
KM=4881ROM

Keithley Data Acquisition KeitNey MetraByte/Asyst

FCC Class B Compliance

NOTE: This equipment has been tested and found to comply with the limits for a Class B
Digital Device, pursuant to Part 15 of the FCC Rules. These limits are designed to provide
reasonable protection against harmful interference in a residential installation. This
equipment generates, uses, and can radiate radio frequency energy and, if not installed in
accordance with the instructions, may cause harmful interference to radio communications.
However, there is no guarantee that interference will not occur in a particular installation. If
this equipment does not cause harmful interference to radio or television reception, which can
be determined by turning the equipment off and on, the user is encouraged to try to correct
the interference by one or more of the following measures:

l Reorient or relocate the receiving antenna.

l Increase the separation between the equipment and receiver.

l Connect the equipment into an outlet on a circuit different from that to which the receiver
is connected.

l Consult the dealer or an experienced radio/tv technician for help.

NOTE: The use of a non-shielded interface cable with the referenced device is prohibited.

User Guide

for the

KM-488-ROM

IEEE-488 Interface

Board

R~vislon A - March $99,
Copyrlghl Kelthley Data AC ulsltlon 1991

a Part Number: 244 9

KElTHLEY DATA ACQUISITION - Kelthley MetraSytelAsyst

440 Myles Standish Blvd., Taunton, MA 02790

TEL. 609/99%?0W. FAX MW990-0179

- 11, -

warranty Information
All products manufactured by Keithley Data Acquisition are warranted
against defective materials and worksmanship for a period of one year
from the date of delivery to the original purchaser. Any product that is
found to be defective within the warranty period will, at the option of
the manufacturer, be repaired or replaced. This warranty does not apply
to products damaged by improper use.

warning

Keithley Data Acquisition assumes no liability for damages
consequent to the use of this product. This product is not designed

with components of a level of reliability suitable for use in life
support or critical applications.

Disclaimer

Information furnished by Keithley Data Acquisition is believed to be
accurate and reliable. However, Keithley Data Acquisition assumes no
responsibility for the use of such information nor for any infringements
of patents or other rights of third parties that may result from its use. No
license is granted by implication or otherwise under any patent rights of
Keithley Data Acquisition.

Copyright

All rights reserved. No part of this publication may be reproduced,
stored in a retrieval system, or transmitted in any form by any means,
electronic, mechanical, photoreproductive, recording, or otherwise
without the express prior written permission of the Keithley Data
Acquisition.

Note:

Keithley MetraByteW is a trademark of Keithley Instruments.

Basi? is a trademark of Dartmouth College.

IBM@ is a registered trademark of International Business Machines
Corporation.

PC, XT, AT, PS/Z, and Micro Channel Architecture@ are trademarks of
International Business Machines Corporation.

Microsoft@ is a registered trademark of Microsoft Corporation.

Turbo C@ is a registered trademark of Borland International.

- iv -

Contents

CHAPTER 1 - INTRODUCTION

1.1
1.2
1.3
1.4

Overview1-l
Specifications 1 1 1 1 .I-2
Ordering Information l-3
HowToUseThisManual..l-3

CHAPTER 2 - INSTALLATION

2.1
2.2
2.3
2.4
2.5
2.6
2.7
2.6

General ..
Unpacking & Inspecting

.2-i

Software Installation . 1 . ’
. .2-l

.2-l
Switches 3 Jumpers : : : : .2-2
Board Installation
Configuration Of The EEPROM

.2-7

Reloading The EEPROM : : : : : : : : : : : : : : : :
.. .2-a

2-10
Multiple Board Installation Notes 2-10

CHAPTER 3 - INTRODUCTION TO CALLABLE ROUTINES

3.1
3.2
3.3
3.4
3.5
3.6
3.7
3.6
3.9

Initializing The KM-486-ROM.3-3
Selecting The Receive & Transmit Terminators
Transmitting Commands&Data. : : : : : : : : : : : : : : : :

.. .3-3
.3-5

Reading Data
Transmitting/Receiving Data Via DMA : : : : : : : : : : : : : : : :

3-11
3-14

Checking Device Status

..

3-15
Low-Level Routines.

...............................
................................. 3-17

Board Configuration Routines 3-16
Multiple Board Programming Notes 3-19

CHAPTER4 - PROGRAMMING IN BASICA OR GWBASIC

4.1
4.2
4.3

General .. .4-i
Description Format For Routines. .4-3
Routines.

........................
: : : : : : : : : : : : : : : :

..
.4-3

CHAPTER 5 - PROGRAMMING IN QUICKBASIC

5.1
5.2

General .5-i

5.3
Description Format For Routines.5-3
Routines. .5-3

CHAPTER 6 - PROGRAMMING IN TURBO PASCAL

6.1
6.2
6.3

General , . . . , .6-l
Description Format For Routines.
Routines. : : : : : : : : : : : : : : : : : ’

. .6-2
. . 6-3

Contents

CHAPTER 7 - PROGRAMMING IN C

7.1 General. .. 7-l
7.2 Description Format For Routines 7-3
7.3 Routines .. 7-3

CHAPTER6 - FACTORYRETURNS

APPENDICES

Appendix A - ASCII Code Chart

Appendix B - IEEE Tutorial

Appendix C - IEEE Multiline Commands

Appendix D - Device Capability Codes

Appendix E - Printer & Serial Port Redirection

n DD

- vi -

Chapter 1

INTRODUCTION

1.1 OVERVIEW
The KM4?8-ROM is an IEEE488 interface board that allows programs written on IBM
PC/XT/ATs, IBM I’S2 25/3Os, or compatibles to communicate with an IEEE488 bus. This
Board complies with the 1978 IEEE488 standard and is thus compatible with other IEEE488
products. Up to fourteen other devices may be connected to the IEEE488 bus, including
instruments, printers, and other computers. The KM48-ROM comprises a board, software,
and documentation.

Figure l-l is a block diagram of the KM-488-ROM board.

Figure l-l. KM-4&WROh4 Block Dlagram

The Kh4488-ROM design includes a Wait State Generator to adjust bus timing, allowing
performance within operating specifications of the GLIB controller chip on the fastest PCs.
This Board can also generate programmed interrupts on any of six interrupt request lines and
DMA transfers on Channels 1,2, and 3. Selection of message terminators and timeouts is
modifiable to allow communication with GPIB devices using non-standard characters and
timeouts.

INTRODUCTION 1 - 1

1.2

The KM-488-ROM also features an 8-KB EEPROM (Electrically Erasable Programmable Read
Only Memory) containing firmware routines callable from a BASICA program. These
routines perform the IEEE-488 transfer functions. KM-488ROM software libraries allow
access to routines from programs in QuickBASIC, Microsoft C, and TURBO PASCAL.
Examples for each language are included.

SPECIFICATIONS

Dimensions:

DMA Level:

Interrupt URQ) Capability:

Data Transfer Rate (Governed by the
slowest device):

IEEE Controller Chip:

Power Consumption:

Operating Temperature:

Storage Temperature:

Humidity:

Wait States:

Net Weight:

ROM Base Address:

I/O Base Address:

Device Interface Capabilities
Supported:

One Short PC Slot size.

Channels 1,2,3, or None (Jumper Selectable).

Levels 2 through 7 or None (Jumper Selectable).

> 300 Kb per second.

NEC7210.

< 500 mAmps.

0 to 50 T.

-4 to 158 ‘F (-20 to +70 “0.

0 to 90% noncondensing.

1,2,3, or 4 (Switch Selectable).

.31 lb (.14 kg).

Switch Selectable.

Switch Selectable.

SHl, AHI, T5, TE5, L.3, LE3, SRl, RLl, PPl, PP2,
DCl, DTl, Cl-5, E1/2. (See Appendix D for
clarification.)

1-2 KM-488~ROM USER GUIDE

1.3 ORDERING INFORMATION

PARTNUMBER DESCRIPTION

KM-488-ROM Includes the KM-488-ROM IEEE-488 Interface Board,
Software (on 5.25” disks), and appropriate
documentation.

KM-488-ROM/3.5 Includes the KM-488-ROM IEEE488 Interface Board,
Software (on 3.5” disks), and appropriate
documentation.

CGPIB-I 1 meter IEEE-488 cable.

CGPIB-2 2 meter IEEE-488 cable.

CGPIB-4 4 meter IEEE-488 cable.

1.4 HOW TO USE THIS MANUAL
This manual provides the information necessary to install and program the KM-488-ROM.
The manual assumes you are familiar with the language in which you are developing your
application program; it also assumes you are familiar with the IEEE-488 protocol.

Chapter 2, Installation, details how to unpack, inspect, configure, and install the KM-488
ROM and how to copy the accompanying software. Additionally, Chapter 2 describes how to
install the KM48EROM software and to configure the EEPROM and reload EEPROM
software. There are also notes on using multiple boards in one system.

Chapter 3, Zntroductfan fo the CaRable Routines, provides a brief functional description of each
KM488-ROM Interface Routine.

Chapter 4, Programming the KM-488-ROM, provides a detailed description of each KM-488-
ROM Interface Routine and how it is called from each of the supported languages: BASICA,
QuickBASIC, C, and TURBO PASCAL.

Chapter 5, Factory Returns , gives instructions for returning the board to the factory.

The appendices contain additional useful information. Appendix A contains an ASCII
Equivalence Chart. This gives hex and decimal equivalents for the ASCII 128 Character set.
Appendix B is an IEEE-488 tutorial. Appendix C provides an explanation of the Device
Capability Identification codes. Appendix D provides a cross-reference chart of IEEE
Multiline Commands. Appendix E describes how to use the KM488-DD Printer Port Re-
director.

INTRODUCTION 1 - 3

0

l-4 KM-488-ROM USER GUIDE

Chapter 2

INSTALLATION

2.1 GENERAL
Installation begins with procedures for unpacking and inspection followed by
recommendations and instructions for software. Next is a section on switch and jumper
settings. Board installation is the next step, followed by EEPROM configuration.

2.2 UNPACKING 81 INSPECTING
After removing the wrapped Board from its outer shipping carton, proceed as follows:

1. Before unwrapping the Board, place one hand firmly on a bare-metal portion of the
computer chassis to discharge static electricity from yourself and the Board (the computer
must be turned Off but grounded).

2. Carefully remove the Board fromits anti-static wrapping material. You may wish to save
the wrapping material for possible future use; if so, store it in a safe place.

3. Inspect the Board for signs of damage. If any damage is apparent, return the Board to the
factory.

4. Check the remaining contents of your package against the packing list to be sure your
order is complete. Report any missing items to the factory immediately.

5. When you are satisfied with preliminary inspection, you are ready to configure the Board.
Refer to the next section for configuration options.

2.3 SOFTWARE INSTALLATION

Backing Up The Distribution Software
As soon as possible, make a back-up copy of your Distribution Software. With one (or
more,as needed) formatted diskettes on hand, place your Distribution Sofhvare diskette in
your PC’s A Drive and log to that drive by typing A: . Then, make your backup using the
DOS COPY or DISKCOPY command, as described in your DOS reference manual
(DISKCOPY is preferred because it copies diskette identification, too).

installing The Distribution Software
Install the KM-488-ROM Distribution Software on your computer’s hard drive using the DOS
COPY command.

INSTALLATION 2 - 1

NOTE: If you are using BASICA and the factory default settings, you may run the KM-
4%ROM board without installing any software. Instead, proceed to Section 2.4.

To install the software:

1. Turn on your PC and its display. You should see the standard DOS-level prompt.

NOTE: If you install example programs written in multiple languages, you may want to
create a directory for each language. (This is the way the Distribution Software is
organized.)

2. The following instructions create a directory named KM488R. Type md \Rld488R

3. Change to the KM488Rdirectory by typing cd \KM488R

4. Place a KM-4&%ROM Diskette into the floppy drive (assume this is Drive a:) and type
copy a:*.*

Repeat this step for each disk and/or subdirectory, until copying is complete.

Distribution Software Contents
Your Distribution Software contains the file FILESDOC , an ASCII text file readable with any
text editor or with the DO!? TYPE command. FlLES.DOC lists and briefly describes all files
in the Distribution Software.

The README.DOC File
To learn of last-minute changes, be sure to read the ASCII file READMEDOC

2.4 SWITCHES & JUMPERS

Factory Settings
The KMG%-ROM contains three DIP switches and two jumper banks (see Figure 2-l). These
switches and jumpers are factory-configured to work with most PC configurations. Table 2-l
lists the factory selections.

Table 2-1. Factory Switch & Jumper Settlngs

SWITCH/JUMPER FACTORY SE’ITING

I/O Base Address: 2b8h.

ROM Base Address: CCOOh ROM Enabled.

I/O Wait State: 1 Wait State; System Controller Enabled; EEPROM
Write Disabled.

Interrupt (IRQ) Level: Disabled.

DMA Level: Disabled.

2-2 KM-488~ROM USER GUIDE

For assistance with setting the switches or the jumpers, run the INSTALL program. This
program illustrates the correct switch settings for your selections. To run the INSTALL
program, make sure you are in the appropriate directory and type INSTALL at the DOS
prompt. Then, follow program directions.

Figure 2-1. Switch and Jumper Locatlons

Switches
There are three DIP switch blocks on the KM48-ROM board, as follows: Wait State (Sl), I/O
Base Address (S2), and ROM Base Address 63). The switches are factory-set to work with
most PC configurations (see Table 2-l for settings).

NOTE: If you are using BASICA and change the I/O Base Address DIP switch settings, be
sure to run the configuration program, CONFIG. See Section 2.7.

I/O Base Address Switch
Setting an I/O Base Address enables the KM-488-ROM to communicate with the PC. You set
an I/O Base Address for the Board by setting the seven positions of Switch S2 for the assigned
address. Setting a switch position to ON puts the corresponding address line at a logic 0
(low).

The KM-488-ROM requires a series of 8 I/O port addresses that begin with the I/O Base
Address. Therefore, be sure to select an I/O Base Address on an B-byte boundary that does
not conflict with other devices in your computer (refer to your PC manual for the I/O address
list to determine available spaces).

Figure 2-2 shows examples of I/O Base Address settings. Note that the factory-set Base
Address is 288 hex; the I/O ports occupy the address range 288 - 2Bf Hex.

INSTALLATION 2-3

FIgore 2-2. Examples of l/O Base Address SeftlngS

ROM Base Address Switch
This switch determines whether the ROM memory is to be enabled and, if so, where within
the first 1 MB of PC memory it is to be located. Enable the ROM if you are programming in
BASICA. The ROM Base Address Switch 63) is an B-position DIP switch.

Seven of the S3 positions (1 - 7) to select the ROM Base Address. Position 8 enables/disables
the ROM. Setting a position at ON puts the corresponding address line to a logic 0.

To enable or disable the ROM, set 53 Position 8 as shown in Figure 2-3.
This position should be ON only if the KM-W-ROM is used with
BASICA software.

Flgure 2-3. Enabllng the ROM ~%B,EO %&LED

Some alternative ROM Base Address switch settings are shown in Figure 2-1. The default
Base Address is CC00 hex. Be sure to select an 8 KB address space that is within the first 1 MB
of PC memory and not occupied.

Flgure 2-4. ROM Base Address Selectlon

If you are unsure which address to assign to the EEPROM, use the MEMMAP program
provided with the KM-488-ROM. This program scans your computer’s memory and
determines what memory areas are available. To invoke the MEMMAI’ program, switch to
the appropriate directory and type m . Choose an unoccupied address space.

2-4 KM-488-ROM USER GUIDE

Wait State Switch

Switch 1 (Sll configures Wait States and the System Controller
ON = 0

Mode, and it enables Memory Write Protection. Sl is a 4-position
DIP switch (see Figure 2-5). Setting a position to ON puts the
corresponding address line at signal low (logical 01. Two positions
(1 and 21 select the wait states.

Flgure 2-5. Welt State Switch.

Configure the System Controller function using Position 3 and the EEPROM protection using
Position 4.

I/O Waif States
The KM-B&ROM design includes a switch-selectable wait-state generator. A selectable Wait
State insures optimum performance and reliable operation at the differing bus clocks found in
PCs. The default number of Wait States (11 should be correct for most PCs. vowever, if,youf
data is garbled or your program crashes, you may need to adjust
the number of Wait States. Some general guidelines are presented
in Table 2-2. Select the number of Wait States by setting Positions
1 and 2 (marked Wait State) on the DIP switch. You may program

‘03 911’1

, w*,, STATE , w*l, STITFS
the KM468-ROM to generate one, two, three, or four Wait States
during I/O. Note that the number of memory Wait States is
automatically set to a value which is one less than the I/O Wait
States. To select a number other than the default, set the switches
to one of the positions shown in Figure 2-6.

iE~Yg~

2 WNT sTME9 4 WIT STATES

Figure 2-6. t/O Walt State Seiectlons

Table 2-2. Welt States

BUS CLOCK FREQUENCY NUMBER OF WAIT STATES

<=5MHz 1 (default).
5MHz <ticq <8MHz 2.
8MHz <freq < 10MHz 3.
10 MHz < freq 4.

System Controller
This switch determines whether or not the KM488-ROM will act as a System Controller. If
the KM-488-ROM is a System Controller, it has the ability to assert the IFC or REN lines.

Position 3 cm the Wait State DIP Switch determines whether

3 ON
the KM-438-ROM is acting as a Device/Controller or a System
Controller. Valid selections are shown in Figure 2-7. ON i

ON = 1

Figure 2-7. Device Mode Selection II 1’
DEVICE OR SYSTEM
CONTROLLER CONTROLLER

INSTALLATION 2 - 5

Memory Write Enable
Positlone 4 on the Wait State DIP Switch enables or disables
writes to the EEPROM on the KM488-ROM. Valid selections
are shown in Figure 2-8.

Flgure2-8. EEPROM Enable Selection EEPROM WR,TE EEPROM WRITE
ENABLED DlSABLED

This switch should normally be at DISABLE. It should be at ENABLED only when initializing
or configuring the EEPROM BASICA support software.

Jumpers
The KM-ltlE-ROM contains two jumper blocks. These blocks select the Interrupt Level and
DMA Level.

Selecting an Interrupt Level
The KM-@&ROM is capable of interrupting the PC. The Interrupt Level (IRQ) Jumper (Jll
defines the Interrupt Level. Valid Interrupt Level selections (2 through 7 and none) and the
jumper positions are shown in Figure 2-9.

Figure 2-9. Interrupt Level (Ml) Jumpers

Selecting a DMA Level
DMA (Direct Memory Access) is a PC facility for speeding up data transfer from a peripheral
to the computer. Select an appropriate DMA level using the DMA Level Jumpers. Refer to

2-6 KM-488-ROM USER GUIDE

Figure 2-10 for jumper positions.

F/gum 2-10. DMA Level Jumpers

2.5 BOARD INSTALLATION
To install the KM-488-ROM in a PC, proceed as follows:

1. Turn Off power to the PC and all attached equipment.

WARNING!
ANY ATTEMPT TO INSERT OR REMOVE ANY ADAPTER BOARD
WITH COMPUTER POWER ON COULD DAMAGE YOUR
COMPUTER!

2. Remove the cover of the PC.

3. Choose an available option slot. Loosen and remove the retainer screw at the top of the
blank adapter plate. Then slide the plate up and out to remove.

4. Before touching the Board, place one hand on any metallic part of the PC chassis (but not
on any components) to discharge any static electricity from your body.

5. Make sure the Board switches have been properly set (refer to the configuration sections).

6. Align the Board connector with the desired accessory slot and with the corresponding
rear-panel slot. Gently press the Board into the socket and secure with the retainer screw
for the rear-panel adapter-plate.

7. Replace the computer cover.

8. Plug in all cords and cables. Turn the power to the computer back on. You are now ready
to make any necessary system connections.

INSTALLATION 2 - 7

If you are developing KM488-ROM application programs in C, TURBO PASCAL or
QuickBASIC, the installation process is now complete. However, if you are developing
programs in BASICA and have changed the factory default settings, you must to run the
EEI’ROM configuration program CONFIG.

2.6 CONFIGURATION OF THE EEPROM
When KM488-ROM application programs use BASICA, the programs read interface
functions directly from the on-board EEPROM. Thus, the EEPROM must be properly
configured, which may be accomplished using the CONFIG program. This program allows
you to change such parameters of the EEPROM configuration as I/O Base Address, l/O
Timeout, DMA Timeout, and Transmit/Receive Terminators.

Before changing the EEPROM configuration, you may want to read the descriptions of the
DMA, RCV, and XMIT routines in Chapter 3. Also make sure that the ROM Base Address
switch has the ROM Write function enabled. (See Section 2.4.)

Invoking The CONFIG Program
Invoke the CONFIG program as follows:

1. Install the Distribution Software (see Section 2.3) and the KM488-ROM board (see Section
2.5).

2. Switch to the appropriate directory. At the DOS prompt, type CONFIG

The PC monitor will show a screen labelled K&-488-ROM CONFIGURATION. The settings
will reflect any changes which were made by running the INSTALL program.

The following PC function keys are now active:

[E-II
[ml

[F31

I Shift II F3 I

[AltI[F31

[F81

HELP Invoke Help at any time by pressing [Fl]

SHOW NEXT. In multiple board systems, pressing [Fl I shows the
configuration of the next KM488-ROM.

LOAD . Pressing this key loads the file KM488ROM.BlN to the EEPROM.
This function is useful when you want to load the factory defaults back
into the KM488-ROM’s EEPROM.

LOAD NEW MEMORY. Pressing this key combination allows you to
load the contents of the KM488-ROM’S EEPROM to a new segment of
DOS memory. The value you enter here must agree with the address
selected by the ROM Base Address Switch. If you have trouble identifying
an unoccupied space, run the MEMMAP program (see Section 2.4).

EDIT I/O ADDRESS. This key combination permits you to edit the I/O
Address field only. This is the address for access to the KM488-ROM. It
is important that you select an l/O Base Address on an S-byte boundary
that does not conflict with other devices in your computer. The I/O Base
Address must fall within the range 200h to 3F8h.

EDIT. This key allows editing of the configuration parameters (see the
next section for parameter descriptions). When editing is complete, press
1 MO 1. When the prompt Save changes to KM-488-ROM memory? Y/N
appears, enter the appropriate response.

2-8 KM-488-ROM USER GUIDE

[FlO I EXIT. Pressing this key exits the editing process. Otherwise, pressing
[FlO I exits to the DOS prompt.

Once you have completed writing to the EEPROM, be sure to disable the EEPROM Write
function (see Section 2.4).

NmEz Be sure to reset the EEPROM Write Switch when you complete writing to the
EEI’ROM. Many software programs are designed to search for free address space
within the computer and may interpret the EEPROM as such.

Editing The Configuration Parameter Fields
Once you have invoked the EDIT function, you will be able to edit the configuration
parameters. To exit from the EDIT function at any time, press I FlO 1. To move between
fields, use [? I and [J I . Once you make your selection for a given parameter, press
[Enter 1 These parameters include the following:

DMA Timeout

I/O Timeout If the time elapsed between the transfer of individual bytes
exceeds the specified I/O Timeout period, an I/O Timeout Error
will occur. This parameter sets the maximum amount of time (in
milliseconds) which is to elapse. Enter a value between 0 and
65535 milliseconds for the I/O timeout. The default value is
10010 Ins.

A DMA Timeout Error is generated when the time to transfer
(via DMA) an entire message exceeds the set DMA Timeout
value. Valid entries for the DMA Timeout parameter are
between 0 and 65535 milliseconds. ‘Ihe default value is 10010
Ins.

Transmit Terminators Transmit Terminators (also referred to as Output Terminators)
are appended to data sent from the KM-488-ROM to another
IEEE-488 device. The terminators signal the end of the data
transfer. The Transmit Terminator sequence consists of one or
two ASCII characters with EOI optionally asserted, when the last
terminator character is sent. Up to four different Transmit
Terminator sequences may be selected.

To select a terminator sequence,

1. Referring to the ASCII Equivalence Chart in Appendix A,
enter the HEX VALUE @Oh - FFh) of the first terminator byte.
Press [Enter I .

2. Repeat Step 1 for the second terminator byte. If a second
terminator byte is not required, enter spaces. Press [Enter] .

3. Press 1 Space Bar 1 to enable EOI(EO1) or disable EOI
(NOEOI). Press [Enter I .

Repeat these three steps for each of the remaining Transmit
Terminator Sequences.

The default Transmit Terminator Sequences are as follows:

Terminator 0 LF EOI
Terminator 1 CR LF EOI
Terminator 2 CR EOI
Terminator 3 LF CR EOI

INSTALLATION 2 - 9

Receive Terminators The KM488-ROM uses these items (also referred to as Input
Terminators.) to detect the end of a data transfer received from
another device. The Receive Terminator sequence consists of
one ASCII character with EOI optionally asserted. If the chosen
terminator character is detected in the incoming data, reception
will terminate. Note that any data byte received with EOI
asserted will always terminate reception, regardless of the
selected terminator.

Up to four different Receive Terminator sequences are available
for selection, as follows:

Terminator 0 LF EOI
Terminator I CR EOI
Terminator 2 , (comma) EOI
Terminator 3 ; (semi-colon) EOI

To change the terminator character, use the procedure
previously outlined for Transmit Terminators.

2.7 RELOADING THE EEPROM
Under some conditions (for example, if the EEPROM contents have been destroyed), you will
have to reload the EEPROM with the contents of the Kh4488ROM.BIN file. To perform this
requirement, run the CONFIG program, as described in the previous section.

Before you reload the EEPROM, be sure its Write/Enable switch is enabled (see Section 2.4).
The proceed as follows:

1. Invoke the CONFIG program. Switch to the appropriate directory and at the DOS
prompt, type CONFIG.

2. Press [F3 I.

When you completed the EEPROM reload, be sure to disable the EEPROM Write Enable
switch (see Section 2.4).

2.8 MULTIPLE BOARD INSTALLATION NOTES
The KM-483-ROM software allows installation of up to four boards in a given system.
Typically, situations with excessive cable lengths or more than 14 instruments require
multiple boards.

When using multiple Kh4-488-ROMs, set the I/O Port Base Address to a different value on
each of the boards. Routines within the software library allow you to determine which board
to use by specifying the Base Address of the I/O port on that board.

When using BASICA, each board requires its own copy of software. This means that you
must select a different EEI’ROM memory address and I/O Base Address for each board.
These Base Address ranges CANNOT overlap other address ranges within the system.

2-10 KM-4WROM USER GUIDE

Chapter 3

INTRODUCTION TO CALLABLE ROUTINES

To use the KM488-ROM within a custom data acquisition or control environment, you have
to write software that will access the GPIB. The KM488-ROM includes a number of “callable”
routines allowing this access from high-level languages such as BASIC, Quick BASIC, C, and
TURBO PASCAL.

This chapter describes the callable-interface routines from a functional approach. Chapter 4
provides the exact syntax for calling the routine from BASIC, Quick BASIC, C, and TURBO
PASCAL. Table 3-l provides an alphabetical listing of the available routines. The remainder
of the chapter tracks the order of a routine’s usage and is organized as follows:

l Initializing the KM488-ROM.

. Selecting the Receive and Transmit Message Terminators.

l Transmitting Commands and Data.

l Reading Data.

l Transmitting/Receiving Data via DMA.

l Checking the Status of a Device.

l Low-level Routines.

l Configuring the Board.

NOTE: Explanations within this chapter assume you are familiar with IEEE486
communications. If you are new to IEEE488 or do not recognize some of the
terminology used, refer to the IEEE488 Tutorial in Appendix B.

INTRODUCTION TO CALLABLE ROUTINES 3-1

Table 3-1. The Callable RoutlnSS

ROUTINE NAME DESCRIPTION GPIB OPERATIONS

DMA

DMATIMEOUT ’

ENTER

INIT

INTERM ’
IOTIMEOUT 1

OUTTERM ’

PPOLL

RCV
RCVA
SEND

SETBOARD 2

SETDMA 2

SETINT

SETPORT 2
SETSPOLL

SPOLL

SRQ 2

STATUS

XMIT

XMITA

Used to transmit/receive array data
via DMA. (BASICA only)
Sets maximum length of time for a
DMA transfer.
Addresses a device to talk and
receives the talker’s data into a
suillg.
Initializes the KM-488-ROM.

Redefines input terminator settings.
Sets the maximum length of time
for an I/O transfer.
Redefines output terminator
settings.
Performs a parallel poll.

Receives data into a string.
Receives data into an array.
Addresses a specific device to
listen and allows the current talker
to send the data from a string.

Identifies, in a multiple board
system, the board to be
programmed.
Allows use of DMA in conjunction
with XMITA and RCVA routines.
Allows the KM-488~ROM interrupt
enable bits to be set.
Selects a non-default Base Address.
Sets Serial Poll Response of the
KM-488-ROM.
Conducts a serial poll on a
specified device.

Detects the state of tic SRQ signal
on the bus.

Returns values of the various setup
parameters.

Sends GPIB commands and data.

Transmits data from an array.

Asserts REN. Sends UNL, UNT,
TALK adrs, MLA, data, UNJ-,
LINT.
If KM-48%ROM is Sys. Contr.,
assert.9 IFC.
None.
None.

None.

Asserrs ATN and EOI and reads
data byte.
Receives data.
Receives data.
Asserts RBN. Issues UNL, UNT,
Listen Adrs, MTA, and sends
data followed by a message
terminator.
None.

None.
If RSV bit is set, will sssert SRQ.

Asserts REN. Issues UNL UNT,
Talk adrs, SPE. Receives Serial
Poll Response. Issues SPD.
None.

Sends GPIB commands and data
as specified in string.

Sends data, optionally terminates
by EOI and/or terminator
characters

1 This routine is not supported in BASICA. To modify this parameter, use the
CONFIG program.

2 This call is not supported in BASICA. Its function, however, can be achieved
through different means.

3-2 KM-485ROM USER GUIDE

3.1 INITIALIZING THE KM-488-ROM
The first step in any KM488-ROM application program is to initialize the KM488-ROM
board(s), using the lNIT routine.

3.2

INIT
This routine configures the KM4?8-ROM as a device or a controller. INIT also defines the
Gl’IB address and determines whether Bus Handshaking is to be High or Low Speed. If INIT
designates the KM-488-ROM as a System Controller, the Interface Clear (IF0 line on the GPIB
is asserted momentarily when INIT is called.

Either High or Low Speed Handshaking is available. In High Speed mode, the KM-488~ROM
asserts the GPIB bus signal DAV approximately 500 ns after data is placed onto the bus. In
the low speed mode, DAV is asserted about 2 microseconds after the data. In most cases, you
will see no apparent differences in data throughput with Low Speed Handshaking. To
maximize data throughput when using DMA, select High Speed Handshaking.

NOTE: Use the High Speed mode only in smaller installations, because High Speed
Handshake mode allows less time for data to settle. Thus, as cable lengths
increase, the probability of transmission errors from cable reflections will increase.

NOTE: INIT must be the first KM-488-ROM routine called within the program.

lOTIMEOUT
This routine is not usable in BASICA. IOTIMEOUT allows you to reset the length of time that
is to elapse before a Timeout Error occurs. A timeout Error occurs when the time between
transmission and reception of adjacent bytes exceeds the set time. (I/O Timeout Error reports
occur when using SEND, ENTER, XMITA, XMIT, and RCVA calls without DMAJ The
default value of the timeout period is 10 seconds.

NOTE: The I/O Timeout may be changed at any point in the program.

SELECTING THE RECEIVE 81 TRANSMIT TERMINATORS
When data is transmitted to or from the KM-488-ROM, it may contain message terminator
characters. These terminator characters are used to signal the end of data transmission.

Every KM-488-ROM routine that transmits or receives data contains a parameter allowing you
to define which of the default terminator sequences is to be used. If your application program
is in C, QuickBASIC, or Turbo PASCAL, you may change the default terminator sequences by
calling the INTERM and OUTIERM routines.

If you are programming in BASICA, you may change the default Transmit/Receive
Terminator sequences and the I/O Timeout period only by running the CONFIG program
(see Sections 2.6 and 2.7).

INTRODUCTION TO CALLABLE ROUTINES 3 - 3

INTERM
This routine does not work in BASICA. INTERM allows you to change the values of each of
the four input message terminators. These terminators can be detected by the ENTER, RCV,
and RCVA routines.

Each terminator sequence consists of one ASCII character (7-bit value). The default value for
each terminator is shown below.

DECIMAL HEX
TERM # ASCII CHARACTER EQUIVALENT EQUIVALENT

0 LF (Lime Feed) 10 OA
1 LF (Line Feed) 13 OD
2 , (comma) 44 2c
3 : (semi-colon) 59 3B

Note that if EOI is asserted withany data byte, data reception will be unconditionally
terminated.

Instrument manufacturers frequently specify message terminators using ASCII
representations. You may pass either the decimal or hexadecimal equivalents of the desired
ASCII character into the INTERM routine. If using the hexadecimal value, be sure to use the
correct prefix. This prefix is language-dependent. Check the language manual for more
information.

OUTTERM
This routine does not work with BASICA. OUTTERM allows changes of values for each of the
four output message terminator sequences. You may append these terminators to the data
sent by the SEND, XMIT, and XMITA routines to signal the end of message.

Each terminator sequence consists of one or two ASCII characters (irbit values) and may or
may not assert EOI when the last terminator character is sent. The default values for each
terminator appear in the following table.

ASCII CHARACTER DEC EQUIV HEX EQUIV
TERM # IST ZND 1ST 2ND 1ST 2ND EOI

0 LF 10 OA YES
1 CR LF 13 10 OD OA YES
2 CR 13 OD YES
3 LF CR 10 13 OA OD YES

Instrument manufacturers frequently specify message terminators using ASCII
representations. You may pass either the decimal or hexadecimal equivalents of the desired
ASCII character into the INTERM routine. For example, specify a Line Feed as OAh. If using
the hexadecimal value, be certain to use the correct prefix; this prefix is language-dependent.
Check the language manual for more information.

Terminators specified with this routine must be at least one character long. If you have an
instrument or application requiring no terminator bytes (requiring assertion of EOI), use the
XMIT or XMITA routine to transmit the data.

3-4 KM-488~ROM USER GUIDE

3.3 TRANSMllTlNG COMMANDS AND DATA
Once the GPIB system is initialized, the next step is usually to send commands and/or data to
a device. Use any of the following routines to send:

l SEND

l XMIT

l XMITA

l IOTIMEOUT

SEND
Use this routine only when the KM488-ROM is an Active Controller. SEND transfers string
data from the KM488-ROM to the device specified by first addressing the KM488-ROM as a
talker and the indicated device as a listener, and then asserting the REN line. Next, the
command sends the string, followed by the selected message terminator, to the listener. The
routine returns a status variable indicating whether or not the transfer is properly completed.

XMIT
The XMIT Routine allows the greatest amount of flexibility for sending GPIB commands (see
Section 3.4.) and data. Data and commands to be sent over the GLIB are expressed in string
form and then passed into the XMIT routine. All commands within the string may be UPPER
or lower case; but they must be separated by one or more spaces.

If the KM488-ROM is acting as a Controller, the XMIT routine sends both commands and
data. If executing the XMIT routine, the KM488-ROM must

l Untalk and Unlisten all Devices.

l Assign a Listener.

l Address itself as a Talker.

If, however, the KM488-ROM is acting as a Device, the XMIT routine can only send data. In
this instance, the KM488-ROM must be a talker before the XMIT routine can execute.

The XMIT routine will then parse the string and extract and send the commands over the bus
in the specified sequence. The commands to carry out this sequence can all be within a single
string and handled by a single call to the XMIT routine.

The XMIT routine returns a single status variable to indicate the state of the data transfer.
XMIT will report cases of invalid syntax, invalid address, undefined commands, timeout
errors, and attempts to send bus commands while not the active controller.

THE XMIT COMMANDS

Send these commands in the XMIT command’s info string; they consist of rudimentary GPIB
and other commands and separate by function into three categories, as follows:

1. Data Transmission.
2. Polling.
3. Miscellaneous.

INTRODUCTION TO CALLABLE ROUTINES 3 - 5

DATA

END

EOI

GTL

Use this command after the KM-488-ROM has been addressed to talk. (If
the KM-488-ROM is controller, issue an MTA. Otherwise, the Controller
must address the KM-488-ROM. See the STATUS routine description for
more information.) DATA sends the message that trails it to all previously
addressed listeners.

Data may be in two forms. In one form, data is a string of ASCII
characters that trails the DATA command. The ASCII string will be in
single quotes (for example, ‘BYE’).

In the other form, data may be a string of numeric values, each of which
ranges from 0 to 255. Each numeric value is the decimal equivalent of an
ASCII character (see Appendix A for ASCII Equivalents). One or more
spaces must separate each numeric entry. This form of entry is useful
where transmission of nonprintable characters is required. Note that you
may switch freely between the ASCII and Decimal representations after
the DATA command, as long as ASCII characters are in a string enclosed
by single quotes.

