KM-488-ROM

Keithley Data Acquisition

Keithley MetraByte/Asyst

FCC Class B Compliance

NOTE: This equipment has been tested and found to comply with the limits for a Class B
Digital Device, pursuant to Part 15 of the FCC Rules. These limits are designed to provide
reasonable protection against harmful interference in a residential installation. This
equipment generates, uses, and can radiate radio frequency energy and, if not installed in
accordance with the instructions, may cause harmful interference to radio communications.
However, there is no guarantee that interference will not occur in a particular installation. If
this equipment does not cause harmful interference to radio or television reception, which can
be determined by turning the equipment off and on, the user is encouraged to try to correct
the interference by one or more of the following measures:

¢ Reorient or relocate the receiving antenna.

Increase the separation between the equipment and receiver.

Connect the equipment into an outlet on a circuit different from that to which the receiver
is connected.

Consult the dealer or an experienced radio/tv technician for help.

NOTE: The use of a non-shielded interface cable with the referenced device is prohibited.

- i -

User Guide

for the

KM-488-ROM
IEEE-488 Interface
Board

Révlslon A - March 1991
Copyright © Kelthley Data Acquisition 1891
Part Number: 24408

KEITHLEY DATA ACQUISITION - Kelthley MetraByte/Asyst

440 Myles Standish Blvd., Taunton, MA 02780
TEL. 508/880-3000, FAX 508/880-0179

- i -

Warranty Information

All products manufactured by Keithley Data Acquisition are warranted
against defective materials and worksmanship for a period of one year
from the date of delivery to the original purchaser. Any product that is
found to be defective within the warranty period will, at the option of
the manufacturer, be repaired or replaced. This warranty does not apply
to products damaged by improper use,

Warning

Keithley Data Acquisition assumes no liability for damages
consequent to the use of this product. This product is not designed
with components of a level of reliability suitable for use in life
support or critical applications.

Disclaimer

Information furnished by Keithley Data Acquisition is believed to be
accurate and reliable. However, Keithley Data Acquisition assumes no
responsibility for the use of such information nor for any infringements
of patents or other rights of third parties that may result from its use. No
license is granted by implication or otherwise under any patent rights of
Keithley Data Acquisition.

Copyright

All rights reserved. No part of this publication may be reproduced,
stored in a retrieval system, or transmitted in any form by any means,
electronic, mechanical, photoreproductive, recording, or otherwise
without the express prior written permission of the Keithley Data
Acquisition.

Note:
Keithley MetraByte™ is a trademark of Keithley Instruments.

Basic™ is a trademark of Dartmouth College.

IBM® s a registered trademark of International Business Machines
Corporation.

PC, XT, AT, PS/2, and Micro Channel Architecture® are trademarks of
International Business Machines Corporation.

Microsoft® is a registered trademark of Microsoft Corporation.

Turbo C® is a registered trademark of Borland International.

- v -

Contents

CHAPTER 1 -

[N N N—Y
P

CHAPTER 2 -

2.1
2.2
23
2.4
2.5
2.6
2.7
2.8

CHAPTER 3 -

3.1
3.2
3.3
3.4
35
3.6
3.7
3.8
39

CHAPTER 4 -

4.1
4.2
4.3

CHAPTER 5 -

5.1
5.2
5.3

CHAPTER 6 -

6.1
6.2
6.3

INTRODUCTION

OVeIVIBW . . . e .1-1
Specifications 1-2
Ordering Information 1-3
HowToUse ThisManual. 1-3
INSTALLATION

General21
Unpacking&Inspecting\ .. .21
Software Installation 2-1
Switches & Jumpers 2-2
Boardinstallation 2-7
Configuration Of ThRe EEPROM 2-8
Reloading The EEPROM 2-10
Multiple Board InstallationNotes 2-10
INTRODUCTION TO CALLABLE ROUTINES

Initializing The KM-488-ROM. . ,3-3
Selecting The Receive & Transmit Terminators , 3-3
TransmittingCommands & Data3-5
ReadingData 3-11
Transmitting/Recelving DataViaDMA ., 3-14
CheckingDevice Status 3-15
Low-LevelRoutines. i .. 3-17
Board Configuration Routines 3-18
Multiple Board ProgrammingNotes 3-19
PROGRAMMING IN BASICA OR GWBASIC

General L4-1
Description Format For Routines. 4-3
Routines. 4-3
PROGRAMMING IN QUICKBASIC

General , 5-1
Description Format ForRoutines. 5-3
Routines. 5-3
PROGRAMMING IN TURBO PASCAL

General e . 6-1
Description Format For Routines, , 6-2
Routines. 6-3

Contents

CHAPTER 7 - PROGRAMMING IN C

71 Ganeral, . . . L e e e e e e e e e e s
7.2 Description Format For Routines
7.3 Routines

--

CHAPTER 8|- FACTORY RETURNS

APPENDICES

[Appendix Al- ASCII Code Chart
[Appendix B|- IEEE Tutorial

- IEEE Multiline Commands

- Device Capability Codes
[Appendix E|- Printer & Serial Port Redirection

-vi-

7-1

7-3

1.1

Chapter 1
INTRODUCTION

OVERVIEW

The KM-488-ROM is an IEEE-488 interface board that allows programs written on IBM
PC/XT/ATs, IBM PS2 25/30s, or compatibles to communicate with an IEEE-488 bus. This
Board complies with the 1978 IEEE-488 standard and is thus compatible with other IEEE-488
products. Up to fourteen other devices may be connected to the IEEE-488 bus, including
instruments, printers, and other computers. The KM-488-ROM comprises a board, software,
and documentation.

Figure 1-1 is a block diagram of the KM-488-ROM board.

ROM BASE L0 BASE WAIT STATE
ADDRESS BELECT ADDRESS BELECT BELECT
DIP SWATCH DIP SWITCH TP BWITCH
ADDREBS DECODE AND
WAIT BTATE
QENERATOR
GPIBCONTHOLLER
‘ ‘ (ray
N 3 _ Al ? ; o
0 Ly DATA 7 el (D1 -Dg)
N e
CLGK
H] T
a e — & Eg:a
EEPRON o BUS
L DRIVERS g m
DATA BUS DATA
(BASICA = o s CONTROL g 8
LIBRARY) ADRR DU o £ o (FCREN
= | e CNTFL. 4 EROATN
Y ' »
HANDSHAKE
(1] P NFD DAY
NTERFACE NG

JBM PG BUB (¥ BIT DATA)

Figure 1-1. KM-488-ROM Block Diagram

The KM-488-ROM design includes a Wait State Generator to adjust bus timing, allowing
performance within operating specifications of the GPIB controller chip on the fastest PCs.
This Board can also generate programmed interrupts on any of six interrupt request lines and
DMA transfers on Channels 1, 2, and 3. Selection of message terminators and timeouts is
modifiable to allow communication with GPIB devices using non-standard characters and
timeouts.

INTRODUCTION 1-1

1-2

The KM-488-ROM also features an 8-KB EEPROM (Electrically Erasable Programmable Read

Only Memory) containing firmware routines callable from a BASICA program. These
routines perform the IEEE-488 transfer functions. KM-488-ROM software libraries allow
access to routines from programs in QuickBASIC, Microsoft C, and TURBO PASCAL.

Fyamnlpc for each lapgnao—p are included.

par CARRRLOii-L0p L) e Ling] SR A% AN

-
N

Dimensions:

TR XA

DMA Level:
Interrupt (IRQ) Capability:

Data Transfer Rate (Governed by the
slowest device):

IEEE Controller Chip:

Pow

Power Consumption:

Operating Temperature:

Storage Temperature:

Humidity:

Wait States:

Net Weight:

ROM Base Address:

I/0 Base Address:

Device Interface Capabilities
Supported:

KM-488-ROM USER GUIDE

One Short PC Slot size.
Channels 1, 2,3, or None (Jumper Selectable).

Levels 2 through 7 or None (Jumper Selectable).

> 300 Kb per second.

NEC7210.

0to0 50 °C.

-4 to 158 °F (-20 to +70 °C).

0 to 90% noncondensing.

1, 2, 3, or 4 (Switch Selectable).
311b (.14 kg).

Switch Selectable.

Switch Selectable.

SH1, AH1, T5 TE5 L3 LE3 SRI RL] PPl PP2

TN T

clarlflcatlon)

1.3 ORDERING INFORMATION

PART NUMBER DESCRIPTION

KM-488-ROM Includes the KM-488-ROM IEEE-488 Interface Board,
Software (on 5.25" disks), and appropriate
documentation.

KM-488-ROM/35 Includes the KM-488-ROM IEEE-488 Interface Board,
Software (on 3.5" disks), and appropriate
documentation.

CGPIB-1 1 meter IEEE-488 cable.
CGPIB-2 2 meter IEEE-488 cable.

CGPIB4 4 meter IEEE-488 cable.

1.4 HOW TO USE THIS MANUAL

This manual provides the information necessary to install and program the KM-488-ROM.
The manual assumes you are familiar with the language in which you are developing your
application program; it also assumes you are familiar with the IEEE-488 protocol.

Chapter 2, Installation , details how to unpack, inspect, configure, and install the KM-488-
ROM and how to copy the accompanying software. Additionally, Chapter 2 describes how to
install the KM-488-ROM software and to configure the EEPROM and reload EEPROM
software. There are also notes on using multiple boards in one system.

Chapter 3, Introduction to the Callable Routines , provides a brief functional description of each
KM-488-ROM Interface Routine.

Chapter 4, Programming the KM-488-ROM , provides a detailed description of each KM-488-
ROM Interface Routine and how it is called from each of the supported languages: BASICA,
QuickBASIC, C, and TURBO PASCAL.

Chapter 5, Factory Returns , gives instructions for returning the board to the factory.

The appendices contain additional useful information. Appendix A contains an ASCII
Equivalence Chart. This gives hex and decimal equivalents for the ASCII 128 Character set.
Appendix B is an IEEE-488 tutorial. Appendix C provides an explanation of the Device
Capability Identification codes. Appendix D provides a cross-reference chart of IEEE

Multiline Commands. Appendix E describes how to use the KM-488-DD Printer Port Re-
director.

INTRODUCTION 1-3

1-4 KM-488-ROM USER GUIDE

2.1

2.2

Chapter 2
INSTALLATION

GENERAL

Installation begins with procedures for unpacking and inspection followed by
recommendations and instructions for software. Next is a section on switch and jumper
settings. Board installation is the next step, followed by EEPROM configuration.

UNPACKING & INSPECTING

After removing the wrapped Board from its outer shipping carton, proceed as follows:

1. Before unwrapping the Board, place one hand firmly on a bare-metal portion of the
computer chassis to discharge static electricity from yourself and the Board (the computer
must be turned Off but grounded).

2. Carefully remove the Board from its anti-static wrapping material. You may wish to save
the wrapping material for possible future use; if so, store it in a safe place.

3. Inspect the Board for signs of damage. If any damage is apparent, return the Board to the
factory.

4. Check the remaining contents of your package against the packing list to be sure your
order is complete. Report any missing items to the factory immediately.

5. When you are satisfied with preliminary inspection, you are ready to configure the Board.
Refer to the next section for configuration options.

2.3 SOFTWARE INSTALLATION

Backing Up The Distribution Software

As soon as possible, make a back-up copy of your Distribution Software. With one (or
more,as needed) formatted diskettes on hand, place your Distribution Software diskette in
your PC's A Drive and log to that drive by typing A: . Then, make your backup using the
DOS COPY or DISKCOPY comumand, as described in your DOS reference manual
(DISKCOPY is preferred because it copies diskette identification, too).

Installing The Distribution Software

Install the KM-488-ROM Distribution Software on your computer's hard drive using the DOS
COPY command.

INSTALLATION 2-1

NOTE: If you are using BASICA and the factory default settings, you may run the KM-
488-ROM board without installing any software. Instead, proceed to Section 2.4.

To install the software:

1. Turn on your PC and its display. You should see the standard DOS-level prompt.

NOTE: If you install example programs written in multiple languages, you may want to
create a directory for each language. (This is the way the Distribution Software is
organized.)

2. The following instructions create a directory named KM488R. Type md \KM4B8R
3. Change to the KM488R directory by typing cd \KM4BS8R

4. Place a KM-488-ROM Diskette into the floppy drive (assume this is Drive a:} and type
copy a:¥, ¥

Repeat this step for each disk and/or subdirectory, until copying is complete.

Distribution Software Contents

Your Distribution Software contains the file FILES.DOC , an ASCII text file readable with any
text editor or with the DOS TYPE command. FILES.DOC lists and briefly describes all files
in the Distribution Software.

The README.DOC File
To learn of last-minute changes, be sure to read the ASCII file README.DOC .

24 SWITCHES & JUMPERS

Factory Settings

The KM-488-ROM contains three DIP switches and two jumper banks (see Figure 2-1). These
switches and jumpers are factory-configured to work with most PC configurations. Table 2-1
lists the factory selections.

Table 2-1. Factory Switch & Jumper Settings

SWITCH/JUMPER FACTORY SETTING

I/O Base Address: 2b8h.
ROM Base Address: CC00h ROM Enabled.

I/O Wait State: 1 Wait State; System Controller Enabled; EEPROM
Write Disabled.

Interrupt (IRQ) Level: Disabled.
DMA Level: Disabled.

2-2 KM-488-ROM USER GUIDE

For assistance with setting the switches or the jumpers, run the INSTALL program. This
program illustrates the correct switch settings for your selections. To run the INSTALL
program, make sure you are in the appropriate directory and type INSTALL at the DOS
prompt. Then, follow program directions.

AOM
10 BASE wawar BASE
AODRESS STATE ACDRES8

7

U

% ' BT

T W EE =
UHTEHTLTTRTEL G DR
INTEARUPT (iRG) DA LEVEL
LEYE. BE.ECT BELEGT N

Figure 2-1. Switch and Jumper Locatlons

Switches

There are three DIP switch blocks on the KM-488-ROM board, as follows: Wait State (51),1/0
Base Address (52), and ROM Base Address (S3). The switches are factory-set to work with
most PC configurations (see Table 2-1 for settings).

NOTE: If you are using BASICA and change the I/O Base Address DIP switch settings, be
sure to run the configuration program, CONFIG. See Section 2.7.

{/O Base Address Switch

Setting an 1/0 Base Address enables the KM-488-ROM to communicate with the PC. You set
an 1/0 Base Address for the Board by setting the seven positions of Switch $2 for the assigned
address. Setting a switch position to ON puts the corresponding address line at a logic 0
(low).

The KM-488-ROM requires a series of 8 1/0 port addresses that begin with the /O Base
Address. Therefore, be sure to select an 1/0 Base Address on an 8-byte boundary that does
not conflict with other devices in your computer (refer to your PC manual for the I/O address
list to determine available spaces).

Figure 2-2 shows examples of I/O Base Address settings. Note that the factory-set Base
Address is 2B8 hex; the I/O ports occupy the address range 2B8 - 2Bf Hex.

INSTALLATION 2-3

IR o R A 0
ARG UG UL AR
AN O U

288 (DEFAULT)
Figure 2-2. Examples of I/O Base Address Settings

12 3

[]

o
@
~
<

]

ROM Base Address Switch

This switch determines whether the ROM memory is to be enabled and, if so, where within
the first 1 MB of PC memory it is to be located. Enable the ROM if you are programming in
BASICA. The ROM Base Address Switch (53) is an 8-position DIP switch.

Seven of the $3 positions (1 - 7) to select the ROM Base Address. Position 8 enables/disables
the ROM. Setting a position at ON puts the corresponding address line to a logic 0.

Figure 2-3. Enabling the ROM FRABLED DISABLED

To enable or disable the ROM, set S3 Position 8 as shown in Figure 2-3.
This position should be ON only if the KM-488-ROM is used with
BASICA software.

Some alternative ROM Base Address switch settings are shown in Figure 2-4. The default
Base Address is CCOO0 hex. Be sure to select an 8 KB address space that is within the first 1 MB
of PC memory and not occupied.

O LR ONY ALl
UK TS Y AR

poaoe D400

TGO OO UGN O

Ecdn E40D E800 ECOR

—

Figure 2-4. ROM Base Address Selection

If you are unsure which address to assign to the EEPROM, use the MEMMAP program
provided with the KM-488-ROM. This program scans your computer's memory and
determines what memory areas are available. To invoke the MEMMAT program, switch to
the appropriate directory and type MEMMAP . Choose an unoccupied address space.

KM-488-ROM USER GUIDE

Wait State Switch
Switch 1 (51} configures Wait States and the System Controller

Mode, and it enables Memory Write Protection. S1 is a 4-position ON ! 2 2 £
DIP switch (see Figure 2-5). Setting a position to ON puts the
corresponding address line at signal low (logical 0). Two positions

(1 and 2) select the wait states.

Figure 2-5. Wait State Switch.

Configure the System Controller function using Position 3 and the EEPROM protection using
Position 4.

I/0 Wait States

The KM-488-ROM design includes a switch-selectable wait-state generator. A selectable Wait
State insures optimum performance and reliable operation at the differing bus clocks found in
PCs. The default number of Wait States (1) should be correct for most PCs. I—;owever if youy

data is garbled or your program crashes, you may need to adjust Tl [Ii]
the number of Wait States. Some general guidelines are presented T T

in Table 2-2, Select the number of Wait States by setting Positions | |

1 and 2 (marked Wait State) on the DIP switch. You may program | 7 swr 3 WAT STATES
the KM-488-ROM to generate one, two, three, or four Wait States on ey 2 ON - 'ON 1
during I/0. Note that the number of memory Wait States is |

automatically set to a value which is one less than the [/0 Wait T T

States. To select a number other than the default, set the switches I | [|
to one of the positions shown in Figure 2-6. 7 WAT STATES 4 WA STATES

Flgure 2-6. I/O Wait State Selections

Table 2-2. Walt States

BUS CLOCK FREQUENCY NUMBER OF WAIT STATES
<=5 MHz 1 (default).

5MHz <freq <8 MHz 2.

8 MHz < freq < 10 MHz 3.

10 MHz <freq 4.

System Controller

This switch determines whether or not the KM-488-ROM will act as a System Controller. If
the KM-4838-ROM is a System Controller, it has the ability to assert the IFC or REN lines.

Position 3 on the Wait State DIP Switch determines whether ON
the KM-488-ROM is acting as a Device/Controller or a System
Controller. Valid selections are shown in Figure 2-7.

Figure 2-7. Device Mode Selection

DEVICE OR SYSTEM
CONTRQOLLER CONTROLLER

INSTALLATION 2-5

Memory Write Enable

4

Positione 4 on the Wait State DIP Switch enables or disables ON : ON

writes to the EEPROM on the KM-488-ROM. Valid selections T |—:—! H T
ON = 1

are shown in Figure 2-8.

Figure 2-8. EEPROM Enable Selection . .oor wxic EEPROM WRITE
ENABLED CISABLED

This switch should normally be at DISABLE. It should be at ENABLED only when initializing
or configuring the EEPROM BASICA support software.

Jumpers

The KM-488-ROM contains two jumper blocks. These blocks select the Interrupt Level and
DMA Level.

Selecting an Interrupt Level

The KM-488-ROM is capable of interrupting the PC. The Interrupt Level (IRQ} Jumper (J1)
defines the Interrupt Level. Valid Interrupt Level selections (2 through 7 and none) and the
jumper positions are shown in Figure 2-9.

INTERRUPT LEVEL 2 INTERRUPT LEVEL 3 INTERRUPT LEVEL 4
0|000000 olplooo oo cofploooo
0000000 olojoo o000 cofplocoo
2 7 D8 ? 7 DS 2 7 DI§
INTERRUPT LEVEL 5 INTERRUPT LEVEL 6 INTERRUPT LEVEL 7
ooolojooo oooolojoo oocooof|o
ocoolojooo 000O0|0j00 ooooo[|o
2 7 Bs 2 7 DS 2 7 DIS
INTERRUPT DISABLED

000000 |

0000000

2 7 Dis

Figure 2-9. Interrupt Level (IRQ) Jumpetrs

Selecting a DMA Level

DMA (Direct Memory Access) is a PC facility for speeding up data transfer from a peripheral
to the computer. Select an appropriate DMA level using the DMA Level Jumpers. Refer to

2-6 KM-488-ROM USER GUIDE

2.5

Figure 2-1() for jumper positions.

oooooo O Oooojloo oo
000000 0Xe)(e)e][eXeXoXeo)
E B]]
D DhA
LEVE. { LEYE. 2
ooooﬁﬁoo Oooooogﬂ
00 ooldolc o 00 00000
3 8 L3 g
B3 by

{OEFALLT)

Figure 2-10. DMA Level Jumpers

BOARD INSTALLATION
To install the KM-488-ROM in a PC, proceed as follows:

1. Turn Off power to the PC and all attached equipment.

WARNING!
ANY ATTEMPT TO INSERT OR REMOVE ANY ADAPTER BOARD

WITH COMPUTER POWER ON COULD DAMAGE YOUR
COMPUTER!

2. Remove the cover of the PC.

3. Choose an available option slot. Loosen and remove the retainer screw at the top of the
blank adapter plate. Then slide the plate up and out to remove.

4. Before touching the Board, place one hand on any metallic part of the PC chassis (but not
on any components) to discharge any static electricity from your body.

5. Make sure the Board switches have been properly set (refer to the configuration sections).

6. Align the Board connector with the desired accessory slot and with the corresponding
rear-panel slot. Gently press the Board into the socket and secure with the retainer screw
for the rear-panel adapter-plate.

7. Replace the computer cover.

8. Plug in all cords and cables. Turn the power to the computer back on. You are now ready
to make any necessary system connections.

INSTALLATION 2-7

2.6

2-8

If you are developing KM-488-ROM application programs in C, TURBO PASCAL or
QuickBASIC, the installation process is now complete. However, if you are developing
programs in BASICA and have changed the factory default settings, you must to run the
EEPROM configuration program CONFIG.

CONFIGURATION OF THE EEPROM

When KM-488-ROM application programs use BASICA, the programs read interface
functions directly from the on-board EEPROM. Thus, the EEPROM must be properly
configured, which may be accomplished using the CONFIG program. This program allows
you to change such parameters of the EEPROM configuration as I/O Base Address, I/0O
Timeout, DMA Timeout, and Transmit/Receive Terminators.

Before changing the EEPROM configuration, you may want to read the descriptions of the
DMA, RCV, and XMIT routines in Chapter 3. Also make sure that the ROM Base Address
switch has the ROM Write function enabled. (See Section 2.4.)

Invoking The CONFIG Program
Invoke the CONFIG program as follows:

1. Install the Distribution Software {see Section 2.3} and the KM-488-ROM board (see Section
2.5),

2. Switch to the appropriate directory. At the DOS prompt, type CONFIG

The PC monitor will show a screen labelled KM-488-ROM CONFIGURATION . The settings
will reflect any changes which were made by running the INSTALL program.

The following PC function keys are now active:

{F1] HELP. Invoke Help at any time by pressing [F1].

[F2] SHOW NEXT. In multiple board systems, pressing [F1] shows the
configuration of the next KM-488-ROM.

[F3] LOAD. Pressing this key loads the file KM488ROM.BIN to the EEPROM.
This function is useful when you want to load the factory defaults back
into the KM-488-ROM's EEPROM.

[Shift][F3] LOAD NEW MEMORY . Pressing this key combination allows you to
load the contents of the KM-488-ROM'S EEPROM to a new segment of
DOS memory. The value you enter here must agree with the address
selected by the ROM Base Address Switch. If you have trouble identifying
an unoccupied space, run the MEMMAP program (see Section 2.4).

[Altl[¥3] EDIT VO ADDRESS. This key combination permits you to edit the I/0O
Address field only. This is the address for access to the KM~488-ROM. It
is important that you select an I/O Base Address on an 8-byte boundary
that does not conflict with other devices in your computer. The [/O Base
Address must fall within the range 200h to 3F8h,

[F8] EDIT. This key allows editing of the configuration parameters (see the
next section for parameter descriptions). When editing is complete, press
[F10] . When the prompt Save changes to KM-488-ROM memory? Y/N
appears, enter the appropriate response.

KM-488-ROM USER GUIDE

[F10] EXIT. Pressing this key exits the editing process. Otherwise, pressing
[F10] exits to the DOS prompt.

Once you have completed writing to the EEPROM, be sure to disable the EEPROM Write

function (see Section 2.4).

NOTE: Be sure to reset the EEPROM Write Switch when you complete writing to the
EEPROM. Many software programs are designed to search for free address space
within the computer and may interpret the EEPROM as such.

Editing The Configuration Parameter Flelds

Once you have invoked the EDIT function, you will be able to edit the configuration
parameters. To exit from the EDIT function at any time, press [F10]. To move between
fields, use [T] and [{]. Once you make your selection for a given parameter, press

[Enter] . These parameters include the following;:

/O Timeout

DMA Timeout

Transmit Terminators

If the time elapsed between the transfer of individual bytes
exceeds the specified [/O Timeout period, an I/O Timeout Error
will occur. This parameter sets the maximum amount of time (in
milliseconds) which is to elapse. Enter a value between () and
65535 milliseconds for the I/O timeout. The default value is
10010 ms.

A DMA Timeout Error is generated when the time to transfer
(via DMA) an entire message exceeds the set DMA Timeout
value. Valid entries for the DM A Timeout parameter are
between 0 and 65535 milliseconds. The default value is 10010
ms,

Transmit Terminators (also referred to as Output Terminators)
are appended to data sent from the KM-488-ROM to another
IEEE-488 device. The terminators signal the end of the data
transfer. The Transmit Terminator sequence consists of one or
two ASCII characters with EOI optionally asserted, when the last
terminator character is sent. Up to four different Transmit
Terminator sequences may be selected.

To select a terminator sequence,

1. Referring to the ASCII Equivalence Chart in Appendix A,
enter the HEX VALUE (00h - FFh) of the first terminator byte.
Press [Enter] .

2. Repeat Step 1 for the second terminator byte. If a second
terminator byte is not required, enter spaces. Press [Enter].

3. Press [Space Bar] to enable EOI(EOI) or disable EOI
(NOEQI). Press [Enter].

Repeat these three steps for each of the remaining Transmit
Terminator Sequences.

The default Transmit Terminator Sequences are as follows:

Terminator 0 LF EQI
Terminator 1 CR LF EQI
Terminator 2 CR EQI
Terminator 3 LF CR EQI

INSTALLATION 2-9

2.7

2.8

2-10

Receive Terminators The KM-488-ROM uses these items (also referred to as Input
Terminators.) to detect the end of a data transfer received from
another device. The Receive Terminator sequence consists of
one ASCII character with EOI optionally asserted. If the chosen
terminator character is detected in the incoming data, reception
will terminate. Note that any data byte received with EOI
asserted will always terminate reception, regardless of the
selected terminator.

Up to four different Receive Terminator sequences are available
for selection, as follows:

Terminator 0 LF EQI
Terminator 1 CR EQI
Terminator 2 , (comma) EQI
Terminator 3 ; {semi-colon) ECI

To change the terminator character, use the procedure
previously outlined for Transmit Terminators.

RELOADING THE EEPROM

Under some conditions (for example, if the EEPROM contents have been destroyed), you will
have to reload the EEPROM with the contents of the KM488ROM.BIN file. To perform this
requirement, run the CONFIG program, as described in the previous section.

Before you reload the EEPROM, be sure its Write/Enable switch is enabled (see Section 2.4},
The proceed as follows:

1. Invoke the CONFIG program. Switch to the appropriate directory and at the DOS
prompt, type CONFIG.
2. Press [F3].

When you completed the EEPROM reload, be sure to disable the EEPROM Write Enable
switch (see Section 2.4).

MULTIPLE BOARD INSTALLATION NOTES

The KM-488-ROM software allows installation of up to four boards in a given system.
Typically, situations with excessive cable lengths or more than 14 instruments require
multiple boards.

When using multiple KM-488-ROMs, set the /0 Port Base Address to a different value on
each of the boards. Routines within the software library allow you to determine which board
to use by specifying the Base Address of the I/O port on that board.

When using BASICA, each board requires its own copy of software. This means that you

must select a different EEPROM memory address and 1/0O Base Address for each board.
These Base Address ranges CANNOT overlap other address ranges within the system.

KM-488-ROM USER GUIDE

1
Chapter 3
INTRODUCTION TO CALLABLE ROUTINES

To use the KM-488-ROM within a custom data acquisition or control environment, you have
to write software that will access the GPIB. The KM~488-ROM includes a number of "callable”
routines aliowing this access from high-level languages such as BASIC, Quick BASIC, C, and
TURBO PASCAL.

This chapter describes the callable-interface routines from a functional approach. Chapter 4
provides the exact syntax for calling the routine from BASIC, Quick BASIC, C, and TURBO
PASCAL. Table 3-1 provides an alphabetical listing of the available routines. The remainder
of the chapter tracks the order of a routine’s usage and is organized as follows:

» Initializing the KM-488-ROM.

* Selecting the Receive and Transmit Message Terminators.
e Transmitting Commands and Data.

* Reading Data.

o Transmitting/Receiving Data via DMA.

» Checking the Status of a Device.

* Low-level Routines.

* Configuring the Board.

NOTE: Explanations within this chapter assume you are familiar with IEEE-488
communications. If you are new to IEEE-488 or do not recognize some of the
terminology used, refer to the IEEE-488 Tutorial in Appendix B.

INTRODUCTION TO CALLABLE ROUTINES 3-1

Table 3-1. The Callable Routines

ROUTINE NAME DESCRIPTION GPIB OPERATIONS
DMA Used to transmit/receive array data
via DMA. (BASICA only)
DMATIMEQUT ! Sets maximum length of time fora None.
DMA transfer,

ENTER Addresses a device to talk and Asserts REN. Sends UNL, UNT,
receives the talker's data into a TALK adrs, MLA, data, UNL,
string. UNT.

INIT Initializes the KM-488-ROM. If KM-488-ROM is Sys. Contr.,
asserts IFC,
INTERM ! Redefines input terminator settings. None,
IOTIMEQUT ! Sets the maximum length of time None.
for an I/O transfer.
OUTTERM ! Redefines output terminator None,
settings.
PPOLL Performs a parallel poll. Asserts ATN and EOI and reads
data byte.
RCV Receives data into a string. Receives data.
RCVA Receives data into an array. Receives data,

SEND Addresses a specific device to Asserts REN, Issues UNL, UNT,
listen and allows the current talker Listen Adrs, MTA, and sends
to send the data from a string. data followed by a message

terminator,
SETBOARD 2 Identifies, in a multiple board None.
system, the board to be
programmed.
SETDMA ? Allows use of DMA in conjunction ~ None.
with XMITA and RCVA routines,

SETINT Allows the KM-488-ROM interrapt ~ None.

enable bits to be set.

SETPORT 2 Seclects a non-default Base Address. None,

SETSPOLL Sets Serial Poll Response of the If RSV bit is set, will assert SRQ.
KM-488-ROM.

SPOLL Conducts a serial pollona Asserts REN. Issues UNL UNT,
specified device. Talk adrs, SPE. Receives Serial

Poll Response. Issues SPD.

SRQ2? Detects the state of the SRQ signal None,

on the bus.
STATUS Returns values of the various setup None.
parameters.

XMIT Sends GPIB commands and data. Sends GPIB commands and data

as specified in string.

XMITA Transmits data from an array. Sends data, optionally terminates

by EOI and/or terminator
characters

! This routine is not supported in BASICA. To modify this parameter, use the
CONFIG program.

2 This call is not supported in BASICA. Its function, however, can be achieved
through different means.

KM-488-ROM USER GUIDE

3.1

3.2

INITIALIZING THE KM-488-ROM

The first step in any KM-488-ROM application program is to initialize the KM-488-ROM
board(s), using the INIT routine.

INIT

This routine configures the KM-488-ROM as a device or a controller. INIT also defines the
GPIB address and determines whether Bus Handshaking is to be High or Low Speed. If INIT
designates the KM-488-ROM as a System Controller, the Interface Clear (IFC) line on the GPIB
is asserted momentarily when INIT is called.

Either High or Low Speed Handshaking is available. In High Speed mode, the KM-488-ROM
asserts the GPIB bus signal DAV approximately 500 ns after data is placed onto the bus. In
the low speed mode, DAV is asserted about 2 microseconds after the data. In most cases, you
will see no apparent differences in data throughput with Low Speed Handshaking. To
maximize data throughput when using DMA, select High Speed Handshaking.

NOTE: Use the High Speed mode only in smaller installations, because High Speed
Handshake mode allows less time for data to settle. Thus, as cable lengths
increase, the probability of transmission errors from cable reflections will increase.

NOTE: INIT must be the first KM-488-ROM routine called within the program.

IOTIMEOUT

This routine is not usable in BASICA. IOTIMEOUT allows you to reset the length of time that
is to elapse before a Timeout Error occurs. A timeout Error occurs when the time between
transmission and reception of adjacent bytes exceeds the set time. (I/O Timeout Error reports
occur when using SEND, ENTER, XMITA, XMIT, and RCVA calls without DMA.) The
default value of the timeout period is 10 seconds.

NOTE: The I/0 Timeout may be changed at any point in the program.

SELECTING THE RECEIVE & TRANSMIT TERMINATORS

When data is transmitted to or from the KM-488-ROM, it may contain message terminator
characters. These terminator characters are used to signal the end of data transmission.

Every KM-488-ROM routine that transmits or receives data contains a parameter allowing you
to define which of the default terminator sequences is to be used. If your application program
is in C, QuickBASIC, or Turbo PASCAL, you may change the default terminator sequences by
calling the INTERM and OUTTERM routines.

If you are programming in BASICA, you may change the default Transmit/Receive
Terminator sequences and the I/O Timeout period only by running the CONFIG program
(see Sections 2.6 and 2.7).

INTRODUCTION TO CALLABLE ROUTINES 3-3

3-4

INTERM

This routine does not work in BASICA. INTERM allows you to change the values of each of
the four input message terminators. These terminators can be detected by the ENTER, RCV,
and RCVA routines,

Each terminator sequence consists of one ASCII character (7-bit value). The default value for
each terminator is shown below.

DECIMAL HEX
TERM # ASCII CHARACTER EQUIVALENT EQUIVALENT
0 LF (Line Feed) 10 0A
1 LF (Line Feed) 13 0D
2 , (comma) 44 2C
3 ; {semi-colon) 59 3B

Note that if EOI is asserted with any data byte, data reception will be unconditionally
terminated.

Instrument manufacturers frequently specify message terminators using ASCII
representations. You may pass either the decimal or hexadecimal equivalents of the desired
ASCII character into the INTERM routine. If using the hexadecimal value, be sure to use the
correct prefix. This prefix is language-dependent. Check the language manual for more
information.

OUTTERM

This routine does not work with BASICA. OUTTERM allows changes of values for each of the
four output message terminator sequences. You may append these terminators to the data
sent by the SEND, XMIT, and XMITA routines to signal the end of message.

Each terminator sequence consists of one or two ASCIH characters (7-bit values) and may or
may not assert EOI when the last terminator character is sent. The default values for each
terminator appear in the following table.

ASCII CHARACTER DEC EQUIV HEX EQUIV
TERM # IST 2ND 1ST 2ND 18T 2ND EOI
0 LF 10 0A YES
1 CR LF 13 10 0D 0A YES
2 CR 13 0D YES
3 LF CR 10 13 0A 0D YES

Instrument manufacturers frequently specify message terminators using ASCII
representations. You may pass either the decimal or hexadecimal equivalents of the desired
ASCII character into the INTERM routine. For example, specify a Line Feed as 0Ah. If using
the hexadecimal value, be certain to use the correct prefix; this prefix is language-dependent.
Check the language manual for more information.

Terminators specified with this routine must be at least one character long. If you have an
instrument or application requiring no terminator bytes {requiring assertion of EOl), use the
XMIT or XMITA routine to transmit the data.

KM-488-ROM USER GUIDE

3.3

TRANSMITTING COMMANDS AND DATA

Once the GPIB system is initialized, the next step is usually to send commands and/or data to
a device. Use any of the following routines to send:

+ SEND

o XMIT

« XMITA

s IOTIMEOUT

SEND

Use this routine only when the KM-488-ROM is an Active Controller. SEND transfers string
data from the KM-488-ROM to the device specified by first addressing the KM-488-ROM as a
talker and the indicated device as a listener, and then asserting the REN line. Next, the
command sends the string, followed by the selected message terminator, to the listener. The
routine returns a status variable indicating whether or not the transfer is properly completed.

XMIT

The XMIT Routine allows the greatest amount of flexibility for sending GPIB commands (see
Section 3.4.) and data. Data and commands to be sent over the GPIB are expressed in string
form and then passed into the XMIT routine. All commands within the string may be UPPER
or lower case; but they must be separated by one or more spaces.

If the KM-488-ROM is acting as a Controller, the XMIT routine sends both commands and
data. If executing the XMIT routine, the KM-488-ROM must

+ Untalk and Unlisten all Devices.

¢ Assign a Listener.

» Address itself as a Talker.

If, however, the KM-488-ROM is acting as a Device, the XMIT routine can only send data. In
this instance, the KM-488-ROM must be a talker before the XMIT routine can execute.

The XMIT routine will then parse the string and extract and send the commands over the bus
in the specified sequence. The commands to carry out this sequence can all be within a single
string and handled by a single call to the XMIT routine.

The XMIT routine returns a single status variable to indicate the state of the data transfer.
XMIT will report cases of invalid syntax, invalid address, undefined commands, timeout
errors, and attempts to send bus commands while not the active controller.

THE XMIT COMMANDS

Send these commands in the XMIT command's info string; they consist of rudimentary GPIB
and other commands and separate by function into three categories, as follows:

1. Data Transmission.
2. Polling.
3. Miscellaneous.

INTRODUCTION TO CALLABLE ROQUTINES 3-5

3-6

DATA TRANSMISSION COMMANDS

DATA

END

EOI

GTL

Use this command after the KM-488-ROM has been addressed to talk. (If
the KM-488-ROM is controller, issue an MTA. QOtherwise, the Controller
must address the KM-488-ROM. See the STATUS routine description for
more information.) DATA sends the message that trails it to all previously
addressed listeners.

Data may be in two forms. In one form, data is a string of ASCII
characters that trails the DATA command. The ASCII string will be in
single quotes (for example, 'BYE').

In the other form, data may be a string of numeric values, each of which
ranges from 0 to 255. Each numeric value is the decimal equivalent of an
ASCII character (see Appendix A for ASCII Equivalents). One or more
spaces must separate each numeric entry. This form of entry is useful
where transmission of nonprintable characters is required. Note that you
may switch freely between the ASCII and Decimal representations after
the DATA command, as long as ASCII characters are in a string enclosed
by single quotes.

Example

DATA 'Hello' 13 10

DATA 'Line 1' 13 10 'Line 2' 13 10

If END follows the DATA command string, Message Terminator 0 signals
the End of Transmission. Section 3.2 describes the default values of the
transmit terminators and how to change them. Set the terminators to one
or two bytes, and send them with or without EOI asserted on the last byte.

Example
DATA 'Hello' END

If EQI (END OR IDENTIFY) follows the DATA command string, it
indicates that the character following EOI mnemonic will be sent with the
EOI line asserted.

Example
DATA 'Helloc' 13 EOI 10

The GTL command forces bus devices addressed to listen to the Go To
Local (front panel controllable) state, as opposed to controlled via GPIB.
This command also unasserts the REN signal on the GPIB. Only the
System Controller may use GTL. Note that this command DOES NOT
allow you to selectively force only one device to Go To Local.

Note that it is more practical to use GTLA and LOC commands than GTL.
Example
GTL

KM-488-ROM USER GUIDE

GTLA

LISTEN

LOC

MLA

MTA

REN

Only a KM-488-ROM acting as a System Controller may issue this
command. Use this command is used o send a Go To Local (GTL) GPIB
command to those devices previously addressed to listen. This command
does not affect the state of the GPIB REN line.

Example
GTLA

The KM-483-ROM must be the Active Controller to execute this command.
This command addresses a given device(s) as a listener(s). LISTEN is
trailed by the decimal GPIB address (0 to 30) of the device(s) to be
addressed. When assigning multiple listeners, separate the addresses by
one or more spaces.

Note that it is good practice to untalk and unlisten all devices prior to
sending a LISTEN command. (See the UNT and UNL descriptions.)

Example
LISTEN 2

LISTEN 59 30

Use this command only if the KM-488-ROM is acting as the System
Controller. When the LOC command is executed, it unasserts the GPIB
REN (Remote Enable) line. This action forces all devices on the GPIB to
the local state.

Example
LOC

The KM-483-ROM must be the Active Controller to execute MLA (My
Listen Address). MLA forces the KM-488-ROM to become a listener; it
sends a listen address command containing the GPIB address of the KM-
488-ROM over the GPIB.

Example
MLA

The KM-488-ROM must be the Active Controller to execute MTA (My Talk
Address). MTA makes the KM-488-ROM the present talker (and
unaddresses any other talker); it sends a talk address command containing
the address of the KM-488-ROM over the GPIB.

Example
MTA

This command can function only if the KM-488-ROM is the System
Controller. The REN command asserts the REN (Remote Enable) Control
line on the IEEE-488 bus. Many devices require REN to be asserted before
they will accept commands or data.

Example
REN

INTRODUCTION TO CALLABLE ROUTINES 3-7

3-8

SEC

TO

T1

T2

T3

TALK

Use this command in conjunction with TALK and LISTEN to specify a
secondary address. SEC must appear immediately after the primary
address in a TALK or LISTEN command. The KM-488-ROM must be an
Active Controller to use SEC.

Example

TALK 3 SEC 5
LISTEN 4 SEC 8

If this command follows the DATA command, a Transmit Message
Terminator 0 will signal the end of data transmission. Section 3.2
describes the default values of the transmit terminators and how to change
them. Set the terminators to one or two bytes, and send with or without
EOI asserted on the last byte.

Example
DATA 'Hello' T0

If this command follows the DATA command, Transmit Message
Terminator 1 will signal the end of data transmission. Section 3.2
describes the default values of the transmit terminators and how to change
them. Set the terminators to one or two bytes, and send with or without
EOI asserted on the last byte.

