_DM AStart or K_IntStart).

Internal Triggetr

An internal trigger is a software trigger. It does not impose any external
conditions that must be satisfied before the operation executes. An
operation governed by an internal start trigger begins executing as soon as
the operation is enabled. Consequently, the call to K_DMAStart or
K_IntStart is considered the trigger event for an internal trigger. The
internal trigger is the default trigger source.



Analog Trigger

You can use the signal on any analog input channel as the trigger signal
for an analog trigger. The trigger events for analog triggers are illustrated
in Figure 2-2 and described as follows:

o If the trigger polarity is positive, a trigger event occurs the first time
the trigger signal changes from a voltage that is less than the trigger
level to a voltage that is greater than the trigger level.

e If the trigger polarity is negative, a trigger event occurs the first time
the trigger signal changes from a voltage that is greater than the
trigger level to a voltage that is less than the trigger level.

Positive polarity Trigger Q‘Q:t

Triggerlevel - --------F-----¥-------fF----- --

Trigger signal

Trigger event

Negative polarity

Triggerlevel - --------fF-----fY-~---~--f-----

Trigger signal

Figure 2-2. Trigger Events for Analog Triggers

Note: Analog triggering is a feature of the Function Call Driver and is
not implemented at the hardware level. Consequently, there is a delay
between the time the trigger event occurs and the time the driver
recognizes that the trigger event occurred.

2-20 Available Operations



You can specify a hysteresis value to prevent noise from triggering an
operation, Use the K SetTrigHyst function to specity the hysteresis
value, For a positive-edge trigger, the analog signal must be below the
specified voltage level by at least the amount of the hysteresis value and
then rise above the voltage level before the trigger occurs; for a
negative-edge trigger, the analog signal must be above the specified
voltage level by at least the amount of the hysteresis value and then fall
below the voltage level before the trigger occurs,

The hysteresis value is an absolute number, which you specify as a raw
count value between 0 and 4095 for DAS-1800HC/ST Series boards and
between 0 and 65,535 for DAS-1800HR Series boards. When you add the
hysteresis value to the voltage level (for a negative-edge trigger) or
subtract the hysteresis value from the voltage level (for a positive-edge
trigger), the resulting value must also be between 0 and 4095 for
DAS-1800ST/HC Series boards or between 0 and 65,535 for
DAS-1800HR Series boards. For example, assume that you arc using a
negative-edge trigger on a channel of a DAS-1800HC/ST Series board
configured for an analog input range of £5 V. If the voltage level is +4.8 V
(4014 counts), you can specify a hysteresis value of 0.1V (41 counts)
because 4014 + 41 is less than 4095, but you cannot specify a hysteresis
value of 0,3 V (123 counts) because 4014 + 123 is greater than 4095.
Refer to Appendix B for information on how to convert a voltage value to
a raw count value,

In Figure 2-3, the specified voltage level is +4 V and the hysteresis value
is 0.1 V. The analog signal must be below +3.9 V and then rise above

+4 V before a positive-edge trigger occurs; the analog signal must be
above +4.1 V and then fall below +4 V before a negative-edge trigger
occurs.

2-21



Poslitive-edge
trigger occurs

Level +4V “\\ ..... /\ \E

\ } Hystetesls =0.1V
+3.9V v

‘\Analog input operation
start functlion s executed

M1V /\
/—\ / } Hystoresis = 0.1 V
/ ........ /i:
—~ \/ Negative-edge

trigger occurs

Level +4V

"\Analog input operation
start function Is executed

Figure 2-3. Using a Hysteresis Value

Digital Trigger

The digital trigger signal is available on the DI1/TGIN pin (pin B40) on
the main I/O connector of DAS-1800HC Series boards and on the TGIN
pin (pin 46) on the main I/O connector of DAS-1800ST/HR Series
boards. Use K_SetDITrig to specify whether you want the trigger event
1o occur on a rising or falling edge. If the trigger polarity is positive, then
a trigger event occurs at each rising edge of the trigger signal. If the
trigger polarity is negative, then a trigger event occurs at each falling edge
of the trigger signal. These trigger events are illustrated in Figure 2-4.

2-22 Available Operations



Trigger

Posilive polarity event \{

Trigger signal —

Trigger avent

Negative polarity }

Trigger signal

Figure 2-4. Trigger Events For Digital Triggers

Post-Trigger Acquisition

Use post-trigger acquisition in applications where you want to collect data
after a specific event. Acquisition starts on an internal, analog, or digital
trigger cvent and continues until a specified number of samples has been
acquired or until the operation is stopped by a call to K_DMAStop or
K_IntStop.

To specify post-trigger acquisition, use the following function calls:

1. If you want acquisition to continue until you stop it using
K_DMAStop or K_IntStop, use K_SetContRun to set the buffering
mode to continuous.

2. If you want acquisition to stop after a specified number of samples
has been acquired, use K_ClrContRun to set the buffering mode to
single-cycle (in this buffering mode, the operation stops as soon as
the board has acquired the number of samples specified by
K_SetBuf, K_SetDMABuf, K_SetBufl, or K_BufListAdd).

2-23



P

Specify the trigger that will start the operation. Use K_SetTrig to
specify the trigger source (internal for an internal trigger, external for
an anatog or digital trigger).

e e o I Qoéh v (e e
tri BECT, USC n_Séia i 10f an

digital
Trig (for a digital trigger) to define the

If ¥Ou arc ubulg an anal
analog trigger) or K_Set
trigger conditions.

Gg ﬁr DThi

Use K_CirAboutTrig to disable the about trigger.

Pre-Trigger Acquisition

IJge nre-trisoer acguisition in nr\nlwahnne where vou want to collect data

OV pIVTumipp G leasataisan S Gprpta e RLat LS VY Al - J5 ¥y Gadl b AR Re

before a specific digital trigger event (this is the about trigger event).
Acquisition starts on an internal, analog, or digital trigger event and
continues until the about-trigger event. Pre~trigger acquisition is available
with DMA-mode operations ouly.

To specify pre-trigger acquisition, use the following function calls:

1.

2-24

Specify the trigger that will start the operation. Use K_SetTrig to
specify the trigger source (internal for an internal trigger, external for
an analog or digital trigger).

If using an analog or digital start trigger, use K_SetADTrig (for an
analog trigger) or K_SetDITrig (for a digital trigger) to define the

trigger CO[IdlthI‘lS

Use K_SetAboutTrig to enable the about trigger and to set the
number of post-trigger samples to 1.

If the start trigger is not digital, specify the trigger conditions for the
about trigger. Use K_SetTrig to specify an external trigger, then use
K SetDlTrig to spccify the trigger conditions, (If the start trigger is

(R | PO R ¥

u1g11cu UICU ll,b Lflggﬁf LUIlUlLlUllb are also used l.Ul LllC AUUUl. UigEern

Available Operations



About-Trigger Acquisition

Use about-trigger acquisition in applications where you want to collect
data both before and after a specific digital trigger event (this is the about
trigger event). Acquisition starts on an internal, analog, or digital trigger
event and continues until a specified number of samples has been
acquired after the about-trigger event. About-trigger acquisition is
available with DM A-mode operations only.

To specify about-trigger acquisition, use the following function calls:

1. Specify the trigger that will start the operation. Use K_SetTrig to
specify the trigger source (internal for an internal trigger, external for
an analog or digital trigger).

2. Tfusing an analog or digital start trigger, use K SetADTrig (for an
analog trigger) or K_SetDITrig (for a digital trigger) to define the
trigger conditions,

3. Use K_SetAboutTrig to enable the about trigger and to specify the
desired number of post-trigger sampies.

4. Specify the trigger conditions for the about trigger. Use K_SetDI'Trig
to specify the trigger conditions. (If the start trigger is digital, then its
trigger conditions are also used for the about trigger).

Hardware Gates

A hardware gate is an externally applied digital signal that determines
whether conversions occur, You connect the gate signal to the DI1/TGIN
pin {pin B4() on the main /O connector of DAS-1800HC Series boards
or on the TGIN pin (pin 46) on the main I/O connector of
DAS-1800ST/HR Series boards. If you have started an interrupt-mode or
DMA-mode analog input operation (using K_IntStart or K_DMAStart)
and the hardware gate is enabled, the state of the gate signal determines
whether conversions occur.

If the board is configured with a positive gate, conversions occur only if
the signal to DI1/TGIN (DAS-1800HC Series boards) or TGIN
(DAS-1800ST/HR Series boards) is high; if the signal to DI1/TGIN or
TGIN is low, conversions are inhibited. If the board is configured with a
negative gate, conversions occur only if the signal to DI1/TGIN is low; if

2-25



the signal to DI1/TGIN is high, conversions are inhibited. Use the
K_SetGate function to enable and disable the hardware gate and to
specify the gate polarity (positive or negative). The default state of the
hardware gate is disabled.

You can use the hardware gate with an external analog trigger, The
software waits until the analog trigger conditions are met, and then the
hardware checks the state of the gate signal.

If you are not using an analog trigger, the gate signal itself can act as a
trigger. If the gate signal is in the inactive state when you start the analog
input operation, the hardware waits until the gate signal is in the active
state before conversions begin.

Note: You cannot use the hardware gate with an external digital trigger. If
you use a digital trigger at one point in your application program and later
want to use a hardware gate, you must first disable the digital trigger. You
disable the digital trigger by specifying an internal trigger in K_SetTrig
or by setting up an analog trigger (using the K_SetADTrig function).

Analog Output Operations (DAS-1800HC Series Only)

This section describes the following:
e Analog output operation modes available.
e How to allocate and manage memory for analog output operations.

s How to specify the following for an analog output operation:
channels, a clock rate, and a buffering mode.

Note: You cannot use an external trigger or external pacer clock with an
analog output operation,

2-26 Available Operations



Operation Modes

The operation mode determines which attributes you can specify for an
analog output operation. You can perform analog output operations in one
of the following modes:

Single mode - In single mode, the driver writes a single value 1o one
or both analog output channels; you cannot perform any other
operation until the single-mode operation is complete.

Use the K_DAWrite function to start an analog output operation in
single mode. You specify the board you want to use, the analog output
channel(s), and the value you want to write.

Interrupt mode - In interrupt mode, the driver writes a single value
or multiple values to one or both analog output channels. A hardware
clock paces the updating of the analog output channel(s), Once the
analog output operation begins, control returns to your application
program. You store the values you want to write in a user-defined
buffer in the computer.

Use the K_IntStart function to start an analog output operation in
interrupt mode. You specify the board, analog output channel(s),
clock rate, buffering mode, and buffer address.

You can specify either single-cycle or continuous buffering mode for
interrupt-mode operations. Refer to page 2-30 for more information
on buffering modes. Use the K_IntStop function to stop a
continuous-mode interrupt operation. Use the K_IntStatus function
to determine the current status of an interrupt operation,

For an analog output operation, the values are written as raw counts. For
information on converting voltage to raw counts, refer to Appendix B.

Memory Allocation and Management

Interrupt-mode analog output operations use a single memory buffer to
store the data to be written to the analog output channel(s). The maximum
number of samples each memory buffer can store (32K or 64K) depends
on the language you are using. See “Language-Specific Programming
Information” on page 3-22 for more information.

2-27



Channels

2-28

Since analog output operations typically require small arrays of data, you
can reserve a memory buffer by dimensioning an array within your
application program’s memory arca. Since the DAS-1800 Series Function
Call Driver writes data as 16-bit integers, you must dimension all local
arrays as integers.

Note: You can also use the K_IntAlloc function to allocate memory
dynamically, if desired. You specify the operation requiring the buffer, the
number of values you want to store in the buffer, the starting address of
the buffer, and the name you want to use to identify the buffer (this name
is called the memory handle). When the buffer is no longer required, you
can free the buffer for another use by specifying this memory handle in
the K_IntFree function.

After you dimension your array, you must assign the starting address of
the array and the number of samples stored in the array. Each supported
programming language requires a particular procedure for dimensioning
an array and assigning the starting address. Refer to page 3-23 for
information when programming in C or C++. Refer to page 3-31 for
information when programming in Pascal, Refer to page 3-40 for
information when programming in Visual Basic for Windows. Refer to
page 3-46 for information when programming in BASIC.

DAS-1800HC Series boards contain two digital-to-analog converters,
each of which is associated with an analog output channel. You can
perform an analog output operation on a single channel or on both
channels.

For single-mode analog output operations, you can write a single value to
one or both analog output channels. Use the K_DAWrite function to
specify the channel(s).

For interrupt-mode analog output operations, you can wrile a single value
or multiple values to one or both analog output chanaels. Use the
K_SetChn function to specify a single channel. Use the
K_SetStartStopChn function to specify analog output channel 0 as the
start channel and analog output channel 1 as the stop channel. When using

Available Operations



both channels, the first value in the buffer is written 1o chammel 0, the
second value is written to channel 1, the third value is written to channel 0
again, and so on, After all the values in the buffer are written once, the
values are written again until the required number of values are written.

For example, assume that your buffer contains three values (123, 456, and
789) and you want to write five values, Your program writes 123 to
channel 0, 456 to channel 1, 789 to channel 0, 123 to channel 1, and 456
to channel 0.

Clock Source

When performing interrupt-mode analog output operations, you can use
the internal pacer clock to determine the period between the updating of a
single analog output channel or between each simultaneous updating of
both analog output channels.

Note: You can use the internal pacer clock only if it is not being used by
another operation.

The internal pacer clock uses two cascaded counters of the onboard
counter/timer circuitry. The counters are normally in an idle state. When
you start the analog output operation (using K_IntStart), the analog
output channel(s) are updated. Note that a slight time delay occurs
between the time the operation is started and the time the channel(s) are
updated.

The counters are loaded with a count value and begin counting down.
When the counters count down to 0, the channel(s) are updated again and
the process repeats.

Because the counters use a 5 MHz time base, each count represents

0.2 ps. Use the K_SetClkRate function to specify the number of counts
(clock ticks) between updates. For example, if you specify a count of
5000, the period between updates is 1 ms (1 ksamples/s); if you specify a
count of 87654, the period between updates is 17.53 ms (57 samples/s).

You can specify a count between 15 and 4,294,967,295, The period
between updates ranges from 3 us to 14.3 minutes.

2-29



Note: The driver accepts a count value as low as 15. However, since the
FIFO is not used to buffer values for analog output operations, a low
count value may cause an overrun error, The maximum observed update
rates for the internal pacer clock are 1 ksamples/s when running under
Windows and 5 ksamples/s when running under DOS. These rates would
indicate a minimum count of 5,000 when running under Windows and
1,000 when running under DOS,

Use the following formula to determine the number of counts to specify:

5 MHz time base
update rate

counts =

For example, if you want to update the analog output channels at a rate of
500 samples/s, specify a count of 10,000, as shown in the following
equation:

5, 000, 000

500 = 10, 000

Buffering Modes

2-30

The buffering mode determines how the driver writes the values in the
buffer to the analog output channels. For interrupt-mode analog output
operations, you can specify one of the following buffering modes:

e Single-cycle mode - In single-cycle mode, after the driver writes the
values stored in the buffer, the operation stops automatically.
Single-cycle mode is the default buffering mode.

¢ Continuous mode - In continuous mode, the driver continuously
writes values from the buffer until the application program issues a
stop function; when all the values in the bufter have been written, the
driver writes the values again. Use the K_SetContRun function to
specify continuous buffering mode.

Available Operations



Digital /0 Operations

This section describes the foltowing:

Digital I/O operation modes available.
How to allocate and manage memory for digital I/O operations,
Digital 1/O channels.

How to specify the following for a digital I/O operation: a clock rate
and a buffering mode.

Note: You cannot use an external trigger or external pacer clock with a
digital I/O operation.

Operation Modes

The operation mode determines which attributes you can specify for a
digital 1/0 operation. You can perform digital I/O operations in one of the
following modes:

Single mode - In a single-mode digital input operation, the driver
reads the value of digital input channel 0 once; in a single-mode
digital output operation, the driver writes a value to digital output
channel 0 once. You cannot perform any other operation until the
single-mode operation is complete.

Use the K_DIRead function to start a digital input operation in single
mode; use the K_DOWrite tunction to start a digital output operation
in single mode. You specify the board you want to use, the digital I/O
channel, and the variable in which the value is stored.

2-31



2-32

Notes: Since digital input channel 0 is only four bits wide, you must
mask the value stored by K_DIRead with 15 (OFh) to obtain the
actual digital input value.

The value written by K_DOWrite must be a 32-bit value. For
DAS-1800HC Series boards, the eight least significant bits contain
the actuat digital output value, and all other bits are irrelevant. For
DAS-1800ST/HR Series boards, the four least significant bits contain
the actual digital output value, and all other bits arc irrclevant,

Interrupt mode - In an interrupi-mode digital input operation, the
driver reads the value of digital input channel 0 multiple times; in an
interrupt-mode digital output operation, the driver writes a single
value or multiple values to digital output channel 0 multiple times. A
hardware clock paces the digital 1/O operation. Once the digital I/O
operation begins, control returns to your application program. The
driver stores digital input values in a user-defined buffer in the
computer; you store digital output values in a user-defined buffer in
the computer.

Note: The digital input buffer and the digital output buffer each
contain 16-bit integers. Each digital input value is stored in the four
least significant bits of each integer in the digital input buffer. For
DAS-1R00HC Serics boards, cach digital output value is stored in the
eight least significant bits of each integer in the digital output buffer.
For DAS-1800ST/HR Series boards, each digital output value is
stored in the four least significant bits of each integer in the digital
output buffer.

Use the K_IntStart function to start a digital 1/O operation in
interrupt mode. You specify the board, digital 1/O channel, clock rate,
buffering mode, and buffer address.

You can specify either single-cycle or continuous buffering mode for
interrupt-mode operations. Refer to page 2-38 for more information
on buffering modes. Use the K_IntStop function to stop a
continuous-mode interrupt operation. Use the K_IntStatus function
to determine the current status of an interrupt operation.

Available Operations



Memory Allocation and Management

Interrupt-mode digital I/O operations use a single memory buffer to store
the data to be read or written. The maximum number of samples each
memory buffer can store (32K or 64K) depends on the language you are
using. See “Language-Specific Programming Information” on page 3-22
for more information.

Since digital I/O operations typically require small arrays of data, you can
reserve a memory buffer by dimensioning an array within your
application program’s memory area. Since the DAS-1800 Series Function
Call Driver reads and writes data as 16-bit integers, you must dimension
all local arrays as integers.

Note: You can also use the K_IntAlloc function to allocate memory
dynamically, if desired. You specify the operation requiring the buffer, the
number of values to store in the buffer, the variable in which to store the
starting address of the buffer, and the name you want to use to identify the
buffer (this name is called the memory handle). When the buffer is no
longer required, you can free the buffer for another use by specifying this
memory handle in the K IntFree function.

After you dimension or allocate your array, you must assign the starting
address of the array and the number of samples to store in the array. Each
supported programming language requires a particular procedure for
dimensioning an array and assigning the starting address. Refer to page
3-23 for information when programming in C or C++. Refer to page 3-31
for information when programming in Pascal. Refer to page 3-40 for
information when programming in Visual Basic for Windows. Refer to
page 3-46 for information when programming in BASIC.

2-33



Digital Input Channel

2-34

DAS-1800 Series boards contain one 4-bit digital input channet

(channel ()., As shown in Figure 2-5, bit 0 contains the value of digital
input line 0 (DIO/XPCLK on DAS-1800HC Series boards, DIO on
DAS-1800ST/HR Series boards); bit 1 contains the value of digital input
line 1 (DII/TGIN on DAS-1800HC Series boards, DIl on
DAS-1800ST/HR Series boards); bit 2 contains the value of digital input
line 2 (DI2); bit 3 contains the value of digital input line 3 (DI3).

bit3 bit2  bit1 bit 0
DAS-1800HC Di1/ Dlo/
Dis o2 TGIN | XPCLK
bit3 bit2  bit1  bito
DAS-1800ST/HR DI3 DI2 oit | Dio

Figure 2-5. Digital Input Bits

A value of 1 in the bit position indicates that the input is high; a value of 0
in the bit position indicates that the input is low. For example, if the value
is 5 (0101), the input at DIO/XPCLK and DI2 is high and the input at
DI1/TGIN and DI3 is low.

Available Operations



Notes: If no signal is connected to a digital input line, the input appears
high (value is 1),

(DAS-180CHC Series boards only) If you are using an external pacer
clock, you cannot use digital input line O for general-purpose digital input
operations. If you are using an external digital trigger, you cannot use
digital input line 1 for general-purpose digital input operations. When
reading digital input channel 0, ignore the value of these bits,

Digital Output Channel

DAS-1800HC Series boards contain one 8-bit digital output channel
{channel 0). DAS-1800ST/HR Series boards contain one 4-bit digital
output channel (channel 0). As shown in Figure 2-6, bit 0 contains the
value to be written to digital output line 0 (DOQ), bit 1 contains the value
to be written to digital output line 1 (DO1), and so on.

DAS-1800ST/HR Series

{ i
bit7 bité bits5 bit4 bit3 bit2 bit1 bito

DO7 | DO6 | DO5 | DO4| DO3 | DO2 | DO1 | DOO

DAS-1800HC Series

Figure 2-6. Digital Output Bits

A value of 1 in the bit position indicates that the output is high; a value of
0 in the bit position indicates that the output is low. For example, if the
value written is 12 (00001100), the output at DOO, DO1, DO4, DO5,
DO6, and DO7 is forced low and the output at DO2 and DO3 is forced
high.

2-35



Clock Source

2-36

Note: The DAS-1800 Series Function Call Driver provides the
K_GetDOCurVal function to read the last digital output value written to
digital output channel 0 using K_DOWrite,

When performing interrupt-mode digital I/O operations, you can use the
internal pacer clock to determine the period between reading the digital
input channel or writing to the digital output channel.

Note: You can use the internal pacer clock only if it is not being used by
another operation.

The internal pacer clock uses two cascaded counters of the onboard
counter/timer circuitry. The counters are normally in an idle state, When
you start the digital 1/O operation (using K_IntStart), a value is read or
written. Note that a slight time delay occurs between the time the
operation is started and the time the reading or writing begins.

The counters are loaded with a count value and begin counting down.
When the counters count down to (0, another value is read or written and
the process repeats.

Because the counters use a 5 MHz time base, each count represents

0.2 ps. Use the K_SetClkRate function to specify the number of counts
{clock ticks) between reads or writes. For example, if you specify a count
of 5000, the period between reads or writes is 1 ms (1 ksamples/s); if you
specify a count of 87654, the period between reads or writes is 17.53 ms
(57 samples/s).

You can specify a count between 15 and 4,294,967,295. The period
between reads or writes ranges from 3 ps to 14.3 minutes.

Available Operations



Note: The driver accepts a count value as low as 15, However, since the
FIFO is not used to buffer values for digital 1/O operations, a low count
value may cause overrun errors, The maximum observed update rates for
the internal pacer clock are 1 ksamples/s when running under Windows
and 5 ksamples/s when running under DOS. These rates would indicate a
minimum count of 5,000 when running under Windows and 1,000 when
running under DOS,

Use the following formula to determine the number of counts to specify:

5 MHz time base
read/write rate

counts =

For example, if you want to write data to digital output channel 0 at a rate
of 500 samples/s, specify a count of 10,000, as shown in the following
equation:

5, 000, 000

500 = 10, 000

2-37



Buffering Modes

2-38

The buffering mode determines how the driver reads or writes the values
in the buffer. For interrupt-mode digital I/O operations, you can specify
one of the following buffering modes:

Single-cycle mode - In a single-cycle-mode digital input operation,
after the driver fills the buffer, the operation stops automatically. In a
single-cycle-mode digital output operation, after the driver writes the
values stored in the buffer, the operation stops automatically.
Single-cycle mode is the default buffering mode.

Continuous mode - In a continuous-mode digital input operation, the
driver continuously reads digital input channel 0 and stores the values
in the buffer until the application program issues a stop function; any
values already stored in the buffer are overwritten. In a continuous
mode digital output operation, the driver continuously writes values
from the buffer to digital output channel 0 until the application
program issues a stop function; when all the values in the buffer have
been written, the driver writes the values again. You use the
K_SetContRun function to specify continuous buffering mode.

Available Operations



3

Programming with the
Function Call Driver

This chapter contains an overview of the structure of the DAS-1800
Series Function Call Driver, as well as programming guidelines and
language-specific information to assist you when writing application
programs with the DAS-1800 Series Function Call Driver.

How the Driver Works

When writing application programs, you can use functions from one or
more Keithley DAS Function Call Drivers. You initialize each driver
according to a particular configuration file. If you are using more than one
driver or more than one configuration file with a single driver, the driver
handle uniquely identifies each driver or each use of the driver.

You can program cne or more boards in your application program. You
initialize each board using a board handle to uniquely identify each board.
Each board handle is associated with a particular driver.

The Function Call Driver(s) allow you to perform I/O operations in
various operation modes. For single mode, the I/O operation is performed
with a single call to a function; the attributes of the I/O operation are
specified as arguments to the function. Figure 3-1 illustrates the syntax of
the single-mode, analog input operation function K_ADRead.

3-1



Single-Mode Function Attributes of Operation

K_ADRead (board, «———— Board number
channel, <——— > Analog input channel
galin, «————— Gain applied to channel

buffer) «——--———> Buffer for data

Figure 3-1. Single-Mode Function

For other operation modes, such as interrupt mode and DMA mode, the
driver uses frames to perform the [/O operation. A frame is a data
structure whose elements define the attributes of the 1/0 operation. Each
frame is associated with a particular board, and therefore, to a particular
driver.

Frames help you create structured application programs. You set up the
attributes of the I/O operation in advance, using a scparate function call
for ¢ach attribute, and then start the operation at an appropriate point in
your program, Frames are useful for operations that have many defining
attributes, since providing a separate argument for each attribute could
make a function’s argument list unmanageably long. In addition, some
attributes, such as the clock source and trigger source, are only available
for I/O operations that use frames.

You indicate that you want to perform an I/O operation by getting an
available frame for the driver and specifying the name you want {0 use to
identify the frame; this name is called the frame handle. You then specify
the attributes of the 1/O operation by using setup functions to define the
elements of the frame associated with the operation. For example, to
specify the channel on which to perform an I/O operation, you might use
the K_SetChn setup function.

For each setup function, the Function Call Driver provides a readback
function, which reads the current definition of a particular element. For
example, the K_GetChn readback function reads the channel number
specified for the 1/O operation.

Programming with tha Function Call Driver



You use the frame handle you specified when accessing the frame in all
setup functions, readback functions, and other functions related to the I/O
operation, This ensures that you are defining the same I/O operation.

When you are ready to perform the I/O operation you have set up, you can
start the operation in the appropriate operation mode, referencing the
appropriate frame handle, Figure 3-2 illustrates the syntax of the
interrupt-mode operation function K_IntStart.

K_IntStart (frameHandle)

l

Frame

Start Channel
Stop Channel
Clock Source

Trigger Source

Attr f r
<«——————> Flrst analog Input channel

<«—> Last analog Input channel
«— > Pacer clock source

«—— > Trigger source

Figure 3-2. Interrupt-Mode Operation

Different 1/O operations require different types of frames. For example, to
perform a digital input operation, you use a digital input frame; to
perform an analog output operation, you use an analog output frame,

For DAS-1800 Series boards, interrupt-mode and DMA-mode operations
require frames. The DAS-1800 Series Function Call Driver provides the
following types of frames:

e Analog input frames, called A/D (analog-to-digital) frames. You use
the K_GetADFrame function to access an available A/D frame and
specify a frame handle.



3-4

e Analog output frames, called D/A (digital-to-analog) frames. You use
the K_GetDAFrame function to access an available D/A frame and
specify a frame handle.

e Digital input frames, called DI frames. You use the K_GetDIFrame
function to access an available DI frame and specify a frame handle.,

e Digital output frames, called DO frames. You use the
K_GetDOFrame function to access an available DO frame and
specify a frame handle,

If you want to perform an interrupt-mode or DMA-mode operation and all
frames of a particular type have been accessed, you can use the
K_FreeFrame function to free a frame that is no longer in use. You can
then redefine the elements of the frame for the next operation.

When you access a frame, the elements are set to their default values. You
can also use the K_Clear¥Frame function to reset ail the elements of a
frame to their default values.

Table 3-1 lists the elements of a DAS-1800 Series A/D frame; Tabie 3-2
lists the elements of a DAS-1800 Series D/A frame; Table 3-3 lists the
elements of a DAS-1800 Series DI frame; Table 3-4 lists the elements of a
DAS-1800 Series DO frame, These tables also list the default value of
each element, the setup function(s) used to define each element, and the
readback function(s) used to read the current definition of the element.

Programming with the Function Call Driver



Table 3-1. A/D Frame Elements

Element Default Value Setup Function Readback Function
Buffer! 0 (NULL) K_SetBuf K_GeBuf

K_SeciBufl

K_SeiDMABuf

K_BufListAdd

K_SetContRun K_GetContRun

Buffering Mode Single-cycle
K_,ChComRun2

Stop Channel 0 K_SetStartStopChn | K_GetStartStopChn
K_SetStartStopG K_GetStartStopG

K_SetChnGAry K_GetChnGAry

Channel-Gain
Queue

SSH Mode Disabled K_SetSSH K_GetSSH

Pacer Clock Rate! 0 K_SeiClkRate K_GetClkRate

Burst Clock Rate 3 (333 ksamples/s) K_SetBurst Ticks K_GeatBurstTicks

Trigger Type Digital K_SetADTrig K_GetADTrig
K_SetDITrig K_GetDITrig




Table 3-1. A/D Frame Elements (cont.)

Element Default Value Setup Function Readback Function

Trigger Polarity Positive (for analog | K_SctADTrig K_GetADTrig

rigger)
Positive (for digital | K_SetDITrig K_GetDITrig
irigger)

Trigger Level 0 K_SetADTrig K_GetADTrig

Trigger Pattern Not used* Not applicable3 Not applicablc3

Hardware Gate Disabled K_SetGate K_GetGate

Notes

! This element must be set.
Use this function to reset the value of this particular frame element to its default setting without
clearing the frame or getting a new frame, Whenever you clear a frame or get a new frame, this
frame element is set to its default value automatically.

3 The default value of this element cannot be changed.
This element is not currently used; it is included for future compatibility.

Programming with the Function Call Driver



Table 3-2. D/A Frame Elemenis

Element Default Value | Setup Function Readback Function
Buffer! 0 (NULL) K_SetBuf K_GetBuf
K_SetBufl
Number of Samples |0 K_SetBuf K_GetBuf
K_SetBufl

Stop Channel 0

K_SetStartStopChn

K_GetStartStopChn

Pacer Clock Rate! 0 K_SetClkRate K_GetClkRate
Notes

U This element must be set.

Use this function to reset the value of this particular frame element to its default setting

without clearing the frame or getting a new frame, Whenever you clear a frame or get a
new frame, this frame element is set to its default value automatically.
3 The default value of this element cannot be changed.

3-7



3-8

Table 3-3. DI Frame Elements

Element Default Value | Setup Function Readback Function
Buffer! 0 (NULL) K_SetBuf K_GetBuf

K_SetBufl

K_SetBuf K_GetBuf
K_SetBufl

M
Not applicable®

v

Not applicable3

Pacer Clock Rate! |0 K_SetClkRate

v

K_GetClkRate

Notes

! This element must be set.
Use this function to reset the value of this particular frame element to its default setting
without clearing the frame or getting a new frame. Whenever you clear a frame or get a
new frame, this frame clement is set to its default value automatically.

3 'The default value of this element cannot be changed.

Programming with the Function Call Driver



Table 3-4, DO Frame Elements

Element Default Value | Setup Function Readback Function
Buffer! 0 (NULL) K_SetBuf K_GetBuf
K_SetBufl

Number of Samples

K_SetBuf

K_SetBufl

K_GetBuf

Stop Channel

Not applicable®

Not applicable3

Pacer Clock Rate

K_SetClkRate

K_GetClkRate

Notes

! This element must be set.

Use this function to reset the value of this particular frame element to its default setting
without clearing the frame or getting a new frame. Whenever you clear a frame or get a

new frame, this frame element is set to its default value automatically,
The default value of this element cannot be changed.

Note: The DAS-1800 Series Function Call Driver provides many other
functions that are not related to controlling frames, defining the elements

of frames, or reading the values of frame elements. These functions

include single-mode operation functions, initialization functions, memory
management functions, and miscellaneous functions

For information about using the FCD functions in your application
program, refer to the following sections of this chapter. For detailed
information about the syntax of FCD functions, refer to Chapter 4,

3-8



Programming Overview

To write an application program using the DAS-1800 Series Function
Call Driver, perform the following steps:

1. Define the application's requirements. Refer to Chapter 2 for a
description of the board operations supported by the Function Call
Driver and the functions that you can use to define each operation.,

2. Write your application program. Refer to the following for additional
information:

— Preliminary Tasks, the next section, describes the programming
tasks that are common to all application programs.

—  Operation-Specific Programming Tasks, on page 3-11, describes
operation-specific programming tasks and the sequence in which
these tasks must be performed.

— Chapter 4 contains detailed descriptions of the FCD functions.

— The DAS-1800 Series standard software package and the
ASO-1800 software package contain several example programs.
The FILES.TXT file in the installation directory lists and
describes the example programs.

3. Compile and link the program. Refer to Language-Specific
Programming Information, starting on page 3-22, for compile and
link statements and other language-specific considerations for cach
supported language.

3-10 Programming with the Function Call Driver



Preliminary Tasks

For every Function Call Driver application program, you must perform
the following preliminary tasks:

1. Include the function and variable type definition file for your
language. Depending on the specific language you are using, this file
is included in the DAS-1800 Series standard software package or the
AS0-1800 software package.

2. Declare and initialize program variables.

3. Use a driver initialization function (DAS1800_DevOpen or
K_OpenDriver) to initialize the driver.

4. Use a board initialization function (DAS1800_GetDevHandle or
K_GetDevHandle) to specify the board you want to use and to
initialize the board. If you are using more than one board, use the
board initialization function once for each board you are using.

Operation-Specific Programming Tasks

After completing the preliminary tasks, perform the appropriate
operation-specific programming tasks. The operation-specific tasks for
analog and digital I/O operations are described in the following sections.

Note: Any FCD functions that are not mentioned in the
operation-specific programming tasks can be used at any point in your
application program.

Analog Input Operations

The following subsections describe the operation-specific programming
tasks required to perform single-mode, interrupt-mode, and DMA-mode
analog input operations.

3-11



Single Mode

For a single-mode analog input operation, perform the following tasks:

L.

2,

Interrupt Mode

Declare the buffer or variable in which to store the single analog input
value.

Use the K_ADRead function to read the single analog input value;
specify the attributes of the operation as arguments to the function.

For an interrupt-mode analog input operation, perform the following
tasks:

L.

2.

3-12

Use the K_GetADFrame function to access an A/D frame.

Allocate the buffer(s) or dimension the array(s) in which to store the
acquired data. Use the K_IntAlloc function if you want to allocate
the buffer(s) dynamically cutside your program's memory area.

If you want to use a channel-gain queue to specify the channels
acquiring data, define and assign the appropriate values to the queue
and note the starting address. Refer to page 2-11 for more information
about channel-gain queues.

Use the appropriate setup functions to specify the atiributes of the
operation. The setup functions are listed in Table 3-6.

Note: When you access a new A/D frame, the frame clements
contain default values. If the default value of a particular element is
suitable for your operation, you do not have to use the setup function
associated with that element. Refer to Table 3-1 on page 3-5 for a list
of the default values of A/D frame clements.

Programming with the Function Call Driver



Table 3-5. Setup Functions for Interrupt-Mode

Analog Input Operations

Attribute Setup Function(s)
Buffer! K_SetBuf
K_SetBufl

K_BufListAdd

Buffering Mode

K_SetContRun
K_CerontRun2

Stop Channel

K_SetStartStopChn
K_SetStartStopG

Input Range Type

K_SetADMode

Gain

K_SetG

K_SetStartStopG

Conversion Mode

K_SetADFreeRun
K_CIrADFreeRun?

R

Clock Source

K_SetClk

External Clock Edge

K_SetExtClkEdge

Trigger Source

K_SetTrig

3-13



3-14

10.

Table 3-5. Setup Functions for interiupt-Mode
Analog Input Operations (cont.)

Attribute Setup Function(s)

Trigger Channel K_SetADTrig

Trigger Level K_SetADTrig

Hardware Gate K_SetGate

MNotes

!'This element must be set.
Use this function to reset the value of this particular
frame element to its default setting without clearing
the frame or getting a new frame.

Refer to Chapter 2 for background information about the setup
functions; refer to Chapter 4 for detailed descriptions of the setup
functions.

Use the K_IntStart function to start the interrupt-mode operation.

Use the K_IntStatus function to monitor the status of the
interrupt-mode operation.

If you specified continuous buffering mode, use the K_IntStop
function to stop the interrupt-mode operation when the appropriate
number of samples has been acquired.

If you are programming in Visual Basic for Windows or BASIC and
you used K_IntAlloc to allocate your buffer(s), use the
K_MoveBufToArray function to transfer the acquired data from the
allocated buffer to a local array that your program can use.

If you used K_IntAlloc to allocate your buffer(s}, use the K_IntFree
function to deallocate the buffer(s).

If you used K_BufListAdd ro specify a list of multiple buffers, use the
K_BufListReset function to clear the list.

Programming with the Function Call Driver



DMA Mode

11. Use the K_FreeFrame function to return the frame you accessed in
step 1 to the pool of available frames.

For a DMA-mode analog input operation, perform the following tasks:
1. Use the K_GetADFrame function to access an A/D frame,

2. Allocate the buffer(s) or dimension the array(s) in which to store the
acquired data. Use the K_DM A Alloc function if you want to allocate
the buffer(s) dynamically outside your program's memory area.

3. Ifyou want to use a channel-gain queue to specify the channels
acquiring data, define and assign the appropriate values to the queue
and note the starting address. Refer to page 2-11 for more information
about channel-gain queues.

4. Use the appropriate setup functions to specify the attributes of the
operation. The setup functions are listed in Table 3-6,

Note: When you access a new A/D frame, the frame elements
contain default values. If the default value of a particular element is
suitable for your operation, you do not have to use the setup function
associated with that element. Refer to Table 3-1 on page 3-5 for a list
of the default values of A/D frame elements.

3-15



3-16

Table 3-6. Setup Functions for DMA-Mode
Analog Input Operations

Attribute

Setup Function(s)

Buffer!

K_SetDMABuf
K_BufListAdd

Buffering Mode

K_ClrContRun?

K_SeiContRun

Stop Channel

K_SetStartStopChn

K_SetStartStopG

Input Range Type

K_SetADMode

Gain

K_SetG
K_SetStantStopG

Conversion Mode

K_SetADFreeRun
K_ClrADFreeRun?

K_SetClk

External Clock Edge

K_SetExtClkEdge

Trigger Source

K_SetTrig

Programming with the Function Call Driver



Table 3-6. Setup Functions for DMA-Mode
Analog Input Operatlons (cont.)

Attribute Setup Function(s)

Trigger Channel K_SetADTrig

ia%t Ralds

Trigger Level K_SetADTrig

ko

About-Trigger Mode K_SetAboutTrig
K_ClrAboutTrig?

Notes
I This element must be set.

Use this function to reset the value of this
particular frame element to its default setting
without clearing the frame or getting a new
frame.

Refer to Chapter 2 for background information about the setup
functions; refer to Chapter 4 for detailed descriptions of the setup
functions.

Use the K_DMAStart function to start the DMA-mode operation.

Use the K_DMAStatus function to monitor the status of the
DMA-mode operation.

If you specified continuous buffering mode, use the K_DMAStop
function to stop the DMA-mode operation when the appropriate
number of samples has been acquired.

If you are programming in Visual Basic for Windows or BASIC and
you used K_DMAAlloc to allocate your buffer(s), use the
K_MoveBufToArray function to transfer the acquired data {rom the
allocated buffer to a local array that your program can use.

If you used K_DMAAlloc to allocate your buffer(s), use the
K_DMAFree function to deallocate the buffer(s).

3-17



10. If you used K_BufListAdd to specify a list of multiple buffers, use the

K_BufListReset function to clear the list.

11, Use the K_FreeFrame function to return the frame you accessed in

step 1 to the pool of available frames,

Analog Output Operations (DAS-1800HC Series Only)

Single Mode

Interrupt Mode

3-18

The following subsections describe the operation-specific programming
tasks required to perform single-mode and interrupt-mode analog output
operations.

For a single-mode analog output operation, perform the following tasks:

1.

Declare the buffer or variable in which to store the single analog
output value,

Use the K_DAWrite function to write the single analog output value;
specify the attributes of the operation as arguments to the function.

For an interrupt-mode analog output operation, perform the following
tasks:

1.

2.

Use the K_GetDAFrame function to access a D/A frame.
Allocate the buffer or dimension the array in which to store the data to
be written. Use the K_IntAlloc function if you want to allocate the

buffer dynamically outside your program's memory area.

Use the appropriate setup functions to specify the attributes of the
operation. The setup functions are listed in Table 3-7.