EXllmple

DATA ‘Eello’ 13 10

DATA 'Line 1’ 13 10 ‘Line 2’ 13 10

If END follows the DATA command string, Message Terminator 0 signals
the End of Transmission. Section 3.2 describes the default values of the
transmit terminators and how to change them. Set the terminators to one
or two bytes, and send them with or without EOI asserted on the last byte.

Example

DATA ‘Eello’ END

If EOI (END OR IDENTIFY) follows the DATA command string, it
indicates that the character following EOI mnemonic will be sent with the
EOI line asserted.

Example

DATA ‘Hello’ 13 EOI 10

The GTL command forces bus devices addressed to listen to the Go To
Local (front panel controllable) state, as opposed to controlled via Gl’lB.
This command also onasserts the REN signal on the GPIB. Only the
System Controller may use GTL. Note that this command DOES NOT
allow you to selectively force only one device to Go To Local.

Note that it is more practical to use GTLA and LOC commands than GTL.

Example

GTL

3-6 KM-488~ROM USER GUIDE

GTLA Only a KM488-ROM acting as a System Controller may issue this
command. Use this command is used to send a Go To Local (GTL) Gl’lB
command to those devices previously addressed to listen. This command
does not affect the state of the GPIB REN line.

Example

GTLA

LISTEN The KM488-ROM must be the Active Controller to execute this command.
This command addresses a given device(s) as a listener(s). LISTEN is
trailed by the decimal GPIB address (0 to 30) of the device(s) to be
addressed. When assigning multiple listeners, separate the addresses by
one or more spaces.

Note that it is good practice to untalk and unlisten all devices prior to
sending a LISTEN command. (See the IJNT and IJNL descriptions.)

Example

LISTEN 2

LISTEN 5 9 30

LOC Use this command only if the KM488-ROM is acting as the System
Controller. When the LOC command is executed, it unasserts the GPIB
RBN (Remote Enable) line. This action forces all devices on the GI’IB to
the local state.

Example

LOC

MLA The KM488-ROM must be the Active Controller to execute MLA (My
Listen Address). MLA forces the KM488-ROM to become a listener; it
sends a listen address co mmand containing the GPIB address of the KM-
485ROM over the GPIB.

Example

b5A

MTA The KM-Q@-ROM must be the Active Controller to execute MTA (My Talk
Address). MTA makes the KM488-ROM the present talker (and
onaddresses any other talker); it sends a talk address command containing
the address of the KM488-ROM over the GPIB.

Example

MTA

REN This command can function only if the KM488-ROM is the System
Controller. The REN command asserts the REN (Remote Enable) Control
line on the IEEE-488 bus. Many devices require REN to be asserted before
they will accept commands or data.

Example

INTRODUCTION TO CALLABLE ROUTINES 3 - 7

3-8

SEC Use thls command in conjunction with TALK and LISTEN to specify a
secondary address. SEC must appear immediately after the primary
address in a TALK or LISTEN command. The KM488-ROM must be an
Active Controller to use SEC.

Example

TALK 3 SEC 5
LISTEN 4 SEC 8

TO If this command follows the DATA command, a Transmit Message
Terminator 0 will signal the end of data transmission. Section 3.2
describes the default values of the transmit terminators and how to change
them. Set the terminators to one or two bytes, and send with or without
EOI asserted on the last byte.

Example

DATA ‘Eello’ TO

Tl If this command follows the DATA command, Transmit Message
Terminator 1 will signal the end of data transmission. Section 3.2
describes the default values of the transmit terminators and how to change
them. Set the terminators to one or two bytes, and send with or without
EOI asserted on the last byte.

Example

DATA ‘Eello’ Tl

T2 If this command follows the DATA command, Transmit Message
Terminator 2 will signal the end of data transmission. Section 3.2
describes the default values of the transmit terminators and how to change
them. Set the terminators to one or two bytes, and send with or without
EOI asserted on the last byte.

Example

DATA 'Eello' T2

T3 If this command follows the DATA command, Transmit Message
Terminator 3 will signal the end of data transmission. Section 3.2
describes the default values of the transmit terminators and how to change
them. Set the terminators to one or two bytes, and send with or without
EOI asserted on the last byte.

Example

DATA 'Eello' T3

TALK The KM488-ROM must be the Active Controller to execute this command.
TALK designates the specified device as a Talker and is followed by the
decimal GPIB address (0 to 30) of the device. Remember that only one
device can talk at a given time; thus, if multiple TALK commands are in a
command string, only the last one takes effect. Note that it is good
practice to untalk and u&ten all devices prior to sending a TALK
command (see the UNT and UNL descriptions).

Example

TALK1
TALK 22

KM-488.ROM USER GUIDE

UNT. The KM488-ROM must be the Active Controller to execute this command.
UNLISTEN unaddresses the present listeners, if any.

Example

DNL

UNT The KM488-ROM must be the Active Controller to execute this command.
UNTALK is used to unaddress the present talker, if any.

Example

UNT

POLLING COMMANDS

PPC

PPD

PPU

SPD

The Parallel Poll Configure (PPC) command signals a previously
addressed listener that a Parallel Poll Enable @‘FE) byte or Parallel Poll
Disable (PI’D) command is to follow. Note that not all devices support
parallel polling.

PPC is rudimentary GPIB command byte and is thus sent using the CMD
command (see Miscellaneous Commands). The CMD command
immediately follows the PPC command; for example,

PPC c&m nnn

Where nnn is the decimal value of the Parallel Poll Enable byte. This byte
has the following format:

OllOSPPP

Where S is 0 or 1. The addressed device will set the designated GPIB
data line (determined by PPP) to the given value if service is required.
PPP is a 3-bit value which represents a GI’IB data line (0 - 7). The
configured device will use this data line to respond to a parallel poll.

Eurmple

UNL LISTEN 6 MTA PPC CbfD 101

The PPD (Parallel Poll Disable) command disables parallel poll response
of any previously addressed listeners. PPD must always immediately
follow a PPC.

Example

DNL LISTEN 12 MTA PPC PPD

The I’I’U (Parallel Poll Unconfigure) command disables the parallel poll
response of all devices on the bus.

Example

PPV

The Serial Poll Disable (SPD) command returns the currently addressed
talker from the serial poll state to the “normal” talker state.

Example

SPD

INTRODUCTION TO CALLABLE ROUTINES 3 - 9

SPE The Serial Poll Enable (WE) command forces a device, previously
addressed to talk, to send its serial poll response instead of its normal
data.

Example

UNL UNT b&A TALK 20 SPE

MISCELLANEOUS COMMANDS

CMD CMD indicates the next byte is to be sent as a GPIB command. A GPIB
command is any data byte sent in conjunction with the ATN control line
asserted on the bus. The byte is must be specified in decimal format
(range 0 to 255) and must follow the CMD mnemonic within the XMIT
command string.

Example

PPC CMD 96

DCL The Device Clear command forces all devices attached to the GPIB
(addressed or not) to a predefined state. The actual response of a device to
this command is device-dependent.

Example

DCL

GET The GET (Group Execute Trigger) command synchronizes the start of a
devicedependent operation in all previously addressed listeners. In many
devices, GET allows the KM488-ROM to trigger a measurement. This
function is not supported by all devices.

Example

LISTEN 12 GET

IFC This command can only be issued by a KM-488-ROM which is the System
Controller. The IFC (Interface clear) command resets the interface state of
all devices which are tied to the GPIB. It unaddresses all devices and
forces the System Controller to become the Active Controller (if control
had been passed to another device).

Example

IFC

LLO The LLO (Local Lockout) command allows you to disable the front panel
control of all devices that support this command. In many cases, this
command works in conjunction with the GPIB REN signal. Local control
may be restored with the GTLA or LOC commands.

Example

LLO

3-10 KM-488~ROM USER GUIDE

SDC

TCT

This command forces those devices attached to the GPIB and addressed to
listen to a predefined state. The actual response of a device to this
command is device-dependent.

Example

SDC

The (TCT) Take Control command allows the KM-488-ROM to pass
control to another device (with controller capabilities) on the bus, and is
able to receive control. The device to receive control must first be
addressed to talk.

Example

TALK 5 TCT

XMITA

The XMITA routine programs the KM-488-ROM to send array data when the KM-488-ROM is
a device or the Active Controller. XMITA also sends binary data; for example, data containing
embedded line feeds or other control characters. Optionally, terminator characters may be
used to mark the end of data or the data byte may be sent with EOI specified. XMITA allows
the KM-488-ROM to send up to 61 KBytes of data from an array, and is especially useful in
situations where KM488-ROM must send large amounts of data (up to 64K).

The XMITA routine transmits data stored in adjacent bytes within the computer’s memory,
starting from a specified location. The data is transferred from the lowest specified memory
address first, then from increasingly higher addresses until the end of the data is reached. In
other words, the least significant byte of the first element of the array is the first character sent.
The array may be of any data type, provided the language you are using has stored array
elements of increasing index in increasing memory addresses, and the least significant byte of
each location is the lowest address. The actual number of data bytes per location varies
according to the type of data elements contained within the array and the language being
used. Refer to a language reference manual which describes the language that you are using
for exact details.

Before you call the XMITA routine, be sure to designate the KM-488-ROM as a Talker. Hint:
If the KM488-ROM is the Active Controller, call the XMIT routine with a My Talk Address
(MTA) command. If the KM-488-ROM is a device, call the STATUS routine and check the
state of the TA bit in the Address Status Register.

3.4 READING DATA
Once an instrument has taken a measurement, its data must be read into the computer, using
any of the following routines:

l ENTER
l RCV
l RCVA

INTRODUCTION TO CALLABLE ROUTINES 3-11

3-12

ENTER
Use this routine only if the KM-488-ROM is an Active Controller. The ENTER routine
transfers data from the specified device through the KM-&S-ROM to the application program.
Calling ENTER addresses the KM-488-ROM as a listener, the device at the specified GPIB
address as a talker, and asserts the GI’IB REN line. The received data is then placed into a
string specified within the ENTER call. This data string is returned with a status byte and a
count variable containing the actual number of bytes received by the routine.

The ENTER routine retorns to the calling program when any of the following occur:

l Calling ENTER when the KM-488-ROM is not the active controller.

l Receiving a byte (other than the specified terminator) with the EOI signal asserted.

l Receiving the specified message terminator (any one of the four default terminators may
be selected).

l Filling the receive data string.

l Expiration of the timeout period.

NOTE: If programming in BASICA, you may modify the default receive terminator
sequences by running the CONFIG program. Otherwise, call the INTERM routine.
See Section 3.2 for defaults.

When data reception is complete, all devices are at UNTALK and UNLISTEN. Therefore, to
receive strings in “pieces,” avoid using ENTER.

All Carriage Returns and the receive message terminator character are stripped from the
received data and are not stored within the string or included in the byte count. If the ENTER
routine terminates due to reception of a data character with EOI asserted (other than the
chosen receive terminator character), that character will be stored and included in the byte
count.

Before you call the ENTER routine, be sure to set up a string to store the received data.
Regardless of the language, you must allocate a string length greater than or equal to the
number of bytes you expect to receive. Otherwise, data may be stored in areas allocated from
DOS or other parts of your program, and the program will crash.

RCV
Use this routine to program the KM-488-ROM to receive data when the KM-488-ROM is a
non-System Controller. RCV is useful in situations where KM-lSS-ROM must receive data
concurrently with other listeners on the bus. The RCV routine is also useful when data must
be received immediately after sending a string of commands with the XMIT command.

Received data is placed in the string named within the call. The data string is returned along
with a status byte, and a variable containing the actual number of received bytes. The RCV
routine stores data in a manner similar to ENTER (carriage returns and the message
terminator are stripped from the received data).

The RCV routine will return to the calling program when one of the following events occurs:

l Calling RCV when the KM-488-ROM is not a listener.

l Receiving the selected terminator character.

KM-488~ROM USER GUIDE

l Receiving a data byte with EOI asserted.

l Receiving the maximum number of bytes that will fit into the receive string.

l Expiration of the timeout period.

Before you call the RCV routine, be sure to designate the KM-ISS-ROM as a listener. Hint: If
the KM-488-ROM is the Active Controller, call the XMIT routine with a My Listen Address
(MLA) or LISTEN nn command. If the KM488-ROM is a device, wait until the KM&B-ROM
is addressed to listen by the Active Controller by calling the STATUS routine and checking the
state of the LA bit in the Address Status Register.

Set up a string to store the received data. Regardless of the language, you must allocate a
string length greater than or equal to the number of bytes you expect to receive. Otherwise,
data may get stored in areas allocated from DOS or other parts of your program, and the
program will crash.

RCVA
The RCVA routine is similar to the RCV Routine in that it programs the KM-488-ROM to
receive data when the KM-iSS-ROM is a device (not the Active Controller). The principal
differences are that the RCVA routine stores the received data in a specified array and all
received bytes will be stored. RCVA can also receive binary data; for example, data
containing embedded line feeds or other control characters.

The received data is placed into the array named within the call. The number of bytes
available for storage must also be specified. A status byte and a variable containing the actual
number of received bytes are also returned. The RCVA routine stores every received
character, including carriage returns and message terminator characters. These characters will
also be included within the byte count.

The RCVA routine will return to the calling program when one of the following events occurs:

l RCVA is called when the KM488-ROM is not a listener.

l The selected terminator character was received (if terminators were enabled).

l A data byte was received with EOI asserted.

l The number of bytes specified in the COUNT parameter has been received.

l The timeout period has expired.

Before you call the RCVA routine, be sure to designate the KM-488-ROM as a listener. Hint:
If the KM-488-ROM is the Active Controller, call the XMIT routine with a My Listen Address
(MLA) command. If the KM-488-ROM is a device, call the STATUS routine and check the
state of the LA bit in the Address Status Register. You must wait for LA before calling RCVA.

Set up an array to store the received data. The number of bytes per array location will vary
according to the type of array. When the array contains more than one byte per location,
storage of the received data will begin at the least significant byte of the specified array
location and progress in accordance with the manner most languages store data in arrays.

Regardless of array size or the language, you must allocate data storage greater than or equal
to the number of bytes specified in the count variable. Otherwise, data may be stored in areas
allocated from DOS or other parts of your program, and the program will crash.

INTRODUCTION TO CALLABLE ROUTINES 3-13

Refer to the XMITA routine for a discussion of the relationship between number of array
locations vs. number of data bytes.

3.5 TRANSMITTING/RECEIVING DATA VIA DMA
When using DMA, the computer transfers data directly between its memory and the KM-488-
ROM, resulting in the high speed transmission or reception of up to 64 KB of data to or from
an array. In contrast, when transferring data while not using DMA, the computer transfers
data between its memory and the device’s controller chip through registers in the
microprocessor. Because the microprocessor must also execute other instructions, the rate at
which it passes data far slower than when DMA is used.

The implementation of a DMA transfer is language-dependent. If you are programming in
BASICA, you must call the DMA routine. Other languages initiate DMA by calling the RCVA
and XMITA routines in conjunction with the SETDMA routine.

DMA
This routine works only in BASICA. The DMA (Direct Memory Access) routine permits high
speed transmission or reception of up to 64K bytes of data. This data is received
into/transmitted from an array. In order to use the DMA routine, the KM-488-ROM must be
assigned to a DMA “channel.” Each DMA channel consists of an address pointer and a pair of
hardware signals. The KM488-ROM signals its need to transfer data via the DMA request
signal (DMARBQ). Other logic in the system arbitrates control of the address and data busses
between the microprocessor and the DMA controller. When the busses are available, the
DMA controller places the contents of the address pointer register for that channel onto the
address bus and notifies the KM-488-ROM that it is ready to perform the transfer via the
DMA Acknowledge signal (DMA ACK). The DMA controller then generates all the other
signals required to perform the transfer, with data passing directly between the KM488-ROM
and memory.

DMATIMEOUT
This routine does not work in BASICA. DMATIMEOUT allows you to reset the length of time
to elapse before a DMA Timeout Error occurs. (DMA Timeout Errors are reported when
XMITA and RCVA calls are used with DMA.) The default value of the timeout period is 10
seconds.

A DMA Timeout Error occurs when the time to transmit or receive an entire message exceeds
the set time. This is different from the I/O timeout, which occurs when the time between
adjacent bytes exceeds the timeout value. Note that it may be better to set the I/O timeout
period to a shorter length than the DMA timeout period.

NOTE: In BASICA, the DMA Timeout period is changed using the CONFIG program. See
Chapter 2.

SETDMA
This routine does not work in BASICA. The SETDMA routine, in conjunction with the
XMITA and RCVA routines, initiates a DMA data transfer.

3-14 KM-488~ROM USER GUIDE

To perform a DMA transfer, the KM-@&ROM must be assigned to a DMA “channel.” Each
DMA channel consists of an address pointer and a pair of hardware signals. The KM-488-
ROM signals its need to transfer data via the DMA request signal (DMAREQ). Other logic in
the system arbitrates control of the address and data busses between the microprocessor and
the DMA controller. When the busses are available, the DMA controller places the contents of
the address pointer register for that channel onto the address bus and notifies the KM-488-
ROM that it is ready to perform the transfer via the DMA Acknowledge signal (DMA ACK).
The DMA controller then generates all of the other signals required to perform the transfer,
with data passing directly between the KM-488-ROM and memory.

The SETDMA routine designates a DMA channel for data transfers. The channel you assign
must agree with the setting of the DMA Level Jumpers on the KM-488-ROM board (see
Section 2.4). To initiate a DMA transfer,

l Call SETDMA with the appropriate channel number to enable DMA transfer.

l Call XMITA/RCVA.

l Call SETDMA with a channel number other than 1,2, and 3 to disable DMA transfers.

3.6 CHECKING DEVICE STATUS
Generally, GPIB devices indicate whether or not they need servicing by means of serial
polling and/or parallel polling. Often, serial polling and parallel polling are used together to
determine the type of service needed by a device. This section describes those routines
associated with serial and parallel polling. They include

. SRQ
l SPOLL
l POLL
l SETSPOLL

NOTE: The SRQ routine does not work in BASICA. When programming in BASICA, use
the STATUS routine to check the state of the SRQ signal.

SRQ
This routine does not work in BASICA. SRQ detects the state of the SRQ signal on the GPIB
bus. When this routine returns a 1, it indicates that the SRQ line has been asserted. When the
routine returns a 0, it indicates that the SRQ line remains unasserted.

SRQ response can be fed into a conditional statement within your program. For example,
normally you would want to conduct a serial poll only when the SRQ line has been asserted.
In this case, you could call the SRQ function and then feed its result into a conditional which
would call an SPOLL if SRQ had been asserted.

NOTE: Once you have obtained a TRUE response from the SRQ function, the SRQ
response will reset to FALSE --even if the SRQ line is still active. In order to reset
the SRQ response to TRUE, you must serial poll at least one device requesting
service. This action will reset the device’s SRQ line. At this time, if other devices
were asserting SRQ, the output of the SRQ function would again reset to TRUE.
Otherwise, the SRQ function would become TRUE on the next assertion of the
SRQ line.

INTRODUCTION TO CALLABLE ROUTINES 3-15

SPOLL
The SPOLL routine allows the Active Controller to check the state of the devices tied to the
bus. Devices may be polled “at will” or in response to the Service Request line (SRQ) being
asserted on the GPIB. Calling SPOLL will return the serial poll response byte from the
addressed device.

The SPOLL routine does the following:

l Addresses the specified device to talk.

l Enables the specified device to send its serial poll response byte.

l Receive the device’s serial poll response byte.

l Disables the serial poll.

l Untalks the specified device.

PPOLL
Use this routine only when the KM-488-ROM is an Active Controller. Calling this routine
initiates a GPIB parallel poll. The parallel poll, like the serial poll, is a mechanism allowing
the active controller to determine which device(s) need service. The parallel poll allows you
to quickly check the state of up to eight (groups of) devices simultaneously.

Before a parallel poll can be issued, each device to be polled must be assigned to a GPIB Bus
Data Line (DO - D7). This is the device’s response mechanism. If the device requires service
when the Parallel Poll command is issued, it will assert its designated bit within the data bus.
The assigned bit and its asserted value (0 or 1) must be preconfigured. This is accomplished
via a set of GLIB commands sent to the device over the bus.

To configure a device for Parallel Polling,

l Address the device to listen.

l Issue a GPIB Parallel Poll Configure @‘PC) command accompanied by a command byte to
the device. (Hint: Use the KM-&S-ROM’s XMIT command.)

Once configured, the device will retain its parallel poll configuration until it is powered down
(or reset by other hardware means), or until unconfigured by a GPIB Parallel Poll Unconfigure
(IWJ) or Parallel Poll Disable W’D) commands.

A parallel poll is limiting in that it can determine only that a device(s) requires service. It
cannot identify the specific conditions requiring service. In order to identify the condition(s),
the KM-488-ROM must then perform a serial poll of each device requiring service (use the
KM-488-ROM SPOLL command). The serial poll allows you to distinguish which device(s)
need service and what type of service is required.

NOTE: Many GPIB devices do not support parallel polling. Check your device’s
documentation.

3-16 KM-488-ROM USER GUIDE

SETSPOLL
This routine allows you to program the serial poll response byte of the KM-488-ROM when it
is acting as a device (non-Controller). The actual usage and meaning of each bit is user-
defined. Optionally, it allows you to drive the SRQ line to request service from the Active
Controller.

For example, consider an application where the KM-488-ROM transfers files from a computer
containing a KM-488ROM acting as a device to a second computer containing a KM488-
ROM that is the system controller. You could define a simple protocol in which the device
(KM48-ROM1 is addressed to listen, and the controller passes a string containing a filename
and a command byte. The command byte might signify a file read, write, create or append
operation. If the command specified a read of a filename that could not be found, the device
would notify the Controller of this error condition using the SETPOLL routine. You would
define one of the Serial Poll Response bits to mean “File Not Found.” Then, you would call
SETPOLL, with the appropriate bits set. This would immediately notify the controller of the
error condition.

3.7 LOW-LEVEL ROUTINES
It is sometimes useful to be able to check the bits of the various GPIB Controller chip registers.
Two routines enable you to do this, as follows:

l SETlNT
l STATUS

SET/NT
This routine sets the Interrupt mask bits within the GPIB controller chip. The most common
reason for this is to allow the generation of interrupts upon receiving a Service Request (SRQ).
Other possible reasons include using the interrupts to enable detection of other bus related
events.

If the KM-488-ROM is acting as a device, SETlNT can check its address status. For example,
using the ADSC (Address Status Change) interrupt would alleviate constant monitoring of the
state of the TA (talk addressed) and LA (listen addressed1 bits in the Address Status Register.

It is important to note that when using interrupts, you must set up an interrupt service routine
to handle the interrupting condition. The method for setting up such a routine is language-
dependent. You must also assign the Kh4488-ROM to an Interrupt Level not used by other
devices within the computer. The KM488-ROM contains an Interrupt Level selection jumper
That must be set accordingly. Refer to the INSTALL program and Chapter 2 for assistance in
setting the jumpers.

STATUS
The STATUS routine checks the status bits within the GPIB Interface Chip and also the state of
DMA transfers. It is especially useful when the KM-488-ROM is acting as a device, rather
than a controller.

INTRODUCTION TO CALLABLE ROUTINES 3-17

This routine can also

l Examine the state of various setup parameters within the firmware. The STATUS routine
obtains the value of the I/O Port Base address of the GPIB Controller Chip, the GPIB
address of the Controller Chip, each of the four transmit/receive message terminators, and
the timeout values used in conjunction with normal and DMA transfers. This function is
particularly useful in a multiple board environment, or while developing and debugging
software.

l Read the state of the Interrupt Status registers within the GLIB Interface Chip. These
registers provide information for using the KM488-ROM as either a device or the active
controller. This feature may be useful in a “polling” environment (one in which software
checks for certain conditions). When acting as the Controller, the STATUS routine may
check the state of SRQ or, if interrupts are set up and enabled, the STATUS routine may
check which conditions caused the interrupt.

When the KM488-ROM is acting as a device, STATUS can check for reception of a Group
Execute Trigger (GET) or Device Clear (DCL) command by reading Interrupt Status Register
1. Interrupt status register 2 can be checked to see if the device has been set to local lockout or
remote states. When the board is the active controller, STATUS can check the SRQI bit to see
if the SRQ line has been asserted.

Whenever the state of the Interrupt Status Registers is read, all “interrupt” bits within the
register are reset. It is important to note this when reading Interrupt Status Register 1. The
XMIT and RCV routines check the Dl and W bits to determine when to read or write the next
data character. If you read the Interrupt Status Register 1 and the first byte of data has been
received, the Dl bit will be cleared. If the RCV routine is then called, it will “hang up” waiting
for the Dl bit to set.

Read the state of the Terminal Count bits for each one of three possible DMA channels, by
setting the reg parameter to 3. This information is useful when using the BASICA DMA
routine in the “background” mode.

3.8 BOARD CONFIGURATION ROUTINES
This section describes those routines to use for a nonstandard interface setting. For example,
if you are developing application programs in a language other than BASICA and have
changed the factory-default setting of the I/O Base Address switch, you must call the
SETPORT routine. (In BASICA, you will have to run the CONFIG program as described in
Section 2.6.)

If an application requires the installation of more than one KM-488-ROM board in a single
computer, you will use the SETBOARD routine (except in BASICA). In BASICA, each board
has its own software EEPROM which must be assigned to its own base address. Boards are
selected by using a DEF SEG statement to point to the desired board prior to the call.

SETPORT
You will use this routine only if you have changed the default Base Address (and are not
programming in BASICA). If using multiple boards within a single computer, use SETPORT
to assign a “board number” to a given I/O port address.

3-18 KM-488-ROM USER GUIDE

SETWOARD
You will use this routine only if your system has multiple KM&?&ROMs. This routine
identifies the board to be programmed and thus is called prior to executing a series of
routines. Only the board identified with the SETBOARD routine will be affected, until
another SETBOARD routine identifying another board is called. The “board numbers” are
associated with the I/O Port Base Address of a given board.

3.9 MULTIPLE BOARD PROGRAMMING NOTES
In a multiple-board environment, set each board to either CONTROLLER or DEVICE mode,
and assign each board any legal GPIB address (including the same GPIB address as other
boards within the same computer). It is possible to assign multiple controllers within the
same computer. Note, however, that you will NOT be able to communicate between two KM-
488-ROM boards within the SAME computer, even if one is configured as a device and the
other as a controller.

In a multiple-board environment, the message terminator settings and timeout values are
GLOBAL parameters. In other words, all the KM-488-ROM boards within a computer share
the values of these parameters. The IOTIMEOUT, DMATIMEOUT, INTERM, and OUTTERM
routines are callable at any time, regardless of the board most recently selected, and the values
that are set will affect all of the boards.

When DMA is used, it will behave in a similar manner (DMA is enabled independently of the
board was selected at that time. A call to the XMITA and RCVA routines will use DMA on
every board once DMA has been selected at the time DMA was enabled.

INTRODUCTION TO CALLABLE ROUTINES 3- 19

3-20 KM-488-ROM USER GUIDE

Chapter 4

PROGRAMMING IN BASICA OR GWBASIC

While Chapter 3 gives a brief overview of the routines available for programming the KM-
48%ROM, this chapter gives instructions for calling the routines from BASICA and
GWBASIC. The routines appear in alphabetical order and include a sample program for each.

4.1 GENERAL
The KM-l&?-ROM uses an EEPROM (Electrically Erasable Read Only Memory) that contains
GPIB language extension for BASIC. BASIC uses the CALL statement to access those
language extensions within a user program. Before any CALL statement can function, it must
contain three definitions, as follows:

l The memory segment address of the KM488-ROM library code.

l The location of the mutine (offset address).

l The parameters used by the routine.

Definition of the memory segment address of the interface should appear at the start of a user
program in a DEF SEG statement. This statement is followed by the memory address to
which the EEPROM is mapped. The memory address is a hexadecimal value; thus it should
have a &H prefix. The memory address must match the setting of the KM-488-ROM
Memory Address Switches. Refer to Section 2.4 for more information.

When multiple KM-%t%ROM boards are present in the same system, each must have its own
unique segment address. You may then select which of the boards is to be accessed by
executing a DEF SEG to its segment address.

BASIC requires identification of the offset address of each KM-488ROM routine to know
where to call the routine from within the ROM. The offset address represents the number of
bytes the routine is offset from the DEF SEG address. Each KM-lSE-ROM interface routine
must have a variable set to the offset for that routine. For example, the offset for the INIT
routine is zero; therefore, you must include the line INIT = 0 before calling the routine.

Note that you may use any name for these routines, so long as the alternate name matches the
offset of the desired function. For example, if we define INIT = 0 and INITIALIZE = 0 within
a program, the statements CALL lNIT and CALL INITIALIZE will execute the same function.

NOTE: You must define one segment address in every program and an offset address for
each KM-488-ROM routine. The most recent DEF SEG statement must reflect the
starting address of the EEPROM on the board being used.

PROGRAMMING IN BASICA OR GWBASIC 4 - 1

Each KM-&&X-ROM Interface Routine requires certain parameters for execution. These
parameters are always integer or string variables that must be defined prior to executing the
CALL statement. The variable names must be enclosed in parentheses and follow the
function name within the CALL statement. For example,

CALL INIT(ADRS%,bfCDE%)

These variables will pass values into and out of each of the call routines. When passing values
into a call routine, you must equate a named variable of the appropriate type with the desired
value, and subsequently pass that variable name into the call.

The example below shows the proper way to initiate a CALL statement sequence. It assumes
that the EEPROM is mapped to segment CC00 hex and the INIT routine has an offset value
of 0. In this example, the variable names ADRS% and MODE% pass the values 0,O into the
INIT routine. Note that you may assign any legal BASICA to these variables. However, the
variables must be the correct data type and value, and must be passed into a callable routines
in the same order as shown in the routine descriptions.

XXDEF SEG = SHCCOO ‘As~~iqns mamory segment address
xxINIT=O : ADRS%=O : MODE%=0 'Gives offset of INIT routine L variable

‘definitions
uCALL INIT(ADRS%,MODE%) 'uses call statement

Software Configuration
KM-488-ROM firmware contains a number of configuration parameters that govern the
default settings of the input and output message terminator settings, message timeout
periods, and I/O port addresses. If these default values are unsatisfactory, they may be
changed by running the CONFIG program (see Chapter 2).

The default DMA and I/O Timeouts are 10 seconds.

The default terminators are as shown in the following table.

TERM # OUTPUT TERMINATOR INPUT TERMINATOR

0 LF EOI LF
1 CR LF EOI CR
2 CR EOI , (comma)
3 LFCREOI : (semi-colon)

Programming Notes
1. In BASICA, only variable names may be passed into and out of functions.

2. Be sure to include all the parameters for the Interface Routine. The parameters must be
the same data type and appear in the same order as those given. You may, however,
change their names. BASICA has no means for checking that the exact number of
parameters are given or that the parameters of the appropriate type. If you specify an
incorkt number or type of parameters, your program may crash.

3. Strings are limited to the BASICA maximum of 256 characters.

4-2 KM-488~ROM USER GUIDE

4. All integers are treated by the KM-488ROM routines as unsigned values (0 to 655351.
However, BASICA treats them as signed magnitudes (-32765 to +32767l. When you want
to express a value which is greater than or equal to 32768, you will have to express it in
one of two ways, as follows:

l Convert it to a hexadecimal value. Be sure to prefix these values with &H when
equating them to a variable name. Legal hexadecimal values range from 0 to AHFFFF
and can be used to represent values from 0 to 65535.

l Use unsigned values from 0 to 32767 as is, but for values of 32768 to 65535 subtract
65536.

5. The file HEADER.BAS is available to assist you with defining CALL routine offsets. This
is a BASICA source file that predefines the offsets. It can be modified to suit your needs.

6. Do not give your variables the same name as any of the KM488-ROM routines.

4.2 DESCRIPTION FORMAT FOR ROUTINES
The format for each descriptions is as follows:

offset
usage

alternate usage

parameters

returns

notes

example

a brief description of the routine. See Chapter 3 for more detailed
descriptions.

. . . gives the BASICA offset for each routine.

. . . gives an example of usage for each routine and assumes the input
parameters are passed in as variables. These parameters can also be
passed in directly. See the General Programming Notes for more
information.

. . . lists alternate usage for the routine, if any. Unless otherwise noted, the
alternate usage performs exactly the same function as the usage.

. . . describes each of the input parameters.

. . . describes any values returned by the routine.

. . . lists any special programming considerations.

gives a programming example using the routine.

4.3 ROUTINES

- DMA
NOTE: DMA allows data transfer rates in excess of 100 kilobytes per second. However,

the actual data rates are limited by the rates at which other bus-connected devices
can send or receive data. These rates are governed automatically by the GPIB
handshaking signals.

purpo= Initiates a DMA transfer.

offset 206

PROGRAMMING IN BASICA OR GWBASIC 4 - 3

- DMA (cont.)
usage . . .

uDMA = 206
ucount.% =
umcde% =
ustat% = 0
uDIY DATA% (100) 'Assigns storage space for

'received data
useg% =
uofs%= VARPTR(DATA%(O))
XXCALL DMA(aeg%,ofs%,count%,mode%,stat%).

parameters seg% is an INTEGER representing the segment portion of the memory
address of the data. seg% is set to -1 to indicate the BASICA data
segment.

ofs% is an INTEGER representing the offset portion of the memory
address of the data. This is usually obtained using the VARPTR
function. The VARPTR function must be called immediately prior to the
DMA function call, and all variables used within the program must be
declared prior to the VARFI’R function. The reason for this is that
BASICA can dynamically allocate storage space and if variables are
declared after the VARPTR call, the array may be relocated and the data
placed in the wrong location. This could cause your program to “crash”.

count% is an INTEGER containing the maximum number of data bytes
to be transmitted or received. If you wish to send or receive more than
32767 bytes, you must express count% differently. See Programming
Note 4 in the beginning of this section.

The DMA routine also performs “byte packing”; that is, two bytes of data
are stored in each of the integer array locations. The first byte received is
placed into the least significant byte of the first array location.

mode% is an INTEGER that defines the type of DMA transfer to be
made and the operating characteristics of the DMA controller. The most
common settings for mode% are &HZ005 for DMA input and &HZ009
for DMA output.

The mode byte format is

Mode-High Byte
BIT 16 14 13 12 11 10 9 6

X X WAIT X X X X X

Mode - High Byte
BIT 7 6 6 4 3 2 1 0

MOD1 MOD0 ADEC INIT OUT INP CSl cso

Where

X May be any value.

4-4 KM-488~ROM USER GUIDE

- DMA (cont.)
WAIT

cso, 1

INP

OUT

INIT

ADEC

This bit enables the DMA wait option. When this bit is 0,
the DMA routine waits for the DMA transfer to be
completed or a timeout to wcur before returning to the
called program.

When this bit is 1, the DMA controller is setup for the
transfer and control returns to the user program without
waiting for the end of the transfer.
Select the channel for DMA transfer. Possible selections are
as follows:

w C!@
0 1 Select DMA Channel 1
1 0 Select DMA Channel 2
1 1 Select DMA Channel 3

The selected DMA channel must agree with the setting of
the DMA Level Jumpers. See Section 2.4 for more
information.

NOTE: Some DMA channels may be assigned to other
hardware within the PC. Check your PC system
documentation to determine which channels are available.

When set to 1, this bit indicates the received data is written
to PC memory via DMA. Both this bit and the OUT bit
cannot be set to 1 at the same time.

When set to 1, indicates the transmitted data is read from
PC memory via DMA. Both this bit and the INP bit cannot
be set to 1 at the same time.
Enables DMA autoinitialize mode, when it is set to 1.

Under normal circumstances, the DMA controller transfers
the specified number of bytes to/from the PC memory from
the given starting address and terminates when completed.
When the AUTOINITIALIZE mode is enabled, the DMA
controller will reset the byte count, reset the initial address,
and repeat the transfer again. This continues indefinitely
until the DMA routine is called with INIT=O.

Controls the direction in which the DMA controller
generates its addresses and obtains data. If ADEC = 0, the
DMA controller is set to address increment mode. This
means that the data is accessed from successive locations
with ascending addresses within the PC memory. This
mode is most often selected because it duplicates the
manner in which array locations are accessed from the
calling program.

If ADEC = 1, the DMA controller is set for address
decrement mode. This means that the data is accessed from
subsequent locations with descending addresses.

PROGRAMMING IN BASICA OR GWBASIC 4 - 5

- DMA (cont.)
MODO, 1 The DMA controller within the PC is capable of operating

in three distinct modes. These two bits set the DMA
controller mode. Available selections are

MOD1 MOD0 MODE

0 0 Demand Mode
0 1 Single Mode
1 0 Block Mode

Descriptions of these three modes follow.

Demand Mode -In this mode, when the DMA Request line
is asserted the DMA controller assumes control of the bus.
The DMA controller retains control of the bus until the
DMA request signal is unasserted. Once this signal has
been unasserted for more than one processor clock cycle,
control of bus is returned to the microprocessor. This mode
allows the DMA controller chip to pass data at a slightly
faster rate and the microprocessor to access the bus when it
is not needed.