Example
DATA 'Hello' T1

If this command follows the DATA command, Transmit Message
Terminator 2 will signal the end of data transmission. Section 3.2
describes the default values of the transmit terminators and how to change
them. Set the terminators to one or two bytes, and send with or without
EQI asserted on the last byte.

Example
DATA ‘Hello' T2

If this command follows the DATA command, Transmit Message
Terminator 3 will signal the end of data transmission. Section 3.2
describes the default values of the transmit terminators and how to change
them. Set the terminators to one or two bytes, and send with or without
EQI asserted on the last byte.

Example
DATA 'Hello' T3

The KM-488-ROM must be the Active Controller to execute this command.
TALK designates the specified device as a Talker and is followed by the
decimal GPIB address (0 to 30) of the device. Remember that only one
device can talk at a given time; thus, if multiple TALK commands are in a
command string, only the last one takes effect. Note that it is good
practice to untalk and unlisten all devices prior to sending a TALK
command (see the UNT and UNL descriptions).

Example

TALK 1
TALK 22

KM-488-ROM USER GUIDE

UNL The KM-488-ROM must be the Active Controller to execute this command.
UNLISTEN unaddresses the present listeners, if any.
Example
UNL

UNT The KM~488-ROM must be the Active Controller to execute this command.
UNTALK is used to unaddress the present talker, if any.
Example
UNT

POLLING COMMANDS

PPC The Parallel Poll Configure (PPC) command signals a previously
addressed listener that a Parallel Poll Enable (PPE) byte or Parallel Poll
Disable (PPD) command is to follow. Note that not all devices support
parallel polling,.
PPC is rudimentary GPIB command byte and is thus sent using the CMD
command (see Miscellaneous Commands). The CMD command
immediately follows the PPC command; for example,
PPC CMD nnn
Where nnn is the decimal value of the Parallel Poll Enable byte. This byte
has the following format:

0110SPPP

Where S is 0 or 1. The addressed device will set the designated GPIB
data line (determined by PPP) to the given value if service is required.
PPP is a 3-bit value which represents a GPIB data line (0 - 7). The
configured device will use this data line to respond to a parallel poll.
Example
UNL LISTEN 6 MTA PPC CMD 101

PPD The PPD (Parallel Poll Disable) command disables parallel poll response
of any previously addressed listeners. PPD must always immediately
follow a PPC.
Example
UNL LISTEN 12 MTA PPC PPD

PPU The PPU (Parallel Poll Unconfigure) command disables the parallel poll
response of all devices on the bus,
Example
FPU

SPD The Serial Poll Disable (SPD) command returns the currently addressed

talker from the serial poll state to the "normal” talker state.
Example
SPD

INTRODUCTION TO CALLABLE ROUTINES 3-9

3-10

SPE

The Serial Poll Enable (SPE) command forces a device, previously
addressed to talk, to send its serial poll response instead of its normal
data.

Example
UNL UNT MLA TALK 20 SPE

MISCELLANEOUS COMMANDS

CMD

DCL

GET

IFC

LLO

CMD indicates the next byte is to be sent as a GPIB command. A GPIB
command is any data byte sent in conjunction with the ATN control line
asserted on the bus. The byte is must be specified in decimal format
(range 0 to 255) and must follow the CMD mnemonic within the XMIT
command string.

Example
PPC CMD 96

The Device Clear command forces all devices attached to the GPIB
{addressed or not) to a predefined state, The actual response of a device to
this command is device-dependent.

The GET (Group Execute Trigger) comunand synchronizes the start of a
device-dependent operation in all previously addressed listeners. In many
devices, GET allows the KM-488-ROM to trigger a measurement. This
function is not supported by all devices.

Example
LISTEN 12 GET

This command can only be issued by a KM-488-ROM which is the System
Controller. The IFC (Interface clear) command resets the interface state of
all devices which are tied to the GPIB. It unaddresses all devices and
forces the System Controller to become the Active Controller (if control
had been passed to another device).

Example

IFC

The LLO (Local Lockout) command allows you to disable the front panel
control of all devices that support this command. In many cases, this
command works in conjunction with the GPIB REN signal. Local control
may be restored with the GTLA or LOC commands.

Example

LLO

KM-488-ROM USER GUIDE

3.4

SDC This command forces those devices attached to the GFIB and addressed to
listen to a predefined state. The actual response of a device to this
command is device-dependent.

Example
sDC

TCT The (TCT) Take Control command allows the KM-488-ROM to pass
control to another device (with controller capabilities) on the bus, and is

able to receive control. The device to receive control must first be
addressed to talk.

Example
TALK 5 TCT

XMITA

The XMITA routine programs the KM-488-ROM to send array data when the KM-488-ROM is
a device or the Active Controller. XMITA also sends binary data; for example, data containing
embedded line feeds or other control characters. Optionally, terminator characters may be
used to mark the end of data or the data byte may be sent with EOI specified. XMITA allows
the KM-488-ROM to send up to 64 KBytes of data from an array, and is especially useful in
situations where KM-488-ROM must send large amounts of data (up to 64K).

The XMITA routine transmits data stored in adjacent bytes within the computer's memory,
starting from a specified location. The data is transferred from the lowest specified memory
address first, then from increasingly higher addresses until the end of the data is reached. In
other words, the least significant byte of the first element of the array is the first character sent.
The array may be of any data type, provided the language you are using has stored array
elements of increasing index in increasing memory addresses, and the least significant byte of
each location is the lowest address. The actual number of data bytes per location varies
according to the type of data elements contained within the array and the language being
used. Refer to a language reference manual which describes the language that you are using
for exact details.

Before you call the XMITA routine, be sure to designate the KM-488-ROM as a Talker. Hint:
If the KM-488-ROM is the Active Controller, call the XMIT routine with a My Talk Address
(MTA) command. If the KM-488-ROM is a device, call the STATUS routine and check the
state of the TA bit in the Address Status Register.

READING DATA

Once an instrument has taken a measurement, its data must be read into the computer, using
any of the following routines:

+ ENTER

s RCV
RCVA

INTRODUCTION TO CALLABLE ROUTINES 3-1

3-12

ENTER

Use this routine only if the KM-488-ROM is an Active Controller. The ENTER routine
transfers data from the specified device through the KM-488-ROM to the application program.
Calling ENTER addresses the KM-488-ROM as a listener, the device at the specified GPIB
address as a talker, and asserts the GPIB REN line. The received data is then placed into a
string specified within the ENTER call. This data string is returned with a status byte and a
count variable containing the actual number of bytes received by the routine.

The ENTER routine returns to the calling program when any of the following occur:

¢ Calling ENTER when the KM-488-ROM is not the active controller.
* Receiving a byte (other than the specified terminator) with the EOI signal asserted.

* Receiving the specified message terminator (any one of the four default terminators may
be selected).

Filling the receive data string,.

* Expiration of the timeout period.

NOTE: If programming in BASICA, you may modify the default receive terminator
sequences by running the CONFIG program. Otherwise, call the INTERM routine.
See Section 3.2 for defaults.

When data reception is complete, all devices are at UNTALK and UNLISTEN. Therefore, to
receive strings in "pieces,” avoid using ENTER.

All Carriage Returns and the receive message terminator character are stripped from the
received data and are not stored within the string or included in the byte count. If the ENTER
routine terminates due to reception of a data character with EOI asserted (other than the
chosen receive terminator character), that character will be stored and included in the byte
count,

Before you call the ENTER routine, be sure to set up a string to store the received data.
Regardless of the language, you must allocate a string length greater than or equal to the
number of bytes you expect to receive. Otherwise, data may be stored in areas allocated from
DOS or other parts of your program, and the program will crash.

RCV

Use this routine to program the KM-488-ROM to receive data when the KM-488-ROM is a
non-System Controller. RCV is useful in situations where KM~-488-ROM must receive data
concurrently with other listeners on the bus. The RCV routine is also useful when data must
be received immediately after sending a string of commands with the XMIT command.

Received data is placed in the string named within the call. The data string is returned along
with a status byte, and a variable containing the actual number of received bytes. The RCV
routine stores data in a manner similar to ENTER (carriage returns and the message
terminator are stripped from the received data).

The RCV routine will return to the calling program when one of the following events occurs:

* Calling RCV when the KM—488-ROM is not a listener.

* Receiving the selected terminator character.

KM-488-ROM USER GUIDE

* Receiving a data byte with EOI asserted.
* Receiving the maximum number of bytes that will fit into the receive string.

* Expiration of the timeout period.

Before you call the RCV routine, be sure to designate the KM-488-ROM as a listener. Hint: If
the KM-488-ROM is the Active Controller, call the XMIT routine with a My Listen Address
(MLA) or LISTEN nn command. If the KM-488-ROM is a device, wait until the KM-488-ROM
is addressed to listen by the Active Controller by calling the STATUS routine and checking the
state of the LA bitin the Address Status Register.

Set up a string to store the received data. Regardless of the language, you must allocate a
string length greater than or equal to the number of bytes you expect to receive. Otherwise,
data may get stored in areas allocated from DOS or other parts of your program, and the
program will crash.

RCVA

The RCVA routine is similar to the RCV Routine in that it programs the KM-488-ROM to
receive data when the KM-488-ROM is a device (not the Active Controller). The principal
differences are that the RCVA routine stores the received data in a specified array and all
received bytes will be stored. RCV A can also receive binary data; for example, data
containing embedded line feeds or other control characters.

The received data is placed into the array named within the call. The number of bytes
available for storage must also be specified. A status byte and a variable containing the actual
number of received bytes are also returned. The RCVA routine stores every received
character, including carriage returns and message terminator characters. These characters will
also be included within the byte count.

The RCVA routine will return to the calling program when one of the following events occurs:

» RCVA is called when the KM-488-ROM is not a listener.

The selected terminator character was received (if terminators were enabled).

A data byte was received with EOI asserted.
The number of bytes specified in the COUNT parameter has been received.

* The timeout period has expired.

Before you call the RCVA routine, be sure to designate the KM-488-ROM as a listener. Hint:
If the KM-488-ROM is the Active Controiler, call the XMIT routine with a My Listen Address
(MLA) command. If the KM-488-ROM is a device, call the STATUS routine and check the
state of the LA bit in the Address Status Register. You must wait for LA before calling RCVA.

Set up an array to store the received data. The number of bytes per array location will vary
according to the type of array. When the array contains more than one byte per location,
storage of the received data will begin at the least significant byte of the specified array
location and progress in accordance with the manner most languages store data in arrays.

Regardless of array size or the language, you must allocate data storage greater than or equal

to the number of bytes specified in the count variable. Otherwise, data may be stored in areas
allocated from DOS or other parts of your program, and the program will crash.

INTRODUCTION TO CALLABLE ROUTINES 3-13

3.5

3-14

Refer to the XMITA routine for a discussion of the relationship between number of array
locations vs. number of data bytes.

TRANSMITTING/RECEIVING DATA VIA DMA

When using DMA, the computer transfers data directly between its memory and the KM-488-
ROM, resulting in the high speed transmission or reception of up to 64 KB of data to or from
anarray. In contrast, when transferring data while not using DMA, the computer transfers
data between its memory and the device's controller chip through registers in the
microprocessor. Because the microprocessor must also execute other instructions, the rate at
which it passes data far slower than when DMA is used.

The implementation of a DMA transfer is language-dependent. If you are programming in
BASICA, you must call the DMA routine. Other languages initiate DMA by calling the RCVA
and XMITA routines in conjunction with the SETDMA routine.

DMA

This routine works only in BASICA. The DMA (Direct Memory Access) routine permits high
speed transmission or reception of up to 64K bytes of data. This data is received
into/transmitted from an array. In order to use the DMA routine, the KM-488-ROM must be
assigned to a DMA "channel.” Each DMA channel consists of an address pointer and a pair of
hardware signals. The KM~488-ROM signals its need to transfer data via the DMA request
signal (DMAREQ). Other logic in the system arbitrates control of the address and data busses
between the microprocessor and the DMA controller. When the busses are available, the
DMA controller places the contents of the address pointer register for that channel onto the
address bus and notifies the KM-488-ROM that it is ready to perform the transfer via the
DMA Acknowledge signal (DMA ACK). The DMA controller then generates all the other
signals required to perform the transfer, with data passing directly between the KM-488-ROM
and memory.

DMATIMEOUT

This routine does not work in BASICA. DMATIMEOUT allows you to reset the length of time
to elapse before a DMA Timeout Error occurs. (DMA Timeout Errors are reported when
XMITA and RCVA calls are used with DMA.) The default value of the timeout period is 10
seconds.

A DMA Timeout Error occurs when the time to transmit or receive an entire message exceeds
the set time. This is different from the I/0 timeout, which occurs when the time between
adjacent bytes exceeds the timeout value. Note that it may be better to set the 1/0 timeout
period to a shorter length than the DMA timeout period.

NOTE: In BASICA, the DMA Timeout period is changed using the CONFIG program. See
Chapter 2,

SETDMA

This routine does not work in BASICA. The SETDMA routine, in conjunction with the
XMITA and RCVA routines, initiates a DMA data transfer.

KM-488-ROM USER GUIDE

3.6

To perform a DMA transfer, the KM~488-ROM must be assigned to a DMA "channel.” Each
DMA channel consists of an address pointer and a pair of hardware signals. The KM-488-
ROM signals its need to transfer data via the DM A request signal (DMAREQ). Other logic in
the system arbitrates control of the address and data busses between the microprocessor and
the DMA controlier. When the busses are available, the DMA controller places the contents of
the address pointer register for that channel onto the address bus and notifies the KM-488-
ROM that it is ready to perform the transfer via the DMA Acknowledge signal (DMA ACK).
The DMA controller then generates all of the other signals required to perform the transfer,
with data passing directly between the KM-488-ROM and memory.

The SETDMA routine designates a DMA channel for data transfers. The channel you assign
must agree with the setting of the DMA Level jumpers on the KM-488-ROM board (see
Section 2.4). To initiate a DMA transfer,

» Call SETDMA with the appropriate channel number to enable DMA transfer.
¢ Call XMITA/RCVA.
s Call SETDMA with a channel number other than 1, 2, and 3 to disable DMA transfers.

CHECKING DEVICE STATUS

Generally, GPIB devices indicate whether or not they need servicing by means of serial
polling and /or parallel polling. Often, serial polling and parallel polling are used together to
determine the type of service needed by a device. This section describes those routines
associated with serial and parallel polling. They include

* SRQ

+ SPOLL

¢ PPOLL

e SETSPOLL

NOTE: The SRQ routine does not work in BASICA. When programming in BASICA, use
the STATUS routine to check the state of the SRQ signal.

SRQ

This routine does not work in BASICA. SRQ detects the state of the SRQ signal on the GPIB
bus. When this routine returns a 1, it indicates that the SRQ line has been asserted. When the
routine returns a 0, it indicates that the SRQ line remains unasserted.

SRQ response can be fed into a conditional statement within your program. For example,
normally you would want to conduct a serial poll only when the SRQ line has been asserted.
In this case, you could call the SRQ function and then feed its result into a conditional which
would call an SPOLL if SRQ had been asserted.

NOTE: Once you have obtained a TRUE response from the SRQ function, the SRQ
response will reset to FALSE -- even if the SRQ line is still active. In order to reset
the SRQ response to TRUE, you must serial poll at least one device requesting
service. This action will reset the device's SRQ line. At this time, if other devices
were asserting SRQ, the output of the SRQ function would again reset to TRUE.
Otherwise, the SRQ function would become TRUE on the next assertion of the
SRQ line.

INTRODUCTION TO CALLABLE ROUTINES 3-15

3-16

SPOLL

The SPOLL routine allows the Active Controller to check the state of the devices tied to the
bus. Devices may be polled "at will" or in response to the Service Request line (SRQ) being
asserted on the GPIB. Calling SPOLL will return the serial poll response byte from the
addressed device.

The SPOLL routine does the following;:

» Addresses the specified device to talk.

Enables the specified device to send its serial poll response byte.

Receive the device's serial poll response byte.

Disables the serial poll.

Untalks the specified device.

PPOLL

Use this routine only when the KM-488-ROM is an Active Controller. Calling this routine
initiates a GPIB parallel poll. The parallel pol], like the serial poll, is a mechanism allowing
the active controller to determine which device(s) need service. The parallel poll allows you
to quickly check the state of up to eight (groups of) devices simultaneously.

Before a parallel poll can be issued, each device to be polled must be assigned to a GPIB Bus
Data Line (DO - D7). This is the device's response mechanism. If the device requires service
when the Parallel Poll command is issued, it will assert its designated bit within the data bus.
The assigned bit and its asserted value (0 or 1) must be preconfigured. This is accomplished
via a set of GPIB commands sent to the device over the bus.

To configure a device for Parallel Polling,

¢ Address the device to listen.

* Issue a GPIB Parallel Poll Configure (PPC) command accompanied by a command byte to
the device. (Hint: Use the KM-488-ROM's XMIT command.)

Once configured, the device will retain its parallel poll configuration until it is powered down
{or reset by other hardware means), or until unconfigured by a GPIB Parallel Poll Unconfigure
(PPU) or Parallel Poll Disable (PPD) commands.

A parallel pollis limiting in that it can determine only that a device(s) requires service. It
cannot identify the specific conditions requiring service, In order to identify the condition(s),
the KM-488-ROM must then perform a serial poll of each device requiring service (use the
KM-488-ROM SPOLL command). The serial poll allows you to distinguish which device(s}
need service and what type of service is required.

NOTE: Many GPIB devices do not support parallel polling. Check your device's
documentation.

KM-488-ROM USER GUIDE

3.7

SETSPOLL

This routine allows you to program the serial poll response byte of the KM-488-ROM when it
is acting as a device (non-Controller). The actual usage and meaning of each bit is user-
defined. Optionally, it allows you to drive the SRQ line to request service from the Active
Controller.

For example, consider an application where the KM-488-ROM transfers files from a computer
containing a KM-488-ROM acting as a device to a second computer containing a KM-488-
ROM that is the system controller. You could define a simple protocol in which the device
(KM-488-ROM) is addressed to listen, and the controller passes a string containing a filename
and a command byte. The command byte might signify a file read, write, create or append
operation. If the command specified a read of a filename that could not be found, the device
would notify the Controller of this error condition using the SETTOLL routine. You would
define one of the Serial Poll Response bits to mean "File Not Found." Then, you would call
SETPOLL, with the appropriate bits set. This would immediately notify the controller of the
error condition. '

LOW-LEVEL ROUTINES

It is sometimes useful to be able to check the bits of the various GPIB Controller chip registers.
Two routines enable you to do this, as follows:

SETINT
« STATUS

SETINT

This routine sets the Interrupt mask bits within the GPIB controller chip. The most common
reason for this is to allow the generation of interrupts upon receiving a Service Request (SRQ).
Other possible reasons include using the interrupts to enable detection of other bus related
events.

If the KM-488-ROM is acting as a device, SETINT can check its address status. For example,
using the ADSC (Address Status Change) interrupt would alleviate constant monitoring of the
state of the TA (talk addressed) and LA (listen addressed) bits in the Address Status Register.

It is important to note that when using interrupts, you must set up an interrupt service routine
to handle the interrupting condition. The method for setting up such a routine is language-
dependent. You must also assign the KM-488-ROM to an Interrupt Level not used by other
devices within the computer. The KM-488-ROM contains an Interrupt Level selection jumper
That must be set accordingly. Refer to the INSTALL program and Chapter 2 for assistance in
setting the jumpers.

STATUS

The STATUS routine checks the status bits within the GPIB Interface Chip and also the state of
DMA transfers. It is especially useful when the KM-488-ROM is acting as a device, rather
than a controller.

INTRODUCTION TO CALLABLE ROUTINES 3-17

3.8

This routine can also

+ Examine the state of various setup parameters within the firmware. The STATUS routine
obtains the value of the I/O Port Base address of the GPIB Controller Chip, the GPIB
address of the Controller Chip, each of the four transmit/receive message terminators, and
the timeout values used in conjunction with normal and DMA transfers. This function is
particularly useful in a multiple board environment, or while developing and debugging
software.

* Read the state of the Interrupt Status registers within the GPIB Interface Chip. These
registers provide information for using the KM-488-ROM as either a device or the active
controller. This feature may be useful in a "polling" environment (one in which software
checks for certain conditions). When acting as the Controller, the STATUS routine may
check the state of SRQ or, if interrupts are set up and enabled, the STATUS routine may
check which conditions caused the interrupt.

When the KM488-ROM is acting as a device, STATUS can check for reception of a Group
Execute Trigger (GET) or Device Clear {DCL) command by reading Interrupt Status Register
1. Interrupt status register 2 can be checked to see if the device has been set to local lockout or
remote states. When the board is the active controller, STATUS can check the SRQI bit to see
if the SRQ line has been asserted.

Whenever the state of the Interrupt Status Registers is read, all "interrupt” bits within the
register are reset. It is important to note this when reading Interrupt Status Register 1. The
XMIT and RCV routines check the D1 and D0 bits to determine when to read or write the next
data character. If you read the Interrupt Status Register 1 and the first byte of data has been
received, the D1 bit will be cleared. If the RCV routine is then called, it will "hang up” waiting
for the D1 bit to set.

Read the state of the Terminal Count bits for each one of three possible DMA channels, by
setting the reg parameter to 3. This information is useful when using the BASICA DMA
routine in the "background” mode.

BOARD CONFIGURATION ROUTINES

This section describes those routines to use for a nonstandard interface setting. For example,
if you are developing application programs in a language other than BASICA and have
changed the factory-default setting of the I/O Base Address switch, you must call the
SETPORT routine. (In BASICA, you will have to run the CONFIG program as described in
Section 2.6.)

If an application requires the installation of more than one KM-488-ROM board in a single
computer, you will use the SETBOARD routine (except in BASICA). In BASICA, each board
has its own software EEPROM which must be assigned to its own base address. Boards are
selected by using a DEF SEG statement to point to the desired board prior to the call.

SETPORT

You will use this routine only if you have changed the default Base Address (and are not
programming in BASICA). If using multiple boards within a single computer, use SETPORT
to assign a "board number” to a given I/O port address.

KM-488-ROM USER GUIDE

3.9

SETBOARD

You will use this routine only if your system has multiple KM-488-ROMs. This routine
identifies the board to be programmed and thus is called prior to executing a series of
routines. Only the board identified with the SETBOARD routine will be affected, until
another SETBOARD routine identifying another board is called. The "board numbers" are
associated with the 1/0 Port Base Address of a given board.

MULTIPLE BOARD PROGRAMMING NOTES

In a multiple-board environment, set each board to either CONTROLLER or DEVICE mode,
and assign each board any legal GPIB address (including the same GPIB address as other
boards within the same computer). It is possible to assign multiple controllers within the
same computer. Note, however, that you will NOT be able to communicate between two KM-
488-ROM boards within the SAME computer, even if one is configured as a device and the
other as a controller.

In a multiple-board environment, the message terminator settings and timeout values are
GLOBAL parameters. In other words, all the KM-488-ROM boards within a computer share
the values of these parameters. The IOTIMEOUT, DMATIMEOUT, INTERM, and OUTTERM
routines are callable at any time, regardless of the board most recently selected, and the values
that are set will affect all of the boards.

When DMA is used, it will behave in a similar manner (DMA is enabled independently of the
board was selected at that time. A call to the XMITA and RCVA routines will use DMA on
every board once DMA has been selected at the time DMA was enabled.

INTRODUCTION TO CALLABLE ROUTINES 3-19

3-20 KM-488-ROM USER GUIDE

Chapter 4
PROGRAMMING IN BASICA OR GWBASIC

While Chapter 3 gives a brief overview of the routines available for programming the KM-
488-ROM, this chapter gives instructions for calling the routines from BASICA and
GWBASIC. The routines appear in alphabetical order and include a sample program for each.

4.1 GENERAL

The KM-488-ROM uses an EEPROM (Electrically Erasable Read Only Memory) that contains
GPIB language extension for BASIC. BASIC uses the CALL statement to access those
language extensions within a user program. Before any CALL statement can function, it must
contain three definitions, as follows:

¢ The memory segment address of the KM-488-ROM library code.
¢ The location of the routine (offset address).
* The parameters used by the routine.

Definition of the memory segment address of the interface should appear at the start of a user
program in a DEF SEG statement. This statement is followed by the memory address to
which the EEPROM is mapped. The memory address is a hexadecimal value; thus it should
havea &H prefix. The memory address must match the setting of the KM-488-ROM
Memory Address Switches. Refer to Section 2.4 for more information.

When multiple KM~488-ROM boards are present in the same system, each must have its own
unique segment address. You may then select which of the boards is to be accessed by
executing a DEF SEG to its segment address.

BASIC requires identification of the offset address of each KM-488-ROM routine to know
where to call the routine from within the ROM. The offset address represents the number of
bytes the routine is offset from the DEF SEG address. Each KM-488-ROM interface routine
must have a variable set to the offset for that routine. For example, the offset for the INIT
routine is zero; therefore, you must include the line INIT = 0 before calling the routine.

Note that you may use any name for these routines, so long as the alternate name matches the
offset of the desired function. For example, if we define INIT = 0 and INITIALIZE = 0 within
a program, the statements CALL INIT and CALL INITIALIZE will execute the same function.

NOTE: You must define one segment address in every program and an offset address for

each KM-488-ROM routine. The most recent DEF SEG statement must reflect the
starting address of the EEPROM on the board being used.

PROGRAMMING IN BASICA OR GWBASIC 4-1

Each KM-488-ROM Interface Routine requires certain parameters for execution. These
parameters are always integer or string variables that must be defined prior to executing the
CALL statement. The variable names must be enclosed in parentheses and follow the
function name within the CALL statement. For example,

CALL INIT (ADRS%,MODE%)

These variables will pass values into and out of each of the call routines. When passing values
into a call routine, you must equate a named variable of the appropriate type with the desired
value, and subsequently pass that variable name into the call.

The example below shows the proper way to initiate a CALL statement sequence. It assumes
that the EEPROM is mapped to segment CCOO hex and the INIT routine has an offset value
of 0. In this example, the variable names ADRS% and MODE% pass the values 0,0 into the
INIT routine. Note that you may assign any legal BASICA to these variables. However, the
variables must be the correct data type and value, and must be passed into a callable routines
in the same order as shown in the routine descriptions.

xx DEF SEG = &SHCCO00 'Assigns memory segmant address

xx INIT=0 : ADRS%=0 : MODE%=0 'Givas offset of INIT routine & wvariable
'dafinitionas

xx CALL INIT (ADRS%, MODE%) 'usas call statement

Software Configuration

KM-488-ROM firmware contains a number of configuration parameters that govern the
default settings of the input and output message terminator settings, message timeout
periods, and I/O port addresses. If these default values are unsatisfactory, they may be
changed by running the CONFIG program (see Chapter 2).

The default DMA and [/O Timeouts are 10 seconds.

The default terminators are as shown in the following table.

TERM # OUTPUT TERMINATOR INPUT TERMINATOR
0 LF EOI LF
1 CR LFEQOI CR
2 CR EOI , (comma)
3 LF CR EOI : (semi-colon)

Programming Notes
1. In BASICA, only variable names may be passed into and out of functions.

2. Be sure to include all the parameters for the Interface Routine. The parameters must be
the same data type and appear in the same order as those given. You may, however,
change their names. BASICA has no means for checking that the exact number of
parameters are given or that the parameters of the appropriate type. If you specify an
incorrect number or type of parameters, your program may crash.

3. Strings are limited to the BASICA maximum of 256 characters.

KM-488-ROM USER GUIDE

4. Allintegers are treated by the KM-488-ROM routines as unsigned values (0 to 65535).
However, BASICA treats them as signed magnitudes (-32768 to +32767). When you want
to express a value which is greater than or equal to 32768, you will have to express it in
one of two ways, as follows:

» Convert it to a hexadecimal value. Be sure to prefix these values with &H when
equating them to a variable name. Legal hexadecimal values range from 0 to &HFFFF
and can be used to represent values from 0 to 65535.

» Use unsigned values from 0 to 32767 as is, but for values of 32768 to 65535 subtract
65536,

5. The file HEADER.BAS is available to assist you with defining CALL routine offsets. This
is a BASICA source file that predefines the offsets. It can be modified to suit your needs.

6. Do not give your variables the same name as any of the KM-488-ROM routines.

4,2 DESCRIPTION FORMAT FOR ROUTINES

The format for each descriptions is as follows:

purpose ... abrief description of the routine. See Chapter 3 for more detailed
descriptions.

offset ... gives the BASICA offset for each routine.

usage .. gives an example of usage for each routine and assumes the input
parameters are passed in as variables. These parameters can also be
passed in directly. See the General Programming Notes for more
information.

alternate usage .. lists alternate usage for the routine, if any. Unless otherwise noted, the
alternate usage performs exactly the same function as the usage.

parameters ... describes each of the input parameters.
returns ... describes any values returned by the routine.
notes ... lists any special programming considerations.

example .. gives a programming example using the routine.

4.3 ROUTINES

measssssm DMA

NOTE: DMA allows data transfer rates in excess of 100 kilobytes per second. However,
the actual data rates are limited by the rates at which other bus-connected devices
can send or receive data. These rates are governed automatically by the GPIB
handshaking signals.

purpose Initiates a DMA transfer.
offset 206

PROGRAMMING IN BASICA OR GWBASIC 4-3

usage

parameters

BIT

DMA (cont.)

xxDMA = 206

xx count§ =

xx moda¥ =

xx stathy = 0

xx DIM DATA% (100) '‘Assigns storage space for
'received data

xx sag¥ =

xx ofs¥= VARPTR (DATA% (0))

xx CALL DMA (seg¥%, ofs%, count%,mode$, stat¥) ...

seg% is an INTEGER representing the segment portion of the memory
address of the data. seg% is set to -1 to indicate the BASICA data
segment.

ofs% is an INTEGER representing the offset portion of the memory
address of the data. This is usually obtained using the VARPTR
function. The VARPTR function must be called immediately prior to the
DMA function call, and all variables used within the program must be
declared prior to the VARPTR function. The reason for this is that
BASICA can dynamically allocate storage space and if variables are
declared after the VARPTR call, the array may be relocated and the data
placed in the wrong location. This cou

count% is an INTEGER containing the maximum number of data bytes
to be transmitted or received. If you wish to send or receive more than
32767 bytes, you must express count% differently. See Programming
Note 4 in the beginning of this section.

The DMA routine also performs "byte packing"; that is, two bytes of data
are stored in each of the integer array locations. The first byte received is
placed into the least significant byte of the first array location.

mode% is an INTEGER that defines the type of DMA transfer to be
made and the operating characteristics of the DMA controller. The most
common settings for mode% are &H2005 for DMA input and &H2009
for DMA output.

The mode byte format is
Mode - High Byte
15 14 13 12 1" 10 9 8

X X WAIT X X X X X

BIT

Mode - High Byte

7 6 5 4 3 2 1 0

MOD1 MODO | ADEC INIT ouT INP Cst1 Cso

Where
X May be any value.

KM-488-ROM USER GUIDE

e DMA (cont.)

WAIT

CS0, 1

INP

ouT

INIT

ADEC

This bit enables the DMA wait option. When this-bit is 0,
the DMA routine waits for the DMA transfer to be
completed or a timeout to occur before returning to the
called program.

When this bit is 1, the DMA controller is setup for the
transfer and control returns to the user program without
waiting for the end of the transfer.

Select the channel for DMA transfer. Possible selections are
as follows:

€81 CS0
0 1 Select DMA Channel 1
1 0 Select DMA Channel 2
1 1 Select DMA Channel 3

The selected DMA channel must agree with the setting of
the DMA Level Jumpers. See Section 2.4 for more
information.

NOTE: Some DMA channels may be assigned to other
hardware within the PC. Check your PC system
documentation to determine which channels are available.

When set to 1, this bit indicates the received data is written
to PC memory via DMA. Both this bit and the OUT bit
cannot be set to 1 at the same time.

When set to 1, indicates the transmitted data is read from
PC memory via DMA. Both this bit and the INF bit cannot
be set to 1 at the same time.

Enables DMA autoinitialize mode, when it is set to 1.

Under normal circumstances, the DMA controller transfers
the specified number of bytes to/from the PC memory from
the given starting address and terminates when completed.
When the AUTOINITIALIZE mode is enabled, the DMA
controller will reset the byte count, reset the initial address,
and repeat the transfer again. This continues indefinitely
until the DMA routine is called with INIT=0.

Controls the direction in which the DMA controller
generates its addresses and obtains data. If ADEC = (), the
DMA controller is set to address increment mode. This
means that the data is accessed from successive locations
with ascending addresses within the PC memory. This
mode is most often selected because it duplicates the
manner in which array locations are accessed from the
calling program.

If ADEC =1, the DMA controller is set for address

decrement mode. This means that the data is accessed from
subsequent locations with descending addresses.

PROGRAMMING IN BASICA OR GWBASIC 4-5

4-6

mm——— DMA (cont.)
MODO, 1 The DMA controller within the PC is capable of operating

in three distinct modes. These two bits set the DMA
controller mode. Available selections are

MOD1 MOD{ MODE
0 0 Demand Mode
0 1 Single Mode
1 0 Block Mode

Descriptions of these three modes follow.

Demand Mode - In this mode, when the DMA Request line
is asserted the DMA controller assumes control of the bus.
The DMA controller retains control of the bus until the
DMA request signal is unasserted. Once this signal has
been unasserted for more than one processor clock cycle,
control of bus is returned to the microprocessor. This mode
allows the DMA controller chip to pass data at a slightly
faster rate and the microprocessor to access the bus when it
is not needed.

Single Mode - In this mode, when the DMA Request line is
asserted the DM A controller assumes control of the bus and
transfers a single byte of data. Control of the bus is then
returned to the microprocessor.

Block Mode - In this mode, the DMA controller gains
control of the bus and remains in control until the specified
number of bytes has been transferred, regardless of the state
of the DMA request line. Block Mode allows the fastest
data transfer rate possible.

NOTE: BLOCK MODE IS NOT RECOMMENDED FOR
MOST APPLICATIONS. This is because when block mode
is selected, all other DMA channels are locked out and the
microprocessor cannot execute any bus cycles. This can be
dangerous in some circumstances. For example, in many
PCs (particularly the older XT type machines), one of the
DMA channels was used to refresh the dynamic RAM
chips. (These store user programs and data.) If memory
refresh were to be halted for an excessive period of time
(hundreds of microseconds), all data within the RAMSs
would be lost.

returns stat% is an INTEGER describing the state of the transfer returned after
the call. This stat% word differs from the one used in other routines
because it indicates when "warning" conditions, as well as error
conditions, occur. A warning differs from an error in that some {or all)
of the transfer may have completed.

If the most significant bit of the stat% word is set, a warning has
occurred. This results in a negative stat% value.

The stat% value is interpreted according to the following format:

KM-488-ROM USER GUIDE

mem——— DMA (cont.)
Stat (Qutput) - High Byte

BIT

BIT

15

14

13 12 11 10 9 8

WARN

0

0 0 0 0 0 0

Stat (Output) - High Byte

7

6

5 4 3 2 1 0

0

0

0 0 T™MO | IOER MDER | CSER

Where

WARN

CSER

MDER

T™O

NOTE: The meaning of the stat%'s low bits is dependent on
the setting of the WARN bit.

Warning. If this bit is set to 1, the other bits in stat%
indicate that a Warning has occurred. H it is set to 0, the
other bits indicate that an Error has occurred.

The following are Wamning indications (WARN=1):

Address Wraparound Error. If CSER=1 and WARN=1, an
"address wraparound" has occurred. This condition arises
as a result of hardware limitations within the PC. The DMA
controller within most PCs generates 16 bits of address;
however, a 20-bit address is required by the PC. Most PCs
generate the four additional address bits with a "page
register,” which is wired to the most significant address
lines. Address wraparound occurs whenever the DMA
controller counts past its maximum count (FFFF rolls over
to 0000), because there is no mechanism to "carry” the most
significant bit into the page register.

For example, if the DMA routine were called with the SEG
parameter set to 2000, and the OFS parameters set to FFFF,
the DMA controller would be loaded with a count value of
FFFF, and the page register with a 2. The first location
accessed would be absolute address 2FFFF. The DMA
controller would then increment its address (to 0}, however
the page register would not change. Thus, the next location
accessed would be 20000, rather than 30000,

Mode Error. If MDER=1 and WARN=1, it signifies that an
invalid Mode Selection was made (see the MODE
parameter description). The DMA routine substitutes
Demand Mode (00) and continues.

Timeout Error. If this bit = 1 and WARN=], it signifies a
Timeout Error. A Timeout Error indicates that the transfer
was not completed during the designated DMA Timeout
Period. It is possible for the timeout period to expire during
a transfer of a large number of bytes to or from a slow
device, even if the transfer occurs correctly.

The following are Errors (WARN=0):

PROGRAMMING IN BASICA OR GWBASIC 4-7

4-8

notes

example

purpose

offset
usage

DMA (cont.)

IDER Input/Output Error. If this bit = 1 and WARN=0, it
indicates than the DMA routine has been called with an
invalid selection of the INP and OUT bits in the mode
parameter. Either INPUT or OUTPUT must be selected; but
not both.

CSER DMA Channel Select Error. If CSER=1 and WARN=0, it
indicates that an invalid DMA channel (channel 0) was
selected for the transfer.

When calling DMA, you must declare an INTEGER array to store
received data. Since each integer in BASICA uses 2 Bytes of memory, the
total number of array locations allocated must be equal to or greater than
one half the total number of bytes to be received.

This example shows how to avoid an address wraparound error. The
program transfers data into the computer’s memory at an even segment
boundary. This boundary is above the area used by DOS and your
program (for example, &H7000). The data can then be moved into an
array using the BASIC PEEK instruction. Note that this example stores
one byte per array location.

100 DMA = 206 '‘DMA ocall offaat

110 COUNT% = 1028 'Transfer 1028 peoints

120 DMAOFFS% =0 'Start with first array elament
130 MODE% = &H2005 ‘Input, DMA Chan 1

140 STATY = 0 'Initialize variable

150 DEF 8EG =0 'BASIC's saegment

160 DIM WAVE%({514)

170 DMASEG% = &H2000

180 DEF SEG = &HCCO0 'KM-488-ROM mamory segment

190 CALL DMA {DMASEG%, DMAOFFS%, COUNT%, MODE%, STAT%)

200 IF (STATUS%<> 0)} THEN PRINT "FAILED", STAT% : STOP
210 DEF SEG = DMASEGY 'Get data from memory te array
220 FOR I% = 0 TO COUNT%-1

230 WAVE%(I%) = PEEK(I%)

240 NEXT I%

ENTER

Addresses a specified device to talk, the KM-488-ROM to listen, and
receives data into a string from the addressed device.

21

ENTER
info$
leng$
adrs$ =

staty = 0

CALL ENTER (info$, lang%, adrs%, stats)

21
SPACES (max.chars%) ' (max.charst < 256)
0

TEELRE

L

RCVS = LEFTS (info$, leng¥)

KM-488-ROM USER GUIDE

parameters

BIT

ENTER (cont.)

info$ is a STRING (up to 256 characters) which is to hold the received
data. The string must be long enough to receive the expected number of
characters. Carriage returns and the message terminator character in the
incoming data are ignored and not stored with the received data. You
should use the BASIC SPACES$ function to declare a string which is long
enough to store the expected maximum number of characters to be
received. After the data has been received, it should be copied into a
new string which has been "trimmed" to length with the BASIC LEFT$
function. Or else, you may trim the first string to length, provided that
you resize it with the BASIC SPACES$ function prior to calling the
ENTER function again.

adrs% is an INTEGER containing the IEEE bus address of the device
that will sent the data and the terminator to be used. This byte is of the
following format:
Adrs (Input Parameter) - Low Byte

6 5 4 3 2 1 0

TRM1 TRMO 0 ADR4 ADR3 ADR2 ADR1 ADRO

Where

TRM1-0 Terminator Select. These two bits select the Message
Terminator to be used to signal the end of a transmission.
Available terminator selections are

TRM1 TRMO TERMINATOR # DEFAULT

0 0 0 LF
0 1 1 CR
| 0 2 ,
1 1 3 ;

These terminators are defined upon system configuration
and are stored (along with the BASICA library code) in the
EEPROM. They can be changed by running the CONFIG
program as described in Chapter 2.

The easiest way to specify an alternate terminator is to add
a factor to the GPIB address of the desired instrument
which is specified within the ENTER call. The factors
added for each terminator are as follows:

GPIB Address + 0 = Terminator 0
GPIB Address + 64 = Terminator 1
GPIB Address + 128 = Terminator 2
GPIB Address + 192 = Terminator 3

For example, if you wanted to receive a message using
terminator 2 from a device at GPIB address 10, the value of
adrs% supplied to ENTER would be 138 decimal (10 + 128).

ADR4-0 GFPIB Address. These five bits are used to represent the
GPIB address of the device to which the data is to be sent.
GPIB addresses can range from 0 to 30.

PROGRAMMING IN BASICA OR GWBASIC 4-9

4-10

returns

BIT

ENTER {(cont.)

info$ is a STRING variable, up to 256 characters, which will contain the
received data. The length of the string must be long enough to receive
the expected number of characters. Enter will terminate reception of
data when: 1) the number of characters received exceeds the length of the
string, 2) the specified terminator is received, or 3) any character is
received with the EOl signal asserted. Carriage returns and the
terminator character in the incoming data are ignored and not stored
with the received data. However, bytes other than the terminator which
are received with EOI asserted will be stored.

leng% is an INTEGER, less than or equal to 256, which indicates the
actual number of bytes which were stored. This number does not
include message terminator characters or carriage returns.

stat% is an INTEGER which describes the state of the transfer returned
after the call. If a stat value of 0 is returned, the transfer completed
normally. Otherwise, the returned stat values {or combination of) are
interpreted as follows:

Stat (Return) - Low Byte
6 5 4 3 2 1 0

0 0 0 T™MO OVF NC ADRS

example

Where

TMO Timeout Error. Indicates whether or not a Timeout Error
occurred during data transfer. If this bitisa 1, thena
Timeout Error occurred.

OVF Overflow Error. If this bit is a 1, then the info string was
filled, before a terminator character or EOI was detected.