Programming with the Function Call Driver



Note: When you access a new D/A frame, the frame elements
contain default values. f the default value of a particular element is
suitable for your operation, you do not have to use the setup function
associated with that element. Refer to Tabie 3-2 on page 3-7 for a list
of the default values of D/A frame elements.

Table 3-7. Setup Functions for Interrupt-Mode
Analog Output Operations

Attribute Setup Function(s)
Buffer! K_SetBuf
K_SetBufl

Buffering Mode K_SetContRun
K_CIrContRun?

Stop Channel K_SetStartStopChn

Notes

! This element must be set.
Use this function to reset the value of this
particular frame element to its default setting
without clearing the frame or getting a new
frame,

Refer to Chapter 2 for background information about the setup
functions; refer to Chapter 4 for detailed descriptions of the setup
functions.

4. [f you are programming in Visual Basic for Windows or BASIC and
you used K_IntAlloc to allocate your buffer, use the
K _MoveArrayToBuf function to transfer the data from the local
array to the dynamically allocated buffer that the driver can use,

5. Use the K_IntStart function to start the interrupt-mode operation.

3-19



6. Use the K_IntStatus function to monitor the status of the
interrupt-mode operation.

7. If you specified continuous buffering mode, use the K_IntStop
function to stop the interrupt-mode operation when the appropriate
number of samples has been written.

8. Ifyou used K_IntAlloc to allocate your buffer, use the K_IntFree
function to deallocate the buffer.

9. Use the K_FreeFrame function to return the frame you accessed in
step 1 to the pool of available frames,

Digital 1/0 Operations

Single Mode

3-20

The following subsections describe the operation-specific programming
tasks required to perform single-mode and interrupt-mode digital I/O

operations.

For a single-mode digital 1/0 operation, perform the following tasks:

1. Declare the buffer or variable in which to store the single digital I/O

value.,

2. Use one of the following digital I/O single-mode operation functions,
specifying the attributes of the operation as arguments to the function:

Function Purpose
K_DIRead Reads a single digital input value,
K_DOWrite Writes a single digital output value.

Programming with the Function Call Driver



Interrupt Mode

For an interrupt-mode digital 1/0 operation, perform the following tasks:

L

Use the K_GetDIFrame function to access a DI frame; usc the
K_GetDOFrame function to access a DO frame.

Allocate the buffer or dimension the array in which to store the data to
be read or written, Use the K_IntAlloc function if you want to
allocate the buffer dynamically outside your program's memory area.

Use the appropriate setup functions to specify the attributes of the
operation, The setup functions are listed in Table 3-8.

Note: When you access a new DI or DO frame, the frame elements
contain default values. If the defauit value of a particular element is
suitable for your operation, you do not have to use the setup function
associated with that element. Refer to Table 3-3 on page 3-8 for a list
of the default values of DI frame elements; refer to Table 3-4 on page
3-9 for a list of the default values of DO frame clements.

Table 3-8. Setup Functions for Interrupt-Mode
Digital Input and Digital Output Operations

Attribute Setup Function(s)
Buffer! K_SetBuf
K_SetBufl

Buifering Mode K_SetContRun
KuCeromRun2

Notes

! This element must be set.
Use this function to reset the value of this
particular frame element to its default setting
without clearing the frame or getting a new
frame.

3-21



Refer to Chapter 2 for background information about the setup
functions; refer to Chapter 4 for detailed descriptions of the setup
functions.

If you are performing a digital output operation, you are
programming in Visual Basic for Windows or BASIC, and you used
K_IntAlloc to allocate your buffer, use the K_MoveArrayToBuf
function to transfer the data from the local array to the dynamically

allnaatad lhaiffar that tha Arivar ~fon nan
QLRI uatuu Uullbl WAL WA YLVl il Udts,

Use the K_IntStart function to start the interrupt-mode operation.

Use the K_IntStatus function to monitor the status of the
interrupt-mode operation.

If you specified continuous buffering mode, use the K_IntStop
function to stop the interrupt-mode operation when the appropriate
number of sampies has been written.

If you are performing a digital input operation, you are programming
in Visual Basic for Windows or BASIC, and you used K_IntAlloc to

allocate your buffer, use the K MoveBufToArray function to

FoLdsel LT Uy B I At L s e

transfer the data from the allocated buffer to a local array that your
program can use.

If you used K_IntAlloc to allocate your buffer, use the K_IntFree
function to deallocate the buffer.

. Use the K_FreeFrame function to return the frame you accessed in

step 1 to the pool of available frames.

Language-Specific Programming Information

3-22

This section provides programming information for each of the supported
languages., Note that the compilation procedures for all languages assume
that the paths and/or environment variables are set correctly.

Programming with the Function Call Driver



C/C++ Languages

The following sections contain information you need to allocate and
assign memory buffers and to create channel-gain queues when
programming in C or C++, as well as language-specific information for
Microsoft C/C++, Borland C/C++, Microsoft QuickC for Windows, and
Microsoft Visual C++.

Note: When programming in C/C++, proper typecasting may be required
to avoid C/C++ type-mismatch warnings.

Allocating and Assigning Dynamically Allocated Memory Buffers

This section provides code fragments that describe how to allocate and
assign dynamically allocated memory buffers when programming in C or
C++. Refer to the example programs on disk for more information.

Notes: The code fragments for dynamically allocated memory assume
that you are using DMA mode; the code for interrupt mode is identical,
except that you use the appropriate interrupt-mode functions instead of
the DMA-mode functions.

If you are programming in Windows’ Enhanced mode, you may be
limited in the amount of memory you can allocate. 1t is recommended that
you install the Keithley Memory Manager before you begin programming
to ensure that you can allocate a large enough buffer or buffers. Refer to
your DAS-1800 Series board user’s guide for more information about the
Keithley Memory Manager.

Single Memory Buffer

You can use a single, dynamically allocated memory buffer for
interrupt-mode analog input, analog output, and digital I/O operations and
for DM A-mode analog input operations.

The following code fragment illustrates how to use K_DMA Alloc to

allocate a buffer of size Samples for the frame defined by hFrame and

3-23



how to use K_SetDMABuf to assign the starting address of the buffer;
the buffer can store a maximum of 65,536 samples.

void far *AcqBuf; //Declare pointer to buffer

WORD hMem; //Declare word for memory handle
wDasErr = K_DMAAlloc (hFrame, Samples, &AcgBuf, &hMem);

wDasEry

K_SetDMABuf (hFrame, AcgBuf, Samples);

The following code illustrates how to use K_DMAFree to later free the
allocated buffer, using the memory handle stored by K_DMA Alloc.

wDasErr = K_DMAFree (hMem);

Note: Make sure that you always check the returned value (wDasErr in
the previous examples) for possible errors.

Multiple Memory Buffers

You can use multiple, dynamically allocated memory buffers for
interrupt-mode analog input operations and for DMA-mode analog input
operations.

The following code fragment illustrates how to use K_DMA Alloc to
allocate five buffers of size Samples each for the frame defined by
hADFrame and how to use K_BufListAdd to assign the starting
addresses of the five buffers; each buffer can store a maximum of 65,536

samples.
volid far *AcqgBuf[5]; //Declare 5 pointers to 5 buffers
WORD hMem{5]; //Declare 5 words for 5 memory handles
for (i = 0; 1 < 5; i++) {

whasBrr = K_DMAAlloc (hADFrame, Samples, &AcgBufl[i],&hMem({i]);
wDasErr = K_BuflListAdd (hADFrame, AcgBuf[i], Samples);
}

3-24 Programming with the Function Call Driver



The following code illustrates how to use K_DMAFree to later free the
allocated buffers, using the memory handles stored by K_DMA Alloc; if
you free the allocated buffers, you must also use K_BufListReset to reset
the buffer list associated with the frame.

for (1 = 0; i < 5; i++). |
wDasErr = K_DMAFree {(hMem[i]);

}
wDasErr = K_BuflListReset (hADFrame);

Notes: Make sure that you always check the returned value (wDasErr in
the previous examples) for possible errors.

Accessing the Data

You access the data stored in dynamically allocated buffers through
C/C++ pointer indirection. For example, assume that you want to display
the first 10 samples of the second buffer in the multiple-buffer operation
described in the previous section (AcqBuf{1]}). The following code
fragment illustrates how to access and display the data.

int far *pData; //Declare a pointer called pData
pData = (int far *) AcgBufil]; //Assign pData to 2nd buffer

for (i = 0; 1 < 10; i++)
printf ("Sample #%d %X", i, *(pData+i));

Dimensioning and Assigning Local Arrays
This section provides code fragments that describe how to dimension and

assign local arrays when programming in C or C++. Refer to the example
programs on disk for more information.

3-25



3-26

wDasEry

Single Array

You can use a single, local array for interrupt-mode analog input, analog
output, and digital I/O operations.

The following code fragment illustrates how to dimension an array of
10,000 samples for the frame defined by hFrame and how to use
K_SetBuf to assign the starting address of the array. The maximum array
size is 653,536,

int Data{l0000)]; //Dimension array of 10,000 samples

wDasBErr = K_SetBuf {(hFrame, Data, 10000);:

Note: Make sure that you always check the returned value (wDasErr in
the previous example} for possible errors.

Muitiple Arrays

You can use multiple, local arrays for interrupt-mode analog input
operations.

The following code fragment illustrates how to allocate two arrays of
32,000 samples each for the frame defined by hADFrame and how to use
K_BufListAdd to assign the starting addresses of the arrays. The
maximum array size is 65,536.

int Datal([320001]; //Allocate Array #1 of 32,000 samples

int Data2[32000]); //Allocate Array #2 of 32,000 samples
wDasErr K_BRufliztAdd (hADFrame, Datal, 32000);

LI

K_BufListAdd (hADFrame, Dataz, 32000);

Note: Make sure that you always check the returned value (wDasErr in
the previous example) for possible errors.

Programming with the Function Call Driver



Creating a Channel-Gain Queue

The DASDECL.H and DASDECL.HPP files define a special data type
{GainChanTable) that you can use to declare your channel-gain queue.
GainChanTable is defined as follows:

typedef struct GainChanTable
{
WORD num_of_codes;
struct{
char Chan;
char Gain;
} GainChanArvI[256];
} GainChanTable;

The following example illustrates how to create a channel-gain queue
called MyChanGainQueue for a DAS-1802HC board by declaring and
initializing a variable of type GainChanTable.

GainChanTable MyChanGainQueue =

{8, / /Number of entries

0, 0, //Channel 0, gain of 1
1, 1, //Channel 1, gain of 2
2, 2, //Channel 2, gain of 4
3, 3, //Channel 3, gain of 8
3, 0, //Channel 3, gain of 1
2, 1, //Channel 2, gain of 2
1, 2, //Channel 1, gain of 4
0, 3}; //Channel 0, gain of 8

After you create MyChanGainQueue, you must assign the starting
address of MyChanGainQueue to the frame defined by hFrame, as
follows:

whasErr = K_SetChnGAry (hFrame, &MyChanGainQueue);

Note: Make sure that you always check the returned value (wDasErr in
the previous example) for possible errors.

3-27



When you start the next analog input operation (using K_IntStart or
K_DMAStart), channel 0 is sampled at a gain of 1, channel 1 is sampled
at a gain of 2, channel 2 is sampled at a gain of 4, and so on,

Programming in Microsoft C/C++

To program in Microsoft C/C++, you need the following files; these files
are provided in the ASO-1800 software package.

File

Description

DAS 1800 LIB

ity
USElSOO OBJ

Linkabie driver,

Lmkable obiect.

To create an executable file in Microsoft C/C++, use the following
compile and link statements. Note that filename indicates the name of
your application program,

Type of Compile

Compile and Link Statements

C

CL /fc filename.c
LINK filename+use1800.0bj,,,das1800+dasrface;

Ca++

CL /¢ filename.cpp
LINK filename+use1800.0bj,,,das1800+dasrface;

Refer to page 3-23 for information about allocating and assigning
dynamically allocated memory buffers when programming in Microsoft
C/C++. Refer to page 3-25 for information about dimensioning and
assigning local arrays when programming in Microsoft C/C++. Refer to
page 3-27 for information about creating a channel-gain queue when
programming in Microsoft C/C++.

3-28

Programming with the Function Cali Driver



Programming in Borland C/C++

To program in Borland C/C++, you need the following files; these files
are provided in the ASO-1800 software package.

File Description

DASI1800.LIB

USE1800.0BJ Linkable object.

To create an executable file in Borland C/C++, use the foliowing compile
and link statements. Note that filename indicates the name of your
application program.

E";‘::pr’i: o | Compile and Link Statements'

C BCC -ml filename.c use1800.0bj das1800.1lib dasrface.lib
C++ BCC -ml filename.cpp use1800.0bj das1800.1b dasrface.lib
Notes

! These starements assume & large memory model; however, any memory
modetl is acceptable.

3-29



Programming in Microsoft QuickC for Windows

To program in Microsoft QuickC for Windows, you need the following
files; these files are provided in the ASO-1800 software package.

File

Description

D 1 SOOIMP LIB

DASSHELL DLL Dynarmc Lmk lerary

DAS 1800 Imports

To create an executable file in Microsoft QuickC for Windows, perform

the following steps:

1. Load filename.c into the QuickC for Windows environment, where
filename indicates the name of your application program.

2. Create a project file, The project file should coniain all necessary
files, inciuding filename.c, filename.rc, filename.def, filename.h,
DASIMPLIB, and D1800IMP.LIB, where filename indicates the
name of your application program.

3. From the Project menu, choose Build to create a stand-alone
executable file (EXE) that you can execute from within Windows.

3-30

Programming with the Function Call Driver



Programming in Microsoft Visual C++

To program in Microsoft Visual C++, you need the following files; these
files are provided in the ASO-1800 software package.

File Description

PASSHELL.DLL Dynamic Link Library.

e SR

Ry

o o
DAS1800.

a3

ik
DLL Dynamic Link Library.

T
i

DASI800.H

g

D1§00IMPLIB

To create an executable file in Visual C++, perform the following steps:

1.

Create a project file by choosing New from the Project menu. The
project file should contain all necessary files, including filename.c,
filename. xc, filename.def, DASIMPLIB, and D1800IMP.LIB, where
filename indicates the name of your application program.

From the Project menu, choose Rebuild Ali FILENAME.EXE to
create a stand-alone executable file ((EXE) that you can execute from
within Windows.

Pascal Languages

The following sections contain information you need to allocate and
assign memory buffers and to create channel-gain queues when
programming in Pascal, as well as language-specific information for
Bortand Turbo Pascal (for DOS) and Borland Turbo Pascal for Windows.

3-3



Allocating and Assigning Dynamically Allocated Memory Buffers

3-32

This section provides code fragments that describe how to allocate and
assign dynamically allocated memory buffers when programming in.
Pascal. Refer to the example programs on disk for more information.

Notes: The code fragments for dynamically allocated memory assume
that you are using DMA mode; the code for interrupt mode is identical,
except that you use the appropriate interrupt-mode functions instead of
the DMA-mode functions.

If you are using Borland Turbo Pascal for Windows in Enhanced mode,
you may be limited in the amount of memory you can allocate. It is
recommended that you use the Keithley Memory Manager before you
begin programming to ensure that you can allocate a large enough buffer
or buffers. Refer to your DAS-1800 Series board user’s guide for more
information about the Keithley Memory Manager.

Reducing the Memotry Heap

Note: Reducing the memory heap is recommended for Borland Turbo
Pascal (for DOS) only; if you are programming in Borland Turbo Pascal
for Windows, proceed to the next section.

By default, when Borland Turbo Pascal (for DOS) programs begin to run,
Pascal reserves all available DOS memory for use by the internal memory
manager; this allows you to perform GetMem and FreeMem operations.
Pascal uses the compiler directive $M to distribute the available memory.
The default configuration is {$m 16384, 0, 655360}, where 16384 bytes
is the stack size, 0 bytes is the minimum heap size, and 655360 is the
maximum heap size.

It is recommended that you use the compiler directive $M to reduce the
maximum heap reserved by Pascal to zero bytes by entering the
following:

{Sm (16384, 0, 0))

Programming with the Function Call Driver



Reducing the maximum heap size to zero bytes makes all far heap
memory available to DOS (and therefore available to the driver) and
allows your application program to take maximum advantage of the
K_IntAlloc and K_DMA Alloc functions. You can reserve some space for
the internal memory manager or for DOS, if desired. Refer to your
Borland Turbo Pascal (for DOS) documentation for more information,

Single Memory Buffer

You can use a single, dynamically allocated memory buffer for
interrupt-mode analog input, analog output, and digital IO operations and
for DMA-mode analog input operations.

The following code fragment illustrates how 10 use K_DMAAlloc to
allocate a buffer of size Samples for the frame defined by hFrame and
how to use K_SetDMABuf to assign the starting address of the buffer.
The maximum array size is 65,536.

It is recommended that you declare a dummy type array of Alnteger. The
dimension of this array is irrelevant; it is used only to satisfy Pascal’s
type-checking requirements.

{sm (16384, 0, 0}) { Turbo Pascal for DOS only }
Type
IntArray = Array[0..1l] of Integer;

Var

AcgBuf : “IntArray; { Declare buffer of dummy type }

hMem : Word; { Declare word for memory handle, hMem )}
wDagErr := K_DMAAlloc {hFrame, Samples, @AcgBuf, hMem);
whasBErr := K_SetDMABuf (hFrame, AcgBuf, Samples);

The following code illustrates how to use K_DMAFree o later free the
allocated buffer, using the memory handle stored by K_DMA Alloe.

wDasErr := K_DMAFree (hMem);

3-33



Note: Make sure that you always check the returned value (wDasErr in
the previous examples) for possible errors.

Multiple Memory Buffers

You can use multiple, dynamically atlocated memory buffers for
interrupt-mode analog input operations and for DMA-mode analog input
operations.

The following code fragment illustrates how to use K_DMAAlloc to
allocate five buffers of size Samples each for the frame defined by
hADFrame and how to use K_BufListAdd to assign the starting
addresses of the five buffers. The maximum array size is 65,536,

It is recommended that you declare a dummy type array of Alnteger. The
dimension of this array is irrelevant; it is used only to satisfy Pascal’s
type-checking requirements.

{Sm (16384, 0, 0})} { Turbo Pascal for DOS only )}
Type

IntArray = Array[(0..1l] of Integer;

var

AegBuf : Array[0..4] of "IntArray; (5 buffers, dummy type}

hMem : Array[0..4] of Word; {5 words for 5 memory handles}

For 1 := 0 to 4 do begin

wDagBEyr := K_DMAAlloc(hADFrame, Samples, @AcgBuf[i], hMem[il);
whasErr := K_BufListAdd (hADFrame, AcgBuf[i], Samples};
End;

The following code illustrates how to use K_DMAFree to later free the
allocated buffers, using the memory handles stored by K_DMA Alloc; if
you free the allocated buffers, you must also use K_BufListReset to resct
the buffer list associated with the frame.

For i := 0 to 4 do begin
wDasErr := K_DMAFree (hMem{[il]);
End;

3-34 Programming with the Function Call Driver



wDasErr := K_BuflilstReset (hADFrame);

Note: Make sure that you always check the returned value (wDasErr in
the previous examples) for possible errors.

Accessing the Data

You access the data stored in dynamically allocated buffers through
Pascal pointer indirection. For example, assume that you want to display
the first 10 samples of the second buffer in the multiple-buffer operation
described in the previous section (AcqBuff1]). The following code
fragment illustrates how to access and display the data.

for 1 := 0 to 10 do begin
writeln ('Sample #‘, i, =', AcgBuffl]~{i]};:
End;

Dimensioning and Assigning Local Arrays
This section provides code fragments that describe how to dimension and

assign local arrays when programming in Pascal. Refer to the example
programs on disk for more information.

3-35



3-36

Datal
Data?2

wDasErr
wDasErr :

Single Array

You can use a single, local array for interrupt-mode analog input, analog
output, and digital I/Q operations.

The following code fragment illustrates how to dimension an array of
10,000 samples for the frame defined by hFrame and how to use
K_SetBuf to assign the starting address of the array; the array can store a
maximum of 65,536 samples.

Data : Array[0..9999] of Integer;

wDasErr := K_SetBuf (hFrame, Data(0), 10000);

Note: Make sure that you always check the retumed value (wDasErr in
the previous example) for possible errors.

Muitiple Arrays

You can use multiple, local arrays for interrupt-mode analog input
operations.

The following code fragment illustrates how to allocate two arrays of
32,000 samples each for the frame defined by hADFrame and how to use
K _BufListAdd to assign the starting addresses of the arrays; cach array
can store a maximum of 65,536 samples.

: Array{0..31999]) of Integer; { Allocate Array #1 }
: Array[0..31999] of Integer; { Allocate Array #2 }

K_BuflListAdd (hADFrame, Datal (0), 32000);
K_BufListAdd (hADFrame, Dataz2(0), 32000);

1n

Note: Make sure that you always check the returned value (wDasErr in
the previous example) for possible errors.

Programming with the Function Call Driver



Creating a Channel-Gain Queue

The following example illustrates how to create a channel-gain queue
called MyChanGainQueue for a DAS-1802HC board by defining a
Record as a new type. You must use K_SetChnGAry to assign the
starting address of MyChanGainQueue to the frame defined by hFrame.

Type
GainChanTable = Record;
num_of_ codes : Integer;
gueue : Array([0..255] of Byte;

end;
Const
MyChanGainQueue : GainChanTable = |
num _of_codes : {8); { Number of entries }

queue : (0, O, { Channel 0, gain of 1 }

1, 1, { Channel 1, gain of 2 }
2, 2, { Channel 2, gain of 4 }
3, 3, { Channel 32, gain of 8 }
3, 0, { Channel 32, gain of 1 }
2, 1, { Channel 2, gain of 2 }
1, 2, { Channel 1, gain of 4 }
0, 3) { Channel 0, gain of 8 }
)
wDasErr := K_SetChnGAry {hFrame, MyChanGainQueue.num_cf_codes) ;

Note: Make sure that you always check the returned value (wDasErr in
the previous example) for possible errors.

When you start the next analog input operation (using K_IntStart or
K_DMAStart), channel 0 is sampled at a gain of [, channel 1 is sampled
at a gain of 2, channel 2 is sampled at a gain of 4, and so on.

3-37



Programming in Borland Turbo Pascal (for DOS)

To program in Borland Turbo Pascal, you need the following files; these
files are provided in the ASQO-1800 software package.

File! Description

D180OTPS. TPU Turbo Pascal unit for Version 6.0,

Notes

Vi you must create a new Turbo Pascal unit when compiling in Borland Twbo
Pascal for versions higher than 7.0, refer to FILES.TXT for a list of the files to
use,

To create an executable file in Borland Turbo Pascal, use the following
compile and link statement:

TPC filename.pas

where filename indicates the name of your application program,

Refer to page 3-32 for information about allocating and assigning
dynamically allocated memory buffers when programming in Borland
Turbo Pascal. Refer to page 3-35 for information about dimensioning and
assigning local arrays when programming in Borland Turbo Pascal. Refer
to page 3-37 for information about creating a channel-gain queue when
programming in Borland Turbo Pascal.

3-38 Programming with the Function Call Driver



Programming in Borland Turbo Pascal for Windows

To program in Borland Turbo Pascal for Windows, you need the
following files; these files are provided in the ASO-1800 software
package.

File Description

DASSHELL.DLL Dynamic Link Library,

DAS1800.DLL

DAS1800.INC Include file.

To create an executable file in Borland Turbo Pascal for Windows,
perform the following steps:

I. Load filename.pas into the Borland Turbo Pascal for Windows
environment, where filename indicates the name of your application
program.

2. From the Compile menu, choose Make.

Refer to page 3-32 for information about allocating and assigning
dynamically allocated memory buffers when programming in Borland
Turbo Pascal for Windows. Refer to page 3-35 for information about
dimensioning and assigning local arrays when programming in Borland
Turbo Pascal for Windows. Refer to page 3-37 for information about
creating a channel-gain queue when programming in Borland Turbo
Pascal for Windows.

3-39



Microsoft Visual Basic for Windows

The following sections contain information you need to allocate and
assign memory buffers and to create channel-gain queues when
programming in Microsoft Visual Basic for Windows, as well as
language-specific information for Microsoft Visual Basic for Windows,

Allocating and Assigning Dynamically Allocated Memory Buffers

3-40

This section provides code fragments that describe how to allocate and
assign dynamically allocated memory buffers when programming in
Microsoft Visual Basic for Windows. Refer to the example programs on
disk for more information.

Note: The code fragments for dynamically allocated memory assume
that you are using DMA mode; the code for interrupt mode is identical,
except that you use the appropriate interrupt-mode functions instead of
the DMA-mode functions.

If you are using Windows Enhanced mode, you may be limited in the
amount of memory you can allocate. It is recommended that you use the
Keithley Memory Manager before you begin programming to ensure that
you can allocate a large enough buffer or buffers. Refer to your
DAS-1800 Series board user’s guide for more information about the
Keithiey Memory Manager.

Single Memory Buffer

You can use a single, dynamically allocated memory buffer for
interrupt-mode analog input, analog output, and digital 1/O operations and
for DMA-mode analog input operations.

The following code fragment illustrates how to use K_DMAAlloc to
allocate a buffer of size Samples for the frame defined by hFrame and
how to use K_SetDMABuf to assign the starting address of the buffer;
the buffer can store a maximum of 32,767 samples.

Programming with ithe Function Cali Driver



Global AcgBuf As Long * Declare peinter to buffer
Global hMem As Integer ‘' Declare integer for memory handle

wDagBrr K_DMAAlloc (hFrame, Samples, AcgBuf, hMem)
wDasErr = K_SetDMABuUf (hFrame, AcgBuf, Samples)

i

The following code illustrates how to use K_DMAFree to later free the
allocated buffer, using the memory handle stored by K_DMA Alloc.

wDasErr = K_DMAFree (hMem)

Note: Make sure that you always check the returned value (wDasErr in
the previous examples) for possible errors.

Multiple Memoty Buffers

You can use multiple, dynamically allocated memory buffers for
interrupt-mode analog input operations and for DMA-mode analog input
operations,

The following code fragment illustrates how to use K_DMA Alloc to
allocate five buffers of size Samples each for the frame defined by
hADFrame and how to use K_BufListAdd to assign the starting
addresses of the five buffers; each buffer can store a maximum of 32,767

samples.
Glebal AcgBuf({b5) As Long ! Declare 5 pointers to 5 buffers
Global hMem(5) As Integer ! Declare 5 memory handles

for i% = 0 to 4
wDasErr = K_DMAAlloc (hFrame, Samples, AcgBuf(i%), hMem(i%})

wDagErr = K_BuflListAdd (hFrame, AcqBuf{i$%), Samples)
next i%

3-41



The following code illustrates how to use K_DMAFree to later free the
allocated buffers, using the memory handles stored by K_DMA Alloc; if
you free the allocated buffers, you must also use K_BufListReset to reset
the buffer list associated with the frame.

for i% = 0 to 4

wDasEry = K_DMAFree (hMem{i%)}
next i%
wDasErr = K_BuflistReset {(hADFrame)

Note: Make sure that you always check the retumed value (wDasErr in
the previous examples) for possible errors.

Accessing the Data

In Microsoft Visual Basic for Windows, you cannot directly access analog
input samples stored in dynamically allocated memory buffers. You must
use K_MoveBufToArray to move a subset of the data into a local buffer
as required. The following code fragment illustrates how to move the first
100 samples of the second buffer in the multiple-buffer operation
described in the previous section (AcqgBuf(1)) to a local memory buffer,

Dim Buffer(1000) As Integer ' Declare local memory buffer

whasErr = K_MoveBufToArray (Buffer(0), AcgBuf(l), 100)

Dimensioning and Assigning Local Arrays

3-42

This section provides code fragments that describe how to dimension and
assign local arrays when programming in Microsoft Visual Basic for
Windows. Refer to the example programs on disk for more information.

Single Array

You can use a single, local array for interrupt-mode analog input, analog
output, and digital }/O operations.

Programming with the Function Call Driver



The following code fragment illustrates how to dimension an array of
10,000 samples for the frame defined by hFrame and how to use
K_SetBufl to assign the starting address of the array; the local array can
store a maximum of 32,767 samples.

Global Data(l10000) As Integer " Allocate array

wDagEry = K_SetBufl (hFrame, Data{(}, 10000)

Notes: Make sure that you always check the returned value (wDasErr in
the previous example) for possible errors.

Multiple Arrays

You can use multiple, local arrays for interrupt-mode analog input
operations.

The following code fragment illustrates how to dimension two arrays of
32,000 samples each for the frame defined by hADFrame and how to use
K_BufListAdd to assign the starting addresses of the arrays; each local
array can store a maximum of 32,767 samples.

Global Datal(32000) As Integer ' Allocate Array #1
Global Data2(32000) As Integer * Allocate Array #2

wDagErr = K_BuflListAdd (hADFrame, Datal(0), 32000)
wDasBErr K_BuflistAdd (hADFrame, Data2(0), 32000)

1t

Notes: Make sure that you always check the retumncd value (wDasErr in
the previous example) for possible errors.

3-43



Creating a Channel-Gain Queue

3-44

Before you create your channel-gain queue, you must declare an array of
integers to accommodate the required number of entries. To accommodate
the maximum possible channel-gain queue (256 entries), declare an array
of 513 integers ((256 x 2) + 1). Next, you must fill the array with the
channel-gain information. After you create the channel-gain queue, use
K_FormatChnG Ary to reformat the channel-gain queue so that it can be

used by the DAS-1800 Series Function Call Driver.

The following code fragment illustrates how to create a four-entry
channel-gain queue called MyChanGainQueue for a DAS-1802HC board
and how to use K_SetChnGAry to assign the starting address of
MyChanGainQueue to the frame defined by hFrame.

Global MyChanGainQueue(513) As Integer ‘Maximum # of entries

MyChanGainQueue {0)

= 4 " Number of channel-gain pairs
MyChanGainQueue{(l) = © ' Channel ¢
MyChanGainQueue{2) = 0 " Gain of 1
MyChanGainQueue(3) = 1 ' Channel 1
MyChanGainQueue(4) = 1 ' Gain of 2
MyChanGainQueue(b) = 2 ' Channel 2
MyChanGainQueue(6) = 2 ' Gain of 4
MyChanGainQueue({7) = 2 * Channel 2
MyChanGainQueue(8} = 3 * Gain of 8

wDasErr = K_FormatChnGAry (MyChanGainQueue(0)}

whDasErr

K_SetChnGAry

(hFrame, MyChanGainQueue(0))

Once the channel-gain queue is formatted, your Visual Basic for
Windows program can no longer read it. To read or modify the array after
it has been formatted, you must use K_RestoreChnGAry as follows:

wDasErr = K_RestoreChnGAry {MyChanGainQueue(0))

Notes: Make sure that you always check the returned value (wDasErr in
the previous example) for possible errors.

Programming with the Function Call Driver



When you start the next analog input operation (using K_IntStart or
K_DMAStart), channel 0 is sampled at a gain of 1, channel | is sampled
at a gain of 2, channel 2 is sampled at a gain of 4, and so on.

Programming in Microsoft Visual Basic for Windows

To program in Microsoft Visual Basic for Windows, you need the
following files; these files are provided in the ASO-1800 software
package.

File Description

DASSHELL.DLL | Dynamic Link Library.

DAS1800.DLL Dynamic Link Library,

TrT

DAS1800.BAS Include file; must be added to the Project List.

To create an executable file from the Microsoft Visual Basic for Windows
environment, choose Make EXE File from the Run menu.

Refer to page 3-40 for information about allocating and assigning
dynamically allocated memory buffers when programming in Microsoft
Visual Basic for Windows. Refer to page 3-42 for information about
dimensioning and assigning local arrays when programming in Microsoft
Visual Basic for Windows. Refer to page 3-44 for information about
creating a channel-gain queue when programming in Microsoft Visual
Basic for Windows,

3-45



BASIC Languages

The following sections contain information you need to allocate and
assign memory buffers and to create channel-gain queues when
programming in BASIC, as well as language-specific information for
Microsoft QuickBasic (Versions 4,0 and 4.5), Microsoft Professional
Basic {(Version 7.0), and Microsoft Visual Basic for DOS.

Allocating and Assigning Dynamically Allocated Memoty Buffers

3-46

This section provides code fragments that describe how to allocate and
assign dynamically allocated memory buffers when programming in
BASIC. Refer to the example programs on disk for more information.

Note: The code fragments for dynamically allocated memory assume
that you are using DMA mode; the code for interrupt mode is identical,
except that you use the appropriate interrupt-mode functions instead of
the DMA-mode functions.

Reducing the Memory Heap

By default, when BASIC programs run, all available memory is left for
use by the internal memory manager. BASIC provides the SetMem
function to distribute the available memory (the Far Heap). It is necessary
to re-distribute the Far Heap if you want to use dynamically allocated
buffers, It is recommended that you include the following code at the
beginning of BASIC programs to {ree the Far Heap for the driver’s use:

FarHeapSize& = SetMem(0}
NewFarHeapSize& = SetMem(-FarHeapSize&/2)

Single Memory Buffer

You can use a single, dynamically allocated memory buffer for
interrupt-mode analog input, analog output, and digital I/O operations and
for DMA-mode analog input operations.

The following code fragment illustrates how to use K_DMAAlloc to
allocate a buffer of size Samples for the frame defined by hFrame and

Programming with the Function Call Driver



how to use K_SetDMABuf to assign the starting address of the buffer;
the buffer can store a maximum of 65,536 samples.

Dim AcgBuf As Long " Declare pointer to buffer
Dim hMem As Integer ' Declare integer for memory handle

wDasErr = KDMAAlloc (hFrame, Samples, AcgBuf, hMem)
wDasErr = KSetDMABuf (hFrame, AcqgBuf, Samples)

The following code illustrates how to use K_DMAFree to later free the
allocated buffer, using the memory handle stored by K DMA Alloc.

whasErr = KDMAFree (hMem)

Note: Make sure that you always check the returned value (wDasErr in
the previous examples) for possible errors,

Multiple Memory Buffers

You can use multiple, dynamically allocated memory buffers for
interrupt-mode analog input operations and for DMA-mode analog imput
operations.

The following code fragment illustrates how to use K_DMAAlloc to
allocate five buffers of size Samples each for the frame defined by
hADFrame and how to use K_BufListAdd to assign the starting
addresses of the five buffers; each buffer can store a maximum of 32,767

samples.
Dim AcqgBuf(5) As Long t Declare 5 pointers to 5 buffers
Dim hMem(5) As Integer * Declare 5 memory handles

for i% = 0 to 4
wDasErr = KDMAAlloc (hFrame, Samples, AcgBuf(i%), hMem{i%))
wDasErr = KBufListAdd (hFrame, AcgBuf(i%), Samples)

next 1%

3-47



The following code illustrates how to use K_DMAFree to later free the
allocated buffers, using the memory handles stored by K_DMA Alloc; if
you free the allocated buffers, you must also use K_BufListReset to reset
the buffer list associated with the frame.

for i% = 0 to 4

whasFyr = K_DMAFree (hMem({i%))
next i%
wDasErr = K_BufliatReset (hADFrame)

Note: Make sure that you always check the returned value (wDasErr in
the previous examples) for possible errors.

Accessing the Data

In BASIC, you cannot directly access analog input samples stored in
dynamically allocated memory buffers. You must use
K_MoveBufToArray to move a subset of the data into a local buffer as
required. The following code fragment illustrates how to move the first
100 samples of the second buffer in the multiple-buffer operation
described in the previous section (AcqBuf(1)) to a local memory buffer.

Dim Buffer(1000) As Integer " Declare local memory buffer

whasErr = K _MoveBufToArray {Buffer(0), AcqBuf(l), 100)

Dimensioning and Assigning Local Arrays
This section provides code fragments that describe how to dimension and

assign local arrays when programming in BASIC. Refer to the example
programs on disk for more information.

3-48 Programming with the Function Call Driver



Singte Array

You can use a single, local array for interrupt-mode analog input, analog
output, and digital I/O operations.

The following code fragment illustrates how to dimension an array of
10,000 samples for the frame defined by hFrame and how to use
K_SetBufT to assign the starting address of the array; the local array can
store a maximum of 32,767 samples,

Dim Data (10000) As Integer ' Allccate array

wDasErr = K_SetBufl (hFrame, Data(0), 10000}

Notes: Make sure that you always check the returned value (wDasErr in
the previous example) for possible crrors.

Multiple Arrays

You can use multiple, local arrays for interrupt-mode analog input
operations.

The following code fragment illustrates how to dimension two arrays of
32,000 samples each for the frame defined by hADFrame and how to use
K_BufListAdd to assign the starting addresses of the arrays; cach local
array can store a maximum of 32,767 samples.

Dim Datal{32000) As Integer * Allocate Array #1
Dim Data2 (22000) As Integer " Allocate Array #2

wDaskErr = KBufListAdd (hADFrame, Datal (0}, 32000)
wDasEry = KBufListAdd (hADFrame, Data2 {0}, 32000)

Notes: Make sure that you always check the returned value (wDasErr in
the previous example) for possible errors.

3-48



Creating a Channel-Gain Queue

3-50

Before you create your channel-gain queue, you must declare an array of
integers to accommodate the required number of entries, To accommodate
the maximum possible channel-gain queue (256 entries), declare an array
of 513 integers ((256 x 2) + 1). Next, you must fill the array with the
channel-gain information. After you create the channel-gain queue, use
K _FormatChnGAry to reformat the channel-gain queue so that it can be

used by the DAS-1800 Series Function Call Driver.

The following code fragment illustrates how to create a four-entry
channel-gain queue called MyChanGainQueue for a DAS-1802HC board
and how to use K_SetChnGAry to assign the starting address of
MyChanGainQueue to the frame defined by hFrame.

Dim MyChanGainQueue (513} As Integer ‘Maximum # of entries

MyChanGainQueue (0)

= 4 ' Number of channel-gain pairs
MyChanGainQueue (1) = 0 * Channel 0
MyChanGainQueue(2) = 0 ! Gain of 1
MyChanGainQueue(3) =1 * Channel 1
MyChanGainQueue(4} = 1 ! Gain of 2
MyChanGainQueue(5) = 2  Channel 2
MyChanGainQueue(6) = 2 * Gain of 4
MyChanGainQueue(?7) = 2 " Channel 2
MyChanGainQueue{8) = 3 ' Gain of 8

wDasFErr = KFormatChnGary (MyChanGainQueue(0))

wDasErr = KSetChnGAry

(hFrame, MyChanGainQueue (0)}

Once the channel-gain queue is formatted, your BASIC program can no
longer read it. To read or modify the array after it has been formatted, you
must use K_RestoreChnGAry as follows:

wDasErr = KRestoreChnCAry {MyChanGainQueue (C})

Notes: Make sure that you always check the returned value (wDasErr in
the previous examples) for possible errors.

Programming with the Function Call Driver



When you start the next analog input operation (using K_IntStart or
K_DMAStart), channel 0 is sampled at a gain of 1, channel 1 is sampled
at a gain of 2, channel 2 is sampled at a gain of 4, and so on.

Programming in Microsoft QuickBasic (Version 4.0)

To program in Microsoft QuickBasic (Version 4.0), you need the
following files; these files are provided in the DAS-1800 Series standard
software package.

File Description

D1800Q40.L1B Linkable driver for QuickBasic, Version 4.0,
stand-alone, executable (( EXE) programs.

QB4DECL.BI Include file.

DAS1800.BI Include file.

For Microsoft QuickBasic (Version 4.0), you can create an executable file
from within the programming environment, or you can use a compile and
link statement.

To create an executable file from within the programming environment,
perform the following steps:

1. Enter the following to invoke the environment:
OB /L D1800Q40 filename.bas
where filename indicates the name of your application program,

2. From the Run menu, choose Make EXE File,

3-51



To use a compile and link statement, enter the following:

BC filename.bas /O
Link filename.obj,,,DL1800040.11ib+BCOM40.1ib;

where filename indicates the name of your application program.

Refer to page 3-48 for information about dimensioning and assigning
local arrays when programming in Microsoft QuickBasic (Version 4.0).
Refer to page 3-48 for information about creating a channel-gain queue
when programming in Microsoft QuickBasic (Version 4.0}.

Programming in Microsoft QuickBasic (Version 4.5)

3-52

To program in Microsoft QuickBasic (Version 4.5), you need the
following files; these files are provided in the D AS-1800 Series standard

software package.

File

Description

D1800Q45.LIB

Linkable driver for QuickBasic, Version 4.5,
stand-alone, executable (( EXE) programs.

QB4DECLBI

Include file.

DAS1800.BI

Include file.

For Microsoft QuickBasic (Version 4.5), you can create an executable file
from within the programming environment, or you can use a compile and

link statement.

Programming with the Function Call Driver




To create an executable file from within the programming environment,
perform the following steps:

1. Enter the following to invoke the environment:
QB /L D1800Q45 filename.bas
where filename indicates the name of your application program.
2. From the Run menu, choose Make EXE File.
To use a compile and link statement, enter the following:

BC filename.bas /O
Link filename.obj,,,D1800Q45.1ib+BCOM45.11ib;

where filename indicates the name of your application program.