Single Mode - In this mode, when the DMA Request line is
asserted the DMA controller assumes control of the bus and
transfers a single byte of data. Control of the bus is then
returned to the microprocessor.

Block Mode - In this mode, the DMA controller gains
control of the bus and remains in control until the specified
number of bytes has been transferred, regardless of the state
of the DMA request line. Block Mode allows the fastest
data transfer rate possible.

NOTE: BLOCK MODE IS NOT RECOMMENDED FOR
MOST APPLICATIONS. This is because when block mode
is selected, all other DMA channels are locked out and the
microprocessor cannot execute any bus cycles. This can be
dangerous in some circumstances. For example, in many
PCs (particularly the older XT type machines), one of the
DMA channels was used to refresh the dynamic RAM
chips. (These store user programs and data.) If memory
refresh were to be halted for an excessive period of time
(hundreds of microseconds), all data within the RAMS
would be lost.

stat% is an INTEGER describing the state of the transfer returned after
the call. This stat% word differs from the one used in other routines
because it indicates when “warning” conditions, as well as error
conditions, occur. A warning differs from an error in that some (or all)
of the transfer may have completed.

If the most significant bit of the stat% word is set, a warning has
occurred. This results in a negative stat% value.

The stat% value is interpreted according to the following format:

4-6 KM-488-ROM USER GUIDE

- DMA (cont.)
Stat (Output) -High Byte

BIT 15 14 13 12 11 10 9 8

WARN 0 0 0 0 0 0 0

Stat fOutput1 -High Byte
BIT 7 6 5 4 3 2 1 0

0 0 0 0 TM0 IOER MDER CSER

WARN

CSEA

MDER

TM0

NOTE: The meaning of the stat%‘s low bits is dependent on
the setting of the WARN bit.

Warning. If this bit is set to 1, the other bits in stat%
indicate that a Warning has occurred. If it is set to 0, the
other bits indicate that an Error has occurred.

The following are Warning indications (WARN=l):

Address Wraparound Error. If CSER=l and WARN=l, an
“address wraparound” has occurred. This condition arises
as a result of hardware limitations within the PC. The DMA
controller within most PCs generates 16 bits of address;
however, a ZO-bit address is required by the PC. Most PCs
generate the four additional address bits with a “page
register,” which is wired to the most significant address
lines. Address wraparound occurs whenever the DMA
controller counts past its maximum count (FFFF rolls over
to OiKlO), because there is no mechanism to “carry” the most
significant bit into the page register.

For example, if the DMA routine were called with the SEG
parameter set to ZOOO, and the OFS parameters set to FFFF,
the DMA controller would be loaded with a count value of
FFFF, and the page register with a 2. The first location
accessed would be absolute address 2FFFF. The DMA
controller would then increment its address (to O), however
the page register would not change. Thus, the next location
accessed would be 2ooo0, rather than 3DDDD.

Mode Error. If MDER=l and WARN=l, it signifies that an
invalid Mode Selection was made (see the MODE
parameter description). The DMA routine substitutes
Demand Mode (00) and continues.

Timeout Error. If this bit = 1 and WARN=l, it signifies a
Timeout Error. A Timeout Error indicates that the transfer
was not completed during the designated DMA Timeout
Period. It is possible for the timeout period to expire during
a transfer of a large number of bytes to or from a slow
device, even if the transfer occurs correctly.

The following are Errors fWARN=OI:

PROGRAMMING IN BASICA OR GWBASIC 4.7

- DMA (cont.)
IOER Input/Output Error. If this bit = 1 and WARN=O, it

indicates than the DMA routine has been called with an
invalid selection of the INP and OUT bits in the mode
parameter. Either INPUT or OUTPUT must be selected; but
not both.

CSER DMA Channel Select Error. If CSER=l and WAR&O, it
indicates that an invalid DMA channel (channel 01 was
selected for the transfer.

notes When calling DMA, you must declare an INTEGER array to store
received data. Since each integer in BASICA uses 2 Bytes of memory, the
total number of array locations allocated must be equal to or greater than
one half the total number of bytes to be received.

exa!trp/e This example shows how to avoid an address wraparound error. The
program transfers data into the computer’s memory at an even segment
boundary. This boundary is above the area used by DOS and your
program (for example, &H70001. The data can then be moved into an
array using the BASIC PEEK instruction. Note that this example stores
one byte per array location.

100
110
120
130
140
150
160
170
180
190
200
210
220
230
240

DYA - 206 'DMA or11 Off.&
ccQuT% - 1028 'Trane?ar 1026 points
DuAcPPS% -0 'St.rt with first array slomont
NODE% - 6E2005 'Input. DM% Ghan 1
STAT% - 0 'Initialira variabls
DEF es5 -0 ‘w&SIC’. l sgmant
DIM WAVE%(tll)
DMASEC% - CR2000
DEF SEC - CECCOO 'KM-488~Roll memory segment
CAI& D~(DHASED$,DIIAOFBX%,CDDNT%,MODE%, STAT%)
IP (STATUS%<> 0) TEES PRIUT "FAILED", STAT% : STOP
DEP 8EG - D-EC% 'Cat data from manwry to .rn.y
POR 1% - 0 TO CODXT%-1
wAvE%(I%) - PEEK(I%)
tam 1%

- ENTER
purpose Addresses a specified device to talk, the KM-488-ROM to listen, and

receives data into a string from the addressed device.

offset 21

. .
xx ENTER-21
xx infob - SPACE$(mru.ah.rs%) '(max.ohara% < 256)
xx lurg% - 0
P drS% -
xx mtat% - 0
xx CArL liwJ!ER (info8,lang%,akm%, et&,%)

. . .
xx RCV$ - LIWTB (info$, lsnq%)
. . .

4-8 KM-488~ROM USER GUIDE

- ENTER (cont.)
pafameters Mo$ is a STRING (up to 256 characters) which is to hold the received

data. The string must be long enough to receive the expected number of
characters. Carriage returns and the message terminator character in the
incoming data are ignored and not stored with the received data. You
should use the BASIC SPACF$ function to declare a string which is long
enough to store the expected maximum number of characters to be
received. After the data has been received, it should be copied into a
new string which has been “trimmed” to length with the BASIC LEm$
function. Or else, you may trim the first string to length, provided that
you resize it with the BASIC SPACE$ function prior to calling the
ENTER function again.

a&s% is an INTEGER containing the IEEE bus address of the device
that will sent the data and the terminator to be used. This byte is of the
following format:

Adrs (Input Parameter) - Low Byte
BIT 7 6 5 4 3 2 1 0

TRMl TRMO 0 ADR4 ADR3 ADR2 ADRl ADRO

Where

TRMl-0 Terminator Select. These two bits select the Message
Terminator to be used to signal the end of a transmission.
Available terminator selections are

TRMl TRMO TERMINATOR # DEFAULT

0 0 0 LF
0 1 1 CR
1 0 2
1 1 3

These terminators are defined upon system configuration
and are stored (along with the BASICA library code) in the
EEPROM. They can be changed by running the CONF’IG
program as described in Chapter 2.

The easiest way to specify an alternate terminator is to add
a factor to the GPIB address of the desired instrument
which is specified within the ENTER call. The factors
added for each terminator are as follows:

GPIB Address + 0 = Terminator 0
GPIB Address + 64 = Terminator 1
GPIB Address + 128 = Terminator 2
GPIB Address + 192 = Terminator 3

For example, if you wanted to receive a message using
terminator 2 from a device at GPIB address 10, the value of
adrs% supplied to ENTER would be 138 decimal (10 + 128).

ADR4-0 GPIB Address. These five bits are used to represent the
GPIB address of the device to which the data is to be sent.
GPIB addresses can range from 0 to 30.

PROGRAMMING IN BASICA OR GWBASIC 4 - 9

- ENTER (cont.)
fetumS info$ is a STRING variable, up to 256 characters, which will contain the

received data. The length of the string must be long enough to receive
the expected number of characters. Enter will terminate reception of
data when: 1) the number of characters received exceeds the length of the
string, 2) the specified terminator is received, or 3) any character is
received with the EOI signal asserted. Carriage returns and the
terminator character in the incoming data are ignored and not stored
with the received data. However, bytes other than the terminator which
are received with EOI asserted will be stored.

leng% is an INTEGER, less than or equal to 256, which indicates the
actual number of bytes which were stored. This number does not
include message terminator characters or carriage returns.

stat% is an INTEGER which describes the state of the transfer returned
after the call. If a stat value of 0 is returned, the transfer completed
normally. Otherwise, the returned stat values (or combination of) are
interpreted as follows:

Stat (Return) -Low Byte
BIT 7 6 5 4 3 2 1 0

0 0 0 0 TM0 OVF NC ADRS

Where

TM0 Timeout Error. Indicates whether or not a Timeout Error
occurred during data transfer. If this bit is a 1, then a
Timeout Error occurred.

OVF Overflow Error. If this bit is a 1, then the info string was
filled, before a terminator character or EOI was detected.

NC KM-468-ROM not an Active Controller . If this bit is set to a
1, it indicates the routine was called before the KM-488-
ROM was designated as an Active Controller.

ADRS Invalid GPIB address. If this bit is set to 1, then an invalid
GPIB address was given.

example In the following example, data is sent from two different instruments to
a KM-l&ROM. The KM-488-ROM is acting as the System Controller
and is assigned to GPIB address 0. One of the two instruments is a
voltmeter, requiring a Carriage Rehnn-Line Feed terminator
combination, assigned to GPIB address 7. The second instrument,
located at GPIB address 10, requires a line feed as its terminator.

The voltmeter is first sent a string of data which represents its instrument
setup command. Then, when addressed to talk, it sends its most current
reading to the KM-&J-ROM. The second instrument is instructed to
send its status, when addressed to talk. It is assumed that the string sent
by both instruments is 25 characters or less. The string is printed out on
the computer screen.

4-10 KM-488~ROM USER GUIDE

10
20
so
31
32
34
36
40
4s
so
60
70
SO
90
100
110
120
I.30
140
150
160

170
172
180
190
200
210
220
230

2‘0
250
260
270

- INIT
purpose Initializes a KM438-ROM by assigning it a GPIB address and

establishing it as a System Controller or Device.

offset 0

usage . . .
P IUIT - 0
xx a&*%- : mode%-
P 0AI.L IWIT(a&a%,modo%)
. . .

PSrS!rkVSrS adrs% is an INTEGER representing the IEEE bus address of the KM-488-
ROM. This is an integer from 0 to 30.

PROGRAMMING IN BASICA OR GWBASIC 4-11

- INIT (cont.)
mode% is an INTEGER representing the operating mode of the KM-488-
ROM. These can be any of the following values:

Mode-Low Byte
BIT 7 6 6 4 3 2 1 0

X X X X X FAST DEV X

Where

X May be any value.

FAST Handshake Speed. If this bit is set to 1, High Speed GPIB
bus handshaking will be usedQOOns.). If it is set to 0, Low
Speed GPIB bus handshaking (2 s.) will be used. See
Chapter 3 for more information regarding the handshake
speed.

DEV Device. If this bit is set to 1, then the KM-488-ROM is acting
as a Device. Otherwise, when this bit is set to 0, the KM-
488ROM is acting as a System Controller. When System
Controller is selected, the GLIB IFC line is momentarily
asserted.

refurfls None.

example This example initializes the KM-488-ROM as a System Controller with a
IEEE address of 0 with a High Speed Handshake.

10 DNF sEc-sEccoo
20 INIT=
30 AoNa%-o : NOON% -4
10 CALL INIT (Z&INS%, NODE%)

- PPOLL

PvP-e Initiates a Parallel Poll and returns a parallel poll response byte.

NOTE: Many GPIB devices do not support parallel polling. Check your
device’s documentation.

offset 15

usage . . .
xx PPOIZ - 15
xx rs*p% - 0
xx PPOLL(rs~p%)
. .

parameters None.

returns resp% is an INTEGER which will contain the parallel poll response.

4-12 KM-488sROM USER GUIDE

- PPOL (cont.)
notes Before you call the PPOLL routine, you must configure the Parallel Poll

response of the device. To do this,

l Address it to listen.

l Send it a GI’IB Parallel Poll Configure (PPC) command, using the
XMIT command.

l Send a Parallel Poll Enable byte using the KM488-ROM XMIT
command. (Use the mnemonic CMD followed by nnn where nnn is the
decimal value of the Parallel Poll Enable byte.

The Parallel Poll Enable Byte is of the format OllOSPPP, where

S is the parallel poll response value (0 or 1) that the device
uses to respond to the parallel poll when service is required.

PPP is a 3-bit value that tells the device being configured
which data bit it should use as its parallel poll response
CD101 through DIOB).

example This example assumes that the KM-488-ROM is connected to a Sorenson
HPD3010 Power Supply. This device is located at GI’IB address 1. It is
also assumed that this device drives bit 3 of the Parallel Poll Response
byte to a logic “1” when service is required. To program the device to
respond properly, send the Parallel Poll enable byte 01101011 (107) via
the XMIT command.

- RCV
purpose Receives data into a string.

offset

usage

6

. . .
xx Ncv-6
P info+ sPAce$(mu.oharm%) '(mar.ohar.s% < 256)
xx hog%=
xx .t.t% -
xx CALL Rev (info$,leng%,*tat%)
. . .

NOTE: The alternate usage assumes the use of Input Message
Terminator 0.

PROGRAMMING IN BASICA OR GWBASIC 4-13

- RCV (cont.)
paramefers Mo$ is a STRING (256 characters max.) which will hold the received

data. The string must be long enough to receive the expected number of
characters. Carriage returns and the message terminator character in the
incoming data are ignored and not placed in received data. However,
bytes other than the terminator received with EOI will be stored. You
should use the BASIC SPACE$ function to declare a string which is long
enough to store the expected maximum number of characters to be
received. After the data has been received, it should be copied into a
new string and “trimmed” to length with the BASIC LEm$ function.

NOTE Before calling RCV, stat% must be initialized for terminator
selection.

stat% is an INTEGER that selects the input terminator to be used. ‘Ike
terminator (stat%) values follow:

Stat (Input) - Low Byte
BIT 7 6 5 4 3 2 1 0

TRMl TRMO X X X X X X 11
Where

X May be any value.

TRMl-0 Terminator Select. These two bits select the Input Message
Terminator to be used to signal the end of a transmission.
Available terminator selections are

TRMl TRMO TERMINATOR # DEFAULT

:
0 0 LF
1 1 CR

1 0 2
1 1 3

These terminators are defined upon system configuration
and are stored (along with the BASICA library code) in the
EEPROM. To change their values, run the CONFIG
program as described in Chapter 2.

info$ is a STRING variable (256 characters max.) containing the received
data. The string must be long enough to receive the expected number of
characters. Enter will terminate reception of data when 1) the number of
characters received exceeds the length of the string, 2) a message
terminator is received, or 3) any character is received with the EOI signal
asserted. Carriage returns and the message terminator in the incoming
data are ignored and not placed in received data. However, bytes other
than the message terminator received with EOI are stored.

leng% is an INTEGER, less than or equal to 256, which indicates the
actual number of bytes which were received and stored.

stat% is an INTEGER which describes the state of the transfer returned
after the call. The returned stat% values (or combination of) are
interpreted as follows:

4-14 KM-488-ROM USER GUIDE

- RCV (cont.)
Stat (Return) - Low Byte

BIT 7 6 6 4 3 2 1 0

0 0 0 0 TM0 OVF NL 0

Where

TM0 Timeout Error. Indicates whether or not a Timeout Error
occurred during data transfer. If this bit is a 1, then a
Timeout Error occurred.

OVF

NL

Overflow Error. If this bit is a 1, then the RCV routine
received more characters than could fit into the info string.

KM488-ROM not a Listener. If this bit is set to a 1, it
indicates the RCV was called before the KM-488-ROM was
designated as a Listener.

note9 The KM4?8-ROM must be addressed to listen and a device must be
addressed to talk prior to calling this routine.

ex&?f1@8 This example shows how the RCV routine might be used together with
the XMIT routine to receive data. It uses the XMIT routine to command
a Keithley 196 voltmeter to take a reading. The meter reading is received
using the RCV routine. It is assumed that the meter reading retomed
will fit into a 25-character string.

This example assumes that the KM-488-ROM has been configured such
that transmit message terminator 1 is Carriage Return-Line Feed
combination and this combination is also used by the Keithley 196.

10 DEF SEG-CSCCOO
20 IUIT - 0 : WIT - 3 : RCV-6 : ADRS%-0 : MODE%=0
30 CALL IWIT(ADRS%,MODE%)
40 SETDPWTtEN DNI, DNT IJSTE~ 7 MTA DATA 'POR381T3X' Tl GET

UULIMTTAIX7MLP."
50 CALL XMIT (9ETOP$,STAT%)
60 IP (STAT%OO) THEN PRINT “Error sading and &ring

9tatua-"; STAT%
70 RCVDAT$=SPAcE$(25) 'Allooato *paae for roooivo data
SO STAT%-0 'USS Input terminator 0
81 RcvLEW% - 0
90 CALL RCV(RCVDAT$, -%, STAT%)
100 LF (STAT%<>) TEEU PRINT "RCV Status Error Status=":STAT%
105 DA!l'$ - IJWT~(RCVDAT$,RCVLEN%)
110 PRINT "Reosivad &t~-":DAT$:"LMcJthi";RCVLEN%

- RCVA
purpose Receives data into an array.

offset 203

PROGRAMMING IN BASICA OR GWBASIC 4-15

- RCVA (cont.)
usage . . .

P EVA-203
xx DIY ISmDAT%(N%)
xx l g% -
P ofa% -
P mmxlsn% - 2*u%
P lavlM% -
xx atat% -
xx ofa%-VARVTR(indat%(O))
P CALL RCVA(~sg%,of~%,murlon%,mvllsn%,~tat%)

alternate usage ~Y(~eg%,of~%,nurlsn%,ro"lsn%,‘t*t%)

NOTE: The alterante usage assumes the use of Input Message
Terminator 0.

parmefers seg% is an integer representing the segment portion of the memory
address of the data. seg% is usually set to -1 to indicate the BASICA data
segment.

ofs% is the offset portion of the memory address of the data. This is
usually obtained using the VARPTR function. The VAWTR function
must be called immediately prior to the RCVA function call and all
variables used within the program must be declared prior to the
VARPTR function. This is because BASICA dynamically allocates
storage space and if variables are declared after the VARPTR call, the
array may be relocated and the data will be placed into the wrong
location. This may result in a program crash.

maxlen% is an INTEGER containing the maximum number of data
bytes to be received. See Programming Note 4, found at the beginning of
this section, if you want to send more than 32767 bytes.

stat% is an INTEGER which selects the type of terminator to be used.
This parameter must be initialized every time you call the RCVA routine.
This integer is interpreted according to the following format:

Stat (Input Parameter) - Low Byte
BIT 7 6 5 4 3 2 1 0

STRM TRMl TRMO X X X X X

Where

STRM Enable/Disable String Message Terminators. If this bit is 1,
a Message Terminator Character will be used to detect the
end of reception. If this bit is 0, a Message Terminator
Character will not be used.

TRMl-0 Terminator Select. These two bits select the Input Message
Terminator to be used to signal the end of a transmission.
(The STRM bit must be set to 1.1 Available terminator
selections are

4-16 KM-488~ROM USER GUIDE

- RCVA (cont.)
TRMl TRMO TERMINATOR # DEFAULT

0 0 0 LF
0 i :. CR
1
1 1 3

The values for these terminators can be changed by running
the CONFIG program as described in Chapter 2.

returns rcvlen% is an INTEGER containing the actual number of data bytes
which were received.

stat% is an INTEGER describing the state of the transfer returned after
the call.

The RCVA routine returns three status bits within the STAT variable.
The TM0 bit is used to signal a timeout error. The REOI bit signals that
the routine returned because the terminator was detected (if enabled), or
EOI was received. The NL bit is set if the RCVA routine was called and
the board was not addressed to listen. Unlike other KM-488-ROM
routines, it is possible to return a non-zero status when the call was
completed successfully.

Stat (Return) -Low Byte
BIT 7 6 5 4 3 2 1 0

0 0 REOi 0 TM0 0 NL 0

REOI Reason for RCVA Termination. If this bit is a 1, then RCVA
routine ceased because an EOI or terminator character was
received. If this bit is a 0, then the RCVA was terminated
because an error occurred or the maximum byte count was
reached.

TM0 Timeout Error. Indicates whether or not a Timeout Error
occurred during data transfer. If this bit is a 1, then a
Timeout Error occurred.

NL KM-488-ROM not a Listener. If this bit is set to a 1, it
indicates the RCVA was called before the KM-488-ROM
was designated as a Listener.

1. The KM-488ROM must be addressed to listen before calling this
routine.

2. When calling RCVA, you must declare an integer array to store
received data. Since each integer in BASICA uses 2 bytes of memory, the
total number of array locations allocated must be equal to or greater than
one half the total number of bytes to be received.

3. The maxlen% parameter must not exceed twice the number of array
locations or else the data will be stored into an area of memory which
has been allocated to different parts of the system.

PROGRAMMING IN BASICA OR GWBASIC 4-17

- RCVA (cont.)
This example illustrates a typical way to use RCVA.

Purpose

offset

usage

parameters

SEND
Addresses a specified device to listen, the KM-488-ROM to talk, and
sends data from a string.

9

XXSEUD - a
xx. a&*%= : stat% - : info5 - 1). , .”
x.x CALL BEaD (drs%,info$,*t*t%)
. . .

adrs% is an INTEGER containing the IEEE bus address of the device
that the data is to be sent to and the terminator to be used. This byte is of
the following format:

Adrs (Input Parameter) - Low Byte
BIT 7 6 5 4 3 2 1 0

TRMl TRMO 0 ADR4 ADF13 ADR2 ADRl ADRO

Where

TRMl-0 Terminator Select. These two bits select the Input Message
Terminator to be used to signal the end of a transmission.
Available terminator selections are

TRMl TRMO TERMINATOR # DEFAULT

0 0 0
0 1 1 ii
1 0 2
1 1 3

The values for these terminators can be changed by running
the CONFIG program as described in Chapter 2.

The easiest way to specify an alternate terminator is to add
a factor to the GPIB address of the desired instrument
which is specified within the SEND call. The factors added
for each terminator are as follows:

4-16 KM-466~ROM USER GUIDE

- SEND (cont.)
GPIB Address + 0 = Terminator 0
GPIB Address + 64 = Terminator 1
GPIB Address + 128 = Terminator 2
GPIB Address + 192 = Terminator 3

For example, if you wanted to send a message using
message terminator 2 to a device at GPIB address 10, the
value of adrs% supplied to SEND would be 138 decimal (10
+ 128).

ADRGO GPIB Address. These five bits are used to represent the
GLIB address of the device to which the data is to be sent.
GLIB addresses can range from 0 to 30.

Info$ is a STRING (256 chars max.) containing the data to be sent.

returns stat% is an INTEGER describing the state of the transfer returned after
the call. The returned stat values (or combination of) are interpreted as
follows:

Stat (Return) -Low Byte
BIT 7 6 5 4 3 2 1 0

0 0 0 0 TM0 0 NC ADRS

Where

TM0 Timeout Error. Indicates whether or not a Timeout Error
occurred during data transfer. If this bit is a 1, then a
Timeout Error occurred.

NC Not Active Controller. If this bit is a 1, then the SEND
routine was called when the KM-488-ROM was not an
Active Controller.

ADRS Invalid Address. If this bit is set to a 1, an invalid IEEE-488
device address was given.

examp/e This example shows how to send data from a KM-488-ROM to a device.
The KM4?8-ROM is initialized as a System Controller located at GLIB
address 10. The KM488-ROM uses high-speed handshaking. The data
(a device setup string) is sent to a device located at GPIB address 2 using
terminator 0.

10 DES" SEG-LECCOO ‘Assumes NNPROM is at CHCCOO
20 'change to suit your l etup
25 INIT - 0 'Offset of INIT routinn
30 9NNDn9 'Offast of SEND routine
40 Arms%-10 : MclnE%-4 ‘a&up a‘ ay&xm Controllsr at

'GPIB adrs 10 with High Spsod
'kkndshaks

60 CALL INIT (ADl=,S% , XODE%)
70 'Dsalars .&up string and addroes
80 1 of instrument
90 SNTDP$-~~POROTOMOX" : AD=%=2 : *TAT% -0
100 CAI& SSND (ADBS%,SET(IP$.BTAT%)
110 IP STAT <> 0 TEEN PRINT "Error sonding Status=";STAT%

PROGRAMMING IN BASICA OR GWBASIC 4-19

- SETINT
putpose Sets the m-488-ROM’s interrupt enable bits.

offset 212

usage . . .
P 8ETINT - 212
xx intvrl% -
P CALL SETINT(izitval%)
. .

parameters IntvaI% is an INTEGER containing the address and value of the
Interrupt Mask Register. This is interpreted as follows:

INTVAL (Input) -High Byte
BIT 7 6 5 4 3 2 1 0

X X X X X X X ADRS

Where

X May be any value.

ADRS If this bit is set to 0, bits 0 through 7 will be written to
Interrupt Mask 1. If this bit is set to 1, bits 0 through 7 will
be written to Interrupt Mask 2.

INTBRRUFF MASK 1
INTVAL (Input) -Low Byte (ADRS = 0)

BIT 7 6 5 4 3 2 1 0

0 0 GET 0 DEC 0 0 0

Where

GET

DEC

When this bit is set to 1, an interrupt will be generated
when a KM-488-ROM acting as a device received a GPIB
GET (Group Execute Trigger) command while addressed to
listen.

When this bit is set to 1, an interrupt is generated when a
Device Clear is received.

INTERRUPT MASK 2
INTVAL (Input) -Low Byte (ADRS = 1)

BIT 7 6 5 4 3 2 1 0

0 SRQI 0 0 0 LOKC REMC ADSC

SRQI When this bit is set to 1, an interrupt is generated when
SRQ is received.

LOKC When this bit is set to 1, an interrupt is generated when the
state of the Local Lockout bit changes.

4-20 KM-488-ROM USER GUIDE

returns

notes

examp/e

wwse

offset

usage

parameters

SETINT (cont.)
REMC When this bit is set to 1, an interrupt is generated when the

state of the Local/Remote bit changes.

ADSC When this bit is set to 1, an interrupt is generated when the
state of the LA, TA, or CIC bits within the address status
register changes.

None.

You must have an interrupt handling routine set-up in order to use the
interrupts. In BASICA, the most common way to handle interrupts is
through a routine which maps the interrupt into BASICA’s lightpen
interrupt, allowing you to execute a BASICA ON PEN statement to
execute the interrupt service routine.

This example shows you how to use the SETINT routine to enable the
SRQ interrupt.

10 DER SE0 - 4HCCOO
20 SSTIST - 212

30 IuTvAL% - itI

40 CALL WTIUT (IUTVAL~) ‘Enable SRQ intarrupt

SETSPOLL
Defines the Serial Poll Response of a KM-488-ROM acting as a device
(non-Controller).

215

xx SETWOLL - 215

P n.p* -

xx CALT SETSPOIL (reap%)

resp% is an INTEGER describing the serial poll response and the state of
the SRQ bit. This byte is of the following format:

Resp% (Input) - Low Byte
BIT 7 6 6 4 3 2 1 0

SPRS RSV SPR6 SPR5 SPR4 SPR3 SPRZ SPRl

Where

SPRl-6 Bits 1 through 8 of this device’s Serial Poll Response Byte.

RSV If this bit is 1, SRQ will be asserted to request servicing.
Otherwise, SRQ will not be asserted.

returns None.

PROGRAMMING IN BASICA OR GWBASIC 4-21

- SETSPOLL (cont.)
This example illustrates a common use of SETSPOLL.

- SPOLL
purpose Performs a serial poll of the specified device.

offset 12

usage . . .
XXWOLL-12
xx. a&a% -
xx rsspe -

xx &Gate =
xx CrLLL WOLL (adz*%, rsape, *tat%)

parameters adrs% is an INTEGER containing the IEEE bus address of the device
that is to be serial polled. This can range from 0 to 30.

returns resp% is an INTEGER containing the serial poll response received. The
definition of this integer varies from device to device; however, Bit 6 is
always used to indicate whether the device is in need of service. Consult
the manufacturer’s operator’s manual for more information.

stat% is an INTEGER describing the state of the transfer returned after
the call. The stat value is interpreted as follows:

Stat (Return) -Low Byte
BIT 7 6 6 4 3 2 1 0

0 0 0 0 TM0 0 NC ADR

Where

TM0 Timeout Error. Indicates whether or not a Timeout Error
occurred during data transfer. If this bit is a 1, then a
Timeout Error occurred.

NC KM48-ROM not a Controller. If this bit is set to a 1, it
indicates the routine was called before the KM-488-ROM
was designated as an Active Controller.

4-22 KM-466~ROM USER GUIDE

example

SPOLL (cont.)
ADR Invalid GPIB Address. If this bit is set to 1, an invalid GLIB

address was provided.

This example illustrates a simple serial poll of a device located at GLIB
address 10.

10
20
25
30
10
SO
60
70

im-
usage

parameters

BIT 7 6 6 4 3 2 1 0

X X X X ADR3 ADR2 ADRl ADRO

STATUS
Returns the current setting of the requested status parameter.

xx STATUS - 209
xxrrlJ% -
xx *tat% -
Xx CALL STATUS (rag%, &at%)

reg% is an INTEGER containing the address of the register or
configuration parameter to be queried. This value corresponds to a 4-bit
field specifying the status register or configuration parameter to be read.
The format of the reg% byte is as follows:

Reg (input) - Low Byte

X May be any value.

ADR3-0 REGISTER/PARAMETER SELECT. This is a 4.bit field
which specifies the status register or configuration
parameter to be read. Registers and parameters are selected
as follows:

PROGRAMMING IN BASICA OR GWBASIC 4 - 23

STATUS (cont.)
ADR3 ADRZ ADRl ADRO REGISTER/PARAMETER

0 0 0 0 Addregs statu8 Re*
0 0 0 1 htemlpl status 1 Reg
0 0 1 0 InterNpI statw 2 aeg
0 0 * 1 DMA StalusReg
0 1 0 0 output Tdstor 0
0 1 0 1 output TermlnatM 1
0 1 1 0 output Temunator 2
0 1 1 1 output Terminstor 3
1 0 0 0 Input Terminator 0
I 0 * 1 Jnput Terminator 1
1 1 1 0 Input Terminator 2
1 1 1 1 Input Terminator 3
1 0 0 0 I/O nmeo”t Parameter
1 0 0 1 DMA Timeo”t Parameter
1 1 1 0 I/O Port Address
1 1 1 1 GPIB Address of KM488-ROM

returns reg% -When STATUS obtains the value of one of the four transmit
message terminators, this variable will contain two flag bits which
detetine the length of the terminator and whether or not EOI is
asserted with the last byte. When obtaining other parameters, reg% will
retain its input value.

Reg (Return) -Low Byte
BIT 7 6 5 4 3 2 1 0

0 0 0 0 0 0 LEN EOI

Where

LEN Terminator Length. If this bit is set to 0, then the terminator
is one byte long. If this bit is set to 1, then the terminator is
two bytes long.

EOI If this bit is set to 1, EOI is asserted when the last terminator
byte is sent. Otherwise, EOI is not asserted.

stat% is an INTEGER describing the status bits for the register or the
configuration parameter which was specified by the reg% parameter.
Unless otherwise noted, the high byte of stat% is returned as 0.

Address Status Reek&
Stat (Return) -Low Byte

BIT 7 6 5 4 3 2 1 0

cc X X X x LA TA X

Where

X This bit may be any value.

CIC Active Controller. If this bit is set to 1, then the KM48&
ROM is a System Controller.

4-24 KM-488~ROM USER GUIDE

- STATUS (cont.)
LA Listener. If this bit is set to 1, then the KM&?&ROM is a

Listener.

TA Talker. If this bit is set to 1, then the KM488-ROM is a
Talker.

Interrout Status Reeister 1
Stat (Return) -Low Byte

BIT 7 6 5 4 3 2 1 0

X X GET X DEC X X X

Where

X This bit may be any value.

GET Group Execute Trigger. If this bit is set to 1, then a Group
Execute Trigger command was received while the KM488-
ROM was a device.

DEC When this bit is set to 1, a Device Clear was received.

Interruvt Status Reeister 2
Stat (Return) -Low Byte

BIT 7 6 5 4 3 2 1 0

X SRQl LOK REM X X X ADSC

Where

X This bit may be any value.

SRQI When this bit is set to 1, it indicates SRQ was active. (Active
Controller mode only.)

LOK When this bit is set to 1, the device was set to Local Lockout.
(Device mode only.)

AEMC When this bit is set to 1, the device was configured for
remote operation. (Device mode only.)

ADSC When this bit is set to 1, a change of the address status
occurred (i.e., untalk to talk, device to active controller, etc.).

DMA Status Reeister
Stat (Return) - Low Byte

BIT 7 6 5 4 3 2 1 0

X X X X TC3 TC2 TCl X

NOTE: DMA Status Register: it is useful to check the status
of this register when running DMA operations in
background mode.

Where
X This bit may be any value.

PROGRAMMING IN BASICA OR GWBASIC 4-25

- STATUS (cont.)
TCl When this bit is set to 1, it indicates that DMA channel 1 has

reached terminal count.

TC2 When this bit is set to 1, it indicates that DMA channel 2 has
reached terminal count.

TC3 When this bit is set to 1, it indicates that DMA channel 3 has
reached terminal count.

Message Terminator #O-3: Contains First and Last bytes of the message
terminator. Input terminators are only one byte long and are contained
in the Least Significant Byte. In the case of a two character Output
Terminator, the Most Significant Byte of this parameter is the first
character sent.

DMA Timeout and I/O Timeout Parameters: Contains the value of the
desired parameter as an unsigned value in the low and high bytes of
stat%. The timeout value is expressed in milliseconds (0 to 65535).

notes The bits contained in the Interrupt Status 1 and 2 registers are extremely
volatile. When you read these registers, any bits which were set are
automatically cleared by the READ operation. This is extremely
important to note when reading Interrupt Status Register 1, as some of
the bits (not shown above) are used by various KM&X&ROM routines.
It may be possible to cause various KM-488-ROM routines to report a
timeout error if this register is read while the KM-488-ROM is addressed
to talk or listen.

- XMIT
purpose Sends GPIB commands and data from a string.

offset 3

usage . . .
x%xMIT-3
xx infoe = #v...s*
xx stat% =
XXCALL XMIT (infos,*tat%)

alternate usage CALL TRWS!4TT(info$,stat%)

4-26 KM-488-ROM USER GUIDE

- XMIT (cont.)
psmmeters infa$ is a STRING variable containing a series of GPIB commands and

data. Each item must be separated by one or more spaces. Commands
can be in UPPER or lower case. The Transmit comman ds are described
in Chapter 3. These commands include

CMD GTL MTA SDC M
DATA GTLA MLA SEC Tl
DCL IFC PIT SPE l-2
END LISTEN PPD SI’D T3
EOI LLO FPU TALK UNL
GET LOC RBN TCT UN-r

returns stat% is an INTEGER which describes the state of the transfer returned
after the call. The returned stat value can be interpreted as follows:

Stat (Return) -Low Byte
BIT 7 6 5 4 3 2 1 0

Where

X May be any value.

ADRS Invalid GPIB address. If this bit is set to 1, then an invalid
GPIB address was given.

NCTL Not a System Controller. If this bit is set to 1, it indicates
that the KM488-ROM tried to send GI’IB Bus Commands
when it was not an Active Controller.

UNDF Undefined Command. If this bit is set to 1, the info string
contained an undefined command.

TM0 Timeout Error. Indicates whether or not a Timeout Error
occurred during data transfer. If this bit is a 1, then a
Timeout Error occurred.

STR String Error. If this bit is set to one, then a quoted string,
END, or terminator was found without a DATA
subcommand preceding it.

NT KM-H&ROM not a Talker. If this bit is set to a 1, it
indicates the routine was called before the KM-488-ROM
was designated as a Talker.

SIX Syntax Error. If this bit is set to 1, a syntax error was found.

example This example illustrates one way to use the XMIT command with a
Keithley 1% Voltmeter. This meter is assigned GPIB address 7 and is
configured to a 30 Volt DC range with 4 l/2 digit accuracy. The meter is
also configured to take a new reading each time a Group Execute Trigger
Bus command (GET) is received. It is assumed that the meter has been
set to use a CR, LF, EOI (the default for Message Terminator I). The
program then triggers the instrument to get the first reading, and makes
it a talker and the KM&Xl-ROM a listener in order to get the first
reading.