NC KM-488-ROM not an Active Controller . If this bitissetto a
1, it indicates the routine was called before the KM-488-
ROM was designated as an Active Controller.

ADRS Invalid GPIB address. If this bit is set to 1, then an invalid
GPIB address was given.

In the following example, data is sent from two different instruments to
a KM-488-ROM. The KM-488-ROM is acting as the System Controller
and is assigned to GPIB address 0. One of the two instruments is a
voltmeter, requiring a Carriage Return-Line Feed terminator
combination, assigned to GPIB address 7. The second instrument,
located at GPIB address 10, requires a line feed as its terminator.

The voltmeter is first sent a string of data which represents its instrument
setup command. Then, when addressed to talk, it sends its most current
reading to the KM-488-ROM. The second instrument is instructed to
send its status, when addressed to talk. It is assumed that the string sent
by both instruments is 25 characters or less. The string is printed out on
the computer screen.

KM-488-ROM USER GUIDE

purpose

offset
usage

alternate usage
parametors

ENTER (cont.)

10
20
30
31
32
34
36
40
45
50
60
70
80
S0
100
110
120
130
140
150
160

170
172
180
190
200
210
220
230

240
250
260
270

INIT

DEF SEG=§HCCOO

INIT? = 0 : SEND=9 : ENTER=Zl

ADRS%=(0 : MODE%=4

1

'Set up KM-408~-ROM as System Controller with High Speed
'Bus Handshake at GPIB address 0

CALL INIT (ADRS%,MODE)

INST14=7

INST1.TERM$=INST1%+64 'Use Terminator 1 for Instrument 1
INST2%=1l0 'Use Terminator 0 for Instrumant 2

SETUP §="FOROTOMOX" 'String to setup Instrument 1

STAT$ = “SEND STATUS" 'String to obtain status from Inst 2
INSTRING=SPACES (25) 'Allccate space for received data
RLEN%=0 'Allocate varlable for rov length

CALL SEND (INST1%.TERM, SETUP§, STATS) 'Setup Inatrument 1

' Check status returned by SEND call

1

IF STAT$<>0 THEN PRINT "Error sending to Inst 1 Status
=" STATS

1

'Read the data returned

CALL ENTER (INSTRING$, RLEN%, INST1%, STATY)

IF STAT%<>0 THEN PRINT "Error receiving from Instrument 1"

DSP§wLEFTS (INSTRINGS, RLEN%)

PRINT "INSTRUMENT 1 DATA ="; DSP$

CALL SEND (INST2%, STATS, STATS)

IF STATUS<>0 THEN PRINT "Error sending to Inst 2 - Status
=" STATS

CALL ENTER (INSTRINGS, RLEN%, INST2%, STATS)

IF STATS<>0 THEN PRINT "Exror receiving from Instrument 2"

DPS$=LEFT$ (INSTRINGS, RLEN%)

PRINT "Instrument 2 data ="; DSP$§

Initializes a KM-488-ROM by assigning it a GPIB address and
establishing it as a System Controller or Device.

0

INIT = @
adrsi= : moda$=
CALL INIT (adrs%,modet)

CALL INITIALIZE (adrs%,modak)

adrs% is an INTEGER representing the IEEE bus address of the KM-488-
ROM. This is an integer from 0 to 30.

PROGRAMMING IN BASICA OR GWBASIC 4-11

4-12

wmmmsm—— [NIT (cont.)

mode% is an INTEGER representing the operating mode of the KM-488-
ROM. These can be any of the following values:
Mode - Low Byte

BIT 6 5 4 3 2 1 0

X X X X FAST DEV X
Where
X May be any value,

returns
example

purpose

offset
usage

parameters
returns

FAST Handshake Speed. If this bit is set to 1, High Speed GPIB
bus handshaking will be used(500ns.). If it is set to 0, Low
Speed GPIB bus handshaking (2 s.) will be used. See
Chapter 3 for more information regarding the handshake
speed.

DEV Device. If this bit is set to 1, then the KM-488-ROM is acting
as a Device. Otherwise, when this bit is set to 0, the KM-
488-ROM is acting as a System Controller. When System
Controller is selected, the GPIB IFC line is momentarily
asserted.

None.

This example initializes the KM-488-ROM as a System Controller with a
IEEE address of 0 with a High Speed Handshake.

10 LEF SEG=&HCCO0

20 INIT=0

30 ADRS%=0 : MODEY =4

40 CALL INIT(ADRS%, MODEY)

PPOLL

Initiates a Parallel Poll and returns a parallel poll response byte.

NOTE: Many GPIB devices do not support parallel polling. Check your
device's documentation.

15

xx PPOLL = 15
xx resp% = 0
xx PPOLL (rasp%)
None.

resp% is an INTEGER which will contain the parallel poll response.

KM-488-ROM USER GUIDE

hotes

example

purpose
offset
usage

alternate usage

PPOL (cont.)

Before you call the PPOLL routine, you must configure the Parallel Poll
response of the device. To do this,

¢ Address it to listen.

* Send it a GPIB Parallel Poll Configure (PPC) command, using the
XMIT command.

¢ Send a Parallel Poll Enable byte using the KM-488-ROM XMIT
command. (Use the mnemonic CMD followed by nnn where nnn is the
decimal value of the Parallel Poll Enable byte.

The Parallel Poll Enable Byte is of the format 0110SPPP, where

S is the parallel poll response value (0 or 1) that the device
uses to respond to the parallel poll when service is required.

PPP is a 3-bit value that tells the device being configured
which data bit it should use as its parallel poll response
(DIO1 through DIOS).

This example assumes that the KM-488-ROM is connected to a Sorenson
HPD30-10 Power Supply. This device is located at GPIB address 1. It is
also assumed that this device drives bit 3 of the Parallel Poll Response
byte to a logic "1" when service is required. To program the device to
respond properly, send the Parallel Poll enable byte 01101011 (107) via
the XMIT command.

10 DEF SEG=&HCCOO

20 INIT=O0 : XMIT=3 : PPOLL=15 : CTLADRS%=(0 : MODE4=0

30 CALL INTT (CTLADRSY, MODE%)

40 COMMANDS="REN UNL UNT LIBTEN 1 PPC CMD 107"

50 CALL XMIT (COMMAMDS, STATS)

60 IF (STATH<>0) THEN PRINT "Exror sending PPC amd Btatus="; STATS
70 CALL FROLL(REEPS)

80 IF (REBR% AND 8) <> 0 THEN PRINT “HPD30-10 Raquesting Servicae..."
RCV

Receives data into a string.

6

XX RCV = 6§

xx info$= SPACES (max.charst) ' (max.chars% < 256)

xx leng¥=

xX stath =

XX CALL RCV (info§, leng%, stats)

CALL RECRIVE (info$, leng%, atats)

NOTE: The alternate usage assumes the use of Input Message
Terminator 0.

PROGRAMMING IN BASICA OR GWBASIC 4-13

4-14

parameters

BIT

RCV (cont.)

info$ is a STRING (256 characters max.) which will hold the received
data. The string must be long enough to receive the expected number of
characters. Carriage returns and the message terminator character in the
incoming data are ignored and not placed in received data. However,
bytes other than the terminator received with EOl will be stored. You
should use the BASIC SPACES$ function to declare a string which is long
enough to store the expected maximum number of characters to be
received. After the data has been received, it should be copied into a
new string and "trimmed" to length with the BASIC LEFT$ function.

NOTE: Before calling RCV, stat% must be initialized for terminator
selection.

stat% is an INTEGER that selects the input terminator to be used. The
terminator (stat%) values follow:
Stat (Input) - Low Byte

6 5 4 3 2 1 0

TRM1 TRMO X X X X X X

returns

Where
X May be any value.

TRM1-0 Terminator Select. These two bits select the Input Message
Terminator to be used to signal the end of a transmission.
Available terminator selections are

TRM1 TRM(TERMINATOR # DEFAULT

LF
CR

L3

——
— O O
[FS I % B]

r

These terminators are defined upon system configuration
and are stored (along with the BASICA library code) in the
EEPROM. To change their values, run the CONFIG
program as described in Chapter 2.

info$ is a STRING variable (256 characters max.) containing the received
data. The string must be long enough to receive the expected number of
characters. Enter will terminate reception of data when 1) the number of
characters received exceeds the length of the string, 2) a message
terminator is received, or 3) any character is received with the EOI signal
asserted. Carriage returns and the message terminator in the incoming
data are ignored and not placed in received data. However, bytes other
than the message terminator received with EOI are stored.

leng% is an INTEGER, less than or equal to 256, which indicates the
actual number of bytes which were received and stored.

stat% is an INTEGER which describes the state of the transfer returned
after the call. The returned stat% values (or combination of) are
interpreted as follows:

KM-488-ROM USER GUIDE

s RCV (cont.)

BIT

7

Stat (Return} - Low Byte
6 5 4 3 2 1 0

0 0 0 T™O OVF NL 0

notes

example

purpose
otfset

Where

TMO Timeout Error. Indicates whether or not a Timeout Error
occurred during data transfer. If this bitisa 1, thena
Timeout Error occurred.

OVF Overflow Error, If this bit is a 1, then the RCV routine
received more characters than could fit into the info string.

NL KM-488-ROM not a Listener. If this bitis setto a 1, it
indicates the RCV was called before the KM-488-ROM was
designated as a Listener.

The KM-488-ROM must be addressed to listen and a device must be
addressed to talk prior to calling this routine,

This example shows how the RCV routine might be used together with
the XMIT routine to receive data. It uses the XMIT routine to command
a Keithley 196 voltmeter to take a reading. The meter reading is received
using the RCV routine. It is assumed that the meter reading returned
will fit into a 25-character string.

This example assumes that the KM-488-ROM has been configured such
that transmit message terminator 1 is Carriage Return-Line Feed
combination and this combination is also used by the Keithley 196.

10 DEF SEG=&HCCOO

20 INIT = ¢ : XMIT = 3 : RCV=f : ADRS%=0 : MODE&=0

30 CALL INIT (ADRS%,MODE%)

40 SETUP§="REM UNL UNT LISTEN 7 MTA DATA 'FOR381T3X' T1 GET
UNL UNT TALK 7 MIA"

50 CALL XMIT (SETUPS,STATS)

60 IF (STAT%<>0) THEN PRINT "Error sending omd string
Status="; STAT%

70 RCVDATS$=mSPACES (25) ‘Allocate space for raecaeivae data

80 STAT%=0 ‘usa Input terminator 0

81 RCVLENY = 0

90 CALL RCV(RCVDATS$, RCVLEN®%, STAT%)

100 IF (STAT%<>) THEN PRINT "RCV Status Error Status=";STATS

105 DATS = LEFTS (RCVDATS, RCVLENS)

110 PRINT "Recelived data=";DAT$: "Length=";RCVLENS

RCVA

Receives data into an array.
203

PROGRAMMING IN BASICA OR GWBASIC 4-15

4-16

usage

alternate usage

parameters

BIT

RCVA (cont.)

RCVA = 203

DIM INDATS (N%)

saght =

ofsd =

maxlend = 2*%N%

rovlient =

ataty =

of a3=VARPTR {indat$ (0})

CALL RCVA(sag%,ofs% maxlen%, rovlent, stats}

REHREKEUHENE:

RARRAY (sag%,ofa% maxlent, rovient, stat¥)

NOTE: The alterante usage assumes the use of Input Message
Terminator 0.

seg% is an integer representing the segment portion of the memory
address of the data. seg% is usually set to -1 to indicate the BASICA data
segment.

ofs% is the offset portion of the memory address of the data. This is
usually obtained using the VARPTR function, The VARPTR function
must be called immediately prior to the RCVA function call and all
variables used within the program must be declared prior to the
VARPTR function. This is because BASICA dynamically allocates
storage space and if variables are declared after the VARPTR call, the
array may be relocated and the data will be placed into the wrong
location. This may result in a program crash.

maxlen% is an INTEGER containing the maximum number of data
bytes to be received. See Programming Note 4, found at the beginning of
this section, if you want to send more than 32767 bytes.

stat% is an INTEGER which selects the type of terminator to be used.
This parameter must be initialized every time you call the RCVA routine.
This integer is interpreted according to the following format:

Stat (Input Parameter) - Low Byte
6 5 4 3 2 1 0

STRM | TRM1 | TRMO X X X X X

Where

STRM Enable/Disable String Message Terminators. If this bitis 1,
a Message Terminator Character will be used to detect the
end of reception. If this bit is 0, a Message Terminator
Character will not be used.

TRM1-0 Terminator Select. These two bits select the Input Message
Terminator to be used to signal the end of a transmission.
(The STRM bit must be set to 1.) Available terminator
selections are

KM-488-ROM USER GUIDE

returns

BIT

RCVA (cont.)

TRM1 TRMO0 TERMINATOR # DEFAULT

LF
CR

»

— OO
— T e O
W e -0

13

The values for these terminators can be changed by running
the CONFIG program as described in Chapter 2.

rcvlen% is an INTEGER containing the actual number of data bytes
which were received.

stat% is an INTEGER describing the state of the transfer returned after
the call.

The RCVA routine returns three status bits within the STAT variable.
The TMO bit is used to signal a timeout error. The REOI bit signals that
the routine returned because the terminator was detected (if enabled), or
EOQI was received. The NL bit is set if the RCVA routine was called and
the board was not addressed to listen. Unlike other KM-488-ROM
routines, it is possible o return a non-zero status when the call was
completed successfully.

Stat (Return) - Low Byte
6 S 4 3 2 1 0

0 REO! 0 T™MO 0 NL 0

hotes

Where

REOQOI Reason for RCVA Termination. If this bitisa 1, then RCVA
routine ceased because an EOI or terminator character was
received. If this bit is a 0, then the RCVA was terminated
because an error occurred or the maximum byte count was
reached.

TMO Timeout Error. Indicates whether or not a Timeout Error
occurred during data transfer. If this bitisa 1, thena
Timeout Error occurred.

NL KM-488-ROM not a Listener, If this bitis setfoal, it
indicates the RCV A was called before the KM-488-ROM
was designated as a Listener.

1. The KM-488-ROM must be addressed to listen before calling this
routine.

2. When calling RCV A, you must declare an integer array to store
received data. Since each integer in BASICA uses 2 bytes of memory, the
total number of array locations allocated must be equal to or greater than
one half the total number of bytes to be received.

3. The maxlen% parameter must not exceed twice the number of array

locations or ¢lse the data will be stored into an area of memory which
has been allocated to different parts of the system.

PROGRAMMING IN BASICA OR GWBASIC 4-17

4-18

example

purpose

offset
usage

parameters

BIT

RCVA (cont.)
This exampie illustrates a typical way to use RCVA.

100 DEF BEG = gHCCOO 'KM-488-ROM memory segment
110 RCVA = 203 : XMIT = 3 'RCVA and XMIT call offsets
120 NAXLEN® = 200 : RCVLEN% = 0 'Initialize variables

130 DIM X$(99) : T§ = *MLA TALK 5";

135 CALL XMIT(T§, stats0

140 BSEGE: = -]

150 STATS = 0 'No mesaage terminator

160 OF8% = VARPTR(X&(0))

170 CALL RCVA (BSEG%, OFS%, MAXLENS%, RCVLEN%, STATS)

180 IF STAT%<>0 THEN PRINT "ERROR", STATS% : STOP

SEND

Addresses a specified device to listen, the KM-488-ROM to talk, and
sends data from a string.

9

xx SBEND = 9
xx adrsé= : stat% = : info§ = v, . "
xx CALL SEND (adrs%,infof,stats)

adrs% is an INTEGER containing the IEEE bus address of the device
that the data is to be sent to and the terminator to be used. This byte is of
the following format:

Adrs (Input Parameter) - Low Byte
6 5 4 3 2 1 0

TRM1 TRMO 0 ADR4 ADR3 | ADR2 ADR1 ADRO

Where

TRM1-0 Terminator Select. These two bits select the Input Message
Terminator to be used to signal the end of a transmission.
Available terminator selections are

TRMI1 TRMO0 TERMINATOR # DEFAULT
0 0 0 LF
0 1 1 CR
1 0 2)
1 1 3 :

The values for these terminators can be changed by running
the CONFIG program as described in Chapter 2.

The easiest way to specify an alternate terminator is to add
a factor to the GPIB address of the desired instrument
which is specified within the SEND call. The factors added
for each terminator are as follows:

KM-488-ROM USER GUIDE

memmmm—— SEND (cont.)

ADR4-0

GPIB Address + 0 = Terminator 0
GPIB Address + 64 = Terminator 1
GPIB Address + 128 = Terminator 2
GPIB Address + 192 = Terminator 3

For example, if you wanted to send a message using
message terminator 2 to a device at GPIB address 10, the
value of adrs% supplied to SEND would be 138 decimal (10
+128).

GPIB Address. These five bits are used to represent the
GPIB address of the device to which the data is to be sent.
GPIB addresses can range from 0 to 30.

info$ is a STRING (256 chars max.) containing the data to be sent.

returns stat% is an INTEGER describing the state of the transfer returned after
the call. The returned stat values (or combination of) are interpreted as
follows:
Stat (Return) - Low Byte
BIT 6 5 4 3 2 1 0
0 0 0 T™MO 0 NC ADRS
Where
T™™O Timeout Error. Indicates whether or not a Timeout Error
occurred during data transfer. If this bitisa 1, thena
Timeout Error occurred.
NC Not Active Controller. If this bit is a 1, then the SEND
routine was called when the KM-488-ROM was not an
Active Controller.
ADRS Invalid Address. If this bit is set to a 1, an invalid IEEE-488
device address was given.
example This example shows how to send data from a KM-488-ROM to a device.

The KM-488-ROM is initialized as a System Controller located at GPIB
address 10. The KM-488-ROM uses high-speed handshaking. The data
(a device setup string) is sent to a device located at GPIB address 2 using

terminator 0.

10 DEF SEGwEHCCO0 '‘Assumes EEPROM is at &HCCOO
20 'Change to suit your setup
25 INIT = O 'Offset of INIT routine

30 SEND=9 'Offset of SEND routine

40 ADRS4%=10 : MODE%md4 ‘SBetup as System Controller at

'GPIB adrs 10 with High Spead
'Handshake

60 CALIL INIT{(ADRS%, MODE%)

70
80

‘Deaclare setup string and addreass
' of instrument

90 SETURSw"FOROTOMOX" : ADRS%=2 : STAT% =0
100 CALL SEND (ADRS%, SETURP$, STAT%)
110 IF STAT <> 0 THEN PRINT "Error sending Status=";STAT%

PROGRAMMING IN BASICA OR GWBASIC 4-19

memsemmmamm SETINT

purpose Sets the KM-488-ROM's interrupt enable bits.
offset 212

usage ...
xx SETINT = 212

xx intvalg =

xx CALL SETINT {(intvals$)

parameters intval% is an INTEGER containing the address and value of the
Interrupt Mask Register. This is interpreted as follows:

INTVAL (Input) - High Byte

BIT 7 6 5 4 3 2 1 0
X X X X X X X ADRS
Where
X May be any value.

ADRS If this bit is set to 0, bits 0 through 7 will be written to
Interrupt Mask 1. If this bit is set to 1, bits 0 through 7 will
be written to Interrupt Mask 2.

INTERRUPT MASK 1
INTVAL (Input) - Low Byte (ADRS = 0)
BIT 7 6 5 4 3 2 1 0
0 0 GET 0 DEC 0 0 0

Where

GET When this bit is set to 1, an interrupt will be generated
when a KM488-ROM acting as a device received a GPIB
GET (Group Execute Trigger) command while addressed to

listen.
DEC When this bit is set to 1, an interrupt is generated when a
Device Clear is received.
INTERRUPT MASK 2
INTVAL (Input) - Low Byte (ADRS = 1)
BIT 7 6 5 4 3 2 1 0
0 SRQl 0 0 0 LOKC REMC ADSC
Where
SRQI When this bit is set to 1, an interrupt is generated when
SRQ is received.

LOKC When this bit is set to 1, an interrupt is generated when the
state of the Local Lockout bit changes.

KM-488-ROM USER GUIDE

returns

notes

example

purpose

offset
usage

parametors

BIT

SETINT (cont.)

REMC When this bit is set to 1, an interrupt is generated when the
state of the Local/Remote bit changes.

ADSC When this bit is set to 1, an interrupt is generated when the
state of the LA, TA, or CIC bits within the address status
register changes.

None.

You must have an interrupt handling routine set-up in order to use the
interrupts. In BASICA, the most common way to handle interrupts is
through a routine which maps the interrupt into BASICA's lightpen
interrupt, allowing you to execute a BASICA ON PEN statement to
execute the inferrupt service routine.

This example shows you how to use the SETINT routine to enable the
SRQ interrupt.

10 DEF SEG = g&HCCO00

20 SETINT = 212

30 INTVALS = &H140

40 CALL SETINT (INTVAL%) 'Enable SRQ intaerrupt

SETSPOLL

Defines the Serial Poll Response of a KM-488-ROM acting as a device
(non-Controller).

215

xx SETSPOLL = 215
XX reaspht =
xx CALL SETSPOLL (resp%)

resp% is an INTEGER describing the serial poll response and the state of
the SRQQ bit. This byte is of the following format:

Resp% (Input) - Low Byte
6 5 4 3 2 1 0

SPR8 RSV | SPR6 SPR5 SPR4 SPR3 SPR2 | SPR1

returns

Where
SPR1-8 Bits 1 through 8 of this device's Serial Poll Response Byte.

RSV If this bit is 1, SRQ will be asserted to request servicing.
Otherwise, SRQ will not be asserted.

None.

PROGRAMMING IN BASICA OR GWBASIC 4-21

4-22

axample

purpose
offset
usage

parameters

returns

BIT

SETSPOLL (cont.)
This example illustrates a common use of SETSPOLL.

100 DEF SEG=&HCCO0 'KM-488-ROM memory seg

110 SETSPOLL = 215 'Call offasat

120 RESP% = 0

130 IF (ERROR1 = TRUE) THEN RESP%=RESP%+1
'Check local arrors

140 IF (ERROR2 = TRUE} THEN RESP%=RESP%+2
'and set bits

150 IF (ERROR3 = TRUE) THEN RESP%=RESP%+4

160 IF (RRROR4 = TRUE) THEN RESP%=RESP%+8

170 IF (ERROR5S = TRUE) THEN RESP%=RESP%+16

180 IF (ERROR6 = TRUE) THEN RESP%=RESP%+32

190 IF (ERROR7 = TRUE)} THEN RESP%=RESP%+128

200 IF (RESP% <> 0) THEN RESPY=RESP%+&H40
'Indicate SRQ asserted

210 CALL SETSPOLL (RESP%)

SPOLL

Performs a serial poll of the specified device.
12

xx SPOLL = 12

xx adrs% =

XX raspd% =

xx staty =

xx CALL SPOLL (adrs%, respt, stat$)

adrs% is an INTEGER containing the IEEE bus address of the device
that is to be serial polled. This can range from ¢} to 30.

resp% is an INTEGER containing the serial poll response received. The
definition of this integer varies from device to device; however, Bit 6 is
always used to indicate whether the device is in need of service. Consult
the manufacturer's operator's manual for more information.

stat% is an INTEGER describing the state of the transfer returned after
the call. The stat value is interpreted as follows:

Stat (Return) - Low Byte
6 5 4 3 2 1 0

0 0 0 T™O 0 NC ADR

Where

TMO Timeout Error. Indicates whether or not a Timeout Error
occurred during data transfer. If this bitisa 1, thena
Timeout Error occurred.

NC KM-488-ROM not a Controller. If this bitis settoa 1, it
indicates the routine was called before the KM-488-ROM
was designated as an Active Controller.

KM-488-ROM USER GUIDE

example

purpose
usage

parameters

BIT

SPOLL (cont.)

ADR Invalid GPIB Address. If this bit is set to 1, an invalid GPIB
address was provided.

This example illustrates a simple serial poll of a device located at GPIB
address 10.

10 DEF SEG=&HCCO0O

20 INIT=0 : SPOLL=12 : CTLADRS%=(: MODE%=0 : ADRS%=10

25 RESP%=0 : STAT=0

30 CALL INIT(CTLADRSS, MODES%)

40 CALL SPOLL (ADRS%, RESP%, STATS)

50 IF (STAT%<>0) PRINT "SPOLL Status Error Status=",STATS : STOP

60 PRINT "Serial Pcll Response=";RESP%

T0 IF ((RESP% AND &H40)<>0) PRINT "Device Requesting
Service...."

STATUS

Returns the current setting of the requested status parameter.

xx STATUS = 209

XX ragé =

xx statd =

XX CALL STATUS (reg%, stath)

reg% is an INTEGER containing the address of the register or
configuration parameter to be queried. This value corresponds to a 4-bit
field specifying the status register or configuration parameter to be read.
The format of the reg% byte is as follows:

Reg (input} - Low Byte
6 5 4 3 2 1 0

X X X ADR3 | ADR2 ADR1 | ADRO

Where
X May be any value.

ADR3-0 REGISTER/PARAMETER SELECT. This is a 4-bit field
which specifies the status register or configuration
parameter to be read. Registers and parameters are selected
as follows:

PROGRAMMING IN BASICA OR GWBASIC 4-23

4-24

memmmmmw STATUS (cont.)
ADR3 ADR2 ADR1 ADRo REGISTER/PARAMETER
0 0 0 0 Address Status Reg
0 0 0 1 Interrupt Status 1 Reg
0 0 1 0 Interrupt Status 2 Reg
0 0 1 1 DMA Status Reg
0 1 0 0 Output Terminator D
0 1 0 1 Output Terminator 1
0 1 1 0 Output Terminator 2
0 1 1 1 Output Terminator 3
1 o 0 0 Input Terminator 0
1 0 1 1 Input Terminator 1
1 1 1 0 Input Terminator 2
1 1 1 1 Input Terminator 3
1 0 H 0 [/0 Timeout Parameter
1 0 0 1 DMA Timeout Parameter
1 1 1 0 1/0 Port Address
1 1 1 1 GPIB Address of KM-488-ROM
returns reg% - When STATUS obtains the value of one of the four transmit
message terminators, this variable will contain two flag bits which
determine the length of the terminator and whether or not EOl is
asserted with the last byte. When obtaining other parameters, reg% will
retain its input value.
Reg (Return) - Low Byte
BIT 7 6 5 4 3 2 1 0
0 0 0 0 0 0 LEN EQI
Where
LEN Terminator Length. If this bit is set to 0, then the terminator
is one byte long. If this bit is set to 1, then the terminator is
two bytes long.
ECI If this bit is set to 1, ECI is asserted when the last terminator
byte is sent. Otherwise, EOl is not asserted.
stat% is an INTEGER describing the status bits for the register or the
configuration parameter which was specified by the reg% parameter.
Unless otherwise noted, the high byte of stat% is returned as 0.
Addres ister
Stat (Return) - Low Byte
BIT 7 6 5 4 3 2 1 0
CiC X X X X LA TA X
Where
X This bit may be any value.

CiC Active Controller. If this bit is set to 1, then the KM-488-
ROM is a System Controller.

KM-488-ROM USER GUIDE

e STATUS (cont.)

LA Listener. If this bit is set to 1, then the KM-488-ROM is a
Listener.

TA Talker. If this bit is set to 1, then the KM-488-ROM is a
Talker.

Interrupt Status Register 1
Stat (Return) - Low Byte

BIT 7 6 5 4 3 2 1 0
X X GET X DEC X X X
Where
X This bit may be any value.

GET Group Execute Trigger. If this bit is set to 1, then a Group
Execute Trigger command was received while the KM-488-
ROM was a device.

DEC When this bit is set to 1, a Device Clear was received.

Interrupt Status Register 2
Stat (Return) - Low Byte

BIT 7 6 5 4 3 2 1 0
X SRQ1 LOK REM X X X ADSC
Where

X This bit may be any value,

SRQI When this bit is set to 1, it indicates SRQ was active. (Active
Controller mode only.)

LOK When this bit is set to 1, the device was set to Local Lockout.
(Device mode only.)

REMC When this bit is set to 1, the device was configured for
remote operation. (Device mode only.)

ADSC When this bit is set to 1, a change of the address status
occurred (i.e., untalk to talk, device to active controller, etc.).

DMA Status Register
Stat (Return) - Low Byte
BIT 7 6 5 4 3 2 1 0

X X X X TC3 TC2 TCH X

NOTE: DMA Status Register: it is useful to check the status
of this register when running DMA operations in
background mode.

Where
X This bit may be any value.

PROGRAMMING IN BASICA OR GWBASIC 4-25

mem———— STATUS (cont.)

TC1 When this bit is set to 1, it indicates that DM A channel 1 has
reached terminal count.

TC2 When this bit is set to 1, it indicates that DM A channel 2 has
reached terminal count.

TC3 When this bit is set to 1, it indicates that DMA channel 3 has
reached terminal count.

Message Terminator #0-3: Contains First and Last bytes of the message
terminator. Input terminators are only one byte long and are contained
in the Least Significant Byte. In the case of a two character Output
Terminator, the Most Significant Byte of this parameter is the first
character sent.

DMA Timeout and [/O Timeout Parameters: Contains the value of the
desired parameter as an unsigned value in the low and high bytes of
stat%. The timeout value is expressed in milliseconds (0 to 65535).

notes The bits contained in the Interrupt Status 1 and 2 registers are extremely
volatile. When you read these registers, any bits which were set are
automatically cleared by the READ operation. This is extremely
important to note when reading Interrupt Status Register 1, as some of
the bits {not shown above) are used by various KM-488-ROM routines.
It may be possible to cause various KM-488-ROM routines to report a
timeout error if this register is read while the KM-488-ROM is addressed
to talk or listen,

example This example illustrates how to use the STATUS routine.

100 DEF SEG=£HCCOO0 "KM-488-ROM memory segment

110 STATUS=209 'STATUS call offset

120 REG%=0 : STATY = O

130 CALL STATUS (REG%, STATS)

140 IF (STAT% AND &H80) <>0 THEN PRINT "KM-488-ROM = Sys Contr"
150 IF (STAT% AND 2) <>0 THEN PRINT "Addressed to talk..."

160 IF (STATS AND 4} <>0 THEN PRINT "Addressed to Listen..."
170 REG&=15

180 CALL STATUS (REG%, STATY)

190 PRINT "IEEE-488 Address = "; STATS

purpose Sends GPIB commands and data from a string,

offset 3

usage ...
xx XMIT = 3
xx infof = v..."
xx stats =

xx CALL XMIT (info$, staty)

alternate usage CALL TRANSMIT (info$, stat¥)

4-26 KM-488-ROM USER GUIDE

parameters

returns

BIT

7

XMIT (cont.)

info$ is a STRING variable containing a series of GPIB commands and
data. Each item must be separated by one or more spaces. Commands
can be in UPPER or lower case. The Transmit comimands are described

in Chapter 3.

These commands include

CMD GTL MTA SDC TO
DATA GTLA MLA SEC T1

DCL

IFC PPC SPE T2

END LISTEN PPD SPD T3

EOI
GET

LLO PPU TALK UNL
LOC REN TCT UNT

stat% is an INTEGER which describes the state of the transfer returned

after the call.

Stat (Return)
6

The returned stat value can be interpreted as follows:

- Low Byte
§ 4 3 2 1 0

X

ADRS

NCTL UNDF ™O STR NT STX

example

Where
X
ADRS

NCTL

UNDF

T™™O

STR

NT

STX

May be any value.

Invalid GPIB address. If this bit is set to 1, then an invalid
GPIB address was given.

Not a System Controller. If this bit is set to 1, it indicates
that the KM-488-ROM tried to send GPIB Bus Commands
when it was not an Active Controller.

Undefined Command. If this bit is set to 1, the info string
contained an undefined command.

Timeout Error. Indicates whether or not a Timeout Error
occurred during data transfer. If this bitisa 1, thena
Timeout Error occurred.

String Error. If this bit is set to one, then a quoted string,
END, or terminator was found without a DATA
subcommand preceding it.

KM-488-ROM not a Talker. If thisbitissettoal, it
indicates the routine was called before the KM-488-ROM
was designated as a Talker.

Syntax Error. If this bit is set to 1, a syntax error was found.

This example illustrates one way to use the XMIT command with a

Keithley 196

Voltmeter. This meter is assigned GPIB address 7 and is

configured to a 30 Volt DC range with 4 1/2 digit accuracy. The meter is
also configured to take a new reading each time a Group Execute Trigger
Bus command (GET) is received. It is assumed that the meter has been
set to use a CR, LF, EOI (the default for Message Terminator 1). The
program then triggers the instrument to get the first reading, and makes
it a talker and the KM-488-ROM a listener in order to get the first

reading.

The device to receive the setup command string which must be sent to
the meter contains the following device commands:

PROGRAMMING IN BASICA OR GWBASIC 4-27

e XMIT (cont.)

FO Select DC Volts mode

R3 Select 30 Volt range

81 Select4 1/2 digit accuracy

T3 Take one reading when GET received

X Execute the prior commands within the string

The device to receive the setup command string must also be
programmed to assert the GPIB REN signal (This allows the meter to
receive GPIB commands.) and to LISTEN (This allows the device to
receive the string.). The programming sequence used consists of the
following;:

Setting Remote Enable (REN).

Setting all devices to UNTalk and UNListen.

Addressing the 196 to LISTEN.

Addressing the KM-488-ROM to talk (My Talk Address).

Sending the Device-Dependent Commands as a string of DATA.

Sending the appropriate message terminator characters after the data.

Issuing the Group Execute Trigger bus command.

Unaddressing all devices.

Addressing the meter to TALK and the KM-488-ROM to LISTEN (My
Listen Address) in preparation for receiving the latest reading.

10 DEF SEG=&HCCO0

20 INIT=0 : XMIT=3 : ADRS%=0 . MODE%=0 : STAT%=0

30 CALL, INIT {ADRSS%, MODE%}

40 SETUP$ = "REN UNL UNT LISTEN 7 MTA DATA 'FOR3S1T3X' Tl GET
UNL UNT TALK 7 MLA"

50 CALL XMIT (SETUPS, STATS)

60 IF (STAT%<>0) THEN PRINT “"Error send amd string
Status=";STATS

purpose Transmits data from an array.

offset 200

usage e
xx XMITA = 200
xx sagh =
xx ofas =

xx DIM INFO% (n%)

xx count¥ = 2%n%

xx term% =

xx stats = 0

xx ofs¥ = VARPTR(info%{0))

xx CALL XMITA (seg%,ofs%, count¥, term%, stats)

alternate usage CALL TARRAY (sagh,ofs%, count$, term%, staty)

4-28 KM-488-ROM USER GUIDE

parameters

BIT

7

XMITA (cont.)

seg% is an INTEGER representing the segment portion of the memory
address of the data. seg% is set to -1 to the BASICA data segment.

ofs% is an INTEGER representing the offset portion of the memory
address of the data. This is usually obtained using the VARPTR
function. The VARPTR function must be called immediately prior to the
XMITA function call and all variables used within the program must be
declared prior to the VARPTR function. The reason for this is that
BASICA can dynamically allocated storage space and if variables are
declared after the VARPTR call, there is a good possibility that the array
will be relocated and the data will be placed into the wrong location.

count% is an INTEGER containing thhe number of data bytes to be
transmitted. To send more than 32767 bytes, refer to Programming Note
4 in the beginning of this section.

term% is an INTEGER which selects the terminator to be used. This
byte is of the following format:

Term {Input Parameter) - Low Byte
6 5 4 3 2 1 0

STRM TRMi | TRMO X X X X EOI

returns

BIT

7

Where
X This bit may be any value.

STRM Send Message Terminators. If this bit is set to 1, then the
message terminator(s) will be sent at the end of the
transmission. Otherwise, they will not.

TRM1-0 Terminator Select. These two bits select the Output
Message Terminator to be used to signal the end of a
transmission. Available terminator selections are

TRM1 TRMO0 TERMINATOR # DEFAULT

LFEQI
CR LF EOI
CR EQI
LF CR EOI

—_— o
— 0 - O
WK =

These terminators can be redefined by running the CONFIG
program as described in Chapter 2.

EOI Asserts EOQI. If this bit is set to 1, then EOI will be asserted
when the last byte is sent. Otherwise, EOI will not be
asserted,

stat% is an INTEGER describing the state of the transfer returned after
the call. The stat value is interpreted as follows:

Stat (Return) - Low Byte
6 5 4 3 2 1 0

0

0 0 0 T™O 0 | NT 0

PROGRAMMING IN BASICA OR GWBASIC 4-29

4-30

e XMITA (cont.)
Where

TMO Timeout Error. Indicates whether or not a Timeout Error
occurred during data transfer. If this bitisa 1, thena
Timeout Error occurred.

NT KM-488-ROM not a Talker. If this bit is set to a 1, it
indicates the routine was called before the KM-488-ROM
was designated as a Talker.

notes When calling XMITA, you must declare an integer array from which to
transmit data. Since each integer in BASICA uses 2 Bytes of memory, the
total number of array locations allocated must be equal to or greater than
one half the total number of bytes to be received.

example This example illustrates the use of XMITA. It shows you how to
properly set-up an array from which to send the data. Note that the data
is sent without a terminator or EOI asserted.

100 DIM Z%{1023)

110 CHKSUM%=0

120 FOR I%=0 TO 1023

130 L% (I%)=1I% '2 bytes packed per element
140 CHKSUM%= (CHKSUM%+I%) AND &HOOFF

150 NEXT I%

160 DLEF SEG=&HCCO00 '¥M-488-ROM memory saegment

170 XMITA=200 'XMITA call offaat

180 COUNTS = 2048 : TERM%=0 : FLAG%=0 ' No EQI or Terminator
190 SEGH=~1 : OFS%=VARPTR (Z%(0)) 'BASICA segment

200 CALL XMITA (SEG%, OFS%, COUNT%, TERM%, FLAGY%) 'Data sent
210 IF FLAG%<>0 THEN GOTC 2000

220 EQI%=1 : COUNT%=1 'Send checksum with EQI

230 SEG%=-1 : OFS%=VARPTR (CHKSUM%) 'Checksum sent

240 CALL XMITA {SEG%,OFS%, COUNT%,EOI%, FLAGY)

250 IF FLAG%<>0 THEN GOTO 2000

2000 PRINT "ERROR NUMBER: " ;FLAGS;

2010 STOP

KM-488-ROM USER GUIDE

Chapter 5
PROGRAMMING IN QUICKBASIC

While Chapter 3 gives a brief overview of the routines available for programming the KM-
488-ROM, this chapter gives instructions for calling the routines from QuickBASIC. The
routines appear in alphabetical order and include a sample program for each.

5.1 GENERAL
Supported Versions QuickBASIC 4.0 and higher

The Environment Before you begin to develop programs in QuickBASIC, several
files must be present in your working directory. Copy the
following files from the KM-488-ROM disks to your working

directory:
QUICKBASIC 4.0 QUICKBASIC 7.0(QBX)
\QB\KM488QB.BI \QB\KM488QB.BI
\QB\KM488QB4.QLB QB\KM488QB7.QLB
\QB\KM488QB4.LIB \QB\KM488QB7.LIB
File Header Be sure to include the following line within your program:

' $INCLUDE : 'kmd88gb’

Including of this file allows QuickBASIC to check that the correct
number and type of parameters are specified for each routine
called.

Compiling Once your QuickBASIC appilication program has been written,
you will compile the program. Be sure to include full path
names to the various library files where needed.

From within the QuickBASIC Envirohment

Be sure that the appropriate .QLB file (KM488QB4.QLB or
KM483QB7.QLB) is located where QuickBASIC can find it.
Then, invoke QuickBASIC by typing

FOR QUICKBASIC 4.0 FOR QUICKBASIC 7.0(QBX)

qb /Lkmd88gb4 yourprog gqb /Lkmd88gb7 yourprog

where yourprog is the name of your program.

PROGRAMMING IN QuickBASIC 5-1

5-2

Software

Programming Notes

KM-488-ROM USER GUIDE

To create a Standalone Program

This process compiles the QuickBASIC source code and links it
to the QuickBASIC and KM-488-ROM library files. This process
is slightly different depending on the version of QuickBASIC
used. (See your manual for specifics.} The following example
shows you how to link the files in Version 4.0:

bc /o /d yourprog.bas;
link yourprog,, ,boomd5+kmd88gbd;

where

yourprog is the name of your program.
becomd45 is the QuickBASIC Runtime library name.
km488gb4 is the linkable BASIC library file.

The KM-488-ROM firmware contains a number of configuration
parameters that govern the default settings of the input and
output message terminator settings, message timeout periods,
and 1/0 port addresses. The default terminators are shown in
the following table. If these default values are unsatisfactory,
they may be changed by calling either the INTERM or
OUTTERM routine,

The default DMA and I/0O Timeouts are 10 seconds. These
defaults may be altered by calling the DMATIMEQOUT or
IOTIMEOUT routine.

Default Terminator Seitings
TERM# OUTPUT TERMINATOR INPUT TERMINATOR

0 LE EOQI LF

1 CR LF EOI CR

2 CR EOI , {comma)

3 LFCR EQOI ; (semi-colomn)

1. Any parameters which appear as variables may also be
passed as constants,

2. Parameters which are also used to return values must be
declared as variables.

3. Integer variable names end with a percent sign and integer
constants do not contain a decimal point.

4. Allintegers are treated by the KM-488-ROM routines as
unsigned values (0 to 65535). However, QuickBASIC treats them
as signed magnitudes (-32768 to +32767). When you need to
express a value which is greater than or equal to 32768, you will
need to express it in one of two ways:

* Convert it to a hexadecimal value. Be sure to prefix these
values with &H when equating them to a variable name. Legal
hexadecimal values range from 0 to &HFFFF and can be used to
represent values from 0 to 65535.

* Use unsigned values from 0 to 32767 as is, but for values of
32768 to 65535 subtract 65536.

5. Do not name any of your variables with the same name as
those assigned to the KM-488-ROM routines.

5.2 DESCRIPTION FORMAT FOR ROUTINES

The format for each descriptions is as follows:

purpose

usage

alternate usage

parametors
returns
notes
example

5.3 ROUTINES

purpose

usage
alternate usage

parameters

returns

example

... a brief description of the routine. See Chapter 3 for more detailed
descriptions.