Refer to page 3-48 for information about dimensioning and assigning
local arrays when programming in Microsoft QuickBasic (Version 4.5).
Refer to page 3-50 for information about creating a channel-gain queue
when programming in Microsoft QuickBasic (Version 4.5).

Programming in Microsoft Professional Basic (Version 7.0)

To program in Microsoft Professional Basic (Versior 7.0), you need the
following files; these files are provided in the DAS-1800 Series standard
software package.

File Description

D18SCOQBX.LIB Linkable driver for Professional Basic, Version 7.0,
stand-alone, executable ((EXE) programs.

DASDECL.BI Include file.

3-53



3-54

For Microsoft Professional Basic (Version 7.0), you can create an
executable file from within the programming environment, or you can use
a compile and link statement.

To create an executable file from within the programming environment,
perform the following steps:

1. Enter the following to invoke the environment;
QBX /L D1800QBX filename.bas
where filename indicates the name of your application program.
2. From the Run menu, choose Make EXE File.
To use a compile and link statement, enter the following:

BC filename.bas /o;
Link filename.obij,,,D1800QBX.1lih;

where filename indicates the name of your application program.

Refer to page 3-50 for information about dimensioning and assigning
local arrays when programming in Microsoft Professional Basic (Version
7.0). Refer to page 3-50 for information about creating a channel-gain
queue when programming in Microsoft Professional Basic (Version 7.0).

Programming with the Function Call Driver



Programming in Microsoft Visual Basic for DOS

To program in Microsoft Visual Basic for DOS, you need the following
files; these files are provided in the DAS-1800 Series standard software

package.
File Description
DI180OVBD.LIB Linkable driver for Visual Basic for DOS stand-alone,

executable ((EXE) programs,

DASDECL.BI Include file.

To create an executable file in Microsoft Visual Basic for DOS, perform
the following steps:

1. Invoke the Visual Basic for DOS environment by entering the
following:

VBDOS /L D180QVBD.QLB filename.BAS
where filename indicates the name of your application program.
2. From the Run menu, choose Make EXE File.
Refer to page 3-50 for information about dimensioning and assigning
local arrays when programming in Microsoft Visual Basic for DOS. Refer

to page 3-50 for information about creating a channel-gain queue when
programming in Microsoft Visual Basic for DOS.

3-565






4

Function Reference

The FCD functions are organized into the following groups:

Initialization functions
Operation functions

Frame management functions
Memory management functions
Buffer address functions
Buffering mode functions
Conversion mode functions
Channel and gain functions

Clock functions
Trigger functions
Gate functions

Miscellaneous functions

The particular functions associated with each function group are presented
in Table 4-1. The remainder of the chapter presents detailed descriptions
of all the FCD functions, arranged in alphabetical order.

4-1



4-2

Table 4-1. Functions

Function Type

Function Name

Page Number

page 4-8

page 4-25

page 4-105

Initialization DAS1800 DIeVOpen
K_CloseDriver
K_G{:‘tDe;f}.I;;lmaje
'<_DASDevini
Operation

K_DMAStatus

Ty

page 4-49

K_IntStart

page 4-156

K_IntStop

Frame Management

page 4-162

K_GetDAFrame

page 4-102

K_GetDOFrame

page 4-116

K_ClearFrame

page 4-23

Function Refarence



Table 4-1. Functions (cont.)

Function Type Function Name Page Number

Memory Management

page 4-154

K_MoveArrayToBuf page 4-167

Buffer Address K_SetBuf page 4-191

K_GetBuf

K_BufListAdd page 4-17

Buffering Mode K_CIrContRun page 4-31

K_GetContRun page 4-99

Conversion Mode

K_CIrADFreeRun page 4-29

K _GetSSH page 4-132




Table 4-1. Functions {cont.)

Function Type Function Name Page Number

Channel and Gain K_SetChn page 4-198

page 4-220

K_SerG

K_SetChnGAry page 4-201

K_RestoreChnGAry page 4-174

K_GetStartStopChn page 4-135

RO DS RS

K_GetStartStop page 4-138

K_SetADCommonMode page 4-179

K_SetADMode page 4-185

K_GetADConfig page 4-69

Clock page 4-204

K_GetClk page 4-93

X Gt -

K_SetBurstTicks ) page 4-196
L [eeda

K_SetExtClkEdge page 4-218

Function Referance



Table 4-1. Functions (cont.)

Function Type Function Name Page Number

Trigger K_SetTrig page 4-233

K_SetTrigHyst page 4-236

K_SetAboutTrig page 4-176

K_GetTrig page 4-142

K_GetTrigHyst page 4-14

wn

K._GetAboutTrig page 4-65

Gate

K_GetGate page 4-126

Miscellancous

K_GetVer page 4-148

K_GetDOCurVal page 4-113

Keep the following conventions in mind throughout this chapter:

e Under “Boards Supported,” All refers to the following boards:
DAS-1801HC, DAS-1802HC, DAS-1801ST, DAS-1802ST,
DAS-1802HR.

e Although the function names are shown with underscores, do not use
the underscores in the BASIC languages.

e The data types DDH, FRAMEH, DWORD, WORD, and BYTE are
defined in the language-specific include files.

45



4-6

e Variable names are shown in italics.

e The retumn value for all DAS-1800 Series FCD functions is the
error/status code. Refer to Appendix A for more information.

e The description shows the prototype for the function.

e In the examples, the variables are not defined. It is assumed that they
are defined as shown in the syntax,

The name of each function argument in the Description and Usage sections
includes a prefix that indicates the associated data type. These prefixes are
described in Table 4-2.

Function Reference



Table 4-2. Data Type Prefixes

Prefix

Data Type

Comments

Handle to device, frame, and
memory block

Handle-type variables are declared in the user program
as long or DWORD, depending on what the language
allows. The actual user variable is passed to the driver
by value.

Pointer to a variable

These are pointers to all types of variables, except
handles (h). This type is typically used when passing a
parameter of any type to the driver by reference.

A 16-bit word

This type is typically used when passing an unsigned
integer to the driver by value,

Float

A 32-bit double word

This type is typically used when passing an unsigned
long to the driver by value.

4-7



DAS1800_DevOpen

Boards
Supported

Purpose

Prototype

Parameters

Return Value

4-8

All

Initializes the DAS-1800 Series Function Call Driver.

C/Ce+
DASErr far pascal DAS1800_DevOpen (char far *szCfgFile,
char far *pBoards);

Turbo Pascal
Function DAS1800_DevOpen (Var szCfgFile : char;
Var pBoards : Integer) : Word, far; external 'DAS180{)';

Turbo Pascal for Windows
Function DAS1800_DevOpen (Var szCfgFile : char;
Var pBoards : Integer) : Word,; far; external DAS180(";

Visual Basic for Windows
Declare Function DAS 1800_DevOpen Lib "DAS 1800.DLL"
(ByVal szCfgFile As String, pBoards As Integer) As Integer

BASIC

DECLARE FUNCTION DAS1800DEVOPEN% ALIAS
"DAS1800_DevOpen" (BY VAL szCfgFile AS LONG,
SEG pBoards AS INTEGER)

szCfgFile Driver configuration file.
Valid values: The name of a configuration file.

pBoards Number of boards defined in szCfgFile.
Valid values: 1to3

This function returns an integer error/status code. Error/status code 0
indicates that the function executed successfully. A non-zero error/status
code indicates that an error occurred. Refer to Appendix A for additional
information.

Function Reference



DAS1800_DevOpen (cont.)

Remarks

See Also

Usage

This function initializes the driver according to the information in the
configuration file specified by szCfgFile and stores the number of boards
defined in pBoards,

You create a configuration file using the D1800CFG .EXE utility. Refer to
your DAS-1800 Series board user’s guide for more information,

K_OpenDriver

C/C++
#include "DAS1800.H" // Use "DAS1800.HPP for C++

int nBoards;

wDasErr = DAS1800_DevOpen ("DAS1B0Z.CFG", &nBecards);

Turbo Pascal
uses D1800TP7; (* Use D1800TP6 for TP ver 6.0 *)

szCfgName : String;

nBeards : Integer;
szCfgName := 'DAS1802.CFG' + #0;
wDasEry := DAS1800_DevOpen( szCfgName[l], nBoards );

Turbho Pascal for Windows
{$I DASDECL.INC)

gzCfgName : String;
nBoards : Integer;

szCfgName := 'DASI802.CFG' + #0;
wDasErr := DAS1800_DevOpen( szCfgName([ll, nBoards );

4-9



DAS1800_DevOpen (cont.)

4-10

Visual Basic for Windows
(Include DASI800.BAS in your program make file)

DIM nBoards AS INTEGER
DIM szCfgName AS STRING

wDasErr = DAS1800_DevOpen{szCfgName, nRoards)

BASIC
* $INCLUDE: 'DAS1800.BI'

DIM nBoards AS INTEGER
DIM szCfgName AS STRING

szCfgName = "DAS1802.CFG" + CHRS{0)
wDasErr = DAS1I800DEVOPEN% (SSEGADD (szCfgName) ,

nBoards)

Function Reference



DAS1800 GetDevHandle

Boards
Supported

Purpose

Prototype

Parameters

Return Value

All

Initializes a DAS-1800 Series board.

C/C++
DASErr far pascal DAS1800_GetDevHandle (WORD nBrdNum,
DWORD far *phDev);

Turbo Pascal
Function DAS1800_GetDevHandle (nBrdNum : Word;
Var phDev : Longint) : Word; far; external 'DAS1800";

Turbo Pascal for Windows
Function DAS1800_GetDevHandle (nBrdNum : Word,
Var phDev : Longint) : Word; far; external DAS 1800

Visual Basic for Windows
Declare Function DAS1800_GetbevHandle Lib "DAS1800.DLL"
(ByVal nBrdNum As Integer, phDev As Long) As Integer

BASIC

DECLARE FUNCTION DAS 1800GETDEVHANDLE% ALIAS
"DAS1800_GetDevHandle" (BY VAL nBrdNum AS INTEGER,
SEG phDev AS LONG)

nBrdNum Board number.
Valid values: 0to 2

phDev Handle associated with the board.

This function returns an integer error/status code. Error/status code 0
indicates that the function executed successfully. A non-zero error/status
code indicates that an error occurred. Refer to Appendix A for additional
information.

4-11



DAS1800_GetDevHandle (cont.)

Remarks This function initializes the board specified by nBrdNum, and stores the
board handle of the specified board in phDev.

The value stored in phDev is intended to be used exclusively as an
argument to functions that require a board handle. Your program should
not modify the value stored in phDeyv.

See Also K_GetDevHandle

Usage C/C++
#include "DAS1800.H" // Use "DAS1800.HPP for C++

DWORD hDev;
wDasErr = DAS1800_GetDevHandle (0, &hDev);

Turbo Pascal

uses D1800TP7; (* Use D1800TP6 for TP ver 6.0 *)
hDev : Lengint; { Device Handle }
wDasErr := DAS1800_GetDevHandle( 0, hDev );

Turbo Pascal for Windows
{$I DASDECL.INC)

hDev : Longint; { Device Handle }

wDasErr := DAS1800_GetDevHandle{ 0, hDev );

Visual Basic for Windows
(Include DASIS00.BAS in your program make file)

Global hDev Ag Long ' Device Handle

wDasErr = DAS1800_GetDevHandle (0, hDev)

4-12 Function Reference



DAS1800_GetDevHandle (cont.)

BASIC
' SINCLUDE: 'DAS1800.BI'

DIM hDev AS LONG ' Device Handle

wDagErr = DAS1800GetDevHandle%(C, hDev)



K_ADRead

Boards
Supported

Purpose

Prototype

Parameters

4-14

All

Reads a single analog input value.

C/Ca++
DASErr far pascal K_ADRead (DWORD hDev, BYTE nChan,
BYTE n(ain, void far *pData);

Turbo Pascal
Function K_ADRead (hDev : Longint; nChan : Byte; nGain : Byte;
pData : Pointer) : Word;

Turbo Pascal for Windows
Function K_ADRead (hPev : Longint; nChan : Byte; nGain : Byte;
pData : Pointer) : Word; far; external 'DASSHELL";

Visual Basic for Windows

Declare Function K_ADRead Lib "DASSHELL.DLL"
(ByVal hDev As Long, ByVal nChan As Integer,
ByVal nGain As Integer, pData As Integer) As Integer

BASIC
DECLARE FUNCTION KADRead% ALIAS "K_ADRead"

(BYVAL hDev AS LONG, BYVAL nChan AS INTEGER,
BYVAL nGain AS INTEGER, SEG pData AS INTEGER)

hDev Handle associated with the board.

Function Reterence



K _ADRead (cont.)

Return Value

Remarks

See Also

nChan Analog input channel. Valid values:

Valid channel numbers

Board Differential Single-ended
DAS-1800HC 0to31

DAS-1800ST/HR with N

Not applicable Ot 15N + 1)

EXP-1800 expansion boards
artached
nGain Gain code,
Valid values: 1 to 3 for DAS board channels
0 to 7 for EXP-1800 channels
Refer to Table 2-2 on page 2-10 for the gain and
input ranges associated with each gain code.
pData Acquired analog input value.

This function returns an integer error/status code, Error/status code 0
indicates that the function executed successfully. A non-zero error/status
code indicates that an error occurred. Refer to Appendix A for additional
information.

This function reads the analog input channel nChan on the board
specified by ADev at the gain represented by n(zain, and stores the raw
count in pData.

Refer to Appendix B for information on converting the raw count stored
in pData to voltage.

K_DMAStart, K_IntStart

4-15



K_ADRead (cont.)

Usage C/C++
#include "DASDECL.H" // Use "DASDECL.HPP for C++

int wADValue;

wDasErr = K_ADRead (hDev, 0, 0, &wADValue)

Turbo Pascal
uses D1800TPY7; (* Use D1800TP& for TP wver 6.0 *)

wADValue : Integer;

wDasErr := K_ADRead (hDev, 0, 0, @wADValue);

Turbo Pascal for Windows
{$I DASDECIL.INC)

wADValue : Integer;

wDasErr := K_ADRead (hDev, 0, 0, @waADValue):

Visual Basic for Windows
finclude DASDECL.BAS in your program make file)

Global wADValue As Integer

wbasErr = K_ADRead (hDev, (¢, 0, wADValue)

BASIC
* $INCLUDE: 'DASDECL.BI'

DIM wADValue AS INTEGER

whDasErr = KADRead% (hDev, 0, 0, wADValue)

4-16 Function Reference



K_BufListAdd

Boards
Supported

Purpose

Prototype

Parameters

Return Value

All

Adds a buffer to the list of multiple buffers.

CiC++
DASErr far pascal K_BufListAdd (DWORD hFrame, void far *pBuf,
DWORD dwSamples);

Turbo Pascal
Function K_BufListAdd (AF rame : Longint; pBuf : Pointer;
dwSamples : Longint) : Word;

Turbo Pascal for Windows
Function K_BufLListAdd (hFrame : Longint; pBuf : Pointer;
dwSamples : Longint) : Word; far; external DASSHELL";

Visual Basic for Windows

Declare Function K_BufListAdd Lib "DASSHELL.DLL"
(ByVal hFrame As Long, ByVal pBuf As Long,

ByVal dwSamples As Long) As Integer

BASIC

DECLARE FUNCTION KBufListAdd% ALIAS "K_BufListAdd"
{(BYVAL hFrame AS LONG, SEG pBuf AS INTEGER,

BYVAL dwSamples AS LONG)

hF rame Handle to the frame that defines the operation.
pBuf Starting address of buffer.
dwSamples Number of samples in the buffer.

This function returns an integer error/status code. Error/status code 0
indicates that the function executed successfully. A non-zero error/status
code indicates that an error occurred. Refer to Appendix A for additional
information.

417



K_BufListAdd (cont.)

Remarks For the operation defined by AFrame, this function adds the buffer at the
address pointed to by pBuf to the list of multiple buffers; the number of
samples in the buffer is specified in dwSamples. The driver supports
multiple buffers for analog input operations only.

Before you add the buffer to the multiple-buffer list, you must either
allocate the buffer dynamically (using K_IntAlloc or K_DMA Alloc), or
dimension the buffer locally.

Make sure that you add buffers to the multiple-buffer list in the order in
which you want to use them. The first buffer you add is Buffer 1, the
second buffer you add is Buffer 2, and so on, You can add up to 149
buffers. You can use K_IntStatus or K_DMAStatus to determine which
buffer is currently in use.

See Also K_BufListReset, K DMAAlloc, K_IntAlloc
Usage
CiCrs
#include "DASDECL.H" // Use "DASDECL.HPP for C++
void far *pBuf[5]; // Buffer pointers
WORD hMeml[51]:; // Buffer handles
for (1 = 0; 1 < 5; i++) {

whasErry = K_DMAAlloc (hAD, dwSamples, &pBuf[i], &hMeml[i]);
whasErr = K_BufListAdd (hAD, pBuf(i], dwSamples);

4-18 Function Reference



K_BufListAdd (cont.)

Turbo Pascal

uses D1800TP7; (* Use DL80OTP6 for TP ver 6.0 *)
TYPE
BufType = Array [(0..1] of Integer;
VAR
pBuf : Array [0..4] of "“BufType; { Buffer pointers }
hMem : Array [0..4] of Word; { Buffer handles }
FCR I := 0 to 4 DO
BEGIN
wDagErr := K_DMAAlloc (hAD, dwSamples, Addr{(pBuf(I])}, hMem[I]);
wDasBErr := K_BufListAdd (hAD, pBuf[l], dwSamples);
END;

Turbo Pascal for Windows
{$T DASDECL.INC}

TYPE

BufType = Array [0..1] of Integer;

VAR

pBuf : Array [0..4] of “BufType; { Buffer pointers }
hMem : Array [0..4] of Word; { Buffer handles }

FOR I := 0 to 4 DO

BEGIN

wDasErr := K_DMAAlloc(hAD, dwSamples, Addr(pBuf{I]}, hMem[I]};
wDasErr := K_BufListAdd (hAD, pBuf([l], dwSamples);

END;

Visual Basic for Windows
{Include DASDECL.BAS in your program make file)

Glebal pBuf(5) As Long ' Buffer pointers
Global hMem(5) As Integer ' Buffer handlesg

For I% = 0 To 4
whasErr = K_DMAAlloc (hAD, dwSamples, pBuf (I%), hMemi(I%))
whasErr = K_BufListAdd (hAD, pBuf(I%}, dwSamples)

Next I%

4-19



K_BufListAdd (cont.)

BASIC

' SINCLUDE: 'DASDECL.BI'

DIM pBuf(5) AS LONG ' Buffer pointers
DIM hMem(5) AS INTEGER ' Buffer handles

For I% = 0 To 4
whasErr = KDMAAlloc% (hAD, dwSamplesg, pBuf (I%), hMem(I%))
whasErr = KBufListAdd% (hAD, pBuf{I%), dwSamples)

Next I%

4-20 Function Reference



K_BufListReset

Boards
Supported

Purpose

Prototype

Parameters

Return Value

Remarks

All

Clears the list of multiple buffers.

C/Ce++
DASErr far pascal K_BufListReset (DWORD AFrame);

Turbo Pascal
Function K_BufListReset (hFrame : Longint) : Word;

Turbo Pascal for Windows
Function K_BufListReset (hFrame : Longint) : Word; far;
external DASSHELL';

Visual Basic for Windows
Declare Function K_BufListReset Lib "DASSHELL.DLL"
(ByVal AFrame As Long) As Integer '

BASIC
DECLARE FUNCTION KBufListReset% ALIAS "K_BufListReset"
(BYVAL AFrame AS LONG)

hFrame Handle to the frame that defines the operation.

This function returns an integer error/status code. Error/status code 0
indicates that the function executed successfully. A non-zero error/status
code indicates that an error occurred. Refer to Appendix A for additional
information.

For the operation defined by AFrame, this function clears all buffers from
the list of multiple buffers.

This function does not deallocate the buffers in the list. If dynamically
allocated buffers are no longer needed, you can use K_IntFree or
K_DMAFree to free the buffers before resetting the buffer list.

4-21



K_BufListReset (cont.)

See Also

Usage

4-22

K_DMAFree, K_IntFree, K_SetBuf, K_SetDMABuf

C/C++
#include "DASDECL.H" // Use "DASDECL.HPP for C++

whDasErr = K_BufListReset (haD);

Turbo Pascal
uses D1800TP7; {* Use DL1800TP6 for TP ver 6.0 *)

wDasErr := K_BuflistReset (hAD};

Turbo Pascal for Windows
{$I DASDECL,INC}

wDagEry := K_BufListReset (hAD);

Visual Basic for Windows
(Include DASDECL.BAS in your program make file)

wDasErr = K_BufListReset (hAD)

BASIC
* $INCLUDE: 'DASDECL.BI‘

wDasErr = KBufListRegset% (hAD)

Function Reference



K_ClearFrame

Boards
Supported

Purpose

Prototype

Parameters

Return Value

Remarks

All

Sets the elements of a frame to their default values.

CiC++
DASErr far pascal K_ClearFrame (DWORD AF rame);

Turbo Pascal
Function K_ClearFrame (hFrame : Longint) : Word;

Turbo Pascal for Windows
Function K_ClearFrame (hFrame : Longint) : Word; far;
external DASSHELL';

Visual Basic for Windows
Declare Function K_ClearFrame Lib "DASSHELL.DLL"
(ByVal #iFrame As Long) As Integer

BASIC
DECLARE FUNCTION KClearFrame% ALIAS "K_ClearFrame"
(BYVAL hFrame AS LONG)

hFrame Handle to the frame that defines the operation.,

This function returns an inieger error/status code. Error/status code 0
indicates that the function executed successfully. A non-zero error/status
code indicates that an error occurred. Refer to Appendix A for additional
information.

This function sets the elements of the frame specified by AFrame to their
default values.

Refer to Table 3-1 on page 3-5 for the default values of the elements of an
A/D frame, Table 3-2 on page 3-7 for the default values of the elements of
an D/A frame, Table 3-3 on page 3-8 for the default values of the elements
of an DI frame, and Table 3-4 on page 3-9 for the default values of the
elements of an DO frame,

4-23



K_ClearFrame (cont.)

See Also

Usage

4-24

K_GetADFrame, K_GetDAFrame, K_GetDIFrame, and K_GetDOFrame

C/Ca++

#include "DASDECL.H" // Use "DASDECL.HPP for C++

whasErr = K_ClearFrame (hAD);

Turbo Pascal

uges D180ATRT; (* Use D1BCOTPA for TP wver 6.0 *)

wDasErr := K_ClearFrame (haD);

Turbo Pascal for Windows
{$T DASDECL.INC}

wDasErr := K_ClearFrame (hAD);

Visual Basic for Windows
{Inciude DASDECL.BAS in your program make file)

wDasErr = K_ClearFrame {(haD)

BASIC
' $INCLUDE: 'DASDECL.BI'

wDasErr = KClearFrame% (hAD)

Function Reference



K _CloseDriver

Boards
Supported

Purpose

Prototype

Parameters

Return Value

Remarks

All

Closes a previously initialized Keithley DAS Function Call Driver,

C/C++
DASErr far pascal K_CloseDriver (DWORD ADrv);

Turbo Pascal
Not supported

Turbo Pascal for Windows
Function K_CloseDriver (hDrv ; Longint) : Word; far;
external DASSHELL;

Visual Basic for Windows
Declare Function K_CloseDriver Lib "DASSHELL.DLL"
(ByVal hDrv As Long) As Integer

BASIC
Not supported

hDrv Driver handle you want to free,

This function returns an integer error/status code. Error/status code 0
indicates that the function executed successfully. A non-zero error/status
code indicates that an error occurred, Refer to Appendix A for additional
information,

This function frees the driver handle specificd by ADrv and closes the
associated use of the Function Call Driver. This function also frees all
board handles and frame handles associated with ADrv.

If #Drv is the last driver handle specified for the Function Call Driver, the
driver is shut down (for all languages) and unloaded (for Windows-based
languages only).

4-25



K_CloseDriver (cont.)

See Also

Usage

4-26

K_FreeDevHandle

C/Ca+

#include “DASDECL.H" // Use "DASDECL.HPP for C++

wDasErr = K_CleseDriver (hDrv};:

Turbo Pascal for Windows
{$I DASDECL.INC}

wDhasErr := K_CloseDriver (hDxv);

Visual Basic for Windows
{Include DASDECL.BAS in your program make file)

wDasErr = K_ClosgeDriver (hDrv)

Function Reference



K_ClrAboutTrig

Boards
Supported

Purpose

Prototype

Parameters

Return Value

Remarks

See Also

All

Disables the about trigger for an analog input operation.

C/C++
DASErr far pascal K_ClrAboutTrig (DWORD hFrame);

Turbo Pascal
Function K_ClrAboutTrig (hFrame : Longint) : Word;

Turbo Pascal for Windows
Function K_ClrAboutTrig (hFrame : Longint) : Word; far;
external DASSHELL";

Visual Basic for Windows
Declare Function K_ClrAboutTrig Lib "DASSHELL.DLL"
(ByVal hFrame As Long) As Integer

BASIC
DECLARE FUNCTION KCirAboutTrig% ALIAS "K_ClrAboutTrig"
(BYVAL AFrame AS LONG)

hFrame Handle to the frame that defines the operation.

This function returns an integer error/status code, Error/status code 0
indicates that the function executed successfully. A non-zero error/status
code indicates that an error occurred. Refer to Appendix A for additional
information.

This function disables the about trigger for the operation defined by
hFrame.

K_GetADFrame and K_ClearFrame also disables the about trigger.

K_ClearFrame, K _GetADFrame, K_SetAboutTrig

4-27



‘K_CIrAboutTrig (cont.)

Usage CiC++
#include "DASDECL.H" // Use "DASDECL.HPP for C++

wDasErr = K_ClrAboutTrig (hAD);

Turbo Pascal
uses D1800OTP7; (* Usge D1BOCTP6 for TP ver 6.0 *)

whDasEry := K_ClrAboutTrig (hAD);

Turbo Pascal for Windows
{41 DASDECL.INC)

wDasErr := K_ClraAboutTrig (haAD);

Visual Basic for Windows
(Include DASDECL.BAS in your program make file)

wDasErr = K_ClrAboutTrig (hAD)

BASIC
' SINCLUDE: 'DASDECL.BI'’

whasErr = KClraAboutTrig$% (hAD)

4-28 Function Reference



K_CIrADFreeRun

Boards
Supported

Purpose

Prototype

Parameters

Return Value

Remarks

Al

Sets paced conversion mode for an analog input operation.

C/C++
DASEirr far pascal K_CIrADFreeRun (DWORD hFrame);

Turbo Pascal
Function K_ClrADFreeRun (hFrame : Longint) : Word;

Turbo Pascal for Windows
Function K_CIlrADFreeRun (4Frame : Longint) : Word; far;
external ' DASSHELL';

Visual Basic for Windows
Declare Function K_ClrADFreeRun Lib "DASSHELL.DLL"
(ByVal hFrame As L.ong) As Integer

BASIC
DECLARE FUNCTION KCirADFreeRun% ALIAS "K_CIrADFreeRun”
(BYVAL hFrame AS LONG)

hFrame Handle to the frame that defines the operation.

This function returns an integer error/status code. Error/status code 0
indicates that the function executed successfully. A non-zero error/status
code indicates that an error occurred. Refer to Appendix A for additional
information.

This function sets the conversion mode for the operation defined by
hFrame to paced mode and sets the Conversion Mode element in the
frame accordingly.

K_GetADFrame and K_ClearFrame also enable paced conversion
mode,

4-29



K_CIirADFreeRun (cont.)

See Also K_ClearFrame, K_GetADFrame, K_SetADFreeRun
Usage C/C++
#include "DASDECL.H" // Use "DASDECL.HPP for C++

wDasErr = K_ClrADFreeRun (hAD):;

Turbo Pascal
uses D18007TP7; (* Use DL800TP& for TP ver 6.0 *)

wDasEry := K_ClrADFreeRun (hAD);

Turbo Pascal for Windows
{$I DASDECL.INC)

wDasFErr := K_ClrADFreeRun (hAD);

Visual Baslc for Windows
(fnclude DASDECL.BAS in your program make file)

wDasErr = K_ClrADFreeRun (hAD)

BASIC
' $INCLUDE: 'DASDECL.BI'

wDasErr = KClrADFreeRun% (haD)

4-30 Function Reference



K _CirContRun

Boards
Supported

Purpose

Prototype

Parameters

Return Value

Remarks

All

Sets single-cycle buffering mode.

C/C++
DASErr far pascal K_ClrContRun (DWORD hFrame);

Turbo Pascal
Function K_ClrContRun (AFrame : Longint) : Word,

Turbo Pascal for Windows
Function K_ClrContRun (hFrame : Longint) : Word; far;
external DASSHELL';

Visual Basic for Windows
Declare Function K_ClrContRun Lib "DASSHELL.DLL"
(ByVal hFrame As Long) As Integer

BASIC
DECLARE FUNCTION KClrContRun% ALIAS "K_ClrContRun"
(BYVAL hFrame AS LONG)

hFrame Handle to the frame that defines the operation,

This function returns an integer error/status code. Error/status code 0
indicates that the function executed successfully. A non-zero ercor/status
code indicates that an error occurred. Refer to Appendix A for additional
information.

This function sets the buffering mode for the operation defined by
hFrame to single-cycle mode and sets the Buffering Mode element in the
frame accordingly.

K_GetADFrame, K_GetDAFrame, K_GetDIFrame,
K_GetDOFrame, and K_ClearFrame also enable single-cycle buffering
mode.

4-31



K_CirContRun (cont.)

See Also

Usage

4-32

Refer to page 2-18 for more information on buffering modes for analog
input operations, page 2-30 for more information on buffering modes for
analog output operations, and page 2-38 for more information on
buffering modes for digital I/O operations.

K_SetContRun

C/C++
#include "DASDECL.H" // Use "DASDECL.HPP for C++

whagErr = K_ClrContRun {hAD);

Turbo Pascal
uses D1800TP7; (* Use DI800TPE for TP ver 6.0 *)

wDasErr := K_ClrContRun (hAD);

Turbo Pascal for Windows
{$T DASDECL.INC}

wDasErr := K_ClrContRun (hAD);

Visual Basic for Windows
{Include DASDECL BAS in your program make file)

whasFrr = K_ClrContRun (hAD)

BASIC
' $INCLUDE: 'DASDECL.BI'

wDasErr = KClrContRun% (hAD}

Function Reterence



K_DASDevinit

Boards
Supported

Purpose

Prototype

Parameters

Return Value

Remarks

Usage

All

Reinitializes a board.

C/C++
DASErr far pascal K_DASDevInit (DWORD ADev);

Turbo Pascal
Function K_DASDevInit (hDev : Longint) : Longint;

Turbo Pascal for Windows
Function K_DASDevInit (hDev : Longint) : Longint; far;
external 'DASSHELL;

Visual Basic for Windows
Declare Function K_DASDevInit Lib "DASSHELL DLL"
{ByVal hDev As Long) As Integer

BASIC
DECLARE FUNCTION KDASDevinit% ALIAS "K_DASDevlnit"
(BYVAL hDev AS LONG)

hDev Handle associated with the board.

This function returns an integer error/status code, Error/status code 0
indicates that the function executed successfully, A non-zero error/status
code indicates that an error occurred. Refer to Appendix A for additional
information.

This function stops all current operations and resets the board specified by
hDev and the driver to their power-up states.

C/C++
#include “DASDECL.H" // Use “DASDECL.HPP for C++

wDasErr = K_DASDevInit (hDev);

4-33



K_DASDevinit (cont.)

4-34

Turbo Pascal

usegs D1800TPE7; {* Use D1800TP6 for TP ver 6.0 *)

whasErr := K_DASDevInit (hDev);

Turbo Pascal for Windows
{$T DASDECIL.INC)

wDasErr := K_DASDevInit (hDev);

Visual Basic for Windows
(Include DASDECL.BAS in your program make file)

wDagErr = K_DASDevInit {(hDev)

BASIC
' $INCLUDE: 'DASDECL.BI'

wDasErr = KDASDevInit% (hDev)

Function Reference



K_DAWrite

Boards
Supported

Purpose

Prototype

Parameters

DAS-1801HC, DAS-1802HC

Writes a single analog output value.

C/C++
DASErr far pascal K_DAWrite (DWORD #Dev, BYTE nChan,
DWORD dwData),

Turbo Pascal
Function K_DAWrite (hDev : Longint; nChan : Byte;
dwData : Longint) : Word;

Turbo Pascal for Windows
Function K_DAWrite (hDev : Longint; nChan : Byte;
dwData : Longint) ; Word; far; external DASSHELL';

Visual Basic for Windows

Declare Function K_DAWrite Lib "DASSHELL.DLL"
(ByVal hDev As Long, ByVal nChan As Integer,
ByVal dwData As Long) As Integer

BASIC

DECLARE FUNCTION KDAWTite% ALIAS "K_DAWrite"
(BYVAL hDev AS LONG, BYVAL nChan AS INTEGER,
BYVAL dwData AS LONG)

hDev Handle associated with the board.
nChan Analog output channel.
Valid values: 0 = Channel 0
1 = Channel 1

2 = Both channels

dwData Analog output value.
Valid values: 0 to 4,095

4-35



K_DAWrite (cont.)

Return Value

Remarks

See Also

Usage

4-36

This function returns an integer error/status code, Error/status code 0
indicates that the function executed successfully. A non-zero error/status
code indicates that an error occurred. Refer to Appendix A for additional
information.

This function writes the value dwData to the analog output channel
specified by nChan on the board specified by hDev. Refer to page 2-26 for
more information on analog output operations.

dwData is a 32-bit variable, but the output value must contain only 12
bits. Refer to Appendix B for a description of the data format.

K_IntStart

C/C+s
#include "DASDECL.H" // Use "DASDECL.HPP for C++

DWORD dwDAValue;

dwDAValue = (DWCRD) (5.0 * 4096 / 20) 4+ 2048;
wDasErr = K_DAWrite (hDev, 0, &dwDAValue);

Turbo Pascal
uses D1800TP7; (* Ugse D1800TP6 for TP ver 6.0 *}

dwDAValue : Longint;

dwbhAValue := Round({(5.0 * 4096.0 / 20.0) + 2048);
wDasErr := K_DAWrite (hDev, 0, dwDAValue);

Turbo Pascal for Windows
{4I DASDECL.INC}

dwDAValue : Longint;

dwDAValue := Round{ (5.0 * 409&6.0 / 20.0) + 2048);
wDasErr := K_DAWrite (hDev, 0, dwDAValue);

Function Reference



K_DAWrite (cont.)

Visual Basic for Windows
(Include DASDECL BAS in your program make file)

Clobal dwDAValue As Long

dwDAValue = INT{5.0 * 4096! / 20!) + 2048
wDasErr = K_DAWrite (hDev, 0, dwDAValue)

BASIC
' $INCLUDE: ‘DASDFECL.BI'

DIM dwDAValue AS LONG

dwDAValue = INT(5.0 * 4096! / 20!} + 2048
wDasErr = KDAWrite% (hDev, 0, dwDAValue)

4-37



K_DIRead

Boards
Supported

Purpose

Prototype

Parameters

Return Value

4-38

All

Reads a single digital input value.

C/C++
DASErr far pascal K_DIRead (DWORD hDev, BYTE nChan,
void far *pData);

Turbo Pascal
Function K_DIRead (hDev : Longint; nChan : Byte;
pData : Pointer) : Word;

Turbo Pascal for Windows
Function K_DIRead (hDev : Longint; nChan : Byte;
pData : Pointer) : Word; far; external 'DASSHELL";

Visual Basic for Windows

Declare Function K_DIRead Lib "DASSHELL.DLL"

(ByVal hDev As Long, ByVal nChan As Integer, pData As Integer) As
Integer

BASIC

DECLARE FUNCTION KDIRead% ALIAS "K_DIRead"
(BYVAL hDev AS LONG, BYVAL nChan AS INTEGER,
SEG pData AS INTEGER)

hDev Handle associated with the board.

nChan Digital input channel.
Valid value: 0

pData Digital input value.

This function returns an integer error/status code. Error/status code 0
indicates that the function ¢xecuted successfully. A non-zero error/status
code indicates that an error occurred. Refer to Appendix A for additional
information.

Function Reference



K _DIRead (cont.)

Remarks

See Also

Usage

This function reads the values of all digital input lines on the board
specified by kD ev, and stores the value in pDara.

pData is a 16-bit variable. The acquired digital value is stored in bits 0, 1,
2, and 3; the values in the remaining bits of pData are not defined, Refer
to page 2-34 for more information.

K_IntStart

C/C++
#include "DASDECL.H! // Use "DASDECL.HPP for C++

WORD wDIValue;

wDasErr = K_DIRead {(hDev, 0, &wDIValue);

Turbo Pascal
uzes D18QQTP7; (* Use D1800TP6 for TP ver 6.0 *)

wDIValue : Word;

wDasErr := K_DIRead (hDev, (¢, BwDIValue);

Turbo Pascal for Windows
{$I DASDECL.INC}

wDIValue : Word;

wDasErr := K_DIRead (hDev, 0, 8wDIValue);

Visual Basic for Windows
(Include DASDECL.BAS in your program make file)

Glchal wDIValue As Integer

whasBrr = K_DIRead (hDev, 0, wDIValue);

4-39



K_DIRead (cont.)

BASIC
' $INCLUDE: ‘'DASDECL.BI'

DIM wDIValue AS INTEGER

wDasErr = KDIRead% (hDev, 0, wDIValue)

4-40 Function Retarence



K_DMAAIlloc

Boards
Supported

Purpose

Prototype

Parameters

All

Allocates a buffer for a DMA-mode analog input operation.

C/iCes
DASErr far pascal K_DMA Alloc (DWORD hFrame,
DWORD dwSamples, void far * tar *pBuf, WORD far * phMem),

Turbo Pascal
Function K_PMAAlloc (hFrame : Longint; dwSamples : Longint;
pBuf : Pointer; Var phMem ; Word) : Word;

Turbo Pascal for Windows
Function K_DMAAlloc (hFrame : Longint; dwSamples : Longint;
pBuf : Pointer; Var phMem : Word) : Word; far; external ' DASSHELL":

Visual Basic for Windows

Declare Function K_DMAAIlo¢ Lib "DASSHELL.DLL"

(ByVal hFrame As Long, ByVal dwSamples As Long, pBuf As Long,
phMem As Integer) As Integer

BASIC

DECL.ARE FUNCTION KDMA Alloc% ALIAS "K_DMA Alloc”
(BYVAL hFrame AS LONG, BY VAL dwSamples AS LONG,
SEG pBuf AS LONG, SEG phMem AS INTEGER)

hFrame Handle to the frame that defines the operation.
dwSamples Number of samples,
Valid values: 1 to 32,767 for Visual Basic for
Windows and BASIC
1 to 65,536 for all other languages
pBuf Starting address of the allocated buffer.
phMem Handle associated with the allocated butfer,

4-41



K_DMAAlIlloc (cont.)

Return Value

Remarks

See Also

Usage

C/Ce+

This function returns an integer error/status code. Error/status code 0
indicates that the function executed successfully. A non-zero error/status
code indicates that an error occurred. Refer to Appendix A for additional
information,

For the operation defined by AFrame, this function allocates a memory
block (a buffer of the size dwSamples) from the available memory heap.
On return, pBuf contains the far memory address of a buffer that is
suitable for a DMA-mode analog input operation. Use K_SetDMABuf or
K_BufListAdd to assign pBufto an A/D frame. phMem, as returned by
this function, is later used to free the allocated memory block by calling
K_DMAFree.

Turbo Pascal and BASIC require that you re-distribute available memory
before you dynamically allocate a buffer. Refer to “Reducing the Memory
Heap” on page 3-32 (Turbo Pascal) or page 3-46 (BASIC) for additional
information.

K_DMAFree, K_SetDMABuf, K_BufListAdd

#include "DASDECL.H" // Use "DASDECL.HPP for C++

void far *pBuf[5]; // Polnters to allocated DMA buffer

WORD hMem([5};

// Memory Handles tc buffers

for (i = 0; 1 < 5; i++) {

wDasErr
wDaskErr

4-42

11

K_DMAAlloc (hAD, dwSamples, &pBuf[i], &hMem[i]);
K_BufListAdd (hAD, pBuf(i], dwSamples);

Function Reference



K _DMAAlIlloc (cont.)

Turbo Pascal

uses D1800TP7; {(* Use DI18COTPE for TP ver 6.0 *)
TYPE
BufType = Array [0..1] of Integer;
VAR
pBuf : Array [0..4] of "BufType; { DMA buffer pointers }
hMem : Array [0..4] of Word; { Handles to DMA buffers }
FOR T := 0 te 4 DO
BEGIN
wDasErr := K_DMAAlloc (hAD, dwSamples, Addr{(pBuf[I]), hMem{I]):
wDasErr := K_BufListAdd (hAD, pBufl[l], JdwSamples);
END;

Turbo Pascal for Windows
{$I DASDECL.INC}

TYPE

BufTvpe = Array [0..1l] of Integer;
VAR
pBuf : Array [0..4] of "BufType:; { DMA bhuffer pointers }
hMem : Array [0..4] of Word; { Handles to DMA buffers )}
FOR I := 0 to 4 DO
BEGIN
wDasExrr := K_DMAAlloc (hAD, dwSamples, Addr (pBuf[I]), hMem[I]):

t

wDasErr := K_BuflListAdd (hAD, pBuf{l], dwSamples};
END;

Visual Basic for Windows
{Include DASDECL.BAS in your program make file)

Global pBuf(b) As Long
Global hMem(5) As Integer

For I% = 0 To 4
wDagsErr = K_DMAAlloc (hAD, dwSamplesg, pBuf(I%), hMem(I%))
whasErr = K_BufListAdd (hAD, pBuf(I%), dwSamples)

Next I%

4-43



K_DMAAlloc {cont.)

BASIC
' SINCLUDE:

'DASDECL.BI"

DIM pBuf (%) AS LONG

DIM hMem(5)
For 1% = 0
wDasErr

whasErr
Next T%

4-44

A5 INTEGER

To 4
KDMAAlloc% (hAD, dwSamples,

KBufListAdd%

(hAD, pBuf(I%},

pBuf (I%), hMem(I%})

dwSamples)

Function Reference



K_DMAFree

Boards
Supported

Purpose

Prototype

Parameters

Return Value

Remarks

See Also

All

Frees a buffer allocated for a DMA-mode analog input operation.

C/C++
DASErr far pascal K_DMATree (WORD hMem);

Turbo Pascal
Function K_DMAFree (hMem : Word) ; Integer;

Turbo Pascal for Windows
Function K_DMAFree (AMem : Word) : Integer; far;
external DASSHELL";

Visual Basic for Windows
Declare Function K_DMAFree Lib "DASSHELL.DLL"
(ByVal hMem As Integer) As Integer

BASIC

DECLARE FUNCTION KDMAFree% ALIAS "K_DMAFree"
(BYVAL hMem AS INTEGER)

hMem Handle to DMA buffer.

This function returns an integer error/status code. Error/status code 0
indicates that the function executed successtully. A non-zero error/status
code indicates that an error occurred. Refer to Appendix A for additional
information,

This function frees the buffer specified by siMem; the buffer was
previously allocated dynamically using K DMA Alloc.

K_DMAlloc, K_SetDMABuf, K_BufListAdd

4-45



K_DMAFree (cont.)

Usage

4-46

C/Ce+

#include "DASDECL.H" // Use "DASDECL.HPP for C++

wDasErr = K_DMAFree (hMem);

Turbo Pascal

uses D1800TP7; (* Use DI1800TP6 for TP ver 6.0 *)

wDagErry := K_DMAFree (hMem);

Turbo Pascal for Windows
{$I DASDECL.INC}

wDasErr := K_DMAFree (hMem);

Visual Basic for Windows
{Include DASDECL.BAS in your program make file)

wDasErr = K_DMAFree {(hMem)

BASIC
' $INCLUDE: ‘DASDECL.BI'

wDasErr = KDMAFree% (hMem)

Function Reference



K_DMAStart

Boards
Suppotted

Purpose

Prototype

Parameters

Return Value

Remarks

See Also

All

Starts a DMA-mode analog input operation.

C/C++
DASETrr far pascal K_DMAStart (DWORD hFrame);

Turbo Pascal
Function K_DMAStart (kF rame . Longint) : Word;

Turbo Pascal for Windows
Function K_DMAStart (#Frame : Longint) : Word; far;
external 'DASSHELL';

Visual Basic for Windows
Declare Function K_DMAStart Lib "DASSHELL.DLL"
(ByVal iFrame As Long) As Integer

BASIC
DECLARE FUNCTION KDMAStart% ALIAS "K_DMAStart"
(BYVAL hFrame AS LONG)

hFrame Handle to the frame that defines the operation.

This function returns an integer error/status code. Error/status code 0
indicates that the function executed successfully, A non-zero error/status
code indicates that an error occurred. Refer to Appendix A for additional
information.

This function starts the DMA operation defined by hFrame.
Refer to Chapter 3 for a discussion of the programming tasks associated

with DMA operations.

K_DMAStatus, K_DMAStop

4-47



K_DMAStart (cont.)

Usage C/C++
#include "DASDECL.H" // Use "DASDECL.HPP for C++

wDhasErr = K_DMAStart (haD);

Turbo Pascal
uses D1800TP7; (* Use D1800TP6 for TP ver 6.0 *)

wDasErr := K_DMAStart (hAD);

Turbo Pascal for Windows
{$T DASDECL.INC}

wDasErr := K_DMAStart (hAD);

Visual Basic for Windows
{Include DASDECL.BAS in your program make file)

wDagsErr = K_DMAStart (hAD)

BASIC
' $INCLUDE: 'DASDECL.BI'

wDasErr = KDMAStart% (hAD)

4-48 Function Reference



K_DMAStatus

Boards
Supported

Purpose

Prototype

Parameters

All

Gets status of a DMA-mode analog input operation.

C/C++
DASEr far pascal K_DMAStatus (DWORD hFrame, short far *pStatus,
DWORD far *pCount);

Turbo Pascal
Function K_DMAStatus (hF rame ; Longint; Var pStatus : Word;
Var pCount : Longint) : Word;

Turbo Pascal for Windows
Function K_DMAStatus (hFrame : Longint; Var pStatus : Word;
Var pCount : Longint} : Word; far; external 'DASSHELL';

Visual Basic for Windows

Declare Function K_DMAStatus Lib "DASSHELL.DLL"

(ByVal hFrame As Long, pStatus As Integer, pCount As Long) As
Integer

BASIC

DECLARE FUNCTION KDMAStatus% ALIAS "K_DMAStatus"
(BYVAL hFrame AS LONG, SEG pStatus AS INTEGER,

SEG pCount AS LONG)

hFrame Handle to the frame that defines the operation,

pStatus Status of DMA-mode analog input operation; see
Remarks below for value stored.

pCount Number of samples that were acquired into the
current buffer.
Value stored: 0 to 65,536

4-49



K_DMAStatus (cont.)

Return Value This function returns an integer error/status code. Error/status code 0
indicates that the function executed successfully. A non-zero errot/status
code indicates that an error occurred. Refer to Appendix A for additional
information.

Remarks For the DMA operation defined by hF rame, this function stores the status
in pStatus and the number of samples acquired in pCount,

The value stored in pStatus depends on the settings in the Statos word, as
shown below:

Bt 15 14 13 12 11 10 9 8 7 & 5 4 3 2 1 0

= TN - Y
Actlve buffer number About-trigger:
00 = Disabled
01 = Armed
10 = Active
11 = Done

0 = Butfer not filled
1 = Buffer filled

0 = No FIFO overflow
1 = FIFO overtlow

Y

0 = Butfer A active
1 = Buffer B active '

0 = DMA operation inactive
1 = DMA operation active

4-50 Function Reference



K_DMAStatus (cont.)

The bits are described as follows:

e Bit 0: Indicates whether a DMA-mode analog input operation is in
progress,

[ ] DIL 1 The Duuc[ I-\/D aciive bii, If you are Ublllb mumple DLIIIGI'b his
bit toggles each time acquisition sample storage is switched to a new
buffer. If you are using a single buffer and the operation is in

continuous mode, this bit toggles each time an acquisition sample is
stored at the hﬂompmu of the huffer.

AL AL v Vv Lllp WL o Uil

s Bit 2: When set, this bit indicates that the onboard FIFO has
overflowed. This event automatically stops all conversions.

e Bit 3: Not used for DMA mode.

e Bit 4: This bit is used during continuous buffering mode; it is set
when all data acquisition buffers that are currcntly assigned to the

P Ry S gy TP hame 1A carsdls dntn ot lanad ~enna

active operauon nave ocell 1ica with data at least once,
¢ Bit 5: Unassigned
o Bits 6-7: These bits indicate the state of the about trigger,
o Bits 8-15: In multiple-buffer acquisitions, these bits indicate the

current active buffer number. The active buffer number is related to
the Status word as follows:

Status word

active buffer = 336

See Also K_DMAStart, K_DMAStop

4-51



K_DMAStatus (cont.)

Usage

4-52

C/Ce++
#include "DASDECL.H" // Uze "DASDECL.HPP for C++

WORD wStatus;
DWORD dwCount;

whasErr = K_DMAStatus (hAD, &wStatus, &dwCount};

Turbo Pascal
uses D1800TP7; (* Use D1800TP6 for TP ver 6.0 *)

DR

wStatugs : Word;
dwCount : Lengint;

whasErr := K_DMAStatus (hAD, wStatug, dwCount};

Turbo Pascal for Windows
($I DASDECL.INC)

wStatus

: Word;
dwCount : Longint;
wDasErr := K_DMAStatus (hAD, wStatus, dwCount);

Visual Basic for Windows
(Include DASDECL.BAS in your program make file)

Global wStatus As Integer
Globhal dwCount As Long

whagErr = K_DMAStatus (hAD, wStatus, dwCount)

BASIC
' SINCLUDE: 'DASDECL.BI'

DIM wStatus AS INTEGER
DIM dwCount AS LONG

whasErr = KDMAStatus% {(hAD, wStatus, dwCount)

Function Reference



K_DMAStop

Boards
Supported

Purpose

Prototype

Parameters

All

Stops a DM A-mode analog input operation.

C/C++
DASErr far pascal K_DMAStop (DWORD hFrame, short far *pSratus,
DWORD far *pCount);

Turbo Pascal
Function K_DMAStop (hWFrame : Longint; Var pStatus : Word;
Var pCount : Longint) : Word;

Turbo Pascal for Windows
Function K_DMAStop (hFrame : Longint; Var pStatus : Word;
Var pCount : Longint) : Word; far; external 'DASSHELL";

Visual Basic for Windows

Declare Function K_DMAStop Lib "DASSHELL.DLL"

(ByVal hFrame As Long, pStatus As Integer, pCount As l.ong) As
Integer

BASIC

DECLARE FUNCTION KDMAStop% ALIAS "K_DMAStop"
(BYVAL hFrame AS LONG, SEG pStatus AS INTEGER,
SEG pCount AS LONG)

hFrame Handle to the frame that defines the operation.
pStatus Status of DM A-mode analog input operation.
pCount Number of samples that were acquired into the

current bufter,
Value stored: 0 to 65,536

4-53



K_DMAStop (cont.)

Return Value

Remarks

See Also

Usage

4-54

This function returns an integer error/status code. Error/status code 0
indicates that the function executed successfully. A non-zero error/status
code indicates that an error occurred. Refer to Appendix A for additional
information.

This function stops the DMA operation defined by #F rame and stores the
status of the DMA operation in pStarus and the number of samples
acquired in pCount.

Refer to page 4-50 for the meaning of the value stored in pStatus.
If a DMA operation is not in progress, K_DMAStop is ignored.

K_DMAStart, K_DMAStatus

C/C++
#include *DASDECL.H" // Use "DASDECL.HPP for C++

WORD wStatus;
DWORD dwCount;

wDasErr = K_DMAStop (hAD, &wStatus, &dwCount);

Turbo Pascal
uses DLBOOTP7; (* Use D18OOTP6 for TP ver 6.0 *)

wStatus : Word;
dwCount : Longint;

wDasErr := K_DMAStop (hAD, wStatus, dwCount);

Turbo Pascal for Windows
{$I DASDECL.INC)}

wstatus : Word;
dwCount : Longint;

wDasErr := K_DMAStop (hAD, wStatus, dwCount);

Function Reference



K_DMAStop (cont.)

Visual Basic for Windows
(Include DASDECL.BAS in your program make file)

Global wStatus As Integer
Global dwCount As Long

wDasErr = K_DMAStop (hAD, wStatus, dwCount)

BASIC
* $INCLUDE: 'DASDECL.BT'

DIM wStatus AS INTEGER
DIM dwCount AS LONG

wDasErr = KDMAStop$% (hAD, wStatus, dwCount)

4-55



K_DOWrite

Boards All
Supponrted
Purpose Writes a single digital output value to the digital output channel.
Prototype C/Ce++
DASErr far pascal K_DOWrite (DWORD #ADev, BYTE nChan,
DWORD dwData);

Turbo Pascal
Function K_DOWrite (hDev : Longint; nChan ; Byte;
dwData ; Longint) : Word;

Turbo Pascal for Windows
Function K_DOWrite (#Dev : Longint; nChan : Byte;
dwData : Longint) : Word; far; external DASSHELL";

Visual Basic for Windows

Declare Function K_DOWrite Lib "DASSHELL DLL"
{(ByVal hDev As Long, ByVal nChan As Integer,
ByVal dwDara As Long) As Integer

BASIC
DECLARE FUNCTION KDOWrite% ALIAS "K_DOWrite"
(BYVAL hDev AS LONG, BYVAL nChan AS INTEGER,

BYVAL dwData AS LONG)
Parameters hDev Handle associated with the board,
nChan Digital output channel.
Valid value: 0
dwData Digital output value.
Valid values: 0 to 255 for DAS-1800HC Series
boards

0 to 15 for DAS-1800ST/HR
Series boards

4-56 Function Referance



K_DOWrite (cont.)

Return Value

Remarks

See Also

Usage

This function returns an integer error/status code. Error/status code 0
indicates that the function executed successfully. A non-zero error/status
code indicates that an error occurred, Refer to Appendix A for additional
information.

This function writes the value dwData to the digital output lines on the
board specified by hDev.

dwData is a 32-bit variable. The value to be written is stored in bits 0
through 7 for DAS-1800HC Series boards or bits 0 through 3 for the
DAS-1800ST/HR Series boards; the values in the remaining bits of
dwData are not defined. Refer to page 2-35 for more information.

K_IntStart, K_GetDOCurVal

C/C++
#include "DASDECL.H* // Use "DASDECL.HPP for C++

DWORD dwDOValue;

dwDOValue = 0x5;
wDasErr = K_DOWrite {hDO, 0, dwDoValue);

Turbo Pascal
uses D1800TP7; (* Use D1800TP6 for TP ver 6.0 *)

dwDOValue : Longint

dwDOValue := §5;
wDasBErr := K_DOWrite (hDO, 0, dwDOValue};

Turbo Pascal for Windows
{$I DASDECL.INC}

dwDOValue : Longint
dwDOValue

= §5;
whDasFrr := K_D

OWrite (hDo, 0, dwDOValue};

4-57



K_DOWrite (cont.)

4-58

Visual Basic for Windows

(Include DASDECL.BAS in your program make file)

Global dwDOValue As Long

dwDOValue &H5

wDasErr = K _DOWrite (hDO, 0O,

BASIC
' $INCLUDE: ‘'DASDECL.BI"

DIM dwDCValue AS LONG

dwDOValue = &H5

dwDOValue)

wDasErr = KDOWrite% {(hDO, (¢, adwDOValue)

Function Reference



K_FormatChnGAry

Boards
Supported

Purpose

Prototype

Parameters

Return Value

Remarks

All

Converts the format of a channel-gain queue.

C/C++
Not supported

Turbo Pascal
Not supported

Turbo Pascal for Windows
Not supported

Visual Basic for Windows
Declare Function K_FormatChnGAry Lib "DASSHELL.DLL"
(pArray As Integer) As Integer

BASIC
DECLARE FUNCTION KFormatChanGAry% ALIAS
"K_FormatChnGAry" (SEG pArray AS INTEGER)

pArray Channel-gain queue starting address.

This function returns an integer error/status code. Error/status code 0
indicates that the function executed successfully. A non-zero error/status
code indicates that an error occurred. Refer to Appendix A for additional
information,

This function converts a channel-gain queue created in BASIC or Visual
Basic for Windows using double-byte {16-bit) values to a channel-gain
queue of single-byte (8-bit) values that the K_SetChnGAry function can
use.

After you use this function, your program can no longer read the
converted list. You must use the K_RestoreChnG Ary function to return
the list to its original format. Refer o page 4-174 for more information.

4-59



K_FormatChnGAry (cont.)

See Also K_SetChnGAry, K_RestoreChnGAry

Usage

Visual Basic for Windows
{Include DASDECL BAS in your program make file)

Global ChanGainArray(16) As Integer ' Chan/Gain array

' Create the array of channel/gain pairs

ChanGainArray{0) = 2 ' # of chan/gain pairs
ChanGainArray{l) = 0: ChanGainArray(2) = 0
ChanGainArray{3) = 1l: ChanGainArray(4) = 1

wDasgErr = K_FormatChnGAry {(ChanGainArray (0))

BASIC
* $INCLUDE: 'DASDECL.BI'

DIM ChanGainArray(l6) AS INTEGER ' Chan/Gain array

' Create the array of channel/gain pairs

ChanGainarray(0) = 2 ‘ 4 of chan/gain pairs
ChanGainArray(l) = 0: ChanGainArray(2) = 0
ChanGainArray{(3) = 1: ChanGainArray(4) = 1

whasErr = KFormatChnGAry% (ChanCGainArray (())

4-60 Function Reference



K_FreeDevHandle

Boards
Supported

Purpose

Prototype

Parameters

Return Value

Remarks

See Also

All

Frees a previously specified board handle.

C/Ce++
DASErr far pascal K_FreeDevHandle (DWORD ADev);

Turbo Pascal
Not supported

Turbo Pascal for Windows
Function K_FreeDevHandle (hDev : Longint) : Word; far;
external 'DASSHELL;

Visual Basic for Windows
Declare Function K_FreeDevHandle Lib "DASSHELL.DLL"
(ByVal hDev As Long) As Integer

BASIC
Not supported

hDev Board handle you want to free.

This function returns an integer error/status code. Error/status code 0
indicates that the function executed successfully. A non-zero error/status
code indicates that an error occurred. Refer to Appendix A for additional
information.

This function frees the board handle specified by hDev as well as all
frame handles associated with hDev.

K_GetDevHandle

4-61



K_FreeDevHandle (cont.)

Usage

4-62

C/iC+s
#include "DASDECL.H" // Use "DASDECL.HPP for C++
wDasErr = K _FreeDevHandle {hDev);

Turbo Pascal for Windows
{$T DASDECL.INC)

wDasErr := K_FreeDevHandle (hDev);

Visual Basic for Windows
(Include DASDECL.BAS in your program make file)

wDagsErr = K_FreeDevHandle (hDev}

Function Reference



K_FreeFrame

Boards
Supported

Purpose

Prototype

Parameters

Retum Value

Remarks

See Also

All

Frees a frame.

C/Ce+
DASE:r far pascal K_FreeFrame (DWORD hFrame);

Turbo Pascal
Function K_FreeFrame (hF rame : Longint) : Word;

Turbo Pascal for Windows
Function K_FreeFrame (hFrame : Longint) : Word, far;
external 'DASSHELL";

Visual Basic for Windows
Declare Function K_FreeFrame Lib "DASSHELL.DLL"
(ByVal hFrame As Long) As Integer

BASIC

DECLARE FUNCTION KFreeFrame% ALIAS "K_FreeFrame"
(BYVAL hFrame AS LONG)

hFrame Handle to frame you want to free.

This function returns an integer error/status code. Error/status code 0
indicates that the function executed successfully. A non-zero error/status
code indicates that an error occurred. Refer to Appendix A for additional
information.

This function frees the frame specified by AF rame, making the frame
available for another operation.

K_GetADFrame, K_GetDAFrame, K_GetDIFrame, K_GetDOFrame

4-63



K_FreeFrame {(cont.)

Usage C/C++
#include "DASDECL.H*" // Use "DASDECL.HPP for C++

wDagErr = K_FreeFrame (hAD);

Turbo Pascal
uses D180O0TP7; (* Use D1800TP6 for TP ver 6.0 *)

whasEry := K_FreeFrame {hAD);

Turbo Pascal for Windows
{$I DASDECL.INC}

wDasErr := K_FreeFrame (hAD);

Visual Basic for Windows
{Include DASDECL.BAS in your program make file)

wDagErr = K_FreeFrame (hAD)

BASIC
' $INCLUDE: 'DASDECL.BI'

wDasErr = KFreeFrame% (hAD)

4-64 Function Reterence



K_GetAboutTrig

Boards
Supported

Purpose

Prototype

Parameters

Return Value

Rematrks

All

Gets the number of post-trigger samples as specified by
K_SetAboutTrig.

CiC++
DASEir far pascal K_GetAboutTrig (DWORD AFrame,
DWORD far *pSamples);

Turbo Pascal
Function K_GetAboutTrig (AFrame : Longint;
Var pSamples : Longint) : Word;

Turbo Pascal for Windows
Function K_GetAboutTrig (hFrame : Longint;
Var pSamples : Longint) : Word; far; external ' DASSHELL';

Visual Basic for Windows
Declare Function K_GetAboutTrig Lib "DASSHELL.DLL"
(ByVal hFrame As Long, pSamples As Long) As Integer

BASIC
DECLARE FUNCTION KGetAboutTrig% ALIAS "K_GetAboutTrig"
(BYVAL hFrame AS LONG, SEG pSamples AS LONG)

hFrame Handle to the frame that defines the operation.

pSamples Number of post-trigger samples.

This function returns an integer error/status code. Error/status code 0
indicates that the function executed successfully. A non-zero error/status
code indicates that an error occurred. Refer to Appendix A for additional
information.

For the operation specified by AFrame, this function stores the number of
post-trigger samples to acquire in pSamples.

4-65



K_GetAboutTrig (cont.)

See Also K_SetAboutTrig, K_ClrAboutTrig
Usage C/Ce++
#include "DASDECL.H"* // Use "DASDECL.HPP for C++

wDasErr = K_GetAboutTrig (hAD, &dwSamples);

Turbo Pascal
uses D1800TP7; (* Use D1800TP6 for TP ver 6.0 *)

wDasErr := K_GetAboutTrig {(hAD, dwSamples);

Turbo Pascal for Windows
{$I DASDECL.INC}

wDasErr := K_GetAboutTrig {(hAD, dwSamples);

Visual Basic for Windows
{Include DASDECL BAS in your program make file)

wDasErr = K_GetAboutTrig {(hAD, dwSamples)

BASIC
* $INCLUDE: 'DASDECL.BI'

wDasErr = KGetAboutTrig% (hAD, dwSamples)

4-66 _ Function Reference



K _GetADCommonMode

Boards
Supported

Purpose

Prototype

Parameters

Return Value

DAS-1801ST, DAS-1802ST, DAS-1802HR

Get a DAS board’s A/D common-mode ground reference.

C/C++
DASEFirr far pascal K_GetADCommonMode (DWORD hDev,
WORD far *pMode);

Turbo Pascal
Function K_GetADCommonMode( A ev : Longint;
Var pMode . Word) : Word,

Turbo Pascal for Windows
Function K_GetADCommonMode (hDev : Longint;
Var pMode ; Word) : Word; far; external ' DASSHELL",

Visual Basic for Windows
Declare Function K_GetADCommonMode Lib "DASSHELL DLL"
(ByVal hDev As Long, pMode As Inleger) As Integer

BASIC
DECLARE FUNCTION KGetADCommonMode% ALIAS
"K_GetADCommonMode" (BY VAL hDev AS LONG,

SEG pMode AS INTEGER)
hDev Handle to the frame that defines the operation.
pMode A/D common-mode ground reference.

Value stored: 0 for LL-GND
1 for user-defined

This function returns an integer error/status code. Error/status code 0
indicates that the function executed successfully. A non-zero error/status
code indicates that an error occurred. Refer 1o Appendix A for additional
information.

4-67



K_GetADCommonMode (cont.)

Remarks

See Also

Usage

4-68

For the board specified by hDev, this function stores the code that
indicates the A/D common-mode ground reference in pMode.

K_SetADCommonMode

C/C++
#include "DASDECL.H" // Use *DASDECL.HPP for C++

wDasErr = K_GetADCommonMode (hDev, &nADCommMode) ;

Turbo Pascal
uses D1800TP7; (* Uze D180OTP6 for TP ver 6.0 *)

wDasErr := K_GetADCommonMode (hDev, wADCommMode) ;

Turbo Pascal for Windows
{4I DASDECL.INC}

wDasErr := K_GetADCommonMode (hDev, wADCommMode) ;

Visual Basic for Windows
(Include DASDECL.BAS in your program make file)

wDasErr = K_GetADCommonMode (hDev, wADCommMode)

BASIC
' $INCLUDE: 'DASDECL.BI'

wDagErr = KGetADCommonMode% (hDev, wADCommMode)

Function Reference



K_GetADConfig

Boards All
Supported
Purpose Get a DAS board’s A/D input channel configuration.
Prototype C/C++
DASE:r far pascal K_GetADConfig (DWORD hDev,
WORD far *pMode);

Turbo Pascal
Function K_GetADConfig (hDev : Longint; Var pMode : Word) : Word;

Turbo Pascal for Windows
Function K_GetADConfig (hDev : Longint; Var pMode : Word) : Word;
far; external 'DASSHELL';

Visual Basic for Windows
Declare Function K_GetADConfig Lib "DASSHELL.DLL"
(ByVal hDev As Long, pMode As Integer) As Integer

BASIC
DECLARE FUNCTION KGetADConfig% ALIAS "K_GetADConfig"
(BYVAL hDev AS LONG, SEG pMode AS INTEGER)

Parameters hDev Handle associated with the board.

pMode A/D input channel configuration.
Value stored: 0 for Differential
1 for Single-ended

Return Value This function returns an integer error/status code, Error/status code ()
indicates that the function executed successfully. A non-zero error/status
code indicates that an error occurred. Refer to Appendix A for additional
information,

Remarks This function stores the code that indicates the A/D input channel
configuration in pMode for the board specified by hDev.

4-69



K_GetADConfig (cont.)

See Also K_SetADConfig

Usage CiC++
#include "DASDECL.H' // Use "DASDECL.HPP for C++
DWORD hAD;

wDasErr = K_GetADConfig (hDev, &wADConfig);

Turbo Pascal
uses D1BCOTP7; (* Use D1800TP6 for TP ver 6.0 *)

hAD : Longint;
wDagErr := K_GetADConfig (hDev, wADConfig);

Turbo Pascal for Windows
{$I DASDECL.INC}

haD : Longint;
wDasErr := K_GetADConfig {(hDev, wADConfig);

Visual Basic for Windows
(Include DASDECL BAS in your program make file)

Global hAD Az Long

whasBrr = K_CetADConfig {(hDev, wADCommMode)

BASIC
* $INCLUDE: ‘'DASDECL.BI'

DIM hAD AS LONG

wDasErr = KGetADConfig$% (hDev, wADConfig)

4-70 Function Reference



K_GetADFrame

Boards
Supported

Purpose

Prototype

Parameters

Remarks

See Also

All

Accesses an A/D frame for an analog input operation.

C/C++
DASErr far pascal K_GetADFrame (DWORD #Dev,
DWORD far * pFrame);

Turbo Pascal
Function K_GetADFrame (hDev : Longint;
Var pFrame : Longint) : Word;

Turbo Pascal for Windows
Function K_GetADFrame (ADev : Longint;
Var pFrame ; Longint} : Word; far; external DASSHELL';

Visual Basic for Windows
Declare Function K_GetADFrame Lib "DASSHELL.DLL"
(ByVal hDev As Long, pFrame As Long) As Integer

BASIC
DECLARE FUNCTION KGetADFrame% ALIAS "K_GetADFrame"
(BYVAL hDev AS LONG, SEG pFrame AS LONG)

hev Handle associated with the board.

pFrame Handie to the frame that defines the operation.

This function specifies that you want to perform a DMA-mode or
interrupt-mode analog input operation on the board specified by ADev,
and accesses an available A/D frame with the handle AFrame. The frame
is initialized to its default settings; the default settings are given in Table
3-1 on page 3-5.

K_ClearFrame, K_FreeFrame

4-71



K_GetADFrame (cont.)

Usage

4-72

C/C++

#include "DASDECL.H" /7 Use "DASDECL.HPP for C++

DWORD hAD;
wDasErr = K_GetADFrame (hDev, &hAD);

Turbo Pascal

uses D180OTE7; (* Use D1800TP6 for TP ver 6.0 *)

haD : Longint;
wDhasExrr := K_GetADFrame (hDev, hAD);

Turbo Pascal for Windows
{$I DASDECL.INC}

haD : Longint;
wDagErr := K_GetADFrame (hDev, hAD};

Visual Basic for Windows
{Include DASDECL.BAS in your program make file)

Glecbal hAD As Long

wDasErr = K_GetADFrame (hDev, hAD)

BASIC
' $INCLUDE: ‘DASDECL.BI®

DIM hAD AS LONG

wDasErr = KGetADFrame$% (hDev, hAD)

Function Reference



K_GetADFreeRun

Boards
Supported

Purpose

Prototype

Parameters

Return Value

All

Gets the conversion mode.

CiCs+
DASErr far pascal K_GetADFreeRun (DWORD hFrame,
short far *pStatus);

Turbo Pascal
Function K_GetADFreeRun (hFrame : Longint;
Var pStatus : Word) ; Word;

Turbo Pascal for Windows
Function K_GetADFreeRun (#Frame : Longint;
Var pStatus : Word) : Word; far; external 'DASSHELL";

Visual Basic for Windows
Declare Function K_GetADFreeRun Lib "DASSHELL.DLL"
(ByVal hFrame As Long, pStatus As Integer) As Integer

BASIC

DECLARE FUNCTION KGetADFrecRun% ALIAS
"K_GetADFreeRun" (BYVAL hFrame AS LONG,
SEG pStatus AS INTEGER)

hFrame Handle to the frame that defines the operation.
pStatus Code that indicates the conversion mode.
Value stored: 0 for Paced
0 for Burst

This function returns an integer error/status code. Error/status code 0
indicates that the function executed successfully. A non-zero error/status
code indicates that an error occurred, Refer to Appendix A for additional
information.

4-73



K_GetADFreeRun (cont.)

Remarks

See Also

Usage

4-74

For the operation defined by AFrame, this function stores the code that
indicates the conversion maode in pStatus.

The pStarus variable contains the value of the Conversion Mode element.

Refer to page 2-15 for information on conversion modes.
K_SetADFreeRun

C/Ces
#include “DASDECL.H" // Use "DASDECL.HPP for C++

WORD wMode;
whasErr = K_GetADFreeRun {(hAD, &wMode):

Turbo Pascal
useg D1800TP7; (* Use D1800TP6 for TP ver 6.0 *)

wMode : Word;
wDasErr := K_GetADFreeRun (hAD, wMode};

Turbo Pascal for Windows
{$I DASDECL.INC}

wMode : Word;
wDasErr := K_GetADFreeRun (hAD, wMode);

Visual Basic for Windows
(Include DASDECL.BAS in your program make file)

Global wMode As Integer

wDasErr = K_GetADFreeRun (hAD, wMode)

Function Reference



K_GetADFreeRun (cont.)

BASIC
' $INCLUDE: ‘'DASDECL.BI'

DIM wMode AS INTEGER

wDagErr = KGetADFreeRun% (hAD, wMode)

4-75



K_GetADMode

Boards
Supported

Purpose

Prototype

Parameters

Return Value

Remarks

4-76

All

Get a DAS board’s A/D input range type.

CiC++
DASErr far pascal K_GetADMode (DWORD hDev,
WORD far *pMode),

Turbo Pascal
Function K_GetADMode (hDev : Longint; Var pMode : Word) : Word;

Turbo Pascal for Windows
Function K_GetADMode (hDev : Longint; Var pMode : Word) : Word;
far; external 'DASSHELL;

Visual Basic for Windows
Declare Function K_GetADMode Lib "DASSHELL.DLL"
(ByVal iDev As Long, pMode As Integer) As Integer

BASIC
DECLARE FUNCTION KGetADMode% ALIAS "K_GetADMode"
(BYVAL hDev AS LONG, SEG pMode AS INTEGER)

hDev Handle associated with the board.
pMode A/D input range type.
Value stored: 0 for Bipolar
1 for Unipolar

This function returns an integer error/status code. Ervor/status code 0
indicates that the function executed successfully. A non-zero error/status
code indicates that an error occurred. Refer to Appendix A for additional
information,

This function stores the code that indicates the A/D input range type for
the board specified by hDev in pMode.

Function Reference



K_GetADMode (cont.)

See Also

Usage

K_SetADMode

C/C++
#include "DASDECL.H" // Uge "DASDECL.HPP for C++

DWORD hAD;
wDasEry = K_GetADMode (hDev, &nADMode);

Toulen Danmnl
Iy rasval
800

uses D1 TP7; (* Use D18CGOTP6 for TP ver 6.0 *)
hAD : Longint;
whasErr := K_GetADMode (hDev, wADMode) ;

Turbo Pascal for Windows
{$T DASDECL.INC}

hAD : Longint;
whasErr := K_GetADMode {(hDev, wADMode);

Visual Basic for Windows
fInclude DASDECL.BAS in your program make file)

Global haAD As Long

wDhasErr = K_GetADMode {(hDev, wADMode)

BASIC
* $INCLUDE: 'DASDECL.BI'

DIM hAD AS LONG

wDasErr = KGetADMode% (hDev, wADMode)

4-77



K_GetADTrig

Boards
Supported

Purpose

Prototype

Parameters

4-78

All

Gets the current analog trigger conditions.

C/C++
DASETr far pascal K_GetADTrig (DWORD hFrame, short far *pOpt,
short far *pChan, DWORD far *pLevel);

Turbo Pascal
Function K_GetADTrig (hFrame : Longint; Var pOpt : Word,
Var pChan : Word; Var pLev : Longint) : Word;

Turbo Pascal for Windows

Function K_GetADTrig (hFrame : Longint; Var pOpr : Word;
Var pChan : Word; Var pLev : Longint) : Word; far;

external DASSHELL';

Visual Basic for Windows

Declare Function K_GetADTrig Lib "DASSHELL.DLL"
(ByVal hFrame As Long, pOpt As Integer, pChan As Integer,
pLevel As Long) As Integer

BASIC

DECLARE FUNCTION KGetADTrig% ALIAS "K_GetADTrig"
(BYVAL hFrame AS LONG, SEG pOpt AS INTEGER,

SEG pChan AS INTEGER, SEG plLevel AS LONG)

hErame Handle to the frame that defines the operation.
pOpt Analog trigger polarity.
Value stored: 0 for Positive edge
2 for Negative edge

Function Reference



K _GetADTrig (cont.)

Return Value

Remarks

See Also

pChan Analog input channel used as trigger channel.
Valid values:

Valid channel numbers

Board Differential Single-ended
DAS-1800HC 0t 31 010 63

DAS-1800ST/HR with N Not applicable Qo 1S(V+1)

EXP-1800 expansion boards
attached
pLevel Level at which the trigger event occurs.

This function returns an integer error/status code. Error/status code 0
indicates that the function executed successfully. A non-zero error/status
code indicates that an error occurred. Refer to Appendix A for additional
information.

For the operation defined by hFrame, this function stores the channel
used for an analog trigger in pChan, the level used for the analog trigger
in pLevel, and the trigger polarity in pOpt.

The pOpt variable contains the value of the Trigger Polarity element.
The pChan variable contains the value of the Trigger Channel element.

The pLevel variable contains the value of the Trigger Level element. The
value of pLevel is represented in raw counts. Refer to Appendix B for
information on converting the raw count stored in pLeve/ to voltage,

K_SetADTrig

4-79



K_GetADTrig (cont.)

Usage C/iC+s
#include *"DASDECL.H" // Use "DASDECL.HPP for C++
int nOpt, nChan;
DWORD dwLevel;

wDasEry = K_GetADTrig {(hAD, &nOpt, &nChan, &dwLevel);

Turbo Pascal
uses D1800TP7/; (* Use Di800TP6 for TP ver 6.0 *}

nOpt : Integer;
nChan : Integer;
dwLevel : Longint;

whasEry := K_GetADTrig (hAD, nOpt, nChan, dwLevel);

Turbo Pascal for Windows
{$I DASDECL.INC)

nopt : Integer;
nChan : Integer;
dwLevel : Longint;

wDasErr := K_GetADTrig (hAD, nOpt, nChan, dwlLevel);

Visual Basic for Windows
(include DASDECL.BAS in your program make file)

Global nCpt As Integer
Global nChan As Integer
Global dwLevel As Long

wDhasErr = K_GetADTrig (hAD, nOpt, nChan, dwLevel)

4-80 Function Reference



K_GetADTrig (cont.)

BASIC
' 4INCLUDE: 'DASDECL.BI'

DIM nOpt AS INTEGER
DIM nChan AS INTEGER
DIM dwLevel AS LONG

wDasEry = KGetADTrig% (hAD, nOpt, nChan, dwLevel)

4-81



K_GetBuf

Boards
Supported

Purpose

Prototype

Parameters

Return Value

4-82

All

Returns the address and size of a buffer assigned to a trame.

C/C++
DASErr far pascal K_GetBuf (DWORD AFrame, void far * far *pBuf,
DWORD far *pSamples);

Turbo Pascal
Function K_GetBuf (hFrame : Longint; Var pBuf : Pointer,
Var pSamples : Longint) : Word;

Turbo Pascal for Windows
Function K_GetBuf (hFrame : Longint; Var pBuf : Pointer;
Var pSamples : Longint) : Word; far; external ' DASSHELL";

Visual Basic for Windows
Declare Function K_GetBuf Lib "DASSHELL.DLL"
(ByVal hFrame As Long, pBuf As Long, pSamples As Long) As Integer

BASIC
DECLARE FUNCTION KGetBuf% ALIAS "K_GetBuf"
(BYVAL hFrame AS LONG, SEG pBuf AS LONG,

SEG pSamples AS LONG)

hFrame Handle to the frame that defines the operation.
pBuf Starting address of buffer.

pSamples Number of samples,

Value stored: 0 to 65,535

This function returns an integer error/status code. Error/status code O
indicates that the function executed successfully. A non-zero error/status
code indicates that an error occurred. Refer to Appendix A for additional
information.

Function Reterence



K_GetBuf (cont.)

Remarks

See Also

Usage

For the operation specified by AFrame, this function stores either the
address of the currently allocated buffer (if you are using a single buffer)
or the address of the first buffer (if you are using multiple buffers) in pBuf
and the number of samples stored in that buffer in pSamples.

Use this function to retrieve the address of the buffer whose address was
specified by K_SetBuf, K SetBufl, or K BufListAdd.

The pBuf variable contains the value of the Buffer element.

The pSamples variable contains the value of the Number of Samples
element.

K_BufListAdd, K_SetBuf, K_SetBufl

C/C++
#include "DASDECL.H" // Use “DASDECL.HPP for C++

void far *pADBuffer;
DWORD dwSamples;

wDasErr = K_GetBuf (hAD, &pADBuffer, &dwSamples);

Turbo Pascal
uses D18QO0TP7; (* Use D18OO0TP6 for TP ver 6.0 *)

pADBuffer : Longint;
dwSamples : Longint;

wDasErr = K_GetBuf (hAD, @pADBuffer, dwSamples);

Turbo Pascal for Wihdows
{$I DASDECL.INC}

pADBuffer : Longint;
dwSamples : Longint;

wDasErr = K_GetBuf (hAD, @pADBuffer, dwSamples);

4-83



K_GetBuf (cont.)

Visual Basic for Windows
(Include DASDECL.BAS in your program make file)

Dim pADBuffer As Long

wDasErr = K_GetBuf (hAD, pADBuffer, dwSamples);

BASIC
' $INCLUDE: 'DASDECL.BI‘*

Dim pADBuffer As Long

wDagFrr = K_GetBuf% (hAD, pADBuffer, dwSamples);

4-84 Function Reference



K_GetBursiTicks

Boards
Suppotted

Purpose

Prototype

Parameters

Return Value

All

Gets the number of clock ticks between conversions to determine the
burst mode conversion rate.

CiC++
DASErr far pascal K_GetBurstTicks (DWORD AF rame,
short far *pTicks);

Turbo Pascal
Function K_GetBurstTicks (hFrame : Longint;
Var pTicks : Word) : Word;

Turbo Pascal for Windows
Function K_GetBurstTicks (hF rame : Longint;
Var pTicks . Word) : Word; far; external DASSHELL";

Visual Basic for Windows
Declare Function K_GetBurstTicks Lib "DASSHELL.DLL"
{ByVal hFrame as Long, pTicks As Integer) As Integer

BASIC
DECLARE FUNCTION KGetBurstTicks% ALIAS "K_GetBurstTicks"
(BYVAL hFrame AS LONG, SEG pTicks AS INTEGER)

hFrame Handle to the frame that defines the operation.

pTicks Number of clock ticks between conversions.
Value stored: 3 to 255

This function returns an integer error/status code, Error/status code 0
indicates that the function executed successfully. A non-zero error/status
code indicates that an error occurred. Refer to Appendix A for additional
information,

4-85



K_GetBurstTicks (cont.)

Remarks For the operation defined by AF rame, this function stores the number of
clock ticks between conversions of cach channel in a scan in pTicks.