The device to receive the setup comman d string which must be sent to
the meter contains the following device commands:

PROGRAMMING IN BASICA OR GWBASIC 4 - 27

XMIT (cont.)
Ixl Select DC Volts mode
R3 Select 30 Volt range
Sl Select 4 l/2 digit accuracy
T3 Take one reading when GET received
X Execute the prior commands within the string

The device to receive the setup command string must also be
programmed to assert the GPIB REN signal (This allows the meter to
receive GPIB co mmands.) and to LISTEN (This allows the device to
receive the string.). The programming sequence used consists of the
following:

l Setting Remote Enable (RBN).
l Setting all devices to UNTalk and UNListen.
l Addressing the 196 to LISTEN.
l Addressing the KM488-ROM to talk (My Talk Address).
l Sending the Device-Dependent Commands as a string of DATA.
l Sending the appropriate message terminator characters after the data.
l Issuing the Group Execute Trigger bus command.
n Unaddressing all devices.
l Addressing the meter to TALK and the KM488-ROM to LISTEN (My

Listen Address) in preparation for receiving the latest reading.

- XMITA
pt~rpo~e Transmits data from an array.

offset 200

usage . .
xx XMITA = 200
xx ma*% =
xxOf#% =
xx DIM INFO% (n%)

XI aount% - z*n%

x1(term% =

xx &at% = 0

xx OfS% = VARpTR(infO%(O))
xx GAIL XMITA(~sg%,of~%,oount%,tsnn%,stat%)
. . .

alternate usage CALL TARRAY(~og%,of~%,aount%,tsna%, hat%)

4.20 KM-4t38-ROM USER GUIDE

- XMITA (cont.)
parameters seg% is an INTEGER representing the segment portion of the memory

address of the data. seg% is set to -1 to the BASICA data segment.

ofs% is an INTEGER representing the offset portion of the memory
address of the data. This is usually obtained using the VARM’R
function. The VARFTR function must be called immediately prior to the
XMITA function call and all variables used within the program must be
declared prior to the VARPTR function. The reason for this is that
BASICA can dynamically allocated storage space and if variables are
declared after the VARPTR call, there is a good possibility that the array
will be relocated and the data will be placed into the wrong location.

count% is an INTEGER containing thhe number of data bytes to be
transmitted. To send more than 32767 bytes, refer to Programming Note
4 in the beginning of this section.

term% is an INTEGER which selects the terminator to be used. This
byte is of the following format:

Term (Input Parameter) -Low Byte
BIT 7 6 5 4 3 2 1 0

STRM TRMl TRMO X X 1 x 1: x EOI

Where

X This bit may be any value.

STRM Send Message Terminators. If this bit is set to 1, then the
message terminator(s) will bc sent at the end of the
transmission. Otherwise, they will not.

TRMI-0 Terminator Select. These two bits select the Output
Message Terminator to be used to signal the end of a
transmission. Available terminator selections are

TRMl TRMO TERMINATOR # DEFAULT

0 0 0 LF EOI
0 1 1 CR LF Ii01
1 0 2 CR EOI
1 1 3 LF CR Ii01

These terminators can be redefined by running the CONFIG
program as described in Chapter 2.

EOI Asserts EOI. If this bit is set to 1, then EOI will be asserted
when the last byte is sent. Otherwise, EOI will not be
asserted.

returns stat% is an INTEGER describing the state of the transfer returned after
the call. The stat value is interpreted as follows:

Stat (Return) -Low Byte
BIT 7 6 5 4 3 2 1 0

0 0 0 0 TM0 1 0 1’ NT 1 0

PROGRAMMING IN BASlCA OR GWBASIC 4 - 29

- XMITA (cont.)
Where

TM0 Timeout Error. Indicates whether or not a Timeout Error
occurred during data transfer. If this bit is a 1, then a
Timeout Error occurred.

NT KM488-ROM not a Talker. If this bit is set to a 1, it
indicates the routine was called before the KM488-ROM
was designated as a Talker.

notes When calling XMITA, you must declare an integer array from which to
transmit data. Since each integer in BASICA uses 2 Bytes of memory, the
total number of array locations allocated must be equal to or greater than
one half the total number of bytes to be received.

exmp/e This example illustrates the use of XMITA. It shows you how to
properly set-up an array from which to send the data. Note that the data
is sent without a terminator or EOI asserted.

4-30 KM-4WROM USER GUIDE

Chapter 5

PROGRAMMING IN QUICKBASIC

While Chapter 3 gives a brief overview of the routines available for programming the KM-
488-ROM, this chapter gives instructions for calling the routines from QuickBASIC. The
routines appear in alphabetical order and include a sample program for each.

5.1 GENERAL
Supported Versions

The Environment

QuickBASIC 4.0 and higher

Before you begin to develop programs in QuickBASIC, several
files must be present in your working directory. Copy the
following files from the KM-488-ROM disks to your working
directory:

QUICKBASIC 4.0 QUICKBASIC 7.O(QBX)

\QB\KM488QB.B1 ‘QBKM488QB.BI
KjBKh4488QB4.QLB /QB\KM488QB7.QLB
KjBKM488QB4.LIB ‘QBKM488QB7.LIB

File Header Be sure to include the following line within your program:

‘$INCLUDE: ‘km488qb’

Including of this file allows QuickBASIC to check that the correct
number and type of parameters are specified for each routine
called.

Once your QuickBASIC application program has been written,
you will compile the program. Be sure to include full path
names to the various library files where needed.

From within the QuickBASIC Environment

Be sure that the appropriate .QLB file KM488QB4.QLB or
KhU38QB7.QLB) is located where QuickBASIC can find it.
Then, invoke QuickBASIC by typing

FOR QUICKBASIC 4.0 FOR QUICKBASIC 7.O(QBX)

qb /Lkm48llqb4 yourprog qb /um488qb7 yourprog

where yourprog is the name of your program.

PROGRAMMING IN QuickSASlC 5 - 1

Software

To create a Standalone Program

This process compiles the QuickBASIC source code and linka it
to the QuickBASIC and KM-488ROM library files. This process
is slightly different depending on the version of QuickBASIC
used. (See your manual for specifics.) The following example
shows you how to link the files in Version 4.0:

link yo”zprog,, ,baom45tkm4eeqb4;

where

yourprog is the name of your program.
bcom4.5 is the QuickBASIC Runtime library name.
km488qb4 is the linkable BASIC library file.

The KM-488~ROM firmware contains a number of configuration
parameters that govern the default settings of the input and
output message terminator settings, message timeout periods,
and I/O port addresses. The default terminators are shown in
the following table. If these default values are unsatisfactory,
they may be changed by calling either the INTBRM or
OUTTERM routine.

The default DMA and I/O Timeouts are 10 seconds. These
defaults may be altered by calling the DMATIMEOUT or
IOTIMEOUT routine.

Default Temlnator Settlngs
TERM # OUTPUT TERMINATOR INPUT TERMINATOR

0 LF EOI LF
1 CRLFEOI CR
2 CR EOI , (comma)
3 LFCREOI : (semi-colon)

Programming Notes 1. Any parameters which appear as variables may also be
passed as constants.

2. Parameters which are also used to retorn values must be
declared as variables.

3. Integer variable names end with a percent sign and integer
constants do not contain a decimal point.

4. All integers are treated by the KM-488-ROM routines as
unsigned values (0 to 65535). However, QuickBASIC treats them
as signed magnitudes (-32768 to +32767). When you need to
express a value which is greater than or equal to 32768, you will
need to express it in one of two ways:

l Convert it to a hexadecimal value. Be sure to prefix these
values with &H when equating them to a variable name. Legal
hexadecimal values range from 0 to &HFFFF and can be used to
represent values from 0 to 65535.

l Use unsigned values from 0 to 32767 as is, but for values of
32768 to 65535 subtract 65536.

5. Do not name any of your variables with the same name as
those assigned to the KM488-ROM routines.

5-2 KM-488~ROM USER GUIDE

5.2 DESCRIPTION FORMAT FOR ROUTINES
The format for each descriptions is as follows:

Pwtwse

usage

alternate usage

parameters

returns

notes

example

5.3 ROUTINES

purpose

usage

alternate usage

parameters

returns

example

. . . a brief description of the routine. See Chapter 3 for more detailed
descriptions.

. . . gives an example of usage for each routine and assumes the input
parameters are passed in as variables. These parameters can also be
passed in directly. See the General Programming Notes for more
information.

. . . lists alternate usage for the routine, if any. Unless otherwise noted, the
alternate usage performs exactly the same function as the usage.

. . . describes each of the input parameters.

. . . describes any values returned by the routine.

. . . lists any special programming considerations.

. . . gives a programming example using the routine.

DMATIMEOUT
Sets the maximum length of time for a DMA transfer to complete before
a timeout error is reported. (See RCVA and XMITA routine
descriptions.)

CArtL DMATIMEOOT (time%,

CALL SETTIMEOUTkhne%)

NOTE: The alternate usage sets both the DMA and I/O Timeouts to the
specified value.

time% is an INTEGER which represents the timeout period to elapse
during a DMA transfer. A DMA Timeout Error will be generated when
the time to transfer (via DMA) an entire message exceeds the set DMA
timeout value (time). time% can range from 0 to 65535 milliseconds and
is internally rounded to the closest integer multiple of 55 milliseconds.
For values greater than or equal to 32768, time must be represented
differently. See Programming Note 4 at the begining of this section.

This example sets the DMA Timeout period to 5 seconds.

DMA TIMEOUT (5000)

PROGRAMMING IN QuickBASIC 5-3

- ENTER
purpose Addresses a specified device to talk, the KM4!8-ROM to listen, and

receives data from the addressed device into a string.

usage . . . '8etup an 80 ahar l tring
i&0$ - sPAcs$(50) 1 to rsooivs tho data
caIJ4 EUTER (info$,lmlg%,a&a%, *tat%)

parameters lnfo$ is a STRING which is to hold the receive data. The string must be
long enough to receive the expected number of characters. This may be
accomplished using the QuickBASIC SPACB$ function. For example, the
line INFo$ = SPACE$(lOO) allocates a 100 character string for storing
data. Carriage returns and the message terminator character in the
incoming data are ignored and not placed in received data.

a&% is an INTEGER containing the IEEE bus address of the device
that the data is to be sent to and the terminator to be used. This byte is of
the following format:

Adrs (Input Parameter) - Low Byte
BIT 7 6 5 4 3 2 1 0

TRMl TRMO 0 ADR4 ADR3 ADR2 ADRI ADRO

Where

TRMl-0

ADR4-0

Terminator Select. These two bits select the Message
Terminator to be used to signal the end of a transmission.
Available terminator selections are

TRMl TRMO TERMINATOR # DEFAULT

0 0 0 LF
0 1 1 CR
1 0 2
1 1 3

These terminators may be changed by the INTERM routine.

The easiest way to specify an alternate terminator is to add
a factor to the GPIB address of the desired instrument
which is specified within the ENTER call. The factors
added for each terminator are as follows:

GPIB Address + 0 = Terminator 0
GPIB Address + 64 = Terminator 1
GPIB Address + 128 = Terminator 2
GPIB Address + 192 = Terminator 3

For example, if you wanted to receive a message using
terminator 2 from a device at GPIB address 10, the value of
adrs% supplied to ENTER would be 138 decimal (10 + 128).

GPIB Address. These five bits are used to represent the
GPIB address of the device to which the data is to be sent.
GPIB addresses can range from 0 to 30.

5-4 KM-468~ROM USER GUIDE

- ENTER (cont.)
returns Info8 is a STRING variable, up to 256 characters, which will contain the

received data. The length of the string must be long enough to receive
the expected number of characters. Enter will terminate reception of
data when: 1) the number of characters received exceeds the length of the
string, 21 the specified terminator is received, or 31 any character is
received with the EOI signal asserted. Carriage returns and the
terminator character in the incoming data are ignored and not stored
with the received data. However, bytes other than the terminator which
are received with EOI asserted will be stored.

leng% is an INTEGER, less than or equal to 256, which indicates the
actual number of bytes which were stored. This number does not
include message termmator characters or carriage returns.

stat% is an INTEGER which describes the state of the transfer returned
after the call. If a stat value of 0 is returned, the transfer completed
normally. Otherwise, the returned stat values for combination of) are
interpreted as follows:

Stat (Return) -Low Byte
BIT 7 6 5 4 3 2 1 0

0 0 0 0 TM0 OVF NC ADRS

Where

TM0 Timeout Error. Indicates whether or not a Timeout Error
occurred during data transfer. If this bit is a 1, then a
Timeout Error occurred.

OVF Overflow Error. If this bit is a 1, then the info string was
filled, before a terminator character or EOI was detected.

NC KM-488ROM not an Active Controller. If this bit is set to a
1, it indicates the routine was called before the KM-488-
ROM was designated as an Active Controller.

ADRS Invalid GPIB address. If this bit is set to 1, then an invalid
GPIB address was given.

example In the following example, data is sent from two different instruments to
a KM-488-ROM. The KM-488ROM is acting as the System Controller
and is assigned to GPIB address 0. One of the two instruments is a
voltmeter, requiring a Carriage Return-Line Feed terminator
combination (Term 11, assigned to GPIB address 7. The second
instrument, located at GPIB address 10, requires a line feed (Term 01 as
its terminator. The voltmeter is first sent a string of data which
represents its instrument setup command. Then, when addressed to talk,
it sends its most current reading to the KM-I88-ROM. The second
instrument is instructed to send its status, when addressed to talk.

It is assumed that the string sent by both instruments is 25 characters or
less. The string is printed out on the computer screen.

PROGRAMMING IN QuickBASiC 5 - 5

ENTER (cont.)

purpose

usage

alternate usage

parameters

INIT
Initializes the KM-488-ROM by assigning its GLIB address and
establishing it as a System Controller or Device.

CALL INIT (a&#%,m&%)

CALL INITIALINE (dr~%,m~&%)

adrs% is an INTEGER representing the IEEE bus address of the KM-488-
ROM. This is an integer from 0 to 30.

mode% is an INTEGER representing the operating mode of the KM-488-
ROM. These can be any of the following values:

Mode - Low Byte
BIT 7 6 5 4 3 2 1 0

X X X X X FAST DEV X

Where

X May be any value.

FAST Handshake Speed. If this bit is set to 1, High Speed GPIB
bus handshaking will be used(5OOns.). If it is set to 0, Low
Speed GI’IB bus handshaking (2 s.) will be used. See
Chapter 3 for more information regarding the handshake
Speed.

5-6 KM-466~ROM USER GUIDE

- INIT (cont.)
DEV Device. If this bit is set to 1, then the KM488-ROM is acting

as a Device. Otherwise, when this bit is set to 0, the KM-
48EROM is acting as a System Controller. When System
Controller is selected, the GPIB IFC line is momentarily
asserted.

returns None.

exampte This example initializes the KM-488-ROM as a System Controller with a
IEEE address of 0 with a High Speed Handshake.

CALL IPIT (0.4)

- INTERM
purpose Changes the input message terminator settings.

usage CALL ImmN(num%.tsrm%)

alternate usage CALL sETTkmJTEos (term%)

NOTE: The Alternate Syntax will only change the value of Input
Message Terminator 0.

parameters num% is an integer which selects the number of the receive message
terminator to be changed. This ranges from 0 to 3, where

IlUlN% TERMINATOR # DEFAULT

0 0
1 1
2 2
3 3

term% is an integer representing the terminator byte to be programmed.
This integer is the decimal or hex equivalent of the terminator’s ASCII
representation. Hex equivalents must be preceded by &H. See Appendix
A for ASCII Equivalents.

returns None.

eXamp/e This example sets Input Terminator 3 to Line Feed (Hex A).

cJlLL INTam4(3,CNA)

- IOTIMEOUT
purpose Changes the length of time to elapse before an I/O Timeout occurs.

usage . . .
GAIL 1oT1mE0uT (tAIm%)

PROGRAMMING IN QuickBASIC 5 - 7

- IOTIMEOUT (cont.)
parameters time% is the time elapsed before a timeout error is reported. This

occurs if the time elapsed between the transfer of individual bytes
exceeds the specified I/O Timeout period. time% is between 045535 ms,
internally rounded to the closest multiple of 55 ms. ‘Ike default is 10
seconds.

returns None.

eXampte This sets the I/O timeout to 1 second.

CALL IOTI~O'JT(1000)

- OUTTERM
purpose Changes the output message terminator sequences.

usage CALL OuTTERU(n~%,~r*%,~i%,tnnl%,trm2%)

alternate usage CAwl SSTOUTPUTSOS(tnnl%,tm2%)

NOTE: The Alternate Syntax will only change the value of Terminator 0,
and will always assert EOI upon the transmission of the last character.
In addition, a single character terminator is programmed by setting
bTnz% to 0.

parameters num% is an INTEGER which selects the number of the transmit
message terminator to be changed. This ranges from 0 to 3, where:

num% TERMINATOR # DEFAULT

0 0 LF EOI
1 1 CRLFEOI
2 2 CREOI
3 3 LFCREOI

chars% is an INTEGER that selects the length of the transmit terminator.
This is 0 if a l-character terminator is required or 1 for a 2-character
terminator.

eoi% is an INTEGER that determines whether EOI is asserted when the
last terminator byte is sent. If this bit is 1, EOI will be sent. If this bit is 0,
EOI will not be sent.

&ml% is an INTEGER representing the first terminator byte to be sent;
it is the decimal or hex equivalent of the terminator’s ASCII
representation. Be sure to precede all hex values with &H. See Appendix
A for ASCII Equivalents.

4~~2% is an INTEGER representing the second terminator byte (in a 2.
byte terminator); it is the decimal or hex equivalent of the terminator’s
ASCII representation. Be sure to precede all hex values with &H. If a l-
byte terminator is programmed, trm2% may be any value.

returns None.

example This example sets Output Terminator 1 to Carriage Return, Line Feed,
EOI.

CALL 0UTTERM(1,1,1,CED,CHI)

5-8 KM-488-ROM USER GUIDE

usage

parameters

returns

notes

Purpose
usage

alternate usage

PPOLL
Initiates a parallel poll.

NOTE: Many GPIB devices do not support parallel polling. Check your
device’s documentation.

CALL PRCLL (ramp%)
None.

reap% is an INTEGER which will contain the received parallel poll
response.

Before you call the PI’OLL routine, you must first configure the Parallel
Poll response of the device. To do this:

l Address it to listen.

l Send it a GI’IB Parallel Poll Configure (WC) command.

l Send a Parallel Poll Enable byte using the KM-488-ROM XMIT
command. (Use the mnemonic CMD followed by nnn where mm is
the decimal value of the Parallel Poll Enable byte.

The Parallel Poll Enable Byte is of the format OllOSPPP, where:

S is the parallel poll response value (0 or 1) that the device uses to
respond to the parallel poll when service is required.

PPP is a 3-bit value which tells the device being configured which data
bit it should use as its parallel poll response (DIOI through DIOS).

This example assumes that the KM488-ROM is connected to a Sorenson
HPD30-10 Power Supply. This device is located at GPIB address 1. It is
also assumed that this device drives bit 4 of the Parallel Poll Response
byte to a logic “1” when service is required. In order to retrieve this
response, the device’s parallel poll response must be configured to
respond in this manner. This is accomplished by using the KM-488-
ROM XMIT routine with the CMD command accompanied by the
command byte 01101011(107).

cau hlit.(O,O)

RCV
Receives data into a string.

. . .
i&0$-SPACE8 (80) 'AlloLTatm l paaa ior roooivo* d&r
GAIL RCV(info$,tsrm%,r~lsn%,*t~t%)
1..

CALL ~~~(info$,rc"lur%,‘t.t$)

PROGRAMMING IN QuickBASIC 5 - 9

- RCV (cont.)
NOTE: The Alternate Syntax assumes the use of Input Message
Terminator 0.

parameters info$ is a STRING which will hold the received data. Prior to calling
RCV, you must initialize a string which is long enough to receive the
expected number of characters. This may be accomplished using the
QuickBASIC SPACE$ function. For example, the line INFO8 =
Sl’ACE$WC0 allocates a 100 character string for storing data. Carriage
returns and the message terminator character in the incoming data are
ignored and are not stored with the received data.

term% is an INTEGER containing the number of the IEEE bus
terminator to be used, where:

term% TERMINATOR # DEFAULT

0 0 LF
1 1 CR
2 2
3 3

These terminators can be changed by calling the INTERM routine.

returns Mo$ is a STRING variable (up to 64 KBytesI which will contain the
received data. The length of the string must be long enough to receive
the expected number of characters. RCV will terminate reception of data
when: 1) the number of characters received exceeds the length of the
string, 21 a terminator is received, or 3) any character is received with the
EOI signal asserted. Carriage returns and the message terminator
character in the incoming data are ignored and not stored with the
received data.

rcvlen% is an INTEGER which indicates the actual number of bytes
which were received and stored.

stat% is an INTEGER which describes the state of the transfer returned
after the call. The returned stat values are interpreted as follows:

Stat (Return) - Low Byte
BIT 7 6 5 4 3 2 1 0

0 0 0 0 TM0 OVF NL 0

TM0 Ttmeout Error. Indicates whether or not a Timeout Error
occurred during data transfer. If this bit is a 1, then a
Timeout Error occurred.

OVF Overflow Error. If this bit is a 1, then the info string was
filled, before a terminator character or EOI was detected.

NL KM-488-ROM not a Listener. If this bit is set to a 1, it
indicates the RCV was called before the KM488-ROM was
designated as a Listener.

notes The KM4WROM must be addressed to listen and another device
addressed to talk before calling RCV.

J-10 KM-W&ROM USER GUIDE

- RCV (cont.)
example The following example shows how the RCV routine might be used

together with the XMIT routine to receive data. It demonstrates a
method of triggering the KeithIey 196 voltmeter to take a reading using
the XMIT command and then receiving the meter reading using the RCV
command. It is assumed that the meter reading returned will fit into a
string of 25 characters. This example also assumes that the KM-488-
ROM has been configured to use Transmit Message terminator 1 as a
Carriage Return-Line Feed combination.

Purpose

usage

RCVA
Receives data into an array. This routine may also be used to receive
data via DMA (See SETDMA.)

. . .
DIM in&t*% (1000) 'allooats 1000 .rray looations
maxlen% - 2000
Cw W”A(in&t&(O) ,mulsn%,tsrm%,r~vlon$,.t~t%)
. . .

alternate usage

paremeters

CALL stAmAY(in&ta%, msrlsn%,ravlm%,*tat%)

NOTE: The Alternate Syntax assumes the use of EOI as a terminator.

term% is an INTEGER which selects the type of terminator to be used.
This integer is interpreted according to the following format:

Term (Input Parameter) -Low Byte
BIT 7 6 5 4 3 2 1 0

X X X X X STRM TFiMl TRMO

Where

X May be any value.

STRM Enable/Disable String Message Terminators. If this bit is 1,
a Message Terminator Character will be used to detect the
end of reception. If this bit is 0, a Message Terminator
Character will not be used.

PROGRAMMING IN QuickBASIC 5-11

RCVA (cont.)
TRMl-0 Terminator Select. These two bits select the Input Message

Terminator to be used to signal the end of a transmission.
(The STRM bit must be set to 1.) Available terminator
selections are

TRMl TRMO TERMINATOR # DEFAULT

0 0 0 LF
0 1 1 CR
1 0 2
1 1 3

The values for these terminators can be changed by calling
the INTERM routine.

maxlen% is an integer which specifies the maximum number of data
bytes which can be received. When you want to receive more than 32767
bytes, use the technique outlined in Programming Note 4 presented at
the beginning of this section. maxlen% must be less than or equal to
twice the total number of bytes allocated in the indata% array or a
program crash may occur.

refurfls indata% is an array which will contain the received data. All characters
received are stored.

rcvlen% is an integer which will contain the actual number of data bytes
which were received. Note that half this many array locations will
contain data. To specify more than 32767 bytes, use the technique
outlined in Programming Note 4 presented at the beginning of this
section.

stat% is an integer describing the state of the transfer returned after the
call. The RCVA routine returns three status bits within the stat%
variable. The TM0 bit is used to signal a timeout error. The REOI bit
signals that the routine returned because the terminator was detected (if
enabled), or EOI was received. The NL bit is set if the RCVA routine was
called and the card was not addressed to listen. Unlike other KM-488-
ROM routines, it is possible to return a non-zero status when the call was
completed successfully.

Stat (Return) - Low Byte
BIT 7 6 5 4 3 2 1 0

0 0 REOI 0 TM0 0 NL 0

Where

REOI Reason for RCVA Termination. If this bit is a 1, then RCVA
routine ceased because an EOI or terminator character was
received. If this bit is a 0, then the RCVA was terminated
because an error occurred or the maximum byte count was
reached.

TM0 Timeout Error. Indicates whether or not a Timeout Error
occurred during data transfer. If this bit is a 1, then a
Timeout Error occurred.

5.12 KM-488~ROM USER GUIDE

- RCVA (cont.)
NL KM488-ROM not a Listener. If this bit is set to a 1, it

indicates the RCVA was called before the Kh4488-ROM
was designated as a Listener.

/10fe8 The KM488-ROM must be addressed to listen before calling this routine.

example Refer to the XMITA example.

- SEND
purpose Addresses a specified device to listen, the KM488-ROM to talk, and

sends data from a string.

usage info$ - “d&a to be trmmdttd”
CAT& sm (a&*%,info$,*t~tu~%)

parameters adrs% is an INTEGER containing the IEEE bus address of the device
that the data is to be sent to and the terminator to be used. This byte is of
the following format:

Adrs (Input Parameter) -Low Byte
BIT 7 6 5 4 3 2 1 0

TRMI TRMO 0 ADR4 ADR3 ADR2 ADRl ADRO

Where

TRMl-0 Terminator Select. These two bits select the Input Message
Terminator to be used to signal the end of a transmission.
Available terminator s&ctions are

TRMl TRMO TERMINATOR # DEFAULT

0 0 0 LF
0 1 1 CR
1 0 2
1 1 3

The values for these terminators can be changed by running
the CONFIG program as described in Chapter 2.

The easiest way to specify an alternate terminator is to add
a factor to the GPIB address of the desired instrument
which is specified within the SEND call. The factors added
for each terminator are as follows:

GPIB Address + 0 = Terminator 0
GPIB Address + 64 = Terminator 1
GPIB Address + 128 = Terminator 2
GPIB Address + 192 = Terminator 3

For example, if you wanted to send a message using
message terminator 2 to a device at GPIB address 10, the
value of adrs% supplied to SEND would be 138 decimal (10
+ 128).

PROGRAMMING IN QuickBASIC 5-13

- SEND (cont.)
AOFM-0 GPIB Address. These five bits are used to represent the

GPIB address of the device to which the data is to be sent.
GPIB addresses can range from 0 to 30.

ix&$ is a STRING (256 chars max.) containing the data to be sent.

returns stat% is an INTEGER describing the state of the transfer returned after
the call. The returned stat values (or combination of) are interpreted as
follows:

Stat (Return) -Low Byte
BIT 7 6 5 4 3 2 1 0

Where

TM0 Timeout Error. Indicates whether or not a Timeout Error
occurred during data transfer. If this bit is a 1, then a
Timeout Error occurred.

NC Not Active Controller. If this bit is a 1, then the SEND
routine was called when the KM488-ROM was not an
Active Controller.

ADRS Invalid Address. If this bit is set to a 1, an invalid IEEE488
device address was given.

examp/e This example shows how to send data from a KM488-ROM to a device.
The KM488-ROM is initialized as a System Controller located at GPIB
address 10. The KM488-ROM uses high-speed handshaking. The data
(a device setup string) is sent to a device located at GPIB address 12.

‘~I”cLuDs:‘sn1*8QB’
CALL INTT,lll,1,

As an alternative, the following sequence can be used:

- SETBOARD
purpose In a multiple board system, identifies the KM488-ROM to be

programmed.

usage cam kmmmto (board%)

alternate usage CALL BOARDSELECT (board%)

5-14 KM-488-ROM USER GUIDE

parameters

returns

notes

example

wwse

usage

alternate usage

parameters

returns

notes

SETBOARD (cont.)
board% is an INTEGER between 0 and 3 which represents the board to
be programmed. Note that up to four boards can be installed in any one
system. The board% “number” is associated with the base address of its
I/O port.

None.

You must assign a board “number” for every KM438-ROM in the system
before calling the SETBOARD routine. Board numbers are assigned
using the SETPORT routine.

Each board must be must be initialized independently by calling the
lNIT routine. You must do this the first time a given board is selected,
before any other operations are conducted on that board.

Once a board has been selected using SETBOARD, all further I/O
operations will be performed on that board until the next SETBOARD is
executed.

This example line selects board “2” for communication.

SETBOXD(2)

SETDMA
NOTE: DMA allows maximum data transfer rates in excess of 100
kilobytes per second. However, the actual data rates are limited by the
rates at which other devices connected to the bus can send or receive
data. These rates are governed automatically by the GPIB handshaking
signals.

Allows the use of DMA in conjunction with the XMITA and RCVA
routines.

CALL 8ETDI(R(ohuursl%)

CAL& Eamcamm(ahMnSl%)

channel% is an INTEGER which specifies the DMA channel to be used
for the data transfer. channel% can be from 1 to 3, where:

1 = Use DMA channel 1.
2 = Use DMA channel 2.
3 = Use DMA channel 3.

To disable DMA. set channel% to a value other than 1,2 or 3.

None.

The DMA hardware jumpers must be properly set for the DMA channel
selected by SETDMA. Note that the default setting for the jumpers is
DMA DISABLED. The jumpers are further described in Chapter 2.

When SETDMA is called to enable the use of DMA, each call to the
XMlTA and RCVA routines that follows will use DMA to accomplish the
transfer until SETDMA is called with a parameter outside the range of l-
3.

PROGRAMMING IN QuickBASIC 5-15

- SETDMA (cont.)
example This example specifies that DMA transfers are to take place using DMA

channel 1 and then DMA is disabled.

CALL SETDIdA(1) 'enabloa dnu trurafsra via ahannol 1

- SETINT
purpose Sets the KM-488-ROM’s interrupt enable bits.

usage CALL SETIm (intval%)

parameters intval% is an INTEGER containing the address and value of the
Interrupt Mask Register. This is interpreted as follows:

INTVAL (Input) - High Byte
BIT 7 6 5 4 3 2 1 0

X X X X X X X ADRS

Where

X May be any value.

ADRS If thls bit is set to 0, bits 0 through 7 will be written to
Interrupt Mask 1. If this bit is set to 1, bits 0 through 7 will
be written to Interrupt Mask 2.

INTBRRUI’T MASK 1
INTVAL (Input) -Low Byte (ADRS = 01

BIT 7 6 5 4 3 2 1 0

0 0 GET 0 DEC 0 0 0

Where

GET

DEC

When thls bit is set to 1, an interrupt will be generated
when a KM438-ROM acting as a device received a GPIB
GET (Group Execute Trlgge;) command while addressed to
listen.

When this bit is set to 1, an interrupt is generated when a
Device Clear is received.

INTBRRUIT MASK 2
INTVAL (Input) -Low Byte (ADRS = 1)

BIT 7 6 5 4 3 2 1 0

0 Stml 0 0 0 LOKC REMC ADSC

5-16 KM-488~ROM USER GUIDE

- SETINT (cont.)
Where

SRQI When thls bit is set to 1, an interrupt is generated when
SRQ is received.

LOKC When this bit is set to 1, an interrupt is generated when the
state of the Local Lockout bit changes.

REMC When this bit is set to 1, an interrupt is generated when the
state of the Local/Remote bit changes.

ADSC When this bit is set to 1, an interrupt is generated when the
state of the LA, TA, or CIC bits within the address status
register changes.

returns None.

notes Be certain to assign the KM488-ROM to an interrupt level before using
this routine. Interrupt Levels are assigned by means of a jumper on the
KM-488-ROM board. This jumper is described in detail in Chapter 2.

You must set-up an interrupt handling routine within the QuickBASIC
program to deal with the interrupt condition.

example Thls example enables the KM488-ROM to generate an interrupt when
SRQ is received.

Cw SETINT(&EltO)

- SETPORT

purp088 This routine is used to alter the range of addresses used by the KM-488-
ROM’s I/O port. In a multiple board environment, it is also used to
associate a given range of I/O addresses with a board number.

usage CA&L SETRCRT (board%, ioport%)

PeJZVrIeterS board% is an INTEGER between 0 and 3 which represents the board to
be programmed. Note that up to four boards can be installed in any one
system. The board% “number” is associated with the base address of its
I/O ports.

ioport% is an INTEGER representing the I/O Base Address of the KM-
488-ROM. The default Base Address is 288 Hex. The Base Address
selected must match the one selected by the Base Address Switch on the
KM-488-ROM. (See Chapter 2 for more information.)

returns None.

notes When multiple boards are used, each board must have its own unique
base address. Any Base Address can be assigned to any board number,
provided that none of the base addresses overlap.

example This line assigns Board 0 an I/O Base Address of 300h.

*stpoa (0, CE300)

PROGRAMMING IN QuickBASIC 5-17

- SETSPOLL
piNpOSe Defines the Serial Poll Response of a KM-N+ROM acting as a device

(non-Controller).

usage CALL BETSPOIL (rasp%)

fXtrar#re(efS reap% is an INTEGER describing the serial poll response and the state of
the SRQ bit. This byte is of the following format:

Resp% (Input) - Low Byte
BIT 7 6 5 4 3 2 1 0

SPR6 RSV SPR6 SPR5 SPR4 SPR3 SPR2 SPRl

Where

SPRl-6 Bits 1 through 8 of this device’s Serial Poll Response Byte.

Ftsv If this bit is 1, SRQ will be asserted to request servicing.
Otherwise, SRQ will not be asserted.

returns None.

oXample This example illustrates a common use of SETSPOLL.

req.% = 0

purpo=
usage

parameters

returns

SPOLL
Performs a serial poll of the specified device.

CALL sPOLL(.dr.%,re.p%,.t*+%)

adrs% is an INTEGER containing the IEEE bus address of the device
that is to be serial polled. This can range from 0 to 30.

resp% is an INTEGER containing the serial poll response received. The
definition of this integer varies from device to device; however, Bit 6 is
always used to indicate whether the device is in need of service. Consult
the manufacturer’s operator’s manual for more information.

stat% is an INTEGER describing the state of the transfer returned after
the call. The stat value is interpreted as follows:

Stat (Return) -Low Byte
BIT 7 6 5 4 3 2 1 0

0 0 0 0 TM0 0 NC ADR

6-16 KM-466~ROM USER GUIDE

- SPOLL (cont.)
Where

TM0

NC

Indicates whether a Timeout Error occurred during data
transfer. If a 1, then a Timeout Error occurred.

KM4?8-ROM not a Controller. If set to a 1, it indicates the
routine was called before the KM-488-ROM was designated
as an Active Controller.

ADR Invalid GPIB Address. If this bit is set to 1, an invalid GPIB
address was provided.

&%3m~/e This example illustrates a simple serial poll of a device located at GPIB
address 10.

- SRQ

purpose Detects the presence of the GPIB SRQ signal.

usage IP (SRW) TBeU

parameters None.

returns The SRQ function returns a 0 or FALSE when not present, or a 1 or TRUE
when present.

notes The value returned by SRQ is generally used within a conditional branch
in an application program.

Note that after obtaining a TRUE response from SRQ, SRQ response is
reset to FALSE even if the SRQ line is still active. In order to reset the
SRQ response to TRUE, you must serial poll at least one device with a
requesting service. Conducting a serial poll on a device requesting
service resets its SRQ line. Then, if other devices were simultaneously
asserting SRQ, the output of SRQ will be reset to TRUE. Otherwise, SRQ
becomes TRUE on the next SRQ assertion.

examp/e This example assumes that the KM-488-ROM is connected to an
instrument located at GPIB address 1 and capable of requesting service
via SRQ. When SRQ is detected, the SPOLL function is called and the
serial poll response of the device is printed to the computer screen.

‘$IwCLmE: ‘km488qb.k.i
IF moo) THRW

PROGRAMMING IN QuickBASIC 5-19

- STATUS
purpose Returns the current setting of the requested status parameter.

usage CAL& STATUS (rep%, .t.t%)

parameters reg% is an INTEGER containing the address of the register or
configuration parameter to be queried. reg% must be passed as a
variable. This value corresponds to a 4-bit field which specifies the
status register or configuration parameter to be read. The format of the
reg% byte is as follows:

Reg (input) - Low Byte
BIT 7 6 5 4 3 2 1 0

X X X X ADR3 ADR2 ADRl ADRO

Where

X May be any value.

ADRS0 REGISTER/PARAMETER SELECT. This is a 4-bit field
which specifies the status register or configuration
parameter to be read. Registers and parameters are selected
as follows:

ADRS ADIU ADRI ADRO REGlS”?RmARAMRTER

returns reg% -When STATUS obtains the value of one of the four transmit
message terminators, this variable will contain two flag bits which
determine the length of the terminator and whether or not EOI is
asserted with the last byte. When obtaining other parameters, reg% will
retain its input value.

Reg (Return) - Low Byte
BIT 7 6 6 4 3 2 1 0

0 0 0 0 0 0 LEN EOI

5-20 KM-466-ROM USER GUIDE

- STATUS (cont.)
Where

LEN Terminator Length. If this bit is set to 0, then the terminator
is one byte long. If this bit is set to 1, then the terminator is
two bytes long.