- gives an example of usage for each routine and assumes the input
parameters are passed in as variables. These parameters can also be
passed in directly. See the General Programming Notes for more
information.

... lists alternate usage for the routine, if any. Unless otherwise noted, the
alternate usage performs exactly the same function as the usage.

... describes each of the input parameters.
... describes any values returned by the routine.
.. lists any special programming considerations.

. gives a programming example using the routine.

DMATIMEOUT

Sets the maximum length of time for a DMA transfer to complete before
a timeout error is reported. (See RCVA and XMITA routine
descriptions.)

CALL DMATIMEOUT (timat)
CALL SETTIMEOUT(time%)

NOTE: The alternate usage sets both the DMA and I/0 Timeouts to the
specified value.

time% is an INTEGER which represents the timeout period to elapse
during a DMA transfer. A DMA Timeout Error will be generated when
the time to transfer (via DMA) an entire message exceeds the set DMA
timeout value (time). time% can range from 0 to 65535 milliseconds and
is internally rounded to the closest integer multiple of 55 milliseconds.
For values greater than or equal to 32768, time must be represented
differently. See Programming Note 4 at the begining of this section.

None,
This example sets the DMA Timeout period to 5 seconds.
DMA TIMEOUT (5000}

PROGRAMMING IN QuickBASIC 5-3

5-4

mammssssss ENTER

purpose Addresses a specified device to talk, the KM-488-ROM to listen, and
receives data from the addressed device into a string.

usage ... 'S8etup an 80 char string
info§ = SPACES (80) ! to recaive the data

CALL ENTER (infof, leng$, adrs%, stats)

parameters info$ is a STRING which is to hold the receive data. The string must be
long enough to receive the expected number of characters. This may be
' accomplished using the QuickBASIC SPACE$ function. For example, the
line INFO$ = SPACE$(100) allocates a 100 character string for storing
data. Carriage returns and the message terminator character in the
incoming data are ignored and not placed in received data.

adrs% is an INTEGER containing the [EEE bus address of the device
that the data is to be sent to and the terminator to be used. This byte is of
the following format:
Adrs (Input Parameter) - Low Byte

BIT 7 6 5 4 3 2 1 0

TRM1 TRMO 0 ADR4 ADR3 ADR2 ADR1 ADRO

Where

TRM1-0 Terminator Select. These two bits select the Message
Terminator to be used to signal the end of a transmission.
Available terminator selections are

TRM1 TRMO TERMINATOR # DEFAULT
0 0 0 LF
0 1 1 CR
1 0 2)
1 1 3 ;

These terminators may be changed by the INTERM routine.

The easiest way to specify an alternate terminator is to add
a factor to the GPIB address of the desired instrument
which is specified within the ENTER call. The factors
added for each terminator are as follows:

GPIB Address + 0 = Terminator 0
GPIB Address + 64 = Terminator 1
GPIB Address + 128 = Terminator 2
GPIB Address + 192 = Terminator 3

For example, if you wanted to receive a message using
terminator 2 from a device at GPIB address 10, the value of
adrs% supplied to ENTER would be 138 decimal (10 + 128).

ADR4-0 GPIB Address. These five bits are used to represent the
GPIB address of the device to which the data is to be sent.
GPIB addresses can range from 0 to 30.

KM-488-ROM USER GUIDE

returns

BIT

ENTER (cont.)

info$ is a STRING variable, up to 256 characters, which will contain the
received data. The length of the string must be long enough to receive
the expected number of characters. Enter will terminate reception of
data when: 1) the number of characters received exceeds the length of the
string, 2) the specified terminator is received, or 3) any character is
received with the EOI signal asserted. Carriage returns and the
terminator character in the incoming data are ignored and not stored
with the received data. However, bytes other than the terminator which
are received with EQI asserted will be stored.

leng% is an INTEGER, less than or equal to 256, which indicates the
actual number of bytes which were stored. This number does not
include message terminator characters or carriage returns.

stat% is an INTEGER which describes the state of the transfer returned
after the call. If a stat value of () is returned, the transfer completed
normally. Otherwise, the returned stat values (or combination of) are
interpreted as follows:

Stat (Return) - Low Byte
6 5 4 3 2 1 0

0 0 0 TMO OVF NC ADRS

axample

Where

TMO Timeout Error. Indicates whether or not a Timeout Error
occurred during data transfer. If this bitis a1, thena
Timeout Error occurred.

OVF Overflow Error. If this bitis a 1, then the info string was
filled, before a terminator character or EQOI was detected.

NC KM-488-ROM not an Active Controller . If this bit is set to a
1, it indicates the routine was called before the KM-488-
ROM was designated as an Active Controller.

ADRS Invalid GPIB address. If this bit is set to 1, then an invalid
GPIB address was given.

In the following example, data is sent from two different instruments to
a KM~488-ROM. The KM-488-ROM is acting as the System Controller
and is assigned to GPIB address 0. One of the two instruments is a
voltmeter, requiring a Carriage Return-Line Feed terminator
combination {Term 1), assigned to GPIB address 7. The second
instrument, located at GPIB address 10, requires a line feed (Term 0) as
its terminator. The voltmeter is first sent a string of data which
represents its instrument setup command. Then, when addressed to talk,
it sends its most current reading to the KM488-ROM. The second
instrument is instructed to send its status, when addressed to talk.

It is assumed that the string sent by both instruments is 25 characters or
less. The string is printed out on the computer screen.

PRCGRAMMING IN QuickBASIC 5-5

5-6

mesmssm—— ENTER (cont.)
'$INCLUDR: 'kmd88gb’ 'Use terminator 1 to send to INST1
INST1S% = 7 : INST2% = 10 : INSTL.TERM&=INST1%+64
INSTRINGS=SPACES (25) 'Alloocate space for receivaed data
CALL init (0, 4)
CARLL send (INST1.TERMS, "FOROTOMOX" , STATS)
‘check status of SEND call...
IF (STAT$<>0) THEN PRINT "Error sending to Instrument 1 atatus
=" > STATS 'Receive the data...
CALL anter (INSTRINGH, RLEN%, INST1%, STATS)
'Check status of ENTHER call...
IF (STAT%<>0) THEN PRINT "Error receiving from Instrument 1 status
=" STATS 'Clean up received data...
DSPS=LEFTS (INSTRINGS , RLEN%)
PRINT "Instrument 1 data = ";DSP$
'Setup and get data from Instrument
'2.,.
CALL SEND (INST2%, "SEND STATUS", STATH)
IF {(STATY <> 0} THEN PRIRT “Error sending to Inatrument 2 Btatus =
", STATS
CALL ENTER (INSTRINGS, RLEN%, INST2%, STATS)
IF (STAT%<>0) THEN FRINT "Error recelving from Instrument 2"
DSPS=LEFTS (INSTRINGS, RLEN%) .
PRINT "Instrumant 2 data =";DSP$
s |NIT
purpose Initializes the KM-488-ROM by assigning its GPIB address and
establishing it as a System Controller or Device.
usage CALL INIT (adrsi%,moded)
alternate usage CALL INITIALIZE (adrs%,moded)
parameters adrs% is an INTEGER representing the IEEE bus address of the KM-488-
ROM. This is an integer from 0 to 30.
maode% is an INTEGER representing the operating mode of the KM-488-
ROM. These can be any of the following values:
Mode - Low Byte
BIT 6 5 4 3 2 1 0
X X X X FAST DEV X
Where
X May be any value.

FAST Handshake Speed. If this bit is set to 1, High Speed GPIB
bus handshaking will be used(500ns.). If it is set to 0, Low
Speed GPIB bus handshaking (2 s.) will be used. See
Chapter 3 for more information regarding the handshake

speed.

KM-488-ROM USER GUIDE

returns
example

purpose
usage
alternate usage

parameters

returns

example

purpose
usage

INIT {cont.)

DEV Device. If this bit is set to 1, then the KM-4838-ROM is acting
as a Device. Otherwise, when this bit is set to 0, the KM-
488-ROM is acting as a System Controller. When System
Controller is selected, the GPIB IFC line is momentarily
asserted.

None.

This example initializes the KM-488-ROM as a System Controller with a
IEEE address of 0 with a High Speed Handshake.

CALL INIT (0, 4)

INTERM

Changes the input message terminator settings.

CALL INTERM (num%,termb)
CALL SETINPUTEOS (termb)

NOTE: The Alternate Syntax will only change the value of Input
Message Terminator 0.

num% is an integer which selects the number of the receive message
terminator to be changed. This ranges from 0 to 3, where

num % TERMINATOR # DEFAULT
0 0 LF
1 1 CR
2 2 2
3 3 ;

term% is an integer representing the terminator byte to be programmed.
This integer is the decimal or hex equivalent of the terminator's ASCII
representation. Hex equivalents must be preceded by &H. See Appendix
A for ASCII Equivalents.

None.
This example sets Input Terminator 3 to Line Feed (Hex A).

CALL INTERM({3, &HA)

IOTIMEOUT

Changes the length of time to elapse before an 1/0 Timeout occurs.

CALL IOTIMEQUT (time%)

PROGRAMMING IN QuickBASIC 5.7

5-8

parameters

returns
oxample

purpose
usage
alternate usage

parameters

returns
example

IOTIMEOUT (cont.)

time% is the time elapsed before a timeout error is reported. This
occurs if the time elapsed between the transfer of individual bytes
exceeds the specified I/0 Timeout period. time% is between 0-65535 ms,
internally rounded to the closest multiple of 55 ms. The default is 10
seconds.

None.
This sets the I/0Q timeout to 1 second.
CALL IOTIMEOUT (1000)

OUTTERM

Changes the output message terminator sequences.

CALL OUTTERM (num%,chars%, eoi%,trml%, trm2%)
CALL SETOUTFUTEOS (txml#, txrm2%)

NOTE: The Alternate Syntax will only change the value of Terminator 0,
and will always assert EOI upon the transmission of the last character.

In addition, a single character terminator is programmed by setting
trm2% to 0.

num% is an INTEGER which selects the number of the transmit
message terminator to be changed. This ranges from 0 to 3, where:

num% TERMINATOR # DEFAULT
0 0 LF EOl
1 1 CR LF EQI
2 2 CR EQI
3 3 LF CR EQI

chars% is an INTEGER that selects the length of the transmit terminator.
This is 0 if a 1-character terminator is required or 1 for a 2-character
terminator.

e0i% is an INTEGER that determines whether EQOI is asserted when the
last terminator byte is sent. If this bit is 1, EOI will be sent. If this bit is 0,
EOI will not be sent.

trm1% is an INTEGER representing the first terminator byte to be sent;
it is the decimal or hex equivalent of the terminator's ASCII
representation. Be sure to precede all hex values with &H. See Appendix
A for ASCII Equivalents.

trm2% is an INTEGER representing the second terminator byte (in a 2-
byte terminator}, it is the decimal or hex equivalent of the terminator's
ASCII representation. Be sure to precede all hex values with &H. Ifa 1-
byte terminator is programmed, trm2% may be any value.

None.

This example sets Output Terminator 1 to Carriage Return, Line Feed,
EOL

CALL OUTTERM(1,1, 1, &HD, &HA)

KM-488-ROM USER GUIDE

purpose

usage
parametors
returns

notes

example

putpose
usage

alternate usage

PPOLL
Initiates a parallel poll.

NOTE: Many GPIB devices do not support parallel polling. Check your
device's documentation.

CALL PRPOLL(reaph)
None.

resp% is an INTEGER which will contain the received parallel poll
response.

Before you call the PPOLL routine, you must first configure the Parallel
Poll response of the device. To do this:

¢ Address it to listen.
« Send it a GPIB Parallel Poll Configure (PPC) command.

* Send a Parallel Poll Enable byte using the KM~488-ROM XMIT
command. (Use the mnemonic CMD followed by nnn where nnn is
the decimal value of the Parallel Poll Enable byte.

The Parallel Poll Enable Byte is of the format 01105PPP, where:

$ is the parallel poll response value (0 or 1) that the device uses to
respond to the parallel poll when service is required.

PPP is a 3-bit value which tells the device being configured which data
bit it should use as its parallel poll response (DIO1 through DIOS).

This example assumes that the KM-488-ROM is connected to a Sorenson
HPD30-10 Power Supply. This device is located at GPIB address 1. It is
also assumed that this device drives bit 4 of the Parallel Poll Response
byte to a logic "1" when service is required. In order to retrieve this
response, the device's parallel poll response must be configured to
respond in this manner. This is accomplished by using the KM-488-
ROM XMIT routine with the CMD command accompanied by the
command byte 01101011 (107).

CALL init (0,0}
CALL xmit ("REN UNL UNT LISTEN 1 PPC CMD 107", atat%)

IF stat¥<>0 THEN PRINT "Error sending PPC command STATUS=", stath
CALL ppoll (resp%)

IF (resp¥ AND 8)<>0 THEN PRINT "HFD30-10 Requesting Service..."

Receives data into a string,.
infoSw=SPACES (80) ‘Allccate space for receivaed data

CALL RCV(info$, termk, revlend, stats)

CALL RECEIVE(info$, rovlian%, stat%)

PROGRAMMING IN QuickBASIC 5-9

mm——— RCV (cont.)

NOTE: The Alternate Syntax assumes the use of Input Message
Terminator 0.

parameters info$ is a STRING which will hold the received data. Prior to calling
RCV, you must initialize a string which is long enough to receive the
expected number of characters. This may be accomplished using the
QuickBASIC SPACES function. For example, the line INFO$ =
SPACE$(100} allocates a 100 character string for storing data. Carriage
returns and the message terminator character in the incoming data are
ignored and are not stored with the received data.

term% is an INTEGER containing the number of the IEEE bus
terminator to be used, where:

term % TERMINATOR # DEFAULT
0 0 LF
1 1 CR
2 2)
3 3 ;

These terminators can be changed by calling the INTERM routine.

returns info$ is a STRING variable (up to 64 KBytes) which will contain the
received data. The length of the string must be long enough to receive
the expected number of characters. RCV will terminate reception of data
when: 1) the number of characters received exceeds the length of the
string, 2) a terminator is received, or 3) any character is received with the
EQI signal asserted. Carriage returns and the message terminator
character in the incoming data are ignored and not stored with the
received data.

rcvlen% is an INTEGER which indicates the actual number of bytes
which were received and stored.

stat% is an INTEGER which describes the state of the transfer returned
after the call. The returned stat values are interpreted as follows:

Stat (Return) - Low Byte
BIT 7 6 5 4 3 2 1 0

0 0 0 0 T™O OVF NL 0

Where

T™MO Timeout Error. Indicates whether or not a Timeout Error
occurred during data transfer. If this bitisa 1, thena
Timeout Error occurred.

OVF Overflow Error. If this bit is a 1, then the info string was
filled, before a terminator character or EOl was detected.

NL KM-488-ROM not a Listener. If this bitis setto a 1, it
indicates the RCV was called before the KM-488-ROM was
designated as a Listener.

notes The KM-488-ROM must be addressed to listen and another device
addressed to talk before calling RCV.

5-10 KM-488-ROM USER GUIDE

example

purpose

usage

alternate usage

parameters

BIT

RCV (cont.)

The following example shows how the RCV routine might be used
together with the XMIT routine to receive data. It demonstrates a
method of triggering the Keithley 196 voltmeter to take a reading using
the XMIT command and then receiving the meter reading using the RCV
command. Itis assumed that the meter reading returned will fit into a
string of 25 characters. This example also assumes that the KM-488-
ROM has been configured to use Transmit Message terminator 1 as a
Carriage Return-Line Feed combination.

'$INCLUDE: 'KM488QB.BI'
CRLL INIT(0,0)

CALL XMIT("REN UNL UNT LISTEN 7 MTA DATA 'FOR3S1T3X' T1 GET UNL UNT
TALK 7 MLA", STATS)
IF STAT%<>0 THEN
PRINT "Error sending cmd string status =";'STATS
RCVDAT§=SPACES (25) 'Allocate space for receive data
CRLL RCV(RCVDATS, 0, RCVLEN%, STATS) 'Uaa RCV terminator O
DAT$=LEFTS (RCVDATS, RCVLEN%)
IF STAT%<>0 THEN PRINT “RCV Status Error Status =";STATH
PRINT "Received data = "; DATS;"Langth=";RCVLEN%

RCVA

Receives data into an array. This routine may also be used to receive
data via DMA (See SETDMA.}

DIK indata% (1000) 'allocate 1000 array locations
maxleny = 2000
CALL RCVA (indata% (0) ,maxlen%,taerm%, rovlent, stat¥)

CALL RARRAY (indata%, maxlen%, rovlan$%, stat$)
NOTE: The Alternate Syntax assumes the use of EQI as a terminator.

term% is an INTEGER which selects the type of terminator to be used.
This integer is interpreted according to the following format:

Term (Input Parameter) - Low Byte
6 5 4 3 2 1 0

X X X X STRM TRM1 | TRMO

Where
X May be any value.

STRM Enable/Disable String Message Terminators. If this bit is 1,
a Message Terminator Character will be used to detect the
end of reception. If this bit is 0, a Message Terminator
Character will not be used.

PROGRAMMING IN QuickBASIC 5-11

5-12

returns

BIT

RCVA (cont.)

TRM1-0 Terminator Select. These two bits select the Input Message
Terminator to be used to signal the end of a transmission.
(The STRM bit must be set to 1.) Available terminator
selections are

TRM1 TRMO TERMINATOR # DEFAULT

0 0 LF

CR

Wb - O

0 1
1 0
1 1 ;

The values for these terminators can be changed by calling
the INTERM routine.

maxlen% is an integer which specifies the maximum number of data
bytes which can be received. When you want to receive more than 32767
bytes, use the technique outlined in Programming Note 4 presented at
the beginning of this section. maxlen% must be less than or equal to
twice the total number of bytes allocated in the indata% array or a
program crash may occur.

indata% is an array which will contain the received data. All characters
received are stored.

rcvlen% is an integer which will contain the actual number of data bytes
which were received. Note that half this many array locations will
contain data. To specify more than 32767 bytes, use the technique
outlined in Programming Note 4 presented at the beginning of this
section.

stat% is an integer describing the state of the transfer returned after the
call. The RCVA routine returns three status bits within the stat%
variable. The TMO bit is used to signal a timeout error. The REOI bit
signals that the routine returned because the terminator was detected (if
enabled), or EOI was received. The NL bit is set if the RCV A routine was
called and the card was not addressed to listen. Unlike other KM-488-
ROM routines, it is possible to return a non-zero status when the call was
completed successfully.

Stat (Return} - Low Byte
6] 4 3 2 1 0

0 REQI 0 T™O 0 NL 0

Where

REOI Reason for RCVA Termination. If this bitis a 1, then RCVA
routine ceased because an EQI or terminator character was
received. If this bit is a 0, then the RCVA was terminated
because an error occurred or the maximum byte count was
reached.

TMO Timeout Error. Indicates whether or not a Timeout Error
occurred during data transfer. If this bitisa 1, thena
Timeout Error occurred. '

KM-488-ROM USER GUIDE

messsm——— RCVA (cont.)

NL KM-488-ROM not a Listener. If this bitis setto a 1, it
indicates the RCV A was called before the KM-488-ROM
was designated as a Listener.

notes The KM-488-ROM must be addressed to listen before calling this routine.
example Refer to the XMITA example.
purpose Addresses a specified device to listen, the KM-488-ROM to talk, and
sends data from a string.
usage 1info$ = “"data to be transmitted"
CALL SEND (adrs%,info$, statuss)
parametors adrs% is an INTEGER containing the IEEE bus address of the device
that the data is to be sent to and the terminator to be used. This byte is of
the following format:
Adrs (Input Parameter) - Low Byte
BIT 6 5 4 3 2 1 0
TRM1 TRMO 0 ADR4 ADR3 | ADR2 ADRf ADRO

Where

TRM1-0 Terminator Select. These two bits select the Input Message
Terminator to be used to signal the end of a transmission.
Available terminator selections are

TRM1 TRMO TERMINATOR # DEFAULT
0 0 0 LF
0 1 1 CR
1 0 2)
1 1 3 :

The values for these terminators can be changed by running
the CONFIG program as described in Chapter 2.

The easiest way to specify an alternate terminator is to add
a factor to the GPIB address of the desired instrument
which is specified within the SEND call. The factors added
for each terminator are as follows:

GPIB Address + 0 = Terminator 0
GPIB Address + 64 = Terminator 1
GPIB Address + 128 = Terminator 2
GPIB Address + 192 = Terminator 3

For example, if you wanted to send a message using
message terminator 2 to a device at GPIB address 10, the
value of adrs% supplied to SEND would be 138 decimal (10
+ 128).

PROGRAMMING IN QuickBASIC 5-13

5-14

m————— SEND (cont.)

ADR4-0 GPIB Address. These five bits are used to represent the
GPIB address of the device to which the data is to be sent.
GPIB addresses can range from 0 to 30.

info$ is a STRING (256 chars max.) containing the data to be sent.

returns stat% is an INTEGER describing the state of the transfer returned after
the call. The returned stat values {or combination of) are interpreted as

follows:
Stat (Return) - Low Byte
BIT 7 6 5 4 3 2 1 0
0 0 0 0 TMO 0 NC ADRS
Where

TMO Timeout Error. Indicates whether or not a Timeout Error
occurred during data transfer. If this bitisa 1, thena
Timeout Error occurred.

NC Not Active Controller. If this bit is a 1, then the SEND
routine was called when the KM-488-ROM was not an
Active Controller.

ADRS Invalid Address, If this bit is set to a 1, an invalid IEEE-488
device address was given.

example This example shows how to send data from a KM-488-ROM to a device.
The KM-488-ROM is initialized as a System Controller located at GPIB
address 10. The KM-488-ROM uses high-speed handshaking. The data
{a device setup string) is sent to a device located at GPIB address 12.

"$INCLUDE: '"KM488QB'

CALL INIT({10,4)

SETUP§="FOROTOMOX" : ADRS%w12

CALL SEND (ADRS%, SETUP4, STATY)

IF STAT <> 0 THEN PRINT “"Error sending Status=";STAT%

As an alternative, the following sequence can be used:

"$INCLUDRE: 'KM488QB'

CALL INIT(10,4) 'Must init as a Sys Contr first
CALL

SEND (12, "FOROTOMOX", STATS)

IF STAT <> 0 THEN PRINT "EBrror sending Status=":STATS

e SETBOARD

purpose In a multiple board system, identifies the KM-488-ROM to be
programmed.

usage CALL SETBOARD (boards)
alternate usage CALL BOARDSELECT (boardt)

KM-488-ROM USER GUIDE

parameters

returns
notes

axampile

purpose

usage
alternate usage
parameters

returns
notes

SETBOARD (cont.)

board% is an INTEGER between (and 3 which represents the board to
be programmed. Note that up to four boards can be installed in any one
system. The board% "number" is associated with the base address of its
1/O port.

None,

You must assign a board "number” for every KM~488-ROM in the system
before calling the SETBOARD routine. Board numbers are assigned
using the SETPORT routine.

Each board must be must be initialized independently by calling the
INIT routine, You must do this the first time a given board is selected,
before any other operations are conducted on that board.

Once a board has been selected using SETBOARD, all further I/O
operations will be performed on that board until the next SETBOARD is
executed.

This example line selects board "2" for communication.
SETBOARD (2)

SETDMA

NOTE: DMA allows maximum data transfer rates in excess of 100
kilobytes per second. However, the actual data rates are limited by the
rates at which other devices connected to the bus can send or receive
data. These rates are governed automatically by the GPIB handshaking

signals.

Allows the use of DMA in conjunction with the XMITA and RCVA
routines.

CALL SETDMA (channal)
CALL DMACHANNEL (channel¥)

channel% is an INTEGER which specifies the DMA channel to be used
for the data transfer. channel% can be from 1 to 3, where:

1 = Use DMA channel 1.
2 = Use DMA channel 2.
3 = Use DMA channel 3.

To disable DMA. set channel% to a value other than 1, 2 or 3.
None.

The DMA hardware jumpers must be properly set for the DMA channel
selected by SETDMA. Note that the default setting for the jumpers is
DMA DISABLED. The jumpers are further described in Chapter 2.

When SETDMA is called to enable the use of DMA, each call to the
XMITA and RCVA routines that follows will use DMA to accomplish the
transfer until SETDMA is called with a parameter outside the range of 1-
3.

PROGRAMMING IN QuickBASIC 5-15

wesmemmemm SETDMA (cont.)

example This example specifies that DMA transfers are to take place using DMA
channel 1 and then DMA is disabled.

CALL SETDMA(l) 'aenables dma transfers via channael 1

CALL SETDMA(0) ‘cdisables dma transfers

purpose Sets the KM-488-ROM''s interrupt enable bits.
usage CALL SETINT (intval%)

parameters intval% is an INTEGER containing the address and value of the
Interrupt Mask Register. This is interpreted as follows:

INTVAL {Input} - High Byte

BIT 7 6 5 4 3 2 1 0
X X X X X X X ADRS
Where
X May be any value.

ADRS If this bit is set to 0, bits 0 through 7 will be written to
Interrupt Mask 1. If this bit is set to 1, bits 0 through 7 will
be written to Interrupt Mask 2.

INTERRUPT MASK 1
INTVAL (Input) - Low Byte (ADRS =0)
BIT 7 6 5 4 3 2 1 0
0 0 GET 0 DEC 0 0 0

Where

GET When this bit is set to 1, an interrupt will be generated
when a KM-488-ROM acting as a device received a GPIB
GET {(Group Execute Trigger) command while addressed to
listen.

DEC When this bit is set to 1, an interrupt is generated when a
Device Clear is received.

INTERRUPT MASK 2
INTVAL (Input) - Low Byte (ADRS = 1)
BIT 7 6 5 4 3 2 1 0
0 SAQ 0 0 0 LOKC REMC | ADSC

5-16 KM-488-ROM USER GUIDE

returns
notes

example

purpose

usage
parameters

returns
notes

example

SETINT (cont.)
Where

SRQI When this bit is set to 1, an interrupt is generated when
SRQ is received.

LOKC When this bit is set to 1, an interrupt is generated when the
state of the Local Lockout bit changes.

REMC When this bit is set to 1, an interrupt is generated when the
state of the Local/Remote bit changes.

ADSC When this bit is set to 1, an interrupt is generated when the
state of the LA, TA, or CIC bits within the address status
register changes.

None.

Be certain to assign the KM-488-ROM to an interrupt level before using
this routine. Interrupt Levels are assigned by means of a jumper on the
KM-488-ROM board. This jumper is described in detail in Chapter 2.

You must set-up an interrupt handling routine within the QuickBASIC
program to deal with the interrupt condition.

This example enables the KM-488-ROM to generate an interrupt when
SRQ is received.

CALL SETINT (&H140)

SETPORT

This routine is used to alter the range of addresses used by the KM-488-
ROM's 1/0 port. In a multiple board environment, it is also used to
associate a given range of I/0O addresses with a board number.

CALL SETPORT (boardé, ioportt)

board% is an INTEGER between 0 and 3 which represents the board to
be programmed. Note that up to four boards can be installed in any one
system. The board% "number" is associated with the base address of its
1/0 ports.

foport% is an INTEGER representing the I/0O Base Address of the KM-
488-ROM. The default Base Address is 2B8 Hex. The Base Address
selected must match the one selected by the Base Address Switch on the
KM-488-ROM. (See Chapter 2 for more information.)

None.

When multiple boards are used, each board must have its own unique
base address. Any Base Address can be assigned to any board number,
provided that none of the base addresses overlap.

This line assigns Board 0 an [/O Base Address of 30Ch.
satport (0, §H300)

PROGRAMMING IN QuickBASIC 5-17

5-18

purpose

usage
parameters

BIT

SETSPOLL

Defines the Serial Poll Response of a KM-488-ROM acting as a device
(non-Controller).

CALL SETSPOLL (respt)

resp% is an INTEGER describing the serial poll response and the state of
the SRQ bit. This byte is of the following format:

Resp% (Input} - Low Byte
6 5 4 3 2 1 0

SPR8 RSV | SPRé SPR5 SPR4 SPR3 SPR2 | SPR1

Where
SPR1-8 Bits 1 through 8 of this device's Serial Poll Response Byte.

RSV If this bit is 1, SRQ will be asserted to request servicing.
Otherwise, SRQ will not be asserted.

returns None.
example This example illustrates a common use of SETSPOLL.
reasp% = 0
IF (exrrorl = true) THEN respb=respi+l 'check local errors
IF (error2 = true) THEN respiwrespi+2 'and set bits
IF (error3 = true) THEN respbmraspi+d
IF (error4 = true) THEN resp¥=respi+s
IF {error5 = true) THEN reaspi=reap%+l6
IF (esrroré = true} THEN respi=respb+32
IF {(error7 = true) THEN respimreaspit+l28
IF (reap% <> 0) THEN respi=resp¥tahi 'indicate srq assertad
CALL SETSPOLL (reap#)
purpose Performs a serial poll of the specified device.
usage CALL SPOLL{adrs%, rasp%, stat%)
parameters adrs% is an INTEGER containing the JEEE bus address of the device
that is to be serial polled. This can range from 0 to 30.
returns resp% is an INTEGER containing the serial poll response received. The
: definition of this integer varies from device to device; however, Bit 6 is
always used to indicate whether the device is in need of service. Consult
the manufacturer's operator's manual for more information.
stat% is an INTEGER describing the state of the transfer returned after
the call. The stat value is interpreted as follows:
Stat (Return) - Low Byte
BIT 6 5 4 3 2 1 0
0 0 0 T™MO 0 NC ADR

KM-488-ROM USER GUIDE

example

I
purpose

usage
parametors
returns

notes

example

SPOLL (cont.)
Where

TMO Indicates whether a Timeout Error occurred during data
transfer. If a 1, then a Timeout Error occurred.,

NC KM-488-ROM not a Controller. If set to a 1, it indicates the
routine was called before the KM-488-ROM was designated
as an Active Controller.

ADR Invalid GPIB Address. If this bit is set to 1, an invalid GPIB
address was provided.

This example illustrates a simple serial poll of a device located at GPIB
address 10.

'SINCLUDE: 'km{88gb.bi'
CALL init(0,0)
CALL spoll(l0,RESP%, STAT%)
IF STATH<>0 THEN
PRINT "SPOLL status error status="; STAT%
PRINT"Serial Poll Rasponse='"; RESPS%
IF (RESP% AND &H40) <>0 THEN PRINT "Device Requasting Sarvioca"

SRQ

Detects the presence of the GPIB SRQ signal.

IF (SRQ%) THEN
None.

The SRQ function returns a 0 or FALSE when not present, or a 1 or TRUE
when present.

The value returned by SRQ is generally used within a conditional branch
in an application program.

Note that after obtaining a TRUE respense from SRQ, SRQ response is
reset to FALSE even if the SRQ line is still active. In order to reset the
SRQ response to TRUE, you must serial poll at least one device with a
requesting service. Conducting a serial poll on a device requesting
service resets its SRQ line. Then, if other devices were simultaneously
asserting SRQ, the output of SRQ will be reset to TRUE. Otherwise, SRQ
becomes TRUE on the next SRQ) assertion.

This example assumes that the KM-488-ROM is connected to an
instrument located at GPIB address 1 and capable of requesting service
via SRQ. When SRQ is detected, the SPOLL function is called and the
serial poll response of the device is printed to the computer screen.

'$INCLUDE: 'km488qgb.bi'
IF (SRQ%) THEN
CALL spoll (1,pollresp%, stat®)
IF (stat%=0) THEN
PRINT "Error calling SPOLL-Status=";stat%
ELSE
PRINT"SRQ Received from Device 1-Poll Response=";pollraspt
END IF
END IF

PROGRAMMING IN QuickBASIC 5-19

5-20

mmmmasmsmmn STATUS
purpose Returns the current setting of the requested status parameter.
usage CALL STATUS (regh, stat®)
parameters reg% is an INTEGER containing the address of the register or

configuration parameter to be queried. reg% must be passed as a
variable. This value corresponds to a 4-bit field which specifies the
status register or configuration parameter to be read. The format of the
reg% byte is as follows:
Reg (input) - Low Byte

BIT 6 5 4 3 2 1 0

X X X ADR3 | ADR2 ADR1 | ADRO
Where
X May be any value.

returns

BIT

ADR3-0 REGISTER/PARAMETER SELECT. This is a 4-bit field
which specifies the status register or configuration
parameter to be read. Registers and parameters are selected
as follows:

ADR3 ADR2 ADR1 ADRO REGISTER/PARAMETER

0 0 0 0 Address Status Reg

0 0 0 1 Interrupt Status 1 Reg

0 ¢ 1 g Interrupt Status 2 Reg

0 0 1 1 DMA Status Reg

0 1 0 0 Output Terminator 0

0 1 0 1 Output Terminator 1

0 1 1 0 Output Terminator 2

0 1 1 1 Output Terminator 3

1 0 0 0 Input Terminator 0

1 0 1 1 Input Terminator 1

1 1 1 0 Input Terminator 2

1 1 1 1 Input Terminator 3

1 0 0 0 1/0 Timeout Parameter

1 0 0 1 DMA Timeout Parameter
1 1 1 0 1/0 Port Address

1 1 1 1 GPIB Address of KM-488-ROM

reg% - When STATUS obtains the value of one of the four transmit
message terminators, this variable will contain two flag bits which
determine the length of the terminator and whether or not EOL is
asserted with the last byte. When obtaining other parameters, reg% will
retain its input value.

Reg (Return) - Low Byte
6 5 4 3 2 1 0

0 0 0 0 0 LEN ECI

KM-488-ROM USER GUIDE

e STATUS (cont.)

Where

LEN Terminator Length. If this bit is set to 0, then the terminator
is one byte long. If this bit is set to 1, then the terminator is
two bytes long.

EOI If this bit is set to 1, EOl is asserted when the last terminator
byte is sent. Otherwise, EOI is not asserted.

stat% is an INTEGER describing the status bits for the register or the
configuration parameter which was specified by the reg% parameter.
Unless otherwise noted, the high byte of stat% is returned as 0.

Address Status Register
Stat (Return) - Low Byte

BIT 7 6 5 4 3 2 1 0
cic X X X X LA TA X
Where
X This bit may be any value.

CiC Active Controller. If this bit is set to 1, then the KM-488-
ROM is a System Controller.

LA Listener. If this bit is set to 1, then the KM-488-ROM is a
Listener.
TA Talker. If this bit is set to 1, then the KM-488-ROM is a
Talker.
Interru us Regigter 1
Stat (Return) - Low Byte
BIT 7 6 5 4 3 2 1 0
X X GET X DEC X X X
Where
X This bit may be any value.

GET Group Execute Trigger. If this bit is set to 1, then a Group
Execute Trigger command was received while the KM-488-
ROM was a device.

DEC When this bit is set to 1, a Device Clear was received.

Interrupt Status Register 2
Stat (Return) - Low Byte

BIT 7 6 5 4 3 2 1 0
X SRQ1 LOK REM X X X ADSC
Where
X This bit may be any value.

PROGRAMMING iN QuickBASIC 5-21

5-22

notes

example

I
purpose

usage
parameters

STATUS (cont.)

SRQI When this bit is set to 1, it indicates SRQ was active. {Active
Controller mode only.)

LOK When this bit is set to 1, the device was set to Local Lockout.
(Device mode only.)

REM When this bit is set to 1, the device was configured for
remote operation. (Device mode only.)

ADSC When this bit is set to 1, a change of the address status
occurred (i.e., untalk to talk, device to active controller, etc.).

Transmit and Receive Message Terminator #1-4. Contains First and Last
bytes of the message terminator. Input Terminators and Single
Character Output Terminators are contained in the Least Significant
Byte. In the case of a two character Output Terminator, the Most
Significant Byte of this parameter is the first character sent.

DMA Timeout and I/O Timeout Parameters. Contains the value of the
desired parameter as an unsigned value in the low and high bytes of
stat%. The timeout value is expressed in milliseconds (0-65535).

The bits contained in the Interrupt Status 1 and 2 registers are extremely
volatile. When you read these registers, any bits which were set are
automatically cleared by the READ operation. This is extremely
important to note when reading Interrupt Status Register 1, as some of
the bits (not shown above} are used by various KM-488-ROM routines.
It may be possible to cause various KM-488-ROM routines to report a
timeout error if this register is read at while the KM-488-ROM is
addressed to talk or listen,

This example illustrates a possible use for the STATUS routine.

rag¥=0 . stat% = 0

CALL STATUS (rag%, atat%)
IF (stat® and &h80) <>0 THEN PRINT "KM-488-ROM = SYS CONTR"
IF (stat% and 2) <>0 THEN PRINT PRINT "ADDRESSED TQO TALK..."
IF (atat% and 4) <>0 THEN PRINT "ADDRESSED TO LISTEN..."
regy=ls

CALL STATUS (REG%, STATS)

PRINT "“"IEEE-488 Addresa = "; STATS

XMIT

Sends GPIB commands and data from a string,.

CALL XMIT (info§, stat%)

info§ is a STRING variable containing a series of GPIB commands and
data. Each item must separated by one or more spaces. All the
available commands are described in Chapter 3. These commands
include

KM-488-ROM USER GUIDE

parametors

returns

BIT

7

XMIT (cont.)

info$ is a STRING variable containing a series of GPIB commands and
data. Each item must be separated by one or more spaces. Commands
can be in UPPER or lower case. The Transmit commands are described
in Chapter 3. These commands include

CMD GTL MTA SDC TO
DATA GTLA MLA SEC T1
DCL [FC PPC SPE T2
END LISTEN PPD SPD T3
ECI LLO PPU TALK UNL
GET LOC REN TCT UNT

stat% is an INTEGER which describes the state of the transfer returned
after the call. The returned stat value can be interpreted as follows:

Stat (Return) - Low Byte
6 5 4 3 2 1 0

X

ADRS | NCTL UNDF T™MO STR NT STX

example

Where
X May be any value.

ADRS Invalid GPIB address. If this bit is set to 1, then an invalid
GPIB address was given.

NCTL Not a System Controller. If this bit is set to 1, it indicates
that the KM-488-ROM tried to send GPIB Bus Commands
when it was not an Active Controller.

UNDF Undefined Command. If this bit is set to 1, the info string
contained an undefined command.

TMO Timeout Error. Indicates whether or not a Timeout Error
oceurred during data transfer. If this bitisa 1, thena
Timeout Error occurred.

STR String Error. If this bit is set to one, then a quoted string,
END, or terminator was found without a DATA
subcommand preceding it.

NT KM-488-ROM not a Talker. If this bitis settoa 1, it
indicates the routine was called before the KM-488-ROM
was designated as a Tatker.

STX Syntax Error. If this bit is set to 1, a syntax error was found.

This example illustrates one way to use the XMIT command with a
Keithley 196 Voltmeter. This meter is assigned GPIB address 7 and is
configured to a 30 Volt DC range with 4 1/2 digit accuracy. The meter is
also configured to take a new reading each time a Group Execute Trigger
Bus command (GET) is received. Itis assumed that the meter has been
set to use a CR, LF, EOI (the default for Message Terminator 1). The
program then triggers the instrument to get the first reading, and makes
it a talker and the KM-488-ROM a listener in order to get the first
reading.

The device to receive the setup command string which must be sent to
the meter contains the following device commands:

PROGRAMMING IN QuickBASIC 5-23

mmm—— XMIT (cont.)

FO Select DC Voits mode

R3 Select 30 Volt range

S1 Select4 1/2 digit accuracy

T3 Take one reading when GET received

X Execute the prior commands within the string

The device to receive the setup command string must also be
programmed to assert the GPIB REN signal (This allows the meter to
receive GPIB commands.) and to LISTEN (This allows the device to
receive the string.). The programming sequence used consists of the
following:

Setting Remote Enable (REN).

Setting all devices to UNTalk and UNListen.

Addressing the 196 to LISTEN.

Addressing the KM-488-ROM to talk (My Talk Address).

Sending the Device-Dependent Commands as a string of DATA.

Sending the appropriate message terminator characters after the data.

Issuing the Group Execute Trigger bus command.

Unaddressing all devices.

Addressing the meter to TALK and the KM-488-ROM to LISTEN (My
Listen Address) in preparation for receiving the latest reading.

*$INCLUDE: 'kmd88qb.bi"
CALL init (0,0)
CALL xmit ("REN UNL UNT LISTEN 7 MTA DATA'FOR3S1T3X' Tl GET UNL UNT
TALE 7 MLA", STAT%)
IF STAT%<>0 THEN
PRINT "Error sending omd string status=";STATY

messssssm— YMITA

purpose Sends data from an array.
usage CALL XMITA(outdatt (0),count%, tarms, stats)
alternate usage TARRAY (count%,term$, stats)
parameters outdat% is an INTEGER array containing the data to be sent.

count% is an INTEGER containing the number of data bytes to be
transmitted. NOTE: In BASIC, when you want to send more than 32767
bytes, you will have to assign the value to count% in hex.

term% is an INTEGER that describes what sort of terminator should be
used. This byte is of the following format:

Term (Input Parameter) - Low Byte

BIT 7 6 5 4 3 2 1 0
T
STRM | TRM1 | TRMO X X X |I X EQI
Where
X This bit may be any value.

5-24 KM-488-ROM USER GUIDE

memssmsmm XMITA (cont.)

STRM Send Message Terminators. If this bit is set to 1, then the
message terminator(s) will be sent at the end of the
transmission. Otherwise, they will not.

TRM1-0 Terminator Select. These two bits select the Output
Message Terminator to be used to signal the end of a
transmission. Available terminator selections are

TRM1 TRMO TERMINATOR # DEFAULT
0 0 0 LF EOI
0 1 1 CR LF EQI
1 0 2 CR EQI
1 1 3 LF CR EQI

These terminators can be redefined by running the CONFIG
program as described in Chapter 2.

EQI Asserts EOL If this bit is set to 1, then EQI will be asserted
when the last byte is sent. Otherwise, EQOI will not be
asserted.

returns stat% is an INTEGER describing the state of the transfer returned after
the call. The stat value is interpreted as follows:
Stat (Return) - Low Byte
BIT 7 6 5 4 3 2 1 0
|
0 0 0 0 T™MO 0 | NT 0
!
Where

TMO Timeout Error. Indicates whether or not a Timeout Error
occurred during data transfer. If this bitisa 1, thena
Timeout Error occurred.

