
7

DAS-1800 Series

Function Call Driver

User's Guide

__

L

/./'"--

�tains Operating
_
an9togramming Information

KEITHLEY

Warranty

Hardware
Keithley Instruments, Inc. warrants that, for a period of one (1) year from
the date of shipment (2 years for Model 199 and 3 years for Models 2000,
2001, 2002, and 2010), the Keithley Hardware product will be free from
defects in materials or workmanship. This warranty will be honored
provided the defect has not been caused by use of the Keithley Hardware
not in accordance with the instructions for the product. This warranty
shall be null and void upon: (1) any modification of Keithley Hardware
that is made by other than Keithley and not approved in writing by
Keithley or (2) operation of the Keithley Hardware outside of the
environmental specifications therefore.

Upon receiving notification of a defect in the Keithley Hardware during
the warranty period, Keithley will, at its option, either repair or replace
such Keithley Hardware. During the first ninety days of the warranty
period, Keithley will, at its option, supply the necessary on site labor to
return the product to the condition prior to the notification of a defect.
Failure to notify Keithley of a defect during the warranty shall relieve
Keithley of its obligations and liabilities under this warranty.

Other Hardware
The portion of the product that is not manufactured by Keithley (Other
Hardware) shall not be covered by this warranty, and Keithley shall have
no duty of obligation to enforce any manufacturers’ warranties on behalf
of the customer. On those other manufacturers’ products that Keithley
purchases for resale, Keithley shall have no duty of obligation to enforce
any manufacturers’ warranties on behalf of the customer.

Software
Keithley warrants that for a period of one (I) year from date of shipment
(2 years for Model 199 and 3 years for Models 2000,2001,2002, and
2010), the Keithley produced portion of the software or firmware
(Keithley Software) will conform in all material respects with the
published specifications provided such Keithley Software is used on the
product for which it is intended and otherwise in accordance with the
instructions therefore. Keithley does not warrant that operation of the
Keithley Software will be uninterrupted or error-free and/or that the
Keithley Software will be adequate for the customer’s intended
application and/or use. This warranty shall be null and void upon any
modification of the Keithley Software that is made by other than Keithley
and not approved in writing by Keithley.

If Keithley receives notification of a Keithley Software nonconformity
that is covered by this warranty during the warranty period, Keithley will
review the conditions described in such notice. Such notice must state the
published specification(s) to which the Keithley Software fails to conform
and the manner in which the Keithley Software fails to conform to such
published specification(s) with sufficient specificity to permit Keithley to
correct such nonconformity. If Keithley determines that the Keithley
Software does not conform with the published specifications, Keithley
will, at its option, provide either the programming services necessary to
correct such nonconformity or develop a program change to bypass such
nonconformity in the Keithley Software. Failure to notify Keithley of a
nonconformity during the warranty shall relieve Keithley of its
obligations and liabilities under this warranty.

Other Software
OEM software that is not produced by Keithley (Other Software) shall not
be covered by this warranty, and Keithley shall have no duty or obligation
to enforce any OEM’s warranties on behalf of the customer.

Other Items
Keithley warrants the following items for 90 days from the date of
shipment: probes, cables, rechargeable batteries, diskettes, and
documentation.

Items not Covered under Warranty
This warranty does not apply to fuses, non-rechargeable batteries,
damage from battery leakage, or problems arising from normal wear or
failure to follow instructions.

Limitation of Warranty
This warranty does not apply to defects resulting from product
modification made by Purchaser without Keithley’s express written
consent, or by misuse of any product or part.

Disclaimer of Warranties
EXCEPT FOR THE EXPRESS WARRANTIES ABOVE KEITHLEY
DISCLAIMS ALL OTHER WARRANTIES, EXPRESS OR IMPLIED,
INCLUDING WITHOUT LIMITATION, ALL IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
PARTICULAR PURPOSE. KEITHLEY DISCLAIMS ALL
WARRANTIES WITH RESPECT TO THE OTHER HARDWARE AND
OTHER SOFTWARE.

Limitation of Liability
KEITHLEY INSTRUMENTS SHALL IN NO EVENT, REGARDLESS
OF CAUSE, ASSUME RESPONSIBILITY FOR OR BE LIABLE FOR:
(I) ECONOMICAL, INCIDENTAL, CONSEQUENTIAL, INDIRECT,
SPECIAL, PUNITIVE OR EXEMPLARY DAMAGES, WHETHER
CLAIMED UNDER CONTRACT, TORT OR ANY OTHER LEGAL
THEORY, (2) LOSS OF OR DAMAGE TO THE CUSTOMER’S DATA
OR PROGRAMMING, OR (3) PENALTIES OR PENALTY CLAUSES
OF ANY DESCRIPTION OR INDEMNIFICATION OF THE
CUSTOMER OR OTHERS FOR COSTS, DAMAGES, OR EXPENSES
RELATED TO THE GOODS OR SERVICES PROVIDED UNDER
THIS WARRANTY.

DAS-1800 Series
Function Call Driver

User’s Guide

01997, Keithley Instruments, Inc.
All rights reserved.

Cleveland, Ohio, U.S.A.
Third Printing, August 1997

Document Number: 77160 Rev. C

Worldwide Addresses

Keithley Instruments, Inc. ITALY
28775 Aurora Road Keithley Instruments SRL
Clewland, Ohio 44139 Vialc S. Gimignano 38
(440) 248.0400 20146 Milano
Fax: (440) 24X-6168 39-2-4X30300X
http://www,keithley.com Fax: 39-2-48302274

CHINA
Keithley Instruments China
Yuan Chen Xin Building, Room 705
No. 12Yumin Road, Dewei, Madian
Beijing, China 100029
8610.2022856
Fax: 8610.2022892

FRANCE
Keithley Instruments SARL
BP 60
3 all&c des Garays
91122 Palaiseau C&da
31-6-0115155
Fax: 31-6-0117726

GERMANY
Keithley Instruments GmbH
Landsbergcr SwaRc 65
821 IO Garnering
49-89-849307-0
Fax: 49-89-84930759

GREAT BRITAIN
Keithley Instruments, Ltd.
The Minster
58 Portman Road
Reading, Berkshire RG30 IEA
44-01734-575666
Fax: 44-01734-596469

NETHERLANDS
Keithley Instruments BV
Avelingen West 49
4202 MS Gorinchem
31-(0)1X3-635333
Fax: 31.(0)183-630X21

SWITZERLAND
Keithley Instruments SA
Kriesbachstrasse 4
8600 Diibendorf
41-I-8219444
Fax: 41-I-8203081

TAIWAN
Keithley Instruments Taiwan
I, Ming-Yu First Street
Hsinchu. Taiwan, R.O.C.
8X6-35-778462
Fax: 8X6-35-778455

Manual Print History

The print history shown below lists the printing dates of all Revisions and Addenda created for
this manual. The Revision Level letter increases alphabetically as the manual undergoes
subsequent updates. Addenda, which are released between Revisions, contain important
change information that the user should incorporate immediately into the manual. Addenda
are numbered sequentially. When a new Revision is created, all Addenda associated with the
previous Revision of the manual are incorporated into the new Revision of the manual. Each
new Revision includes a revised copy of this print history page.

Revision B (Document Number 77160 iv. B) April 1994
Revision C (Document Number 77160 Rfv. C) August 1997

All Keithley product names arc trademarks or registered trademarks of Keithley Instruments, Inc.

Other brand and product names are trademarks or registered trademarks of their respective holders.

Safety Precautions

The following safety precautions should be observed before using this
product and any associated instrumentation. Although some instruments
and accessories would normally be used with non-hazardous voltages,
there are situations where hazardous conditions may be present.

This product is intended for use by qualified personnel who recognize
shock hazards and are familiar with the safety precautions required to
avoid possible injury. Read the operating information carefully before
using the product.

The types of product users are:

Responsible body is the individual or group responsible for the use and
maintenance of equipment, and for ensuring that operators are adequately
trained.

Operators use the product for its intended function. They must be trained
in electrical safety procedures and proper use of the instrument. They
must be protected from electric shock and contact with hazardous live
circuits.

Maintenance personnel perform routine procedures on the product to
keep it operating, for example, setting the line voltage or replacing
consumable materials. Maintenance procedures are described in the
manual. The procedures explicitly state if the operator may perform them
Otherwise, they should be performed only by service personnel.

Service personnel are trained to work on live circuits, and perform safe
installations and repairs of products. Only properly trained service
personnel may perform installation and service procedures.

Exercise extreme caution when a shock hazard is present. Lethal voltage
may be present on cable connector jacks or test fixtures. The American
National Standards Institute (ANSI) states that a shock hazard exists
when voltage levels greater than 30V RMS, 42.4V peak, or 60VDC are
present. A good safety practice is to expect that hazardous voltage is
present in any unknown circuit before measuring.

Users of this product must be protected from electric shock at all times.
The responsible body must ensure that users are prevented access and/or
insulated from every connection point. In some cases, connections must
be exposed to potential human contact. Product users in these
circumstances must be trained to protect themselves from the risk of
electric shock. If the circuit is capable of operating at or above 1000 volts,
no conductive part of the circuit may be exposed.

As described in the International Electrotechnical Commission (IEC)
Standard IEC 664, digital multimeter measuring circuits (e.g., Keithley
Models 175A, 199, 2000, 2001,2002, and 2010) measuring circuits are
Installation Category II. All other instruments’ signal terminals are
Installation Category I and must not be connected to mains.

Do not connect switching cards directly to unlimited power circuits. They
are intended to be used with impedance limited sources. NEVER connect
switching cards directly to AC mains. When connecting sources to
switching cards, install protective devices to limit fault current and
voltage to the card.

Before operating an instrument, make sure the line cord is connected to a
properly grounded power receptacle. Inspect the connecting cables, test
leads, and jumpers for possible wear, cracks, or breaks before each use.

For maximum safety, do not touch the product, test cables, or any other
instruments while power is applied to the circuit under test. ALWAYS
remove power from the entire test system and discharge any capacitors
before: connecting or disconnecting cables or jumpers, installing or
removing switching cards, or making internal changes, such as installing
or removing jumpers.

Do not touch any object that could provide a current path to the common
side of the circuit under test or power line (earth) ground. Always make
measurements with dry hands while standing on a dry, insulated surface
capable of withstanding the voltage being measured.

Do not exceed the maximum signal levels of the instruments and
accessories, as defined in the specifications and operating information,
and as shown on the instrument or test fixture panels, or switching card

When fuses are used in a product, replace with same type and rating for
continued protection against fire hazard.

Chassis connections most only be used as shield connections for
measuring circuits, NOT as safety earth ground connections.

If you are using a test fixture, keep the lid closed while power is applied to
the device under test, Safe operation requires the use of a lid interlock.

If a @screw is present, connect it to safety earth ground using the wire
recommended in the user documentation.

The A symbol on an instrument indicates that the user should refer to
the operating instructions located in the manual.

The A symbol on an instrument shows that it can source or measure
1000 volts or more, including the combined effect of normal and common
mode voltages, Use standard safety precautions to avoid personal contact
with these voltages.

The WARNING heading in a manual explains dangers that might result
in personal injury or death. Always read the associated information very
carefully before performing the indicated procedure.

The CAUTION heading in a manual explains hazards that could damage
the instrument. Such damage may invalidate the warranty.

Instrumentation and accessories shall not be connected to humans.

Before performing any maintenance, disconnect the line cord and all test
cables,

To maintain protection from electric shock and fire, replacement
components in mains circuits, including the power transformer, test leads,
and input jacks, must be purchased from Keithley Instruments. Standard
fuses, with applicable national safety approvals, may be used if the rating
and type are the same. Other components that are not safety related may
be purchased from other suppliers as long as they are equivalent to the
original component, (Note that selected parts should be purchased only

through Keithley Instruments to maintain accuracy and functionality of
the product.) If you are unsure about the applicability of a replacement
component, call a Keithley Instruments office for information.

To clean the instrument, use a damp cloth or mild, water based cleaner.
Clean the exterior of the instrument only. Do not apply cleaner directly to
the instrument or allow liquids to enter or spill on the instrument.

The information contained in this manual is believed to be accurate and reliable. Howcvcr, Kcithley
Instruments, Inc., assumes no responsibility for its use or for any infringements of patents or other rights
of third parties that may result from its USC. No license is granted by implication or otherwise under any
patent rights of Keithlcy Instruments, Inc.

KEITHLEY INSTRUMENTS, INC., SHALL NOT BE LIABLE FOR ANY SPECIAL, INCIDENTAL,
OR CONSEQUENTIAL DAMAGES RELATED TO THE USE OF THIS PRODUCT. THIS
PRODUCT IS NOT DESIGNED WITH COMPONENTS OF A LEVEL OF RELIABILITY
SUITABLE FOR USE IN LIFE SUPPORT OR CRITICAL APPLICATIONS.

Rcfcr to your Keithley Instruments license agreement and Conditions of Sale document for specific
warranty and liability information.

Keithley is a trademark of Keithley Instruments, Inc. All other brand and product names art! trademarks
or registered trademarks of their respective companies.

0 Copyright Keithley Instruments, Inc., 1991, 1993, 1994.

All rights reserved. Reproduction or adaptation of any part of this documentation beyond that permitted
by Section I17 of the 1976 United States Copyright Act without permission of the Copyright owner is
unlawful.

Keithley Instruments, Inc.

28775 Aurora Road Cleveland, OH 44139

Telephone: (440) 248-0400. FAX: (440) 248-6168

Table of Contents

Preface

1 Getting Started
Technical Support 1-4

2 Available Operations
System Operations.2-l

Initializing the Driver2-2
Initializing a Board2-2
Retrieving Revision Levels.2-4
Handling Errors.2-4

Analog Input Operations2-4
Operation Modes.2-5
Memory Allocation and Management.2-6
Gains..2- 9
Channels..2-10

Specifying Channels When Using EXP- I800 Expansion
Boards (DAS- IEOOSTIHR Series Only).2-l I

Acquiring Samples from a Single Channel ,2- I3
Acquiring Samples from a Group of Consecutive
Channels.....................................2-I 3

Acquiring Samples Using a Channel-Gain Queue.2-14
Conversion Modes.,.2-l 5
ClockSources....................................2-15

PacerClock....................................2-16
Burst Mode Conversion Clock. ,2-l 7

Buffering Modes2- I8
Triggers...2-19

TriggerSources2-19
Internal Trigger ,2- 19
Analog Trigger2-20
Digital Trigger,2-22

Post-Trigger Acquisition2-23
Pre-Trigger Acquisition2-24
About-Trigger Acquisition.2-25

Hardware Gates,2-25
Analog Output Operations (DA.%I SOOHC Series Only).2-26

toe Page iv Monday, April 11, 1994 9:50 AM

Operation Modes.
Memory Allocation and Management
Channels
Clock Source.
Buffering Modes.

Digital I/O Operations
Operation Modes.
Memory Allocation and Management
Digital Input Channel
Digital Output Channel.
Clock Source.
Buffering Modes.

......2-21

......2-27

......2-2 8

......2-2 9

......2-3 0

......2-3 1

......2-3 1

......2-33

......2-3 4

......2-3 5

......2-3 6

......2-3 8

3 Programming with the Function Call Driver
How the Driver Works.3-l
Programming Overview.3-10
Preliminary Tasks.3-11
Operation-Specific Programming Tasks 3-l 1

Analog Input Operations.,.3-l 1
Single Mode.3-12
Interrupt Mode.3-12
DMAMode...................................3-15

Analog Output Operations (DAS-1800HC Series Only) 3-18
Single Mode3-18
Interrupt Mode.3-18

Digital I/O Operations.3-20
Single Mode. ,3-20
Interrupt Mode.3-21

Language-Specific Programming Information ,3-22
C/Ci+ Languages3-2 3

Allocating and Assigning Dynamically Allocated
Memory Buffers3-23
Single Memory Buffer3-23
Multiple Memory Buffers.3-N
Accessing the Data3-25

Dimensioning and Assigning Local Arrays. ,3-25
Single Array3-2 6
Multiple Arrays.3-26

Creating a Channel-Gain Queue3-27
Programming in Microsoft C/C++.3-28
Programming in Borland C/C++3-29
Programming in Microsoft QuickC for Windows 3-30

iv

+b raft3.toc Page v Monday, April 11, 1994 9:50 AM

+b

Programming in Microsoft Visual C++3-31
Pascal Languages3-31

Allocating and Assigning Dynamically Allocated
Memory Buffers ,3-32
Reducing the Memory Heap.3-32
Single Memory Buffer3-33
Multiple Memory Buffers.3-34
Accessing the Data3-35

Dimensioning and Assigning Local Arrays.3-35
Single Array3-3 6
Multiple Arrays.3-36

Creating a Channel-Gain Queue3-37
Programming in Borland Turbo Pascal (for DOS).3-38
Programming in Borland Turbo Pascal for Windows .. .3-39

Microsoft Visual Basic for Windows3-40
Allocating and Assigning Dynamically Allocated

Memory Buffers3-40
Single Memory Buffer3-40
Multiple Memory Buffers. ,3-41
Accessing the Data3-42

Dimensioning and Assigning Local Arrays.3-42
Single Array3-42
Multiple Arrays.3-43

Creating a Channel-Gain Queue ,344
Programming in Microsoft Visual Basic for Windows .3-45

BASIC Languages. ,3-46
Allocating and Assigning Dynamically Allocated

Memory Buffers3-46
Reducing the Memory Heap.3-46
Single Memory Buffer3-46
Multiple Memory Buffers.3-47
Accessing the Data3-48

Dimensioning and Assigning Local Arrays.3-48
Single Array3-49
Multiple Arrays3-49

Creating a Channel-Gain Queue3-50
Programming in Microsoft QuickBasic (Version 4.0). .3-51
Programmhtg in Microsoft QuickBasic (Version 4.5). .3-52
Programming in Microsoft Professional Basic

(Version 7.0)3-5 3
Programming in Microsoft Visual Basic for DOS.3-55

aft3.toc Page vi Monday, April 11, 1994 9:50 AM

4 Function Reference
DAS1800-DevOpen
DAS1800~GetDevHandle.
K_ADRead.
K-ButListAdd
K-BtdListReset
K-ClearFrame
K-CloseDriver.
K-ClrAboutTrig.
K-ClrADFreeRun
K~ClrContRun.
K-DASDevInit
KDAWrite
K-DIRead
K-DMAAlloc
K-DMAFree
K-DMAStart
K-DMAStatus
K-DMAStop
K_DOWrite
K-ForntatChnGAry
K_FreeDevHandle
K-FreeFrame
K-GetAboutTrig
K-GetADCommonMode. .
K-GetADConfig
K-GetADFrame.
K-GetADFreeRun
KGetADMode
K-GetADTrig
KGetBuf.
K_GetBurstTicks
K-GetChn
KGetChnGAry
K_GetClk.
K-GetClkRate
K-GetCoutRun
K-GetDAFrame.
K-GetDevHandle.
K-GetDIFratne
K-GetDITrig
K-GetDOCurVal

. ..4-8

..4-11

..4-14

..4-17

..4-21

..4-23

..4-25

..4-27
,.4-29
..4-31
..4-33
..4-35
..4-38
..4-41
..4-45
..4-47
..4-49
..4-53
..4-56
..4-59
..4-61
..4-63
..4-65
..4-67
..4-69
..4-71
..4-73
..4-76
..4-78
..4-82
..4-85
..4-88
..4-91
..4-93
..4-96
..4-99
.4-102
.4-105
.4-107
.4-110
.4-113

raft3.toc Page vii Monday, April 11, 1994 9:50 AM

K-GetDOFrame4-116
K-GetErrMsg4-119
K-GetExtClkEdge4-121
KGetG..4-124
K-GetGatc.4-126
K-GetSheWer.4-129
K_GetSSH..4-13 2
KGetStartStopChn.4-135
K-GetStartStopG4-138
K-GetTrig4-142
K-GetTrigHyst4-145
K_GetVer...4-14 8
K_lntAloc..4-15 1
K-IntFree.4-154
K-IntStart.4-156
K-IntStatus4-158
K-IntStop.4- 162
KMakeDMABuf4- 165
K-MoveArrayToBuf4- 167
K-MoveButToArray4-169
K-OpenDriver4-171
K-RestoreChnGAry4-174
K-SetAboutTrig.4-176
K~SetADCommonMode4-179
K_Seu\DConfig....................................4-18 1
K-SetADFreeRun4- 183
K-SetADMode4-18 5
K-SetADTrig.4-187
KSetBuf...4-19 1
K-SetBufI..4-19 4
K-SetBurstTicks4-196
K_SetChn...4-19 8
K_SetChnGAry....................................4-20 1
K_SetClk...4-2 .
K-SetClkRate4-207
K_SetContRun.....................................4-210
KSetDITrig.......................................4-212
K-SetDMABuf4-215
K-SetExtClkEdge4-218
K_SetG...4-22 0
K_SetGate..4-22 2
K-SetSSH..4-2 24

vii

4 II raft3.toc Page viii Monday, April 11, 1994 9:50 AM

K-SetStartStopChn4-226
K-SetStartStopG4-230
K-SetTrig4-233
K-SetTrigHyst4-236

A Error/Status Codes

B Data Formats
Converting Raw Counts to Voltage
Converting Voltage to Raw Counts

Specifying an Analog Output Value
(DAS-1800HC Series only).

Specifying au Analog Trigger Level.
Specifying a Hysteresis Value.

Index

List of Figures
Figure 2-1. Example of Logical Channel Assignments
Figure 2-2. Trigger Events for Analog Triggers . .
Figure 2-3. Using a Hysteresis Value. .
Figure 2-4. Trigger Events For Digital Triggers
Figure 2-5. Digital Input Bits.
Figure 2-6. Digital Output Bits.
Figure 3-1. Single-Mode Function.
Figure 3-2. Interrupt-Mode Operation

.B-1

.B-3

.B-3

.B-4

.B-5

. ..2-12

. . ,2-20
.2-22
.2-23
.2-34

. . .2-35
.3-2
.3-3

1 +I+ raft3 tot Page ix Monday, April 11.1994 9:50 AM

List of Tables
Table 2- 1. Supported Operations .2-l
Table 2-2. Analog Input Ranges. .2- 10
Table 3-l. A/D Frame Elements. .3-5
Table 3-2. D/A Frame Elements. .3-7
Table 3-3. DI Frame Elements .3-8
Table 3-4. DO Frame Elements .3-9
Table 3-5. Setup Functions for Interrupt-Mode

Table 3-6.

Table 3-7.

Table 3-8.

Table 4- 1.
Table 4-2.
Table A-l.
Table B-l.

Analog Input Operations. .3-13
Setup Functions for DMA-Mode
Analog Input Operations. .3-16
Setup Functions for Interrupt-Mode
Analog Output Operations. .3- 19
Setup Functions for Interrupt-Mode
Digital Input and Digital Output Operations. .3-21
Functions................................4-2
Data Type Prefixes . . .4-7
Error/Status Codes.. . . A-l
Span Values For Data Conversion Equations . . .B-2

ix

tot Page x Monday, April 11, 1994 9:50 AM

& reface frm Page xi Monday, April 11, 1994 9:54 AM

Preface

The DAS-I800 Series Function Cull Driver User’s Guide describes how
to write application programs for DAS- 1800 Series boards using the
DAS-1800 Series Function Call Driver. The DAS-1800 Series Function
Call Driver supports the following DOS-based languages:

. Microsoft@ QuickBasic” (Versions 4.0 and 4.5)

. Microsoft Professional Basic (Version 7.0 and higher)

. Microsoft Visual Basicm for DOS (Version 1.0)

. Microsoft C/C++ (Version 4.0 and higher)

. Borland’ C/C++ (Version 1.0 and higher)

l Borland Turbo Pascal@ for DOS (Version 6.0 and higher)

The DAS-1800 Series Function Call Driver also supports the following
WindowsTM-based languages:

. Microsoft Visual Basic for Windows (Version 1.0 and higher)

. Microsoft Quick@ for Windows (Version 1.0)

. Microsoft Visual C++TM (Version 1.0)

. Borland Turbo Pascal for Windows (Version 1.0 and higher)

xi

4 reface.frm Page xii Monday, April 11, 1994 9:54 AM

4

The manual is intended for application programmers using a DAS-1800
Series board in an IBM” PC AT@ or compatible computer. It is assumed
that users have read the user’s guide for their board to familiarize
themselves with the board’s features, and that they have completed the
appropriate hardware installation and configuration. It is also assumed
that users are experienced in programming in their selected language and
that they are familiar with data acquisition principles.

The DAS-1800 Series Fun&n Call Driver User’s Guide is organized as
follows:

Chapter I contains the information needed to install the DAS- 1800
Series Function Call Driver and to get help.

Chapter 2 contains the background information needed to use the
functions included in the DAS-1800 Series Function Call Driver.

Chapter 3 contains programming guidelines and language-specific
information related to using the DAS-1800 Series Function Call
Driver.

Chapter 4 contains detailed descriptions of the DAS-1800 Series
Function Call Driver functions, arranged in alphabetical order.

Appendix A contains a list of the error codes returned by DAS-1800
Series Function Call Driver functions.

Appendix B contains instructions for converting raw counts to
voltage and for converting voltage to raw counts.

An index completes this manual.

Keep the following conventions in mind as you use this manual:

l References to DAS-1800 Series boards apply to all members of the
DAS-1800 family. When a feature applies to a particular board, that
board’s name is used.

. References to BASIC apply to all DOS-based BASIC languages
(Microsoft QuickBasic, Microsoft Professional Basic, and Microsoft
Visual Basic for DOS). When a feature applies to a specific language,
the complete language name is used. References to Visual Basic for
Windows apply to Microsoft Visual Basic for Windows.

. Keyboard keys are enclosed in square brackets ([I).

xii

4 4

4 t hapOlL.frm Page 1 Monday, April 11, 1994 9:54 AM

4

Getting Started

The DAS-1800 Series Function Call Driver is a library of data acquisition
and control functions (referred to as the Function Call Driver or FCD
functions). It is part of the following two software packages:

. DAS-1800 standard software package - This is the software
package that is shipped with DAS- 1800 Series boards; it includes the
followhlg:

- Libraries of FCD functions for Microsoft QuickBasic, Microsoft
Professional Basic, and Microsoft Visual Basic for DOS.

- Support files, containing such program elements as function
prototypes and definitions of variable types, which are required
by the FCD functions.

Utility programs, running under DOS, that allow you to
configure, calibrate, and test the functions of DAS-1800 Series
boards.

- Language-specific example programs.

. ASO- software package -This is the Advanced Software
Option for DAS-1800 Series boards. You purchase the ASO-
software package separately from the board; it includes the following:

Libraries of FCD functions for Microsoft C/C++, Borland
C/C++, and Borland Turbo Pascal.

- Dynamic Link Libraries (DLLs) of FCD functions for Microsoft
Visual Basic for Windows, Microsoft QuickC for Windows,
Microsoft Visual C++, and Borland Turbo Pascal for Windows.

- Support files, containing program elements, such as function
prototypes and definitions of variable types, that are required by
the FCD functions.

4

l-l

4 4

1-2

Utility programs, running under DOS and Windows, that allow
you to configure, calibrate, and test the functions of DAS- I800
Series boards.

- Language-specific example programs.

Before you use the Function Call Driver, make sure that you have
installed the software, set up the board, and created a configuration file
using the setup and installation procedures described in Chapter 3 of the
user’s guide for your DAS-1800 Series board.

If you need help installing or using the DAS-I 800 Series Function Call
Driver, call your local sales office or the Keithley Instruments, Inc.
Applications Engineering Department at:

(440) 248-1520
Monday - Friday, S:OO A.M. - 6:OO P.M., Eastern Time

Getting Started

.frm Page 3 Monday, April II,1994 954 AM

An applications engineer will help you diagnose and resolve yam
problem over the telephone. Please make sure that you have the following
information available before you call:

DAS-1800ST/HR
Series Board
Configuration

Computer

Model
Serial #
Revision code
Base address setting
Interrupt level setting
Number of channels
Input (S.E. or Diff.)
Mode (uni. or hip.)
DMA chax(s)
Number of SSH-8s
Number of EXPs.

Manufacturer
CPU type
Clock speed (MHz)
KB of RAM
Video system
BIOS type

Operating System DOS version
Windows version
Windows mode

Software package Name
Serial #
Version
Invoice/Order #

Compiler
(if applicable)

Language
Manufacturer
Version

Accessories

-.

1-3

Technical Support

Before returning any equipment for repair, call Keithley Instruments, Inc.,
for technical support at:

(440) 248-1520
Monday - Friday, 8:00 A.M. - 6:OO P.M., Eastern Time

An applications engineer will help you diagnose and resolve your
problem over the telephone.

If a telephone resolution is not possible, the applications engineer will
issue you a Return Material Authorization (RMA) number and ask you to
return the equipment. Include the RMA number with any documentation
regarding the equipment.

When returning equipment for repair, include the following information:

. Your name, address, and telephone number

. The invoice or order number and date of equipment purchase.

. A description of the problem or its symptoms.

. The RMA number on the outside of the package

Repackage the equipment using the original anti-static wrapping, if
possible, and handle it with ground protection. Ship the equipment to:

ATTN: RMA #
Repair Department

Keithley Instruments, Inc.
31300 Bainbridge Road
Cleveland, OH 44139

Telephone (440) 248-1520
FAX (440) 248-6168

Note: If you are submitting your equipment for repair under warranty,
you must include the invoice number and date of purchase.

To enable. Keithley Instruments, Inc., to respond as quickly as possible,
you must include the RMA number on the outside of the package.

Getting Started

& - hap02 .frm Page 1 Monday, April 11,1994 9:55 AM

2
Available Operations

This chapter contains the background information you need to use the
FCD functions to perform operations on DAS- 1800 Series boards. The
supported operations are listed in Table 2-1.

Table 2-1. Supported Operations

Operation

System

Page Reference

page z- 1

System Operations

This section describes the miscellaneous operations and general
maintenance operations that apply to DAS-1800 Series boards and to the
DAS-1800 Series Function Call Driver. It includes information on
initializing a driver, initializing a board, retrieving revision levels, and
handling errors.

2-l

+B hap02-.frm Page 2 Monday, April 11, 1994 955 AM

Initializing the Driver

Before you can use any of the functions included in the DAS-1800 Series
Function Call Driver, you must initialize the driver using one of the
following driver initialization functions:

. Board-specific driver initialization function - If you want to
initialize the DAS-1800 Series Function Call Driver only, use the
board-specific driver initialization function DAN800 DevOpen.
You specify a configuration file; DASlSOO~DevOpe~initializes the
driver according to the configuration file you specify.

. Generic driver initialization function - If you want to initialize
several different Keithley DAS Function Call Drivers from the same
application program, use the generic driver initialization function
K-OpenDriver. You specify the Keithley DAS board you are using,
the configuration file that defines this particular use of the driver, and
the driver handle (a name that uniquely identifies the particular use of
the driver). You can specify a maximum of 30 driver handles for all
the Keithley DAS boards accessed from your application program.

If a particular use of a driver is no longer required and you want to
free some memory or if you have used all 30 driver handles, you can
use the K-CloseDriver function to free a driver handle and close the
associated use of the driver.

If the driver handle you free is the last driver handle specified for a
Function Call Driver, the driver is shut down. (For Windows-based
languages only, the DLLs associated with the Function Call Driver
are shut down and unloaded from memory.)

Initializing a Board

The DAS- 1800 Series Function Call Driver supports up to three boards.
You must use a board initialization function to specify the board(s) you
want to use and the name you want to use to identify each board; this
name is called the board handle. Board handles allow you to
communicate with more than one board. You use the board handle you
specify in the board initialization function in all subsequent function calls
related to the board.

2-2 Available Operations

+b hap02_.frm Page 3 Monday, April 11, 1994 9:55 AM

+b

The DAS-1800 Series Function Call Driver provides the following board
initialization functions:

. Board-specific board initialization function - If you want to
initialize a DAS-1800 Series board only, use the board-specific board
initialization function DAS1800-GetDevHandle.

. Generic board initialization function - If you want to initialize
several different Keithley DAS boards from the same application
program, use the generic board initialization function
K-GetDevHandle. You can specify a maximum of 30 board handles
for all the Keithley DAS boards accessed from your application
program.

If a board is no longer being used and you want to free some memory
or if you have used all 30 board handles, you can use the
K-FreeDevHandle function to free a board handle.

To reinitialize a board during an operation, use the K-DASDevInit
function, which performs the following tasks:

. Abort all operations currently in progress that are associated with the
board identified by the board handle.

l Verify that the board identified by the board handle is the board
specified in the configuration file.

2-3

43 hap02-.frm Page 4 Monday, April 11,1994 9:55 AM

-@

Retrieving Revision Levels

If you are using functions from different Keitbley DAS Function Call
Drivers in the same application program or if you are having problems
with your application program, you may want to verify which versions of
the Function Call Driver, Keithley DAS Driver Specification, and
Keithley DAS Shell are installed on your board. The K-GetVer function
allows you to get both the revision number of the DAS-1800 Series
Function Call Driver and the revision number of the Keithley DAS Driver
Specification to which the driver conforms. The K-GetSheWer function
allows you to get the revision number of the Keithley DAS Shell (the
Keithley DAS Shell is a group of functions that are shared by all DAS
boards).

Handling Errors

Each FCD function returns a code indicating the status of the function. To
ensure that your application program runs successfully, it is recommended
that you check the returned code after the execution of each function. If
the status code equals 0, the function executed successfully and your
program can proceed. If the status code does not equal 0, an error
occurred; ensure that your application program takes the appropriate
action, Refer to Appendix A for a complete list of error codes.

For C-language application programs only, the DAS-1800 Series
Function Call Driver provides the K-GetErrMsg function, which gets
the address of the string corresponding to an error code.

Analog Input Operations

This section describes the following:

. Analog input operation modes available.

. How to allocate and manage memory for analog input operations.

. How to specify the following for an analog input operation: channels
and gains, a conversion mode, a clock source, a buffering mode, a
trigger source, and a hardware gate.

2-4 Available Operations

4 hap02-.frm Page 5 Monday, April 11, 1994 9:55 AM

4

Operation Modes

The operation mode determines which attributes you can specify for an
analog input operation and how data is transferred from the board to the
computer. You can perform analog input operations in one of the
following modes:

. Single mode - In single mode, the board acquires a single sample
from an analog input channel. The driver initiates conversions; you
cannot perform any other operation until the single-mode operation is
complete.

Use the K-ADRead function to start an analog input operation in
single mode. You specify the board you want to use, the analog input
channel, the gain at which you want to read the signal, and the
variable in which to store the converted data.

. Interrupt mode -In interrupt mode, the board acquires a single
sample or multiple samples from one or more analog input channels.
A hardware clock initiates conversions. Once the analog input
operation begins, control returns to your application program. The
hardware temporarily stores the acquired data in the onboard FIFO
(first-in, first-out data buffer) and then transfers the data to a
user-defined buffer in the computer using an interrupt service routine.

Use the K-IntStart function to start an analog input operation in
interrupt mode. You specify the board, analog input channel(s),
gain(s), clock source, buffering mode, buffer address(trigger
source, and gate use.

You can specify either single-cycle or continuous buffering mode for
interrupt-mode operations. Refer to page Z- 18 for more information
on buffering modes. Use the K-IntStop function to stop a
continuous-mode interrupt operation. Use the K-IntStatus function
to determine the current status of an interrupt operation.

. DMA mode - In DMA mode, the hoard acquires a single sample or
multiple samples from one or more analog input channels. A
hardware clock initiates conversions. Once the analog input operation
begins, control returns to your application program. The hardware
temporarily stores the acquired data in the onboard FfFO (first-in,

4

4

4 4 4

4 hapOZ.fim Page 6 Monday, April 11,1994 9:55 AM

4

first-out data buffer) and then transfers the data to a user-defined
DMA buffer in the computer.

Note: You can perform an analog input operation in single-DMA
mode or dual-DMA mode, depending on whether you specified one
or two DMA channels in your configuration file. Refer to your
DAS-1800 Series board user’s guide for more information.

Use the K-DMAStart function to start an analog input operation in
DMA mode. You specify the board, analog input channel(s), gain(s),
clock source, buffering mode, buffer address(trigger source, and
gate use.

You can specify either single-cycle or continuous buffering mode for
DMA-mode operations. Refer to page 2- 18 for more information on
buffering modes. Use the K-DMAStop function to stop a
continuous-mode DMA operation. Use the K-DMAStatus function
to determine the current status of a DMA operation.

The converted data are stored as raw counts. For information on
converting raw counts to voltage, refer to Appendix B.

Memory Allocation and Management

Interrupt-mode and DMA-mode analog input operations require memory
buffers in which fo store the acquired data. You can reserve a single
memory buffer, or you can reserve multiple buffers (up to a maximum of
150) to increase the number of samples you can acquire. The maximum
number of samples each memory buffer can store (32K or 64K) depends
on the language you are using. See “Language-Specific Programming
Information” on page 3-22 for more information.

2-6 Available Operations

4

4 hap02-.frm Page 7 Monday, April 11, 1994 9:55 AM

4

You can reserve the required memory buffer(s) in one of the following
ways:

l Within your application program’s memory area -The simplest
way to reserve memory buffers is to dimension arrays within your
application program. The advantage of this method is that the arrays
are directly accessible to your application program. The limitations of
this method are as follows:

Certain programming languages limit the size of local arrays.

- Local arrays may not be suitable for DMA-mode operations.

- Local arrays occupy permanent memory areas; these memory
areas cannot be freed to make them available to other programs or
processes.

Since the DAS-1800 Series Function Call Driver stores data in 16-bit
integers, you must dimension all local arrays as integers.

l Outside of your application program’s memory area -This is the
recommended way to reserve memory buffers. The advantages of this
method are as follows:

- The number of buffers and the size of each buffer are limited by
the amount of free physical memory available in your computer
at run-time.

- The dynamically allocated memory buffers can be freed to make
them available to other programs or processes.

The limitation of this method is that, for BASIC and Visual Basic
languages, the data in a dynamically allocated memory buffer is not
directly accessible by your program. (The DAS-1800 Series Function
Call Driver provides a function, K-MoveButToArray, to make this
data accessible; refer to page 4-169 for more information.)

4

4

4

2-7

4 4

4 hap02Lfrm Page 8 Monday, April 11, 1994 955 AM

4

Z-8

Use the K-IntAlloc function to allocate memory dynamically for
interrupt-mode operations and the K-DMAAlloc function to allocate
memory dynamically for DMA-mode operations. You specify the
operation requiring the buffer, the number of samples to store in the
buffer, the variable to store the starting address of the buffer, and the
name you want to use to identify the buffer (this name is called the
memory handle). When the buffer is no longer required, you can free
the buffer for another use by specifying this memory handle in the
K-IntFree function (for interrupt-mode operations) or the
K-DMAFree function (for DMA-mode operations).

Notes: For DOS-based languages, the area used for dynamically
allocated memory buffers is referred to as the far heap; for
Windows-based languages, this area is referred to as the global heap.
These heaps are areas of memory left unoccupied as your application
program and other programs run.

For DOS-based languages, the K-IntAlloc and K-DMAAlloc
functions use the DOS Int 21H function 48H to dynamically allocate
far heap memory. For Windows-based languages, the K IntAlloc and
K-DMAAlloc functions call the GlobalAlloc API fun&on to
allocate the desired buffer size from the global heap.

For Windows-based languages, dynamically allocated memory is
guaranteed to be fixed and locked in memory.

To eliminate page wrap conditions and to guarantee that dynamically
allocated memory is suitable for use by the computer’s 8237 DMA
controller, K-DMAAlloc may allocate an area twice as large as
actually needed. Once the data in this buffer is processed and/or saved
elsewhere, use K-DMAFree to free the memory for other uses.

Available Operations

4

4

4 4

4 hap02Lfrm Page 9 Monday, April 11, 1994 9:55 AM

4
Gains

4

After you allocate your buffer(s), you must assign the starting address of
the buffer(s) and the number of samples to store in the buffer(s). Each
supported programming language requires a particular procedure for
allocating memory buffers and assigning starting addresses. Refer to page
3-23 for information when programming in C. Refer to page 3-31 for
information when programming in Pascal. Refer to page 3-40 for
information when programming in Visual Basic for Windows. Refer to
page 3-46 for information when programming in BASIC.

If you are using multiple buffers, use the K-BufListAdd function to add
each buffer to the list of multiple buffers associated with each operation
and to assign the starting address of each buffer. Use the KBufListReset
function to clear the list of multiple buffers.

Note: If you are using multiple buffers, it is recommended that you use
the Keithley Memory Manager before you begin programming to ensure
that you can allocate large enough buffers. Refer to your DAS-1800
Series board user’s guide for more information about the Keithley
Memory Manager.

4

Each channel on a DAS-1800 Series board can measure analog input
signals in one of four, software-selectable unipolar or bipolar analog input
ranges. The input range type (unipolar or bipolar) is initially set according
to your configuration file; use K-SetADMode to reset the input range
type. Refer to your DAS-1800 Series board user’s guide for more
information.

Table 2-2 lists the analog input ranges supported by DAS-1800 Series
boards and the gain and gain code associated with each range. (The gain
code is used by the FCD functions to represent the gain.)

4

2-9

4 4

& hap02-.frm Page 10 Monday, April 11,1994 9:55 AM

4

Channels

4

Table 2-2. Analog input Ranges

Analog Input Range

DAS-1801HC
DAS-1801ST

DAS-1802HR

4

DAS-18OOHC Series boards are configured with either 64 single-ended or
32 differential analog input channels, depending on the input
configuration specified in your configuration file. DAS-1800ST/HR
Series boards are configured with either 16 onboard single-ended or 8
onboard differential analog input channels. On DAS-1800ST/HR Series
boards, you can increase the number of channels to 2.56 single-ended or
128 differential channels using the EXP-1800 expansion board, described
in the next section.

4

2-l 0 Available Operations

4

4 t hap02-.frm Page 11 Monday, April 11, 1994 9:55 AM

4

The input channel configuration is initially set according to the
configuration file; use K-SetADConfig to reset the input channel
configuration. Use K-SetADCommonMode to set the common-mode
ground reference for DAS- 18OOST/HR Series boards in single-ended
input channel configuration.

You can perform an analog input operation on a single channel or on a
group of multiple channels. The following subsections describe how to
specify the channel(s) you are using.

Specifying Channels When Using EXP-1800 Expansion Boards
(DAS-18OOST/HR Series Only)

To increase the number of analog input channels, you can attach up to 16
EXP-1800 expansion boards to the DAS-1800 Series board. Each
EXP-1800 board has 16 analog input channels. If you are using
N EXP-1800 boards, you must attach them to DAS-1800 channels 0 to
N-J. Refer to the DAS-1800STIHR Series User’s Guide for information on
connecting EXP-1800 boards to DAS-1800STiHR Series boards.

The analog input channel connections on a DAS-1800 Series board or
EXP-1800 board are labelled with white-on-green numbers from 0 to 15.
These numbers are the physical channel number.?. If a system includes a
DAS-1800 Series board and one or more EXF-1800 boards, then that
system contains duplicate physical channel numbers. To uniquely identify
a physical channel, the Function Call Driver uses a scheme of logical
chunnel numbers. The charm& argument for any FCD function must be
specified as a logical channel number.

4

2-l 1

4 4

4 hap02-.frm Page 12 Monday, April 11, 1994 9:55 AM

2-12 Available Operations

The logical channel number corresponding to a particular physical
channel number is given by one of the following equations:

If the physical channel is on a DAS-1800 Series board:

LogicalChan# = PhysicalChatS + (15 x NumEXPs)

If the physical channel is on an EXP-1800 board:

LugicalChan# = PhysicalChan# + (16 x EXP#)

where

NumEXPs is an integer from 0 to 15 that identifies the number of
EXI- 1800 boards connected to the DAS- 1800 Series board, and

EXP# is an integer from 0 to 15 that indicates on which EXP-1800
board the physical channel is located (0 indicates the lirst EXP-1800
board).

For example, consider the system illustrated in Figure 2- 1, in which three
EXP1800 boards are connected to a DAS-IROIST.

DAS-18OiST

0 1 2 15
EXP #O Logical Channels 0 to 15

0 1 2 15
EXP #I Logical Channels 16 to 31

0 1 2 15
EXPW Logical Channels 32 to 47

3 Logical Channel 43

1.5 Logical Chancel 60

Figure 2-1. Example of Logical Channel Assignments

hap02Lfrm Page 13 Monday, April 11, 1994 9:55 AM

The logical channel that identifies channel 3 on the DAS-1801 board is
given by:

LogicalChan# = 3 + (15 x 3) = 3 +45 = 48

The logical channel that identifies channel 15 on the third EXP-1800
board is given by:

LogicalChard = 15 + (16 x 2) = 15 + 32 = 47

Acquiring Samples from a Single Channel

You can acquire a single sample or multiple samples from a single analog
input channel.

For single-mode analog input operations, you can acquire a single sample
from a single analog input channel. Use the K-ADRead function to
specify the channel and the gain code.

For interrupt-mode and DMA-mode analog input operations, you can
acquire a single sample or multiple samples from a single analog input
channel. Use the K-SetChn function to specify the channel and the
K-Se@ function to specify the gain code.

Acquiring Samples from a Group of Consecutive Channels

For interrupt-mode and DMA-mode analog input operations, you can
acquire samples from a group of consecutive channels. Use the
K-SetStartStopChn function to specify the first and last channels in the
group. The channels are sampled in order from first to last: the channels
are then sampled again until the required number of samples are read.

For example, assume that the start channel is 14, the stop channel is 17,
and you want to acquire five samples. Your program reads data first from
channel 14, then from channels 15, 16, and 17, and finally from channel
14 again.

You can specify a start channel that is higher than the stop channel. For
example, assume that you are using a differential input configuration, the
start channel is 3 1, the stop channel is 2, and you want to acquire five
samples. Your program reads data first from channel 3 1, then from
channels 0, 1, and 2, and finally from channel 31 again.

4

Z-13

+B hap02-.frm Page 14 Monday, April 11, 1994 9:55 AM

Use the K-SetG function to specify the gain code for all channels in the
group. (All channels must use the same gain code.) Use the
K-SetStartStopG function to specify the gain code, the start channel,
and the stop channel in a single function call.

Refer to Table 2-2 on page 2-10 for a list of the analog input ranges
supported by DAS-1800 Series boards and the gain code associated with
each range.

Acquiring Samples Using a Channel-Gain Queue

For interrupt-mode and DMA-mode analog input operations, you can
acquire samples from channels in a hardware channel-gain queue. In the
channel-gain queue, you specify the channels you want to sample, the
order in which you want to sample them, and a gain code for each
channel.

You can set up the channels in a channel-gain queue either in consecutive
order or in nonconsecutive order. You can also specify the same channel
more than once (up to a total of 64 entries in the queue for a
DAS-1800HC Series board, and up to 256 entries for a DAS-lSOOST/HR
Series board).

The channels are sampled in order from the first channel in the queue to
the last channel in the queue; the channels in the queue are then sampled
again until the board reads the specified number of samples.

Refer to Table 2-2 on page 2-10 for a list of the analog input ranges
supported by DAS-1800 Series boards and the gain code associated with
each range.

The way that you specify the channels and gains in a channel-gain queue
depends on the language you are using. Refer to page 3-27 for
information when programming in C or C++. Refer to page 3-37 for
information when programming in Pascal. Refer to page 3-44 for
information when programming in Visual Basic for Windows. Refer to
page 3-50 for information when programming in BASIC.

After you create the channel-gain queue in your program, use the
K-SetChnGAry function to transfer the contents of the channel-gain
queue to the driver/board.

2-14 Available Operations

hap02-.frm Page 15 Monday, April 11, 1994 9:55 AM

Conversion Modes

The conversion mode determines how the board regulates the timing of
conversions when you are acquiring multiple samples from a single
channel or from a group of multiple channels (known as a scan). For
interrupt-mode and DMA-mode analog input operations, you can specify
one of the following conversion modes:

. Paced mode - Use paced mode if you want to accurately control the
period between conversions of individual channels in a scan. Paced
mode is the default conversion mode.

. Burst mode -Use burst mode if you want to accurately control both
the period between conversions of individual channels in a scan and
the period between conversions of the entire scan. Use the
K-SetADFreeRun function to specify burst mode.

Use burst mode with SSH if you want to simultaneously sample all
channels in a scan using the SSH-8 accessory board. Use the
K-SetSSH function to specify burst mode with SSH.

Note: If you use an SSH-8 accessory board, you must use burst mode
with SSH. One extra tick of the burst mode conversion clock is
required to allow the SSH-8 board to sample and hold the values.
Refer to the SSH-8 board documentation for more infortnation.

Refer to your DAS-1800 Series board user’s guide for more information
about conversion modes.

Clock Sources

DAS-1800 Series boards provide two clock sources: a pacer clock and a
burst mode conversion clock. Each clock has a dedicated use. When
performing interrupt-mode and DMA-mode analog input operations ln
paced mode, you use only the pacer clock: when performing
interrupt-mode and DMA-mode analog input operations in burst mode
and burst mode with SSH, you use both the pacer clock and the burst
mode conversion clock. These clock sources are described in the
following subsections,

2-15

+P I hap02_.frm Page 16 Monday, April II,1994 9:55 AM

Z-16

In paced mode, the pacer clock determines the period between the
conversion of one channel and the conversion of the next channel. In
burst mode and burst mode with SSH, the pacer clock determines the
period between the conversions of one scan and the conversions of the
next scan. Use the K-SetClk function to specify an internal or an external
pacer clock. The internal pacer clock is the default pacer clock.

The internal and external pacer clocks are described as follows:

. Internal pacer clock - The internal pacer clock uses two cascaded
counters of the onboard counter/timer circuitry. The counters are
normally in an idle state. When you start the analog input operation
(using K-IntStart or K-DMAStart), a conversion is initiated. Note
that a slight time delay occurs between the time the operation is
started and the time conversions begin.

After the first conversion is initiated, the counters are loaded with a
count value and begin counting down. When the counters count down
to 0, another conversion is initiated and the process repeats.

Because the counters use a 5 MHz time base, each count represents
0.2 ps. Use the K-SetClkRate function to specify the number of
counts (clock ticks) between conversions. For example, if you specify
a count of 30, the period between conversions is 6 ps
(166.67 ksamples/s); if you specify a count of 87654, the period
between conversions is 17.53 ms (57 samples/s).

You can specify a count between 15 and 4,294,967,295. The period
between conversions ranges from 3 @LS to 14.3 minutes.

When using an internal pacer clock, use the following formula to
determine the number of counts to specify:

COUntS = 5 MHz time base
conversion rate

Available Operations

+b hap02-.frm Page 17 Monday, April 11,1994 9:55 AM

+P

For example, if you want a conversion rate of 10 ksamples/s, specify
a count of 500, as shown in the following equation:

5,000,~~0 = 5oo
10,000

. External pacer clock - You connect an external pacer clock to the
DIO/XPCLK pin (pin B39) on the main I/O connector of the
DAS- 1800HC Series board or to the XPCLK pin (pin 44) on the main
I/O connector of DAS-1800ST/HR Series boards. When you start an
analog input operation (using K-IntStart or K-DMAStart),
conversions are armed. At the next active edge of the external pacer
clock (and at every subsequent active edge of the external pacer
clock), a conversion is initiated. Use the K-SetExtClkEdge function
to specify the active edge (rising or falling) of the external pacer
clock. A falling edge is tbe default active edge for the external pacer
clock.

Note: The rate at which the computer can reliably read data from the
board depends on a number of factors, including your computer, the
operating system/environment, the gains of the channels, and other
software issues. If you are using an external pacer clock, make sure that
the clock initiates conversions at a rate that the analog-to-digital converter
can handle.

Refer to your DAS-1800 Series board user’s guide for more information
about the pacer clock.

Burst Mode Conversion Clock

In burst mode and burst mode with SSH, the burst mode conversion clock
determines the period between the conversion of one channel in a scan
and the conversion of the next channel in the scan.

Because the burst mode conversion clock uses a 1 MHz time base, each
clock tick represents 1 ks. Use the K-SetBurstTicks function to specify
the number of clock ticks between conversions. For example, if you
specify 30 clock ticks, the period between conversions is 30 ps
(33.33 ksamples/s).

2-I 7

43 hap02-.frm Page 18 Monday, April 11, 1994 9:55 AM

You can specify between 3 and 255 clock ticks. The period between
conversions ranges from 3 ps to 0.255 ms.

When using the burst mode conversion clock, use the following formula
to determine the number of clock ticks to specify:

clock ticks =
I MHz time base

burst mode conversion rate

For example, if you want a burst mode conversion rate of 10 ksamples/s,
specify 100 clock ticks, as shown in the following equation:

1,000,000 = 1oo
IO, 000

Refer to your DAS-1800 Series board user’s guide for more information
about the burst mode conversion clock.

Buffering Modes

The buffering mode determines how the driver stores the converted data
in the buffer. For interrupt-mode and DMA-mode analog input
operations, you can specify one of the following buffering modes:

. Single-cycle mode - In single-cycle mode, after the board converts
the specified number of samples and stores them in the buffer, the
operation stops automatically. Single-cycle mode is the default
buffering mode.

. Continuous mode - In continuous mode, the board continuously
converts samples and stores them in the buffer until it receives a stop
function; any values already stored in the buffer are overwritten. Use
the K-SetContRun function to specify continuous buffering mode.

2-18 Available Operations

+b t hap02-.frm Page 19 Monday, April 11, 1994 955 AM

Triggers

A trigger is an event that starts or stops an interrupt-mode or DMA-mode
analog input operation. An operation can use either one or two triggers.
Every operation must have a start trigger that marks the beginning of the
operation. You can use an optional second trigger, the about trigger, to
define when the operation stops. If you specify an about trigger, the
operation stops when a specified number of samples has been acquired
after the occurrence of the about-trigger event.

A post-trigger acquisition refers to an operation that only uses a start
trigger. The about trigger provides the capability to define operations that
acquire data before a trigger event (pre-trigger acquisition) and operations
that acquire data about (before and after) a trigger event (aboul-trigger
acquisition).

The following subsections describe the supported trigger sources and
post-, pre-, and about-trigger acquisitions.

Trigger Sources

The Function Call Driver supports three sources of triggers: internal,
analog, and digital. For interrupt-mode and DMA-mode analog input
operations, use K-SetlXg to specify the trigger source. The lrigger
events for each trigger source are described below. Note that the trigger
event is not significant until the operation the trigger governs has been
enabled (using K-DMAStart or K-IntStart).

Internal Trigger

An internal trigger is a software trigger. It does not impose any external
conditions that must be satisfied before the operation executes. An
operation governed by an internal start trigger begins executing as soon as
the operation is enabled. Consequently, the call to K-DMAStart or
K-IntStart is considered the trigger event for an internal trigger. The
internal trigger is the default trigger source.

2-i 9

43 hapOZ.frm Page 20 Monday, April 11.1994 955 AM

2-20

Analog Trigger

You can use the signal on any analog input channel as the trigger signal
for an analog trigger. The trigger events for analog triggers are illustrated
in Figure 2-2 and described as follows:

. If the trigger polarity is positive, a trigger event occurs the first time
the trigger signal changes from a voltage that is less than the trigger
level to a voltage that is greater than the trigger level.

l If the trigger polarity is negative, a trigger event occurs the first time
the trigger signal changes from a voltage that is greater than the
trigger level to a voltage that is less than the trigger level.

Figure 2-2. Trigger Events for Analog Triggers

Note: Analog triggering is a feature of the Function Call Driver and is
not implemented at the hardware level. Consequently, there is a delay
between the time the trigger event occurs and the time the driver
recognizes that the trigger event occurred.

Available Operations

&- hapOZ_.frm Page 21 Monday, April 11, 1994 9:55 AM

4+

You can specify a hysteresis value to prevent noise from triggering an
operation. Use the K-Set’IkigHyst function to speci-ly the hysteresis
value. For a positive-edge trigger, the analog signal most be below the
specified voltage level by at least the amount of the hysteresis value and
then rise above the voltage level before the trigger occurs: for a
negative-edge trigger, the analog signal must be above the specified
voltage level by at least the amount of the hysteresis value and then fall
below the voltage level before the trigger occurs.

The hysteresis value is an absolute number, which you specify as a raw
count value between 0 and 4095 for DAS-1800HC/ST Series boards and
between 0 and 65,535 for DAS-1800HR Series boards. When you add the
hysteresis value to the voltage level (for a negative-edge trigger) or
subtract the hysteresis value from the voltage level (for a positive-edge
trigger), the resulting value must also be between 0 and 4095 for
DAS-1800STEIC Series boards or between 0 and 65,535 for
DAS-1800HR Series boards. For example, assume that you are using a
negative-edge trigger on a channel of a DAS-1800HC/ST Series board
configured for an analog input range of f5 V. If the voltage level is +4.8 V
(4014 counts), you can specify a hysteresis value of 0.1 V (41 counts)
because 4014 + 41 is less than 4095, but you cannot specify a hysteresis
value of 0.3 V (123 counts) because 4014 + 123 is greater than 4095.
Refer to Appendix B for information on how to convert a voltage value to
a raw count value.

In Figure 2-3, the specified voltage level is +4 V and the hysteresis value
is 0.1 V. The analog signal must be below +3.9 V and then rise above
+4 V before a positive-edge trigger occurs; the analog signal must be
above +4.1 V and then fall below +4 V before a negative-edge trigger
occurs.

2-21

hapOZ.frm Page 22 Monday, April 11, 1994 9:55 AM

Level +‘q ”

trigger occ”rs

Figure 2-3. Using a Hysteresis Value

Digital Trigger

2-22

\

The digital trigger signal is available on the DIl,TGIN pin (pin 840) on
the main I/O connector of DAS1800HC Series boards and on the TGIN
pin (pin 46) on the main I/O connector of DAS-1800STiHR Series
boards. Use K SetDI’Ikig to specify whether you want the trigger event
to occur on a rising or falling edge. If the trigger polarity is positive, then
a trigger event occurs at each rising edge of the trigger signal. If the
trigger polarity is negative, then a trigger event occurs at each falling edge
of the trigger signal. These trigger events are illustrated in Figure 2-4.

Available Operations

a hap02-.frm Page 23 Monday, April 11, 1994 955 AM

+b

Trigger
went -. . . .

\H-l ll

Trigger signal 2 u I

Trigger e/vent

Triggersigcal -

Figure 2-4. Trigger Events For Digital Triggers

Post-Trigger Acquisition

Use post-trigger acquisition in applications where you want to collect data
after a specific event. Acquisition starts on an internal, analog, or digital
trigger event and continues until a specified number of samples has been
acquired or until the operation is stopped by a call to K-DMAStop or
K-IntStop.

To specify post-trigger acquisition, use the following function calls:

1. If you want acquisition to continue until you stop it using
K-DMAStop or K-In&Stop, use K-SetContRun to set the buffering
mode to continuous.

2. If you want acquisition to stop after a specified number of samples
has been acquired, use K ClrContRun to set the buffering mode to
single-cycle (in this buffekg mode, the operation stops as soon as
the board has acquired the number of samples specified by
K-SetBuf, K-SetDMABuf, K-SetBufI, or K-BufListAdd).

Z-23

4 hap02-.frm Page 24 Monday, April 11, 1994 955 AM

4

3. Specify the trigger that will start the operation. Use K-Set’Ikig to
specify the trigger source (internal for an internal trigger, external for
an analog or digital trigger).

4. If you are using an analog or digital trigger, use K-SetAD’Ikig (for an
analog trigger) or K-SetDITrig (for a digital trigger) to define the
trigger conditions.

5. Use K-ClrAbout’Ikig to disable the about trigger.

Pre-Trigger Acquisition

Use pre-trigger acquisition in applications where you want to collect data
before a specific digital trigger event (this is the about trigger event).
Acquisition starts on an internal, analog, or digital trigger event and
continues until the about-trigger event. Pm-trigger acquisition is available
with DMA-mode operations only.

To specify pre-trigger acquisition, use the following function calls:

1. Specify the trigger that will start the operation. Use K-Set’Ikig to
specify the trigger source (internal for an internal trigger, external for
an analog or digital trigger).

2. If using an analog or digital start trigger, use KTSetADTrig (for an
analog trigger) or K-SetDITrig (for a digital tngger) to define the
trigger conditions.

3. Use K-SetAboutWig to enable the about trigger and to set the
number of post-trigger samples to 1.

4. If the start trigger is not digital, specify the trigger conditions for the
about trigger. Use K Set’IYig to specify an external trigger, then use
K-SetDl’Ikig to speky the trigger conditions. (If the start trigger is
digital, then its trigger conditions are also used for the about trigger).

4

4

4

2-24 Available Operations

4

4 hapOl.frm Page 25 Monday, April 11.1994 9:55 AM

4

About-Trigger Acquisition

Use about-trigger acquisition in applications where you want to collect
data both before and after a specific digital trigger event (this is the about
trigger event). Acquisition starts on an internal, analog, or digital trigger
event and continues until a specified number of samples has been
acquired after the about-trigger event. About-trigger acquisition is
available with DMA-mode operations only.

To specify about-trigger acquisition, use the following function calls:

1. Specify the trigger that will start the operation. Use K-SetWig to
specify the trigger source (internal for an internal trigger, external for
an analog or digital trigger).

2. If using an analog or digital start trigger, use K SetADTrig (for an
analog trigger) or K-SetDITrig (for a digital trigger) to define the
trigger conditions.

3. Use K-SetAboutTrig to enable the about trigger and to specify the
desired number of post-trigger samples,

4. Specify the trigger conditions for the about trigger. Use K SetDITrig
to specify the trigger conditions. (If the start trigger is digital, then its
trigger conditions are also used for the about trigger).

Hardware Gates

A hardware gate is an externally applied digital signal that determines
whether conversions occur. You connect the gate signal to the DIl/TGIN
pin (pin B40) on the main I/O connector of DAS-1800HC Series boards
or on the TGIN pin (pin 46) on the main I/O connector of
DAS- 1 800ST/HR Series boards. If you have started an interrupt-mode or
DMA-mode analog input operation (using K-IntStart or K-DMAStart)
and the hardware gate is enabled, the state of the gate signal determines
whether conversions occur.

If the board is configured with a positive gate, conversions occur only if
the signal to DHRGIN (DAS-1800HC Series boards) or TGIN
(DAS-lSCOST/IIR Series boards) is high; if the signal to DIl/IGIN or
TGIN is low, conversions are inhibited. If the board is configured with a
negative gate, conversions occur only if the signal to Dll/TGIN is low; if

4

+P-

2-25

4

6 hap02_.frm Page 26 Monday, April 11,1994 955 AM

-e

the signal to DIl/TGIN is high, conversions are inhibited. Use the
K-SetGate function to enable and disable the hardware gate and to
specify the gate polarity (positive or negative). The default state of the
hardware gate is disabled.

You can use the hardware gate with an external analog trigger. The
software waits until the analog trigger conditions are met, and then the
hardware checks the state of the gate signal.

If you are not using an analog trigger, the gate signal itself can act as a
trigger. If the gate signal is in the inactive state when you start the analog
input operation, the hardware waits until the gate signal is in the active
state before conversions begin.

2-26

Note: You cannot use the hardware gate with an external digital trigger. If
you use a digital trigger at one point in your application program and later
want to use a hardware gate, you must fxst disable the digital trigger. You
disable the digital trigger by specifying an internal trigger in K-SetTrig
or by setting up an analog trigger (using the K-SetADTrig function).

Analog Output Operations (DAS-1800HC Series Only)

This section describes the following:

. Analog output operation modes available.

. How to allocate and manage memory for analog output operations.

. How to specify the following for an analog output operation:
channels, a clock rate, and a buffering mode.

Note: You cannot use an external trigger or external pacer clock with an
analog output operation.

Available Operations

@- hap02_.tim Page 27 Monday, April 11,1994 955 AM

Operation Modes

The operation mode determines which attributes you can specify for an
analog output operation. You can perform analog output operations in one
of the following modes:

. Single mode - In single mode, the driver writes a single value to one
or both analog output channels; you cannot perform any other
operation until the single-mode operation is complete.

Use the K-DAWrite function to start an analog output operation in
single mode. You specify the board you want to use, the analog output
channel(s), and the value you want to write.

. Interrupt mode In interrupt mode, the driver writes a single value
or multiple values to one or both analog output channels. A hardware
clock paces the updating of the analog output channel(s). Once the
analog output operation begins, control returns to your application
program. You store the values you want to write in a user-defined
buffer in the computer.

Use the K-IntStart function to start an analog output operation in
interrupt mode. You specify the board, analog output channel(s),
clock rate, buffering mode, and buffer address.

You can specify either single-cycle or continuous buffering mode for
interrupt-mode operations. Refer to page Z-30 for more information
on buffering modes. Use the K-I&top function to stop a
continuous-mode interrupt operation. Use the K-IntStatus function
to determine the current status of an interrupt operation.

For an analog output operation, the values are written as raw counts. For
information on converting voltage to raw counts, refer to Appendix B.

Memory Allocation and Management

Interrupt-mode analog output operations use a single memory buffer to
store the data to be written to the analog output channel(s). The maximum
number of samples each memory buffer can store (32K or 64K) depends
on the language you are using. See “Language-Specific Programming
Information” on page 3-22 for more information.

2-27

hap02Lfrm Page 28 Monday, April 11, 1994 9:55 AM

Since analog output operations typically require small arrays of data, you
can reserve a memory buffer by dimensioning aa array within your
application program’s memory area. Since the DAS-1800 Series Function
Call Driver writes data as 16-bit integers, you must dimension all local
arrays as integers.

Note: You can also use the K-IntAlloc function to allocate memory
dynamically, if desired. You specify the operation requiring the buffer, the
number of values you want to store in the buffer, the starting address of
the buffer, and the name you want to use to identify the buffer (this name
is called the memory handle). When the buffer is no longer required, you
can free the buffer for another use by specifying this memory handle in
the K-IntFree function.

After you dimension your array, you must assign the starting address of
the array and the number of samples stored in the anay. Each supported
programming language requires a particular procedure for dimensioning
an array and assigning the starting address. Refer to page 3-23 for
information when programming in C or C++. Refer to page 3-3 1 for
information when programming in Pascal. Refer to page 3-40 for
information when programming in Visual Basic for Windows. Refer to
page 3-46 for information when programming in BASIC.

Channels

DAS-1800HC Series boards contain two digital-to-analog converters,
each of which is associated with an analog output channel. You can
perform aa analog output operation on a single channel or on both
channels.

For single-mode analog output operations, you can write a single value to
one or both analog output channels. Use the K-DAWrite function to
specify the channel(s).

For interrupt-mode analog output operations, you can write a single value
or multiple values to one or both analog output chan;leIs. Use the
K-SetChn function to specify a single channel. Use the
K-SetStartStopChn function to specify analog output channel 0 as the
start channel and analog output channel 1 as the stop channel. When using

2-28 Available Operations

e hap02-.frm Page 29 Monday, April 11, 1994 9:55 AM

Clock Source

both channels, the first value in the buffer is written to channel 0, the
second value is written to channel 1, the third value is written to channel 0
again, and so on. After all the values in the buffer are written once, the
values are written again until the required number of values are written.

For example, assume that your buffer contains three values (123,456, and
789) and you want to write five values. Your program writes 123 to
channel 0,456 to channel 1,789 to channel 0, 123 to channel 1, and 456
to channel 0.

When performing interrupt-mode analog output operations, you can use
the internal pacer clock to determine the period between the updating of a
single analog output channel or between each simultaneous updating of
both analog output channels.

Note: You can use the internal pacer clock only if it is not being used by
another operation.

The internal pacer clock uses two cascaded counters of the onboard
counter/timer circuitry. The counters are normally in an idle state. When
you start the analog output operation (using K-IntStart), the analog
output channel(s) are updated. Note that a slight time delay occurs
between the time the operation is started and the time the channel(s) are
updated.

The counters are loaded with a count value and begin counting down.
When the counters count down to 0, the channel(s) are updated again and
the process repeats.

Because the counters use a 5 MHz time base, each count represents
0.2 ps. Use the K-SetClkRate function to specify the number of counts
(clock ticks) between updates. For example, if you specify a count of
5000, the period between updates is 1 ms (1 ksamples/s); if you specify a
count of 87654, the period between updates is 17.53 ms (57 samples/s).

You can specify a count between 15 and 4,294,967,29.5. The period
between updates ranges from 3 ps to 14.3 minutes.

2-29

4 hap02_.frm Page 30 Monday, April 11, 1994 9:55 AM

4

Note: The driver accepts a count value as low as 15. However, since the
FIFO is not used to buffer values for analog output operations, a low
count value may cause an overrun error, The maximum observed update
rates for the internal pacer clock are 1 ksamples/s when running under
Windows and 5 ksamples/s when mnning under DOS. These rates would
indicate a minimum count of 5,000 when running under Windows and
1,000 when running under DOS.

Use the following formula to determine the number of counts to specify:

5 MHz time base
counts = update rate

For example, if you want to update the analog output channels at a rate of
500 samples/s, specify a count of 10,000, as shown in the following
equation:

5,000~000 = 10 ooo
500 ’

Buffering Modes

2-30

The buffering mode determines how the driver writes the values in the
buffer to the analog output channels. For interrupt-mode analog output
operations, you can specify one of the following buffering modes:

. Single-cycle mode - In single-cycle mode, after the driver writes the
values stored in the buffer, the operation stops automatically.
Single-cycle mode is the default buffering mode.

. Continuous mode -In continuous mode, the driver continuously
writes values from the buffer until the application program issues a
stop function; when all the values in the buffer have been written, the
driver writes the values again. Use the K-SetContRun function to
specify continuous buffering mode.

Available Operations

4

+I+ hap02Lfrm Page 31 Monday, April 11,1994 955 AM

Digital l/O Operations

This section describes the following:

. Digital I/O operation modes available.

. How to allocate and manage memory for digital I/O operations,

l Digital I/O channels

. How to specify the following for a digital I/O operation: a clock rate
and a buffering mode.

Note: You cannot use an external trigger or external pacer clock with a
digital I/O operation.

Operation Modes

The operation mode determines which attributes you can specify for a
digital I/O operation. You can perform digital I/O operations in one of the
following modes:

l Single mode - In a single-mode digital input operation, the driver
reads the value of digital input channel 0 once; in a single-mode
digital output operation, the driver writes a value to digital output
channel 0 once. You cannot perform any other operation until the
single-mode operation is complete.

Use the K-DIRead function to start a digital input operation in single
mode; use the K-DOWrite function to start a digital output operation
in single mode. You specify the board you want to use, the digital I/O
channel, and the variable in which the value is stored.

2-31

4 hap02Lfrm Page 32 Monday, April 11, 1994 955 AM

4

Notes: Since digital input channel 0 is only four bits wide, you must
mask the value stored by K-DIRead with 15 (OF%) to obtain the
actual digital input value.

The value written by K-DOWrite must be a 32-bit value. For
DAS-1800HC Series boards, the eight least significant bits contain
the actual digital output value, and all other bits are irrelevant. For
DAS-lXOOST/HR Series boards, the four least significant bits contain
the actual digital output value, and all other bits are irrelevant.

. Interrupt mode - In an interrupt-mode digital input operation, the
driver reads the value of digital input channel 0 multiple times; in an
interrupt-mode digital output operation, the driver writes a single
value or multiple values to digital output channel 0 multiple times. A
hardware clock paces the digital I/O operation. Once the digital I/O
operation begins, control returns to your application program. The
driver stores digital input values in a user-defined buffer in the
computer; you store digital output values in a user-defined buffer in
the computer.

Note: The digital input buffer and the digital output buffer each
contain 16-bit integers. Each digital input value is stored in the four
least significant bits of each integer in the digital input buffer. For
DAS-1800HC Series boards, each digital output value is stored in tic
eight least significant bits of each integer in the digital output buffer.
For DAS-1800ST/HR Series boards, each digital output value is
stored in the four least significant bits of each integer in the digital
output buffer.

Use the K-IntStart function to start a digital I/O operation in
interrupt mode. You specify the board, digital I/O channel, clock rate,
buffering mode, and buffer address.

You can specify either single-cycle or continuous buffering mode for
interrupt-mode operations. Refer to page 2-38 for more information
on buffering modes. Use the K-IntStop function to stop a
continuous-mode interrupt operation. Use the K-In&Status function
to determine the current status of an interrupt operation.

4

2-32

4

Available Operations

4 4

4 hap02Lfrm Page 33 Monday, April 11, 1994 9:55 AM

Memory Allocation and Management

Interrupt-mode digital I/O operations use a single memory buffer to store
the data to be read or written. The maximum number of samples each
memory buffer can store (32K or 64K) depends on the language you are
using. See “Language-Specific Programming Information” on page 3-22
for more information.

Since digital I/O operations typically require small arrays of data, you can
reserve a memory buffer by dimensioning an array within your
application program’s memory area. Since the DAS-1800 Series Function
Call Driver reads and writes data as 16-bit integers, you must dimension
all local arrays as integers.

4

4

Note: You can also use the K-IntAlloc function to allocate memory
dynamically, if desired. You specify the operation requiring the buffer, the
number of values to store in the buffer, the variable in which to store the
starting address of the buffer, and the name you want to use to identify the
buffer (this name is called the memory handle). When the buffer is no
longer required, you can free the buffer for another use by specifying this
memory handle in the KIntFree function. 4

After you dimension or allocate your array, you must assign the starting
address of the array and the number of samples to store in the array. Each
supported programming language requires a particular procedure for
dimensioning an array and assigning the starting address. Refer to page
3-23 for information when programming in C or C++. Refer to page 3-31
for information when programming in Pascal. Refer to page 3-40 for
information when programming in Visual Basic for Windows. Refer to
page 3-46 for information when programming in BASIC.

2-33

4 hap02-.frm Page 34 Monday, April 11, 1994 9:55 AM

4

2-34

Digital Input Channel

DAS-1800 Series boards contain one 4.bit digital input channel
(channel 0). As shown in Figure 2-5, bit 0 contains the value of digital
input line 0 (DIO/KPCLK on DAS-18OOHC Series boards, DIO on
DAS-lSOOST/HR Series boards); bit 1 contains the value of digital input
line I (DIl/TGIN on DAS-1800HC Series boards, DIl on
DAS1800STiHR Series boards); bit 2 contains the value of digital input
line 2 (D12): bit 3 contains the value of digital input line 3 (D13).

bit 3 bit 2 bit 1 bit 0

DASl800HC Dl3 D12 D,l/ DIO,
TGIN XPCLK

bit3 bit 2 bit 1 bit 0

Figure 2-5. Digital Input Bits

A value of 1 in the bit position indicates that the input is high; a value of 0
in the bit position indicates that the input is low. For example, if the value
is 5 (OlOl), the input at DIO/XPCLK and DI2 is high and the input at
DIllrGIN and D13 is low.

Available Operations

4

4

4

.frm Page 35 Monday, April 11, 1994 9:55 AM

Notes: If no signal is connected to a digital input line, the input appears
high (value is 1).

@AS-1800HC Series boards only) If you are using an external pacer
clock, you cannot use digital input line 0 for general-purpose digital input
operations. If you are using an external digital trigger, you cannot use
digital input line 1 for general-purpose digital input operations. When
reading digital input channel 0, ignore the value of these bits.

Digital Output Channel

DAS-1800HC Series boards contain one 8-bit digital output channel
(channel 0). DAS-1800ST/HR Series boards contain one 4.bit digital
output chauuel (channel 0). As shown in Figure 2-6, bit 0 contains the
value to be written to digital output line 0 (DOO), bit 1 contains the value
to be written to digital output line 1 (DOl), and so on.

DAS1800STfHR Series

I I
bit? bit6 bit5 bit4 bit3 bit2 bit 1 bit 0

DC7 DO6 DDS DD4 DD3 DC2 DD, DO0

DAS-ISOOHC Series

Figure 2-6. Digital Output Bits

A value of I in the bit position indicates that the output is high: a value of
0 in the bit position indicates that the output is low. For example, if the
value written is I2 (OOOOllOO), the output at DOO, DOl, D04, D05,
D06, and DO7 is forced low and the output at DO2 and DO3 is forced
high.

2-35

A? hap02-.frm Page 36 Monday, April 11, 1994 9:55 AM

43

Note: The DAS-1800 Series Function Call Driver provides the
K-GetDOCurVal function to read the last digital output value written to
digital output channel 0 using K-DOWrite.

Clock Source

When performing interrupt-mode digital I/O operations, you can use the
internal pacer clock to determine the period between reading the digital
input channel or writing to the digital output channel.

Note: You can use the internal pacer clock only if it is not being used by
another operation.

The internal pacer clock uses two cascaded counters of the onboard
counter/timer circuitry. The counters are normally in an idle state. When
you start the digital I/O operation (using K-b&tart), a value is read or
written. Note that a slight time delay occurs between the time the
operation is started and the time the reading or writing begins.

The counters are loaded with a count value and begin counting down.
When the counters count down to 0, another value is read or written and
the process repeats,

Because the counters use a 5 MHz time base, each count represents
0.2 ps. Use the K-SetClkRate function to specify the number of counts
(clock ticks) between reads or writes. For example, if you specify a count
of 5000, the period between reads or writes is 1 ms (1 ksamples/s); if you
specify a count of 87654, the period between reads or writes is 17.53 ms
(57 samples/s).

You can specify a cotmt between I5 and 4,294,967,295. The period
between reads or writes ranges from 3 us to 14.3 minutes.

2-36 Available Operations

.frm Page 37 Monday, April 11, 1994 9:55 AM

Note: The driver accepts a count value as low as 15. However, since the
FIFO is not used to buffer values for digital I/O operations, a low count
value may cause overrun errors. The maximum observed update rates for
the internal pacer clock are 1 ksamples/s when mnning under Windows
and 5 ksamplesls when running under DOS. These rates would indicate a
minimum count of 5,000 when running under Windows and 1,000 when
running under DOS.

Use the following formula to determine the number of counts to specify:

COUntS = 5 MHz time base
read/write rate

For example, if you want to write data to digital output channel 0 at a rate
of 500 samples/s, specify a count of 10,000, as shown in the following
equation:

5,000,000
500 = 10,000

2-37

43 hapOZ.frm Page 3X Monday, April 1 I, 1994 9:55 AM

Buffering Modes

2-38

The buffering mode determines how the driver reads or writes the values
in the buffer. For interrupt-mode digital I/O operations, you can specify
one of the following buffering modes:

. Single-cycle mode - In a single-cycle-mode digital input operation,
after the driver fills the buffer, the operation stops automatically. In a
single-cycle-mode digital output operation, after the driver writes the
values stored in the buffer, the operation stops automatically.
Single-cycle mode is the default buffering mode.

. Continuous mode -In a continuous-mode digital input operation, the
driver continuously reads digital input channel 0 and stores the values
in the buffer until the application program issues a stop function; any
values already stored in the buffer are overwritten. In a continuous
mode digital output operation, the driver continuously writes values
from the buffer to digital output channel 0 until the application
program issues a stop function; when all the values in the buffer have
been written, the driver writes the values again. You use the
K-SetContRun function to specify continuous buffering mode.

Available Operations

3
Programming with the

Function Call Driver

This chapter contains an overview of the stmcture of the DAS-1800
Series Function Call Driver, as well as programming guidelines and
language-specific information to assist you when writing application
programs with the DAS-I 800 Series Function Call Driver.

How the Driver Works

When writing application programs, you can use functions from one or
more Keithley DAS Function Call Drivers. You initialize each driver
according to a particular configuration file. If you are using more than one
driver or more than one configuration file with a single driver, the driver
handle uniquely identifies each driver or each use of the driver.

You can program one or more boards in your application program. You
initialize each board using a board handle to uniquely identify each board.
Each board handle is associated with a particular driver.

The Function Call Driver(s) allow you to perform I/O operations in
various operation modes, For single mode, the I/O operation is performed
with a single call to a function; the attributes of the I/O operation are
specified as arguments to the function. Figure 3-I illustrates the syntax of
the single-mode, analog input operation function K-ADRead.

3-l

+I+ hap03-.frm Page 2 Monday, April 11,1994 9:57 AM

+B

3-2

Sinale-Mode Function utes of ODeration
K-ADRead (board, M Board number

channel, e Analog input channel

Wh - Gain applied to channel

buffer) - Buffer for data

Figure 3-1. Single-Mode Function

For other operation modes, such as interrupt mode and DMA mode, the
driver uses frames to perform the I/O operation. A frame is a data
structure whose elements define the attributes of the I/O operation. Each
frame is associated with a particular board, and therefore, to a particular
driver.

Frames help you create structured application programs. You set up the
attributes of the I/O operation in advance, using a separate function call
for each attribute, and then start the operation at an appropriate point in
your program. Frames are useful for operations that have many defining
attributes, since providing a separate argument for each attribute could
make a function’s argument list unmanageably long. In addition, some
attributes, such as the clock source and trigger source, are only available
for I/O operations that use frames.

You indicate that you want to perform an I/O operation by getting an
available frame for the driver and specifying the name you want to use to
identify the frame; this name is called the frame handle. You then specify
the attributes of the I/O operation by using setup functions to define the
elements of the frame associated with the operation. For example, to
specify the channel on which to perform an I/O operation, you might use
the K-SetChn setup function.

For each setup function, the Function Call Driver provides a readback
function, which reads the current definition of a particular element. For
example, the K-GetChn readback function reads the channel number
specified for the I/O operation.

Programming with the Function Call Driver

43 hap03_.frm Page 3 Monday, April 11,1994 9:57 AM

You use the frame handle you specified when accessing the frame in all
setup functions, readback functions, and other functions related to the I/O
operation. This ensures that you are defining the same I/O operation.

When you are ready to perform the I/O operation you have set up, you can
start the operation in the appropriate operation mode, referencing the
appropriate frame handle. Figure 3-2 illustrates the syntax of the
interrupt-mode operation function K-IntStart.

K-IntStart (frameffandfe)

Frame
Start Channel

Stop Channel

Clock Source

Trlgger Source

~tes of Ooeration
- FM analog Input channel

C---, Last analog Input channel

- Pacer clock source

t----, Trlgger source

Figure 3-2. Interrupt-Mode Operation

Different I/O operations require different types of frames. For example, to
perform a digital input operation, you use a digital input frame; to
perform an analog output operation, you use an analog output frame.

For DAS-1800 Series boards, interrupt-mode and DMA-mode operations
require frames. The DAS-1800 Series Function Call Driver provides the
following types of frames:

. Analog input frames, called A/D (analog-to-digital) frames. You use
the K-GetADFrame function to access an available A/D frame and
specify a frame handle.

3-3

43 hap03_.frm Page 4 Monday, April 11.1994 9:57 AM

3-4

Analog output frames, called D/A (digital-to-analog) frames. You use
the K-GetDAFrame function to access an available D/A frame and
specify a frame handle.

Digital input frames, called DI frames. You use the K-GetDIFrame
function to access an available DI frame and specify a frame handle.

Digital output frames, called DO frames. You use the
K-GetDOFrame function to access an available DO frame and
specify a frame handle.

If you want to perform an interrupt-mode or DMAmode operation and all
frames of a particular type have been accessed, you can use the
K-FreeFrame function to free a frame that is no longer in use. You can
then redefine the elements of the frame for the next operation.

When you access a frame, the elements are set to their default values. You
can also use the K-ClearFrame function to reset all the elements of a
frame to their default values.

Table 3-1 lists the elements of a DAS-1800 Series A/D frame; Table 3-2
lists the elements of a DAS-1800 Series D/A frame; Table 3-3 lists the
elements of a DAS-1800 Series DI frame; Table 3-4 lists the elements of a
DAS-1800 Series DO frame. These tables also list the default value of
each element, the setup function(s) used to define each element, and the
readback function(s) used to read the current definition of the element.

Programming with the Function Call Driver

hap03_.fim Page 5 Monday, April 11, 1994 9:57 AM

Table 3-1. A/D Frame Elements

+B hap03_.fYm Page 6 Monday, April 11,1994 9:57 AM

Element

Table 3-l. A/D Frame Elements (cont.)

Default Value Setup Function Readback Function

Trigger Polarity Positive (for analog KSetADTrig K-GetADTrig
trigger)

Positive (for digital K-SetDITrig K-GetDITrig

Trigger Level 1 K-SetADTrig 1 K-GetADTrig

Hardware Gate Disabled

Notes
’ This element must be set.

K-SetGate K-GetGate

2 Use this function to reset the value of this particular frame element to its default setting without
clearing the frame or getting a new frame. Whenever you clear a frame or get a new frame, this
frame element is set to its default value automatically.

3 The default value of this element cannot be changed.
4 This element is not currently used: it is included for future compatibility.

3-6 Programming with the Function Call Driver

4 hap03-.frm Page 7 Monday, April 11, 1994 9:57 AM

Table 3-2. D/A Frame Elements

Element

Buffer’

Default Value Setup Function

0 (NULL) K-SetBuf
K-SetBufl

Readback Function

K-GetBuf

Number of Samples 0 K-SetBuf
K-SetBufI

K-GetBuf

Stop Channel 0 K-SetStartStopChn K-GetStwtStopChn

K-GetClkRate

4

Notes
t This element must be set.
‘Use this function to reset the value of this particular frame element to its default setting

without clearing the frame or getting a new frame. Whenever you clear a frame or get a
new frame, this frame element is set to its default value automatically.

3 The default value of this element cannot be changed.

4

4

3-7

hap03-.frm Page 8 Monday, April 11,1994 9:57 AM

Table 3-3. DI Frame Elements

Element Default Value Setup Function Readback Function I I I
Buffer’ 0 (NULL) K-SetBuf K-GetBuf

K-SetBufl

Number of Samples 0 K-SetBuf K-GetBuf
KmSetBufl I

Pacer Clock Rate’ 0

Notes
’ This element must be set.

K-SetClkRate K-GetClkRate

*Use this function to reset the value of this particular frame element to its default setting
without clearing the frame or getting a new frame. Whenever you clear a frame or get a
new frame, this frame element is set to its default value automatically.

3 The default value of this element cannot be changed.

Programming with the Function Call Driver

A@ hap03-.frm Page 9 Monday, April 11, 1994 9:57 AM

+b

Table 3-4. DO Frame Elements

Element

Buffer’

Default Value Setup Function

0 (NULL) K-SetBuf
K&tBuil

Readback Function

K-GetBuf

1 KmSetBufl I

~~~~~~~~~~~~~~ ~:::::i:.:.:.:.:/.:.:.:.:.:.:.:.:.:.:.:/.:.:.:.:.:.:.:~:.::.:.~:.:.:.:.:.:.:~:.:.:.:.:. 
~~:~~~~~~~~~~~~~~ ..~ .../...././ . ..i..................... ~,., 

Stop Channel 0 Not applicable3 Not applicable3 

Pacer Clock Rate’ 0 K-SetClkRate K-GetClkRate 

Notes 
’ This element must bc set. 
‘Use this function to reset the value of this particular frame element to its default setting 

without clearing the frame or getting a new frame. Whenever you clear a frame or get a 
new frame, this frame element is set to its default value automatically. 

3 The default value of this element cannot be changed. 

Note: The DAS-1800 Series Function Call Driver provides many other 
functions that are not related to controlling frames, defining the elements 
of frames, or reading the values of frame elements. These functions 
include single-mode operation functions, initialization functions, memory 
management functions, and miscellaneous functions 

For information about using the FCD functions in your application 
program, refer to the following sections of this chapter. For detailed 
information about the syntax of FCD functions, refer to Chapter 4. 

3-9 



6 hap03-.frm Page 10 Monday, April 11, 1994 9:57 AM 

Programming Overview 

3-I 0 

To write an application program using the DAS-1800 Series Function 
Call Driver, perform the following steps: 

1. Define the application’s requirements. Refer to Chapter 2 for a 
description of the board operations supported by the Function Call 
Driver and the functions that you can use to define each operation. 

2. Write your application program. Refer to the following for additional 
information: 

- Preliminary Tasks, the next section, describes the programming 
tasks that are common to all application programs. 

- Operation-Specific Programming Tasks, on page 3- 11, describes 
operation-specific programming tasks and the sequence in which 
these tasks must be performed. 

- Chapter 4 contains detailed descriptions of the FCD functions. 

- The DAS-1800 Series standard software package and the 
ASO- software package contain several example programs. 
The FILES.TXT tile in the installation directory lists and 
describes the example programs. 

3. Compile and link the program. Refer to Language-Specific 
Programming Information, starting on page 3-22, for compile and 
link statements and other language-specific considerations for each 
supported language. 

Programming with the Function Call Driver 



+b hap03-frm Page 11 Monday, April 11, 1994 95’7 AM 

43 

Preliminarv Tasks 

For every Function Call Driver application program, you must perform 
the following preliminary tasks: 

1. 

2. 

3. 

4. 

Include the function and variable type definition tile for your 
language. Depending on the specific language you are using, this file 
is included in the DAS-1800 Series standard software package or the 
ASO- software package. 

Declare and initialize program variables. 

Use a driver initialization function (DASlSOO-DevOpen or 
K-OpenDriver) to initialize the driver. 

Use a board initialization function (DASlSOO-GetDevHandle or 
K GetDevHandle) to specify the board you want to use and to 
initialize the board. If you are using more than one board, use the 
board initialization function once for each board you are using. 

Operation-Specific Programming Tasks 

After completing the preliminary tasks, perform the appropriate 
operation-specific programming tasks. The operation-specific tasks for 
analog and digital f/O operations are described in the following sections. 

Note: Any FCD functions that are not mentioned in the 
operation-specific programming tasks can be used at any point in your 
application program. 

Analog Input Operations 

The following subsections describe the operation-specific programming 
tasks required to perform single-mode, interrupt-mode, and DMA-mode 
analog input operations. 

3-11 



43 hap03_.frm Page 12 Monday, April 11, 1994 9:57 AM 

+b 

Single Mode 

For a single-mode analog input operation, perform the following tasks: 

1. Declare the buffer or variable in which to store the single analog input 
value. 

2. Use the K-ADRead function to read the single analog input value; 
specify the attributes of the operation as arguments to the function. 

Interrupt Mode 

3-12 

For an interrupt-mode analog input operation, perform the following 
tasks: 

1. Use the K-GetADFrame function to access an A/D frame. 

2. Allocate the buffer(s) or dimension the array(s) in which to store the 
acquired data. Use the K-IntAlloc function if you want to allocate 
the buffer(s) dynamically outside your program’s memory area. 

3. If you want to use a channel-gain queue to specify the channels 
acquiriny data, define and assign the appropriate values to the queue 
and note the starting address. Refer to page 2-11 for more information 
about channel-gain queues. 

4. Use the appropriate setup functions to specify the attributes of the 
operation. The setup functions are listed in Table 3-6. 

Note: When you access a new A/D frame, the frame elements 
contain default values. If the default value of a particular element is 
suitable for your operation, you do not have to use the setup function 
associated with that element. Refer to Table 3-1 on page 3-5 for a list 
of the default values of A/JLI frame elements. 

Programming with the Function Call Driver 



.frm Page 13 Monday, April 11, 1994 9:57 AM 

4 

Table 3-5. Setup Functions for Interrupt-Mode 
Analog Input Operations 

Buffering Mode K-SetContRun 
K-ClrContRm? I 

Stop Channel K-SetStartStopChn 
K SetStartStooG I 

K-WC 
K-SetStartStopG I 

Conversion Mode K-SetADFreeRun 
K-ClrADFreeRun2 I 

Clock Source 1 K SetClk 

3-I 3 



& hap03Lfrm Page 14 Monday, April 11, 1994 9:57 AM 

4 

3-14 

Table 3-5. Setup Functions for Interiupt-Mode 
Analog Input Operations (cont.) 

Attribute Setup Function(s) 

Trigger Channel K-SetADTrig 

Trigger Level K-WADTrig 

Hardware Gate 

ytes 

K-&Gate 

This element must be set. 
2Use this function to reset the value of this particular 

frame element to its default setting without clearing 
the frame or getting a new frame. 

Refer to Chapter 2 for background information about the setup 
functions; refer to Chapter 4 for detailed descriptions of the setup 
functions. 

5. Use the K-IntStart function to start the interrupt-mode operation. 

6. Use the K-IntStatus function to monitor the status of the 
interrupt-mode operation. 

I. If you specified continuous buffering mode, use the K-IntStop 
function to stop the interrupt-mode operation when the appropriate 
number of samples has been acquired. 

8. If you are programming in Visual Basic for Windows or BASIC and 
you used K-IntAlloc to allocate your buffer(s), use the 
K-MoveRuffoArray function to transfer the acquired data from the 
allocated buffer to a local array that your program can use. 

9. If you used K-IntAlloc to allocate your buffer(s), use the K-IntFree 
function to deallocate the buffer(s). 

10. If you used K-BufListAdd to specify a list of multiple buffers, use the 
K-IWListReset function to clear the list. 

Programming with the Function Call Driver 

4 

4 4 



frm Page 15 Monday, April 11, 1994 9:57 AM 

11. Use the K-FreeFrame function to return the frame you accessed in 
step 1 to the pool of available frames. 

DMA Mode 

For a DMA-mode analog input operation, perform the following tasks: 

1. Use the K-GetADFrame function to access an A/D frame. 

2. Allocate the buffer(s) or dimension the array(s) in which to store the 
acquired data. Use the K-DMAAlloc function if you want to allocate 
the buffer(s) dynamically outside your program’s memory area. 

3. If you want to use a channel-gain queue to specify the channels 
acquiring data, define and assign the appropriate values to the queue 
and note the starting address. Refer to page 2-11 for more information 
about channel-gain queues. 

4. Use the appropriate setup functions to specify the attributes of the 
operation. The setup functions are listed in Table 3-6. 

Note: When you access a new A/D frame, the frame elements 
contain default values. If the default value of a particular element is 
suitable for your operation, you do not have to use the setup function 
associated with that element. Refer to Table 3-1 on page 3-5 for a list 
of the default values of A/D frame elements. 

3-15 



.frm Page 16 Monday, April 11.1994 9:57 AM 

3-16 

Table 3-6. Setup Functions for DMA-Mode 
Analog Input Operations 

Attribute 1 Setup Function(s) 1 

Buffer’ K-SetDMABuf 
K-BuiListAdd I 

Buffering Mode K-SetContRun 
KChContRut? I 

stop Channel K-SetStartStopChn 
KSetStartStopG 

j Gain 
I KK-k%tStooG I 

I Clock Source 1 K-SetClk I 

1 External Clock Edge 1 K-SetBxtClkEdae I 

Trigger Source KS&rig 

Programming with the Function Call Driver 



-f& hap03-.frm Page 17 Monday, April 11, 1994 9:57 AM 

Table 3-6. Setup Functions for DMA-Mode 
Analog Input Operatlons (cont.) 

( Attribute 1 Setup Function(s) 1 

1 Trigger Channel 1 K-SetADTrig 

Notes 
’ This element must be set. 
*Use this function to reset the value of this 

particular frame element to its default setting 
without clearing the frame or getting a new 
frame. 

Refer to Chapter 2 for background information about the setup 
functions; refer to Chapter 4 for detailed descriptions of the setup 
functions. 

5. Use the K-DMAStart function to start the DMA-mode operation. 

6. Use the K-DMAStatus function to monitor the status of the 
DMA-mode operation. 

I. Ifyou specified continuous buffering mode, use the K-DMAStop 
function to stop the DMA-mode operation when the appropriate 
number of samples has been acquired. 

8. Ifyou are programming in Visual Basic for Windows or BASIC and 
you used K-DMAAlloc to allocate your buffer(s), use the 
K-MoveBufToArray function to transfer the acquired data from the 
allocated buffer to a local array that your program can use. 

9. If you used K-DMAAlloc to allocate your buffer(s), use the 
K-DMAFree function to deallocate the buffer(s). 

3-17 



-& b hap03-.frm Page 18 Monday, April 11,1994 9:57 Ah4 

10. If you used KJtufListAdd to specify a list of multiple buffers, use the 
K-BufListReset function to clear the list. 

11. Use the K-FreeFrame function to return the frame you accessed in 
step 1 to the pool of available frames. 

Analog Output Operations (DAS-1800HC Series Only) 

The following subsections describe the operation-specific programming 
tasks required to perform single-mode and interrupt-mode analog output 
operations. 

Single Mode 

-e 

For a single-mode analog output operation, perform the following tasks: 

1. Declare the buffer or variable in which to store the single analog 
output value. 

2. Use the K-DAWrite function to write the single analog output value; 
specify the attributes of the operation as arguments to the function. 

Interrupt Mode 

For an intexrupt-mode analog output operation, perform the following 
tasks: 

1. Use the K-GetDAFrame function to access a D/A frame. 

2. Allocate the buffer or dimension the array in which to store the data to 
be written. Use the K-IntAlloc function if you want to allocate the 
buffer dynamically outside your program’s memory area. 

3. Use the appropriate setup functions to specify the attributes of the 
operation. The setup functions are listed in Table 3-7. 

3-18 Programming with the Function Call Driver 



-e b hap03-.frm Page 19 Monday, April 11,1994 957 AM 

Note: When you access a new D/A frame, the frame elements 
contain default values. f the default value of a particular element is 
suitable for your operation, you do not have to use the setup function 
associated with that element. Refer to Table 3-2 on page 3-7 for a list 
of the default values of D/A frame elements. 

Table 3-7. Setup Functions for Interrupt-Mode 
Analog Output Operations 

1 Attribute 1 Setup Function(s) 1 

Buffer’ K-SetBuf 
K-SetBllfl I 

Buffering Mode K-SetContRun 
K ClrContRun2 I 

Stop Channel 1 K-SetStartStopChn 

Notes 
‘This element must be set. 
‘Use this function to reset the value of this 

particular frame element to its defauh setting 
without clearing the frame or getting a new 
frame. 

Refer to Chapter 2 for background information about the setup 
functions: refer to Chapter 4 for detailed descriptions of the setup 
functions. 

4. If you are programming in Visual Basic for Windows or BASIC and 
you used K~lntAlloc to allocate your buffer, use the 
K-MoveArrayToBuf function to transfer the data from the local 
array to the dynamically allocated buffer that the driver can use. 

5. Use the K-IntStart function to start the interrupt-mode operation, 

3-19 



.frm Page 20 Monday, April 11, 1994 9:57 AM 

6. Use the K-IntStatus function to monitor the status of tbe 
interrupt-mode operation. 

I. lfyou specified continuous buffering mode, use the K-IntStop 
function to stop the interrupt-mode operation when the appropriate 
ntimber of samples has been written. 

8. If you used KJntAlloc to allocate your buffer. use the K-IntFree 
function to deallocate tbe buffer. 

9. Use the K-FreeFrame function to return the frame you accessed in 
step 1 to tbe pool of available frames. 

Digital I/O Operations 

The following subsections describe the operation-specific programming 
tasks required to perform single-mode and interrnpt-mode digital I/O 
operations. 

Single Mode 

For a single-mode digital I/O operation, perform the following tasks: 

1. Declare the buffer or variable in which to store tbe single digital I/O 
value. 

2. Use one of the following digital I/O single-mode operation functions, 
specifying the attributes of the operation as arguments to the function: 

3-20 

Writes a single digital output value. 

Programming with the Function Call Driver 



hap03JYm Page 21 Monday, April 11,1994 957 Ah4 

Interrupt Mode 

For an interrupt-mode digital l/O operation, perform the following tasks: 

1. Use the K-GetDIFrame function to access a DI frame; use the 
K-GetDOFrame function to access a DO frame. 

2. Allocate the buffer or dimension the array in which to store the data to 
be read or written. Use the K-IntAlloc function if you want to 
allocate the buffer dynamically outside your program’s memory area. 

3. Use the appropriate setup functions to specify the attributes of the 
operation. The setup functions are listed in Table 3-8. 

Note: When you access a new DI or DO frame, the frame elements 
contain default values. If the default value of a particular element is 
suitable for your operation, you do not have to use the setup function 
associated with that element. Refer to Table 3-3 on page 3-8 for a list 
of the default values of DI frame elements; refer to Table 3-4 on page 
3-9 for a list of the default values of DO frame elements. 

Table 3-S. Setup Functions for Interrupt-Mode 
Digital Input and Digital Output Operations 

~btlte 1 Setup Function(s) 1 

Buffer’ K-SetBuf 
K-S&WI I 

Buffering Mode K-SetConrRun 
K_ChContRun2 I 

Notes 
’ This element must be set. 
‘Use this function to reset the value of this 

particular frame element to its default setting 
without clearing the frame or geuing a new 
frame. 

3-21 



-e b hap03-.frm Page 22 Monday, April 11,1994 9:57 AM 

Refer to Chapter 2 for background information about the setup 
functions: refer to Chapter 4 for detailed descriptions of the setup 
functions. 

4. If you are performing a digital output operation, you are 
programming in Visual Basic for Windows or BASIC, and you used 
K-Ir~tAUoc to allocate your buffer, use the K-MoveArray’IbBuP 
function to transfer the data from the local array to the dynamically 
allocated buffer that the driver can use. 

5. Use the K-In&art function to start the interrupt-mode operation. 

6. Use the K-IntStatus function to monitor the status of the 
interrupt-mode operation. 

7. If you specified continuous buffering mode, use the K-IntStop 
function to stop the interrupt-mode operation when the appropriate 
number of samples has been written. 

8. If you are performing a digital input operation, you are programming 
in Visual Basic for Windows or BASIC. and you used KJntAUoc to 
allocate your bujj’er, use the K-MoveBufI’oArray function to 
transfer the data from the allocated buffer to a local array that your 
program can use. 

9. Ifyou used K-IntAUoc to allocate your buffer, use the K-IntFree 
function to deallocate the buffer. 

10. Use the K-FreeFrame function to return the frame you accessed in 
step 1 to the pool of available frames. 

Language-Specific Programming Information 

This section provides programming information for each of the supported 
languages. Note that the compilation procedures for all languages assume 
that the paths and/or environment variables are set correctly. 

3-22 Programming with the Function Call Driver 



4 hap03-.frm Page 23 Monday, April 11,1994 957 AM 

C/C++ Languages 

The following sections contain information you need to allocate and 
assign memory buffers and to create channel-gain queues when 
programming in C or C++, as well as language-specific information for 
Microsoft C/C++, Borland C/C++, Microsoft QuickC for Windows, and 
Microsoft Visual C++. 

Note: When programming in C/C++, proper typecasting may be required 
to avoid C/C++ type-mismatch warnings. 

Allocating and Assigning Dynamically Allocated Memory Buffers 

This section provides code fragments that describe how to allocate and 
assign dynamically allocated memory buffers when programming in C or 
C++. Refer to the example programs on disk for more information. 

Notes: The code fragments for dynamically allocated memory assume 
that you are using DMA mode; the code for interrupt mode is identical, 
except that you use the appropriate interrupt-mode functions instead of 
the DMA-mode functions. 

If you are programming in Windows’ Enhanced mode, you may be 
limited in the amount of memory you can allocate. It is recommended that 
you install the Keithley Memory Manager before you begin programming 
to ensure that you can allocate a large enough buffer or buffers. Refer to 
your DAS-1800 Series board user’s guide for more information about the 
Keithley Memory Manager. 

Single Memory Buffer 

You can use a single, dynamically allocated memory buffer for 
interrupt-mode analog input, analog output, and digital I/O operations and 
for DMA-mode analog input operations. 

The following code fragment illustrates how to use K-DMAAlloc to 
allocate a buffer of size Samples for the frame defined by hFrame and 

3-23 



hap03-.frm Page 24 Monday, April 11,1994 9:57 AM 

how to use K-SetDMABuf to assign the starting address of the buffer; 
the buffer can store a maximum of 65,536 samples. 

. . 
void far *AcqBuf; 
WORD hMem; 
. . . 

//Declare pointer to buffer 
//Declare word for memory handle 

wDasErr = K-DMAAlloc (hFrame, Samples, &AcqBuf, &hMem); 
wDasErr = K-SetDMABuf (hFrame, AcqBuf, Samples); 
. . 

The following code illustrates how to use K-DMAFree to later free the 
allocated buffer, using the memory handle stored by K-DMAAlloc. 

. . . 
WD~SEZT = K-DMAFree (hMem1; 
. . 

Note: Make sure that you always check the returned value (wDasErr in 
the previous examples) for possible errors. 

Multiple Memory Buffers 

You can use multiple, dynamically allocated memory buffers for 
interrupt-mode analog input operations and for DMA-mode analog input 
operations. 

The following code fragment illustrates how to use K-DMAAlloc to 
allocate five buffers of size Samples each for the frame defined by 
hADFrame and how to use KBufListAdd to assign the starting 
addresses of the five buffers; each buffer can store a maximum of 65,536 
samples. 

. . . 
void far *AcqBuf[51; 
WORD hMem[5]; 

. 

//Declare 5 pointers to 5 buffers 
//Declare 5 words for 5 memory handles 

for (i : 0; i < 5; i++) ( 
wDasErr : K-DMAAlloc ChADFrame, Samples, &AcqBuf[iI,&hMem[iI); 
wDasErr : K-BufListAdd (hADFrame, AcqBuffi.1, Samples); 
1 

. . 

3-24 Programming with the Function Call Driver 



+I+ hap03-.frm Page 25 Monday, April 11, 1994 9:57 Ah4 

The following code illustrates how to use K-DMAFree to later free the 
allocated buffers, using the memory handles stored by K DMAAlloc; if 
you free the allocated buffers, you must also use K-BufL&.tReset to reset 
the buffer list associated with the frame. 

. . 
for (i = 0; i < 5; i++). ( 

wDasErr : K-DMAFree (hMem[ill; 
) 
wDasErr = K-BufListReset ChADFrame); 

. 

Notes: Make sure that you always check the returned value (wDasErr in 
the previous examples) for possible errors. 

Accessing the Data 

You access the data stored in dynamically allocated buffers through 
C/C++ pointer indirection. For example, assume that you want to display 
the first 10 samples of the second buffer in tbe multiple-buffer operation 
described in the previous section (AcqBuf[l]). The following code 
fragment illustrates how to access and display the data. 

. 
int far *pData; 

. 
//Declare a pointer called pData 

pData = (int far *) AcqBuf[l]; //Assign pData to 2nd buffer 
for (i = 0; i < 10; i++) 

printf ("Sample #%d %X", i, *(pData+i) 1; 
. 

Dimensioning and Assigning Local Arrays 

This section provides code fragments that describe how to dimension and 
assign local arrays when programming in C or C++. Refer to the example 
programs on disk for more information. 

3-25 



43 hap03-.frm Page 26 Monday, April 11,1994 9:57 AM 

+h 

3-26 

Single Array 

You can use a single, local array for interrupt-mode analog input, analog 
output, and digital I/O operations. 

The following code fragment illustrates how to dimension an array of 
10,000 samples for the frame defined by hFrame and how to use 
K-SetBuf to assign the starting address of the array. The maximum array 
size is 65,536. 

. . 
int Data[lOOOO]; //Dimension array of 10,000 samples 
. . . 
wDasErr = K-SetBuf (hFrame, Data, 10000); 
. . 

Note: Make sure that you always check the returned value (wDasErr in 
the previous example) for possible errors. 

Multiple Arrays 

You can use multiple, local arrays for interrupt-mode analog input 
operations. 

The following code fragment illustrates how to allocate two arrays of 
32,000 samples each for the frame defined by hADFrame and how to use 
KBufListAdd to assign the starting addresses of the arrays, The 
maximum array size is 65,536. 

. . 
int Data1[320001: //Allocate Array #l of 32,000 samples 
int Data2[32000]; //Allocate Array #2 of 32,000 samples 
. . 
wDasErr = K-BufListAdd (hADFrame, D&al, 32000); 
wDasErr = K-BufListAdd (hADFrame, Data2, 32000); 
. . 

Note: Make sure that you always check the returned value (wDasErr in 
the previous example) for possible errors. 

Programming with the Function Call Driver 



hap03-.tim Page 27 Monday, April 11,1994 957 AM 

The DASDECL.H and DASDECL.HPP files defme a special data type 
(GainChanTable) that you can use to declare your channel-gain queue. 
GainChanTable is defined as follows: 

typedef struct GainChanTable 

WORD mm-of-codes; 
struct ( 

char Ghan: 
char Gain; 

) GainChanAry[256]; 
) GainChanTable; 

The following example illustrates how to create a channel-gain queue 
called MyChanGainQueue for a DAS-1802HC board by declaring and 
initializing a variable of type GahrChanTable. 

GainChanTable MyChanGainQueue = 
(8, //Number of entries 
0, 0, //Channel 0, gain of 1 
1. 1, //Channel 1, gain of 2 
2. 2, //Channel 2, gain of 4 
3. 3, //Channel 3, gain of 8 
3. 0, //Channel 3, gain of 1 
2. 1, //Channel 2, gain of 2 
1, 2, //Channel 1, gain of 4 
0, 3); //Channel 0, gain of 8 

After you create MyChanGainQueue, you must assign the starting 
address of MyChanGainQueue to the frame defined by hFrs.me, as 
follows: 

wDasErr = K-SetChnGAry (hFrame, &MyChanGainQueue); 

Note: Make sure that you always check the returned value (wDasErr in 
the previous example) for possible errors. 

3-27 



& hap03-.frm Page 28 Monday, April 11,1994 9:57 AM 

When you start the next analog input operation (using K-IntStart or 
K-DMAStart), channel 0 is sampled at a gain of 1, channel 1 is sampled 
at a gain of 2, channel 2 is sampled at a gain of 4, and so on. 

Programming in Microsoft C/C++ 

To program in Microsoft C/C++, you need the following files: these files 
are provided in the ASO- software package. 

3-28 Programming with the Function Call Driver 

1 DASDl2CL.H 1 Include file when compiling in C (.c programs). 

To create an executable file in Microsoft C/C++, use the following 
compile and link statements. Note thatfilename indicates the name of 
your application program. 

Type of Compile Compile and Link Statements 

C CL fcfi1ename.c 
LINKplename+use1800.obj,,,das1800+dasrface; 

c++ CL /cfilename.cpp 
LINK~lename+usel800.obj,,,dasl8O(kdasrface; 

Refer to page 3-23 for information about allocating and assigning 
dynamically allocated memory buffers when programming in Microsoft 
C/C++. Refer to page 3-25 for information about dimensioning and 
assigning local arrays when programming in Microsoft C/C++. Refer to 
page 3-27 for information about creating a channel-gain queue when 
programming in Microsoft C/C++. 



t hap03-.frm Page 29 Monday, April 11,1994 9:57 AM 

Programming in Borland C/C++ 

To program in Borland C/C++, you need the following files; these files 
arc provided in the ASO- software package. 

File 

DAS lW!J.LIB 

Description 

Linkable driver. 

DASDBCLHPP Include file when compiling in C++ (.cpp programs). 

USElXC@.OBJ Likable object. 

To create an executable file in Borland C/C++, use the following compile 
and link statements. Note thatfilename indicates the name of your 
application program. 

I%$ ) Compile and Link Statements’ 

C BCC -mlfilename.c use18CO.obj das18OO.lib dasrface.lib 

c++ BCC -mlJiknanre.cpp ose1800.obj das18OOJib dasrfacclib 

Notes 
’ These statements assume ti large memory model: however. any memory 

model is acceptable. 

, 

3-29 



hap03-.frm Page 30 Monday, April 11,1994 9:Sl AM 

Programming in Microsoft QoickC for Windows 

To program in Microsoft QuickC for Windows, you need the following 
files; these files are provided in the ASO- software package. 

File 

DASSHELL.DLL 

Description 

Dynamic Link Library. 

D1800lMP.LIB 

3-30 Programming with the Function Call Driver 

To create an executable file in Microsoft QuickC for Windows, perform 
the following steps: 

1. Loadfilenamec into the QuickC for Windows environment, where 
filename indicates the name of your application program. 

2. Create a project file. The project file should contain all necessary 
tiles, includingfilename.c,filename.rc,filenume.def,~lename.h, 
DASIMRLIB, and D18CQIMP.LIB, wherefilename indicates the 
name of your application program. 

3. From the Project menu, choose Build to create a stand-alone 
executable file (EXE) that you can execute from withii Windows. 



-6 hap03-.frm Page 31 Monday, April 11,1994 957 Ah4 

Programming in Microsoft Visual C++ 

To program in Microsoft Visual C++. you need the following files; these 
files are provided in the ASO- software package. 

1 File Description 

1 DASSHELL.DLL 1 Dvnamic Link Librarv. I 

To create an executable file in Visual C++, perform the following steps: 

1. Create a project file by choosing New from the Project menu. The 
project file should contain all necewvy files, includingfilename.c, 
filename.rc,fi/enume.def, DASIMPLJB, and D18OOIMPLIB. where 
filename indicates the name of your application program. 

2. From the Project menu, choose Rebuild All FILENAME.EXE to 
create a stand-alone executable file (.EXE) that you can execute from 
within Windows. 

Pascal Languages 

The following sections contain information you need to allocate and 
assign memory buffers and to create channel-gain queues when 
programming in Pascal, as well as language-specific information for 
Borland Turbo Pascal (for DOS) and Borland Turbo Pascal for Windows. 

3-31 



& t hap03-.frm Page 32 Monday, April 11,1994 9:57 AM 

Allocating and Assigning Dynamicaiiy Allocated Memory Buffers 

This section provides code fragments that describe how to allocate and 
assign dynamically allocated memory buffers when programming in, 
Pascal. Refer to the example programs on disk for more information. 

Notes: The code fragments for dynamically allocated memory assume 
that you are using DMA mode; the code for interrupt mode is identical, 
except that you use the appropriate interrupt-mode functions instead of 
the DMA-mode functions. 

If you are using Borland Turbo Pascal for Windows in Enhanced mode, 
you may be limited in the amount of memory you can allocate. It is 
recommended that you use the Keitbley Memory Manager before you 
begin programming to ensnre that you can allocate a large enough buffer 
or buffers. Refer to your DAS-1800 Series board user’s guide for more 
information about the Keitbley Memory Manager. 

3-32 

Reducing the Memory Heap 

Note: Reducing the memory heap is recommended for Borland ‘Btrbo 
Pascal (for DOS) only; if you are programming in Borland Turbo Pascal 
for Windows, proceed to the next section. 

By default, when Borland Turbo Pascal (for DOS) programs begin to run. 
Pascal reserves all available DOS memory for use by the internal memory 
manager: this allows you to perform GetMem and FreeMem operations. 
Pascal uses the compiler directive $M to distribute the available memory. 
The default configuration is [$m 163X4,0.655360), where 16384 bytes 
is the stack size, 0 bytes is the minimum heap size, and 655360 is the 
maximum heap size. 

It is recommended that you use the compiler directive $M to reduce the 
maximum heap reserved by Pascal to zero bytes by entering the 
following: 

(Sm (16384, 0, 011 

Programming with the Function Call Driver 

i 

$I -@ 



hap03-.frm Page 33 Monday, April 11, 1994 957 AM 

Reducing the maximum heap size to zero bytes makes all far heap 
memory available to DOS (and therefore available to the driver) and 
allows your application program to take maximum advantage of the 
K-IntAlIoc and K-DMAAIloc functions. You can reserve some space for 
the internal memory manager or for DOS, if desired. Refer to your 
Borland Turbo Pascal (for DOS) documentation for more information. 

Single Memory Buffer 

You can use a single, dynamically allocated memory buffer for 
interrupt-mode analog input, analog output, and digital I/O operations and 
for DMA-mode analog input operations. 

The following code fragment illustrates how to use K-DMAAlloc to 
allocate a buffer of size Samples for the frame defined by hFrame and 
how to use K-SetDMABuf to assign the starting address of the buffer. 
The maximum array size is 65,536. 

It is recommended that you declare a dummy type array of %teger. The 
dimension of this array is irrelevant; it is used only to satisfy Pascal’s 
type-checking requirements. 

($m (16384, 0, 0)) 
. . 
TYPO 

( Turbo Pascal for DOS only 1 

IntArray = Array[O..l] of Integer; 
. 

VZlYC 
AcqBuf : "IntArray; ( Declare buffer of dummy type ) 
hMem : Word; ( Declare word for memory handle, hMem 1 

. 
wDasErr := K-DMAAlloc (hFrame, Samples, BAcqBuf, hMem); 
wDasErr := K-SetDMABuf (hFrame, AcqBuf, Samples); 

The following code illustrates how to use K-DMAFree to later free the 
allocated buffer, using the memory handle stored by K-DMAAlloc. 

WD~SE~~ := K-DMAFree (hMem); 
. 

3-33 



-9 b hap03-.frm Page 34 Monday, April 11, 1994 9:57 Ah4 

Note: Make sure that you always check the returned value (wDasErr in 
the previous examples) for possible errors. 

Multiple Memory Buffers 

You can use multiple, dynamically allocated memory buffers for 
interrupt-mode analog input operations and for DMA-mode analog input 
operations. 

The following code fragment illustrates how to use K-DMAAlloc to 
allocate five buffers of size Samples each for the frame defined by 
hADFrame and how to use K-BufListAdd to assign the starting 
addresses of the five buffers. The maximum array size is 65,536. 

It is recommended that you declare a dummy type array of AInteger. The 
dimension of this array is irrelevant; it is used only to satisfy Pascal’s 
type-checking requirements. 

($m (16384, 0, 01) 
. . . 
TYPO 

( Turbo Pascal for DOS only ) 

IntArray = Array[O..ll of Integer; 

AcqBuf : Array[0..4] of "IntArray;(S buffers, dummy type) 
hMem : Array[0..4] of Word; (5 words for 5 memory handles) 
. . . 
nor i := 0 to 4 do begin 

wDasErr := K-DMAAlloc(hADFrame, Samples, @AcqBuf(il, hMem[il); 
wDasErr := K-BufListAdd (hADFrame, AcqBuf[il, Samples); 

End; 
. . 

The following code illustrates how to use K-DMAFree to later free the 
allocated buffers, using the memory handles stored by K7DMAAlloc; if 
you free the allocated buffers, you must also use K-BufLlstReset to reset 
the buffer list associated with the frame. 

. . 
For i := 0 to 4 do begin 

wDasErr := K-DMAFree (hMem(i1); 
End; 

3-34 Programming with the Function Call Driver 



.frm Page 35 Monday, April 11,1994 9:57 AM 

wDasErr := K-BufListReset (hADFrame); 
. 

Note: Make sure that you always check the returned value (wDasErr in 
the previous examples) for possible errors. 

Accessing the Data 

You access the data stored in dynamically allocated buffers through 
Pascal pointer indirection. For example, assume that you want to display 
the first 10 samples of the second buffer in the multiple-buffer operation 
described in the previous section (AcqBuf[l]). The following code 
fragment illustrates how to access and display the data. 

. 
for i := 0 to 10 do begin 

writeln ('Sample #', i,' =', AcqBuf[ll"(iI); 
End; 
. . 

Dimensioning and Assigning LOCal Arrays 

This section provides code fragments that describe how to dimension and 
assign local arrays when programming in Pascal. Refer to the example 
programs on disk for more information. 

3-35 

4 



hap03-.frm Page 36 Monday, April 11,1994 9:57 AM 

Single Array 

You can use a single, local array for interrupt-mode analog input, analog 
output, and digital I/O operations. 

The following code fragment illustrates how to dimension an array of 
10,000 samples for the frame defined by hFrame and how to use 
K-SetBuf to assign the starting address of the array: the array can store a 
maximum of 65,536 samples. 

. 
Data : Array[0..99991 of Integer; 

. 
wDasErr := K-SetBuf (hFrame, Data(O), 10000); 
. 

Note: Make sure that you always check the returned value (wDasErr in 
the previous example) for possible errors. 

Multiple Arrays 

You can use multiple, local arrays for interrupt-mode analog input 
operations. 

The following code fragment illustrates how’ to allocate two arrays of 
32,000 samples each for the frame defined by hADFrame and how to use 
K-BufListAdd to assign the starting addresses of the arrays; each array 
can store a maximum of 65,536 samples. 

. . . 
Data1 : Array[0..31999] of Integer; ( Allocate Array #1 ) 
Data2 : Array[0..31999] of Integer; ( Allocate Array #2 ) 

. 
wDasErr :: K-BufListAdd (hADFrame, DatalCO), 320001; 
wDasErr := K-BufListAdd IhADFrame, DataZ(O), 32000); 

. 

Note: Make sure that you always check the returned value (wDasEn iu 
the previous exaurple) for possible errors. 

3-36 



hap03-.frm Page 37 Monday, April 11, 1994 9:57 AM 

Creating a Channel-Gain Queue 

The following example illustrates how to create a channel-gain queue 
called MyChanGainQueue for a DAS-1802HC board by defining a 
Record as a new type. You must use K-SetChnCAry to assign the 
starting address of MyChanGainQueue to the frame defined by hFrame. 

TYPO 
GainChanTable : Record; 
num_of-codes : Integer; 
queue : Array[0..2551 of Byte; 
end; 

. 
const 

MyChanGainQueue : GainChanTable = ( 
rum-of-codes : (8); ( Number of entries ) 
queue :(O, 0, ( Channel 0, gain of 1 1 

1, 1, ( Channel 1, gain of 2 ) 
2. 2, ( Channel 2, gain of 4 ) 
3, 3. ( Channel 3, gain of 8 ) 
3, 0, ( Channel 3, gain of 1 ) 
2, 1, ( Channel 2, gain of 2 ) 
1. 2. ( Channel 1, gain of 4 1 
0, 3) I Channel 0, gain of 8 ) 

); 

wDasErr := I<-SetChnGAry (hFrame, MyChanGainQueue.num_of_codes); 

Note: Make sure that you always check the returned value (wDasErr in 
the previous example) for possible errors. 

When you start the next analog input operation (using K-In&art or 
K-DMAStart), channel 0 is sampled at a gain of 1, channel 1 is sampled 
at a gain of 2, channel 2 is sampled at a gain of 4, and so on. 

4 

4 

3-37 

4 



hap03Lfrm Page 38 Monday, April 11, 1994 9:57 AM 

Programming in Borland Turbo Pascal (for DOS) 

To program in Borland Turbo Pascal, you need the following files: these 
files are provided in the ASO- software package. 

File’ Description 

D 18OOTP6.TPU tibo Pascal unit for Version 6.0. 

Notes 
’ If you must create a new Turbo Pascal unit when compiling in Borland Turbo 

Pascal for versions higher than 7.0, refer to FILES.TXT for a list of the files to 
“SC 

3-38 

To create an executable file in Borland Turbo Pascal, use the following 
compile and link statement: 

TPC filename.pas 

wherefilename indicates the name of your application program. 

Refer to page 3-32 for information about allocating and assigning 
dynamically allocated memory buffers when programming in Borland 
Turbo Pascal. Refer to page 3-35 for information about dimensioning and 
assigning local arrays when programming in Borland Turbo Pascal. Refer 
to page 3-37 for information about creating a channel-gain queue when 
programming in Borland Turbo Pascal. 

Programming with the Function Call Driver 

4 

4 



6 hap03Lfrm Page 39 Monday, April 11,1994 9:57 AM 

Programming in Borland Turbo Pascal for Windows 

To program in Borland Turbo Pascal for Windows, you need the 
following files; these files are provided in the ASO- software 
package. 

File Description 

DASSHELL.DLL Dynamic Link Library. 

DASlSOO.DLL Dynamic Link Library. 
.~.~.,./,.,~.~,~,~/,~,~,~.~.~.~.~.~~.~.~~.~~.~.~.~.~.~..~. :,..;...:.;...:.;.:.::/.):/.:,:/,:,..:.:.:/.:,:.~.:,:.~.:.:.:.;.:.:.:.:.:.:,:.;.:.:.:.:.:.:.:.:.:.:.:.~: 

~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~ 
..~...... ,.,, ,..,,, ~,~ .,.......

DAS1800.INC Include file.

To create an executable file in Borland Turbo Pascal for Windows,
perform tbe following steps:

1. Loadjilename.pas into the Borland Turbo Pascal for Windows
environment, wherefilename indicates the name of your application
program.

2. From the Compile menu, choose Make.

Refer to page 3-32 for information about allocating and assigning
dynamically allocated memory buffers when programming in Borland
Turbo Pascal for Windows. Refer to page 3-35 for information about
dimensioning and assigning local arrays when programming in Borland
Turbo Pascal for Windows. Refer to page 3-37 for information about
creating a channel-gain queue when programming in Borland Turbo
Pascal for Windows.

3-39

hap03-.frm Page 40 Monday, April 11,1994 957 AM

3-40

Microsoft Visual Basic for Windows

The following sections contain information you need to allocate and
assign memory buffers and to create channel-gain queues when
programming in Microsoft Visual Basic for Windows, as well as
language-specific information for Microsoft Visual Basic for Windows.

Allocating and Assigning Dynamically Allocated Memory Buffers

This section provides code fragments that describe how to allocate and
assign dynamically allocated memory buffers when programming in
Microsoft Visual Basic for Windows. Refer to the example programs on
disk for more information.

Note: The code fragments for dynamically allocated memory assume
that you are using DMA mode; the code for interrupt mode is identical,
except that you use the appropriate interrupt-mode functions instead of
the DMA-mode functions.

If you are using Windows Enhanced mode, you may be limited in the
amount of memory you can allocate. It is recommended that you use the
Keithley Memory Manager before you begin programming to ensure that
you can allocate a large enough buffer or buffers. Refer to your
DAS-1800 Series board user’s guide for more information about the
Keithley Memory Manager.

Single Memory Buffer

You can use a single, dynamically allocated memory buffer for
interrupt-mode analog input, analog output, and digital I/O operations and
for DMA-mode analog input operations.

The following code fragment illustrates how to use K-DMAAlloc to
allocate a buffer of size Samples for the frame defined by hFrame and
how to use K-SetDMABuf to assign the starting address of the buffer:
the buffer can store a maximum of 32,761 samples.

Programming with the Function Call Driver

+

-43 hap03-.frm Page 41 Monday, April 11, 1994 9:57 AM

+b

Global AcqBuf As Long ' Declare pointer to buffer
Global hMem As Integer ' Declare integer for memory handle
.
wDasErr = K-DMAAlloc (hFrame, Samples, AcqBuf, hMem)
wDasErr = K-SetDMABuf (hFrame, AcqBuf, Samples)
.

The following code illustrates how to use K-DMAPree to later free the
allocated buffer, using the memory handle stored by K-DMAAlloc.

. .
wDasErr = K-DMAFree (hMem)

Note: Make sure that you always check the returned value (wDasErr in
the previous examples) for possible errors,

Multiple Memory Buffers

You can use multiple, dynamically allocated memory buffers for
interrupt-mode analog input operations and for DMA-mode analog input
operations.

The following code fragment illustrates how to use K-DMAAlloc to
allocate five buffers of size Samples each for the frame defined by
hADFrame and how to use K-BufListAdd to assign the starting
addresses of the five buffers; each buffer can store a maximum of 32,767
samples.

.
Global AcqBuf(5) As Long
Global hMem(S) As Integer
.
for i% = 0 to 4

' Declare 5 pointers to 5 buffers
' Declare 5 memory handles

wDasErr = K-DMAAlloc (hFrame, Samples, AcqBuf(i%), hMem(i%))
wDasErr = K_BufListAdd (hFrame, AcqBuf(i%), Samples)

next i%
. .

3-41

4 hap03_.frm Page 42 Monday, April 11,1994 957 AM

The following code illustrates how to use K-DMAFree to later free the
allocated buffers, using the memory handles stored by K DMAAlloc; if
you free the allocated buffers, you must also use K-BufZistReset to reset
the buffer list associated with the frame.

.
for i% = 0 to 4

wDasErr = K-DMAFree (hMem(i%))
next i%
wDasErr = K-BufListReset ChADFrame)

Note: Make sure that you always check the returned value (wDasErr in
the previous examples) for possible errors.

Accessing the Data

In Microsoft Visual Basic for Windows, you cannot directly access analog
input samples stored in dynamically allocated memory buffers. You must
use K MoveBuffoArray to move a subset of the data into a local buffer
as required. The following code fragment illustrates how to move the first
100 samples of the second buffer in the multiple-buffer operation
described in the previous section (AcqBuf(1)) to a local memory buffer.

. . .
Dim Buffer(1000) As Integer ' Declare local memory buffer
.
wDasErr = K-MoveBufToArray (Buffer(O), AcqBuf(l), 100)
.

Dimensioning and Assigning Local Arrays

This section provides code fragments that describe how to dimension and
assign local arrays when programming in Microsoft Visual Basic for
Windows. Refer to the example programs on disk for more information.

Single Array

YOU can use a single, local array for interrupt-mode analog input, analog
output, and digital l/O operations.

3-42 Programming with the Function Call Driver

4 hap03Lfrm Page 43 Monday, April 11.1994 957 AM

4

4

The following code fragment illustrates how to dimension an array of
10,000 samples for the frame defined by hFrame and how to use
K-SetButT to assign the starting address of the array; the local array can
store a maximnm of 32,767 samples.

. .
Global Data(10000) As Integer ' Allocate array
.
wDasErr = K-SetBufI (hFrame, Data(O), 10000)

Notes: Make sure that you always check the returned value (wDasErr in
the previous example) for possible errors.

Multiple Arrays

You can use multiple, local arrays for interrupt-mode analog input
operations.

The following code fragment illustrates how to dimension two arrays of
32,000 samples each for the frame detined by hADFrame and how to use
K-BufListAdd to assign the starting addresses of the arrays; each local
array can store a maximum of 32,767 samples.

. . .
Global Datal(32000) As Integer ' Allocate Array #l
Global Data2(32000) As Integer ' Allocate Array #2
.
wDasErr = K-BufListAdd (hADFrame, Datal(O), 32000)
wDasErr = K-BufListAdd (hADFrame, Data2(0), 32000)
.

Notes: Make sure that you always check the returned value (wDasErr in
the previous example) for possible errors,

4

4

3-43

4

4 I hap03-.frm Page 44 Monday, April 11,1994 9:57 Ah4

4

Creating a Channel-Gain Queue

Before you create your channel-gain queue, you must declare an array of
integers to accommodate the required number of entries. To accommodate
the maximum possible channel-gain queue (256 entries), declare an array
of 513 integers ((256 x 2) + 1). Next, you must fill the array with the
channel-gain information. After you create the channel-gain queue, use
K-FormatChnGAry to reformat the channel-gain queue so that it can be
used by the DAS-1800 Series Function Call Driver.

The following code fragment illustrates how to create a four-entry
channel-gain queue called MyChanGainQueue for a DAS-1802HC board
and how to use K-SetChnGAry to assign the starting address of
MyChanGainQueue to the frame defined by hFrame.

. .
Global MyChanGainQueue(513) As Integer ‘Maximum # of entries

MyChanGainQueue(0) = 4 ' Number of channel-gain pairs
MyChanGainQueue(1) = 0 ' Channel 0
MyChanGainQueue(2) = 0 ' Gain of 1
MyChanGainQueue(3) = 1 ' Channel 1
MyChanGainQueue(4) = 1 ' Gain of 2
MyChanGainQueue(5) = 2 ' Channel 2
MyChanGainQueue(6) = 2 ' Gain of 4
MyChanGainQueue(7) = 2 ' Channel 2
MyChanGainQueue(8) = 3 ' Gain of 8

.
wDasErr = I<-FormatChnGAry (MyChanGainQueue(0))
wDasErr = K_SetChnGAry (hFrame, MyChanGainQueue(0))

.

Once the channel-gain queue is formatted, your Visual Basic for
Windows program can no longer read it. To read or modify the array after
it has been formatted, you must use K-RestoreChnGAry as follows:

wDasErr = K-RestoreChnGAry (MyChanGainQueue(0))
.

Notes: Make sure that you always check the returned value (wDasErr in
the previous example) for possible errors.

4

4

3-44

4

4 hap03-.frm Page 45 Monday, April 11,1994 957 AM

4

When you start the next analog input operation (using K-IntStart or
K-DMAStart), channel 0 is sampled at a gain of 1, channel 1 is sampled
at a gain of 2, channel 2 is sampled at a gain of 4, and so on.

Programming in Microsoft Visual Basic for Windows

To program in Microsoft Visual Basic for Windows, you need the
following files; these files are provided in the ASO- software
package.

File Description

DASSHELL.DLL Dynamic Link Library.

DAS 1800.DLL Dynamic Link Library.
../ ,.....,.,.....,.,...,...... :.:.:,:.:.:n:.:.:.:.:::::.:.:.:.:.:.:.:::.:.:.:.~.:.:.:.:.:.:.:.~.:.:.:,:.:.:.:.:.:.:.;.:.:.:.:.:.:.:.:.:.:.~,:,:,:.:.:,:.:,:,:,:,:~:.:~:,:.:,:,:,:.:. ~~~~~~~~~

DASlSOO.BAS Include tile; must be added to the Project List.

To create an executable file from the Microsoft Visual Basic for Windows
environment, choose Make EXE File from the Run menu.

Refer to page 3-40 for information about allocating and assigning
dynamically allocated memory buffers when programming in Microsoft
Visual Basic for Windows. Refer to page 3-42 for information about
dimensioning and assigning local arrays when programming in Microsoft
Visual Basic for Windows. Refer to page 3-44 for information about
creating a channel-gain queue when programming in Microsoft Visual
Basic for Windows.

3-45

4

4 hap03-.I?m Page 46 Monday, April 11, I994 99 AM

4

BASIC Languages

The following sections contain information you need to allocate and
assign memory buffers and to create channel-gain queues when
programming in BASIC, as well as language-specific information for
Microsoft QuickBasic (Versions 4.0 and 4.5). Microsoft Professional
Basic (Version 7.0). and Microsoft Visual Basic for DOS.

Allocating and Assigning Dynamically Allocated Memory Buffers

This section provides code fragments that describe how to allocate and
assign dynamically allocated memory buffers when programming in
BASIC. Refer to the example programs on disk for more information.

3-46

Note: The code fragments for dynamically allocated memory assume
that you are using DMA mode; the code for interrupt mode is identical,
except that you use the appropriate interrupt-mode functions instead of
the DMA-mode functions.

Reducing the Memory Heap

By default, when BASIC programs run, all available memory is left for
use by the internal memory manager. BASIC provides the SetMem
function to distribute the available memory (the Far Heap). It is necessary
to re-distribute the Far Heap if you want to use dynamically allocated
buffers, It is recommended that you include the following code at the
beginning of BASIC programs to Cree the Far Heap for the driver’s use:

FarHeapSize& = SetMem(0)
NewFarHeapSize& = SetMem(-FarHeapSize&/2)

Single Memory Buffer

You can use a single, dynamically allocated memory buffer for
interrupt-mode analog input, analog output, and digital I/O operations and
for DMA-mode analog input operations.

The following code fragment illustrates how to use K-DMAAlloc to
allocate a buffer of size Samples for the frame defined by hFrame and

Programming with the Function Call Driver

4

4

4 4 4

4 hap03-.fim Page 47 Monday, April 11.1994 957 AM 4

how to use K-SetDMABuf to assign the starting address of the buffer;
the buffer can store a maximum of 65,536 samples.

.
Dim AcqBuf As Long ' Declare pointer to buffer
Dim hMem As Integer ' Declare integer for memory handle

wDasErr = KDMAAlloc ChFrame, Samples, AcqBuf, hMem)
wDasErr = KSetDMABuf (hFrame, AcqBuf, Samples)

The following code illustrates how to use K-DMAFree to later free the
allocated buffer, using the memory handle stored by K-DMAAlloc.

. .
wDasErr : KDMAFree ChMem)

.

Note: Make sure that you always check the returned value (wDasErr in
the previous examples) for possible errors.

4

You can use multiple, dynamically allocated memory buffers for
interrupt-mode analog input operations and for DMA-mode analog input
operations.

The following code fragment illustrates how to use K-DMAAlloc to
allocate five buffers of size Samples each for the frame defined by
hADFrame and how to use K-BufListAdd to assign the starting
addresses of the five buffers; each buffer can store a maximum of 32,767
samples.

.
Dim AcqBuf(5) As Long
Dim hMem(5) As Integer

' Declare 5 pointers to 5 buffers
' Declare 5 memory handles

. .
for i% = 0 to 4

wDasErr : KDMAAlloc (hFrame, Samples, AcqBuf(i%), hMem(i%))
wDasErr = KBufListAdd (hFrame, AcqBuf(i%), Samples)

next i%

3-47

& hap03-frm Page 4X Monday, April 11,1994 957 AM

The following code illustrates how to use K-DMAFree to later free the
allocated buffers, using the memory handles stored by K DMAAlloc; if
you free the allocated buffers, you must also use KBufL%tReset to reset
the buffer list associated with the frame.

for i% = 0 to 4
wDasErr = K-DMAFree (hMem(i%))

next i%
wDasErr = K-BufListReset (hADFrame)

Note: Make sure that you always check the returned value (wDasErr in
the previous examples) for possible errors.

Accessing the Data

In BASIC, you cannot directly access analog input samples stored in
dynamically allocated memory buffers. You must use
K-MoveButToArray to move a subset of the data into a local buffer as
required. The following code fragment illustrates how to move the first
100 samples of the second buffer in the multiple-buffer operation
described in the previous section (AcqBuf(1)) to a local memory buffer.

. .
Dim BufferClOOO) As Integer ' Declare local memory buffer
.
wDasErr = K-MoveBufToArray (Buffer(O), AcqBuf(1). 100)

Dimensioning and Assigning Local Arrays

This section provides code fragments that describe how to dimension and
assign local arrays when programming in BASIC. Refer to the example
programs on disk for more information.

3-48 Programming with the Function Call Driver

+b

+b

I$

.frm Page 49 Monday, April 11,1994 9:57 AM

Single Array

You can use a single, local array for interrupt-mode analog input, analog
output, and digital I/O operations.

The following code fragment illustrates how to dimension an array of
10,000 samples for the frame defined by Frame and how to use
K-SetBufl to assign the starting address of the array; the local array can
store a maximum of 32,767 samples.

. . I

Dim Data(10000) As Integer ' Allocate array
.

wDasErr = K-SetBufI ChFrame, Data(O), 10000)

Notes: Make sure that you always check the returned value (wDasErr in
the previous example) for possible errors.

Multiple Arrays

You can use multiple, local arrays for interrupt-mode analog input
operations.

The following code fragment illustrates how to dimension two arrays of
32,000 samples each for the frame defined by hADFrame and how to use
K-BufListAdd to assign the starting addresses of the arrays; each local
array can store a maximum of 32,767 samples.

Dim Datal(32000) As Integer ' Allocate Array #l
Dim Data2(320001 As Integer ' Allocate Array #2

.
wDasErr = KBufListAdd ChADFrame, !Jatal(O), 32000)
wDasErr = KBufListAdd ChADFrame, Data2(0), 32000)
.

Notes: Make sure that you always check the returned value (wDasErr in
the previous example) for possible errors.

3-49

4 i hap03-.frm Page 50 Monday, April 11, 1994 9:57 AM

4

3-50

4

Creating a Channel-Gain Queue

Before you create your channel-gain queue, you must declare an array of
integers to accommodate the required number of entries. To accommodate
the maximum possible channel-gain queue (256 entries), declare an array
of 5 13 integers ((256 x 2) + 1). Next, you must fill the array with the
channel-gain information. After you create the channel-gain queue, use
K-FormatChnCAry to reformat the channel-gain queue so that it can be
used by the DAS-1800 Series Function Call Driver.

The following code fragment illustrates how to create a four-entry
channel-gain queue called MyChanGainQueue for a DAS-1802HC board
and how to use K-SetChnCAry to assign the starting address of
MyChanGainQueue to the frame defined by hFrame.

Dim MyChanGainQueue(513) As Integer 'Maximum # of entries

MyChanGainQueue(0) = 4 ' Number of channel-gain pairs
MyChanGainQueue(l) = 0 ' Channel 0
MyChanGainQueue(2) = 0 ' Gain of 1
MyChanGainQueue(3) = 1 ' Channel 1
MyChanGainQueue(4) = 1 ' Gain of 2
MyChanGainQueue(5) = 2 ' Channel 2
MyChanGainQueue(6) = 2 ' Gain of 4
MyChanGainQueue(7) = 2 ' Channel 2
MyChanGainQueue(8) = 3 ' Gain of 8

wDasErr = KFormatChnGAry (MyChanGainQueue(0))
wDasErr = KSetChnGAry (hFrame, MyChanGainQueue(0))

.

Once the channel-gain queue is formatted, your BASIC program can no
longer read it. To read or modify the array after it has been formatted, you
must use K-RestoreChnCAry as follows:

.
wDasErr = KRestoreChnGAry (MyChanGainQueue(O) 1

Notes: Make sure that you always check the returned value (wDasErr in
the previous examples) for possible errors.

Programming with the Function Call Driver

4

4

hap03_.frm Page 51 Monday, April 11,1994 9:57 AM

When you start the next analog input operation (using K-IntStart or
K-DMAStart). channel 0 is sampled at a gain of 1, channel 1 is sampled
at a gain of 2, channel 2 is sampled at a gain of 4, and so on.

Programming in Microsoft QuickBasic (Version 4.0)

To program in Microsoft QuickBasic (Version 4.0), you need the
following files; these files are provided in the DA.%1800 Series standard
software package.

File

D1800Q40.LIB

Description

Linkable driver for QuickBasic, Version 4.0,
st~&alone, executable (.EXE) nro~ams.

QB4DECL.BI Include tile.

DASlSOO.BI Include file.

For Microsoft QuickBasic (Version 4.0), you can create an executable file
from within the programming environment, or you can use a compile and
link statement.

To create an executable file from within the programming environment,
perform the following steps:

I. Enter the following to invoke the environment:

QB /L D1800Q40 filename.bas

wherefifename indicates the name of your application program

2. From the Run menu, choose Make EXE File.

4

4

3-51

4

hap03-.frm Page 52 Monday, April 11,1994 9:57 AM

4

To use a compile and link statement, enter the following:

BC filename.bas /O
Link filename.obj,, , Dl800Q40.lib+BCOM40.lib;

wherefilename indicates the name of your application program.

Refer to page 3-48 for information about dimensioning and assigning
local arrays when programming in Microsoft QuickBasic (Version 4.0).
Refer to page 3-48 for information about creating a channel-gain queue
when programming in Microsoft QuickBasic (Version 4.0).

Programming in Microsoft QuickBasic (Version 4.5)

3-52

To program in Microsoft QuickBasic (Version 4.5), you need the
following tiles; these files are provided in the DAS-1800 Series standard
software package.

File

D1800Q45.LIB

Description

Linkable driver for QuickBasic, Version 4.5,
stand-alone, executable (.EXE) programs.

OB4DECL.BI Include tile.

~~~~~~~~~~~~~~~~~:~~ 

::::.~.:.:.:.:~:.~.:.:.:.:.:.:.:.:I.:~:.:./.:.:~.:.:.:.:.:.:.:.:,:.:.:,:.:.:.:.~.:.:.:.:...:.: .:.: ,..,.,.,.,...,.,.: .,.,.,.,.,.,.: .,.,.....,./,.,...._... I ....j..,.,.,.,.,.,,,. < ,,,.,.........,.,..............,,.,.,...........;.,...........,...,.,...,.,. .,..,..,....,l...l..i.,..i ...i,....l.......i ...j.,..,..,.... 

DASlSOO.BI Include file. 

For Microsoft QuickBasic (Version 4.5), you can create an executable file 
from within the programming environment, or you can use a compile and 
link statement. 

Programming with the Function Call Driver 

4 

4 



hapOl.frm Page 53 Monday, April 11, 1994 9:57 AM 

To create an executable file from within the programming environment, 
perform the following steps: 

1. Enter the following to invoke the environment: 

QB /L DlEOOQ45 filename.bas 

wherefilename indicates the name of your application program. 

2. From the Run menu, choose Make EXE File. 

To use a compile and link statement, enter the following: 

BC filename.bas /O 
Link filename.obj,,, DlBOOQ45.lib+BCOM45.lib; 

wherefilename indicates the name of your application program. 

Refer to page 3-48 for information about dimensioning and assigning 
local arrays when programming in Microsoft QuickBasic (Version 4.5). 
Refer to page 3-50 for information about creating a channel-gain queue 
when programming in Microsoft QuickBasic (Version 4.5). 

Programming in Microsoft Professional Basic (Version 7.0) 

To program in Microsoft Professional Basic (Versior 7.0), you need the 
following tiles; these tiles are provided in the DAS-1800 Series standard 
software package. 

File 

i 
DlSOl@BX.LIB 

\DASDECL.BI Include file. 

Linkable driver for Professional Basic, Version 7.0, 
stand-alone, executable (.EXE) oromams. 

3-53 



hap03-.frm Page 54 Monday, April 1 I, 1994 9:57 AM 

3-54 

For Microsoft Professional Basic (Version 7.0), you can create an 
executable tile from within the programming environment, or you can use 
a compile and link statement. 

To create an executable file from within the programming environment, 
perform the following steps: 

1. Enter the following to invoke the environment: 

QBX /L D1800QBX filename.bas 

wherej&xume indicates the name of your application program. 

2. From the Run menu, choose Make EXE File. 

To use a compile and link statement, enter the following: 

BC filename.bas /a; 
Link filename.obj,,,D1800QBX.lib; 

wherefilename indicates the name of your application program. 

Refer to page 3-50 for information about dimensioning and assigning 
local arrays when programming in Microsoft Professional Basic (Version 
7.0). Refer to page 3-50 for information about creating a channel-gain 
queue when programming in Microsoft Professional Basic (Version 7.0). 

Programming with the Function Call Driver 



hap03-.frm Page 55 Monday, April 11, 1994 9:57 AM 

Programming in Microsoft Visual Basic for DOS 

To program in Microsoft Visual Basic for DOS, you need the following 
files; these tiles are provided in the DAS-1800 Series standard software 
package. 

File 

DNOOVBD.LIB 

Description 

Linkable driver for Visual Basic for DOS stand-alone, 
executable (.EXE) ~vograms. 

To create an executable file in Microsoft Visual Basic for DOS, perform 
the following steps: 

I. Invoke the Visual Basic for DOS environment by entering the 
following: 

VBDOS /L D1800VBD.QLB filename.BAS 

wherejifilename indicates the name ol your application program. 

2. From the Run menu, choose Make EXE File. 

Refer to page 3-50 for information about dimensioning and assigning 
local arrays when programming in Microsoft Visual Basic for DOS. Refer 
to page 3-50 for information about creating a channel-gain queue when 
programming in Microsoft Visual Basic for DOS. 

3-55 



4 hap03Lfrm Page 56 Monday, April 11,1994 9:57 AM 



-@- hapOC.fim Page 1 Monday, April 11,1994 10:00 AM 

+b 

Function Reference 

The FCD functions are organized into the following groups: 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

Initialization functions 

Operation functions 

Frame management functions 

Memory management functions 

Buffer address functions 

Buffering mode functions 

Conversion mode functions 

Channel and gain functions 

Clock functions 

Trigger functions 

Gate functions 

Miscellaneous functions 

The particular functions associated with each function group are presented 
in Table 4-l. The remainder of the chapter presents detailed descriptions 
of all the FCD functions, arranged in alphabetical order. 

4-1 



.frm Page 2 Monday, April 11,1994 10:00 AM 

Function Type 

Initialization 

Table 4-1. Functions 

Function Name 

DAS1800-DevOpen 

Page Number 

aaee 4-8 

1 K-DOW&e I DWC 4-56 / 

I 1 K-IntStart oaee 4-l 56 I 

I / K-GetDOFrame 

Function Reference 



hap04Qrm Page 3 Monday, April 11,1994 10:00 AM 

Table 4-l. Functions (cont.) 

1 Function Type 1 Function Name 1 Page Number 1 

I K-DMAFree page 4-45 I 

I KJntFree page 4-154 I 

I K-MoveArrayToBuf I page 4-167 I 

Buffer Address I K SetBuf I oage 4-191 I 

I 1 K-GetContRun 

I I K-GetSSH I uare4-132 I 

4-3 

4 



G- hapO4-.frm Page 4 Monday, April 11,1994 10:00 AM 

4 

Table 4-1. Functions (cont.) 

:unction Type I Function Name I Page Number I 

:hmel and Gain 

KmSetExtClkEdge page 4-218 

4-4 Function Reference 

4 (4 



+b hap04Lfrm Page 5 Monday, April 11,1994 1O:OO AM 

Table 4-1. Functions (cont.) 

Function Type Function Name Page Number 

Keep the following conventions in mind throughout this chapter: 

. Under “Boards Supported,” All refers to the following boards: 
DAS-IXOlHC, DAS-1802HC, DAS-180lST, DAS-1802ST. 
DAS-1802HR. 

. Although the function names are shown with underscores, do not use 
the underscores in the BASIC languages. 

. The data types DDH, FXAMEH, DWORD. WORD, and BYTE are 
defined in the language-specific include files. 

4-5 



4 hap04-.frm Page 6 Monday, April 

4 

4-6 

11,1994 10:00 AM 

. Variable names are shown in italics. 

. The return value for all DAS-1800 Series FCD functions is the 
error/status code. Refer to Appendix A for more information. 

. The description shows the prototype for the function. 

. In the examples, the variables are not defined. It is assumed that they 
are defined as shown in the syntax. 

The name of each function argument in the Description and Usage sections 
includes a prefix that indicates the associated data type. These prefixes are 
described in Table 4-2. 

4 

Function Reference 



-43 hap04-.frm Page 7 Monday, April 11,1994 10:00 AM 

Table 4-2. Data Type Prefixes 

1 Prefix 1 Data Type Comments I 

Handle to device, frame, and 
memory block 

Handle-type variables are declared in the user program 
as long or DWORD, depending on what the language 
allows. The actual user variable is passed to the driver 
by value. 

P Pointer to a variable These are pointers to all types of variables, except 
handles (h). This type is typically used when passing a 
panmeter of any type to the driver by reference. 

w 

I I 

A 16-bit word This type is typically used when passing au unsigned 
integer to the driver by value. 

If 1 Float 1 Denotes a single-precision floating-point number. 

dw A 32-bit double word This type is typically used when passing an unsigned 
long to the driver by value. 

4-7 



+b hap04&m Page 8 Monday, April 11,1994 10:00 AM 

DAS1800-DevOpen 

Boards 
Supported 

All 

Purpose Initializes the DAS-1800 Series Function Call Driver. 

Prototype c/c++ 
DASErr far Pascal DA.9 1800-DevOpen (char far *szCfgFile, 
char far *pEoards); 

Turbo Pascal 
Function DAS1800~DevOpen (Var szCfsFile : char; 
Var pBoards : Integer) : Word; far; external ‘DAS 1800’; 

Turbo Pascal for Windows 
Function DAS 1800-DevOpen (Var szCfgFile : char; 
Var pBoards : Integer) : Word; far; external ‘DAS 1800’; 

Visual Basic for Windows 
Declare Function DAS1800-DevOpen Lib “DAS1800,DLL” 
(ByVal szCfgFile As String, pBoards As Integer) As Integer 

BASIC 
DECLARE FUNCTION DAS1800DEVOPEN% ALIAS 
“DASlSOO~DevOpen” (BYVAL szCfgFile AS LONG, 
SEG pBoards AS INTEGER) 

Parameters szCfgFile Driver configuration file. 
Valid values: The name of a configuration file. 

pBoards Number of boards defined in szCfsFilc. 
Valid values: 1 to 3 

Return Value This function returns au integer error/status code. Error/status code 0 
indicates that the function executed successfully. A non-zero error/status 
code indicates that an error occurred. Refer to Appendix A for additional 
information. 

4-8 Function Reference 



+b t hap04-.frm Page 9 Monday, April 11,1994 lo:00 AM 

DAS1800-DevOpen (cont.) 

Remarks This function initializes the driver according to the information in the 
configuration file specified by szCfgFilc and stores the number of boards 
defined in pBourds. 

You create a configuration file using the D1800CFG.EXE utility. Refer to 
your DAS-1800 Series board user’s guide for more information. 

See Also K-OpenDriver 

Usage c/c++ 
#include "DAS1800.H" // Use "DAS1800,HPP for C++ 

. 
int nBoards; 

. 
wDasErr = DAS1800-DevOpen ("DAS1802,CFG", &nBoards); 

. 

Turbo Pascal 
uses D1800TP7; (* Use D1800TP6 for TP "er 6.0 *) 

szCfgName : String; 
nBoards : Integer; 

. 
szCfgName := 'DAS1802.CFG' + #O; 
wDasErr := DAS1800_DevOpen( szCfgName[ll, nBoards ); 

Turbo Pascal for Windows 
($1 DASDECL.INC) 

szCfgName : String; 
nBoards : Integer; 

szCfgName := 'DASlBOZ.CFG' + #O; 
wDasErr := DAS1800_DevOpen( szCfgName[ll, nBoards 1; 

4-9 



.frm Page 10 Monday, April 11, 1994 10:00 AM 

DAS1800-DevOpen (cont.) 

Visual Basic for Windows 
(Include DAS1800.BA.Y in your program make file) 

. 
DIM nBoards AS INTEGER 
DIM szCfgName AS STRING 

. 
wDasErr = DAS1800_DevOpen(szCfgName, nBoards) 

BASIC 
* SINCLUDE: 'DAS1800.BI' 

. 
DIM nBoards AS INTEGER 
DIM szCfgName AS STRING 

. 
szCfgName : "DAS1802.CFG" + CHR$(O) 
wDasErr = DAS1800DEVOPEN%(SSEGADD(szCfgName), nBoards) 

4-10 



k $ - hap04 .frm Page 11 Monday, April 11,1994 1O:OO AM 

DAS1800 GetDevHandle 

Boards 
Supported 

Ail 

Purpose Initializes a DAS-1800 Series board. 

Prototype c/c++ 
DASErr far Pascal DAS1800_GetDevHandie (WORD nBrdNum. 
DWORD far *phDev); 

Turbo Pascal 
Function DAS1800~GetDevHandle (nBrdNum : Word; 
VarphDev : Longint) : Word; far; external ‘DAS1800’; 

Turbo Pascal for Windows 
Function DAS1800~GetDevHandie (nBrdNum : Word; 
Var phDev : Longint) : Word; far; external ‘DAS 1800’; 

Visual Basic for Windows 
Declare Function DAS 1800-GetDevHandie Lib “DASIBOO.DLL” 
(ByVal nBrdNum As Integer, phDev As Long) As Integer 

BASIC 
DECLARE FUNCTION DAS 1 800GETDEVHANDLE% ALIAS 
“DASI800~GetDevHandle” (BYVAL nBrdNum AS INTEGER, 
SEG phDev AS LONG) 

Parameters nBrdNum Board number. 
Valid values: 0 to 2 

phDev Handle associated witb the board. 

Return Value This function returns an integer error/status code. Error/status code 0 
indicates that the function executed successfully. A non-zero error/status 
code indicates tbat an error occurred. Refer to Appendix A for additional 
information. 

4-11 



43 I hap04Lfrm Page 12 Monday, April 11, 1994 10:00 AM 

DAS1800 GetDevHandle (cont.) 

Remarks This function initializes the board specified by nBrdNum, and stores the 
board handle of the specified board in phDev. 

The value stored in phDev is intended to be used exclusively as au 
argument to functions that require a board handle. Your program should 
not modify the value stored in phllev. 

See Also 

Usage 

K_GetLIevHandle 

C/C++ 
#include "DAS1800.H" // Use "DAS1800.HPP for C++ 

DWORD hDev; 
. 

wDasErr = DAS1800_GetDevHandle(O, &h&v); 

4-12 Function Reference 

Turbo Pascal 
uses D1800TP7; (* “se D1800TP6 for TP “er 6.0 *) 

hDev : Longint; ( Device Handle ) 

wDasErr := DASl80O_GetDevHandle( 0, hDev 1; 

Turbo Pascal for Windows 
($1 DASDECL.INC) 

hDev : Longint; ( Device Handle ) 

wDasErr := DAS1800_GetDevHandle( 0, hDev ); 

Visual Basic for Windows 
(Include DAS1800.BA.Y in your program makejile) 

Global hDev As Long * Device Handle 

wDasErr = DAS1800pGetDevHandle (0, hDev) 



frm Page 13 Monday, April 11, 1994 10:00 AM 

DAS1800-GetDevHandle (cont.) 

BASIC 
SINCLUDE: 'DAS1800.BI' 

DIM hDev AS LONG ' Device Handle 
. 

wDasErr = DAS1800GetDevHandle%(O, hDev1 

4-13 



.frm Page 14 Monday, April 11,1994 1O:OO AM 

K ADRead 

Boards 
Supported 

All 

Purpose 

Prototype 

Reads a single analog input value. 

c/c++ 
DASErr far Pascal K-ADRead (DWORD hDev, 
BYTE nGain, void far *pData); 

BYTE nChan, 

Turbo Pascal 
Function K-ADRead (hDev : Longint; nChan 
pData : Pointer) : Word; 

Byte; nGuin : Byte; 

Turbo Pascal for Windows 
Function K-ADRead (hDev : Longint; nChan : Byte; nGain : Byte; 
pData : Pointer) : Word; far; external ‘DASSHELL’; 

Visual Basic for Windows 
Declare Function K-ADRead Lib “DASSHELL.DLL” 
(ByVal hDev As Long, ByVal nChan As Integer, 
ByVal nGain As Integer, pData As Integer) As Integer 

BASIC 
DECLARE FUNCTION KADRead% ALIAS “KmADRead” 
(BYVAL hDev AS LONG, BYVAL nChan AS INTEGER, 
BYVAL nGain AS INTEGER, SEG pData AS INTEGER) 

Parameters hDcv Handle associated with the board. 

4-14 Function Reference 



@ hap04Lfrm Page 15 Monday, April 11.1994 1O:OO AM 

K-ADRead (cont.) 

Khan Analog input channel. Valid values: 

Valid channel numbers 

Board Differential / Single-ended 

1 DAS-1800HC Ioto31 IOto63 I 

DAS-1800ST/HR with N 
EXP-1800 expansion boards 
attached 

Not applicable 0 to 15(N + 1) 

nGain Gain code. 
Valid values: 0 to 3 for DAS board channels 

0 tn 7 for EXI-1800 channels 
Refer to Table 2-2 on page 2-10 for the gain and 
input ranges associated with each gain code. 

pData Acquired analog input value. 

Return Value This function returns an integer error/status code. Error/status code 0 
indicates that the function executed successfully. A non-zero error/status 
code indicates that an error occurred. Refer to Appendix A for additional 
information. 

Remarks This function reads the analog input channel nChan on the board 
specified by h&v at the gain represented by nGain, and stores the raw 
count in pData. 

Refer to Appendix B for information on converting the raw count stored 
in pData to voltage. 

See Also K-DMAStart, K-IntStart 

4-15 



@ hap04Urm Page 16 Monday, April 11,1994 10:00 AM 

K ADRead (cont.) 

Usage C/C++ 
#include "DASDECL.H" // Use "DASDECL.HPP for C+, 

. 
int wADValue; 

. 
wDasErr = K-ADRead (hDev, 0, 0, &wADValue) 

Turbo Pascal 
uses D1800TP7; (* Use D1800TP6 for TP "er 6.0 *) 
. 
wADValue : Integer; 

wDasErr := K-ADRead (hDev, 0, 0, @wADValue); 

4-16 Function Reference 

Turbo Pascal for Windows 
($1 DASDECL.INC) 

. 
wADValue : Integer; 

. 
wDasErr := K-ADRead (hDev, 0, 0, @wADValue); 

Visual Basic for Windows 
(Include DASDECL.BAS in yourprogram make file) 
. 
Global wADValue As Integer 
. . 
wDasErr = K-ADRead (hDev, 0, 0, wADValue) 

BASIC 
a SINCLUDE: 'DASDECL.BI' 

DIM wADValue AS INTEGER 

wDasErr = KADRead% (hDev, 0, 0, wADValue) 



& hap04-.frm Page 17 Monday, April 11, 1994 IO:00 AM 

4 

K BufListAdd 

Boards 
Supported 

All 

Purpose 

Prototype 

Adds a buffer to the list of multiple buffers. 

c/c++ 
DASErr far Pascal K-B&L&Add (DWORD hFramc, void far *pBuf, 
DWORD dwSamples); 

Turbo Pascal 
Function K-BufListAdd (hFrume : Longint; pBuf: Pointer; 
dwSamples : Longint) : Word: 

Turbo Pascal for Windows 
Function K-BufListAdd (hFrame : Longint; pBuf: Pointer; 
dwSamples : Longint) : Word; far; external ‘DASSHELL’; 

Visual Basic for Windows 
Declare Function K-BufListAdd Lib “DASSHELL.DLL” 
(ByVal Frame As Long, ByVal pBuf As Long, 
ByVal &Snmples As Long) As Integer 

BASIC 
DECLARE FUNCTION KBuB.istAdd% ALIAS “K-BufListAdd” 
(BYVAL hFrame AS LONG, SEG pBuf AS INTEGER, 
BYVAL dwSamples AS LONG) 

Parameters hFrame Handle to the frame that defines the operation. 

PBuf Starting address of buffer. 

dwSamples Number of samples in the buffer. 

Return Value This function returns an integer error/status code. Error/status code 0 
indicates that the function executed successfully. A non-zero error/status 
code indicates that an error occurred. Refer to Appendix A for additional 
information. 

4 

4 4 

4-17 

4 



4 k hap04Lfrm Page 18 Monday, April 11, 1994 10:00 AM 4 

4 

4 

K-BufListAdd (cont.) 

Remarks For the operation defined by hFrame, this function adds the buffer at the 
address pointed to by pBuf to the list of multiple buffers; the number of 
samples in the buffer is specified in dwSumples. The driver supports 
multiple buffers for analog input operations only. 

Before you add the buffer to the multiple-buffer list, you must either 
allocate the buffer dynamically (using K-IntAlloc or K-DMAAlloc), or 
dimension the buffer locally. 

Make sure that you add buffers to the multiple-buffer list in the order in 
which you want to use them. The first buffer you add is Buffer 1, the 
second buffer you add is Buffer 2, and so on. You can add up to 149 
buffers. You can use K-IntStatus or K-DMAStatus to determine which 
buffer is currently in use. 

See Also K-BufListReset, K-DMAAlloc. K-IntAlloc 

Usage 

c/c++ 
#include "DASDECL.H" // "se "DASDECL.HPP for C++ 

. 
void far *pBuf[5]; I/ Buffer pointers 
WORD hMem[Sl; // Buffer handles 
. 
for (i = 0; i < 5; i++) ( 

wDasErr = K-DMAA~Loc (hAD, dwsamples, &pBuf[il, &hMem[il); 
wDasErr = K-BufListAdd (hAD, pBuf[il, dwSamples); 

I 

4-18 Function Reference 

4 



@ k hap04Lfrm Page 19 Monday, April 11,1994 1O:OO AM 

K-BufListAdd (cont.) 

Turbo Pascal 
uses D1800TP7; (* "se D1800TP6 for TP "er 6.0 *) 

TYPE 
BufType = Array [O..l] of Integer; 
VAR 
pBuf : Array [0..4] of "BufType; ( Buffer pointers ) 
hMem : Array [0..4] of Word; ( Buffer handles ] 

FOR I := 0 to 4 DO 
BEGIN 
wDasErr := I<-DMAAlloc(hAD, dwSamples, Addr(pBuf[Il), hMem[I]); 
wDasErr := K-BufListAdd (hAD, pBuf[I], dwsamples); 
END; 

Turbo Pascal for Windows 
($1 DASDECL.INC) 

TYPE 
BufType = Array [O..l] of Integer; 
VAR 
pBuf : Array [0..4] of ^BufType; 1 Buffer pointers ) 
hMem : Array [0..4] of Word; ( Buffer handles ) 
. 
FOR I := 0 to 4 DO 

BEGIN 
wDasErr := I<-DMAAlloc(hAD, dwsamples, Addr(pBuf[I]), hMem[I]); 
wDasErr := K-BufListAdd (hAD, pBuf[I], dwsamples); 
END; 

Visual Basic for Windows 
(Include DASDECL.BAS in your program makejileJ 

. . 
Global pBuf(5) As Long ' Buffer pointers 
Global hMem(5) As Integer ' Buffer handles 
. 
For 1% : 0 To 4 

wDasErr = I<_DMAAlloc IhAD, dwSamples, pBuf(I%), hMem(I%)) 
wDasErr = K-BufListAdd (hAD, pBuf(I%), dwSamples) 

Next 1% 

4-19 



4+ hap04-.frm Page 20 Monday, April 11, 1994 10:00 AM 

K-BufListAdd (cont.) 

BASIC 
SINCLUDE: 'DASDECL.BI' 

DIM pBuf(5) AS LONG ' Buffer pointers 
DIM hMem(S) AS INTEGER ' Buffer handles 

For 1% = 0 To 4 
wDasErr = KDNAAlloc% (hAD, dwSamples, pBuf(I%), hMem(I%)) 
wDasErr = KBufListAdd% (hAD, pBuf(I%), dwsamples) 

Next 1% 

4-20 Function Reference 



4 hap04-.frm Page 21 Monday, April 11,1994 10:00 AM 4 

4 

K-Buf ListReset 

Boards 
Supported 

Purpose 

Prototype 

Parameters 

Return Value 

Remarks 

All 

Clears the list of multiple buffers. 

C/C++ 
DASErr far Pascal K-BufListReset (DWORD bFrame); 

Turbo Pascal 
Function KBufListReset (hFrume : Longint) : Word; 

Turbo Pascal for Windows 
Function K-BufListReset (hFrame : Longint) : Word; far; 
external ‘DASSHELL’; 

Visual Basic for Windows 
Declare Function K-BufListReset Lib “DASSHELL.DLL” 
(ByVal bFrame As Long) As Integer 

BASIC 
DECLARE FUNCTION KBufListReset% ALIAS “K-BufListReset” 
(BYVAL hFrame AS LONG) 

hFrame Handle to the frame that defines the operation. 

This function returns an integer error/status code. Error/status code 0 
indicates that the function executed successfully. A non-zero error/status 
code indicates that an error occurred. Refer to Appendix A for additional 
information. 

For the operation defined by hFrumc, this function clears all buffers from 
the list of multiple buffers. 

This function does not deallocate the buffers in the list. If dynamically 
allocated buffers are no longer needed, you can use K-IntFree or 
K-DMAFree to free the buffers before resetting the buffer list. 

4 

4-21 

4 



G- hap04Lfrm Page 22 Monday, April 11, 1994 10:00 AM 

K BufListReset (cont.) 

See Also K-DMAFree, K-IntFree, K-SetBuf, K-SetDMABuf 

Usage C/C++ 
#include "DASDECL.H" // "se "DASDECL.HPP for C++ 

. 
wDasErr = K-BufListReset (hAD); 

Turbo Pascal 
uses D1800TP7; (* Use D1800TP6 for TP "er 6.0 *) 

wDasErr := K-BufListReset (hAD); 

Turbo Pascal for Windows 
($1 DASDECL.INC) 

wDasErr := K-BufListReset (hAD); 

4-22 

Visual Basic for Windows 
(Include DASDECLBAS in your program makefile) 

wDasErr = K-BufListReset (hAD) 

BASIC 
5 SINCLUDE: 'DASDECL.BI~ 

wDasErr = KBufListReset% (hADI 

+b 

Function Reference 



.frm Page 23 Monday, April 11, 1994 10:00 AM 

K-ClearFrame 

Boards 
Supported 

All 

Purpose Sets the elements of a frame to their default values. 

Prototype c/c++ 
DASErr far Pascal K-ClearFrame (DWORD hFrame); 

Turbo Pascal 
Function K-ClearFrame @Frame : Longint) : Word; 

Turbo Pascal for Windows 
Function K-ClearFrame (hFrame : Longint) : Word; far; 
external ‘DASSHELL’; 

Visual Basic for Windows 
Declare Function K-ClearFrame Lib “DASSHELL.DLL” 
(ByVal hFrame As Long) As Integer 

BASIC 
DECLARE FUNCTION KClearFrame% ALIAS “K-ClearFrame” 
(BYVAL hFrame AS LONG) 

Parameters 

Return Value 

hFrame Handle to the frame that defines the operation. 

This function returns an integer error/status code. Error/status code 0 
indicates that the function executed successfully. A non-zero error/status 
code indicates that an error occurred. Refer to Appendix A for additional 
information. 

Remarks This function sets the elements of the frame specified by hFrame to their 
default values. 

Refer to Table 3-1 on page 3-5 for the default values of the elements of an 
A/D frame, Table 3-2 on page 3-7 for the default values of the elements of 
an D/A frame, Table 3-3 on page 3-8 for the default values of the elements 
of an DI frame, and Table 3-4 on page 3-9 for the default values of the 
elements of an DO frame. 

4-23 



& hap04-.l?m Page 24 Monday, April 11,1994 10:00 AM 

K-ClearFrame (cont.) 

See Also K-GetADFrame, K-GetDAFrame, K-GetDIFrame, and K-GetDOFrame 

Usage c/c++ 
#include "i3ASDECL.H" // Use "DASDECL.HPP for C++ 
. 
wDasF.rr = K-ClearFrame (IlAD); 

Turbo Pascal 
uses D1800TP7; (* Use D1800TP6 for TP ver 6.0 *) 

. . 
wDasErr := K-ClearFrame (hAD); 

4-24 

Turbo Pascal for Windows 
($1 DASDECL.INC) 
. . . 
wDasErr := K-ClearFrame (hADI; 

Visual Basic for Windows 
(Include DASDECL.BAS in your program make file) 

. 
.,,DasErr = K-ClearFrame IhAD) 

BASIC 
c $~NCLUDE: 'DASDECL.BI' 

. 
wDasErr : KClearFrame% (hAD) 

Function Reference 



hapOQ.frm Page 25 Monday, April 11, 1994 10:00 AM 

KmCloseDriver 

Boards 
Supported 

Purpose 

Prototype 

Parameters 

Return Value 

Remarks 

All 

Closes a previously initialized Keithley DAS Function Call Driver, 

c/c++ 
DASErr far Pascal K-CloseDriver (DWORD bDrv); 

Turbo Pascal 
Not supported 

Turbo Pascal for Windows 
Function K-CloseDriver (hDrv : Longint) : Word; far; 
external ‘DASSHELL’; 

Visual Basic for Windows 
Declare Function K-CloseDriver Lib “DASSHELL.DLL” 
(ByVal hDrv As Long) As Integer 

BASIC 
Not supported 

hDrv Driver handle you want to free. 

This function returns an integer error/status code. Error/status code 0 
indicates that the function executed successfully. A non-zero error/status 
code indicates that an error occurred. Refer to Appendix A for additional 
information, 

This function frees the driver handle specified by hDrv and closes the 
associated use of the Function Call Driver. This function also frees all 
board handles and frame handles associated with hDrv. 

If hDrv is the last driver handle specified for the Function Call Driver, the 
driver is shut down (for all languages) and unloaded (for Windows-based 
languages only). 

4-25 



6 hap04Urm Page 26 Monday, April II, 1994 10:00 AM 

K-CloseDriver (cont.) 

See Also K-FreeDevHandle 

Usage c/c++ 
#include "DASDECL.H' // "se 'DASDECL.HPP for C+t 

. 
wDasErr = K-CloseDriver (hDrv); 

Turbo Pascal for Windows 
($1 DASDECL.INC) 

wDasErr := K-CloseDriver (hDrv); 

Visual Basic for Windows 
(Include DASDECL.BAS in your program make file) 
. 
wDasErr = K-CloseDriver (hDrv) 

4-26 Function Reference 



hap04Lfrm Page 27 Thursday, April 21, 1994 8:47 AM 

K ClrAboutTria 

Boards 
Supported 

All 

Purpose 

Prototype 

Disables the about trigger for an analog input operation, 

c/c++ 
DASErr far Pascal K-ClrAboutTrig (DWORD hFrame); 

Turbo Pascal 
Function K-ClrAboutTrig @Frame : Longint) : Word; 

Turbo Pascal for Windows 
Function K-ClrAboutTrig @Frame : Longint) : Word; far; 
external ‘DASSHELL’: 

Visual Basic for Windows 
Declare Function K-ClrAboutTrig Lib “DASSHELL.DLL” 
(ByVal hFrame As Long) As Integer 

BASIC 
DECLARE FUNCTION KClrAboutTrig% ALIAS “K_ClrAboutTrig” 
(BYVAL hFrame AS LONG) 

Parameters 

Return Value 

hFrame Handle to the frame that defines the operation. 

This function returns an integer error/status code. Error/status code 0 
indicates that the function executed successfully. A non-zero error/status 
code indicates that an error occurred. Refer to Appendix A for additional 
information. 

Remarks 

See Also K-ClearFrame, K-GetADFrame, K-SetAboutTrig 

This function disables the about trigger for the operation defined by 
hFrame. 

K-GetADFrame and K-ClearFrame also disables the about trigger. 

4-27 



-G hap04-.frm Page 28 Monday, April 11,1994 10:00 AM 

K-ClrAboutTrig (cont.) 

Usage c/c++ 
#include "DASDECL.H" // use "DASDECL.HPP for C++ 

wDasErr = K-ClrAboutTrig (hAD); 

Turbo Pascal 
uses D1800TP7; (* Use D1800TP6 for TP ver 6.0 *) 
. 
wDasErr := K-ClrAboutTrig (hAD) ; 

Turbo Pascal for Windows 
($1 DASDECL.INC) 

wDasErr := K-ClrAboutTrig (hAD); 

4-28 Function Reference 

Visual Basic for Windows 
(Include DASDECL.BAS in your program make file) 

. . 
wDasErr = K-ClrAboutTrig (hAD) 

BASIC 
SINCLUDE: 'DASDECL.BI' 

wDasErr = KClrAboutTrig% (hAD) 



.frm Page 29 Monday, April 11,1994 10:00 AM 

K ClrADFreeRun 

Boards 
Supported 

All 

Purpose 

Prototype 

Sets paced conversion mode for an analog input operation, 

c/c++ 
DASErr far Pascal K-ClrADFreeRun (DWORD bFrame); 

Turbo Pascal 
Function K-ClrADFreeRun (hFrame : Longint) : Word; 

Turbo Pascal for Windows 
Function K-ClrADFreeRun (/iFrame : Longint) : Word; far; 
external ‘DASSHELL’: 

Visual Basic for Windows 
Declare Function K-ClrADFreeRun Lib “DASSHELL.DLL” 
(ByVal hFrame As Long) As Integer 

BASIC 
DECLARE FUNCTION KClrADFreeRun% ALIAS “K-ClrADFreeRun” 
(BYVAL hFrame AS LONG) 

Parameters hFrame Handle to the frame that defines the operation, 

Return Value This function returns an integer error/status code. Error/status code 0 
indicates that the function executed successfully. A non-zero error/status 
code indicates that an error occurred. Refer to Appendix A for additional 
information. 

Remarks This function sets the conversion mode for the operation defined by 
hFrume to paced mode and sets the Conversion Mode element in the 
frame accordingly. 

K-GetADFrame and K-ClearFrame also enable paced conversion 
mode. 

4-29 



-a- hap04-.frm Page 30 Monday, April 11,1994 10:00 AM 

K ClrADFreeRun Icont.1 

See Also 

Usage 

K-ClearFrame, K-GetADFrame, K-SetADFreeRun 

c/c++ 
#include "DASDECL.H" // "se "DASDECL.HPP for c++ 

wDasErr = K_ClrADFreeRun (hAD); 

Turbo Pascal 
uses D1800TP7; (* Use D1800TP6 for TP ver 6.0 *) 

wDasErr := K-ClrADFreeRun (hAD); 

Turbo Pascal for Windows 
($1 DASDECL.INC) 

wDasErr := K-ClrADFreeRun (hAD); 

4-30 Function Reference 

Visual Basic for Windows 
(Include DASDECL.BAS in yourprogram makefile) 

wDasErr = K-ClrADFreeRun (hAD) 

BASIC 
SINCLUDE: 'DASDECL.BI' 

wDasErr = KClrADFreeRun% (hAD) 



+b hapO4-.frm Page 31 Monday, April 11,1994 10:00 AM 

K ClrContRun 

Boards 
Supported 

All 

Purpose Sets single-cycle buffering mode. 

Prototype c/c++ 
DASErr far pascal KvClrContRun (DWORD hFrame); 

Turbo Pascal 
Function K-ClrContRun (hFrame : Longint) : Word; 

Turbo Pascal for Windows 
Function K-ClrContRun @Frame : Longint) : Word; far; 
external ‘DASSHELL’; 

Visual Basic for Windows 
Declare Function K-ClrContRun Lib “DASSHELL.DLL’ 
(ByVal /iFrame As Long) As Integer 

BASIC 
DECLARE FUNCTION KClrContRun% ALIAS “K-ClrContRun” 
(BYVAL hFrame AS LONG) 

Parameters hFrame Handle to the frame that defines the operation. 

Return Value This function returns an integer error/status code. Error/status code 0 
indicates that the function executed successfully. A non-zero error/status 
code indicates that an error occurred. Refer to Appendix A for additional 
information. 

Remarks This function sets the buffering mode for the operation defined by 
hFrame to single-cycle mode and sets the Buffering Mode clement in the 
frame accordingly. 

K-GetADFrame, K-GetDAFrame, K-GetDIFrdme, 
K-GetDOFrame, and K-ClearFrame also enable single-cycle buffering 
mode. 

4-31 



4 hap04Lfrm Page 32 Monday, April 11,1994 10:00 AM 

4 

K-ClrContRun (cont.) 

Refer to page 2-18 for more information on bufferiug modes for analog 
input operations, page 2-30 for more information on buffering modes for 
analog output operations, and page 2-38 for more information on 
buffering modes for digital I/O operations. 

See Also 

Usage 

4-32 

K-SetContRun 

c/c++ 
#include "DASDECL.H" // "se "DASDECL.HPP for Cft 
. . . 
wDasErr = K-ClrContRun (hAD); 

Turbo Pascal 
uses D1800TP7; (* "se D1800TP6 for TP "er 6.0 *) 

wDasErr := KmClrContRun (hAD); 

Turbo Pascal for Windows 
($1 DASDECL.INC) 

nDasErr := K_ClrContRun (hAD); 

Visual Basic for Windows 
(Include DASDECL.BAS in your program make file) 

. 
wDasErr = K_ClrContRun (hAD) 

BASIC 
SINCLUDE: 'DASDECL.BI' 

. . 
wDasErr = KClrContRun% (hAD) 

Function Reference 

4 



@ k hap04-.frm Page 33 Monday, April 11.1994 10:00 AM 43 

+b 

K DASDevlnit 

Boards 
Supported 

Purpose 

Parameters 

Return Value 

Remarks 

Usage 

All 

Reinitializes a board. 

c/c++ 
DASErr far Pascal K-DASDevInit (DWORD hDev); 

Turbo Pascal 
Function K-DASDevlnit (hDev : Longint) : Longint; 

Turbo Pascal for Windows 
Function K-DASDevlnit (hDev : Longint) : Longint; far; 
external ‘DASSHBLL’; 

Visual Basic for Windows 
Declare Function K_DASDevInit Lib “DASSHELL.DLL” 
(ByVal hDev As Long) As Integer 

BASIC 
DECLARE FUNCTION KDASDevInit% ALIAS “K-DASDevInit” 
(BYVAL hDev AS LONG) 

h&v Handle associated with the board. 

This function returns an integer error/status code. Error/status code 0 
indicates that the function executed successfully. A non-zero error/status 
code indicates that an error occurred. Refer to Appendix A for additional 
information. 

This function stops all current operations and resets the board specified by 
hDev and the driver to their power-up states. 

c/c+* 
#include "DASDW2L.H" ,, "se "DASDECL.HPP for c++ 

wDasErr = K-DASDevInit ChDev); 

4-33 



.frm Page 34 Monday, April 11, lYY4 10:00 AM 

K-DASDevlnit (cont.) 

Turbo Pascal 
uses D1800TP7; (* Use D1800TP6 for TP "er 6.0 *) 

wDasErr := K-DASDevInit (hDev); 

Turbo Pascal for Windows 
($1 DASDECL.INC) 
. 
wDasErr := K-DASDevInit (hDev); 

Visual Basic for Windows 
(Include DASDECL.BAS in your program make file) 

. 
wDasErr = KmDASDevInit (hDev) 

BASIC 
' SINCLUDE: 'DASDECL.BI' 

. 
wDasErr = KDASDevInit% (hDev) 

4-34 

+@ 

Function Reference 



6 b hap04Urm Page 35 Monday, April 11, I994 10:00 AM 

K-DAWrite 

Boards 
Supported 

DAS-1801HC. DAS-1802HC 

Purpose Writes a single analog output value. 

Prototype c/c++ 
DASErr far Pascal K-DAWrite (DWORD hDev, BYTE nChan, 
DWORD dwData); 

Turbo Pascal 
Function K-DAWrite (bDev : Longint; &ban : Byte; 
dwData : Longint) : Word; 

Turbo Pascal for Windows 
Function K-DAWrite (hDev : Longint; nChan : Byte; 
dwDara : Longint) : Word; far; external ‘DASSHELL’; 

Visual Basic for Windows 
Declare Function K-DAWrite Lib “DASSHELL.DLL” 
(ByVal hDev As Long, ByVal nChan As Integer, 
ByVal dwData As Long) As Integer 

BASIC 
DECLARE FUNCTION KDAWrite% ALIAS “K-DAWrite” 
(BYVAL hDev AS LONG, BYVAL nChan AS INTEGER, 
BYVAL dwData AS LONG) 

Parameters hDev 

nChan 

Handle associated with the board 

Analog output channel. 
Valid values: 0 = Channel 0 

1 = Channel 1 
2 = Both channels 

Analog output value. 
Valid values: 0 to 4,095 

4-35 



.frm Page 36 Monday, April 11, 1994 1O:OO AM 

K-DAWrite (cont.) 

Return Value This function returns an integer error/status code. Error/status code 0 
indicates that the function executed successfully. A non-zero error/status 
code indicates that an error occurred. Refer to Appendix A for additional 
information. 

Remarks 

See Also K-IntStart 

Usage C/C++ 

4-36 

This function writes the value dwData to the analog output channel 
specified by nChan on the board specified by hDev. Refer to page 2-26 fot 
more information on analog output operations. 

dwDara is a 3%bit variable, but the output value must contain only 12 
bits. Refer to Appendix B for a description of the data format. 

#include "DASDECL.H" // Use "DASDECL.HPP for C+, 

DWORD dwDAValue; 
. . 
dwDAValue = (DWORD) (5.0 * 4096 / 20) + 2048; 
wDasErr = K-DAWrite (hDev, 0, &dwDAValue); 

Turbo Pascal 
uses D1800TP7; (* Use D1800TP6 for TP ver 6.0 *) 

. 
dwDAValue : Longint: 

. 
dwDAValue := Round((5.0 * 4096.0 / 20.0) + 2048); 
wDasErr := K-DAWrite (hDev, 0, dwDAValue); 

Turbo Pascal for Windows 
($1 DASDECL.INC) 

dwDAValue : Longint; 
. 

dwDAValue := Round((S.0 * 4096.0 / 20.0) + 2048); 
wDasErr := K-DAWrite (hDev, 0, dwDAValue); 

Function Reference 



6 hap04-.frm Page 37 Monday, April 11, 1994 1O:OO AM 

K-DAWrite (cont.) 

Visual Basic for Windows 
(Include DASDECLBAS in yourprogram makefile) 

. 
Global dwDA"alue As Long 

. 
dwDAValue = INT(5.0 * 4096! / ZO!) + 2048 
wDasErr = K-DAWrite (h&v, 0, dwDAValue) 

BASIC 
SINCLUDE: 'DASDECL.BI' 

. 
DIM dwDAValue AS LONG 

dwDAValue = INT(5.0 * 4096! / 20!) + 2048 
wDasErr = KDAWrite% (hDev, 0, dwDAValue) 

4-37 



4 I hap04-.frm Page 38 Monday, April 11, 1994 10:00 AM 

4 

K DlRead 

Boards 
Supported 

All 

Purpose 

Prototype 

Reads a single digital input value. 

c/c++ 
DASErr far Pascal K_DIRead (DWORD hDev, BYTE nChan, 
void far *pData); 

Turbo Pascal 
Function K-DIRead (hDev : Longint; nChan : Byte: 
pDara : Pointer) : Word; 

Turbo Pascal for Windows 
Function K-DIRead (hDev : Longint; nChan : Byte; 
pData : Pointer) : Word; far; external ‘DASSHELL’; 

Visual Basic for Windows 
Declare Function K-DIRead Lib “DASSHELL.DLL’ 
(ByVal hDev As Long, ByVal nChan As Integer, pData As Integer) As 
Integer 

BASIC 
DECLARE FUNCTION KDIRead% ALIAS “K-DIRead” 
(BYVAL hDev AS LONG, BYVAL nChan AS INTEGER, 
SEG pData AS INTEGER) 

Parameters hDev 

nChan 

Handle associated with the board. 

Digital input channel. 
Valid value: 0 

pDara Digital input value. 

Return Value This function returns an integer error/status code. Error/status code 0 
indicates tbat the function executed successfully. A non-zero error/status 
code indicates that an error occurred. Refer to Appendix A for additional 
information. 

4-38 Function Reference 

4 

4 4 



4 hapOC.frm Page 39 Monday, April 11, 1994 IO:00 AM 

K DlRead (cont.1 

See Also 

Usage 

4 

This function reads the values of all digital input lines on the board 
specified by hDev, and stores the value in pData. 

pData is a 16-bit variable. The acquired digital value is stored in bits 0, 1, 
2, and 3; the values in the remaining bits of pData are not defined. Refer 
to page 2-34 for more information. 

K-IntStart 

c/c++ 
#include "DASDECL.H' // Use "DASDECL.HPP for C++ 
. 
WORD wDIValue; 

wDasErr = K-DIRead (hDev, 0, &wDIValue); 

Turbo Pascal 
uses D1800TP7; (* Use D1800TP6 for TP "er 6.0 *) 

. 
wDIValue : Word; 
. . . 
wDasErr := K-DIRead (hDev, 0, OwDIValue); 

Turbo Pascal for Windows 
($1 DASDECL.INC) 

wDIValue : Word; 

wDasErr := K-DIRead (hDev, 0, @wDIValue); 

Visual Basic for Windows 
(Include DASDECL.BA.9 in your program make file) 

. 
Global wDIValue As Integer 

wDasErr = K-DIRead (hDev, 0, wDIValue); 

4 

4-39 

4 



4 hap04-.frm Page 40 Monday, April 11, 1994 10:00 AM 

4 

K-DIRead (cont.) 

BASIC 
SINCLUDE: 'DASDECL.BI' 

. 
DIM wDIValue AS INTEGER 

. 
wDasErr i: KDIRead% (hDev, 0, wDIValue) 

4-40 Function Reference 

4 

4 



4 hap04-.frm Page 41 Monday, April 11,1994 10:00 AM 

K DMAAlloc 

Boards 
Supported 

All 

Purpose Allocates a buffer for a DMA-mode analog input operation. 

Prototype c/c++ 
DASErr far Pascal K-DMAAlloc @WORD hFrame, 
DWORD dntknples, void far * far *pBuf, WORD far * phMem); 

Turbo Pascal 
Function K-DMAAlloc (hFrame : Longint: dwSamples : Longint; 
pBuf : Pointer; Var phMem : Word) : Word; 

Turbo Pascal for Windows 
Function K-DMAAlloc (hFrame : Longint; dwSamples : Longint; 
pBuf : Pointer; Var phMem : Word) : Word; far; external ‘DASSHELL’; 

Visual Basic for Windows 
Declare Function K-DMAAlloc Lib “DASSHBLL.DLL” 
(ByVal hFrume As Long, ByVal dwSamples As Long, pBuf As Long, 
phMem As Integer) As Integer 

BASIC 
DECLARE FUNCTION KDMAAlloc% ALIAS “K-DMAAlloc” 
(BYVAL hFrame AS LONG, BYVAL dwSamples AS LONG, 
SEG pBuf AS LONG, SEG phMem AS INTEGER) 

Parameters hFrame Handle to the frame that defines the operation. 

dwSamplcs Number of samples. 
Valid values: 1 to 32,767 for Visual Basic for 

Windows and BASIC 
1 to 65,536 for all other languages 

pBuf Starting address of the allocated buffer. 

Handle associated with the allocated buffer. phMem 

4 

4 

4-41 



frm Page 42 Monday, April 11, 1994 10:00 AM 

K DMAAlloc Icont.) 

Return Value This function returns an integer error/status code. Error/status code 0 
indicates that the function executed successfully. A non-zero error/status 
code indicates that an error occurred. Refer to Appendix A for additional 
information. 

Remarks 

See Also K-DMAFree, K-SetDMABuf, K-Bu~istAdd 

For the operation defined by hFrame, this function allocates a memory 
block (a buffer of the size dwSamples) from the available memory heap. 
On return, pBuf contains the far memory address of a buffer that is 
suitable for a DMA-mode analog input operation. Use K-SetDMABuf or 
K-BufListAdd to assign pBuf to an A/D frame. phMem, as returned by 
this function, is later used to free the allocated memory block by calling 
K-DMAFree. 

Turbo Pascal and BASIC require that you re-distribute available memory 
before you dynamically allocate a buffer. Refer to “Reducing the Memory 
Heap” on page 3-32 (Turbo Pascal) or page 3-46 (BASIC) for additional 
information. 

Usage 

c/c++ 
#include "DASDECL.H" // Use "DASDECL.HPP for C++ 
. 
void far *pBuf[51; // Pointers to allocated DMA buffer 
WORD hMem[Sl; // Memory Handles to buffers 

for (i = 0; i < 5; i++) ( 
wDasErr = K-DM?IA~~OC (hAD, dwsamples, &pBuf[il, &hMem[il); 
wDasErr = K-BufListAdd (hAD, pBuf[il, dwSamples); 

1 

4-42 

4 

4 

Function Reference 



43 hap04-.f?m Page 43 Monday, April 11, 1994 1O:OO AM 

+b 

K DMAAlloc (cont.) 

Turbo Pascal 
uses D1800TP7; (* Use D1800TP6 for TP ver 6.0 *] 

TYPE 
BufType = Array [O..l] of Integer; 
VAR 
pBuf : Array [0..4] of "BufType; ( DNA buffer pointers ] 
hMem : Array [0..4] of Word; ( Handles to DMA buffers ) 

. 
FOR I := 0 to 4 DO 

BEGIN 
wDasErr := K-DMAAlloc(hAD, dwSamples, Addr(pBuf[I]), hMem[I]]; 
wDasErr := KKBufListAdd (hAD, pBuf[I], dwSamplesj; 
END: 

Turbo Pascal for Windows 
($1 DASDECL.INC) 

. 
TYPE 
BufType = Array [O..l] of Integer; 
"AR 
pBuf : Array [0..4] of "BufType; ( DMA buffer pointers ) 
hMem : Array [0..4] of Word; ( Handles to DMA buffers ) 

FOR I := 0 to 4 DO 
BEGIN 
wDasErr := K-DMAAlloc(hAD, dwSamples, Addr(pBuf[Il), hMem[I]); 
wDasErr := K-BufListAdd (hAD, pBuf[Il, dwSamples]; 
END; 

Visual Basic for Windows 
(Include DASDECLBAS in yourprogram makejile) 

. 
Global pBuf(5) As Long 
Global hMem(5) As Integer 

For 1% = 0 To 4 
wDasErr = K-DMAAlloc (hAD, dwSamples, pBuf(I%), hMem(I%)) 
wDasErr = K-BufListAdd (hAD, pBuf(I%), dwsamples) 

Next 1% 

4-43 



+b hap04-.frm Page 44 Monday, April 11, 1994 10:00 AM 

K DMAAlloc (cont.) 

BASIC 
2 SINCLUDE: 'DASDECL.BI' 
. 
DIM pBuf(5) AS LONG 
DIM hMem(S) AS INTEGER 
. 
For 1% = 0 To 4 

wDasErr : KDMAAlloc% (hAD, dwSamples, pBuf(I%), hMem(I%)) 
wDasErr : KBufListAdd% (hAD, pBuf(I%), dwsamples) 

Next 1% 

4-44 Function Reference 



frm Page 45 Monday, April 11.1994 1O:OO AM 

K DMAFree 

Boards 
Supported 

Purpose 

Prototype 

Parameters 

Return Value 

Remarks 

See Also 

All 

Frees a buffer allocated for a DMA-mode analog input operation. 

c/c++ 
DASErr far Pascal K-DMAFrce (WORD !&fern); 

Turbo Pascal 
Function K-DMAFree (/&fern : Word) : Integer; 

Turbo Pascal for Windows 
Function K-DMAFree (hMem : Word) : Integer; far; 
external ‘DASSHELL’; 

Visual Basic for Windows 
Declare Function K-DMAFree Lib “DASSHELL.DLL” 
(ByVal hMem As Integer) As Integer 

BASIC 
DECLARE FUNCTION KDMAFree% ALIAS “KPMAFree” 
(BYVAL hMem AS INTEGER) 

hMem Handle to DMA buffer. 

This function returns an integer error/status code. Error/status code 0 
indicates that the function executed successfully. A non-zero error/status 
code indicates that an error occurred. Refer to Appendix A for additional 
information. 

This function frees the buffer specified by hMem; the buffer was 
previously allocated dynamically using K-DMAAlloc. 

K-DMAlloc, KSetDMABuf, K-BufListAdd 

4-45 



+b hap04Qrm Page 46 Monday, April 11, 1994 1O:OO AM 

KmDMAFree (cont.) 

Usage c/c++ 
#include "DASDECL.H" // Use "DASDECL.HPP for C++ 
. 
wDasErr = K_DMAFree (hMem); 

Turbo Pascal 
uses Dl800TP7; (* "se D1800TP6 for TP ver 6.0 *) 
. . 
wDasErr := K-DMAFree (hMem); 

Turbo Pascal for Windows 
($1 DASDECL.INC) 

wDasErr := K-DMAFree (hMem); 

4-46 Function Reference 

Visual Basic for Windows 
(Include DASDECL.BAS in your program mukejile) 

. 
wDasErr = K-DMAFree (hMem) 

BASIC 
SINCLUDE: 'DASDECL.BI' 

. 
wDasErr : KDMAFLee% (hMem) 



fnn Page 47 Monday, April 11, 1994 10:00 AM 

K-DMAStart 

Boards 
Supported 

All 

Purpose Starts a DMA-mode analog input operation. 

Prototype c/c++ 
DASErr far Pascal K-DMAStart (DWORD hFrame); 

Turbo Pascal 
Function K-DMAStart (hFrume : Longint) : Word; 

Turbo Pascal for Windows 
Function K-DMAStart (hFrame : Longint) : Word; far; 
external ‘DASSHELL’; 

Visual Basic for Windows 
Declare Function K-DMAStart Lib “DASSHELL.DLL” 
(ByVal hFrame As Long) As Integer 

BASIC 
DECLARE FUNCTION KDMAStart% ALIAS “K_DMAStart” 
(BYVAL hFrame AS LONG) 

Parameters 

Return Value 

hFrame Handle to the frame that defines the operation. 

This function returns an integer error/status code. Error/status code 0 
indicates that the function executed successfully. A non-zero error/status 
code indicates that an error occurred. Refer to Appendix A for additional 
information. 

Remarks 

See Also K-DMAStatus, K-DMAStop 

This function starts the DMA operation defined by hFrame. 

Refer to Chapter 3 for a discussion of the programming tasks associated 
with DMA operations. 

4-47 



& hap04-.frm Page 4X Monday, April 11, 1994 10:00 AM 

K DMAStart (cont.1 

Usage c/c++ 
#include "DASDECL.H" // use "DASDECL.HPP for C++ 

wDasEr1^ = K-DMAStart (hAD); 

Turbo Pascal 
usea D1800TP7; (* Use D1800TP6 for TP "er 6.0 *) 

wDasErr := K-DMAStart (hAD); 

Turbo Pascal for Windows 
($1 DASDECL.INC) 

. 
wDasErr := K-DMAStart (hAD); 

Visual Basic for Windows 
(Include DASDECL.BAS in your program make file) 

4-46 Function Reference 

wDasErr = K-DMAStart (hAD) 

BASIC 
SINCLUDE: 'DASDECL.BI' 

wDasErr = KDMAStart% (hAD) 



.frm Page 49 Monday, April 11, 1994 10:00 AM 

K DMAStatus 

Boards 
Supported 

All 

Purpose 

Prototype 

Gets status of a DMA-mode analog input operation. 

c/c++ 
DASErr far Pascal K-DMAStatus (DWORD hFrame, short far *pSrarus, 
DWORD far *pCount); 

Turbo Pascal 
Function K-DMAStatus (hFrame : Longint; VarpSratus : Word; 
Var pCount : Long&) : Word; 

Turbo Pascal for Windows 
Function K-DMAStatus @Frame : Longint; Var pSratus : Word; 
Var pCount : Long&) : Word; far; external ‘DASSHELL’; 

Visual Basic for Windows 
Declare Function K-DMAStatus Lib “DASSHELL.DLL” 
(ByVal hFrame As Long, pStatus As Integer, pCounr As Long) As 
Integer 

BASIC 
DECLARE FUNCTION KDMAStatus% ALIAS “K-DMAStatus” 
(BYVAL hFrame AS LONG, SEG pStatus AS INTEGER, 
SEG pCount AS LONG) 

Parameters hFrame 

pStatus 

Handle to the frame that defines the operation. 

Status of DMA-mode analog input operation; see 
Remarks below for value stored. 

pcount Number of samples that were acquired into the 
current buffer. 
Value stored: 0 to 65,536 

4-49 



+b- hap04-.frm Page 50 Monday, April 1 I, I994 IO:00 AM 

K-DMAStatus (cont.) 

Return Value This function returns an integer error/status code. Error/status code 0 
indicates that the function executed successfully. A non-zero error/status 
code indicates that an error occurred. Refer to Appendix A for additional 
inCormation. 

Remarks For the DMA operation defined by hFrame, this function stores the status 
in pSrarus and the number of samples acquired in pCount. 

The value stored in pStatus depends on the settings in the Status word, as 
shown below: 

4-50 Function Reference 

Acllve bulfer number About-trigger: 
00 = Disabled 
01 = Armed 
10 = Active 
11 = Done 

0 = Buller no1 filled 
1 q auner lllled 

f 
0 q No FIFO overllow 
1 ii FIFO overflow 

0 I Buffer A active 
1 = mdler 6 Bcilvo I 

0 q DMA operation inaotlve 
1 ii DMA operation acike 



-6 hap04Lfrm Page 51 Monday, April 11,1994 1O:OO AM 

G- 

K-DMAStatus (cont.) 

See Also 

The bits are described as follows: 

Bit 0: Indicates whether a DMA-mode analog input operation is in 
progress. 

Bit 1: The Buffer A/B active bit. If you are using multiple buffers, this 
bit toggles each time acquisition sample storage is switched to a new 
buffer. If you are using a single buffer and the operation is in 
continuous mode, this bit toggles each time an acquisition sample is 
stored at the beginning of the buffer. 

Bit 2: When set, this bit indicates that the onboard FIFO has 
overflowed. This event automatically stops all conversions. 

Bit 3: Not used for DMA mode. 

Bit 4: This bit is used during continuous buffering mode; it is set 
when all data acquisition buffers that are currently assigned to the 
active operation have been filled with data at least once. 

Bit 5: Unassigned 

Bits 6-7: These bits indicate the state of the about trigger. 

Bits 8-15: In multiple-buffer acquisitions, these bits indicate the 
current active buffer number. The active buffer number is related to 
the Status word as follows: 

active buffer = Statgyd 

K-DMAStart, K-DMAStop 

4-51 



+b t hap04-.frm Page 52 Monday, April 11, 1994 1O:OO AM 

K DMAStatus Icont.1 

Usage c/c++ 
#include "DASDECL.H" // Use "DASDECL.HPP for C+t 

WORD WStatus; 
DWORD dwcount; 

wDasErr = K-DMAStatus (hAD, U.&Status, &dwCount); 

Turbo Pascal 
use3 D1800TP7; (* Use D1800TP6 for TP ver 6.0 *) 

. . 
wstatus : Word; 
dwcount : Longint; 

wDasErr := K-DMAStatus (hAD, wStatus, dwcount); 

Turbo Pascal for Windows 
($1 DASDECL.INC) 

wstatus : Word; 
dwcount : Longint; 

. wDasE+1^ := K-DMAStatus (hAD, wstatus, dwCount); 

Visual Bask for Windows 
(Include DASDECL.BAS inyourprogrammakefile) 

Global wStatus As Integer 
Global dwCount As Long 

wDasErr = K-DMAStatus (hAD, wStatus, dwcount) 

BASIC 
$INCLUDE: 'DASDECL.BI' 

. 
DIM wStatus AS INTEGER 
DIM dwcount AS LONG 
. . 
wDasErr = KDMAStatus% (hAD, WStatus, dwcount) 

4-52 



.frm Page 53 Monday, April 11,1994 10:00 AM 

K-DMAStop 

Boards 
Supported 

All 

Purpose Stops a DMA-mode analog input operation. 

Prototype c/c++ 
DASErr far Pascal K-DMAStop (DWORD hFrame, short far *pStatus, 
DWORD far *pCount); 

Turbo Pascal 
Function K-DMAStop (Frame : Longint; Vat pStatus : Word; 
Var pCount : Long&) : Word; 

Turbo Pascal for Windows 
Function KPMAStop (hFrame : Longint; Var pStatus : Word; 
Var pCount : Longint) : Word; far; external ‘DASSHBLL’; 

Visual Basic for Windows 
Declare Function K-DMAStop Lib “DASSHELL.DLL” 
(ByVal taFrame As Long, pStatus As Integer, pCount As Long) As 
Integer 

BASIC 
DECLARE FUNCTION KDMAStop% ALIAS “KmDMAStop” 
(BYVAL hFrame AS LONG, SEG pStatus AS INTEGER, 
SEG pCount AS LONG) 

Parameters hFrame 

pStatus 

pCount 

Handle to the frame that defines the operation, 

Status of DMA-mode analog input operation. 

Number of samples that were acquired into the 
current buffer. 
Value stored: 0 to 65,536 

4-53 



.frm Page 54 Monday, April 11, 1994 10:00 AM 

K-DMAStop (cont.) 

Return Value This function returns an integer error/status code. Error/status code 0 
indicates that the function executed successfully. A non-zero error/status 
code indicates that an error occurred. Refer to Appendix A for additional 
information. 

Remarks 

See Also K-DMAStart, K-DMAStatus 

Usage c/c++ 

This function stops the DMA operation defined by Frame and stores the 
status of the DMA operation in pStatus and the number of samples 
acquired inpCount. 

Refer to page 4-50 for the meaning of the value stored in pStutus. 

If a DMA operation is not in progress, K-DMAStop is ignored. 

#include "DASDECL.H" // Use "DASDECL.HPP for C++ 
. . . 
WORD Mtatus; 
DWORD dwcount; 

. . 
wDasErr = K-DMAStop (hAD, &wStatus, &dwCount); 

Turbo Pascal 
uses D1800TP7; (* "se D1800TP6 for TP "er 6.0 *) 

. 
wstatus : Word; 
dwCount : Longint; 

wDasErr := K-DMAStop (hAD, wStatus, dwCount); 

Turbo Pascal for Windows 
($1 DASDECL.INC) 
. . 
wStatus : Word; 
dwCount : Longint; 
. . 
wDasErr := K-DMAStop (hAD, wStatus, d&ant); 

4-54 Function Reference 



hapOC.frm Page 55 Monday, April 11,1994 1O:OO AM 

K-DMAStop (cont.) 

Visual Basic for Windows 
(Include DASDECL.BAS in your program make file) 

Global wStatus As Integer 
Global dwCount As Long 

. 
wDaSErr = K-DMAStop (hAD, wStatus, dwcount) 

BASIC 
' $INCLUDE: 'DASDECL.BI' 

. 
DIM wStatus AS INTEGER 
DIM dwCount AS LONG 

. 
wDasErr = KDM?+Stop% (hAD, WStatus, dwCount) 

4-55 



4 hap044frm Page 56 Monday, April 11, 1994 10:00 AM 

4 

K DOWrite 

Boards 
Supported 

All 

Purpose Writes a single digital output value to the digital output channel. 

Prototype c/c++ 
DASErr far Pascal K-DOWrite (DWORD hDev, BYTE nChan, 
DWORD dwData): 

Turbo Pascal 
Function K-DOWrite (hDev : Longint; nChan : Byte; 
dwDafu : Longint) : Word; 

Turbo Pascal for Windows 
Function K-DOWrite (hDcv : Longint; nChan : Byte; 
&Data : Longint) : Word; far; external ‘DASSHELL’; 

Visual Basic for Windows 
Declare Function K-DOWrite Lib “DASSHELL.DLL” 
(ByVal hDev As Long, By&l nChan As Integer, 
ByVal dwData As Long) As Integer 

BASIC 
DECLARE FUNCTION KDOWrite% ALIAS “K-DOWrite” 
(BYVAL hDev AS LONG, BYVAL Khan AS INTEGER, 
BYVAL dwDaia AS LONG) 

Parameters hDev 

Khan 

Handle associated with the board. 

Digital output channel. 
Valid value: 0 

dwDnta Digital output value. 
Valid values: 0 to 255 for DAS-ISOOHC Series 

boards 
0 to 1.5 for DAS-IBOOST/HR 
Series boards 

4-56 Function Reference 

4 4 



tkm Page 57 Monday, April 11, 1994 10:00 AM 

K-DOWrite (cont.) 

Return Value This function returns an integer error/status code. Error/status code 0 
indicates that the function executed successfully. A non-zero error/status 
code indicates that an error occurred. Refer to Appendix A for additional 
information. 

See Also K-In&art, K-GetDOCurVal 

Usage c/c++ 

This function writes the value dwDa& to the digital output lines on the 
board specified by hDev. 

dwl)a~ is a 32-bit variable. The value to be written is stored in bits 0 
through 7 for DAS-1800HC Series boards or bits 0 through 3 for the 
DAS-lI?OOST/HR Series boards; the values in the remaining bits of 
dwData are not defined. Refer to page 2-35 for more information. 

#include "DASDECL.H" // Use "DASDECL.HPP for C++ 
. 

DWORD dwDOValue; 
. 
dwDOValue = 0x5; 
wDasErr = K-DOWrite (hD0, 0, dwDOValue); 

Turbo Pascal 
uses D1800TP7; (* Use D1800TP6 for TP "er 6.0 *) 
. 
dwDOValue : Longint 

dwDOValue := $5; 
wDasErr := K-DOWrite (hD0, 0, dwDOValue); 

Turbo Pascal for Windows 
($1 DASDECL.INC) 
. 
dwDOValue : Longint 
. 
dwDOValue := $5: 
wDasErr := K_DOWrite (hD0, 0, dwDOValue); 

4-57 



& hap04Lfim Page 58 Monday, April 11, 1994 10:00 AM 

4-58 

K-DOWrite (cont.) 

Visual Basic for Windows 
(Include DASDECL.BAS in your program make file) 

Global dwDOValue As Long 

dwDOValue = &H5 
wDasErr = K_DOWrite (hD0, 0, dwDOValue) 

BASIC 
' $INCLUDE: 'DASDECL.BI' 

DIM dwDOValue AS LONG 
. 
dwDOValue = &H5 
wDasErr = KDOWrite% (hD0, 0, dwDOValue1 

Function Reference 



43 hap04-.fcm Page 59 Monday, April 11, 1994 10:00 AM 

K-FormatChnGAry 

Boards 
Supported 

Purpose 

Prototype 

Parameters 

Return Value 

Remarks 

All 

Converts the format of a channel-gain queue. 

c/c++ 
Not supported 

Turbo Pascal 
Not supported 

Turbo Pascal for Windows 
Not supported 

Visual Basic for Windows 
Declare Function K-FormatChnGAry Lib “DASSHELL.DLL” 
(pArray As Integer) As Integer 

BASIC 
DECLARE FUNCTION KFotmatChanCAry% ALIAS 
“K_FormatChnGAry” (SEG pArray AS INTEGER) 

PA i-ray Channel-gain queue starting address. 

This function rehms an integer error/status code. Error/status code 0 
indicates that the function executed successfully. A non-zero error/status 
code indicates that an error occurred. Refer to Appendix A for additional 
information. 

This function converts a channel-gain queue created in BASIC or Visual 
Basic for Windows using double-byte (16-bit) values to a channel-gain 
queue of single-byte (g-bit) values that the K-SetChnGAry function can 
use. 

After you use this function, your program can no longer read the 
converted list. You must use the K-RestoreChnCAry function to return 
the list to its original format. Refer to page 4-174 for more information. 

4-59 



hap04-.frm Page 60 Monday, April 11, 1994 10:00 AM 

K FormatChnGArv (cont.1 

See Also 

Usage 

K_SetChnGAry, K-RestoreChnGAry 

Visual Basic for Windows 
(Include DASDECL.BAS in your program make file) 
. 
Global ChanGainArray(l6) As Integer ' Ghan/Gain array 
. 

Create the array of channel/gain pairs 
ChanGainArray(O1 = 2 # of than/gain pairs 
ChanGainArray(1) = 0: ChanGainArray(2) : 0 
ChanGainArray(3) = 1: ChanGainArray(4) = 1 
wDasErr = K-FormatChnGAry (ChanGainArray(0)) 

BASIC 
a SINCLUDE: 'DASDECL.BI' 
. 
DIM ChanGainArray(l6) AS INTEGER ' ChadGain array 

' Create the array of channel/gain pairs 
ChanGainArray(0) = 7. a # of than/gain pairs 
ChanGainArray(l) = 0: ChanGainArrayQ) = 0 
ChanGainArray(3) = 1: ChanGainArray(4) = 1 
wDasErr = KFormatChnGAry% (ChanGainArray(0) ) 

4-60 Function Reference 



43 t hap04-.frm Page 61 Monday, April 11, 1994 10:00 AM 

Boards 
Supported 

All 

Purpose Frees a previously specified board handle. 

Prototype c/c++ 
DASErr far Pascal K-FreeDevHandle @WORD hDev); 

Turbo Pascal 
Not supported 

Turbo Pascal for Windows 
Function K-FreeDevHandle (hDev : Longint) : Word; far; 
external ‘DASSHELL’; 

Visual Basic for Windows 
Declare Function K-FreeDevHandle Lib “DASSHELL.DLL” 
(ByVal hDev As Long) As Integer 

BASIC 
Not supported 

Parameters hDev 

Return Value This function returns an integer error/status code. Error/status code 0 
indicates that the function executed successfully. A non-zero error/status 
code indicates that an error occurred. Refer to Appendix A for additional 
information. 

Remarks This function frees the board handle specified by h&v as well as all 
frame handles associated with hDev. 

See Also K-GetDevHandle 

K FreeDevHandle 

Board handle you want to free. 

4-61 



+b hap04Lbm Page 62 Monday, April 11, 1994 10:00 AM 

K FreeDevHandle (cont.1 

Usage c/c++ 
#include "DASDECL.H" // Use "DASDECL.HPP for C++ 

. 
wDasErr = K_FreeDevHandle (hDev1; 

Turbo Pascal for Windows 
($1 DASDECL.INC) 

wDasErr := K-FreeDevHandle (hDev); 

Visual Basic for Windows 
(Include DASDECL.BA.7 in your program make file) 

. 
wDasErr = K-FreeDevHandle (hDev) 

4-62 Function Reference 



a- hap04-.frm Page 63 Monday, April 11, 1994 IO:00 AM 

K-FreeFrame 

Boards 
Supported 

Purpose 

All 

Frees a frame. 

Prototype c/c++ 
DASErr far Pascal K-FreeFrame (DWORD hFrame); 

Turbo Pascal 
Function K-FreeFrame (hFrame : Longint) : Word; 

Turbo Pascal for Windows 
Function K-FreeFrame (hFrame : Longint) : Word; far; 
external ‘DASSHELL’; 

Visual Basic for Windows 
Declare Function K-FreeFrame Lib “DASSHELL.DLL” 
(ByVal hFrame As Long) As Integer 

BASIC 
DECLARE FUNCTION KFreeFrame% ALIAS “K-FreeFrame” 
(BYVAL hFrame AS LONG) 

Parameters hFrame Handle to frame you want to free. 

Return Value This function returns an integer error/status code. Error/status code 0 
indicates that the function executed successfully. A non-zero error/status 
code indicates that an error occurred. Refer to Appendix A for additional 
information. 

Remarks This function frees the frame specified by hFrame, making the frame 
available for another operation. 

See Also K-GetADFrame, K-GetDAFrame, K-GetDIFrame, K-GetDOFrame 

4-63 



@ t hap04-.frm Page 64 Monday, April 11,1994 10:00 AM 

K-FreeFrame (cont.) 

Usage c/c++ 
#include "DASDECL.H" // Use "DASDECL.HPP for C+, 

wDasErr = K_FreeFrame (hAD); 

Turbo Pascal 
uses D1800TP7; (* "se D1800TP6 for TP "er 6.0 *) 

. 
wDasErr := K-FreeFrame (hAD); 

Turbo Pascal for Windows 
($1 DASDECL.INC) 

. 
wDasErr := K-FreeFrame (hAD); 

Visual Basic for Windows 
(Include DASDECL.BAS in yourprogram make file) 
. . 
wDasErr = K-FreeFrame (hADI 

BASIC 
5 SINCLUDE: 'DASDECL.BI' 

wDasErr = KFreeFrame% (hAD) 

4-64 Function Reference 



frm Page 65 Monday, April 11, 1994 1O:OO AM 

K-GetAboutTrig 

Boards 
Supported 

All 

Purpose Gets the number of post-trigger samples as specified by 
K-SetAboutlXg. 

Prototype c/c++ 
DASErr far Pascal KMGetAboutTrig @WORD hFrame, 
DWORD far *pSamples); 

Turbo Pascal 
Function KGetAboutTrig (hFrame : Longint; 
Var pSamples : Long&) : Word; 

Turbo Pascal for Windows 
Function K-GetAboutTrig @Frame : Longint; 
VarpSamples : Longint) : Word; far: external ‘DASSHELL’; 

4 
Visual Basic for Windows 
Declare Function K-GetAboutTrig Lib “DASSHELL.DLL” 
(ByVal hFrume As Long, pSamples As Long) As Integer 

BASIC 
DECLARE FUNCTION KGetAboutTrig% ALIAS “KGetAboutTrig” 
(BYVAL hFrame AS LONG, SEG pSamples AS LONG) 

Parameters 

Return Value 

hFrame Handle to the frame that defines the operation. 

pSamples Number of post-trigger samples. 

This function returns an integer error/status code. Error/status code 0 
indicates that the function executed successfully. A non-zero error/status 
code indicates that an error occurred. Refer to Appendix A for additional 
information. 

For the operation specified by hFrame, this function stows the number of 
post-trigger samples to acquire in pSamples. 

4 

4 

4-65 



.frm Page 66 Monday, April 11,1994 10:00 AM 

4 

K-GetAboutTrig (cont.) 

See Also 

usage 

K-SetAboutTrig, K-ClrAboutTrig 

c/c++ 
#include "DASDECL. H" // Use "DASDECL.HPP for C++ 

. . 
wDasErr = K-GetAboutTrig (hAD, &dwSamples); 

Turbo Pascal 
uses D1800TP7; (* Use DlEOOTP6 for TP "er 6.0 *) 

. . 
wDasErr := K-GetAboutTrig (hAD, dwSamples); 

Turbo Pascal for Windows 
($1 DASDECL.INC) 

. 
wDasErr := K-GetAboutTrig (hAD, dwSamples); 

4-66 Function Reference 

Visual Basic for Windows 
(Include DASDECL.BAS in your program makefile) 

wDasErr = K-GetAboutTrig (hAD, dwSamples) 

BASIC 
0 SINCLUDE: 'DASDECL.BI' 

. 
~DasErr = KGetAboutTrig% (hAD, dwSamples) 

4 

4 

4 4 4 



43 hap04_.frm Page 67 Monday, April 11,1994 10:00 AM 

-@ 

K GetADCommonMode 

Boards 
Supported 

DAS-1801ST, DAS-1802ST, DAS-1802HR 

Purpose 

Prototype 

Get a DAS board’s AiD common-mode ground reference. 

c/c++ 
DASErr far Pascal KGetADCommonMode (DWORD hDev, 
WORD far *pMode); 

Turbo Pascal 
Function K-GetADCommonMode( hDev : Longint; 
Var pMode : Word) : Word; 

Turbo Pascal for Windows 
Function K-GetADCommonMode (hDev : Longint; 
Var pMode : Word) : Word; far; external ‘DASSHELL’; 

Visual Basic for Windows 
Declare Function K-GetADCommonMode Lib “DASSHELL.DLL” 
(ByVal hDev As Long, pMode As Integer) As Integer 

BASIC 
DECLARE FUNCTION KGetADCommonMode% ALIAS 
“K_GetADCommonMode” (BYVAL hDev AS LONG, 
SEG pMode AS INTEGER) 

Parameters hDev 

pMode 

Handle to the frame that defines the operation. 

A/D common-mode ground reference. 
Value stored: 0 for LL-GND 

1 for user-defined 

Return Value This function returns an integer error/status code. Error/status code 0 
indicates that the function executed successfully. A non-zero error/status 
code indicates that an error occurred. Refer to Appendix A for additional 
information. 

4-67 



.frm Page 68 Monday, April 11,1994 10:00 AM 4 

K-GetADCommonMode (cont.) 

Remarks For the board specified by hDev, this function stores the code that 
indicates the A/D common-mode ground reference in pMode. 

See Also K-SetADCommonMode 

Usage c/c++ 
#include "DASDECL.H" // Use "DASDECL.HPP for C+i 

. 
wDasErr = I<~GetADCommonMode (hDev, &nADCommMode); 

Turbo Pascal 
uses DlEOOTP7; (* Use DlEOOTP6 for TP ver 6.0 *) 

wDasErr := K-GetADComonMode (hDev, wADCommMode); 

Turbo Pascal for Windows 
($1 DASDECL.INC) 

4 
wDasErr := K-GetADComonMode (hDev, wADCommMode); 

Visual Basic for Windows 
(Include DASDECL.BAS in your program make file) 

4-66 

wDasErr = K-GetADComonMode (hDev, wADCommMode) 

BASIC 
SINCLUDE: 'DASDECL.BI' 

wDasErr = KGetADComonMode% (hDev, wADComMode) 

Function Reference 

4 



.frm Page 69 Monday, April 11,1994 1O:OO AM 

K-GetADConfig 

Boards 
Supported 

All 

Purpose Get a DAS board’s A/D input channel configuration. 

Prototype c/c++ 
DASErr far Pascal K-GetADConfig (DWORD hDev, 
WORD far *pMode); 

Turbo Pascal 
Function K-GetADConfig (hDev : Longint; VarpMode : Word) : Word; 

Turbo Pascal for Windows 
Function K-GetADConfig (hDev : Longint; Var pMode : Word) : Word; 
far; external ‘DASSHELL’; 

Visual Basic for Windows 
Declare Function K-GetADConfig Lib “DASSHELL.DLL” 
(ByVal hDev As Long, pMode As Integer) As Integer 

BASIC 
DECLARE FUNCTION KGetADConfig% ALIAS “K-GetADConfig” 
(BYVAL hDev AS LONG, SEG pMode AS INTEGER) 

Parameters hDcv 

pMode 

Handle associated with the board. 

A/D input channel configuration. 
Value stored: 0 for Differential 

1 for Single-ended 

Return Value This function returns an integer error/status code. Error/status code 0 
indicates that the function executed successfully. A non-zero error/status 
code indicates that an error occurred. Refer to Appendix A for additional 
information. 

Remarks This function stores the code that indicates the A/D input channel 
configuration inpMode for the board specified by hDev. 

4-69 



4 hap04-.frm Page 70 Monday, April 11,1994 10:00 AM 

+b 

K-GetADConfig (cont.) 

See Also K-SetADConfig 

Usage c/c++ 
#include "DASDECL.H' // Use "DASDECL.HPP for C++ 

DWORD hAD; 
. 

wDasErr = K-GetADConfig (hDev, &wADConfig); 

Turbo Pascal 
uses D1800TP7; (* "se D1800TP6 for TP "er 6.0 *) 

. 
hAD : Longint: 

wDasErr := K_GetADConfig (hDev, wADConfig); 

4-70 

Turbo Pascal for Windows 
($1 DASDECL.INC) 
. 
hAD : Longint; 

wDasErr := I<-GetADConfig (hDev, wADConfig); 

Visual Basic for Windows 
(Include DASDECL.BAS in your program make file) 

. 
Global hAD As Long 

. 
wDasErr = K-GetADConfig (hDev, wADCommMode) 

BASIC 
1 $INcLUDE: 'DASDECL.BI' 
. 
DIM hAD AS LONG 

wDasErr = KGetADConfig% (hDev, wADConfig) 

Function Reference 



G hapOC.frm Page 7 1 Monday, April 11,1994 10:00 AM 

+b 

K GetADFrame 

Boards 
Supported 

All 

Purpose Accesses an A/D frame for an analog input operation. 

Prototype c/c++ 
DASErr far pascal K-GetADFrame (DWORD hDev, 
DWORD far * pFrame); 

Turbo Pascal 
Function KGetADFrame (hDev : Longint; 
Var pFrume : Longint) : Word; 

Turbo Pascal for Windows 
Function K-GetADFrame (hDev : Lougint: 
VarpFrame : Longint) : Word; far; external ‘DASSHELL’; 

Visual Basic for Windows 
Declare Function K-G&AD&me Lib “DASSHELL.DLL” 
(ByVal hDev As Long, pFrame As Long) As Integer 

BASIC 
DECLARE FUNCTION KGetADFrame% ALIAS “K_GetADFrame” 
(BYVAL h&v AS LONG, SEG pFrame AS LONG) 

Parameters 

Remarks 

hDev Handle associated with the board. 

pFrame Handle to the frame that defines the operation. 

This function specifies that you want to perform a DMA-mode or 
interrupt-mode analog input operation on the board specified by hDev, 
and accesses an available A/D frame with the handle hFrame. The frame 
is initialized to its default settings; the default settings are given in Table 
3-1 on page 3-5. 

See Also K-ClearFrame, K-FreeFrame 

4-71 



4 hap04-.frm Page 72 Monday, April 11, 1994 10:00 AM 

4 

4-72 Function Reference 

K-GetADFrame (cont.) 

Usage c/c++ 
#include “DASDECL. H” ,, "se "DASDECL.HPP for C++ 

. 
DWORD hAD; 
. 
wDasErr = K-GetADFrame (hDev, &hAD); 

Turbo Pascal 
uses DlEOOTP7; (* Use D1800TP6 for TP "er 6.0 *) 
. 
hAD : Longint; 

wDasErr := K-GetADFrame (hDev, hAD); 

Turbo Pascal for Windows 
($1 DASDECL.INC) 
. 
hAD : Longint; 

wDasErr := K-GetADFrame (hDev, hAD); 

Visual Basic for Windows 
(Include DASDECL.BAS in your program make file) 

Global hAD As Long 

~DasErr = K-GetADFrame (hDev, hAD) 

BASIC 
I SINCLUDE: 'DASDECL.BI' 

DIM hAD AS LONG 
. 

wDasErr = KGetADFrame% (hDev, hAD) 

4 

+b ($ 



G- hap04Lfrm Page 73 Monday, April 11, 1994 10:00 AM 

K-GetADFreeRun 

Boards 
Supported 

All 

Purpose Gets the conversion mode. 

Prototype c/c++ 
DASErr far pascal K-GetADFreeRun (DWORD hFrame, 
short far *pStatus); 

Turbo Pascal 
Function K-GetADFreeRun (hFrame : Longint; 
Var pStafus : Word) : Word; 

Turbo Pascal for Windows 
Function KGetADFreeRun (M+ame : Longint; 
Var pStatus : Word) : Word; far; external ‘DASSHELL’; 

Visual Basic for Windows 
Declare Function K-GetADFreeRun Lib “DASSHELL.DLL” 
(ByVal hFrame As Long, pStatus As Integer) As Integer 

BASIC 
DECLARE FUNCTION KGetADFreeRun% ALIAS 
“K-GetADFreeRun” (BYVAL hFrame AS LONG, 
SEG pStatus AS INTEGER) 

Parameters hFrame 

pStatus 

Handle to the frame that defines the operation. 

Code that indicates the conversion mode. 
Value stored: 0 for Paced 

0 for Burst 

Return Value This function returns an integer error/status code. Error/status code 0 
indicates that the function executed successfully. A non-zero error/status 
code indicates that an error occurred. Refer to Appendix A for additional 
information. 

4-73 



.frm Page 74 Monday, April 11, 1994 10:00 AM 

G- 

K GetADFreeRun (cont.1 

Remarks For the operation defined by Frame, this function stores the code that 
indicates the conversion mode in pStatus. 

The pStatus variable contains the value of the Conversion Mode element. 

Refer to page 2-15 for information on conversion modes. 

See Also 

Usage 

K-SetADFreeRun 

c/c++ 
#include "DASi3ECL.H" // Use "DASDECL.HPP for c++ 

WORD wMode; 
. . 
wDasErr : K-GetADFreeRun (hAD, &wMode); 

4-74 Function Reference 

Turbo Pascal 
uses D1800TP7; (* "se D1800TP6 for TP "er 6.0 *) 
. 
wMode : Word; 

. 
wDasErr := K_GetADFreeRun (hAD, wMode); 

Turbo Pascal for Windows 
($1 DASDECL.INC) 

wMode : Word; 

wDasErr := K-GetADFreeRun (hAD, wMode): 

Visual Basic for Windows 
(Include DASDECLBAS in your program make file) 

. 
Global wMode As Integer 

wDasErr = K_GetADFreeRun (hAD, wMode) 



.frm Page 75 Monday, April 11, 1994 1O:OO AM 

K GetADFreeRun (cont.1 

BASIC 
SINCLUDE: 'DASDECL.BI' 

. . . 
DIM wMode AS INTEGER 
. . 
wDasErr = KGetADFreeRun% (hAD, wMode) 

4-75 

4 



8, hap04Lfrm Page 76 Monday, April 11, 1994 1O:OO AM 

4 

K-GetADMode 

Boards 
Supported 

All 

Purpose Get a DAS board’s A/D input range type. 

Prototype c/c++ 
DASErr far pascal K-GetADMode (DWORD hDev, 
WORD far *pMode); 

Turbo Pascal 
Function K-GetADMode (hDev : Longint; VarpMode : Word) : Word; 

Turbo Pascal for Windows 
Function K-GetADMode (hDev : Longint; Var pMode : Word) : Word: 
far; external ‘DASSHELL’; 

Visual Basic for Windows 
Declare Function K..,GetADMode Lib “DASSHELL.DLL” 
(ByVal hDev As Long, pMode As Integer) As Integer 

BASIC 
DECLARE FUNCTION KGetADMode% ALlAS “KGetADMode” 
(BYVAL hDcv AS LONG, SEG pModc AS INTEGER) 

Parameters hDt?V 
pMode 

Handle associated with the board. 

A/D input range type. 
Value stored: 0 for Bipolar 

1 for Unipolar 

Return Value This function returns an integer error/status code. Error/status code 0 
indicates that the function executed successfully. A non-zero error/status 
code indicates that an error occurred. Refer to Appendix A for additional 
information. 

Remark This function stores the code that indicates the A/D input range type for 
the board specified by h&v in pMode. 

4-76 Function Reference 

4 

4 4 



.frm Page 77 Monday, April 11, 1994 10:00 AM 

K-GetADMode (cont.) 

See Also K-SetADMode 

Usage c/c++ 
#include "DASDECL.H" // Use "DASDECL.HPP for C++ 

DWORD hAD; 
. 
wDasErr = K-GetADMode (hDev, &nADMode); 

Turbo Pascal 
uses DlEOOTP7; (* Use DlEOOTP6 for TP "er 6.0 *) 

. . 
hAD : Longint: 

. 
wDasErr := K-GetADMode (hDev, wADMode); 

Turbo Pascal for Windows 
($1 DASDECL.INC) 

. 
hAD : Longint; 
. 
wDasErr := K-GetADMode (hDev, wADMode); 

Visual Basic for Windows 
(Include DASDECL.BAS in your program make file) 

Global hAD As Long 

wDasErr = K_GetADMode (hDev, wADMode) 

BASIC 
4 SINCLUDE: 'DASDECL.BI' 
. 
DIM hAD AS LONG 

. 
wDasErr = KGetADMode% (hDev, wADMode) 

4-77 



-e i hap04-.frm Page 78 Monday, April 1 I, 1994 10:00 AM 

K-GetADTrig 

Boards 
Supported 

All 

Purpose 

Prototype 

Gets the current analog trigger conditions. 

c/c++ 
DASErr far Pascal K-GetADTrig (DWORD hFrame, short far *pOpt, 
short far *pChan, DWORD far *pLevel); 

Turbo Pascal 
Function K-GetADTrig (ItFrame : Longint;Var pOpt : Word; 
Var pChan : Word; Var pLev : Longint) : Word: 

Turbo Pascal for Windows 
Function K-GetADTrig (hFrame : Longint;Var pOpt : Word; 
Var pChan : Word; Var &ev : Longint) : Word; far: 
external ‘DASSHELL’; 

Visual Basic for Windows 
Declare Function K-GetADTrig Lib “DASSHELL.DLL” 
(ByVal hFrame As Long, pop? As Integer, pChan As Integer, 
pLevel As Long) As Integer 

BASIC 
DECLARE. FUNCTION KGetADTrig% ALIAS “K-GetADTrig” 
(BYVAL hFrame AS LONG, SEG pOpt AS INTEGER, 
SEG pChan AS INTEGER, SEG pLevel AS LONG) 

Parameters hFrame 

POPt 

Handle to the frame that defines the operation. 

Analog trigger polarity. 
Value stored: 0 for Positive edge 

2 for Negative edge 

4-78 Function Reference 

$I -e 



4 hapOC.frm Page 79 Monday, April 11, 1994 10:00 AM 

4 

K-GetADTrig (cont.) 

/Khan Analog input channel used as trigger channel. 
Valid values: 

Board 

Valid channel numbers 

Differential Single-ended 

1 DAS-1800HC I 0 to 31 IOto63 I 

DAS-lSOOST/HR with N 
EXP-1800 expansion boards 
attached 

Not applicable 0 to 15(hJ + 1) 

Return Value 

pLevel Level at which the trigger event occurs. 

This function returns an integer error/status code. Error/status code 0 
indicates that the function executed successfully. A non-zero error/status 
code indicates that an error occurred. Refer to Appendix A for additional 
information. 

Remarks For the operation defined by hFrame, this function stores the channel 
used for an analog trigger in pChan, the level used for the analog trigger 
in plevel, and the trigger polarity in pOpt. 

The pOpt variable contains the value of the Trigger Polarity element. 

The pChan variable contains the value of the Trigger Channel element. 

The pLeve1 variable contains the value of the Trigger Level element. The 
value of pLevel is represented in raw counts. Refer to Appendix B for 
information on converting the raw count stored in pLevel to voltage. 

See Also K-SetADTrig 

4 

4 

4-79 

4 



4 hap04-.frm Page 80 Monday, April 11, 1994 IO:00 AM 4 

4 

K-GetADTrig (cont.) 

Usage c/c++ 
#include 'DASDECL.H" // Use "DASDECL.HPP for C++ 

4-80 Function Reference 

int nOpt, nChan; 
DWORD dwLeve1; 

. 
wDasErr = K_GetADTrig (hAD, &nOpt, &nChan, &dwLevel); 

Turbo Pascal 
uses D1800TP7; (* Use D1800TP6 for TP ver 6.0 *, 

nopt : Integer; 
nChan : Integer; 
dwLeve1 : Longint; 

wDasErr := K-GetADTrig (hAD, nopt, nchan, dwlevel); 

Turbo Pascal for Windows 
($1 DASDECL.INC) 
. 
nopt : Integer; 
nchan : Integer; 
dwLeve1 : Longint; 

wDasErr := K_GetADTrig (hAD, nopt, nchan, dwlevel); 

Visual Basic for Windows 
(Include DASDECL.BAS in your program make file) 

Global nOpt As Integer 
Global nchan As Integer 
Global dwLeve1 As Long 

. 
wDasErr = K-GetADTrig (hAD, nopt, nchan, dwlevel) 

4 

4 4 4 



4 hap04-.frm Page 81 Monday, April 11, 1994 10:00 AM 

K-GetADTrig (cont.) 

BASIC 
SINCLUDE: 'DASDECL.BI' 

. 
DIM nOpt AS INTEGER 
DIM nchan AS INTEGER 
DIM dwLeve1 AS LONG 
. 
wDasErr = KGetADTrig% (hAD, nOpt, nchan, dwlevel) 



G hap04Lfim Page 82 Monday, April 11,1994 1O:OO AM 

+b 

K GetBuf 

Boards 
Supported 

All 

Purpose Returns the address and size of a buffer assigned to a frame. 

Prototype c/c++ 
DASErr far pascal K-GetBuf @WORD hFrame, void far * far *pBuf, 
DWORD far *pSamples); 

Turbo Pascal 
Function K-GetBuf &Frame : Longint; Var pBuf : Pointer; 
Var pSamples : Longint) : Word; 

Turbo Pascal for Windows 
Function K-GetBuf (hFrame : Longint; Var pBuf : Pointer; 
VarpSamples : Longint) : Word: far; external ‘DASSHELL’; 

Visual Basic for Windows 
Declare Function K-GetBuf Lib “DASSHELL.DLL” 
(ByVal Frame As Long, pBuf As Long, pSamples As Long) As Integer 

BASIC 
DECLARE FUNCTION KGetBuf% ALIAS “K-GetBuf’ 
(BYVAL itFrame AS LONG, SEG pBuf AS LONG, 
SEG pSamples AS LONG) 

Parameters hFrame Handle to the frame that defines the operation. 

PBM Starting address of buffer. 

pSamples Number of samples. 
Value stored: 0 to 65,535 

Return Value This function returns an integer error/status code. Error/status code 0 
indicates that the function executed successfully. A non-zero error/status 
code indicates that an error occurred. Refer to Appendix A for additional 
information. 

4-82 Function Reference 



4 hapOC.frm Page 83 Monday, April 11.1994 10:00 AM 

4 

K GetBuf (cont.) 

For the operation specified by hFrame, this function stores either the 
address of the currently allocated buffer (if you are using a single buffer) 
or the address of the first buffer (if you are using multiple buffers) in pBuf 
and the number of samples stored in that buffer in pSamples. 

Use this function to retrieve the address of the buffer whose address was 
specified by K-SetBuf, K-SetBuff, or KBuf’ListAdd. 

The pBufvariable contains the value of the Buffer element. 

The pSamples variable contains the value of the Number of Samples 
element. 

See Also K-ButListAdd, K-SetBuf, K-SetBuff 

Usage c/c++ 
#include "DASl3ECL.H" ,, "se "DASDECL.HPP for c++ 

. 
void far *pADBuffer; 
DWORD dwSamples; 

wDasErr = K-GetBuf (hAD, &pADBuffer, &dwSamples); 

Turbo Pascal 
uses D1800TP7; (* Use DlEOOTP6 for TP "er 6.0 *I 

pADBuffer : Longint; 
dwSamples : Longint: 

wDasErr = K-GetBuf (hAD, @pADBuffer, dwsamples); 

Turbo Pascal for Windows 
($1 DASDECL.INC) 

. 
pADBuffer : Longint 
dwSamples : Longint 

. 
wDasErr = K-GetBuf (hAD, @pADBuffer, dwsamples); 

4 

4-83 

4 4 



fcm Page 84 Monday, April 11,1994 IO:00 AM 

K GetBuf (cont.) 

Visual Basic for Windows 
(Include DASDECL.BAS in your program make file) 

Dim pADBuffer As Long 

wDasErr = K-GetBuf (hAD, pADBuffer, dwSamples); 

BASIC 
5 SINCLUDE: 'DASDECL.BI' 

Dim pADBuffer As Long 
. . 
wDasErr = K-GetBuf% (hAD, pADBuffer, dwSamples); 

4-84 Function Reference 



+B hap04Lfrm Page 85 Monday, April 11, 1994 10:00 AM 

+D 

K GetBurstTicks 

Boards 
Supported 

All 

Purpose Gets the number of clock ticks between conversions to determine the 
burst mode conversion rate. 

Prototype c/c++ 
DASErr far Pascal K-GetBurstTicks (DWORD hFrume, 
short far *pTicks); 

Turbo Pascal 
Function K-GetBurstTicks (hFrame : Longint; 
Var pTicks : Word) : Word; 

Turbo Pascal for Windows 
Function K-GetBurstTicks (hFrame : Longint; 
VarpTicks : Word) : Word; far; external ‘DASSHELL’; 

Visual Basic for Windows 
Declare Function K-GetBurstTicks Lib “DASSHELL.DLL” 
(ByVal hFrame as Long, pTicks As Integer) As Integer 

BASIC 
DECLARE FUNCTION KGetBurstTicks% ALIAS “K-GetBurstTicks” 
(BYVAL hFrame AS LONG, SEG pTicks AS INTEGER) 

Parameters hFrame 

pTicks 

Handle to the frame that defines the operation. 

Number of clock ticks between conversions. 
Value stored: 3 to 255 

Return Value This function returns an integer error/status code. Error/status code 0 
indicates that the function executed successfully. A non-zero error/status 
code indicates that au error occurred. Refer to Appendix A for additional 
information. 

4-85 



4 hap04Lfrm Page 86 Monday, April 11,1994 10:00 AM 

K GetBurstTicks (cont.1 

Remarks For the operation defined by hFrame, this function stores the number of 
clock ticks between conversions of each channel in a scan in pTicks. 

The nTicks variable contains the value of the Burst Clock Rate element. 

See Also 

Usage 

4-66 Function Reference 

K-SetBurstTicks 

CIC++ 
#include "DASDECL.H" // Use "DASDECL.HPP for C+t 
. 
int nCount; 
. 
wDasErr = K-GetBurstTicks (hAD, &nCount); 

Turbo Pascal 
uses D1800TP7; (* "se D1800TP6 for TP "er 6.0 *) 

ncount : Integer; 
. 

wDasErr :: K-GetBurstTicks (hAD, nCount); 

Turbo Pascal for Windows 
($1 DASDECL.INC) 

. 
ncount : Integer; 

. . 
wDasErr := K-GetBurstTicks (hAD, ncount); 

Visual Basic for Windows 
(Include DASDECL.BAS in your program makefile) 

. . 
Global nCount As Integer 
. . 

wDasErr = K-GetBurstTicks (hAD, ncount) 



.frm Page 87 Monday, April 11,1994 10:00 AM 

K-GetBurstTicks (cont.) 

BASIC 
SINCLUDE: 'DASDECL.BI' 

DIM ncount AS INTEGER 

wDasErr = KGetBurstTicks% (hAD, &ant) 

4-87 



4 hap04Urm Page 88 Monday, April 11,1994 10:00 AM 

+B 

K-GetChn 

Boards 
Supported 

All 

Purpose Gets a single channel number. 

Prototype c/c++ 
DASErr far Pascal K-GetChn (DWORD hFrume, short far *pChan); 

Turbo Pascal 
Function K-GetChn (hFrame : Longint; Var pChan : Word) : Word; 

Turbo Pascal for Windows 
Function K-GetChn (hFrame : Longint; VarpChan : Word) : Word; far; 
external ‘DASSHELL’; 

4-m 

Visual Basic for Windows 
Declare Function K-GetChn Lib “DASSHELL.DLL” 
(ByVal hFrame As Long, pChan As Integer) As Integer 

BASIC 
DECLARE FUNCTION KGetChn% ALIAS “K-GetChn” 
(BYVAL hFrame AS LONG, SEG pChan AS INTEGER) 

Function Reference 



-@- hap04-.frm Page 89 Monday, April 11, 1994 10:00 AM 

K-GetChn (cont.) 

Parameters hFrame 

pChan 

Handle to the frame that defines the operation. 

Channel on which to perform the operation. 
Valid values: 

Board 

DAS-1800HC 

Valid channel numbers 

Differential Single-ended 

oto31 I 0 to 63 

DA.%1800ST/HR with N 
EXP-1800 expansion boards 
attached 

Not applicable 0 to 15(N + 1) 

Return Value This function returns an integer error/status code. Error/status code 0 
indicates that the function executed successfully. A non-zero error/status 
code indicates that an error occurred. Refer to Appendix A for additional 
information. 

Remarks 

See Also K-SetChn, K-SetStartStopChn, K-SetStartStopG 

Usage c/c++ 
#include "DASDECL.H" // "se "DASDECL.HPP for C+t 
. 
short nChan; 

For the operation defined by hFrame, this function stores the channel 
number in pChan. 

The pChan variable contains the value of the Start Channel and Stop 
Channel elements. 

. . . 
wDasErr = K-GetChn (hAD, EaChan); 

4-89 



hap042rtn Page 90 Monday, April 11,1994 IO:00 AM 

K GetChn (cont.) 

4 

4-90 

Turbo Pascal 
uses D1800TP7; (* Use D1800TP6 for TP "er 6.0 *) 

. 
nchan : Integer; 
. . . 
wDasErr := K-GetChn (hAD, nchan); 

Turbo Pascal for Windows 
($1 DASDECL.INC) 
. 
nChan : Integer; 

. . 
v,DasErr := K-GetChn (hAD, nChan); 

Visual Basic for Windows 
(Include DASDECLBAS in your program make file) 
. 
Global. nchan AS Integer 

. 
wDasErr = K-GetChn (hAD, nchan) 

BASIC 
$INcLUDE: 'DASDECL.BI' 

. 
DIM nchan AS INTEGER 

. 
wDasErr = KGetChn% (hAD, nchan) 

Function Reference 

4 

4 



@ i hap042m Page 91 Monday, April 11, 1994 10:00 AM 

+B 

K GetChnGAry 

Boards 
Supported 

All 

Purpose Gets the starting address of a channel-gain queue. 

Prototype c/c++ 
DASErr far Pascal K_GetChnGAry (DWORD hFrame, 
void far * far *pArray); 

Turbo Pascal 
Function K-GetChnGAry (hFrame : Longint; 
Var pArray : Integer) : Word; 

Turbo Pascal for Windows 
Function K-GetChnGAry (hFrame : Longint; 
Var pArray : Integer) : Word; far: external ‘DASSHELL’; 

Visual Basic for Windows 
Declare Function K-GetChnGAry Lib “DASSHELL.DLL” 
(ByVal hFrame As Long, pArray As Long) As Integer 

BASIC 
DECLARE FUNCTION KGetChnGAry% ALIAS “K-GetChnGAry” 
(BYVAL hFrame AS LONG, SEG pArray AS LONG) 

Parameters 

Return Value 

hFrame Handle to the frame that defines the operation. 

pA way Channel-gain queue starting address. 

This function returns an integer error/status code. Error/status code 0 
indicates that the function executed successfully. A non-zero error/status 
code indicates that an error occurred. Refer to Appendix A for additional 
information. 

4-91 



-&- hap04-.frm Page 92 Monday, April 11, 1994 10:00 AM 

+b 

K-GetChnGAty (cont.) 

Remarks For the operation defined by hFrame, this function stores the starting 
address of the channel-gain queue in pArray. 

The pArray variable contains the value of the Channel-Gain Queue 
element. 

Refer to page 2-14 for information on setting up a channel-gain queue. 

See Also 

Usage 

K_SetChnGArj 

CIC++ 
#include "i3ASDECL.H" // "se "DASDECL.HPP for C++ 

void far *pArray; 

wDasErr = K-GetChnGAry (hAD, &pArray); 

4-92 Function Reference 

Turbo Pascal 
uses D1800TP7; (* Use D1800TP6 for TP "er 6.0 *) 

. 
pArray : Integer; 

. 
wDasErr = K-GetChnGAry (hAD, pArray); 

Turbo Pascal for Windows 
($1 DASDECL.INC) 

pArray : Integer; 
. 

wDasErr = K-GetChnGAry (hAD, pArray); 

Visual Basic for Windows 
(Include DASDECL.BAS in your program make file) 

wDasErr = KmGetChnGAry (hAD, pArray) 

BASIC 
' $INCLUDE: 'DASDECL.BI' 

. . 
wDasErr = K_GetChnGAry (hAD, pArray) 

4 4 



-6 hap04-.frm Page 93 Monday, April 11,1994 1O:OO AM 

K-GetClk 

Boards 
Supported 

All 

Purpose Gets the pacer clock source. 

Prototype c/c++ 
DASErr far Pascal K-GetClk (DWORD hFrame, short far *pMode); 

Turbo Pascal 
Function K-GetClk (hFrame : Longint; VarpMode : Word) : Word; 

Turbo Pascal for Windows 
Function KGetClk (hFrame : Longint; VarpMode : Word) : Word; far; 
external ‘DASSHELL’; 

Visual Basic for Windows 
Declare Function K-GetClk Lib “DASSHELL.DLL” 
(ByVal hFrame As Long, pMode As Integer) As Integer 

BASIC 
DECLARE FUNCTION KGetClk% ALIAS “K-GetClk” 
(BYVAL hFrame AS LONG, SEG pMode AS INTEGER) 

Parameters hFrame 

pMode 

Handle to the frame that defines the operation. 

Pacer clock source. 
Value stored: 0 for Internal 

1 for External 

Return Value This function returns an integer error/status code. Error/status code 0 
indicates that the function executed successfully. A non-zero error/status 
code indicates that an error occurred. Refer to Appendix A for additional 
information. 

Remarks For the operation defined by hFrame, this function stores the pacer clock 
source in pMode. 

4-93 



.frm Page 94 Monday, April 11, 1994 10:00 AM 

K GetClk Icont.) 

An internal clock source is the output of the onboard counter/timer 
circuitry; an external clock source is an external signal connected to the 
DIO/XPCLK pin @AS-1800HC Series) or XPCLK pin 
(DAS-1800ST/HR Series). 

Refer to page 2-15 (for analog input operations), page 2-29 (for analog 
output operations), and page 2-36 (for digital I/O operations) for more 
information about pacer clock sources. 

The pMode variable contains the value of the Clock Source element. 

See Also K-SetClk, K-SetClkRate 

Usage c/c*+ 
#include "DASDECL.H" ,, "se "DASDECL.HPP for C++ 

Word wMode; 

wDasErr = K-GetClk (hAD, EmMode); 

Turbo Pascal 
uses D1800TP7; (* "se D1800TP6 for TP "er 6.0 *) 
. 
wMode : Word; 

wDasErr := K-GetClk (hAD, wMode); 

Turbo Pascal for Windows 
($1 DASDECL.INC) 

wMode : Word: 
. 
wDasErr := KmGetClk (hAD, wMode); 

Visual Basic for Windows 
(Include DASDECLBAS in your program make file) 

Global wMode As Integer 

wDasErr = K-GetClk (hAD, wMode) 

4-94 Function Reference 



-& hap043m Page 95 Monday, April 11, 1994 10:00 AM 

K-GetClk (cont.) 

BASIC 
SINCLUDE: 'DASDECL.BI' 

DIM wMode AS INTEGER 
. 

wDasErr = KGetClk% (hAD, wMode) 



4+ b hap04Qrm Page 96 Monday, April 11,1994 10:00 AM 

K-GetClkRate 

Boards 
Supported 

All 

Purpose Gets the internal clock divisor (clock ticks) for the 5 MHz clock source. 

Prototype c/c++ 

+b 

Parameters 

Return Value 

Remarks 

4-96 

DASErr far pascal KGetClkRate (DWORD hJrame, 
DWORD far *pRare); 

Turbo Pascal 
Function K-GetClkRate (hFrume : Longint; Var pRate : Longint) : Word: 

Turbo Pascal for Windows 
Function K-GetClkRate (hFrame : Longint; Var pRate : Longint) : Word; 
far; external ‘DASSHELL’; 

Visual Basic for Windows 
Declare Function KGetClkRate Lib “DASSHELL.DLL” 
(ByVal hFrame As, Long, pRate As Long) As Integer 

BASIC 
DECLARE FUNCTION KGetClkRate% ALIAS “K_GetClkRate” 
(BYVAL hFrme AS LONG, SEG pRate AS LONG) 

hFrame 

pRate 

Handle to the frame that defines the operation. 

Number of clock ticks between conversions. 
Value stored: 15 to 4,294,967,295 

This function returns an integer error/status code. Error/status code 0 
indicates that the function executed successfully. A non-zero error/status 
code indicates that an error occurred. Refer to Appendix A for additional 
information. 

For the operation defined by hFrame, this function stores the number of 
clock ticks between conversions in pRate. 

The pRare variable contains the value of the Pacer Clock Rate element. 

Function Reference 



43 hap04-.frm Page 97 Monday, April 11.1994 10:00 AM 

K-GetClkRate (cont.) 

This function applies to an internal clock source only. 

After an interrupt-mode or DMA-mode analog input operation, the value 
stored inpRafe represents the actual count used, not necessarily the count 
set by K-SetClkRate. 

See Also K-SetClkRate 

Usage c/c+* 
#include "DASDECL.H" // Use "DASDECL.HPP for C++ 

. 
DWORD dwRate; 

. 
wDasErr = K-GetClkRate (hAD, &dwRate); 

Turbo Pascal 
uses D1800TP7; (* Use D1800TP6 for TP "er 6.0 *) 
. . . 
dwRate : Longint; 

. 
wDasErr := K-GetClkRate (hAD, dwRate); 

Turbo Pascal for Windows 
($1 DASDECL.INC) 

. 
dwRate : Longint; 
. 
wDasErr := K-GetClkRate (hAD, dwRate); 

Visual Basic for Windows 
(Include DASDECL.BA.7 inyourprogram makefile) 

Global dwRate As Long 
. 
wDasErr = K-GetClkRate (hAD, dwRate) 

4-97 



frm Page 98 Monday, April 11.1994 10:00 AM 

K GetClkRate Icont.1 

BASIC 
n SINCLUDE: 'DASDECL.BI' 

DIM dwRate AS LONG 
. 
wDasErr = KGetClkRate% (hAD, dwRate) 

4-98 Function Reference 



frm Page 99 Monday, April 11,1994 1O:OO AM 

K GetContRun 

Boards 
Supported 

All 

Purpose Gets the buffering mode. 

Prototype c/c++ 

4 

Parameters 

Return Value 

Remarks 

DASErr far Pascal KMGetContRun @WORD /iFrame, 
short far *pMode); 

Turbo Pascal 
Function K-GetContRun (hFrame : Longint;Var pMode : Word) : Word; 

Turbo Pascal for Windows 
Function K-GetContRun @Frame : Longint;VarpMode : Word) : Word; 
far; external ‘DASSHELL’; 

Visual Basic for Windows 
Declare Function K-GetContRun Lib “DASSHELL.DLL” 
(ByVal hFrame As Long, pMode As Integer) As Integer 

BASIC 
DECLARE FUNCTION KGetContRun% ALIAS “K-GetContRun” 
(BYVAL hFrame AS LONG, SEG pMode AS INTEGER) 

hFrame 

pMode 

Handle to the frame that defines the operation. 

Buffering mode. 
Value stored: 0 for Single-cycle 

0 for Continuous 

This function returns an integer error/status code. Error/status code 0 
indicates that the function executed successfully. A non-zero error/status 
code indicates that an error occurred. Refer to Appendix A for additional 
information. 

For the operation defined by hFrame, this function stores the buffering 
mode in pMode. 

4 

4-99 



.frm Page 100 Monday, April 11,1994 10:00 AM 

K GetContRun (cont.) 

The phfode variable contains the value of the Buffering Mode element. 

Refer to page 2-18 (for analog input operations), page 2-30 (for analog 
output operations) section, and page 2-38 (for digital l/O operations) for a 
description of buffering modes. 

See Also K_SetContRun, K-ClrContRun 

Usage c/c++ 
#include "DASDECL.H" // "se "DASDECL.HPP for CC+ 

WORD wMode; 
. 

wDasErr = K-GetContRun (hAD, &wMode); 

Turbo Pascal 
uses D1800TP7; (* Use D1800TP6 for TP "er 6.0 *) 

wMode : word; 
. 
wDasErr := K-GetContRun (hAD, wMode); 

Turbo Pascal for Windows 
($1 DASDECL.INC) 

. 
wMode : Word; 

wDasErr := K-GetContRun (hAD, wMode); 

Visual Basic for Windows 
(Include DASDECL.BAS in your program makefile) 

. 
Global wMode As Integer 

wDasErr = K_GetContRun (hAD, wMode) 

4-100 

4 



hap04-km Page 101 Monday, April 11,1994 10:00 AM 

K GetContRun (cont.) 

4 

BASIC 
SINCLDDE: 'DASDECL.BI' 

. 
DIM wMode AS INTEGER 
. 
wDasErr = KGetContRun% (hAD, wMode) 

4-I 01 

4 



-5P hap04-.frm Page 102 Monday, April 11,1994 10:00 AM 

4 

4 

K-GetDAFrame 

Boards 
Supported 

DAS-1801HC,DAS-1802HC 

Purpose 

Prototype 

Accesses a D/A frame for an analog output operation. 

c/c++ 
DASErr far Pascal K-GetDAFrame (DWORD W)ev, 
DWORD far * pFrame): 

Turbo Pascal 
Function K-GetDAFrame (hDev : Longint; 
Var pFrame : Longint) : Word; 

Turbo Pascal for Windows 
Function K-GetDAFrame (hDev : Longint: 
Var pFrame : Longint) : Word; far; external ‘DASSHELL’; 

Visual Basic for Windows 
Declare Function K-GetDAFrame Lib “DASSHELL.DLL” 
(ByVal hDev As Long, pFrame As Long) As Integer 

BASIC 
DECLARE FUNCTION KGetDAFrame% ALIAS “K-GetDAFrame” 
(BYVAL hDev AS LONG, SEG hFrame AS LONG) 

Parameters hDev 

pFrame 

Handle associated with the board, 

Handle to the frame that defines the D/A 
operation. 

Return Value This function returns an integer error/status code. Error/status code 0 
indicates that the function executed successfully. A non-zero error/status 
code indicates that an error occurred. Refer to Appendix A for additional 
information. 

4-102 Function Reference 

4 

4 /$ 



-& hap04-.frm Page 103 Monday, April 11,1994 1O:OO AM 

K-GetDAFrame (cont.) 

Remarks This function specifies that you want to perform an interrupt-mode analog 
output operation on the board specified by hDev, and accesses an 
available D/A frame with the handle pFrame. The frame is initialized to 
its default settings; the default settings are given in Table 3-2 on page 3-7. 

See Also K-FreeFrame, K-ClearFrame 

Usage c/c++ 
#include "DASDECL.H" // use "DASDECL.HPP for C++ 

. 
DWORD hDA; 

. . 
wDasErr : K-GetDAFrame (hDev, &hDA); 

Turbo Pascal 
uses D1800TP7; (* "se D1800TP6 for TP "er 6.0 *) 
. 
hDA : Longint; 
. 
wDasErr := K-GetDAFrame (hDev, hDA); 

Turbo Pascal for Windows 
($1 DASDECL.INC) 

hDA : Longint; 
. 

wDasErr := K_GetDAFrame (hDev, hDA); 

Visual Basic for Windows 
(Include DASDECL.BAS in your program make file) 

. 
Global hDA As Long 

wDasErr = K-GetDAFrame (hDev, hDA) 

4-103 



-&- hap04Lfrm Page 104 Monday, April 11, 1994 IO:00 AM 

K-GetDAFrame (cont.) 

BASIC 
a SINCLUDE: 'DASDECL.BI' 

. 
DIM hDA AS LONG 

. 
wDasErr = KGetDAFrame% (hDev, hDA1 

4-104 Function Reference 



hapOll_.frm Page 105 Monday, April 11.1994 IO:00 AM 

4 

4 

K-GetDevHandle 

Boards 
Supported 

All 

Purpose 

Prototype 

Initializes any Keithley DAS board 

c/c++ 
DASErr far Pascal KGetDevHandle (DWORD hDrv, 
WORD nBoardNum, DWORD far * pDev); 

Turbo Pascal 
Not supported 

Turbo Pascal for Windows 
Function K-GetDevHandle (hDrv : Longint; nBoardNum : Inleger; 
Var pDev : Longint) : Word; far; external ‘DASSHELL’; 

Visual Basic for Windows 
Declare Function K-GetDevHandle Lib “DASSHELL.DLL” 
(ByVal hDrv As Long, ByVal A’oardNum As Integer, pDev As Long) 
As Integer 

BASIC 
Not supported 

Parameters hDrv Driver handle of the associated Function Call 
Driver. 

nBoardNum Board number. 
Valid values: 0 to 2 

pDev Handle associated with the board. 

4 

4 

4-105 

4 4 



+b hap04-.frm Page 106 Monday, April 11, 1994 10:00 AM 

K-GetDevHandle (cont.) 

Return Value This function returns an integer error/status code. Error/status code 0 
indicates that the function executed successfully. A non-zero error/status 
code indicates that an error occurred. Refer to Appendix A for additional 
information. 

See Also K-FreeDevHandle 

Usage 

+b 

4-106 

This function initializes the board associated with hDrv and specified by 
nBoardNum, and stores the board handle of the specified board in pDev. 

The value stored inpDev is intended to be used exclusively as an 
argument to functions that require a board handle. Your program should 
not modify the value stored inpDev. 

This function is available for C, Borland Turbo Pascal for Windows, and 
Visual Basic for Windows application programs only. 

c/c++ 
#include "DASDECL.H" // Use "DASDECL.HPP for C+, 

DWORD hDev; 
. 

wDasErr = K-GetDevHandle (hDrv, 0, &hDev): 

Turbo Pascal for Windows 
($1 DASDECL.INC) 
. . . 
hDev : Longint; 

wDasErr := KmGetDevHandle (hDrv, 0, hDev); 

Visual Basic for Windows 
(Include DASDECL.BAS in your program make file) 
. 
Global hDev As Long 
. . 
wDasErr = KmGetDevHandle (hDrv, 0, hDev) 

Function Reference 



frm Page 107 Monday, April 11, 1994 10:00 AM 

K GetDlFrame 

Boards 
Supported 

All 

Purpose 

Prototype 

Accesses a DI frame for a digital input operation. 

c/c++ 
DASErr far Pascal K-CietDIFrame @WORD hDev, 
DWORD far * pFramc); 

Turbo Pascal 
Function K-GetDIFrame (hDev : Longint; VarpFrame : Longint) : Word; 

Turbo Pascal for Windows 
Function K-GetDIFrame (hDev : Longint; VarpFrame : Longint) : Word; 
far; external ‘DASSHELL’; 

Visual Basic for Windows 
Declare Function K-GetDIFrame Lib “DASSHELL.DLL” 
(ByVal hDev As Long, pFrame As Long) As Integer 

BASIC 
DECLARE FUNCTION KGetDIFrame% ALIAS “K-GetDIFrame” 
(BYVAL hDev AS LONG, SEG pFrame AS LONG) 

Parameters hDev 

pFrame 

Handle associated with the board. 

Handle to the frame that defines the digital input 
operation. 

Return Value This function returns an integer error/status code. Error/status code 0 
indicates that the function executed successfully. A non-zero error/status 
code indicates that an error occurred. Refer to Appendix A for additional 
information. 

4-107 



hap04-.frm Page 108 Monday, April 11, 1994 1O:OO AM 

K GetDlFrame Icont.1 

Remarks This function specifies that you want to perform an interrupt-mode digital 
input operation on the board specified by hDev, and accesses an available 
digital input frame with the handle pFrame. The frame is initialized to its 
default settings; the default settings are given in Table 3-3 on page 3-8. 

See Also K-FreeFrame, K-ClearFrame 

Usage c/c++ 
#include "DASDECL.H" // Use "DASDECL.HPP for Ct-1 

. 
DWORD hD1; 
. . . 
wDasErr = K-GetDIFrame (hDev, &hDI); 

Turbo Pascal 
uses D1800TP7; (* Use D1800TP6 for TP "er 6.0 *) 

hD1 : Longint; 

wDasErr :: K-GetDIFrame (hDev, hD1); 

Turbo Pascal for Windows 
($1 DASDECL.INC) 

hDI : Longint; 
. 

wDasErr := K-GetDIFrame (hDev, hD1); 

Visual Basic for Windows 
(Include DASDECL.BAS in your program make file) 

. . 
Global hD1 As Long 

wDasErr = K-GetDIFrame (hDev, hD1) 

4-l 08 Function Reference 



4 hap04-.frm Page 109 Monday, April 11, 1994 10:00 AM 

4 

K-GetDIFrame (cont.) 

BASIC 
8 SINCLUDE: 'DASDECL.BI' 
. . 

DIM hD1 AS LONG 
. . 

wDasErr = KGetDIFrame% (hDev, hD1) 

4-109 

4 

I4 

4 

4 



4 k hap04-.frm Page 110 Monday, April 1 I, 1994 10:00 AM 

K-GetDITrig 

Boards 
Supported 

All 

Purpose Reads the current digital trigger conditions, 

Prototype c/c++ 
DASErr far Pascal K-GetDITrig (DWORD hFrame, short far * pOpt, 
short far *pChan, DWORD far *pPattern); 

Turbo Pascal 
Function K-GetDITrig (Frame : Longint; Var pOpt : Word: 
Var pChan : Word; Var pPattern : Longint) : Word; 

Turbo Pascal for Windows 
Function K-GetDfIrig (hFrame : Longint; Var pOpt : Word; 
Var pChan : Word; Var pPartern : Longint) : Word; far; 
external ‘DASSHELL’: 

4 
Visual Basic for Windows 
Declare Function K-GetDITrig Lib “DASSHELL.DLL” 
(ByVal hFrame As Long, pOpt As Integer, pChan As Integer, 
pPattern As Long) As Integer 

BASIC 
DECLARE FUNCTION KGetDITrig% ALIAS “K-GetDITrig” 
(BYVAL hFrame AS LONG, SEG pOpt AS INTEGER, 
SEG pChan AS INTEGER, SEG pPattern AS LONG) 

Parameters hFrame 

POPt 

Handle to the frame that defines the operation, 

Trigger polarity and sensitivity. 
Value stored: 0 for Positive edge 

2 for Negative edge 

pChan Trigger channel. 
Value stored: 0 

pPattern Trigger pattern. 

4-110 Function Reference 

4 

4 4 4 



4 hap04Qrm Page 111 Monday, April 11, 1994 1O:OO AM 

K-GetDITrig (cont.) 

Return Value This function returns an integer error/status code. Error/status code 0 
indicates that the function executed successfully. A non-zero error/status 
code indicates that an error occurred. Refer to Appendix A for additional 
information. 

Remarks For the operation defined by hFrame, this function stores the trigger 
polarity and trigger sensitivity in pOpt, the channel used for the digital 
trigger in pChan, and the trigger pattern in pPattern. 

Since the DAS-1800 Series Function Call Driver does not currently 
support digital pattern triggering, the value ofppattern is meaningless; 
the pPattern parameter is provided for future compatibility. 

The pOpt variable contains the value of the Trigger Polarity and Trigger 
Sensitivity elements. 

The pChan variable contains the value of the Trigger Channel element. 

See Also 

Usage 

K-SetDITrig 

c/c++ 
#include "DASDECL.H" // Use "DASDECL.HPP for C++ 

short nOpt, nchan, 
WORD wPat; 

wDasErr = K-GetDITrig (hAD, &nOpt, &nChan, &wPat); 

Turbo Pascal 
uses D1800TP7; (* Use D1800TP6 for TP ver 6.0 *) 

nopt : Integer; 
nChan : Integer; 
wPat : Word; 
. . . 
wDasErr := K-GetDITrig (hAD, nopt, nchan, wPat); 

4 

4 

4-111 

4 4 



-@ hap04-.frm Page 112 Monday, April 11, 1994 10:00 AM 

4-112 

K-GetDITrig (cont.) 

Turbo Pascal for Windows 
($1 DASDECL.INC) 
. 
nopt : Integer; 
nchan : Integer; 
wPat : Word; 

wDasErr := K-GetDITrig (hAD, nopt, nchan, wPat); 

Visual Basic for Windows 
(Include DASDECL.BAS in your program make file) 

Global nOpt As Integer 
Global nChan As Integer 
Global wPat As Integer 

wDasErr = K-GetDITrig (hAD, nOpt, nchan, wPat) 

BASIC 
SINCLUDE: 'DASDECL.BI' 

. 
DIM nopt AS INTEGER 
DIM nChan AS INTEGER 
DIM wPat AS INTEGER 

wDasErr = KGetDITrig% (hAD, nOpt, nchan, wPat) 

Function Reference 



4+ hap04-.frm Page 113 Monday, April 11, 1994 10:00 AM 

K-GetDOCurVal 

Boards 
Supported 

All 

Purpose 

Prototype 

Gets the. digital output value. 

c/c++ 
DASErr far Pascal K-GetDOCurVal (DWORD hFramc, 
void far *@a&); 

Turbo Pascal 
Function K-GetDOCurVal (hFrame : Long&; 
Var pValue : Longint) : Word; 

Turbo Pascal for Windows 
Function KGetDOCurVaI @Frame : Longint; 
VarpValue : Longint) : Word; far; external ‘DASSHELL’; 

Visual Basic for Windows 
Declare Function K-GetDOCurVal Lib “DASSHELL.DLL” 
(ByVal hFramc As Long, pValue As Long) As Integer 

BASIC 
DECLARE FUNCTION KGetDOCurVal% ALIAS “K-GetDOCurVaI” 
(BYVAL hFrame AS LONG, SEG pValue AS LONG) 

Parameters hFrame Handle to the frame that defines the digital 
output operation. 

pValue Digital output value. 
Value stored: 0 to 255 for DAS-1800HC Series 

boards 
0 to 15 for DAS-1800ST/HR 
Series boards 

4-113 



4 k hap04-.frm Page 114 Monday, April 11, 1994 10:00 AM 4 

4 

K GetDOCurVal (cont.) 

Return Value This function returns an integer error/status code. Error/status code 0 
indicates that the function executed successfully. A non-zero error/status 
code indicates that an error occurred. Refer to Appendix A for additional 
information. 

Remarks On return, pValue contains the digital output value that was specified as 
thepklue parameter in the most recent call to K-DOWrite. This value is 
not necessarily the current value at the digital output channel. 

Only the least-significant eight bits ofpValue are valid for DAS-1800HC 
Series boards; only the least-significant four bits of pVa/ue are valid for 
DAS-1800STIHR Series boards. 

See Also 

Usage 

K_DOWrite 

c/c++ 
#include "DASDECL.H" // Use "DASDECL.HPP for C+t 

. 
DWORD dwDOValue; 
. 
wDasErr = K-GetDOCurVal (hD0, &dwDOValue); 

Turbo Pascal 
uses DlEOOTP7; (* Use D1800TP6 for TP "er 6.0 *) 
. 
dwDOValue : Longint; 

wDasErr := K-GetDOCurVal (hD0, dwDOValue); 

Turbo Pascal for Windows 
($1 DASDECL.INC) 

. . 
dwDOValue : Longint; 
. 
wDasErr := K-GetDOCurVal (hD0, dwDOValua); 

4 

4-114 Function Reference 



.frm Page 115 Monday, April 11, 1994 IO:00 AM 

K-GetDOCurVal (cont.) 

Visual Basic for Windows 
(Include DASDECL.BAS in your program make file) 

Global dwDOValue As Long 

wDasErr = K_GetDOCurVal (hD0, dwDOValue) 

BASIC 
0 SINCLUDE: 'DASDECL.BI' 

. 
DIM dwDOValue AS LONG 

wDasErr = KGetDOCurVal% (hD0, dwDOValue) 

4-115 



&- t hap04-.frm Page 116 Monday, April 11,1994 10:00 AM 

+b 

K GetDOFrame 

Boards 
Supported 

All 

Purpose Accesses a DO frame for a digital output operation. 

Prototype c/c++ 
DASErr far Pascal K-GetDOFrame (DWORD t&w, 
DWORD far * plj‘ramc); 

Turbo Pascal 
Function KGetDOFrame (/a&v : Longint; 
Var pFrame : Longint) : Word: 

Turbo Pascal for Windows 
Function K-GetDOFrame (hDev : Longint; 
VarpFrame : Longint) : Word; far; external ‘DASSHELL’; 

Visual Basic for Windows 
Declare Function K-GetDOFrame Lib “DASSHELL.DLL” 
(ByVal hDev As Long, pFrame As Long) As integer 

BASIC 
DECLARE FUNCTION KGetDOFrame% ALIAS “K_GetDOFrame” 
(BYVAL hDev AS LONG, SEG pFrame AS LONG) 

Parameters hDev 

hFrame 

Handle associated with the board. 

Handle to the frame that defines the digital 
output operation. 

Return Value This function returns an integer error/status code. Error/status code 0 
indicates that the function executed successfully. A non-zero error/status 
code indicates that an error occurred. Refer to Appendix A for additional 
information. 

4-116 



43 hap04Lfrm Page 117 Monday, April 11, 1994 10:00 AM 

K GetDOFrame (cont.) 

Remarks This function specifies that you want to perform an interrupt-mode digital 
output operation on the board specified by hDev and accesses an available 
digital output frame with the handle /aFrame. The frame is initialized to 
its default settings; the default settings are given in Table 3-4 on page 3-9. 

See Also K-FreeFrame, K-ClearFrame 

Usage c/c++ 
#include "DASDECL.H" // Use "DASDECL.HPP for C+, 
. 
DWORD hD0; 

wDasErr = K-GetDOFrame (hDev, &hDO); 

Turbo Pascal 
uses D1800TP7; (* "se D1800TP6 for TP "er 6.0 *) 

hD0 : Longint; 

wDasErr :s K-GetDOFrame (hDev, hD0); 

Turbo Pascal for Windows 
($1 DASDECL.INC) 

. 
hD0 : Longint; 

wDasErr := K-GetDOFrame (hDev, hD0); 

Visual Basic for Windows 
(Include DASDECL.BA.9 in your program make file) 

. 
Global hD0 As Long 
. 
wDasF,rr = K-GetDOFrame (hDev, hD0) 

4-117 

4 



+G b hap04-.frm Page 118 Monday, April 1 I, 1994 10:00 AM 

K-GetDOFrame (cont.) 

BASIC 
SINCLLJDE: 'DASDECL.BI' 

. 
DIM hD0 AS LONG 

. 
wDasErr = KGetDOFrame% (h&w, hD0) 

Function Reference 



4 b hap04-.frm Page 119 Monday, April 11,1994 10:00 AM 

4 

K-GetErrMsg 

Boards 
Supported 

All 

Purpose Gets the address of an error message string. 

Prototype c/c++ 
DASErr fat Pascal K-GetHrrMsg (DWORD hDev, short nDASErr, 
char far * far * pErrMsg); 

Turbo Pascal 
Not supported 

Turbo Pascal for Windows 
Not supported 

Visual Basic for Windows 
Not supported 

BASIC 
Not supported 

Parameters 

Return Value 

hDev Handle associated with the board. 

nDASErr Error message number. 

pErrMsg Address of error message string. 

This function returns an integer error/status code. Error/status code 0 
indicates that the mnction executed successfully. A non-zero error/status 
code indicates that an error occurred. Refer to Appendix A for additional 
information. 

Remark For the board specified by hDev, this function stores the address of the 
string corresponding to error message number nDASErr in pErrMsg. 

Refer to page 2-4 for more information about error handling. Refer to 
Appendix A for a list of error codes and their meanings. 

4 

4-119 



4 hapOC.frm Page 120 Monday, April 11, 1994 1O:OO AM 

K-GetErrMsg (cont.) 

Usage c/c++ 
#include "DASDECL.H" // Use "DASDECL.HPP for C++ 

. 
char far *pErrMsg: 

. 
wDasErr = KmGetErrMsg (hDev, wDasErr, &pErrMsg); 

4-120 

4 



b $ - hap04 .frm Page 121 Monday, April 11, 1994 1O:OO AM 4 

4 

K-GetExtClkEdge 

Boards 
Supported 

All 

Purpose 

Prototype 

Reads the active edge of the external clock. 

MC++ 
DASErr far Pascal K-GetExtClkEdge (DWORD hFramc, 
short far *p&&e); 

Turbo Pascal 
Function K-GetExtClkEdge (hFrame : Longint; 
Var pEdge : Word) : Word: 

Turbo Pascal for Windows 
Function K-GetExtClkEdge (hFrame : Longint; 
Var p&&e : Word) : Word; far; external ‘DASSHELL’; 

Visual Basic for Windows 
Declare Function K-GetExtClkEdge Lib “DASSHELL.DLL” 
(ByVal hFrume As Long, pEdge As Integer) As Integer 

BASIC 
DECLARE FUNCTION KGetBxtClkEdge% ALIAS 
“K-GetExtClkEdge” (BYVAL hFrume AS LONG, 
SEG pEdge AS INTEGER) 

Parameters hFramc 

W&e 

Handle to the frame that defines the operation. 

Active edge of external clock. 
Value stored: 0 for Negative edge 

1 for Positive edge 

Return Value This function returns an integer error/status code. Error/status code 0 
indicates that the function executed successfully. A non-zero error/status 
code indicates that an error occurred. Refer to Appendix A for additional 
information. 

4 

4-121 



.frm Page 122 Monday, April 11, 1994 10:00 AM 

K-GetExtClkEdge (cont.) 

Remarks For the operation defined by hFrame, this function stores the active edge 
of the external clock in pEdge. 

The pEdgc variable contains the value of the External Clock Edge 
element. 

See Also K-SetExtClkEdge 

Usage c/c++ 
#include "DASDECL.H" // Use "DASDECL.HPP for C++ 

. 
WORD wMode; 

. 
wDasErr = K-GetExtClkEdge (hAD, &Mode); 

4-122 

Turbo Pascal 
uses D1800TP7; (* "se D1800TP6 for TP "er 6.0 *) 

wMode : Word; 

wDasErr := K-GetExtClkEdge (hAD, wMode); 

Turbo Pascal for Windows 
($1 DASDECL.INC) 
. 
wMode : Word; 

wDasErr := K-GetExtClkEdge (hAD, wMode); 

Visual Basic for Windows 
(Include DASDECL.BAS in your program make file) 

. 
Global wMode As Integer 

. 
wDasErr = K-GetExtClkEdge (hAD, wMode) 

Function Reference 

4 

4 4 



@- hap04Lfrm Page 123 Monday, April 11,1994 IO:00 AM 

K-GetExtClkEdge (cont.) 

BASIC 
SINCLUDE: 'DASDECL.BI' 

DIM wMode AS INTEGER 
. 

wDasErr = KGetExtClkEdge% (hAD, wMode) 

4-123 



4 hap04-.frm Page 124 Monday, April 11,1994 10:00 AM 

4 

K-GetG 

Boards 
Supported 

All 

Purpose Gets the gain. 

Prototype c/c++ 
DASErr far Pascal K-GetG (DWORD hFrame, short far *pGain); 

Turbo Pascal 
Function K-GetG (hFrame : Longint; VarpCain : Word) : Word; 

Turbo Pascal for Windows 
Function K-GetG (Frame : Longint; VarpGain : Word) : Word; far; 
external ‘DASSHELL’; 

Visual Basic for Windows 
Declare Function K-GetG Lib “DASSHELL.DLL” 
(ByVal hFrame As Long, pGain As Integer) As Integer 

BASIC 
DECLARE FUNCTION KGetG% ALIAS “KGetG” 
(BYVAL hFramc AS LONG, SEG pGain AS INTEGER) 

Parameters hFrame 

pGain 

Handle to the frame that defines the operation. 

Gain code. 
Valid values: 0 to 3 for DAS board channels 

0 to 7 for EXF-1800 channels 
Refer to Table 2-2 on page 2-10 for the gain and 
input ranges associated with each gain code. 

Return Value This function returns an integer error/status code. Error/status code 0 
indicates that the function executed successfully. A non-zero error/status 
code indicates that an error occurred. Refer to Appendix A for additional 
information. 

4 

4-124 



4 hap04-.frm Page 125 Monday, April 11,1994 1O:OO AM 

4 

44 

K GetG Icont.) 

Remarks For the operation defined by hFrame, this function stores the gain code 
for a single channel or for a group of consecutive channels in pGain. 

See Also 

Usage 

K_SetG, K-SetStartStopG 

c/c++ 
#include "!JASDECL.H" // Use "DASDECL.HPP for C++ 

. 
WORD wGain; 

. 
wDasErr = K-G&G (hAD, &wGain); 

Turbo Pascal 
uses D1800TP7; (* "se D1800TP6 for TP "er 6.0 *) 

. 
wGain : Word; 

. 
wDasErr :: K-GetG (hAD, wGain); 

Turbo Pascal for Windows 
($1 DASDECL.INC) 

. 
w&in : Word; 

. 
wDasErr := K-G&G (hAD, wGain); 

Visual Basic for Windows 
(Include DASDECL.BAS in your program make file) 

. 
Global wGain As Integer 
. 
wDasErr = K-G&G (hAD, wGain) 

BASIC 
$INCLUDE: 'DASDECL.BI' 

. . . 
DIM wGain AS INTEGER 

. 
WD.XE~Y = KG&G% (hAD, wGain) 

4 

4-125 



.fcm Page 126 Monday, April II,1994 10:00 AM 

K-GetGate 

Boards 
Supported 

All 

Purpose Gets the status of the hardware gate. 

Prototype c/c++ 
DASErr far Pascal K-GetGate (DWORD hFrame, short far *pMode); 

Turbo Pascal 
Function K-GctGate @Frame : Longiut; Var pMode : Word) : Word; 

Turbo Pascal for Windows 
Function K-GetGate (ItFrame : Longint; Var pMode : Word) : Word; far; 
external ‘DASSHELL’; 

Visual Basic for Windows 
Declare Function K-GetGate Lib “DASSHELL.DLL” 
(ByVal bFramc As Long, pMode As Integer) As Integer 

BASIC 
DECLARE FUNCTION KGetGate% ALIAS “K-GetGate” 
(BYVAL hFrame AS LONG, SEG pMode AS INTEGER) 

Parameters hFrame 

pMode 

Handle to the frame that defines the operation. 

Status of the hardware gate. 
Value stored: 0 for Gate disabled 

1 for Positive gate enabled 
2 for Negative gate enabled 

Return Value This function returns au integer error/status code. Error/status code 0 
indicates that the function executed successfully. A non-zero error/status 
code indicates that au error occurred. Refer to Appendix A for additional 
information. 

4-126 Function Reference 



a hap04-.frm Page 127 Monday, April 11,1994 10:00 AM 

K GetGate Icont.1 

Remarks For the operation defined by Frame, this function stores the status of the 
hardware gate in pM&. 

The pMode variable contains the value of the Hardware Gate element. 

See Also K-SetGate 

Usage c/c++ 
#include "DASi3ECL.H" // Use "DASDECL.HPP for C+t 

WORD wMode; 
. 

wDasErr = K-G&Gate (hAD, &Mode); 

Turbo Pascal 
uses D1800TP7; (* "se D1800TP6 for TP ver 6.0 *) 

wMode : Word; 
. . 
wDasErr := K-G&Gate (hAD, wMode); 

Turbo Pascal for Windows 
($1 DASDECL.INC) 
. 
wMode : Word: 

wDasErr := K-GetGate (hAD, wMode); 

Visual Basic for Windows 
(Include DASDECL.BAS in your program make file) 
. 
Global wMode As Integer 

. 
wDasErr = K-G&Gate (hAD, wMode) 

4-127 



frm Page 128 Monday, April 11, 1994 10:00 AM 

K GetGate (cont.1 

BASIC 
a SINCLUDE: 'DASDECL.BI' 

. , 
DIM wMode AS INTEGER 

, 
wDasErr = KGetGate% (hAD, wMode) 

4 

4-120 Function Reference 

4 4 

4 



4 hap04Urm Page 129 Monday, April 11, 1994 10:00 AM 

4 

K-GetSheWer 

Boards 
Supported 

All 

Purpose Gets the current DAS shell version. 

Prototype c/c++ 
DASErr far Pascal KGetSbellVer (WORD far *pVersion); 

Turbo Pascal 
Function K-GetShellVer (VarpVersion : Word) : Word: 

Turbo Pascal for Windows 
Function K-GetShellVer (VarpVersion : Word) : Word: far; 
external ‘DASSHELL’; 

Visual Basic for Windows 
Declare Function K-GetShellVer Lib “DASSHELL.DLL” 
(pVersion As Integer) As Integer 

BASIC 
DECLARE FUNCTION KGetShellVer% ALIAS “K_GetShellVer” 
(SEG pVersion AS INTEGER) 

Parameters pVersion A word value containing the major and minor 
version numbers of the DAS shell. 

Return Value This function returns an integer error/status code. Error/status code 0 
indicates that the function executed successfully. A non-zero error/status 
code indicates that an error occurred. Refer to Appendix A for additional 
information. 

Remarks To obtain the major version number of the DAS shell, dividepksion by 
256. To obtain the minor version number of the DAS shell, perform a 
Boolean AND operation with pVersion and 256 (OFF hex). 

4 

4-I 29 

4 /$ 



43 I hap04Qrm Page 130 Monday, April 11,1994 10:00 AM 

K GetSheWer (cont.) 

Usage 

c/c++ 
#include "DASDECL.H" // Use "DASDECL.HPP for Ctt 

. 
WORD wShellVer; 

. 
wDasErr = K-GetShellVer (&wShellVer); 
printf ("Shell Ver %d.%d", wShellVer >> 8, wshellver & Oxff); 

Turbo Pascal 
uses DlEOOTP7; (* Use D1800TP6 for TP "er 6.0 *) 

. 
wShellVer : Word; 

wDasErr := KmGetShellVer (wShellVer); 
FormatStr(VerStr, %4x ', nShellVer / 256, I.', nShellVer And 
Sff); 
writelnc' Shell Ver ', Verstr); 

Turbo Pascal for Windows 
($1 DASDECL.INC) 

wshellver : Word; 
. 

wDasErr := KmGetShellVer (wShellVer); 
FormatStr(VerStr, ' %4x ', nShellVer / 256, '.', nShellVer And 
Sff); 
writeln(' Shell Ver ', VerStr); 

Visual Basic for Windows 
(Include DASDECLBAS in your program make file) 

Global wShellVer As Integer; 

wDasF.rr = K-GetShellVer (wshellver) 
ShellVer$ = LTRIM$(STR$(wShellVer / 256)) + '.' + : 

LTRIM$(STR$(wShellVer AND &HFF) j 
PRINT "Driver Ver: ' + ShellVerS 

4-130 Function Reference 



.frm Page 131 Monday, April 11,1994 10:00 AM 

K-GetSheWer (cont.) 

BASIC 
n SINCLUDE: 'DASDECL.BI' 

. 
DIM wShellVer AS INTEGER 
. 
wDasErr = l<GetShellVer% (wShellVer) 
ShellVer$ = LTRIM$(STR$(nShellVer / 256)) + v.U + : 

LTRIM$(STR$(nShellVer AND &HFF)) 
PRINT "shell Ver: ' + ShellVerS 

4-131 



@ hap04Lfrm Page 132 Monday, April 11,1994 1O:OO AM 

K-GetSSH 

Boards 
Supported 

All 

Purpose Gets tbe status of the SSH mode. 

Prototype CIC++ 
DASEa far pascal K-GetSSH (DWORD hFrame, WORD far *pMode); 

Turbo Pascal 
Function K-GetSSH &Frame : Longint; VarpMode : Word) : Word; 

Turbo Pascal for Windows 
Function K-GetSSH (hFrame : Longint: VarpMode : Word) : Word; far; 
external ‘DASSHELL’; 

Visual Basic for Windows 
Declare Function K-GetSSH Lib “DASSHELL.DLL” 
(ByVal hFrame As Long, pMode As Integer) As Integer 

BASIC 
DECLARE FUNCTION KGetSSH% ALIAS “KGetSSH” 
(BYVAL hFrame AS LONG, SEG pMode AS INTEGER) 

Parameters hFrame 

pMode 

Handle to the frame that defines the operation. 

Code that indicates the SSH mode. 
Value stored: 0 for Disabled 

1 for Enabled 

Return Value This function returns an integer error/status code. Error/status code 0 
indicates that the function executed successfully. A non-zero error/status 
code indicates that an error occurred. Refer to Appendix A for additional 
information. 

4-132 Function Reference 



&- hap04Lfrm Page 133 Monday, April 11, 1994 10:00 AM 

K-GetSSH (cont.) 

Remarks For the operation defined by hFrume, this function stores the code that 
indicates the SSH mode in pkfode. 

The pMode variable contains the value of the SSH Mode element. 

Refer to page 2-15 for information on conversion modes. 

See Also K-SetSSH 

Usage c/c++ 
#include "i3ASDECL.H" // "se "DASDECL.HPP for C++ 

WORD wMode; 

wDasErr = I<_GetSSH (hAD, &wMode); 

Turbo Pascal 
uses D1800TP7; (* "se DlEOOTP6 for TP ver 6.0 *) 

wMode : Word; 

wDasErr := K-GetSSH (hAD, wMode); 

Turbo Pascal for Windows 
($1 DASDECL.INCl 

wMode : Word; 

wDasErr := K_GetSSH (hAD, wMode): 

Visual Basic for Windows 
(Include DASDECL.BAS in your program makefile) 

Global wMode As Integer 

wDasErr = K-GetSSH (hAD, wMode) 

4-133 



+9 hap04-.frm Page 134 Monday, April 11,1994 10:00 AM 

K-GetSSH (cont.) 

BASIC 
SINCLUDE: 'DASDECL.BI' 

. 
DIM wMode AS INTEGER 
. 
wDasErr = KGetSSH% (hAD, wMode) 

4-I 34 Function Reference 



frm Page 135 Monday, April 11, 1994 10:00 AM 

K GetStartStopChn 

Boards 
Supported 

All 

Purpose 

Prototype 

Gets the first and last channels in a group of consecutive channels. 

C/C++ 
DASErr far Pascal K-GetStartStopChn (DWORD hFrame, 
short far *pSrart, short far *p&p); 

Turbo Pascal 
Function K-GetStartStopChn @Frame : Longint; Var pSrurf : Word; 
Var pStop : Word) : Word: 

Turbo Pascal for Windows 
Function K-GetStartStopChn (hFrame : Longint; VarpSrart : Word; 
VarpStop : Word) : Word; far; external ‘DASSHELL’; 

Visual Basic for Windows 
Declare Function K-GetStartStopChn Lib “DASSHELL.DLL” 
(ByVal hFrame As Long, pSfart As Integer, pStop As Integer) As Integer 

BASIC 
DECLARE FUNCTION KGetStartStopChn% ALIAS 
“K-GetStartStopChn” (BYVAL hFrame AS LONG, 
SEG pStart AS INTEGER, SEG pStop AS INTEGER) 

Parameters hFrame Handle to the frame that defines the operation. 

4-135 



-a+ hap04-.frm Page 136 Monday, April 11,1994 10:00 AM 

K-GetStartStopChn (cont.) 

pStart First channel in a group of consecutive channels. 
Valid values: 

0 expansion boards 

Remarks 

See Also K-SetStartStopChn, K-GetStartStopG 

Usage c/c++ 

P.QOP Last channel in a group of consecutive channels. 
Valid values: Same as for p&art above 

Return Value This function returns an integer error/status code. Error/status code 0 
indicates that the function executed successfully. A non-zero error/status 
code indicates that an error occurred. Refer to Appendix A for additional 
information. 

For the operation defined by hFrame, this function stores the first channel 
in a group of consecutive channels inpSrarr and the last channel in the 
group of consecutive channels in stop. 

The pSrarr variable contains the value of the Start Channel element. 

The pStop variable contains the value of the Stop Channel element. 

#include "DASDECL.H" // "se "DASDECL.HPP for C++ 
. 

short nstart, nstop; 
. . . 
wDasErr = K-GetStartStopChn (hAD, &nStart, &nStop); 

4-136 



& hap04-.frm Page 137 Monday, April 11,1994 10:00 AM 

K-GetStartStopChn (cont.) 

Turbo Pascal 
uses D1800TP7; (* Use D1800TP6 for TP "er 6.0 *) 

. . 
nstart : Integer; 
nstop : Integer; 

wDasErr := K-GetStartStopChn (hAD, nStart, nStop) 

Turbo Pascal for Windows 
($1 DASDECL.INC) 
. 
nstart : Integer; 
rstop : Integer; 

wDasErr := K-GetStartStopChn (hAD, nStart, &top) 

Visual Basic for Windows 
(Include DASDECL.BAS in your program make filei 

Global nStart As Integer 
Global nStop As Integer 

. 
wDasErr = K_GetStartStopChn (hAD, &tart, nStop) 

BASIC 
$INCLUDE: 'DASDECL.BI' 

. 
DIM nStart AS INTEGER 
DIM nStop AS INTEGER 

wDasErr = KGetStartStopChn% (hAD, nStart, nStop) 

4-137 



4 t hap04-.frm Page 138 Monday, April 11, 1994 10:00 AM 

K-GetStartStopG 

Boards 
Supported 

All 

Purpose Gets the first and last channels in a group of consecuiive channels and the 
gain for all channels in the group. 

Prototype c/c++ 
DASErr far Pascal K-GetStartStopG @WORD /iFrame, 
short far *p&art, short far *pSrop, short far *pGain); 

Turbo Pascal 
Function K-GetStartStopG @Frame : Longint; VarpSrart : Word; 
Var pStop : Word; VarpCain : Word) : Word; 

Turbo Pascal for Windows 
Function K-GetStartStopG (hFrame : Longint; Var pStart : Word; 
VarpStop : Word; VarpCain : Word) : Word: far; external ‘DASSHELL’; 

4 

4-138 Function Reference 

Visual Basic for Windows 
Declare Function KGetStartStopG Lib “DASSHELL.DLL” 
(ByVal /iFrame As Long, pStart As Integer, pSfop As Integer, 
pGain As Integer) As Integer 

BASIC 
DECLARE FUNCTION KGetStartStopG% ALIAS “K-GetStartStopG” 
(BYVAL hFrame AS LONG, SEG pSra# AS INTEGER, 
SEG p&p AS INTEGER, SEG pGain AS INTEGER) 

4 



43 hap04-.frm Page 139 Monday, April 11, 1994 10:00 AM 

K-GetStartStopG (cont.) 

Parameters hFmme 

psturt 

Handle to the frame that defines the operation. 

First channel in a group of consecutive channels. 
Valid values: 

Valid channel numbers 

Board Differential 1 Single-ended 

1 DAS-1800HC lot031 I 0 to 63 I 

DAS-1800STlHR with N 
EXP-1800 expansion boards 
attached 

Not applicable 0 to 15(N + 1) 

PStw Last channel in a group of consecutive channels. 
Valid values: Same as forpStart above 

Gain code. 
Valid values: 0 to 3 for DAS board channels 

0 to 7 for EXP- 1800 channels 
Refer to Table 2-2 on page Z-10 for the gain and 
input ranges associated with each gain code. 

Return Value This function returns an integer error/status code. Error/status code 0 
indicates that the function executed successfully. A non-zero error/status 
code indicates that an error occurred. Refer to Appendix A for additional 
information. 

4-139 



4 I hap04-.frm Page 140 Monday, April 11,1994 10:00 AM 4 

4 

4 

K-GetStartStopG (cont.) 

Remarks For the operation defined by hFrume, this function stores the first channel 
in a group of consecutive channels in pSrart, the last channel in the group 
of consecutive channels inpStop, and the gain code for all channels in the 
group in pGain. 

The pStarr variable contains the value of the Start Channel element. 

The pSrop variable contains the value of the Stop Channel element. 

The pGain variable contains the value of the Gain element. 

See Also K-SetStartStopG 

Usage ix++ 
#include 'DASDECL.H' ,, "se "DASDECL.HPP for C++ 

short nstart, &top, nGain; 
. . 
wDasErr = K-GetStartStopG (hAD, &nStart, &nStOP, 
C&Gain) ; 

4-140 

Turbo Pascal 
uses D1800TP7; (* Use D1800TP6 for TP "er 6.0 *) 

. 
nstart : Integer; 
nstop : Integer; 
nGain : Integer; 

. 
wDasErr := K_GetStartStopG (hAD, nStart, nStop, nGain) 

Turbo Pascal for Windows 
($1 DASDECL.INC) 

nstart : Integer; 
Istop : Integer; 
nGain : Integer; 

wDasErr := K-GetStartStopG (hAD, nstart, &top, nGain) 

Function Reference 

4 

4 4 



4 hap04Lfrm Page 141 Monday, April 11, 1994 IO:00 AM 

K-GetStartStopG (cont.) 

Visual Basic for Windows 
(Include DASDECL.BAS in your program make file) 

Global &tart AS Integer 
Global nStop As Integer 
Global nGain AS Integer 

. 
WDaSErr = K-GetStartStopG (hAD, nStart, nStop, nGain) 

BASIC 
SINCLUDE: 'DASDECL.BI' 

DIM nStart AS INTEGER 
DIM nStop AS INTEGER 
DIM nGain AS INTEGER 

. 
wDasErr = KGetStartStopG% (hAD, nStart, nStop, nGain) 

4 4 

4-141 

44 

4 4 



& hap04Lfrm Page 142 Monday, April 11, 1994 10:00 AM 

+B 

K-GetTrig 

Boards 
Supported 

Purpose Gets the start trigger source 

Prototype 

Parameters 

Return Value 

Remarks 

4-142 

All 

c/c*+ 
DASErr far Pascal K-GetTrig (DWORD hFrame, short far *pMode); 

Turbo Pascal 
Function K-GetTrig (hFrame : Longint; VarpMode : Word) : Word; 

Turbo Pascal for Windows 
Function K_GetTrig (hFrame : Longint; VarpMode : Word) : Word; far: 
external ‘DASSHELL’; 

Visual Basic for Windows 
Declare Function K-GetTrig Lib “DASSHELL.DLL” 
(ByVal hFrame As Long, pMode As Integer) As Integer 

BASIC 
DECLARE FUNCTION KG&Trig% ALIAS “KmGetTrig” 
(BYVAL hFrame AS LONG, SEG pMode AS INTEGER) 

hFrame 

pMode 

Handle to the frame that defines the operation. 

Start trigger source. 
Value stored: 0 for Internal trigger 

1 for External trigger 

This function returns an integer error/status code. Error/status code 0 
indicates that the function executed successfully. A non-zero error/status 
code indicates that an error occurred. Refer to Appendix A for additional 
information. 

For the operation defined by hFrame, this function stores the trigger 
source in pMode. 

Function Reference 



.frm Page 143 Monday, April 11, 1994 1O:OO AM 

K-GetTrig (cont.) 

The pModc variable contains the value of the Start Trigger Source 
element. 

An internal trigger is a software trigger; conversions begin when the 
operation is started. An external trigger is either an analog trigger or a 
digital trigger; conversions begin when the trigger event occurs. Refer to 
page 2-25 for more information about internal and external trigger 
sources. 

See Also 

Usage 

K-SetTrig 

c/c++ 
#include "DASDECL.H" // Use "DASDECL.HPP for C++ 

. 
WORD wMode; 

. 
wDasErr = K-GetTrig (hAD, &wMode); 

Turbo Pascal 
uses DlSOOTP7; (* Use DlSOOTP6 for TP ver 6.0 *) 

wMode : Word; 

wDasErr := K-GetTrig (hAD, wMode); 

Turbo Pascal for Windows 
($1 DASDECL.INC) 

. . 
wMode : Word; 

. 
wDasErr := K-G&Trig (hAD, wMode); 

Visual Basic for Windows 
(Include DASDECL.BAS in your program make file) 

. 
Global wMode As Integer 

. 
wDasErr = K-GetTrig (hAD, wMode) 

4-143 



& t hapO4Lfrm Page 144 Monday, April 11, 1994 10:00 AM 4 

4 

K-GetTrig (cont.) 

BASIC 
8 $INcLUDE: 'DASDEcL.BI' 
. 

DIM wMode AS INTEGER 
. 
wDasErr = KG&Trig% ChAD, wMode) 

4-144 Function Reference 

4 



t $- - hap04 .frm Page 145 Monday, April 11,1994 10:00 AM 

4 

K-GetTrig Hyst 

Boards 
Supported 

All 

Purpose 

Prototype 

Gets the trigger hysteresis value. 

c/c++ 
DASErr far Pascal KGetTrigHyst (DWORD /iFrame, short far *pHysf); 

Turbo Pascal 
Function K-GetTrigHyst (WTrume : Longint; Var pHyst : Word) : Word: 

Turbo Pascal for Wlndows 
Function K_GetTrigHyst (W7rame : Longint; VarpHysr : Word) : Word; 
far: external ‘DASSHELL’; 

Visual Basic for Windows 
Declare Function K-GetTrigHyst Lib “DASSHELL.DLL” 
(ByVal hFrame As Long, pHysf As Integer) As Integer 

BASIC 
DECLARE FtJNCTlON KGetTrigHyst% ALIAS “K-GetTrigHyst” 
(BYVAL hFrame AS LONG, SEG pHyst AS INTEGER) 

Parameters hFrame 

P&St 

Handle to the frame that defines the operation. 

Hysteresis value. 
Value stored: 0 to 4,095 for DAS-18OOHCIST 

Series boards 
0 to 65,535 for DAS1800HR 
Series boards 

Return Value This function returns an integer error/status code. Error/status code 0 
indicates that the function executed successfully. A non-zero error/status 
code indicates that an error occurred. Refer to Appendix A for additional 
information. 

4 

4-l 45 



4 hap04-.frm Page 146 Monday, April 11, 1994 10:00 AM 4 

4 

K-GetTrigHyst (cont.) 

Rem8rkS For the operation defined by Wrame, this function stores the hysteresis 
value used for an analog trigger in pHyst. The value is represented in raw 
counts; refer to Appendix B for information on converting the raw count 
to voltage. 

The pHyst variable contains the value of the Trigger Hysteresis element. 

Refer to page Z-20 for more information about analog triggers. 

See Also 

Usage 

K-SetTrigHyst 

c/c++ 
#include "DASDECL.H" // Use "DASDECL.HPP for C++ 

. . 
short nHyst; 

. 
wDasErr = K-GetTrigHyst (hAD, &nHyst); 

4-146 Function Reference 

Turbo Pascal 
uses D1800TP7; (* Use DlSOOTP6 for TP "er 6.0 *) 

. . 
MIyst : Integer; 
. 
wDasErr := K-GetTrigHyst (hAD, nHyst); 

Turbo Pascal for Windows 
($1 DASDECL.INC) 

. 
nHyst : Integer; 
. 
wDasErr := K-GetTrigHyst (hAD, nHyst); 

Visual Basic for Windows 
(Include DASDECL.BAS in your-program make file) 

. . 
Global nHyst As Integer; 

. . 
wDasErr = K-GetTrigHyst (hAD, nHyst) 

4 



.frm Page 147 Monday, April 11,1994 10:00 AM 

K-GetTrigHyst (cont.) 

BASIC 
SINCLDDE: 'DASDECL.BI' 

. 
DIM nHyst AS INTEGER 
. 
wDasErr = KGetTrigHyst% (hAD, nHyst) 

4-147 



& hap04_.frm Page 148 Monday, April 11, 1994 10:00 AM 

+b 

K-GetVer 

Boards 
Supported 

All 

Purpose Gets revision numbers 

Prototype c/c++ 
DASErr far Pascal K-GetVer (DWORD hDev, short far * pSpecVer, 
short far * pDrvVer); 

Turbo Pascal 
Function K-GetVer (hDev : Longint; VarpSpecVer : Word: 
Var pDrvVer : Word) : Word; 

Turbo Pascal for Windows 
Function K-GetVer (hDev : Longint; Var pSpecVer : Word: 
Var pDrvVer : Word) : Word; far; external ‘DASSHELL’; 

Visual Basic for Windows 
Declare Function K-GetVer Lib “DASSHELL.DLL” 
(ByVaI hDev As Long, pSpecVer As Integer, pDrvVer As Integer) As 
Integer 

BASIC 
DECLARE FUNCTION KGetVer% ALIAS “KGetVer” 
(BYVAL hDev AS LONG, SEG pSpecVer AS INTEGER, 
SEG pDrvVer AS INTEGER) 

Parameters hDev 

pSpecVer 

Handle associated with the board. 

Revision number of the Keithley DAS Driver 
Specification to which the driver conforms. 

Return Value 

pDrvVer Driver version number. 

This function returns an integer error/status code. Error/status code 0 
indicates that the function executed successfully. A non-zero error/status 
code indicates that an error occurred. Refer to Appendix A for additional 
information. 

4-148 Function Reference 



-@- hap04-.frm Page 149 Monday, April 11, 1994 10:00 AM 

K-GetVer (cont.) 

For the board specified by hDev, this function stores the revision number 
of the DAS-1800 Series Function Call Driver inpDrvVer and the revision 
number of the driver specification in pSpecVer. 

The values stored inpSpecVer andpDrvVer are two-byte (16.bit) integers; 
the high byte of each contains the major revision level and the low byte of 
each contains the minor revision level. For example, if the driver version 
number is 2.1, the major revision level is 2 and the minor revision level is 
1; therefore, the high byte ofpDrvVer contains the value of 2 (512) and 
the low byte ofpDrvVer contains the value of 1: the value of both bytes is 
513. 

To extract the major and minor revision levels from the value stored in 
pDrvVer orpSpecVer, use the following equations: 

major revision level = Integer portion of 
returned value 

256 1 

minor revision level = returned value MOD 256 

Usage 

c/c++ 
#include "DASDECL.H" // Use "DASDECL.HPP for C++ 

short nSpecVer, nDrvVer; 

wDasErr = KmGetVer (hDev, &nSpecVer, &nDrvVer); 
printf ("Driver Ver %d.%d", nDrvVer >> 8, nDrvVer & Oxff); 

Turbo Pascal 
uses D1800TP7; (* Use D1800TP6 for TP ver 6.0 *) 

. 
nspecver : Integer 
nDrvVer : Integer 

wDasErr := K-GetVer (hDev, nSpecVer, nDrvVer); 
FormatStr(VerStr, ' %4x ', nDrvVer / 2.56, I.', nDr"Ver And $ff); 
writeln(' Driver Ver ', Verstr); 

4-149 



a hap04-.frm Page 150 Monday, April 11, 1994 10:00 AM 

K GetVer (cont.1 

Turbo Pascal for Windows 
($1 DASDECL.INC) 

nspecver : Integer 
nDrvVer : Integer 

wDasErr := K-GetVer (hDev, nSpecVer, nDr"Ver); 
FormatStr(VerStr, ' %4x ', nDrvVer / 256, I.', nDrvVer And $ff); 
writelnc' Driver Ver ', VerStr); 

Visual Basic for Windows 
(Include DASDECLBAS in yourprogram makefile) 

Global nSpecVer As Integer 
Global nDrvVer As Integer 

wDasErr = K-GetVer (hDev, nSpecVer, nDrvVer) 
DrvVer$ = LTRIM$(STR$lnDrvVer / 256)) + '.' + : 

LTRIM$(STR$(nDrvVer AND &HFF)) 
PRINT "Driver Ver: ' + DrvVer$ 

BASIC 
$INCLUDE: 'DASDECL.BI' 

DIM nSpecVer AS INTEGER 
DIM nDr"Ver AS INTEGER 

wDasErr = KGetVer% (hDev, nSpecVer, nDr"Ver) 
DrvVer$ = LTRIM$(STR$(nDrvVer / 256)) + '.' + : 

LTRIM$(STR$(nDr"Ver AND &HFF)) 
PRINT "Driver Vsr: ' + DrvVer$ 

4-150 Function Reference 



6 hap&-.frm Page 151 Monday, April 11, 1994 lo:00 AM 

43 

K-IntAlloc 

Boards 
Supported 

All 

Purpose 

Prototype 

Allocates a buffer for an interrupt-mode operation. 

c/c++ 
DASErr far Pascal K-IntAlloc (DWORD hFrame, DWORD dwsamples, 
void far * far *pBuJ WORD far *pMem); 

Turbo Pascal 
Function KJntAlloc (hFrame : Longint; dwsamples : Long& 
p&f: Pointer; Var pMem : Word) : Word; 

Turbo Pascal for Windows 
Function K-IntAlloc (hFrame : Longint; dwsamples : Longint; 
pEuf: Pointer; Varpkfem : Word) : Word; far; external ‘DASSHELL’; 

Visual Basic for Windows 
Declare Function K-IntAlloc Lib “DASSHELL.DLL” 
(ByVal hFrame As Long, ByVal dwsamples As Long, pBuf As Long, 
pMem As Integer) As Integer 

BASIC 
DECLARE FUNCTION KIntAlloc% ALIAS “K-IntAlloc” 
(BYVAL hFrame AS LONG, BYVAL dwsamples AS LONG, 
SEG pBuf AS LONG, SEG pMem AS INTEGER) 

Parameters ItFrame 

dwSamples 

Handle to the frame that defines the operation. 

Number of samples. 
Valid values: 1 to 32,767 for Visual Basic for 

Windows and BASIC 

PBUf 

pMem 

1 to 65,536 for all other languages 

Starting address of the allocated buffer. 

Handle associated with the allocated buffer. 

4-151 



43 hapOC.frm Page 152 Monday, April 11,1994 10:00 AM 

K-IntAlloc (cont.) 

Return Value This function returns an integer error/status code. Error/status code 0 
indicates that the function executed successfully. A non-zero error/status 
code indicates that an error occurred. Refer to Appendix A for additional 
information. 

Remarks For the operation defined hy hFrame, this function allocates a buffer of 
the size specified by dwSamples, and stores the starting address of the 
buffer in pBufand the handle of the buffer in pMem. 

Turbo Pascal and BASIC require that you m-distribute available memory 
before you dynamically allocate a buffer. Refer to “Reducing the Memory 
Heap” on page 3-32 t&rho Pascal) or page 3-46 (BASIC) for additional 
information. 

See Also K-IntFree, K_SetBuf, K-BufListAdd 

Usage 

CIC++ 
#include "DASDECL.H" // Use "DASDECL.HPP for C++ 
. 
void far *pBuf: // Pointer to allocated buffer 
WORD hMem; // Memory Handle to buffer 

wDasErr = K_IntAlloc (hAD, dwsamples, &pBuf, &hMem); 

Turbo Pascal 
uses D1800TP7; (* Use DlEOOTP6 for TP "er 6.0 *) 

. 
TYPE 
BufType = Array [O..l] of Integer; 
VAR 
pBuf : "BufType; ( buffer pointer 1 
hMem : Word; ( Handle to buffer ) 
. 
wDasErr := K-IntAlloc(hAD, dwSamples, Addr(pBuf), hMem); 

4-152 Function Reference 



+B hap04-.frm Page 153 Monday, April 11, 1994 10:00 AM 

K-IntAlloc (cont.) 

Turbo Pascal for Windows 
($1 DASDECL.INC) 

TYPE 
BufType = Array [O..l] of Integer; 
VAR 
pBuf : ^BUfType; ( buffer pointer ) 
hMem : Word; ( Handle to buffer ) 
. . 
wDasErr := I<-IntAlloc(hAD, dwSamples, Addr(pBuf), hMem); 

Visual Basic for Windows 
(Include DASDECL.RAS in yourprogram makeJile) 
. 
Global pBuf As Long 
Global hMem As Integer 

wDasErr = K-IntAlloc (hAD, dwSamples, pBuf, hMem) 

BASIC 
SINCLUDE: 'DASDECL.BI' 

DIM pBuf AS LONG 
DIM hMem AS INTEGER 

wDasErr = KINTAlloc% (hAD, dwsamples, pBuf, hMem) 

4-153 



e I hap04Lfrm Page 154 Monday, April 11, 1994 10:00 AM 

K-IntFree 

Boards 
Supported 

All 

Purpose 

Prototype 

Frees a buffer allocated for an interrupt-mode operation. 

GIG++ 
DASErr far Pascal K-IntFree (WORD /&fern); 

Turbo Pascal 
Function KJntFree (Mem : Word) : Integer; 

Turbo Pascal for Windows 
Function K-IntFree (Mem : Word) : Integer; far; external ‘DASSHELL’: 

Visual Basic for Windows 
Declare Function KJntFree Lib “DASSHELL.DLL” 
(ByVal Mem As Integer) As Integer 

BASIC 
DECLARE FUNCTION KIntFree% ALIAS “K-IntFree” 
(BYVAL hMem AS INTEGER) 

Parameters 

Return Value 

hMem Handle to interrupt buffer. 

This function returns an integer error/status code. Error/status code 0 
indicates that the function executed successfully. A non-zero errorlstalus 
code indicates that an error occurred. Refer to Appendix A for additional 
information. 

Remarks This function frees the buffer specified by hMem; tile buffer was 
previously allocated dynamically using K-IntAlloc. 

See Also K-IntAlloc 

4-154 Function Reference 



6 b hap04-.frm Page 155 Monday, April 11,1994 10:00 AM 4 

K IntFree (cont.) 

4 

4 

Usage c/c++ 
#include "i3ASDECL.H' // "se "DASDECL.HPP for C+, 
. 
wDasErr = K-IntFree (hMem); 

Turbo Pascal 
uses D18OOTP7; (* Use DlfJOOTP6 for TP ver 6.0 *1 

wDasErr := K-IntFree (hMem); 

Turbo Pascal for Windows 
($1 DASDECL.INC) 

. 
wDasErr := K-IntFree (hMem); 

Visual Basic for Windows 
(Include DASDECL.BAS inyourprogram makefile) 

. . 
wDasErr = I(-IntFree (hMem) 

BASIC 
SINCLUDE: 'DASDECL.BI' 

. 
wDasErr = KIntFree% (hMem) 

4 

4 

4-155 

4 



-a hap04Urm Page 156 Monday, April 11, 1994 10:00 AM 

K-IntStart 

Boards 
Supported 

All 

Purpose Starts an interrupt operation. 

Prototype c/c++ 
DASErr far Pascal K-IntStwt (DWORD hFrame); 

Turbo Pascal 
Function KIntStart @Frame : Longint) : Word: 

Turbo Pascal for Windows 
Function K-IntStart (Wrame : Longint) : Word; far; 
external ‘DASSHELL’: 

Visual Basic for Windows 
Declare Function KJntStart Lib “DASSHELL.DLL” 
(ByVal hFrame As Long) As Integer 

BASIC 
DECLARE FUNCTION KIntStart% ALIAS “KlntStart” 
(BYVAL hFrame AS LONG) 

Parameters hFrame Handle to the frame that defines the operation. 

Return Value This function returns an integer error/status code. Error/status code 0 
indicates that the function executed successfully. A non-zero error/status 
code indicates that an error occurred. Refer to Appendix A for additional 
information. 

Remarks This function starts the interrupt operation defined by hFrame. 

Refer to Chapter 3 for a discussion of the programming tasks associated 
with interrupt operations. 

See Also K-IntStatus, K-IntStop 

4-156 Function Reference 



&- b hap042rm Page 157 Monday, April 11, 1994 10:00 AM 

K IntStart Icont.) 

Usage c/c++ 
#include "DASDECL.H" // Use "DASDECL.HPP for C++ 
. 
wDasErr = K-IntStart (hAD); 

Turbo Pascal 
uses D1800TP7: (* Use D1800TP6 for TP "er 6.0 *) 

. 
wDasErr := K-IntStart (hAD); 

Turbo Pascal for Windows 
($1 DASDECL.INC) 

wDasErr :r K-IntStart (hAD); 

Visual Basic for Windows 
(Include DASDECL.BAS in your program makefile) 
. 
wDasErr = KmIntStart (hAD) 

BASIC 
8 SINCLUDE: 'DASDECL.BI' 

. 
wDasErr = KIntStart% (hAD) 

4-157 



43 I hap04Urm Page 158 Monday, April 11,1994 10:00 AM 

+b 

K-IntStatus 

Boards 
Supported 

All 

Purpose Gets status of interrupt operation. 

Prototype c/c++ 
DASErr far Pascal K-IntStatur 
DWORD far *pCounr); 

: (DWORD hFrame, short far *pStatus, 

Turbo Pascal 
Function K-IntStatus (hFrame 
Var pCount : Longint) : Word; 

: Longint; VarpStatus : Word; 

Turbo Pascal for Windows 
Function K-IntStatus @Frame : Longint; VarpSfatus : Word; 
VarpCounf : Longint) : Word; far; external ‘DASSHELL’; 

Visual Basic for Windows 
Declare Function K-IntStatus Lib “DASSHELL.DLL” 
(ByVal Frame As Long, pStatus As Integer, pCount As Long) As 
Integer 

BASIC 
DECLARE FUNCTION KIntStatus% ALIAS “K-In&ah& 
(BYVAL hFrame AS LONG, SEG pStatus AS INTEGER, 
SEG pCount AS LONG) 

Parameters hFrame 

pStafus 

Handle to tbe frame that defines the operation. 

Status of interrupt operation; see Remarks 
below for value stored. 

pcounf Number of samples that were acquired. 
Value stored: 0 to 65,536 

4-158 Function Reference 



G hapOC.frm Page 159 Monday, April 11.1994 10:00 AM 

K-IntStatus (cont.) 

Return Value This function returns an integer error/status code. Error/status code 0 
indicates that the function executed successfully. A non-zero error/status 
code indicates that an error occurred. Refer to Appendix A for additional 
information. 

Remarks For the interrupt operation defined by Wrame, this function stores the 
status in pStatus and the number of samples acquired in pCount. 

The value stored in pStatus depends on the settings in the Status word, as 
shown below: 

Actfve buffer number 

’ I 
0 z Buffer no1 Rlled 
1 = Butter tilled 

0 = No Interrupt overrun 
1 = Interrupt overrun 

7 
0 q No FIFO overttow 
1 I FIFO overflow 

0 ii Buffer A active 
1 = Buner B acllve 

I 
I 

0 q Interrupt operathl InaCtIVe 
1 I Interrupt operation BDtRe 

4-l 59 



8, hap04-.frm Page 160 Monday, April 11.1994 10:00 AM 

4+ 

K-IntStatus (cont.) 

The bits are described as follows: 

Bit 0: Indicates whether an interrupt-mode operation is in progress. 

Bit 1: The Buffer A/B active bit. If you are using multiple buffers, this 
bit toggles each time acquisition sample storage is switched to a new 
buffer. If you arc using a single buffer and the operation is in 
continuous mode, this bit toggles each time an acquisition sample is 
stored at the beginning of the buffer. 

Bit 2: When set, this bit indicates that the onboard FIFO has 
overflowed. This event automatically stops all conversions. 

Bit 3: When set, this bit indicates that the board issued an interrupt 
while the CPU was processing a previous interrupt from the same 
board. 

Bit 4: This bit is used during continuous buffering mode; it is set 
when all data acquisition buffers that are currently assigned to the 
active operation have been tilled with data at least once. 

Bits 5-7: Unassigned. 

Bits S-15: In multiple-buffer acquisitions, these bits indicate the 
current active buffer number. The active buffer number is related to 
the Status word as follows: 

active buffer = 
Status word 

256 

See Also 

Usage 

K-IntStart, K-IntStop 

c/c++ 
#include "i3ASDECL.H" // use "DASDECL.HPP for C++ 

. 
WORD wstatus; 
DWORD dwcount; 

wDasErr = I<-IntStatus (hAD, &wStatus, &dwCount); 

4-160 Function Reference 



e hap04-.frm Page 161 Monday, April 11.1994 1O:OO AM 

K-IntStatus (cont.) 

Turbo Pascal 
uses D1800TP7; (* "se D1800TP6 for TP "er 6.0 *) 
. 
wstatus : Word; 
dwcount : Longint; 

wDasErr := KJntStatus (hAD, WStatus, dwCount); 

Turbo Pascal for Windows 
($1 DASDECL.INC) 

. 
wstatus : Word; 
dwcount : Longint; 
. 
wDasErr := K-IntStatus (hAD, wStatus, dwcount); 

Visual Basic for Windows 
(Include DASDECL.BAS in your program make file) 

. 
Global wStatus As Integer 
Global dwCount As Long 

wDasErr = K-IntStatus (hAD, wStatus, dwCount) 

BASIC 
$INcLuDE: 'DASDECL.BI' 

. . 
DIM wStatus AS INTEGER 
DIM dwcount AS LONG 

wDasErr = KIntStatus% (hAD, wStatus, dwcount) 

4-161 



+b I hap04-.frm Page 162 Monday, April 11,1994 1O:OO AM 

K-IntStop 

Boards 
Supported 

All 

Purpose 

Prototype 

Stops an interrupt operation. 

c/c++ 
DASErr far Pascal K-IntStop (DWORD hFrame, short far *pSrarus, 
DWORD far *pCounf); 

Turbo Pascal 
Function K-It&top @Frame : Long&; VarpSratus : Word; 
Var pCounr : Longint) : Word; 

Turbo Pascal for Windows 
Function KIntStop (hFrame : Longint; Var pStutus : Word; 
Var pCount : Longint) : Word; far; external ‘DASSHELL’; 

Visual Basic for Windows 
Declare Function K-IntStop Lib “DASSHELL.DLL” 
(ByVal hFrame As Long, pStutus As Integer, pCount As Long) As 
Integer 

BASIC 
DECLARE FUNCTION KIntStop% ALIAS “K-IntStop” 
(BYVAL hFrame AS LONG, SEG pSrarus AS INTEGER, 
SEG pCounf AS LONG) 

Parameters hFrame 

pSratus 

pcounr 

Handle to the frame that defines the operation. 

Status of interrupt operation. 

Number of samples that were acquired. 
Value stored: 0 to 65,536 

Return Value This function returns an integer error/status code. Error/status code 0 
indicates that the function executed successfully. A non-zero error/status 
code indicates that an error occurred. Refer to Appendix A for additional 
information. 

4-162 Function Reference 



-$- hap04-.frm Page 163 Monday, April 11, 1994 10:00 AM 

4 

K-IntStop (cont.) 

Remarks This function stops the interrupt operation defined by hFrame and stores 
the status of the interrupt operation in pstatus and the number of samples 
acquired in pCounr. 

Refer to page 4-159 for the meaning of the value stored in ~S~UULK 

If an interrupt operation is not in progress, K-IntStop is ignored. 

See Also K-IntStart, K-IntStatos 

Usage c/c++ 
#include "DASDECL.H" // Use "DASDECL.HPP for C++ 

. . 
WORD wStatus; 
DWORD dwcount; 
. 
wDasErr = K-IntStop (hAD, EarStatus, &dwCount); 

Turbo Pascal 
uses D1800TP7: (* Use D1800TP6 for TP "er 6.0 *) 

wStatus : Word; 
dwCount : Longint; 

wDasErr := K-IntStop (hAD, wStatus, dwcount); 

Turbo Pascal for Windows 
($1 DASDECL.INC) 
. 
wStatus : Word; 
dwcount : Longint; 

. 
wDasErr := K_IntStop (hAD, wStat"s, dwcount); 

4 

4 

4-163 

4 4 



6 t hap04Lfrm Page 164 Monday, April 11, 1994 10:00 AM 

K-IntStop (cont.) 

Visual Basic for Windows 
(Include DASDECLBAS in your program make file) 

. 
Global wStatus As Integer 
Global dwCount As Long 

wDasErr = KJntStop (hAD, v&Status, dwCount) 

BASIC 
0 SINCLUDE: 'DASDECL.BI' 

. 
DIM wStatus AS INTEGER 
DIM dwcount AS LONG 
. . . 
wDasErr = KIntStop% (hAD, wStatus, dwCount) 

4-I 64 Function Reference 



4 hap04-.frm Page 165 Monday, April 11, 1994 10:00 AM 

4 

KMakeDMABuf 

Boards 
Supported 

All 

Purpose Converts a local array to a buffer suitable for a DMA-mode analog input 
operations. 

Prototype c/c*+ 
Not supported 

Turbo Pascal 
Not supported 

Turbo Pascal for Windows 
Not supported 

Visual Basic for Windows 
Not supported 

BASIC 
DECLARE FUNCTION KM&eDMABuf% ALIAS “K-MaheDMABuf 
(dwSamp/es AS LONG, p&f AS INTEGER, pBufAddr AS LONG, 
pStarrln AS INTEGER) 

Parameters dwSamples 

PW 

PB ufA ddr 

pStartlx 

Number of samples. 

$DYNAMIC integer array. 

Starting address of the DMA buffer. 

Index into pBufthat identifies the location in 
which the first sample is stored. 

Return Value This function returns an integer error/status code. Error/status code 0 
indicates that the function executed successfully. A non-zero error/status 
code indicates that an error occurred. Refer to Appendix A for additional 
information. 

4 

4-165 

4 4 



4 hap04Urm Page 166 Monday, April 11, 1994 10:00 AM 4 

4 

KMakeDMABuf (cont.) 

Remarks This function ensures that the array address provided to K-SetDMABuf 
is suitable for a DMA-mode analog input operation. 

The size of the array given by pBufmust be declared so as to 
accommodate twice the number of samples as given by dwSamples; refer 
to page 3-46 for additional information. 

See Also K-SetDMABuf, K-BufListAdd 

Usage 

BASIC 
' SINCLUDE: 'DASDECL.BI' 

. 
SDYNAMIC 
DIM ADBuf(lOOOO)As Integer 
SSTATIC 
DIM pDMABuf AS LONG 
. 
wDasErr = KMakeDMABuf% (dwSamp, ADBuf, pDMABuf, nStartIx) 

4-166 Function Reference 

4 



4 hap04-.frm Page 167 Monday, April 11,1994 10:00 AM 

4 

K MoveArravToBuf 

Boards 
Supported 

All 

Purpose Transfers data from a locally dimensioned buffer to a buffer allocated 
through K-IntAlloc or K-DMAAlloc. 