EOI If this bit is set to 1, EOI is asserted when the last terminator
byte is sent. Otherwise, EOI is not asserted.

stat% is an INTEGER describing the status bits for the register or the
configuration parameter which was specified by the reg% parameter.
Unless otherwise noted, the high byte of stat% is returned as 0.

Address Status Register
Stat (Return) -Low Byte

BIT 7 6 6 4 3 2 1 0

Where

X

cc

LA

TA

This bit may be any value.

Active Controller. If this bit is set to 1, then the KM488-
ROM is a System Controller.

Listener. If this bit is set to 1, then the KM-4&3-ROM is a
Listener.

Talker. If this bit is set to 1, then the KM-488-ROM is a
Talker.

InterruDt Status Reeister 1
Stat (Return) -Low Byte

BIT 7 6 6 4 3 2 1 0

Where

X This bit may be any value.

GET Group Execute Trigger. If this bit is set to 1, then a Group
Execute Trigger comman d was received while the KM-488-
ROM was a device.

DEC When this bit is set to 1, a Device Clear was received.

Interruot Status Resister 2
Stat (Retorn) - Low Byte

BIT 7 6 6 4 3 2 1 0

X SRQl LOK REM X X X ADSC

Where

X This bit may be any value.

PROGRAMMING IN QuickBASIC 6-21

- STATUS (cont.)
SRQI When this bit is set to 1, it indicates SRQ was active. (Active

Controller mode only.)

LOK When this bit is set to 1, the device was set to Local Lockout.
(Device mode only.)

REM When this bit is set to 1, the device was configured for
remote operation. (Device mode only.)

ADSC When this bit is set to 1, a change of the address status
occurred (i.e., untalk to talk, device to active controller, etc.).

Transmit and Receive Messave Terminator #l-4. Contains First and Last
bytes of the message terminator. Input Terminators and Single
Character Output Terminators are contained in the Least Significant
Byte. In the case of a two character Output Terminator, the Most
Significant Byte of this parameter is the first character sent.

DMA Timeout and I/O Timeout Parameters. Contains the value of the
desired parameter as an unsigned value in the low and high bytes of
stat%. The timeout value is expressed in milliseconds (065535).

notes The bits contained in the Interrupt Status 1 and 2 registers are extremely
volatile. When you read these registers, any bits which were set are
automatically cleared by the READ operation. This is extremely
important to note when reading Interrupt Status Register 1, as some of
the bits (not shown above) are used by various KM-@&ROM routines.
It may be possible to cause various KM-488-ROM routines to report a
timeout error if this register is read at while the KM-488-ROM is
addressed to talk or listen.

example This example illustrates a possible use for the STATUS routine.

re@ml : ‘f.t.5 - 0
CALL sT*r”s,reg%,.tat%,

- XMIT
purpose Sends GPIB comman ds and data from a string.

usage CA?& IDlIT (info$, *tat%)

pammeters Info.$ is a STRING variable containing a series of GPIB commands and
data. Each item must separated by one or more spaces. All the
available co mmands are described in Chapter 3. These commands
include

5-22 KM-48%ROM USER GUIDE

- XMIT (cont.)
parameters Info.9 is a STRING variable containing a series of GPIB commands and

data. Each item must be separated by one or more spaces. Commands
can be in UPPER or lower case. The Transmit commands are described
in Chapter 3. These comman ds include

CMD GTL MTA SDC To
DATA GTLA MLA SEC Tl
DCL IFC FTC WE Tz
END LISTEN PPD SPD T3
EOI LLO PPU TALK UNL
GET LOC REN TCT UNT

returns stat% is an INTEGER which describes the state of the transfer returned
after the call. The returned stat value can be interpreted as follows:

Stat (Return) -Low Byte
BIT 7 6 5 4 3 2 1 0

X ADRS NCTL UNDF TM0 STR NT STX

X

ADRS

May be any value.

NCTL

Invalid GPIB address. If this bit is set to 1, then an invalid
GPIB address was given.

Not a System Controller. If this bit is set to 1, it indicates
that the KM488-ROM tried to send GPIB Bus Commands
when it was not an Active Controller.

UNDF Undefined Command. If this bit is set to 1, the info string
contained an undefined command.

TM0 Timeout Error. Indicates whether or not a Timeout Error
occurred during data transfer. If this bit is a 1, then a
Timeout Error occurred.

STR String Error. If this bit is set to one, then a quoted string,
END, or terminator was found without a DATA
subcommand preceding it.

NT KM-488-ROM not a Talker. If this bit is set to a 1, it
indicates the routine was called before the KM-488-ROM
was designated as a Talker.

STX Syntax Error. If this bit is set to 1, a syntax error was found.

This example illustrates one way to use the XMIT command with a
Keithley 196 Voltmeter. This meter is assigned GPIB address 7 and is
configured to a 30 Volt DC range with 4 l/2 digit accuracy. The meter is
also configured to take a new reading each time a Group Execute Trigger
Bus command (GET) is received. It is assumed that the meter has been
set to use a CR, LF, EOI (the default for Message Terminator 1). The
program then triggers the instrument to get the first reading, and makes
it a talker and the KM-488-ROM a listener in order to get the first
reading.

The device to receive the setup command string which must be sent to
the meter contains the following device commands:

PROGRAMMING IN QuickBASIC 5 - 23

XMIT (cont.)
FO Select DC Volts mode
R3 Select 30 Volt range
Sl Select 4 l/2 digit accuracy
T3 Take one reading when GET received
X Execute the prior commands within the string

The device to receive the setup command string must also be
programmed to assert the GPIB REN signal (This allows the meter to
receive GLIB commands.) and to LISTEN (This allows the device to
receive the string.). The programming sequence used consists of the
following:

l Setting Remote Enable (REN).
l Setting all devices to UNTalk and UNListen.
l Addressing the 196 to LISTEN.
l Addressing the KM&&&ROM to talk (My Talk Address).
l Sending the Device-Dependent Commands as a string of DATA.
l Sending the appropriate message terminator characters after the data.
l Issuing the Group Execute Trigger bus command.
l Unaddressing all devices.
l Addressing the meter to TALK and the KM-488-ROM to LISTEN (My

Listen Address) in preparation for receiving the latest reading.

- XMITA
purpose Sends data from an array.

usage CALL lMITA(out&t%(O),aount%,tom%,~tat%)

alternate usage TARRAY(acmnt%,tsrm%,~tat%)

parametsrs outdat% is an INTEGER array containing the data to be sent.

count% is an INTEGER containing the number of data bytes to be
transmitted. NOTE: In BASIC, when you want to send more than 32767
bytes, you will have to assign the value to count% in hex.

term% is an INTEGER that describes what sort of terminator should be
used. This byte is of the following format:

Term (Input Parameter) -Low Byte
BIT 7 6 5 4 3 2 1 0

STRM TRMl TRMO X X EOI

Where

X This bit may be any value.

5-24 KM-4%ROM USER GUIDE

XMITA (cont.)
STRM Send Message Terminators. If this bit is set to 1, then the

message terminator(s) will be sent at the end of the
transmission. Otherwise, they will not.

TRMl-0 Terminator Select. These two bits select the Output
Message Terminator to be used to signal the end of a
transmission. Available terminator selections are

TRMI TRMO TERMINATOR # DEFAULT

0 0 0 LF EOI
0 1 1 CR LF EOI
1 0 2 CR EOI
1 1 3 LF CR EOI

These terminators can be redefined by running the CONFIG
program as described in Chapter 2.

EOI Asserts EOI. If this bit is set to 1, then EOI will be asserted
when the last byte is sent. Otherwise, EOI will not be
asserted.

returns stat% is an INTEGER describing the state of the transfer returned after
the call. The stat value is interpreted as follows:

Stat (Return) - Low Byte
BIT 7 6 6 4 3 2 1 0

Where

TM0 Timeout Error. Indicates whether or not a Timeout Error
occurred during data transfer. If this bit is a 1, then a
Timeout Error occurred.

NT KM-488-ROM not a Talker. If this bit is set to a 1, it
indicates the routine was called before the KM-488-ROM
was designated as a Talker.

example This example demonstrates use of SEND, XMITA, and RCVA to send
and retrieve waveform data from a GPIB oscilloscope. The scope expects
data points to be sent with the most significant byte first. Thus, the data
bytes to be sent must be byte-swapped prior to sending them.

DSCLARB SW s*e.payt~~ (88)
DSCLAm 80s Di.playmerr mxSt.e.t.%, srrorstr*,

DIM X%WZO, Y%(1024), 2%(1024), S%WOO)
CLS : RBY on: coI,oa 7, 0

CaLI, INIT10,O) 'KM-488-ROH ia system oontroller nt OPIB ndrs 0

SCOPBP - 16 ‘Saope l t a&x 16

PaINT ‘~Tlln?cArJZTNO SCOPP”: PaINT

PROGRAMMING IN QuickBASIC 5-25

- XMITA (cont.)

5-26 KM-488-ROM USER GUlDE

XMITA (cont.)

cm8 = “EICDG w*m : BIWARY”

CALL SmD(SCGPB%, me, BmG%)

IB (HAG% 0 0, TEEN CALL Di~playm4errLFLaG%, CUDS)

am6 = "OOTPDT mm."
CALL sBND,SCOPE%, aAD*, BL?.G%)
TB (SLAG0 <> 0) THBN CALL Di‘pl*yIG4err@wbG%, cMD$)

CMD8 - "CVRVE 1" 'Ask for d*ta to be returned

CALL ssND,SCOPB%, aloe, BLaG%,
IB (mAG% <> 0) TERN c?ALL DispPdymerr,yIAG%, Cl.m$)

CnDg = "lY.m 'I + STRB,SCOPS%, + aa PaA"
CALL xt4Ir(cMD6, mAG%, 'setup for saope to send data
IF (BxAG% <> 0) lwzN CALL DiaplaylQberr,BLAG%, adD$)

CGrmT%=7: IA-0

CGrmTP - 2050: L% = 0
CALL RcvA(s%(ol, comT6, 0, 1%. SLAG%) 'D.tA reaeivec3
10 WAG% 0 0) TBBN CAL& Di.splayIWerr(BIAG%, CMO$)
IF L% <> (2 + N”KRW% l 2) TRE” GOT0 2080

FOR 1% = 1 TO 1024
se = -8 (9% (1%) I
CAT& sr.pRyts. (MS)
Y%(l% - 1) = vAL(E@)
IP x%(1% - 1) - %(I% - 1) TEE" PRINT ".": ELSE PRINT I'*";
mm 1%

PROGRAMMING IN QuickBASIC 5-27

- XMITA (cont.)
PRINT
888P% = 0
CALL SPOLL(BCGPE%, PaSP%, mAG%)
PRINT “SPOLL. = “; HBx$,RBSP% AND 255,

1% = LE”,B$)
IB 1% - 1 TED%" B$ - "000" + B$
IB 1% = 2 TBXN B$ = "00" + B$
TB I.% = 3 THEN B$ = "0" + B$

LSS$ = RIGer$(s$, 2)
Ksae = =wf$(B$. 2)
se = "LB" + LSB$ + WBS 'hap bytes

5-20 KM-488-ROM USER GUIDE

Chapter 6

PROGRAMMING IN TURBO PASCAL

While Chapter 3 gives a brief overview of the routines available for programming the KM-
48SROM, this chapter gives instructions for calling the routines from TURBO PASCAL. The
routines appear in alphabetical order and include a sample program for each.

6.1 GENERAL
TURBO PASCAL direct support is currently offered for versions 4.0 and 5.0. The interface for
TURBO PASCAL includes four different files, as follows:

KM488PAS.TPU “UNIT” file for use with Borland TURBO PASCAL version 5.0.

KM488P4.TPU “UNIT’ file for use with Borland TURBO PASCAL version 4.0.

KM488PASPAS Source file to be used for m-building TURBO Pascal “UNfT” file.

KM488PAS.OBJ Object code file to be used for re-building TURBO Pascal “UNIT” file.

The files KM488PASPAS and KM488I’LB.OBJ can be used to create a new “unit” file should
you need to.

Supported Versions

The Envtronment

Turbo PASCAL versions 4.0,5.0 and higher.

Before you begin to develop programs in TURBO PASCAL,
several files must be present in your working directory. Copy
the appropriate files from the KM48EROM Disks to your
working directory:

TURBO PASCAL 4.0 TURBO PASCAL 5.0

\turbopas~488p4.tpu IntrbopasUtm488pas.tpu

NOTE: km488p4.pas must be renamed km488pas.tpu.

File Header

Compiling

Software

-

Your application program can be compiled in the usual fashion.
Be sure to include the following line in your program:

USES hm6pas;

The KM-488-ROM firmware contains a number of configuration
parameters which govern the default settings of the input and
output message terminator settings, message timeout periods,

PROGRAMMING IN TURBO PASCAL 6 - 1

and I/O port addresses. The default terminators are shown in
Table 4-3. If these default values are unsatisfactory, they may be
changed by calling either the INTERM or OUTTERM routine.

The default DMA and I/O Timeouts are 10 seconds. These
defaults may be altered by calling the DMATIMEOUT or
IOTIMEOUT routine.

Default Termlnator Settings
TERM # OUTPUT TERMINATOR INPUT TERMINATOR

0 LF EOI LF
1 CR LF’ EOI CR
2 CR EOI , (comma)
3 LF CR EOI : (semi-colon)

1. Any arguments which appear as variables may also be passed
as constants.

2. Parameters which are also used to return values must be
declared as variables.

3. Any of the KM4WROM routines which are used to receive
data require that a named string or array be declared to store the
received data. The length of the string or size of the array should
be sufficient to store the number of bytes that are expected. In
addition, these routines require a parameter which specifies the
maximum number of bytes to be received. It is extremely
important that the amount of storage space allocated is at least as
great as this maximum length parameter. Otherwise, data may
be stored into memory which has been allocated for use by other
parts of your program, or for use by DOS. This could lead to
erroneous operation and possibly a system crash.

4. In TURBO Pascal, strings are actually a special type of
character array. The first byte of the array is used to store the
number of bytes contained within the string. Hence, strings may
range from 0 to 255 bytes in length and the KM&B-ROM
routines which pass data to or from strings are limited to 255
bytes maximum.

5. Do not name the variables in your application program with
the same name as any of the KM&?&ROM routines.

6. Do not assign a program name which is the same name as any
of the KM-48&ROM routines.

6.2 DESCRIPTION FORMAT FOR ROUTINES
The format for each descriptions is as follows:

purpose a brief description of the routine. See Chapter 3 for more detailed
descriptions.

usage . gives an example of usage for each routine and assumes the input
parameters are passed in as variables. These parameters can also be
passed in directly. See the General Programming Notes for more

6-2 KM-488~ROM USER GUIDE

information.

. . . lists alternate usage for the routine, if any. Unless otherwise noted, the
alternate usage performs exactly the same function as the usage.

,.. describes each of the input parameters.

. . . desaibes any values rehmwd by the routine.

. . . lists any special programming considerations.

. . . gives a programming example using the routine.

parameters

returns

notes

examp/e

ROUTINES

usage

alternate usage

parameters

returns

example

DMATIMEOUT
Sets the madmum length of time for a DMA transfer to complete before
a timeout error is reported, when using DMA in conjunction with
XMITA and RCVA routines.

. . .
VAR

tinu: WORD:
. . .
BEGIW
. . .
dmatimsout (time) :
. . .

. . .
mattimeout (tima) ;
. . .

NOTE The alternate usage sets both the DMA and l/O Timeouts to the
specified value.

time is an INTEGER which represents the timeout period to elapse
during a DMA transfer. A DMA Timeout Error will be generated when
the time to transfer (via DMA) an entire message exceeds the set DMA
timeout value (time). time% can range from 0 to 65535 milliseconds and
is internally rounded to the closest integer multiple of 55 milliseconds.

None.

This example sets the DMA Timeout period to 5 seconds.

drmtimclout (5000)

ENTER
Addresses a specified device to talk, the KM-488-ROM to listen, and
receives data from the addressed device into a string.

PROGRAMMING IN TURBO PASCAL 6 - 3

- ENTER (cont.)
usage . . .

VaR
info : BTRING:
lrng : WORD:
nnxlan : WORD:
adax : INTEGER;
.t.t : 1wTEGER:

. . .
BEGIP

~t~r(info,murlsn,leng,a&*,~t~t):
. . .

parameters info is a STRING which is to hold the receive data. The string must be
long enough to receive the expected number of characters. Note that
when you declare a variable to be a string in TURBO PASCAL, 255 bytes
of string space is allocated. Carriage returns and the message terminator
character in the incoming data are ignored and not placed in received
data.

maxlen is a WORD which should be set to the maximum number of
characters you expect to receive. It must never exceed the number of
bytes of string space which have been allocated for storage of the
received data.

a&s is an INTEGER containing the IEEE bus address of the device that
the data is to be sent to and the terminator to be used. This byte is of the
following format:

Adrs (Input Parameter) - Low Byte
BIT 7 6 5 4 3 2 1 0

TRMl TRMO 0 ADR4 ADR3 ADR2 ADA1 ADRO

Where

TRMl-0 Terminator Select. These two bits select the Message
Terminator to be used to signal the end of a transmission.
Available terminator selections are

TRMl TRMO TERMINATOR # DEFAULT

0 0 0
0 1 1 ET
1 0 2
1 1 3

These terminators may be changed by the INTERM routine.

The easiest way to specify an alternate terminator is to add
a factor to the GPIB address of the desired instrument
which is specified within the ENTER call. The factors
added for each terminator are as follows:

GPIB Address + 0 = Terminator 0
GPIB Address + 64 = Terminator 1
GPIB Address + 128 = Terminator2
GPIB Address + 192 = Terminator 3

6-4 KM-466~ROM USER GUIDE

- ENTER (cont.)
For example, if you wanted to receive a message using
terminator 2 from a device at GPIB address 10, the value of
adrs% supplied to ENTER would be 138 decimal (10 + 128).

ADR4-0 GPIB Address. These five bits are used to represent the
GPIB address of the device to which the data is to be sent.
GPIB addresses can range from 0 to 30.

info is a STRING variable, up to 255 characters, which will contain the
received data. The length of the string must be long enough to receive
the expected number of characters. Enter will terminate reception of
data when: 1) the number of characters received exceeds the length of the
string, 2) the specified terminator is received, or 3) any character is
received with the EOI signal asserted. Carriage returns and the
terminator character in the incoming data are ignored and not stored
with the received data.

leng is an INTEGER, less than or equal to 255, which indicates the actual
number of bytes which were stored.

stat is an INTEGER which describes the state of the transfer returned
after the call. The returned stat values (or combination of) are
interpreted as follows:

Stat (Return) - Low Byte
BIT 7 6 5 4 3 2 1 0

0 0 0 0 TM0 OVF NC ADRS

Where

TM0 Timeout Error. Indicates whether or not a Timeout Error
occurred during data transfer. If this bit is a 1, then a
Timeout Error occurred.

OVF Overflow Error. If this bit is a 1, then the info string was
filled, before a terminator character or EOI was detected,

NC KM48-ROM not an Active Controller. If this bit is set to a
1, it indicates the routine was called before the KM-488-
ROM was designated as an Active Controller.

ADRS Invalid GPIB address. If this bit is set to 1, then an invalid
GPIB address was given.

In the following example, data is sent horn two different instruments to
a KM-4&?-ROM. The KM-488-ROM is acting as the System Controller
and is assigned to GPIB address 0. One of the two instruments is a
voltmeter, requiring a Carriage Return-Line Feed terminator
combination (Term l), assigned to GPIB address 7. The second
instrument, located at GI’IB address 10, requires a line feed (Term 0) as
its terminator. The voltmeter is first sent a string of data which
represents its instrument setup command. Then, when addressed to talk,
it sends its most current reading to the KM488-ROM. The second
instrument is instructed to send its status, when addressed to talk.

It is assumed that the string sent by both instruments is 25 characters or
less. ‘Ihe string is printed out on the computer screen.

PROGRAMMING IN TURBO PASCAL 6-5

ENTER (cont.)

6-6 KM-466~ROM USER GUIDE

- INIT
/JW/JGS~ Initializes the KM-i88-ROM by assigning its GPIB address and

establishing it as a System Controller or Device.

usage . . .
VAR

a&m : INTEGER
nude: I-:

BEGIU
a&*:- ;
moda:= ;
WIT (drs, mode);

alternate usage INITIALIZE(~&s, moda)

paramefers adrs is an INTEGER representing the IEEE bus address of the KM-488-
ROM. This is an integer from 0 to 30.

mode is an INTEGER representing the operating mode of the KMd88-
ROM. These can be any of the following values:

Mode - Low Byte
BIT 7 6 5 4 3 2 1 0

X X X X X FAST DEV X

Where

X May be any value.

FAST Handshake Speed. If set to 1, High Speed GPIB bus
handshaking is used (5OOns). If set to 0, Low Speed GPIB
bus handshaking (2 us) is used. See Chapter 3 for more
information.

DEV

returns None.

Device. If set to 1, the KM-488-ROM is acting as a Device.
Otherwise, the KM-488-ROM is acting as a System
Controller. When System Controller is selected, the GPIB
IFC line is momentarily asserted.

example This example initializes the KM-488-ROM as a System Controller with a
IEEE address of 0 with a High Speed Handshake.

. .
PawRAw ue*rprog;
USPS m448sPAs;
. . .
VAR

*&a : TNTEGBR;
mode: 1mmxa;

.
BEGIN

adr‘:-O;
mode:-4;
init ,.dr~,mode) ;

. .

PROGRAMMING IN TURBO PASCAL 6 - 7

- INTERM
purpose Changes the input message terminator settings.

usage . . .
VAR num:mTEoER;

tsnn : I-:
. . .
BEGIH

intsrm (mm, tsnn) ;
. . .

alternate usage . . .
VIM tsem:BXTE:
. . .
BEGIU

l .tinputeo. (turn)) :
. .

NOTE: ‘Ihe alternate syntax only changes the value of Input Terminator
0.

parameters uum is an integer which selects the number of the receive message
terminator to be changed. This ranges from 0 to 3, where

num% TERMINATOR # DEFAULT

0 0 LF
1 1 CR
2 2
3 3

term is an integer representing the terminator byte to be programmed.
This integer is the decimal or hex equivalent of the terminator’s ASCII
representation. Hex equivalents must be preceded by &H. See Appendix
A for ASCII Equivalents.

returns None.

notes The parameters may be passed directly into the routine.

example This example sets Input Terminator 0 to Line Feed and Input Terminator
3 to Carriage Return.

VAR

BEGIN
int*rm (0.10);
intwm(3.m;

.

6-6 KM-466-ROM USER GUIDE

- IOTIMEOUT
purpose Changes the length of time to elapse before an I/O Timeout occurs.

usage . . .
VAR

tinm: WORD:
. . .
BEGIN

iot.imDout (tinlo) ;
. . .

paramefera time is the amount of time to elapse before a timeout error is reported.
This will occur if the time elapsed between the transfer of individual
bytes exceeds the specified I/O Timeout period (time). time is any value
between 0 and 65535 milliseconds and will be internally rounded to 55
milliseconds. The default timeout value is 10 seconds.

returns None.

examp/e This line sets the I/O Timeout period to 1 second.

. . .

- OUTTERM
purpose Changes the output message terminator sequences.

usage . . .
VaB

nun, : INTEGER;
aharm : 1uTEGER;
ad. : IWTBGER;

tnul : IIiTEGER:

tnnz : IUTR~:
. . .

BEGIN

0utta"l(*u"l, char*, soi, trml, tnllz)

. . .

alternate usage . . .
VAR

tnnl : BYTE:

tnnz : BYTE:
, . .
BEGIN

8atoutputao* (tml , t.nnz)

NOTE: The Alternate usage will only change the value of Terminator 0
and will always assert EOI upon transmission of the last character.
Additionally, a single terminator is programmed by setting ton2 to 0.

parameters num is an INTEGER which selects the number of the transmit message
terminator to be changed. This ranges from 0 to 3, where

PROGRAMMING IN TURBO PASCAL 6 - 9

- OUTTERM (cont.)
num% TERMINATOR # DEFAULT

0 0 LP EOI
1 1 CRLFEOI
2 2 CR EOI
3 3 LFCREOI

chars is an INTEGER that selects the length of the transmit terminator.
This is 0 if a l-character terminator is required or 1 for a Z-character
terminator.

eoi is an INTEGER that determines whether I301 is asserted when the
last terminator byte is sent. If this bit is 1, EOI will be sent. If this bit is 0,
EOI wiU not be sent.

tam1 is an INTEGER representing the first terminator byte to be sent; it
is the decimal or hex equivalent of the terminator’s ASCII representation.
Be sure to precede all hex values with &H. See Appendix A for ASCII
Equivalents.

trm2 is an INTEGER representing the second terminator byte (in a 2-
byte temxinator); it is the decimal or hex equivalent of the terminator’s
ASCII representation. Be sure to precede all hex values with &H. If a l-
byte terminator is programmed, trm2% may be any value.

returns None.

exBmple These lines illustrate two different uses of OmERM.

ousxml (0.0.1.m.0) (a&m output t.xmilutor 0 to CR Z0T.J

CulT- ~J,1,o,m,o1~ (Pa.. output t.dma.or J to cR,Ia “ith Ilo MI.,

- PPOLL
purpose Initiates a parallel poll.

NOTE: Many GPIB devices do not support parallel polling. Check your
device’s documentation.

usage . . .
VAR

J-*P : byte;
. . .
BEGIN

ppollh--ap);
. . .

parameters None.

retufns resp is a BYTE which will contain the parallel poll response.

notes Before you call the PPOLL routine, you must first configure the Parallel
Poll response of the device. To do this,

1. Address it to listen.

2. Send it a GPIB Parallel Poll Configure (PIT) command, using the
WIT command.

6-10 KM-488~ROM USER GUIDE

- PPOLL (cont.)
3. Send a Parallel ~011 Enable byte using the XMIT command. (Use the
mnemonic CMD followed by nnn where nnn is the decimal value of the
Parallel Poll Enable byte.

The Parallel Poll Enable Byte is of the format OllOSPPP , where

S is the parallel poll response value (0 or 1) that the device uses to
respond to the parallel poll when service is required.

PPP is a 3-bit value which tells the device being configured which data
bit it should use as its parallel poll response (DIOl through DIOS).

example This example assumes that the KM4S-ROM is connected to a Sorenson
HPD30-10 Power Supply. This device is located at GPIB address 1. It is
also assumed that this device drives bit 3 of the Parallel Poll Response
byte to a logic “1” when service is required. To program the device to
respond properly, send the Parallel Poll enable byte 01101011 (107) via
the XMIT command.

- RCV

purpose Receives data into a string.

usage vm
info : aTruwG;
maxlsn : WORD;
trnn : IUTEGER;
rav1en : UOPD;
.+*t : IIyTE(IER;

. , .
BEGIW

rcv(info, mfulan, t.Prm, rovlon. stat);
. . .

alternate usage rsasive(hfo. da, rav1en. .taq ;

NOTE:The Alternate usage assumes the USC of Input Message
Terminator 0.

PROGRAMMING IN TURBO PASCAL 6-11

- RCV (cont.)
parameters info is a STRING which will hold the received data. The string must be

long enough to receive the expected number of characters. Carriage
returns and the message terminator character in the incoming data are
ignored and are not stored with the received data.

maxlen is a WORD which specifies the maximum number of data bytes
which can be received. n-u&en must not exceed the actual number of
storage locations that have been allocated to store data. Otherwise, data
may be stored in locations other than those allocated for your program
and your program may crash.

term is an INTEGER containing the number of the IEEE bus terminator
to be used, where:

term% TERMINATOR # DEFAULT

0 0 LF

;
1 CR
2

3 3

These terminators canbe changed by calling the INTERM routine.

returns info is a mG variable (up to 64 KBytes) which will contain the
received data. The length of the sting must be long enough to receive
the expected number of characters. RCV will terminate reception of data
when: 1) the number of characters received exceeds maxlen; 2) a

terminator is received; or 3) any character is received with the EOI signal
asserted. Carriage retorns and the message termtnator character in the
incoming data are ignored and not stored with the received data.

rcvlen is a WORD that indicates the actual number of bytes which were
received and stored.

stat is an INTEGER which describes the state of the transfer returned
after the call. The retwned stat values are interpreted as follows:

Stat (Return) -Low Byte
BIT 7 6 5 4 3 2 1 0

0 0 0 0 TM0 OVF ML 0 11
Where

TM0

OVF

NL

Timeout Error. Indicates whether or not a Timeout Error
occurred during data transfer. If this bit is a 1, then a
Timeout Error occurred.

Overflow Error. If this bit is a 1, then the info string was
filled, before a terminator character or EOI was detected.

KM488-ROM not a Listener. If this bit is set to a 1, it
indicates the RCV was called before the m-488.ROM was
designated as a Listener.

notes The KM488-ROM must be addressed to listen and another device
addressed to talk before calling RCV.

6-12 i&-488-ROM USER GUIDE

- RCV (cont.)
examp/e This example shows how the RCV routine might be used together with

the XMlT routine to receive data. It uses the XMIT routine to command
a Keithley 196 voltmeter to take a reading. The meter reading is received
using the RCV routine. It is assumed that the meter reading returned
will fit into a ZScharacter array.

This example assumes that the KM-488-ROM has been configured such
that transmit message terminator 1 is Carriage Return-Line Feed
combination and this combination is also used by the Keithley 196.

Note that the Voltmeter’s setup command string is enclosed within
double single quotes 0.

RCVA
pUfpOSe Receives data into a specified array. It may also be used to receive data

via DMA (See SETDMA).

usage . . .
VAR

data : TIPS[LEwDTBI
msrlan : WORD;
term: INTEGER:
SOVlSn : WORD;
*tat : INTEGER;

. . .
BECIW
. . .

rcva(datr[Ol ,maxlGm,tonn,ravl~", *tat) :
.

PROGRAMMING IN TURBO PASCAL 6-13

- RCVA (cont.)
alternate usage r~r.y(&ta(O, ,murlen, rovlsn, stat);

NOTE: The Alternate usage is limited to terminating on EOI.

parameters dataI] is an ARRAY which is used to store the received data. It may be
any data type. The number of data bytes contained in each array
location will vary according to the data type specified. The RCVA
routine will “byte pack” data into the array, starting with the least
significant byte of the s~reclfled location. The size of the array should be
large enough to store the expected number of data bytes or a program
crash could occur.

term is an INTEGER which selects the type of terminator to be used.
This integer is interpreted according to the following format:

Term (Input Parameter) - Low Byte
BIT 7 6 6 4 3 2 1 0

X X X X X STRM TRMl TRMO

Where

X

STRM

TRM1-6

May be any value.

Enable/Disable String Message Terminators. If this bit is 1,
a Message Terminator Character will be used to detect the
end of mception. If this bit is 0, a Message Terminator
Character will not be used.

Terminator Select. These two bits select the Input Message
Terminator to be used to signal the end of a transmission.
(The STRM bit must be set to 1.1 Available terminator
selections are

TRMl TRMO TERMINATOR # DEFAULT

0 0 0 LF
0 1 1 CR
1 0 2
1 1 3

The values for these termmators can be changed by calling
the IN’lBRM routine.

maxlen is an integer which specifies the maximum number of data bytes
which can be received. When you want to receive more than 32767
bytes, use the technique outlined in Programming Note 4 presented at
the beginning of this section. maxlen% must be less than or equal to
twice the total number of bytes allocated in the indata% array or a
program crash may occur.

returns rcvlen is a WORD that will contain the actual number of data bytes
which were received. Note that half this many array locations will
contain data. To specify more than 32767 bytes, use the technique
outlined in Programming Note 4 presented at the beginning of this
section.

1

6-14 KM-466~ROM USER GUIDE

- RCVA (cont.)
stat is an integer describing the state of the transfer returned after the
call. The RCVA routine retorns three status bits within the stat%
variable. TheTMO bit is used to signal a timeout error. The REOI bit
signals that the routine returned because the terminator was detected (if
enabled), or EOI was received. The NL bit is set if the RCVA routine was
called and the card was not addressed to listen. Unlike other KM-488-
ROM routines, it is possible to return a non-zero status when the call was
completed successfully.

Stat (Return) -Low Byte
BIT 7 6 6 4 3 2 1 0

Where

REOI Reason for RCVA Termination. If this bit is a 1, then RCVA
routine ceased because an EOI or terminator character was
received. If this bit is a 0, then the RCVA was terminated
because an error occurred or the maximum byte count was
reached.

TM0 Ttmeout Error. Indicates whether or not a Timeout Error
occurred during data transfer. If this bit is a 1, then a
Timeout Error occurred.

NL m-488-ROM not a Listener. If this bit is set to a 1, it
indicates the RCVA was called before the KM48-ROM
was designated as a Listener.

notes The KM488-ROM must be addressed to listen before calling this routine.

example Refer to the XMITA example.

- SEND
purpose Addresses a specified device to listen, the KM488-ROM to talk, and

sends data from a string.

usage . . .
vm

a&*: 1nTaGER;
info: 8TRInG[25];
.tat : I-

. . .
BEOTt

info :- 'Data to be trmmnittd';
aand (a&a, setup, &at) :

parameters adrs is an INTEGER containing the IEEE bus address of the device that
the data is to be sent to and the terminator to be used. This byte is of the
following format:

PROGRAMMING IN TURBO PASCAL 6-15

- SEND (cont.)
Adrs (Input Parameter) - Low Byte

BIT 7 6 5 4 3 2 1 0

Where

TFlM1-6 Terminator Select. These two bits select the Input Message
Terminator to be used to signal the end of a transmission.
Available terminator selections are

TRMl TRMO TERMINATOR # DEFAULT

0 0 0 LF EOI
0 1 1 CRLFEOI
1 0 2 CR EOI
1 1 3 LFCREOI

Terminator values may be changed by calling the
OUTll3RM routine.
The easiest way to specify an alternate terminator is to add
a factor to the GPIB address of the desired instrument.
Factors for each terminator are as follows:

GPIB Address + 0 = Terminator 0
GPIB Address + 64 = Terminator 1
GPIB Address + 128 = Terminator 2
GPIB Address + 192 = Terminator 3

For example, if you wanted to send a message using
message terminator 2 to a device at GPIB address 10, the
value of adrs% supplied to SEND would be 138 decimal (10
+ 128).

ADR4-6 GPIB Address. These five bits are used to represent the
GPIB address of the device to which the data is to be sent.
GPIB addresses can range from 0 to 30.

info is a STRING containing the data to be sent.

returns stat is an INTEGER describing the state of the transfer returned after the
call. The returned stat values (or combination 00 are interpreted as

- follows:

Stat (Return) - Low Byte
BIT 7 6 5 4 3 2 1 0

Where

TM0 Timeout Error. Indicates whether or not a Timeout Error
occurred during data transfer. If this bit is a 1, then a
Timeout Error occurred.

NC Not Active Controller. If this bit is a 1, then the SEND
routine was called when the KM488-ROM was not an
Active Controller.

/
6-16 KM-488-ROM USER GUIDE

I SEND (cont.)
ADRS Invalid Address. If this bit is set to a 1, an invalid IEEE486

device address was given.

exsmple This example shows how to send data from a KM488-ROM to a device.
The KM488-ROM is initialized as a System Controller located at GPIB
address 10. The KM-488-ROM uses high-speed handshaking. The data
(a device setup string) is sent to a device located at GI’IB address 2.

PRCCNAU .EddOXtW;
0888 M188PAs;

VaN
.dr‘ : INl!sGNa;
sstup:STRING(9);
H..t:TNTEDBR;

..nd(*‘,‘.t”p, .t*t,;

if (‘t*t<>cl) then
Nrit.LrI('Nrror .e*dl"g-‘t*t"~-',*t~t);

EM).

- SETBOARD
purpose In a multiple board system, identifies the KM488-ROM to be

programmed.

usage . . .
VAX

board : intspor;

. . .

BEGIU
~&board (board) :

. . .

alternate usage bolti8oloot(boazd):

parameters board is an INTEGER between 0 and 3 which represents the board to be
programmed. Note that up to four boards can be installed in any one
system. The board “number” is associated with the base address of its
I/O port.

returns None.

notes You must assign a board “number” for every KM488-ROM in the system
before calling the SETBOARD routine. Board numbers are assigned
using the SETPORT routine.

PROGRAMMING IN TURBO PASCAL 6-17

- SETBOARD (cont.)
Bach board must be must be inidaked independently by calling the
INIT routine. You must do this the first time a given board is selected
before any other operations may be conducted on that board.

Once a board has been selected using SETBOARD, all further I/O
operations will be performed on that board until the next SETBOARD is
executed.

example This example select Board 0 and then Board 3 for communications.

..t.boud,O, (Call‘ “hioh fono" tru1,i.e to/from bO.rd 0.)
. . .
‘.tboUd,S) (Call‘ “hiah fOll0” trmmi.r to,rron bo*rd 3.)

purpose

usage

alternate usage

parameters

returns

notes

SETDMA
NOTE: DMA allows maximum data transfer rates in excess of 100
kilobytes per second. However, the actual data rates are limited by the
rates at which other devices connected to the bus can send or receive
data. These rates are governed automatically by the GPIB handshaking
signals.