NT KM-488-ROM not a Talker. If this bitis settoa 1, it
indicates the routine was called before the KM-488-ROM
was designated as a Talker.

example This example demonsirates use of SEND, XMITA, and RCVA to send

and retrieve waveform data from a GPIB oscilloscope. The scope expects
data points to be sent with the most significant byte first. Thus, the data
bytes to be sent must be byte-swapped prior to sending them.

DECLARE SUB SwapBytes (B$§)
DECLARE SUB DisplayKMerr (ErrStat%, ErrorStr§)

'$INCLUDE: 'kwm488gb.bi'

DIN X%{(1024), Y%(1024), 2%(1024), 8%(1200)

CL8 : KEY OFF: COLCR 7, O

PRINT "This program demonstrates the use of the XMITA and RCVA"
PRINT "routines using a Tektronix 11301 or 11302 Oscilloscope"
PRINT "at GPIB address 16."

CALL INIT(0,0) TKM-488-ROM 1a systam controller at GPIB adrs 0
BCOPER = 16 ‘Scope at adrs 16

PRINT "INITIALIZING SCOPE": PRINT

PROGRAMMING IN QuickBASIC 5-25

5-26

e XMITA (cont.)

CMD§ = "INIT"
CALL SEND(SCOPES%, CMD#, FLAGS) 'Initialize saope
IF (FLAGY <> 0) THEN CALL DisplayKMerr (FLAGY, CMD§)

CMD§ = "RQS OFF"
CALL SEND (SCOPRS, CMD§, FLAGH) '‘Disables SRQs
IF (FLAG% <> 0) THEN CALL DiaplayKMerr (FLAGH, CMD§)

------- Calculate data, send peints to scope, display ourve ----

PRINT "CALCULATING SINE WAVE": PRINT
NUMPTS% = 1024 ‘Words in waveform

FOR I = 0 TO NUMPTS% - 1
ANGLE = I * 6.28319 / 1024: X3%(I) = 400 * SIN(ANGLE)
H{ = HEXS (X%(I)}
CALL SwapBytea (H§)
Z% (I} = VAL(H$)
NEXT I

NUMBYT% = NUMPTS% * 2 + 1
H§ = HEX$ (NUMBYTS)

CALYL SwapBytas(H3) 'Scope wants MSB FIRST, KM-488-ROM sends LSB
'first so must swap bytes
N& = VAL(H$)

Do
PRINT "SENDING SINE WAVE TO SCOPE": PRINT
CMD§ = "DCL"
CALL ¥MIT{CMD§, PLAGS)
IF (FLAG%® <> 0) THEN CALL DisplayKMerr (FLAG%, CMD$)

CMD§ = "INPUT STOL"
CALL SEND ({SCOPE%, CMDS, FLAGH) 'Stora in location 1
IF (FLAGR® <> 0) THEN CALL DisplayKMerr (FLAGS, CMD$)

CMDS = "MTA LISTEN " + STRS (SCOPE%) + " DATA 'CURVE %'
CALL XNIT(CMDE, FLAGS) 'Setup for data transfer
IF (FLAGY <> 0) THER CALL DisplayKMery (FLAGY, CMD$)

EOI% =m.0: COUNTS = 2
CALL XMITA (N%, COUNT%, EOI%, FLAG%) 'Byte count sent
IF (FLAGY% <> 0) THEN CALYL DlsplayKMerr (FLAGY, "")

COUNTS = NUMPTS% * 2
CALL XMITA(Z%(0), COUNT%, EOX%, FLAGY%) 'Data sent
IF (FLAGY <> 0) THEN CALL DisplayKMarr (FLAGY%, CMDS)

CHEKSUM% = 0 'Don't bother actual chaecksum
EOI% = 1: COUNT% = 1 'Sand EOI with checksum

CALL XMITA(CHKSUM%, COUNT%, EOCI%, FLAG%) 'Chacksum sent

IF (FLAGY% <> 0) THEN CALL DisplayKMerr(FLAGS, ")

PRINT "CLEARING ALL TRACES": PRINT

KM-488-ROM USER GUIDE

s XMITA (cont.)

CHMD§ = "CLEAR ALL"
CALL SEND(SCOPE%, CMD$§, FLAGS)
IF (FLAGS <> 0) THEN CALL DisplayKMerx (FLAGY%, CMD$§)

PRINT "DISPLAYING STORED TRACE": PRINT

CMD$ = "TRACEL
DESCRIPTION:STO1, VPOSITION: 0, HPOSITION: 0, UNITS:" + CHRS (34) + "v» +
CHR$ (34)

CALL SEND (SCOPE%, CMD§, FLAGY)

IF (FLAGY <> 0) THEN CALL DisplayKMerr {(FLAG%, CMD$}

oo e Retrieve data and compare —---==-=------—==o——--
PRINT "RETRIEVING DATA FROM SCOPE": PRINT

CMD§ = "EMCDG WAVFRMN:BINARY"
CALL SEND (SCOPE%, CMD#, FLAGY)
IF (FLAG% <> 0) THEN CALL DisplayKMerr (FLAG%, CMD3)

CMDS = "OUTPUT STO1L"
CALL SEND (SCOPE%, CMD§, FLAGY)
IF (FLAG% <> 0) THEN CALL DisplayRMerx (FLAGY, CMD§)

CMD§ = "CURVE ?" ‘Ask for data to be returned

CALL SEND(SCOPE%, CMD§, FLAGY)
IF (FLAG% <> 0) THEN CALL DisplayKMerr (FLAG%, CMD$)

CMD$ = "TALK ™ + STR§ (SCOPES) + " MLA"
CALL XMIT(CMD§, FLAGS) 'Setup for scope to send data
IF {FLAG% <> 0} THEN CALL DisplayKMerr (FLAGY, CMD$)

COUNTS = 7: L% = 0

CALY, RCVA (8% (0), COUNTS, 0, L%, FLAGY%) 'Header recelved
IF (FLAGY% <> 0) THEN CALL DisplayKMerr (FLAGY%, CMD§)

IF L% <> 7 THEN GOTO 2080

COUNTS = 2050: L$ = 0

CALL RCVA(8%{0), COUNT®, 0, L%, FLAGY%} 'Data racelved
IF (FLAGY <> 0) THEN CALL DisplayKMerr (FLAG%, CMD$)
IF L% <> (2 + NUMPTS% * 2) THEN GOTO 2080

PRINT "COMPARE SENT AND RECEIVED DATA; . = QK, * = BAD
COMPARE": PRINT

FOR I% = 1 TO 1024

HJ = HEX$ (3% (I%))

CALL SwapBytes (H§)

Y$(I% - 1) = VAL(HS)

IF X%(I% - 1) = Y%(I% - 1) THEN PRINT "."; ELSE PRINT "wv;
NEXT I%

PRINT : PRINT
PRINT "COMPLETE"

PROGRAMMING IN QuickBASIC 5-27

s XMITA (cONL.)

PRINT

RESP% = O

CALL SPOLL(SCOPE%, RESP%, FLAGS)
PRINT "SPOLL = “; HEX$ (RESP% AND 255)

END

2080 PRINT "COUNT ERROR: "; L%
STCP

2100 PRINT "READ DATA ERROR"
STOP

SUB DisplayRMerr (ErrStat%, Errorstr$)

IF Brritatk = § THENW

PRINT "KM488 ERROR : "; ErrStat%; " - Timeout®
ELSE

PRINT "KM488 ERROR : "; ErrStath
END IF

PRINT "LAST COMMAND - "“; Errorstr$
END

END SUB

Ve ———— Swap byte subroutine---r==----—-—————mmmnoo———
SUB SwapBytes (B§)

L% = LEN(B$)

IF L% = 1 THEN B§ = "000" + B§
IF L% = 2 THEN BS§ = "00" + B
IF L% = 3 THEN B§ = "0" 4 Bj

LSB§ = RIGHTS(B§, 2)
MSB§ = LEFTH(BS, 2)
B = wgH" + LSBS + MSB$ 'Swap bytes

END 8UB

SUR WaltForFKey
WHILE INKEBY$§ = "": WEND
END SUB

5-28 KM-488-ROM USER GUIDE

Chapter 6
PROGRAMMING IN TURBO PASCAL

While Chapter 3 gives a brief overview of the routines available for programming the KM-
488-ROM, this chapter gives instructions for calling the routines from TURBO PASCAL. The
routines appear in alphabetical order and include a sample program for each.

6.1 GENERAL
TURBO PASCAL direct support is currently offered for versions 4.0 and 5.0. The interface for
TURBOQO PASCAL includes four different files, as follows:

KM488PAS.TPU "UNIT" file for use with Borland TURBO PASCAL version 5.0.
KM488P4.TPU "UNIT" file for use with Borland TURBO PASCAL version 4.0.
KM488PAS.PAS Source file to be used for re-building TURBO Pascal "UNIT" file.

KM488PAS.OB] Object code file to be used for re-building TURBO Pascal "UNIT" file.

The files KM488PAS.PAS and KM488PLB.OB]J can be used to create a new "unit" file should

you need to.

Supported Versions Turbo PASCAL versions 4.0, 5.0 and higher.

The Environment Before you begin to develop programs in TURBO PASCAL,
several files must be present in your working directory. Copy
the appropriate files from the KM-488-ROM Disks to your
working directory:

TURBO PASCAL 4.0 TURBO PASCAL 5.0
\turbopas\km488p4.1pu \urbopas\km488pas.(pu
NOTE: km488p4.pas must be renamed km488pas.tpu.

File Header —

Compiling Your application program can be compiled in the usual fashion.
Be sure to include the following line in your program:

USES kmd88pas;
Software The KM-488-ROM firmware contains a number of configuration

parameters which govern the default settings of the input and
output message terminator settings, message timeout periods,

PROGRAMMING IN TURBO PASCAL 6-1

and /O port addresses. The defauli terminators are shown in
Table 4-3. If these default values are unsatisfactory, they may be
changed by calling either the INTERM or OUTTERM routine.

The default DMA and I/0 Timeouts are 10 seconds. These
defaults may be altered by calling the DMATIMEOUT or
IOTIMEOUT routine.

Defauit Terminater Seitings
TERM# OUTPUT TERMINATOR INPUT TERMINATOR

0 LF EQI LF
1 CR LF EOI CR
2 CR EQI , (comma)
3 LF CR EOI ; (semi-colon}
notes 1. Any arguments which appear as variables may also be passed
as constants.

2, Parameters which are also used to return values must be
declared as variables.

3. Any of the KM-488-ROM routines which are used to receive
data require that a named string or array be declared to store the
received data. The length of the string or size of the array should
be sufficient to store the number of bytes that are expected. In
addition, these routines require a parameter which specifies the
maximum number of bytes to be received. It is extremely
important that the amount of storage space allocated is at least as
great as this maximum length parameter. Otherwise, data may
be stored into memory which has been allocated for use by other

parts of your program, or for use by DOS. This could lead to
erroneous operation and possibly a system crash.

4. In TURBO Pascal, strings are actually a special type of
character array. The first byte of the array is used to store the
number of bytes contained within the string. Hence, strings may
range from 0 to 255 bytes in length and the KM-488-ROM
routines which pass data to or from strings are limited to 255
bytes maximum.

5. Do not name the variables in your application program with
the same name as any of the KM-488-ROM routines.

6. Do not assign a program name which is the same name as any
of the KM-488-ROM routines.

6.2 DESCRIPTION FORMAT FOR ROUTINES

The format for each descriptions is as follows:

purpose ... abrief description of the routine. See Chapter 3 for more detailed
descriptions.

usage .. gives an example of usage for each routine and assumes the input
parameters are passed in as variables. These parameters can also be
passed in directly. See the General Programming Notes for more

KM-488-ROM USER GUIDE

alternate usage

parameters
returns
notes
example

6.3 ROUTINES

I
purpose

usage

alternate usage

parameters

returns
example

purpose

information.

... lists alternate usage for the routine, if any. Unless otherwise noted, the
alternate usage performs exactly the same function as the usage.

... describes each of the input parameters.
... describes any values returned by the routine.
... lists any special programming considerations.

... gives a programming example using the routine.

DMATIMEOUT

Sets the maximum length of time for a DMA transfer to complete before
a timeout error is reported, when using DMA in conjunction with
XMITA and RCVA routines.

VAR
time: WORD;
BEGIN

dmatimeocut (time) ;

sattimeout (tima);

NOTE: The alternate usage sets both the DMA and I/0 Timeouts to the
specified value.

time is an INTEGER which represents the timeout period to elapse
during a DMA transfer. A DMA Timeout Error will be generated when
the time to transfer {(via DMA) an entire message exceeds the set DMA
timeout value (time), time% can range from (to 65535 milliseconds and
is internally rounded to the closest integer multiple of 55 milliseconds.

None.
This example sets the DMA Timeout period to 5 seconds.

dmat imeout (5000)

ENTER

Addresses a specified device to talk, the KM-488-ROM to listen, and
receives data from the addressed device into a string.

PROGRAMMING IN TURBOQ PASCAL 6-3

smssmmmm—s ENTER (cont.)

usage .-
VAR
info : STRING;
leng : WORD;

maxlan : WORD;
adrs : INTEGER;
stat : INTEGER;
BEGIN
antar(info,maxlen, leng, adrs, stat) ;

parametors info is a STRING which is to hold the receive data. The string must be
long enough to receive the expected number of characters. Note that
when you declare a variable to be a string in TURBO PASCAL, 255 bytes
of string space is allocated. Carriage returns and the message terminator
character in the incoming data are ignored and not placed in received
data.

maxlen is a WORD which should be set to the maximum number of
characters you expect to receive. It must never exceed the number of
bytes of string space which have been allocated for storage of the
received data.

adrs is an INTEGER containing the IEEE bus address of the device that
the data is to be sent to and the terminator to be used. This byte is of the
following format:
Adrs (Input Parameter) - Low Byte

BIT 7 6 5 4 3 2 1 0

TRM1 TRMO 0 ADR4 ADR3 ADR2 ADRT ADRO

Where

TRM1-0 Terminator Select. These two bits select the Message
Terminator to be used to signal the end of a transmission.
Available terminator selections are

TRM1 TRMO TERMINATOR # DEFAULT
0 0 0 LF
0 1 1 CR
1 0 2)
1 1 3 B

These terminators may be changed by the INTERM routine.

The easiest way to specify an alternate terminator is to add
a factor to the GPIB address of the desired instrument
which is specified within the ENTER call. The factors
added for each terminator are as follows:

GPIB Address + 0 = Terminator 0
GPIB Address + 64 = Terminator 1
GPIB Address + 128 = Terminator 2
GPIB Address + 192 = Terminator 3

6-4 KM-488-ROM USER GUIDE

returns

BIT

ENTER (cont.)

For example, if you wanted to receive a message using
terminator 2 from a device at GPIB address 10, the value of
adrs% supplied to ENTER would be 138 decimal (10 + 128).

ADR4-0 GPIB Address. These five bits are used to represent the
GPIB address of the device to which the data is to be sent.
GPIB addresses can range from 0 to 30.

info is a STRING variable, up to 255 characters, which will contain the
received data. The length of the string must be long enough to receive
the expected number of characters. Enter will terminate reception of
data when: 1) the number of characters received exceeds the length of the
string, 2) the specified terminator is received, or 3) any character is
received with the EQI signal asserted. Carriage returns and the
terminator character in the incoming data are ignored and not stored
with the received data.

leng is an INTEGER, less than or equal to 255, which indicates the actual
number of bytes which were stored.

stat is an INTEGER which describes the state of the transfer returned
after the call. The returned stat values (or combination of) are
interpreted as follows:
Stat (Return} - Low Byte

6 5 4 3 2 1 0

0 0 0 T™O OVF NC ADRS

example

Where

TMO Timeout Error. Indicates whether or not a Timeout Error
occurred during data transfer. If this bitisa 1, thena
Timeout Error occurred.

OVF Overflow Error. If this bit is a 1, then the info string was
filled, before a terminator character or EOI was detected.

NC KM-488-ROM not an Active Controller . If this bit is set to a
1, it indicates the routine was called before the KM-488-
ROM was designated as an Active Controller.

ADRS Invalid GPIB address. If this bit is set to 1, then an invalid
GPIB address was given.

In the following example, data is sent from two different instruments to
a KM-488-ROM. The KM-488-ROM is acting as the System Controller
and is assigned to GPIB address 0. One of the two instruments is a
voltmeter, requiring a Carriage Return-Line Feed terminator
combination (Term 1), assigned to GPIB address 7. The second
instrument, located at GPIB address 10, requires a line feed (Term 0} as
its terminator. The voltmeter is first sent a string of data which
represents its instrument setup command. Then, when addressed to talk,
it sends its most current reading to the KM488-ROM. The second
instrument is instructed to send its status, when addressed to talk.

It is assumed that the string sent by both instruments is 25 characters or
less. The string is printed out on the computer screen.

PROGRAMMING IN TURBO PASCAL 6-5

e ENTER (cont.)

PROGRAM sanddamo;
USES KN4BSPAS;

VAR

instl :INTEGER;

inst2 :INTEGER;

instlterm :INTEGER;

rlen :WORD;

status : INTEGER;

instring :8TRING;
{Note declaring a STRING givea us up to 255 bytes of data storage
for receiving., S8trings used to receive data should not be
dimensioned....}

BEGIN
instl:w?;
inet2:=10;
{Note terminator 1 used to send to Inatrument 1}
inatlterm:=instl+64;

init (0, 4);
send (instlterm, 'FOROTOMOX', status);

IF (atatua<>0) THEN

WriteLn {'Error sending to Instrument 1 Status=' status);
{¥ote that we need to specify the expected maximum number of
bytes to be received within the ENTER call...}

enter (inatring, 25, rlen, instl, atatus); {Read instrument 1}
{Check status of call and print received value if all is ok}

IF (status<>0) THEN

Writeln{'Brror recaiving Instrument 1 Status='status)
EL3SE

Writeln('Data recelved from Instrument 1 ~',6 instring);

{Get data from aecond instrument...}
send (inst?2, 'SEND STATUS', status);
IF (statua<>0) THEN
Writeln('Exror sending to Instrument 2 Status='status)
ELSE

WriteLn ('Data received from Ingtrument 2 ', instring);
END.

6-6 KM-488-ROM USER GUIDE

e |NIT

purpcse Initializes the KM-488-ROM by assigning its GPIB address and
establishing it as a System Controller or Device.

usage ..
VAR
adrs: INTEGER;
modae: INTEGER;

BEGIN
adrs:= ;

mode:= ;
INIT (adrs, mode);

alternate usage INITIALIZE (adrs, moda)

parameters adrs is an INTEGER representing the IEEE bus address of the KM-488-
ROM. This is an integer from 0 to 30.

mode is an INTEGER representing the operating mode of the KM488-
ROM. These can be any of the following values:

Mode - Low Byte

BIT 7 6 5 4 3 2 1 0
X X X X X FAST DEV X
Where
X May be any value.

FAST Handshake Speed. If set to 1, High Speed GPIB bus
handshaking is used (500ns). If set to 0, Low Speed GP'IB
bus handshaking (2 us} is used. See Chapter 3 for more
information.

DEV Device. If set to 1, the KM-488-ROM is acting as a Device.
Otherwise, the KM-488-ROM is acting as a System
Controller. When System Controller is selected, the GPIB
IFC line is momentarily asserted.

returns None.

example This example initializes the KM-488-ROM as a System Controller with a
IEEE address of 0 with a High Speed Handshake.

PROGRAM userprog;
USES KM488PAS;

VAR
adra: INTEGER;
mode: INTEGER;
BEGIN
adrcs:=0;

mode :=4;
init (adrs,mode);

PROGRAMMING IN TURBO PASCAL 6-7

purpose
usage

alternate usage

parameters

returns
notes
example

INTERM

Changes the input message terminator settings.

VAR num : INTEGER;
term : INTEGER;

BEGIN
interm(num, tezm);

VAR term : BYTE:;
BEGIR
setinputecs (texm);

NOTE: The alternate syntax only changes the value of Input Terminator
0.

num is an integer which selects the number of the receive message
terminator to be changed. This ranges from 0 to 3, where

num % TERMINATOR # DEFAULT
0 0 LF
1 1 CR
2 2 .
3 3 :

term is an integer representing the terminator byte to be programmed.
This integer is the decimal or hex equivalent of the terminator's ASCII
representation. Hex equivalents must be preceded by &H. See Appendix
A for ASCII Equivalents.

None.
The parameters may be passed directly into the routine.

This example sets Input Terminator 0 to Line Feed and Input Terminator
3 to Carriage Return.

VAR

BEGIN
interm (0,10);
interm(3, §D);

KM-488-ROM USER GUIDE

purpose
usage

parameters

returns

example

purpose
usage

alternate usage

parameters

IOTIMEOUT

Changes the length of time to elapse before an 1/0 Timeout occurs.

VAR

tima: WORD;
BEGIN

iotimeocut (tima) ;

time is the amount of time to elapse before a timeout error is reported.

This will occur if the time elapsed between the transfer of individual

bytes exceeds the specified I/0 Timeout period (time). time is any value
between 0 and 65535 milliseconds and will be internally rounded to 55
milliseconds. The default timeout value is 10 seconds.

None.

This line sets the I/O Timeout period to 1 second.

ilotimeout (1000);

OUTTERM

Changes the output message terminator sequences.

VAR
num @ INTEGER;

chars : INTEGER;

eol : INTEGER;
trml : INTEGER;
trm2 : INTEGER:

BEGIN

ocutterm{num, chars, eoi, trml, trm2)

VAR

trml : BYTE;
trm2 : BYTE:;
BEGIN

setoutputacs (trml, trm2)

NOTE: The Alternate usage will only change the value of Terminator)

and will always assert EOI upon transmission of the last character.

Additionally, a single terminator is programmed by setting trm2 to 0.

num is an INTEGER which selects the number of the transmit message
terminator to be changed. This ranges from 0 to 3, where

PROGRAMMING IN TURBO PASCAL

6-9

6-10

returns
exampleo

pumpose

usage

parameters
returns
hotes

OUTTERM (cont.)

num % TERMINATOR # DEFAULT
0 0 LFEOI
1 1 CRLFEOI
2 2 CR EOI
3 3 LF CR EOI

chars is an INTEGER that selects the length of the transmit terminator.
This is 0 if a 1-character terminator is required or 1 for a 2-character
terminator.

eoi is an INTEGER that determines whether EQI is asserted when the
last terminator byte is sent. If this bit is 1, EOI will be sent. If this bit is 0,
EQI will not be sent,

trm1 is an INTEGER representing the first terminator byte to be sent; it
is the decimal or hex equivalent of the terminator's ASCII representation.
Be sure to precede all hex values with &H. See Appendix A for ASCH
Equivalents.

trm2 is an INTEGER representing the second terminator byte (in a 2-
byte terminator); it is the decimal or hex equivalent of the terminator's
ASCII representation. Be sure to precede all hex values with &H. Ifa 1-
byte terminator is programmed, trm2% may be any value.

None.
These lines illustrate two different uses of OUTTERM.

OUTTERM (0,0,1,4D,0) {Seta output terminator 0 to CR EOQI.}
OUTTERM (3,1,0, 3D, §A) {Sets output texminator 3 to CR,LF with no X0I1.}
Initiates a parallel poll.

NOTE: Many GPIB devices do not support parallel polling. Check your
device's documentation.

VAR

resp : byte;
BEGIN

ppoll (rasp);
None.

resp is a BYTE which will contain the parallel poll response.

Before you call the PPOLL routine, you must first configure the Parallel
Poll response of the device. To do this,

1. Address it to listen.

2. Send it a GPIB Parallel Poll Configure (PPC) command, using the
XMIT command.

KM-488-ROM USER GUIDE

example

I
purpose
usage

alternate usage

PPOLL (cont.)

- 3.Send a Parallel Poll Enable byte using the XMIT command. (Use the

mnemonic CMD followed by nnn where nnn is the decimal value of the
Parallel Poll Enable byte.

The Parallel Poll Enable Byte is of the format 0110SPPP, where

S is the parallel poll response value (0 or 1) that the device uses to
respond to the parallel poll when service is required.

PPP is a 3-bit value which tells the device being configured which data
bit it should use as its parallel poll response (DIO1 through DIOS).

This example assumes that the KM-488-ROM is connected to a Sorenson
HPD30-10 Power Supply. This device is located at GPIB address 1. Itis
also assumed that this device drives bit 3 of the Parallel Poll Response
byte to a logic "1" when service is required. To program the device to
respond properly, send the Parallel Poll enable byte 01101011 (107) via
the XMIT command.

PROGRAM ppolldemwo;
USES KM4B88PAS;

VAR

atat : INTEGER;
resp : BYTE;

BEGIN
init (0,0);
xmit ("REN UNL UNT LISTEN 1 PPC CMD 107', astat);
IF (atat<>0} THHEN
WriteLn ('Error sending PPC omd Status=', stat):

Ppoll (rasp) ;

IF ((resp AND 8)<>0) THEN
Writeln(‘HPD30-10 Regquesting Service...');

RCV

Receives data into a string.

VAR
info : SBTRING;
maxlen : WORD;
term : INTEGER;
ravlen : WORD;
stat : INTEGER;
BEGIN
rev(info, maxlan, taerm, rcovlen, stat);

raceive {info, maxlen, rcvlen, stat);

NOTE:The Alternate usage assumes the use of Input Message
Terminator 0.

i

PROGRAMMING IN TURBO PASCAL 6-11

msesssssm BCV (cont.)

parameters info is a STRING which will hold the received data. The string must be
Jong enough to receive the expected number of characters. Carriage
returns and the message terminator character in the incoming data are
ignored and are not stored with the received data.

maxlen is a WORD which specifies the maximum number of data bytes
which can be received. maxlen must not exceed the actual number of
storage locations that have been allocated to store data. Otherwise, data
may be stored in locations other than those allocated for your program
and your program may crash.

term is an INTEGER containing the number of the IEEE bus terminator

to be used, where:
) term% TERMINATOR # DEFAULT
0 Q LF
1 1 CR
2 2 .
3 : 3 :

These terminators can be changed by calling the INTERM routine.

returns infois a STRING variable (up to 64 KBytes} which will contain the
received data. The length of the string must be long enough to receive
the expected number of characters. RCV will terminate reception of data
when: 1) the number of characters received exceeds maxlen; 2) a

terminator is received; or 3) any character is received with the EOl signal
asserted. Carriage returns and the message terminator character in the
incoming data are ignored and not stored with the received data.

rcvlen is a WORD that indicates the actual number of bytes which were
received and stored.

stat is an INTEGER which describes the state of the transfer returned
after the call. The returned stat values are interpreted as follows:

Stat (Return) - Low Byte
BIT 7 6] 4 3 2 1 0

0 0 0 0 T™MO OVF NL 0

Where

T™O Timeout Error. Indicates whether or not a Timeout Error
occurred during data transfer. If thisbitisa 1, thena
Timeout Error occurred.

OVF Overflow Error. If this bit is a 1, then the info string was
filled, before a terminator character or EOl was detected.

NL KM-488-ROM not a Listener. If this bitis setto a 1, it
indicates the RCV was called before the KM-488-ROM was
designated as a Listener.

hotes The KM-488-ROM must be addressed to listen and another device
addressed to talk before calling RCV.

i
6-12 KM-488-ROM USER GUIDE

example

purpose

usage

RCV (cont.)

This example shows how the RCV routine might be used together with
the XMIT routine to receive data. It uses the XMIT routine to command
a Keithley 196 voltmeter to take a reading. The meter reading is received
using the RCV routine. It is assumed that the meter reading returned
will fit into a 25-character array.

This example assumes that the KM-488-ROM has been configured such
that transmit message terminator 1 is Carriage Return-Line Feed
combination and this combination is also used by the Keithley 196.

Note that the Voltmeter's setup command string is enclosed within
double single quotes ().

PROGRAN xmitdemo;
USES KM4B88PAS;

VAR
status:INTEGER;
rovdat : STRING;
rovlen:WORD;
BRGIN
init (0, 0);
xuit {('ren unl unt listen 7 mta data "'FOR3SIT3X'' T1 get unl
unt talk 7 mla', status);

if (status<>0) then
Writeln {'Error sending -status=', status);

rov (rovdat, 25, 0, rovlen, status);
{Note that we expect to receive no more than 25 characters.}

if (status<>0) then
Writeln {'Error receiving - statuam',k statuas)
aelse
WriteLn ('Received data=', rovdat,' length=', rovlen);

RCVA

Receives data into a specified array. It may also be used to receive data
via DMA (See SETDMA).

VAR
data : TYPE[LENGTH]
maxlen : WORD;
term : INTEGER;
rovlan : WORD;
atat : INTEGER;

BEGIN
rcva (data{0] ,maxlen,term, ravlaen, atat);

PROGRAMMING IN TURBO PASCAL 6-13

6-14

alternate usage

parameters

BIT

RCVA (cont.)

rarray(data{0},maxlen, rovlen, stat);
NOTE: The Alternate usage is limited to terminating on EOL

data[} is an ARRAY which is used to store the received data. It may be
any data type. The number of data bytes contained in each array
location will vary according to the data type specified. The RCVA
routine will "byte pack” data into the array, starting with the least
significant byte of the specified location. The size of the array should be
large enough to store the expected number of data bytes or a program
crash could occur.

term is an INTEGER which selects the type of terminator to be used.
This integer is interpreted according to the following format:

Term (Input Parameter) - Low Byte
6 5 4 3 2 1 0

X X X X STRM TRM1 | TRMO

returns

Where
X May be any value.

STRM Enable/Disable String Message Terminators. If this bitis 1,
a Message Terminator Character will be used to detect the
end of reception. If this bit is 0, a Message Terminator
Character will not be used.

TRM1-0 Terminator Select. These two bits select the Input Message
Terminator to be used to signal the end of a transmission.
(The STRM bit must be set to 1.) Available terminator

selections are
TRM1 TRMO0 TERMINATOR # DEFAULT
0 0 0 LF
0 1 1 CR
1 0 2 ’
1 1 3 H

The values for these terminators can be changed by calling
the INTERM routine.

maxlen is an integer which specifies the maximum number of data bytes
which can be received. When you want to receive more than 32767
bytes, use the technique outlined in Programming Note 4 presented at
the beginning of this section. maxlen% must be less than or equal to
twice the total number of bytes allocated in the indata% array or a
program crash may occur.

revlen is a WORD that will contain the actual number of data bytes
which were received. Note that half this many array locations will
contain data. To specify more than 32767 bytes, use the technique
outlined in Programming Note 4 presented at the beginning of this
section.

!

KM-488-ROM USER GUIDE

BIT

RCVA (cont.)

stat is an integer describing the state of the transfer returned after the
call. The RCVA routine returns three status bits within the stat%
variable. The TMO bit is used to signal a timeout error. The REOI bit
signals that the routine returned because the terminator was detected (if
enabled), or EOI was received. The NL bit is set if the RCV A routine was
called and the card was not addressed to listen. Unlike other KM-488-
ROM routines, it is possible to return a non-zero status when the call was
completed successfully.

Stat (Return) - Low Byte
6 5 4 3 2 1 0

0 REQI 0 T™O 0 NL 0

hotes
example

purpose

usage

parameters

Where

REOI Reason for RCVA Termination. If this bitis a1, then RCVA
routine ceased because an EQI or terminator character was
received. If this bit is a 0, then the RCVA was terminated
because an error occurred or the maximum byte count was
reached.

TMO Timeout Error. Indicates whether or not a Timeout Error
occurred during data transfer. If this bitis a 1, thena
Timeout Error occurred.

NL KM-488-ROM not a Listener, If this bitis settoa 1, it
indicates the RCV A was called before the KM-488-ROM
was designated as a Listener.

The KM-488-ROM must be addressed to listen before calling this routine.
Refer to the XMITA example.

SEND

Addresses a specified device to listen, the KM-488-ROM to talk, and
sends data from a string.

VAR
adrs: INTEGER;
info: STRING[25];
stat: INTEGER;
BEGIN
info := 'Data to be transmitted';
send ({(adrs, setup, stat);

adrs is an INTEGER containing the IEEE bus address of the device that
the data is to be sent to and the terminator to be used. This byte is of the
following format:

PROGRAMMING IN TURBO PASCAL 6-15

s——— SEND (cont.)

Adrs (Input Parameter) - Low Byte
BIT 7 6 5 4 3 2 1 0

TRM1 TAMO 0 ADR4 ADR3 | ADR2 ADR1 ADRO

Where

TRAM1-0 Terminator Select. These two bits select the Input Message
Terminator to be used to signal the end of a transmission.
Available ferminator s¢lections are

TRM1 TRMO TERMINATOR # DEFAULT
0 0 0 LF EOI
0 1 1 CR LF EOI
1 0 2 CREOI
1 1 3 LF CR EOI

Terminator values may be changed by calling the
OUTTERM routine.

The easiest way to specify an alternate terminator is to add
a factor to the GPIB address of the desired instrument.
Factors for each terminator are as follows:

GFPIB Address + 0 = Terminator 0
GPIB Address + 64 = Terminator 1
GPIB Address + 128 = Terminator 2
GPIB Address + 192 = Terminator 3

For example, if you wanted to send a message using
message terminator 2 to a device at GPIB address 10, the
value of adrs% supplied to SEND would be 138 decimal (10
+128).

ADR4-0 GPIB Address. These five bits are used to represent the
GPIB address of the device to which the data is to be sent.
GPIB addresses can range from 0 to 30.

info is a STRING containing the data to be sent.

returns stat is an INTEGER describing the state of the transfer returned after the
call. The returned stat values (or combination of) are interpreted as
- {follows:
Stat (Return) - Low Byte
BIT 7 6 5 4 3 2 1 0

0 0 0 0 TMO 0 NC ADRS

Where

TMO Timeout Error. Indicates whether or not a Timeout Error
occurred during data transfer. If this bitisa 1, thena
Timeout Error occurred.

NC Not Active Controlier. If this bitis a 1, then the SEND
routine was called when the KM-488-ROM was not an

Active Controller.
. i

6-16 KM-488-ROM USER GUIDE

example

purpose

usage

alternate usage

paramelers

returns
notes

SEND (cont.)

ADRS Invalid Address. If this bit is set to a 1, an invalid IEEE-488
device address was given.

This example shows how to send data from a KM-488-ROM 1o a device.
The KM-488-ROM is initialized as a System Controller located at GPIB
address 10. The KM-488-ROM uses high-speed handshaking. The data
(a device setup string) is sent to a device located at GPIB address 2.

PROGRAN senddamo;
USHES KNABOPAS;

VAR
adrs: INTEGER;
satup:STRING (9} ;
stat : INTEGER;

BEGIN
adrs:=12;
setup:='FOROTONOX' ;
init (10,0);

{Set KM-488-ROM as System Controller at GPIB adrs 10}
saend (adxs, setup, stat);

{or, SEND can be apecified with parameters directly-—-
sand (12, *FOROTOMOX",stat); ¥

if (stat<>0) then
WriteLn {Error sending-status=‘',6 stat);
END.

SETBOARD

In a multiple board system, identifies the KM-488-ROM to be
programmed.

VAR
board : integer;

BEGIN
setboard (board) ;

boardselact (board) ;

board is an INTEGER between 0 and 3 which represents the board to be
programmed. Note that up to four boards can be installed in any one
system. The board "number” is associated with the base address of its
1/0 port.

None.

You must assign a board "number"” for every KM-488-ROM in the system
before calling the SETBOARD routine. Board numbers are assigned
using the SETPORT routine.

PROGRAMMING IN TURBO PASCAL 6-17

6-18

oxample

purpose
usage

alternate usage
parameters

returns

notes

SETBOARD (cont.)

Each board must be must be initialized independently by calling the
INIT routine. You must do this the first time a given board is selected
before any other operations may be conducted on that board.

Once a board has been selected using SETBOARD, all further 1/0
operations will be performed on that board until the next SETBOARD is
executed.

This example select Board 0 and then Board 3 for communications.

satboard{0) {Calls which follow tranafer to/from board 0.}

setboard{3) {Calls which follow transfer to/from board 3.}

SETDMA

NOTE: DMA allows maximum data transfer rates in excess of 100
kilobytes per second. However, the actual data rates are limited by the
rates at which other devices connected to the bus can send or receive
data. These rates are governed automatically by the GPIB handshaking
signals.

Allows the use of DMA in conjunction with XMITA and RCVA.

VAR
channel : intager;

BEGIN \
setdma (channel)

dmachannel (channel)

channel is an INTEGER which specifies the DMA channel to be used for
the transfer, where

1 = Select DMA channel 1.
2 = Select DMA channel 2.
3 = Select DMA channel 3.

To disable DMA, set channelto a value othér than 1,2, or 3.

None,

The DMA hardware jumpers must be properly set for the DMA channel
selected by SETDMA. Note that the default setting for the jumpers is
DMA DISABLED., The jumpers are further described in Chapter 2.

When SETDMA is called to enable the use of DMA, each call to the
XMITA and RCVA routines that follows will use DMA to accomplish the

transfer until SETDMA is called with a parameter outside the range of 1-
3.

KM-488-ROM USER GUIDE

m—m——— SETDMA (cont.)

example This example specifies that DMA transfers are to take place using DMA
Channel 1 and then disables DMA.

setdma (1)
{Transfers initiated by RCVA & XMITA ocour on DMA channel 1.}

satdma (0} {Disables DMA.}

purpose Sets the KM-488-ROM's interrupt enable bits.

usage ...
VAR
intval : INTEGER;

BEGIN
setint (intval);

parameters intval is an integer containing the address and value of the Interrupt
Mask Register which is to be written to. This is interpreted as follows:

INTVAL (Input} - High Byte

BIT 7 6 5 4 3 2 1 1]
X X X X X X X ADRS
Where
X May be any value.

ADRS If this bit is set to 0, bits 0 through 7 will be written to
Interrupt Mask 1. If this bit is set to 1, bits 0 through 7 will

be written to Interrupt Mask 2.
INTERRUPT MASK 1
INTVAL (Input) - Low Byte (ADRS =0)
BIT 7 6 5 4 3 2 1 0
0 0 GET H DEC 0 0 0

Where

GET When this bit is set to 1, an interrupt will be generated
when a KM-488-ROM acting as a device received a GPIB
GET (Group Execute Trigger) command while addressed to
listen.

DEC When this bit is set to 1, an interrupt is generated when a
Device Clear is received.

PROGRAMMING IN TURBO PASCAL 6-19

s SETINT (cont.)

INTERRUPT MASK 2
INTVAL (Input) - Low Byte (ADRS = 1}
BIT 7 6 5 4 3 2 1 0
0 SRQl 0 0 0 LOKC REMC | ADSC
Where
SRQI When this bit is set to 1, an interrupt is generated when
SRQ is received.

LOKC When this bit is set to 1, an interrupt is generated when the
state of the Local Lockout bit changes.

REMC When this bit is set to 1, an interrupt is generated when the
state of the Local/Remote bit changes.

ADSC When this bit is set to 1, an interrupt is generated when the
state of the LA, TA, or CIC bits within the address status
register changes.

returns None,

notes Be certain to assign the KM-488-ROM to an interrupt level before using
this routine. Interrupt Levels are assigned by means of a jumper on the
KM-488-ROM board. This jumper is described in detail in Chapter 2.

You must set-up an interrupt handling routine within the QuickBASIC
program to deal with the interrupt condition.

example This example enables the KM-488-ROM to generate an interrupt when
SRQ is received.

SETINT (0,140)

purpose This routine is used to alter the range of addresses used by the KM-488-
ROM's 1/0 Port. In a multiple board environment, it is also used to
associate a given range of /O addresses with a board number.

usage ... -
VAR
board : integer;
ioport : word;
BEGIN
setport (board, ioport);

parameters board is an INTEGER between 0 and 3 which represents the board to be

programmed. Note that up to four boards can be installed in any one
system. The board "number"” is associated with the base address of its
I/0 port.

6-20 KM-488-ROM USER GUIDE

m———— SETPORT (cont.)

ioport an INTEGER representing the 1/0 Base Address of the KM-488-
ROM. The defauit Base Address is 2B8 hex. The Base Address selected
must match the one selected by the Base Address Switch on the KM-488-
ROM. (See Chapter 2 for more information.)

returns None.

notes When multiple boards are used, each board must have its own unique
base address. Any base address can be assigned to any board number
provided that none of the base addresses overlap.

example This line assigns Board 0 a Base address of 300 hex.
setport (0, $300)

Em— SETSPOLL

purpose Sets the Serial Poll Response of the KM-488-ROM, when it is acting as a
Device (non-Controller).

usage ...
VAR
resp : INTEGER;

BEGIN
satspoll {xesp);

parameters resp is an INTEGER describing the serial poll response and the state of
the SRQ bit. This byte is of the following format:

Resp% (Input) - Low Byte
BIT 7 6 5 4 3 2 1 0

SPR8 RSV | SPRé SPR5 SPR4 SPR3 SPRZ | SPRt

Where
SPR1-8 Bits 1 through 8 of this device's Serial Poll Response Byte.

RSV . If this bitis 1, SRQ will be asserted to request servicing.
Otherwise, SRQ will not be asserted.

returns None.

PROGRAMMING IN TURBO PASCAL 6-21

6-22

example

purpose
usage

parameters

returns

BIT

SETSPOLL (cont.)
This example illustrates a common use of SETSPOLL.

VAR
rasp: INTEGER
errl:BOOLERN
arx2 :BOOLEAN
err3:BOCLEAN
errd:BOOLEAN
err6:BOOLEAN
arr7 :BOOLEAN

BEGIN
resp:=0;

IF (errl=TRUR)
regp=resp+l;

IF (err7=TRUE)
ragp=resp + 128;
IF{rasp <>0)}
rasp = resp + $40; {Set RSV, if any srror}
setapoll (resp);

SPOLL

Initiates a serial poll of the specified device.