Prototype C/C++ 
Not supported 

Turbo Pascal 
Not supported 

Turbo Pascal for Windows 
Not supported 

Visual Basic for Windows 
Declare Function K-MoveArrayToBuf Lib “DASSHELL.DLL” Alias 
“K-MoveDataBuf’ (ByVal pDesr As Long, pSource As Integer, 
ByVal nCounr As Integer) As Integer 

BASIC 
DECLARE FUNCTION KMoveArrayToBuf% ALIAS 
“K-MoveArrayToBuf’ (ByVal pDest As Long, SEG pSource As Integer, 
ByVal nCount As Integer) 

Parameters pDest 

psource 

ncount 

Address of destination buffer, 

Address of soume buffer. 

Number of samples to transfer. 
Value values: 1 to 32,767 

Return Value This function returns an integer error/status code. Error/status code 0 
indicates that the function executed successfully. A non-zero error/status 
code indicates that an error occurred. Refer to Appendix A for additional 
information. 

4 

4-167 

4 4 



hap04Lfrm Page 168 Monday, April 11,1994 10:00 AM 

K-MoveArrayToBuf (cont.) 

Remarks This function transfers the number of samples specified by nCount from 
the buffer at address pSource to the buffer at address pDesr. 

If the buffer used to store output data for your program was allocated 
through K-IntAlloc or K DMAAlloc. the buffer is not accessible to the 
driver and you must use this function to move the data to a buffer that the 
driver can use. If the buffer used to store output data for your program 
was dimensioned locally within the program’s memory area, the buffer is 
accessible to the driver and you do not have to use this function. 

See Also K_DMAAlloc, K-IntAlIoc 

Usage 

Visual Basic for Windows 
(Include DASDECLBAS in your program makefilei 

WasErr = K-IntAlloc j hDA, dwsamples, pBuf, hMem ) 
. 

wDasErr = K-MoveArrayToBuf ( pBuf, DACArray(O), dwsamples ) 

BASIC 
8 SINCLUDE: 'DASDECL.BI' 
. 
wDasErr = KIntAlloc% ( hDA, dwSamples, pBuf, hMem ) 

wDasErr = KMoveArrayToBuf% ( pBuf, DACArray(O), dwSamples ) 

4-168 



+b hap044frm Page 169 Monday, April 11,1994 10:00 Ah4 

K-MoveBufToArray 

Boards 
Supported 

All 

Purpose Transfers data from a buffer allocated through K-IntAlloc or 
K-DMAAlloc to a locally dimensioned buffer. 

Prototype c/c++ 
Not supported 

Turbo Pascal 
Not supported 

Turbo Pascal for Windows 
Not supported 

Visual Basic for Windows 
Declare Function K-MoveBufI’oArray Lib “DASSHELL.DLL” Alias 
“K-MoveDataBuf’ @Dest As Integer, ByVal pSource As Long, 
ByVal Kount As Integer) As Integer 

BASIC 
DECLARE FUNCTION KMoveBufToArray% ALIAS 
“K-MoveButToArray” (SEG pDest As Integer. ByVal pSource As Long, 
ByVal nCount As Integer) 

Parameters pDest 

p.kW? 

ncount 

Address of destination buffer. 

Address of source buffer, 

Number of samples to transfer. 
Value values: 1 to 32,767 

Return Value This function returns an integer error/status code. Error/status code 0 
indicates that the function executed successfully. A non-zero error/status 
code indicates that an error occurred. Refer to Appendix A for additional 
information. 

4-169 



4 hap04Lfrm Page 170 Monday, April 11, 1994 10:00 AM 

4 

K MoveBufToArrav (cont.) 

This function transfers the number of samples specified by nCount from 
the buffer at address pSource to the array at address pDest. 

If the buffer used to store acquired data for your program was allocated 
through K-IntAlloc or K-DMAAlloc, the buffer is not accessible to your 
program and you must use this function to move the data to an accessible 
buffer. If the buffer used to store acquired data for your program was 
dimensioned locally within the program’s memory area, the buffer is 
accessible to your program and you do not have to use this function. 

See Also K-DMAAlloc, K-IntAlloc 

Usage 

Visual Basic for Windows 
(Include DASDECL.BAS in yourprogram makefile) 

. 
wDasErr : K-IntAlloc ( hAD, dwsamples, pBuf, hMem ) 
. 
wDasErr = K-MoveBufToArray ( ADArray( pBuf, dwSamples) 

BASIC 
0 $INCLUDE: 'DASDECL.BI' 

. . 
wDasErr = KIntAlloc% ( hAD, dwSamples, pBuf, hMem ) 
. . 
wDasErr = K-MoveBufToArray% ( ADArray( pBuf, dwSamples) 

4-170 Function Reference 



@ hap04-.frm Page 171 Monday, April 11, 1994 10:00 AM 

K OpenDriver 

Boards 
Supported 

All 

Purpose Initializes any Keithley DAS Function Call Driver. 

Prototype c/c++ 
DASErr far Pascal K_OpenDriver (char far * szDevName, 
char far * szCfgName, DWORD far * pDrv); 

Turbo Pascal 
Not supported 

Turbo Pascal for Windows 
Function K-OpenDriver (Var szDevName : char; Var szCfgName : char; 
Var pDrv : LongInt) : Word; far; external ‘DASSHELL’; 

Visual Basic for Windows 
Declare Function K-OpenDriver Lib “DASSHELL.DLL” 
(ByVal szDASName As String, ByVal szCfgName As String, 
pDrv As Long) As Integer 

BASIC 
Not supported 

Parameters szDASName Board name. 
Valid value: “DASl800” (for DAS-1800 

Series boards) 

szCfgName Driver configuration file. 
Valid values: The name of a configuration file 

0 if driver has already been 
opened 

pDr!J Handle associated with the driver. 

Return Value This function returns an integer error/status code. Error/status code 0 
indicates that the function executed successfully. A non-zero error/status 

4-171 



K-OpenDriver (cont.) 

code indicates that an ermr occurred. Refer to Appendix A for additional 
information. 

Remarks This function initializes the Function Call Driver for the board associated 
with szDASName according to the information in the configuration file 
specified by szCfgName, and stores the driver handle in pDrv. 

You can use this function to initialize the Function Call Driver associated 
with any Keithley DAS board. For DAS-1800 Series boards, the string 
stored in szDASName must be DAS1800. Refer to other Function Call 
Driver user’s guides for the appropriate string to store in szDASName for 
other Keithley DAS boards. 

The value stored in pDrv is intended to be used exclusively as an 
argument to functions that require a driver handle. Your program should 
not modify the value stored in pDrv. 

You create a configuration file using the Dl800CFGEXE utility. Refer to 
your DAS-I 800 Series board user’s guide for more information. 

If szC’gName = 0, K-OpenDriver checks whether the driver has already 
been opened and linked to a configuration file and if it has, uses the 
current configuration; this is useful in the Windows environment. 

See Also DAS I SOO-DevOpen 

usage 

C/C++ 
#include "DASDECL.H" // "se "DASDECL.HPP for C++ 

DWORD hDrv; 

wDas!&r = K-OpenDriver ("DASlEOO", "DAS1802.CFG". &hDrv); 

4-172 Function Reference 



4 hap&-.fim Page 173 Monday, April 11, 1994 1O:OO AM 

K-OpenDriver (cont.) 

Turbo Pascal for Windows 
($1 DASDECL.INC) 

szDrvName : String: 
szCfgName : String; 
hDrv : Longint: 

szDrvName := 'DAS1800' + #0; 
szCfgName := 'DASlEOZ.CFG + #0: 
wDasErr := K-OpenDriver (szDrvName[l], szCfgName[ll, hDrV) 

Visual Basic for Windows 
(Include DASDECL.BAS in your program makefile) 
. . 
DIM hDrv As Long 

. 
wDasErr = K_OpenDriver("DASl800", "DAS1802.CFG", hDrv) 

4-173 

I+@- 

+ 



-a hap04-.frm Page 174 Monday, April II,1994 1O:OO AM 

K-RestoreChnGAry 

Boards 
Supported 

All 

Purpose Restores a converted channel-gain queue. 

Prototype c/c++ 
Not supported 

Turbo Pascal 
Not supported 

Turbo Pascal for Windows 
Not supported 

Visual Basic for Windows 
Declare Function K-RestoreChnGAry Lib “DASSHELL.DLL” 
@Array As Integer) As Integer 

BASIC 
DECLARE FUNCTION KRestoreChanGAry% ALIAS 
“K_RestoreChnGAry” (SEG pArray AS INTEGER) 

Parameters pArray Channel-gain queue starting address. 

Return Value This function remms an integer error/status code. Error/status code 0 
indicates that the function executed successfully. A non-zero error/status 
code indicates that an error occurred. Refer to Appendix A for additional 
information. 

Remarks This function restores a channel-gain queue that was converted using 
K-FormatChnCAry to its original format so that it can be used by your 
BASIC or Visual Basic for Windows program. 

Refer to page 4-59 for more information about the K-FormatChnGAry 
function. 

See Also K_FormatChnGAry, K-SetChnGAry 

4-174 Function Reference 



43 hapOC.frm Page 175 Monday, April 11,1994 10:00 AM 

K-RestoreChnGAry (cont.) 

Usage Visual Basic for Windows 
(Include DASDECL.BAS in pm-program make file) 

Global ChanGainArray(l6) As Integer ' Ghan/Gain 
array 

wDasErr = K-RestoreChnGAry (ChanGainArray(O)) 

BASIC 
0 SINCLUDE: 'DASDECL.BI' 

DIM ChanGainArray(l6) AS INTEGER ' Ghan/Gain array 

wDasErr = KRestoreChnGAry% (ChanGainArray(0)) 

4-175 



43 t hapOll_.frm Page 176 Monday, April 11, 1994 10:00 AM 

K-SetAboutTrig 

Boards 
Supported 

All 

Purpose Enables the about trigger and specifies the number of post-trigger 
samples. 

Prototype c/c++ 
DASErr far Pascal K-SetAboutTtig (DWORD hFrame, 
DWORD dwsamples); 

Turbo Pascal 
Function K-SetAboutTrig (hFramc : Longint; 
dwSamples : Longint) : Word: 

Turbo Pascal for Windows 
Function K_SetAboutTrig (hFrame : Longint; 
dwSamplcs : Longint) : Word; far: external ‘DASSHELL’; 

Visual Basic for Windows 
Declare Function K-SetAboutTrig Lib “DASSHELL.DLL” 
(ByVal hFrame As Long, ByVal dwSamples As Long) As Integer 

BASIC 
DECLARE FUNCTION KSetAboutTrig% ALIAS “K-SetAboutTrig” 
(BYVAL hFrame AS LONG, BYVAL dwSamp1e.v AS LONG) 

Parameters hFrame 

dwSamples 

Handle to the frame that defines the operation. 

Number of post-trigger samples. 
Valid values: 1 to 65,535 

Return Value This function retttrns an integer error/status code. Error/status code 0 
indicates that the function executed successfully. A non-zero error/status 
code indicates that an error occurred. Refer to Appendix A for additional 
information. 

4-176 



@ hap04-.frm Page 177 Monday, April 11, 1994 10:00 AM 

K-SetAboutTrig (cont.) 

Remarks For tbe DMA-mode analog input operation defined by hFrame, this 
function enables the about trigger and specifies the number of post-trigger 
samples. 

See Also K-ClrAboutTrig, KGetAboutTrig 

Usage c/c++ 
#include "DASDECL.H" // Use "DASDECL.HPP for C++ 
. . 
DWORD dwSamples; 
. 
wDasErr = K-SetAboutTrig (hAD, dwsamples); 

Turbo Pascal 
uses D1800TP7; (* Use D1800TP6 for TP "er 6.0 *) 

dwSamples : Longint; 
. 

wDasErr := K-SetAboutTrig (hAD, dwSamples); 

Turbo Pascal for Windows 
($1 DASDECL.INC) 

dwsamples : Longint; 
. 

wDasErr := K-SetAboutTrig (hAD, dwSamples); 

Visual Basic for Windows 
(Include DASDECLBAS in your program make file) 

. 
Global dwsamples As Long 

. 
wDasErr = K-SetAboutTrig (hAD, dwSamples) 

4-177 



frm Page 178 Monday, April 11, 1994 IO:00 AM 

K-SetAboutTrig (cont.) 

BASIC 
SINCLUDE: 'DASDECL.BI' 

4-170 

DIM dwSamples AS LONG 

wDasErr = KSetAboutTrig% (hAD, dwSamples) 

Function Reference 



-a hap04-.frm Page 179 Monday, April 11,1994 10:00 AM 

-@ 

K SetADCommonMocte 

Boards 
Supported 

All 

Purpose 

Prototype 

Set a DAS board’s A/D common-mode ground reference. 

c/c++ 
DASErr far Pascal K-SetADCommonMode @WORD hDev, 
WORD &lode): 

Turbo Pascal 
Function K-SetADCommonMode (hDev : Longint; 
riMode : Word) : Word; 

Turbo Pascal for Windows 
Function K-SetADCommonMode (hDev : Longint; 
nMode : Word) : Word; far; external ‘DASSHELL’; 

Visual Basic for Windows 
Declare Function K-SetADCommonMode Lib “DASSHELL.DLL” 
(ByVal hDev As Long, ByVal nkfode As Integer) As Integer 

BASIC 
DECLARE FUNCTION KSetADCommonMode% ALIAS 
“K-SetADCommonMode” (BYVAL hDev AS LONG, 
BYVAL nMode AS INTEGER) 

Parameters hDev 

nMode 

Handle to the frame that defines the operation. 

A/D common-mode ground reference. 
Value stored: 0 for LL-GND 

1 for user-defined 

Return Value This function returns an integer error/status code. Error/status code 0 
indicates that the function executed successfully. A non-zero error/status 
code indicates that an error occurred. Refer to Appendix A for additional 
information. 

4-l 79 



+b hap04Lfrm Page 180 Monday, April 11, 1994 10:00 AM 

ft+ 

4-180 

K-SetADCommonMode (cont.) 

Remarks For the board specified by hDcv, this function specifies the A/D 
common-mode ground reference in &lode. 

See Also K-GetADCommonMode 

Usage c/c++ 
#include "DASDECL.H" // Use "DASDECL.HPP for C++ 

. 
WORD nMode: 

. 
wDasErr = K-SetADConmonMode (hDev, nMode); 

Turbo Pascal 
uses D1800TP7; (* Use D1800TP6 for TP ver 6.0 *) 

nMode : Word; 

wDasErr = K-SetADComonMode (hDev, nMode); 

Turbo Pascal for Windows 
($1 DASDECL.INC) 

. 
nMode : Word; 

wDasErr = KmSetADCommonMode (hDev, nMode); 

Visual Basic for Windows 
(Include DASDECL.BAS in your program make file) 
. 
DIM nMode As Integer 
. 
wDasErr = I<-SetADCommonMode (hDev, nMode) 

BASIC 
SINCLUDE: 'DASDECL.BI' 

. 
DIM nMode AS INTEGER 
. 
wDasErr = KSetADCommonMode% (hDev, nMode) 

Function Reference 



43 hap04-.fim Page 181 Monday, April 11, 1994 1O:OO AM 

K-SetADConfig 

Boards 
Supported 

All 

Purpose 

Prototype 

Set a DAS board’s A/D input channel configuration, 

c/c++ 
DASErr far Pascal K-SetADConfig (DWORD hDev, WORD Mode); 

Turbo Pascal 
Function K-SetADConfig (/r&v : Longint; &fade : Word) : Word; 

Turbo Pascal for Windows 
Function KSetADConfig (hDev : Longint; Mode : Word) : Word; far; 
external ‘DASSHELL’; 

Visual Basic for Windows 
Declare Function K-SetADConfig Lib “DASSHELL.DLL” 
(ByVal hDev As Long, ByVal tiode As Integer) As Integer 

BASIC 
DECLARE FUNCTION KSetADConflg% ALIAS “K-SetADConfig” 
(BYVAL hDev AS LONG, BYVAL Mode AS INTEGER) 

Parameters hFrame 

Mode 

Handle associated with the board. 

A/D input channel configuration. 
Value stored: 0 for Differential 

1 for Single-ended 

Return Value This function returns an integer error/status code. Error/status code 0 
indicates that the function executed successfully. A non-zero error/status 
code indicates that an error occurred. Refer to Appendix A for additional 
information. 

This function specifies, in Node, the A/D input channel configuration 
for the board specified by hDev. 

4-181 



+b hap04Qrm Page 182 Monday, April 11.1994 10:00 AM 

4+ 

K-SetADConfig (cont.) 

See Also K-GetADConfig 

usage c/c++ 
#include "DASDECL.H" // Use "DASDECL.HPP for C++ 

WORD nMode; 
. 

wDasErr = I<-SetADConfig (hDev, nMode); 

Turbo Pascal 
uses D1800TP7; (* Use D1800TP6 for TP ver 6.0 *) 

. 
nMode : Word; 

wDasErr = K_SetADConfig (hDev, nMode); 

Turbo Pascal for Windows 
($1 DASDECL.INC) 

. 
nMode : Word; 
. . . 
wDasErr = K-SetADConfig (hDev, nMode); 

Visual Basic for Windows 
(Include DASDECL.BAS in yourprogram makefile) 

DIM nMode As Integer 

wDasErr = K-SetADConfig (hDev, nMode) 

BASIC 
* $INCLUDE: 'DASDECL.BI' 
. 

DIM nMode AS INTEGER 
. . 
wDasErr = KSetADConfig% (hDev, nMode) 

4-182 Function Reference 



.frm Page 183 Monday, April 11, 1994 10:00 AM 

K SetADFreeRun 

Boards 
Supported 

Purpose 

Prototype 

Parameters hFrame Handle to the frame that defines the operation. 

Return Value This function returns an integer error/status code. Error/status code 0 
indicates that tbe function executed successfully. A non-zero error/status 
code indicates that an error occurred. Refer to Appendix A for additional 
information. 

Remarks This function sets the conversion mode for the operation defined by 
hFrame to burst mode. Refer to page 2-15 for information on conversion 
modes. 

See Also K_ClrADFreeRun, K-GetADFreeRun 

All 

Specifies burst conversion mode. 

UC++ 
DASErr far Pascal K-SetADFreeRun (DWORD hFrame); 

Turbo Pascal 
Function K-SetADFreeRun @Frame : Longint) : Word: 

Turbo Pascal for Windows 
Function K-SetADFreeRun @Frame : Longint) : Word; far; 
external ‘DASSHELL’; 

Visual Basic for Windows 
Declare Function K-SetADFreeRun Lib “DASSHELL.DLL” 
(ByVal hFrame As Long) As Integer 

BASIC 
DECLARE FUNCTION KSetADFreeRun% ALIAS “K-SetADFreeRun” 
(BYVAL hFrame AS LONG) 

4-183 



.frm Page 184 Monday, April 11.1994 10:00 AM 

4 

K-SetADFreeRun (cont.) 

Usage c/c++ 
#include "DASDECL.H" // Use "DASDECL.HPP for C++ 

wDasErr = K-SetADFreeRun (hAD, 1,; 

Turbo Pascal 
uses D1800TP7; (* Use D1800TP6 for TP "er 6.0 *) 

wDasErr := K-SetADFreeRun (hAD, 1); 

Turbo Pascal for Windows 
($1 DASDECL.INC) 

wDasErr := K-SetADFreeRun (hAD, 1); 

4-184 Function Reference 

Visual Basic for Windows 
(Include DASDECL.BA.9 in your program make file) 

wDasErr = K-SetADFreeRun (hAD, 1) 

BASIC 
SINCLUDE: 'DASDECL.BI' 

wDasErr = KSetADFreeRun% (hAD, 1) 

4 4 



4 hap04Lfrm Page 185 Monday, April 11, 1994 1O:OO AM 

K-SetADMode 

Boards 
Supported 

Purpose 

Prototype 

Parameters 

Return Value 

Remarks 

All 

Set a DAS board’s A/D input range type. 

C/C++ 
DASErr far Pascal K-SetADMode (DWORD hDev, WORD nMode); 

Turbo Pascal 
Function K-SetADMode (hDev : Longint; tiode : Word) : Word; 

Turbo Pascal for Wlndows 
Function K-SetADMode (hDev : Longint; m’vfode : Word) : Word; far; 
external ‘DASSHELL’; 

Visual Basic for Windows 
Declare Function K-SetADMode Lib “DASSHELL.DLL” 
(ByVal hDev As Long, ByVal Mode As Integer) As Integer 

BASIC 
DECLARE FUNCTION KSetADMode% ALIAS “K-SetADMode” 
(BYVAL hDev AS LONG, BYVAL Node AS INTEGER) 

hDev 

r&lode 

Handle associated with the board. 

A/D input range type. 
Valid values: 0 for Bipolar 

1 for Unipolar 

This function returns an integer error/status code. Error/status code 0 
indicates that the function executed successfully. A non-zero error/status 
code indicates that an error occurred. Refer to Appendix A for additional 
information. 

For the board specified by hDev, this function specifies the A/D input 
range type in &ode. 

4 

4 

4-185 

4 



@ b hap04Qrm Page 186 Monday, April 11,194 10:00 AM 

K SetADMode (cont.) 

See Also K-GetADMode 

Usage c/c++ 
#include "DASDECL.H" // Use "DASDECL.HPP for C++ 
. . . 
WORD nMode; 

wDasErr = K-SetADMode (hDev, nMode); 

Turbo Pascal 
uses DlEOOTP7; (* Use D1800TP6 for TP "er 6.0 *) 
. 
nMode : Word; 

wDasErr = K-SetADMode (hDev, nMode); 

4-186 

Turbo Pascal for Windows 
($1 DASDECL.INC) 

nMode : Word; 

wDasErr = K-SetADMode (hDev, nMode); 

Visual Basic for Windows 
(Include DASDECL.BAS in your program makefile) 

. 
DIM nMode As Integer 

wDasErr = K-SetADMode (hDev, nMode) 

BASIC 
t $INCLUDE: 'DASDECL.BI' 

. . 
DIM nMode AS INTEGER 

wDasErr = KSetADMode% (hDev, nMode) 

Function Reference 



hap04-.frm Page 187 Monday, April 11.1994 10:00 AM 

K-SetADTrig 

Boards 
Supported 

All 

Purpose 

Prototype 

Sets up an analog start trigger. 

CIC++ 
DASErr far Pascal K-SetADTrig (DWORD hFrame, short nOpf, 
short nChan, DWORD dwlevel); 

Turbo Pascal 
Function K-SetADTrig &Frame : Longint; nOpt : Word: nChan : Word: 
dwLevel : Longint) : Word; 

Turbo Pascal for Windows 
Function K-SetADTrig (hFrame : Longint; nOpt : Word; nChan : Word; 
dwLevel : Longint) : Word; far; external ‘DASSHELL’; 

Visual Basic for Windows 
Declare Function K-SetADTrig Lib “DASSHELL.DLL” 
(ByVal hFrame As Long, ByVal nOpf As Integer, 
ByVal Khan As Integer, ByVal dwLevel As Long) As Integer 

BASIC 
DECLARE FUNCTION KSetADTrig% ALIAS “K-SetADTrig” 
(BYVAL hFrame AS LONG, BYVAL nOpt AS INTEGER, 
BYVAL nChan AS INTEGER, BYVAL dwLeve/ AS LONG) 

Parameters hFrame 

nopt 

Handle to the frame that defines tbe operation. 

Analog trigger polarity and sensitivity. 
Valid values: 0 for Positive edge 

2 for Negative edge 

4 

4 

4 

4-i 87 

4 



4 hap04-.frm Page 188 Monday, April 11,1994 10:00 AM 

K-SetADTrig (cont.) 

nChan Analog input channel used as trigger channel. 
Valid values: 

Board 

DAS-1800HC 

Valid channel numbers 

Differential Single-ended 

0 to 31 Oto63 

DAS-1800STlHR with N 
EXP-1800 expansion boards 
attached 

Not applicable 0 to lS(N + 1) 

Level at which the trigger event occurs, specified 
in raw counts. Valid values: 
DAS-1800HCIST Series boards: 

0 to 4,095 (Unipolar) 
-2048 to 2047 (Bipolar) 

DAS-1800HK Series boards: 
0 to 65,535 (Unipolar) 
-32,768 to 32,767 (Bipolar) 

Return Value This function returns an integer error/status code. Error/status code 0 
indicates that the function executed successfully. A non-zero error/status 
code indicates that an error occurred. Refer to Appendix A for additional 
information. 

Remarks For the operation defined by hFrame, this function specifies the channel 
used for an analog trigger in nChan, the level used for the analog trigger 
in dwlevel, and the trigger polarity and trigger sensitivity in nOpf. 

You specify the value for dwLcvel in raw counts. Refer to Appendix B for 
information on converting the actual voltage to a raw count. 

4-i 88 Function Reference 

4 



.frm Page 189 Monday, April 11, 1994 10:00 AM 

4 

4 

K-SetADTrig (cont.) 

The values you specify set the following elements in the frame identified 
by hFrame: 

. nOpt sets the value of the Trigger Polarity and Trigger Sensitivity 
elements. 

. nChan sets the value of the Trigger Channel element. 

. dwLevel sets the value of the Trigger Level element. 

K SetADTrig does not affect the operation defined by hFrame unless the 
Trigger Source element is set to External (by a call to K-SetTrig) before 
hFrame is used as a calling argument to K-IntStart or K-DMAStart. 

See Also K_GetADTrig 

Usage c/c++ 
#include "DASDECL.H" // Use "DASDECL.HPP for C++ 

wDasErr = K-SetADTrig (hAD, 0, 0, 2047); 

Turbo Pascal 
uses D1800TP7; (* "se D1800TP6 for TP ver 6.0 *) 

. 
wDasErr := K-SetADTrig (hAD, 0, 0, 2047); 

Turbo Pascal for Windows 
($1 DASDECL.INC) 
. 
wDasErr := K-SetADTrig (hAD, 0, 0, 2047); 

Visual Basic for Windows 
(Include DASDECL.BAS in your program make file) 

wDasErr = K-SetADTrig (hAD, 0, 0, 20471 

4 

4-189 

4 



.frm Page 190 Monday, April 11, 1994 10:00 AM 

K-SetADTrig (cont.) 

BASIC 
0 SINCLUDE: 'DASDECL.BI' 

wDasErr = KSetADTrig% (hAD, 0, 0, 2047) 

4-190 Function Reference 



.frm Page 191 Monday, April 11,1994 10:00 AM 

K SetBuf 

Boards 
Supported 

All 

Purpose Specifies the starting address of a previously allocated or dimensioned 
buffer. 

Prototype c/c++ 
DASEIT far Pascal K-Set&f (DWORD hFrame, void far *pBuf, 
DWORD dwSamples); 

Turbo Pascal 
Function K-SetBuf (hFrame : Longint; p19uf: Pointer; 
dwSamples : Long&) : Word; 

Turbo Pascal for Windows 
Function K-SetBuf @Frame : Longint; pBuf: Pointer; 
dwSamp/es : Longint) : Word; far; external ‘DASSHELL’; 

Visual Basic for Windows 
Declare Function K-SetBuf Lib “DASSHELL.DLL’ 
(ByVal hFrame As Long, ByVal pBuf As Long, 
ByVal dwSomples As Long) As Integer 

BASIC 
Not supported 

Parameters hFrame 

PW 

dwSamples 

Handle to the frame that defines the operation. 

Starting address of buffer. 

Number of samples. 
Valid values: 0 to 65,535 

Return Value This function returns an integer error/status code. Error/status code 0 
indicates that the functiou executed successfully. A non-zero error/status 
code indicates that an error occurred. Refer to Appendix A for additional 
information. 

4-191 



+B hap04-.frm Page 192 Monday, April 11, 1994 10:00 AM 

4 

K SetBuf (cont.) 

Remarks For the operation defined by hFrame, this function specifies the starting 
address of a previously allocated buffer in pBufand the number of 
samples (the size of the buffer) in dwSamples. 

Do not use this function for BASIC; for the BASIC languages, use 
K-SetBufL Refer to page 4-194 for more information. 

For C and Pascal application programs, use this function whether you 
dimensioned your buffer locally or allocated your buffer dynamically 
using K-IntAlloc. For buffers allocated dynamically using 
K-DMAAIIoc, use K-SetDMABuf. For C, make sure that you use. 
proper typecasting to prevent C/C++ type-mismatch warnings. For 
Pascal, a special procedure is needed to satisfy the type-checking 
requirements; refer to page 3-33 for more information. 

For Visual Basic for Windows, use this function only for buffers allocated 
dynamically using K-IntAlloc. For buffers allocated dynamically using 
K-DMAAlloc, use K-SetDMABuf. For locally dimensioned buffers, use 
K-SetBufl. 

Do not use this function if you are using multiple buffers. Use 
K-BufListAdd to specify the starting addresses of multiple buffers. 

The values you specify set the following elements in the frame identified 
by hFrame: 

. pBufsets the value of the Buffer element. 

l dwSamples sets the value of the Number of Samples element. 

See Also K_DMAAlloc, KJntAlloc, K_BufListAdd, K-SetBufI, K-SetDMABuf 

Usage 

c/c++ 
#include "DASDECL.H" // "se "DASDECL.HPP for C++ 
. 
void far *pBuf; // Pointer to allocated buffer 

wDasErr = K-IntAlloc (hAD, dwSamples, &pBuf, &hMem); 
wDasErr = K-SetBuf (hAD, pBuf, dwSamples1; 

4-192 Function Reference 

4 



hap04Qrm Page 193 Monday, April 11, 1994 10:00 AM 

K-SetBuf (cont.) 

Turbo Pascal 
uses D1800TP7; (* "se D1800TP6 for TP ver 6.0 *) 
. . . 
TYPE 
BufType = Array [O..l] of Integer; 
VAR 
pBuf : "BufType; ( buffer pointer ) 
. 
wDasErr := KJntAlloc(hAD, dwSamples, Addr(pBuf), hMem); 
wDasErr := K-SetBuf IhAD, pBuf, dwsamples); 

Turbo Pascal for Windows 
($1 DASDECL.INC) 

TYPE 
BufType = Array IO..11 of Integer; 
VAR 
pBuf : "BufType; ( buffer pointer ) 
. . 
wDasErr := K_IntAlloc(hAD, dwsamples, Addr(pBuf), hMem); 
wDasErr := K_SetBuf (hAD, pBuf, dwSamples); 

Visual Basic for Windows 
(Include DASDECLBAS in your program make file) 

Global pBuf As Long 

wDasErr = K-IntAlloc (hAD, dwSamples, pBuf, hMem) 
wDasErr = K-SetBuf (hAD, p&f, dwkmples) 

4-193 



.frm Page 194 Monday, April 11, 1994 10:00 AM 

K-SetBufl 

Boards 
Supported 

All 

Purpose Specifies the starting address of a locally dimensioned integer buffer. 

Prototype c/c++ 
Not supported 

Turbo Pascal 
Not supported 

Turbo Pascal for Windows 
Not supported 

Visual Bask for Windows 
Declare Function K-SetBuff Lib “DASSHELL.DLL” Alias “K-SetBuf’ 
(ByVal hFrame As Long, pBuf As Integer, ByVal dwSize As Long) As 
Integer 

BASIC 
DECLARE FUNCTION K-SETBUFI Alias “K-SetBuf” 
(BYVAL hFrame AS Long,pEuf AS Integer, BYVAL dwSize AS Long) 
AS INTEGER 

Parameters hFrame 

PBUf 

Handle to the frame that defines the operation. 

Starting address of the user-dimensioned integer 
buffer. 

dwSize Number of samples. 
Valid values: 0 to 65,535 

Return Value This function returns au integer error/status code. Error/status code 0 
indicates that the function executed successfully. A non-zero error/status 
code indicates that an error occurred. Refer to Appendix A for additional 
information. 

4-194 Function Reference 



.frm Page 195 Monday, April 11, 1994 10:00 AM 

K SetBufl (cont.1 

Remarks For the operation defined by hFrame, this function specifies the starting 
address of a locally dimensioned integer buffer in pEufand the number of 
samples stored in the buffer in dwSize. 

Do not use this function for C and Pascal; for these languages, use 
K-SetBuf. 

For Visual Basic for Windows, use this function only for locally 
dimensioned buffers. For buffers allocated dynamically using 
K-IntAlloc, use K-SetBuf. For buffers allocated dynamically using 
K-DMAAlloc, use K-SetDMABuf. 

Do not use this function if you are using multiple buffers. Instead, use 
KBufListAdd to specify the starting addresses of multiple buffers. 

The values you specify set the following elements in the frame identified 
by hFrame: 

See Also 

. pllufsets the value of the Buffer element. 

. dwSize sets the value of the Number of Samples element. 

K-DMAAlloc, K-IntAlloc, K-BufListAdd, K-SetBuf, KSetDMABuf 

Usage Visual Basic for Windows 
(Include DASDECLBAS in your program make file) 

. 
Dim ADData(2000) As Integer 
. 
wDasErr = K-SetBufI (hAD, ADData( 2000 ) 

BASIC 
$INCLIJDE: 'DASDECL.BI' 

. 
Dim ADData(2000) As Integer 
. . 
wDasErr = KSetBufI% (hAlI, ADData( 2000 ) 

4-195 

4 



4 hap044.frm Page 196 Monday, April 11, 1994 10:00 AM 

K-SetBurstTicks 

Boards 
Supported 

All 

Purpose Sets the burst mode conversion rate. 

Prototype C/C*+ 
DASErr far Pascal K-SetBurstTicks (DWORD hFrame, short nTicks); 

Turbo Pascal 
Function KSetBurstTicks (Frame : Longint; nTicks : Word) : Word; 

Turbo Pascal for Windows 
Function K-SetBurstTicks @Frame : Longint; nTicks : Word) : Word: 
far: external ‘DASSHELL’; 

Visual Basic for Windows 
Declare Function K-SetBurstTicks Lib “DASSHELL.DLL” 
(ByVal hFrame as Long, ByVal nTicks As Integer) As Integer 

BASIC 
DECLARE FUNCTION KSetBurstTicks% ALIAS “K-SetBurstTicks” 
(BYVAL hFrame AS LONG, BYVAL nTicks AS INTEGER) 

Parameters hFrame Handle to the frame that defines the A/D 
operation, 

nTicks The number of clock ticks between conversions 
of each channel in a scan. 
Valid values: 3 to 2.55 

Return Value This function returns an integer error/status code. Error/status code 0 
indicates that the function executed successfully. A non-zero error/status 
code indicates that an error occurred. Refer to Appendix A for additional 
information. 

4-196 Function Reference 

61 4 



frm Page 197 Monday, April 11, 1994 1O:OO AM 
- 

K-SetBurstTicks (cont.) 

Remarks For the operation defined by hFrume, this function stores the number of 
clock ticks between conversions in nTicks. 

Refer to page 2-17 for more information on burst mode conversion rate, 

See Also K-GetEWstTicks 

Usage c/c++ 
#include 'DASDECL.H" // Use "DASDECL.HPP for C++ 

. 
wDasErr = K-SetBurstTicks (hAD, 10); 

Turbo Pascal 
uses D1800TP7; (* Use D1800TP6 for TP "er 6.0 *) 

. 
wDasErr := K-SetBurstTicks (hAD, 10); 

Turbo Pascal for Windows 
($1 DASDECL.INC) 

wDasErr := K-SetBurstTicks (hAD, 10); 

Visual Basic for Windows 
(Include DASDECLBAS in your program make file) 

wDasErr = K-SetBurstTicks (hAD, 10) 

BASIC 
$INCLUDE: 'DASDECL.BI' 

. 
wDasErr = KSetBurstTicks% (hAD, 10) 

4-l 97 



hap04-.frm Page 198 Monday, April 11, 1994 10:00 AM 

4-198 Function Reference 

K-SetChn 

Boards 
Supported 

All 

Purpose 

Prototype 

Specifies a single channel. 

c/c++ 
DASErr far Pascal K-SetChn (DWORD hFrame, short nChan); 

Turbo Pascal 
Function KSetChn #Frame : Longint; nChan : Word) : Word; 

Turbo Pascal for Windows 
Function K-SetChn (h&arm : Longint; nChan : Word) : Word; far; 
external ‘DASSHELL’: 

Visual Basic for Windows 
Declare Function K-SetChn Lib “DASSHELL.DLL” 
(ByVal hFrame As Long, ByVal nChan As Integer) As Integer 

BASIC 
DECLARE FUNCTION KSetChn% ALIAS “K_SetChn” 
(BYVAL hFrame AS LONG, BYVAL nChan AS INTEGER) 



+I+ hap04Lfrm Page 199 Monday, April 11, 1994 10:00 AM 

K-SetChn (cont.) 

Parameters hFrame 

Khan 

Handle to the frame that defines the operation. 

Channel on which to perform operation. 
Valid values: 

Return Value This function returns an integer error/status code. Error/status code 0 
indicates that the function executed successfully. A non-zero error/status 
code indicates that an error occurred. Refer to Appendix A for additional 
information. 

Remarks For the operation defined by hFramc, this function specifies the single 
channel used in nChan. 

The value you specify in nChan sets the Start Channel element and the 
Stop Channel element in the frame identified by hFrume. 

See Also K-GetChn, K-GetStartStopChn, K-GetStartStopChnAry 

Usage c/c++ 

Board 

Valid channel numbers 

Differential 1 Sinale-ended 

1 DAS-1800HC 0 to 31 Oto63 

DAS-1800ST/HR with N 
EXP-1800 expansion boards 
attached 

Not applicable 0 to lS(N + 1) 

#include "DASi3ECL.H" // Use "DASDECL.HPP for C++ 

wDasErr = K-SetChn (hAD, 2); 

4-199 



@ hap04-.fcm Page 200 Monday, April 11, 1994 10:00 AM 

K-SetChn (cont.) 

Turbo Pascal 
uses D1800TP7; (* Use D1800TP6 for TP "er 6.0 *) 

wDasErr := I<-SetChn (hAD, 2); 

Turbo Pascal for Windows 
($1 DASDECL.INC) 

4-200 

wDasErr := K_SetChn (hAD, 2); 

Visual Basic for Windows 
(Include DASDECL.BAS in yourprogram make file) 

wDasErr = K-SetChn (hAD, 2) 

BASIC 
SINCLUDE: 'DASDECL.BI' 

wDasErr = KSetChn% (hAD, 2) 

Function Reference 



43 hap04-.frm Page 201 Monday, April 11,1994 10:00 AM 

K SetChnGArv 

+b 

Boards 
Supported 

All 

Purpose 

Prototype 

Specifies the starting address of a channel-gain queue. 

c/c++ 
DASErr far Pascal K-SetChnGAry (DWORD hFrame, 
void far *pArray); 

Turbo Pascal 
Function K-SetChnGAry (hFrame : Longint: 
Vat pArray : Integer) : Word; 

Turbo Pascal for Windows 
Function K-SetChnGAry (hJ+ame : Longint; 
VarpArray : Integer) : Word; far; external ‘DASSHELL’; 

Visual Basic for Windows 
Declare Function K-SetChnCAry Lib “DASSHELL.DLL” 
(ByVal hFrame As Long, pArray As Integer) As Integer 

BASIC 
DECLARE FUNCTION KSetChnGAry% ALIAS “K-SetChnGAry” 
(BYVAL hFrame AS LONG, SEGpArray AS INTEGER) 

Parameters 

Return Value 

hFrame Handle to the frame that defines the operation. 

pArray Channel-gain queue starting address. 

This fuoction returns an integer error/status code. Error/status code 0 
indicates that the function executed successfully. A non-zero error/status 
code indicates that an error occurred. Refer to Appendix A for additional 
information. 

4-201 



hap04JYrm Page 202 Monday, April 11, 1994 10:00 AM 

K-SetChnGAry (cont.) 

Remarks For the operation defined by hFrame, this function specifies the starting 
address of the channel-gain queue in pArray. 

The value you specify in pArray sets the Channel-Gain Queue element in 
the frame identified by hFrume. 

Refer to page 2-14 for information on setting up a channel-gain queue. 

If you created your channel-gain queue in BASIC or Visual Basic for 
Windows, you must use K-FormatChnGAry to convert the 
channel-gain queue before you specify the address with K-SetChnGAry. 

See Also K-FormatChnGAry, K-RestoreChnGAry 

Usage 

c/c*+ 
#include "DASDECL.H" /I Use "DASDECL.HPP for C++ 

// DECLARE AND INITIALIZE GHAN/GAIN PAIRS 
// (GainChanTable-TYPE IS DEFINED IN dasdec1.h) 
GainChanTable ChanGainArray= (2, // # of entries 

0. 0. // than 0, gain 1 
1, 1); // than 1, gain 2 (DA%1802) 

wDasErr = K-SetChnGAry (hAD, &ChanGainArray); 

Turbo Pascal 
uses Dl800TP7; (* Use Dl'JOOTP6 for TP "er 6.0 *) 
. 
( Define Gain/Channel array type 1 
TYPE GainChanTable = Record 

num-of-codes : Integer; 
queue : Array[O..15] of Byte; 
END; 

CONST ChanGainArray : GainChanTable = ( 
num-of-codes : (8); ( # of than/gain pairs 1 
queue : (0.0, 1.1) 

); 
. 

wDasErr := K-SetChnGAry IhAD, ChanGainArray.num_of_codes); 

4-202 Function Reference 



& i hapOC.frm Page 203 Monday, April 11,1994 10:00 AM 

K-SetChnGAry (cont.) 

Turbo Pascal for Windows 
($1 DASDECL.INC) 
. . . 
( Define Gain/Channel array type ) 
TYPE GainChanTable = Record 

num-of-codes : Integer; 
queue : Array[O..lS] of Byte; 
END ; 

CONST ChanGainArray : GainChanTable = ( 
num-of-codes : (8); ( # of than/gain pairs 1 
queue : lO,O, 1.1) 

); 
. . 
wDasErr := K-SetChnGAry (hAD, ChanGainArray.num_of_codes); 

Visual Basic for Windows 
(Include DASDECL.BAS in your program make file) 

. . 
Global ChanGainArray(l6) As Integer 
. 
I Create the array of channel/gain pairs 
ChanGainArray(O) = 2 a # of than/gain pairs 
ChanGainArray(1) = 0: ChanGainArray(2) = 0 
ChanGainArray(3) = 1: ChanGainArray(4) = 1 
wDasErr = K-FormatChnGAry (ChanGainArray(0) ) 
wDasErr = K-SetChnGAry (hAD, ChanGainArray(0)) 

BASIC 
SINCLUDE: 'DASDECL.BI' 

. 
DIM ChanGainArray(l6) AS INTEGER 

' Create the array of channel/gain pairs 
ChanGainArray(0) = 2 a # of chanlgain pairs 
ChanGainArray(1) = 0: ChanGainArray(2) = 0 
ChanGainArray(3) = 1: ChanGainArray(4) = 1 
wDasErr = KFormatChnGAry% (ChanGainArray(0)) 
wDasErr = KSetChnGAry% (hAD, ChanGainArray(0)) 

4-203 



+b hap04-.frm Page 204 Monday, April 11, 1994 10:00 AM 

K-SetClk 

Boards 
Supported 

All 

Purpose Specifies the pacer clock source. 

Prototype CIC++ 
DASErr far Pascal K-SetClk @WORD hFrume, short &ode); 

Turbo Pascal 
Function KSetClk (hFrarne : Longint; nMode : Word) : Word: 

Turbo Pascal for Windows 
Function K-SetClk (hFrame : Longint; Mode : Word) : Word; far; 
external ‘DASSHELL’; 

Visual Basic for Windows 
Declare Function K-SetClk Lib “DASSHELL.DLL” 
(ByVal hFrume As Long, ByVaI m’vfode As Integer) As Integer 

BASIC 
DECLARE FUNCTION KSetClk% ALIAS “K-SetClk” 
(BYVAL hFrame AS LONG, BYVAL nMode AS INTEGER) 

Parameters hFrume 

&lode 

Handle to the frame that defines the operation. 

Pacer clock source. 
Valid values: 0 for Internal 

1 for External 

Return Value This function returns an integer error/status code. Error/status code 0 
indicates that the function executed successfully. A non-zero error/status 
code indicates that an error occurred. Refer to Appendix A for additional 
information. 

4-204 Function Reference 



+I+ hap04-.frm Page 205 Monday, April 11, 1994 1O:OO AM 

K-SetClk (cont.) 

See Also 

$ Usage 

For the operation defined by hFrame, this function specifies the pacer 
clock source in Mode. 

The value you specify in Mode sets the Clock Source element in the 
frame identified by hFrame. 

The internal clock source is the output of the onboard counter/timer 
circuitry; an external clock source is an external signal connected to the 
DIO/XPCLK pin (DAS1800HC Series) or XPCLK pin 
(DA.%lXOOST/HR Series). Refer to page 2-15 (for analog input 
operations), page 2-29 (for analog output operations), and page 2-36 (for 
digital I/O operations) for more information about pacer clock sources. 

K-GetADFrame, K-GetDAFrame, K-GetDIFrame, 
K-GetDOFrame, and K-ClearFrame specify internal as the default 
clock source. The default active edge is negative for an external clock 
source; use K-SetExtClkEdge to specify a positive active edge. 

K-GetClk 

c/c++ 
#include "DASDECL.H" // Use "DASDECL.HPP for C+i 

wDasErr = KmSetClk (hAD, 1); 

Turbo Pascal 
uses DlSOOTP7: (* "se DlSOOTP6 for TP "er 6.0 *) 
. 
wDasErr := K-SetClk (hAD, 1); 

Turbo Pascal for Windows 
($1 DASDECL.INC) 

wDasErr := KmSetClk (hAD, 1); 

Visual Baslo for Windows 
(Include DASDECLBAS in your program make file) 

. 
wDasErr = K-SetClk (hAD, 1) 

4-205 



+b- I hap04-.frm Page 206 Monday, April 11, 1994 10:00 AM 

K-SetClk (cont.) 

BASIC 
' $INCLUDE: 'DASDECL.BI' 

wDasErr = KSetClk% IhAD, 1) 

4-206 Function Reference 



tim Page 207 Monday, April 11, 1994 IO:00 AM 

K SetClkRate 

Boards 
Supported 

All 

Purpose Specifies the clock divisor for the internal 5 MHz clock source. 

Prototype c/c++ 
DASErr far Pascal K-SetClkRate @WORD hFrume, 
DWORD dwDivisor); 

Turbo Pascal 
Function K-SetClkRate (hFrame : Longint; dwDivisor : LongInt) : Word: 

Turbo Pascal for Windows 
Function K-SetClkRate (hFrume : Longint; dwDivisor : LongInt) : Word; 
far; external ‘DASSHELL’; 

Visual Basic for Windows 
Declare Function K-SetClkRate Lib “DASSHELL.DLL” 
(ByVal hFrame As Long, ByVal dwDivisor As Long) As Integer 

BASIC 
DECLARE FUNCTION KSetCIkRate% ALIAS “K-SetClkRate” 
(BYVAL hFrame AS LONG, BYVAL dwDivisor AS LONG) 

Parameters hFramc 

dwDivisor 

Handle to the frame that defines the operation. 

Number of clock ticks between conversions. 
Valid values: 15 to 4,294,967,295 

Return Value This function returns an integer error/status code. Error/status code 0 
indicates that the function executed successfully. A non-zero error/status 
code indicates that an error occurred. Refer to Appendix A for additional 
information. 

‘I-207 



e hap04-.frm Page 208 Monday, April 11,1994 IO:00 AM 

K-SetClkRate (cont.) 

Remarks For the operation defined by hFrame, this function specifies the number 
of clock ticks between conversions in dwDivisor. 

The value you specify in dwDivisor sets the Pacer Clock Rate element in 
the frame identified by hFrame. 

This function applies to an internal clock source only. The tick resolution 
is 0.2 ps. 

Refer to page 2-15 for more information on the pacer clock. 

See Also K_GetClkRate 

Usage c/c++ 
#include "DASDECL.H" // Use "DASDECL.HPP for C+t 

. 
DWORD dwClkDiv: 

dwClkDiv = 5000000 / 10000 
wDasErr = K-SetClkRate (hAD, dwClkDiv); 

Turbo Pascal 
uses D1800TP7; (* Use D1800TP6 for TP "er 6.0 *) 

dwClkDiv : Longint; 

dwClkDiv := 5000000 / 10000 
wDasErr := K-SetClkRate (hAD, dwClkDiv); 

Turbo Pascal for Windows 
($1 DASDECL.INC) 

. 
dwClkDiv : Longint; 
. 
dwClkDiv := 5000000 / 10000 
wDasErr := I<-SetClkRate (hAD, dwClkDiv1; 

4-208 

$I 

Function Reference 

+b 



&- I hapOC.frm Page 209 Monday, April 11, 1994 10:00 AM 

$1 

K-SetClkRate (cont.) 

Visual Basic for Windows 
(Include DASDECLBAS inyourprogrammakefile) 

. 
Global dwClkDiv As Long 
. . . 
dwClkDiv = 5000000 / 10000 
wDasErr = K-SetClkRate (hAD, dwClkDiv1; 

BASIC 
SINCLUDE: 'DASDECL.BI' 
. 

DIM dwClkDiv AS LONG 
. 
dwClkDiv = 5000000 / 10000 
wDasErr = KSetClkRate% (hAD, dwClkDiv) 

4-209 



hap04-.frm Page 210 Monday, April 11, 1994 10:00 AM 

K SetContRun 

Boards 
Supported 

All 

Purpose Specifies continuous buffering mode. 

Prototype C/C++ 
DASErr far Pascal K-SetContRtm (DWORD bFrame); 

Turbo Pascal 
Function KSetContRun (Frame : Longint) : Word; 

Turbo Pascal for Windows 
Function K-SetContRun (hFrame : Longint) : Word; far; 
external ‘DASSHELL’; 

Visual Basic for Windows 
Declare Function K-SetContRun Lib “DASSHELL.DLL” 
(ByVal hFrame As Long) As Integer 

BASIC 
DECLARE FUNCTION KSetContRun% ALIAS “K-SetContRun” 
(BYVAL ItFrame AS LONG) 

Parameters hFrame Handle to the frame that defines the operation. 

Return Value This function returns an integer error/status code. Error/status code 0 
indicates that the function executed successfully. A non-zero error/status 
code indicates that an error occurred. Refer to Appendix A for additional 
information. 

Remarks For the operation defined by hFrame. this function sets the buffering 
mode to continuous mode and sets the Buffering Mode element in the 
frame accordingly. 

K-GetADFrame, K-GetDAFrame, K-GetDIFrame, 
K-GetDOFrame, and K-ClearFrame specify single-cycle as the default 
buffering mode. 

4-210 Function Reference 



43 t hap04Qrm Page 211 Monday, April 11, 1994 10:00 AM 

K SetContRun (cont.) 

Refer to page Z-38 (for analog input operations), page 2-38 (for analog 
output operations) section, and page 2-38 (for digital I/O operations) for a 
description of buffering modes. 

See Also 

Usage 

K_GetContRun 

c/c++ 
#include "DASDECL.H" // Use "DASDECL.HPP for C++ 

. 
wDasErr = KmSetContRun (hAD) 

Turbo Pascal 
uses D1800TP7; (* "se D1800TP6 for TP "er 6.0 *) 

wDasErr := KpSetContRun (hAD) 

Turbo Pascal for Windows 
($1 DASDECL.INC) 
. 
wDasErr := KmSetContRun (hAD) 

Visual Basic for Windows 
(Include DASDECL.BAS in your program make file) 

wDasErr = K-SetContRun (hAD) 

BASIC 
' $INCLUDE: 'DASDECL.BI' 

. 
v,DasErr = KSetContRun% (hAD) 

4-211 



6 hap04-.frm Page 212 Monday, April 11, 1994 IO:00 AM 

+b 

K-SetDITrig 

Boards 
Supported 

All 

Purpose 

Prototype 

Sets up a digital trigger. 

CICCC 
DASErr far Pascal K-SetLXTrig (DWORD hFrame, short nOpt, 
short nChan, DWORD nPatrern); 

Turbo Pascal 
Function K-SetDITrig @Frame : Longint; nOpr : Word; nChan : Word; 
nPattern : Longint) : Word; 

Turbo Pascal for Windows 
Function K-SetDlTrig (hFrame : Longint; nOpr : Word; nChan : Word; 
nParfern : Longint) : Word; far; external ‘DASSHELL’; 

Visual Basic for Windows 
Declare Function K-SetDlTrig Lib “DASSHELL.DLL” 
(ByVal hFramc As Long, ByVal nOpt As Integer, 
ByVal nChan As Integer, ByVal nPattern As Long) As Integer 

BASIC 
DECLARE FUNCTION KSetDITrig% ALIAS “K-SetDITrig” 
(BYVAL hFrame AS LONG, BYVAL &Opt AS INTEGER, 
BYVAL nChan AS INTEGER, BYVAL nPattern AS LONG) 

Parameters hFrame 

nopt 

Handle to the frame that defines the operation. 

Trigger polarity and sensitivity. 
Valid values: 0 for Positive edge 

2 for Negative edge 

nChan Digital input channel. 
Valid value: 0 

nPattern Trigger pattern. 

4-212 



4 hap04-.frm Page 213 Monday, April 11,1994 10:00 AM 4 

4 

K-SetDlTrig (cont.) 

Return Value This function returns an integer error/status code. Error/status code 0 
indicates that the function executed successfully. A non-zero error/status 
code indicates that an error occurred. Refer to Appendix A for additional 
information. 

Remarks This function specifies the use of a digital trigger for the operation 
defined by hFrame. 

Since the DAS-1800 Series Function Call Driver does not currently 
support digital pattern triggering, the value of nPattern is meaningless; 
the nPattern parameter is provided for future compatibility. 

The values you specify set the following elements in the frame identified 
by hFrame: 

. n0pt sets the value of the Trigger Polarity and Trigger Sensitivity 
elements. 

. nChan sets the value of the Trigger Channel element. 

. nfattern sets the value of the Trigger Pattern element, 

K-SetDITrig does not affect the operation dctined by bFrame unless the 
Trigger Source element is set to External (by a call to K-Set’Ikig) before 
hFrame is used as a calling argument to K-IntStart or K-DMAStart. 

See Also K-GetDITrig 

Usage c/c++ 
#include "DASDECL.H' I/ use "DASDECL.HPP for C+d 

wDasErr = K-SetDITrig (0, 0, 0); 

Turbo Pascal 
uses DlSOOTP7; (* "se DlSOOTP6 for TP "er 6.0 *) 

wDasErr := I<-SetDITrig (0, 0, 0); 

4 

4 

4-213 

4 



4 hap04Lfrm Page 214 Monday, April 11.1994 10:00 AM 

K-SetDITrig (cont.) 

Turbo Pascal for Windows 
($1 DASDECL.INC) 

. 
wDasErr := K-SetDITrig (0, 0, 0): 

Visual Basic for Windows 
(Include DASDECLBAS in your program make file) 

. 
wDasErr = K-SetDITrig (0, 0, 0) 

BASIC 
I SINCLUDE: 'DASDECL.BI' 

. . 
wDasErr = KSetDITrig% (0, 0, 0) 

4 

4-214 

4 

Function Reference 

4 

4 4 



hap044frm Page 215 Monday, April 11,1994 10:00 AM 

K SetDMABuf 

Boards 
Supported 

All 

Purpose Sets the values of a DMA buffer address and number of samples 
elements. 

Prototype c/c++ 
DASErr far Pascal K-SetDMABuf (DWORD hFrame, void far *pBuf, 
DWORD dwSamples); 

Turbo Pascal 
Function K-SetDMABuf @Frame : Longint; pBuf: Pointer: 
dwSamp/es : Longint) : Word; 

Turbo Pascal for Windows 
Function K-SetDMABuf @Frame : Longint; pBuf : Pointer; 
dwSamples : Longint) : Word; far; external ‘DASSHELL’; 

Visual Basic for Windows 
Declare Function K-SetDMABuf Lib “DASSHELL.DLL’ 
(ByVal hFrame As Long, ByVat pBuf As Long, 
ByVal dwsamples As Long) As Integer 

BASIC 
DECLARE FUNCTION KSetDMABuf% ALIAS “K-SetDMABuf 
(BYVAL hFrame AS LONG, BYVAL pBuf AS LONG, 
BYVAL dwSamples AS LONG) 

Parameters hFrame Handle to the frame that defines the DMA-mode 
analog input operation. 

PBM 

dwsamples 

Starting address of buffer. 

Number of samples. 
Valid values: 0 to 65,535 

4 

4 

4-215 

4 



b 4 - hap04 .frm Page 216 Monday, April 11,1994 10:00 AM 

4 

K-SetDMABuf (cont.) 

Return Value This function returns an integer error/status code. Error/status code 0 
indicates that the function executed successfully. A non-zero error/status 
code indicates that an error occurred. Refer to Appendix A for additional 
information. 

Remarks For the operation specified by Wrame, this function stores the address of 
the currently allocated buffer in pBuf and the number of samples stored in 
the buffer in dwsamples. 

The pL3ufvariable contains the value of the Buffer element. 

The dwsamples variable contains the value of the Number of Samples 
element. 

See Also K-DMAAlloc, KMakeDMABuf, K-BufListAdd 

c/c++ 
#include "DASDECL.H" // "se "DASDECL.HPP for C++ 

. 
void far *pBuf; // Pointer to allocated buffer 

wDasErr = K-DMAAlloc (hAD, dwSamples, &pBuf, &hMem); 
wDasErr = K-SetDMABuf (hAD, pBuf, dwSamples); 

Turbo Pascal 
uses D1800TP7; (* Use D1800TP6 for TP "er 6.0 *) 
. 
TYPE 
BufType = Array [O..l] Of Integer; 
VAR 
pBuf : "BufType; ( buffer pointer ) 

wDasErr := K-DMAAlloc(hAD, dwSamples, Addr(pBuf), hMem); 
wDasErr := K-SetDMABuf (hAD, pBuf, dwSamples); 

4-216 Function Reference 



43 hapOll_.frm Page 217 Monday, April 11, 1994 10:00 AM 

K SetDMABuf (cont.1 

+b 

Turbo Pascal for Wlndows 
($1 DASDECL.INC) 

. 
TYPE 
BufType = Array [O..ll of Integer; 
VAR 
pBuf : ^BufType; ( buffer pointer 1 
. . . 
wDasErr := KJX4AAlloc(hAD, dwSamples, Addr(pBuf), hMem); 
wDasErr := K-SetDMABuf (hAD, pBuf, dwsamples); 

Visual Basic for Wlndows 
(Include DASDECL.BAS in yourprogram makefile) 
. 
Global pBuf As Long 

. 
wDasErr = K-DMAAlloc (hAD, dwsamples, pBuf, hMem) 
wDasErr = K-SetDMABuf (hAD, pBuf, dwSamples) 

BASIC 
' $INCLUDE: 'DASDECL.BI' 

. 
DIM pBuf AS LONG 

wDasErr = KDMAAlloc% (hAD, dwSamples, pBuE, hMem) 
wDasErr = KSetDMABuf% (hAD, pBuf, dwSamples) 

4-217 



6 t hap04-.frm Page 218 Monday, April 11,1994 10:00 AM 

K-SetExtClkEdge 

Boards 
Supported 

All 

Purpose 

Prototype 

Specifies the active edge of the external pacer clock. 

c/c++ 
DASErr far Pascal K-SetExtClkEdge (DWORD /iFrame, short i&&e); 

Turbo Pascal 
Function KSetExtClkEdge (!tFrame : Longint; r&&v : Word) : Word: 

Turbo Pascal for Windows 
Function KSetExtClkBdge (hFramc : Longint; nEdge : Word) : Word; 
far; external ‘DASSHELL’: 

Visual Basic for Windows 
Declare Function K-SetBxtClkBdge Lib “DASSHELL.DLL” 
(ByVal hFrame As Long, ByVal nEdge As Integer) .4s Integer 

BASIC 
DECLARE FUNCTION KSetExtClkEdge% ALIAS “K-SetBxtClkEdge” 
(BYVAL hFrame AS LONG, BYVAL nEdge AS INTEGER) 

Parameters hFrame 

nEdge 

Handle to the frame that defines the operation. 

Active edge of external pacer clock. 
Valid values: 0 for Negative edge 

1 for Positive edge 

Return Value This function returns an integer error/status code. Error/status code 0 
indicates that the function executed successfully. A non-zero error/status 
code indicates that an error occurred. Refer to Appendix A for additional 
information. 

Remarks For the operation defined by Frame, this function sets the active edge of 
the external pacer clock and sets the External Clock Edge element in the 
frame accordingly. 

4-218 Function Reference 



.frm Page 219 Monday, April 11,1994 1O:OO AM 

K-SetExtClkEdge (cont.) 

K-SetExtClkEdge does not affect the operation defined by Frame 
unless the Trigger Source element is set to External (by a call to 
K-SetTrig) before hJ+ame is used as a calling argument to K-IntStart 
or K-DMAStart. 

See Also 

Usage 

K-GetExtClkEdge 

c/c++ 
#include "DASDECL.H" // Use "DASDECL.HPP for C++ 
. . 
wDasErr = K-SetExtClkEdge (hALI, 1) 

Turbo Pascal 
uses Dl800TP7; (* Use D1800TP6 for TP ver 6.0 *) 

. 
wDasErr := K_SetExtClkEdge (hAD, 1) 

Turbo Pascal for Windows 
($1 DASDECL.INC) 

wDasErr := KpSetExtClkEdge (hAD, 1) 

Visual Basic for Windows 
(Include DASDECL.BAS in your program m&file) 

. 
wDasErr : K-SetExtClkEdge (hALI, 1) 

BASIC 
3 SINCLUDE: 'DASDECL.BI' 

. 
wDasErr = KSetExtClkEdge% (hAD, 1) 

4-219 



4 k hap04-.frm Page 220 Monday, April 11,1994 10:00 AM 

4 

K-Set G 

Boards 
Supported 

Purpose 

Prototype 

Parameters 

Return Value 

All 

Sets the gain. 

c/c++ 
DASErr far Pascal K-SetG @WORD hFrame, short nGain); 

Turbo Pascal 
Function K-SetG (hFramc : Longint; nGain : Word) : Word; 

Turbo Pascal for Windows 
Function K-SetG (hFrame : Longint; nGain : Word) : Word; far; 
external ‘DASSHELL’; 

Visual Basic for Windows 
Declare Function K-SetG Lib “DASSHELL.DLL” 
(ByVal hFrame As Long, ByVal nGain As Integer) As Integer 

BASIC 
DECLARE FUNCTION KSetG% ALlAS “K-SetG” 
(BYVAL hFrame AS LONG, BYVAL nGain AS INTEGER) 

hFrame 

nGain 

Handle to the frame that defines the operation. 

Gain code. 
Valid values: 0 to 3 for DAS board channels 

0 to 7 for EXP-1800 channels 
Refer to Table 2-2 on page 2-10 for the gain and 
input ranges associated with each gain code. 

This function returns an integer error/status code. Error/status code 0 
indicates that the function executed successfully. A non-zero error/status 
code indicates that an error occurred. Refer to Appendix A for additional 
information. 

4 

4-220 Function Reference 



4 hap04-.frm Page 221 Monday, April It,1994 1O:OO AM 

4 

K-SetG (cont.) 

Remarks For the operation defined by hFrame, this function specifies the gain code 
for a single channel or for a group of consecutive channels in nGain. 

The value you specify in n&in sets the Gain element in the frame 
identified by Frame. 

K-GetADFrame, K-GetDAFrame, K-GetDIFrame, 
K-GetDOFrame, and K-ClearFrame specify 1 (gain code 0) as the 
default gain. 

This function is valid for A/D frames only. 

See Also 

Usage 

K-GetG, K-SetStartStopG 

c/c++ 
#include "DASDECL.H" // "se "DASDECL.HPP for C++ 

wDasErr = K-SetG (hAD, 1) 

Turbo Pascal 
uses D18OOTP7; (* Use D1800TP6 for TP ver 6.0 *1 

. 
wDasErr := K-S&G (hAD, 1) 

Turbo Pascal for Windows 
($1 DASDECL.INC) 

. 
wDasErr := K-SetG (hAD, 1) 

Visual Basic for Windows 
(Include DASDECL.BAS in your program make file) 
. 
wDasErr = X-S&G ihAD, 1) 

BASIC 
0 SINCLUDE: 'DASDECL.BI' 
. . 

wDasErr = KSetG% (hAD, 1) 

4 

4-221 

4 



4 b hap04-.frm Page 222 Monday, April 11,1994 10:00 AM 

4 

K SetGate 

Boards 
Supported 

All 

Purpose 

Prototype 

Specifies the status of the hardware gate. 

c/c++ 
DASErr far Pascal K-SetGate (DWORD hFrame, short &ode); 

Turbo Pascal 
Function KSetGate @Frame : Longint; &ode : Word) : Word; 

Turbo Pascal for Windows 
Function K-SetGate (Frame : Longint; r&fade : Word) : Word; far; 
external ‘DASSHELL’; 

Visual Basic for Windows 
Declare Function K-SetGate Lib “DASSHELL.DLL” 
(ByVal hFrame As Long, ByVal &ode As Integer) As Integer 

BASIC 
DECLARE FUNCTION KSetGate% ALIAS “K-SetGate” 
(BYVAL hFrame AS LONG, BYVAL nMode AS INTEGER) 

Parameters hFrame 

r&lode 

Handle to the frame that defines the operation. 

Status of the hardware gate. 
Valid values: 0 for Gate disabled 

1 for Positive gate enabled 
2 for Negative gate enabled 

Return Value This function returns an integer error/status code. Error/status code 0 
indicates that the function executed successfully. A non-zero error/status 
code indicates that an error occurred. Refer to Appendix A for additional 
information. 

4-222 Function Reference 

4 



+I+ hap04-.frm Page 223 Monday, April 11, 1994 10:00 AM 

K-SetGate (cont.) 

Remarks For the operation defined by hFrame, this function specifies the status of 
the hardware gate in diode. 

External gating is supported for analog input operations only. Also, you 
cannot enable the hardware gate if you are using an external digital 
trigger. 

K-GetADFrame, K-GetDAFrame. K-GetDIFrame, 
K-GetDOFrame, and K-ClearFrame specify disabled as the default 
gate setting. 

See Also 

Usage 

K-GetGate 

C/C++ 
#include "DASDECL.H" // Use "DASDECL.HPP for C++ 

. 
wDasErr = K-SetGate (hAD, 1) 

Turbo Pascal 
uses D1800TP7; (* "se D1800TP6 for TP "er 6.0 *) 

. . 
wDasErr := K-S&Gate (hAD, 1) 

Turbo Pascal for Windows 
($1 DASDECL.INC) 

wDasErr := KmSetGate (hAD, 1) 

Visual Basic for Windows 
(Include DASDECL.BAS in your program make file) 
. 
wDasErr = K-SetGate (hAD, 1) 

BASIC 
$INCLUDE: 'DASDECL.BI' 

. 
wDasErr = KSetGate% (hAD, 1) 

4-223 



-& k hap043m Page 224 Monday, April 11,1994 10:00 AM 4 

4 

K SetSSH 

Boards 
Supported 

All 

Purpose Enables and disables SSH mode, 

Prototype C/C*+ 
DASErr far Pascal K-SetSSH @WORD hFrame, WORD aode); 

Turbo Pascal 
Function K-SetSSH (hFrame : Longint; diode : Word) : Word; 

Turbo Pascal for Windows 
Function KSetSSH (hFrame : Longint; &ode : Word) : Word: far; 
external ‘DASSHELL’; 

Visual Basic for Windows 
Declare Function KJetSSH Lib “DASSHELL.DLL” 
(ByVal hFrame As Long, ByVal Node As Integer) As Integer 

BASIC 
DECLARE FUNCTION KSetSSH% ALIAS “KSetSSH” 
(BYVAL hFrame AS LONG, BYVAL Mode AS INTEGER) 

Parameters hFrame 

nMode 

Handle to the frame that defines the operation. 

Code that indicates the status of SSH mode. 
Valid values: 0 for Disabled 

1 for Enabled 

Return Value This function returns an integer error/status code. Error/status code 0 
indicates that the function executed successfully. A non-zero error/status 
code indicates that an error occurred. Refer to Appendix A for additional 
information. 

4-224 Function Reference 

4 

4 4 4 



+B i -hap04_.frm Page 225 Monday, April 11, 1994 10:00 AM 

K SetSSH (cont.) 

+b 

Remarks For the operation defined by Frame, this function stores the code that 
indicates the SSH mode in Mode. 

K-GetADFrame and K-ClearFrame also disable SSH mode. 

Refer to page 2-1.5 for information on SSH mode. 

See Also K-GetSSH 

Usage c/c++ 
#include "DASDECL.H" // Use "DASDECL.HPP for C++ 
. 
wDasErr = K-SetSSH (hAD, 1) 

Turbo Pascal 
uses D1800TP7; (* Use D1800TP6 for TP ver 6.0 *) 

wDasErr := K-SetSSH (hAD, 1) 

Turbo Pascal for Windows 
($1 DASDECL.INC) 
. 
wDasErr := K-SetSSH (hAD, 1) 

Visual Basic for Windows 
(Include DASDECLBAS in your program make file) 
. 

wDasErr = K-SetSSH (hAD, 11 

BASIC 
$INCLUDE: 'DASDECL.BI' 

wDasErr = KSetSSH% (hAD, 1) 

4-225 



4 hap04-.frm Page 226 Monday, April 11,1994 10:00 AM 

+b 

K-SetStartStopChn 

Boards 
Supported 

All 

Purpose 

Prototype 

Specifies the first and last channels in a group of consecutive channels. 

c/c++ 
DASErr far Pascal K-SetStartStopChn (DWORD hFrame, short nSfart, 
short nhp); 

Turbo Pascal 
Function K-SetStartStopChn (hFrume : Longint; nStart : Word; 
nStop : Word) : Word: 

Turbo Pascal for Windows 
Function K-SelStartStopChn (hFrame : Longint; nSrurt : Word; 
nStop : Word) : Word; far; external ‘DASSHELL’; 

4-226 Function Reference 

Visual Basic for Windows 
Declare Function K-SetStartStopChn Lib “DASSHELL.DLL” 
(ByVal hFrame As Long, ByVal n&art As Integer, 
ByVal nStop As Integer) As Integer 

BASIC 
DECLARE FUNCTION KSetStartStopChn% ALIAS 
“K-SetStartStopChn” (BYVAL hFrame AS LONG, 
BYVAL nSfart AS INTEGER, BYVAL nStop AS INTEGER) 

4 

4 



+b hap04-.frm Page 227 Monday, April 1 I, 1994 1O:OO AM 

K SetStartStopChn (cont.) 

Parameters hFrame 

nStart 

Handle to the frame that defines the operation. 

First channel in a group of consecutive channels. 
Valid values: 

Board 

DAS-18OOHC 

Valid channel numbers 

Differential Single-ended 

0 to 31 Oto63 

DAS-18OOSTlHR with N 
EXP-1800 expansion boards 
attached 

Not applicable 0 t* lS(fv + 1) 

nstop Last channel in a group of consecutive channels. 
Valid values: Same as for nSturt above 

Return Value This function returns an integer error/status code. Error/status code 0 
indicates that the function executed successfully. A non-zero error/status 
code indicates that an error occurred, Refer to Appendix A for additional 
information. 

4-227 



a- i hap04Qrm Page 228 Monday, April 11, 1994 IO:00 AM 

K-SetStartStopChn (cont.) 

Remarks For the operation defined by hFrume, this function specifies the first 
channel in a group of consecutive channels in &art and the last channel 
in the group of consecutive channels in nSfop. 

The values you specify set the following elements in the frame identified 
by hFrame: 

. r&art sets the value of the Start Channel element. 

. drop sets the value of the Stop Channel element. 

K-GetADFrame, K-GetDAFrame, K-GetDIFrame, 
K-GetDOFrame and K-ClearFrame set the Start Channel and Stop 
Channel elements to 0. 

See Also K-GetStartStopChn, K_SetStartStopG 

Usage c/c++ 
#include "DASDECL.H" // Use "DASDECL.HPP for C++ 

. 
wDasErr : K-SetStartStopChn (hAD, 0, 7); 

Turbo Pascal 
uses D1800TP7: (* Use DlEOOTP6 for TP ver 6.0 *) 

wDasErr := KmSetStartStopChn (hAD, 0, 7); 

Turbo Pascal for Windows 
($1 DASDECL.INC) 
. 
wDasErr :: K-SetStartStopChn (hAD, 0, 7); 

Visual Basic for Windows 
(Include DASDECL.BAS in your program make file) 

wDasErr i: K-SetStartStopChn (hAD, 0, 7) 

4-228 Function Reference 

+P +b 



hap04Lfrm Page 229 Monday, April 11, 1994 IO:00 AM 

K SetStartStoDChn (cont.) 

BASIC 
1 SINCLUDE: 'DASDECL.BI' 

wDasErr = KSetStartStopChn% (hAD, 0, 7) 

4-229 



hap04-.l?m Page 230 Monday, April 11,1994 10:00 AM 

K SetStartStoPG 

Boards 
Supported 

All 

Purpose Specifies the first and last channels in a group of consecutive channels 
and sets the gain for all channels in the group. 

Prototype c/c++ 
DASErr fat Pascal K-SetStattStopG (DWORD hFrame, short nSturt, 
short t&top, short nGain); 

Turbo Pascal 
Function K-SetStartStopG (hFrame : Longint; n&art : Word; 
r&top : Word; nCain : Word) : Word; 

Turbo Pascal for Windows 
Function K-SetStartStopG (/iFrame : Longint; r&art : Word; 
nSlop : Word; nCain : Word) : Word; far; external ‘DASSHELL’; 

4-230 Function Reference 

Visual Basic for Windows 
Declare Function K-SetStartStopG Lib “DASSHELL.DLL” 
(ByVal hFrame As Long, ByVal nSfart As Integer, 
ByVal nStop As Integer, ByVal nGain As Integer) As Integet 

BASIC 
DECLARE FUNCTION KSetStartStopG% ALIAS “K-SetStartStopC” 
(BYVAL hFrame AS LONG, BYVAL r&art AS INTEGER, 
BYVAL nStop AS INTEGER, BYVAL nGain AS INTEGER) 



G hap04Lfrm Page 231 Monday, April 11, 1994 10:00 AM 

K-SetStartStopG (cont.) 

Parameters hFrame 

idtart 

Handle to the frame that defines the operation. 

Fist channel in a group of consecutive channels. 
Valid values: 

Valid channel numbers 

Board Ditterential Single-ended 

1 DAS-1800HC I 0 to 31 IOto63 I 

DAS-1800ST/HR with N 
EXP-1800 expansion boards 
attached 

Not applicable 0 to 15(N + 1) 

nstop Last channel in a group of consecutive channels. 
Valid values: Same as for nStart above 

nGain Gain code. 
Valid values: 0 to 3 for DAS board channels 

0 to 7 for EXP-1800 channels 
Refer to Table 2-2 on page 2-10 for the gain and 
input ranges associated with each gain code. 

Return Value This function returns an integer error/status code. Error/status code 0 
indicates that the function executed successfully. A non-zero error/status 
code indicates that an error occurred. Refer to Appendix A for additional 
information. 

Remarks For the operation defined by hFrame, this function specifies the first 
channel in a group of consecutive channels in nStart, the last channel in a 
group of consecutive channels in nStop, and the gain code for all channels 
in the group in nGain. 

4-231 



t hap04Lfrm Page 232 Monday, April 11, 1994 10:00 AM 

K SetStartStopG (cont.) 

The values you specify set the following elements in the frame identified 
by hFrame: 

. nStarr sets the value of the Start Channel element. 

. nSrop sets the value of the Stop Channel element. 

. nGain sets the value of the Gain element. 

K-GetADFrame and K-ClearFrame set the Start Channel, Stop 
Channel. and Gain elements to 0. 

See Also KwGetStartStopG 

Usage c/c++ 
#include "DASDECL.H" // Use "DASDECL.HPP for C++ 

wDasErr = K-SetStartStopG (hAD, 0, 7, 0); 

4-232 

Turbo Pascal 
uses D1800TP7; (* "se D1800TP6 for TP "er 6.0 *) 
. 
wDasErr := K-SetStartStopG (hAD, 0, 7, 0,; 

Turbo Pascal for Windows 
($1 DASDECL.INC) 

. 
wDasErr := K-SetStartStopG (hAD, 0, 7, 0); 

Visual Basic for Windows 
(Include DASDECL.BAS in your program make file) 
. 
wDasErr = K-SetStartStopG (hAD, 0, 7, 0) 

BASIC 
0 SINCLUDE: 'DASDECL.BI' 

wDasErr = KSetStartStopG% (hAD, 0, 7, 0) 

Function Reference 



43 b hap04-.frm Page 233 Monday, April 11,1994 10:00 AM 

K-SetTrig 

Boards 
Supported 

Purpose 

Prototype 

Parameters 

Return Value 

Remarks 

All 

Specifies the trigger source. 

c/c++ 
DASErr far Pascal KSetTrig (DWORD Wrame, short &ode); 

Turbo Pascal 
Function K-SetTrig (hFrame : Longint: Node : Word) : Word: 

Turbo Pascal for Windows 
Function K-SetTrig (/iFrame : Longint; r&lode : Word) : Word; far; 
external ‘DASSHELL’; 

Visual Basic for Windows 
Declare Function K-SetTrig Lib “DASSHELL.DLL” 
(ByVal hFrame As Long, ByVal Node As Integer) As Integer 

BASIC 
DECLARE FUNCTION KSetTrig% ALIAS “K-SetTrig” 
(BYVAL hFrame AS LONG, BYVAL nMode AS INTEGER) 

hFrame 

i&lode 

Handle to the frame that defines the operation. 

Trigger source. 
Valid values: 0 for Internal trigger 

1 for External trigger 

This function returns an integer error/status code. Error/status code 0 
indicates that the function executed successfully. A non-zero error/status 
code indicates that an error occurred. Refer to Appendix A for additional 
information. 

For the operation defined by hFrame, this function specifies the trigger 
source in Node. 

4-233 



e I hap04-.frm Page 234 Monday, April II,1994 IO:00 AM 

K-SetTrig (cont.) 

An internal trigger is a software trigger: conversions begin when the 
operation is started. An external trigger is either an analog trigger or a 
digital trigger: conversions begin when the trigger event occurs. Refer to 
page 2-25 for more information about internal and external trigger 
sources. 

When performing a pre-trigger or about-trigger acquisition operation, 
mode, &ode refers to the start trigger. 

If Node = 1, an external digital trigger (positive edge on DII/I’GIN for 
DAS-1800HC Series boards, positive edge on TGIN for 
DAS1800STiHR Series boards) is assumed. Use K SetDI’kig to change 
the conditions of the digital trigger. Use K-SetAD’%g to specify the 
conditions for an external analog trigger. 

K-GetADFrame and K-ClearFrame set the trigger source to internal. 

The external trigger source is relevant for analog input operations only. 

See Also K-GetTrig 

Usage c/c++ 
#include "DASDECL.H" // Use "DASDECL.HPP for C++ 

. 
wDasErr = K-SetTrig (hAD, 1); 

Turbo Pascal 
uses D1800TP7; (* Use D1800TP6 for TP ver 6.0 *) 

wDasErr := KMSetTrig (hAD, 1); 

Turbo Pascal for Windows 
($1 DASDECL.INC) 
. . 
wDasErr := K-S&Trig (hAD, 1); 

Visual Basic for Windows 
(Include DASDECL.BAS in your pro@wn make file) 

. 
wDasErr = K-SetTrig (hAD, 1) 

4-234 Function Reference 



.frm Page 235 Monday, April 11, 1994 12:21 PM 

K-SetTrig (cont.) 

BASK2 
SINCLUDE: 'DASDECL.BI' 

. 
wDasErr = KS&Trig% (hAD, 1) 

4-235 



-e hap04-.frm Page 236 Monday, April 11, 1994 12:21 PM 

K-SetTrigHyst 

Boards 
Supported 

All 

Purpose 

Prototype 

Specifies the hysteresis value, 

c/c++ 
DASErr far Pascal K-SetTrigHyst (DWORD hFrame, short nHyst); 

Turbo Pascal 
Function K-SetTrigHyst (hFrame : Longint; &ysf : Word) : Word; 

Turbo Pascal for Windows 
Function K-SetTrigHyst (hFrame : Longint; nHysr : Word) : Word; far; 
external ‘DASSHELL’; 

Visual Basic for Windows 
Declare Function K-SetTrigHyst Lib “DASSHELL.DLL” 
(ByVal hFrame As Long, ByVal fiyst As Integer) As Integer 

BASIC 
DECLARE FUNCTION KSetTrigHyst% ALIAS “K-SetTtigHyst” 
(BYVAL hFrame AS LONG, BYVAL nffyst AS INTEGER) 

Parameters hFrame 

dfyst 

Handle to the frame that defines the operation. 

Hysteresis value, specified in raw counts. 
Valid values: 0 to 4,095 for DAS-1800HCIST 

Series boards 
0 to 65,535 for DAS- 1 SOOHR 
Series boards 

Return Value This function returns an integer error/status code. Error/status code 0 
indicates that the function executed successfully. A non-zero error/status 
code indicates that an error occurred. Refer to Appendix A for additional 
information. 

$ 

+b 

4-236 Function Reference 



hap04-.frm Page 237 Monday, April 11, 1994 IO:00 AM 

K-SetTrigHyst (cont.) 

Remarks For the operation defined by hFrame, this function specifies the 
hysteresis value used for an analog trigger in nHyst. You must specify the 
hysteresis value in raw counts. Refer to Appendix B for information on 
converting the hysteresis voltage to a raw count. 

The value you specify in hyst sets to the Trigger Hysteresis element in the 
frame identified by hFrame. 

K-Set’lkigHyst does not affect the operation defined by hFrame unless 
the Trigger Source element is set to External (by a call to K-Set’Ikig) 
before hFrame is used as a calling argument to K-IntStart or 
K-DMAStart. 

Refer to page 2-19 for more information about analog triggers. 

See Also 

Usage 

K_GetTrigHyst 

c/c++ 
#include "DAZ3DECL.H" // Use "DASDECL.HPP for C++ 

. 
wDasErr = K-SetTrigHyst (hAD, 50); 

Turbo Pascal 
uses D1800TP7; (* Use Dl800TP6 for TP "er 6.0 *) 

. 
wDasErr := K-SetTrigHyst (hAD, 50); 

Turbo Pascal for Windows 
($1 DASDECL.INC) 
. 
wDasErr := K-SetTrigHyst (hAD, 50); 

4-237 



+I3 hap04&frm Page 238 Monday, April 11, 1994 1O:OO AM 

K-SetTrigHyst (cont.) 

Visual Basic for Windows 
(Include DASDECL.BAS in your program make file) 

wDasErr = K-SetTrigHyst (hAD, 50) 

BASIC 
I SINCLUDE: 'DASDECL.BI' 
. 

wDasErr = KSetTrigHyst% (hAD, 50) 

4-238 Function Reference 



A 
Error/Status Codes 

Table A-l lists the error/status codes that are returned by the DAS-1800 
Series Function Call Driver, possible causes for error conditions, and 
possible solutions for resolving error conditions. 

If you cannot resolve an error condition, contact the Keithley 
Applications Engineering Department. 

Error Code 

Table A-l. Error/Status Codes 

Cause i Solution 

No error has been detected. 

1 124577 6001 Illegal base address in 
confi@wation file: The base 
address specified in the 
configuration file is invalid. 

Use the DlXOOCFG.EXE utility to 

change the base address in the 
configuration file. The address 
must be on a 16.byte boundary 
between 200h and 3FOh. 

A-l 



.frm Page 2 Monday, April 11, 1994 lo:08 AM 

Table A-l. Error/Status Codes (cont.) 

Error Code 
Cause Solution 

Hex Decimal 

6006 24582 Illegal gain code: The gain code Specify a legal gain code. Refer to 
specified for an analog input Table 2-2 on page 2-10 for valid 
operation is out of range. gain codes. 

6008 24584 Illegal number in 
configuration file: The 
configuration file contains a 
numeric value that is not in the 
correct format. 

Check all numeric entries in the 
configuration file; make sure that 
&H precedes hexadecimal 
numbers. Use the D18OOCFG.EXE 
utility to modify the configuration 
file. 

24587 Error returning DMA buffer: Check thu the memory handle 
DOS retwncd an error in INT 21H passed as an argument to 
function 49H during the execution K-DMAFree was previously 
of K~ ~DMAFree. obtained via K~DMAAlloc. 

24589 Illegal frame handle: The Check (hat the frame handle exists. 
specified frame handle is not valid Check that you are using the 
for this operation. appropriate frame handle. 

Requested buffer size too 
large: The number of samples 
specified in K-IntAlloc is too 
large. 

Specify a smaller number of 
samples; the number of samples 
must be in the range 1 to 65,536. 

A-2 Error/Status Codes 



i 4 -- ppx a .frm Page 3 Monday, April 11,1994 1O:OS AM 

4 

Table A-l. Error/Status Codes (cont.) 

*I Cause Solution 

6012 24594 Interrupt buffer deallocation Remove some Terminate and Stay 
error: (Windows-based Resident programs (TSRs) that are 
languages only) An error occurred no longer needed. 
when KJntFree attempted to free 
a memory handle. 

24619 Not enough memory to 
accommodate request: The 
number of samples you requested 
in the Keithley Memory Manager 

I IS greater than the largest 
contiguous block available in the 
reserved heap. 

Specify a smaller number of 
samples: free a previously 
allocated buffer: use the 
KMMSETLE’ utility to expand the 
reserved heap. 

602D 24621 Illegal device handle: A bad Check device handle value. 
device handle was passed to a 
function such as K-GetADFrame. 
The handleusedwas not initialized 
through a call to 
K-GetDevHandle or 
DASlROO-GetDevHandle, or it 
was corrupted by your program. 

A-3 



frm Page 4 Monday, April 11.1994 lo:08 AM 

Table A-l. Error/Status Codes (cont.) 

wrap condition occurred and the mode, install and configure 
allocation attempt failed since 
there is not enough free memory to 

modate the allocation 

using K-IntAlloc or blocks before allocating again. 
KYDMAAlloc failed because the 
maximum number of handles (50) 
has already been assigned. 

4 

A-4 Error/Status Codes 



.frm Page 5 Monday, April 11.1994 lo:08 AM 

Table A-l. Error/Status Codes (cont.1 

Error Code 
cause Solution 

Hex Decimal 

6034 24628 Memory corrupted: Int 21H Recheck the parameters set by 
function 48H, used to allocate a K-DMAAlloc and 
memory block from the DOS far K-SetDMABuf. If fatal system 
heap, rehlmed the DOS error 7: error; restart your computer. 
memory cormpted. It is likely that 
you stored (through a DMA-mode 
or interrupt-mode operation) data 
into an illegal area of the DOS 

6036 24630 Illegal driver handle: The Someone may have closed the 
specified driver handle is not valid. driver; if so, use K-OpenDriver 

to reopen the driver with the 
desired driver handle. Trv again 

/ 7000 128672 ( ,“~;;~y~;~The~le;r 
mmahzahon function dldnot find a 

1 Specify a l;gal,board name in the 
configuration file. 

4 



.frm Page 6 Monday, April 11, 1994 IO:08 AM 

Table A-l. Error/Status Codes (cont.) 

Error Code 
Cause 

Hex Decimal 

7002 28674 Bad board number: The driver 
initialization function found an 
illegal board number in the 
specified configuration file. 

Solution 

7004 28676 Bad DMA channel: The driver 
initialization function found an 
illegal DMA channel in the 

Specify a legal DMA channel: 5 
7, 5+6, 6+7, or 7+5 

28679 Bad A/D channel mode: The Specify a legal input range type 
driver initialization function found bipolar, unipolar 
an illegal input range type in the 
specified confirmration file. 

700A 28682 

I I 

Bad number of SSHS: The Run D18OOCFG.EXE and speci 
number of SSH-8s in the the number of SSH-8s as a “urn 
configuration tile is not valid. in the ranee 0 to 8. 

28684 Bad SSH-(I gain: The SSH-8 
channel gain in the configuration 
file is not valid. 

Run D I K!OCFG.EXE and speci 
the SSH-8 channel gain as 0.5, 
50, or 250. 

A-6 Error/Status Codes 



h -G+ -- ppx a .frm Page 7 Monday, April 11.1994 lo:08 AM 

Error Code 

Table A-l. Error/Status Codes (cont.) 

1 
Decimal/ Cause Solution 

28687 Unknown error number: The 
error number passed to 
K-GetErrMsg was invalid. 

Check the error number passed to 
K-GetErrMsg. 

28691 Error - DMA channel busy: The Use K-DMAStop to stop the 
application program attempted to active operation before initiating 
start a DMA-mode analog input the second operation. 
operation while another 
DMA-mode analog input operation 
was active. 

28693 Error - About count illegal: The Specify anumber of samples in the 
number of samples passed to range 1 to 65,536. 
K SetAbout’lN is out of raze. 

28695 Illegal number of EXP-1800: The Run Dlt?CWFG.EXE and specify 
number of EXF-1800 expansion the number of EXP-1800 
boards specified in the expansion boards as a number in 
configuration tile is not valid. the range 0 to 16. 



Table A-l. Error/Status Codes (cont.) 

8016 32790 

A-8 

Cause 

matches the base address setting in 

digital I/O operation, an interrupt and digital I/O operations are 
was detected from B DAS- I800 limited to the following 
Series board while the software throughputs: 5 kHz in DOS and 
was servicing B previous interrupt Windows Standard mode; I kHz 
from the same board. in Windows enhanced mode (the 

throughputs listed we approximate; 
they are limited by the PC’s 

Error/Status Codes 



.frm Page 9 Monday, April 11,1994 IO:08 AM 

Table A-l. Error/Status Codes (cont.) 

Error Code 
CBUSZ Solution 

Hex Decimal 

801B 32795 DMA already active: You Use K-DMAStop to stop the first 
attempted to start an DMA-mode operation before starting the 
analog input operation with second operation. 
K-DMAStart while another was 
already in progress. 

65535 User aborted operation You pressed tCtrl1 + [Break] 
while waiting for an ;illalog trigger 
event to occur. 4 

A-9 



ppx-a-&m Page 10 Monday, April 11, 1994 lo:08 AM 

4 



6 ppx-b-.frm Page 1 Monday, April 11,1994 lo:09 AM 

4 

B 
Data Formats 

The DAS- 1800 Series Function Call Driver can read and write raw counts 
only. When reading a value (as in K-ADRead), you may want to convert 
the raw count to a more meaningful voltage value; when writing a value 
(as in K-SetTrigHyst), you must convert the voltage value to a raw 
count. 

The remainder of this appendix contains instructions for converting raw 
counts to voltage and for converting voltage to raw counts. 

Converting Raw Counts to Voltage 

You may want to convert raw counts to voltage when reading an analog 
input value or when reading the analog trigger level or hysteresis value. 

To convert an analog input value to a voltage, use one of the following 
equations, where count is the count value, and span is the appropriale 
value from Table B-l on page B-2: 

Voltage = co”~~~~pan (DAS-lBOOHC/ST Series boards) 

Voltage = coy5t 2:ian (DAS-1800HR Series boards) 

4 

4 

R-l 

4 



.frm Page 2 Monday, April 11, 1994 10109 AM 

Table B-1. Span Values For Data Conversion Equations 

Board 

)AS-1XOlHC 
)AS-1ROlST 

JAS-1802HC 
)AS-1802ST 
)AS-1802HR 

Input Range Gain Input Range Span 09 
Type 

Unipolar 1 otosv 5 

50 Oto 100mV 0.1 

For example, assume that you want to read analog input data from a 
channel on a DAS-1801HC board configured for uuipolar input range 
type; the channel collects the data at a gain of 1. The count value is 3072. 
The voltage is determined as follows: 

3072 x 5 ” = 3.75 ” 
4096 

B-2 Data Formats 



frm Page 3 Monday, April 11, 1994 10~09 AM 4 

As another example, assume that you want to read analog input data from 
a channel on a DAS-1802HC board configured for a bipolar input range 
type: the channel collects the data at a gain of 2. The count value is 1024. 
The voltage is determined as follows: 

1024 x 10 V = 2,5 v 
4096 

Converting Voltage to Raw Counts 

You must convert voltage to raw counts when specifying an analog output 
value, analog trigger level or hysteresis value. 

Specifying an Analog Output Value (DAS-1800HC Series only) 

To convert a voltage value to a raw count when specifying an analog 
output value, use the following equation, where voltage is the desired 
voltage: 

count = 
voltage x 4096 

20 v 
+ 2048 

For example, assume that you want to specify an analog output value of 
5 V for a channel on a DAS-1802HC. The raw count is determined as 
follows: 

5 “x4096 
20 v 

+2048 = 3072 

4 



frm Page 4 Monday, April 11, 1994 lo:09 AM 

Specifying an Analog Trigger Level 

To convert a voltage value to a raw count when specifying an analog 
trigger level, use one of the following equations, where Vcrip is the desired 
voltage, and span is the appropriate value from Table B-l on page B-2: 

Count = 
Vtrig x 4096 

span 
(DAS-1800HCYST Series boards) 

Count = 
Vtrig x 65536 

span 
(DAS-1800HR Series boards) 

B-4 

Note: When converting voltage to raw counts to specify an analog trigger 
level, always use a gain of 1 to determine which span value to use from 
Table B-I, no matter what the gain of the channel is. 

For example, assume that you want to specify an analog trigger level of 
2.5 V for a channel on a DAS-1801HC board configured for a bipolar 
input range type. The raw count is determined as follows: 

2.5 V x 4096 
10 v = 1024 

Data Formats 



.frm Page 5 Monday, April 11.1994 lo:09 AM 

Specifying a Hysteresis Value 

To convert a voltage value to a raw count when specifying a hysteresis 
value, use one of the following equations, where Vhysr is the desired 
voltage, and span is the appropriate value from Table B-l on page B-2: 

V 
Count = 

hyst ’ 4og6 

span 
(DAS-1800HC/ST Series boards) 

V 
Count = 

hyst x 65536 

Spl 
(DAS1800HR Series boards) 

Note: When converting voltage to raw counts to specify a hysteresis 
value, always use a gain of 1 to determine which span value to use from 
Table B-l, no matter what the gain of the channel is. 

For example, assume that you want to specify an analog trigger hysteresis 
value of 0.5 V for a channel on a DAS-1801HC board configured for a 
bipolar input range type. The raw count is determined as follows: 

1.25 V x 4096 
10 v = 512 

8-5 

4 

4 



1 3 -- ppx b .frm Page 6 Monday, April 11, 1994 lo:09 AM 

4 



Index 

A 
allocating memory 

analog input operations 2-6 
analog output operations 2-27 
digital I/O operations 2-33 

analog input operations 2-4 
programming tasks 3-1 I 

analog output operations 2-26 
programming tasks 3- 18 

analog-to-digital converter 2- 17 
ASO- 1800 software package I - I 

B 
BASIC 

allocating and assigning dynamic 
memory buffers 3-46 

creating a channel-gain queue 3-50 
see also Professional Basic, QuickBasic, 

Visual Basic for DOS 3-46 
board handle 2-2 
board initialization 2-2 
Borland C/C++ 

programming information 3-29 
see also C languages 

Borland Turbo Pascal: see Turbo Pascal 
Borland Turbo Pascal for Windows: see 

Turbo Pascal for Windows 
buffer address 

analog input operations 2-9 
analog output operations 2-28 
digital I/O operations 2-33 

buffer address functions 4-3 
buffering mode functions 4-3 
buffering modes 

analog input operations 2- 18 
analog output 2-30 
digital I/O operations 2-38 

buffers 
analog input operations 2-6 
analog output operations 2-27 
digital I/O operations 2-33 
multiple 2-6 

C 
C languages 

allocating and assigning dynamic 
memory buffers 3-23 

creating a channel-gain queue 3-27 
dimensioning and assigning local arrays 

3-25 
see L&J Borland C/C++, Microsoft 

C/C++, QuickC for Windows, 
Visual C++ 

channel and gain functions 4-4 
channel-gain queue 2- 14 
channels 

X-l 



multiple using a channel-gain queue 
2-14 

multiple using a group of consecutive 
channels 2- 13 

number supported 2-10,2-28 
clock functions 4-4 
clock source 

analog input operations 2-l 5 
analog output operation 2-29 
digital I/O operations 2-36 

commands: see functions 
common mode ground reference 2- 1 I 
common tasks 3-l 1 
compile and link statements 

Borland C/C++ 3-29 
Microsoft C/C++ 3-28 
Professional Basic 3-54 
QuickBasic (Version 4.0) 3-52 
QuickBasic (Version 4.5) 3-52 
Turbo Pascal 3-38 

continuous mode 
analog input operations 2- 18 
analog output operations 2-30 
digital I/O operations 2-38 

conventions 4-5 
conversion mode functions 4-3 
conversion rate 2- 17 
converting 

raw counts to voltage B-l 
voltage to raw counts B-3 

creating an executable file 
Borland C/C++ 3-29 
Microsoft C/C++ 3-28 
Professional Basic 3-54 
QuickBasic (Version 4.0) 3-5 1 
QuickBasic (Version 4.5) 3-53 
QuickC for Windows 3-30 
Turbo Pascal 3-38 
Turbo Pascal for Windows 3-39 
Visual Basic for DOS 3-55 
Visual Basic for Windows 3-45 

x-2 

D 
DASI 800-DevOpen 2-2,4-g 
DAS I SOO-GetDevHandIe 2-3,4- 11 
DAS-1800 Series Function Call Driver: set 

Function Call Driver 
DAS-I 800 Series standard software package 

1-l 
data formats B- 1 
data transfer modes: see operation modes 
default values 

frame elements 3-5, 3-7, 3-8, 3-9 
digital I/O operations 2-3 1 

programming tasks 3-20 
digital-to-analog converter 2-28 
dimensioning memory 

analog input operations 2-6 
analog output operations 2-27 
digital I/O operations 2-33 

driver: see Function Call Driver 
driver handle 2-2 

E 
elements of frame 3-2 
error codes A- 1 
error handling 2-4 
executable file: see creating an executable 

file 

Index 



F 
files required 

Borland C/C++ 3-29 
Microsoft C/C++ 3-28 
Professional Basic 3-53, 3-55 
QuickBasic (Version 4.0) 3-5 I 
QuickBasic (Version 4.5) 3-52 
QuickC for Windows 3-30 
Turbo Pascal 3-38 
Turbo Pascal for Windows 3-39 
Visual Basic for Windows 3-45 
Visual C++ 3-3 I 

frame management functions 4-2 
frames 3-2 

frame elements 3-2 
frame handle 3-2 
frame types 3-3 

Function Call Driver 
initialization 2-2 
structure 3-I 

functions 
buffer address 4. I 
buffering mode 4-I 
channel and gain 4. I 
clock 4-l 
conversion mode 4-l 
frame management 4- 1 
gate 4-l 
initialization 4-l 
memory management 4-l 
miscellaneous 4-l 
operation 4- 1 
trigger 4-l 

G 
gain codes 2-10 
gains 2- 10 

see also analog input ranges 2-9 
gains: see Analog input ranges 
gate functions 4-5 
gates 2-25 
group of consecutive channels 2-13 

H 
hardware gates: see gates 
hysteresis 2-2 I 

I 
initialization functions 4-2 
initializing a board 2-2 
initializing the driver 2-2 
input range type 2-9 
internal pacer clock 2-16,2-29, 2-36 
interrupt mode 

analog input operations 2-5 
analog output operations 2-27 
digital I/O operations 2-32 

K 
K-ADRead 2-5,2-13, 2-27,2-28.4-14 
K-BufListAdd 2-9,4-I7 
K-BufListReset 2-9,4-21 
K-ClearFrame 3-4,4-23 
K_CloseDriver 2.2,4-25 
K-ClrAboutTrig 4-27 
K-ClrADFreeRun 4-29 
K-ClrContRun 4-31 
K-DASDevInit 2-3,4-33 

x-3 



-@ 

K-DAWrite 4-35 
K-DIRedd 2-3 114-38 
K-DMAAlloc 2-8,4-41 
K-DMAFree 2-8,4-45 
K-DMAStart 4-47 
K-DMAStatus 4-49 
K_DMAStop 4-53 
K-DOWrite 2-3 I, 4-56 
K-FormatChnGAry 4-59 
K-FreeDevHandle 2-3,4-61 
K-FreeFrame 3-4,4-63 
K-GetAboutTrig 4-65 
K-GetADCommMode 4-67 
K-GetADConfig 4-69 
K-GetADFrame 3-3, 3-4,4-71 
K-GetADFreeRun 4-73 
K-GetADMode 4-76 
K-GetADTrig 4-78 
K-GetBuf 4-82 
K-GetBurstTicks 4-85 
K-GetChn 4-88 
K-GetChnCAry 4-9 I 
K-GetClk 4-93 
K-GetClkRate 4-96 
K-GetContRun 4-99 
K-GetDAFrame 4- 102 
K-GetDevHandle 2-3,4- IO5 
K-GetDIFrame 4-107 
K-GetDITrig 4-l 10 
K_GetDOCurVal4- 1 I 3 
K-GetDOFrame 4-l 16 
K-GetErrMsg 2-4,4-l I9 
K-GetExtClkEdge 4- 12 1 
K-GetG 4- I24 
K-GetGate 4- I26 
K-GetShellVer 2-4,4-l 29 
K-GetSSH 4- 132 
K-GetStartStopChn 4-135 
K-GetStartStopG 4- I38 
K-G&Trig 4- 142 
K-GetTrigHyst 4- 145 
K-GetVer 2-4,4- I48 

x-4 

4+ 

K-IntAlloc 2-8,2-28,2-33,4-I51 
K-IntFree 2-8, 2-28,2-33,4-I54 
K-IntStart 2-5, 2-6, 2-27,2-32,4-156 
K-IntStatus 2-5,2-6,2-27, 2-32,4-158 
KwIntStop 2-5,2-6, 2-27, 2-32,4-162 
K-MoveArrayToBuf 4- I67 
K-MoveBuffoArray 4- 169 
K-OpenDriver 2-2,4- 17 I 
K-RestoreChnGAry 4- 174 
K_SetAboutTrig 4- 176 
K-SetADCommMode 4- I79 
K-SetADConfig 4- 18 I 
K-SetADFreeRun 2-15,4-I83 
K-SetADMode 4-185 
K-SetADTrig 4. I87 
K-SetBuf 4- I9 I 
K_SetBuff 4- I94 
K-SetBurstTicks 2-17,4- 196 
K-SetChn 2- 13,2-28,4- 198 
K-SetChnGAry 2- 14,4-201 
K-SetClk 2- 16,4-204 
K-SetClkRate 2- l6,2-29,2-36,4-207 
K-SetContRun 2-18, 2-30, 2-38,4-210 
K-SetDITrig 4-2 12 
K-SetDMABuf 4-2 I5 
K-SetExtClkEdge 4-2 I8 
K-SetG 2-13,2-l4,4-220 
K-SetGate 2-26,4-222 
K-SetSSH 4-224 
K_SetStartStopChn 2-l3,2-28,4-226 
K-SetStartStopG 2-14,4-230 
K-SetTrig 4-233 
K-SetTrigHyst 2-2 1,4-236 
KMakeDMABuf 4- I65 

Index 



M 
maintenance operations: see system 

operations 
managing memory 

analog input operations 2-6 
analog output operations 2-27 
digital I/O operations 2-33 

memory allocation 
analog input operations 2-6 
analog output operations 2-27 
digital I/O operations 2-33 
in BASIC 3-46 
in C/C++ 3-23 
in Pascal 3-32 
in Visual Basic for Windows 3-40 

memory handle 
analog input operations 2-8 
analog output operations 2-28 
digital I/O operations 2-33 

memory management 
analog input operations 2-6 
analog output operations 2-27 
digital I/O operations 2-33 
in BASIC 3-46 
in C/C++ 3-23 
in Pascal 3-32 
in Visual Basic for Windows 3-40 

memory management functions 4-3 
Microsoft C/C++ 

programming information 3-28 
see also C languages 

Microsoft Professional Basic: see 
Professional Basic 

Microsoft QuickBasic (Version 4.0): see 
QuickBasic (Version 4.0) 

Microsoft QuickBasic (Version 4.5): see 
QuickBasic (Version 4.5) 

Microsoft QuickC for Windows: SL’P QuickC 
for Windows 

Microsoft Visual Basic for DOS: see Visual 
Basic for DOS 

Microsoft Visual Basic for Windows: see 
Visual Basic for Windows 

Microsoft Visual C++: see Visual C++ 
Miscellaneous functions 4-5 
Miscellaneous operations: see System 

operations 
multiple buffers 2-6 

0 
operation functions 4-2 
operation modes 

analog input operations 2-5 
analog output operations 2-27 
digital I/O operations 2-3 I 

operations 
analog input 2-4 
analog output 2-26 
digital I/O 2-3 I 
system 2-l 

P 
Pascal 

allocating and assigning dynamic 
memory buffers 3-32 

creating a channel-gain queue 3-37 
dimensioning and assigning local arrays 

3-35 
see also Turbo Pascal, Turbo Pascal for 

Windows 
preliminary tasks 3-l 1 
Professional Basic 

programming information 3-53 
see also BASIC 

programming information 
Borland C/C++ 3-29 
Microsoft C/C++ 3-28 
Professional Basic 3-53 

x-5 



QuickBasic (Version 4.0) 3-5 I 
QuickBasic (Version 4.5) 3-52 
QuickC for Windows 3-30 
Turbo Pascal for Windows 3-39 
Visual Basic for DOS 3-55 
Visual Basic for Windows 3-40,3-45 
Visual C++ 3-3 I 

programming overview 3-10 
programming tasks 

analog input operations 3-l 1 
analog output operations 3-l 8 
common 3-I I 
digital I/O operations 3-20 
preliminary 3-I 1 

Q 
QuickBasic (Version 4.0) 

programming information 3-5 I 
see also BASIC 

QuickBasic (Version 4.5) 
programming information 3-52 
see also BASIC 

QuickC for Windows 
programming information 3-30 
see also C languages 

R 
return values 2-4 
revision levels 2-4 
routines: see functions 

X-6 

S 
scan 2-13 
single-cycle mode 

analog input operations 2-18 
analog output operations 2-30 
digital I/O operations 2-38 

software 
packages I - I 
see ulso ASO- 1800 software package, 

DAS- 1800 Series standard 
software package 

standard software package 1-l 
starting a digital I/O operation 2-3 I 
starting an analog input operation 2-5 
starting an analog output operation 2-27 
status codes 2-4, A- 1 
storing data: see buffering modes 
system operations 2-l 

T 
tasks 

operation-specific 3- 1 I 
preliminary 3-l 1 

technical support I-4 
time base 

analog input operations 2- 16, 2- 17 
analog output operations 2-29 
digital I/O operations 2-36 

trigger functions 4-5 
triggers 2-25 
Turbo Pascal for Windows 

programming information 3-39 
see also Pascal 

Index 



V 
Visual Basic for DOS 

programming information 3-5.5 
see also BASIC 

Visual Basic for Windows 
allocating and assigning dynamic 

memory buffers 3-40 
dimensioning and assigning local arrays 

3-42, 3-48 
programming information 3-40, 3-45 

Visual C++ 
programming information 3-3 1 
see also C languages 







Keithley Instruments, Inc. 

28775 Aurora Road 

Cleveland, Ohio 44139 

Printed in the U.S.A 


	TOC: 