Allows the use of DMA in conjunction with XMITA and RCVA.

. . .
VAN

ahalms : intoga;
. . .
BEGIU \

*et.dma (ahannsl)
. . .

Qvohann~l (ahmnol)

channel is an INTEGER which specifies the DMA channel to be used for
the transfer, where

1 = Select DMA channel 1.
2 = Select DMA channel 2.
3 = Select DMA channel 3.

To disable DMA, set channel-to a value other than 1.2, or 3.

None.

The DMA hardware jumpers must be properly set for the DMA channel
selected by SETDMA. Note that the default setting for the jumpers is
DMA DISABLED. The jumpers are further described in Chapter 2.

When SETDMA is called to enable the use of DMA, each call to the
XMITA and RCVA routines that follows will use DMA to accomplish the
transfer until SETDMA is called with a parameter outside the range of l-
3.

6-18 KM-488.ROM USER GUIDE
,

examp/e This example specifies that DMA transfers are to take place using DMA
Channel 1 and then disables DMA.

.eMmA(O) ,Di.au.. DNA.)
. . .

- SETINT
purpose Sets the KM&?&ROM’s interrupt enable bits.

usage . . .
VAR

intva1 : INTEGER;
. . .
BEGIU

l ltint(irkval);

parameters lntval is an integer containing the address and value of the Interrupt
Mask Register which is to be written to. This is interpreted as follows:

INTVAL (Input) -High Byte
BIT 7 6 5 4 3 2 1 0

X X X X X X X ADRS

Where

X May be any value.

ADRS If this bit is set to 0, bits 0 through 7 will be written to
Interrupt Mask 1. If this bit is set to 1, bits 0 through 7 will
be written to Interrupt Mask 2.

INTERRUPT MASK 1
INTVAL (Input) -Low Byte (AD% = 0)

BIT 7 6 5 4 3 2 1 0

0 0 GET 0 DEC 0 0 0

GET When this bit is set to 1, an interrupt will be generated
when a KM+%-ROM acting as a device received a GPIB
GET (Group Execute Trigger) command while addressed to
listen.

DEC When this bit is set to 1, an interrupt is generated when a
Device Clear is received.

PROGRAMMING IN TURBO PASCAL 6-19

- SETINT (cont.)
INTERRUPT MASK 2

INTVAL (Input) - Low Byte (ADRS = 1)
BIT 7 6 6 4 3 2 1 0

0 SROI 0 0 0 LOKC REMC ADSC

where

SRQI When this bit is set to 1, an interrupt is generated when
SRQ is received.

LOKC When this bit is set to 1, an interrupt is generated when the
state of the Local Lockout bit changes.

REMC When this bit is set to 1, an interrupt is generated when the
state of the Local/Remote bit changes.

ADSC When this bit is set to 1, an interrupt is generated when the
state of the LA, TA, or CIC bits within the address status
register changes.

returns None.

notes Be certain to assign the KM4EROM to an interrupt level before using
this routine. Interrupt Levels are assigned by means of a jumper on the
KM&%-ROM board. This jumper is described in detail in Chapter 2.

You must set-up an tnterrupt handling routine within the QuickBASIC
program to deal with the interrupt condition.

exzsmp/e This example enables the KM-488-ROM to generate an interrupt when
SRQ is received.

sm!Iwr (0,140)

- SETPORT
purpose This routine is used to alter the range of addresses used by the KM-4@3-

ROM’s I/O Port. In a multiple board environment, it is also used to
associate a given range of I/O addresses with a board number.

usage . . .
w&R

board : integer:
ioport : word;

. . .
BEGIB

a&port (board, ioport) ;

parameters board is an INTEGER between 0 and 3 which represents the board to be
programmed. Note that up to four boards can be installed in any one
system. The board “number” is associated with the base address of its
I/O port.

6-20 KM-488~ROM USER GUIDE

SETPORT (cont.)

returns

notes

usage

ioport an INTEGER r~msenting the I/O Base Address of the KM-488-
ROM. The default Base Address is 288 hex. The Base Address selected
must match the one selected by the Base Address Switch on the KM488-
ROM. (See Chapter 2 for more information.)

None.

When multiple boards are used, each board must have its own unique
base address. Any base address can be assigned to any board number
provided that none of the base addresses overlap.

This line assigns Board 0 a Base address of 300 hex.

mtport (0,530O)

SETSPOLL
Sets the Serial Poll Response of the KM-488-ROM, when it is acting as a
Device fnon-Controller).

. . .
VAR

se.* : IHTEGER:
. . .
BEQIU

8etqoll(rr*p);
. . .

resp is an INTRG8.R describing the serial poll response and the state of
the SRQ bit. This byte is of the following format:

Resp% (Input) - Low Byte
SIT 7 6 5 4 3 2 1 0

Where

SPRl-6 Bits 1 through 8 of this device’s Serial Poll Response Byte.

RSV If this bit is 1, SRQ will be asserted to request servicing.
Otherwise, SRQ will not be asserted.

returns None.

/
PROGRAMMING IN TURBO PASCAL 6 - 21

- SETSPOLL (cont.)
This example illustrates a common use ofS!3TSPOLL.

vm
~*p:I”raasa
.221: aoom
.rr2:aooLasu
.rrs:ooo~
err4:BOOLB1UI
.rr4:soow
.rr7:!aoQw

asGIN
r-p:-0;

IP (.rrl-mua,
~#prWptl:

- SPOLL
purpose Initiates a serial poll of the specified device.

usage . . .
VAR

a&a : ImEGER
rasp : BYTE;
Dtat : I-;

. . .
BEGIIl

*poll(a&s, rssp, stat);
. . .

parameters a&s an INTEGER containing the IEEE bus address of device to be serial
polled. Can range from 0 to 30.

returns resp a BYTE containing the serial poll response. The definition of resp
varies device; however, Bit 6 always indicates whether the device needs
service. Consult the manufacturer’s operator’s manual for more
information.

stat is an INTEGER describing the state of the transfer returned after the
call, as follows:

Stat (Return) -Low Byte
BIT 7 6 5 4 3 2 1 0

6-22 KM-488~ROM USER GUIDE

- SPOLL (cont.)
Where

TM0 Indicates whether a Timeout Error occurred during data
transfer. If a 1, then a Timeout Error occurred.

NC KM4SSROM not a Controller. If set to a 1, it indicates the
routine was called before the KM485ROM was designated
as an Active Controller.

ADR Invalid GPIB Address. If this bit is set to 1, an invalid GLIB
address was provided.

This example illustrates a simple serial poll of a device located at GPIB
address 10.

mm l polldao;
osss ww4ssPas:
VAR

.t*t:1wTacsa;
r.‘p: ml-a:

aac1w
init(o,o):
.poll(lO,r.‘p,~f.t,;
ii (.t*tu.<>o) ti?s*

writ.Lu('aPow. St&". PIZOPZ .t.t"m-', .+a);

writeLn('Sed~l PO11 RoPponao-', IPPp);
ii (,lr‘P and *rcq<>o, then

WritaLn('Devios aequeEhing sa-?lce');
WWD.

- SRQ

purpose Detects the presence of the GPIB SRQ signal.

usage IF vwl) !fms

paremeter None.

returns The SRQ function returns a 0 or FALSE condition when SRQ has not
been detected, or a 1 or TRUB condition when SRQ is present.

notes The value retruned by the SRQ function is generally used within a
conditional branch in an applicaiton program.

Note that once you have obtained a TRUE response from the SRQ
function, the SRQ response will be reset to FALSE even if the SRQ line is
still active. In order to reset the SRQ response to TRUE, you must serial
poll at least one device which was requesting service. Conducting a
serial poll on a device which was requesting service will reset its SRQ
line. At this time, if other devices were simultaneously asserting SRQ,
the output of the SRQ function would once again be reset to TRUE.
Otherwise, the SRQ function would become TRUE on the next assertion
of the SRQ line.

PROGRAMMING IN TURBO PASCAL 6 - 23

- SRQ (cont.)
exam/J/e This ~TGSIIPI~ WSUIXWS that the KM+%ROM is connected to an

inshument located at GPIB address 1 which is capable of requesting
service via the SRQ. When the SRQ is detected, the SI’OLL function will
be called and the sdaI poll response of the device will be printed to the
computer screen.

- STATUS
purpose Returns the value of the specified setup parameter.

usage VAR
reg : INTEGER;
stat : INTEGER;

. . .
BEGIN

status(reg&at)
. . .

parameters reg is an INTEGER containing the address of the register or
configuration parameter to be queried. You must pass this parameter
into the routine as a variable. This value corresponds to a 4-bit field
which specifies the status register or configuration parameter to be read.
The format of the reg byte is as follows:

Reg (input) - Low Byte
BIT 7 6 6 4 3 2 1 0

X X X X ADR3 ADR2 ADRl ADRO

Where

X May be any value.

ADR50 REGISTER/PARAMETER SELECT. A 4-bit field that
specifies the status register or configuration parameter to be
read. Registers and parameters are sclcctcd as follows:

1
6-24 KM-488.ROM USER GUIDE

ADR3 ADRZ ADRl ADRO REGISTERPARAMETER

0 0 0
0 0 0
0 0 *
0 0 1
0 1 0
0 1 0
0 * 1
0 1 1
1 0 0
I 0 1
1 1 *
1 1 1
1 0 0
I 0 0
1 1 I
1 1 1

returns reg -When STATUS obtains the value of one of the four transmit
message terminators, this variable will contain two flag bits which
determine the length of the terminator and whether or not EOI is
assorted with the last byte. When obtaining other parameters, reg% will
retain its input value.

Reg (Return) - Low Byte
BIT 7 6 5 4 3 2 1 0

0 0 0 0 0 0 LEN EOI

Where

LEN Terminator Length. If set to 0, then the terminator is one
byte long. If set to 1, then the terminator is two bytes long.

EOI If this bit is set to 1, EOI is asserted when the last terminator
byte is sent. Otherwise, EOI is not asserted.

stat an INTXBR describing the status bits for the register or the
configuration parameter specified by the reg% parameter. Unless
otherwise noted, the high byte of stat% is returned as 0.

Address Status Resister -
Stat (Return) -Low Byte

BIT 7 6 6 4 3 2 1 0

CIC X X X X LA TA X

Where

X This bit may be any value.

cc Active Controller. If set to 1, then the KM488-ROM is a
System Controller.

LA Listener. If this bit is set to 1, then the KM-488ROM is a
Listener.

PROGRAMMING IN TURBO PASCAL 6-25

- STATUS (cont.)
TA Talker. If this bit is set to 1, then the KM-488-ROM is a

Talker.

Intemmt Status ReeIster 1
Stat (Return) - Low Byte

BIT 7 6 5 4 3 2 1 0

X X GET X DEC X X X

Where

X This bit may be any value.

GET Group Execute Trigger. If this bit is set to 1, then a Group
Execute Trigger comman d was received while the m-488-
ROM was a device.

DEC When this bit is set to 1, a Device Clear was received.

Interrupt Status Reeist&
Stat (Return) -Low Byte

BIT 7 6 5 4 3 2 1 0

Where

X This bit may be any value.

SRQI When this bit is set to 1, it indicates SRQ was active. (Active
Controller mode only.)

LOK When this bit is set to 1, the device was set to Local Lockout.
(Device mode only.)

REM When this bit is set to 1, the device was configured for
remote operation. (Device mode only.)

ADSC When this bit is set to 1, a change of the address status
occurred (i.e., untalk to talk, device to active controller, etc.).

InDut and Outout MessaEe Terminator #&3. Contains First and Last
bytes of the message terminator. Input Terminators and single character
Output Terminators are only one byte long and are contained in the
Least Significant Byte (MSB=O). In the case of a two character Output
Tennlnator, the Most Significant Byte of this parameter is the first
character sent.

DMA Timeout and I/O Timeout Parameters. Contains the value of the
desired parameter as an unsigned value in the low bytes of stat. The
timeout value is expressed in milliseconds (0 to 65535).

The bits contained in the Interrupt Status 1 and 2 registers are extremely
volatile. When you read these registers, any bits which were set are
automatically cleared by the READ operation. This is extremely
important to note when reading Interrupt Status Register 1, as some of
the bits (not shown above) are used by various KM-488.ROM routines.
It may be possible to cause various Kh4-488-ROM routines to report a
timeout error if this register is read at certain times.

6-26 KM-468-ROM &ER GUIDE

- STATUS (cont.)
example This example illustrates how to use the STATUS routine.

vba

lag: 1mzOBR:

.tat:1m;

alwIN
rag:- 0;
mt.tus (reg. .t*t, :
Writ.rm(‘Ad&~*‘ Stat”. aegih.er -0, atat) ;
reg:-12;
.t.tu.,rag, *tat> ;

writ.Im,~l,o Timmout -‘,‘t*t);
mm.

- XMIT
purpose Send GPIB commands and data from a string.

usage . . .
VaR

isIf0 : string[l;
stat : integer;

. . .
BECIU

info : 'd&a urdao-to be sent.'
xmit (info, l t*t) ;

. . .

parameters info is a STRING variable containing a series of GPIB commands and
data. Each item must be separated by one or more spaces. It may also
be specified as a quoted string within the XMIT call. All the available
commands are described in Chapter 3. These commands include:

CMD GTL MTA SDC l-0
DATA GTLA MLA SEC Tl
DCL IFC PIT SPE T2
END LISTEN PPD SPD T3
EOI LLO PPU TALK UNL _
GET LOC REN TCT UNT

returns stat is an INTEGER which describes the state of the transfer returned
after the call. The returned stat value can be interpreted as follows:

Stat (Return) -Low Byte
BIT 7 6 5 4 3 2 1 0

0 ADRS NCTL UNDF TM0 STR NT STX

Where

ADRS Invalid GPIB address. If this bit is set to 1, then an invalid
GPIB address was given.

PROGRAMMING IN TURBO PASCAL 6 - 27

- XMIT (cont.)
NCTL Not a System Controller. If this bit is set to 1, it indicates

that the KhHS&ROM tied to send GPIB Bus Commands
when it was not an Active Controller.

UNDF Undefined Command. If this bit is set to 1, the info string
contained an undefined command.

TM0 Timeout Error. Indicates whether or not a Timeout Error
occurred during data transfer. If this bit is a 1, then a
Timeout Error occurred.

STFI String Error. If this bit is set to one, then a quoted string,
END, or terminator was found without a DATA
subcommand preceding it.

NT KM-488-ROM not a Talker. If this bit is set to a 1, it
indicates the routine was called before the KM-Q&ROM
was designated as a Talker.

SIX Syntax Error. If this bit is set to 1, a syntax error was found.

notes When using the DATA s&command, the data to be sent should be
enclosed within double single quotes 0 as shown in the example.

examp/e This example illustrates one way to use the XMIT command with a
Keithley 1% Voltmeter. This meter is assigned GPIB address 7 and is
configured to a 30 Volt DC range with 4 l/2 digit accuracy. The meter is
also configured to take a new reading each time a Group Execute Trigger
Bus command (GET) is received. The program then bigger6 the
instrument to get the first reading, and makes it a talker and the KM-48&
ROM a listener in order to get the Erst reading.

The device to receive the setup command string which must be sent to
the meter contains the following device commands:

Fu Select DC Volts mode
R3 Select 30 Volt range
Sl Select 4 l/2 digit accuracy
T3 Take one reading when GET received
X Execute the prior commands within the string

The device to receive the setup command string must also be
pmgrammed to assert the GPIB REN signal (This allows the meter to
receive GPIB commands.) and to LISTEN (This allows the device to
receive the string.). The programming sequence used consists of the
following:

l Setting Remote Enable (RBN).
l Setting all devices to UNTaIk and UNListen.
l Addressing the 196 to LISTEN.
l Addressing the KM--ROM to talk (My Talk Address).
l Sending the Device-Dependent Commands as a string of DATA.
l Sending the appropriate message terminator characters after the data.
l Issuing the Group Execute Trigger bus command.
l Unaddressing a11 devices.
l Addressing the meter to TALK and the KM-488-ROM to LISTEN (My

Listen Address) in preparation for receiving the latest reading.

Thedefault value for transmit message terminator 1 is a carriagcrehlrn
line-feed combination.

,
6-28 KM-488-ROM USER GUIDE

PUrpoae

Image

alternate usage

parameters

XMIT (cont.)

XMITA
Sends data t&n an array. If SBTDMA is called prior to this routine,
DMA will be used to transfer the data.

MR

data : typr1eqth1:
term : IUTEGER;
.tat : IaTEGaR:

. . .
BEGIN
. . .

TARRAYy(data[O], oount,tsm,atat)

data101 is an ARRAY which contains the data to be transmitted. The
name of the first array location to be sent should be passed into the
routine, i.e., data[Ol. This array may be of any type, but the number of
bytes per location will vary.

count is a WORD containing the number of data bytes to be transmitted.
The number of data bytes stored in each location is a function of the data
type. A character array, for example, contains one byte per location;
whereas, an integer array contains two bytes per location. The XMITA
routine sends the least significant byte of the specified array location
first, followed by the bytes in increasing significance and increasing
array index.

term is an INTEGER which selects the terminator to be used. This byte
is of the format:

Term (Input Parameter) - Low Byte
BIT BIT 7 7 6 6 5 5 4 4 3 3 2 2 1 1 0 0

STRM STRM TRMI TRMI TRMO X TRMO X X X EOI EOI

Where

X This bit may be any value.

STRM Send Message Terminators. If this bit is set to 1, then the
message terminator(s) will be sent at the end of the
transmission. Otherwise, they will not.

PROGRAMMING IN TURBO PASCAL 6-29

XMITA (cont.)
TRM1-0 Terminator Select. These two bits select the Output

Message Terminator to be used to signal the end of a
transmission. Available terminator selections are

TRMl TRMO TERMINATOR # DEFAULT

0 0 0 LFEOI
0 1 1 CR LF EOI
1 0 2 CR EOI
1 1 3 LFCREOI

These terminators can be redefined by calling the
OUTIERM routine.

EOI Asserts EOI. If this bit is set to 1, then EOI will be asserted
when the last byte is sent. Otherwise, EOI will not be
asserted.

rStUrnS stat is an INTEGER describing the state of the transfer returned after the
call. The stat value is interpreted as follows:

Stat (Return) -Low Byte
BIT 7 6 5 4 3 2 1 0

0 0 0 0 TM0 1 0 1’ NT (0
II

Where

TM0 Timeout Error. Indicates whether or not a Timeout Error
occurred during data transfer. If this bit is a 1, then a
Timeout Error occurred.

NT KM-488ROM not a Talker. If this bit is set to a 1, it
indicates the routine was called before the KM-488-ROM
was designated as a Talker.

This example illustrates the use of the XMIT, XMITA, RCVA, SEND, and
SPOLL routines to send and retrieve waveform data from a GPIB
compatible oscIlloscqe.

PaoGaau xrav*; 0888 CRT, KlllssPAs:

PRoman XIOV.;
USES CRT, xN4ssPaa;

VAR
sined&. : arrayfl. .10241 Of WORD; (calaul~ted edns **ve)
txa*t* : urayt1..10241 of worn: (data going ta *oop 1
rxlAt* : *rray(1..21llo, Of arra; (data from mJ0p.e)
rat-sine : arrayc1..10281 of worn; { reformatted aaop data)
.roptr : *BYTag:
hibyt.a : WORD;
tx*tring : STamG;
.aopa : TIITE0P.a;
kmatat : nmaaaa;
numbyte* : WORD;
numpts : w0P.D;
ammt : woaD;
chkeum : TNTBGER:

6-30 KM-488~ROM USER GUIDE

- XMITA (cont.)
1aqt.h : ImaD;
mg1. : aaaL;
i : nnrmta;
hy : casa;

PROGRAMMING IN TURBO PASCAL 6 - 31

- XMITA (cont.)
numbyt.. := **.p, numpt~ l 2 + 11:

rrit.ln('SaaonlG *ma WAVS TO SCOPB'l:
..nd(‘aqa, 'TaPPOT STOl' , km&at, ; (store in 1oo*tion 1)
if(kmat*t <> 0) ma"

marroraMdl.r(b9t.tl;

1 s.tup for -at* axrl.f.r 1
xmtt.('ma LIsl?aa 16 aam "Coava *"', kneeAt);
if(ht.t 0 0, 'PBBU

ahxrrormndhr ,kmst*t) ;

oount := 2;
zenitr(nwbyt~*, aouut, 0, km&&); (: apta aount ssnt ,
if(luMt.t <> 0) fsBU

mErroraandl.r(Jzmat.t, :

aount := numpt. l 2;

xmir*,t*t*, aotmt, 0, !uwt*t,; (oat* .snt 1

if(km#t*t <> 0) Taaa

mrrorarndl~r(kuutat, ;

ahkmzm := 0; (Don’t bother *otu*1 *eak.um ,

.aount := 1: (. send EOI: “ith *heokmlm 1

%mit*,ah!uum, -t, 0, km&at,: (chcvakmm asnt)

if(kmmt.t <> 0) mm
marrorsuldl.r,klMt.t, ;

xrit*l"('CLBARIN~ ALL l5IAacs'):

‘en*(.oope, 'CLEIUI au', km&e.);
if(kmst.t <> 0) mm

msrroramdl.r,kmet*t) ;

*riteln('DrsPraYIaG .5luw.0 lT.Aca',;

~e**,mope,
'mAcal oaSQUP+TOa:aTO1,VPOS~TTOa:O,BPOSTTIOa:O,rmTTS:"V"',Lm

.tatj ;
if(kmst,aA <> 0) TEE"

xhxrroramdl.rwmst.t) ;

(-------_--____ mtrieYe at* -d oompare __________________-_)

xrit.al"('Rslluavluo DATA PROH SCOPB');

ee"d(eaop. 'ENCOG wAvFPJ4:BINAaY', km&at);
if&.matat <> 0, mm

mKrroraanaer,klMtat) ;

sond(soope, 'OOTTOP STOl', kInstat);
ifozrmtat <> 0, ma"

aMErroreandl~rmmst*tl;

6 - 32 KM-488~ROM USER GUIDE

- XMITA (cont.)

aount :- 2060; c number of bytr. expeoted)

kmat*t :- 0:

PROGRAMMING IN TURBO PASCAL 6-33

cl

6-34 KM-46%ROM USER GUIDE

Chapter 7

PROGRAMMING IN C

While Chapter 3 gives a b&f overview of the routines available for programming the KM-
488ROM, this chapter gives instructions for calling the routines from C. The routines appear
in alphabetical order and include a sample program for each.

7.1 GENERAL

Supported Versions

The Environment

Microsoft C version 3.0 and later TURBO C to version 2.5

The C support files are located in directory \C on the KM-488-
ROM Disks. Copy the following files to your working directory:

\C\KM488ROM.H
\C\KM488ROMLIB

File Header When you write your program, make sure to include the line:
#i.nclude<km488rom.h>

Compiling Compile your program in the normal manner, being sure to link
it with the library KM488ROM.UB. For example, when working
in Microsoft C, at the DOS prompt, type either:

cl yourprog.c /link km488rom

Of

cl /c yourprog.0;
link yourprog,,,km488rom;

Software The KM*-ROM firmware contains a number of configuration
parameters which govern the default settings of the input and
output message terminator settings, message timeout periods,
and I/O port addresses. The default terminators are shown in
Table 44. If these default values are unsatisfactory, they may be
changed by calling either the INTERM or OUTIERM routine.

The default DMA and I/O Timeouts are 10 seconds. These
defaults may be altered by calling the DMATIMEOUT or
IOTIMEOUT routine.

PRdGRAMMlNG IN C 7-1

Default Temlnator Settings
TERM # OUTPUT TERMINATOR INPUT TERMINATOR

0 LFEOI LF
1 CRLFEQI CR
2 CR EOI , (comma)
3 LFCREOI : (semi-colon)

1. Any arguments which appear as variables may also be passed
as constants.

2. “Strings” in C are actually character arrays. Thus, any KM-
488-ROM routines which require a string for input or output will
need a character array. The name of thls character array should
be passed into the KM&B-ROM Routine.

3. Any KM488-ROM routine which returns a value into a string
requites an additional parameter. This defines the total number
of bytes available as string space for storage of received data.

4. It is very important that the number of bytes allocated for
storage within a character array is at least one greater than the
maximum byte count passed into the routine. This extra byte is
necessary so that a NULL can mark the end of the received data.
If a routine attempts to receive more bytes than have been
allocated for storage into that variable, other internal program
variables may be overwritten, producing unexpected results or a
program crash.

5. Values which are returned to a C program by the KM488-
ROM routines must be handled in the following manner. In
order to return a value to a named variable in C, the address of
the named variable must be passed into the routine. Thus, you
must pass pointers to the returned variable into KM488-ROM
call. A pointer is denoted by prefixing the variable name with an
ampersand (&). However, the case of strings is an exception. In
this instance C interprets the name of a character array as a
pointer to the first character in the array. An example of this is
shown below:

int .t.tu.;
l md(7, “P0R00X”, &status) :
if (*t*tu~l-o)

6. Arguments which are not pointers to integers or unsigneds
may be passed as constants rather than variables.

7. Note that function and parameter names in C are case-
sensitive. The KM-488-ROM routine names must appear in
lower-case.

8. Do not name any of your variables with the same name as any
of the KM488-ROM routines.

I
7-2 KM-488-ROM USER GUIDE

7.2 DESCRIPTION FORMAT FOR ROUTINES
The format for each descriptions is as follows:

usage

alternate usage

parameters

returns

notes

example

7.3 ROUTINES

Purpose

usage

alternate usage

returns

. . . a brief description of the routine. See Chapter 3 for more detailed
descriptions.

. . . gives an example of usage for each routine and assumes the input
parameters are passed in as variables. These parameters can also be
passed in directly. See the General Programming Notes for more
information.

. . . lists alternate usage for the routine, if any. Unless otherwise noted, the
alternate usage performs exactly the same function as the usage.

. . . describes each of the input parameters.

. . . describes any values returned by the routine.

. . . lists any special programming considerations.

. . . gives a programming example using the routine.

DMATIMEOUT
Sets the maximum length of time for a DMA transfer to complete before
a timeout error is reported. (See XMITA and RCVA routines.)

. . .
unaigmd tiam;

*atthout (tima) :

NOTE: The alternate usage sets both the DMA and I/O Timeouts to the
specified value.

time is a UNSIGNED INTEGER representing the timeout period to
elapse during a DMA transactioD. A DMA Timeout Error will be
generated when the time to transfer (via DMA) an entire message
exceeds the set DMA timeout value (time). time can range from 0 to
65535 milliseconds and is internally rounded to the closest integer
multiple of 55 milliseconds.

None.

This example sets a timeout of 5 seconds.

dmatimaout (5000)

/

PROGRAMMING IN C 7-3

- ENTER
pUtpOSe Addresses a specified device to talk, the KM-4sB-ROM to listen, and

receives data into a character array from the addressed device.

usage . . .
unaiqnad 1-q; muleal;
ahar infO[mul~ + 11;
int a&x;
int *tat;
. . .
antar (info,dsn, s1anq,adra. c*tat1;
. . .

parameters info is a CHARACTER ARRAY which is to hold the received data. The
character array must be long enough to receive the expected number of
characters plus one. The additional character is necessary so that the end
of the “string” can be marked with a NULL byte. Carriage returns and
the message terminator character in the incoming data are ignored and
not stored with the received data.

maxlen is an UNSIGNED INTEGER which should be equal to the
number of data bytes you expect to receive. maxlen must relate to info as
described above.

adrs is an INTEGER containing the IEEE bus address of the device that
the data is to be sent to and the termtnator to be used. This byte is of the
followhlg format:

Adrs (Input Parameter) - Low Byte
BIT 7 6 5 4 3 2 1 0

(1 TRMl 1 ADA4 1 ADR3) ADR2) ADRl 1 ADRO I]

Where

TRM1-6 Terminator Select. These two bits select the Message
Terminator to be used to signal the end of a transmission.
Available terminator selections are

TRMl TRMO TERMINATOR # DEFAULT

0 0 0 LF
0 1 1 CR
1 0 2
1 1 3

These terminators may be changed by the INTERM routine.

The easiest way to specify an alternate terminator is to add
a factor to the GPIB address of the desired instrument
which is specified within the ENTER call. The factors
added for each terminator are as follows:

GPIB Address + 0 = Terminator 0
GPIB Address + 64 = Terminator 1
GPIB Address + 128 = Terminator 2
GPIB Address + 192 = Terminator 3

7-4 KM-488~ROM U&R GUIDE

- ENTER (Cont.)
For example, if you wanted to receive a message using
termhtator 2 from a device at GPIB address IO, the value of
adrs% supplied to ENTER would be 138 decimal (10 + 1281.

ADR4-6 GPIB Address. These five bits are used to represent the
GPIB address of the device to which the data is to be sent.
GPIB addresses can range from 0 to 30.

returns info is a CHARACI’BR ARRAY that will contain the received data. The
length of the string must be long enough to receive the expected number
of characters (see the info parameter descdption). The maxlen parameter
is used to specify this maximum length and must be one less than the
number of locations within the array. ENTER will automatically insert a
string termhrating “NULL” at the end of the received data. ENTER will
termlnate reception of data when: 11 the number of bytes received
exceeds maxlen, 21 the specified terminator is received, or 31 any
character is received with the EOI signal. Carriage returns and the
message terminator character in the incoming data are ignored and not
stored with the received data.

Ieng is an UNSIGNED INTEGER, less than or equal to 255, which
indicates the actual number of bytes which were stored.

stat is an INTBGER which describes the state of the transfer returned
after the call. The returned stat values for combination 00 are
interpreted as follows:

Stat (Return) - Low Byte
BIT 7 6 5 4 3 2 1 0

TM0

OVF

NC

ADRS

Timeout Error. Indicates whether or not a Timeout Error
occurred during data transfer. If this bit is a 1, then a
Timeout Error occurred.

Overflow Error. If this bit is a 1, then the info string was
filled, before a terminator character or EOI was detected.

KM-488-ROM not an Active Controller. If this bit isset to a
1, it indicates the routine was called before the KM-488
ROM was designated as an Active Controller.

Invalid GPlB address. If this bit is set to 1, then an invalid
GPIB address was given.

In the following example, data is sent from two different instruments to
a KM488-ROM. The KM-W-ROM is acting as the System Controller
and is assigned to GPIB address 0. One of the two instruments is a
voltmeter, mquiring a Carriage Return-Line Feed terminator
combination (Term 11, assigned to GPIB address 7. The second
instrument, located at GI’IB address 10, requires a line feed (Term 0) as
its terminator. The voltmeter is first sent a string of data which
represents its instrument setup command. Then, when addressed to talk,
it sends its most current reading to the KM-488-ROM. The second
instrument is instructed to send its status, when addressed to talk.

PROGRAMMING IN C 7-5

ENTER (cont.)
It is assumed that the strtng sent by both instruments is 25 characters or
less. The string is printed out on the computer screen.

#inalud.<mtdio.n>
Xinalu&Ou4B8rom.h,
=ino
1

int in.t1-7,
i"*t*-lO,

un.*gnd r1.n-0;
0h.r in‘tri"g[26,;

- INIT
purpose Initializes a KM-466-ROM by assigning its GPIB address and establishing

it as a System Controller or device.

usage . . .
int l dr*,modci;
. . .
init (a&*, mode)
. ,

7-6 KM-466~ROM USER GUIDE

- INIT (cont.)
alternate usage idtialire(ads=,amdd

parameters adz+ is the IEEE bus address of the KM-488-ROM. This is an integer
from 0 to 30.

mode sets the operating mode of the KM4S-ROM. These can be any of
the following values:

Mode-Low Byte
BIT 7 6 5 4 3 2 1 0

X X X X X FAST DEV X

Where

X May be any value.

FAST Handshake Speed. If set to 1, High Speed GPIB bus
handshaking is used 600 ns). If set to 0, Low Speed GPIB
bus handshaking (2 us) is used. See Chapter 3 for more
information.

DEV

returns None.

Device. If set to 1, the KM-488-ROM is acting as a Device.
Otherwise, the KM-488-ROM is acting as a System
Controller. When System Controller is selected, the GPIB
IFC line is momentarily asserted.

notes You may pass the parameters directly into the routine without using
variable assignments, i.e. init(OP).

exampte This example initializes the KM--ROM as a System Controller with a
IEEE address of 0 with a High Speed Handshake.

-3.n 0
. . .
(:
int adrs=o,

mods=l:
iait (a&s,modo) ;
1

- INTERM
purpose Changes the input message terminator settings.

usage . ,.
izlt Dum, tarm:

i.Ieom(num, tarIn) ;

alternate usage . . .
@bar term:

aotinputeos (term) ;
. .

PROGRAMMING IN C 7 - 7

- INTERM (cont.)
NOTE: The alternate usage will only change the value of Input Message
Terminator 0.

psrametsrs mm is an INTEGER which selects the number of the receive message
terminator to be changed. This ranges from 0 to 3, where:

aurn% TERMINATOR # DEFAULT

0 0 LF
1 CR
2 ;
3 3

term is an integer representing the terminator byte to be programmed.
This integer is the decimal or hex equivalent of the terminator’s AXII
representation. Hex equivalents must be preceded by &H. See Appendix
A for ASCII Equivalents.

returns None.

notes The parameters may be passed directly into the routine.

example This example sets Input Terminator 0 to Line Feed and Input Terminator
3 to Carriage Return.

Lnt.cm(O.10) I**&- input t.Im.iMtar s to Ia+/
. . .
intern (3.0~0) /*sdx input twminator 3 to Carriage Return*/

- IOTIMEOUT
putpose Changes the length of time to elapse before an I/O Timeout occurs.

usage . , .
un*ignsd tuas;

iotimaout (tAma) ;
. . .

parameters time is the amount of time to elapse before a timeout error is reported.
time is any value between 0 and 65535 milliseconds. It will be internally
rounded to the closest integer multiple of 55 milliseconds. The default
timeout value is 10 seconds.

returns None.

examp/e This example sets the I/O Timeout to 1 second.

iotimswt(lOO0):

7-8 KM-48%ROM USER GUIDE

- OUlTERM
PU+XW Changes the output message WminatOr sequences.

usage . . .
5nt num,&u~,mi,tml,td:
outtrrm (mlm, c&u, ad, tnul. tnu2):
. . .

alternate usage . . .
ahas tsml,td;

l stoutpdao~ (t!ml, t.rmz) ;
. . .

NOTE: The alternate usage will change only the value of Terminator 0
and will always assert EOI upon the transmission of the last character.
Additionally, a single terminator is programmed by setting trm2 to 0.

num is an INTEGER which selects the output message terminator to be
changed. This ranges from 0 to 3, where:

num% TERMINATOR # DEFAULT

0 0 LF EOI
1 1 CR LF EOI
2 2 CR EOI
3 3 LF CR EOI

chars is an INTEGER which selects the length of the output terminator
being programmed. This is 0 if a one-character terminator is required or
1 if a two-character terminator is required.

eel is an INTEGER which determines whether or not EOI is asserted
when the last terminator byte is sent. If this bit is 1, EOI will be sent. If
this bit is 0, EOI will not be sent.

trml is an INTEGER which represents the first terminator byte to be
sent. This integer is the hex or decimal equivalent of the terminator’s
ASCII representation. (See Appendix A for ASCII Equivalents.) Be sure
to precede all hex values with a Ox.

trm2 is an INTEGER which represents the second terminator byte (in a
two-byte terminator) to be sent. This integer is the hex or decimal
equivalent of the terminator’s ASCII representation. (See Appendix A for
ASCII Equivalents.) Be sure to precede all hex values with a Ox. If a one
byte terminator is programmed, trmZmay be any value.

returns None.

example This first line of this example sets Output Terminator 0 to Carriage
Return with EOI. The second line of this example sets Output
Terminator 3 to Carriage Return, Line Feed without EOI.

outtrrm(0,0,1,OxD,O)
. . .

PROGRAMMING IN C 7-9

- PPOLL
PUPS8 Initiates a parallel poll.

NOTE: Many GPIB devices do not support parallel polling. Check your
device’s documentation.

usage . . .
int rasp;
. . .
ppoll(4ra*p) ;
. . .

parameters None.

returns resp is an INTEGER which will contain the parallel poll response.

notes Before you call the PPOLL routine, you must first configure the Parallel
Poll response of the device. To do this:

l Address it to listen

l Send it a GPIB Parallel Poll Configure WC) command, using the
XMIT command.

l Send a Parallel Poll Enable byte using the K&f-488-ROM XMIT
command. (Use the mnemonic CMD followed by mm where nnn is the
decimal value of the Parallel Poll Enable byte.

The Parallel Poll Enable Byte is of the format OllOSPPP, where:

S is the parallel poll response value (0 or 1) that the device uses to
respond to the parallel poll when service is required.

PPP is a 3-bit value which tells the device being configured which data
bit it should use as its parallel poll response CD101 through DIO8).

example This example assumes that the KM-488-ROM is connected to a Sorenson
Hl’D30-10 Power Supply. This device is located at GPIB address 1. It is
also assumed that this device drives bit 3 of the Parallel Poll Response
byte to a logic “1” when service is required. To program the device to
respond properly, send the Parallel Poll enable byte 01101011(107) via
the XMIT command.

7-10 KM-488-ROM USER GUIDE

purpose
wage

alternate usage

parameters

RCV
Receives data into a shing.

. . .
ahu info[mulsn+l]:

. . .
mv(info, mulsn, tmul, LSovlM, &stat);
. . .

NOTE: The alternate usage assumes the use of Input Message
Terminator 0.

info is a CHARACTER ARRAY which will hold the received data. The
array must be long enough to receive one more than the expected
number of characters. Carriage returns and input terminator characters
in the incoming data are ignored and not stored with the received data.

maxlen is an UNSIGNED INTEGER which specifies the maximum
number of data bytes which can be received. It must be less than or equal
to one less than the maximum number of array locations. This allows the
terminating NULL to be stored. Otherwise, data may be stored in
locations other than those allocated for your program and your program
may crash.

term is an INTEGER containing the number of the input message
terminator to be used, where:

term% TERMINATOR # DEFAULT

0 0 LF
1 1 CR
2 2
3 3

These terminators can be changed by calling the INTBRM routine.

info is a CHARACTER ARRAY which will contain the received data.
The length of the string must be long enough to receive the expected
number of characters. RCV will terminate reception of data when: 1) the
number of characters received exceeds maxlen, 2) a terminator is
received, or 3) any character is received with the EOI signal. Carriage
returns in the incoming data are ignored and not stored with received
data.

r&en is an UNSIGNED INTEGER which indicates the actual number of
bytes which were received and stored.

stat is an INTEGER which describes the state of the transfer returned
after the call. The returned stat values are interpreted as follows:

Stat (Return) -Low Byte
BIT 7 6 5 4 3 2 1 0

0 0 0 0 TM0 OVF NL 0

1

PROGRAMMING IN C 7- 11

- RCV (cont.)
Where

TM0 Timeout Error. Indicates whether or not a Timeout Error
occu~ed during data transfer. If this bit is a 1, then a
Timeout Error occurred.

OVF Overflow Error. If this bit is a 1, then the info string was
filled, before a terminator character or EOI was detected.

NL KM486-ROM not a Listener. If this bit is set to a 1, it
indicates the RCV was called before the KM438-ROM was
designated as a Listener.

notes The KM-488-ROM must be addressed to listen and another device
addressed to talk before calling RCV.

example This example shows how the RCV routine might be used together with
the XMIT routine to receive data. It uses the XMIT routine to command
a Keith@ 196 voltmeter to take a reading. The meter reading is received
using the RCV routine. It is assumed that the meter reading returned
will fit into a 25character array.

This example assumes that the KM488-ROM is configured such that
transmit message terminator 1 is Carriage Return-Line Feed combination
and this combination is also used by the Keithley 1%.

- RCVA
purpose Receives data into a specified array. RCVA may also be used to received

data with DMA. (See SETDMA.)

usage . . .
iat data[maxlerl/2] /* OI ".e char data[maxlsn]*/
unsigned marlsn,rovlan;
i.nt tPnn;
int *tat;

7-12 KM-488~ROM USER GUIDE

- RCVA (cont.)
alternate usage r~r~~Y~~~~Ol,murlsn,irovlsn,&~t~t)

I
NOTE: The alternate usage termmates on EOI only.

parameters data1 1 is an array which is used to store the received data. It may be
any data type. The array must be dimensioned large enough to state the
desired number of bytes. The number of data bytes contained in each
array location will vary according to the data type specified. The RCVA
routine will “byte pack” data into the array, starting with the least
significant byte of the specified location. You should pass the name of
the first element within the array (Le., data[OB into the RCVA routine.
(Note that passing the array name without an index has the same effect.)

term is an INTEGER which selects the type of terminator to be used.
This integer is interpreted according to the following format:

Term (Input Parameter) - Low Byte
BIT 7 6 5 4 3 2 1 0

X X X X X STRM TRMI TRMO

Where

X May be any value.

STRM Enable/Disable String Message Terminators. If this bit is 1,
a Message Terminator Character will be used to detect the
end of reception. If this bit is 0, a Message Terminator
Character will not be used.

TRM1-6 Terminator Select. These two bits select the Input Message
Terminator to be used to signal the end of a transmission.
(The STRM bit must be set to 1.) Available terminator
selections are

TRMl TRMO TERMINATOR # DEFAULT

0 0 0 LF
0 1 1 CR
1 0 2
1 1 3

The values for these termtnators can be changed by calling
- the INTERM routine.

maxlen is an UNSIGNED INTEGER which specifies the maximum
number of data bytes which can be received. maxlen must be less than or
equal to the total number of bytes which have been allocated for storage.
The number of data bytes per array location varies according to the type
of array. If an integer array is specified, two bytes are contained within
each array location; thus maxlen should be set to twice the maximum
number of array locations.

If a character array is specified, there is a one for one correspondence
between number of array locations and number of bytes: Hence, maxlen
= number of array locations.

The first byte received is stored in the least significant byte of the first
array location.

PROGRAMMiN& IN C 7-13

- RCVA (cont.)
returns r&en is an INTEGER which contains the actual number of data bytes

which were received.

stat is an INTEGER describing the state of the transfer returned after the
Call.

The RCVA routine returns three status bits within the stat variable. The
TM0 bit is used to signal a timeout error. The REOI bit signals that the
routine returned because the terminator was detected (if enabled), or
EOI was received. The NL bit is set if the RCVA routine was called and
the card was not addressed to listen. Unlike other KM438-ROM
routines, it is possible to return a non-zero status when the call was
completed successfully.

Stat (Return) -Low Byte
BIT 7 6 5 4 3 2 1 0

0 0 REOI 0 TM0 0 NL 0
II

Where

REOI Reason for RCVA Termination. If this bit is a 1, then RCVA
mutine ceased because an EOI or terminator character was
received. If this bit is a 0, then the RCVA was terminated
because an error occurred or the maximum byte count was
reached.

TM0 Timeout Error. Indicates whether or not a Timeout Error
occurred during data transfer. If this bit is a 1, then a
Timeout Error occurred.

NL KM466-ROM not a Listener. If this bit is set to a 1, it
indicates the RCVA was called before the KM4&%ROM
was designated as a Listener.

notes The KM48EROM must be addressed to listen before calling this routine.

example Refer to the XMITA example.

- SEND
purpose Addresses a specified device to listen, the KM483-ROM to talk, and

sends data from a string.

usage . . .
int ads.,

.t*t;
l tatia dlar info[25] - (‘watta to be tranlImitted”);

. . .

. . .

parameters adrs is an INTEGER containing the IEEE bus address of the device that
the data is to be sent to and the terminator to be used. This byte is of the
following format:

7-14 ’ KM-488~ROM USER GUIDE

m SEND (cont.)
Adrs (Input Parameter) -Low Byte

BIT 7 6 5 4 3 2 1 0

TRMI TRMO 0 ADR4 ADR3 ADA2 ADA1 ADRO

Where

TRM1-0 Terminator Select. These two bits select the Input Message
Terminator to be used to signal the end of a transmission.
Available terminator selections are

TRML TRMO TERMINATOR # DEFAULT

ADFW0

0 0 0 LF EOI
0 1 1 CR LF EOI
1 0 2 CR EOI
1 1 3 LFCREOI

Terminator values may be changed by calling the
OUTIXRM routine.

The easiest way to specify an alternate terminator is to add
a factor to the GPIB address of the desired instrument.
Factors for each terminator are as follows:

GPIB Address + 0 = Terminator 0
GPIB Address + 64 = Terminator 1
GPIB Address + 128 = Terminator 2
GPIB Address + 192 = Terminator 3

For example, if you wanted to send a message using
message terminator 2 to a device at GPIB address 10, the
value of adrs% supplied to SEND would be 138 decimal (10
+ 12%

GPIB Address. These five bits are used to represent the
GPIB address of the device to which the data is to be sent.
GPIB addresses can range from 0 to 30.

info is a STRING containing the data to be sent.

returns stat is an INTEGER desaibing the state of the transfer returned after the
call. The returned stat values (or combinatioKo0 are interpreted as
follows:

Stat (Return) -Low Byte
BIT 7 6 5 4 3 2 1 0

Where

TM0 Timeout Error. Indicates whether or not a Timeout Error
occurred during data transfer. If this bit is a 1, then a
Timeout Error occurred.

NC Not Active Controller. If this bit is a 1, then the SEND
routine was called when the KM488-ROM was not an
Active Controller.

PROGRAMMING IN C 7 - 15

- SEND (cont.)
ADRS Invalid Address. If this bit is set to a 1, an invalid IEEE488

device address was given.

example This example shows how to send data from a KM488-ROM to a device.
The KM488-ROM is inttialized as a System Controller located at GPIB
address 10. The KM488-ROM uses high-speed handshaking. The data
(a device setop string) is sent to a device located at GPIB address 2.

#inolud.~4ssrom.h>
tin0
I

irat a&.-12,
.t*t-0;

usage

alternate usage

parameters

SETBOARD
In multiple board system, identifies the Kh4488-ROM to be
programmed.

. . .
int board:
1..
*ckboard (board) ;
.

board is an lNTEGER between 0 and 3 representing the board to be
programmed. Note that up to four boards install in any one system. The
board “number” is associated with the base address of its I/O port.

1

7-16 KM-488~ROM USER GUIDE

- SETBOARD (cont.)
returns None.

notes You must assign a board “number” for every KM-438-ROM in the system
before calling the SETBOARD routine. Board numbers are assigned
using the SElTQRT routine.

Bach board must be must be initialized independently by calling the
INIT routine. You must do this the first time a given board is selected
before any other operations are conducted on that board.

Once a board has been selected using SETBOARD, all further I/O
operations willbe performed on that board until the next SETBOARD is
executed.

exsmpte This example selects board number 2.

l etboard (2) ;

- SETDMA
NOTE: DMA aBows maximum data transfer rates in excess of 100
kilobytes per second. However, the actual data rates are limited by the
rates at which other devices connected to the bus can send or receive
data. These rates are governed automatically by the GPIB handshaking
signals.

purpose Allows the use of DMA in conjunction with XMITA and RCVA.

usage . . .
iat c4luma1;
astdml (IlhaMel) ;
. . .

alternate usage dmaohumel(ahMnol):

parameters channel is an INTEGER which specifies the DMA channel to be used for
the transfer, where:

1 = Select DMA channel 1.
2 = Select DMA channel 2.
3 = Select DMA channel 3.

To disable DMA, assign any value other than 12, or 3 to channel.

fetums None.

notes The DMA hardware jumpers must be properly set for the DMA channel
selected by SETDMA. Note that the default setting for the jumpers is
DMA DISABLED. The jumpers are further described in Chapter 2.

When SETDMA is called to enable the use of DMA. each call to the
XMITA and RCVA routines that follows will use DMA to accomplish the
transfer until SBTDMA is called with a parameter outside the range of l-
3.

PROGRAMMING IN C 7-17

exampIe This example specities that DMA transfers are to take place using DMA
Channel 1 and then disables DMA.

*.tdma,1,:

. . .
..tdma,O); /*Di.abl.. Dia.*/

Purpo=
usage

parameters

SETINT
Sets the KM488-ROM’s interrupt enable bits.

. . .
itat intva1;
. . .
l etint(intval);
. . .

iutval is an integer containing the address and value of the Interrupt
Mask Register which is to be written to. This is interpreted as follows:

INTVAL (Input) -High Byte
BIT 7 6 6 4 3 2 1 0

Where

X May be any value.

ADRS If this bit is set to 0, bits 0 through 7 will be written to
Interrupt Mask 1. If this bit is set to 1, bits 0 through 7 will
be written to Interrupt Mask 2.

INTERRUPT MASK 1
INTVAL (Input) -Low Byte (ADRS = 01

BIT 7 6 5 4 3 2 1 0

GET 0 DEC 0 0 0

Where

GET When this bit is set to 1, an interrupt will be generated
when a KM488-ROM acting as a device received a GPIB
GET (Group Execute Trigger) command while addressed to
listen.

DEC When this bit is set to 1, an interrupt is generated when a
Device Clear is received.

7-18 KM-488~ROM USER GUIDE

- SETINT (cont.)
INTl-XRUl’T MASK 2

INTVAL (Input) - Low Byte (ADRS = 11
BIT 7 6 5 4 3 2 1 0

0 SRQI 0 0 0 LOKC REMC AOSC

returns

notes

example

Where

SRQI When this bit is set to 1, an interrupt is generated when
SRQ is received.

LOKC When this bit is set to 1, an interrupt is generated when the
state of the Local Lockout bit changes.

REMC When this bit is set to 1, an interrupt is generated when the
state of the Local/Remote bit changes.

ADSC When this bit is set to 1, an interrupt is generated when the
state of the LA, TA, or CIC bits within the address status
register changes.

None.

Be certain to assign the KM-&%-ROM to an interrupt level before using
this routine. Interrupt Levels are assigned by means of a jumper on the
KM*-ROM board. This jumper is described in detail in Chapter 2.

You must set-up an interrupt handling routine withIn the QuickBASIC
program to deal with the interrupt condition.

This example enables the KM-I%ROM to generate an interrupt when
SRQ is received.

SETINT (Oxl40) ;

- SETPORT
purpose This routine is used to alter the range of addresses used by the KM-k?&

ROM’s I/O Port. In a multiple board environment, it is also used to
associate a given range of I/O addresses with a board number.

usage . . .
int board;
unsigned ioport;
. . .
setporttboard,ioportl;
. . .

parsmeters board is an INTEGER between 0 and 3 which represents the board to be
programmed. Note that up to four board can be installed in any one
system. Theboard number is associated with the base address of its I/O
pOtiS.

ioport is an UNSIGNED INTEGER which represents the I/O Base
Address of the KM-488-ROM. The default Base Address is 288 Hex. The
Base Address selected must match the one selected by the Base Address
Switch on the KM-488-ROM. (See Chapter 2 for more information.1

PROGRAMMING IN C 7-19

- SETPORT (cont.)
returns None.

notes When multiple boards are used, each board must have its own unique
base address. Any base address can be assigned to any board number
provided that none of the base addresses overlap.

exismpte This line assigns Board 0 to a Base address of 300 hex.

~&port (0, 0x300);

- SETSPOLL
purpose Sets the Serial Poll Response of the KM-488-ROM, when it is acting as a

device (nonControUer9.

USage , . .
int rs.p;
l et*poll(resp);
. . .

parameters resp is an INTEGER describing the serial pail response and the state of
the SRQ bit. This byte is of the following format:

Resp% (Input) - Low Byte
BIT 7 6 5 4 3 2 1 0

SPRB RSV SPR6 SPR5 SPR4 SPR3 SPR2 SPRl

Where

SPA14 Bits 1 through 8 of this device’s Serial Poll Response Byte.

RSV If this bit is 1, SRQ will be asserted to request servicing.
Otherwise, SRQ will not be asserted.

returns None.

example This example illustrates how SETSPOLL may be used to notify the
controller of local error conditions.

7-20 KM-488~ROM USER GUIDE

purpose

usage

parameters

returns

SPOLL
Initiates a serial poll of the specified device.

. . .
qoll(adr~, cre.p, c&at);
. . .

adrs is an INTEGER containing the IEEE bus address of the device that
is to be serial polled. This can range from 0 to 30.

resp is a CHARACTER containing the serial poll response received. The
definition of msp varies from device to device; however, Bit 6 is always
used to indicate whether the device is in need of service. Consult the
manufacturer’s operator’s manual for more information.

stat is an INTBGER describing the state of the transfer returned after the
call. The stat value is interpreted as follows:

Stat (Return) -Low Byte
BIT 7 6 5 4 3 2 1 0

Where

TM0 Indicates whether a Timeout Error occurred during data
transfer. If a 1, then a Timeout Error occurred.

NC KM488-ROM not a Controller. If set to a 1, it indicates the
routine was called before the KM-488ROM was designated
as an Active Controller.

ADR Invalid GPIB Address. If this bit is set to 1, an invalid GPIB
address was provided.

notes Pointers to the REP and STATUS variables are passed.

example This examples illustrates a simple serial poll of a device located at GLIB
address 10.

- SRQ
purpose Detects the presence of Ihe GPIB SRQ signal.

usage if (nq())...

parameters None.

PROGRAMMING IN C 7 - 21

- SRQ (cont.)

refu~ll8 The SRQ fu~~lion ~etoms a 0 or FALSE condition when SRQ has not
been detected, or a 1 or TRUB condition when SRQ is present.

notes The value returned by the SRQ function is generally used within a
conditional branch in the application program.

Note that once you have obtained a TRUE response from the SRQ
function, the SRQ response will be reset to FALSE even if the SRQ line is
still active. In order to reset the SRQ response to TRUE, you must serial
poll at least one device which was requesting service. Conducting a
serial poll on a device which was requesting service will reset its SRQ
line. At this time, if other devices were simultaneously asserting SRQ,
the output of the SRQ fimction would once again be reset to TRUE.
Othenvtse, the SRQ function would become TRUE on the next assertion
of the SRQ line.

exmJp/e This example assumes that the KM-488-ROM is connected to an
instrument located at GPIB address 1 which is capable of requesting
service via SRQ. When the SRQ is detected, the SPOLL function will be
called and the serial poll response of the device will be printed to the
computer screen.

purpose

usage

STATUS
Returns the value of the specified setup parameter.

. .
int rag, .t*t;

. . .

reg is an INTEGER containing the address of the register or
configuration parameter to be queried. This value corresponds to a 4-bit
field which specifies the status register or configuration parameter to bc
read. The format of the reg byte is as follows:

7-22 KM-453~ROM USER GUIDE

- STATUS (Cont.)
Reg (input) -Low Byte

BIT 7 6 5 4 3 2 1 0

Where

X May be any value.

ADA3-0 REGISTER/PARAMETER SELECT. This is a 4-bit field
which specifies the status register or configuration
parameter to be read. Registers and parameters are selected
as follows:

returns reg -When STATUS obtains the value of one of the four transmit
message terminators, this variable will contain two flag bits which
determine the length of the terminator and whether or not EOI is
asserted with the last byte. When obtaining other parameters, reg% will
retain its input value.

Reg (Return) - Low Byte
BIT 7 6 5 4 3 2 1 0

0 0 0 0 0 0 LEN EOI

Where

LEN Terminator Length. If this bit is set to 0, then the terminator
is one byte long. If this bit is set to 1, then the terminator is
two bytes long.

EOI If this bit is set to 1, EOI is asserted when the last terminator
byte is sent. Otherwise, EOI is not asserted.

stat is an INTEGER describing the status bits for the register or the
configuration parameter which was specified by the reg% parameter.
Unless otherwise noted, the high byte of stat% is returned as 0.

PROGRAMMING IN C 7 - 23

7 STATUS (cont.)
Address Stahrs Reeister
Stat (Rehrm) - Low Byte

BIT 7 6 6 4 3 2 1 0

CIC X X X x LA TA X
I

where

X This bit may be any value.

CIC Active Controller. If this bit is set to 1, then the KM-488
ROM is a System Controller.

LA Listener. If this bit is set to 1, then the KM4?8-ROM is a
Listener.

TA Talker. If this bit is set to 1, then the KM4?&ROM is a
Talker.

Intermut Status Reeister 1
Stat (Return) -Low Byte

BIT 7 6 5 4 3 2 1 0

Where

X This bit may be any value.

GET Group Execute Trigger. If this bit is set to 1, then a Group
Execute Trigger command was received while the KM488-
ROM was a device.

DEC When this bit is set to 1, a Device Clear was received.

Interrout Status Retister 2
Stat (Return) - Low Byte

BIT 7 6 6 4 3 2 1 0

X sFla1 LOK REM X X X ADSC

Where

X This bit may be any value.

SRQl When this bit is set to 1, it indicates SRQ was active. (Active
Controller mode only.)

LOK When this bit is set to 1, the device was set to Local Lockout.
(Device mode only.)

REM When this bit is set to 1, the device was configured for
remote operation. (Device mode only.)

ADSC When this bit is set to 1, a change of the address status
occurred (i.e., untalk to talk, device to active controller, etc.).

,

7-24 KM-468.ROM USER GUIDE

- STATUS (cont.)
Inout and Ootout Message Terminator #@3. Contains First and Last
bytes of the massage terminator. Input Terminators and single character
Output Terminators are only one byte long and are contained in the
Least Significant Byte (MSB=O). In the case of a two character Output
Terminator, the Most Significant Byte of this parameter is the first
character sent.

DMA Timeout and I/O Timeout Parameters. Contains the value of the
desired parameter as an unsigned value in the low bytes of stat. The
timeout value is expressed in milliseconds (0 to 65535).

notes The bits contained in the Interrupt Status 1 &d 2 registers are extremely
volatile. When you read these registers, any bits which were set are
automatically cleared by the READ operation. This is extremely
important to note when reading Interrupt States Register 1, as some of
the bits (not shown above) are used by various KM4WROM routines.
It may be possible to cause various KM488-ROM routines to report a
timeout error if this register is read while the KM4&?-ROM is addressed
to talk or listen.

exampte This example illustrates how to use the STATUS routine.

linaludea;ml8erom.h>

- XMIT
purpose Sends GPIB co mmands and d&a from a string.

usage . . .
atatia ahar info11 = ("Data and Comds to ba sent");
iat *tat;
. . .
smit (info, c.t.t) :
. . .

parameters info is a CHARACTER ARRAY (string) containing a series of GPIB
commands and data. Each item must be separated by one or more
spaces. All the available commands are described in Chapter 3. These
commands include:

PROGRAMMING IN C 7 - 25

- XMIT (cont.)
CMD GTL MTA SDC To
DATA Gl-LA MLA SEC Tl
DCL IFC PPC SPE T2
END LISTEN PPD SPD T3
EOI LLO PPU TALK UNL
GET LOC REN TCT UNT

info canbe specified as a quoted “string” within the Xh4IT call, or as the
name of a character array which has been initialized to the desired string.

returns stat is an INTEGER which describes the state of the transfer retimed
after the call. The returned stat value can be interpreted as follows:

Stat (Return) -Low Byte
BIT 7 6 6 4 3 2 1 0

where

ADRS

NCTL

UNDF

TM0

STR

NT

S-IX

Invalid GPIB address. If this bit is set to 1, then an invalid
GPIB address was given.

Not a SystemController. If this bit is set to 1, it indicates
that the KM-488-ROM tried to send GPIB Bus Commands
when it was not an Active Controller.

Undefined Command. If this bit is set to 1, the info string
contained an undefined command.

Timeout Error. Indicates whether or not a Timeout Error
occurred during data transfer. If this bit is a 1, then a
Timeout Error occurred.

String Error. If this bit is set to one, then a quoted string,
END, or terminator was found without a DATA
subcommand preceding it.

KM488-ROM not a Talker. If this bit is set to a 1, it
indicates the routine was called before the KM-488-ROM
was designated as a Talker.

Syntax Error. If this bit is set to 1, a syntax error was found.

example This example iUustrates one way to use the XMIT command with a
KeithIey 196 Voltmeter. This meter is assigned GPIB address 7 and is
configured to a 30 Volt DC range with 4 l/2 digit accuracy. The meter is
also configured to take a new reading each time a Group Execute Trigger
Bus command (GET) is received. The program then triggers the
instrument to get the first reading, and makes it a talker and the KM488
ROM a listener in order to get the first reading.

The device to receive the setup command string which must be sent to
the meter contains the following device commands:

Fu Select DC Volts mode
R3 Select 30 Volt range
Sl Select 4 l/2 digit accuracy
T3 Take one reading when GET received
X Execute the prior commands within the string

7-26 KM-488.ROM USER GUIDE

XMIT (cont.)
The device to receive the setup command string must also be
programmed to assert the GPIB RBN signal (This allows the meter to
receive GPIB commands.1 and to LISTBN (This allows the device to
receive the string.). The progranunlng sequence used consists of the
following:

l Setting Remote Enable (REN).
l Setting all devices to UNTalk and UNLlsten.
l Addressing the 196 to LISTBN.
l Addressing the KM-4&3-ROM to talk (My Talk Address).
l Sending the Device-Dependent Commands as a string of DATA.
l Sending the appropriate message terminator characters after the data.

l Issuing the Group Execute Trigger bus command.
l Unaddressing all devices.
l Addressing the meter to TALK and the KM-488-ROM to LISTBN (My

Listen Address) in preparation for receiving the latest reading.

The default value for transmit message terminator 1 is a carriage-return
line-feed combination.

#inolu&xkm4SSrom.b~

rmino
f

int .t*tu*-0;
init (0, 0) ;

- XMITA
purpose Sends data from an array. It may also be used in conjunction with the

SETDMA routine to initiate DMA transfers.

usage . . .
int data]];
unsignmi count;
int tsm;
int *tat;
. . .
xxrdta(data[o] ,aount,term,Lstat);

PROGRAMMING IN C 7 - 27

alternate ussge

pammeters

BIT

XMITA (cont.)
. . .
urdgned aount;
ahar tsrm;

int *tat;
. . .
tarray(&t~[OI ,oount.tsnn. .s*t=t)

datall is an ARRAY containing data (of any type) to be transmitted. The
only difference between arrays of varying types is the number of data
bytes in each array location (char = 1 byte per location; int, unsigned = 2
bytes per location, word = 4 bytes per location). When transmitting data,
XMITA sends data from the least significant byte of the specified array
location, progressing from a least-significant through most-significant-
byte order from increasing array locations.

count is an IJNSIGNBD INTEGER containing the number of data bytes
to be transmitted.

term is an INTEGER which selects the terminator to be used. This byte
is of the format:

Term (Input Parameter) - Low Byte
7 6 5 4 3 2 1 0

When2

X This bit may be any value.

STRM Send Message Terminators. If this bit is set to 1, then the
message terminator61 will be sent at the end of the
transmission. Otherwlse, they will not.

TRM1-0 Terminator Select. These two bits select the Output
Message Terminator to be used to signal the end of a
transmission. Available terminator selections are

TRMI TRMO TERMINATOR # DEFAULT

0 0 0 LF EOI
0 1 1 CR LP EOI
1 0 2 CR EOI
1 1 3 LF CR EOI

These terminators can be redefined by calling the
OUTTERM routine.

EOI Asserts EOI. If this bit is set to 1, then EOI will be asserted
when the last byte is sent. Otherwise, EOI will not be
asserted.

returns stat is an INTEGER describing the state of the transfer returned after the
call. The stat value is interpreted as follows:

7-28 KM-488.ROM USER GUIDE

- XMITA (cont.)
Stat (Return) -Low Byte

BIT 7 6 6 4 3 2 1 0

TM0 Timeout Error. Indicates whether or not a Timeout Error
occurred during data transfer. If this bit is a 1, then a
Timeout Error occurred.

NT KhN&?-ROM not a Talker. If this bit is set to a 1, it
indicates the routine was called before the KM-488ROM
was designated as a Talker.

This example illustrates the use of the XMIT, XMITA, RCVA, SEND, and
SPOLL routines to send and retrieve waveform data from a GPIB
compatible oscilloscope.

un~igncld ‘i**ta[lO241, /* sins xave data l /
txdat*(lcl281, ,* ~inednti m3nverts.3 by s”a.pByt.es(] *,
rav~mine[l0281; /* for oanvertsd data l /

ahar rxd&t.(nloo] ; ,* for ra1 data from OsfilloPfopn *,

PROGRAMMING IN C 7 - 29

- XMITA (cont.)

7-30 KM-488~ROM USER GUIDE

t
xmit ~“ONr UNL”, ckmtat,; /* untalk the eoope *,
if(klwt*t I. 0)

KHgrrorBondler(kmst*t):
prr"tr("COMPARE SEW AND R&CBTVED DATA: . . OK, * . aplD

comarlE\n", ;
/*

a0MiV.d de. format .t.rt. *itA h.ader *n* byi3 .aount - CORVE
%xX. aeaeivd data at*rta at offset 9.
l /

l . rx.dat*+s; /* atart Of *ata *,

d - wI*r l , rev-mine;

ror(i.o;i<aor*;i++) I* aopy data to ro"-ed"c.[] *,

PROGRAMMING IN C 7 - 31

XMITA (cont.)
*a++ - l *++;

far(i.0; 1<1024; i++j (
rev-sin.,i, - s**payte. (ro”-ai”~[i,) ;

if (.i*da.a[i, - rw-si”.[il)
put*,‘.‘);

*I..
put*,‘*‘,;

f
printi,“\nConpl.t.\““);
key-getoh 0 :
ii(k.y-27) exit(O);
exit(o);

1
“n.ign.d int srapByte~(“nE+ned value)
,
“n.ign.d N*l”~.O;

n-al”. . “.l”. >> 8;
rva1ucl I. “due << s;

retuz” N.l”.;
1

void mrr0rEIuldl.r (irk. ErrorF1e.g)

,

printF("\nERROR NOMBER: %d\n",BrrorFlag);

axit(

)

. . .

7 - 32 KM-488~ROM USER GUIDE

Chapter 8

FACTORY RETURNS

Before returning any equipment for repair, please call 508/880-3000 to notify MetraByte’s
technical service personnel. If possible, a technical representative will diagnose and resolve
your problem by telephone. If a telephone resolution is not possible, the technical
representative will issue you a Return Material Authorization (RMA) number and ask you to
return the equipment. Please reference the RMA number in any documentation regarding the
equipment and on the outside of the shipping container.

Note that if you are submitting your equipment for repair under warranty, you must furnish
the invoice number and date of purchase.

When returning equipment for repair, please include the following information:

1. Your name, address, and telephone number.

2. The invoice number and date of equipment purchase.

3. A description of the problem or its symptoms.

Repackage the equipment. Handle it with ground protection; use its original anti-static
wrapping, if possible.

Ship the equipment to

Repair Department
Keithley MetraByte Corporation
440 Myles Standish Boulevard
Taunton, Massachusetts 02780

Telephone 608/880-3000
Telex 603989

FAX 608/880-0179

Be sure to reference the RMA number on the outside of the package!

FACTORY RETURNS 8 - 1

a

0

cl

8-2 KM-4&i-ROM USER GUIDE

Appendix A

ASCII Code Chart

ASCII CHARACTER HEX DEC

NUL ccl 0
SOH (Start of Heading) 01 1
STX (Stan of Transmission) 02 2
ETX (End of Transmission) 03 3
EOT (End of Text) 04 4
WQ (Ewti) OS 5
ACK (Acknowledge) 06 6
BEL (Bell) 07 7
BACKSPACE 08 8
HT (Horizontal Tab) 09 9
LF (Line Feed) OA 10
VT (Vertical Tab) OB 11
FF (Form Feed) oc 12
CR (Carriage Return) OD 13
SO (Shift Out) OE 14
SI (Shift In) OF 15
DLE (Data Link Escape) 10 16
DC1 (Data Control 1) 11 17
DC2 (Data Control 2) 12 18
DC3 (Data Control 3) 13 19
DC4 (Data Control 4) 14 20
NAK (Not Acknowledge) 15 21
SYN (Synchronous Idle) 16 22
ETB (End of Trans. Blank) 17 23
CAN (Cancel) 18 24
EM (End of Medium) 19 2s
SUB (Substitute) 1A 26
ESC (Escape) 1B 27
FS (File Separator) 1c 28
GS (Group Separator) 1D 29
RS (Record Separator 1E 30
us (unit separator 1F 31
SP (Space) 20 32

ASCII CHARACTER HEX DEC

I (Exclamation Point) 21 33
” (Quote Mark) 22 34
#(Pound Sign) 23 3s
$ (Dollar Sign) 2A 36
% (Per Cent Sign) 25 31
& (Ampersand) 26 38
’ (Apostrophe) 27 39
((Left Parenthesis) 28 40
) (Right Parenthesis) 29 41
* (Asterisk) 2A 42
+ (Plus Sign) 2B 43
, (Comma) 2c 44
- (Minus Sign) 2D 45
. (Period) 2E 46
I (Slash) 2F 41
0 30 48
1 31 49
2 32 50
3 33 51
4 34 52
5 35 53
6 36 54
7 31 5s
8 38 56
9 39 57
: (Colon) 3A 58
; (Semi-Colon) 3B 59
< (Less than) 3c 60
= mual) ‘3D 61
> (Greater than) 3E 62
? (Question Mark) 3F 63
@ (At, per sign) 40 64
A 41 65

ASC// CODE CHART A - 1

ASCII CHARACTER HEX DEC

B
C
D
E
F
G
H
I
J
K
L
M
N
0
P
Q
R
S
T
U
V
W
X
Y
Z
[(Left Bracket)
\(Backslash)
I (Right Bracket)
A (Caret)

(Underline)
‘(Accent, Grave)

L

42 66
43 67
44 68
45 69
46 70
41 71
48 12
49 13
4A 74
4B 75
4c 16
4D 71
4E 78
4F 79
50 80
51 81
52 82
53 83
54 84
55 85
56 86
57 87
58 88
59 89
5A 90
5B 91
SC 92
SD 93
SE 94
SF 95
60 %
61 97
62 98

ASCII CHARACTER HEX DEC

99

1
m
n
0

P
9
r
S

t
”
”
w
x
Y
z
((Left Brace)
I (Vertical Slash)
) (Right Brace)
- (Tilde)
DEL (Delete)

63
64
65
66
67
68
69
6A
6B
6C
6D
6E
6F
70
71
12
73
74
15
76
77
78
79
7A
7B
7c
7D
7E
7F

100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127

n MM

A-2 KM-488~ROM USER GUIDE

Appendix B

IEEE-488 Tutorial

The evolution of electronics over the past few decades has lead to concepts and
implementations of test/measurement and control systems of continually increasing
complexity and sophistication. For example, measurement started out as “go no go” tests
equivalent to plugging a lamp into an electrical outlet to determine if the outlet is “hot”. Next,
meters appeared which yielded a single number characterizing a quantity and then
oscilloscopes which displayed how signals varied with time. Today, logic and spectrum
analyzers allow us to further manipulate and display the data in a variety of specialized ways.

At the same time, our expectations on collecting, saving and manipulating the results of
measurements has escalated from writing down meter readings and hand calculations to
automated storage of and complicated computations on large numbers of measurements.
Many instruments have these capabilities “built-in”; thus freeing the system controller from
having to handle complex calculations. A modern test/measurement or control system can be
represented as:

DEVICE
OR

PROCESS

MEASURING
DEVICES

4

A typical test would be to measure the “frequency response” of a device. The source would be
capable of supplying a sine wave of varying frequency to the input of the device and the
measuring device would measure the magnitude and phase of the output. In an automated
system, the CONTROL box would step the source through a range of frequencies. At each
frequency the control would request the measuring device(s) to return a value and the results
could be stored and used to calculate the “transient” response of the device, for example.

Traditional test instruments have provided the basic measurement functions for years. For
example, there are oscillators which generate sine waves of various frequencies and meters to
measure responses. The essence of today’s system is that the different functional units of the
system can communicate with each other as required and be run automatically by a controller.
To accomplish this goal, a bus has been defined which allows instruments to be
interconnected and to communicate with each other through a standard hardware
arrangement. This bus is often referred to as the GENERAL PURPOSE INTERFACE BUS

IEEE-488 TUTORIAL B - 1

(GPIB). It is also identified as the IEEE438 bus because it has been standardized in
specifications from the Institute for Electrical and Electronic Engineers.

B.l TOPOLOGY
An IEEE-488 system allows different manufacturers’ devices to be connected. Systems can be
connected following a star or linear-type topology or using a combination of both. The system
should adhere to the following constraints:

l No more than 15 devices can be connected by a single bus.

l The total transmission length cannot exceed 20 meters or 2 meters times the number of
devices (which ever is less).

l The data rate through any signal line must be less than or equal to one megabyte per
second.

B.2 THE SYSTEM
The simplest IEEE-488 system consists of a single device sending data to another, such as a
meter outputting data to a printer. A more typical IEEE-488 bus system (See Figure B-l.) is
comprised of up to 15 devices, each of which acts as one or more of the following: Controller,
Listener, and Talker.

There are a variety of interface functions whlchGPIB devices can support at various levels.
The IEEE standard recommends that a label listing the device codes be placed on the
instrument near the IEEE connector. Codes consisting of 1 or 2 letters indicating the function
type followed by a number indicating the level of support are used to characterize the device.
If the number is 0, it means that the function is not supported. Each device’s applicable device
codes should be listed within its manual or specification. Appendix D lists the device codes.

IElI

SYSTEM
CONTROLLER

p?qz!j lllllllllllll1llllllllllllll B

DEVICE C A-,. DEVICE B
TALKER LISTENER

DEVICE A
TALKER / LISTENER

F/gum B-2. 7)fplcal Sysfem

8-2 KM-488~ROM USER GUIDE

Listeners
A Listener is any device which is able to receive data when properly addressed. There can be
up to 14 active listeners on the bus concurrently. Some devices can also be a talker or
controller; however, only one of these functions can be performed at a time.

Talkers
A Talker is any device which can transmit data over the bus when properly addressed. Only
one device can transmit at a time. Some devices can also be a listener or controller; however, a
device can perform only one of these functions at a time.

Controllers

Most IEEE-488 systems contain at least one IEEE-488 Controller (e.g., the KM-488 board).
There may be more than one Controller per system, but only one can be active at any given
time. This function is very important because the Active Controller has the ability to mediate
all communications which occur over the bus. In other words, the Active Controller
designates (addresses) which device is to talk and which devices are to listen. The Active
Controller is also capable of relinquishing its position as Active Controller and designating
another Controller to become the Active Controller.

There is always one System Controller in an IEEE488 system. The System Controller is
defined at system initialization either through the use of hardware switches or by some type
of configuration software, and usually would not be changed. This System Controller can be
the same controller as the one which is the current Active Controller or an entirely different
one. If the controller is both a System Controller and an Active Controller and it passes control
to another controller, the system controller capability is not passed along with it.

The System Controller has the unique ability to retrieve active control of the bus or to enable
devices to be remotely programmed. It takes control of the bus by issuing an IFC (Interface
Clear) message. The System Controller issues this message by asserting the IFC Control line
(See section 8.3.) for a period of at least 200 usecs.

Likewise, devices cannot be put into the remote state (can be programmed from the GPIB bus
rather than from the normal controls) unless the System Controller is asserting the REN
(Remote Enable) line. (See section 8.3.) With REN asserted, a device will go into the remote
state the first time it is addressed to listen by any Active Controller. All the devices will
return to local control if the System Controller unasserts REN.

If an IEEE-488 device is not a System Controller or an Active Controller, then it will be
referred to as a device. In this capacity, it can be idle, act as a talker and/or listener, when it
has been addressed or unaddressed by the Active Controller.

IEEE-488 TUTOR/AL B - 3

Figure B-3. IEEE-488 Bus Connector

B.3 BUS LINES
The IEEE-488 bus is a parallel bus containing 24 lines, 16 of which are signal lines. (See Figure
B-2.) These 16 lines consist of eight data lines, five control lines, and three handshake lines.
The manner in which the bus lines are used is described in the section B.5 .

Data Lines
The Data Lines CD101 through DIO8) are used to convey messages such as: device addresses,
Parallel Poll Responses, IEEE-488 Interface Commands, or Data/Device Dependent
Commands. They are discussed extensively in section B.4.

Control Lines
The control Lines perform a variety of control, request, and coordinating functions which
assure the orderly flow of information on the bus. The IEEE standard refers to any bus
activity as being a “message”. Messages used to control bus functions, as opposed to sending
data between devices, are called interface messages. Asserting a control line is said to send a
uniline interface message because a specific effect usually occurs as the result of the assertion.
Table B-l briefly describes the control lines and lists their name, associated acronyms and
functions. Their functions will be elaborated in subsequent sections.

B-4 KM-488~ROM USER GUIDE

Table B-l. COnttVl Lines

ACRONYM LINE NAME FUNCTION

ATN Attention

EOI End or Identify

IFC Interface Clear

REN Remote Enable

SRQ Service Request

This line can only be assertcd/unasserted by the Active
Controller. It designates whether the current data on the data
lines is data or a command. When this line is set low(true), it
indicates that the information to follow represents commands
and/or addresses. When this line is set high (false), the active
talker is transmitting device-dependent data to all active listeners.

This line is also used with EOI to conduct a parallel poll.

Signals that the hut data byte of a multibyte sequence is being
transferred. Thii line is also used in conjunction with the ATN
line to initiate parallel polling.

When this line is asserted (set low), the bus is cleared and all
talkers/listeners are. placed in an idle state. This is a pulse of 2M)
u or more. This line can only be assent-d by the System
Controller.

If this line is asserted, bus devices can be programmed via IEEE
bus commands issued from an active talker. This line. can only be
asserted by the System Controller.

This line when asserted indicates that service is required from the
Active Contmller. SRQ can be asserted by any bus device which
supports the function.

Handshake Lines
There are three Handshake Lines which are used to coordinate data transfers between talkers
and listeners on the bus. Table B-2 briefly describes the Handshake lines. It lists their names,
associated acronyms, and functions.

Table B-2. Handshake Llnes

ACRONYM LINE NAME FUNCTION

DAV Data Valid This signal is used to inform the system that valid data is ready
for transmission.

NDAC Not Data Accepted Indicates if all devices accepted the data M not. As each listener
receives data, it will set its NDAC line high. Once all intended
listeners have accepted the data, the NDAC line to the talker will
be set high.

NRFD Not Ready For Data Indicates whether or not the listeners arc ready to receive data.
When each listener is ready, it sets its NRFD line high.

Section 8.4 describes the use of the handshaking lines. Figures B-3 and B-4 illustrate the
Handshaking Sequence.

IEEE-488 TUTORIAL B-5

Y-

Flgure Et4 Handshake Tknlng

Flgurs B-5. Transmlsslon of Data from Talker to Llstener

B-6 KM-488-ROM USER GUIDE

Preliminary: Source checks for listeners and places data byte on data lines.

t-1 All acceptors become ready for byte. NRFD goes high with slowest one.

to Source validates data (DAV low).

tl First acceptor sets NRFD low to indicate it is no longer ready for a new byte.

t2 NDAC goes high with slowest acceptor to indicate all have accepted the data.

t3 DAV goes high to indicate this data byte is no longer valid.

td First acceptor sets NDAC low in preparation for next cycle.

t5 Back to t-l again.

t6 Back to t0 again.

All devices that are to be “sources” i.e., be talkers and send data on the GLIB must be able to
perform the “source” handshake functions of responding to the NRFD and NDAC lines and
controlling the DIO lines and DAV as described above. In terms of the codes of Appendix D,
they must have SH1 capability. Devices listed as SHO cannot act as sources.

Likewise, all devices which are to be “acceptors”, i.e. be listeners and receive data on the GPIB
must be able to perform the “acceptor” handshake of responding to the DIO lines and DAV
and controlling NDAC and NRFD as described above. They must have the SHl capability as
defined in Appendix D. Devices listed as AH0 cannot act as acceptors.

B.4 BUS FUNCTIONS
The purpose of the IEEE-488 Bus is to provide a mechanism for the orderly flow of
information between bus devices. To accomplish this, the IEEE488.1 specification refers to
two types of messages as occurring on the bus. This first is interface messages which manage
the interface itself and the second are device dependent messages which are used to transfer
information between bus devices.

Interface messages are sumrnarlzed in Appendix D and can be placed in two groups. The first
group consists of the so-called “Uniline Interface Messages” introduced in 8.3 which are sent
be the controller asserting the special control lines. The second group, the so-called “multiline
interface messages”, which are treated separately in section 8.5. The Active Controller sends
multiline interface messages by asserting the ATN line and placing data on the DIO lines. The
multiline interface messages are broken up into 5 groups: Addressed, Universal, Listen
Address Group, Talk Address Group, and Secondary Address Group.

The second type of message is the device-dependent message and is sent by the Active Talker
by placing data on the DIO lines (the ATN line will not be asserted). Device-Dependent
messages are not discussed in this section.

The major functions performed by these messages are: System Initialization and Control,
Device Addressing, Sending and Receiving Data/device Commands, Requesting Service,
Polling and Triggering. These functions are described within this section.

System lnltlallzatlon
When a typical IEEE-488 system is initialized, there will be one device which will be the
System Controller. The System Controller will usually assert the Interface Clear line (See

IEEE-488 TUTOR/AL B - 7

section 8.3.) for at least 200 sets. to make sure it has control of the IEEE-488 bus and that no
device is addressed to be an active talker or active listener. The System Controller will then
unassert IFC.

Typically the system controller will assert the Remote Enable line (REN , See Section B.3) so
that bus devices will go to remote when they are addressed to listen. When a device is in
remote it can receive instructions remotely over the GPIB bus which will program its
functions and ranges rather than locally from panel controls on the device. The controller
might also issue a Local Lockout message (LLQ, see Section B.5) which prevents an operator
from returning a device to local control. In this way, the devices are completely under bus
control.

All Devices can be put back into local by the System Controller unasserting REN or by any
active controller issuing a Go To Local (GTL See section 8.5) message to specific devices. In
the latter case, devices will go back to remote the next time they are addressed to listen. The
remote/local capability of a device is specified by the RL code of Appendix D.

The Active Controller can also issue device clear commands which will return the device(s) to
its initial power-up programming state, for example, its original range and function. In some
cases this means returning to factory-set default values while in others it means returning to
previously saved operator-chosen settings. The functionality of a device is specified by its DC
functionality of Appendix D.

Passing Control
Control can be passed to another controller by addressing a prospective controller to listen
and then issuing a Take Control (TCT, See Section B.5.) message. Care must be taken that the
prospective controller is capable of accepting control because generally no error will be
detected if it is not. Having issued the message the previous controller becomes an inactive
controller and a normal bus device. A system controller can always seize control by asserting
IFC.

The function codes of Appendix D which describe controller function start with C. Multiple
numbers are used. CO indicates no controller capability, whereas Cl-C5 would indicate
complete capability.

Addressing a Device

Devices are addressed by the Active Controller issuing multiline interface messages from
either the talk address group (TAG) or listen address group (LAG) as described in section 8.5.
Normally, up to 15 IEEE bus devices can be configured within one IEEE-488 system. In order
to avoid data conflicts, each device is assigned a unique primary address in the range 0 to 30.
Some devices can support more than one address although usually the device will present
only one electrical load to the bus.

Because there can only be one talker at a time, a talker will be unaddressed automatically
when another device is addressed to talk. However, there will be times when the controller
will want to untalk a device without addressing another. It will always be necessary to
unaddress listeners that no longer should be listening because it is possible to have any
number of devices listening at the same time. Within each of the LAG and TAG groups is
either an unlisten or an untalk command. The talk and listen function codes of talkers and
listeners as listed in Appendix D begin with T and L respectively.

B-0 KM-488-ROM USER GUIDE

Secondary addresses are used to extend the total number of addresses on the bus. (Secondary
addresses also must fall within the range 0 to 31.) Devices which employ a secondary
address in addition to their primary address and are said to be extended talkers and/or
extended listeners. The function codes describing these functions are TE and LE and listed in
Appendix D.

Frequently secondary addressing is used to access additional operating modes on a single
device or a specific device within a rack of devices where the rack is assigned the primary
address. In either case, the electrical load to the IEEE-486 bus should only be the equivalent of
1 device. To access such a device, a command t?om the LAG or TAG group would be issued
for the primary address and followed immediately by a command from the secondary
command group as described in Section 8.5.

NOTE: Most IEEE instruments are assigned a device address by setting hardware DIP
switches, front panel controls, or by running some type of setup software.

Sending and Receiving Data/Device Commands
Data/Device Commands is a message which is sent over the bus with ATN unasserted. For
example, a multimeter might send the results of several readings to a printer or display. Data
can be sent by any device on the bus which is a talker.

The Device Commands control what tasks the IEEE-488 instrument performs. For example, a
sequence of these commands might set a meter to a particular measuring range. These
commands are device-specific. That is, the command required to set the voltage range of one
manufacturer’s multimeter cannot necessarily be used to set the voltage range on a multimeter
produced by another company. The device(s) which is addressed to listen can distinguish
Device Commands from data because certain character or command sequences are included.

Newer devices which conform to the IEEE4882 and or SCPI (Standard Commands for
Programmable Instruments) specifications may have more standardized command sets.
Consult the documentation accompanying the device for its command set. Device Commands
can be issued by any device on the bus which is a talker.

Message Terminators
A Message Termination scheme is required if messages of unknown length are to be sent in
order for the receiving device to know when the data transmission has ended. One way of
terminating a message is to employ the End or Identify (EOI) line. (See Section 8.5) The
device transmitting the data will assert the EOI when it puts the last data byte on the DIO
lines. The receiving device then recognizes that the byte it receives with the EOI will be the
last.

As second termination scheme is for the transmitting device to append one or two characters
(which would normally not appear in the message) to the end of the message. The characters
causing a carriage return and line feed are frequently used where the message is a string of
text. If the message consists of values between 0 and 255 then termination characters cannot
be used because they might be mistaken for data (Carriage return = 13, line feed = 10). In this
case, an EOI would have to be used or frequently the number of data bytes to be sent is
known so that the receiver could accept that amount of data.

Usually devices provide some flexibility in the terminators they support. By means of
switches or programming one can choose whether or not termination will be used and if so,
whether termination characters and/or EOI will be used.

Triggering
The Active Controller can issue the addressed multiline message of Group Enable Trigger
(GET) which will cause devices to start executing some function such as to make a
measurement. This allows the active controller to synchronize various activities. Whether a
device support trigger functions is defined by its DT capability code of Appendix D. See
Section 8.5 for further information on GET.

Requesting Service
The service request line (SRQ) introduced in Section 8.5 provides a means for bus devices to
request service from the Active Controller. When a device requires service, as for example,
when it has completed a task, the device will assert the SRQ line. All bus devices share the
SRQ line so it will be necessary for the controller to use the polling techniques of the next
section to determine which device is responsible for the SRQ. It is also because a device will
not unassert the SRQ line until it has been serially polled.

The service request capability of the device is defined by the SR code of Appendix D and the
controller must have C4 capability in order to respond to the SRQ.

Polling
Polling is used on the IEEE-488 bus to ascertain if a device needs service. For example, if it
needs to pass data to the Active Controller. There are two types of polling which are used on
the IEEE488 interface: serial and parallel. Often, they are used in combination. For example,
sometimes parallel poll is followed by a serial poll. This enables the Active Controller to
determine the type of service needed by a device.

Serial Polling
Serial polling permits the Active Controller to determine whether any device(s) needs service.
The Active Controller serial polls one device at a time by first issuing the serial poll enable
(SPE) multiline message of Section 8.5. Now when a device is addressed to talk the device
will return a special status byte. If the bit returned on DIO-7 is 1, the device requires service.
The other bits indicate user-defined status and can indicate why the SRQ was asserted. The
controller can conduct a serial poll even when an SRQ is not generated in order to determine
the status information. If a device has asserted SRQ, it must be polled before it will release
SRQ.

At the end of a serial poll, the controller will issue the serial poll disable (SPD) message of
Section 8.5 and the next time the device is addressed to talk, it will return to its normal data.

Devices must have the talker (T) or extend talker (ET) capability as listen in Appendix D in
order to return a status byte.

Parallel Polling
Parallel Polling allows the Active Controller to check the status of up to 8 devices (or groups
of services) at the same time to determine which device(s) may require service. When the
Active Controller asserts both the ATN and I301 lines, devices which support parallel polling
will return a status bit via one of the DIO lines. If the parallel poll indicates a device needs
attention, the Active Controller may have to conduct a serial poll of the device to determine

B - 10 KM-488~ROM USER GUIDE

why the need for service.

There must also be some mechanism to clear the bit the device returns for a parallel poll.
Frequently this bit is tied to the SRQ request. In this case, a device generates a SRQ at the
same time it sets the bit that will be returned by the parallel poll. The Active controller
conducts a parallel poll to rapidly determine the device requiring service and then a serial poll
to gain more information about the cause of the SRQ and to clear the SRQ and the bit that will
be returned by parallel polling.

Depending on the device the DIO line assignment will be allocated by the controller or by
switches or jumpers on the device. If the device can be assigned a line by the controller, the
controller will do so by issuing a parallel poll configure (PPC) interface message followed by a
parallel poll enable (PPEI interface message.

A relative few number of devices support parallel poll. Their capability including the manner
of DIO assignment is specified by the PI’ code Appendix D. Only certain controller C codes
support parallel poll.

B.5 BUS INTERFACE
Bus commands are issued by the Active Controller. There are five types of bus commands:

l Universal

l Listen Address Group (LAG)

l Talk Address Group (TAG)

l Addressed Commands

l Secondary Commands

These are described within this section. Also refer to Appendix C for an ASCII table
containing a complete interface message summary.

Universal Commands
Devices on the bus respond to these commands whether they have been addressed or not.
However, the commands may affect different devices in different manners. Note too that all
commands are not necessarily supported by all devices. The interface capability codes of
Appendix D are used to specify the functionality of a device. In order to issue one of these
commands, the Active Controller must go through the following sequence:

l Assert the ATN line.

l Place the desired co mmand byte on the data bus.

Descriptions of the Universal Commands are shown in Table B-3.

IEEE-488 TUTORIAL B-11

Table 8-3. Unhwsal CommantYs

ACRONYM COMMAND NAME FUNCTION

DCL

LLO

SPE

Device Clear This command re-initializes the device. This is device-dependent.

Local Lockout This command disables the device’s front panel LOCAL button.

Serial Poll Enable This command enables serial poll mode. When addressed to talk,
the device will return a single status byte.

SPD Serial Poll Disable This command disables serial polling. Upon being addressed, a
device witl return to its normal state and begin outputting device
dependent data

PPU Paratlel Poll This command resets alI parallel poll devices to the idle state
Unconfigme (They will not respond to a parallel poll.).

Talk Address Group (TAG)
The Talk Address Group (TAG) massage defines the specified device to be an active talker.
Only one device can be an active talker at a time. The message contains the primary address
(0 to 30) of the device which is to talk. This address consists of a primary address in the range
0 to 30. (Address 31 can be used to UNTALK all devices.) This may be accompanied by a
secondary address in the range 0 to 31.

Generally, when an Active Controller issues a TAG command, it

l Asserts the ATN line.

l Untalks all devices.

l Sends a TAG.

l Unasserts the ATN line.

l The talker then sends its data.

Listen Address Group (LAG)
The Listen Address Group (LAG) command defines the specified device(s) to be an Active
Listener. A command from this group contains the bus address of the device to be listened.
This address consists of a primary address in the range 0 to 30. This may be accompanied by a
secondary address in the range 0 to 31. Note that sending a primary address of 31 will
unlisten all devices. Generally, when an Active Controller issues a LAG command, it

l Asserts the ATN line.

l Unlistens all devices.

l Sends a LAG with the address of the device(s) to listen.

l Unasserts the ATN line.

l Sends data.

B - 12 KM-488-ROM USER GUIDE

Addressed Commands
These co mmands are issued by the Active Controller and affect only those devices which have
been properly addressed. Not all devices support these commands.

In order to issue an Addressed Command, the Active Controller must go through the
following sequence:

l Assert the ATN line.

l Address the device(s) to listen.

l Place the command byte on the data bus.

The addressed commands are shown in Table B-4.

Table B-4. Prlmaty Addressed Commands

ACRONYM COMMAND NAME FUNCTION

GET L Group Execute This command allows you to trigger a group of devices
Trigger concurrently.

SIX Selected Device This initializes the addressed device to its reset state. This is
Ch device-dependent.

GTL GotoLoeal This command allows the device to be programmed locally, i.e..
through the. switches on the front panel. Once the device is
addressed to listen again, it will exit the local mode.

PPC Parallel Poll
conQlre

when combined with the use of the secondary commands PPE
and PPD. this command enables/disables the addressed device to
be remotely parallel polled by the conrroller.

TCT Take Control This allows the active controller to pass control to another
controller on the system. The second controller then becomes the
active cont.roIler.

Secondary Commands
Secondary commands are sent immediately following a PPC (Parallel Poll Configure), TAG
(Talk Address Group), or LAG (Listen Address Group). Secondmy commands following a
member of the TAG or LAG cause the device identified by the primary and secondary address
to be an active talker or listener. The sequence would be

l Assert the ATN line.

l Place a member of the TAG or LAG group containing the primary address on the data bus.

l Place a secondary command containing the secondary address on the data bus.

l Unassert the ATN line.

Secondary commands following PPC are divided into the Parallel Poll Enable group and the
Parallel Poll Disable group. Recall that PPC requires devices to be addressed as listeners. The
sequence in this case will bc

l Assert the ATN line,

IEEE-488 TUTORIAL B-13

l Address the appropriate device(s) to listen (including a secondary address if required).

l Place PPC on the data lines.

l Place a command from the PM: group (to enable) or from the PPD group (to disable) on
the data lines. _

l Unassert the ATN line.

Any member of the PPD group will disable the addressed device(s) from responding to a
parallel poll. To enable a device(s) to respond to a parallel poll, the 3 lowest bits of the PPE
command form a code of 0 to 7 which tells the device to control the data line 1 to 8 when a
parallel poll is conducted. Setting the 4th lowest bit of the PPE command tells the device to
assert its assigned line when service is required while setting the 4th lowest bit low will cause
the device to assert its line when service is not required.

B.6 REFERENCE DOCUMENTS
If you require more detailed information than this tutorial provides, refer to the following
documents:

l ANSI/IEEE 488.1-1987, IEEE Standard Digital Interfacefor Programmable Instrumentation

l ANSI/IEEE 488.2-1987, Codes, Formats, Protocols and Common Commands for Use with IEEE
488.1-1987

The above two documents are available from:

IEEE Service Center
445 Hoes Lane
Piscataway, NJ. 08855
W!O)678-IEEE

l Standard Commands fir Programmable Instruments Manual

This document is available from:

SCPI Consortium
8380 Hercules Drive, Suite P3
La Mesa, California 92042
(619)697-5955

s - 14 KM-4SWlOM USER GUIDE

Appendix C

IEEE Multiline Commands

IEEE MULTILINE COMMANDS C-l

c-2 KM-488~ROM USER GUIDE

Appendix D

Device Capability Codes

DEWCE CAPABILITY CODES

AH Function Af/mwb/e Subs&s

Identilicalion Description

AH0
AH1

No capability
No capability

Other Function Subsets
Required
NOIW
NOW

SH Function A/lowab/e Subs&

ldenlilicalkm Cesaiption Glher Function Subs&
Required

SHO NOflO
SHl Ti-TB,TEI-TEE. or&C26

T Function All owabk Subsots

ldenlilicafion C-awipdon Ciher Function Subs&

Basic
Talker %”

Talk Unaddress
Required

Only if MA
Mode

:7 F Y ! i
NOI?3
SHi and AH1

T2 Y Y N N SHl and AH1
T3 Y N Y N SHl and AH1

T4 Y N N N SHl andAH
T5 Y Y Y Y SHl and Ll.L4 or LEl.LE4
T6 Y Y N Y SHl and Ll-L4orLEl.LE4

77 Y N Y Y SHl and Ll-L4 or LEl-LE4

T6 Y N N Y SHl and Ll-L4 or LEl-LE4

DEVICE CAPABILITY CODES D - 1

(...... .--.--- _,.._.._._,., , ,,,-.,-,- -““-,”
ldenlilication Descaipticn Other Function Subsets

Basic S&l
Talker POR

Talk
Onlv

Unaddres
il MSA

Required

:Fi
TEZ
TE3
TE4

TE5
TE6

Ml& *(LpIsl
Y c1 v /

NOIN
SHl andAH

Y Y N N SH1 and AH1
Y N Y N SHl and AH1
Y N N N SH1 and AH1
Y Y Y Y SHl and Ll-L4orLEl.LE4
Y Y N Y SH1 and Li-L4 or LEl-LE4

TE7

TE6

Y N Y Y SHl and Ll-L4 or LEl-LE4

Y N N Y SHl and Ll-L4 or LEl-LE4

Rl Function Allowable Subsets

ldenlilicalion Description &Xher Function Subsets

RLO
RLl
RL2 No Local Lwkoul

Required
NOW
Ll-L4, or LEi-LM
Ll-L4.a LEl-LM

PP Function Altmvable Subsets

ldenlilicalion Desuiption Other Function Subsets
Required

FE
No capability
Remote cap&lay

None

PP2 Local Canllguration
L$ or LEl-LM

DC Function Allowable Subssts

ldenlilicalion Dewiption Clher Function Subsets
R6ff!JiWd

DC0
DC1

NOW

DC2 Omil Selective Device Clear
Li-L4. or LEI-LM
AH1

D-2 KM-488.ROM USER GUIDE

DTO
DTI k$Z&bilk y

NOM
Ll-L4, or LEi-LM

1 Functkm Attowabte Sut s9ts
Identification Other Function Subsets Required

L4 Y N Y AH1 and Tl-T6 or TEl-TE6

L Fun&n (with Address Extension) Altowabte Subsets

Idenlilication Description
Basic Listen Unaddress

Cihet Function Subsets Required

Listener Only Mode if MSA *
m

:E v v !i
NOIW
AH1

LE2 Y N N AH1

LE3 Y Y Y AH1 andTl-T6 or TEl-TEE

LE4 Y N Y AH1 and T&T6 or TEl-TEE

* Replaced by MTA when used together whh the T h~ndion

SR Function A//owab/e Subsets

ldenlificalion

SRO
SRl

Description

No abiliiy
*p Camp 819 Capability

Other Function Subsets
Required

NOW3
~~~Z,T~.T~.TE~.TE~.TES,O~ 

DEVICE CAPABILITY CODES D - 3 



iij 

D-4 KM-488-ROM USER GUIDE 



Appendix E 

Printer & Serial Port Redirection 

The KMLPT and KMCOM utilities automatically redirect communications destined for printer 
or serial ports to specified IEEE-488 bus devices. This is useful in that it allows application 
programs which are unaware of the IEEE-488 bus to control bus devices as if they were 
printer (KMLIW and serial (KMCOM) devices. 

Before you use these programs, you must understand the difference between logical and 
physical printer port devices. A physical device is the actual port which is installed in the 
computer. For example, you might have two parallel printer ports and one serial 
communications port installed in your computer. These are the physical devices. Physical 
devices are depicted by using the port name. For example, the first printer port identified by 
the computer is referred to as LPTl, the second LPTZ, etc. 

A logical device is a device which is currently configured to receive the data to be printed. 
Logical devices are represented using a colon, for example LpTl:. (This would indicate the 
device which is currently configured to receive the data to be printed.) 

The computer maintains two tables, each of which has four entries. These tables are used to 
assign a physical device to a logical device. For example, if two printer ports and one serial 
port were installed, these tables would initially appear as: 

LPTI: 
LFn 
LPl-3: 
LPT4 

LFW 
LPl2 
None 
None 

SERIAL PORT ASSIGNMENTS 

COMl: COMl 
COM2: None 
COM3: None 
COM4: None 

E.l PARALLEL PORT REDIRECTION 
Parallel Port redirection is accomplished by using the KMLPT utility. This is a unidirectional 
re-director which intercepts a character from the DOS BIOS and writes it to the GLIB via an 
LI’T: port. This accomplished by assigning the logical LPT: port to a GPIB device address. 

The next sections describe how to load/unload the KMLPT redirector from the DOS 
command line. If you need help loading KMLPT, from the DOS command line, type KMLPT 

/BE- 

Invoke the KMLPT utility as follows: 

1. Change to the directory where your KM-I&?&?-ROM software is located. 

PRINTER & SERIAL PORT REDIRECTION E - 1 



2. At the DOSprompt, type Kt5J?T nl /A&Biord& /Baddr /t 

Where 

nl . . n4 are up to 4 optional device parameters. Each is of the format IEEEppss or LPTn 
where 

IEEEppss identifies the IEEE488 device. ppss is the address of the IEEE-488 device. pp 
is the address of the IEEE-488 device. This is a primary address, with a secondary address 
(ss) if needed. For example, you might specify the device IEEE2022. 

LPTn identifies a physical printer port where n is the printer port number, i.e. LPTI. 

/A&Hioaddr is a requried parameter which follows the nl parameter. It specifies the I/O 
Base Address fin hex) of the KM-488-ROM. 

/Baddr is an optional parameter which follows the nl parameter. It specifies the IEEE-488 
Bus address (0 to 30 decimal1 of the IEEE-488 interface board and must be included if the 
IEEE488 interface board is not located at the default address of 0 decimal. 

/t is an optional parameter which specifies the timeout period. This can be any value 
between 1 to 30 seconds. The default value is 1 second. The timeout period should be set 
long enough to allow for the slowest plotter function. 

NOTES 

9 If KMLPT is executed with no arguments, then it just displays the current logical printer 
port assignments. 

l If one or more arguments are provided, then the first logical printer port (LFTl:) is re- 
directed to the physical device by the first argument, the next logical port (LIV:) is re- 
directed to the next specified physical, and so on. 

l If less than four devices am specified, then the remaining logical printers are re-directed to 
any unused physical parallel printer ports. 

EXAMPLES 

These examples assume that your PC has two functioning LPf ports. 

BMLPT IEEE05 /A6E2B8 ConHgums LPTl: for output to IEEE device 05 on an interface 

I05PT LPTl 
IEEE05 /A6B2B8 

KMLPT IEEE05 
IEEE1201 /ALli2B0 

card located at 2B8h. - 

Resulting Printer Port Table 
LFTI: LPI.1 
LPl2 IEEE05 
LPT3t LPTZ 
LPT4 None 

Resulting Printer Port Table 
LPTl: IEEE05 
LPTZ: IEEE1201 
LPl-3: LPTl 
LPT4: LPI”2 

E-2 KM-488~ROM USER GUIDE 



RESULTING GPIB BUS ACTIVITY 

When the KMLPT changes from one GPIB bus address to another, the GPIB activity will be as 
follows: REN is asserted followed by the ATN line, then the following bus “commands” are 
sent UNT, UNL, MTA, LA. ATN is onasserted and the data is sent. 

If the GPIB bus address used by the Kh4LPT redirect driver remains the same, the data is 
simply sent over the bus. 

E.2 UNLOADING KMLPT FROM DOS 
To unload the KMLPT utility from the DOS command line: 

1. Change to the directory where your KM-488-ROM software is located. 

2. At the LX% prompt, type KMLPT /U 

l If the driver is already resident and redirection is requested, the printer assignments are 
altered and reported. 

l Both of the KMCOM and KMLPT drivers may be loaded at the same time and name the 
same IEEE addresses. The drivers must be unloaded in reverse order of loading. 

l If any other TSR is loaded after the re-director, it will not be possible to unload the re- 
director until subsequent drivers are unloaded. 

l The IPC message is sent when the driver loads. 

E.3 SERIAL PORT REDIRECTION 
Serial Port redirection is accomplished in the same manner as Parallel Port *e-direction. The 
only difference is that you use the KMCOM utility. This is a bidirectional redirector which 
intercepts a character request from DOS BIOS and reads/writes the data from/to the GPIB. If 
data is read from the GPIB, the driver will execute synchronous inputs. This insures that data 
will not be lost if a different GPIB bus address from the previous one is used. Note, however, 
that some devices may “flush” their output buffer when they are “unaddressed.” 

The next sections describe how to load and unload the KMCOM m-director from the DOS 
command line. If you need help loading KMCOM, from the DOS command line, type 
XMCOM /EBLP 

E.4 LOADING OR CHANGING KMCOM FROM DOS 
To load the KMCOM utility from the DOS command line, 

1. Change to the directory where your KM4?8-ROM software is located. 

2. At the DOSprompt,type XJ4COM nl /IO- /Baddr /t 

Where 

PRhVTER & SERlAL PORT REDlRECTlON E - 3 



nl . . . n4 designates a GLIB or COM port device. Up to a total of 4 devices may be 
specified. 

GPIB bus devices are denoted as IEEEppss, where 

IEEEppss identifies the IEEE-488 device. pp is the address of the IEEE-488 device. 
This is a primary address, with a secondary address (&if needed. For example, you 
might specify the device IEEE2022. 

COM port devices are denoted as COMn, where 

COMn identifies a physical printer port where n is the printer port number (1,2,3,or 
4), i.e. COMl. 

/A&Hioaddr is a required parameter which follows the nl parameter. It specifies the I/O 
Base Address (in hex) of the KM488-ROM. 

/Baddr is an optional parameter which specifies the IEEE488 Bus address (0 to 30 
decimal) of the KM-488ROM. It must be included if the IEEE488 interface board is not 
located at the default address of 00 decimal. 

/t is an optional parameter which specifies the timeout period. This can be any value 
between 1 to 30 seconds. The default value is 1 second. The timeout period should be set 
long enough to allow for the slowest plotter function. 

NOTE: Parameters must appear in all UPPER CASE or all lower case. UPPER CASE and 
lower case cannot be mixed. 

NOTES 

l If KMCOM is executed with no arguments, then it just displays the current logical printer 
port assignments. 

l If one or more arguments are provided, then the first logical COM port (COMl:) is re- 
directed to the physical device by the first argument, the next logical port (COM2:) is re- 
directed to the next specified physical, etc. 

l If less than four devices are specified, then the remaining logical COM ports are re-directed 
to any unused physical COM ports. 

l For the serial or parallel port to be redirected effectively, the application program should 
be configured to send its output to a disk file rather than directly to the printer or plotter. 
If, for example, a file such as coml.dat is specified, the program will act as if it were 
writing the data to a genuine file. However, the output will really be sent to the IEEE bus 
device to which COMI was redirected. The program may even issue a warning message 
that the specified file exists and will be overwritten. If it does, instruct it to delete or 
overwrite the file. 

NOTE When using COM port redirection, it may be necessary to use the DOS MODE 
command to set the serial printer’s parameters (baud rate, etc.). If the redirection 
takes place before the printer is initialized, the MODE command should be 
invoked on the logical device (i.e., COM2:) to which the physical device has been 
m-assigned. 

NOTE: The IXJS BIOS system always monitors the communications lines coming from the 
serial printer; therefore, the DSR, CD, R’TS, etc. signals must be correctly 
terminated in order to communicate with the RS-232C printer. 

EXAMPLES 

These examples assume that your PC has two functioning COM ports. 

E-4 KM-488~ROM USER GUIDE 



XQdcoM IEEE05 Configures COMI: for output to IEEE device 05 on an interface 
/A&E2B8 card located at 288 (hex). 

KMCOCd COMA IEEE05 Resulting Printer Port Table 
/ALE2B0 COMl: COMl 

COM2: IEEE05 
COM3: COM2 
COM4: None 

zQ4cobl IEEE05 Resulting Printer Port Table 
IEEE1201 /A?dI2B8 COMl: IEEE05 

COM2: IEEE1201 
COM3: COMl 
COMk COM2 

RESULTING GPIB BUS ACTIVITY 

When the KMCOM changes from one GPIB bus address to another, the GPIB activity will 
occur as follows: 

On a Write: 

REN is asserted followed by the ATN line, then the following bus “commands” are sent 
UNT, IJNL, MTA, LA. ATN is unasserted and the data is sent. 

On a Read: 

REN is asserted followed by the ATN line, then the following bus “commands” are sent 
LINT, UNL, MLA, TA. ATN is unasserted and the data is received. 

If the GPIB bus address used by the KMCOM redirect driver remains the same, the data is 
simply sent or received over the bus. 

E.5 UNLOADING KMCOM FROM DOS 
To unload the KMCOM utility from the DO8 command line: 

1. Change to the directory where your KM-488-ROM software is located. 

2. At the DO!3 prompt, type l0fCOH /U 

l If the driver is already resident and redirection is requested, the COM port assignments 
am altered and reported. 

l Both of the KMCOM and KMLl’T drivers may be loaded at the same time and name the 
same IEEE addresses. The drivers must be unloaded in reverse order of loading. 

l If any other TSR is loaded after the m-director, it will not be possible to unload the re- 
director until subsequent drivers are unloaded. 

l The IFC message is sent when the driver loads. 

PRINTER & SERIAL PORT REDIRECTION E - 5 



E.6 APPLICATION NOTES 
You may encounter several problems which attempting to send plotter files to your GPIB 
plotter. For example, Direct Output to I/O ports can be a problem because many applications 
will use their own I/O driver routines rather than the DO8 BIOS routines that the redirector 
intercepts. These routines will directly route the data to a hardware I/O card. This is 
particularly true with COM ports or input devices which are installed on COM ports. 

Another problem which may ooxr is that communications are successfully established with 
the requested port; however a plotter error occurs. This is usually caused by the fact that the 
application thinks that it is talking to an RS232C plotter and has interspersed software 
handshaking commands, with the plotter graphics commands, that the GPIB plotter does not 
understand. To avoid this problem, determine if your application will allow you to turn off 
this hardware handshaking. If you can, strip out the RS-232 handshaking commands and 
send a pure plot file to a port (in., use indirect output). 

If you are Indirectly Outputting your plot files, try to name your file something which 
includes an I/O port name (e.g., COM3.X). However, this may result in the program 
searching the DOS device driver list and finding a matching device name. If this happens, the 
application may refuse to create a file with the same name as a device. If all else fails, create a 
plot file, exit the application, and send the plot file to there-directed device. 

E.7 EXAMPLE PROGRAM 
An example program in BASICA, COMTBST.BAS, is provide on the KM-488ROM Disk. This 
example program illustrates how to use the KMCOM m-director feature. 

A plot file, HPEXAMPLBPLT, is also provided on the KM-488-ROM Disks. This file can be 
printed to an HP plotter using the KMLFI Re-Direct Driver. 

E-6 KM-488~ROM USER GUIDE 


	TOC: 