VAR
- adrs : INTEGER
resp : BYTE;
atat : INTEGER;
BEGIN
spoll (adrs, resp, stat);

adrs an INTEGER containing the IEEE bus address of device to be serial
polled. Can range from 0 to 30.

resp a BYTE containing the serial poll response. The definition of resp
varies device; however, Bit 6 always indicates whether the device needs
service. Consult the manufacturer's operator's manual for more
information.

stat is an INTEGER describing the state of the transfer returned after the
call, as follows:

Stat (Return) - Low Byte
7 6 5 4 3 2 1 0

0 0 0 0 TMO 0 NC ADR

KM-488-ROM USER GUIDE

axample

A ——
purpose

usage
parameters
returns

notes

SPOLL (cont.)
Where

TMO Indicates whether a Timeout Error occurred during data
transfer. If a 1, then a Timeout Error occurred.

NC KM-488-ROM not a Controller. If set to a 1, it indicates the
routine was called before the KM-488-ROM was designated
as an Active Controller.

ADR Invalid GPIB Address. If this bit is set to 1, an invalid GPIB
address was provided.

This example illustrates a simple serial poll of a device located at GPIB
address 10.

PROGRANM apolldemo;
USES KN48S8FAS;
VAR
stat : INTEGER;
reap: BYTE;

BEGIN
init (0,0});
spoll (10, reap, stat);
1f (statua<>0) then
Writeln{'SEFOLL Status Error atatus=', stat);

WritelLn{'Saerial Poll Raesponses', rasp);
if {((resp and $40)<>0) then
WriteLn('Device Requasting Service');
END.

SRQ
Detects the presence of the GPIB SRQ signal.
IF (SRQ) THEN

None.

The SRQ function returns a 0 or FALSE condition when SRQ has not
been detected, or a 1 or TRUE condition when SRQ is present.

The value retruned by the SRQ function is generally used within a
conditional branch in an applicaiton program.

Note that once you have obtained a TRUE response from the SRQ
function, the SRQ response will be reset to FALSE even if the SRQ line is
still active. In order to reset the SRQ response to TRUE, you must serial
poll at least one device which was requesting service. Conducting a
serial poll on a device which was requesting service will reset its SRQ
line. At this time, if other devices were simultaneously asserting SRQ,
the output of the SRQ function would once again be reset to TRUE.
Otherwise, the SRQ function would become TRUE on the next assertion
of the SRQ line.

i

PROGRAMMING IN TURBO PASCAL 6-23

624

wemmmsm— SRQ (cont.)
example This example assumes that the KM-488-ROM is connected to an
instrument located at GPIB address 1 which is capable of requesting
service via the SRQ. When the SRQ is detected, the SPOLL function will
be called and the serial poll response of the device will be printed to the
computer screen.
PROGRAN srqdemo;
USEE KN4BS8PAS;
VAR
resp : BYTE;
stat : INTEGER;
BEGIN
IF (srq) THEN
BEGIN
spoll (1, resp, stat);
IF (stat<>0) THEN
Writeln (‘Brror calling SPOLL - Status=',k stat);
ELSE
Writeln('SRQ recelved from Davice 1 - Poll Response
=', rasp);
END
END.
e STATUS
purpose Returns the value of the specified setup parameter.
usage VAR
reg : INTEGER;
stat : INTEGER;
BEGIN
status(reg,stat)
parameters reg is an INTEGER containing the address of the register or
configuration parameter to be queried. You must pass this parameter
into the routine as a variable. This value corresponds to a 4-bit field
which specifies the status register or configuration parameter to be read.
The format of the reg byte is as follows:
Reg (input) - Low Byte
BIT 6 5 4 3 2 1 0
X X X ADR3 | ADR2 ADR1 | ADRO 3
Where
X May be any value.

ADR3-0 REGISTER/PARAMETER SELECT. A 4-bit field that
specifies the status register or configuration parameter to be
read. Registers and parameters are sclected as follows:

KM-488-ROM USER GUIDE

e STATUS (cont.)

ADR3 ADR2 ADR1 ADRO REGISTER/PARAMETER

0 0 0 0 Address Status Reg

0 0 0 1 Interrupt Status 1 Reg

0 0 1 0 Interrupt Status 2 Reg

0 0 1 1 DMA Status Reg

0 1 i} 0 Qutput Terminator ¢

0 1 0 1 Output Terminator 1

0 1 1 0 Ouiput Tarminator 2

0 1 1 1 Output Terminator 3

1 0 0] Input Terminator 0

1 0 1 1 Input Terminator 1

1 1 1 0 Input Terminator 2

1 1 1 1 Input Terminator 3

1 0 0 o 1/0 Timeout Pararmneter

1 0 0 1 DMA Timeout Parameter
1 1 1 0 1/Q Port Address

1 1 1 1 GPIB Address of KM-488-ROM

returns reg - When STATUS obtains the value of one of the four transmit
message terminators, this variable will contain two flag bits which
determine the length of the terminator and whether or not EOl is
asserted with the last byte. When obtaining other parameters, reg% will

retain its input value.
Reg (Return) - Low Byte
BIT 7 6 5 4 3 2 1 0
0 0 0 0 0 0 LEN EOL
Where

LEN Terminator Length. If set to 0, then the terminator is one
byte long. If set to 1, then the terminator is two bytes long.

EQI If this bit is set to 1, EOT is asserted when the last terminator
byte is sent. Otherwise, EOI is not asserted.

stat an INTEGER describing the status bits for the register or the
configuration parameter specified by the reg% parameter. Unless
otherwise noted, the high byte of stat% is returned as 0.

Address Status Register
Stat (Return) - Low Byte

BIT 7 6 S 4 3 2 1 0
(H# X X X X LA TA X
Where

X This bit may be any value.

CIC Active Controller. If set to 1, then the KM-488-ROM is a
System Controller.

LA Listener, If this bit is set to 1, then the KM-488-ROM is a
Listener.

PROGRAMMING IN TURBO PASCAL 6-25

6-26

e STATUS (cont.)

TA

Talker. If this bit is set to 1, then the KM-488-ROM is a
Talker.,

Interrupt Status Register 1
Stat {(Return) - Low Byte

BIT 7 6 5 4 3 2 1 0
X X GET X DEC X X X
Where

X This bit may be any value.

GET Group Execute Trigger. If this bit is set to 1, then a Group
Execute Trigger command was received while the KM-488-
ROM was a device.

DEC When this bit is set to 1, a Device Clear was received.

Interrupt Status Register 2
Stat {Return) - Low Byte

BIT 7 6 5 4 3 2 1 0
x | smat | Lok | ReM [X X x | apsc |
Where

X This bit may be any value.

SROI When this bit is set to 1, it indicates SRQ was active. (Active
Controller mode only.)

LOK When this bit is set to 1, the device was set to Local Lockout.
(Device mode only.)

REM When this bit is st fo 1, the device was configured for
remote operation. (Device mode only.)

ADSC When this bit is set to 1, a change of the address status

occurred (i.e., untalk fo talk, device to active controller, etc.).

Input and Qutput Message Terminator #0-3. Contains First and Last
bytes of the message terminator. Input Terminators and single character
Output Terminators are only one byte long and are contained in the
Least Significant Byte (MSB=0). In the case of a two character Output
Terminator, the Most Significant Byte of this parameter is the first
character sent.

DMA Timeout and 1/0O Timeout Parameters. Contains the value of the
desired parameter as an unsigned value in the low bytes of stat. The
timeout value is expressed in miiliseconds (0 to 65535).

notes The bits contained in the Interrupt Status 1 and 2 registers are extremely
volatile. When you read these registers, any bits which were set are
automatically cleared by the READ operation. This is extremely
important to note when reading Interrupt Status Register 1, as some of
the bits (not shown above) are used by various KM-488-ROM routines.
It may be possible to cause various KM-488-ROM routines to report a
timeout error if this registcr is read at certain times.

i
KM-488-ROM USER GUIDE

memmmmmsm STATUS (cont.)
example This example illustrates how to use the STATUS routine.

VAR
reg: INTEGER.
stat :INTEGER;

BEGIN
reg:= 0;
status {reg, stat);
Writeln('Address Status Register =', stat);
rag:=12;
atatus{reqg, stat);

WriteLn{'I/O Timesout m=', stat);

e YMIT

purpose Send GPIB commands and data from a string,.

usage .
VAR
info : stringl];
stat : integer;
BEGIN
info : 'data and commands to be sant!
xmit (info, stat);

parametors info is a STRING variable containing a series of GPIB commands and
data. Each item must be separated by one or more spaces. It may also
be specified as a quoted string within the XMIT call. All the available
commands are described in Chapter 3. These commands include:

CMD GTL MTA SDC T
DATA GTLA MLA SEC T1
DCL IFC PPC SPE T2
END LISTEN PPD SPD T3
EOI LLO PPU TALK UNL
GET LOC REN TCT UNT

returns stat is an INTEGER which describes the state of the transfer returned
after the call. The returned stat value can be interpreted as follows:

Stat (Return) - Low Byte
BIT 7 6 5 4 3 2 1 0

0 ADRS | NCTL UNDF T™O STR NT STX

Where

ADRS Invalid GPIB address. If this bit is set to 1, then an invalid
GPIB address was given.

PROGRAMMING IN TURBO PASCAL 6-27

6-28

notes

example

XMIT (cont.)

NCTL Not a System Controller. If this bit is set to 1, it indicates
that the KM-488-ROM tried to send GPIB Bus Commands
when it was not an Active Controller.

UNDF Undefined Command. If this bit is set to 1, the info string
contained an undefined command.

TMO Timeout Error. Indicates whether or not a Timeout Error
occurred during data transfer. If this bitisa 1, thena
Timeout Error occurred.

STR String Error. If this bit is set to one, then a quoted string,
END, or terminator was found without a DATA
subcommand preceding it.

NT KM-488-ROM not a Talker. If this bitis set toa 1, it
indicates the routine was called before the KM-488-ROM
was designated as a Talker.

STX Syntax Error. If this bit is set to 1, a syntax error was found.

When using the DATA subcommand, the data to be sent should be
enclosed within double single quotes ("} as shown in the example.

This example illustrates one way to use the XMIT command with a
Keithley 196 Voltmeter. This meter is assigned GPIB address 7 and is
configured to a 30 Volt DC range with 4 1/2 digit accuracy. The meter is
also configured to take a new reading each time a Group Execute Trigger
Bus command (GET) is received. The program then triggers the
instrument to get the first reading, and makes it a talker and the KM-488-
ROM a listener in order to get the first reading.

The device to receive the setup command string which must be sent to
the meter contains the following device commands:

F0 Select DC Volts mode

R3 Select 30 Volt range

S1 Select 4 1/2 digit accuracy

T3 Take one reading when GET received

X Execute the prior commands within the string

The device to receive the setup command string must also be
programmed to assert the GPIB REN signal (This allows the meter to
receive GPIB commands.) and to LISTEN (This allows the device to
receive the string.). The programming sequence used consists of the
following;:

Setting Remote Enable (REN).
Setting all devices to UNTalk and UNListen,
Addressing the 196 to LISTEN.
Addressing the KM-488-ROM to talk (My Talk Address).
Sending the Device-Dependent Commands as a string of DATA.
. Sending the appropriate message terminator characters after the data.
Issuing the Group Execute Trigger bus command.
Unaddressing all devices.
Addressing the meter to TALK and the KM-488-ROM to LISTEN (My
Listen Address) in preparation for receiving the latest reading.

The default value for transmit message terminator 1 is a carriage-return
line-feed combination.

KM-488-ROM USER GUIDE

e XMIT (cont.)
VAR
stat: INTEGER;
BEGIN
init (0,0);
xmit {'ren unl unt listen 7 wta data ''FOR3SIT3IX'' tl1l gat unl
unt talk 7 mla’',stat);
s XMITA
purpose Sends data from an array. If SETDMA is called prior to this routine,
DMA will be used to transfer the data.
usage VAR
count : WORD;
data : type[length]:
term : IRTEGER;
stat : INTEGER;
BEGIN
xmita(data[0], count, tamm, stat)
alternate usage ‘TARRAY (data[0], count,term, stat)
parameters datal0] is an ARRAY which contains the data to be transmitted. The
name of the first array location to be sent should be passed into the
routine, i.e., datal0]. This array may be of any type, but the number of
bytes per location will vary.
count is a WORD containing the number of data bytes to be transmitted.
The number of data bytes stored in each location is a function of the data
type. A character array, for example, contains one byte per location;
whereas, an integer array contains two bytes per location. The XMITA
routine sends the least significant byte of the specified array location
first, followed by the bytes in increasing significance and increasing
array index.
term is an INTEGER which selects the terminator to be used. This byte
is of the format:
Term (Input Parameter) - Low Byte
BIT 7 6 5 4 3 2 1 0
T
STRM | TRM1 | TRMO X X X | X EQI
!
Where
X This bit may be any value.

STRM Send Message Terminators. If this bit is set to 1, then the
message terminator(s) will be sent at the end of the
transmission. Otherwise, they will not.

PROGRAMMING IN TURBO PASCAL 6-29

e XMITA (cont.)

TRM1-0 Terminator Select. These two bits select the Qutput
Message Terminator to be used to signal the end of a
transmission. Available terminator selections are

TRM1 TRMO TERMINATOR # PEFAULT
0 0 0 LF EOI
0 1 1 CRLF EOI
1 0 2 CR EOI
1 1 3 LF CR EOI

These terminators can be redefined by calling the
OUTTERM routine.

EOl Asserts EOL If this bit is set to 1, then EQI will be asserted
when the last byte is sent. Otherwise, EOI will not be
asserted.

returns stat is an INTEGER describing the state of the transfer returned after the
call. The stat value is interpreted as follows:

Stat (Return) - Low Byte
BIT 7 6 5 4 3 2 1 0

| o 0 0 0 ™o | o | N [o

Where

T™O Timeout Error. Indicates whether or not a Timeout Error
occurred during data transfer. If this bitisa 1, thena
Timeout Error occurred.

NT KM-488-ROM not a Talker. If this bitis settoa 1, it
indicates the routine was called before the KM-488-ROM
was designated as a Talker.

example This example illustrates the use of the XMIT, XMITA, RCVA, SEND, and
SPOLL routines to send and retrieve waveform data from a GPIB
compatible oscilloscope.

PROGRAN xrova; USES CRY, KM488SPAS;

PROGRAN Xrova;
USES CRT, KMAB8PAS;

VAR
sinedata : array{l..1024] of WORD; { calculated sine wave }
txdata : array(l..1024) of WORD; { data going to scope }
rxdata : array{l..2100} of BYTE; { data from scope }

rov_sine : array(l..1028) of WORD; { reformatted scope data }
srcptr : "BYTE;

hibyte : WORD;

txatring : STRING;

scops : INTEGER;

kmatat :INTEGER;

numbytes : WORD;

numpts : WORD;

count : WORD;

chksum : INTEGER;

6-30 KM-488-ROM USER GUIDE

XMITA (cont.)

length : WORD;
angle : REAL;
i ; INTEGER;
kay : CHAR;

PROCEDURE KMErrorHandler (ErrorFlag:INTEGER) ;
BEGIN

writeln('ERRCR NUMBER: ', ErrorFlag);

HALT (0) ;
END;

BEGIN
saope = 16;
Clrsor;
GoToXY(1,1);

writeln(

'This progran demonstrates the use of the XMITA and RCVA routines
using a'});

writeln(

'Tektronix 11301 or 11302 Oscoilloscope at GPIB address 16 ");

{-------—————— Initialize the KM-488-ROM --=---==————-eewea- }
scopa = 16; { Scope 488 Bus Address)}
init {0,0);
iotimeout {5000); { set IO timeout to 5 seconds }

{ =~=mmmm—en——- Initialize the Csoilloscope ~——————-e-—eme—weo }
GotoX¥Y({1,b5);

xmit ('DCL', kmstat);
1f (kmatat <> 0) THEN
KMErrorHandler (kmstat} ;

writeln(*'INITIALIZING SCOPE');

send (scope, 'INIT', kmatat); { Initialize scope }
1f{kmstat <> 0) THEN

KMErrorHandler (kmstat);

send (scope, 'RQS OFF', kmstat); { Disables SRQs }
if (kmstat <> 0) THEN
KMErrorHandler (kmstat) ;

{ ---- Caloulate data, send points to scope, display curve ---- }

writeln('CALCULATING SINE WAVE');
numpts = 1024; { Words in wavaeform }
FOR i:= 1 TO numpts DO
BEGIN
angle := i * 6,28219 / 1024.0;
sinaedata[i] := round(400.0 * sin(angle)}:
txdata[i] := Swap(sinedata[i});
END;

PROGRAMMING IN TURBO PASCAL 6-31

mamm— XMITA {(cont.)

numbytes := Swap{ numpta * 2 + 1);

writeln{ 'SENDING SINE WAVE TO SCOPR');
send (scopa, 'INPUT STOl' , kmstat):; { Store in location 1)
1f (kmatat <> 0) THEN

KMErrorHandlar (kmstat);

{ Setup for data transfar }
xmit {*NTA LISTEN 16 DATA ''CURVE &''', kmastat);
if (kmstat <> 0) THEN

KNErrorHandler (kmstat) ;

acount = 2;
xmita(nucbytes, count, 0, kmstat); { Byte count sent }
if {(kmstat <> 0) THEN

KMErrorHandler (kmstat);

gount = numpts * 2;
xmita (txdata, count, 0, kmstat); { Data sant }
if (kmstat <> 0) THEN

KMErrorHandler (kmstat) ;

chksum := 0; { Don't bother actual chacksum }
gount := 1: { Send EOI with checksunm }

xmita{chksum, count, 0, kmstat); { Checksum sent }
if(kmastat <> 0) THEN
KMErrorHandlaer (kmstat) ;

writeln ('CLEARING ALL TRACES');

send (gcope, 'CLEAR ALL', kmstat);
1f(kmstat <> 0) THEN
KMErrorHandler (kmstat);

writeln (*DISPLAYING STORED TRACE'}:

sand (scope,
'TRACE1 DESCRIPTION:STOl,VPOSITION:(,HPOSITION:O, UNITS: "V"' km
stat); =
if (kmatat <> 0) THEN
KMErrorHandler (kmstat) ;

{ -~ Retrieve data and compara --—----w-we-eaowao—n }
writeln ("RETRIEVIKG DATA ¥FROM SCOPE');
send (acopa, 'ENCDG WAVFRM:BINARY', kmstat);
1f (kmatat <> 0) THEN
KMErrorHandiar (kmstat);
gaend (scope, 'OUTPUY STOLl', kmstat);

if (kmastat <> 0) THEN
KMErrorHandler (kmstat) ;

6-32 KM-488-ROM USER GUIDE

semsmssm— XMITA (cont.)

send(scope, 'CURVE?', kmstat); { Ask for data to be returned)}

if (kmstat <> 0) THEN
KMErrorHandlar (kmstat) ;

xmit ('TALK 16 MLA', kmstat):; { Setup for
if (kmatat <> 0) THEN
KMErrorHandler (kmstat);

aount := 2060; { number
kmatat := 0;

rava(rxdata, count,0, length, kmstat); {
IF ((kmstat <> 32) AND (kmstat <> 0)) THEN
BEGIN
writeln ('Receive Erroxr.');
HALT(0) ;
END;

writeln ('COMPARE SENT AND RECEIVED DATA; .
COMPARE') ; '

P R

The recsived data iz in an array of type BYTE

scope to saend data }

of bytes expected }

Data received }

= OK, * = BAD

and will be extracted

to an array of typa WORD. Tektronix 110xx waveforms are compoged
of a header followad by the data and a final byte checksum. A
waveform data point is 2 bytes and is received in a low byte - high

byte sequence. The low byte of the firat data
rxdata(l0].

FOR 1:=1 TO 1024 DO
BEGIN

elament is

sroptr := frxdata(8 + 2 * 1); { low byte }

rov_sine{l] := sroptr*;

srcptr := @rxdata[9 + 2 * 1]; { high byte }

hibyte := arcptr*;

rov_sina[l] := (rov_sine[i} SHL 8) OR
END;

hibyte;

FOR i:=1 TO 1024 DO { compare receive data with sent data }

BEGIN
IF (sinedata{i] = rev_sine[1]) THEN
write (', ")
ELSE
write('*');

END;
writaln;
writaln;

END.

PROGRAMMING IN TURBO PASCAL 6-33

6-34

KM-488-ROM USER GUIDE

o

Chapter 7
PROGRAMMING IN C

While Chapter 3 gives a brief overview of the routines available for programming the KM-
488-ROM, this chapter gives instructions for calling the routines from C. The routines appear
in alphabetical order and include a sample program for each.

7.1 GENERAL

Supported Versions

The Environment

File Header

Compiling

Software

Microsoft C version 3.0 and later TURBO C to version 2.5

The C support files are located in directory \C on the KM-488-
ROM Disks. Copy the following files to your working directory:

\C\KM488ROM.H
\C\KM488ROM.LIB

When you write your program, make sure to include the line:
#include<kmd88rom.h>

Compile your program in the normal manner, being sure to link
it with the library KM488ROM.LIB. For example, when working
in Microsoft C, at the DOS prompt, type either:

¢l yourprog.c /link kmé88rom
or

cl /¢ yourprog.c;
link yourprog,,,kmdB88rom;

The KM-488-ROM firmware contains a number of configuration
parameters which govern the default settings of the input and
output message terminator settings, message timeout periods,
and 1/0 port addresses. The default terminators are shown in
Table 4-4. If these default values are unsatisfactory, they may be
changed by calling either the INTERM or OUTTERM routine.

The default DMA and I/0O Timeouts are 10 seconds. These
defaults may be altered by calling the DMATIMEQOUT or
IOTIMEOUT routine.

i
PROGRAMMING INC 7-1

7-2

notes

KM-488-ROM USER GUIDE

Default Terminator Settings
TERM# OUTPUT TERMINATOR INPUT TERMINATOR

0 LF EO1 LF

1 CR LFEOL CR

2 CR EOI , {comma)

3 LF CR EQI : (semi-colon)

1. Any arguments which appear as variables may also be passed
as constants.

2. "Strings" in C are actually character arrays. Thus, any KM-
488-ROM routines which require a string for input or output will
need a character array. The name of this character array should
be passed into the KM-488-ROM Routine.

3. Any KM-488-ROM routine which returns a value into a string
requires an additional parameter. This defines the total number
of bytes available as string space for storage of received data.

4. Itis very important that the number of bytes allocated for
storage within a character array is at least one greater than the
maximum byte count passed into the routine. This extra byte is
necessary so that a NULL can mark the end of the received data.
If a routine attempts to receive more bytes than have been
allocated for storage into that variable, other internal program
variables may be overwritten, producing unexpected results or a
program crash.

5. Values which are returned to a C program by the KM-488-
ROM routines must be handled in the following manner. In
order to return a value to a named variable in C, the address of
the named variable must be passed into the routine. Thus, you
must pass pointers to the returned variable into KM-488-ROM
call. A pointer is denoted by prefixing the variable name with an
ampersand (&). However, the case of strings is an exception. In
this instance C interprets the name of a character array as a
pointer to the first character in the array. An example of this is
shown below:

int status;
send (7, "FOROOX", &status);
if (statusimQ)
printf ("\nStatus Erroxr Status=%x", status);

6. Arguments which are not pointers to integers or unsigneds
may be passed as constants rather than variables.

7. Note that function and parameter names in C are case-
sensitive. The KM-488-ROM routine names must appear in
lower-case.

8. Do not name any of your variables with the same name as any
of the KM-488-ROM routines.

7.2 DESCRIPTION FORMAT FOR ROUTINES

The format for each descriptions is as follows:

purpose

usage

alternate usage

parameters
returns
notes
example

7.3 ROUTINES

purpose

usage

alternate usage

parameters

returns

example

... a brief description of the routine. See Chapter 3 for more detailed
descriptions.

... gives an example of usage for each routine and assumes the input
parameters are passed in as variables. These parameters can also be
passed in directly. See the General Programming Notes for more
information.

... lists alternate usage for the routine, if any. Unless otherwise noted, the
alternate usage performs exactly the same function as the usage.

... describes each of the input parameters.
... describes any values returned by the routine.
... lists any special programming considerations.

... gives a programming example using the routine.

DMATIMEOUT

Sets the maximum length of time for a DMA transfer to complete before
a timeout error is reported. (See XMITA and RCVA routines.)

unsigned time;

dmatimeout (time) ;

sattimeout (tima) ;

NOTE: The alternate usage sets both the DMA and 1/0 Timeouts to the
specified value.

time is a UNSIGNED INTEGER representing the timeout period to
elapse during a DMA transaction. A DMA Timeout Error will be
generated when the time to transfer (via DMA) an entire message
exceeds the set DMA timeout value (time). time can range from 0 to
65535 milliseconds and is internally rounded to the closest integer
multiple of 55 milliseconds.

None,
This example sets a timeout of 5 seconds.

dmat imacut. (5000)

PROGRAMMING INC 7-3

memmmmssm ENTER

purpose Addresses a specified device to talk, the KM-488-ROM to listen, and
receives data into a character array from the addressed device.

usage ...
unsigned leng; maxlen;
char info[maxlen + 1};
int adra;
int stat;

anter (info,maxlen, &leng,adrs, &stat);

parameters info is a CHARACTER ARRAY which is to hold the received data. The
character array must be long enough to receive the expected number of
characters plus one. The additional character is necessary so that the end
of the "string"” can be marked with a NULL byte. Carriage returns and
the message terminator character in the incoming data are ignored and
not stored with the received data.

maxlen is an UNSIGNED INTEGER which should be equal to the
number of data bytes you expect to receive. maxlen must relate to info as
described above.

adrs is an INTEGER containing the IEEE bus address of the device that
the data is to be sent to and the terminator to be used. This byte is of the

following format:
Adrs (Input Parameter) - Low Byte
BIT 7 6 5 4 3 2 1 0
TRM1 TRMO 0 ADR4 ADR3 ADR2 ADR1 ADRO
Where

TRM1-0 Terminator Select. These two bits select the Message
Terminator to be used to signal the end of a transmission.
Available terminator selections are

TRM1 TRMO TERMINATOR # DEFAULT
0 0 0 LF
0 1 1 CR
1 0 2 .
1] ki ;

These terminators may be changed by the INTERM routine.

The easiest way to specify an alternate terminator is to add
a factor to the GPIB address of the desired instrument
which is specified within the ENTER call. The factors
added for each terminator are as follows:

GPIB Address + 0 = Terminator 0
GPIB Address + 64 = Terminator 1
GPIB Address + 128 = Terminator 2
GPIB Address + 192 = Terminator 3

!
7-4 KM-488-ROM USER GUIDE

returns

BIT

ENTER (cont.)

For example, if you wanted to receive a message using
terminator 2 from a device at GPIB address 10, the value of
adrs% supplied to ENTER would be 138 decimal (10 + 128).

ADR4-0 GPIB Address. These five bits are used to represent the
GPIB address of the device to which the data is to be sent.
GPIB addresses can range from 0 to 30.

info is a CHARACTER ARRAY that will contain the received data. The
length of the string must be long enough to receive the expected number
of characters (see the info parameter description). The maxlen parameter
is used to specify this maximum length and must be one less than the
number of locations within the array. ENTER will automatically insert a
string terminating "NULL" at the end of the received data. ENTER will
terminate reception of data when: 1) the number of bytes received
exceeds maxlen, 2) the specified terminator is received, or 3) any
character is received with the EOI signal. Carriage returns and the
message terminator character in the incoming data are ignored and not
stored with the received data. i

leng is an UNSIGNED INTEGER, less than or equal to 255, which
indicates the actual number of bytes which were stored.

stat is an INTEGER which describes the state of the transfer returned
after the call. The returned stat values (or combination of) are
interpreted as follows:
Stat (Return) - Low Byte

6 5 4 3 2 1 0

0 0 0 T™O OVF NC ADRS

example

Where

TMO Timeout Error. Indicates whether or not a Timeout Error
occurred during data transfer. If this bitisa 1, thena
Timeout Error occurred.

OVF Overflow Error. If this bitis a 1, then the info string was
filled, before a terminator character or EOl was detected.

NC KM-488-ROM not an Active Controller . If this bitis settoa
1, it indicates the routine was called before the KM-488-
ROM was designated as an Active Controller.

ADRS Invalid GPIB address. If this bit is set to 1, then an invalid
GPIB address was given.

In the following example, data is sent from two different instruments to
a KM-488-ROM. The KM-488-ROM is acting as the System Controller
and is assigned to GPIB address 0. One of the two instruments is a
voltmeter, requiring a Carriage Return-Line Feed terminator
combination (Term 1), assigned to GPIB address 7. The second
instrument, located at GPIB address 10, requires a line feed (Term 0) as
its terminator. The voltmeter is first sent a string of data which
represents its instrument setup command. Then, when addressed to talk,
it sends its most current reading to the KM-488-ROM. The second
instrument is instructed to send its status, when addressed to talk.

PROGRAMMING INC 7-5

msswssmemm ENTER (cont.)

It is assumed that the string sent by both instruments is 25 characters or
less. The string is printed out on the computer screen.

#include<stdio.bh>
#include<kmi8Srom. h>
main ()
{
int inastl=?7,
inst2=10,
instlterm=inatl+64,
status=0;
unsigned rlan=0;
char instring{2e6];

/* Note input string NUST BE one greater than the number of
characters that will be received+*/

init{0,4);
send (inatlterm, "FOROTOMOX", &status);
1f(statust=sd)
printf ("\nError sending to Instrument 1 Status=%x", status);

/* Note send and enter require that POINTRERS be passed to returned
valuas*/

anter {instring, 25,&rlen,instl, fstatus);
if{atatustmp)
printf{"\nError receiving Instrument 1

Statue=%x", status);
else
printf{*\nInstrument 1 data - %a", instring);

/* Get data from second instrument...¥/

send(inst2, "SEND STATIUS", &status);
if{statust=y)

printf (“\nError sending to Instrument 2 Status=%x",status);
anter (instring, 25, &arlen, inat?, &atatus);
if (statuatw()

printf ("\nError receiving Instrument 2 statua=%x", status);
alse

printf{"\nInstrument 2 data -s%",instring);

messsmsssmw [NIT

purpose Initializes a KM-488-ROM by assigning its GPIB address and establishing
it as a System Controller or device.
usage ...
int adrs,mode;
init (adrs, moda)

7-6 KM-488-ROM USER GUIDE

mmesssmm—— {NIT (cont.)
alternate usage initialize (adrs, mode)

parametors adrs is the IEEE bus address of the KM-488-ROM. This is an integer
from O to 30.

mode sets the operating mode of the KM-488-ROM. These can be any of
the following values:

Mode - Low Byte
BIT 7 6 L] 4 3 2 1 0
X X X X X FAST DEV X
Where
X May be any value.

FAST Handshake Speed. If set to 1, High Speed GPIB bus
handshaking is used (500 ns). If set to 0, Low Speed GPIB
bus handshaking (2 us) is used. See Chapter 3 for more
information.

DEV Device. If set to 1, the KM-488-ROM is acting as a Device.
Otherwise, the KM-488-ROM is acting as a System
Controller. When System Controller is selected, the GPIB
IFC line is momentarily asserted.

returns None.

notes Youmay pass the parameters directly into the routine without using
variable assignments, i.e. init(0,4).

example This example initializes the KM-488-ROM as a System Controller with a
IEEE address of ¢ with a High Speed Handshake.

main ()

{

int adrs=0,
mode=4;

init (adra,moda);

}

s INTERM

purpose Changes the input message terminator settings.

usage ...
int num, term;

interm{num, tarm)}:

alternate usage van
char teaerm;

setinputeos (term);

PROGRAMMING INC 7-7

parameters

returns
notes
example

purpose
usage

parameters

returns
example

INTERM (cont.)

NOTE: The alternate usage will only change the value of Input Message
Terminator 0.

num is an INTEGER which selects the number of the receive message
terminator to be changed. This ranges from 0 to 3, where:

num % TERMINATOR # DEFAULT
0 0 LE
1 1 CR
2 2 .
3 3 :

term is an integer representing the terminator byte to be programmed.
This integer is the decimal or hex equivalent of the terminator's ASCII
representation. Hex equivalents must be preceded by &H. See Appendix
A for ASCII Equivalents.

None.
The parameters may be passed directly into the routine.

This example sets Input Terminator 0 to Line Feed and Input Terminator
3 to Carriage Return.

interm{0,10) /*seta input terminator 0 Lo LE¥/

interm (3,0xD) /*seta input terminator 3 to Carriage Raturn*/

IOTIMEOUT
Changes the length of time to elapse before an I/O Timeout occurs.

unsigned time;

iotimacut (tima);

time is the amount of time to elapse before a timeout error is reported.
time is any value between 0 and 65535 milliseconds. It will be internally
rounded to the closest integer multiple of 55 milliseconds. The default
timeout value is 10 seconds.

None.
This example sets the I/O Timeout to 1 second.

iotimeout {1000} ;

KM-488-ROM USER GUIDE

puipose
usage

alternate usage

parameters

returns

example

OUTTERM

Changes the output message terminator sequences.

int num, chars,eoi,trml,tm2;
outterm (num, char, eoi, txml, trm2):;

char trml,trm2;

setoutputecs (txml, trm2} ;

NOTE: The alternate usage will change only the value of Terminator 0
and will always assert EOI upon the transmission of the last character.
Additionally, a single terminator is programmed by setting trm2 to 0.

num is an INTEGER which selects the output message terminator to be
changed. This ranges from 0 to 3, where:

num % TERMINATOR # DEFAULT
0 0 LF EOI
1 1 CR LF EOI
2 2 CREOI
3 3 LF CR EOI

chars is an INTEGER which selects the length of the output terminator
being programmed. This is 0 if a one-character terminator is required or
1if a two-character terminator is required.

eoi is an INTEGER which determines whether or not EQl is asserted
when the last terminator byte is sent. If this bit is 1, EOI will be sent. If
this bit is 0, EQI will not be sent.

trm1 is an INTEGER which represents the first terminator byte to be
sent. This integer is the hex or decimal equivalent of the terminator's
ASCII representation. (See Appendix A for ASCII Equivalents.) Be sure
to precede all hex values with a Ox.

trm2 is an INTEGER which represents the second terminator byte (in a
two-byte terminator) to be sent. This integer is the hex or decimal
equivalent of the terminator's ASCII representation. (See Appendix A for
ASCII Equivalents.) Be sure to precede all hex values with a Ox. If a one
byte terminator is programmed, trm2may be any value.

None.

This first line of this example sets Output Terminator 0 to Carriage
Return with EQL. The second line of this example sets Output
Terminator 3 to Carriage Return, Line Feed without EQL

outterm(0, 0,1, 0xD, 0}

outterm(3, 1, 0, 0xD, OxA)

PROGRAMMING IN C 7-9

7-10

purpose

usage

parameters
returns
notes

example

PPOLL

Initiates a parallel poll.

NOTE: Many GPIB devices do not support parallel polling. Check your
device's documentation.

int resp;
ppoll (éresp);

None.
resp is an INTEGER which will contain the parallel poll response.

Before you call the PPOLL routine, you must first configure the Parallel
Poll response of the device. To do this:

» Address it to listen.

» Send it a GPIB Parallel Poll Configure (PPC) command, using the
XMIT command.

* Send a Parallel Poll Enable byte using the KM-488-ROM XMIT
command. (Use the mnemonic CMD followed by nnn where nnn is the
decimal value of the Paraliel Poll Enable byte.

The Parallel Poll Enable Byte is of the format 0110SPPP, where:

S is the parallel poll response value (0 or 1) that the device uses to
respond to the parallel poll when service is required.

PPP is a 3-bit value which tells the device being configured which data
bit it should use as its parallel poll response (DIO1 through DIOB).

This example assumes that the KM-488-ROM is connected to a Sorenson
HPD30-10 Power Supply. This device is located at GPIB address 1. Itis
also assumed that this device drives bit 3 of the Parallel Poll Response
byte to a logic "1" when service is required. To program the device to
respond properly, send the Parallel Poll enable byte 01101011 (107) via
the XMIT command.

#includa<kmd8Brom.h>
main ()

{
int status=0,
reap=0;

init {0,0);
xmit ("ren unl unt listen 1 ppc omd 107", &astatus);
1f (statusi=Q)
printf ("\nError Sending PPC omd Status=%x", status);

ppoll (&resp);
1f ({resp && 8) !=0)
printf£("\nHPD30-10 Requesting Service...");

KM-488-ROM USER GUIDE

purpose
usage

aiternate usage

parameters

returns

BIT

RCV

Receives data into a string.

char info[maxlen+l];
unsigned maxlen, rovlen;
int stat;

rov(info, maxlen, term, &rcvlen, &stat);

reoeive (info, maxlen, &rovlan, &stat);

NOTE: The alternate usage assumes the use of Input Message
Terminator 0.

info isa CHARACTER ARRAY which will hold the received data. The
array must be long enough to receive one more than the expected
number of characters. Carriage returns and input terminator characters
in the incoming data are ignored and not stored with the received data.

maxlen is an UNSIGNED INTEGER which specifies the maximum
number of data bytes which can be received. It must be less than or equal
to one less than the maximum number of array locations. This allows the
terminating NULL to be stored. Otherwise, data may be stored in
locations other than those allocated for your program and your program
may crash.

term is an INTEGER containing the number of the input message
terminator to be used, where:

term % TERMINATOR # DEFAULT

LF
CR

LN == O
W= O

These terminators can be changed by calling the INTERM routine.

info is a CHARACTER ARRAY which will contain the received data.
The length of the string must be long enough to receive the expected
number of characters. RCV will terminate reception of data when: 1) the
number of characters received exceeds maxlen, 2) a terminator is
received, or 3) any character is received with the EQl signal. Carriage
returns in the incoming data are ignored and not stored with received
data.

revlen is an UNSIGNED INTEGER which indicates the actual number of
bytes which were received and stored.

stat is an INTEGER which describes the state of the transfer returned
after the call. The returned stat values are interpreted as follows:

Stat (Return) - Low Byte
6 5 4 3 2 1 0

0 0 0 ™0 OVF NL 0

PROGRAMMING IN C 7-1

T7-12

notes

example

purpose

usage

RCV (cont.)
Where

T™O Timeout Error. Indicates whether or not a Timeout Error
occurred during data transfer. If thisbitisa 1, thena
Timeout Error occurred.

OVF Overflow Error. If this bit is a 1, then the info string was
filled, before a terminator character or EOI was detected.

NL KM-488-ROM not a Listener. If this bit is setto a 1, it
indicates the RCV was called before the KM-4838-ROM was
designated as a Listener.

The KM-488-ROM must be addressed to listen and another device
addressed to talk before calling RCV.

This example shows how the RCV routine might be used together with
the XMIT routine to receive data. It uses the XMIT routine to command
a Keithley 196 voltmeter to take a reading. The meter reading is received
using the RCV routine. It is assumed that the meter reading returned
will fit into a 25-character array.

This example assumes that the KM-488-ROM is configured such that
transmit message terminator 1 is Carriage Return-Line Feed combination
and this combination is also used by the Keithley 196.

#inocluda<kmiBérom.h>
main()
{
int stat = 0;
char rovdat[26];
unsiguned rovlen;
init (0);
xmit ("rean unl unt listen 7 mta data 'FOR3S1T3IX' £l get unl
unt talk 7 mla", &stat);

if (stat!=0)
printf{"\nError sanding stat=%x", stat);
rovi{rovdat, 25, 0, &rovlen, &stat);
if(stat<>0)
printf ("Error receiving status=%x", stat);
alse
printf ("Received data=%s Lenath=%u", rovdat, rovlen);

RCVA

Receives data into a specified array. RCVA may also be used to received
data with DMA. (See SETDMA.)

int datalmaxlen/2] /* or use char data[maxlen]*/
unsigned maxlan, rovlen;

int tenm;

int stat;

rcva (data[0] ,maxlen, term, &rcvlan, &stat)

KM-488-ROM USER GUIDE

alternate usage

parameters

BIT

RCVA (cont.)

rarray (data[0] ,maxlan, &érovien, &stat)
NOTE: The alternate usage terminates on EOI only.

datal] is an array which is used to store the received data. It may be
any data type. The array must be dimensioned large enough to store the
desired number of bytes. The number of data bytes contained in each
array location will vary according to the data type specified. The RCVA
routine will "byte pack” data into the array, starting with the least
significant byte of the specified location. You should pass the name of
the first element within the array (i.e., data[0]) into the RCVA routine.
(Note that passing the array name without an index has the same effect.)

term is an INTEGER which selects the type of terminator to be used.
This integer is interpreted according to the following format:

Term (Input Parameter) - Low Byte
6 5 4 3 2 1 0

X X X X STRM TRM1 | TRMO

Where
X May be any value,

STRM Enable/Disable String Message Terminators. If this bitis 1,
a Message Terminator Character will be used to detect the
end of reception. If this bit is 0, a Message Terminator
Character will not be used.

TRM1-0 Terminator Select. These two bits select the Input Message
Terminator to be used to signal the end of a transmission.
(The STRM bit must be set to 1.) Available terminator
selections are

TRM1 TRMO0 TERMINATOR # DEFAULT

LF
CR

—a DO
— - D
WA = O

The values for these terminators can be changed by calling
- the INTERM routine.

maxlen is an UNSIGNED INTEGER which specifies the maximum
number of data bytes which can be received. maxlen must be less than or
equal to the total number of bytes which have been allocated for storage.
The number of data bytes per array location varies according to the type
of array. If an integer array is specified, two bytes are contained within
each array location; thus maxlen should be set to twice the maximum
number of array locations.

If a character array is specified, there is a one for one correspondence
between number of array locations and number of bytes: Hence, maxien
= number of array locations.

The first byte received is stored in the least significant byte of the first
array location.

i
PROGRAMMING IN C 7-13

returns

BIT

RCVA (cont.)

rcvlen is an INTEGER which contains the actual number of data bytes
which were received.

stat is an INTEGER describing the state of the transfer returned after the
call,

The RCV A routine returns three status bits within the stat variable. The
TMO bit is used to signal a timeout error. The REQI bit signals that the
routine returned because the terminator was detected (if enabled), or
EOI was received. The NL bit is set if the RCV A routine was called and
the card was not addressed to listen. Unlike other KM-488-ROM
routines, it is possible to return a non-zero status when the call was
completed successfully.