The pTicks variable contains the value of the Burst Clock Rate element,

See Also K_SetBurstTicks
Usage C/Ca+
#include "DASDECL.H"® // Use "DASDECL.HPP for C++

int nCount;
wDasErr = K_GetBurstTicks (hAD, &nCount);

Turbo Pascal

ugses D1800TP7; (* Use D180C0TP6 for TP ver 6.0 *)
nCount : Integer;
wDasEry := K_GetBurstTicks (hAD, nCount);

Turbo Pascal for Windows
{4$T DASDECL.INC}

nCount : Integer;

wDasErr := K_GetfBurstTicks (hAD, nCount);

Visual Basic for Windows
(Include DASDECL.BAS in your program make file)

Global nCount As Integer

wDasErr = K_GetBurstTicks (hAD, nCount)

4-86 Function Reference



K_GetBurstTicks (cont.)

BASIC
' $INCLUDE: 'DASDECL.BI'

DIM nCount AS INTEGER

wDasErr = KGetBurstTicks% (hAD, nCount)

4-87



K_GetChn

Boards All

Supported

Purpose Gets a single channel number.
Prototype C/C++

DASErr far pascal K_GetChn (DWORD hF rame, short far *pChan),

Turbo Pascal
Function K_GetChn (hFrame : Longint, Var pChan . Word) : Word;

Turbo Pascal for Windows
Function K_GetChn (hFrame : Longint; Var pChan : Word) : Word; far;
external 'DASSHELL';

Visual Basic for Windows
Declare Function K_GetChn Lib "DASSHELL.DLL"
{ByVal hFrame As Long, pChan As Integer) As Integer

BASIC
DECLARE FUNCTION KGetChn% ALIAS "K_GetChn"

(BYVAL hFrame AS LONG, SEG pChan AS INTEGER)

4-88 Function Reference



K_GetChn (cont.)

Parameters

Return Value

Remarks

See Also

Usage

hFrame Handle to the frame that defines the operation.
pChan Channel on which to perform the operation.
Valid values:
Valid channel numbers
Board Ditferential Single-ended
DAS-1800HC 01to 31 010 63

DAS-1800ST/HR with N Not applicable 010 15(N + 1)
EXP-1800 expansion boards

attached

This function returns an integer error/status code. Error/status code 0
indicates that the function executed successfully. A non-zero error/status
code indicates that an error occurred. Refer to Appendix A for additional
information.

For the operation defined by AFrame, this function stores the channel
number in pChan.

The pChan variable contains the value of the Start Channel and Stop
Channel elements.

K_SetChn, K_SetStartStopChn, K_SetStartStopG

C/C++
#include "DASDECL.H" // Use "DASDECL.HPP for C++

short nChan;

wDasErr = K_GetChn (hAD, &nChan);

4-89



K_GetChn (cont.)

Turbo Pascal
uses DI800OTP7: {(* Use D1800TP& for TP ver 6.0 *}

nChan : Integer;

wDasErr := K_GetChn (hAD, nChan);

Turbo Pascal for Windows
{5T DASDECL.INC}

nChan : Integer;

wDagErr := K_GetChn (hAD, nChan);

Visual Basic for Windows
{Include DASDECL.BAS in your program make file)

Global nChan AS Integer

wDasErr = K_GetChn (hAD, nChan}

BASIC
' SINCLUDE: 'DASDECL.BI'

DIM nChan AS INTEGER

wDasErr = KGetChn% (hAD, nChan)

4-90 Function Reference



K_GetChnGAry

Boards
Supported

Purpose

Prototype

Parameters

Return Value

All

Gets the starting address of a channel-gain queue.

C/iCe+
DASEr far pascal K_GetChnGAry (DWORD hFrame,
void far * far *pArray),

Turbo Pascal
Function K_GetChnGAry (hF rame : Longint;
Var pArray : Integer) : Word,

Turbo Pascal for Windows
Function K_GetChnGAry (hFrame : Longint;
Var pArray : Integer) : Word; far; external ' DASSHELL';

Visual Basic for Windows
Declare Function K_GetChnGAry Lib "DASSHELL.DLL"

(ByVal AiFrame As Long, pArray As Long) As Integer

BASIC
DECLARE FUNCTION KGetChnGAry% ALIAS "K_GetChnGAry"
{(BYVAL hFrame AS LONG, SEG pArray AS LONG)

hEFrame Handle to the frame that defines the operation.

pArray Channel-gain queue starting address.

This function returns an integer error/status code. Error/status code 0
indicates that the function executed successfully. A non-zero error/status
code indicates that an error occurred. Refer to Appendix A for additional
information.

4-91



K_GetChnGAry (cont.)

Rematrks

See Also

Usage

4-92

For the operation defined by hFrame, this function stores the starting
address of the channel-gain queue in pArray.

The pArray variable contains the value of the Channel-Gain Queue
element.

Refer to page 2-14 for information on setting up a channel-gain queue.
K_SetChnGAry

C/C++
#include *“DASDECL.H" // Use "DASDECL.HPP for C++

void far *pArray;

wDasErr = K_GetChnGAry (hAD, &pArray);

Turbo Pascal
uses D1800TP7; (* Use D1800TP6 for TP ver 6.0 *)

pArray : Integer;

wbhasErr = K_GetChnGAry (hAD, pArray);

Turbo Pascal for Windows
{$I DASDECL.INC)

pArray : Integer;

whaskrr = K_GetChnGAry (hAD, pArray):;

Visual Basic for Windows
{Include DASDECL.BAS in your program make file)

wDasErr = K_GetChnGary {(hAD, pArray)

BASIC
' $INCLUDE: 'DASDECL.BI'

wDasErr = K_GetChnGAry (hAD, pArray)

Function Reference



K _GetClk

Boards
Supported

Purpose

Prototype

Parameters

Return Value

Remarks

All

Gets the pacer clock source,

CiC++
DASErr far pascal X_GetClk (DWORD hFrame, short far *pMode);

Turbo Pascal
Function K_GetClk (hF rame : Longint; Var pMode : Word) : Word,;

Turbo Pascal for Windows
Function K_GetClk (hFrame : Longint; Var pMode : Word) : Word; far;
external DASSHELL',

Visual Basic for Windows
Declare Function K_GetClk Lib "DASSHELL.DLL"
(ByVal iFrame As Long, pMode As Integer) As Integer

BASIC
DECLARE FUNCTION KGetClk% ALIAS "K_GetCIk"
(BYVAL hFrame AS LONG, SEG pMode AS INTEGER)

hF rame Handle to the frame that defines the operation.

pMode Pacer clock source.
Value stored: 0 for Internal
1 for External

This function returns an integer error/status code. Error/status code 0
indicates that the function executed successfully. A non-zero error/status
code indicates that an error occurred. Refer to Appendix A for additional
information.

For the operation defined by hFrame, this function stores the pacer clock
source in pMode.

4-93



K_GetClk (cont.)

An internal clock source is the output of the onboard counterftimer
circuitry; an cxternal clock source is an external signal connected to the
DI0/XPCLK pin (DAS-1800HC Series) or XPCLX pin
(DAS-1800ST/HR Series).

Refer to page 2-15 (for analog input operations), page 2-29 (for analog
output operations), and page 2-36 (for digital I/O operations) for more
information about pacer clock sources.

The pMode variable contains the value of the Clock Source element.

See Also K_SetClk, K_SetClkRate

Usage C/C++
#include "DASDECL.H" // Use "DASDECL.HPP for C++
Word wMode;

wDasErr = K_GetClk {(hAD, &wMode);

Turbo Pascal
uses D1800OTPR7Y; (* Use D18COTPE for TP ver 6.0 *)

wMode : Word;
wDhasFErr := K_GetClk (hAD, wMode);

Turbo Pascal for Windows
{$I DASDECL.INC}

wMode : Word;

wDasErr := K_GetClk (hAD, wMode);

Visual Basic for Windows
{Include DASDECL.BAS in your program make file)

Globkal wMode As Integer

whasErr = K_GetClk (hAD, wMode)

4-94 Function Reference



K _GetClk (cont.)

BASIC
' SINCLUDE: 'DASDECL.BI’

DIM wMode AS INTEGER

whasErr = KGetClk% {(hAD, wMode)

4-95



K_GetClkRate

Boards
Supported

Purpose

Prototype

Parameters

Return Value

Remarks

4-96

All

Gets the internal clock divisor {clock ticks) for the 5 MHz clock source,

C/Ce++
DASErr far pascal K_GetClkRate (DWORD AFrame,
DWORD far *pRate),

Turbo Pascal
Function K_GetClkRate (hFrame : Longint; Var pRate : Longint) : Word;

Turbo Pascal for Windows

far; external ' DASSHELL'";

Visual Basic for Windows
Declare Function K_GetClkRaie Lib "DASSHELL.DLL"
(ByVal hFrame As Long, pRate As Long) As Integer

BASIC

DECLARE FUNCTION KGetClkRate% ALIAS "K_GeiClkRate"
(BYVAL hFrame AS LONG, SEG pRaie AS LONG)

hFrame Handle to the frame that defines the operation.
pRate Number of clock ticks between conversions.

Value stored: 15 to 4,294,967,295

This function returns an integer error/status code. Error/status code 0
indicates that the function executed successfully. A non-zero error/status
code indicates that an error occurred, Refer to Appendix A for additional
information,

For the operation defined by AF rame, this function stores the number of

clock ticks between conversions in pRate.
The pRate variable contains the value of the Pacer Clock Rate element.

Function Refarence



K _GetClkRate (cont.)

See Also

Usage

This function applies to an internal clock source only.

After an interrupt-mode or DMA-mode analog input operation, the value
stored in pRate represents the actual count used, not necessarily the count
set by K SetClkRate.

K_SetClkRate

DWORD dwRate;

whDasErr = K_GetClkRate (hAD, &dwRate);

Turbo Pascal
uses D18&00TP7; (* Use D180OO0TP6 for TP ver 6.0 *)

wDasErr := K_GetClkRate (hAD, dwRate);

Turbo Pascal for Windows
($I DASDECL.INC)

dwRate : Longint;

Visual Basic for Windows
{(Include DASDECL.BAS in your program make file)

Global dwRate As Long

whasErr = K_GetClkRate (hAD, dwRate)

4-97



K _GetCikRate (cont.)

BASIC
' $INCLUDE: 'DASDECL.BI'

DIM dwRate AS LONG

wDasErr = KGetClkRate% (hAD, dwRate)

4-98 Function Reference



K_GetContRun

Boards
Supported

Purpose

Prototype

Parameters

Return Value

Remarks

All

Gelts the buffering mode.

C/iCa++
DASErr far pascal K_GetContRun (DWORD hFrame,
short far *pMode);

Turbo Pascal
Function K_GetContRun (hFrame : Longint; Var pMode : Word) : Word;

Turbo Pascal for Windows
Function K_GetContRun (hFrame : Longint; Var pMode ;: Word) : Word,
far; external DASSHELL';

Visual Basic for Windows
Declare Function K_GetContRun Lib "DASSHELL.DLL"
(ByVal hFFrame As Long, pMode As Integer) As Integer

BASIC
DECLARE FUNCTION KGetContRun% ALIAS "K_GetContRun"
(BYVAL hFrame AS LONG, SEG pMode AS INTEGER)

hFrame Handle to the frame that defines the operation.

pMode Buffering mode.
Value stored: ) for Single-cycle
0 for Continuous

This function returns an integer error/status code. Error/status code 0
indicates that the function executed successfully. A non-zero error/status
code indicates that an error occurred, Refer to Appendix A for additional
information.

For the operation defined by hFrame, this function stores the buffering
mode in pMode.

4-38



K_GetContRun (cont.)

The pMode variable contains the value of the Buffering Mode element.

Refer to page 2-18 (for analog input operations), page 2-30 (for analog
output operations) section, and page 2-38 (for digital 1/O operations} for a
description of buffering modes.

See Also K_SetContRun, K_ClrContRun

Usage C/iC++
#include "DASDECL.H" // Use "DASDECL.HPP for C++
WORD wMode;

wDasBErr = K_GetContRun (hAD, &wMode);

Turbo Pascal
uses D18OCTRT; (* Use D1800TP6 for TP ver 6.0 *)

wMode : Word;
wDasErr := K_GetContRun (hAD, wMode);

Turbo Pascal for Windows
{$I DASDECL.INC)

wMode : Word;

wDasErr := K_GetContRun (hAD, wMode);

Visual Basic for Windows
(Include DASDECL.BAS in your program make file)

Global wMode As Integer

whDasErr = K_GetCentRun (hAD, wMode)

4-100 Function Reference



K_GetContRun (cont.)

BASIC
' $INCLUDE: 'DASDECL.BI'

DIM wMode AS INTEGER

wDaskrr = KGetContRun% {(hAD, wMode}

4-101



K_GetDAFrame

Boards DAS-1801HC, DAS-1802HC
Supported
Purpose Accesses a D/A frame for an analog output operation.
Prototype C/Cus
DASEIr far pascal K_GetDAFrame (DWORD kDev,
DWORD far * pFrame);

Turbo Pascal
Function K_GetDAFrame (ADev ; Longint;
Var pFrame : Longint) ; Word;

Turbo Pascal for Windows
Function K_GetDAFrame (hDev : Longint;
Var pFrame : Longint) : Word; far; external DASSHELL';

Visual Basic for Windows
Declare Function K_GetDAFrame Lib "DASSHELL.DLL"
(ByVal hDev As Long, pFrame As Long) As Integer

BASIC
DECLARE FUNCTION KGetDAFrame% ALIAS "K_GetDAFrame"”
(BYVAL hDev AS LONG, SEG hFrame AS LONG)

Parameters hDev Handle associated with the board.
pFrame Handle to the frame that defines the D/A
operation.
Return Value This function returns an integer error/status code. Error/status code ()

indicates that the function executed successfully. A non-zero error/status
code indicates that an error occurred. Refer to Appendix A for additional
information.

4-102 Function Reference



K_GetDAFrame (cont.)

Remarks

See Also

Usage

This function specifies that you want to perform an interrupt-mode analog
output operation on the board specified by ADev, and accesses an
available D/A frame with the handle pFrame, The frame is initialized to
its default settings; the default settings are given in Table 3-2 on page 3-7.

K_FreeFrame, K_ClearFrame

C/Ca+
#include "DASDECL.H" // Use "DASDECL.HPP for Ci+

DWORD hDA;
wDaskrr = K_GetDAFrame (hDev, &hDA);

Turbo Pascal
uses D1BO0TP7; (* Use D1800TP& for TP ver 6.0 *}

hDA : Longint;
whasErr := K_GetDAFrame (hDev, hDA);

Turbo Pascal for Windows
{$I DASDECL.INC}

hDA : Longint;
wDagBErr := K_GetDAFrame (hDewv, hDA};

Visual Basic for Windows
(Include DASDECL.BAS in your program make file)

Global hDA As Long

whasErr = K_GetDAFrame (hDev, hDA)

4-103



K_GetDAFrame (cont.)

BASIC
' SINCLUDE: 'DASDECL.BI'

DIM hDA AS LONG

whasErr = KGetDAFrame% (hDev, hDA)

4-104 Function Reterence



K_GetDevHandle

Boards
Supported

Purpose

Prototype

Parameters

All

Initializes any Keithley DAS board.

C/iC++
DASErr far pascal K_GetDevHandle (DWORD ADrv,
WORD nBoardNum, DWORD far * pDev);

Turbo Pascal
Not supported

Turbo Pascal for Windows
Function K_GetDevHandle (#Drv : Longint; rBoardNum : Integer;
Var pDev : Longint) : Word; far; external DASSHELL";

Visual Basic for Windows

Declare Function K_GetDevHandle Lib "DASSHELL.DLL"

(ByVal hDrv As Long, ByVal nBoardNum As Integer, pDev As Long)
As Integer

BASIC

Not supported

hDry Driver handle of the associated Function Call
Driver.

nBoardNum Board number.
Valid values; 0to2

pDev Handle associated with the board.

4-105



K_GetDevHandle (cont.)

Return Value

Remarks

See Also

Usage

4-106

This function returns an integer error/status code. Error/status code 0
indicates that the function executed successfully. A non-zero error/status
code indicates that an error occurred. Refer to Appendix A for additional
information.

This function initializes the board associated with 2D rv and specified by
nBoardNum, and stores the board handle of the specified board in pDev.

The value stored in pDev is intended to be used exclusively as an
argument to functions that require a board handle. Your program should
not modify the value stored in pDev.

This function is available for C, Borland Turbo Pascal for Windows, and
Visual Basic for Windows application programs only,

K_FreeDevHandle

C/C++
#include "DASDECL.H" // Use "DASDECL.HPP for C++

DWORD hDev;
whasErr = K_GetDevHandle {(hDrv, 0, &hDev);

Turbo Pascal for Windows
{51 DASDECL.INC}

hDev : Longint;
wDhagErr := K_GetDevHandle (hDrv, 0, hDev);

Visual Basic for Windows
(Include DASDECL BAS in your program make file)

Global hDev As Long

wDasErr = K_GetDevHandle (hDrv, 0, hDev)

Function Reference



K_GetDIFrame

Boards
Supported

Purpose

Prototype

Parameters

Return Value

All

Accesses a DI frame for a digital input operation.

C/Cs+
DASErr far pascal K_GetDIFrame (DWORD hDev,
DWORD far * pFrame);

Turbo Pascal
Function K_GetDIFrame (ADev : Longint; Var pFrame : Longint) : Word,

Turbo Pascal for Windows
Function K_GetDIFrame (hDev : Longint; Var pFrame : Longint) : Word;
far; external ' DASSHELL";

Visual Basic for Windows
Declare Function K_GetDIFrame Lib "DASSHELL.DLL"
(ByVal hDev As Long, pFrame As Long) As Integer

BASIC
DECLARE FUNCTION KGetDIFrame% ALIAS "K_GetDIFrame"”
(BYVAL hDev AS LLONG, SEG pFrame AS LONG)

hDev Handle associated with the board.
pFrame Handle to the frame that defines the digital input
operation.

This function returns an integer error/status code. Error/status code 0
indicates that the function executed successfully. A non-zero error/status
code indicates that an error occurred. Refer to Appendix A for additional
information.

4-107



K_GetDIFrame (cont.)

Remarks This function specifies that you want to perform an interrupt-mode digital
input operation on the board specified by 4Dev, and accesses an available
digital input frame with the handle pFrame. The frame is initialized to its
default settings; the default settings are given in Table 3-3 on page 3-8.

See Also K_FreeFrame, K_ClearFrame

Usage C/C++
#include "DASDECL.H" // Use "DASDECL.HPP for C++

DWORD hDI;
wDasErr = K_GetDIFrame (hDev, &hDI);

Turbo Pascal
uses D1800TP7; {* Use D1800TP6 for TP ver 6.0 *)

hDI : Longint;
whDasErr := K_GetDIFrame (hDev, hDI);

Turbo Pascal for Windows
{$I DASDECL.INC)

hDT : Lengint;
whasErr := K_GetDIFrame (hDev, hDI);

Visual Basic for Windows
(Include DASDECL.BAS in your program make file)

Global hDI As Long

whasErr = K_GetDIFrame {(hDev, hDT)

4-108 Function Reference



K_GetDIFrame (cont.)

BASIC
* $INCLUDE: 'DASDECL.BIL'

DIM hDI AS LONG

wDhasErr = KGetDIFrame% (hDev, hDI)

4-109



K_GetDITrig

Boards
Supported

Purpose

Prototype

Parameters

4-110

All

Reads the current digital trigger conditions.

C/Cas
DASErr far pascal K_GetDITrig (DWORD hFrame, short far * pOpt,
short far *pChan, DWORD far *pPattern);

Turbho Pascal
Function K_GetDITrig (hFrame : Longint; Var pOpt . Word;
Var pCharn : Word; Var pPattern : Longint) : Word;

Turbo Pascal for Windows

Function K_GetDITrig (hFrame : Longint; Var pOpt : Word;
Var pChan . Word; Var pPattern : Longint) : Word; far;
external 'DASSHELL";

Visual Basic for Windows

Declare Function K_GetDITrig Lib "DASSHELL.DLL"
(ByVal hFrame As Long, pOpt As Integer, pChan As Integer,
pPattern As Long) As Integer

BASIC

DECLARE FUNCTION KGetDITrig% ALIAS "K_GetDITrig"
(BYVAL hFrame AS LONG, SEG pOpt AS INTEGER,

SEG pChan AS INTEGER, SEG pPattern AS LONG)

hFrame Handie to the frame that defines the operation.
pOpt Trigger polarity and sensitivity.
Value stored: 0 for Positive edge
2 for Negative edge

pChan Trigger channel.
Value stored: 0

pPattern Trigger pattern,

Function Reference



K_GetDITrig (cont.)

Return Value

Remarks

See Also

Usage

This function returns an integer error/status code. Error/status code 0
indicates that the function executed successfully. A non-zero error/status
code indicates that an error occurred. Refer to Appendix A for additional
information.

For the operation defined by hFrame, this function stores the trigger
polarity and trigger sensitivity in pOpt, the channel used for the digital
trigger in pChan, and the trigger pattemn in pPattern.

Since the DAS-1800 Series Function Call Driver does not currently
support digital pattern triggering, the value of pPattern is meaningless;
the pPartern parameter is provided for future compatibility.

The pOpt variable contains the value of the Trigger Polarity and Trigger
Sensitivity elements,

The pChan variable contains the value of the Trigger Channel element.
K_SetDITrig

C/C++
#include "DASDECL.H" // Use "DASDECL.HPP for C++

short nOpt, nChan,
WORD wPat;

whasErr = K_GetDITrig (hAD, &nOpt, &nChan, &wPat);

Turbo Pascal
useg Di800TP7; (* Use D1B0OOTP6 for TP ver 6.0 *)

nopt : Integer;
nChan : Integer;

wPkPat : Word;

wDasErr := K_GetDITrig (hAD, nOpt, nChan, wPat);

4-111



K_GetDITrig (cont.)

4-112

Turbo Pascal for Windows
{51 DASDECL.INC}

nopt : Integer:

nChan : Integer;

wPat : Word;

wDagErr := K_GetDITrig (hAD, nOpt, nChan, wPat);

Visual Basic for Windows

(Include DASDECL.BAS in your program make file)

Global nOpt As Integer
Global nChan As Integervr
Global wPat As Integer

wDasErr = K_GetDITrig (hAD, nOpt,

BASIC
' $INCLUDE: 'DASDECL.BI

DIM nOpt AS INTEGER
DIM nChan AS INTEGER
DIM wPat AS INTEGER

whasErr = KGetDITrig% (hAD, nOpt,

nChan, wPat}

nChan, wPat)

Function Reference



K_GetDOCurVal

Boards
Supported

Purpose

Prototype

Parameters

All

Gets the digital output value.

C/Ces
DASEir far pascal K_GetDOCurVal (DWORD hFrame,
void far *pValue);

Turbo Pascal
Function K_GetDOCurVal (hFrame : Longint;
Var pValue : Longint) : Word;

Turbo Pascal for Windows
Function K_GetDOCurVal (kFrame : Longint;
Var pValue ; Longint) : Word; far; external DASSHELL,

Visual Basic for Windows
Declare Function K_GetDOCurVal Lib "DASSHELL.DLL"
(ByVal hFrame As Long, pValue As Long) As Integer

BASIC
DECLARE FUNCTION KGetDOCurVal% ALIAS "K_GetDOCurVal"
(BYVAL hFrame AS LONG, SEG pValue AS LONG)

hFrame Handle to the frame that defines the digital
output operation,
pValue Digital output value.
Value stored: 0 to 255 for DAS-1800HC Series
boards

0 to0 15 for DAS-1800ST/HR
Series boards

4-113



K_GetDOCurVal (cont.)

Return Value

Remarks

See Also

Usage

4-114

This function returns an integer crror/status code. Error/status code 0
indicates that the function executed successfully. A non-zero error/status
code indicates that an error occurred. Refer to Appendix A for additional
information.

On return, pYalue contains the digital output value that was specified as
the pValue parameter in the most recent call to K_DQWrite, This value is
not necessarily the current value at the digital output channel.

Only the least-significant eight bits of pValue are valid for DAS-1800HC
Series boards; only the least-significant four bits of pValue are valid for
DAS-1800ST/HR Series boards.

K_DOWrite

C/C++
#include "DASDECL.H" // Use "DASDECL.HPP for C++

DWORD dwDOValue;

wDasEry = K_GetDOCurvVal (hDO, &dwDOValue);

Turbo Pascal
uses D1800TP7; (* Use D1800TP6 for TP ver &.0 *)

dwDOValue : Longint;

wDasErr := K_GetDOCurVal (hDO, dwDOValue);

Turbo Pascal for Windows
{41 DASDECL.INC)

dwDOValue : Longint;

wDagErr := K_GetDOCurVal (hDO, dwDOValue) ;

Function Reference



K_GetDOCurVal (cont.)

Visual Basic for Windows
{Include DASDECL.BAS in your program make file)

Global dwDOValue As Long

wDasErr = K_GetDOCurVal (hDO, dwDOValue)

BASIC
* $INCLUDE: 'DASDECL.BI'

DIM dwDOValue AS LONG

whasErr = KGetDCCurVal% (hDQO, dwDOValue)

4-115



K _GetDOFrame

Boards All
Supported
Purpose Accesses a DO frame for a digital output operation.
Prototype C/C++
DASErr far pascal K_GetDOFrame (DWORD hDev,
DWORD far * pFrame),

Turbo Pascal
Function K_GetDOFrame (hDev : Longint;
Var pFrame : Longint) ; Word,;

Turbo Pascal for Windows
Function K_GetDOFrame (hDev : Longint;
Var pFrame : Longint) : Word; far; external 'DASSHELL";

Visual Basic for Windows
Declare Function K_GetDOFrame Lib "DASSHELL . DLL"
(ByVal hDev As Long, pFrame As Long) As Integer

BASIC
DECLARE FUNCTION KGetDOFrame% ALIAS "K_GetDOFrame"
(BYVAL hDev AS LONG, SEG pFrame AS LONG)

Parameters hlev Handle associated with the board.

hFrame Handle to the frame that defines the digital
output operation.

Return Value This function returns an integer error/status code. Error/status code 0
indicates that the function executed successfully. A non-zero error/status
code indicates that an error occurred. Refer to Appendix A for additional
information.

4-116 Function Reterence



K_GetDOFrame (cont.)

Remarks

See Also

Usage

This function specifies that you want to perform an interrupt-mode digital
output operation on the board specified by #Dev and accesses an available
digital output frame with the handle hFrame. The frame is initialized to

its default settings; the default settings are given in Table 3-4 on page 3-9,

K_FreeFrame, K_ClearFrame

C/C++
#include "DASDECL.H" // Use "DASDECL.HPP for C++

DWORD hDO;
wDasErr = K_GetDOFrame (hDev, &hDO);

Turbo Pascal
usegs D1800TP7; (* Use D1800TP6 for TP ver 6.0 *)

hDO : Longint;
wDasFErr := K_GetDQFrame (hDev, hDO);

Turbo Pascal for Windows
{$I DASDECL.INC)

hDO : Longint;
wDasErr := K_GetDOFrame (hbev, hDO);

Visual Basic for Windows
{Include DASDECL.BAS in your program make file)

Global hDO As Long

whDasErr = K_GetDOFrame (hDev, hbDO)

4-117



K_GetDOFrame (cont.)

BASIC
' $INCLUDE: 'DASDECL.BI'

DIM hDO AS LONG

wDasErr = KGetDOFrame% (hDev, hDO}

4-118 Function Reference



K_GetErrMsg

Boards
Supported

Purpose

Prototype

Parameters

Return Value

Remarks

All

Gets the address of an error message string.
C/C++

DASEr far pascal K_GetErrMsg (DWORD #Dev, short nDASEr,
char far * far * pErrMsg),

Turbo Pascal
Not supported

Turbo Pascal for Windows
Not supported

Visual Basic for Windows

Not supported

BASIC

Not supported

hDev Handle associated with the board.
nDASErr Error message number,

pErrMsg Address of error message string.

This function returns an integer error/status code. Error/status code 0
indicates that the function executed successfully. A non-zero error/status
code indicates that an error occurred. Refer to Appendix A for additional
information.

For the board specified by hDev, this function stores the address of the
string corresponding to error message number rDASErr in pErrMsg.

Refer to page 2-4 for more information about error handling. Refer to
Appendix A for a list of error codes and their meanings.

4-119



K_GetErrMsg (cont.)

Usage C/C++
#include "DASDECL.H" // Use "DASDECL.HPP for C++

char far *pErrMsg;

wDasErr = K_GetErrMsg (hDev, wDasErr, &pErrMsqg):

4-120 Function Reterence



K_GetExtClkEdge

Boards
Supported

Purpose

Prototype

Parameters

Return Value

All

Reads the active edge of the external clock.

CiC++
DASEIr far pascal K_GetExtCIkEdge (DWORD hF rame,
short far *pEdge);

Turbo Pascal
Function K_GetExtClkEdge (hF rame : Longint;
Var pEdge : Word) : Word,

Turbo Pascal for Windows
Function K_GetExtClkEdge (hFrame : Longint;
Var pEdge : Word) : Word; far; external ' DASSHELL,

Visual Basic for Windows
Declare Function K_GetExtClkEdge Lib "DASSHELL.DLL"
(ByVal hFrame As Long, pEdge As Integer) As Integer

BASIC
DECLARE FUNCTION KGetExtClkEdge% ALIAS
"K_GetExtClkEdge" (BY VAL hFrame AS LONG,

SEG pEdge AS INTEGER)
hFrame Handle to the frame that defines the operation.
pEdge Active edge of external clock.

Value stored: 0 for Negative edge
I for Positive edge

This function returns an integer error/status code. Error/status code 0
indicates that the function executed successfully. A non-zero error/status
code indicates that an error occurred. Refer to Appendix A for additional
information.

4-121



K_GetExiClkEdge (cont.)

Remarks

See Also

Usage

4-122

Far the operation defined by 4Frame, this function stores the active edge
of the external clock in pEdge.

The pEdge variable contains the value of the Exiernal Clock Edge
element.

K_SetExtClkEdge

C/Ce++
#include "DASDECL.H" // Use "DASDECL.HPP for C++

WORD wMode;
wDasErr = K_GetExt{lkEdge (hAD, &wMode);

Turbo Pascal
uses D180QTP7; (* Use D1800TP6 for TP ver €.0 *)

wMode : Word;

whasErr := K_GetExtClkEdge (hAD, wMode);

Turbo Pascal for Windows
{$I DASDECL.INC}

wMode : Word;

wDasErr := K_GetExtClkEdge (hAD, wMode);

Visual Basic for Windows
{(Include DASDECL.BAS in your pragram make file)

Global wMode As Integer

wDasErr = K_GetExtClkEdge (hAD, wMode)

Function Reference



K_GetExtClkEdge (cont.)

BASIC
' STINCLUDE: ‘DASDECL.BI'

DIM wMcode AS INTEGER

wDagErr = KGetExtClkEdge% (hAD, wMode}

4-123



K_GetG

Boards
Supported

Purpose

Prototype

Parameters

Return Value

4-124

All

Gets the gain.

CiCe++
DASErr far pascal K_GetG (DWORD hFrame, short far *pGain);

Turbo Pascal
Function K_GetG (hF rame : Longint; Var pGain : Word) : Word;

Turbo Pascal for Windows
Function K_GetG (hFrame : Longint; Var pGain : Word) : Word; far;
external ' DASSHELL';

Visual Basic for Windows
Declare Function K_GetG Lib "DASSHELL.DLL"
(ByVal hFrame As Long, pGain As Integer) As Integer

BASIC
DECLARE FUNCTION KGetG% ALIAS "K_GetG"
(BYVAL hFrame AS LONG, SEG pGain AS INTEGER)

hFrame Handle to the frame that defines the operation.

pGain Gain code.
Valid values: 0 to 3 for DAS board channels
0 to 7 for EXP-1800 channels
Refer to Table 2-2 on page 2-10 for the gain and
input ranges associated with each gain code.

This function returns an integer error/status code. Error/status code 0
indicates that the function executed successfully. A non-zero error/status
code indicates that an error occurred. Refer to Appendix A for additional
information.

Function Reference



K_GetG (cont.)

Remarks For the operation defined by hF rame, this function stores the gain code
for a single channel or for a group of consecutive channels in pGain.

See Also K_SetG, K_SetStartStopG

Usage C/C++
#include "DASDECL.H" // Use "DASDECL.HPP for C++
WORD wGain;

wDagBrr = K_GetG (hAD, &wGain);

Turbo Pascal
uses D1800TFE7; (* Use DLB80OCTP6 for TP ver 6.0 *)

wGain : Word;
wDasErr := K_GetG (hAD, wGain};

Turbo Pascal for Windows
{$I DASDECL.INC)

wGain : Word;
wDasErr := K_GetG (hAD, wGain);

Visual Basic for Windows
(Inciude DASDECL.BAS in your program make file)

Global wGain As Integer

whasErr = K_GetG {(hAD, wGain)

BASIC
' SINCLUDE: 'DASDECL.BI'

DIM wGain AS INTEGER

wDasErr = KGetG% (hAD, wGain)

4-125



K_GetGate

Boards
Supported

Purpose

Prototype

Parameters

Return Value

4-126

All

Gets the status of the hardware gate.

CiC++
DASErr far pascal K_GetGailc (DWORD hFrame, short far *pMode);

Turbo Pascal
Function K_GetGate (iFrame : Longint; Var pMode : Word) : Word;

Turbo Pascal for Windows
Function K_GetGate (hFrame : Longint; Var pMode : Word) : Word; far;
external 'DASSHELL';

Visual Basic for Windows
Declare Function K_GetGate Lib "DASSHELL.DLL"
(ByVal hFrame As Long, pMode As Integer) As Integer

BASIC
DECLARE FUNCTION KGetGate% ALIAS "K_GetGate"
(BYVAL hFrame AS LONG, SEG pMode AS INTEGER)

hFrame Handle to the frame that defines the operation.

pMode Status of the hardware gate.
Value stored: 0 for Gate disabled
1 for Positive gate enabled
2 for Negative gate enabled

This function returns an integer error/status code. Error/status code 0
indicates that the function executed successfully. A non-zero error/status
code indicates that an error occurred. Refer to Appendix A for additional
information.

Function Reference



K_GetGate (cont.)

Remarks

See Also

Usage

For the operation defined by hFrame, this function stores the status of the
hardware gate in pMode.

The pMode variable containg the value of the Hardware Gate element.
K_SetGate

C/C++
#include *"DASDECL.H" // Use "DASDECL.HPP for C++

WORD wMode;
wDasErr = K_GetGate (hAD, &wMode);

Turbo Pascal
uses D1800OTPR7; {(* Use D1800TP6 for TP ver 6.0 *)

wMede : Word;
wDasErr := K_GetGate (hAD, wMode);

Turbo Pascal for Windows
{41 DASDECL.INC}

wMode : Word;
wDasErr := K_CetGate (hAD, wMode);

Visual Basic for Windows
(Include DASDECL BAS in your program make file)

Global wMode As Integer

wDasErr = K_GetGate (hAD, wMode)

4-127



K_GetGate (cont.)

BASIC
* $INCLUDE: 'DASDECL.BI'

DIM wMode AS INTEGER

wDasExrr = KGetGate% (haD, wMode)

4-128 Function Reference



K_GetShellVer

Boards
Supported

Purpose

Prototype

Parameters

Return Value

Remarks

All

Gets the current DAS shell version.

C/C++
DASErr far pascal K_GetShellVer (WORD far *pVersion);

Turbo Pascal
Function K_GetShellVer (Var pVersion : Word) : Word;

Turbo Pascal for Windows
Function K_GetShellVer (Var pVersion . Word) : Word; far;
external ' DASSHELL";

Visual Basic for Windows
Declare Function K_GetShellVer Lib "DASSHELL.DLL"
(pVersion As Integer) As Integer

BASIC
DECLARE FUNCTION KGetShellVer% ALIAS "K_GetShellVer"
(SEG pVersion AS INTEGER)

pYersion A word value containing the major and minor
version numbers of the DAS shell.

This function returns an integer error/status code. Error/status code 0
indicates that the function executed successfully. A non-zero error/status
code indicates that an error occurred. Refer to Appendix A for additional
information.

To obtain the major version number of the DAS shell, divide pVersion by
256. To obtain the minor version number of the DAS shell, perform a
Boolean AND operation with pVersion and 256 (OFF hex).

4-129



K_GetShellVer (cont.)

Usage

C/C++
#include “"DASDECL.H" // Use "DASDECL.HPP for C++

WORD wShellVer;

wDasErr = K_GetShellVer (&wShellVer);
printf ("Shell Ver %d.%d", wShellVer >> 8, wShellVer & Oxff);

Turbo Pascal
uses D1300TP7; (* Use D1800TP6 for TP ver 6.0 *)

wShellVer : Word;

wDasErr := K_GetShellVer (wShellVer);

FormatStr{VerStr, ' %4x ', nShellVer / 256, '.', nShellVer And
S$fF);

writeln(' Shell Ver ', VerStr);

Turbo Pascal for Windows
{$I DASDECL.INC)

wShellVer : Word;

wDasErr := K_GetShellVer (wShellVer);

FormatStr (VersStr, ' %4x ', nShellVer / 256, '.', n%hellVer And
S£f);
writeln{' Shell Ver ', VerStr);

Visual Basic for Windows
(Include DASDECL.BAS in your program make file)

Global wShellVer As Integer;:
wDhasErr = K_GetShellVer (wShellVer)
Shellver$ = LTRIMS (STRS (wShellVer / 256)) + "." «

LTRIMS (STRS (wShellVer AND &HFF))
PRINT "Driver Ver: " + ShellVers

4-130 Function Reference



K_GetShellVer (cont.)

BASIC
' $INCLUDE: 'DASDECL.BI'

DIM wShellVer AS INTEGER
whDasErr = KGetShellVer% (wShellVer)
ShellVer$ = LTRIMS (STRS (nShellVer / 256)) + *." 4

LTRIMS (STRS (nShellVer AND &HFF))
PRINT "Shell Ver: " + ShellVers$

4131



K_GetSSH

Boards
Supported

Purpose

Prototype

Parameters

Return Value

4-1532

All

Gels the status of the SSH mode.

C/C++
DASE;rr far pascal K_GetSSH (DWORD hFrame, WORD far *pMode);

Turbo Pascal
Function K_GetSSH (hFrame ; Longint; Var pMode : Word) : Word;

Turbo Pascal for Windows
Function K_GetSSH (hFrame : Longint; Var pMode : Word) : Word; far;
external 'DASSHELL);

Visual Basic for Windows
Declare Function K_GetSSH Lib "DASSHELL.DLL"
(ByVal hFrame As Long, pMode As Integer) As Integer

BASIC
DECLARE FUNCTION KGetSSH% ALIAS "K_GetSSH"
(BYVAL hFrame AS LONG, SEG pMode AS INTEGER)

hFrame Handle to the frame that defines the operation.

pMode Code that indicates the SSH mode.
Value stored: 0 for Disabled
1 for Enabled

This function returns an integer error/status code. Error/status code 0
indicates that the function exccuted successfully. A non-zero error/status
code indicates that an error occurred. Refer to Appendix A for additional
information,

Function Reference



K_GetSSH (cont.)

Remarks

See Also

Usage

For the operation defined by AFrame, this function stores the code that
indicates the SSH mode in pMode.

The pMode variable contains the value of the SSH Mode element.
Refer to page 2-15 for information on conversion modes.

K_SetSSH

C/Cs++
#include “DASDECL.H" // Use "DASDECL.HPP for C++

WORD wMode;
wDasErr = K_GetS8SH (hAD, &wMode);

Turbo Pascal
uses D1§00TP7; (* Use D1800TP6 for TP ver 6.0 *)

wMode : Word;
wDasErr := K_GetSSH (hAD, whMode);

Turbo Pascal for Windows
{41 DASDECL.INC)

wMode : Word;
wDasErr := K_GetSSH (hAD, wMode):;

Visual Basic for Windows
(Include DASDECL.BAS in your program make file)

Global wMode Az Integer

wDasEry = K_GetSSH (hAD, wMode)

4-133



K _GetSSH (cont.)

4-134

BASIC
' $INCLUDE: 'DASDECL.BI'

DIM wMode AS INTEGER

wDasErr = KGetSSH% (hAD, wMode)

Function Reference



K_GetStartStopChn

Boards
Supported

Purpose

Prototype

Parameters

All

Gets the first and last channels in a group of consecutive channels,

CiCe+
DASErr far pascal K_GetStartStopChn (DWORD AFrame,
short far *pStart, short far *pStop);

Turbo Pascal
Function K_GetStartStopChn (hF rame : Longint; Var pStart : Word,
Var pStop : Word) : Word;

Turbo Pascal for Windows
Function K_GetStartStopChn (hFrame : Longint; Var pStart : Word;
Var pStop : Word) : Word; far; external 'DASSHELL';

Visual Basic for Windows
Declare Function K_GetStartStopChn Lib "DASSHELL.DLL"
(ByVal iFrame As Long, pStart As Integer, pStop As Integer) As Integer

BASIC

DECILARE FUNCTION KGetStartStopChn% ALIAS
"K_GetStartStopChn" (BY VAL hFrame AS LONG,
SEG pStart AS INTEGER, SEG pStop AS INTEGER)

hFrame Handle to the frame that defines the operation.

4-135



K_GetStartStopChn (cont.)

Return Value

Remarks

See Also

Usage

4-136

pStart First channel in a group of consecutive channels.
Valid values:

Valid channel numbers

Board Differential Single-ended
DAS-1800HC 01031 01063

DAS-1800ST/HR with N Not applicable O0to 15(N + 1)

EXP-1800 expansion boards
attached
pStop Last channel in a group of consecutive channels.

Valid values: Same as for pStart above

This function returns an integer error/status code. Error/status code 0
indicates that the function executed successfully. A non-zero error/status
code indicates that an error occurred. Refer to Appendix A for additional
information,

For the operation defined by AF rame, this function stores the first channel
in a group of consecutive channels in pStart and the last channel in the
group of consecutive channels in srop.

The pStart variable contains the value of the Start Channel element.
The pStop variable contains the value of the Stop Channel element.

K_SetStartStopChn, K_GetStartStopG

C/C++
#include "DASDECL.H" // Use "DASDECL.HPP for C++

short nStart, nStop;

wDasErr = K_GetStartStepChn (hAD, &nStart, &nsStop);

Function Referance




K_GetStartStopChn (cont.)

Turbo Pascal

uses D1800OTP7; (* Use D1800TPS for TP ver 6.0 *)
nStart : Integer;

nstep : Integer;

wDasErr := K_GetStartStopChn (hAD, nStart, nStop}

Turbao Pascal for Windows
{41 DASDECL.INC}
nStart : Integer;
nstop : Integer;

wDasBrr := K_GetStartsStopChn (hAD, nStart, nStop)

Visual Basic for Windows
{Include DASDECL.BAS in your program make file)

Global nStart As Integer
Global nStop As Integer

wDhasErr = K_GetStartStopChn (hAD, nStart, nStop)

BASIC
' S$INCLUDE: 'DASDECL.BT'

DIM nStart AS INTEGER
DIM nStop AS INTEGER

whDasErr = KCGetStartStopChn% (hAD, nStart, nStop)}

4-137



K_GetStartStopG

Boards
Supported

Purpose

Prototype

4-138

All

Gets the first and last channels in a group of consecuiive channels and the
gain for all channels in the group.

C/Ce++
DASEir far pascal K_GetStartStopG (DWORD AFrame,
short far *pStart, short far *pStop, short far *pGain);

Turbo Pascal
Function K_GetStartStopG (hFrame : Longint; Var pStart : Word;
Var pStop : Word; Var pGain : Word) : Word;

Turbo Pascal for Windows
Function K_GetStartStopG (AFrame : Longint;, Var pStart : Word,
Var pStop . Word; Var pGain : Word) : Word; far; external 'DASSHELL";

Visual Basic for Windows

Declare Function K_GetStartStopG Lib "DASSHELL.DLL"
(ByVal hFrame As Long, pStart As Integer, pStop As Integer,
pGain As Integer) As Integer

BASIC

DECLARE FUNCTION KGetStartStopG% ALIAS "K_GetStartStopG"
(BYVAL hFrame AS LONG, SEG pStart AS INTEGER,

SEG pStop AS INTEGER, SEG pGuain AS INTEGER)

Function Reference



K_GetStartStopG (cont.)

Parameters hFrame Handle to the frame that defines the operation.

pSiart First channel in a group of consecutive channels.
Valid values:

Valid channel numbers

Board Differential Single-ended

DAS-1800HC 0o 31 Oto63

DAS-1800ST/HR with N Not applicable O0to 15(N + 1)

EXP-1800 expansion boards
attached
pStop Last channel in a group of consecutive channels.

Valid values: Same as for pStart above

pGain Gain code.
Valid values: 0 to 3 for DAS board channels
0 to 7 for EXP-1800 channels
Refer to Table 2-2 on page 2-10 for the gain and
input ranges associated with each gain code.

Return Value This function returns an integer error/status code. Error/status code 0
indicates that the function executed successfully. A non-zero error/status
code indicates that an error occurred. Refer to Appendix A for additional
information.

4-139



K_GetStartStopG (cont.)

Remarks

See Also

UUsage

4-140

For the operation defined by iFrame, this function stores the first channel
in a group of consecutive channels in pStart, the last channel in the group
of consecutive channels in pStop, and the gain code for all channels in the
group in pGain.

The pStart variable contains the value of the Start Channel element.

The pStop variable contains the value of the Stop Channel element.

The pGain variable contains the value of the Gain element.

K_SetStartStopG

C/Cr+
#include "DASDECL.H" // Use "DASDECL.HPP for C++

short nStart, nStop, nGain;

wDasErr = K_GetStartStopG (hAD, &nStart, &nStop,
&nGain) ;

Turbo Pascal
usez D180OTPR7; {* Use D1800TP6 for TP ver 6.0 *)

nstart : Integer;
nStep : Integer;

nGain : Integer;

whDasErr := K_GetStartStopG (hAD, nStart, nStop, nGain)

Turbo Pascal for Windows
{4I DASDECL.INC}

nsStart : Integer;
nsStop : Integer;

nGain : Integer;

whasErr := K_GetStartStopG (hAD, nStart, nStop, nGain)

Function Reterence



K_GetStartStopG (cont.)

Visual Basic for Windows
(Include DASDECL.BAS in your program make file)

Global nStart As Integer
Global nStop As Integer
Global nGain As Integer

whasErr = K_GetStartStopG (hAD, nStart, nStop, nGain)

BASIC
' $INCLUDE: 'DASDECL.BI'

DIM nStart AS INTEGER
DIM nStop AS INTEGER
DIM nGain AS INTEGER

wDasErr = KGetStartStepG% (hAD, nStart, nStop, nGain)

4-141



K_GetTrig

Boards
Supported

Purpose

Prototype

Parameters

Returmn Value

Remarks

4-142

All

Gels the start trigger source.

C/C++
DASErr far pascal K_GetTrig (DWORD hFrame, short far *pMode);

Turbo Pascal
Function K_GetTrig (hFrame : Longint; Var pMode : Word) : Word,

Turbo Pascal for Windows
Function K_GetTrig (hF rame : Longint, Var pMode : Word) : Word; far;
external 'DASSHELL',

Visual Basic for Windows
Declare Function K_GetTrig Lib "DASSHELL.DLL"
(ByVal hFrame As Long, pMode As Integer) As Integer

BASIC
DECLARE FUNCTION KGetTrig% ALIAS "K_GetTrig"
(BYVAL hFrame AS LONG, SEG pMode AS INTEGER)

hFrame Handle to the frame that defines the operation.

pMode Start trigger source.
Value stored: 0 for Internal trigger
1 for External trigger

This function returns an integer error/status code. Error/status code 0
indicates that the function executed successfully. A non-zero error/status
code indicates that an error occurred. Refer to Appendix A for additional
information.

For the operation defined by hF rame, this function stores the trigger
source in pMode,

Function Referance



K_GetTrig (cont.)

See Also

Usage

The pMode variable contains the value of the Start Trigger Source
element,

An internal trigger is a software trigger; conversions begin when the
operation is started. An external trigger is either an analog trigger or a
digital trigger; conversions begin when the trigger event occurs. Refer to
page 2-25 for more information about internal and external trigger
sources.

K_SetTrig

C/C++
#include "DASDECL.H* // Use "DASDECL.HPP for C++

WORD wMode;
wDasErr = K_GetTrig (hAD, &wMode);

Turbo Pascal
uses D1800TP7; (* Uze D1800TP6 for TP wver 6.0 *)

wMode : Word;
wDasErr := K_GetTrig (hAD, wMode) ;

Turbo Pascal for Windows
{$I DASDECL.INC}

wMode : Word;
wDasErr := K_GetTrig (hAD, wMode);

Visual Basic for Windows
(Include DASDECL.BAS in your program make file)

Global wMode Az Integer

wDasErr = K_GetTrig (hAD, wMode)}

4-143



K_GetTrig (cont.)

BASIC
' S$INCLUDE: 'DASDECL.BI‘

DIM wMode AS INTEGER

whDasErr = KGetTrig¥% (hAD, wMode)

4-144 Function Reference



K_GetTrigHyst

Boards
Supported

Purpose

Prototype

Parameters

Return Value

All

Gets the trigger hysteresis value.

C/C++
DASEr far pascal K_GetTrigHyst (DWORD hFrame, short far *pHyst),

Turbo Pascal
Function K_GetTrigHyst (hFrame : Longint; Var pHyst ; Word) : Word;

Turbo Pascal for Windows
Function K_GetTrigHyst (AF rame : Longint; Var pHyst : Word) : Word;
far; external ' DASSHELL;

Visual Basic for Windows
Declare Function K_GetTrigHyst Lib "DASSHELL DLL"
(ByVal hFrame As Long, pHyst As Integer) As Integer

BASIC
DECLARE FUNCTION KGe!TrigHyst% ALIAS "K_GetTrigHyst"
(BYVAL hFrame AS LONG, SEG pHyst AS INTEGER)

hFrame Handle to the frame that defines the operation.

pHyst Hysteresis value.
Value stored: 0 to 4,095 for DAS-1800HC/ST
Series boards
0 to 65,535 for DAS-1800HR
Series boards

This function returns an integer errorfstatus code. Error/status code 0
indicates that the function executed successfully. A non-zero error/status
code indicates that an error occurred. Refer to Appendix A for additional
information.

4-145



K_GetTrigHyst (cont.)

Remarks

See Also

Usage

4-146

For the operation defined by hAFrame, this function stores the hysteresis
value used for an analog trigger in pHyst. The value is represented in raw
counts; refer to Appendix B for information on converting the raw count
to voltage.

The pHyst variable contains the value of the Trigger Hysteresis element.
Refer to page 2-20 for more information about analog triggers.

K_SetTrigHyst

C/C++
#include "DASDECL.H* // Use "DASDECL.HPP for Ci+

short nHyst;

whasErr = K_CetTrigHyst (hAD, &nHyst);

Tutbo Pascal
uses D1800TP7; {* Use D1800TP6 for TP wver 6.0 *)

nHyst : Integer;

wDasErr := K_GetTrigHyst (hAD, nHyst);

Turbo Pascal for Windows
{$I DASDECL.INC)

nHyst : Integer;

wDasErr := K_GetTrigHyst (hAD, nHyst);

Visual Basic for Windows
(Include DASDECL.BAS in your program make file)

Global nHyst As Integer;

whasErr = K_CetTrigHyst (hAD, nHyat}

Function Reference



K_GetTrigHyst (cont.)

BASIC
' SINCLUDE: 'DASDECL.BI'

DIM nHyst AS INTEGER

wDasErr = KGetTrigHyst% (hAD, nHyst)

4-147



K _GetVer

Boards All

Supported

Purpose Gets revision numbers.

Prototype CiC++
DASErr far pascal K_GetVer (DWORD #Deyv, short far * pSpecVer,
short far * pDrvVer);

Turbo Pascal
Function K_GetVer (hDev : Longint; Var pSpecVer : Word;
Var pDryVer : Word) : Word;

Turbo Pascal for Windows
Function K_GetVer (hDev : Longint; Var pSpecVer : Word;
Var pDrvVer ; Word) : Word; far; external ' DASSHELL',

Visual Basic for Windows

Declare Function K_GetVer Lib "DASSHELL.DLL"

(ByVal ADev As Long, pSpecVer As Integer, pDrvVer As Integer) As
Integer

BASIC

DECLARE FUNCTION KGetVer% ALIAS "K_GetVer"
{(BYVAL hDev AS LONG, SEG pSpecVer AS INTEGER,
SEG pDrvVer AS INTEGER)

Parameters hDey Handle associated with the board.
pSpecVer Revision number of the Keithley DAS Driver
Specification to which the driver conforms.
pDrvVer Driver version number.
Return Value This function returns an integer error/status code. Error/status code 0

indicates that the function executed successfully. A non-zero error/status
code indicates that an error occurred. Refer to Appendix A for additional
information.

4-148 Function Reference



K_GetVer (cont.)

Remarks For the board specified by hDev, this function stores the revision number
of the DAS-1800 Series Function Call Driver in pDrvVer and the revision
number of the driver specification in pSpecVer.

The values stored in pSpecVer and pDrvVer are two-byte (16-bit) integers;
the high byte of each contains the major revision level and the low byte of
each contains the minor revision level. For example, if the driver version
number is 2.1, the major revision level is 2 and the minor revision level is
1; therefore, the high byte of pDrvVer contains the value of 2 (512} and
the low byte of pDrvVer contains the value of 1; the value of both bytes is
513.

To extract the major and minor revision levels from the value stored in
pDrvVer or pSpecVer, use the following equations:

. . , retorned value
major revision level = Integer portion of T

minor revision level = returned value MOD 256

Usage

C/C++
#include "DASDECL.H" // Use "“DASDECL.HPP for C++

short nsSpecVer, nDrvVer;

r = K_GetVer {hDev, &ns

B
printf {"Driver Ver %d.%d", nDrvVer >> 8, nDrvVer & O0xff};

Turbo Pascal
uses D1800TP7; (* Use D1BOOTPS for TP ver 6.0 *)

nSpecVer : Integer

nlrvvVer : Integer

wDasErr := K_GetVer (hDev, nSpecVer, nbDrvVer);

FormatStr{VerStr, ' %4x ', nDrvVer / 2%6, '.', nDrvVer And S$ff);
writeln(' Driver Ver ', VerStr);

4-149



K_GetVer (cont.)

Turbo Pascal for Windows
{$I DASDECL.INC}

nsSpecvVer : Integer
nDrvVer : Integer

. v .

wDagErr := K_GetVer {hDev, nSpecVer, nDrvVer);
FormatsStr (VerStr, ' $%$4x ', nDrvVer / 256, '.', nDrvVer aAnd S$ff);
writeln(' Driver Ver ', VerStr);

Visual Basic for Windows
(Include DASDECL.BAS in your program make file)

Global nSpecVer As Integer

Global nbDrvVer As Integer

whasErr = K_GetVer {(hDev, nSpecVer, nDrvVer)

DrvVer$ = LTRIMS{STRS (nDrvVer / 256)) + "." +
LTRIMS (STRS (nDrvVer AND &HFF))

PRINT "Driver Ver: "' + DrvVers$

BASIC
' $INCLUDE: 'DASDECL.BI'

DIM nSpecVer A8 INTEGER
DIM nDrvVer AS INTEGER

wDasgErr = KGetVer% (hDev, nSpecVer, nDrvVer)

DrvvVer$ = LTRIMS (STRS (nDrvVer / 256)) + "." 4
LTRIMS (STRS (nDrvVer AND &HFF})

PRINT "Driver Ver: " + DrvVer$

4-150 Function Reference



K_IntAlloc

Boards
Supported

Purpose

Prototype

Parameters

All

Allocates a buffer for an interrupt-mode operation.

C/Cr+
DASE:r far pascal K_IntAlloc (DWORD AFrame, DWORD dwSamples,
void far * far *pBuf, WORD far *pMem);

Turbo Pascal
Function K _IntAlloc (hFrame : Longint; dwSamples : Longint;
pBuf : Pointer; Var pMem : Word) : Word;

Turbo Pascal for Windows
Function K_IntAlloc (AFrame : Longint; dwSamples : Longint;
pBuf : Pointer; Var pMem : Word) : Word; far; external ‘DASSHELL";

Visual Basic for Windows

Declare Function K_IntAlloc Lib "DASSHELL.DLL"

(ByVal hFrame As Long, ByVal dwSamples As Long, pBuf As Long,
pMem As Integer) As Integer

BASIC

DECLARE FUNCTION KIntAlloc% ALIAS "K_IntAlloc”
(BYVAL hFrame AS LONG, BYVAL dwSamples AS LONG,
SEG pBuf AS LONG, SEG pMem AS INTEGER)

hFrame Handle to the frame that defines the operation.
dwSamples Number of samples.
Valid values: 1 to 32,767 for Visual Basic for
Windows and BASIC
1 to 65,536 for all other languages
pBuf Starting address of the allocated buffer.
pMem Handle associated with the allocated buffer.

4-151



K _IntAlloc (cont.)

Return Value This function returns an integer error/status code, Error/status code 0
indicates that the function executed successfully. A non-zero error/status
code indicates that an error occurred. Refer to Appendix A for additional
information.

Remarks For the operation defined by hF rame, this function allocates a buffer of
the size specified by dwSamples, and stores the starting address of the
buffer in pBuf and the handle of the buffer in pMem.

Turbo Pascal and BASIC require that you re-distribute available memory
before you dynamically atlocate a buffer. Refer to “Reducing the Memory
Heap” on page 3-32 (Turbo Pascal) or page 3-46 (BASIC) for additional

information.
See Also K_IntFree, K_SetBuf, K_BufListAdd
Usage
C/C++
#include "DASDECL.H" // Use "DASDECL.HPP for C++
void far *pBuf: // DPointer to allocated buffer
WORD hMerm; // Memory Handle to buffer

wDasErr = K_IntAlloc (hAD, dwSamples, &pBuf, &hMem) :

Turbo Pascal

uses DI1800OTP7; (* Use D1BO0TP6 for TP ver 6.0 *)
TYPE

BufType = Array [0..l1]) of Integer;

VAR

pBuf : “BufType; { buffer pointer }

hMem : Word; { Handle to buffer }

whasEry := K_IntAlloc (hAD, dwSamples, Addr{pBuf), hMem);

4-152 Function Reference



K IntAlloc (cont.)

Turbo Pascal for Windows
{$I DASDECL.INC}

TYPE

BufType = Array [0..l1] of Integer;

VAR

pBuf : “BufType; { buffer pointer )}

hMem : Word; { Handle to buffer }

wDasErr := K_IntAlloc{(hAD, dwSamples, Addr(pBuf), hMem);

Visual Basic for Windows
(Inctude DASDECL.BAS in your program make file)

Global pBuf As Long
Glcbhal hMem As Integer

wDasErr = K_IntAllec (hAD, dwSamples, pBuf, hMem)

BASIC
' $INCLUDE: 'DASDECL.BI'

DIM pBuf AS LONG
DIM hMem AS INTEGER

wDasErr = KINTAlloc% {hAD, dwSamples, pBuf, hMem)

4-153



K IntFree

Boards
Supported

Purpose

Prototype

Parameters

Return Value

Remarks

See Also

4-154

All

Frees a buffer allocated for an interrupt-mode operation.

C/C++
DASEIr far pascal K_IntFree (WORD hMem);

Turbo Pascal
Function K_IntFree (AMem : Word) : Integer;

Turbo Pascal for Windows
Function K_IntFree (hMem : Word) : Integer; far; external DASSHELL';

Visual Basic for Windows
Declare Function K_IntFree Lib "DASSHELL.DLL"
(ByVal AMem As Integer) As Integer

BASIC
DECLARE FUNCTION KIntFree% ALIAS "K_IntFree"
(BY VAL hMem AS INTEGER)

hMem Handle to interrupt buffer.

This function returns an integer error/status code. Error/status code 0
indicates that the function executed successfully. A non-zero error/status
code indicates that an error occurred. Refer to Appendix A for additional
information,

This function frees the buffer specified by sMem:; the buffer was
previously allocated dynamically using K_IntAlloc.

K_IntAlloc

Function Refarence



K _IntFree (cont.)

Usage

C/Ces
#include "DASDECL.H" // Use "DASDECL.HPP for C++

whDasBErr = K_IntFree {hMem);

Turbo Pascal
uses D180OTR7; (* Use D1800TP6 for TP ver 6.0 *)

wDasErr := K_IntFree (hMem);

Turbo Pascal for Windows
{$I DASDECL.INC}

whasFErr := K_IntFree {(hMem);

Visual Basic for Windows
(Include DASDECL.BAS in your program make file)

whasErr = K_IntFree (hMem)

BASIC
' $INCLUDE: 'DASDECL.BI'

wDasErr = KIntFree% (hMem)

4-155



K_IntStart

Boards
Supported

Purpose

Prototype

Parameters

Return Value

Remarks

See Also

4-156

All

Starts an interrupt operation.

C/C++
DASETr far pascal K_IntStart (DWORD hFrame);

Turbo Pascal
Function K_IntStart (hFrame ; Longint) ; Word;

Turbo Pascal for Windows
Function K_IntStart (#Frame : Longint) : Word,; far;
external 'DASSHELL';

Visual Basic for Windows
Declare Function K_IntStart Lib "DASSHELL.DLL"
(ByVal hFrame As Long) As Integer

BASIC
DECLARE FUNCTION KlntStart% ALIAS "K_IntStart"
(BYVAL hFrame AS LONG)

hFrame Handle to the frame that defines the operation.

This function returns an integer error/status code. Error/status code 0
indicates that the function executed successfully. A non-zero error/status
code indicates that an error occurred. Refer to Appendix A for additional
information.

This function starts the interrupt operation defined by AFrame.
Refer to Chapter 3 for a discussion of the programming tasks associated

with interrupt operations.

K_IntStatus, K_IntStop

Function Reference



K_IntStart (cont.)

Usage

C/Ce+
#include *“DASDECL.H* // Use “DASDECL.HPP for C++

whasErr = K_IntStart (hAD};

Turbo Pascal
uges D18SQQTP7; (* Use D180QTPS for TP wver 6.0 *)

whDasErr := K_IntStart (haAD);

Turbo Pascal for Windows
{$I DASDECL.INC)

whasErr := K_IntStart (hAD);

Visual Basic for Windows
(Inctude DASDECL.BAS in your program make file)

whDasErr = K_IntStart (hAD)

BASIC
' SINCLUDE: 'DASDECL.BI'

wDasErr = KIntStart% (hAD)

4-157



K_IntStatus

Boards All

Suppotted

Purpose Gets status of interrupt operation,

Prototype C/Ce+
DASErr far pascal K_IntStatus (DWORD hFrame, short far *pStatus,
DWORD far *pCount),

Turbo Pascal
Function K_IntStatus (hF rame : Longint; Var pStatus : Word;
Var pCount : Longint) : Word;

Turbo Pascal for Windows
Function K_IntStats (hFrame : Longint; Var pStatus : Word;
Var pCount : Longint) : Word; far; external ' DASSHELL';

Visual Basic for Windows

Declare Function K_IntStatus L.ib "DASSHELL.DLL"

(ByVal hFrame As Long, pStatus As Integer, pCount As Long) As
Integer

BASIC
DECLARE FUNCTION KIntStatus% ALIAS "K_IntStatus"
(BYVAL hFrame AS LONG, SEG pStatus AS INTEGER,

SEG pCount AS LONG)
Parameters hiframe Handle to the frame that defines the operation.
pStatus Status of interrupt operation; sec Remarks

below tor value stored.

pCount Number of samples that were acquired.
Value stored: 0 to 65,536

4-168 Function Reference



K_IntStatus (cont.)

Return Value

Remarks

Bit

15

This function returns an integer error/status code. Error/status code 0
indicates that the function executed successfully. A non-zero error/status
code indicates that an error occurred. Refer to Appendix A for additional

information.

For the interrupt operation defined by hFrame, this function stores the
status in pStatus and the number of samples acquired in pCount.

The value stored in pStatus depends on the settings in the Status word, as

shown below:

14 13 12 11 10 9 8 7 6

——
Active buffer number

¥
0 = Buffer not fllled
1 = Buffer filled

0 = No Interrupt overtun
1 = Interrupi overrun 4

)

0 = No FIFO overflow
1 = FIFO overflow

\

ffor A actlve

tHHH

Bus
Bufter B actlve '

0=
1=

0 = interrupt oparation inactive
1 = Interrupt operaticn active

4-159



K_IntStatus (cont.)

See Also

Usage

4-160

The bits are described as follows:
e Bit 0: Indicates whether an interrupt-mode operation is in progress.

e Bit 1: The Buffer A/B active bit. If you are using multiple buffers, this
bit toggles each time acquisition sample storage is switched to a new
buffer. If you are using a single buffer and the operation is in
continuous mode, this bit toggles each time an acquisition sample is
stored at the beginning of the buffer.

e Bit 2: When set, this bit indicates that the onboard FIFO has
overflowed. This event automatically stops all conversions.

e Bit 3: When set, this bit indicates that the board issued an interrupt
while the CPU was processing a previous interrupt from the same
board.

o Bit 4: This bit is used during continuous buffering mode; it is set
when all data acquisition buffers that are currently assigned to the
active operation have been filted with data at least once.

e Bils 5-7: Unassigned.
¢ Bits 8-15: In multiple-buffer acquisitions, these bits indicate the

current active buffer number. The active buffer number is related to
the Status word as follows:

, Status word
active buffer = ———=—

256
K_IntStart, K_IntStop
C/Ca+
#include "DASDECL.H" // Use "DASDECL.HPP for C++

WORD wStatus;
DWORD dwCcunt;

whDasErr = K_IntStatus (hAD, &wStatus, &dwCount);

Function Reference



K IntStatus (cont.)

Turbo Pascal
uses D18QO0TP7; (* Use D1800TP6 for TP ver 6.0 *)

wStatus : Word;
dwCount : Longint;

whasErr := K_IntStatus (hAD, wStatus, dwCount};

Turbo Pascal for Windows
{$I DASDECL.INC)

wStatus : Word;
dwCount : Longint;

wDasErr := K_IntStatus (hAD, wStatus, dwCount);

Visual Basic for Windows
{Include DASDECL.BAS in your program make file)

Global w8tatus As Integer
Global dwCount As Long

wWwhagBrr = K_IntStatus (hAD, wStatus, dwCount)

BASIC
' $INCLUDE: 'DASDECL.BI'

DIM wStatus AS INTEGER
DIM dwCount AS LONG

wDasErr = KIntStatus% (hAD, wStatus, dwCount)

4-161



K_IntStop

Boards All

Supported

Purpose Stops an interrupt operation.

Prototype C/C+s
DASEr far pascal K_IntStop (DWORD AFrame, short far *pStatus,
DWORD far *pCount);

Turbo Pascal
Function K_IntStop (hFrame : Longint; Var pStatus : Word;
Var pCount : Longint) : Word;

Turbo Pascal for Windows
Function K_IntStop (hFrame : Longint; Var pStatus : Word;
Var pCount : Longint) : Word; far; external 'DASSHELL',

Visual Basic for Windows

Declare Function K_IntStop Lib "DASSHELL.DLL"

(ByVal hFrame As Long, pStatus As Integer, pCount As Long) As
Integer

BASIC
DECLARE FUNCTION KlIntStop% ALIAS "K_IntStop"
(BYVAL hFrame AS LONG, SEG pStatus AS INTEGER,

SEG pCount AS LONG)

Parameters hFrame Handle io the frame that defines the operation.
pStatus Status of interrupt operation.
pCount Number of samples that were acquired.

Value stored: 0 to 65,536

Return Value This function returns an integer error/status code. Error/status code 0
indicates that the function executed successfully, A non-zero error/status
code indicates that an error occurred, Refer to Appendix A for additional
information.

4-162 Function Reference



K_IntStop (cont.)

Remarks This function stops the interrupt operation defined by AFrame and stores
the status of the interrupt operation in pStatus and the number of samples
acquired in pCount.

Refer to page 4-159 for the meaning of the value stored in pStatus.
If an interrupt operation is not in progress, K_IntStop is ignored.

See Also K_IntStart, K_IntStatus
Usage Ci/Cu+ ‘
#include "DASDECL.H" // Use "DASDECL.HPP for C++

WORD wStatus;
DWORD dwCount;

wDasEry = K_IntStop (hAD, &wStatus, &dwCount);

Turho Pascal
uses D180OTP7; {* Use D1800TP6 for TP ver 6.0 *)

wS8tatus : Word;
dwCount : Longint;

whDagErr := K_IntStep (hAD, wStatus, dwCount);

Turbo Pascal for Windows
{$I DASDECL.INC}

wStatus : Word;
dwCount : Longint;

wDasEry := K_IntStop (hAD, wStatus, dwCount);

4-163



K _IntStop (cont.)

Visual Basic for Windows
(Include DASDECL.BAS in your program make file)

Global wStatus As Integer
Global dwCount As Long

whasErr = K_IntStep (hAD, wStatus, dwlount)

BASIC
* $INCLUDE: ‘'DASDECL.BI'

DIM wStatus AS INTEGER
DIM dwCount AS LONG

wDasBErr = KIntStop% (hAD, wsStatus, dwCount)

4-164 Function Refarence



KMakeDMABuf

Boards
Suppotrted

Purpose

Prototype

Parameters

Return Value

All

Converts a local array to a buffer suitable for a DMA-mode analog input
operations.

C/C++
Not supported

Turho Pascal
Not supported

Turbo Pascal for Windows
Not supported

Visual Basic for Windows
Not supported

BASIC

DECLARE FUNCTION KMakeDMABuf% ALIAS "K_MakeDMABuf"
(dwSamples AS LONG, pBuf AS INTEGER, pBufAddr AS LONG,
pStartix AS INTEGER)

dwSamples Number of samples.

pBuf $DYNAMIC integer array.

pBufAddr Starting address of the DMA buffer.
pStartlx Index into pBuf that identifies the location in

which the first sample is stored.

This function returns an integer error/status code. Error/status code 0
indicates that the function executed successfully. A non-zero error/status
code indicates that an error occurred. Refer to Appendix A for additional
information.

4-165



KMakeDMABuf (cont.)

Remarks This function ensures that the array address provided to K_SetDM ABuf
is suitable for a DMA-mode analog input operation,

The size of the array given by pBuf must be declared so as to
accommodate twice the number of samples as given by dwSamples; refer
to page 3-46 for additional information,

See Also K_SetDMABuf, K_BufListAdd
Usage

BASIC

' SINCLUDE: 'DASDECL.BI'
SDYNAMIC

DIM ADBuf{10000)As Integer

$STATIC
DIM pDMABuf AS LONG

whasErr = KMakeDMABuf% (dwSamp, ADBuf, pDMABuf, nStartIx)

4-166 Function Reference



K_MoveArrayToBuf

Boards
Supported

Purpose

Prototype

Parameters

Return Value

All

Transfers data from a locally dimensioned buffer to a buffer allocated
through K_IntAlloc or K_DMAAlloc.

C/C++
Not supported

Turbo Pascal
Not supported

Turbo Pascal for Windows
Not supported

Visual Basic for Windows

Declare Function K_MoveArrayToBuf Lib "DASSHELL.DLL" Alias
"K_MoveDataBuf" (ByVal pDest As Long, pSource As Integer,
ByVal nCount As Integer) As Integer

BASIC

DECLARE FUNCTION KMoveArrayToBuf% ALIAS
"K_MoveArrayToBuf" (ByVal pDest As Long, SEG pSource As Integer,
ByVal nCount As Integer)

pDest Address of destination buffer.
pSource Address of source buffer.
nCount Number of samples to transfer.

Value values: 1 to 32,767

This function returns an integer error/status code. Error/status code 0
indicates that the function executed successfully. A non-zero error/status
code indicates that an error occurred. Refer to Appendix A for additional
information.

4-167



K_MoveArrayToBuf (cont.)

Remarks

See Also

Usage

This function transfers the number of samples specified by nCount from
the buffer at address pSource to the buffer at address pDest.

If the buffer used o store output data for your program was allocated
through K_IntAtloc or K_DMAAlloc, the buffer is not accessible to the
driver and you must use this function to move the data to a buffer that the
driver can use. If the buffer used to store output data for your program
was dimensioned locally within the program’s memory area, the buffer is
accessible to the driver and you do not have to use this function.

K_DMAAlloc, K_IntAlloc

Visual Basic for Windows
(Include DASDECL.BAS in your program make file)

whasErr
wDasErr

BASIC

K_IntAlloc { hDa, dwSamples, pBuf, hMem )

K_MoveArrayToBuf ( pBuf, DACArray(0), dwSamples )}

' SINCLUDE: 'DASDECL.RIL'

wDasErr

wDasErr

4-168

KIntAlloc% ( hDA, dwSamples, pBuf, hMem )

KMoveArrayToBuf% ( pBuf, DACArray(0), dwSamples )

Function Reference



K_MoveBufToArray

Boards
Supported

Purpose

Prototype

Parameters

Return Value

All

Transfers data from a buffer allocated through K _IntAlloc or
K_DMAAIloc to a locally dimensioned buffer.

C/C++
Not supported

Turbo Pascal
Not supported

Turbo Pascal for Windows
Not supported

Visual Basic for Windows

Declare Function K_MoveBufToArray Lib "DASSHELL.DLL" Alias
"K_MoveDataBuf" (pDest As Integer, ByVal pSource As Long,
ByVal nCount As Integer) As Integer

BASIC

DECLARE FUNCTION KMoveBufToArray% ALIAS
"K_MoveBufToArray" (SEG pDest As Integer, ByVal pSource As Long,
ByVal nCount As Integer)

pDest Address of destination buffer,
pSource Address of source buffer.
nCount Number of samples to transfer,

Value values: 1 to 32,767

This function returns an integer error/status code, Brror/status code 0
indicates that the function executed successfully. A non-zero error/status
code indicates that an error occurred. Refer to Appendix A for additional
information.

4-169



K_MoveBufToArray (cont.)

Remarks This function transfers the number of samples specified by nCount from
the buffer at address pSource to the array at address pDest.

If the buffer used to store acquired data for your program was allocated
through K_IntAlloc or K_DMA Alloc, the buffer is not accessible to your
program and you must use this function to move the data to an accessible
buffer. If the buffer used to store acquired data for your program was
dimensioned locally within the program’s memory area, the buffer is
accessible to your program and you do not have to use this function,

See Also K_DMAAIlloc, K_IntAlloc
Usage

Visual Basic for Windows
(Include DASDECL.BAS in your program make file)

wDasErr = K_IntaAllec ( hAD, dwSamples, pBuf, hMem )

whagRErr = K_MoveBufTcArray ( ADArray(C), pBuf, dwSamples)

BASIC
* $INCLUDE: 'DASDECL.BI'

wDasErr = KIntAlloc% ( hAD, dwSamples, pBuf, hMem )

wDasErr = K_MoveBufToArray% ( ADArray(0), pBuf, dwSamples)

4-170 Function Reference



K_OpenDriver

Boards
Supported

Purpose

Prototype

Parameters

Return Value

All

Initializes any Keithley DAS Function Call Driver.

C/C++
DASEir far pascal K_OpenDriver (char far * szDevName,
char far * szCfgName, DWORD far * pDrv);

Turbo Pascal
Not supported

Turbo Pascal for Windows
Function K_OpenDriver (Var szDevName - char; Var szCfgName . char;
Var pDrv : Longlnt) : Word; far; external DASSHELL';

Visual Basic for Windows

Declare Function K_OpenDriver Lib "DASSHELL.DLL"
(ByVal szDASName As String, ByVal s2CfgName As String,
pDrv As Long) As Integer

BASIC
Not supported
szDASName Board name.
Valid value: "DAS1800" (for DAS-1800
Series boards)
szCfgName Driver configuration file.
Valid values: The name of a configuration file
0 if driver has already been
opened
pDry Handle associated with the driver.

This function returns an integer error/status code. Error/status code 0
indicates that the function executed successfully. A non-zero error/status

4-171



K_OpenbDriver (cont.)

code indicates that an error occurred. Refer to Appendix A for additional
information.

Remarks This function initializes the Function Call Driver for the board associated

with szDASName according to the information in the configuration file
specified by szCfgName, and stores the driver handle in pDrv.

You can use this function to initialize the Function Call Driver associated
with any Keithley DAS board. For DAS-1800 Series boards, the string
stored in szDASName must be DAS1800. Refer to other Function Call
Driver user’s guides for the appropriate string to store in szDASName for
other Keithley DAS boards.

The value stored in pDrv is intended to be used exclusively as an
argument to functions that require a driver handle. Your program should
not modify the value stored in pDrv.

You create a configuration file using the D1800CFG.EXE utility. Refer to
your DAS-1800 Series board user’s guide for more information.

If szCfgName = 0, K_OpenDriver checks whether the driver has already
been opened and linked to a configuration file and if it has, uses the
current configuration; this is useful in the Windows environment.

See Also DAS1800_DevOpen

Usage
CIC++
tinclude "DASDECL.H" // Use "DASDECL.HPP for C++
5&6RD hDrv;

wDasErr = K_OpenDriver ("DAS1800", "DAS1802.CFG", &hDrv);

4-172 Function Reference



K_OpenDriver (cont.)

Turbo Pascal for Windows
{$I DASDECL.INC}

gzDrvName : String:
szCfgName : String:
hDrv : Longint;

szDrvName

= 'DAS1800' + #0;
szCfgName := 'DAS1B02.CFG* + #0;
wDasErr := K_OpenDriver (szDrvName[l)], szCfgName[l], hDrv)

Visual Basic for Windows
{Include DASDECL.BAS in your program make file)

DIM hDrv As Long

wDasErr = K_OpenDriver("DAS1800", "DAS1802.CFG", hDrv)

4-173



K_RestoreChnGAry

Boards
Supported

Purpose

Prototype

Parameters

Return Value

Remarks

See Also

4-174

All

Restores a converted channel-gain queue.

C/Ce++
Not supported

Turbo Pascal
Not supported

Turbo Pascal for Windows
Not supported

Visual Basic for Windows
Declare Function K_RestoreChnGAry Lib "DASSHELL.DLL"
(pArray As Integer) As Integer

BASIC
DECLARE FUNCTION KRestoreChanGAry% ALIAS
"K_RestoreChnG Ary" (SEG pArray AS INTEGER)

pArray Channel-gain queue starting address.

This function returns an integer error/status code. Error/status code 0
indicates that the function executed successfully. A non-zero error/status
code indicates that an error occurred. Refer to Appendix A for additional
information.

This function restores a channel-gain queue that was converted using
K_FormatChnG Ary to its original format so that it can be used by your
BASIC or Visual Basic for Windows program.

Refer to page 4-59 for more information about the K_FormatChnG Ary
function.

K_FormatChnGAry, K_SetChnGAry

Function Reterence



K_RestoreChnGAry (cont.)

Usage

Visual Basic for Windows
{Include DASDECL.BAS in your program make file)

Gleobal ChanGainArray(16) As Integer ' Chan/Gain
array

wDasErr = K_RestoreChnGAry (ChanGainArray(C})

BASIC
' SINCLUDE: 'DASDECL.BI'

DIM ChanGainArray{le) AS INTEGER ' Chan/Galn array

whDagErr = KRestoreChnGAry% (ChanGainArray(0)})

4-175



K_SetAboutTrig

Boards
Supported

Purpose

Prototype

Parameters

Return Value

4-176

All

Enables the about trigger and specifies the number of post-trigger
samples.

C/C++
DASE:r far pascal K_SetAboutTrig (DWORD hFrame,
DWORD dwSamples);

Turbo Pascal
Function K_SetAboutTrig (hF rame : Longint;
dwSamples : Longint) : Word;

Turbo Pascal for Windows
Function K_SetAboutTrig (hFrame : Longint;
dwSamples : Longint) : Word; far; external 'DASSHELL';

Visual Basic for Windows
Declare Function K_SetAboutTrig Lib "DASSHELL.DLL"
(ByVal hFrame As Long, ByVal dwSamples As Long) As Integer

BASIC
DECLARE FUNCTION KSetAboutTrig% ALIAS "K_SetAboutTrig"
(BYVAL hFrame AS LONG, BY VAL dwSamples AS LONG)

hFrame Handle to the frame that defines the operation.

dwSamples Number of post-trigger samples.
Valid values: 1 to 65,535

This function returns an integer error/status code. Error/status code 0
indicates that the function executed successfully. A non-zero error/status
code indicates that an error occurred. Refer to Appendix A for additional
information.

Function Reference



K_SetAboutTrig (cont.)

Remarks

See Also

Usage

For the DMA-mode analog input operation defined by hFrame, this
function enables the about trigger and specifies the number of post-trigger
samples.

K_CIrAboutTrig, K_GetAboutTrig

C/C++
#include "DASDECL.H" // Use "DASDECL.HPP for C++

DWORD dwSamples;

wDagEry = K_SetAboutTrig (hAD, dwSamples);

Turbo Pascal
uses D1800TP7; (* Use D1800TPE6 for TP ver 6.0 *)

dwsSamples : Longint;

wDasExr := K_SetAboutTrig (hAD, dwSamplesg);:

Turbo Pascal for Windows
{4T DASDECL.INC}

dwsSamples : Longint;

wDasErr := K_SetAboutTrig (hAD, dwSanples);

Visual Basic for Windows
(Include DASDECL.BAS in your program make file)

Global dwSamples As Long

wDasErr = K_SetAboutTrig (hAD, dwSamples)

4-177



K_SetAboutTrig (cont.)

BASIC
' $INCLUDE: 'DASDECL.BI'

DIM dwSamples AS LONG

wDagErr = KSetAboutTrig% (hAD, dwSamples)

4-178 Function Refersence



K_SetADCommonMode

Boards
Supported

Purpose

Prototype

Parameters

Return Value

All

Set a DAS board’s A/D common-mode ground reference.

C/Ca+
DASErr far pascal K_SetADCommonMode (DWORD hDev,
WORD nMode),

Turbo Pascal
Function K_SetADCommonMode (A ev : Longint;
nMode : Word) : Word;

Turbo Pascal for Windows
Function K_SetADCommonMode (ADev : Longint;
nMode . Word) : Word; far; external ' DASSHELL";

Visual Basic for Windows
Declare Function K_SetADCommonMode Lib "DASSHELL.DLL"
(ByVal hDev As Long, ByVal nMode As Integer) As Integer

BASIC
DECLARE FUNCTION KSetADCommonMode% ALIAS
"K_SetADCommonMode" (BY VAL hDev AS LONG,

BYVAL nMode AS INTEGER)
hDey Handle to the frame that defines the operation.
nMode A/D common-mode ground reference.

Value stored: 0 for LL-GND
1 for user-defined

This function returns an integer error/status code. Error/status code 0
indicates that the function executed successfully. A non-zero error/status
code indicates that an error occurred. Refer to Appendix A for additional
information,

4-179



K_SetADCommonMode (cont.)

Remarks For the board specified by ADev, this function specifies the A/D
common-mode ground reference in nMode.

See Also K_GetADCommonMode

Usage C/C++
#include "DASDECL.H" // Use "DASDECL.HPP for C++
WORD nMode;

wDasErr = K_SetADCommonMode (hDev, nMode);

Turbo Pascal
uses D1800TP7; (* Use D1800TP6 for TP ver 6.0 *)

nMode : Word;
whasErr = K_SetADCommcenMode (hDev, nMode);

Turbo Pascal for Windows
{4I DASDECL.INC}

nMode : Word;

wDasErr = K_SetADCommonMode (hDev, nMode);

Visual Basic for Windows
(Include DASDECL.BAS in your program make file)

DIM nMode Ag Integer

wDasErr = K_SetADCommonMode (hDev, nMode)

BASIC
' SINCLUDE: '‘DASDECL.BI'

DIM nMode AS INTEGER

wDasErr = KSetADCommonMede% {(hDev, nMode)

4-180 Function Reference



K_SetADConfig

Boards
Supported

Purpose

Prototype

Parameters

Return Value

Remarks

All

Set a DAS board’s A/D input channel configuration.

CiC++
DASETrr far pascal K_SetADConfig (DWORD hDev, WORD nMode);

Turbo Pascal
Function K_SetADConfig (hDev : Longint; nMode : Word) : Word;

Turbo Pascal for Windows
Function K_SetADConfig (hDev : Longint; nMode : Word) : Word; far;
external 'DASSHELL;

Visual Basic for Windows
Declare Function K_SetADConfig Lib "DASSHELL.DLL"
(ByVal hDev As Long, ByVal nMode As Integer) As Integer

BASIC
DECLARE FUNCTION KSetADConfig% ALIAS "K_SetADConfig”
(BYVAL hDev AS LONG, BYVAL nMode AS INTEGER)

hErame Handle associated with the board.

nMode A/D input channel configuration,
Value stored: 0 for Differential
1 for Single-ended

This function returns an integer error/status code, Error/status code 0
indicates that the function executed successfully. A non-zero error/status
code indicates that an error occurred. Refer to Appendix A for additional
information. '

This function specifies, in iMode, the A/D input channel configuration
for the board specified by hDev.

4-181



K_SetADConfig (cont.)

See Also

Usage

4-182

K_GetADConfig

C/iC++
#include “"DASDECL.H" // Use "DASDECL.HPP for C++

WORD nMode;
wDasErr = K_SetADConfig (hDev, nMode) ;

Turbo Pascal
uses D1800TP7; {* Use D1800TP6 for TP ver 6.0 *)

nMode : Word;
wDasErr = K_SetADConfig (hDev, nMode):

Turbo Pascal for Windows
{$I DASDECL.INC}

nMode : Word;
wDasErr = K_SetADConfig (hDev, nMode);

Visual Basic for Windows
{Inciude DASDECL.BAS in your program make file)

DIM nMode As Integer

whasErr = K_SetADConfig (hDev, nMode)

BASIC
' $INCLUDE: 'DASDECL.BI'

DIM nMode AS INTEGER

wDasErr - KSetADConfig% {hDev, nMode)

Function Refarence



K_SetADFreeRun

Boards
Supported

Purpose

Prototype

Parameters

Return Value

Remarks

See Also

All

Specifies burst conversion mode.

C/C++
DASEr far pascal K_SctADFreeRun (DWORD hFrame);

Turbo Pascal
Function K_SetADFreeRun (AFrame : Longint) : Word;

Turbo Pascal for Windows
Function K_SetADFreeRun (hFrame : Longint) : Word; far;
external ' DASSHELL';

Visual Basic for Windows
Declare Function K_SetADFreeRun Lib "DASSHELL.DLL"
(ByVal hF'rame As Long) As Integer

BASIC
DECI.ARE FUNCTION KSetADFreeRun% ALIAS "K_SetADFreeRun”
(BYVAL hFrame AS LONG)

hFrame Handle to the frame that defines the operation.

This function returns an integer error/status code. Error/status code 0
indicates that the function executed successfully. A non-zero error/status
code indicates that an error occurred. Refer to Appendix A for additional
information,

This function sets the conversion mode for the operation defined by
hF rame 10 burst mode. Refer to page 2-15 for information on conversion
modes.

K CirADFrecRun, K_GetADFreeRun

4-183



K_SetADFreeRun (cont.)

Usage C/C++
#include "DASDECL.H" // Use "DASDECL.HPP for C++

wDhasErr = K_SetADFreeRun (hAD, 1);

Turbo Pascal
uzes D18COTP7; (* Use D1BOOTPE for TP ver 6.0 *)

wDasErry := K_SetADFreeRun (hAD, 1);

Turbo Pascal for Windows
{$T DASDECL.INC}

wDasErr := K_SetADFreeRun (hAD, 1);

Visual Basic for Windows
(Include DASDECL.BAS in your program make file)

wDasErr = K_SetADFreeRun (hAD, 1)

BASIC
' $INCLUDE: 'DASDECL.BI'

wDasErr = KSetADFreeRun% (hAD, 1)

4-184 Function Reference



K_SetADMode

Boards
Supported

Purpose

Prototype

Parameters

Return Value

Remarks

All

Set a DAS board’s A/D input range type.

C/C++
DASEqrr far pascal K_SctADMode (DWORD hDev, WORD nMode),

Turbo Pascal
Function K_SetADMode (hDev : Longint; naMode ; Word) : Word;

Turbo Pascal for Windows
Function K_SetADMode (hDev : Longint; aMode ; Word) : Word; far;
external DASSHELL";

Visual Basic for Windows
Declare Function K_SetADMode Lib "DASSHELL.DLL"
(ByVal kDev As Long, ByVal nMode As Integer) As Integer

BASIC
DECLARE FUNCTION KSetADMode% ALIAS "K_SetADMode"
(BYVAL hDev AS LONG, BY VAL nMode AS INTEGER)

hDev Handle associated with the board.

nMode A/D input range type.
Valid values: @ for Bipolar
1 for Unipolar

This function returns an integer error/status code. Error/status code 0
indicates that the function executed successfully. A non-zero error/status
code indicates that an error occurred. Refer to Appendix A for additional
information.

For the board specified by ADev, this function specifies the A/D input
range type in nMode.

4-185



K_SetADMode (cont.)

See Also K_GetADMode

Usage CiCas
#include "DASDECL.H* // Use "DASDECL.HPP for C++
WORD nMode;

wDasErr = K_SetADMode (hDev, nMode);

Turbo Pascal
uses D1BOOTP7; (* Use D1800TPs for TP ver 6.0 *)

nMode : Word;

wDasErr = K_SetADMcde (hDev, nMode);

Turbo Pascal for Windows
{$I DASDECL.INC}

nMcde : Word;
wDasErr = K_SetADMode (hDev, nMode) ;

Visual Basic for Windows
(Inciude DASDECL.BAS in your program make file)

DIM nMode As Integer

wDasBErr = K_SetADMode (hDev, nMode)

BASIC
* SINCLUDE: ‘'DASDECL.RBI'

DIM nMode AS INTEGER

whasErr = KSetADMode% (hDev, nMode}

4-1886 Function Relerence



K_SetADTrig

Boards
Supported

Purpose

Prototype

Parameters

All

Sets up an analog start trigger.

C/C++
DASErr far pascal K_SetADTrig (DWORD hFrame, short nOpt,
short nChan, DWORD dwLevel);

Turbo Pascal
Function K_SetADTrig (hFrame : Longint; nOpt : Word; nChan : Word,
dwlevel : Longint} : Word;

Turbo Pascal for Windows
Function K_SetADTrig (AFrame : Longint; nOpt : Word; nChan : Word;
dwLevel : Longint) : Word; far; external DASSHELL';

Visual Basic for Windows

Declare Function K_SetADTrig Lib "DASSHELL.DLL"
{ByVal hFrame As Long, ByVal nOpt As Integer,

ByVal nChan As Integer, ByVal dwlLevel As Long) As Integer

BASIC

DECLARE FUNCTION KSetADTrig% ALIAS "K_SetADTrig"
(BYVAL hFrame AS LONG, BYVAL nOpt AS INTEGER,
BYVAL nChan AS INTEGER, BY VAL dwLevel AS LONG)

hFrame Handle to the frame that defines the operation.
nOpt Analog trigger polarity and sensitivity.
Valid values: 0 for Positive edge
2 for Negative edge

4-187



K_SetADTrig (cont.)

Return Value

Remarks

4-188

nChan Analog input channel used as trigger channel.
Valid values:

Valid channhel humbers

Board Differential Single-ended
DAS-1800HC 0 to 31 0to 63

DAS-1800ST/HR with N Not applicable 0to I5(N + 1)

EXP-1800 expansion boards
attached
dwlLevel Level at which the trigger event occurs, specified

in raw counts, Valid values:
DAS-1800HC/ST Series boards:
0 to 4,095 (Unipolar)
—2048 to 2047 (Bipolar)
DAS-1800HR Series boards:
0 to 65,535 (Unipolar)
32,768 to 32,767 (Bipolar)

This function returns an integer error/status code. Error/status code 0
indicates that the function executed successfully. A non-zero error/status
code indicates that an error occurred. Refer to Appendix A for additional
information.

For the operation defined by AFrame, this function specifies the channel
used for an analog trigger in #Chan, the level used for the analog trigger
in dwLevel, and the trigger polarity and trigger sensitivity in nOpt.

You specify the value for dwLevel in raw counts. Refer to Appendix B for
information on converting the actual voltage to a raw count.

Function Reference



K_SetADTrig (cont.)

See Also

Usage

The values you specify set the following elements in the frame identified
by hFrame:

e nOpt sets the value of the Trigger Polarity and Trigger Sensitivity
elements,

s nChan sets the value of the Trigger Channel element.
e dwLevel sets the value of the Trigger Level clement.
K_SetADTrig does not affect the operation defined by hFrame unless the

Trigger Source element is set to External (by a call to K_SetTrig) before
hFrame is used as a calling argument to K_IntStart or K_DMAStart.

K_GetADTrig

C/C++
#include "DASDECL.H" // Use "DASDECL.HPP for C++

wDasErr = K_SetADTrig {hAD, 0, 0, 2047);

Turbo Pascal
uses D1800TP7; {(* Uze D1800TP6 for TP wver 6.0 *)

wDasErr := K_SetADTrig (hAD, 0, 0, 2047);

Turbo Pascal for Windows
{4I DASDECL.INC}

whasErr := K_SetADTrig (hAD, 0, 0, 2047);

Visual Basic for Windows
(Include DASDECL.BAS in your program make file)

whasErr = K_8SetADTrig (hAD, 0, 0, 2047

4-189



K_SetADTrig (cont.)

BASIC
' $INCLUDE: 'DASDECL.BI'

wDasErr = KSetADTrig% (hAD, ¢, 0, 2047)

4-190 Function Reference



K_SetBuf

Boards
Supported

Purpose

Prototype

Parameters

Return Value

All

Specifies the starting address of a previously allocated or dimensioned
buffer.

C/C++
DASErr far pascal K_SetBuf (DWORD AFrame, void far *pBuf,
DWORD dwSamples),

Turbo Pascal
Function K_SetBuf (hFrame : Longint; pBuf : Pointer;
dwSamples ; Longint) : Word;

Turbo Pascal for Windows
Function K_SetBuf (AFrame : Longint; pBuf : Pointer,
dwSamples : Longint) : Word; far; extermal 'DASSHELL;

Visual Basic for Windows

Declare Function K_SetBuf Lib "DASSHELL.DLL"
(ByVal hFrame As Long, ByVal pBuf As Long,
ByVal dwSamples As Long) As Integer

BASIC

Not supported

hFrame Handle to the frame that defines the operation.
pBuf Starting address of buffer.

dwSamples Number of samples,

Valid values: 0 to 65,535

This function returns an integer error/status code. Error/status code 0
indicates that the function executed successfully. A non-zero error/status
code indicates that an error occurred. Refer to Appendix A for additional
information.

4-191



K_SetBuf (cont.)

Remarks

See Also

Usage

C/C++

For the operation defined by AFrame, this function specifies the starting
address of a previously allocated buffer in pBuf and the number of
samples (the size of the buffer) in dwSamples.

Do not use this function for BASIC; for the BASIC languages, use
K_SetBufl. Refer to page 4-194 for more information.

For C and Pascal application programs, use this function whether you
dimensioned your buffer locally or allocated your buffer dynamically
using K_IntAlloc. For buffers allocated dynamically using

K _DMAAlloc, use K_SetDMABuf, For C, make sure that you use
proper typecasting to prevent C/C++ type-mismatch warnings. For
Pascal, a special procedure is needed to satisfy the type-checking
requirements; refer to page 3-33 for more information.

For Visual Basic for Windows, use this function only for buffers allocated
dynamically using K_IntAllec. For buffers allocated dynamically using
K_DMAAlloc, use K_SetDMABuf. For locally dimensioned buffers, use
K_SetBufl.

Do not use this function if you are using multiple buffers. Use
K_BufListAdd to specify the starting addresses of multiple buffers.

The values you specify set the following elements in the frame identified
by hFrame:

e pBufsets the value of the Buffer element.

e dwSamples sets the value of the Number of Samples element.

K_DMAAIlloc, K_IntAlloc, K_BufListAdd, K_SetBufl, K_SetDMABuf

#include "DASDECL.H" // Use "DASDECL.HPP for C++

void far *pBuf; // Pointer to allocated buffer

wDasErr
wlDagkErr

4-192

K_IntAlloc (hAD, dwSamples, &pBuf, &hMem);
K_SetBuf (hAD, pBuf, dwSamples);

Function Reference



K_SetBuf (cont.)

Turbo Pascal

uses D1800TPY; (* Use D1800TP6 for TP ver 6.0 *)
TYPE

BufType = Array [0..1] of Integer;

VAR

pBuf : “BufType; { buffer pointer )}

whagErr := K_IntAlloc{(hAD, dwSamples, Addr(pBuf), hMem);
whasErr := K_SetBuf (haD, pBuf, dwSanpleg);

I

Turbo Pascal for Windows
(8T DASDECL.INC}

TYPE

Bufiype = Array [0..1) of Integer;

VAR

pBuf : “BufType; { buffer pointer }

wDasEry := K_IntAlloc(hAD, dwSamples, Addr{pBuf), hMem);
whasBrr := K_SetBuf (hAD, pBuf, dwSamples);:

Visual Basic for Windows
(Include DASDECL.BAS in your program make file)

Global pBuf As Long

wDagErr = K_IntAlloc {(hAD, dwSamples, pBuf, hMem)
wDasBrr = K_SetBuf (haAD, pBuf, dwSamples)

4-193



K_SetBufl

Boards
Supported

Purpose

Prototype

Parameters

Return Value

4-194

All

Specifies the starting address of a locally dimensioned integer buffer.

C/C++
Not supported

Turbo Pascal
Not supported

Turbo Pascal for Windows
Not supported

Visual Basic for Windows

Declare Function K_SetBufl Lib "DASSHELL.DLL" Alias "K_SetBuf"
(ByVal hFrame As Long, pBuf As Integer, ByVal dwSize As Long) As
Integer

BASIC

DECLARE FUNCTION K_SETBUFI Alias "K_SetBuf"

(BYVAL hFrame AS Long, pBuf AS Integer, BY VAL dwSize AS Long)
AS INTEGER

hFrame Handle to the frame that defines the operation.

pBuf Starting address of the user-dimensioned integer
buffer.

dwSize Number of samples.

Valid values: 0 to 65,535

This function returns an integer error/status code. Error/status code 0
indicates that the function executed successfully. A non-zero error/status
code indicates that an error occurred. Refer to Appendix A for additional
information.

Function Reference



K_SetBufl (cont.)

Remarks

See Also

Usage

For the operation defined by sFrame, this function specifies the starting
address of a locally dimensioned integer buffer in pBuf and the number of
samples stored in the buffer in dwSize.

Do not vse this function for C and Pascal; for these languages, use
K_SetBuf.

For Visual Basic for Windows, use this function only for locally
dimensioned buffers, For buffers allocated dynamically using
K_IntAlloc, use K_SetBuf. For buffers allocated dynamically using
K_DMAAIlloc, use K_SetDMABuf.

Do not use this function if you are using multiple buifers, Instead, use
K_BufListAdd to specify the starting addresses of multiple buffers,

The values you specify set the following elements in the frame identified
by hFrame:

e pBuf sets the value of the Buffer element.

o dwSize sets the value of the Number of Samples element.
K_DMAAlloc, K_IntAlloc, K_BufListAdd, K_SetBuf, K_SetDMABuf

Visual Basic for Windows
{Include DASDECL.BAS in your program make file)

Dim ADData{2000) As Integer

wDasErr = K_SetBufl (hAD, ADData(0), 2000 )

BASIC
' $INCLUDE: 'DASDECL.BI'

Dim ADData{(2000) As Integer

wDasErr = KSetBufl% (hAD, ADDatal(0}, 200C )

4-195



K_SetBurstTicks

Boards
Supported

Purpose

Prototype

Parameters

Return Value

4-196

All

Sets the burst mode conversion rate.

C/C++
DASErr far pascal K_SetBurstTicks (DWORD AFrame, short nTicks);

Turbo Pascal
Function K _SetBurstTicks (hFrame : Longint; nTicks : Word) : Word;

Turbo Pascal for Windows
Function K_SetBurstTicks (hFrame : Longint; nTicks : Word) : Word;
far; external ' DASSHELL;

Visual Basic for Windows
Declare Function K_SetBurstTicks Lib "DASSHELL.DLL"
(ByVal hFrame as Long, ByVal nTicks As Integer) As Integer

BASIC
DECLARE FUNCTION KSetBurstTicks% ALIAS "K_SetBurstTicks"
(BYVAL hFrame AS LONG, BY VAL nTicks AS INTEGER)

hFrame Handle to the frame that defines the A/D
operation,
nTicks The number of clock ticks between conversions

of each channel in a scan.
Valid values: 3 to 255

This function returns an integer error/status code. Error/status code 0
indicates that the function executed successfully. A non-zero error/status
code indicates that an error occurred. Refer to Appendix A for additional
information.

Function Reference



K_SetBurstTicks (cont.)

Remarks

See Also

Usage

For the operation defined by hF rame, this function stores the number of
clock ticks between conversions in nTicks.

Refer to page 2-17 for more information on burst mode conversion rate.
K_GetBurstTicks

C/C++
#include *"DASDECL.H" // Use "DASDECL.HPP for C++

wDasErr = K_SetBurstTicks {(hAD, 10);

Turbo Pascal
uses D18O0TP7; (* Use DIBOOTPE for TP ver 6.0 *)

wDasErr := K_SetBurstTicks (hAD, 10);

Turbo Pascal for Windows
{$I DASDECI.INC}

wDasErr := K_SetBurstTicks (haAD, 10);

Visual Basic for Windows
(Include DASDECL.BAS in your program make file)

wDagErr = K_SetBurstTicks (hAD, 10}

BASIC
' $INCLUDE: ‘'DASDECL.BI'

wDasErry = KSetBurstTicks% (hAD, 10)

4-197



K_SetChn

Boards All

Supported

Purpose Specifies a single channel,
Prototype CiC++

DASErr far pascal K_SetChn (DWORD AFrame, short nChan);

Turbo Pascal
Function K_SetChn (hFrame : Longint; nChan ;: Word) : Word;

Turbo Pascal for Windows
Function K_SetChn (4#Frame : Longint; nChan : Word) : Word; far;
external 'DASSHELL";

Visual Basic for Windows
Declare Function K_SetChn Lib "DASSHELL.DLL"
(ByVal hFrame As Long, ByVal nChan As Integer) As Integer

BASIC
DECLARE FUNCTION KSetChn% ALIAS "K_SetChn"
(BY VAL hFrame AS LONG, BYVAL unChan AS INTEGER)

4-198 Function Reference



K_SetChn (cont.)

Parameters

Return Value

Remarks

See Also

Usage

hFrame Handle to the frame that defines the operation.
nChan Channel on which to perform operation.
Valid values:

Valld channel numbers

Board Differential Single-ended
DAS-1800HC 0to31 0to 63

DAS-18008
EXP-1800 expansion boards
attached

Not applicable 00 15(N + 1)

This function returns an integer errot/status code. Error/status code 0
indicates that the function executed successfully, A non-zero error/status
code indicates that an error occurred. Refer to Appendix A for additional
information,

For the operation defined by AF rame, this function specifies the single
channel used in nChan.

The value you specify in nChan sets the Start Channel element and the
Stop Channel element in the frame identified by AFrame.

K_GetChn, K_GetStartStopChn, K_GetStartStopChnAry

C/C++
#include "DASDECL.H" // Use "DASDECL.HPP for C++

wDasErr = K_SetChn {(hAD, 2};

4-199




K_SetChn (cont.)

4-200

Turbo Pascal

uses D1S00OTP7; {* Use DL800TP6 for TP ver 6.0 *}

wDasErr := K_SetChn (hAD, 2};

Turbo Pascal for Windows
{$T DASDECL.INC}

wDasErr := K_SetChn (hAD, 2);

Visual Basic for Windows
(Include DASDECL.BAS in your program make file)

whasBErr = K_SetChn (hAD, 2)

BASIC
' $INCLUDE: 'DASDECL.BI'

wDasErr = KSetChn% (hAD, 2)

Function Reference



K_SetChnGAry

Boards
Supported

Purpose

Prototype

Parameters

Return Value

All

Specifies the starting address of a channel-gain queue.

C/C++
DASErr far pascal K_SetChnGAry (DWORD hFrame,
void far *pArray);

Turbo Pascal
Function K_SetChnGAry (hFrame : Longint;
Var pArray : Integer) : Word,;

Turbo Pascal for Windows
Function K_SetChnG Ary (hFrame : Longint;
Var pArray : Integer) : Word; far; external DASSHELL;

Visual Basic for Windows
Declare Function K_SetChnGAry Lib "DASSHELL.DLL"
(ByVal hFrame As Long, pArray As Integer) As Integer

BASIC
DECLARE FUNCTION KSetChnGAry% ALIAS "K_SetChnG Ary"
(BYVAL hFrame AS LONG, SEG pArray AS INTEGER)

hFrame Handle to the frame that defines the operation.

pArray Channel-gain queue starting address.

This function returns an integer error/status code. Error/status code 0
indicates that the function executed successfully. A non-zero error/status
code indicates that an error occurred. Refer to Appendix A for additional
information.

4-201



K_SetChnGAry (cont.)

Remarks For the operation defined by hFrame, this function specifies the starting
address of the channel-gain queue in pArray.

The value you specify in pArray sets the Channel-Gain Queue element in
the frame identified by hF rame.

Refer to page 2-14 for information on setting up a channel-gain queue.

If you created your channel-gain queue in BASIC or Visual Basic for
Windows, you must use K_FormatChnGAry to convert the
channel-gain queue before you specify the address with K_SetChnGAry.

See Also K_FormatChnGAry, K_RestoreChnG Ary
Usage
C/C++
#include “DASDECL.H" // Use "DASDECL.HPP for C++

// DECLARE AND INITIALIZE CHAN/GAIN PAIRS
// (GainChanTable-TYPE IS8 DEFINED IN dasdecl.h)

GainChanTable ChanGainArray= {2, // # of entries
o, 0, // chan 0, gain 1
1, 1}; // chan 1, gain 2 (DAS-1802)

whDasErr = K_gSetChnGary (hAD, &ChanGainArray);:

Turbo Pascal
uses D18COTP7; {* Use D1800TP6 for TP ver 6.0 *)

{ Define Gain/Channel array type }
TYPE GainChanTable = Record

num_of_ codeg : Integer;
gueue :; Array[0..15]) of Byte;
END;

COMST ChanGainArray : GainChanTable = {
num_of_codes : (8); { # of chan/gain pairs }
gqueue : (0,0, 1,1)

):

wDagErry := K_SetChnGAry (hAD, ChanGainArray.num_of_codes);

4-202 Function Refersnce



K_SetChnGAry (cont.)

Turbo Pascal for Windows
{$I DASDECL.INC)
{ Define Gain/Channel array tvpe }
TYPE GainChanTable = Record
num_of_codes : Integer;
gueue : Array[0..15) of Byte;

END;
CONST ChanGainArray : GainChanTable = |
num_of_ codes : (8); { # of chan/gain pairs }
queue : (0,0, 1,1)
)i
whasEry := K_SetChnGAry {hAD, ChanGainArray.num_of_codes);

Visual Basic for Windows
(fnclude DASDECL.BAS in your program make file)

Global ChanGainArray{ls) As Integer

' Create the array of channel/gain pairs

ChanGainArray (0} = 2 ' 4 of chan/gain pairs
ChanGainArray (1) = 0: ChanGainArray(2) = 0
ChanGainArray (3) = 1: ChanGainArray(4) =1

wDasErr = K_FormatChnGAry {ChanGainArray{0))
wDasErr = K_getChnGAry (hAD, ChanGainArray{0)}

BASIC
' $INCLUDE: 'DASDECL.BI'

DIM ChanGainArray (16} AS INTEGER

' Create the array of channel/gain pairs

ChanGainArray(0) = 2 ‘* # of chan/gain pairs
ChanGainArray (1) = 0: ChanGainArray(2) = 0
ChanGainArray (3) = 1: ChanGainArray(4) =1

whasErr = KFormatChnGArvy% (ChanGainArray(0))
wDasErr = KSetChnGAry% (hAD, ChanGainArray(0))

4-203



K_SetClk

Boards
Supported

Purpose

Prototype

Parameters

Return Value

4-204

All

Specifies the pacer clock source.

C/C++
DASErr far pascal K_SetClk (DWORD AFrame, short aMode),

Turbo Pascal
Function K_SetClk (hFrame : Longint; nMode . Word) : Word,;

Turbo Pascal for Windows
Function K_SetClk (hFrame : Longint; aiMode . Word) : Word; far;
external DASSHELL";

Visual Basic for Windows
Declare Function K_SetClk Lib "DASSHELL.DLL"
(ByVal hF rame As Long, ByVal nMode As Integer) As Integer

BASIC
DECLARE FUNCTION KSetClk% ALIAS "K_SetCIk"
(BYVAL hFrame AS LONG, BYVAL nMode AS INTEGER)

hFrame Handle to the frame that defines the operation.

nMode Pacer clock source.
Valid values: 0 for Internal
1 for External

This function returns an integer error/status code. Error/status code 0
indicates that the function executed successfully. A non-zero error/status
code indicates that an error occurred. Refer to Appendix A for additional
information.

Function Reterence



K _SetCik (cont.)

Remarks

See Also

Usage

For the operation defined by hFrame, this function specifies the pacer
clock source in nMode.

The value you specify in aMode sets the Clock Source element in the
frame identified by hFrame.

The internal clock source is the output of the onboard counter/timer
circuitry; an external clock source is an external signal connected to the
DIO/XPCLK pin (DAS-1800HC Series) or XPCLK pin
(DAS-1800ST/HR Series). Refer to page 2-15 (for analog input
operations), page 2-29 (for analog output operations), and page 2-36 (for
digital 1/O operations) for more information about pacer clock sources.

K_GetADFrame, K GetDAFrame, K_GetDIFrame,
K_GetDOFrame, and K_ClearFrame specify internal as the default
clock source. The default active edge is negative for an external clock
source; use K_SetExtClkEdge to specify a positive active edge.

K_GetClk

C/Ca4+
#include "DASDECL.H" // Use "DASDECL.HPP for C++

wDasErr = K_SetClk (hAD, 1);

Turbo Pascal
uses D180OTP7; (* Use D1800TP6 for TP ver 6.0 *)

whasErr := K_SetClk (haD, 1);

Turbo Pascal for Windows
{$I DASDECL.INC}

wDasErr := K_SetClk (hAD, 1);

Visual Basic for Windows
(Include DASDECL.BAS in your program make file)

wDasErr = K_gSetClk (hAD, 1)

4-205



K SetClk (cont.)

BASIC
* $INCLUDE: 'DASDECL.BT'

whasBErr = KSetClk% (haD, 1)

4-206 Function Reference



K_SetClkRate

Boards
Supported

Purpose

Prototype

Parameters

Return Value

All

Specifies the clock divisor for the internal 5 MHz clock source.

C/Ct++
DASErr far pascal K_SetClkRate (DWORD hFrame,
DWORD dwDivisor);

Turbo Pascal
Function K_SetClkRate (hFrame : Longint; dwDivisor : Longlnt) : Word;

Turbo Pascal for Windows
Function K_SetClkRate (AFrame : Longint; dwDivisor : LongInt) : Word;
far; external DASSHELL;

Visual Basic for Windows
Declare Function K_SetClkRate Lib "DASSHELL.DLL"
(ByVal hFrame As Long, ByVal dwDivisor As Long) As Integer

BASIC
DECLARE FUNCTION KSetClkRate% ALIAS "K_SetClkRate”
(BYVAL hFrame AS LONG, BY VAL dwDivisor AS LONG)

hFrame Handle to the frame that defines the operation,

dwbDivisor Number of clock ticks between conversions.
Valid values: 15 to 4,294,967,295

This function returns an integer error/status code. Error/status code 0
indicates that the function executed successfully. A non-zero error/status
code indicates that an error occurred. Refer to Appendix A for additional
information,

4-207



K_SetClkRate (cont.)

Remarks

See Also

Usage

4-208

For the operation defined by hFrame, this function specifies the number
of clock ticks between conversions in dwDivisor,

The value you specify in dwDivisor sets the Pacer Clock Rate element in
the frame identified by hFrame.

This function applies to an internal clock source only, The tick resolation
is 0.2 ps.

Refer to page 2-15 for more information on the pacer clock.
K_GetCIkRate

C/C++
#include “DASDECL.H" // Use “DASDECL.HPP for C++

DPWORD dwClkDiv:

dwClkDiv = 5000000 / 10000
whagBErr = K_SetClkRate (hAD, dwClkDiv);

Turbo Pascal
uses D1800TP7; {(* Use D1800TP6 for TP ver 6.0 *}

dwClkDiv : Longint;

AwClkDiv := S000000 / 10000
wDasErr := K_SetClkRate (hAD, dAwClkDiv);

Turbo Pascal for Windows
{$I DASDECL.INC)

dwClkDiv : Longint;

dwClkDiv := 5000000 / 10000
wDasErr := K_SetClkRate (hAD, dwClkDiv);

Function Reference



K_SetClkRate (cont.)

Visual Basic for Windows
(Include DASDECL.BAS in your program make file)

Global dwClkDiv As Long

dwClkDiv = 5000000 / 10000
whDagErr = K_SetClkRate (hAD, dwClkDiv);

BASIC
' $INCLUDE: 'DASDECL.BI'

DIM dwClkDiv AS LONG

dwClkDiv = 5000000 / 10000
wDasFrr = KSetClkRate% (haD, dwClkDiwv)

4-208



K_SetContRun

Boards
Supported

Purpose

Prototype

Parameters

Return Value

Remarks

4-210

All

Specifies continuous buffering mode.

C/C++
DASEr far pascal K_SetContRun (DWORD hFrame);

Turbo Pascal
Function K_SetContRun (hFrame : Longint) : Word,

Turbo Pascal for Windows
Function K_SetContRun (#Frame : Longint) : Word, far;
external DASSHELL';

Visual Basic for Windows
Declare Function K_SetContRun Lib "DASSHELL.DLL"
(ByVal hFrame As Long) As Integer

BASIC
DECLARE FUNCTION KSetContRun% ALIAS "K_SetContRun”
(BYVAL hFrame AS LONG)

hFrame Handle to the frame that defines the operation.

This function returns an integer error/status code. Error/status code 0
indicates that the function executed successfully. A non-zero error/status
code indicates that an error occurred. Refer to Appendix A for additional
information.

For the operation defined by AFrame, this function sets the buffering
mode to continuous mode and sets the Buffering Mode element in the
frame accordingly.

K GetADFrame, K_GetDAFrame, K_GetDIFrame,
K_GetDOFrame, and K_ClearFrame specify single-cycle as the default
buffering mode.

Function Reference



K_SetContRun (cont.)

Refer to page 2-38 (for analog input operations), page 2-38 (for analog
output operations) section, and page 2-38 (for digital I/O operations) for a
description of buffering modes.

See Also K_GetContRun
Usage CiC++
#include "DASDECL.H" // Use "DASDECL.HPP for C++

wDasErr = K_SetContRun (hAD)

Turbo Pascal
uses D1800TP7; (* Use D1800OTP6 for TP ver 6.0 *)

wDhasErr := K_SetContRun (hAD)

Turbo Pascal for Windows
{$I DASDECL.INC}

wDagErr := K_SetContRun (hAD}

Visual Basic for Windows
{Include DASDECL.BAS in your program make file)

wDasErr = K_SetContRun (hAD)

BASIC
' $INCLUDE: 'DASDECL.BI'

whasErr = KSetContRun% {(hAD)

4-211



K_SetDITrig

Boards All

Supported

Purpose Sets up a digital trigger.
Prototype CiCes

DASETrr far pascal K_SetDITrig (DWORD AF rame, short nOpt,
short nChan, DWORD nPattern);

Turbo Pascal
Function K_SetDITrig (#Frame : Longint; nOpt : Word; nChan : Word;
nPattern : Longint) : Word;

Turbo Pascal for Windows
Function K_SetDITrig (hFrame : Longint; nOpt : Word; nChan : Word;
nPattern : Longint) : Word, far; external 'DASSHELL;

Visual Basic for Windows

Declare Function K_SetDITrig Lib "DASSHELL.DLL"
(ByVal hFrame As Long, ByVal nOpt As Integer,

ByVal nChar As Integer, ByVal nPattern As Long) As Integer

BASIC

DECLARE FUNCTION KSetDITrig% ALIAS "K_SetDITrig"
(BYVAL hFrame AS LONG, BYVAL nOpt AS INTEGER,
BYVAL nChan AS INTEGER, BY VAL nPattern AS LONG)

Parameters hFrame Handle to the frame that defines the operation.
nOpt Trigger polarity and sensitivity.
Valid values: 0 for Positive edge
2 for Negative edge
rChan Digital input channel,

Valid value: 0

rPattern Trigger pattern.

4-212 Function Reference



K_SetDITrig (cont.)

Return Value

Remarks

See Also

Usage

This function returns an integer error/status code. Error/status code 0
indicates that the function executed successfully. A non-zero error/status
code indicates that an error occurred. Refer to Appendix A for additional
information.

This function specifies the use of a digital trigger for the operation
defined by hFrame.

Since the DAS-1800 Series Function Call Driver does not currently
support digital pattern trigpering, the value of nPattern is meaningless;
the nPattern parameter is provided for future compatibility.

The values you specily set the following elements in the frame identified
by hFrame:

e nOpt sets the value of the Trigger Polarity and Trigger Sensitivity
elements.

e nChan sets the value of the Trigger Channel element.
s nlattern sets the value of the Trigger Pattern element.
K_SetDITrig does not affect the operation defined by AF rame unless the

Trigger Source element is set to External (by a call to K_SetTrig) before
hFrame is used as a calling argument to K_IntStart or K_DMAStart.

K_GetDITrig

C/C++
#include "DASDECL.H" // Use "DASDECL.HPP for C++

wDasErr = K_SetDIiITrig {0, 0, 0);

Turbo Pascal
uses D1800TP7; (* Use D18COTP6 for TP ver 6.0 *)

wDagErr := K_SetDITrig (0, 0, 0);

4-213



K_SetDITrig (cont.)

4-214

Turbo Pascal for Windows
{4I DASDECL.INC}

whasBrr := K_SetDITrig (¢, 0, 0}

Visual Basic for Windows
(Include DASDECL.BAS in your program make file)

whDasErr = K_SetDITrig (0, 0, 0}

BASIC
' SINCLUDE: 'DASDECL.BI'

wDhasErr = KSetDITrig% (0, 0, 0)

Function Reference



K_SetDMABuf

Boartds
Supported

Purpose

Prototype

Parameters

All

Sets the values of a DMA buffer address and number of samples
elements.

C/Cu+
DASEsr far pascal K_SctDMABuf (DWORD hFrame, void far *pBuf,
DWORD dwSamples);

Turbo Pascal
Function K_SetDMABuf (hFrame : Longint; pBuf : Pointer;
dwSamples : Longint) : Word;

Turbo Pascal for Windows
Function K_SetDMABuf (hFrame : Longint; pBuf : Pointer;
dwSamples : Longint) : Word; far; external 'DASSHELL';

Visual Basic for Windows

Declare Function K_SetDMABuf Lib "DASSHELL.DLL"
(ByVal hFrame As Long, ByVal pBuf As Long,

ByVal dwSamples As Long) As Integer

BASIC

DECLARE FUNCTION KSetDMABuf% ALIAS "K_SetDMABuf"
(BYVAL hFrame AS LONG, BYVAL pBuf AS LONG,

BYVAL dwSamples AS LONG)

hFrame Handle to the frame that defines the DMA-mode
analog input operation.

pBuf Starting address of buifer.

dwSamples Number of samples.

Valid values: 0 to 65,535

4-215



K _SetDMABuUf (cont.)

Return Value

This function returns an integer error/status code. Errot/status code ()
indicates that the function executed successtully. A non-zero error/status
code indicates that an error occurred. Refer to Appendix A for additional

information.

Remarks For the operation specified by iFrame, this function stores the address of
the currently allocated buffer in pBuf and the number of samples stored in
the buffer in dwSamples.

The pBuf variable contains the value of the Buffer clement.
The dwSamples variable contains the value of the Number of Samples
clement.

See Also K_DMAAlloc, KMakeDMABuf, K_BufListAdd

Usage

C/C++

$include "DASDECL.H" // Use "DASDECL.HPP for C++
void far *pBuf; // Pointer to allocated buffer
wDasErr = K_DMAAlloc (haD, dwSamples, &pBuf, &hMem);
whDasErr = K_SetDMABuf (hAD, pBuf, dwSamples);

Turbo Pascal

uges D1800TP7; {* Use D1BOOTPE for TP ver 6.0 *)

TYPE

BufType = Array [0..1] of Integer;

VAR

pBut : "BufType; { bhuffer pointer }

whasErr := K_DMAAlloc{hAD, dwSamples, Addr (pBuf), hMem);
whagErr := K_SetDMARuf {(hAD, pBuf, dwSamples);

4-216

Function Relerence



K_SetDMABuf (cont.)

Turbo Pascal for Windows

{$I DASDECL,INC}

TYPE

BufType = Array [0..1] of Integer;

VAR
pBuf : ~BufType; { buffer pointer }

wDasErr := K_DMAAlloc (hAD, dwSamples, Addr(pBuf), hMem);
whlasErr K_SetDMABuf {hAD, pBuf, dwSamples);

Visual Basic for Windows
(Include DASDECL.BAS in your program make file)

Global pBuf As Long

whasErr K_DMAAlloc (hAD, dwSamples, pBuf, hdem)
wDasErr = K_SetDMABuf (hAD, pBuf, dwSamples)

W

\

BASIC
' $INCLUDE: 'DASDECL.BI‘

DIM pBuf AS LONG

wDasErr = KDMAAlloc% (haD, dwSamples, pbuf, hMem)
wDasErr KSetDMABuf% {(hAD, pBuf, dwSamples)

1)

4-217



K_SetExtClkEdge

Boards
Supported

Purpose

Prototype

Parameters

Return Value

Remarks

4-218

All

Specifies the active edge of the external pacer clock.

CiC++
DASEir far pascal K_SetExtClkEdge (DWORD hFrame, short nEdge);

Turbo Pascal
Function K_SetExtClkEdge (AFrame : Longint; nEdge : Word) : Word;

Turbo Pascal for Windows
Function K_SetExtClkEdge (hFrame : Longint; nEdge : Word) : Word;
Tar: external ' DASSHELL';

Visual Basic for Windows
Declare Function K_SetExtClkEdge Lib "DASSHELL.DLL"
(ByVal hFrame As Long, ByVal nEdge As Integer) As Integer

BASIC
DECLARE FUNCTION KSetExtCIkEdge% ALIAS "K_SetExtCIkEdge"
(BYVAL hFrame AS LONG, BYVAL nEdge AS INTEGER)

hFrame Handle to the frame that defines the operation.

nEdge Active edge of external pacer clock.
Valid values: 0 for Negative edge
1 for Positive edge

This function returns an integer error/status code. Error/status code 0
indicates that the function executed successfully. A non-zero error/status
code indicates that an error occurred. Refer to Appendix A for additional
information.

For the operation defined by AFrame, this function sets the active edge of
the external pacer clock and sets the External Clock Edge element in the
frame accordingly.

Function Reference



K_SetExtClkEdge (cont.)

See Also

Usage

K_SetExtClkEdge does not affect the operation defined by hFrame
unless the Trigger Source element is set to External (by a call to
K_SetTrig) before #iFrame is used as a calling argument to K_IntStart
or K_DMAStart.

K_GetExtClkEdge

C/C++
#include "DASDECL.H! // Use "DASDECL.HPP for C++4

wDasErr = K_SetExtClkEdge (hAD, 1)

Turbo Pascal
usges D180Q0TP7; (* Use D180QATPS for TP ver 6.0 *)

wDasErr := K_SetExtClkEdge {(haD, 1}

Turbo Pascal for Windows
{$T DASDECL.INC}

wDasErr := K_SetExtClkEdge {hAD, 1)

Visual Basic for Windows
(Include DASDECL.BAS in your program make file)

wDasErr = K_SetExtClkEdge (hAD, 1)

BASIC
' $INCLUDE: ‘DASDECL.BI®

wDasErr = KSetExtClkEdge% (hAD, 1)

4-219



K_SetG

Boards All
Supported

Purpose Sets the gain.
Prototype C/Ce++

DASErr far pascal K_SetG (DWORD hFrame, short n(zain),

Turbo Pascal
Function K_SetG (hFrame : Longint; nGain : Word) : Word;

Turbo Pascal for Windows
Function K_SetG (hFrame : Longint; nGain : Word) : Word; far;
external 'DASSHELL";

Visual Basic for Windows
Declare Function K_SetG Lib "DASSHELL.DLL"

(ByVal hFrame As Long, ByVal nGain As Integer) As Integer

BASIC
DECLARE FUNCTION KSetG% ALIAS "K_SetG"
(BYVAL hFrame AS LONG, BYVAL nGain AS INTEGER)

Parameters hFrame Handle to the frame that defines the operation.

nGain Gain code.
Valid values: 0 to 3 for DAS board channels
0 to 7 for EXP-1800 channels
Refer to Table 2-2 on page 2-10 for the gain and
input ranges associated with each gain code.

Return Value This function returns an integer error/status code. Error/status code 0
indicates that the function executed successfully. A non-zero errorfstatus
code indicates that an error occurred. Refer to Appendix A for additional
information.

4-220 Function Referance



K_SetG (cont.)

Remarks

See Also

Usage

For the operation defined by hF rame, this function specifies the gain code
for a single channel or for a group of consecutive channels in nGain.

The value you specify in nGain sets the Gain element in the frame
identified by hFrame.

K_GetADFrame, K_GetDAFrame, K_GetDIFrame,
K_GetDOFrame, and K_ClearFrame specify 1 (gain code 0} as the
default gain,

This function is valid for A/D frames only,
K_GetG, K_SetStartStopG

CiCaa
#include "DASDECL.H" // Use "DASDECL.HPP for C++

wDasErr = K_Set& (hAD, 1)

Turbo Pascal
uses D18QQTP7T; {* Uge DLBOQTPS for TP ver §.0 *)
wDasErr := K_SetG (hAD, 1)

Turbo Pascal for Windows
{$I DASDECL.INC)

wDasErr := K_SetG (hAD, 1)

Visual Basic for Windows
{Include DASDECL.BAS in your program make file)

wDasBrr = K_SetG {(hAD, 1)

BASIC
' SINCLUDE: 'DASDECL.BI'

wDasErr = KSetG% (haAD, 1)

4-221



K_SetGate

Boards
Supported

Purpose

Prototype

Parameters

Return Value

4-222

All

Specifies the status of the hardware gate.

C/C++
DASErr far pascal K_SetGate (DWORD AF rame, short nMode);

Turbo Pascal
Function K_SetGate (hFrame : Longint; nMode : Word) : Word,;

Turbo Pascal for Windows
Function K_SetGate (AFrame : Longint; nMode ; Word) : Word; far;
external 'DASSHELL;

Visual Basic tor Windows
Declare Function K_SetGate Lib "DASSHELL.DLL"
(ByVal hFrame As Long, ByVal nMode As Integer) As Integer

BASIC
DECLARE FUNCTION KSetGate% ALIAS "K_SetGate"
(BYVAL hFrame AS LONG, BYVAL nMode AS INTEGER)

hFrame Handle to the frame that defines the operation.

nMode Status of the hardware gate.
Valid values: 0 for Gate disabled
1 for Positive gate enabled
2 for Negative gate enabled

This function returns an integer error/status code. Error/status code 0
indicates that the function executed successfully. A non-zero error/status
code indicates that an error occurred. Refer to Appendix A for additional
information.

Function Reterence



K_SetGate (cont.)

Remarks

See Also

Usage

For the operation defined by hFrame, this function specifies the status of
the hardware gate in nMode.

External gating is supported for analog input operations only. Also, you
cannot enable the hardware gate if you are using an external digital
trigger.

K_GetADFrame, K_GetDAFrame, K_GetDIFrame,
K_GetDOFrame, and K_ClearFrame specify disabled as the default
gate setting,

K_GetGate

C/C++
#include "DASDECL.H" // Use "DASDECL.HPP for C++

wDasErr = K_SetGate (hAD, 1)

Turbo Pascal
uses D18Q0TP7; (* Use D1800TP6 for TP ver 6.0 *)

whDagErr := K_SetGate (hAD, 1)

Turbo Pascal for Windows
{4I DASDECL.INC)

wDasErr := K_SetGate (hAD, 1)

Visual Basic for Windows
{Include DASDECL.BAS in your program make file)

wDhasErry = K_SetGate (hAD, 1)

BASIC
' $INCLUDE: 'DASDECL.BI'

wDasErr = KSetGate% (hAD, 1)

4-223



K_SetSSH

Boards
Supported

Purpose

Prototype

Parameters

Return Value

4-224

All

Enables and disables SSH mode.

C/C++
DASErr far pascal K_SetSSH (DWORD hFrame, WORD nMode);

Turbo Pascal
Function K_SetSSH (iFrame : Longint, nMode . Word) : Word;

Turbo Pascal for Windows
Function K_SetSSH (hFrame : Longint; ntMode : Word) : Word; far;
external DASSHELL";

Visual Basic for Windows
Declare Function K_SetSSH Lib "DASSHELL.DLL"
(ByVal hFrame As Long, ByVal nMode As Integer) As Integer

BASIC
DECLARE FUNCTION KSetSSH% ALIAS "K_SetSSH"
(BYVAL hFrame AS LONG, BYVAL nMode AS INTEGER)

hFrame Handle to the frame that defines the operation.

nMode Code that indicates the status of SSH mode.
Valid values: 0 for Disabled
1 for Enabled

This function returns an integer error/status code. Error/status code ()
indicates that the function executed successfully. A non-zero ¢rror/status
code indicates that an error occurred. Refer to Appendix A for additional
information.

Function Reference



K_SetSSH (cont.)

Remarks For the operation defined by #Frame, this function stores the code that
indicates the SSH mode in nMode.

K_GetADFrame and K_ClearFrame also disable SSH mode.
Refer to page 2-15 for information on SSH mode,

See Also K_GetSSH
Usage CiC++
#include "DASDECL.H" // Use "DASDECL.HPP for C++

whasErr = K_S8et8SH (haD, 1)

Turbo Pascal
uses D180CTP7; (* Use D1800TPE for TP ver 6.0 *)

wDasErr := K_SetSsSH (hAD, 1}

Turbo Pascal for Windows
{$I DASDECL.INC}

wDasErr := K_SetSSH (hAD, 1)

Visual Basic for Windows
(Include DASDECL.BAS in your program make file)

wDasErr = K_Set3sSH (haD, L}

BASIC
' $INCLUDE: 'DASDECL.BI'

wDasEry = KSetS88H% {(hAD, 1)

4-225



K_SetStartStopChn

Boards
Supported

Purpose

Prototype

4-226

All

Specifies the first and last channels in a group of consecutive channels.

C/C++
DASErr far pascal K_SetStartStopChn (DWORD AhF rame, short nStart,
short nStop);

Turbo Pascal
Function K_SetStartStopChn (AFrame : Longint; nStart : Word,
nStop : Word) : Word;

Turbo Pascal for Windows
Function K_SetStartStopChn (AF rame : Longint; nStart : Word,
nStop : Word) : Word; far; external 'DASSHELL';

Visual Basic for Windows

Declare Function K_SetStartStopChn Lib "DASSHELL.DLL"
(ByVal aFrame As Long, ByVal nStart As Integer,

ByVal nStop As Inieger) As Integer

BASIC

DECLARE FUNCTION KSetStartStopChn% ALIAS
"K_SetStartStopChn" (BY VAL hFrame AS LLONG,

BYVAL nStart AS INTEGER, BY VAL sStop AS INTEGER)

Function Reference



K_SetStartStopChn (cont.)

Parameters

Return Value

hFrame Handle to the frame that defines the operation.

nStart First channel in a group of consecutive channels.
Valid values:

Valid channel numbers

Board Differential Single-ended
DAS-1800HC 0o 31 010 63

DAS-1800ST/HR with N Not applicable 010 15(N +

EXP-1800 expansion boards
attached
nStop Last channel in a group of consecutive channels,

Valid values: Same as for nStart above

This function returns an integer error/status code. Error/status code 0
indicates that the function executed successfully. A non-zero error/status
code indicates that an error occurred. Refer to Appendix A for additional
information.

4.227



K_SetStartStopChn (cont.)

Remarks

See Also

Usage

4-228

For the operation defined by AF rame, this function specifies the first
channel in a group of consecutive channels in aStart and the last channel
in the group of consecutive channels in nStop.

The values you specify set the following elements in the frame identified
by hFrame:

o nStart sets the value of the Start Channel element.
e nStop sets the value of the Stop Channel element.
K_GetADFrame, K _GetDAFrame, K_GetDIFrame,

K_GetDOFrame and K_ClearFrame sct the Start Channel and Stop
Channel elements to 0.

K_GetStartStopChn, K_SetStartStopG

CiCes
#include “"DASDECL.H" // Use "DASDECL.HPP for C++

wDasErr = K_SetStartStopChn (haAD, 0, 7};

Turbo Pascal
uses D1800TP7; (* Use D1800TP6 for TP ver 6.0 *)

wDasErr := K_SetStartStopChn (hAD, 0, 7};

Turbo Pascal for Windows
{$I DASDECL.INC}

wDasErr := K_SetStartStepChn (haD, ¢, 7);

Visual Basic for Windows
{Include DASDECL.BAS in your program make file)

wDasErr = K_SetStartStopChn {(hAD, 0, 7)

Function Refarence



K_SetStartStopChn (cont.)

BASIC
' $INCLUDE: ‘'DASDECL.BI'

wDhasBrr = KSetStartsStopChn% {(haD, 0, T)

4-229



K_SetStartStopG

Boards All
Supported
Purpose Specifies the first and last channels in a group of consecutive channels

and sets the gain for all channels in the group.

Prototype CiCe++
DASErr far pascal K_SetStartStopG (DWORD hF rame, short nStart,
short nStop, short nGain);

Turbo Pascal
Function K_SetStartStopG (hFrame : Longint; nStart : Word;
nStop : Word; nGain : Word) : Word,

Turbo Pascal for Windows
Function K_SetStartStopG (hFrame : Longint; nStart : Word;
nStop : Word; aGain : Word) : Word; far; exiernal DASSHELL";

Visual Basic for Windows

Declare Function K_SetStartStopG Lib "DASSHELL.DLL"
(ByVal hF rame AsLong, ByVal nStart As Integer,

ByVal nStop As Integer, By Val nGain As Integer) As Integer

BASIC

DECLARE FUNCTION KSetStartStopG% ALIAS "K_SetStartStopG"
(BYVAL hFrame AS LONG, BYVAL nStart AS INTEGER,

BYVAL sStop AS INTEGER, BYVAL nGain AS INTEGER)

4-230 Function Refarence



K_SetStartStopG (cont.)

Parameters

Return Value

Remarks

hFrame Handle to the frame that defines the operation.

nStart First channel in a group of consecutive channels.
Valid values:

Valid channel humbers

Board Difterential Single-ended

DAS-1800HC 0031 01063

A S
DAS-1800ST/HR with N Not applicable Oto15(N +1)
EXP-1800 expansion hoards
attached

nStop Last channel in a group of consecutive channels.
Valid values: Same as for nSrart above
nGain Gain code.

Valid values: 0 to 3 for DAS board channels

0 to 7 for EXP-1800 channels
Refer to Table 2-2 on page 2-10 for the gain and
input ranges associated with each gain code.

This function returns an integer error/status code. Error/status code 0
indicates that the function executed successfully. A non-zero error/status
code indicates that an error occurred. Refer to Appendix A for additional
information.

For the operation defined by AFrame, this function specifies the first
channel in a group of consecutive channels in aStart, the last channel in a
group of consecutive channels in nStop, and the gain code for all channels
in the group in nGain.

4-231



K_SetStartStopG (cont.)

See Also

Usage

4-232

The values you specify set the following elements in the frame identified
by hFrame:

e nStart sets the value of the Start Channel element.
e nStop sets the value of the Stop Channel element.
o nGain sets the value of the Gain element,

K_GetADFrame and K_ClearFrame set the Start Channel, Stop
Channel, and Gain elements to 0.

K_GetStartStopG

C/C++
#include “DASDECL.H" // Use "DASDECL.HPP for C++

wDasErr = K_SetStartStopG (hAD, 0, 7, 0);

Turbo Pascal
uses D1800TP7; (* Use D1800TP6 for TP ver 6.0 *)

whasErr := K_SetStartStopG (hAD, 0, 7, 0);

Turbo Pascal for Windows
{$T DASDECL.INC}

wDasErr := K_SetStartStopG {haD, 0, 7, 0);

Visual Basic for Windows
(Include DASDECL.BAS in your program make file)

wDasErr = K_SetStartStopG (hAD, 0, 7, 0)

BASIC
' $INCLUDE: 'DASDECL.BI'

wDasErr = KSetStartStopG% (hAD, 0, 7, 0)

Function Reference



K_SetTrig

Boards
Supported

Purpose

Prototype

Parameters

Return Value

Remarks

All

Specifies the trigger source.

C/C++
DASEr far pascal K_SetTrig (DWORD AFrame, short nMode);

Turbo Pascal
Function K_SetTrig (hFrame : Longint; aMode : Word) : Word;

Turbo Pascal for Windows
Function K_SetTrig (hFrame : Longint; nMode : Word) : Word, far;
external 'DASSHELL;

Visual Basic for Windows
Declare Function K_SetTrig Lib "DASSHELL.DLL"
(ByVal hFrame As Long, ByVal nMode As Integer) As Integer

BASIC
DECLARE FUNCTION KSetTrig% ALIAS "K_SetTrig"
(BYVAL hFrame AS LONG, BYVAL nMode AS INTEGER)

hFrame Handle to the frame that defines the operation,

nMode Trigger source.
Valid vatues: (0 for Internal trigger
1 for External trigger

This function returns an integer error/status code. Error/status code 0
indicates that the function executed successfully. A non-zero error/status
code indicates that an error occurred. Refer to Appendix A for additional
information,

For the operation defined by AFrame, this function specifies the trigger
source in nMode.

4-233



K_SetTrig (cont.)

See Also

Usage

4-234

An internal trigger is a software trigger; conversions begin when the
operation is started. An external trigger is either an analog trigger or a
digital trigger; conversions begin when the trigger event occurs. Refer to
page 2-25 for more information about internal and external trigger
SOUrces.

When performing a pre-trigger or about-trigger acquisition operation,
mode, nMode refers to the start trigger.

If nMode = 1, an external digital trigger (positive edge on DI1/TGIN for
DAS-1800HC Series hoards, positive edge on TGIN for
DAS-1800ST/HR Series boards) is assumed. Use K_SetDITrig to change
the conditions of the digital trigger. Use K_SetADTrig to specify the
conditions for an external analog trigger.

K GetADFrame and K_ClearFrame set the trigger source to internal.
The external trigger source is relevant for analog input operations only.

K_GetTrig

C/C++
#include "DASDECL.H" // Usge "DASDECL.HPP for C++

wDasErr = K_SetTrig (haD, 1);

Turbo Pascal
uses D1800TP7; (* Use D1800TP6 for TP ver 6.0 *)

whDasErr := K_SetTrig (hAD, 1);

Turbo Pascal for Windows
{41 DASDECL.INC}

wDasErr := K_SetTrig (habh, 1);

Visual Basic for Windows
{Include DASDECL.BAS in your program make file)

whasErr = K_SetTrig (hAD, 1)

Function Reference



K_SetTrig (cont.)

BASIC
' $INCLUDE: 'DASDECL.BI'

wDasFErr = KSetTrig% (hAD, 1)

4-235



K_SetTrigHyst

Boards
Suppotted

Purpose

Prototype

Parameters

Return Value

4-236

All

Specifies the hysteresis value.

C/Ce+
DASErr far pascal K_SetTrigHyst (DWORD hF rame, short ntlysi);

Turbo Pascal
Function K_SetTrigHyst (hF rame : Longint; nHys: : Word) : Word;

Turbo Pascal for Windows
Function K_SetTrigHyst (hFrame : Longint; nHyst : Word) : Word, far;
external 'DASSHELL';

Visual Basic for Windows
Declare Function K_SetTrigHyst Lib "DASSHELL.DLL"
(ByVal #iFrame As Long, ByVal nf{yst As Integer) As Integer

BASIC
DECLARE FUNCTION KSetTrigHyst% ALIAS "K_SetTrigHyst"
(BYVAL hFrame AS LONG, BY VAL nHyst AS INTEGER)

hFrame Handle to the frame that defines the operation.

nHyst Hysteresis value, specified in raw counts.
Valid values: 0 to 4,095 for DAS-1800HC/ST
Series boards
0 t0 65,535 for DAS-1800HR
Series boards

This function returns an integer error/status code. Error/status code 0
indicates that the function executed successfully. A non-zero error/status
code indicates that an error occurred. Refer to Appendix A for additional
information.

Function Reference



K_SetTrigHyst (cont.)

Remarks

See Also

Usage

For the operation defined by hF rame, this function specifies the
hysteresis value used for an analog trigger in nffyst. You must specify the
hysteresis value in raw counts. Refer to Appendix B for information on
converting the hysteresis voltage to a raw count.

The value you specify in Ayst sets to the Trigger Hysteresis element in the
frame identified by AFrame.

K_SetTrigHyst does not affect the operation defined by hF rame unless
the Trigger Source element is set to External (by a call to K_SetTrig)
before hFrame is used as a calling argument to K_IntStart or
K_DMAStart.

Refer to page 2-19 for more information about analog triggers.
K _GetTrigHyst

C/C++
#include "DASDECL.H* // Use "DASDECL.HPP for C++

wDasErr = K_SetTrigHyst (hAD, 50);

Turbo Pascal
uses D1800TP7; (* Use D18COTP6 for TP ver 6.0 *)

wDasErr := K_SetTrigHyst (hAD, 50);

Turbo Pascal for Windows
{41 DASDECL.INC}

wDasErr := K_SetTrigHyst (hAD, 50);

4-237



K_SetTrigHyst (cont.)

4-238

Visual Basic for Windows
(Include DASDECL.BAS in your program make file)

wDasErr = K_SetTrigHyst (hAD, 50}

BASIC
' $INCLUDE: 'DASDECL.BI'

whasErr = KSetTrigHyst% (hAD, 50)

Function Reference



A

Error/Status Codes

Table A-1 lists the error/status codes that are returned by the DAS-1800
Series Function Call Driver, possible causes for error conditions, and
possible solutions for resolving error conditions.

If you cannot resolve an error condition, contact the Keithley
Applications Engineering Department.

Table A-1. Error/Status Codes

Error Cade

— - : Cause Solution
Hex Decimal
0 0 No error has been detected. Status only; no action is necessary.

Mlegal base address in

configuration file: The base change the base address in the
address specified in the configuration file. The address
configuration file is invalid. must be on a 16-byte boundary

between 200h and 3F0h,

A-1



Table A-1. Error/Status Codes (cont.)

Error Code
Cause Solution
Hex Decimal
6006 24582 Illegal gain code: The gain code | Specify a legal gain code. Refer to
specified for an analog input
operation is out of range.

Table 2-2 on page 2-10 for valid
gain codes

e

6008

Nlegal number in
configuration file: The
configuration file contains a
numeric value that is not in the
correct format.

Check all numeric entries in the
configuration file; make sure that
&H precedes hexadecimal
numbers. Use the D1800CFG.EXE
utility to modify the configuration
file.

600B

24587

Error returning DMA buffer:
DOS returned an error in INT 21H
function 49H during the execution
of K_ DMAFree.

Check that the memory handle
passed as an argument to
K_DMAFree was previously
obtained via K_DMAAHoc

600D

24589

Illegal frame handle: The
specified frame handle is not valid

Check that the frame handle extsts.
Check that you are using the
appropriate frame handle,

600F

Requested buffer size too

Specify a smaller number of

24591
large: The number of samples samples; the number of samples
specified in K_IntAlloc is woo must be in the range [ to 65,536.
large,
A-2 Error/Status Codes



Table A-1. Error/Status Codes (cont.)

Error Code

Cause Solution
Hex Decimal

6012 24594 Interrupt buffer deallocation | Remove some Terminate and Stay
error: (Windows-based Resident programs { TSRs) that are
languages only) An error occurred | no longer needed.
when K_IntFree attempted to free
a memory handle.

Ty A AR ARG -y

602B 24619 Not enough memory to Specify a smaller number of
accommodate request: The samples; free a previously

number of samples you requested | allocated buffer; use the

in the Keithley Memory Manager | KMMSETUP utility to expand the
is greater than the largest reserved heap.

contiguous block available in the
reserved heap.

602D 24621 Illegal device handle: A bad Check device handle value.
device handle was passed to a
function such as K_GetADFrame.
The handle used was not initialized
through a call to
K_GetDevHandle or
DAS1800_GetDevHandle, or it
was corrupted by your program.




Table A-1, Error/Status Codes (cont.)

Error Code
- Cause Solution

Hex Decimal

6030 24624 DMA word-page wrap: During | Reduce the number of samples and
K_DMAAlloc, 2 DMA word-page | retry. If in Windows enhanced
wrap condition occurred and the mode, install and configure
allocation attempt failed since VDMAD.386,

there is not enough free memory to
accommodate the allocation
request.

6032 24626 Out of memory handles: An Use K_IntFree or K_DMAFree to

attempt to allocate amemory block | free previously allocated memory
using K_IntAlloc or blocks before allocating again.

K_DMAAloc failed because the
maximum number of handles (50)
has already been assigned.

A-4 Error/Status Codes



Table A-1. Error/Status Codes (cont.)

Error Code
Cause Solution
Hex Decimal
6034 24628 Memory corrupted: Int 21H Recheck the parameters set by

function 48H, used to allocate a
memory block from the DOS far
heap, returned the DOS error 7;
memory corrupted, It is likely that
you stored (through a DMA-mode
or interrupt-mode operation) data
into an iflegal area of the DOS

memoty.

K_DMAAloc and
K_SetDMABuf, If fatal system
error; restart your computer.

e

24630

Illegal driver handle; The
specified driver handle is not valid.

Someone may have closed the
driver; if so, use K_OpenDriver
to reopen the driver with the
desired driver handle. Try again
using another driver handle.

7000

28672

No board name: The driver
initialization function did not find a
board name in the specified
configuration file.

Specify a legal board name in the
configuration file.

A-5



Table A-1. Error/Status Codes {cont.)

initialization function found an
illegal board number in the
specified configuration file

Error Code
Cause Solution
Hex Decimal
7002 28674 Bad board number: The driver Specify a legal board number: 0, 1,

or2

7004

28676

Bad DMA channel: The driver
initialization function found an
illegal DM A channel in the
specified configuration file,

el

Specify a legal DMA channel: 5, 6,

7, 5346, 647, or 7+5

7007

28679

Bad A/D channel mode: The

driver initialization function found
an illegal input range type in the
specified configuration file.

Specify a legal input range type:
bipolar, unipolar

28682

Bad number of SSHS: The
number of SSH-8s in the
configuration file is not valid,

Run D1800CFG.EXE and specify

the number of SSH-8s as a number
in the range 0 to 8.

700C

28684

Bad SSH-8 gain: The SSH-8
channel gain in the configuration
file is not valid.

Run D18OOCFG.EXE and specify
the SSH-8 channel gain as 0.5, 3,
50, or 250,

A-6

Error/Status Codes




Table A-1. Error/Status Codes (cont.)

Error Code

Cause

Hex

Decimal

Solution

700F

28687

Unknown error number: The
error number passed to
K_GetErrMsg was invalid.

Check the error number passed to
K_GetErrMsg.

7013

28691

Error - DMA channel busy: The
application program attempted to
start a DMA-mode analog input
operation while another

DM A-mede analog input operation
was active.

Use K_DMAStop (o stop the
active operation before initiating
the second operation.

Error - About count illegal; The
number of samples passed to
K_SetAboutTrig is out of range.

7017

28695

1llegal number of EXP-1800: The
number of EXP-1800 expansion
hoards specified in the
configuration file is not valid.

Run D180OCFG.EXE and specify
the number of EXP-1800

expansion boards as a number in
the range O to 16,




Table A-1. Error/Status Codes (cont.)

Error Code

Hex

Decimal

Cause

Solution

8003

2mn

Hlegal board number: An
illegal beard number was specified
in the board initialization function.

Specify a legal board number: 0, 1,
or 2.

32773

Board not found at
configured address: The board
initialization function does not
detect the presence of a board.

Make sure that the base address

setting of the switches on the board
matches the base address setting in
the configuration file.

8016

32790

Interrupt overrun: During an
interrupt-mode analog output or
digital /O aperation, an interrupt
was detected from a DAS-1800
Series board while the software
was servicing a previous interrupt
from the same board.

Use K_SetClkRate to reduce the

pacer clock rate. Analog output
and digital [/O operations are
limited to the following
throughputs: 5 kHz in DOS and
Windows Standard mode; 1 kHz
in Windows enhanced mode (the
throughputs listed are approximate;
they are limited by the PC’s
resources and Windows setup).

A-8

Error/Status Codes



Table A-1. Error/Status Codes (cont.)

Error Code
Cause Solution
Hex Decimal
g01B 32795 DMA already active: You Use K_DMAStop to stop the first

attempted (o start an DMA-maode
analog input operation with
K_DMAStart while another was
already in progress.

operation before starting the
second operation.

AT

FFFF

65535

User aborted operation

You pressed [Ctrl] + [Break]
while waiting for an analog trigger
event to occur.







B

Data Formats

The DAS-1800 Series Function Call Driver can read and write raw counts
only. When reading a value (as in K_ADRead), you may want to convert
the raw count to a more meaningful voltage value; when writing a value
(as in K_SetTrigHyst), you must convert the voltage value to a raw
count.

The remainder of this appendix contains instructions for converting raw
counts to voltage and for converting voltage to raw counts.

Converting Raw Counts to Voltage

You may want to convert raw counts to voltage when reading an analog
input value or when reading the analog trigger level or hysteresis value.

To convert an analog input value to a voltage, use one of the following
equations, where count is the count value, and span is the appropriate
value from Table B-1 on page B-2:

count X span
4096

Voltage (DAS-1800HC/ST Series boards)

count x span

65 536 {DAS-1800HR Series boards)

)

Voltage

B-1



Table B-1. Span Values For Data Conversion Equations

Board Input Range Gain Input Range Span (V)
Type
DAS-1801HC Unipolar 1 0toSV 5
DAS-1801ST ;

50 Oto 100 mV 0.1

Bipolar 1 5105V

—100 to 100 mV

DAS-1802HC Unipolar 1 0to 10V 10
DAS-18028T : s
DAS-1802HR : i G
4 0to25V 2.5
Bipolar 1 -10to 10V 20
4 -25t02.5V
For example, assume that you want to read analog input data from a
channel on a DAS-1801HC board configured for unipolar input range
type; the channel collects the data at a gain of 1. The count value is 3072.
The voltage is determined as follows:
3072x5V
1006 - 375V
B-2 Data Formats



As another example, assume that you want to read analog input data from
a channel on a DAS-1802HC board configured for a bipolar input range
type; the channel collects the data at a gain of 2, The count value is 1024,
The voltage is determined as follows:

1024 x 10 V

a0 = 25V

Converting Voltage to Raw Counts

You must convert voltage to raw counts when specifying an analog output
value, analog trigger level or hysteresis value.

Specifying an Analog Output Value (DAS-1800HC Series only)

To convert a voltage value 10 a raw count when specifying an analog
output value, use the following equation, where voltage is the desired
voltage:

voltage x 4096

20V + 2048

Count =

For example, assume that you want to specify an analog output value of
5 V for a channel on a DAS-1802HC. The raw count is determined as
follows:

5 V x 4096

20V +2048 = 3072

B-3



Specifying an Analog Trigger Level

To convert a voltage value 1o a raw count when specifying an analog
trigger level, use one of the following equations, where V., is the desired
voltage, and span is the appropriate value from Table B-1 on page B-2:

Vg X 4096
Count = ——— (DAS-1300HC/ST Series hoards)
span
Vtrig X 63536
Count = ~epan (DAS-1800HR Series boards)

Note: When converting voltage to raw counts to specify an analog trigger
level, always use a gain of 1 to determine which span value to use from
Table B-1, no matter what the gain of the channel is.

For example, assume that you want to specify an analog trigger level of
2.5 V for a channel on a DAS-1801HC board configured for a bipolar
input range type. The raw count is determined as follows:

2.5 V x 4096

0V = 1024

B-4 Data Formats



Specifying a Hysteresis Value

To convert a voltage value to a raw count when specifying a hysteresis
value, use one of the following cquations, where V., is the desired
voltage, and span is the appropriate value from Table B-1 on page B-2:

Vhyst x 4096

Count = *-TpaT"— (DAS-1800HC/ST Series boards)
Vhyst X 65536

Count = T (DAS-1800HR Series boards)

Note: When converting voltage to raw counts to specify a hysteresis
value, always use a gain of 1 to determine which span value to use from
Table B-1, no matter what the gain of the channel is.

For example, assume that you want to specify an analog trigger hysteresis
value of 0.5 V for a channel on a DAS-1801HC board configured for a
bipolar input range type. The raw count is determined as follows:

1.25 V <4096

B-5






A

allocating memory
analog input operations [2-6
analog output operations
digital I/O operations|2-3
analog input operations[2-4]
programming tasks[3-11]
analog output operations[2-26]
programming tasks|[3-18
analog-to-digital converter[2-17]
ASO-1800 software package (-1

BASIC
allocating and assigning dynamic
memory buffers(3-46
creating a channel-gain queue
see also Professional Basic, QuickBasic,
Visual Basic for DOS[3-46]
board handle
board initialization[2-2)
Borland C/C++
programming information[3-29
see also C languages
Borland Turbo Pascal: see Turbo Pascal
Borland Turbo Pascal for Windows: see
Turbo Pascal for Windows
buffer address

Index

analog input operations 2-9]

analog output operations R-28

digital /0 operations 2-33
buffer address functions[4-3]
buffering mode functions(4-3]
buffering modes

analog input operations

analog output

digital /O operations 2-38]
buffers

analog input operations

analog output operations

digital YO operations

multiple [2-6]

C

C languages
allocating and assigning dynamic
memory buffers|3-23
creating a channel-gain queune[3-27
dimensioning and assigning local arrays
see also Borland C/C++, Microsoft
C/C++, QuickC for Windows,
Visual C++
channel and gain functions(4-4]
channel-gain queue
channels

X-1



multiple using a channel-gain queue
[2-14

multiple using a group of consecutive
channels [2-13]

number sup ortedm

clock functions|4-4
clock source
analog input operations|2-15]
analog output operation[2-29
digital I/O operations[2-36]
commands: see functions
common mode ground reference[2-11|
common tasks
compile and link statements
Borland C/C++[3-29
Microsoft C/C++[3-28
Professional Basic|3-54
QuickBasic (Version 4.0)
QuickBasic (Version 4.5)[3-52]
Turbo Pascal
continuous mode
analog input operations R-18
analog output operations[2-3(
digital I/O operations[2-38§]
conventions
conversion mode functiong4-3 ]
conversion rate[2-17]
converting
raw counts to voitage|B-1
voltage to raw counts|B-3
creating an executable file
Borland C/C++[3-29]
Microsoft C/C++[3-28
Professional Basic
QuickBasic (Version 4.0)
QuickBasic (Version 4.5)

QuickC for Windows
Turbo Pascal

Turbo Pascal for Windows[3-39
Visual Basic for DOS
Visual Basic for Windows

D

DAS1800_DevOpen 2-2[4-8]
DAS1800_GetDevHandle 2-3]4-11]
DAS-1800 Series Function Call Driver: see
Function Call Driver

DAS-1800 Series standard software package
data formats IEL]
data transfer modes: see operation modes
default values

frame etements 3-313-7]3-8]3-9]
digital I/O operations[2-31]

programming tasks B-20
digital-to-analog converter[2-28]
dimensioning memory

analog input operations

analog output operations

digital /O operations 2-33
driver: see Function Call Driver
driver handle[2-2

E

elements of frame 3-2]

error codes

error handling

executable file: see creating an executable
file

Index



F

files required
Borland C/C++[3-29
Microsoft C/C++|3-28
Professional Basic[3-53] 3-55)
QuickBasic (Version 4.0)[3-5
QuickBasic (Version 4.5)[3-52]
QuickC for Windows[3-30
Turbo Pascal[3-3§
Turbo Pascal for Windows|3-39
Visual Basic for Windows
Visual C++
frame management functions|4-2
frames
frame elements
frame handle[3-2
frame types[3-3]
Function Call Driver
initialization
structurd 3-1
functions
buffer address
buffering mode[4-1]
channel and gain
clock[4-1]
conversion mode
frame management[4-1]
gate
initialization[4-1]
memory management[4-1
miscellaneous|4- 1
operation[4-1|
trigger[4-1

G
gain codes

gains
see also analog input ranges
gains: see Analog input ranges
gate functions
gates
group of consecutive channels[2-13]

H

hardware gates: see gates
hysteresis E

initialization functions
initializing a board[2-2
initializing the driver[2-2
input range type|2-9
internal pacer clock|2-16]2-291 2-36|
interrupt mode

analog input operations

analog output operations

digital /O operations [2-32

K

K_ADRead[2-5]2-13[ 2-27] 2-28] 4-14
K_BuflistAdd[2-914-17]
K_BufListReset 2-0]4-21]
K_ClearFrame [3-4]4-23]
K_CloseDriver[2-2]4-23
K_ClrAboutTrig
K_ClIrADFreeRun|4-29
K_ClrContRun[4-31]

K_DASDevInit

X-3



K_DAWrite[4-35 K_IntAlloc 2-8)2-28[[2-334-151

K_DIRead[2-31[4-3§ K_IntFree 2-8l[2-28[2-33]/4-15
K_DMAAlloc[2-8][4-41 K_IntStart 2-5] 2-6[2-27]2-32[ 4-136]
K_DMAFree[2-8]4-45] K_IntStats[2-5]2-6]12-272-32][4-158]
K_DMAStart[4-47] K_IntStop 2-3]2-6]2-27][2-32][4-162
K_DMAStatus/4-49 K_MoveArrayToBuf
K_DMASt0_3 K_MoveBufToArray[4-169|
K_DOWrite E@ K_OpenDriver 2-2]
K_FormatChnGAry K_RestoreChnGAry
K_FreeDevHandle[2-3] K_SetAboutTrig

K_FreeFrame B-4[4-63| K_SetADCommMode[4-179]
K_GetAboutTrig[4-63 K_SetADConfig
K_GetADCommMode[4-67 K_SetADFreeRun
K_GetADConfig[4-69] K_SetADMode[4-185
K_GetADFrame[3-3[3-4l[4-71] K_SetADTrig H-187]
K_GetADFreeRun[4-73| K_SetBuf B-191]

K_GetADModd 4-76] K_SetBufi[4-194]

K_GetADTrig K_SetBurstTicks[2-17[ 4-196]
K_GetBufl4-82 K_SetChn 2-13]2-28] 4-198
K_GetBurstTicks[4-85] K_SetChnGAry
K_GetChn[4-88] K_SetClk 2-16|[4-204
K_GetChnGAry[4-91] K_SetClkRate B-T6]2-29][2-36]4-207]
K_GetClk[4-93]| K_SetContRun[2-18][2-30][2-38]4-210
K_GetClkRate[4-96 K_SetDITrig[4-212|
K_GetContRun[4-99) K_SetDMABuf|4-215]
K_GetDAFrame[4-102 K_SetExtClkEdge[4-218]
K_GetDevHandle K_SetG[2-13]2-141[4-220
K_GetDIFrame K_SetGate

K_GetDITrig K_SetSSH[4-224]
K_GetDOCurVal[d-113 K_SetStartStopChn P-13][2-28][4-226
K_GetDOFrame[4-116] K_SetStartStopG[2-1414-230
K_GetErMsg[2-4][4-119 K_SetTrig
K_GetExtClkEdgem K_SetTrigHyst[2-211[4-236]
K_GetG[4-124] KMakeDMABuf{4-163]

K_GetGate[4-126
K_GetShellVer[2-4][4-129]
K_GetSSH[@E-132
K_GetStartStopChn[4-133
K_GetStartStopG [4-138
K_GetTrig
K_GetTrigHyst/4-145
K_GetVer[2-4)[4-148

X-4 Index



M

maintenance operations: see system
operations
managing memory
analog input operationslm
analog output operations
digital 1/O operations
memory allocation
analog input operations[2-6]
analog output operations
digital I/O operations|2-33
in BASIC[3-46]
in C/C++[3-23]
in Pascal[3-32]
in Visual Basic for Windowsm
memory handle
analog input operations[2-8]
analog output operations[2-28|
digital /O operations2-33]
memory management
analog input operations
analog output operations[2-27
digital I/O operations[2-33
in BASIC[3-46]
in C/C++3-23]
in Pascal[3-32]
in Visual Basic for Windows
memory management functions[4-3]
Microsoft C/C++
programming information|3-28
see also C languages
Microsoft Professional Basic: see
Professional Basic
Microsoft QuickBasic (Version 4.0); see
QuickBasic {(Verston 4.0)
Microsoft QuickBasic (Version 4.5): see
QuickBasic (Version 4.5)
Microsoft QuickC for Windows: see QuickC
for Windows
Microsoft Visual Basic for DOS: see Visual
Basic for DOS

Microsoft Visual Basic for Windows: see
Visual Basic for Windows

Microsoft Visnal C++: see Visual C++

Miscellaneous functions[4-5]

Miscellaneous operations: see System
operations

multiple buffers

0
operation functions

operation modes
analog input operations
analog output operations 2-27
digital /O operations
operations
analog input 2-4]
analog output
digital I/O

system|[2-1

P

Pascal
allocating and assigning dynamic
memory buffers
creating a channel-gain queue
dimensioning and assigning local arrays
333
see also Turbo Pascal, Turbo Pascal for
Windows
preliminary tasks B=111
Professional Basic
programming information [3-33]
see also BASIC
programming information
Borland C/C++(3-29
Microsoft C/C++[3-28]
Professional Basic[3-53]

X-5



QuickBasic (Version 4.0)[3-5]
QuickBasic (Version 4.5)
QuickC for Windows|3-30
Turbo Pascal for Windows[3-39
Visual Basic for DOS[3-55]
Visual Basic for Windows
Visual C++[3-31]
programming overview[3-10)
programming tasks
analog input operations
analog output operationg 3-18]
common

digital I/O oerations

preliminary|3-11

Q

QuickBasic (Version 4.0)
programming information[3-51]
see also BASIC

QuickBasic {(Version 4.5)
programming information[3-52
see also BASIC

QuickC for Windows
programming information
see also C languages

R

return values@
revision levels[2-4]
routines: see functions

X-6

S

scan|2-13
single-cycle mode
analog input operations[2-18|
analog output operations
digital I/O operations
software
packages
see also ASO-1800 software package,
DAS-1800 Series standard
software package
standard software package
starting a digital /O operation|2-3 1]
starting an analog input operation
starting an analog output operation|2-27
status codes2-4,JA-1]

storing data: see buffering modes
system operations[2-1]

T

tasks
operation-specific B=11
preliminary

technical support

time base
analog input operations 2-16][2-17]
analog ontput operations
digital I/O operations

trigger functions

triggers[2-25]

Turbo Pascal for Windows
programming information 3-39]
see also Pascal

Index



\'

Visual Basic for DOS
programming information m
see also BASIC
Visual Basic for Windows
allocating and assigning dynamic
memory buffers|[3-40
dimensioning and assigning local arrays
B-42]3-48
programming information[3-40] 3-45]
Visual C++
programming information
see also C langunages

X-7



| 7 HIGER BAES 9 IR, ATt 16, TAA8 1A AT
1

x-8 Index






KEITHLEY

Keithley Instruments, Inc.
28775 Aurora Road
Cleveland, Ohio 44139

Printed in the U.S.A.



	TOC: 