Stat (Return) - Low Byte
6 5 4 3 2 1 0

0 REQI 0 T™MO 0 NL 0

notes
example

purpose

usage

parameters

Where

REOI Reason for RCVA Termination. If this bitis a 1, then RCVA
routine ceased because an EQOI or terminator character was
received. If this bit is a 0, then the RCV A was terminated
because an error occurred or the maximum byte count was
reached.

™O Timeout Error. Indicates whether or not a Timeout Error
occurred during data transfer. If thisbitisa 1, thena
Timeout Error occurred.

NL KM-488-ROM not a Listener. If this bitis settoa 1, it
indicates the RCV A was called before the KM-4838-ROM
was designated as a Listener.

The KM-488-ROM must be addressed to listen before calling this routine.
Refer to the XMITA example.

SEND

Addresses a specified device to listen, the KM-488-ROM to talk, and
sends data from a string.

int adxs,
stat;
static char info[25] = ("data to be transmittad"};

send (adrs, info, &stat);

adrs is an INTEGER containing the IEEE bus address of the device that
the data is to be sent to and the terminator to be used. This byte is of the
following format:

7-14 ' KM-488-ROM USER GUIDE

messsssmes SEND (cont.)
Adrs (Input Parameter) - Low Byte

BIT 7

6

5 4 3 2 1 0

TRM{

TRMO

0 ADR4 ADR3 | ADR2 ADR1 ADRO

Where

TRM1-0

ADR4-0

Terminator Select. These two bits select the Input Message
Terminator to be used to signal the end of a transmission.
Available terminator selections are

TRM1 TRMO TERMINATOR # DEFAULT

0 0 LF EQI
CR LFEQI
CREQI

LF CR EQI

LB e O

0 1
1 0
1 1

Terminator values may be changed by calling the
OUTTERM routine.

The easiest way to specify an alternate terminator is to add
a factor to the GPIB address of the desired instrument.
Factors for each terminator are as follows:

GPIB Address + 0 = Terminator 0
GPIB Address + 64 = Terminator 1
GPIB Address + 128 = Terminator 2
GPIB Address + 192 = Terminator 3

For example, if you wanted to send a message using
message terminator 2 to a device at GPIB address 10, the
value of adrs% supplied to SEND would be 138 decimal (10
+128).

GPIB Address. These five bits are used to represent the
GPIB address of the device to which the data is to be sent.
GPIB addresses can range from 0 to 30.

info is a STRING containing the data to be sent.

returns stat is an INTEGER describing the state of the transfer returned after the
call. The returned stat values (or combination of) are interpreted as
follows:

Stat (Return) - Low Byte

BIT 7 6 5 4 3 2 1 0
0 0 0 0 TMO 0 NC ADRS
Where
TMO Timeout Error. Indicates whether or not a Timeout Error

NC

occurred during data transfer. If this bitisa 1, thena
Timeout Error occurred.

Not Active Controller. If this bit is a 1, then the SEND
routine was called when the KM-488-ROM was not an
Active Controller.

PROGRAMMING INC 7-15

msmssnss - SEND (cont.)

ADRS Invalid Address. If this bit is set to a 1, an invalid IEEE488
device address was given.

example This example shows how to send data from a KM-488-ROM to a device.
The KM-488-ROM is initialized as a System Controller located at GPIB
address 10. The KM-488-ROM uses high-speed handshaking. The data
{(a device setup string) is sent to a device located at GPIB address 2.

#include<kmd88rom.h>
main ()
{
int adras=l2,
stat=0;

statio char setup{l0] = {“FOROTOMOX");
/% String length must be set to one more than the total number of
characters*/

init {10,4);

send {adrs, setup, &atat);
/*A Pointer to the returned varlable must be passad into the Send
Routine*/

1f (statiw=0)
printf ("\nBrror send status=%x", stat);
}

As an alternative, the following sequence could be used:

#include<kmd88rom.h>
main ()

{
int stat=0;
init (10, 4);
sand (12, "FOROTOMOX", ata t);
Af (atat!=0)
printf("/n Error Sending status=%x", stat):;

——— SETBOARD

purpose In multiple board system, identifies the KM-488-ROM to be
programmed.

usage ...
int board;

satboard (board) ;

alternate usage boardselect (boaxd);

parameters board is an INTEGER between 0 and 3 representing the board to be
programmed. Note that up to four boards install in any one system. The
board "number" is associated with the base address of its 1/0 port.
i

7-16 KM-488-ROM USER GUIDE

returns
notes

example

purpose
usage

alternate usage

parameters

returns
notes

SETBOARD (cont.)

None.

You must assign a board "number" for every KM-488-ROM in the system
before calling the SETBOARD routine. Board numbers are assigned
using the SETPORT routine.

Each board must be must be initialized independently by calling the
INIT routine. You must do this the first time a given board is selected
before any other operations are conducted on that board.

Once a board has been selected using SETBOARD, all further I/O
operations will be performed on that board until the next SETBOARD is
executed.

This example selects board number 2.
satboaxrd (2} ;

SETDMA

NOTE: DMA allows maximum data transfer rates in excess of 100
kilobytes per second. However, the actual data rates are limited by the
rates at which other devices connected to the bus can send or receive
data. These rates are governed automatically by the GPIB handshaking
signals.

Allows the use of DMA in conjunction with XMITA and RCVA.

int channal;
satdma {channel);

dmachannel (channal) ;

channel is an INTEGER which specifies the DMA channel to be used for
the transfer, where:

1 = Select DMA channel 1.
2 = Select DMA channel 2.
3 = Select DMA channel 3.

To disable DMA, assign any value other than 1,2, or 3 to channel.
None.

The DMA hardware jumpers must be properly set for the DMA channel
selected by SETDMA. Note that the default setting for the jumpers is
DMA DISABLED. The jumpers are further described in Chapter 2.

When SETDMA is called to enable the use of DMA, each call to the
XMITA and RCVA routines that follows will use DMA to accomplish the
transfer until SETDMA is called with a parameter outside the range of 1-
3.

PROGRAMMING IN C 7-17

msm——— SETDMA (cont.)

example This example specifies that DMA transfers are to take place using DMA
Channel 1 and then disables DMA.

setdma (1)’
/*Transfers initiated by RCVA and XMITA will occcur over DMA channel
1.%f

satdma({0); /*Disables DMA.*/

memmesmsms SETINT

purpose Sets the KM-488-ROM's interrupt enable bits.
usage ...
int intval;

setint (intval};

parameters intval is an integer containing the address and value of the Interrupt
: Mask Register which is to be written to. This is interpreted as follows:

INTVAL (Input) - High Byte

BIT 7 6 S 4 3 2 1 0
X X X X X X X ADRS
Where
X May be any value.

ADRS If this bit is set to 0, bits 0 through 7 will be written to
Interrupt Mask 1. If this bit is set to 1, bits 0 through 7 will

be written to Interrupt Mask 2,
INTERRUPT MASK 1
INTVAL (Input) - Low Byte (ADRS = Q)
BIT 7 6 5 4 3 2 1 0
0 0 GET 0 DEC 0 0 0

Where

GET When this bit is set to 1, an interrupt will be generated
when a KM-488-ROM acting as a device received a GPIB
GET (Group Execute Trigger) command while addressed to
listen.

DEC When this bit is set to 1, an interrupt is generated when a
Device Clear is received.

KM-488-ROM USER GUIDE

mmmm—— SETINT (cont.)

INTERRUPT MASK 2
INTVAL (Input) - Low Byte (ADRS = 1)
BIT 7 6 5 4 3 2 1 0
0 SRQI 0 0 0 LOKC | REMC | ADSC
Where
SRQI When this bit is set to 1, an interrupt is generated when
SRQQ is received.

LOKC When this bit is set to 1, an interrupt is generated when the
state of the Local Lockout bit changes.

REMC When this bit is set to 1, an interrupt is generated when the
state of the Local/Rernote bit changes.

ADSC When this bit is set to 1, an interrupt is generated when the
state of the LA, TA, or CIC bits within the address status
register changes.

returns None.

notes Be certain to assign the KM-488-ROM to an interrupt level before using
this routine. Interrupt Levels are assigned by means of a jumper on the
KM-488-ROM board. This jumper is described in detail in Chapter 2.

You must set-up an interrupt handling routine within the QuickBASIC
program to deal with the interrupt condition.

example This example enables the KM-488-ROM to generate an interrupt when
SRQ is received.

SETINT (0x140):

purpose This routine is used to alter the range of addresses used by the KM-488-
ROM's I/O Port. In a multiple board environment, it is also used to
associate a given range of I/O addresses with a board number.

usage ..
int board;
unsigned ioport;

setport(board,ioport);

parameters board is an INTEGER between 0 and 3 which represents the board to be

programmed. Note that up to four board can be installed in any one
system. The board number is associated with the base address of its 1/0

ports.

ioport is an UNSIGNED INTEGER which represents the [/O Base
Address of the KM-488-ROM. The default Base Address is 2B8 Hex. The
Base Address selected must match the one selected by the Base Address
Switch on the KM~488-ROM. (See Chapter 2 for more information.)

PROGRAMMING IN C 7-19

memmm———— SETPORT (cont.)
returns None.

notes When multiple boards are used, each board must have its own unique
base address. Any base address can be assigned to any board number
provided that none of the base addresses overlap.

example This line assigns Board 0 to a Base address of 300 hex.
satport (0, 0x300);

e—— SETSPOLL

purpose Sets the Serial Poll Response of the KM-488-ROM, when it is acting as a
device (non-Controller).

usage ...
int xesp;
satspoll (resp);

parameters resp is an INTEGER describing the serial poll response and the state of
the SRQ bit. This byte is of the following format:

Resp% {Input) - Low Byte
BIT 7 6 5 4 3 2 1 0

SPR8 RSV | SPRé SPR5 SPR4 SPR3 SPR2 | SPRT J

Where
SPR1-8 Bits 1 through 8 of this device's Serial Poll Response Byte.

RSV If this bitis 1, SRQ will be asserted to request servicing.
Otherwise, SRQ will not be asserted.

returns None.

example This example illustrates how SETSPOLL may be used to notify the
controller of local error conditions.

int raesp=0;
if {errorl) /*Set SPR bits based upon local error conditions*/
resp|=1;
if (arror2)
resp|=2;

i1f (errar7)

resp|=128;
if {(aerror!=0)

resp|=0x40; /[*sat RSV if error*/
call setspoll {resp);

KM-488-ROM USER GUIDE

EE——— SPOLL
purpose Initiates a serial poll of the specified device.
usage ...
int adrs;
char rasp;
int stat;
spoll {(adrs, &resp, &Lstat);
parameters adrs is an INTEGER containing the IEEE bus address of the device that
is to be serial polled. This can range from 0 to 30.
returns resp is a CHARACTER containing the serial poll response received. The
definition of resp varies from device to device; however, Bit 6 is always
used to indicate whether the device is in need of service. Consult the
manufacturer's operator's manual for more information,
stat is an INTEGER describing the state of the transfer returned after the
call. The stat value is interpreted as follows:
Stat (Return) - Low Byte
BIT 6 5 4 3 2 1 0
0 0 0 T™MO 0 NC ADR

notes

example

]
purpose
usage

parametets
1

Where

TMO Indicates whether a Timeout Error occurred during data
transfer. If a 1, then a Timeout Error occurred.

NC KM~488-ROM not a Controller. If set to a 1, it indicates the
routine was called before the KM-488-ROM was designated
as an Active Controller.

ADR Invalid GPIB Address. If this bit is set to 1, an invalid GPIB
address was provided.

Pointers to the RESP and STATUS variables are passed.

This examples illustrates a simple serial poll of a device located at GPIB
address 10.

int resp, stat;
spoll {10, &reap, &stat) ;
if {atat!=0)
printf {("\nBrror during sarial poll ; status¥x", stat):;
printf{"\nSerial Poll Response =%x", resp);
1f{(resp&lx40) 1=))
printf{"\nDevice Raequesting Service"}:

SRQ
Detects the presence of the GPIB SRQ signal.

if (sxq())...

None.

PROGRAMMING IN C 7-21

7-22

returns

notes

example

purpose
usage

parameters

SRQ (cont.)

The SRQ function returns a 0 or FALSE condition when SRQ has not
been detected, or a 1 or TRUE condition when SRQ is present.

The value returned by the SRQ function is generally used within a
conditional branch in the application program.

Note that once you have obtained a TRUE response from the SRQ
function, the SRQ response will be reset to FALSE even if the SRQ line is
still active, In order to reset the SRQ response to TRUE, you must serial
poll at least one device which was requesting service. Conducting a
serial poll on a device which was requesting service will reset its SRQ
line. At this time, if other devices were simultaneously asserting SRQ,
the output of the SRQ function would once again be reset to TRUE.
Otherwise, the SRQ function would become TRUE on the next assertion
of the SRQ line.

This example assumes that the KM-488-ROM is connected to an
instrument located at GPIB address 1 which is capable of requesting
service via SRQ. When the SR} is detected, the SPOLL function will be
called and the serial poll response of the device will be printed to the
computer sCreen.

#include<imddérom.h>

main{)

{

int resap,
stat;

if (srq())
{
spoll (1, &reap, kstat);
1f (statusi=0)
printf{"\nError calling SPOLL-Statua=%x,stat);
alse
printf {"\nSRQ Received from device 1 -Poll
Response=$x', rasp);
}
}

STATUS

Returns the value of the specified setup parameter.

int ragq, stat;

status (Greg, &atat:)

reg is an INTEGER containing the address of the register or
configuration parameter to be queried. This value corresponds to a 4-bit
field which specifies the status register or configuration parameter to be
read. The format of the reg byte is as follows:

KM-488-ROM USER GUIDE

seoumssmmm STATUS (cont.)

Reg (input) - Low Byte

BIT 7 6 5 4 3 2 1 0
X X X X ADR3 | ADR2 ADR1 | ADRO
Where

X May be any value.

ADR3-0 REGISTER/PARAMETER SELECT. This is a 4-bit field
which specifies the status register or configuration
parameter to be read. Registers and parameters are selected
as follows:

ADR3 ADR2 ADR1 ADR0 REGISTERPARAMETER
0 0 0 0 Address Status Reg
0 0 0 1 Interrupt Status 1 Reg
0 0 1 0 Interrupt Status 2 Reg
0 0 1 1 DMA Status Reg
0 1 0 0 Qutput Terminator 0
0 1 0 1 Output Terminator 1
0 1 1 0 Output Terminator 2
0 1 1 1 Output Terminator 3
1 0 0 0 Input Terminator 0
1 0 1 1 Input Terminator 1
1 1 1 0 Input Terminator 2
1 1 1 1 Input Terminator 3
1 0 0 0 1/0 Timeout Parameter
1 0 0 1 DMA Timeout Parameter
1 1 1 0 1/0 Port Address
1 1 1 1 GPIB Address of KM-488-ROM
returns reg - When STATUS obtains the value of one of the four transmit
message terminators, this variable will contain two flag bits which
determine the length of the terminator and whether or not EOl is
asserted with the last byte. When obtaining other parameters, reg% will
retain its input value.
Reg (Return) - Low Byte
BIT 7 6 5 4 3 2 1 0
0 0 0 0 0 o LEN EOl
Where

LEN Terminator Length. If this bit is set to 0, then the terminator
is one byte long. If this bit is set to 1, then the terminator is
two bytes long.

EOQI If this bit is set to 1, EOl is asserted when the last terminator
byte is sent. Otherwise, EOI is not asserted.

stat is an INTEGER describing the status bits for the register or the
configuration parameter which was specified by the reg% parameter.
Unless otherwise noted, the high byte of stat% is returned as 0.

i

PROGRAMMING IN C 7-23

e STATUS (cont.)

BIT

BIT

BIT

Addr Register
Stat (Return) - Low Byte
7 6 5 4 3 2 1 0
ciC X X X X LA TA X
Where
X This bit may be any value.
Cic Active Controller. If this bit is set to 1, then the KM-488-
ROM is a System Controller.
LA Listener. If this bit is set to 1, then the KM-488-ROM is a
Listener.
TA Talker. If this bit is set to 1, then the KM488-ROM is a

Talker.

Interrupt Status Register 1
Stat (Return) - Low Byte

7 6 5 4 3 2 1 0
X X GET X DEC X X X
Where
X This bit may be any value.
GET Group Execute Trigger. If this bit is set to 1, then a Group
Execute Trigger command was received while the KM-488-
ROM was a device.
DEC When this bit is set to 1, a Device Clear was received.

Interrupt Status Register 2
Stat (Return) - Low Byte

7 6 5 4 3 2 1 0
X SR LOK REM X X X ADSC
Where
X This bit may be any value.
SRQlI When this bit is set to 1, it indicates SRQ was active. (Active
Controller mode only.)
LOK When this bit is set to 1, the device was set to Local Lockout.
(Device mode only.)
REM When this bit is set to 1, the device was configured for
remote operation. (Device mode only.)
ADSC When this bit is set to 1, a change of the address status

7-24 KM-488-ROM USER GUIDE

occurred {i.e., untalk to talk, device to active controller, etc.).

notes

example

purpose
usage

parameters

STATUS (cont.)
Input and ut Message Terminator #0-3. Contains First and Last

bytes of the message terminator. Input Terminators and single character
Output Terminators are only one byte long and are contained in the
Least Significant Byte (M5B=0). In the case of a two character OQutput
Terminator, the Most Significant Byte of this parameter is the first
character sent.

DMA Timeout and /0 Timeout Parameters. Contains the value of the

desired parameter as an unsigned value in the low bytes of stat. The
timeout value is expressed in milliseconds (0 to 65535),

The bits contained in the Interrupt Status 1 and 2 registers are extremely
volatile. When you read these registers, any bits which were set are
automatically cleared by the READ operation. This is extremely
important to note when reading Interrupt Status Register 1, as some of
the bits (not shown above) are used by various KM-488-ROM routines.
It may be possible to cause various KM-488-ROM routines to report a
timeout error if this register is read while the KM-488-ROM is addressed
to talk or listen.

This example illustrates how to use the STATUS routine.

#include<kmif8rom.h>

main {)
{
int regq,
stat;

rag=0;

atatua (&xeg, &stat);

printf{"\nhkddress Status Register=%x Hexadecimal",stat):;
rag=1100B;

status {&ireqg, &stat);

printf{'\nI/0 Timeocut=%u millisaconds", stat);

XMIT _

Sends GPIB commands and data from a string.

static char info[] = {"Data and Commands to be Saent"};
int stat;

mit (infe, &stat);

info is a CHARACTER ARRAY (string) containing a series of GPIB
commands and data. Each item must be separated by one or more
spaces. All the available commands are described in Chapter 3. These
commands include:

PROGRAMMING IN C 7-25

7-26

returns

BIT

XMIT {cont.)

CMD GTL MTA SDC T0
DATA GTLA MLA SEC T1
PCL IFC PPC SPE T2
END LISTEN PPD SPD T3
EOI LLO PPU TALK UNL
GET LOC REN TCT UNT

info can be specified as a quoted "string” within the XMIT call, or as the
name of a character array which has been initialized to the desired string.

stat is an INTEGER which describes the state of the transfer returned
after the call. The returned stat value can be interpreted as follows:

Stat (Return) - Low Byte
6 5 4 3 2 1 0

ADRS | NCTL UNDF T™MO STR NT STX

example

Where

ADRS Invalid GPIB address. If this bit is set to 1, then an invalid
GPIB address was given.

NCTL Not a System Controller. If this bit is set to 1, it indicates
that the KM-488-ROM tried to send GPIB Bus Commands
when it was not an Active Controller.

UNDF Undefined Command. If this bit is set to 1, the info string
contained an undefined command.

TMO Timeout Error. Indicates whether or not a Timeout Error
occurred during data transfer. If this bitisa 1, thena
Timeout BError occurred.

STR String Error. If this bit is set to one, then a quoted string,
END, or terminator was found without a DATA
subcommand preceding it.

NT KM-488-ROM not a Talker. If this bitis settoa 1, it
indicates the routine was called before the KM-488-ROM
was designated as a Talker.

STX Syntax Error. If this bit is set to 1, a syntax error was found.

This example illustrates one way to use the XMIT command with a
Keithley 196 Voltmeter. This meter is assigned GPIB address 7 and is
configured to a 30 Volt DC range with 4 1/2 digit accuracy. The meter is
also configured to take a new reading each time a Group Execute Trigger
Bus command (GET) is received. The program then triggers the
instrument to get the first reading, and makes it a talker and the KM-488-
ROM a listener in order to get the first reading.

The device to receive the setup command string which must be sent to
the meter contains the following device commands:

F3 Select DC Volts mode

R3 Select 30 Volt range

S1 Select 4 1/2 digit accuracy

T3 Take one reading when GET received

X Execute the prior commands within the string

KM-488-ROM USER GUIDE

purpose

usage

XMIT (cont.)

The device to receive the setup command string must also be
programmed to assert the GPIB REN signal (This allows the meter to
receive GPIB commands.) and to LISTEN (This allows the device to
receive the string.). The programming sequence used consists of the
following;:

Setting Remote Enable (REN).

Setting all devices to UNTalk and UNListen.

Addressing the 196 to LISTEN.

Addressing the KM-488-ROM to talk (My Talk Address).

Sending the Device-Dependent Commands as a string of DATA.
Sending the appropriate message terminator characters after the data.

Issuing the Group Execute Trigger bus command.

» Unaddressing all devices.

Addressing the meter to TALK and the KM-488-ROM to LISTEN (My
Listen Address) in preparation for receiving the latest reading.

The default value for transmit message terminator 1 is a carriage-return
line-feed combination.

#include<kmd88rom.h>
main{)
{
int statua=0;
init{0,0);
xmlt ("ren unl unt listen 7 mta data 'FOR3S1T3X' tl get unl
talk 7 mla“, &status);

/*Hote that a string which was initialized to the command sequence
could also ba passed into the XMIT call. Additionally, the XMIT
subcommands can be specified in upper or lower casa. However, the
charactaers sent by the DATA subocommand will be sent as specified
{UEPER or lower case), and the Kelthlay 196 raequires its commands
to be specified as UPPER CASE text.*%/

if (status!=0)
printf ("\nTransmit Error =%xv, status);
}

XMITA

Sends data from an array. It may also be used in conjunction with the
SETDMA routine to initiate DMA transfers.

int data[]:
unsigned count;
int term;

int stat;

xmita (data[0], count, texrm, &atat) ;

PROGRAMMING IN C 7-27

e XMITA (cont.)

alternate usage -
unsigned count.;
char term;

int stat;

tarray{(data[0], count,term, &stat)

parameters datafl is an ARRAY containing data (of any type) to be transmitted. The
only difference between arrays of varying types is the number of data
bytes in each array location (char = 1 byte per location; int, unsigned = 2
bytes per location, word = 4 bytes per location). When transmitting data,
XMITA sends data from the least significant byte of the specified array
location, progressing from a least-significant through most-significant-
byte order from increasing array locations.

count is an UNSIGNED INTEGER containing the number of data bytes
to be transmitted.

term is an INTEGER which selects the terminator to be used. This byte
is of the format:

Term (Input Parameter) - Low Byte

BIT 7 6 5 4 3 2 1 0
T
STRM | TRM1 | TRMO X X X |t X €Ol
Where
X This bit may be any value.

STRM Send Message Terminators. If this bit is set to 1, then the
message terminator(s) will be sent at the end of the
transmission. Otherwise, they will not.

TRM1-0 Terminator Select. These two bits select the Qutput
Message Terminator to be used to signal the end of a
transmission. Available terminator selections are

TRM1 TRMO TERMINATOR # DEFAULT
0 0 0 LF EOI
- 0 1 1 CRLFEOI
1 0 2 CREOI
i 1 3 LECR EOL

These terminators can be redefined by calling the
OUTTERM routine.

EOQI Asserts ECI. If this bit is set to 1, then EQI will be asserted
when the last byte is sent. Otherwise, EOI will not be
asserted.

returns stat is an INTEGER describing the state of the transfer returned after the
call. The stat value is interpreted as follows:

7-28 KM-488-ROM USER GUIDE

sssssssss XMITA (cont.)
Stat (Return) - Low Byte

BIT 7 6 5 3 2 1 0
1
0 0 0 ™0 0 |E NT 0
Where
TMO Timeout Error. Indicates whether or not a Timeout Error

occurred during data transfer. If this bitisa 1, thena
Timeout Error accurred.

NT KM-488-ROM not a Talker. If this bitis set toa 1, it
indicates the routine was called before the KM-488-ROM
was designated as a Talker.

example

This example illustrates the use of the XMIT, XMITA, RCVA, SEND, and

SPOLL routines to send and retrieve waveform data from a GPIB

compatible oscilloscope.

#includa <stdio.h>

#include <stdlib.h>
#include <math.h>

#include <gonioc.h>
#inoclude <graph.h>

#include "knd8€rom.h"
/* function prototypes */
vold KMErrorHandler {(int ErxrorFlag);

unaigned int SwapBytes {unsigned value);

unsigned sinedata[l024], /* Bine wave data */

txdata[1028], /* sinedata converted by SwapBytes() */

rov_sine[1028]; /* for convarted data */

char

int count,length, scope;

unsigned = npumbytes;

char rovetring[8l],
txstring[80];

void main{)
{
double angle;
int key,
i,
chkgum,
nunpts,
&p reap,
kmatat;
char %s, *d;
_clearscreen(_GCLEARSCREEN)}
_settextpesition(1,0 };
printf{

rxdata[2100]; /* for raw data from Oscilloscope

*/

"This program demonstrates the use of the XMITA and RCVA routines

using a\n");

PROGRAMMINGINC

7-29

e XMITA (cont.)

printf{
"Tektronix 11301 or 11302 Oscilloscope at GPIB address 16");
_sattextposition{ 4,0);

init (0,0); /* KM-488~-ROM is System Controller at GPIB Adrs 0 */

iotimeocut (5000); /* set IO timecut to 5 seconds */
A et b e D Initialize the Osollloscope ———--——r————=wenm- */
scope = 16; /* «--Saope 488 Bus Address */

printf{ “\nINITIALIZING SCOPE\n\n"}:
xmit ("DCL", &kmstat);
if (kmstat t= 0)

KMErrorHandler (kmstat);

FAREELE Calculate data, send points to scopa, display

curve ~=--=%/

printf({ "CALCULATING SINE WAVE\n\n"):;
numptas = 1024; /* Words in waveform */
for(iw0; i<numpts; 1++) {

angle = { * §,28219 / (double) 1024;

sinedata(i] = (unsigned) (400 * sin(angle));

txdata[i] = SwapBytes (sinedatal[i]):
}
numbytes = SwapBytes({ numpts * 2 + 1);
do {

print£({ "SENDING SINE WAVE TO SCOPE\n\n");

spoll (scope, asp_resp, &kmstat);
printf("\nSpoll = %.2x\n", &p_reap & 255);
aand (sacope, "INIT", &kmstat); /* Initialize scope */
1f (kmatat = 0)
KMErrorHandler (kmatat);
sand (scope, "RQS OFF", &kmstat); /* Disables SRQs */
1f (kmstat 1= 0)
KMErrorHandlar (kmatat);

send (scope, "INPUT STOl" , skmatat); /¥ Store in location 1 */
1f(kmestat != 0)

KMErrorHandler {kmstat);

aprintf (txetring, "MTA LISTEN %d DATA 'CURVE %%'", scope)’
xmit {txatring, &kmatat); /* Setup for data transfer */
if (kmstat != 0)

KMErrorHandler (kmstat);
count = 2;
xmita{&numbytes, count, 0, &kmatat); /% Byte count sent */
if(kmstat t= 0)

KMErrorHandler (kmatat);
count = numpts * 2;
xmita (txdata, count, 0, &kmstat); /* Data sent */
1f(kmetat 1= 0)

KMErrorHandler (kmatat) ;

chksum = Q; /* Don't bother actual checksum */
oount = 1; /* Send EOI with checksum */
xmita (gchksum, count, 0, &kmstat); /* Checksum sent */

7-30 KM-488-ROM USER GUIDE

m——— XMITA (cont.)

*/

if (kmatat = Q}
KMExrorHandler (kmstat);

printf ("CLEARING ALL TRACES\n\n");
send (scope, "CLEAR ALL", &kmstat};
1f (kmstat I= 0)
KMErrorHandler (kmetat) ;
printf ("DISPLAYING STORED TRACE\n\n");
sprintf{txstring,
"TRACEl DESCRIPTION:STOl, VPOSITION:O, HPOSITION: O, UNITS: \"V\ ")

sand (8cope, txstring, &kmstat);
if (kmstat != 0)
KMErrorHandler (kmstat);

-------------- Retrieve data and compare --—===w-—ceomee——%/

printf ("\n\nRETRTEVING DATA FROM SCOPE\n");
send (scope, "ENCDG WAVFRM:BINARY", sgkmstat};
if (kmatat t= Q)
KMErrorHandler (kmstat) ;
sand (scopa, “OUTPUT STQOLl", skmsetat);
if (kmstat 1= 0)
KMErrorRandler (kmstat);
send (scope, "CURVE?", &kmstat); /* Ask for data to be returned

if{kmastat != Q)
KMErrorHandler (kmsetat);
eprintf (txstring, "TALK %d MLA", scope);

xmit (Exstring, &kmstat); /* Setup for scope to send data */
1f(kmstat = 0)

KMErrorHandler (kmstat) ;
count = 2058; /* number of bytaes expected */
kmatat = 0;
rova(rxdata, ocount, 0, &length, &kmstat); /* Data received */

1f (kmstat t= 32 && kmstat 1= 0) {

printf("Reciavae error:; %d", kmstat);
exit {(3);

}

if {length != (10 + numpts * 2)) {
printf ("\nCount Error - received %d", length);
exit (4);

}
xmlt ("UNT UNL", &kmatat); /* untalk the scope */
if (kmetat |m 0)
KMErrorHandler (kmetat) ;
printf ("CCMPARE SENT AND RECEIVED DATA; . = OK, * = BAD

COMPARE\R") ;

/t

Received data format starta with header and byte count - CURVE

XX, Racelived data starts at offset 9.

*/

s = rxdata+9; /* atart of data */
d = {char *) rov_aine;

for (1w0;1<2048; 14+) /* copy data to rav_sinae[] */

PROGRAMMING IN C 7-31

7-32

msmmm—m— XMITA (cont.)

}

*dt++ = Fgi;
for (im0; 1<1024; 1++) {
rov_sine[i] = SwapBytes({rcv_sine[i));

i1f(sinedata[i] rov_sine[i})

putch('.'};
else
putch('*');

}
printf{"\nComplete\n"});
kay=getach():

if (key==27) exit(0);
axit (0);

unsignaed int SwapBytes (unsigned value)

{

unaigned rvaluem(;

rvalus » value >> 8;
rvalue |= value << 8;

return rvalue;

}

vold KMErrorHandler (int ErrorFlag)

{

printf ("\nERROR NUMBER: %d\n",ErrorFlag);
exit (-1};

KM-488-ROM USER GUIDE

|
Chapter 8

FACTORY RETURNS

Before returning any equipment for repair, please call 508/880-3000 to notify MetraByte's
technical service personnel. If possible, a technical representative will diagnose and resolve
your problem by telephone. If a telephone resolution is not possible, the technical
representative will issue you a Return Material Authorization (RMA) number and ask you to
return the equipment. Please reference the RMA number in any documentation regarding the
equipment and on the outside of the shipping container.

Note that if you are submitting your equipment for repair under warranty, you must furnish
the invoice number and date of purchase.

When returning equipment for repair, please include the following information:

1. Your name, address, and telephone number.
2. The invoice number and date of equipment purchase.

3. A description of the problem or its symptoms.

Repackage the equipment. Handle it with ground protection; use its original anti-static
wrapping, if possible.

Ship the equipment to

Repair Department
Keithley MetraByte Corporation
440 Myles Standish Boulevard
Taunton, Massachusetts 02780

Telephone 508/880-3000
Telex 503989
FAX 508/880-0179

Be sure to reference the RMA number on the outside of the package!

FACTORY RETURNS 8-1

8-2 KM-488-ROM USER GUIDE

Appendix A

ASCII Code Chart

ASCII CHARACTER HEX DEC ASCII CHARACTER HEX DEC
NUL 00 0 ! (Exclamation Point) 21 33
SOH (Start of Heading) 01 1 " (Quote Mark) 22 4
STX (Start of Transmission) 02 2 # (Pound Sign) 23 35
ETX (End of Transmission) 03 3 $ (Dollar Sign) 24 36
EOT (End of Text) 04 4 % (Per Cent Sign) 25 37
ENQ (Enquiry) 05 5 & (Ampersand) 26 38
ACK (Acknowledge) 06 6 ' (Apostrophe) 27 39
BEL (Bell) 07 7 { (Left Parenthesis) 28 40
BACKSPACE 08 8) (Right Parenthesis) 29 41
HT (Horizontal Tah) Y 9 * (Asterisk) 2A 42
LF (Line Feed) 0A 10 + (Plus Sign) 2B 43
VT (Vertical Tab) 0B 11 , (Comma) 2C 44
FF (Form Feed) oC 12 - (Minus Sign) 2D 45
CR (Carriage Return) 0D 13 . (Pericd) 2E 46
SO (Shift Out) 0E 14 / (Slash) 2F 47
SI (Shift In) OF 15 0 30 48
DLE (Data Link Escape) 10 16 1 31 49
DC1 (Data Control 1) 11 17 2 32 50
DC2 (Data Control 2) 12 18 3 33 51
DC3 (Data Coatrol 3) 13 19 4 34 52
DC4 (Data Conirol 4) 14 20 5 35 53
NAK (Not Acknowledge) 15 21 6 36 54
SYN (Synchronous Idle) 16 22 7 37 55
ETB (End of Trans, Blank) 17 23 8 38 56
CAN (Cancel) 18 24 9 39 57
EM (End of Medium) 19 25 : (Colon) 3A 58
SUB (Substitute) 1A 26 ; (Semi-Colon) 3B 59
ESC (Escape) 1B 27 < (Less than) 3C 60
FS (File Separator) 1C 28 = (Equal) iD 61
GS (Group Separator) 1D 29 > {Greater than) 3E 62
RS (Record Separator 1E 30 7 (Question Mark) 3F 63
US (Unit Separator 1F 3 @ (At, per sign) 40 64
SP (Space) 20 32 A 41 65

ASCII CODE CHART A -1

A-2

ASCII CHARACTER HEX DEC ASCII CHARACTER HEX DEC
B 42 66 c 63 99
C 43 67 d 64 100
D 44 68 e 65 101
E 45 69 f 66 102
F 46 70 g 67 103
G 47 71 h 68 104
H 48 72 i 69 105
I 49 73 j 6A 106
J 4A 74 k 6B 107
K 4B 75 1 6C 108
L 4C 76 m 6D 109
M 4D 77 n 6E 110
N 4E 78 0 6F 111
0] 4F 79 P 70 112
P 50 80 q 71 113
Q 51 81 r 72 114
R 52 82 8 73 115
S 53 83 t 74 116
T 54 84 u 75 117
U 55 85 v 76 118
v 56 86 w 71 119
W 57 87 X 78 120
X 58 88 y 79 121
Y 59 89 z 7A 122
Z S5A 90 { (Left Brace) 7B 123
[(Left Bracket) 5B 91 | (Vertical Slash) 7C 124
\ (Backslash) 5C 92 } (Right Brace) 7D 125
] (Right Bracket) 5D g3 ~ (Tilde) 7E 126
A {Caret) SE 94 DEL (Delete) TF 127
_ (Underline) 5F 95

* (Accent, Grave) 60 96

a 61 97

b 62 98

[N

KM-488-ROM USER GUIDE

Appendix B
IEEE-488 Tutorial

The evolution of electronics over the past few decades has lead to concepts and
implementations of test/measurement and control systems of continually increasing
complexity and sophistication. For example, measurement started out as "go no go” tests
equivalent to plugging a lamp into an electrical outlet to determine if the outlet is "hot". Next,
meters appeared which yielded a single number characterizing a quantity and then
oscilloscopes which displayed how signals varied with time. Today, logic and spectrum
analyzers allow us to further manipulate and display the data in a variety of specialized ways.

At the same time, our expectations on collecting, saving and manipulating the results of
measurements has escalated from writing down meter readings and hand calculations to
automated storage of and complicated computations on large numbers of measurements.
Many instruments have these capabilities "built-in"; thus freeing the system controller from
having to handle complex calculations. A modern test/measurement or control system can be
represented as:

DEVICE
SCURCES ——» OR
PROCESS

1 f
T

CONTROL
& STORAGE
COMPUTATION

MEASURING
DEVICES

A typical test would be to measure the "frequency response” of a device. The source would be
capable of supplying a sine wave of varying frequency to the input of the device and the
measuring device would measure the magnitude and phase of the output. In an automated
system, the CONTROL box would step the source through a range of frequencies. Ateach
frequency the control would request the measuring device(s) to return a value and the results
could be stored and used to calculate the "transient” response of the device, for example.

Traditional test instruments have provided the basic measurement functions for years. For
example, there are oscillators which generate sine waves of various frequencies and meters to
measure responses. The essence of today's system is that the different functional units of the
system can communicate with each other as required and be run automatically by a controller.
To accomplish this goal, a bus has been defined which allows instruments to be
interconnected and to communicate with each other through a standard hardware
arrangement. This bus is often referred to as the GENERAL PURPOSE INTERFACE BUS

IEEE-488 TUTORIAL B-1

(GPIB). It is also identified as the IEEE-488 bus because it has been standardized in
specifications from the Institute for Electrical and Electronic Engineers.

B.1 TOPOLOGY

An JEEE-488 system allows different manufacturers' devices to be connected. Systems can be
connected following a star or linear-type topology or using a combination of both. The system
should adhere to the following constraints:

* No more than 15 devices can be connected by a single bus.

* The total transmission length cannot exceed 20 meters or 2 meters times the number of
devices (which ever is less).

* The data rate through any signal line must be less than or equal to one megabyte per
second.

B.2 THE SYSTEM

The simplest IEEE-488 system consists of a single device sending data to another, such as a
meter outputting data to a printer. A more typical IEEE-488 bus system (See Figure B-1.) is
comprised of up to 15 devices, each of which acts as one or more of the following: Controller,
Listener, and Talker.

There are a variety of interface functions which GPIB devices can support at various levels.
The IEEE standard recommends that a label listing the device codes be placed on the
instrument near the IEEE connector. Codes consisting of 1 or 2 letters indicating the function
type followed by a number indicating the level of support are used to characterize the device.
If the number is 0, it means that the function is not supported. Each device's applicable device
codes should be listed within its manual or specification. Appendix D lists the device codes.

SYSTEM
CONTROLLER

==
LA
DEVICE C ¢ > DEVICE B
TALKER LISTENER
DEVICE A

TALKER / LISTENER

Figure B-2. Typlcal System

B-2 KM-488-ROM USER GUIDE

Listeners

A Listener is any device which is able to receive data when properly addressed. There can be
up to 14 active listeners on the bus concurrently. Some devices can also be a talker or
controller; however, only one of these functions can be performed at a time.

Talkers

A Talker is any device which can transmit data over the bus when properly addressed. Only
one device can transmit at a time. Some devices can also be a listener or controller; however, a
device can perform only one of these functions at a time.

Controllers

Most IEEE-488 systems contain at least one IEEE-488 Controller (e.g., the KM-488 board).
There may be more than one Controller per system, but only one can be active at any given
time. This function is very important because the Active Controller has the ability to mediate
all communications which occur over the bus. In other words, the Active Controller
designates (addresses) which device is to talk and which devices are to listen. The Active
Controller is also capable of relinquishing its position as Active Controller and designating
another Controller to become the Active Controller.

There is always one System Controller in an IEEE-488 system. The System Controller is
defined at system initialization either through the use of hardware switches or by some type
of configuration software, and usually would not be changed. This System Controller can be
the same controller as the one which is the current Active Controller or an entirely different
one. If the controller is both a System Controller and an Active Controller and it passes control
to another controller, the system controller capability is not passed along with it.

The System Controller has the unique ability to retrieve active control of the bus or to enable
devices to be remotely programmed. It takes control of the bus by issuing an IFC (Interface
Clear) message. The System Controller issues this message by asserting the IFC Control line
(See section B.3.) for a period of at least 200 usecs.

Likewise, devices cannot be put into the remote state (can be programmed from the GPIB bus
rather than from the normal controls) unless the System Controller is asserting the REN
{Remote Enable) line. (See section B.3.) With REN asserted, a device will go into the remote
state the first time it is addressed to listen by any Active Controller. All the devices will
return to local control if the System Controller unasserts REN.

If an IEEE-488 device is not a System Controller or an Active Controller, then it will be

referred to as a device. In this capacity, it can be idle, act as a talker and/or listener, when it
has been addressed or unaddressed by the Active Controller.

IEEE-488 TUTORIAL B-3

B.3

B-4

—— Dion ﬁ [T
DATA P T Dok DATA
Lhes 0103 1 o7 :| LINER
L— Do [T [
EOl [REN
" AV [} N
HANDBHAKING NAFD T tho
LNES NOAG [] o
- RS] H] aND
8RO ® = 7]
ATN " on oND
BHIELD L I HGNAL OROUND
_—-/

Figure B-3. IEEE-488 Bus Connacior

BUS LINES

The IEEE-488 bus is a parallel bus containing 24 lines, 16 of which are signal lines. (See Figure
B-2.) These 16 lines consist of eight data lines, five control lines, and three handshake lines.
The manner in which the bus lines are used is described in the section B.5.

Data Lines

The Data Lines (DIO1 through DIO8) are used to convey messages such as: device addresses,
Parallel Poll Responses, IEEE-488 Interface Commands, or Data/Device Dependent
Commands. They are discussed extensively in section B.4.

Control Lines

The control Lines perform a variety of control, request, and coordinating functions which
assure the orderly flow of information on the bus. The IEEE standard refers to any bus
activity as being a "message". Messages used to control bus functions, as opposed to sending
data between devices, are called interface messages. Asserting a control line is said to send a
uniline interface message because a specific effect usually occurs as the result of the assertion.
Table B-1 briefly describes the control lines and lists their name, associated acronyms and
functions. Their functions will be elaborated in subsequent sections.

KM-488-ROM USER GUIDE

ACRONYM

Table B-1. Control Lines

LINE NAME FUNCTION

ATN

EOI

IFC

SRQ

Attention This line can only be asserted/unasserted by the Active
Controller. It designates whether the current data on the data
lines is data or a command, When this line is set low(irue}, it
indicates that the information to follow represents commands
and/or addresses. When this line is set high (false), the active
talker is transmitting device-dependent data to all active listeners.

This line is also used with EOI to conduct a parallel poll.

End or Identify Signals that the last data byte of a multibyte sequence is being
transferred. This line is also used in conjunction with the ATN
line to initiate paralle! polling.

Interface Clear When this line is asserted (set low), the bus is cleared and all
talkers/listeners are placed in an idle state, This is a pulse of 200
uor more. This line can only be asseried by the System
Controller.

Remote Enable If this line is asserted, bus devices can be programmed via IEEE
bus commands issued from an active talker. This line can only be
asserted by the System Controller.

Service Request This line when asserted indicates that service is required from the
Active Controller. SRQ can be asserted by any bus device which
supports the function,

Handshake Lines

There are three Handshake Lines which are used to coordinate data transfers between talkers
and listeners on the bus. Table B-2 briefly describes the Handshake lines. It lists their names,
associated acronyms, and functions.

Table B-2. Handshake Lines

ACRONYM LINE NAME FUNCTION

DAV Data Valid This signal is used to inform the system that valid data is ready
for transmission.

NDAC Not Data Accepted Indicates if all devices accepted the data or not. As each listener
receives data, it will set its NDAC line high, Once all intended
listeners have accepted the data, the NDAC line to the talker will
be set high,

NRFD Not Ready For Data Indicates whether or not the listeners are ready to recetve data.

When each listener is ready, it sets its NRFD line high.

Section B.4 describes the use of the handshaking lines. Figures B-3 and B4 illustrate the
Handshaking Sequence.

IEEE-488 TUTORIAL B-5

3 -

ar
W
VAL wo TAEA
o e
NFO ALCEFTOA [[
1 1 e 1 1 Y
LIBTENENS)
N e
e
WAL RECETR Lo
L LIFTENER)

Figure B-4. Handshake Timing

SOURCE MNLEPTOR

Figure B-5. Transmission of Data from Talker to Listener

B-6 KM-488-ROM USER GUIDE

B.4

Preliminary: Source checks for listeners and places data byte on data lines.

t1 All acceptors become ready for byte. NRFD goes high with slowest one.

tp Source validates data (CAV low).

t; First acceptor sets NRFD low to indicate it is no longer ready for a new byte.
ty NDAC goes high with slowest acceptor to indicate all have accepted the data.
t3 DAYV goes high to indicate this data byte is no longer valid.

ty First acceptor sets NDAC low in preparation for next cycle.

ts Back to t-1 again,

ts Back to t0 again.

All devices that are to be "sources" i.e., be talkers and send data on the GPIB must be able to
perform the "source” handshake functions of responding to the NRFD and NDAC lines and
controlling the DIO lines and DAV as described above. In terms of the codes of Appendix D,
they must have SH1 capability. Devices listed as SH0 cannot act as sources.

Likewise, all devices which are to be "acceptors”, i.e. be listeners and receive data on the GPIB
must be able to perform the "acceptor” handshake of responding to the DIO lines and DAV
and controlling NDAC and NRFD as described above. They must have the SH1 capability as
defined in Appendix D. Devices listed as AHO cannot act as acceptors.

BUS FUNCTIONS

The purpose of the IEEE-488 Bus is to provide a mechanism for the orderly flow of
information between bus devices. To accomplish this, the IEEE-488.1 specification refers to
two types of messages as occurring on the bus. This first is interface messages which manage
the interface itself and the second are device dependent messages which are used to transfer
information between bus devices.

Interface messages are summarized in Appendix D and can be placed in two groups. The first
group consists of the so-called "Uniline Interface Messages" introduced in B.3 which are sent
be the controller asserting the special control lines. The second group, the so-called "multiline
interface messages”, which are treated separately in section B.5. The Active Controller sends
multiline interface messages by asserting the ATN line and placing data on the DIO lines. The
multiline interface messages are broken up into 5 groups: Addressed, Universal, Listen
Address Group, Talk Address Group, and Secondary Address Group.

The second type of message is the device-dependent message and is sent by the Active Talker
by placing data on the DIO lines (the ATN line will not be asserted). Device-Dependent
messages are not discussed in this section.

The major functions performed by these messages are: System Initialization and Control,
Device Addressing, Sending and Receiving Data/device Commands, Requesting Service,
Polling and Triggering. These functions are described within this section.

System Initialization

When a typical IEEE-488 system is initialized, there will be one device which will be the
System Controller. The System Controller will usually assert the Interface Clear line (See

IEEE-488 TUTORIAL B-7

B-8

section B.3.) for at least 200 secs. to make sure it has control of the IEEE-488 bus and that no
device is addressed to be an active talker or active listener. The System Controller will then
unassert IFC.

Typically the system controller will assert the Remote Enable line (REN , See Section B.3) so
that bus devices will go to remote when they are addressed to listen. When a device is in
remote it can receive instructions remotely over the GPIB bus which will program its
functions and ranges rather than locally from panel controls on the device. The controller
might also issue a Local Lockout message (LLO, see Section B.5) which prevents an operator
from returning a device to local control. In this way, the devices are completely under bus
control.

All Devices can be put back into local by the System Controller unasserting REN or by any
active controller issuing a Go To Local (GTL See section B.5) message to specific devices. In
the latter case, devices will go back to remote the next time they are addressed to listen. The
remote/local capability of a device is specified by the RL code of Appendix D.

The Active Controller can also issue device clear commands which will return the device(s) to
its initial power-up programming state, for example, its original range and function. In some
cases this means returning to factory-set default values while in others it means returning to
previously saved operator-chosen settings. The functionality of a device is specified by its DC
functionality of Appendix D.

Passing Control

Control can be passed to another controller by addressing a prospective controller to listen
and then issuing a Take Control (TCT, See Section B.5.) message. Care must be taken that the
prospective controller is capable of accepting control because generally no error will be
detected if it is not. Having issued the message the previous controller becomes an inactive
controller and a normal bus device. A system controller can always seize control by asserting
IEC.

The functicn codes of Appendix D which describe controller function start with C. Multiple
numbers are used. C0 indicates no controller capability, whereas C1-C5 would indicate
complete capability.

Addressing a Device

Devices are addressed by the Active Controller issuing multiline interface messages from
either the talk address group (TAG) or listen address group (LAG) as described in section B.5.
Normally, up to 15 IEEE bus devices can be configured within one IEEE-488 system. In order
to avoid data conflicts, each device is assigned a unique primary address in the range 0 to 30.
Some devices can support more than one address although usually the device will present
only one electrical load to the bus.

Because there can only be one talker at a time, a talker will be unaddressed automatically
when another device is addressed to talk. However, there will be times when the controller
will want to untalk a device without addressing another. It will always be necessary to
unaddress listeners that no longer should be listening because it is possible to have any
number of devices listening at the same time. Within each of the LAG and TAG groups is
either an unlisten or an untalk command. The talk and listen function codes of talkers and
listeners as listed in Appendix D begin with T and L respectively.

KM-488-ROM USER GUIDE

Secondary addresses are used to extend the total number of addresses on the bus. (Secondary
addresses also must fall within the range 0 to 31.) Devices which employ a secondary
address(es) in addition to their primary address and are said to be extended talkers and/or
extended listeners. The function codes describing these functions are TE and LE and listed in
Appendix D.

Frequently secondary addressing is used to access additional operating modes on a single
device or a specific device within a rack of devices where the rack is assigned the primary
address. In either case, the electrical load to the IEEE-488 bus should only be the equivalent of
1 device. To access such a device, a command from the LAG or TAG group would be issued
for the primary address and followed immediately by a command from the secondary
command group as described in Section B.5.

NOTE: Most IEEE instruments are assigned a device address by setting hardware DIP
switches, front panel controls, or by running some type of setup software.

Sending and Receiving Data/Device Commands

Data/Device Commands is a message which is sent over the bus with ATN unasserted. For
example, a multimeter might send the results of several readings to a printer or display. Data
can be sent by any device on the bus which is a talker.

The Device Commands control what tasks the IEEE-488 instrument performs. For example, a
sequence of these commands might set a meter to a particular measuring range. These
commands are device-specific. That is, the command required to set the voltage range of one
manufacturer's multimeter cannot necessarily be used to set the voltage range on a multimeter
produced by another company. The device(s) which is addressed to listen can distinguish
Device Commands from data because certain character or command sequences are included.

Newer devices which conform to the IEEE-488.2 and or SCPI (Standard Commands for
Programmable Instruments) specifications may have more standardized command sets.
Consult the documentation accompanying the device for its command set. Device Commands
can be issued by any device on the bus which is a talker.

Message Terminators

A Message Termination scheme is required if messages of unknown length are to be sent in
order for the receiving device to know when the data transmission has ended. One way of
terminating a message is to employ the End or Identify (EOI) line. (See Section B.5) The
device transmitting the data will assert the EOI when it puts the last data byte on the DIO
lines. The receiving device then recognizes that the byte it receives with the EOI will be the
last.

As second termination scheme is for the transmitting device to append one or two characters
(which would normally not appear in the message) to the end of the message. The characters
causing a carriage return and line feed are frequently used where the message is a string of
text. If the message consists of values between 0 and 255 then termination characters cannot
be used because they might be mistaken for data (Carriage return = 13, line feed = 10). In this
case, an EOI would have to be used or frequently the number of data bytes to be sent is
known so that the receiver could accept that amount of data.

Usually devices provide some flexibility in the terminators they support. By means of
switches or programming one can choose whether or not termination will be used and if so,
whether termination characters and/or EQI will be used.

IEEE-488 TUTORIAL B-9

Triggering

The Active Controller can issue the addressed multiline message of Group Enable Trigger
{GET) which will cause devices to start executing some function such as to make a
measurement. This allows the active controller to synchronize various activities. Whether a
device support trigger functions is defined by its DT capability code of Appendix D. See
Section B.5 for further information on GET.

Requesting Service

The service request line (SRQ) introduced in Section B.5 provides a means for bus devices to
request service from the Active Controller. When a device requires service, as for example,
when it has completed a task, the device will assert the SRQ line. All bus devices share the
SRQ line so it will be necessary for the controller to use the polling techniques of the next
section to determine which device is responsible for the SRQ. It is also because a device will
not unassert the SRQ line until it has been serially polled.

The service request capability of the device is defined by the SR code of Appendix D and the
controller must have C4 capability in order to respond to the SRQ.

Polling

Polling is used on the IEEE-488 bus to ascertain if a device needs service. For example, if it
needs to pass data to the Active Controller. There are two types of polling which are used on
the IEEE-488 interface: serial and parallel. Often, they are used in combination. For example,
sometimes parallel poll is followed by a serial poll. This enables the Active Controller to
determine the type of service needed by a device.

Serial Polling

Serial polling permits the Active Controller to determine whether any device(s} needs service.
The Active Controller serial polls one device at a time by first issuing the serial poll enable
(SPE) multiline message of Section B.5. Now when a device is addressed to talk the device
will return a special status byte. 1f the bit returned on DIO-7 is 1, the device requires service.
The other bits indicate user-defined status and can indicate why the SRQ was asserted. The
controller can conduct a serial poll even when an SRQ is not generated in order to determine
the status information. If a device has asserted SRQ, it must be polled before it will release
SRQ.

At the end of a serial poll, the controlier will issue the serial poll disable (SPD) message of
Section B.5 and the next time the device is addressed to talk, it will return to its normal data.

Devices must have the talker (T) or extend talker (ET) capability as listen in Appendix D in
order to return a status byte.

Parallel Polling

Parallel Polling allows the Active Controller to check the status of up to 8 devices {or groups
of services) at the same time to determine which device(s) may require service. When the
Active Controller asserts both the ATN and EOI lines, devices which support parallel polling
will return a status bit via one of the DIO lines. If the parallel poll indicates a device needs
attention, the Active Controller may have to conduct a serial poll of the device to determine

KM-488-ROM USER GUIDE

B.5

why the need for service,

There must also be some mechanism to clear the bit the device returns for a parallel poll.
Frequently this bit is tied to the SRQ request. In this case, a device generates a SRQ at the
same time it sets the bit that will be returned by the parallel poll. The Active controller
conducts a parallel poll to rapidly determine the device requiring service and then a serial poll
to gain more information about the cause of the SRQ and to clear the SRQ and the bit that will
be returned by parallel polling.

Depending on the device the DIO line assignment will be allocated by the controller or by
switches or jumpers on the device. If the device can be assigned a line by the controller, the
controller will do so by issuing a parallel poll configure (PP’C) interface message followed by a
paraliel poll enable (PPE) interface message.

A relative few number of devices support parallel poll. Their capability including the manner
of DIO assignment is specified by the PP code Appendix D. Only certain controller C codes
support parallel poll.

BUS INTERFACE

Bus commands are issued by the Active Controller. There are five types of bus commands:

* Universal

Listen Address Group (LAG)
Talk Address Group (TAG)
Addressed Commands

Secondary Commands

These are described within this section. Also refer to Appendix C for an ASCII table
containing a complete interface message summary.

Universal Commands

Devices on the bus respond to these commands whether they have been addressed or not.
However, the commands may affect different devices in different manners. Note too that all
commands are not necessarily supported by all devices. The interface capability codes of
Appendix D are used to specify the functionality of a device. In order to issue one of these
commands, the Active Controller must go through the following sequence:

* Assert the ATN line.
* Place the desired command byte on the data bus.

Descriptions of the Universal Commands are shown in Table B-3.

IEEE-488 TUTORIAL B-11

B-12

Table B-3. Universal Commands

ACRONYM COMMAND NAME FUNCTION

DCL Device Clear This command re-initializes the device. This is device-dependent.

LLO Local Lockout This command disables the device's front panel LOCAL button.

SPE Serial Poll Enable This command enables serial poll mode. When addressed to talk,
the device will return a single status byte.

SFD Serial Poll Disable This command disables serial polling. Upon being addressed, a
device will return to its normal state and begin outputting device-
dependent data.

PPU Parallel Poll This command resets all parallel poll devices to the idle staie

Unconfigure (They will not respond to a parallel poll.}).
Talk Address Group (TAG)

The Talk Address Group (TAG) message defines the specified device to be an active talker.
Only one device can be an active talker at a time. The message contains the primary address
(0 to 30) of the device which is to talk. This address consists of a primary address in the range
0 to 30. (Address 31 can be used to UNTALK all devices.) This may be accompanied by a
secondary address in the range 0 to 31.

Generally, when an Active Controller issues a TAG command, it

» Asserts the ATN line.
Untalks all devices.

Sends a TAG,

Unasserts the ATN line.

The talker then sends its data.

Listen Address Group (LAG)

The Listen Address Group (LAG) command defines the specified device(s) to be an Active
Listener. A command from this group contains the bus address of the device to be listened.
This address consists of a primary address in the range 0 to 30. This may be accompanied by a
secondary address in the range 0 to 31. Note that sending a primary address of 31 will
unlisten all devices. Generally, when an Active Controller issues a LAG command, it

¢ Asserts the ATN line.

» Unlistens all devices.

* Sends a LAG with the address(es) of the device(s) to listen.

* Unasserts the ATN line,

» Sends data.

KM-488-ROM USER GUIDE

Addressed Commands

These commands are issued by the Active Controller and affect only those devices which have
been properly addressed. Not all devices support these commands.

In order to issue an Addressed Command, the Active Controller must go through the
following sequence:

¢ Assert the ATN line.
* Address the device(s) to listen.

* Place the command byte on the data bus.

The addressed commands are shown in Table B-4.

Table B-4. Primary Addressed Commands

ACRONYM COMMAND NAME FUNCTION
GET Group Execute This command allows you to trigger a group of devices
Trigger concurrently.
SDC Selected Device This initializes the addressed device to its reset state. This is
Clear device-dependent.
GTL Go to Local This command allows the device o be programmed locally, i.c..

through the switches on the front panel. Once the device is
addressed to listen again, it will exit the local mode.

PPC Parallel Poll When combined with the use of the secondary commands PPE
Configure and PPD, this command enables/disables the addressed device to
be remotely parallel polled by the controller.
TCT Take Control This allows the active controller to pass control to another
controller on the system. The second controller then becomes the
active controller.

Secondary Commands

Secondary commands are sent immediately following a PPC (Parallel Poll Configure), TAG
(Talk Address Group), or LAG (Listen Address Group). Secondary commands following a
member of the TAG or LAG cause the device identified by the primary and secondary address
to be an active talker or listener. The sequence would be

s Assert the ATN line,

¢ Place a member of the TAG or LAG group containing the primary address on the data bus.

* Place a secondary command containing the secondary address on the data bus.

Unassert the ATN line.

Secondary commands following PPC are divided into the Parallel Poll Enable group and the
Parallel Poll Disable group. Recall that PPC requires devices to be addressed as listeners. The
sequence in this case will be

s Assert the ATN line.

IEEE-488 TUTORIAL B-13

Address the appropriate device(s) to listen (including a secondary address if required).
Place PPC on the data lines.

Place a command from the PPC group (to enable) or from the PPD group (to disable) on
the data lines. _

Unassert the ATN line.

Any member of the PP’D group will disable the addressed device(s) from responding to a
parallel poll. To enable a device(s) to respond to a parallel poll, the 3 lowest bits of the PPE
command form a code of 0 to 7 which tells the device to control the data line 1 to 8 when a
parallel poll is conducted. Setting the 4th lowest bit of the PPE command tells the device to
assert its assigned line when service is required while setting the 4th lowest bit low will cause
the device to assert its line when service is not required.

B.6 REFERENCE DOCUMENTS

If you require more detailed information than this tutorial provides, refer to the following
documents:

o ANSI/IEEE 488.1-1987, IEEE Standard Digital Interface for Programmable Instrumentation

s ANSI/IEEE 488.2-1987, Codes, Formats, Protocols and Common Commands for Use with IEEE
488.1-1987

The above two documents are available from:

IEEE Service Center
445 Hoes Lane
Piscataway, N.J. 08855
(800)678-IEEE

» Standard Commands for Programmable Instruments Manual

This document is available from
SCPI Consortium
8380 Hercules Drive, Suite P3

La Mesa, California 92042
(619)697-5955

B-14 KM-488-ROM USER GUIDE

L

Appendix C
IEEE Multiline Commands

20 33[30 4B]d0 G4]50 BOJBC H6]70 112
[¢14] 16 00 16 00 16
sp 3 -3 P N p
©F 1{11 17121 3331 4941 65|51 83[6t 97|73 113
GTL | LLO 01 17 01 17 01 17
[soH DCy 1 A (1] a q
22 54|32 50|42 66|52 82|62 Ga|72 1i4
a2 38 o2 18 o2 18
F & A E -
23 35|33 51|43 67,53 63|63 98|73 115
03 19 03 19 03 19
3 [+ S C 3
04 4{14 20|24 3634 52|44 68[54 B4[64 100{74 116
S0C| DCL 04 20 04 20 04 20
T joC4 4 (] T (‘] t
08 S[18 23|25 37|35 53[45 £9/55 aﬂsa 101[75 117
PPC | PPY 0s 21 05 21 05 21
HAK El E i L] u
26 38[36° 54[46 70[56 8666 02|76 118
0B 22 06 22 6 22
3 F, v ' v
27 asjaz 53|47 71|57 87|67 103)77 119
o7 23 c7 23| o7 23
7 G w 9 -
08 B8|ie 24|28 40{38 56|48 72|58 £8|6& 10478 120
GET | 5PE o8 24 08 241 08 24
8g Can a H x n x
0977 @19 25)2B 4i[39 57|49 73|5% B9jE8 105(79 1231
TCT{ SPD 08 25 09 25 09 25
HT EM 9 1 Y i Y
2A 42[3A S8|4A 74|3A 90]6A 106|7a 122
10 26 10 26 10 256
| J 2 b 2
28 43]38 59|48 rdsa 9168 167178 123
11 a7 14 27 11 27
" K [Kk l
2C 44|3C BG{4C 76(5C 92|6C 10B[IC 124
12 28 iz 28 12 28
< L N 1 }
20 4530 6if[a0 77[50 9360 tos|j70 125
13 29 13 29 13 29
- &l 1 m)]
2€ 46(3€ G2|AE 7B|SE 94(EE 110|7E 128
14 30 14 30 14 30
. > &l - n -
2F 47[aF 83[«F 79{SF 95[6F 114(IF 127
15 | UNL 15 | UNT [15 R
rd [+ 2 DEL
FACGHUCGH—LAG ————TAG = sce

MULTILINE MESSAGES

IEEE MULTILINE COMMANDS

Multiline Commands consjst of Multiline Messsges sent over the dats bus with the ATN contral)ins
assarted. The measages ars given in the chart at the laft., Each message 12 anclosed in a box.

tha content of a block ia interpretag as:

Tne valua on the dats
Bus if the measage i3
interpratea as o
decimal value

The value sn ths oata
bus if tne message i3
interpreted a3 a

hexa dacimal valus

Character on the data
bus 1f the message ia
interpreated as an
ASCIT charectar
{in this example the
character is the
nonprintesbls <BACKSPACE>)

Command GET
GROURP ENABLE TRIGGER
Sent as & Besasge on

the dats bus with
ATN azserted

Tha commands are groupad by columna as;
Tnose commands affect devices whicn nave Deen acdréssad,

ACS tAdorsssea Command Sraup):
G6TL (Ge Ta Locall: Addressed davices accept panal controls
SOC (Selected Dwvice Clear): Return asddressed devices to power up programmed stats
PPC {Parallel Poll Configurel: Configurd an adaressed dovice's Parallel Poll responss
(requires secondary command)
GET (Group Execute Trigger)! Addressed devices sxecute nome nreassigned function
TCT (Take Control}: Active <ontreoller passes control to an sddressed devics
UCG [univerasl Command Group): All deviies respond
Lol (Local Lockout): Dissble panel REMATE/LOCAL buttons

Return all devices to power Up programmed state

DCL {Devica Clear}:
Djsables a)l cevicea from respending to Parallel Poll

PPU (Faralle] Poll Uncenfigure]:
Command

SPE [Saris]l Poll Enapiel; Device will return zerial Dyte when addressed to talk

SPD (Serias} Poll Diaable): Retracts SPE 3o device returns data when addrassed to talk
LAG (Listen Address Group): Addreassas/unaddresses device{s) to lijaten
9..30 (6PIH Addresa): Addreazes Jeviceis) ta listen (can De uséd more than once
UNL {Unlisten}: Unliatana all devicea
TAG (Talx Addreas Group): Addreaa/Unaddress one device to talk
0..30 (GPIB Addreas]): Addresass OME device to talk
UNT {Untalk): Untalks the talker
SCG {Secandary Command Group): Used for Sacondary Addressing and Parallel Poll Configuring
0..31 (6PIB Seconodary Addrasal: When following & copmand from the LAG or TAG groud a
1econdrary 53 well as primary asddress is sasigned to the device
G..1% (Parslle) Poll Ensble FPEl: When following & PPC command the 4 bit pattern
01105 P2P1L PO configures the parslie] response of the addreasad davice.
P2 PL PO define a number O to 7 which datermines the dats Jine OIC1 to DIODS
the device will control when the Active Controller simultanesysly easarts ATH and €0I.
The davice assertas its s3aignhed line truye or false dapending an whether its jntarnal

atatus bit {iat] s or Lls not the 3ame zenas as S,
When ftallowing & PPC command the 4 DLt pattern

16..31 (Parallel Poll Cissble PPD):
01 41 x x x x diseples the parallel reaaponse of the addrasasd davice
IEEE UNILINE COMMANDS
Uniline commands usa ona {one exception of two) specisl command }inss sa follows:

Ussd by tha Astive Controller with oats bus to 3end the multiline commanos

ATH (Aattanticn);
above or with ECI for conducting & parsilsl poll
IFC iInterface Clear): Usad by the Systam Controller to initlalize thea GPIB bus, L.e.

all devices unlistened untelk and Syatem Controller regains active control

(Emd or Idantify): Used Dy the Active Talker to indicate an end of tranamissian or by
the Active Controller with ATN to cosmand devices to 3snd thalir parsllel poll bit
{Remote Ensnle): Turned on or off by the System Controller. wWhen aasertsd devicas can
be programmed ramotaly by measasges ssnt ovar the GPIB bus rather than by the device's

xnobs and buttons
{Service Aeguest}):
controller

£01

REN

sAq Azserted by hus addressga when thay raquire attenticn from the ACtive

IEEE MULTILINE COMMANDS C-1

c-2 KM-488-ROM USER GUIDE

Appendix D

Device Capability Codes

DEVICE CAPABILITY CODES

AH Function Allowable Subsets

ldentification Description Cther Function Subsets
Requited

AHO No capability None

AH1 No capability Nane

| —— —

SH Function Allowable Subsats

Identification Dascription Other Function Subsels
Required

SHo No bility None

SH1 Complete capabilly T1-T8,TE1-TES, or C5-C28

T Function Allowable Subsets

|dentification Description Other Function Subsels
Required

Basic Serial Talk Unaddress
Talker Poil Only if MLA
Mode

TC N N N N None

T1 Y Y Y N SH1 and AH1

T2 Y Y N N SH1 and AH1

T3 Y N Y N SH1 and AH1

T4 Y N N N SH1 and AH1

T5 Y Y Y Y SH1 and L1-L4 or LE1-LE4

T8 Y Y N Y SH1 and L1-L4 or LE1-LE4

T7 Y N Y Y SH1 and L1-L4 or LE1-LE4

T8 Y N N Y SH1 and L1-L4 or LE1-LE4

DEVICE CAPABILITY CODES D-1

T Function (With Address Extension Ilowabla Subsets

Identification Description Cther Function Subsets

Required
Basic Serial Talk Unaddress
Talker Polt Only if MSA
Mode A(Lpas)

TEC N N N N Nene

TE1 Y Y Y N SH1 and AH1

TE2 Y Y N N SH1 and AH1

TE3 Y N Y N 8H1 and AH1

TE4 Y N N N SH1 and AH1

TES Y Y Y Y SH1 and L1-L4 or LE1-LE4

TES Y Y N Y SHt and L1-L4 or LE1-LE4

TE7 Y N Y Y SH1 and L1-L4 or LE1-LE4

TE8 Y N N Y SH1 and L1-L4 or LE1-LE4

AL Function Allowable Subsets

Identification Description Other Function Subsats
Required

RLO No ility None

RL1 Complete capability L1-L4, or LE1-LE4

RL2 No Local Lockout Li-L4, or LE1-LE4

PP Function Allowable Subsets

Identification Description Other Function Subsets
Required

PPO iNo capability None

PP1 Remote capability L1-L4, or LEt-LE4

PP2 Local Configuration Nona

DC Function Allowable Subsets

Identification Description Other Function Subsets
Required

DCo No bility None

D1 Complete capability Lt-L4, or LE1-LE4

bc2 Omit Selective Davice Clear AH1

D-2 KM-488-ROM USER GUIDE

DT Function Alfowable Subsets

|dentification Description Cther Funcli:n Subsets
Required
DTO No ility None '
2;[1 Complete capability L1-L4, or LET-LE4
L Function Allowable Subsels
idantification Description ‘ Other Function Subsets Required
Basic Listen Unaddress
Listener Only Mode ifMTA
Lo N N N None
L1 Y Y N AH1
L2 Y N N AH1
L3 Y Y Y AH1 and T1-T8 or TE1-TES
L4 Y N Y AH1 and T1-T8 or TE1-TER
L Function {with Address Extension) Allowable Subsats
identification Description Cther Function Subsets Required
Basic Listen Unaddress
Listener Cnly Mode I{MSA *
(1Ps)*
LEC N N N Nene
LE1 Y Y N AH1
LE2 A N N AH1
LE3 Y Y Y AH1 and T1-T8 or TE$-TES
LE4 Y N Y AH1 and T1-T8 or TE1-TES

* Replaced by MTA when used fogether with the T function

SA Function Allowable Subssls

|dentification

Description

Other Function Subsets
Required

SRO
SR

No capability
Conc:g?ele Capability

Nene
T1,72,75,T6,TE1, TE2, TES,or
TE6

DEVICE CAPABILITY CODES D-3

C Function Allowable Subsels

Identification * Capabilities Notes
System SendIFCor Send REN Respond to Send LF. Recaive Pass Conftrol Pass Control Parallel Poll Taka Centrol
Controller TCT SR Massages Conirel to Self Synchronously

co N N N N N N N N N N

C1 Y 1

c2 Y 16

C3 Y 1

C4 Y 1

C5 Y Y Y Y Y Y 23

Cé Y Y Y Y Y N 23

c7 Y Y Y Y N Y 23

c8 Y M Y Y N N 23

o Y Y Y N Y Y 23

c10 Y Y ¥ N Y N 23

N Y Y Y N N Y 23

c12 Y Y Y N N N 23

C13 Y Y N N Y Y 2

C14 Y Y N N Y N 2

c15 Y Y N N N Y 2

G16 Y Y N N N N 2

C17 Y N Y Y Y Y 234

cis Y N Y Y Y N 234

Ct8 Y N Y Y N Y 234

Cc20 Y N Y Y N N 234

c21 Y N Y N Y Y 234

caz2 Y N Y N Y N 234

] Y N Y N N Y 234

Ca4 Y N Y N N N 234

C25 Y N N N Y Y 2.5

ce6 Y N N N Y N 25

cz7 Y N N N N Y 25

Ce8 Y N N N N N 25

* Typical netation i describe a cantroller consists of the letter C followed by ona or more of the numbers indicating the subsets selected. For example: C1,2,3.4,8,

NOTES:

1. One or more of subsets G1 sacw: C4 may be chosan in any combination with any one of C5 through C28.

2 Only one subset may be chosen from G5 through C28.

3 Tha CTRS stata must be induded in devicas which ara to ba operatad in multicontroller systems.

4 These subsets are not aflowed unless C2 is included,

5. Thesa subsels are inlended to be used in devices and systems where no control passage is possible, .)

6. When 2 system coniroller asserts IFC during the lime another physical devica is operating as controller-in-charge, the system controller should refrain om actve assertion of the source handshake and

ATN untl the rmaval of the IFC message to precluda multiple controller contention.

KM-488-ROM USER GUIDE

D-4

E.1

Appendix E
Printer & Serial Port Redirection

The KMLPT and KMCOM utilities automatically redirect communications destined for printer
or serial ports to specified IEEE-488 bus devices. This is useful in that it allows application
programs which are unaware of the IEEE-488 bus to control bus devices as if they were
printer (KMLPT) and serial (KMCOM) devices.

Before you use these programs, you must understand the difference between logical and
physical printer port devices. A physical device is the actual port which is installed in the
computer, For example, you might have two parallel printer ports and one serial
communications port installed in your computer. These are the physical devices. Physical
devices are depicted by using the port name. For example, the first printer port identified by
the computer is referred to as LI’T1, the second LPT?2, etc.

A logical device is a device which is currently configured to receive the data to be printed.
Logical devices are represented using a colon, for example LPT1:. (This would indicate the
device which is currently configured to receive the data to be printed.)

The computer maintains two tables, each of which has four entries. These tables are used to
assign a physical device to a logical device. For example, if two printer ports and one serial
port were installed, these tables would initially appear as:

PRINTER ASSIGNMENTS SERIAL PORT ASSIGNMENTS
LPT1: LPT1 COM1: COM1
LPT2: LPT2 COM2: None
LPT3: None COM3: None
LPT4: None COM4: None

PARALLEL PORT REDIRECTION

Parallel Port re-direction is accomplished by using the KMLPT utility. This is a unidirectional
re-director which intercepts a character from the DOS BIOS and writes it to the GPIB via an
LPT: port. This accomplished by assigning the logical LPT: port to a GPIB device address.
The next sections describe how to load/unload the KMLPT re-director from the DOS
command line. If you need help loading KMLPT, from the DOS command line, type KMLPT
/HELP

Invoke the KMLPT utility as follows:

1. Change to the directory where your KM~488-ROM software is located.

PRINTER & SERIAL PORT REDIRECTION E-1

2. At the DOS prompt, type KMLPT nl /A&Hicaddr /Baddr /t

Where

nl..n¢ are up to 4 optional device parameters. Each is of the format IEEEppss or LPTn
where

IEEEppss identifies the IEEE488 device. ppss is the address of the IEEE-488 device. pp
is the address of the IEEE-488 device. This is a primary address, with a secondary address
(ss} if needed. For example, you might specify the device IEEE2022.

LPTn identifies a physical printer port where n is the printer port number, i.c. LPT1.

/ A&Hioaddr is a requried parameter which follows the n1 parameter. It specifies the I/0O
Base Address (in hex) of the KM-488-ROM.

/Baddr is an optional parameter which follows the n1 parameter. It specifies the IEEE-488
Bus address (0 to 30 decimal) of the IEEE-488 interface board and must be included if the
IEEE-488 interface board is not located at the default address of 0 decimal.

/tis an optional parameter which specifies the timeout period. This can be any value
between 1 to 30 seconds. The default value is 1 second. The timeout period should be set
long enough to allow for the slowest plotter function.

NOTES

* If KMLPT is executed with no arguments, then it just displays the current logical printer
port assignments.

* If one or more arguments are provided, then the first logical printer port (LPT1:) is re-
directed to the physical device by the first argument, the next logical port (LPT2:) is re-
directed to the next specified physical, and so on.

* If less than four devices are specified, then the remaining logical printers are re-directed to
any unused physical parallel printer ports.

EXAMPLES
These examples assume that your PC has two functioning LPT ports.

KMLPT IEEEO5 /A&H2B8 Configures LPT1: for output to IEEE device 05 on an interface

card located at 2BSh.
KMLPT LPT1 Resulting Printer Port Table
IEEEOS /A&H2BS LPTi: LPT1
LPT2: IEEEQS
LPT3: LPT2
LPT4: None
KMLPT IEEEO5 Resulting Printer Port Table
IEEE1201 /AGH2B8 LPTL: IEEEQS
LPT2: IEEE1201
LPT3: LPT1
LPT4: LPT2

E-2 KM-488-ROM USER GUIDE

E.2

E.3

E.4

RESULTING GPIB BUS ACTIVITY

When the KMLPT changes from one GPIB bus address to another, the GPIB activity will be as
follows: REN is asserted followed by the ATN line, then the following bus "commands" are
sent UNT, UNL, MTA, LA. ATN is unasserted and the data is sent.

If the GPIB bus address used by the KMLPT re-direct driver remains the same, the data is
simply sent over the bus.

UNLOADING KMLPT FROM DOS

To unload the KMLPT utility from the DOS command line:

1. Change to the directory where your KM-488-ROM software is located.
2. At the DOS prompt, type KMLPT /U

Notes
» If the driver is already resident and re-direction is requested, the printer assignments are
altered and reported.

* Both of the KMCOM and KMLPT drivers may be loaded at the same time and name the
same IEEE addresses. The drivers must be unloaded in reverse order of loading,.

* If any other TSR is loaded after the re-director, it will not be possible to unload the re-
director until subsequent drivers are unloaded.

* The IFC message is sent when the driver loads.

SERIAL PORT REDIRECTION

Serial Port re-direction is accomplished in the same manner as Parallel Port re-direction. The
only difference is that you use the KMCOM utility. This is a bi-directional redirector which
intercepts a character request from DOS BIOS and reads/writes the data from/to the GPIB. If
data is read from the GPIB, the driver will execute synchronous inputs. This insures that data
will not be lost if a different GPIB bus address from the previous one is used. Note, however,
that some devices may "flush" their output buffer when they are "unaddressed.”

The next sections describe how to load and unload the KMCOM re-director from the DOS
command line. If you need help loading KMCOM, from the DOS command line, type
KMCOM /HELP

LOADING OR CHANGING KMCOM FROM DOS

To load the KMCOM utility from the DOS command line,

1. Change to the directory where your KM-488-ROM software is located.
2. Atthe DOS prompt, type KMCOM nl /Icaddr /Baddr /t
Where
PRINTER & SERIAL PORT REDIRECTION E-3

nl..n4 designates a GPIB or COM port device. Up to a total of 4 devices may be
specified.

GPIB bus devices are denoted as IEEEppss, where

IEEEppss identifies the IEEE-488 device. pp is the address of the IEEE488 device.
This is a primary address, with a secondary address (ss)if needed. For example, you
might specify the device IEEE2022.

COM port devices are denoted as COMn, where

COMn identifies a physical printer port where n is the printer port number (1,2,3,0r
4),i.e. COM1.

/A&Hioaddr is a required parameter which follows the n1 parameter. It specifies the I/O
Base Address (in hex) of the KM-488-ROM.

/Baddr is an optional parameter which specifies the IEEE-488 Bus address (0 to 30
decimal) of the KM-488-ROM. It must be included if the [EEE-488 interface board is not
located at the default address of 00 decimal.

/tis an optional parameter which specifies the timeout period. This can be any value
between 1 to 30 seconds. The default value is 1 second. The timeout period should be set
long enough to allow for the slowest plotter function.

NOTE: Parameters must appear in all UPPER CASE or all lower case. UPPER CASE and
lower case cannot be mixex.

NOTES

¢+ If KMCOM is executed with no arguments, then it just displays the current logical printer
port assignments.

* If one or more arguments are provided, then the first logical COM port (COM1:} is re-
directed to the physical device by the first argument, the next logical port (COM2:) is re-
directed to the next specified physical, etc.

* If less than four devices are specified, then the remaining logical COM ports are re-directed
to any unused physical COM ports.

* For the serial or parallel port to be re-directed effectively, the application program should
be configured to send its output to a disk file rather than directly to the printer or plotter.
If, for example, a file such as coml.dat is specified, the program will act as if it were
writing the data to a genuine file. However, the output will really be sent to the IEEE bus
device to which COM1 was re-directed. The program may even issue a warning message
that the specified file exists and will be overwritten. If it does, instruct it to delete or
overwrite the file.

NOTE: When using COM port re-direction, it may be necessary to use the DOS MODE
command to set the serial printer's parameters (baud rate, etc.). If the re-direction
takes place before the printer is initialized, the MODE command should be
invoked on the logical device (i.e.,, COM2:) to which the physical device has been
re-assigned.

NOTE: The DOS BIOS system always monitors the communications lines coming from the
serial printer; therefore, the DSR, CD, RTS, etc. signals must be correctly
terminated in order to communicate with the R5-232C printer.

EXAMPLES
These examples assume that your PC has two functioning COM ports.

E-4 KM-488-ROM USER GUIDE

E.5

KMCOM IEEEO0S Configures COM1: for output to IEEE device 05 on an interface

/AGH2B8 card located at 2B8 (hex).
KMCOM COM1 IEEEO5 Resulting Printer Port Table
/A&H2B8 COM1: COM1
COM2: IEEEQ5
COM3: COM2
COM4: None
KMCOM IEEEO05 Resulting Printer Port Table
IEEE1201 /A&H2B8 COML: TEEEQ5
COM2: IEEE1201
COM3: COM1
COM4: Ccom2

RESULTING GPIB BUS ACTIVITY

When the KMCOM changes from one GPIB bus address to another, the GPIB activity will
occur as follows:

On a Write:

REN is asserted followed by the ATN line, then the following bus "commands"” are sent
UNT, UNL, MTA, LA. ATN is unasserted and the data is sent.

On a Read:

REN is asserted followed by the ATN line, then the following bus "commands" are sent
UNT, UNL, MLA, TA. ATN is unasserted and the data is received.

If the GPIB bus address used by the KMCOM re-direct driver remains the same, the data is
simply sent or received over the bus.

UNLOADING KMCOM FROM DOS
To unload the KMCOM utility from the DOS command line:

1. Change to the directory where your KM~488-ROM software is located.
2. At the DOS prompt, type KMCOM /U

Notes
» If the driver is already resident and re-direction is requested, the COM port assignments
are altered and reported.

* Both of the KMCOM and KMLPT drivers may be loaded at the same time and name the
same IEEE addresses. The drivers must be unloaded in reverse order of loading,.

* If any other TSR is loaded after the re-director, it will not be possible to unload the re-
director until subsequent drivers are unloaded.

¢ The IFC message is sent when the driver loads.

PRINTER & SERIAL PORT REDIRECTION E-5

E.6

E.7

E-6

APPLICATION NOTES

You may encounter several problems which attempting to send plotter files to your GPIB
plotter. For example, Direct Qutput to I/O ports can be a problem because many applications
will use their own I/0 driver routines rather than the DOS BIOS routines that the redirector
intercepts. These routines will directly route the data to a hardware 1/0O card. This is
particularly true with COM ports or input devices which are installed on COM ports.

Another problem which may occur is that communications are successfully established with
the requested port; however a plotter error occurs. This is usually caused by the fact that the
application thinks that it is talking to an RS-232C plotter and has interspersed software
handshaking commands, with the plotter graphics commands, that the GPIB plotter does not
understand. To avoid this problem, determine if your application will allow you to turn off
this hardware handshaking. If you can, strip out the RS-232 handshaking commands and
send a pure plot file to a port (i.e.,, use indirect output).

If you are Indirectly Outputting your plot files, iry to name your file something which
includes an I/O port name (e.g., COM3.X). However, this may result in the program
searching the DOS device driver list and finding a matching device name. If this happens, the
application may refuse to create a file with the same name as a device. If all else fails, create a
plot file, exit the application, and send the plot file to the re-directed device.

EXAMPLE PROGRAM

An example program in BASICA, COMTEST.BAS, is provide on the KM-488-ROM Disk. This
example program illustrates how to use the KMCOM re-director feature.

A plot file, HPEXAMPLE.PLT, is also provided on the KM-488-ROM Disks. This file can be
printed to an HP plotter using the KMLPT Re-Direct Driver.

KM-488-ROM USER GUIDE

	TOC:

