+ cover.frm Page 1 Thursday, April 14, 1994 1:44 PM

DAS-1800 Series Function Call Driver User's Guide

 \oplus

 \oplus

 \oplus

titlepg.frm Page 1 Thursday, April 14, 1994 1:45 PM

 \oplus

 \oplus

DAS-1800 Series Function Call Driver User's Guide

 \oplus

 \oplus

Revison B – April 1994 Part Number: 78940

The information contained in this manual is believed to be accurate and reliable. However, the manufacturer assumes no responsibility for its use or for any infringements of patents or other rights of third parties that may result from its use. No license is granted by implication or otherwise under any patent rights of the manufacturer.

THE MANUFACTURER SHALL NOT BE LIABLE FOR ANY SPECIAL, INCIDENTAL, OR CONSEQUENTIAL DAMAGES RELATED TO THE USE OF THIS PRODUCT. THIS PRODUCT IS NOT DESIGNED WITH COMPONENTS OF A LEVEL OF RELIABILITY SUITABLE FOR USE IN LIFE SUPPORT OR CRITICAL APPLICATIONS.

All brand and product names are trademarks or registered trademarks of their respective companies.

© Copyright Keithley Instruments, Inc., 1993, 1994.

All rights reserved. Reproduction or adaptation of any part of this documentation beyond that permitted by Section 117 of the 1976 United States Copyright Act without permission of the Copyright owner is unlawful.

2

 \oplus

 \oplus

Table of Contents

Preface

Getting Started
Available Operations
System Operations
Initializing the Driver
Initializing a Board
Retrieving Revision Levels
Handling Errors
Analog Input Operations
Operation Modes
Memory Allocation and Management
Gains
Channels
Specifying Channels When Using EXP-1800 Expansion
Boards (DAS-1800ST/HR Series Only)2-11
Acquiring Samples from a Single Channel
Acquiring Samples from a Group of Consecutive
Channels
Acquiring Samples Using a Channel-Gain Queue2-14
Conversion Modes
Clock Sources
Pacer Clock
Burst Mode Conversion Clock
Buffering Modes
Triggers
Trigger Sources
Internal Trigger
Analog Trigger2-20
Digital Trigger2-22
Post-Trigger Acquisition
Pre-Trigger Acquisition
About-Trigger Acquisition
Hardware Gates
Analog Output Operations (DAS-1800HC Series Only)2-26

 \oplus

 \oplus

Operation Modes
Memory Allocation and Management
Channels
Clock Source
Buffering Modes
Digital I/O Operations
Operation Modes2-31
Memory Allocation and Management
Digital Input Channel2-34
Digital Output Channel2-35
Clock Source
Buffering Modes
Programming with the Function Call Driver
How the Driver Works. 3-1
Programming Overview
Preliminary Tasks. 3-11
Operation-Specific Programming Tasks
Analog Input Operations
Single Mode
Interrupt Mode
DMA Mode
Analog Output Operations (DAS-1800HC Series Only) 3-18
Single Mode
Interrupt Mode
Digital I/O Operations
Single Mode
Interrupt Mode
Language-Specific Programming Information
C/C++ Languages
Allocating and Assigning Dynamically Allocated
Memory Buffers
Single Memory Buffer
Multiple Memory Buffers 3-24
Accessing the Data
Dimensioning and Assigning Local Arrays
Single Array
Multiple Arrays
Creating a Channel-Gain Queue
Programming in Microsoft C/C++
Programming in Borland C/C++
Programming in Microsoft QuickC for Windows 3-30

 \oplus

ιΦ

 \oplus

Φ

draft3.toc Page v Thursday, April 14, 1994 1:46 PM

 \oplus

Ē

Programming in Microsoft Visual C++
Pascal Languages
Allocating and Assigning Dynamically Allocated
Memory Buffers
Reducing the Memory Heap
Single Memory Buffer
Multiple Memory Buffers
Accessing the Data
Dimensioning and Assigning Local Arrays
Single Array
Multiple Arrays
Creating a Channel-Gain Queue
Programming in Borland Turbo Pascal (for DOS)3-38
Programming in Borland Turbo Pascal for Windows 3-39
Microsoft Visual Basic for Windows
Allocating and Assigning Dynamically Allocated
Memory Buffers
Single Memory Buffer
Multiple Memory Buffers
Accessing the Data
Dimensioning and Assigning Local Arrays
Single Array
Multiple Arrays
Creating a Channel-Gain Queue
Programming in Microsoft Visual Basic for Windows 3-45
BASIC Languages
Allocating and Assigning Dynamically Allocated
Memory Buffers
Reducing the Memory Heap
Single Memory Buffer
Multiple Memory Buffers
Accessing the Data
Dimensioning and Assigning Local Arrays
Single Array
Multiple Arrays
Creating a Channel-Gain Queue
Programming in Microsoft QuickBasic (Version 4.0)3-51
Programming in Microsoft QuickBasic (Version 4.5)3-52
Programming in Microsoft Professional Basic
(Version 7.0)
Programming in Microsoft Visual Basic for DOS

 \oplus

v

 $\overline{\Phi}$

Φ

Function Reference
DAS1800_DevOpen
DAS1800_GetDevHandle
K_ADRead
K_BufListAdd
K_BufListReset
K_ClearFrame
K_CloseDriver
K_ClrAboutTrig4-27
K_CirADFreeRun
K_ClrContRun
K_DASDevInit
K_DAWrite
K_DIRead
K_DMAAlloc
K_DMAFree
K_DMAStart
K_DMAStatus
K_DMAStop
K_DOWrite
K_FormatChnGAry4-59
K_FreeDevHandle
K_FreeFrame
K_GetAboutTrig4-65
K_GetADCommonMode4-67
K_GetADConfig
K_GetADFrame
K_GetADFreeRun
K_GetADMode
K_GetADTrig
K_GetBuf
K_GetBurstTicks
K_GetChn
K_GetChnGAry
K_GetClk
K_GetClkRate
K_GetContRun
K_GetDAFrame
K_GetDevHandle4-105
K_GetDIFrame
K_GetDITrig
K_GetDOCurVal

 $| \oplus$

 \oplus

Ð

 \oplus

 $\overline{\oplus}$

we share the

draft3.toc Page vii Thursday, April 14, 1994 1:46 PM

 \oplus

 \oplus

K_GetDOFrame	4-116
K_GetErrMsg	4-119
K_GetExtClkEdge	4-121
K_GetG	4-124
K_GetGate	4-126
K_GetShellVer	4-129
K_GetSSH	4-132
K_GetStartStopChn	4-135
K_GetStartStopG	4-138
K_GetTrig	4-142
K_GetTrigHyst	4-145
K_GetVer	4-148
K_IntAlloc	4-151
K_IntFree	4-154
K_IntStart	4-156
K_IntStatus	4-158
K_IntStop	4-162
KMakeDMABuf	4-165
K_MoveArrayToBuf	4-167
K_MoveBufToArray	4-169
K_OpenDriver	4-171
K_RestoreChnGAry	4-174
K_SetAboutTrig	4-176
K_SetADCommonMode	4-179
K_SetADConfig.	4-181
K_SetADFreeRun	4-183
K_SetADMode	4-185
K_SetADTrig	4-187
K_SetBuf	4-191
K_SetBufI	4-194
K_SetBurstTicks	4-196
K_SetChn	4-198
K_SetChnGAry	4-201
K_SetClk	4-204
K_SetClkRate	4-207
K_SetContRun	4-210
K_SetDITrig	4-212
K_SetDMABuf	4-215
K_SetExtClkEdge	4-218
K_SetG	4-220
K_SetGate	4-222
K_SetSSH	4-224

 \oplus

vii

K _	_SetStartStopChn	. 4-226
K _	_SetStartStopG	. 4-230
K_	_SetTrig	. 4-233
K _	_SetTrigHyst	. 4-236

A Error/Status Codes

B Data Formats

Converting Raw Counts to Voltage	B-1
Converting Voltage to Raw Counts	B-3
Specifying an Analog Output Value	
(DAS-1800HC Series only)	В-3
Specifying an Analog Trigger Level	B-4
Specifying a Hysteresis Value	B-5

Index

List of Figures

Figure 2-1.	Example of Logical Channel Assignments 2-12
Figure 2-2.	Trigger Events for Analog Triggers2-20
Figure 2-3.	Using a Hysteresis Value
Figure 2-4.	Trigger Events For Digital Triggers 2-23
Figure 2-5.	Digital Input Bits 2-34
Figure 2-6.	Digital Output Bits
Figure 3-1.	Single-Mode Function
Figure 3-2.	Interrupt-Mode Operation

 \oplus

-

÷

 \oplus

draft3.toc Page ix Thursday, April 14, 1994 1:46 PM

 \oplus

 $\overline{\mathbf{\Phi}}$

List of Tables

Table 2-1.	Supported Operations
Table 2-2.	Analog Input Ranges
Table 3-1.	A/D Frame Elements
Table 3-2.	D/A Frame Elements
Table 3-3.	DI Frame Elements
Table 3-4.	DO Frame Elements
Table 3-5.	Setup Functions for Interrupt-Mode
	Analog Input Operations
Table 3-6.	Setup Functions for DMA-Mode
	Analog Input Operations
Table 3-7.	Setup Functions for Interrupt-Mode
	Analog Output Operations
Table 3-8.	Setup Functions for Interrupt-Mode
	Digital Input and Digital Output Operations3-21
Table 4-1.	Functions
Table 4-2.	Data Type Prefixes
Table A-1.	Error/Status Codes A-1
Table B-1.	Span Values For Data Conversion EquationsB-2

 \oplus

draft3.toc Page x Thursday, April 14, 1994 1:46 PM

ΙΦ

 \oplus

 $|\Phi|$

 \oplus

·· · · …

Preface

The DAS-1800 Series Function Call Driver User's Guide describes how to write application programs for DAS-1800 Series boards using the DAS-1800 Series Function Call Driver. The DAS-1800 Series Function Call Driver supports the following DOS-based languages:

- Microsoft[®] QuickBasic[™] (Versions 4.0 and 4.5)
- Microsoft Professional Basic (Version 7.0 and higher)
- Microsoft Visual Basic[™] for DOS (Version 1.0)
- Microsoft C/C++ (Version 4.0 and higher)
- Borland[®] C/C++ (Version 1.0 and higher)
- Borland Turbo Pascal[®] for DOS (Version 6.0 and higher)

The DAS-1800 Series Function Call Driver also supports the following Windows[™]-based languages:

- Microsoft Visual Basic for Windows (Version 1.0 and higher)
- Microsoft QuickC[®] for Windows (Version 1.0)
- Microsoft Visual C++™ (Version 1.0)
- Borland Turbo Pascal for Windows (Version 1.0 and higher)

The manual is intended for application programmers using a DAS-1800 Series board in an IBM[®] PC AT[®] or compatible computer. It is assumed that users have read the user's guide for their board to familiarize themselves with the board's features, and that they have completed the appropriate hardware installation and configuration. It is also assumed that users are experienced in programming in their selected language and that they are familiar with data acquisition principles.

The DAS-1800 Series Function Call Driver User's Guide is organized as follows:

- Chapter 1 contains the information needed to install the DAS-1800 Series Function Call Driver and to get help.
- Chapter 2 contains the background information needed to use the functions included in the DAS-1800 Series Function Call Driver.
- Chapter 3 contains programming guidelines and language-specific information related to using the DAS-1800 Series Function Call Driver.
- Chapter 4 contains detailed descriptions of the DAS-1800 Series Function Call Driver functions, arranged in alphabetical order.
- Appendix A contains a list of the error codes returned by DAS-1800 Series Function Call Driver functions.
- Appendix B contains instructions for converting raw counts to voltage and for converting voltage to raw counts.

An index completes this manual.

Keep the following conventions in mind as you use this manual:

- References to DAS-1800 Series boards apply to all members of the DAS-1800 family. When a feature applies to a particular board, that board's name is used.
- References to BASIC apply to all DOS-based BASIC languages (Microsoft QuickBasic, Microsoft Professional Basic, and Microsoft Visual Basic for DOS). When a feature applies to a specific language, the complete language name is used. References to Visual Basic for Windows apply to Microsoft Visual Basic for Windows.
- Keyboard keys are enclosed in square brackets ([]).

1 Getting Started

The DAS-1800 Series Function Call Driver is a library of data acquisition and control functions (referred to as the Function Call Driver or FCD functions). It is part of the following two software packages:

- DAS-1800 standard software package This is the software package that is shipped with DAS-1800 Series boards; it includes the following:
 - Libraries of FCD functions for Microsoft QuickBasic, Microsoft Professional Basic, and Microsoft Visual Basic for DOS.
 - Support files, containing such program elements as function prototypes and definitions of variable types, which are required by the FCD functions.
 - Utility programs, running under DOS, that allow you to configure, calibrate, and test the functions of DAS-1800 Series boards.
 - Language-specific example programs.
- ASO-1800 software package This is the Advanced Software Option for DAS-1800 Series boards. You purchase the ASO-1800 software package separately from the board; it includes the following:
 - Libraries of FCD functions for Microsoft C/C++, Borland C/C++, and Borland Turbo Pascal.
 - Dynamic Link Libraries (DLLs) of FCD functions for Microsoft Visual Basic for Windows, Microsoft QuickC for Windows, Microsoft Visual C++, and Borland Turbo Pascal for Windows.
 - Support files, containing program elements, such as function prototypes and definitions of variable types, that are required by the FCD functions.

1-1

- Utility programs, running under DOS and Windows, that allow you to configure, calibrate, and test the functions of DAS-1800 Series boards.
- Language-specific example programs.

Before you use the Function Call Driver, make sure that you have installed the software, set up the board, and created a configuration file using the setup and installation procedures described in Chapter 3 of the user's guide for your DAS-1800 Series board.

If you need help installing or using the DAS-1800 Series Function Call Driver, call your local sales office or the factory.

Getting Started

 \oplus

 \oplus

 \oplus

Please make sure that you have the following information available before you call:

DAS-1800ST/HR Series Board Configuration	Model Serial # Revision code Base address setting Interrupt level setting Number of channels Input (S.E. or Diff.) Mode (uni. or bip.) DMA chan(s) Number of SSH-8s Number of EXPs.	
Computer	Manufacturer CPU type Clock speed (MHz) KB of RAM Video system BIOS type	
Operating System	DOS version Windows version Windows mode	
Software package	Name Serial # Version Invoice/Order #	
Compiler (if applicable)	Language Manufacturer Version	
Accessories	Туре Туре Туре Туре Туре Туре Туре Туре	

 \oplus

1-3

Φ

chap01_.frm Page 4 Thursday, April 14, 1994 1:47 PM

١∯

 \oplus

 $|\Phi|$

chap02_.frm Page 1 Thursday, April 14, 1994 1:48 PM

2

Available Operations

This chapter contains the background information you need to use the FCD functions to perform operations on DAS-1800 Series boards. The supported operations are listed in Table 2-1.

Table 2-1.	Supported (Operations
------------	-------------	------------

Operation	Page Reference
System	page 2-1
Analog input	page 2-4
Analog output	page 2-26
Digital input and output (I/O)	page 2-31

System Operations

 \oplus

Æ

This section describes the miscellaneous operations and general maintenance operations that apply to DAS-1800 Series boards and to the DAS-1800 Series Function Call Driver. It includes information on initializing a driver, initializing a board, retrieving revision levels, and handling errors.

Initializing the Driver

Before you can use any of the functions included in the DAS-1800 Series Function Call Driver, you must initialize the driver using one of the following driver initialization functions:

- **Board-specific driver initialization function** If you want to initialize the DAS-1800 Series Function Call Driver only, use the board-specific driver initialization function DAS1800_DevOpen. You specify a configuration file; DAS1800_DevOpen initializes the driver according to the configuration file you specify.
- Generic driver initialization function If you want to initialize several different DAS Function Call Drivers from the same application program, use the generic driver initialization function K_OpenDriver. You specify the DAS board you are using, the configuration file that defines this particular use of the driver, and the driver handle (a name that uniquely identifies the particular use of the driver). You can specify a maximum of 30 driver handles for all the DAS boards accessed from your application program.

If a particular use of a driver is no longer required and you want to free some memory or if you have used all 30 driver handles, you can use the K_CloseDriver function to free a driver handle and close the associated use of the driver.

If the driver handle you free is the last driver handle specified for a Function Call Driver, the driver is shut down. (For Windows-based languages only, the DLLs associated with the Function Call Driver are shut down and unloaded from memory.)

Initializing a Board

The DAS-1800 Series Function Call Driver supports up to three boards. You must use a board initialization function to specify the board(s) you want to use and the name you want to use to identify each board; this name is called the board handle. Board handles allow you to communicate with more than one board. You use the board handle you specify in the board initialization function in all subsequent function calls related to the board.

Available Operations

ter dise etter

Ð

The DAS-1800 Series Function Call Driver provides the following board initialization functions:

- **Board-specific board initialization function** If you want to initialize a DAS-1800 Series board only, use the board-specific board initialization function DAS1800_GetDevHandle.
- Generic board initialization function If you want to initialize several different supported DAS boards from the same application program, use the generic board initialization function
 K_GetDevHandle. You can specify a maximum of 30 board handles for all the DAS boards accessed from your application program.

If a board is no longer being used and you want to free some memory or if you have used all 30 board handles, you can use the **K_FreeDevHandle** function to free a board handle.

To reinitialize a board during an operation, use the **K_DASDevInit** function, which performs the following tasks:

- Abort all operations currently in progress that are associated with the board identified by the board handle.
- Verify that the board identified by the board handle is the board specified in the configuration file.

2 - 3

Retrieving Revision Levels

If you are using functions from different DAS Function Call Drivers in the same application program or if you are having problems with your application program, you may want to verify which versions of the Function Call Driver, DAS Driver Specification, and DAS Shell are installed on your board. The **K_GetVer** function allows you to get both the revision number of the DAS-1800 Series Function Call Driver and the revision number of the DAS Driver Specification to which the driver conforms. The **K_GetShellVer** function allows you to get the revision number of the DAS Shell (the DAS Shell is a group of functions that are shared by all DAS boards).

Handling Errors

Each FCD function returns a code indicating the status of the function. To ensure that your application program runs successfully, it is recommended that you check the returned code after the execution of each function. If the status code equals 0, the function executed successfully and your program can proceed. If the status code does not equal 0, an error occurred; ensure that your application program takes the appropriate action. Refer to Appendix A for a complete list of error codes.

For C-language application programs only, the DAS-1800 Series Function Call Driver provides the **K_GetErrMsg** function, which gets the address of the string corresponding to an error code.

Analog Input Operations

This section describes the following:

- Analog input operation modes available.
- How to allocate and manage memory for analog input operations.
- How to specify the following for an analog input operation: channels and gains, a conversion mode, a clock source, a buffering mode, a trigger source, and a hardware gate.

Operation Modes

The operation mode determines which attributes you can specify for an analog input operation and how data is transferred from the board to the computer. You can perform analog input operations in one of the following modes:

• Single mode - In single mode, the board acquires a single sample from an analog input channel. The driver initiates conversions; you cannot perform any other operation until the single-mode operation is complete.

Use the K_ADRead function to start an analog input operation in single mode. You specify the board you want to use, the analog input channel, the gain at which you want to read the signal, and the variable in which to store the converted data.

• Interrupt mode - In interrupt mode, the board acquires a single sample or multiple samples from one or more analog input channels. A hardware clock initiates conversions. Once the analog input operation begins, control returns to your application program. The hardware temporarily stores the acquired data in the onboard FIFO (first-in, first-out data buffer) and then transfers the data to a user-defined buffer in the computer using an interrupt service routine.

Use the **K_IntStart** function to start an analog input operation in interrupt mode. You specify the board, analog input channel(s), gain(s), clock source, buffering mode, buffer address(es), trigger source, and gate use.

You can specify either single-cycle or continuous buffering mode for interrupt-mode operations. Refer to page 2-18 for more information on buffering modes. Use the **K_IntStop** function to stop a continuous-mode interrupt operation. Use the **K_IntStatus** function to determine the current status of an interrupt operation.

• DMA mode - In DMA mode, the board acquires a single sample or multiple samples from one or more analog input channels. A hardware clock initiates conversions. Once the analog input operation begins, control returns to your application program. The hardware temporarily stores the acquired data in the onboard FIFO (first-in,

2-5

 \oplus

first-out data buffer) and then transfers the data to a user-defined DMA buffer in the computer.

Note: You can perform an analog input operation in single-DMA mode or dual-DMA mode, depending on whether you specified one or two DMA channels in your configuration file. Refer to your DAS-1800 Series board user's guide for more information.

Use the **K_DMAStart** function to start an analog input operation in DMA mode. You specify the board, analog input channel(s), gain(s), clock source, buffering mode, buffer address(es), trigger source, and gate use.

You can specify either single-cycle or continuous buffering mode for DMA-mode operations. Refer to page 2-18 for more information on buffering modes. Use the **K_DMAStop** function to stop a continuous-mode DMA operation. Use the **K_DMAStatus** function to determine the current status of a DMA operation.

The converted data are stored as raw counts. For information on converting raw counts to voltage, refer to Appendix B.

Memory Allocation and Management

Interrupt-mode and DMA-mode analog input operations require memory buffers in which to store the acquired data. You can reserve a single memory buffer, or you can reserve multiple buffers (up to a maximum of 150) to increase the number of samples you can acquire. The maximum number of samples each memory buffer can store (32K or 64K) depends on the language you are using. See "Language-Specific Programming Information" on page 3-22 for more information.

Available Operations

You can reserve the required memory buffer(s) in one of the following ways:

- Within your application program's memory area The simplest • way to reserve memory buffers is to dimension arrays within your application program. The advantage of this method is that the arrays are directly accessible to your application program. The limitations of this method are as follows:
 - Certain programming languages limit the size of local arrays.
 - Local arrays may not be suitable for DMA-mode operations.
 - Local arrays occupy permanent memory areas; these memory areas cannot be freed to make them available to other programs or processes.

Since the DAS-1800 Series Function Call Driver stores data in 16-bit integers, you must dimension all local arrays as integers.

- Outside of your application program's memory area This is the • recommended way to reserve memory buffers. The advantages of this method are as follows:
 - The number of buffers and the size of each buffer are limited by the amount of free physical memory available in your computer at run-time.
 - The dynamically allocated memory buffers can be freed to make them available to other programs or processes.

The limitation of this method is that, for BASIC and Visual Basic languages, the data in a dynamically allocated memory buffer is not directly accessible by your program. (The DAS-1800 Series Function Call Driver provides a function, K MoveBufToArray, to make this data accessible; refer to page 4-169 for more information.)

Use the K_IntAlloc function to allocate memory dynamically for interrupt-mode operations and the K_DMAAlloc function to allocate memory dynamically for DMA-mode operations. You specify the operation requiring the buffer, the number of samples to store in the buffer, the variable to store the starting address of the buffer, and the name you want to use to identify the buffer (this name is called the memory handle). When the buffer is no longer required, you can free the buffer for another use by specifying this memory handle in the K_IntFree function (for interrupt-mode operations) or the K_DMAFree function (for DMA-mode operations).

Notes: For DOS-based languages, the area used for dynamically allocated memory buffers is referred to as the far heap; for Windows-based languages, this area is referred to as the global heap. These heaps are areas of memory left unoccupied as your application program and other programs run.

For DOS-based languages, the K_IntAlloc and K_DMAAlloc functions use the DOS Int 21H function 48H to dynamically allocate far heap memory. For Windows-based languages, the K_IntAlloc and K_DMAAlloc functions call the GlobalAlloc API function to allocate the desired buffer size from the global heap.

For Windows-based languages, dynamically allocated memory is guaranteed to be fixed and locked in memory.

To eliminate page wrap conditions and to guarantee that dynamically allocated memory is suitable for use by the computer's 8237 DMA controller, **K_DMAAlloc** may allocate an area twice as large as actually needed. Once the data in this buffer is processed and/or saved elsewhere, use **K_DMAFree** to free the memory for other uses.

Available Operations

After you allocate your buffer(s), you must assign the starting address of the buffer(s) and the number of samples to store in the buffer(s). Each supported programming language requires a particular procedure for allocating memory buffers and assigning starting addresses. Refer to page 3-23 for information when programming in C. Refer to page 3-31 for information when programming in Pascal. Refer to page 3-40 for information when programming in Visual Basic for Windows. Refer to page 3-46 for information when programming in BASIC.

If you are using multiple buffers, use the K BufListAdd function to add each buffer to the list of multiple buffers associated with each operation and to assign the starting address of each buffer. Use the K BufListReset function to clear the list of multiple buffers.

Note: If you are using multiple buffers, it is recommended that you use the Keithley Memory Manager before you begin programming to ensure that you can allocate large enough buffers. Refer to your DAS-1800 Series board user's guide for more information about the Keithley Memory Manager.

Gains

Each channel on a DAS-1800 Series board can measure analog input signals in one of four, software-selectable unipolar or bipolar analog input ranges. The input range type (unipolar or bipolar) is initially set according to your configuration file; use K SetADMode to reset the input range type. Refer to your DAS-1800 Series board user's guide for more information.

Table 2-2 lists the analog input ranges supported by DAS-1800 Series boards and the gain and gain code associated with each range. (The gain code is used by the FCD functions to represent the gain.)

	Analog input Range			O site
Boards	Bipolar	Unipolar	Gain	Code
DAS-1801HC DAS-1801ST	±5 V	0 to 5 V	1	0
	±1 V	O to 1 V	5	1
	±100 mV	0 to 100 mV	50	2
	±20 mV	0 to 20 mV	250	3
DAS-1802HC DAS-1802ST DAS-1802HR	±10 V	0 to 10 V	1	0
	±5 V	0 to 5 V	2	1
	±2.5 V	0 to 2.5 V	4	2
	±1.25 V	0 to 1.25 V	8	3
DAS-1801ST with EXP-1800 attached	±0.1 V	0 to 0.1 V	50	4
	±20 mV	0 to 20 mV	250	5
	±2 mV	0 to 2 mV	2500	6
	±0.4 mV	0 to 0.4 mV	12.5k	7
DAS-1802ST with EXP-1800 attached; DAS-1802HR with EXP-1800 attached	±0.2 V	0 to 0.2 V	50	4
	±0.1 V	0 to 0.1 V	100	5
	±5 mV	0 to 5 mV	200	6
	±2.5 mV	0 to 2.5 mV	400	7

Table 2-2. Analog Input Ranges

Channels

DAS-1800HC Series boards are configured with either 64 single-ended or 32 differential analog input channels, depending on the input configuration specified in your configuration file. DAS-1800ST/HR Series boards are configured with either 16 onboard single-ended or 8 onboard differential analog input channels. On DAS-1800ST/HR Series boards, you can increase the number of channels to 256 single-ended or 128 differential channels using the EXP-1800 expansion board, described in the next section.

Available Operations

The input channel configuration is initially set according to the configuration file; use **K_SetADConfig** to reset the input channel configuration. Use **K_SetADCommonMode** to set the common-mode ground reference for DAS-1800ST/HR Series boards in single-ended input channel configuration.

You can perform an analog input operation on a single channel or on a group of multiple channels. The following subsections describe how to specify the channel(s) you are using.

Specifying Channels When Using EXP-1800 Expansion Boards (DAS-1800ST/HR Series Only)

To increase the number of analog input channels, you can attach up to 16 EXP-1800 expansion boards to the DAS-1800 Series board. Each EXP-1800 board has 16 analog input channels. If you are using N EXP-1800 boards, you must attach them to DAS-1800 channels 0 to N-1. Refer to the DAS-1800ST/HR Series User's Guide for information on connecting EXP-1800 boards to DAS-1800ST/HR Series boards.

The analog input channel connections on a DAS-1800 Series board or EXP-1800 board are labelled with white-on-green numbers from 0 to 15. These numbers are the *physical channel numbers*. If a system includes a DAS-1800 Series board and one or more EXP-1800 boards, then that system contains duplicate physical channel numbers. To uniquely identify a physical channel, the Function Call Driver uses a scheme of *logical channel numbers*. The *channel#* argument for any FCD function must be specified as a logical channel number.

 \oplus

⊕

The logical channel number corresponding to a particular physical channel number is given by one of the following equations:

If the physical channel is on a DAS-1800 Series board:

LogicalChan# = PhysicalChan# + (15 × NumEXPs)

If the physical channel is on an EXP-1800 board:

 $LogicalChan # = PhysicalChan # + (16 \times EXP#)$

where

NumEXPs is an integer from 0 to 15 that identifies the number of EXP-1800 boards connected to the DAS-1800 Series board, and

EXP# is an integer from 0 to 15 that indicates on which EXP-1800 board the physical channel is located (0 indicates the first EXP-1800 board).

For example, consider the system illustrated in Figure 2-1, in which three EXP-1800 boards are connected to a DAS-1801ST.

The logical channel that identifies channel 3 on the DAS-1801 board is given by:

 $LogicalChan = 3 + (15 \times 3) = 3 + 45 = 48$

The logical channel that identifies channel 15 on the third EXP-1800 board is given by:

 $LogicalChan = 15 + (16 \times 2) = 15 + 32 = 47$

Acquiring Samples from a Single Channel

You can acquire a single sample or multiple samples from a single analog input channel.

For single-mode analog input operations, you can acquire a single sample from a single analog input channel. Use the **K_ADRead** function to specify the channel and the gain code.

For interrupt-mode and DMA-mode analog input operations, you can acquire a single sample or multiple samples from a single analog input channel. Use the K_SetChn function to specify the channel and the K_SetG function to specify the gain code.

Acquiring Samples from a Group of Consecutive Channels

For interrupt-mode and DMA-mode analog input operations, you can acquire samples from a group of consecutive channels. Use the **K_SetStartStopChn** function to specify the first and last channels in the group. The channels are sampled in order from first to last; the channels are then sampled again until the required number of samples are read.

For example, assume that the start channel is 14, the stop channel is 17, and you want to acquire five samples. Your program reads data first from channel 14, then from channels 15, 16, and 17, and finally from channel 14 again.

You can specify a start channel that is higher than the stop channel. For example, assume that you are using a differential input configuration, the start channel is 31, the stop channel is 2, and you want to acquire five samples. Your program reads data first from channel 31, then from channels 0, 1, and 2, and finally from channel 31 again. Use the **K_SetG** function to specify the gain code for all channels in the group. (All channels must use the same gain code.) Use the **K_SetStartStopG** function to specify the gain code, the start channel, and the stop channel in a single function call.

Refer to Table 2-2 on page 2-10 for a list of the analog input ranges supported by DAS-1800 Series boards and the gain code associated with each range.

Acquiring Samples Using a Channel-Gain Queue

For interrupt-mode and DMA-mode analog input operations, you can acquire samples from channels in a hardware channel-gain queue. In the channel-gain queue, you specify the channels you want to sample, the order in which you want to sample them, and a gain code for each channel.

You can set up the channels in a channel-gain queue either in consecutive order or in nonconsecutive order. You can also specify the same channel more than once (up to a total of 64 entries in the queue for a DAS-1800HC Series board, and up to 256 entries for a DAS-1800ST/HR Series board).

The channels are sampled in order from the first channel in the queue to the last channel in the queue; the channels in the queue are then sampled again until the board reads the specified number of samples.

Refer to Table 2-2 on page 2-10 for a list of the analog input ranges supported by DAS-1800 Series boards and the gain code associated with each range.

The way that you specify the channels and gains in a channel-gain queue depends on the language you are using. Refer to page 3-27 for information when programming in C or C++. Refer to page 3-37 for information when programming in Pascal. Refer to page 3-44 for information when programming in Visual Basic for Windows. Refer to page 3-50 for information when programming in BASIC.

After you create the channel-gain queue in your program, use the $K_SetChnGAry$ function to transfer the contents of the channel-gain queue to the driver/board.

Available Operations

Conversion Modes

The conversion mode determines how the board regulates the timing of conversions when you are acquiring multiple samples from a single channel or from a group of multiple channels (known as a scan). For interrupt-mode and DMA-mode analog input operations, you can specify one of the following conversion modes:

- Paced mode Use paced mode if you want to accurately control the period between conversions of individual channels in a scan. Paced mode is the default conversion mode.
- Burst mode Use burst mode if you want to accurately control both the period between conversions of individual channels in a scan and the period between conversions of the entire scan. Use the K_SetADFreeRun function to specify burst mode.

Use burst mode with SSH if you want to simultaneously sample all channels in a scan using the SSH-8 accessory board. Use the **K_SetSSH** function to specify burst mode with SSH.

Note: If you use an SSH-8 accessory board, you must use burst mode with SSH. One extra tick of the burst mode conversion clock is required to allow the SSH-8 board to sample and hold the values. Refer to the SSH-8 board documentation for more information.

Refer to your DAS-1800 Series board user's guide for more information about conversion modes.

Clock Sources

DAS-1800 Series boards provide two clock sources: a pacer clock and a burst mode conversion clock. Each clock has a dedicated use. When performing interrupt-mode and DMA-mode analog input operations in paced mode, you use only the pacer clock; when performing interrupt-mode and DMA-mode analog input operations in burst mode and burst mode with SSH, you use both the pacer clock and the burst mode conversion clock. These clock sources are described in the following subsections.

Pacer Clock

In paced mode, the pacer clock determines the period between the conversion of one channel and the conversion of the next channel. In burst mode and burst mode with SSH, the pacer clock determines the period between the conversions of one scan and the conversions of the next scan. Use the **K_SetClk** function to specify an internal or an external pacer clock. The internal pacer clock is the default pacer clock.

The internal and external pacer clocks are described as follows:

• Internal pacer clock - The internal pacer clock uses two cascaded counters of the onboard counter/timer circuitry. The counters are normally in an idle state. When you start the analog input operation (using K_IntStart or K_DMAStart), a conversion is initiated. Note that a slight time delay occurs between the time the operation is started and the time conversions begin.

After the first conversion is initiated, the counters are loaded with a count value and begin counting down. When the counters count down to 0, another conversion is initiated and the process repeats.

Because the counters use a 5 MHz time base, each count represents 0.2 μ s. Use the **K_SetClkRate** function to specify the number of counts (clock ticks) between conversions. For example, if you specify a count of 30, the period between conversions is 6 μ s (166.67 ksamples/s); if you specify a count of 87654, the period between conversions is 17.53 ms (57 samples/s).

You can specify a count between 15 and 4,294,967,295. The period between conversions ranges from 3 μ s to 14.3 minutes.

When using an internal pacer clock, use the following formula to determine the number of counts to specify:

counts = $\frac{5 \text{ MHz time base}}{\text{conversion rate}}$

 \oplus

For example, if you want a conversion rate of 10 ksamples/s, specify a count of 500, as shown in the following equation:

$$\frac{5,000,000}{10,000} = 500$$

• External pacer clock - You connect an external pacer clock to the DI0/XPCLK pin (pin B39) on the main I/O connector of the DAS-1800HC Series board or to the XPCLK pin (pin 44) on the main I/O connector of DAS-1800ST/HR Series boards. When you start an analog input operation (using K_IntStart or K_DMAStart), conversions are armed. At the next active edge of the external pacer clock (and at every subsequent active edge of the external pacer clock), a conversion is initiated. Use the K_SetExtClkEdge function to specify the active edge (rising or falling) of the external pacer clock.

Note: The rate at which the computer can reliably read data from the board depends on a number of factors, including your computer, the operating system/environment, the gains of the channels, and other software issues. If you are using an external pacer clock, make sure that the clock initiates conversions at a rate that the analog-to-digital converter can handle.

Refer to your DAS-1800 Series board user's guide for more information about the pacer clock.

Burst Mode Conversion Clock

In burst mode and burst mode with SSH, the burst mode conversion clock determines the period between the conversion of one channel in a scan and the conversion of the next channel in the scan.

Because the burst mode conversion clock uses a 1 MHz time base, each clock tick represents 1 μ s. Use the **K_SetBurstTicks** function to specify the number of clock ticks between conversions. For example, if you specify 30 clock ticks, the period between conversions is 30 μ s (33.33 ksamples/s).

You can specify between 3 and 255 clock ticks. The period between conversions ranges from $3 \ \mu s$ to $0.255 \ ms$.

When using the burst mode conversion clock, use the following formula to determine the number of clock ticks to specify:

clock ticks = $\frac{1 \text{ MHz time base}}{\text{burst mode conversion rate}}$

For example, if you want a burst mode conversion rate of 10 ksamples/s, specify 100 clock ticks, as shown in the following equation:

$$\frac{1,000,000}{10,000} = 100$$

Refer to your DAS-1800 Series board user's guide for more information about the burst mode conversion clock.

Buffering Modes

The buffering mode determines how the driver stores the converted data in the buffer. For interrupt-mode and DMA-mode analog input operations, you can specify one of the following buffering modes:

- Single-cycle mode In single-cycle mode, after the board converts . the specified number of samples and stores them in the buffer, the operation stops automatically. Single-cycle mode is the default buffering mode.
- Continuous mode In continuous mode, the board continuously . converts samples and stores them in the buffer until it receives a stop function; any values already stored in the buffer are overwritten. Use the K SetContRun function to specify continuous buffering mode.

Available Operations

2-18

Triggers

A trigger is an event that starts or stops an interrupt-mode or DMA-mode analog input operation. An operation can use either one or two triggers. Every operation must have a *start trigger* that marks the beginning of the operation. You can use an optional second trigger, the about trigger, to define when the operation stops. If you specify an about trigger, the operation stops when a specified number of samples has been acquired after the occurrence of the about-trigger event.

A post-trigger acquisition refers to an operation that only uses a start trigger. The about trigger provides the capability to define operations that acquire data before a trigger event (pre-trigger acquisition) and operations that acquire data about (before and after) a trigger event (about-trigger acquisition).

The following subsections describe the supported trigger sources and post-, pre-, and about-trigger acquisitions.

Trigger Sources

The Function Call Driver supports three sources of triggers: internal, analog, and digital. For interrupt-mode and DMA-mode analog input operations, use K_SetTrig to specify the trigger source. The trigger events for each trigger source are described below. Note that the trigger event is not significant until the operation the trigger governs has been enabled (using K DMAStart or K IntStart).

Internal Trigger

An internal trigger is a software trigger. It does not impose any external conditions that must be satisfied before the operation executes. An operation governed by an internal start trigger begins executing as soon as the operation is enabled. Consequently, the call to K_DMAStart or K IntStart is considered the trigger event for an internal trigger. The internal trigger is the default trigger source.
Analog Trigger

You can use the signal on any analog input channel as the trigger signal for an analog trigger. The trigger events for analog triggers are illustrated in Figure 2-2 and described as follows:

- If the trigger polarity is positive, a trigger event occurs the first time the trigger signal changes from a voltage that is less than the trigger level to a voltage that is greater than the trigger level.
- If the trigger polarity is negative, a trigger event occurs the first time the trigger signal changes from a voltage that is greater than the trigger level to a voltage that is less than the trigger level.

Figure 2-2. Trigger Events for Analog Triggers

Note: Analog triggering is a feature of the Function Call Driver and is not implemented at the hardware level. Consequently, there is a delay between the time the trigger event occurs and the time the driver recognizes that the trigger event occurred.

Available Operations

You can specify a hysteresis value to prevent noise from triggering an operation. Use the **K_SetTrigHyst** function to specify the hysteresis value. For a positive-edge trigger, the analog signal must be below the specified voltage level by at least the amount of the hysteresis value and then rise above the voltage level before the trigger occurs; for a negative-edge trigger, the analog signal must be above the specified voltage level by at least the amount of the hysteresis value and then fall below the voltage level before the trigger occurs.

The hysteresis value is an absolute number, which you specify as a raw count value between 0 and 4095 for DAS-1800HC/ST Series boards and between 0 and 65,535 for DAS-1800HR Series boards. When you add the hysteresis value to the voltage level (for a negative-edge trigger) or subtract the hysteresis value from the voltage level (for a positive-edge trigger), the resulting value must also be between 0 and 4095 for DAS-1800HR Series boards. The resulting value must also be between 0 and 4095 for DAS-1800ST/HC Series boards or between 0 and 65,535 for DAS-1800HR Series boards. For example, assume that you are using a negative-edge trigger on a channel of a DAS-1800HC/ST Series board configured for an analog input range of ± 5 V. If the voltage level is +4.8 V (4014 counts), you can specify a hysteresis value of 0.1 V (41 counts) because 4014 + 41 is less than 4095, but you cannot specify a hysteresis value of 0.3 V (123 counts) because 4014 + 123 is greater than 4095. Refer to Appendix B for information on how to convert a voltage value to a raw count value.

In Figure 2-3, the specified voltage level is +4 V and the hysteresis value is 0.1 V. The analog signal must be below +3.9 V and then rise above +4 V before a positive-edge trigger occurs; the analog signal must be above +4.1 V and then fall below +4 V before a negative-edge trigger occurs.

Figure 2-3. Using a Hysteresis Value

Digital Trigger

The digital trigger signal is available on the DI1/TGIN pin (pin B40) on the main I/O connector of DAS-1800HC Series boards and on the TGIN pin (pin 46) on the main I/O connector of DAS-1800ST/HR Series boards. Use **K_SetDITrig** to specify whether you want the trigger event to occur on a rising or falling edge. If the trigger polarity is positive, then a trigger event occurs at each rising edge of the trigger signal. If the trigger polarity is negative, then a trigger event occurs at each falling edge of the trigger signal. These trigger events are illustrated in Figure 2-4. ⊕

œ

Figure 2-4. Trigger Events For Digital Triggers

Post-Trigger Acquisition

 \oplus

Use post-trigger acquisition in applications where you want to collect data after a specific event. Acquisition starts on an internal, analog, or digital trigger event and continues until a specified number of samples has been acquired or until the operation is stopped by a call to **K_DMAStop** or **K_IntStop**.

To specify post-trigger acquisition, use the following function calls:

- If you want acquisition to continue until you stop it using K_DMAStop or K_IntStop, use K_SetContRun to set the buffering mode to continuous.
- If you want acquisition to stop after a specified number of samples has been acquired, use K_ClrContRun to set the buffering mode to single-cycle (in this buffering mode, the operation stops as soon as the board has acquired the number of samples specified by K SetBuf, K_SetDMABuf, K_SetBufI, or K_BufListAdd).

2-23

- 3. Specify the trigger that will start the operation. Use **K_SetTrig** to specify the trigger source (internal for an internal trigger, external for an analog or digital trigger).
- 4. If you are using an analog or digital trigger, use K_SetADTrig (for an analog trigger) or K_SetDITrig (for a digital trigger) to define the trigger conditions.
- 5. Use K_ClrAboutTrig to disable the about trigger.

Pre-Trigger Acquisition

Use pre-trigger acquisition in applications where you want to collect data before a specific digital trigger event (this is the about trigger event). Acquisition starts on an internal, analog, or digital trigger event and continues until the about-trigger event. Pre-trigger acquisition is available with DMA-mode operations only.

To specify pre-trigger acquisition, use the following function calls:

- 1. Specify the trigger that will start the operation. Use **K_SetTrig** to specify the trigger source (internal for an internal trigger, external for an analog or digital trigger).
- 2. If using an analog or digital start trigger, use K_SetADTrig (for an analog trigger) or K_SetDITrig (for a digital trigger) to define the trigger conditions.
- 3. Use K_SetAboutTrig to enable the about trigger and to set the number of post-trigger samples to 1.
- 4. If the start trigger is not digital, specify the trigger conditions for the about trigger. Use K_SetTrig to specify an external trigger, then use K_SetDITrig to specify the trigger conditions. (If the start trigger is digital, then its trigger conditions are also used for the about trigger).

About-Trigger Acquisition

Use about-trigger acquisition in applications where you want to collect data both before and after a specific digital trigger event (this is the about trigger event). Acquisition starts on an internal, analog, or digital trigger event and continues until a specified number of samples has been acquired after the about-trigger event. About-trigger acquisition is available with DMA-mode operations only.

To specify about-trigger acquisition, use the following function calls:

- 1. Specify the trigger that will start the operation. Use **K_SetTrig** to specify the trigger source (internal for an internal trigger, external for an analog or digital trigger).
- 2. If using an analog or digital start trigger, use K_SetADTrig (for an analog trigger) or K_SetDITrig (for a digital trigger) to define the trigger conditions.
- 3. Use K_SetAboutTrig to enable the about trigger and to specify the desired number of post-trigger samples.
- 4. Specify the trigger conditions for the about trigger. Use **K_SetDITrig** to specify the trigger conditions. (If the start trigger is digital, then its trigger conditions are also used for the about trigger).

Hardware Gates

A hardware gate is an externally applied digital signal that determines whether conversions occur. You connect the gate signal to the DI1/TGIN pin (pin B40) on the main I/O connector of DAS-1800HC Series boards or on the TGIN pin (pin 46) on the main I/O connector of DAS-1800ST/HR Series boards. If you have started an interrupt-mode or DMA-mode analog input operation (using K_IntStart or K_DMAStart) and the hardware gate is enabled, the state of the gate signal determines whether conversions occur.

If the board is configured with a positive gate, conversions occur only if the signal to DI1/TGIN (DAS-1800HC Series boards) or TGIN (DAS-1800ST/HR Series boards) is high; if the signal to DI1/TGIN or TGIN is low, conversions are inhibited. If the board is configured with a negative gate, conversions occur only if the signal to DI1/TGIN is low; if the signal to DI1/TGIN is high, conversions are inhibited. Use the $K_SetGate$ function to enable and disable the hardware gate and to specify the gate polarity (positive or negative). The default state of the hardware gate is disabled.

You can use the hardware gate with an external analog trigger. The software waits until the analog trigger conditions are met, and then the hardware checks the state of the gate signal.

If you are not using an analog trigger, the gate signal itself can act as a trigger. If the gate signal is in the inactive state when you start the analog input operation, the hardware waits until the gate signal is in the active state before conversions begin.

Note: You cannot use the hardware gate with an external digital trigger. If you use a digital trigger at one point in your application program and later want to use a hardware gate, you must first disable the digital trigger. You disable the digital trigger by specifying an internal trigger in K_SetTrig or by setting up an analog trigger (using the K_SetADTrig function).

Analog Output Operations (DAS-1800HC Series Only)

This section describes the following:

- Analog output operation modes available.
- How to allocate and manage memory for analog output operations.
- How to specify the following for an analog output operation: channels, a clock rate, and a buffering mode.

Note: You cannot use an external trigger or external pacer clock with an analog output operation.

Available Operations

Operation Modes

The operation mode determines which attributes you can specify for an analog output operation. You can perform analog output operations in one of the following modes:

• Single mode - In single mode, the driver writes a single value to one or both analog output channels; you cannot perform any other operation until the single-mode operation is complete.

Use the **K_DAWrite** function to start an analog output operation in single mode. You specify the board you want to use, the analog output channel(s), and the value you want to write.

• Interrupt mode - In interrupt mode, the driver writes a single value or multiple values to one or both analog output channels. A hardware clock paces the updating of the analog output channel(s). Once the analog output operation begins, control returns to your application program. You store the values you want to write in a user-defined buffer in the computer.

Use the **K_IntStart** function to start an analog output operation in interrupt mode. You specify the board, analog output channel(s), clock rate, buffering mode, and buffer address.

You can specify either single-cycle or continuous buffering mode for interrupt-mode operations. Refer to page 2-30 for more information on buffering modes. Use the **K_IntStop** function to stop a continuous-mode interrupt operation. Use the **K_IntStatus** function to determine the current status of an interrupt operation.

For an analog output operation, the values are written as raw counts. For information on converting voltage to raw counts, refer to Appendix B.

Memory Allocation and Management

Interrupt-mode analog output operations use a single memory buffer to store the data to be written to the analog output channel(s). The maximum number of samples each memory buffer can store (32K or 64K) depends on the language you are using. See "Language-Specific Programming Information" on page 3-22 for more information. Since analog output operations typically require small arrays of data, you can reserve a memory buffer by dimensioning an array within your application program's memory area. Since the DAS-1800 Series Function Call Driver writes data as 16-bit integers, you must dimension all local arrays as integers.

Note: You can also use the K_IntAlloc function to allocate memory dynamically, if desired. You specify the operation requiring the buffer, the number of values you want to store in the buffer, the starting address of the buffer, and the name you want to use to identify the buffer (this name is called the memory handle). When the buffer is no longer required, you can free the buffer for another use by specifying this memory handle in the K_IntFree function.

After you dimension your array, you must assign the starting address of the array and the number of samples stored in the array. Each supported programming language requires a particular procedure for dimensioning an array and assigning the starting address. Refer to page 3-23 for information when programming in C or C++. Refer to page 3-31 for information when programming in Pascal. Refer to page 3-40 for information when programming in Visual Basic for Windows. Refer to page 3-46 for information when programming in BASIC.

Channels

DAS-1800HC Series boards contain two digital-to-analog converters, each of which is associated with an analog output channel. You can perform an analog output operation on a single channel or on both channels.

For single-mode analog output operations, you can write a single value to one or both analog output channels. Use the **K_DAWrite** function to specify the channel(s).

For interrupt-mode analog output operations, you can write a single value or multiple values to one or both analog output channels. Use the **K_SetChn** function to specify a single channel. Use the **K_SetStartStopChn** function to specify analog output channel 0 as the start channel and analog output channel 1 as the stop channel. When using

Available Operations

both channels, the first value in the buffer is written to channel 0, the second value is written to channel 1, the third value is written to channel 0 again, and so on. After all the values in the buffer are written once, the values are written again until the required number of values are written.

For example, assume that your buffer contains three values (123, 456, and 789) and you want to write five values. Your program writes 123 to channel 0, 456 to channel 1, 789 to channel 0, 123 to channel 1, and 456 to channel 0.

Clock Source

When performing interrupt-mode analog output operations, you can use the internal pacer clock to determine the period between the updating of a single analog output channel or between each simultaneous updating of both analog output channels.

Note: You can use the internal pacer clock only if it is not being used by another operation.

The internal pacer clock uses two cascaded counters of the onboard counter/timer circuitry. The counters are normally in an idle state. When you start the analog output operation (using **K_IntStart**), the analog output channel(s) are updated. Note that a slight time delay occurs between the time the operation is started and the time the channel(s) are updated.

The counters are loaded with a count value and begin counting down. When the counters count down to 0, the channel(s) are updated again and the process repeats.

Because the counters use a 5 MHz time base, each count represents 0.2 μ s. Use the **K_SetClkRate** function to specify the number of counts (clock ticks) between updates. For example, if you specify a count of 5000, the period between updates is 1 ms (1 ksamples/s); if you specify a count of 87654, the period between updates is 17.53 ms (57 samples/s).

You can specify a count between 15 and 4,294,967,295. The period between updates ranges from 3 μ s to 14.3 minutes.

Note: The driver accepts a count value as low as 15. However, since the FIFO is not used to buffer values for analog output operations, a low count value may cause an overrun error. The maximum observed update rates for the internal pacer clock are 1 ksamples/s when running under Windows and 5 ksamples/s when running under DOS. These rates would indicate a minimum count of 5,000 when running under Windows and 1,000 when running under DOS.

Use the following formula to determine the number of counts to specify:

$$counts = \frac{5 \text{ MHz time base}}{\text{update rate}}$$

For example, if you want to update the analog output channels at a rate of 500 samples/s, specify a count of 10,000, as shown in the following equation:

$$\frac{5,000,000}{500} = 10,000$$

Buffering Modes

 \oplus

The buffering mode determines how the driver writes the values in the buffer to the analog output channels. For interrupt-mode analog output operations, you can specify one of the following buffering modes:

- Single-cycle mode In single-cycle mode, after the driver writes the values stored in the buffer, the operation stops automatically. Single-cycle mode is the default buffering mode.
- Continuous mode In continuous mode, the driver continuously writes values from the buffer until the application program issues a stop function; when all the values in the buffer have been written, the driver writes the values again. Use the K_SetContRun function to specify continuous buffering mode.

Available Operations

Digital I/O Operations

This section describes the following:

- Digital I/O operation modes available.
- How to allocate and manage memory for digital I/O operations.
- Digital I/O channels.
- How to specify the following for a digital I/O operation: a clock rate and a buffering mode.

Note: You cannot use an external trigger or external pacer clock with a digital I/O operation.

Operation Modes

The operation mode determines which attributes you can specify for a digital I/O operation. You can perform digital I/O operations in one of the following modes:

• Single mode - In a single-mode digital input operation, the driver reads the value of digital input channel 0 once; in a single-mode digital output operation, the driver writes a value to digital output channel 0 once. You cannot perform any other operation until the single-mode operation is complete.

Use the K_DIRead function to start a digital input operation in single mode; use the $K_DOWrite$ function to start a digital output operation in single mode. You specify the board you want to use, the digital I/O channel, and the variable in which the value is stored.

Notes: Since digital input channel 0 is only four bits wide, you must mask the value stored by K_DIRead with 15 (0Fh) to obtain the actual digital input value.

The value written by **K_DOWrite** must be a 32-bit value. For DAS-1800HC Series boards, the eight least significant bits contain the actual digital output value, and all other bits are irrelevant. For DAS-1800ST/HR Series boards, the four least significant bits contain the actual digital output value, and all other bits are irrelevant.

• Interrupt mode - In an interrupt-mode digital input operation, the driver reads the value of digital input channel 0 multiple times; in an interrupt-mode digital output operation, the driver writes a single value or multiple values to digital output channel 0 multiple times. A hardware clock paces the digital I/O operation. Once the digital I/O operation begins, control returns to your application program. The driver stores digital input values in a user-defined buffer in the computer; you store digital output values in a user-defined buffer in the computer.

Note: The digital input buffer and the digital output buffer each contain 16-bit integers. Each digital input value is stored in the four least significant bits of each integer in the digital input buffer. For DAS-1800HC Series boards, each digital output value is stored in the eight least significant bits of each integer in the digital output buffer. For DAS-1800ST/HR Series boards, each digital output value is stored in the four least significant bits of each integer in the digital output value is of each integer in the digital output buffer.

Use the **K_IntStart** function to start a digital I/O operation in interrupt mode. You specify the board, digital I/O channel, clock rate, buffering mode, and buffer address.

You can specify either single-cycle or continuous buffering mode for interrupt-mode operations. Refer to page 2-38 for more information on buffering modes. Use the **K_IntStop** function to stop a continuous-mode interrupt operation. Use the **K_IntStatus** function to determine the current status of an interrupt operation.

Memory Allocation and Management

Interrupt-mode digital I/O operations use a single memory buffer to store the data to be read or written. The maximum number of samples each memory buffer can store (32K or 64K) depends on the language you are using. See "Language-Specific Programming Information" on page 3-22 for more information.

Since digital I/O operations typically require small arrays of data, you can reserve a memory buffer by dimensioning an array within your application program's memory area. Since the DAS-1800 Series Function Call Driver reads and writes data as 16-bit integers, you must dimension all local arrays as integers.

Note: You can also use the **K_IntAlloc** function to allocate memory dynamically, if desired. You specify the operation requiring the buffer, the number of values to store in the buffer, the variable in which to store the starting address of the buffer, and the name you want to use to identify the buffer (this name is called the memory handle). When the buffer is no longer required, you can free the buffer for another use by specifying this memory handle in the **K_IntFree** function.

After you dimension or allocate your array, you must assign the starting address of the array and the number of samples to store in the array. Each supported programming language requires a particular procedure for dimensioning an array and assigning the starting address. Refer to page 3-23 for information when programming in C or C++. Refer to page 3-31 for information when programming in Pascal. Refer to page 3-40 for information when programming in Visual Basic for Windows. Refer to page 3-46 for information when programming in BASIC.

2-33

Digital Input Channel

DAS-1800 Series boards contain one 4-bit digital input channel (channel 0). As shown in Figure 2-5, bit 0 contains the value of digital input line 0 (DI0/XPCLK on DAS-1800HC Series boards, DI0 on DAS-1800ST/HR Series boards); bit 1 contains the value of digital input line 1 (DI1/TGIN on DAS-1800HC Series boards, DI1 on DAS-1800ST/HR Series boards); bit 2 contains the value of digital input line 2 (DI2); bit 3 contains the value of digital input line 3 (DI3).

Figure 2-5. Digital Input Bits

A value of 1 in the bit position indicates that the input is high; a value of 0 in the bit position indicates that the input is low. For example, if the value is 5 (0101), the input at DI0/XPCLK and DI2 is high and the input at DI1/TGIN and DI3 is low.

Available Operations

Notes: If no signal is connected to a digital input line, the input appears high (value is 1).

(DAS-1800HC Series boards only) If you are using an external pacer clock, you cannot use digital input line 0 for general-purpose digital input operations. If you are using an external digital trigger, you cannot use digital input line 1 for general-purpose digital input operations. When reading digital input channel 0, ignore the value of these bits.

Digital Output Channel

DAS-1800HC Series boards contain one 8-bit digital output channel (channel 0). DAS-1800ST/HR Series boards contain one 4-bit digital output channel (channel 0). As shown in Figure 2-6, bit 0 contains the value to be written to digital output line 0 (DO0), bit 1 contains the value to be written to digital output line 1 (DO1), and so on.

DAS-1800HC Series

A value of 1 in the bit position indicates that the output is high; a value of 0 in the bit position indicates that the output is low. For example, if the value written is 12 (00001100), the output at DO0, DO1, DO4, DO5, DO6, and DO7 is forced low and the output at DO2 and DO3 is forced high.

Note: The DAS-1800 Series Function Call Driver provides the K_GetDOCurVal function to read the last digital output value written to digital output channel 0 using K DOWrite.

Clock Source

When performing interrupt-mode digital I/O operations, you can use the internal pacer clock to determine the period between reading the digital input channel or writing to the digital output channel.

Note: You can use the internal pacer clock only if it is not being used by another operation.

The internal pacer clock uses two cascaded counters of the onboard counter/timer circuitry. The counters are normally in an idle state. When you start the digital I/O operation (using **K_IntStart**), a value is read or written. Note that a slight time delay occurs between the time the operation is started and the time the reading or writing begins.

The counters are loaded with a count value and begin counting down. When the counters count down to 0, another value is read or written and the process repeats.

Because the counters use a 5 MHz time base, each count represents 0.2 μ s. Use the **K_SetClkRate** function to specify the number of counts (clock ticks) between reads or writes. For example, if you specify a count of 5000, the period between reads or writes is 1 ms (1 ksamples/s); if you specify a count of 87654, the period between reads or writes is 17.53 ms (57 samples/s).

You can specify a count between 15 and 4,294,967,295. The period between reads or writes ranges from 3 μ s to 14.3 minutes.

 \oplus

Note: The driver accepts a count value as low as 15. However, since the FIFO is not used to buffer values for digital I/O operations, a low count value may cause overrun errors. The maximum observed update rates for the internal pacer clock are 1 ksamples/s when running under Windows and 5 ksamples/s when running under DOS. These rates would indicate a minimum count of 5,000 when running under Windows and 1,000 when running under DOS.

Use the following formula to determine the number of counts to specify:

counts =
$$\frac{5 \text{ MHz time base}}{\text{read/write rate}}$$

For example, if you want to write data to digital output channel 0 at a rate of 500 samples/s, specify a count of 10,000, as shown in the following equation:

$$\frac{5,000,000}{500} = 10,000$$

2-37

Buffering Modes

The buffering mode determines how the driver reads or writes the values in the buffer. For interrupt-mode digital I/O operations, you can specify one of the following buffering modes:

- Single-cycle mode In a single-cycle-mode digital input operation, after the driver fills the buffer, the operation stops automatically. In a single-cycle-mode digital output operation, after the driver writes the values stored in the buffer, the operation stops automatically. Single-cycle mode is the default buffering mode.
- Continuous mode In a continuous-mode digital input operation, the driver continuously reads digital input channel 0 and stores the values in the buffer until the application program issues a stop function; any values already stored in the buffer are overwritten. In a continuous mode digital output operation, the driver continuously writes values from the buffer to digital output channel 0 until the application program issues a stop function; when all the values in the buffer have been written, the driver writes the values again. You use the **K_SetContRun** function to specify continuous buffering mode.

Available Operations

Programming with the Function Call Driver

This chapter contains an overview of the structure of the DAS-1800 Series Function Call Driver, as well as programming guidelines and language-specific information to assist you when writing application programs with the DAS-1800 Series Function Call Driver.

How the Driver Works

When writing application programs, you can use functions from one or more DAS Function Call Drivers. You initialize each driver according to a particular configuration file. If you are using more than one driver or more than one configuration file with a single driver, the driver handle uniquely identifies each driver or each use of the driver.

You can program one or more boards in your application program. You initialize each board using a board handle to uniquely identify each board. Each board handle is associated with a particular driver.

The Function Call Driver(s) allow you to perform I/O operations in various operation modes. For single mode, the I/O operation is performed with a single call to a function; the attributes of the I/O operation are specified as arguments to the function. Figure 3-1 illustrates the syntax of the single-mode, analog input operation function **K_ADRead**.

-{}}

3-1

For other operation modes, such as interrupt mode and DMA mode, the driver uses frames to perform the I/O operation. A frame is a data structure whose elements define the attributes of the I/O operation. Each frame is associated with a particular board, and therefore, to a particular driver.

Frames help you create structured application programs. You set up the attributes of the I/O operation in advance, using a separate function call for each attribute, and then start the operation at an appropriate point in your program. Frames are useful for operations that have many defining attributes, since providing a separate argument for each attribute could make a function's argument list unmanageably long. In addition, some attributes, such as the clock source and trigger source, are only available for I/O operations that use frames.

You indicate that you want to perform an I/O operation by getting an available frame for the driver and specifying the name you want to use to identify the frame; this name is called the frame handle. You then specify the attributes of the I/O operation by using setup functions to define the elements of the frame associated with the operation. For example, to specify the channel on which to perform an I/O operation, you might use the K_SetChn setup function.

For each setup function, the Function Call Driver provides a readback function, which reads the current definition of a particular element. For example, the **K_GetChn** readback function reads the channel number specified for the I/O operation.

Programming with the Function Call Driver

You use the frame handle you specified when accessing the frame in all setup functions, readback functions, and other functions related to the I/O operation. This ensures that you are defining the same I/O operation.

When you are ready to perform the I/O operation you have set up, you can start the operation in the appropriate operation mode, referencing the appropriate frame handle. Figure 3-2 illustrates the syntax of the interrupt-mode operation function $K_{IntStart}$.

Figure 3-2. Interrupt-Mode Operation

Different I/O operations require different types of frames. For example, to perform a digital input operation, you use a digital input frame; to perform an analog output operation, you use an analog output frame.

For DAS-1800 Series boards, interrupt-mode and DMA-mode operations require frames. The DAS-1800 Series Function Call Driver provides the following types of frames:

• Analog input frames, called A/D (analog-to-digital) frames. You use the **K_GetADFrame** function to access an available A/D frame and specify a frame handle.

3-3

- Analog output frames, called D/A (digital-to-analog) frames. You use the **K_GetDAFrame** function to access an available D/A frame and specify a frame handle.
- Digital input frames, called DI frames. You use the K_GetDIFrame function to access an available DI frame and specify a frame handle.
- Digital output frames, called DO frames. You use the **K_GetDOFrame** function to access an available DO frame and specify a frame handle.

If you want to perform an interrupt-mode or DMA-mode operation and all frames of a particular type have been accessed, you can use the **K_FreeFrame** function to free a frame that is no longer in use. You can then redefine the elements of the frame for the next operation.

When you access a frame, the elements are set to their default values. You can also use the **K_ClearFrame** function to reset all the elements of a frame to their default values.

Table 3-1 lists the elements of a DAS-1800 Series A/D frame; Table 3-2 lists the elements of a DAS-1800 Series D/A frame; Table 3-3 lists the elements of a DAS-1800 Series DI frame; Table 3-4 lists the elements of a DAS-1800 Series DO frame. These tables also list the default value of each element, the setup function(s) used to define each element, and the readback function(s) used to read the current definition of the element.

Programming with the Function Call Driver

 \oplus

 $\overline{\mathbf{\Phi}}$

Element	Default Value	Setup Function	Readback Function
Buffer ¹	0 (NULL)	K_SetBuf K_SetBufI K_SetDMABuf K_BufListAdd	K_GetBuf
Number of Samples	0	K_SetBuf K_SetBuff K_BufListAdd	K_GeiBuf
Buffering Mode	Single-cycle	K_SetContRun K_ClrContRun ²	K_GetContRun
Start Channel	0	K_SetChn K_SetStartStopChn K_SetStartStopG	K_GeiChn K_GeiStartStopChn K_GetStartStopG
Stop Channel	0	K_SetStartStopChn K_SetStartStopG	K_GetStartStopChn K_GetStartStopG
Gain	O (gain of 1)	K_SetG K_SetStartStopO	K_GetG K_GetStartStopG
Channel-Gain Queue	0 (NULL)	K_SetChnGAry	K_GetChnGAry
Conversion Mode	Paced	K_SetADFreeRun K_ClrADFreeRun ²	K_GetADFreeRun
SSH Mode	Disabled	K_SetSSH	K_GetSSH
Clock Source	Internal	K_SetCik	K_GetClk
Pacer Clock Rate ¹	0	K_SetClkRate	K_GetClkRate
External Clock Edge	Negative	K_SetExtClkEdge	K_GetExtClkEdge
Burst Clock Rate	3 (333 ksamples/s)	K_SetBurstTicks	K_GetBurstTicks
Trigger Source	Internal	K_SetTrig	K_GetTrig
Trigger Type	Digital	K_SetADTrig K_SetDITrig	K_GetADTrig K_GetDITrig

Table 3-1. A/D Frame Elements

3-5

¢

 \oplus

Φ

Element	Defauit Value	Setup Function	Readback Function
Trigger Channel	0 (for analog trigger)	K_SetADTrig	K_GetADTrig
	0 (channel 0, bit 0) (for digital (rigger)	Not applicable ³	Not applicable ³
Trigger Polarity	Positive (for analog trigger)	K_SetADTrig	K_GetADTrig
	Positive (for digital trigger)	K_SetDITrig	K_GetDITrig
Trigger Sensitivity	Edge (for analog and digital trigger)	Not applicable ³	Not applicable ³
Trigger Level	0	K_SetADTrig	K_GetADTrig
Tngger Hysteresis	0	K_SetTrigHyst	K_GetTrigHyst
Trigger Pattern	Not used ⁴	Not applicable ³	Not applicable ³
About-Trigger Mode	Disabled	K_SetAboutTrig K_CirAboutTrig ²	K_GetAboutTrig
Hardware Gate	Disabled	K_SetGate	K_GetGate

Table 3-1. A/D Frame Elements (cont.)

 \oplus

 \oplus

¹ This element must be set.
 ² Use this function to reset the value of this particular frame element to its default setting without clearing the frame or getting a new frame. Whenever you clear a frame or get a new frame, this frame element is set to its default value automatically.
 ³ The default value of this element cannot be changed.
 ⁴ This element is not currently used; it is included for future compatibility.

 \oplus

Programming with the Function Call Driver

Element	Default Value	Setup Function	Readback Function
Buffer ¹	0 (NULL)	K_SetBuf K_SetBufI	K_GetBuf
Buffering Mode	Single-cycle	K_SetContRun K_ClrContRun ²	K_GetContRun
Number of Samples	0	K_SetBuf K_SetBufI	K_GetBuf
Start Channel	0	K_SetChn K_SetStartStopChn	K_GetChn K_GetStartStopChn
Stop Channel	0	K_SetStartStopChn	K_GetStartStopChn
Clock Source	Internal	Not applicable ³	Not applicable ³
Pacer Clock Rate ¹	0	K_SetClkRate	K_GetClkRate

_				-			
T۶	۱h	AI	3.2	D/Δ	Frame	Flement	C.
		1.	· · · · ·		1 1 4 1 1 1 4		-

 \oplus

 \oplus

¹ This element must be set.

 2 Use this function to reset the value of this particular frame element to its default setting without clearing the frame or getting a new frame. Whenever you clear a frame or get a new frame, this frame element is set to its default value automatically. ³ The default value of this element cannot be changed.

 \oplus

ŧ

Element	Default Value	Setup Function	Readback Function
Buffer ¹	0 (NULL)	K_SetBuf K_SetBufI	K_GetBuf
Buffering Mode	Single-cycle	K_SetContRun K_ClrContRun ²	K_GetContRun
Number of Samples	0	K_SetBuf K_SetBufI	K_GetBuf
Stari Channel	0	Not applicable ³	Not applicable ³
Stop Channel	0	Not applicable ³	Not applicable ³
Clock Source	Internal	Not applicable ³	Not applicable ³
Pacer Clock Rate ¹	0	K_SetClkRate	K_GetClkRate

Table 3-	3. DI	Frame	Elements
----------	-------	-------	----------

 \oplus

 \oplus

¹ This element must be set.
 ² Use this function to reset the value of this particular frame element to its default setting without clearing the frame or getting a new frame. Whenever you clear a frame or get a new frame, this frame element is set to its default value automatically.
 ³ The default value of this element cannot be changed.

Programming with the Function Call Driver

⊕

Element	Default Value	Setup Function	Readback Function
Buffer ¹	0 (NULL)	K_SetBuf K_SetBufI	K_GetBuf
Buffering Mode	Single-cycle	K_SetContRun K_ClrContRun ²	K_GetContRun
Number of Samples	0	K_SetBuf K_SetBufI	K_GetBuf
Start Channel	0	Not applicable ³	Not applicable ³
Stop Channel	0	Not applicable ³	Not applicable ³
Clock Source	Internal	Not applicable ³	Not applicable ³
Pacer Clock Rate ¹	0	K_SetClkRate	K_GetClkRate

IADIE 3-4. DO FIAINE CIEINEINS	Table	3-4.	DO	Frame	Elements
--------------------------------	-------	------	----	-------	----------

 \oplus

¹ This element must be set.

 2 Use this function to reset the value of this particular frame element to its default setting without clearing the frame or getting a new frame. Whenever you clear a frame or get a new frame, this frame element is set to its default value automatically. ³ The default value of this element cannot be changed.

Note: The DAS-1800 Series Function Call Driver provides many other functions that are not related to controlling frames, defining the elements of frames, or reading the values of frame elements. These functions include single-mode operation functions, initialization functions, memory management functions, and miscellancous functions

For information about using the FCD functions in your application program, refer to the following sections of this chapter. For detailed information about the syntax of FCD functions, refer to Chapter 4.

Programming Overview

To write an application program using the DAS-1800 Series Function Call Driver, perform the following steps:

- 1. Define the application's requirements. Refer to Chapter 2 for a description of the board operations supported by the Function Call Driver and the functions that you can use to define each operation.
- 2. Write your application program. Refer to the following for additional information:
 - Preliminary Tasks, the next section, describes the programming tasks that are common to all application programs.
 - Operation-Specific Programming Tasks, on page 3-11, describes operation-specific programming tasks and the sequence in which these tasks must be performed.
 - Chapter 4 contains detailed descriptions of the FCD functions.
 - The DAS-1800 Series standard software package and the ASO-1800 software package contain several example programs. The FILES.TXT file in the installation directory lists and describes the example programs.
- 3. Compile and link the program. Refer to Language-Specific Programming Information, starting on page 3-22, for compile and link statements and other language-specific considerations for each supported language.

Programming with the Function Call Driver

Preliminary Tasks

For every Function Call Driver application program, you must perform the following preliminary tasks:

- 1. Include the function and variable type definition file for your language. Depending on the specific language you are using, this file is included in the DAS-1800 Series standard software package or the ASO-1800 software package.
- 2. Declare and initialize program variables.
- Use a driver initialization function (DAS1800_DevOpen or K_OpenDriver) to initialize the driver.
- 4. Use a board initialization function (DAS1800_GetDevHandle or K_GetDevHandle) to specify the board you want to use and to initialize the board. If you are using more than one board, use the board initialization function once for each board you are using.

Operation-Specific Programming Tasks

After completing the preliminary tasks, perform the appropriate operation-specific programming tasks. The operation-specific tasks for analog and digital I/O operations are described in the following sections.

Note: Any FCD functions that are not mentioned in the operation-specific programming tasks can be used at any point in your application program.

Analog Input Operations

 \oplus

The following subsections describe the operation-specific programming tasks required to perform single-mode, interrupt-mode, and DMA-mode analog input operations.

Single Mode

For a single-mode analog input operation, perform the following tasks:

- 1. Declare the buffer or variable in which to store the single analog input value.
- 2. Use the **K_ADRead** function to read the single analog input value; specify the attributes of the operation as arguments to the function.

Interrupt Mode

For an interrupt-mode analog input operation, perform the following tasks:

- 1. Use the K GetADFrame function to access an A/D frame.
- 2. Allocate the buffer(s) or dimension the array(s) in which to store the acquired data. Use the **K_IntAlloc** function if you want to allocate the buffer(s) dynamically outside your program's memory area.
- 3. If you want to use a channel-gain queue to specify the channels acquiring data, define and assign the appropriate values to the queue and note the starting address. Refer to page 2-11 for more information about channel-gain queues.
- 4. Use the appropriate setup functions to specify the attributes of the operation. The setup functions are listed in Table 3-5.

Note: When you access a new A/D frame, the frame elements contain default values. If the default value of a particular element is suitable for your operation, you do not have to use the setup function associated with that element. Refer to Table 3-1 on page 3-5 for a list of the default values of A/D frame elements.

 \oplus

 $\bar{\oplus}$

Attribute	Setup Function(s)
Buffer ¹	K_SetBuf K_SetBufI
	K_BufListAdd
Number of Samples	K_SetBul
	K_BufListAdd
Buffering Mode	K_SetContRun K_ClrContRun ²
Start Channel	K_SetChn
	K_StartStopCfm K_StartStopG
Stop Channel	K_SetStartStopChn K_SetStartStopG
Channel Configuration	K_SetADConfig
Input Range Type	K_SetADMode
Common-mode ground reference	K_SetADCommonMode
Gain	K_SetG K_SetStartStopG
Channel-Gain Quene	K_SetChnGAry
Conversion Mode	K_SetADFreeRun K_ClrADFreeRun ²
SSH Mode	K_SetSSH
Clock Source	K_SetClk
Pacer Clock Rate ¹	K_SetClkRate
External Clock Edge	K_SetExtClkEdge
Burst Clock Rate	K_SetBurstTicks
Trigger Source	K_SetTrig
Trigger Type	K_SetADTrig K_SetDITrig

 \oplus

Table 3-5.Setup Functions for Interrupt-ModeAnalog Input Operations

3-13

 \oplus

Table 3-5. Setup Functions for Interrupt-Mode Analog Input Operations (cont.)

Notes

¹ This element must be set.

² Use this function to reset the value of this particular frame element to its default setting without clearing the frame or getting a new frame.

Refer to Chapter 2 for background information about the setup functions; refer to Chapter 4 for detailed descriptions of the setup functions.

- 5. Use the K_IntStart function to start the interrupt-mode operation.
- 6. Use the **K_IntStatus** function to monitor the status of the interrupt-mode operation.
- 7. If you specified continuous buffering mode, use the **K_IntStop** function to stop the interrupt-mode operation when the appropriate number of samples has been acquired.
- If you are programming in Visual Basic for Windows or BASIC and you used K_IntAlloc to allocate your buffer(s), use the K_MoveBufToArray function to transfer the acquired data from the allocated buffer to a local array that your program can use.
- 9. If you used **K_IntAlloc** to allocate your buffer(s), use the **K_IntFree** function to deallocate the buffer(s).
- If you used K_BufListAdd to specify a list of multiple buffers, use the K_BufListReset function to clear the list.

Programming with the Function Call Driver

11. Use the **K_FreeFrame** function to return the frame you accessed in step 1 to the pool of available frames.

DMA Mode

 \oplus

For a DMA-mode analog input operation, perform the following tasks:

- 1. Use the K_GetADFrame function to access an A/D frame.
- 2. Allocate the buffer(s) or dimension the array(s) in which to store the acquired data. Use the **K_DMAAlloc** function if you want to allocate the buffer(s) dynamically outside your program's memory area.
- 3. If you want to use a channel-gain queue to specify the channels acquiring data, define and assign the appropriate values to the queue and note the starting address. Refer to page 2-11 for more information about channel-gain queues.
- 4. Use the appropriate setup functions to specify the attributes of the operation. The setup functions are listed in Table 3-6.

⊕

Note: When you access a new A/D frame, the frame elements contain default values. If the default value of a particular element is suitable for your operation, you do not have to use the setup function associated with that element. Refer to Table 3-1 on page 3-5 for a list of the default values of A/D frame elements.

Attribute	Setup Function(s)
Buffer ¹	K_SetDMABuf K_BufListAdd
Number of Samples	K_SetBuf K_SetBuf1 K_Buf1 anAdd
Buffering Mode	K_SetContRun K_ClrContRun ²
Start Channel	K_SeiChn K_SeiStartStopChn K_StartStopG
Stop Channel	K_SetStartStopChn K_SetStartStopG
Channel Configuration	K_SetADConfig
Input Range Type	K_SetADMode
Common-mode ground reference	K_SetADCommonM ode
Gain	K_SetG K_SetStartStopG
Channel-Gain Queue	K_SetChnGAry
Conversion Mode	K_SetADFreeRun K_ClrADFreeRun ²
SSH Mode	K_SetSSH
Clock Source	K_SetClk
Pacer Clock Rate ¹	K_SetClkRate
External Clock Edge	K_SetExtClkEdge
Burst Clock Rate	K_SetBurstTicks
Trigger Source	K_SetTrig
Trigger Type	K_SetADTrig K_SetDITrig

 \oplus

Table 3-6. Setup Functions for DMA-ModeAnalog input Operations

Programming with the Function Call Driver

 \oplus

 \oplus

Attribute	Setup Function(s)
Trigger Channel	K_SetADTrig
Trigger Polarity	K_SetADTrig
Trigger Level	K_SetADTrig
Trigger Hysteresis	K_SetTrigHyst
About-Trigger Mode	K_SetAboutTrig K_ClrAboutTrig ²
Hardware Gate	K_SetGate

Table 3-6. Setup Functions for DMA-Mode Analog Input Operations (cont.)

Notes

¹ This element must be set.

² Use this function to reset the value of this particular frame element to its default setting without clearing the frame or getting a new frame.

Refer to Chapter 2 for background information about the setup functions; refer to Chapter 4 for detailed descriptions of the setup functions.

- 5. Use the **K_DMAStart** function to start the DMA-mode operation.
- 6. Use the **K_DMAStatus** function to monitor the status of the DMA-mode operation.
- 7. If you specified continuous buffering mode, use the K_DMAStop function to stop the DMA-mode operation when the appropriate number of samples has been acquired.
- If you are programming in Visual Basic for Windows or BASIC and you used K_DMAAlloc to allocate your buffer(s), use the K_MoveBufToArray function to transfer the acquired data from the allocated buffer to a local array that your program can use.
- If you used K_DMAAlloc to allocate your buffer(s), use the K_DMAFree function to deallocate the buffer(s).

- If you used K_BufListAdd to specify a list of multiple buffers, use the K BufListReset function to clear the list.
- 11. Use the **K_FreeFrame** function to return the frame you accessed in step 1 to the pool of available frames.

Analog Output Operations (DAS-1800HC Series Only)

The following subsections describe the operation-specific programming tasks required to perform single-mode and interrupt-mode analog output operations.

Single Mode

For a single-mode analog output operation, perform the following tasks:

- 1. Declare the buffer or variable in which to store the single analog output value.
- 2. Use the **K_DAWrite** function to write the single analog output value; specify the attributes of the operation as arguments to the function.

Interrupt Mode

 \oplus

For an interrupt-mode analog output operation, perform the following tasks:

- 1. Use the K_GetDAFrame function to access a D/A frame.
- 2. Allocate the buffer or dimension the array in which to store the data to be written. Use the **K_IntAlloc** function if you want to allocate the buffer dynamically outside your program's memory area.
- 3. Use the appropriate setup functions to specify the attributes of the operation. The setup functions are listed in Table 3-7.

Note: When you access a new D/A frame, the frame elements contain default values. f the default value of a particular element is suitable for your operation, you do not have to use the setup function associated with that element. Refer to Table 3-2 on page 3-7 for a list of the default values of D/A frame elements.

Attribute	Setup Function(s)
Buffer ¹	K_SetBuf K_SetBufI
Number of Samples	K_SetBuf K_SetBuff
Buffering Mode	K_SetContRun K_ClrContRun ²
Start Channel	K_SetChn K_SetStartStopChn
Stop Channel	K_SetStartStopChn
Pacer Clock Rate ¹	K_SetClkRate

Table 3-7. Setup Functions for Interrupt-Mode Analog Output Operations

Notes

 $\frac{1}{2}$ This element must be set.

² Use this function to reset the value of this particular frame element to its default setting without clearing the frame or getting a new frame.

Refer to Chapter 2 for background information about the setup functions; refer to Chapter 4 for detailed descriptions of the setup functions.

- If you are programming in Visual Basic for Windows or BASIC and you used K_IntAlloc to allocate your buffer, use the K_MoveArrayToBuf function to transfer the data from the local array to the dynamically allocated buffer that the driver can use.
- 5. Use the K_IntStart function to start the interrupt-mode operation.

3-19

 \oplus

- 6. Use the **K_IntStatus** function to monitor the status of the interrupt-mode operation.
- 7. If you specified continuous buffering mode, use the **K_IntStop** function to stop the interrupt-mode operation when the appropriate number of samples has been written.
- 8. If you used K_IntAlloc to allocate your buffer, use the K_IntFree function to deallocate the buffer.
- 9. Use the **K_FreeFrame** function to return the frame you accessed in step 1 to the pool of available frames.

Digital I/O Operations

The following subsections describe the operation-specific programming tasks required to perform single-mode and interrupt-mode digital I/O operations.

Single Mode

For a single-mode digital I/O operation, perform the following tasks:

- 1. Declare the buffer or variable in which to store the single digital I/O value.
- 2. Use one of the following digital I/O single-mode operation functions, specifying the attributes of the operation as arguments to the function:

Function	Purpose
K_DIRead	Reads a single digital input value.
K_DOWrite	Writes a single digital output value.

Interrupt Mode

For an interrupt-mode digital I/O operation, perform the following tasks:

- Use the K_GetDIFrame function to access a DI frame; use the K_GetDOFrame function to access a DO frame.
- 2. Allocate the buffer or dimension the array in which to store the data to be read or written. Use the **K_IntAlloc** function if you want to allocate the buffer dynamically outside your program's memory area.
- 3. Use the appropriate setup functions to specify the attributes of the operation. The setup functions are listed in Table 3-8.

Note: When you access a new DI or DO frame, the frame elements contain default values. If the default value of a particular element is suitable for your operation, you do not have to use the setup function associated with that element. Refer to Table 3-3 on page 3-8 for a list of the default values of DI frame elements; refer to Table 3-4 on page 3-9 for a list of the default values of DO frame elements.

Attribute	Setup Function(s)
Buffer ¹	K_SetBuf K_SetBufI
Number of Samples	K_SetBuf K_SetBufI
Buffering Mode	K_SetContRun K_ClrContRun ²
Pacer Clock Rate ¹	K_SetClkRate

Table 3-8. Setup Functions for Interrupt-Mode Digital Input and Digital Output Operations

Notes

¹ This element must be set.

² Use this function to reset the value of this particular frame element to its default setting without clearing the frame or getting a new frame.

3-21

Refer to Chapter 2 for background information about the setup functions; refer to Chapter 4 for detailed descriptions of the setup functions.

- 4. If you are performing a digital output operation, you are programming in Visual Basic for Windows or BASIC, and you used K_IntAlloc to allocate your buffer, use the K_MoveArrayToBuf function to transfer the data from the local array to the dynamically allocated buffer that the driver can use.
- 5. Use the **K_IntStart** function to start the interrupt-mode operation.
- 6. Use the **K_IntStatus** function to monitor the status of the interrupt-mode operation.
- 7. If you specified continuous buffering mode, use the K_IntStop function to stop the interrupt-mode operation when the appropriate number of samples has been written.
- 8. If you are performing a digital input operation, you are programming in Visual Basic for Windows or BASIC, and you used K_IntAlloc to allocate your buffer, use the K_MoveBufToArray function to transfer the data from the allocated buffer to a local array that your program can use.
- 9. If you used **K_IntAlloc** to allocate your buffer, use the **K_IntFree** function to deallocate the buffer.
- 10. Use the **K_FreeFrame** function to return the frame you accessed in step 1 to the pool of available frames.

Language-Specific Programming Information

This section provides programming information for each of the supported languages. Note that the compilation procedures for all languages assume that the paths and/or environment variables are set correctly.

 \oplus

C/C++ Languages

The following sections contain information you need to allocate and assign memory buffers and to create channel-gain queues when programming in C or C++, as well as language-specific information for Microsoft C/C++, Borland C/C++, Microsoft QuickC for Windows, and Microsoft Visual C++.

Note: When programming in C/C++, proper typecasting may be required to avoid C/C++ type-mismatch warnings.

Allocating and Assigning Dynamically Allocated Memory Buffers

This section provides code fragments that describe how to allocate and assign dynamically allocated memory buffers when programming in C or C++. Refer to the example programs on disk for more information.

Notes: The code fragments for dynamically allocated memory assume that you are using DMA mode; the code for interrupt mode is identical, except that you use the appropriate interrupt-mode functions instead of the DMA-mode functions.

If you are programming in Windows' Enhanced mode, you may be limited in the amount of memory you can allocate. It is recommended that you install the Keithley Memory Manager before you begin programming to ensure that you can allocate a large enough buffer or buffers. Refer to your DAS-1800 Series board user's guide for more information about the Keithley Memory Manager.

Single Memory Buffer

You can use a single, dynamically allocated memory buffer for interrupt-mode analog input, analog output, and digital I/O operations and for DMA-mode analog input operations.

The following code fragment illustrates how to use **K_DMAAlloc** to allocate a buffer of size Samples for the frame defined by hFrame and

Ф

how to use **K_SetDMABuf** to assign the starting address of the buffer; the buffer can store a maximum of 65,536 samples.

```
void far *AcqBuf; //Declare pointer to buffer
WORD hMem; //Declare word for memory handle
. . .
wDasErr = K_DMAAlloc (hFrame, Samples, &AcqBuf, &hMem);
wDasErr = K_SetDMABuf (hFrame, AcqBuf, Samples);
. . .
```

The following code illustrates how to use **K_DMAFree** to later free the allocated buffer, using the memory handle stored by **K_DMAAlloc**.

```
wDasErr = K_DMAFree (hMem);
```

Note: Make sure that you always check the returned value (wDasErr in the previous examples) for possible errors.

Multiple Memory Buffers

You can use multiple, dynamically allocated memory buffers for interrupt-mode analog input operations and for DMA-mode analog input operations.

The following code fragment illustrates how to use **K_DMAAlloc** to allocate five buffers of size Samples each for the frame defined by hADFrame and how to use **K_BufListAdd** to assign the starting addresses of the five buffers; each buffer can store a maximum of 65,536 samples.

```
void far *AcqBuf[5]; //Declare 5 pointers to 5 buffers
WORD hMem[5]; //Declare 5 words for 5 memory handles
...
for (i = 0; i < 5; i++) {
wDasErr = K_DMAAlloc (hADFrame, Samples, &AcqBuf[i],&hMem[i]);
wDasErr = K_BufListAdd (hADFrame, AcqBuf[i], Samples);
}
...
3-24
Programming with the Function Call Driver</pre>
```

The following code illustrates how to use **K_DMAFree** to later free the allocated buffers, using the memory handles stored by **K_DMAAlloc**; if you free the allocated buffers, you must also use **K_BufListReset** to reset the buffer list associated with the frame.

```
for (i = 0; i < 5; i++) {
   wDasErr = K_DMAFree (hMem[i]);
}
wDasErr = K_BufListReset (hADFrame);
. . .</pre>
```

Notes: Make sure that you always check the returned value (wDasErr in the previous examples) for possible errors.

Accessing the Data

You access the data stored in dynamically allocated buffers through C/C++ pointer indirection. For example, assume that you want to display the first 10 samples of the second buffer in the multiple-buffer operation described in the previous section (AcqBuf[1]). The following code fragment illustrates how to access and display the data.

```
int far *pData; //Declare a pointer called pData
...
pData = (int far *) AcqBuf[1]; //Assign pData to 2nd buffer
for (i = 0; i < 10; i++)
    printf ("Sample #%d %X", i, *(pData+i));
...
```

Dimensioning and Assigning Local Arrays

This section provides code fragments that describe how to dimension and assign local arrays when programming in C or C++. Refer to the example programs on disk for more information.

Single Array

You can use a single, local array for interrupt-mode analog input, analog output, and digital I/O operations.

The following code fragment illustrates how to dimension an array of 10,000 samples for the frame defined by hFrame and how to use **K_SetBuf** to assign the starting address of the array. The maximum array size is 65,536.

```
int Data[10000]; //Dimension array of 10,000 samples
. . .
wDasErr = K_SetBuf (hFrame, Data, 10000);
. . .
```

Note: Make sure that you always check the returned value (wDasErr in the previous example) for possible errors.

Multiple Arrays

You can use multiple, local arrays for interrupt-mode analog input operations.

The following code fragment illustrates how to allocate two arrays of 32,000 samples each for the frame defined by hADFrame and how to use **K_BufListAdd** to assign the starting addresses of the arrays. The maximum array size is 65,536.

```
int Data1[32000]; //Allocate Array #1 of 32,000 samples
int Data2[32000]; //Allocate Array #2 of 32,000 samples
...
wDasErr = K_BufListAdd (hADFrame, Data1, 32000);
wDasErr = K_BufListAdd (hADFrame, Data2, 32000);
...
```

Note: Make sure that you always check the returned value (wDasErr in the previous example) for possible errors.

Creating a Channel-Gain Queue

The DASDECL.H and DASDECL.HPP files define a special data type (GainChanTable) that you can use to declare your channel-gain queue. GainChanTable is defined as follows:

```
typedef struct GainChanTable
{
    WORD num_of_codes;
    struct{
        char Chan;
        char Gain;
    } GainChanAry[256];
} GainChanTable;
```

The following example illustrates how to create a channel-gain queue called MyChanGainQueue for a DAS-1802HC board by declaring and initializing a variable of type GainChanTable.

GainChanTable MyChanGainQueue =

{8,	//Number of entries
0, 0,	//Channel 0, gain of 1
1, 1,	//Channel 1, gain of 2
2, 2,	//Channel 2, gain of 4
3, 3,	//Channel 3, gain of 8
3, 0,	//Channel 3, gain of 1
2, 1,	//Channel 2, gain of 2
1, 2,	//Channel 1, gain of 4
0, 3};	//Channel 0, gain of 8

After you create MyChanGainQueue, you must assign the starting address of MyChanGainQueue to the frame defined by hFrame, as follows:

wDasErr = K_SetChnGAry (hFrame, &MyChanGainQueue);

Note: Make sure that you always check the returned value (wDasErr in the previous example) for possible errors.

 Φ

When you start the next analog input operation (using K_IntStart or K_DMAStart), channel 0 is sampled at a gain of 1, channel 1 is sampled at a gain of 2, channel 2 is sampled at a gain of 4, and so on.

Programming in Microsoft C/C++

To program in Microsoft C/C++, you need the following files; these files are provided in the ASO-1800 software package.

File	Description
DAS1800.LIB	Linkable driver.
DASRFACE.LIB	Linkable driver.
DASDECL,H	Include file when compiling in C (.c programs).
DAS1800.H	Include file when compiling in C (.c programs).
DASDECL, HPP	Include file when compiling in C++ (.cpp programs).
DAS1800.HPP	Include file when compiling in C++ (.cpp programs).
USE1800.OBJ	Linkable object.

To create an executable file in Microsoft C/C++, use the following compile and link statements. Note that *filename* indicates the name of your application program.

Type of Compile	Compile and Link Statements
С	CL /c filename.c LINK filename+use1800.obj,,,das1800+dasrface;
C++	CL /c filename.cpp LINK filename+use1800.obj,,das1800+dasrface;

Refer to page 3-23 for information about allocating and assigning dynamically allocated memory buffers when programming in Microsoft C/C++. Refer to page 3-25 for information about dimensioning and assigning local arrays when programming in Microsoft C/C++. Refer to page 3-27 for information about creating a channel-gain queue when programming in Microsoft C/C++.

Programming in Borland C/C++

To program in Borland C/C++, you need the following files; these files are provided in the ASO-1800 software package.

File	Description
DAS1800.LIB	Linkable driver.
DASRFACELIB	Linkable driver.
DASDECL.H	Include file when compiling in C (.c programs).
DAS1800.H	Include file when compiling in C (.c programs).
DASDECL.HPP	Include file when compiling in C++ (.cpp programs).
DAS1800.HPP	Include file when compiling in C++ (.cpp programs).
USE1800.OBJ	Linkable object.

To create an executable file in Borland C/C++, use the following compile and link statements. Note that *filename* indicates the name of your application program.

Type of Compile	Compile and Link Statements ¹
С	BCC -ml filename.c use1800.obj das1800.lib dasrface.lib
C++	BCC -ml filename.cpp use1800.obj das1800.lib dasrface.lib

Notes

 \oplus

Ð

¹ These statements assume a large memory model; however, any memory model is acceptable.

Programming in Microsoft QuickC for Windows

To program in Microsoft QuickC for Windows, you need the following files; these files are provided in the ASO-1800 software package.

File	Description
DASSHELL.DLL	Dynamic Link Library.
DASSUPRT.DLL	Dynamie Link Library.
DAS1800.DLL	Dynamic Link Library.
DASDECLH	Include file.
DA\$1800.H	Include file.
DASIMPLIB	DAS Shell Imports
D1800IMP.LIB	DAS-1800 Imports

To create an executable file in Microsoft QuickC for Windows, perform the following steps:

- 1. Load *filename*.c into the QuickC for Windows environment, where *filename* indicates the name of your application program.
- 2. Create a project file. The project file should contain all necessary files, including *filename.c*, *filename.*rc, *filename.*def, *filename.*h, DASIMPLIB, and D1800IMPLIB, where *filename* indicates the name of your application program.
- 3. From the Project menu, choose Build to create a stand-alone executable file (.EXE) that you can execute from within Windows.

Programming with the Function Call Driver

 \oplus

Programming in Microsoft Visual C++

To program in Microsoft Visual C++, you need the following files; these files are provided in the ASO-1800 software package.

File	Description
DASSHELL.DLL	Dynamic Link Library.
DASSUPRT.DLL	Dynamie Link Library.
DAS1800.DLL	Dynamic Link Library.
DASDECL.H	Include file.
DAS1800.H	Include file.
DASIMPLIB	DAS Shell Imports
D1800IMP.LIB	DAS-1800 Imports

To create an executable file in Visual C++, perform the following steps:

- 1. Create a project file by choosing New from the Project menu. The project file should contain all necessary files, including *filename.*c, *filename.*rc, *filename.*def, DASIMPLIB, and D1800IMP.LIB, where *filename* indicates the name of your application program.
- 2. From the Project menu, choose Rebuild All FILENAME.EXE to create a stand-alone executable file (.EXE) that you can execute from within Windows.

Pascal Languages

The following sections contain information you need to allocate and assign memory buffers and to create channel-gain queues when programming in Pascal, as well as language-specific information for Borland Turbo Pascal (for DOS) and Borland Turbo Pascal for Windows.

Allocating and Assigning Dynamically Allocated Memory Buffers

This section provides code fragments that describe how to allocate and assign dynamically allocated memory buffers when programming in Pascal. Refer to the example programs on disk for more information.

Notes: The code fragments for dynamically allocated memory assume that you are using DMA mode; the code for interrupt mode is identical, except that you use the appropriate interrupt-mode functions instead of the DMA-mode functions.

If you are using Borland Turbo Pascal for Windows in Enhanced mode, you may be limited in the amount of memory you can allocate. It is recommended that you use the Keithley Memory Manager before you begin programming to ensure that you can allocate a large enough buffer or buffers. Refer to your DAS-1800 Series board user's guide for more information about the Keithley Memory Manager.

Reducing the Memory Heap

Note: Reducing the memory heap is recommended for Borland Turbo Pascal (for DOS) only; if you are programming in Borland Turbo Pascal for Windows, proceed to the next section.

By default, when Borland Turbo Pascal (for DOS) programs begin to run, Pascal reserves all available DOS memory for use by the internal memory manager; this allows you to perform **GetMem** and **FreeMem** operations. Pascal uses the compiler directive \$M to distribute the available memory. The default configuration is {\$m 16384, 0, 655360}, where 16384 bytes is the stack size, 0 bytes is the minimum heap size, and 655360 is the maximum heap size.

It is recommended that you use the compiler directive \$M to reduce the maximum heap reserved by Pascal to zero bytes by entering the following:

 $\{\$m (16384, 0, 0)\}$

Reducing the maximum heap size to zero bytes makes all far heap memory available to DOS (and therefore available to the driver) and allows your application program to take maximum advantage of the K_IntAlloc and K_DMAAlloc functions. You can reserve some space for the internal memory manager or for DOS, if desired. Refer to your Borland Turbo Pascal (for DOS) documentation for more information.

Single Memory Buffer

You can use a single, dynamically allocated memory buffer for interrupt-mode analog input, analog output, and digital I/O operations and for DMA-mode analog input operations.

The following code fragment illustrates how to use $K_DMAAlloc$ to allocate a buffer of size Samples for the frame defined by hFrame and how to use $K_SetDMABuf$ to assign the starting address of the buffer. The maximum array size is 65,536.

It is recommended that you declare a dummy type array of ^Integer. The dimension of this array is irrelevant; it is used only to satisfy Pascal's type-checking requirements.

```
($m (16384, 0, 0)) { Turbo Pascal for DOS only }
...
Type
IntArray = Array[0..1] of Integer;
...
Var
AcqBuf : ^IntArray; { Declare buffer of dummy type }
hMem : Word; { Declare word for memory handle, hMem }
...
wDasErr := K_DMAAlloc (hFrame, Samples, @AcqBuf, hMem);
wDasErr := K_SetDMABuf (hFrame, AcqBuf, Samples);
...
```

The following code illustrates how to use **K_DMAFree** to later free the allocated buffer, using the memory handle stored by **K_DMAAlloc**.

wDasErr := K_DMAFree (hMem);
. . .

3-33

 \oplus

Note: Make sure that you always check the returned value (wDasErr in the previous examples) for possible errors.

Multiple Memory Buffers

You can use multiple, dynamically allocated memory buffers for interrupt-mode analog input operations and for DMA-mode analog input operations.

The following code fragment illustrates how to use **K_DMAAlloc** to allocate five buffers of size Samples each for the frame defined by hADFrame and how to use **K_BufListAdd** to assign the starting addresses of the five buffers. The maximum array size is 65,536.

It is recommended that you declare a dummy type array of ^Integer. The dimension of this array is irrelevant; it is used only to satisfy Pascal's type-checking requirements.

```
{$m (16384, 0, 0)} { Turbo Pascal for DOS only }
...
Type
IntArray = Array[0..1] of Integer;
...
Var
AcqBuf : Array[0..4] of ^IntArray; {5 buffers, dummy type}
hMem : Array[0..4] of Word; {5 words for 5 memory handles}
...
For i := 0 to 4 do begin
   wDasErr := K_DMAAlloc(hADFrame, Samples, @AcqBuf[i], hMem[i]);
   wDasErr := K_BufListAdd (hADFrame, AcqBuf[i], Samples);
End;
...
```

The following code illustrates how to use **K_DMAFree** to later free the allocated buffers, using the memory handles stored by **K_DMAAlloc**; if you free the allocated buffers, you must also use **K_BufListReset** to reset the buffer list associated with the frame.

```
For i := 0 to 4 do begin
wDasErr := K_DMAFree (hMem[i]);
End;
```

```
ļ
```

```
wDasErr := K_BufListReset (hADFrame);
. . .
```

Note: Make sure that you always check the returned value (wDasErr in the previous examples) for possible errors.

Accessing the Data

You access the data stored in dynamically allocated buffers through Pascal pointer indirection. For example, assume that you want to display the first 10 samples of the second buffer in the multiple-buffer operation described in the previous section (AcqBuf[1]). The following code fragment illustrates how to access and display the data.

```
for i := 0 to 10 do begin
    writeln ('Sample #', i,' =', AcqBuf[1]^[i]);
End;
. . .
```

Dimensioning and Assigning Local Arrays

This section provides code fragments that describe how to dimension and assign local arrays when programming in Pascal. Refer to the example programs on disk for more information.

Ð

\oplus

Single Array

You can use a single, local array for interrupt-mode analog input, analog output, and digital I/O operations.

The following code fragment illustrates how to dimension an array of 10,000 samples for the frame defined by hFrame and how to use **K_SetBuf** to assign the starting address of the array; the array can store a maximum of 65,536 samples.

```
Data : Array[0..9999] of Integer;
. . .
wDasErr := K_SetBuf (hFrame, Data(0), 10000);
. . .
```

Note: Make sure that you always check the returned value (wDasErr in the previous example) for possible errors.

Multiple Arrays

You can use multiple, local arrays for interrupt-mode analog input operations.

The following code fragment illustrates how to allocate two arrays of 32,000 samples each for the frame defined by hADFrame and how to use **K_BufListAdd** to assign the starting addresses of the arrays; each array can store a maximum of 65,536 samples.

```
Data1 : Array[0..31999] of Integer; { Allocate Array #1 }
Data2 : Array[0..31999] of Integer; { Allocate Array #2 }
...
wDasErr := K_BufListAdd (hADFrame, Data1(0), 32000);
wDasErr := K_BufListAdd (hADFrame, Data2(0), 32000);
...
```

Note: Make sure that you always check the returned value (wDasErr in the previous example) for possible errors.

Programming with the Function Call Driver

3-36

¢

Creating a Channel-Gain Queue

The following example illustrates how to create a channel-gain queue called MyChanGainQueue for a DAS-1802HC board by defining a Record as a new type. You must use **K_SetChnGAry** to assign the starting address of MyChanGainQueue to the frame defined by hFrame.

```
Type
   GainChanTable = Record;
   num_of_codes : Integer;
   queue : Array[0..255] of Byte;
   end;
. . .
Const
   MyChanGainQueue : GainChanTable = (
   num_of_codes : (8); { Number of entries }
   queue :(0, 0, { Channel 0, gain of 1 }
                   { Channel 1, gain of 2 }
          1, 1,
          2, 2,
                   { Channel 2, gain of 4 }
          3, 3,
                    { Channel 3, gain of 8 }
          3, 0,
                    { Channel 3, gain of 1 }
          2, 1,
                    { Channel 2, gain of 2 }
          1, 2,
                    { Channel 1, gain of 4 }
          0, 3)
                     { Channel 0, gain of 8 }
         );
wDasErr := K_SetChnGAry (hFrame, MyChanGainQueue.num_of_codes);
```

Note: Make sure that you always check the returned value (wDasErr in the previous example) for possible errors.

When you start the next analog input operation (using K_IntStart or K_DMAStart), channel 0 is sampled at a gain of 1, channel 1 is sampled at a gain of 2, channel 2 is sampled at a gain of 4, and so on.

Programming in Borland Turbo Pascal (for DOS)

To program in Borland Turbo Pascal, you need the following files; these files are provided in the ASO-1800 software package.

File ¹	Description
D1800TP6.TPU	Turbo Pascal unit for Version 6.0.
D1800TP7.TPU	Turbo Pascal unit for Version 7.0.

Notes

¹ If you must create a new Turbo Pascal unit when compiling in Borland Turbo Pascal for versions higher than 7.0, refer to FILES.TXT for a list of the files to use.

To create an executable file in Borland Turbo Pascal, use the following compile and link statement:

TPC filename.pas

where *filename* indicates the name of your application program.

Refer to page 3-32 for information about allocating and assigning dynamically allocated memory buffers when programming in Borland Turbo Pascal. Refer to page 3-35 for information about dimensioning and assigning local arrays when programming in Borland Turbo Pascal. Refer to page 3-37 for information about creating a channel-gain queue when programming in Borland Turbo Pascal.

Programming in Borland Turbo Pascal for Windows

To program in Borland Turbo Pascal for Windows, you need the following files; these files are provided in the ASO-1800 software package.

File	Description
DASSHELL.DLL	Dynamic Link Library.
DASSUPRT.DLL	Dynamic Link Library.
DA\$1800.DLL	Dynamic Link Library.
DASDECLINC	Include file.
DAS1800.INC	Include file.

To create an executable file in Borland Turbo Pascal for Windows, perform the following steps:

- 1. Load *filename*.pas into the Borland Turbo Pascal for Windows environment, where *filename* indicates the name of your application program.
- 2. From the Compile menu, choose Make.

Refer to page 3-32 for information about allocating and assigning dynamically allocated memory buffers when programming in Borland Turbo Pascal for Windows. Refer to page 3-35 for information about dimensioning and assigning local arrays when programming in Borland Turbo Pascal for Windows. Refer to page 3-37 for information about creating a channel-gain queue when programming in Borland Turbo Pascal for Windows.

3-39

Microsoft Visual Basic for Windows

The following sections contain information you need to allocate and assign memory buffers and to create channel-gain queues when programming in Microsoft Visual Basic for Windows, as well as language-specific information for Microsoft Visual Basic for Windows.

Allocating and Assigning Dynamically Allocated Memory Buffers

This section provides code fragments that describe how to allocate and assign dynamically allocated memory buffers when programming in Microsoft Visual Basic for Windows. Refer to the example programs on disk for more information.

Note: The code fragments for dynamically allocated memory assume that you are using DMA mode; the code for interrupt mode is identical, except that you use the appropriate interrupt-mode functions instead of the DMA-mode functions.

If you are using Windows Enhanced mode, you may be limited in the amount of memory you can allocate. It is recommended that you use the Keithley Memory Manager before you begin programming to ensure that you can allocate a large enough buffer or buffers. Refer to your DAS-1800 Series board user's guide for more information about the Keithley Memory Manager.

Single Memory Buffer

You can use a single, dynamically allocated memory buffer for interrupt-mode analog input, analog output, and digital I/O operations and for DMA-mode analog input operations.

The following code fragment illustrates how to use **K_DMAAlloc** to allocate a buffer of size Samples for the frame defined by hFrame and how to use **K_SetDMABuf** to assign the starting address of the buffer; the buffer can store a maximum of 32,767 samples.

. . .

```
Global AcqBuf As Long ' Declare pointer to buffer
Global hMem As Integer ' Declare integer for memory handle
...
wDasErr = K_DMAAlloc (hFrame, Samples, AcqBuf, hMem)
wDasErr = K_SetDMABuf (hFrame, AcqBuf, Samples)
...
```

The following code illustrates how to use **K_DMAFree** to later free the allocated buffer, using the memory handle stored by **K_DMAAlloc**.

```
. . .
wDasErr = K_DMAFree (hMem)
. . .
```

Note: Make sure that you always check the returned value (wDasErr in the previous examples) for possible errors.

Multiple Memory Buffers

You can use multiple, dynamically allocated memory buffers for interrupt-mode analog input operations and for DMA-mode analog input operations.

The following code fragment illustrates how to use $K_DMAAlloc$ to allocate five buffers of size Samples each for the frame defined by hADFrame and how to use $K_BufListAdd$ to assign the starting addresses of the five buffers; each buffer can store a maximum of 32,767 samples.

```
Global AcqBuf(5) As Long ' Declare 5 pointers to 5 buffers
Global hMem(5) As Integer ' Declare 5 memory handles
. . .
for i% = 0 to 4
   wDasErr = K_DMAAlloc (hFrame, Samples, AcqBuf(i%), hMem(i%))
   wDasErr = K_BufListAdd (hFrame, AcqBuf(i%), Samples)
next i%
. . .
```

 \oplus

The following code illustrates how to use $K_DMAFree$ to later free the allocated buffers, using the memory handles stored by $K_DMAAlloc$; if you free the allocated buffers, you must also use $K_BufListReset$ to reset the buffer list associated with the frame.

```
for i% = 0 to 4
   wDasErr = K_DMAFree (hMem(i%))
next i%
wDasErr = K_BufListReset (hADFrame)
. . .
```

Note: Make sure that you always check the returned value (wDasErr in the previous examples) for possible errors.

Accessing the Data

In Microsoft Visual Basic for Windows, you cannot directly access analog input samples stored in dynamically allocated memory buffers. You must use **K_MoveBufToArray** to move a subset of the data into a local buffer as required. The following code fragment illustrates how to move the first 100 samples of the second buffer in the multiple-buffer operation described in the previous section (AcqBuf(1)) to a local memory buffer.

```
Dim Buffer(1000) As Integer ' Declare local memory buffer
. . .
wDasErr = K_MoveBufToArray (Buffer(0), AcqBuf(1), 100)
. . .
```

Dimensioning and Assigning Local Arrays

This section provides code fragments that describe how to dimension and assign local arrays when programming in Microsoft Visual Basic for Windows. Refer to the example programs on disk for more information.

Single Array

You can use a single, local array for interrupt-mode analog input, analog output, and digital I/O operations.

Programming with the Function Call Driver

3-42

The following code fragment illustrates how to dimension an array of 10,000 samples for the frame defined by hFrame and how to use K SetBufI to assign the starting address of the array; the local array can store a maximum of 32,767 samples.

```
. . .
Global Data(10000) As Integer
                                   ' Allocate array
. . .
wDasErr = K_SetBufI (hFrame, Data(0), 10000)
. . .
```

Notes: Make sure that you always check the returned value (wDasErr in the previous example) for possible errors.

Multiple Arrays

You can use multiple, local arrays for interrupt-mode analog input operations.

The following code fragment illustrates how to dimension two arrays of 32,000 samples each for the frame defined by hADFrame and how to use K BufListAdd to assign the starting addresses of the arrays; each local array can store a maximum of 32,767 samples.

```
. . .
Global Data1(32000) As Integer
                                 ' Allocate Array #1
Global Data2(32000) As Integer ' Allocate Array #2
. . .
wDasErr = K_BufListAdd (hADFrame, Data1(0), 32000)
wDasErr = K_BufListAdd (hADFrame, Data2(0), 32000)
. . .
```

Notes: Make sure that you always check the returned value (wDasErr in the previous example) for possible errors.

e engelsen er ser se

Creating a Channel-Gain Queue

Before you create your channel-gain queue, you must declare an array of integers to accommodate the required number of entries. To accommodate the maximum possible channel-gain queue (256 entries), declare an array of 513 integers ((256×2) + 1). Next, you must fill the array with the channel-gain information. After you create the channel-gain queue, use **K_FormatChnGAry** to reformat the channel-gain queue so that it can be used by the DAS-1800 Series Function Call Driver.

The following code fragment illustrates how to create a four-entry channel-gain queue called MyChanGainQueue for a DAS-1802HC board and how to use **K_SetChnGAry** to assign the starting address of MyChanGainQueue to the frame defined by hFrame.

```
Global MyChanGainQueue(513) As Integer 'Maximum # of entries
. . .
MyChanGainQueue(0) = 4
                           ' Number of channel-gain pairs
MyChanGainQueue(1) = 0
                          ' Channel 0
                         ' Gain of 1
MyChanGainQueue(2) = 0
                         ' Channel 1
MyChanGainQueue(3) = 1
MyChanGainQueue(4) = 1
                         ' Gain of 2
MyChanGainQueue(5) = 2
                         ' Channel 2
                         ' Gain of 4
MyChanGainQueue(6) = 2
                         ′ Channel 2
MyChanGainQueue(7) = 2
MyChanGainQueue(8) = 3
                          ' Gain of 8
. . .
wDasErr = K_FormatChnGAry (MyChanGainQueue(0))
wDasErr = K_SetChnGAry (hFrame, MyChanGainQueue(0))
```

Once the channel-gain queue is formatted, your Visual Basic for Windows program can no longer read it. To read or modify the array after it has been formatted, you must use **K_RestoreChnGAry** as follows:

```
wDasErr = K_RestoreChnGAry (MyChanGainQueue(0))
. . .
```

Notes: Make sure that you always check the returned value (wDasErr in the previous example) for possible errors.

 Φ

When you start the next analog input operation (using K_IntStart or K_DMAStart), channel 0 is sampled at a gain of 1, channel 1 is sampled at a gain of 2, channel 2 is sampled at a gain of 4, and so on.

Programming in Microsoft Visual Basic for Windows

To program in Microsoft Visual Basic for Windows, you need the following files; these files are provided in the ASO-1800 software package.

File	Description
DASSHELL.DLL	Dynamic Link Library.
DASSUPRT.DLL	Dynamic Link Library.
DAS1800.DLL	Dynamic Link Library.
DASDECL.BAS	Include file; must be added to the Project List.
DAS1800.BAS	Include file; must be added to the Project List.

To create an executable file from the Microsoft Visual Basic for Windows environment, choose Make EXE File from the Run menu.

Refer to page 3-40 for information about allocating and assigning dynamically allocated memory buffers when programming in Microsoft Visual Basic for Windows. Refer to page 3-42 for information about dimensioning and assigning local arrays when programming in Microsoft Visual Basic for Windows. Refer to page 3-44 for information about creating a channel-gain queue when programming in Microsoft Visual Basic for Windows.

BASIC Languages

The following sections contain information you need to allocate and assign memory buffers and to create channel-gain queues when programming in BASIC, as well as language-specific information for Microsoft QuickBasic (Versions 4.0 and 4.5), Microsoft Professional Basic (Version 7.0), and Microsoft Visual Basic for DOS.

Allocating and Assigning Dynamically Allocated Memory Buffers

This section provides code fragments that describe how to allocate and assign dynamically allocated memory buffers when programming in BASIC. Refer to the example programs on disk for more information.

Note: The code fragments for dynamically allocated memory assume that you are using DMA mode; the code for interrupt mode is identical, except that you use the appropriate interrupt-mode functions instead of the DMA-mode functions.

Reducing the Memory Heap

By default, when BASIC programs run, all available memory is left for use by the internal memory manager. BASIC provides the SetMem function to distribute the available memory (the Far Heap). It is necessary to re-distribute the Far Heap if you want to use dynamically allocated buffers. It is recommended that you include the following code at the beginning of BASIC programs to free the Far Heap for the driver's use:

FarHeapSize& = SetMem(0)
NewFarHeapSize& = SetMem(-FarHeapSize&/2)

Single Memory Buffer

You can use a single, dynamically allocated memory buffer for interrupt-mode analog input, analog output, and digital I/O operations and for DMA-mode analog input operations.

The following code fragment illustrates how to use **K_DMAAlloc** to allocate a buffer of size Samples for the frame defined by hFrame and

. . .

how to use **K_SetDMABuf** to assign the starting address of the buffer; the buffer can store a maximum of 65,536 samples.

```
Dim AcqBuf As Long ' Declare pointer to buffer
Dim hMem As Integer ' Declare integer for memory handle
. . .
wDasErr = KDMAAlloc (hFrame, Samples, AcqBuf, hMem)
wDasErr = KSetDMABuf (hFrame, AcqBuf, Samples)
. . .
```

The following code illustrates how to use **K_DMAFree** to later free the allocated buffer, using the memory handle stored by **K_DMAAlloc**.

```
. . .
wDasErr = KDMAFree (hMem)
. . .
```

Note: Make sure that you always check the returned value (wDasErr in the previous examples) for possible errors.

Multiple Memory Buffers

You can use multiple, dynamically allocated memory buffers for interrupt-mode analog input operations and for DMA-mode analog input operations.

The following code fragment illustrates how to use **K_DMAAlloc** to allocate five buffers of size Samples each for the frame defined by hADFrame and how to use **K_BufListAdd** to assign the starting addresses of the five buffers; each buffer can store a maximum of 32,767 samples.

The following code illustrates how to use **K_DMAFree** to later free the allocated buffers, using the memory handles stored by **K_DMAAlloc**; if you free the allocated buffers, you must also use **K_BufListReset** to reset the buffer list associated with the frame.

```
for i% = 0 to 4
  wDasErr = K_DMAFree (hMem(i%))
next i%
wDasErr = K_BufListReset (hADFrame)
. . .
```

Note: Make sure that you always check the returned value (wDasErr in the previous examples) for possible errors.

Accessing the Data

In BASIC, you cannot directly access analog input samples stored in dynamically allocated memory buffers. You must use **K_MoveBufToArray** to move a subset of the data into a local buffer as required. The following code fragment illustrates how to move the first 100 samples of the second buffer in the multiple-buffer operation described in the previous section (AcqBuf(1)) to a local memory buffer.

```
...
Dim Buffer(1000) As Integer ' Declare local memory buffer
...
wDasErr = K_MoveBufToArray (Buffer(0), AcqBuf(1), 100)
...
```

Dimensioning and Assigning Local Arrays

This section provides code fragments that describe how to dimension and assign local arrays when programming in BASIC. Refer to the example programs on disk for more information.

Single Array

You can use a single, local array for interrupt-mode analog input, analog output, and digital I/O operations.

The following code fragment illustrates how to dimension an array of 10,000 samples for the frame defined by hFrame and how to use **K_SetBufI** to assign the starting address of the array; the local array can store a maximum of 32,767 samples.

```
...
Dim Data(10000) As Integer ' Allocate array
...
wDasErr = K_SetBufI (hFrame, Data(0), 10000)
...
```

Notes: Make sure that you always check the returned value (wDasErr in the previous example) for possible errors.

Multiple Arrays

¢

You can use multiple, local arrays for interrupt-mode analog input operations.

The following code fragment illustrates how to dimension two arrays of 32,000 samples each for the frame defined by hADFrame and how to use **K_BufListAdd** to assign the starting addresses of the arrays; each local array can store a maximum of 32,767 samples.

```
Dim Data1(32000) As Integer 'Allocate Array #1
Dim Data2(32000) As Integer 'Allocate Array #2
...
wDasErr = KBufListAdd (hADFrame, Data1(0), 32000)
wDasErr = KBufListAdd (hADFrame, Data2(0), 32000)
...
```

Notes: Make sure that you always check the returned value (wDasErr in the previous example) for possible errors.

Creating a Channel-Gain Queue

Before you create your channel-gain queue, you must declare an array of integers to accommodate the required number of entries. To accommodate the maximum possible channel-gain queue (256 entries), declare an array of 513 integers ($(256 \times 2) + 1$). Next, you must fill the array with the channel-gain information. After you create the channel-gain queue, use **K_FormatChnGAry** to reform the channel-gain queue so that it can be used by the DAS-1800 Series Function Call Driver.

The following code fragment illustrates how to create a four-entry channel-gain queue called MyChanGainQueue for a DAS-1802HC board and how to use **K_SetChnGAry** to assign the starting address of MyChanGainQueue to the frame defined by hFrame.

```
. . .
Dim MyChanGainQueue(513) As Integer 'Maximum # of entries
                               ' Number of channel-gain pairs
MyChanGainQueue(0) = 4
MyChanGainQueue(2) = 0 ' Channel 0
MyChanGainQueue(2) = 0 ' Gain of 1
MyChanGainQueue(3) = 1 ' Channel 1
MyChanGainQueue(1) = 0
                              ' Channel 0
                             ′ Channel 1
                             ′ Gain of 2
MyChanGainQueue(4) = 1
                              ′ Channel 2
MyChanGainQueue(5) = 2
MyChanGainQueue(6) \approx 2
                              ' Gain of 4
MyChanGainQueue(7) = 2
                              ′ Channel 2
                              ' Gain of 8
MyChanGainQueue(8) = 3
. . .
wDasErr = KFormatChnGAry (MyChanGainQueue(0))
wDasErr = KSetChnGAry (hFrame, MyChanGainQueue(0))
. . .
```

Once the channel-gain queue is formatted, your BASIC program can no longer read it. To read or modify the array after it has been formatted, you must use **K_RestoreChnGAry** as follows:

```
wDasErr = KRestoreChnGAry (MyChanGainQueue(0))
. . .
```

Notes: Make sure that you always check the returned value (wDasErr in the previous examples) for possible errors.

When you start the next analog input operation (using K_IntStart or K_DMAStart), channel 0 is sampled at a gain of 1, channel 1 is sampled at a gain of 2, channel 2 is sampled at a gain of 4, and so on.

Programming in Microsoft QuickBasic (Version 4.0)

To program in Microsoft QuickBasic (Version 4.0), you need the following files; these files are provided in the DAS-1800 Series standard software package.

File	Description
D1800Q40.LIB	Linkable driver for QuickBasic, Version 4.0, stand-alone, executable (.EXE) programs.
D1800Q40.QLB	Command-line loadable driver for the QuickBasic, Version 4.0, integrated environment.
QB4DECL.BI	Include file.
DASDECL.BI	Include file.
DAS1800.BI	Include file.

For Microsoft QuickBasic (Version 4.0), you can create an executable file from within the programming environment, or you can use a compile and link statement.

To create an executable file from within the programming environment, perform the following steps:

1. Enter the following to invoke the environment:

QB /L D1800Q40 filename.bas

where *filename* indicates the name of your application program.

2. From the Run menu, choose Make EXE File.

Φ

To use a compile and link statement, enter the following:

BC filename.bas /O Link filename.obj,,,D1800Q40.lib+BCOM40.lib;

where *filename* indicates the name of your application program.

Refer to page 3-48 for information about dimensioning and assigning local arrays when programming in Microsoft QuickBasic (Version 4.0). Refer to page 3-48 for information about creating a channel-gain queue when programming in Microsoft QuickBasic (Version 4.0).

Programming in Microsoft QuickBasic (Version 4.5)

To program in Microsoft QuickBasic (Version 4.5), you need the following files; these files are provided in the DAS-1800 Series standard software package.

File	Description
D1800Q45.LIB	Linkable driver for QuickBasic, Version 4.5, stand-alone, executable (.EXE) programs.
D1800Q45.QLB	Command-line loadable driver for the QuickBasic, Version 4.5, integrated environment.
QB4DECL.BI	Include file.
DASDECL.BI	Include file.
DAS1800.BI	Include file.

For Microsoft QuickBasic (Version 4.5), you can create an executable file from within the programming environment, or you can use a compile and link statement.

 \oplus

 \oplus

 \oplus

To create an executable file from within the programming environment, perform the following steps:

1. Enter the following to invoke the environment:

QB /L D1800Q45 filename.bas

where *filename* indicates the name of your application program.

2. From the Run menu, choose Make EXE File.

To use a compile and link statement, enter the following:

BC filename.bas /O Link filename.obj,,,D1800Q45.lib+BCOM45.lib;

where *filename* indicates the name of your application program.

Refer to page 3-48 for information about dimensioning and assigning local arrays when programming in Microsoft QuickBasic (Version 4.5). Refer to page 3-50 for information about creating a channel-gain queue when programming in Microsoft QuickBasic (Version 4.5).

Programming in Microsoft Professional Basic (Version 7.0)

To program in Microsoft Professional Basic (Version 7.0), you need the following files; these files are provided in the DAS-1800 Series standard software package.

File	Description
D1800QBX.LIB	Linkable driver for Professional Basic, Version 7.0, stand-alone, executable (.EXE) programs.
DI800QBX.QLB	Command-line loadable driver for the Professional Basic, Version 7.0, integrated environment.
DASDECL.BI	Include file.
DAS1800.BI	Include file

3-53
For Microsoft Professional Basic (Version 7.0), you can create an executable file from within the programming environment, or you can use a compile and link statement.

To create an executable file from within the programming environment, perform the following steps:

1. Enter the following to invoke the environment:

QBX /L D1800QBX filename.bas

where *filename* indicates the name of your application program.

2. From the Run menu, choose Make EXE File.

To use a compile and link statement, enter the following:

BC filename.bas /o; Link filename.obj,,,D1800QBX.lib;

where *filename* indicates the name of your application program.

Refer to page 3-50 for information about dimensioning and assigning local arrays when programming in Microsoft Professional Basic (Version 7.0). Refer to page 3-50 for information about creating a channel-gain queue when programming in Microsoft Professional Basic (Version 7.0).

Programming with the Function Call Driver

Programming in Microsoft Visual Basic for DOS

To program in Microsoft Visual Basic for DOS, you need the following files; these files are provided in the DAS-1800 Series standard software package.

File	Description	
D1800VBD.LIB	Linkable driver for Visual Basic for DOS stand-alone, executable (.EXE) programs.	
D1800VBD.QLB	Command-line loadable driver for the Visual Basic for DOS integrated environment.	
DASDECL.BI	Include file.	
DAS1800.BI	Include file.	

To create an executable file in Microsoft Visual Basic for DOS, perform the following steps:

1. Invoke the Visual Basic for DOS environment by entering the following:

VBDOS /L D1800VBD.QLB filename.BAS

where *filename* indicates the name of your application program.

2. From the Run menu, choose Make EXE File.

Refer to page 3-50 for information about dimensioning and assigning local arrays when programming in Microsoft Visual Basic for DOS. Refer to page 3-50 for information about creating a channel-gain queue when programming in Microsoft Visual Basic for DOS.

.. . .

a server and server age of a server

chap03_.frm Page 56 Thursday, April 14, 1994 1:50 PM

 \oplus

÷

4

Function Reference

The FCD functions are organized into the following groups:

- Initialization functions
- Operation functions
- Frame management functions
- Memory management functions
- Buffer address functions
- Buffering mode functions
- Conversion mode functions
- Channel and gain functions
- Clock functions
- Trigger functions
- Gate functions

Φ

• Miscellaneous functions

The particular functions associated with each function group are presented in Table 4-1. The remainder of the chapter presents detailed descriptions of all the FCD functions, arranged in alphabetical order.

Function Type	Function Name	Page Number
Initialization	DAS1800_DevOpen	page 4-8
	K_OpenDriver	page 4-171
	K_CloseDriver	page 4-25
	DAS1800_GetDevHandle	page 4-11
	K_GetDevHandle	page 4-105
	K_FreeDevHandle	page 4-61
	K_DASDevInit	page 4-33
Operation	K_ADRead	page 4-14
	K_DAWrite	page 4-35
	K_DIRead	page 4+38
	K_DOWrite	page 4-56
	K_DMAStart	page 4+47
	K_DMAStatus	page 4-49
	K_DMAStop	page 4+53
	K_IntStart	page 4-156
	K_IntStatus	page 4-158
	K_IntStop	page 4-162
Frame Management	K_GetADFrame	page 4-71
	K_GetDAFrame	page 4-102
	K_GetDIFrame	page 4-107
	K_GetDOFrame	page 4-116
	K_FreeFrame	page 4-63
	K_ClearFrame	page 4-23

Table 4-1. Functions

Function Reference

en an coar

 \oplus

φ

4-2

 \oplus

Ţ →

Function Type	Function Name	Page Number	
Memory Management	K_DMAAlloc	page 4-41	
	K_DMAFree	page 4-45	
	K_IntAlloc	page 4-151	
	K_IntFree	page 4-154	
·	KMakeDMABuf	page 4-165	
	K_MoveArrayToBuf	page 4-167	
	K_MoveBufToArray	page 4-169	
Buffer Address	K_SetBuf	page 4-191	
	K_SetBufI	page 4-194	
	K_GetBuf	page 4-82	
	K_SetDMABuf	page 4-215	
	K_BufListAdd	page 4-17	
	K_BufListReset	page 4+21	
Buffering Mode	K_ClrContRun	page 4-31	
	K_SetContRun	page 4-210	
	K_GetContRun	page 4-99	
Conversion Mode	K_SetADFreeRun	page 4-183	
	K_ClrADFreeRun	page 4-29	
	K_GetADFreeRun	page 4-73	
	K_GetSSH	page 4-132	
	K_SetSSH	page 4-224	

Table 4-1. Functions (cont.)

 \oplus

 \oplus

 \oplus

0

Function Type	Function Name	Page Number	
Channel and Gain	K_SetChn	page 4-198	
	K_SetStartStopChn	page 4-226	
	K_SetG	page 4-220	
	K_SetStartStopG	page 4-230	
	K_SetChnGAry	page 4-201	
	K_FormatChnGAry	page 4+59	
	K_RestoreChnGAry	page 4-174	
	K_GetChn	page 4-88	
	K_GetStartStopChn	page 4-135	
	K_GetG	page 4+124	
	K_GetStartStopG	page 4-138	
	K_GetChnGAry	page 4-91	
	K_SetADCommonMode	page 4-179	
	K_SetADConfig	page 4-181	
	K_SetADMode	page 4-185	
	K_GetADCommonMode	page 4-67	
	K_GetADConfig	page 4-69	
	K_GetADMode	page 4-76	
Clock	K_SetClk	page 4-204	
	K_SetClkRate	page 4-207	
	K_GetClk	page 4-93	
	K_GetClkRate	page 4-96	
	K_SetBurstTicks	page 4-196	
	K_GetBurstTicks	page:4-85	
	K_SetExtClkEdge	page 4-218	
	K_GetExtClkEdge	page 4+121	

-⊕

Table 4-1. Functions (cont.)

Function Reference

4-4

 \oplus

 $\overline{\Phi}$

Φ

÷

Function Type	Function Name	Page Number
Trigger	K_SetTrig	page 4-233
	K_SetADTrig	page 4-187
	K_SetTrigHyst	page 4-236
	K_SetDITrig	page 4-212
	K_SetAboutTrig	page 4-176
	K_CirAboutTrig	page 4-27
	K_GetTrig	page 4-142
	K_GetADTrig	page 4-78
	K_GetTrigHyst	page 4-145
	K_GetDITrig	page 4-110
	K_GetAboutTrig	page 4-65
Gate	K_SetGate	page 4-222
	K_GetGate	page 4-126
Miscellaneous	K_GetErrMsg	page 4+119
	K_Get Ver	page 4-148
	K_GerSheliVer	page 4-129
	K_GetDOCurVal	page 4-113

Table 4-1. Functions (cont.)

Keep the following conventions in mind throughout this chapter:

- Under "Boards Supported," *All* refers to the following boards: DAS-1801HC, DAS-1802HC, DAS-1801ST, DAS-1802ST, DAS-1802HR.
- Although the function names are shown with underscores, do not use the underscores in the BASIC languages.
- The data types DDH, FRAMEH, DWORD, WORD, and BYTE are defined in the language-specific include files.

- Variable names are shown in italics.
- The return value for all DAS-1800 Series FCD functions is the error/status code. Refer to Appendix A for more information.
- The description shows the prototype for the function.
- In the examples, the variables are not defined. It is assumed that they are defined as shown in the syntax.

The name of each function argument in the Description and Usage sections includes a prefix that indicates the associated data type. These prefixes are described in Table 4-2.

Ð

 \oplus

Prefix	Data Type	Comments
SZ.	Pointer to string terminated by zero	This type is typically used for variables that specify the driver's configuration file name, for example, "DAS1800.CFG" in the call to DAS1800_DevOpen.
h	Handle to device, frame, and memory block	Handle-type variables are declared in the user program as long or DWORD, depending on what the language allows. The actual user variable is passed to the driver by value.
ph	Pointer to a handle-type variable	This unique type is used when calling the driver functions to obtain a driver handle, a frame handle or a memory handle. The actual user variable is passed to the driver by reference.
р	Pointer to a variable	These are pointers to all types of variables, except handles (h). This type is typically used when passing a parameter of any type to the driver by reference.
n	A number value	This type is used when passing a number, typically a byte, to the driver by value.
w	A 16-bit word	This type is typically used when passing an unsigned integer to the driver by value.
a	Array	This type is usually used in conjunction with other prefixes listed here: for example, <i>anVar</i> denotes an array of numbers.
f	Float	Denotes a single-precision floating-point number.
đ	Double	Denotes a double-precision floating-point number.
dw	A 32-bit double word	This type is typically used when passing an unsigned long to the driver by value.

 \oplus

Table 4-2. Data Type Prefixes

 \oplus

φ

ŧ

DAS1800_DevOpen

Boards Supported	All		
Purpose	Initializes the DAS-180	0 Series Function Call Driver.	
Prototype	C/C++ DASErr far pascal DAS1800_DevOpen (char far * <i>szCfgFile</i> , char far * <i>pBoards</i>);		
	Turbo Pascal Function DAS1800_DevOpen (Var <i>szCfgFile</i> : char; Var <i>pBoards</i> : Integer) : Word; far; external 'DAS1800';		
	Turbo Pascal for Windows Function DAS1800_DevOpen (Var <i>szCfgFile</i> : char; Var <i>pBoards</i> : Integer) : Word; far; external 'DAS1800';		
	Visual Basic for Windows Declare Function DAS1800_DevOpen Lib "DAS1800.DLL" (ByVal szCfgFile As String, pBoards As Integer) As Integer		
	BASIC DECLARE FUNCTION DAS1800DEVOPEN% ALIAS "DAS1800_DevOpen" (BYVAL <i>szCfgFile</i> AS LONG, SEG <i>pBoards</i> AS INTEGER)		
Parameters	szCfgFile	Driver configuration file. Valid values: The name of a configuration file.	
	pBoards	Number of boards defined in $szCfgFile$. Valid values: 1 to 3	
Return Value	This function returns ar indicates that the functi code indicates that an e information.	a integer error/status code. Error/status code 0 on executed successfully. A non-zero error/status rror occurred. Refer to Appendix A for additional	

Function Reference

 \oplus

 $\overline{\Phi}$

DAS1800_DevOpen (cont.)

∣⊕

 \oplus

φ

Remarks	This function initializes the driver according to the information in the configuration file specified by <i>szCfgFile</i> and stores the number of boards defined in <i>pBoards</i> .		
	You create a configuration file using the D1800CFG.EXE utility. Refer to your DAS-1800 Series board user's guide for more information.		
See Also	K_OpenDriver		
Usage	<pre>C/C++ #include "DAS1800.H" // Use "DAS1800.HPP for C++ int nBoards; wDasErr = DAS1800_DevOpen ("DAS1802.CFG", &nBoards); Turbo Pascal uses D1800TP7; (* Use D1800TP6 for TP ver 6.0 *) szCfgName : String; nBoards : Integer; szCfgName := 'DAS1802.CFG' + #0; wDasErr := DAS1800_DevOpen(szCfgName[1], nBoards); Turbo Pascal for Windows (\$I DASDECL.INC) szCfgName : String; house the string; house the string; </pre>		
	nBoards : Integer; szCfgName := 'DAS1802.CFG' + #0; wDasErr := DAS1800_DevOpen(szCfgName[1], nBoards);		

 \oplus

 $\overline{\oplus}$

DAS1800_DevOpen (cont.)

Visual Basic for Windows

(Include DAS1800.BAS in your program make file)

 \oplus

DIM nBoards AS INTEGER
DIM szCfgName AS STRING
...
wDasErr = DAS1800_DevOpen(szCfgName, nBoards)

BASIC
' \$INCLUDE: 'DAS1800.BI'
...
DIM nBoards AS INTEGER
DIM szCfgName AS STRING
...
szCfgName = "DAS1802.CFG" + CHR\$(0)
wDasErr = DAS1800DEVOPEN%(SSEGADD(szCfgName), nBoards)

. . .

Œ

-\$

\oplus

 \oplus

 \oplus

DAS1800_GetDevHandle

Boards Supported	All		
Purpose	Initializes a DAS-1800) Series board.	
Prototype	C/C++ DASErr far pascal DAS1800_GetDevHandle (WORD <i>nBrdNum</i> , DWORD far * <i>phDev</i>);		
	Turbo Pascal Function DAS1800_GetDevHandle (<i>nBrdNum</i> : Word; Var <i>phDev</i> : Longint): Word; far; external 'DAS1800';		
	Turbo Pascal for Windows Function DAS1800_GetDevHandle (<i>nBrdNum</i> : Word; Var <i>phDev</i> : Longint) : Word; far; external 'DAS1800';		
	Visual Basic for Windows Declare Function DAS1800_GetDevHandle Lib "DAS1800.DLL" (ByVal nBrdNum As Integer, phDev As Long) As Integer		
	BASIC DECLARE FUNCTION DAS1800GETDEVHANDLE% ALIAS "DAS1800_GetDevHandle" (BY VAL <i>nBrdNum</i> AS INTEGER, SEG <i>phDev</i> AS LONG)		
Parameters	nBrdNum	Board number. Valid values: 0 to 2	
	phDev	Handle associated with the board.	
Return Value	This function returns an integer error/status code. Error/status code 0 indicates that the function executed successfully. A non-zero error/status code indicates that an error occurred. Refer to Appendix A for additional information.		

 \oplus

DAS1800_GetDevHandle (cont.)

K_GetDevHandle
<pre>C/C++ #include "DAS1800.H" // Use "DAS1800.HPP for C++ DWORD hDev; wDasErr = DAS1800_GetDevHandle(0, &hDev);</pre>
<pre>Turbo Pascal uses D1800TP7; (* Use D1800TP6 for TP ver 6.0 *) hDev : Longint; { Device Handle } wDasErr := DAS1800_GetDevHandle(0, hDev);</pre>
Turbo Pascal for Windows (\$I DASDECL.INC) hDev : Longint; { Device Handle } wDasErr := DAS1800_GetDevHandle(0, hDev); Visual Basic for Windows (Include DAS1800.BAS in your program make file) Global hDev As Long ' Device Handle

wDasErr = DAS1800_GetDevHandle (0, hDev)

 \oplus

Function Reference

 \oplus

÷

÷

 \oplus

DAS1800_GetDevHandle (cont.)

BASIC
' \$INCLUDE: 'DAS1800.BI'
...
DIM hDev AS LONG ' Device Handle
...
wDasErr = DAS1800GetDevHandle%(0, hDev)

 \oplus

K_ADRead

Boards Supported	All	
Purpose	Reads a single analog in	put value.
Prototype	C/C++ DASErr far pascal K_A BYTE <i>nGain</i> , void far *	DRead (DWORD hDev, BYTE nChan, pData);
	Turbo Pascal Function K_ADRead (<i>h</i> <i>pData</i> : Pointer) : Word;	Dev : Longint; nChan : Byte; nGain : Byte;
	Turbo Pascal for Wind Function K_ADRead (<i>h</i> <i>pData</i> : Pointer) : Word	ows Dev : Longint; nChan : Byte; nGain : Byte; far; external 'DASSHELL';
	Visual Basic for Windo Declare Function K_AE (ByVal hDev As Long, I ByVal nGain As Integer	DRead Lib "DASSHELL.DLL" DRead Lib "DASSHELL.DLL" ByVal <i>nChan</i> As Integer, , <i>pData</i> As Integer) As Integer
	BASIC DECLARE FUNCTION (BYVAL <i>hDev</i> AS LON BYVAL <i>nGain</i> AS INT	N KADRead% ALIAS "K_ADRead" IG, BYVAL <i>nChan</i> AS INTEGER, EGER, SEG <i>pData</i> AS INTEGER)
Parameters	hDev	Handle associated with the board.

Function Reference

 \oplus

¢

 \oplus

 Φ

--

K_ADRead (cont.)

⊕

 \oplus

 \oplus

Chan Analog input channel. Valid values:		
	Valid channel numbers	
Board	Differential	Single-ended
DAS-1800HC	0 to 31	0 to 63
DAS-1800ST/HR without EXP-1800 expansion boards attached	0 to 7	0 to 15
DAS-1800ST/HR with N EXP-1800 expansion boards attached	Not applicable	0 to 15(N + 1)

	nGain	Gain code. Valid values: 0 to 3 for DAS board channels 0 to 7 for EXP-1800 channels Refer to Table 2-2 on page 2-10 for the gain and input ranges associated with each gain code.
	pData	Acquired analog input value.
Return Value	This function returns a indicates that the function code indicates that an information.	an integer error/status code. Error/status code 0 stion executed successfully. A non-zero error/status error occurred. Refer to Appendix A for additional
Remarks	This function reads the analog input channel <i>nChan</i> on the board specified by $hDev$ at the gain represented by <i>nGain</i> , and stores the raccount in <i>pData</i> .	
	Refer to Appendix B f in <i>pData</i> to voltage.	for information on converting the raw count stored
See Also	K_DMAStart, K_IntS	tart

 \oplus

4-15

K_ADRead (cont.)

Usage	C/C++
	<pre>#include "DASDECL.H" // Use "DASDECL.HPP for C++</pre>
	int wADValue;
	wDasErr = K_ADRead (hDev, 0, 0, &wADValue)
	Turbo Pascal
	uses D1800TP7; (* Use D1800TP6 for TP ver 6.0 *)
	wADValue : Integer;
	wDasErr := K_ADRead (hDev, 0, 0, 0wADValue);
	Turbo Pascal for Windows {\$1 DASDECL.INC}
	wADValue : Integer;
	wDasErr := K_ADRead (hDev, 0, 0, 0wADValue);
	Visual Basic for Windows (Include DASDECL.BAS in your program make file)
	Global wADValue As Integer
	wDasErr = K_ADRead (hDev, 0, 0, wADValue)
	BASIC ' \$INCLUDE: 'DASDECL.BI'
	DIM wADValue AS INTEGER
	wDasErr = KADRead% (hDev, 0, 0, wADValue)

 \oplus

Function Reference

1942 - 1944 - 1946 - 1946 - 1946 - 1946 - 1946 - 1946 - 1946 - 1946 - 1946 - 1946 - 1946 - 1946 - 1946 - 1946 -

Ψ

 \oplus

Ð

an energy of

 \oplus

 $\overline{\Phi}$

 \oplus

 $\overline{\Phi}$

K_BufListAdd

Boards Supported	All		
Purpose	Adds a buffer to the list of multiple buffers.		
Prototype	C/C++ DASErr far pascal K_BufListAdd (DWORD hFrame, void far *pBuf, DWORD dwSamples);		
	Turbo Pascal Function K_BufListAdd (<i>hFrame</i> : Longint; <i>pBuf</i> : Pointer; <i>dwSamples</i> : Longint) : Word;		
	Turbo Pascal for Windows Function K_BufListAdd (<i>hFrame</i> : Longint; <i>pBuf</i> : Pointer; <i>dwSamples</i> : Longint) : Word; far; external 'DASSHELL';		
	Visual Basic for Windows Declare Function K_BufListAdd Lib "DASSHELL.DLL" (ByVal hFrame As Long, ByVal pBuf As Long, ByVal dwSamples As Long) As Integer		
	BASIC DECLARE FUNCTION KBufListAdd% ALIAS "K_BufListAdd" (BYVAL hFrame AS LONG, SEG pBuf AS INTEGER, BYVAL dwSamples AS LONG)		
Parameters	hFrame	Handle to the frame that defines the operation.	
	pBuf	Starting address of buffer.	
	dwSamples	Number of samples in the buffer.	
Return Value	This function returns an integer error/status code. Error/status code 0 indicates that the function executed successfully. A non-zero error/status code indicates that an error occurred. Refer to Appendix A for additional information.		

 \oplus

4-17

K_BufListAdd (cont.)

Remarks	For the operation defined by $hFrame$, this function adds the buffer at the address pointed to by <i>pBuf</i> to the list of multiple buffers; the number of samples in the buffer is specified in <i>dwSamples</i> . The driver supports multiple buffers for analog input operations only.			
	Before you add the buffer to the multiple-buffer list, you must either allocate the buffer dynamically (using K_IntAlloc or K_DMAAlloc), or dimension the buffer locally.			
	Make sure that you add buffers to the multiple-buffer list in the order in which you want to use them. The first buffer you add is Buffer 1, the second buffer you add is Buffer 2, and so on. You can add up to 149 buffers. You can use K_IntStatus or K_DMAStatus to determine which buffer is currently in use.			
See Also	K_BufListReset, K_DMAAlloc, K_IntAlloc			
Usage				
C/C++ #include	"DASDECL.H" // Use "DASDECL.HPP for C++			

```
...
void far *pBuf[5]; // Buffer pointers
WORD hMem[5]; // Buffer handles
...
for (i = 0; i < 5; i++) (
   wDasErr = K_DMAAlloc (hAD, dwSamples, &pBuf[i], &hMem[i]);
   wDasErr = K_BufListAdd (hAD, pBuf[i], dwSamples);
}</pre>
```

Œ

4-18

K_BufListAdd (cont.)

```
Turbo Pascal
uses D1800TP7; (* Use D1800TP6 for TP ver 6.0 *)
...
TYPE
BufType = Array [0..1] of Integer;
VAR
pBuf : Array [0..4] of ^BufType; { Buffer pointers }
hMem : Array [0..4] of Word; { Buffer handles }
...
FOR I := 0 to 4 D0
BEGIN
wDasErr := K_DMAAlloc(hAD, dwSamples, Addr(pBuf[I]), hMem[I]);
wDasErr := K_BufListAdd (hAD, pBuf[I], dwSamples);
END;
```

Turbo Pascal for Windows

```
($I DASDECL.INC)
...
TYPE
BufType = Array [0..1] of Integer;
VAR
pBuf : Array [0..4] of ^BufType; { Buffer pointers }
hMem : Array [0..4] of Word; { Buffer handles }
...
FOR I := 0 to 4 DO
BEGIN
wDasErr := K_DMAAlloc(hAD, dwSamples, Addr(pBuf[I]), hMem[I]);
wDasErr := K_BufListAdd (hAD, pBuf[I], dwSamples);
END;
```

Visual Basic for Windows

(Include DASDECL.BAS in your program make file)

```
Global pBuf(5) As Long ' Buffer pointers
Global hMem(5) As Integer ' Buffer handles
...
For I% = 0 To 4
   wDasErr = K_DMAAlloc (hAD, dwSamples, pBuf(I%), hMem(I%))
   wDasErr = K_BufListAdd (hAD, pBuf(I%), dwSamples)
Next I%
```

K_BufListAdd (cont.)

```
BASIC
' $INCLUDE: 'DASDECL.BI'
...
DIM pBuf(5) AS LONG ' Buffer pointers
DIM hMem(5) AS INTEGER ' Buffer handles
...
For I% = 0 To 4
  wDasErr = KDMAAlloc% (hAD, dwSamples, pBuf(I%), hMem(I%))
  wDasErr = KBufListAdd% (hAD, pBuf(I%), dwSamples)
Next I%
```

 \oplus

 \oplus

¢

Function Reference

 $\overline{\mathbf{\Phi}}$

K_BufListReset

¢

 \oplus

+

en el el el

Boards Supported	All	
Purpose	Clears the list of multiple buffers.	
Prototype	C/C++ DASErr far pascal K_BufListReset (DWORD hFrame);	
	Turbo Pascal Function K_BufListReset (<i>hFrame</i> : Longint) : Word;	
	Turbo Pascal for Windows Function K_BufListReset (<i>hFrame</i> : Longint) : Word; far; external 'DASSHELL';	
	Visual Basic for Windows Declare Function K_BufListReset Lib "DASSHELL.DLL" (ByVal hFrame As Long) As Integer	
	BASIC DECLARE FUNCTION KBufListReset% ALIAS "K_BufListReset" (BYVAL hFrame AS LONG)	
Parameters	<i>hFrame</i> Handle to the frame that defines the operation.	
Return Value	This function returns an integer error/status code. Error/status code 0 indicates that the function executed successfully. A non-zero error/status code indicates that an error occurred. Refer to Appendix A for additional information.	
Remarks	For the operation defined by <i>hFrame</i> , this function clears all buffers from the list of multiple buffers.	
	This function does not deallocate the buffers in the list. If dynamically allocated buffers are no longer needed, you can use K_IntFree or K_DMAFree to free the buffers before resetting the buffer list.	

 Φ

- chap04_.frm Page 22 Thursday, April 14, 1994 1:57 PM

K_BufListReset (cont.)

See Also	K_DMAFree, K_IntFree, K_SetBuf, K_SetDMABuf
Usage	C/C++ #include "DASDECL.H" // Use "DASDECL.HPP for C++ wDasErr = K_BufListReset (hAD);
	Turbo Pascal uses D1800TP7; (* Use D1800TP6 for TP ver 6.0 *) wDasErr := K_BufListReset (hAD);
	Turbo Pascal for Windows (\$I DASDECL.INC) wDasErr := K_BufListReset (hAD);
	Visual Basic for Windows (Include DASDECL.BAS in your program make file) wDasErr = K_BufListReset (hAD)
	BASIC ' \$INCLUDE: 'DASDECL.BI' wDasErr = KBufListReset% (hAD)

Function Reference

 \oplus

 \oplus

\

 \oplus

 $\overline{\Phi}$

 Φ

 \oplus

 \oplus

K_ClearFrame

Boards Supported	All	
Purpose	Sets the elements of a frame to their default values.	
Prototype	C/C++ DASErr far pascal K_ClearFrame (DWORD <i>hFrame</i>);	
	Turbo Pascal Function K_ClearFrame (<i>hFrame</i> : Longint) : Word;	
	Turbo Pascal for Windows Function K_ClearFrame (<i>hFrame</i> : Longint) : Word; far; external 'DASSHELL';	
	Visual Basic for Windows Declare Function K_ClearFrame Lib "DASSHELL.DLL" (ByVal hFrame As Long) As Integer	
	BASIC DECLARE FUNCTION KClearFrame% ALIAS "K_ClearFrame" (BYVAL hFrame AS LONG)	
Parameters	<i>hFrame</i> Handle to the frame that defines the operation.	
Return Value	This function returns an integer error/status code. Error/status code 0 indicates that the function executed successfully. A non-zero error/status code indicates that an error occurred. Refer to Appendix A for additional information.	
Remarks	This function sets the elements of the frame specified by <i>hFrame</i> to their default values.	
	Refer to Table 3-1 on page 3-5 for the default values of the elements of an A/D frame, Table 3-2 on page 3-7 for the default values of the elements of an D/A frame, Table 3-3 on page 3-8 for the default values of the elements of an DI frame, and Table 3-4 on page 3-9 for the default values of the elements of an DO frame.	

K_ClearFrame (cont.)

See Also	K_GetADFrame, K_GetDAFrame, K_GetDIFrame, and K_GetDOFrame
Usage	<pre>C/C++ #include "DASDECL.H" // Use "DASDECL.HPP for C++ wDasErr = K_ClearFrame (hAD);</pre>
	<pre>Turbo Pascal uses D1800TP7; (* Use D1800TP6 for TP ver 6.0 *) wDasErr := K_ClearFrame (hAD);</pre>
	<pre>Turbo Pascal for Windows (\$I DASDECL.INC) wDasErr := K_ClearFrame (hAD);</pre>
	Visual Basic for Windows (Include DASDECL.BAS in your program make file)
	<pre>wDasErr = K_ClearFrame (hAD) BASIC ' \$INCLUDE: 'DASDECL.BI'</pre>
	wDasErr = KClearFrame% (hAD)

 \oplus

Function Reference

 \oplus

 $\overline{\Phi}$

 $\overline{\mathbf{\Phi}}$

K_CloseDriver

Boards Supported	All	
Purpose	Closes a previously initialized DAS Function Call Driver.	
Prototype	C/C++ DASErr far pascal K_CloseDriver (DWORD hDrv);	
	Turbo Pascal Not supported	
	Turbo Pascal for Windows Function K_CloseDriver (<i>hDrv</i> : Longint) : Word; far; external 'DASSHELL';	
	Visual Basic for Windows Declare Function K_CloseDriver Lib "DASSHELL.DLL" (ByVal hDrv As Long) As Integer	÷
	BASIC Not supported	
Parameters	hDrv Driver handle you want to free.	
Return Value	This function returns an integer error/status code. Error/status code 0 indicates that the function executed successfully. A non-zero error/status code indicates that an error occurred. Refer to Appendix A for additional information.	
Remarks	This function frees the driver handle specified by $hDrv$ and closes the associated use of the Function Call Driver. This function also frees all board handles and frame handles associated with $hDrv$.	
	If <i>hDrv</i> is the last driver handle specified for the Function Call Driver, the driver is shut down (for all languages) and unloaded (for Windows-based languages only).	

 \oplus

¢

K_CloseDriver (cont.)

See Also	K_FreeDevHandle
Usage	C/C++ #include "DASDECL.H" // Use "DASDECL.HPP for C++
	wDasErr = K_CloseDriver (hDrv);
	Turbo Pascal for Windows {\$1 DASDECL.INC}
	 wDasErr := K_CloseDriver (hDrv);
	Visual Basic for Windows (Include DASDECL.BAS in your program make file)
	 wDasErr = K_CloseDriver (hDrv)

 \oplus

÷

¢

Φ

K_ClrAboutTrig

Boards Supported	All	
Purpose	Disablests p the about trigger for an analog input operation.	
Prototype	C/C++ DASErr far pascal K_ClrAboutTrig (DWORD <i>hFrame</i>);	
	Turbo Pascal Function K_ClrAboutTrig (hFrame : Longint) : Word;	
	Turbo Pascal for Windows Function K_ClrAboutTrig (<i>hFrame</i> : Longint) : Word; far; external 'DASSHELL';	
	Visual Basic for Windows Declare Function K_ClrAboutTrig Lib "DASSHELL.DLL" (ByVal hFrame As Long) As Integer	
	BASIC DECLARE FUNCTION KClrAboutTrig% ALIAS "K_ClrAboutTrig" (BYVAL hFrame AS LONG)	
Parameters	<i>hFrame</i> Handle to the frame that defines the operation.	
Return Value	This function returns an integer error/status code. Error/status code 0 indicates that the function executed successfully. A non-zero error/status code indicates that an error occurred. Refer to Appendix A for additional information.	
Remarks	This function disables the about trigger for the operation defined by <i>hFrame</i> . K GetADFrame and K ClearFrame also disables the about trigger.	
See Also	K_ClearFrame, K_GetADFrame, K_SetAboutTrig	

 \oplus

 $\overline{\Phi}$

K_ClrAboutTrig (cont.)

Usage

 \oplus

¢

"DASDECL.H" // Use "DASDE	CL.HPP for C++
= K_CIrAboutTrig (hAD);	
cal	
00TP7; (* Use D1800TP6 for	TP ver 6.0 *)
:= K_ClrAboutTrig (hAD);	
cal for Windows	
ECL.INC}	
:= K_ClrAboutTrig (hAD);	
sic for Windows	
ASDECL.BAS in your program make fi	ile)
= K_ClrAboutTrig (hAD)	
	<pre>"DASDECL.H" // Use "DASDE = K_ClrAboutTrig (hAD); cal 00TP7; (* Use D1800TP6 for := K_ClrAboutTrig (hAD); cal for Windows DECL.INC} := K_ClrAboutTrig (hAD); sic for Windows ASDECL.BAS in your program make for = K_ClrAboutTrig (hAD)</pre>

BASIC
' \$INCLUDE: 'DASDECL.BI'
...
wDasErr = KClrAboutTrig% (hAD)

Function Reference

 $\overline{\Phi}$

 \oplus

Ē

K_CIrADFreeRun

Boards Supported	All
Purpose	Sets paced conversion mode for an analog input operation.
Prototype	C/C++ DASErr far pascal K_ClrADFreeRun (DWORD <i>hFrame</i>);
	Turbo Pascal Function K_ClrADFreeRun (<i>hFrame</i> : Longint) : Word;
	Turbo Pascal for Windows Function K_ClrADFreeRun (<i>hFrame</i> : Longint) : Word; far; external 'DASSHELL';
	Visual Basic for Windows Declare Function K_ClrADFreeRun Lib "DASSHELL.DLL" (ByVal hFrame As Long) As Integer
	BASIC DECLARE FUNCTION KClrADFreeRun% ALIAS "K_ClrADFreeRun" (BYVAL hFrame AS LONG)
Parameters	<i>hFrame</i> Handle to the frame that defines the operation.
Return Value	This function returns an integer error/status code. Error/status code 0 indicates that the function executed successfully. A non-zero error/status code indicates that an error occurred. Refer to Appendix A for additional information.
Remarks	This function sets the conversion mode for the operation defined by <i>hFrame</i> to paced mode and sets the Conversion Mode element in the frame accordingly.
	K_GetADFrame and K_ClearFrame also enable paced conversion mode.

K_CIrADFreeRun (cont.)

See Also	K_ClearFrame, K_GetADFrame, K_SetADFreeRun
Usage	<pre>C/C++ #include "DASDECL.H" // Use "DASDECL.HPP for C++ wDasErr = K_ClrADFreeRun (hAD);</pre>
	Turbo Pascal uses D1800TP7; (* Use D1800TP6 for TP ver 6.0 *) wDasErr := K_ClrADFreeRun (hAD);
	Turbo Pascal for Windows {\$I DASDECL.INC} wDasErr := K_ClrADFreeRun (hAD);
	Visual Basic for Windows (Include DASDECL.BAS in your program make file)
	BASIC ' \$INCLUDE: 'DASDECL.BI' wDasErr = KClrADFreeRun% (hAD)

 \oplus

 \oplus

Φ

 $\overline{\Phi}$

 \oplus

 \oplus

K_ClrContRun

Boards Supported	All
Purpose	Sets single-cycle buffering mode.
Prototype	C/C++ DASErr far pascal K_ClrContRun (DWORD <i>hFrame</i>);
	Turbo Pascal Function K_ClrContRun (<i>hFrame</i> : Longint) : Word;
	Turbo Pascal for Windows Function K_ClrContRun (<i>hFrame</i> : Longint) : Word; far; external 'DASSHELL';
	Visual Basic for Windows Declare Function K_ClrContRun Lib "DASSHELL.DLL" (ByVal hFrame As Long) As Integer
	BASIC DECLARE FUNCTION KClrContRun% ALIAS "K_ClrContRun" (BYVAL hFrame AS LONG)
Parameters	<i>hFrame</i> Handle to the frame that defines the operation.
Return Value	This function returns an integer error/status code. Error/status code 0 indicates that the function executed successfully. A non-zero error/status code indicates that an error occurred. Refer to Appendix A for additional information.
Remarks	This function sets the buffering mode for the operation defined by <i>hFrame</i> to single-cycle mode and sets the Buffering Mode element in the frame accordingly.
	K_GetADFrame, K_GetDAFrame, K_GetDIFrame, K_GetDOFrame, and K_ClearFrame also enable single-cycle buffering mode.

K_ClrContRun (cont.)

	Refer to page 2-18 for more information on buffering modes for analog input operations, page 2-30 for more information on buffering modes for analog output operations, and page 2-38 for more information on buffering modes for digital I/O operations.
See Also	K_SetContRun
Usage	<pre>C/C++ #include "DASDECL.H" // Use "DASDECL.HPP for C++ wDasErr = K_ClrContRun (hAD);</pre>
	Turbo Pascal uses D1800TP7; (* Use D1800TP6 for TP ver 6.0 *) wDasErr := K_ClrContRun (hAD);
	Turbo Pascal for Windows (\$I DASDECL.INC) wDasErr := K ClrContRun (hAD):
	Visual Basic for Windows (Include DASDECL.BAS in your program make file) wDasErr = K_ClrContRun (hAD)
	BASIC ' \$INCLUDE: 'DASDECL.BI' wDasErr = KClrContRun% (hAD)

Function Reference

 \oplus

 \oplus

 \oplus

 $\overline{\Phi}$

Boards Supported	All
Purpose	Reinitializes a board.
Prototype	C/C++ DASErr far pascal K_DASDevInit (DWORD <i>hDev</i>);
	Turbo Pascal Function K_DASDevInit (<i>hDev</i> : Longint) : Longint;
	Turbo Pascal for Windows Function K_DASDevInit (<i>hDev</i> : Longint) : Longint; far; external 'DASSHELL';
	Visual Basic for Windows Declare Function K_DASDevInit Lib "DASSHELL.DLL" (ByVal hDev As Long) As Integer
	BASIC DECLARE FUNCTION KDASDevInit% ALIAS "K_DASDevInit" (BYVAL <i>hDev</i> AS LONG)
Parameters	hDev Handle associated with the board.
Return Value	This function returns an integer error/status code. Error/status code 0 indicates that the function executed successfully. A non-zero error/status code indicates that an error occurred. Refer to Appendix A for additional information.
Remarks	This function stops all current operations and resets the board specified by <i>hDev</i> and the driver to their power-up states.
Usage	C/C++ #include "DASDECL.H" // Use "DASDECL.HPP for C++ wDasErr = K_DASDevInit (hDev);

 Φ

 \oplus
K_DASDevInit (cont.)

Turbo Pascal
uses D1800TP7; (* Use D1800TP6 for TP ver 6.0 *)
...
wDasErr := K_DASDevInit (hDev);

Turbo Pascal for Windows

{\$I DASDECL.INC}
...
wDasErr := K_DASDevInit (hDev);

Visual Basic for Windows

(Include DASDECL.BAS in your program make file)

...
wDasErr = K_DASDevInit (hDev)

BASIC

' \$INCLUDE: 'DASDECL.BI'

...
wDasErr = KDASDevInit% (hDev)

Function Reference

Ψ'

-

 \oplus

K_DAWrite

Boards Supported	DAS-1801HC, DAS-18	802HC	
Purpose	Writes a single analog of	output value.	
Prototype	C/C++ DASErr far pascal K_E DWORD <i>dwData</i>);	DAWrite (DWC	ORD hDev, BYTE nChan,
	Turbo Pascal Function K_DAWrite (<i>AwData</i> : Longint) : Wo	<i>hDev</i> : Longint ord;	; nChan : Byte;
	Turbo Pascal for Wind Function K_DAWrite (<i>dwData</i> : Longint) : We	lows hDev : Longint ord; far; externa	; <i>nChan</i> : Byte; al 'DASSHELL';
	Visual Basic for Wind Declare Function K_D (ByVal hDev As Long, ByVal dwData As Long	ows AWrite Lib "D. ByVal <i>nChan</i> g) As Integer	ASSHELL.DLL'' As Integer,
	BASIC DECLARE FUNCTIO (BYVAL <i>hDev</i> AS LO BYVAL <i>dwData</i> AS Lo	N KDAWrite% NG, BYVAL n ONG)	ALIAS "K_DAWrite" Chan AS INTEGER,
Parameters	hDev	Handle assoc	iated with the board.
	nChan	Analog outpu Valid values:	ut channel. 0 = Channel 0 1 = Channel 1 2 = Both channels
	dwData	Analog outpu Valid values:	it value. 0 to 4,095

K_DAWrite (cont.)

Return Value	This function returns an integer error/status code. Error/status code 0 indicates that the function executed successfully. A non-zero error/status code indicates that an error occurred. Refer to Appendix A for additional information.		
Remarks	This function writes the value <i>dwData</i> to the analog output channel specified by <i>nChan</i> on the board specified by <i>hDev</i> . Refer to page 2-26 for more information on analog output operations. <i>dwData</i> is a 32-bit variable, but the output value must contain only 12 bits. Refer to Appendix B for a description of the data format.		
See Also	K_IntStart		
Usage	<pre>C/C++ #include "DASDECL.H" // Use "DASDECL.HPP for C++ DWORD dwDAValue; dwDAValue = (DWORD) (5.0 * 4096 / 20) + 2048; wDasErr = K_DAWrite (hDev, 0, &dwDAValue); Turbo Pascal uses D1800TP7; (* Use D1800TP6 for TP ver 6.0 *) dwDAValue : Longint; dwDAValue := Round((5.0 * 4096.0 / 20.0) + 2048); wDasErr := K_DAWrite (hDev, 0, dwDAValue);</pre>		
	<pre>Turbo Pascal for Windows (\$I DASDECL.INC) dwDAValue : Longint; dwDAValue := Round((5.0 * 4096.0 / 20.0) + 2048); wDasErr := K DAWrite (hDev, 0, dwDAValue);</pre>		

 \oplus

Function Reference

 \oplus

 \oplus

 $\overline{\Phi}$

+ chap04_.frm Page 37 Thursday, April 14, 1994 1:57 PM

 \oplus

K_DAWrite (cont.)

Visual Basic for Windows

(Include DASDECL.BAS in your program make file)

...
Global dwDAValue As Long
...
dwDAValue = INT(5.0 * 4096! / 20!) + 2048
wDasErr = K_DAWrite (hDev, 0, dwDAValue)

BASIC

 \oplus

ŧ

' \$INCLUDE: 'DASDECL.BI'
...
DIM dwDAValue AS LONG
...
dwDAValue = INT(5.0 * 4096! / 20!) + 2048
wDasErr = KDAWrite% (hDev, 0, dwDAValue)

K_DIRead

Boards Supported	All	
Purpose	Reads a single digital in	nput value.
Prototype	C/C++ DASErr far pascal K_D void far * <i>pData</i>);	DIRead (DWORD hDev, BYTE nChan,
	Turbo Pascal Function K_DIRead (<i>hl</i> <i>pData</i> : Pointer) : Word	Dev : Longint; nChan : Byte; ;
	Turbo Pascal for Windows Function K_DIRead (<i>hDev</i> : Longint; <i>nChan</i> : Byte; <i>pData</i> : Pointer) : Word; far; external 'DASSHELL';	
	Visual Basic for Windows Declare Function K_DIRead Lib "DASSHELL.DLL" (ByVal hDev As Long, ByVal nChan As Integer, pData As Integer) As Integer	
	BASIC DECLARE FUNCTION (BYVAL <i>hDev</i> AS LON SEG <i>pData</i> AS INTEG	N KDIRead% ALIAS "K_DIRead" NG, BYVAL <i>nChan</i> AS INTEGER, ER)
Parameters	hDev	Handle associated with the board.
	nChan	Digital input channel. Valid value: 0
	pData	Digital input value.
Return Value	This function returns ar indicates that the functi code indicates that an e information.	n integer error/status code. Error/status code 0 on executed successfully. A non-zero error/status rror occurred. Refer to Appendix A for additional

Function Reference

 \oplus

 $\overline{\Phi}$

 \oplus

 $\overline{\mathbf{\Phi}}$

 \oplus

 $\overline{\Phi}$

K_DIRead (cont.)

Remarks	This function reads the values of all digital input lines on the board specified by $hDev$, and stores the value in $pData$. pData is a 16-bit variable. The acquired digital value is stored in bits 0, 1, 2, and 3; the values in the remaining bits of $pData$ are not defined. Refer to page 2-34 for more information.		
See Also	K_IntStart		
Usage	C/C++ #include "DASDECL.H" // Use "DASDECL.HPP for C++		
	WORD wDIValue;		
	<pre> wDasErr = K_DIRead (hDev, 0, &wDIValue);</pre>		
	Turbo Pascal uses D1800TP7; (* Use D1800TP6 for TP ver 6.0 *)		
	 wDIValue : Word;		
	 wDasErr := K_DIRead (hDev, 0, @wDIValue);		
	Turbo Pascal for Windows (\$I DASDECL.INC)		
	 wDIValue : Word;		
	<pre>wDasErr := K_DIRead (hDev, 0, @wDIValue);</pre>		
	Visual Basic for Windows (Include DASDECL.BAS in your program make file)		
	 Global wDIValue As Integer		
	 wDasErr = K_DIRead (hDev, 0, wDIValue);		

K_DIRead (cont.)

BASIC

```
' $INCLUDE: 'DASDECL.BI'
...
DIM wDIValue AS INTEGER
...
wDasErr = KDIRead% (hDev, 0, wDIValue)
```

 \oplus

Ð

 \oplus

 $\overline{\Phi}$

K_DMAAlioc

Boards Supported	All	
Purpose	Allocates a buffer for a	DMA-mode analog input operation.
Prototype	C/C++ DASErr far pascal K_DMAAlloc (DWORD <i>hFrame</i> , DWORD <i>dwSamples</i> , void far * far * <i>pBuf</i> , WORD far * <i>phMem</i>);	
	Turbo Pascal Function K_DMAAllo <i>pBuf</i> : Pointer; Var <i>phN</i>	c (<i>hFrame</i> : Longint; <i>dwSamples</i> : Longint; <i>lem</i> : Word) : Word;
 Turbo Pascal for Windows Function K_DMAAlloc (<i>hFrame</i> : Longint; <i>dwSamples</i> : Longint; <i>pBuf</i> : Pointer; Var <i>phMem</i> : Word) : Word; far; external 'DASSHEL Visual Basic for Windows Declare Function K_DMAAlloc Lib "DASSHELL.DLL" (ByVal <i>hFrame</i> As Long, ByVal <i>dwSamples</i> As Long, <i>pBuf</i> As Lon <i>phMem</i> As Integer) As Integer 		lows c (<i>hFrame</i> : Longint; <i>dwSamples</i> : Longint; <i>lem</i> : Word) : Word; far; external 'DASSHELL';
		ows MAAlloc Lib "DASSHELL.DLL" ag, ByVal <i>dwSamples</i> As Long, <i>pBuf</i> As Long, Integer
	BASIC DECLARE FUNCTIO (BYVAL <i>hFrame</i> AS L SEG <i>pBuf</i> AS LONG, S	N KDMAAlloc% ALIAS "K_DMAAlloc" .ONG, BYVAL <i>dwSamples</i> AS LONG, SEG phMem AS INTEGER)
Parameters	hFrame	Handle to the frame that defines the operation.
	dwSamples	Number of samples. Valid values: 1 to 32,767 for Visual Basic for Windows and BASIC 1 to 65,536 for all other languages
	pBuf	Starting address of the allocated buffer.
	phMem	Handle associated with the allocated buffer.

 \oplus

4-41

.

K_DMAAlloc (cont.)

Return Value	This function returns an integer error/status code. Error/status code 0 indicates that the function executed successfully. A non-zero error/status code indicates that an error occurred. Refer to Appendix A for additional information.
Remarks	For the operation defined by $hFrame$, this function allocates a memory block (a buffer of the size <i>dwSamples</i>) from the available memory heap. On return, <i>pBuf</i> contains the far memory address of a buffer that is suitable for a DMA-mode analog input operation. Use K_SetDMABuf or K_BufListAdd to assign <i>pBuf</i> to an A/D frame. <i>phMem</i> , as returned by this function, is later used to free the allocated memory block by calling K_DMAFree.
	Turbo Pascal and BASIC require that you re-distribute available memory before you dynamically allocate a buffer. Refer to "Reducing the Memory Heap" on page 3-32 (Turbo Pascal) or page 3-46 (BASIC) for additional information.

See Also K_DMAFree, K_SetDMABuf, K_BufListAdd

Usage

 \oplus

Ð

```
C/C++
#include "DASDECL.H" // Use "DASDECL.HPP for C++
...
void far *pBuf[5]; // Pointers to allocated DMA buffer
WORD hMem[5]; // Memory Handles to buffers
...
for (i = 0; i < 5; i++) {
   wDasErr = K_DMAAlloc (hAD, dwSamples, &pBuf[i], &hMem[i]);
   wDasErr = K_BufListAdd (hAD, pBuf[i], dwSamples);
}</pre>
```

Function Reference

K_DMAAlloc (cont.)

```
Turbo Pascal
uses D1800TP7; (* Use D1800TP6 for TP ver 6.0 *)
...
TYPE
BufType = Array [0..1] of Integer;
VAR
pBuf : Array [0..4] of ^BufType; { DMA buffer pointers }
hMem : Array [0..4] of Word; { Handles to DMA buffers }
...
FOR I := 0 to 4 D0
BEGIN
wDasErr := K_DMAAlloc(hAD, dwSamples, Addr(pBuf[I]), hMem[I]);
wDasErr := K_BufListAdd (hAD, pBuf[I], dwSamples);
END;
```

Turbo Pascal for Windows

```
($I DASDECL.INC)
...
TYPE
BufType = Array [0..1] of Integer;
VAR
pBuf : Array [0..4] of ^BufType; { DMA buffer pointers }
hMem : Array [0..4] of Word; { Handles to DMA buffers }
...
FOR I := 0 to 4 DO
BEGIN
wDasErr := K_DMAAlloc(hAD, dwSamples, Addr(pBuf[I]), hMem[I]);
wDasErr := K_BufListAdd (hAD, pBuf[I], dwSamples);
END;
```

Visual Basic for Windows

```
(Include DASDECL.BAS in your program make file)
```

```
...
Global pBuf(5) As Long
Global hMem(5) As Integer
...
For I% = 0 To 4
   wDasErr = K_DMAAlloc (hAD, dwSamples, pBuf(I%), hMem(I%))
   wDasErr = K_BufListAdd (hAD, pBuf(I%), dwSamples)
Next I%
```

K_DMAAlloc (cont.)

```
BASIC
' $INCLUDE: 'DASDECL.BI'
...
DIM pBuf(5) AS LONG
DIM hMem(5) AS INTEGER
...
For I% = 0 To 4
  wDasErr = KDMAAlloc% (hAD, dwSamples, pBuf(I%), hMem(I%))
  wDasErr = KBufListAdd% (hAD, pBuf(I%), dwSamples)
Next I%
```

 \oplus

Ð

¢

 $\overline{\Phi}$

K_DMAFree

Boards Supported	All		
Purpose	Frees a buffer allocated	for a DMA-mode analog input operation.	
Prototype	C/C++ DASErr far pascal K_D	MAFree (WORD hMem);	
	Turbo Pascal Function K_DMAFree (hMem : Word) : Integer;	
	Turbo Pascal for Wind Function K_DMAFree (external 'DASSHELL';	ows hMem : Word) : Integer; far;	
	Visual Basic for Windo Declare Function K_DM (ByVal hMem As Intege	ows 1AFree Lib "DASSHELL.DLL" r) As Integer	¢
	BASIC DECLARE FUNCTION (BYVAL <i>hMem</i> AS INT	V KDMAFree% ALIAS "K_DMAFree" TEGER)	
Parameters	hMem	Handle to DMA buffer.	
Return Value	This function returns an indicates that the function code indicates that an er information.	integer error/status code. Error/status code 0 on executed successfully. A non-zero error/status ror occurred. Refer to Appendix A for additional	
Remarks	This function frees the b previously allocated dyr	ouffer specified by <i>hMem</i> ; the buffer was namically using K_DMAAlloc .	
See Also	K_DMAiloc, K_SetDM	ABuf, K_BufListAdd	

 \oplus

24 C C C

¢

K_DMAFree (cont.)

Usage	C/C++ #include "DASDECL.H" // Use "DASDECL.HPP for C++
	wDasErr = K_DMAFree (hMem);
	Turbo Pascal uses D1800TP7; (* Use D1800TP6 for TP ver 6.0 *)
	wDasErr :≈ K_DMAFree (hMem);
	Turbo Pascal for Windows {\$I DASDECL.INC}
	 wDasErr := K_DMAFree (hMem);
	Visual Basic for Windows (Include DASDECL.BAS in your program make file)
	 wDasErr = K_DMAFree (hMem)
	BASIC ' \$INCLUDE: 'DASDECL.BI'
	wDasErr = KDMAFree% (hMem)

 \oplus

 \oplus

 \oplus

 $\overline{\varphi}$

K_DMAStart

Boards Supported	All		
Purpose	Starts a DMA-mode a	nalog input operation.	
Prototype	C/C++ DASErr far pascal K_	DMAStart (DWORD hFrame);	
	Turbo Pascai Function K_DMAStar	t (<i>hFrame</i> : Longint) : Word;	
	Turbo Pascal for Wir Function K_DMAStar external 'DASSHELL'	n dows rt (<i>hFrame</i> : Longint) : Word; far; ;	
	Visual Basic for Wine Declare Function K_D (ByVal hFrame As Lo	dows DMAStart Lib "DASSHELL.DLL" ng) As Integer	\oplus
	BASIC DECLARE FUNCTIC (BYVAL <i>hFrame</i> AS	ON KDMAStart% ALIAS "K_DMAStart" LONG)	
Parameters	hFrame	Handle to the frame that defines the operation.	
Return Value	This function returns a indicates that the func code indicates that an information.	an integer error/status code. Error/status code 0 tion executed successfully. A non-zero error/status error occurred. Refer to Appendix A for additional	
Remarks	This function starts the	e DMA operation defined by hFrame.	
	Refer to Chapter 3 for with DMA operations	a discussion of the programming tasks associated	
See Also	K_DMAStatus, K_DM	IAStop	

4-47

φ

K_DMAStart (cont.)

Usage	C/C++
	<pre>#include "DASDECL.H" // Use "DASDECL.HPP for C++</pre>
	 WDagErr - K DMAStart (bAD).
	wbubiiti - n_bikboule (hkb),
	Turbo Pascal
	uses D1800TP7; (* Use D1800TP6 for TP ver 6.0 *)
	\dots
	WDASEII := K_DMAStart (HAD);
	Turbo Pascal for Windows
	(\$I DASDECL.INC)
	•••
	wDasErr := K_DMAStart (hAD);
	Visual Basic for Windows
	(Include DASDECL.BAS in your program make file)
	$wDasErr = K_DMAStart (hAD)$
	BASIC
	' STNCLUDE: 'DASDECL.BI'
	wDasErr = KDMAStart% (hAD)

 \oplus

Function Reference

 \oplus

 $\bar{\Phi}$

 $\overline{\Phi}$

 \oplus

φ

K_DMAStatus

Boards Supported	All	
Purpose	Gets status of a DM	A-mode analog input operation.
Prototype	C/C++ DASErr far pascal H DWORD far *pCou	K_DMAStatus (DWORD <i>hFrame</i> , short far * <i>pStatus</i> , Int);
	Turbo Pascal Function K_DMAS Var <i>pCount</i> : Longin	tatus (<i>hFrame</i> : Longint; Var <i>pStatus</i> : Word; nt) : Word;
	Turbo Pascal for W Function K_DMAS Var <i>pCount</i> : Longin	Vindows tatus (<i>hFrame</i> : Longint; Var <i>pStatus</i> : Word; nt) : Word; far; external 'DASSHELL';
	Visual Basic for Windows Declare Function K_DMAStatus Lib "DASSHELL.DLL" (ByVal hFrame As Long, pStatus As Integer, pCount As Long) As Integer	
	BASIC DECLARE FUNCT (BYVAL hFrame A SEG pCount AS LC	FION KDMAStatus% ALIAS "K_DMAStatus" AS LONG, SEG <i>pStatus</i> AS INTEGER, DNG)
Parameters	hFrame	Handle to the frame that defines the operation.
	pStatus	Status of DMA-mode analog input operation; see Remarks below for value stored.
	pCount	Number of samples that were acquired into the current buffer. Value stored: 0 to 65,536

K_DMAStatus (cont.)

Return Value This function returns an integer error/status code. Error/status code 0 indicates that the function executed successfully. A non-zero error/status code indicates that an error occurred. Refer to Appendix A for additional information.

Remarks For the DMA operation defined by hFrame, this function stores the status in *pStatus* and the number of samples acquired in *pCount*.

The value stored in *pStatus* depends on the settings in the Status word, as shown below:

Function Reference

 \oplus

 \oplus

ф

K_DMAStatus (cont.)

The bits are described as follows:

- Bit 0: Indicates whether a DMA-mode analog input operation is in progress.
- Bit 1: The Buffer A/B active bit. If you are using multiple buffers, this bit toggles each time acquisition sample storage is switched to a new buffer. If you are using a single buffer and the operation is in continuous mode, this bit toggles each time an acquisition sample is stored at the beginning of the buffer.
- Bit 2: When set, this bit indicates that the onboard FIFO has overflowed. This event automatically stops all conversions.
- Bit 3: Not used for DMA mode.
- Bit 4: This bit is used during continuous buffering mode; it is set when all data acquisition buffers that are currently assigned to the active operation have been filled with data at least once.
- Bit 5: Unassigned
- Bits 6-7: These bits indicate the state of the about trigger.
- Bits 8-15: In multiple-buffer acquisitions, these bits indicate the current active buffer number. The active buffer number is related to the Status word as follows:

active buffer = $\frac{\text{Status word}}{256}$

See Also

 \oplus

K_DMAStart, K_DMAStop

K_DMAStatus (cont.)

Usage	C/C++ #include "DASDECL H" // Use "DASDECL HDD for C++
	** THE THE DASPLET. II // USE DASPLET. HFF TOT C++
	WORD wStatus;
	DWORD dwCount;
	wDasErr = K_DMAStatus (hAD, &wStatus, &dwCount);
	Turbo Pascal
	uses D1800TP7; (* Use D1800TP6 for TP ver 6.0 *)
	 WStatus · Word·
	dwCount : Longint;
	wDasErr := K_DMAStatus (hAD, wStatus, dwCount);
	Turbo Pascal for Windows
	{\$I DASDECL.INC}
	dwCount : Longint:
	wDasErr := K_DMAStatus (hAD, wStatus, dwCount);
	Visual Basic for Windows
	(Include DASDECL.BAS in your program make file)
	Global wStatus As Integer
	Global dwCount As Long
	wDasErr = K_DMAStatus (hAD, wStatus, dwCount)
	BASIC
	DIM wStatus AS INTEGER
	DIM dwCount AS LONG
	wDasErr = KDMAStatus% (hAD, wStatus, dwCount)

 \oplus

Function Reference

 \oplus

 $| \oplus$

 \oplus

 $\overline{\Phi}$

ф.

 $\overline{\mathbf{\Phi}}$

 \oplus

 $|\overline{\Phi}|$

K_DMAStop

Boards Supported	All	
Purpose	Stops a DMA-mode an	alog input operation.
Prototype	C/C++ DASErr far pascal K_DMAStop (DWORD <i>hFrame</i> , short far <i>*pStatus</i> , DWORD far <i>*pCount</i>);	
Turbo Pascal Function K_DMAStop (<i>hFrame</i> : Longint; Var <i>pStatus</i> : Word; Var <i>pCount</i> : Longint) : Word;		(<i>hFrame</i> : Longint; Var <i>pStatus</i> : Word; : Word;
	Turbo Pascal for Windows Function K_DMAStop (<i>hFrame</i> : Longint; Var <i>pStatus</i> : Word; Var <i>pCount</i> : Longint) : Word; far; external 'DASSHELL';	
	Visual Basic for Windows Declare Function K_DMAStop Lib "DASSHELL.DLL" (ByVal hFrame As Long, pStatus As Integer, pCount As Long) As Integer	
	BASIC DECLARE FUNCTIO (BYVAL <i>hF rame</i> AS L SEG <i>pCount</i> AS LONG	N KDMAStop% ALIAS "K_DMAStop" .ONG, SEG <i>pStatus</i> AS INTEGER, G)
Parameters	hFrame	Handle to the frame that defines the operation.
	pStatus	Status of DMA-mode analog input operation.
	pCount	Number of samples that were acquired into the current buffer. Value stored: 0 to 65,536

K_DMAStop (cont.)

Return Value	This function returns an integer error/status code. Error/status code 0 indicates that the function executed successfully. A non-zero error/status code indicates that an error occurred. Refer to Appendix A for additional information.
Remarks	This function stops the DMA operation defined by $hFrame$ and stores the status of the DMA operation in <i>pStatus</i> and the number of samples acquired in <i>pCount</i> .
	Refer to page 4-50 for the meaning of the value stored in pStatus.
	If a DMA operation is not in progress, K_DMAStop is ignored.
See Also	K_DMAStart, K_DMAStatus
See Also Usage	<pre>C/C++ #include "DASDECL.H" // Use "DASDECL.HPP for C++ WORD wStatus; DWORD dwCount; wDasErr = K_DMAStop (hAD, &wStatus, &dwCount); Turbo Pascal uses D1800TP7; (* Use D1800TP6 for TP ver 6.0 *) wStatus : Word; dwCount : Longint; wDasErr := K_DMAStop (hAD, wStatus, dwCount);</pre>
	<pre>Turbo Pascal for Windows (\$I DASDECL.INC) wStatus : Word; dwCount : Longint; wDasErr := K_DMAStop (hAD, wStatus, dwCount);</pre>

 \oplus

Function Reference

r est maria

 \oplus

 \oplus

 $\overline{\Phi}$

 $\overline{\Phi}$

K_DMAStop (cont.)

Visual Basic for Windows (Include DASDECL.BAS in your program make file)

Global wStatus As Integer
Global dwCount As Long
...
wDasErr = K_DMAStop (hAD, wStatus, dwCount)
BASIC
' \$INCLUDE: 'DASDECL.BI'
...
DIM wStatus AS INTEGER
DIM dwCount AS LONG
...
wDasErr = KDMAStop% (hAD, wStatus, dwCount)

 \oplus

.

K_DOWrite

Boards Supported	All			
Purpose	Writes a single digital o	utput value to t	he digital output channel.	
Prototype	C/C++ DASErr far pascal K_DOWrite (DWORD hDev, BYTE nChan, DWORD dwData);			
	Turbo Pascal Function K_DOWrite (<i>hDev</i> : Longint; <i>nChan</i> : Byte; <i>dwData</i> : Longint) : Word;			
	Turbo Pascal for Windows Function K_DOWrite (<i>hDev</i> : Longint; <i>nChan</i> : Byte; <i>dwData</i> : Longint) : Word; far; external 'DASSHELL';			
	Visual Basic for Windows Declare Function K_DOWrite Lib "DASSHELL.DLL" (ByVal hDev As Long, ByVal nChan As Integer, ByVal dwData As Long) As Integer			
	BASIC DECLARE FUNCTION KDOWrite% ALIAS "K_DOWrite" (BYVAL hDev AS LONG, BYVAL nChan AS INTEGER, BYVAL dwData AS LONG)			
Parameters	hDev	Handle associa	ated with the board.	
	nChan	Digital output Valid value:	channel. 0	
	dwData	Digital output Valid values:	value. 0 to 255 for DAS-1800HC Series boards 0 to 15 for DAS-1800ST/HR Series boards	

Function Reference

 \oplus

 \oplus

Ð

+ chap04_.frm Page 57 Thursday, April 14, 1994 1:57 PM

 \oplus

 Φ

\

ŀ⊕

K_DOWrite (cont.)

Return Value	This function returns an integer error/status code. Error/status code 0 indicates that the function executed successfully. A non-zero error/status code indicates that an error occurred. Refer to Appendix A for additional information.		
Remarks	This function writes the value $dwData$ to the digital output lines on the board specified by $hDev$. dwData is a 32-bit variable. The value to be written is stored in bits 0 through 7 for DAS-1800HC Series boards or bits 0 through 3 for the DAS-1800ST/HR Series boards; the values in the remaining bits of $dwData$ are not defined. Refer to page 2-35 for more information.		
See Also	K_IntStart, K_GetDOCurVal		
Usage	<pre>C/C++ #include "DASDECL.H" // Use "DASDECL.HPP for C++ DWORD dwDOValue; dwDOValue = 0x5; wDasErr = K_DOWrite (hDO, 0, dwDOValue); Turbo Pascal uses D1800TP7; (* Use D1800TP6 for TP ver 6.0 *) dwDOValue : Longint dwDOValue := \$5; wDasErr := K_DOWrite (hDO, 0, dwDOValue);</pre>		
	<pre>Turbo Pascal for Windows (\$I DASDECL.INC) dwDoValue : Longint dwDoValue := \$5; wDasErr := K_DOWrite (hDO, 0, dwDoValue);</pre>		

K_DOWrite (cont.)

Visual Basic for Windows
(Include DASDECL.BAS in your program make file)
...
Global dwDoValue As Long
...
dwDoValue = &H5
wDasErr = K_DOWrite (hDO, 0, dwDoValue)
BASIC
' \$INCLUDE: 'DASDECL.BI'
...
DIM dwDoValue AS LONG

...
dwDoValue = &H5
wDasErr = KDOWrite% (hDO, 0, dwDoValue)

 \oplus

Function Reference

 \oplus

¢

⊕

 $\overline{\Phi}$

+

 $\overline{\Phi}$

K_FormatChnGAry

Boards Supported	All	
Purpose	Converts the format of a channel-gain queue.	
Prototype	C/C++ Not supported	
	Turbo Pascal Not supported	
	Turbo Pascal for Windows Not supported	
	Visual Basic for Windows Declare Function K_FormatChnGAry Lib "DASSHELL.DLL" (pArray As Integer) As Integer	
	BASIC DECLARE FUNCTION KFormatChanGAry% ALIAS "K_FormatChnGAry" (SEG <i>pArray</i> AS INTEGER)	
Parameters	pArray Channel-gain queue starting address.	
Return Value	This function returns an integer error/status code. Error/status code 0 indicates that the function executed successfully. A non-zero error/status code indicates that an error occurred. Refer to Appendix A for additional information.	
Remarks	This function converts a channel-gain queue created in BASIC or Visual Basic for Windows using double-byte (16-bit) values to a channel-gain queue of single-byte (8-bit) values that the K_SetChnGAry function can use.	
	After you use this function, your program can no longer read the converted list. You must use the K_RestoreChnGAry function to return the list to its original format. Refer to page 4-174 for more information.	

 \oplus

4-59

K_FormatChnGAry (cont.)

See Also K_SetChnGAry, K_RestoreChnGAry

Usage

Visual Basic for Windows

```
(Include DASDECL.BAS in your program make file)
...
Global ChanGainArray(16) As Integer ' Chan/Gain array
...
' Create the array of channel/gain pairs
ChanGainArray(0) = 2 ' # of chan/gain pairs
ChanGainArray(1) = 0: ChanGainArray(2) = 0
ChanGainArray(3) = 1: ChanGainArray(4) = 1
wDasErr = K_FormatChnGAry (ChanGainArray(0))
```

BASIC

```
' $INCLUDE: 'DASDECL.BI'
...
DIM ChanGainArray(16) AS INTEGER ' Chan/Gain array
...
' Create the array of channel/gain pairs
ChanGainArray(0) = 2 ' # of chan/gain pairs
ChanGainArray(1) = 0: ChanGainArray(2) = 0
ChanGainArray(3) = 1: ChanGainArray(4) = 1
wDasErr = KFormatChnGAry% (ChanGainArray(0))
```

Function Reference

4-60

÷

 $\overline{\Phi}$

 \oplus

¢

K_FreeDevHandle

Boards Supported	All	
Purpose	Frees a previously specified board handle.	
Prototype	C/C++ DASErr far pascal K_FreeDevHandle (DWORD <i>hDev</i>);	
	Turbo Pascal Not supported	
	Turbo Pascal for Windows Function K_FreeDevHandle (<i>hDev</i> : Longint) : Word; far; external 'DASSHELL';	
	Visual Basic for Windows Declare Function K_FreeDevHandle Lib "DASSHELL.DLL" (ByVal hDev As Long) As Integer	
	BASIC Not supported	
Parameters	hDev Board handle you want to free.	
Return Value	This function returns an integer error/status code. Error/status code 0 indicates that the function executed successfully. A non-zero error/status code indicates that an error occurred. Refer to Appendix A for additional information.	
Remarks	This function frees the board handle specified by $hDev$ as well as all frame handles associated with $hDev$.	
See Also	K_GetDevHandle	

K_FreeDevHandle (cont.)

Usage C/C++
#include "DASDECL.H" // Use "DASDECL.HPP for C++
...
wDasErr = K_FreeDevHandle (hDev);

Turbo Pascal for Windows
(\$I DASDECL.INC)
...
wDasErr := K_FreeDevHandle (hDev);

Visual Basic for Windows
(Include DASDECL.BAS in your program make file)

... wDasErr = K_FreeDevHandle (hDev)

 $\overline{\Phi}$

K_FreeFrame

Boards Supported	All	
Purpose	Frees a frame.	
Prototype	C/C++ DASErr far pascal K_FreeFrame (DWORD <i>hFrame</i>);	
	Turbo Pascal Function K_FreeFrame (<i>hFrame</i> : Longint) : Word;	
	Turbo Pascal for Windows Function K_FreeFrame (<i>hFrame</i> : Longint) : Word; far; external 'DASSHELL';	
	Visual Basic for Windows Declare Function K_FreeFrame Lib "DASSHELL.DLL" (ByVal hFrame As Long) As Integer	
	BASIC DECLARE FUNCTION KFreeFrame% ALIAS "K_FreeFrame" (BYVAL hFrame AS LONG)	
Parameters	<i>hFrame</i> Handle to frame you want to free.	
Return Value	This function returns an integer error/status code. Error/status code 0 indicates that the function executed successfully. A non-zero error/status code indicates that an error occurred. Refer to Appendix A for additional information.	
Remarks	This function frees the frame specified by $hFrame$, making the frame available for another operation.	
See Also	K_GetADFrame, K_GetDAFrame, K_GetDIFrame, K_GetDOFrame	

∣⊕

K_FreeFrame (cont.)

Usage	C/C++ #include "DASDECL.H" // Use "DASDECL.HPP for C++		
	wDasErr = K_FreeFrame (hAD);		
	Turbo Pascal uses D1800TP7; (* Use D1800TP6 for TP ver 6.0 *)		
	wDasErr := K_FreeFrame (hAD);		
	Turbo Pascal for Windows {\$I DASDECL.INC}		
	wDasErr := K_FreeFrame (hAD); Visual Basic for Windows (Include DASDECL.BAS in your program make file)		
		BASIC ' \$INCLUDE: 'DASDECL.BI'	

wDasErr = KFreeFrame% (hAD)

-0

 \oplus

¢

 \oplus

¢

K_GetAboutTrig

Boards Supported	All		
Purpose	Gets the number of pos K_SetAboutTrig .	t-trigger samples as specified by	
Prototype	 C/C++ DASErr far pascal K_GetAboutTrig (DWORD hFrame, DWORD far *pSamples); Turbo Pascal Function K_GetAboutTrig (hFrame : Longint; Var pSamples : Longint) : Word; Turbo Pascal for Windows Function K_GetAboutTrig (hFrame : Longint; Var pSamples : Longint) : Word; far; external 'DASSHELL'; Visual Basic for Windows Declare Function K_GetAboutTrig Lib "DASSHELL.DLL" (By Val hFrame As Long, pSamples As Long) As Integer BASIC DECLARE FUNCTION KGetAboutTrig% ALIAS "K_GetAboutTrig" (BY VAL hFrame AS LONG, SEG pSamples AS LONG) 		
Parameters	hFrame	Handle to the frame that defines the operation.	
	pSamples	Number of post-trigger samples.	
Return Value	This function returns an integer error/status code. Error/status code 0 indicates that the function executed successfully. A non-zero error/status code indicates that an error occurred. Refer to Appendix A for additional information.		
Remarks	For the operation specified by <i>hFrame</i> , this function stores the number of post-trigger samples to acquire in <i>pSamples</i> .		

 \oplus

4-65

_

K_GetAboutTrig (cont.)

See Also	K_SetAboutTrig, K_ClrAboutTrig		
Usage	<pre>C/C++ #include "DASDECL.H" // Use "DASDECL.HPP for C++ wDasErr = K_GetAboutTrig (hAD, &dwSamples);</pre>		
	Turbo Pascal uses D1800TP7; (* Use D1800TP6 for TP ver 6.0 *) wDasErr := K_GetAboutTrig (hAD, dwSamples);		
	Turbo Pascal for Windows (\$I DASDECL.INC) wDasErr := K GetAboutTrig (hAD, dwSamples):		
	Visual Basic for Windows (Include DASDECL.BAS in your program make file)		
	<pre>wDasErr = K_GetAboutTrig (hAD, dwSamples) BASIC ' \$INCLUDE: 'DASDECL.BI' wDasErr = KGetAboutTrig% (hAD, dwSamples)</pre>		

 \oplus

Function Reference

 \oplus

·Õ

 \oplus

 Φ

 $\overline{\Phi}$

 \oplus

Φ

8. N. S.

K_GetADCommonMode

Boards Supported	DAS-1801ST, DAS-1802ST, DAS-1802HR		
Purpose	Get a DAS board's A/D	common-mode ground reference.	
Prototype	C/C++ DASErr far pascal K_GetADCommonMode (DWORD hDev, WORD far *pMode);		
Turbo PascalFunction K_GetADCommonMode(hDev : Longint; Var pMode : Word) : Word;Turbo Pascal for WindowsFunction K_GetADCommonMode (hDev : Longint; Var pMode : Word) : Word; far; external 'DASSHELL';Visual Basic for Windows Declare Function K_GetADCommonMode Lib "DASSHELL.DL (ByVal hDev As Long, pMode As Integer) As IntegerBASIC DECLARE FUNCTION KGetADCommonMode% ALIAS "K_GetADCommonMode" (BYVAL hDev AS LONG, SEG pMode AS INTEGER)		nmonMode(<i>hDev</i> : Longint; ord;	
		lows nmonMode (<i>hDev</i> : Longint; ord; far; external 'DASSHELL';	
		ows etADCommonMode Lib "DASSHELL.DLL" pMode As Integer) As Integer	
		N KGetADCommonMode% ALIAS ode" (BYVAL <i>hDev</i> AS LONG, GER)	
Parameters	hDev	Handle to the frame that defines the operation.	
	pMode	A/D common-mode ground reference. Value stored: 0 for LL-GND 1 for user-defined	
Return Value	This function returns an integer error/status code. Error/status code 0 indicates that the function executed successfully. A non-zero error/status code indicates that an error occurred. Refer to Appendix A for additional information.		

K_GetADCommonMode (cont.)

Remarks	For the board specified by $hDev$, this function stores the code that indicates the A/D common-mode ground reference in pMode.		
See Also	K_SetADCommonMode		
Usage	C/C++ #include "DASDECL.H" // Use "DASDECL.HPP for C++ wDasErr = K_GetADCommonMode (hDev, &nADCommMode);		
	Turbo Pascai uses D1800TP7; (* Use D1800TP6 for TP ver 6.0 *) wDasErr := K_GetADCommonMode (hDev, wADCommMode);		
	Turbo Pascal for Windows (\$I DASDECL.INC) wDasErr := K_GetADCommonMode (hDev, wADCommMode);		
	Visual Basic for Windows (Include DASDECL.BAS in your program make file) wDasErr = K_GetADCommonMode (hDev, wADCommMode)		
	BASIC ' \$INCLUDE: 'DASDECL.BI' wDasErr = KGetADCommonMode% (hDev, wADCommMode)		

 \oplus

Function Reference

 \oplus

¢

 \oplus

 $\bar{\Phi}$

 $\overline{\Phi}$

K_GetADConfig

Boards Supported	All		
Purpose	Get a DAS board's A/D input channel configuration.		
Prototype	C/C++ DASErr far pascal K_GetADConfig (DWORD <i>hDev</i> , WORD far * <i>pMode</i>);		
	Turbo Pascal Function K_GetADConfig (<i>hDev</i> : Longint; Var <i>pMode</i> : Word) : Word;		
	Turbo Pascal for Windows Function K_GetADConfig (<i>hDev</i> : Longint; Var <i>pMode</i> : Word) : Word; far; external 'DASSHELL'; Visual Basic for Windows Declare Function K_GetADConfig Lib "DASSHELL.DLL" (ByVal <i>hDev</i> As Long, <i>pMode</i> As Integer) As Integer		
	BASIC DECLARE FUNCTION K (BYVAL hDev AS LONG)	ASIC ECLARE FUNCTION KGetADConfig% ALIAS "K_GetADConfig" BYVAL hDev AS LONG, SEG pMode AS INTEGER)	
Parameters	hDev Ha	andle associated with the board.	
	pMode A, Va	D input channel configuration. alue stored: 0 for Differential 1 for Single-ended	
Return Value	This function returns an integer error/status code. Error/status code 0 indicates that the function executed successfully. A non-zero error/status code indicates that an error occurred. Refer to Appendix A for additional information.		
Remarks	This function stores the code that indicates the A/D input channel configuration in $pMode$ for the board specified by $hDev$.		

 \oplus

 \oplus

ιΦ
K_GetADConfig (cont.)

```
See Also
                K_SetADConfig
                C/C++
Usage
                #include "DASDECL.H" // Use "DASDECL.HPP for C++
                . . .
                DWORD hAD;
                . . .
                wDasErr = K_GetADConfig (hDev, &wADConfig);
                Turbo Pascal
                uses D1800TP7; (* Use D1800TP6 for TP ver 6.0 *)
                . . .
                hAD : Longint;
                . . .
                wDasErr := K_GetADConfig (hDev, wADConfig);
                Turbo Pascal for Windows
                ($1 DASDECL.INC)
                . . .
                hAD : Longint;
                . . .
                wDasErr := K_GetADConfig (hDev, wADConfig);
                Visual Basic for Windows
                (Include DASDECL.BAS in your program make file)
                 . . .
                Global hAD As Long
                . . .
                wDasErr = K_GetADConfig (hDev, wADCommMode)
                BASIC
                ' $INCLUDE: 'DASDECL.BI'
                . . .
                DIM hAD AS LONG
                . . .
                wDasErr = KGetADConfig% (hDev, wADConfig)
```

Function Reference

4-70

 \oplus

Ð

 $\overline{\Phi}$

K_GetADFrame

Boards Supported	All
Purpose	Accesses an A/D frame for an analog input operation.
Prototype	C/C++ DASErr far pascal K_GetADFrame (DWORD <i>hDev</i> , DWORD far * <i>pFrame</i>);
	Turbo Pascal Function K_GetADFrame (<i>hDev</i> : Longint; Var <i>pFrame</i> : Longint) : Word;
	Turbo Pascal for Windows Function K_GetADFrame (<i>hDev</i> : Longint; Var <i>pFrame</i> : Longint) : Word; far; external 'DASSHELL';
	Visual Basic for Windows Declare Function K_GetADFrame Lib "DASSHELL.DLL" (ByVal hDev As Long, pFrame As Long) As Integer
	BASIC DECLARE FUNCTION KGetADFrame% ALIAS "K_GetADFrame" (BYVAL hDev AS LONG, SEG pFrame AS LONG)
Parameters	hDev Handle associated with the board.
	<i>pFrame</i> Handle to the frame that defines the operation.
Remarks	This function specifies that you want to perform a DMA-mode or interrupt-mode analog input operation on the board specified by $hDev$, and accesses an available A/D frame with the handle $hFrame$. The frame is initialized to its default settings; the default settings are given in Table 3-1 on page 3-5.
See Also	K_ClearFrame, K_FreeFrame

4-71

K_GetADFrame (cont.)

Usage	C/C++ #include "DASDECL.H" // Use "DASDECL.HPP for C++
	DWORD hAD;
	 wDasErr = K_GetADFrame (hDev, &hAD);
	Turbo Pascal uses D1800TP7; (* Use D1800TP6 for TP ver 6.0 *)
	hAD : Longint;
	wDasErr := K_GetADFrame (hDev, hAD);
	Turbo Pascal for Windows (\$I DASDECL.INC)
	hAD : Longint;
	wDasErr := K_GetADFrame (hDev, hAD);
	Visual Basic for Windows (Include DASDECL.BAS in your program make file)
	 Global hAD As Long
	wDasErr = K_GetADFrame (hDev, hAD)
	BASIC ' \$INCLUDE: 'DASDECL.BI'
	DIM hAD AS LONG
	 wDasErr = KGetADFrame% (hDev, hAD)

 \oplus

Function Reference

4-72

 \oplus

\

·()-

 \oplus

23995-001

K_GetADFreeRun

Boards Supported	All		
Purpose	Gets the conversion	on mode.	
Prototype	C/C++ DASErr far pascal K_GetADFreeRun (DWORD <i>hFrame</i> , short far * <i>pStatus</i>);		
	Turbo Pascal Function K_GetA Var <i>pStatus</i> : Wor	DFreeRun (<i>hFrame</i> : Longint; d) : Word;	
	Turbo Pascal for Windows Function K_GetADFreeRun (<i>hFrame</i> : Longint; Var <i>pStatus</i> : Word) : Word; far; external 'DASSHELL';		
	Visual Basic for Windows Declare Function K_GetADFreeRun Lib "DASSHELL.DLL" (ByVal hFrame As Long, pStatus As Integer) As Integer		
	BASIC DECLARE FUNCTION KGetADFreeRun% ALIAS "K_GetADFreeRun" (BYVAL hFrame AS LONG, SEG pStatus AS INTEGER)		
Parameters	hFrame	Handle to the frame that defines the operation.	
	pStatus	Code that indicates the conversion mode. Value stored: 0 for Paced 0 for Burst	
Return Value	This function retuindicates that the code indicates that information.	arns an integer error/status code. Error/status code 0 function executed successfully. A non-zero error/status at an error occurred. Refer to Appendix A for additional	

 \oplus

4-73

sees the co

 $\overline{\Phi}$

K_GetADFreeRun (cont.)

Remarks	For the operation defined by $hFrame$, this function stores the code that indicates the conversion mode in <i>pStatus</i> .		
	The <i>pStatus</i> variable contains the value of the Conversion Mode element.		
	Refer to page 2-15 for information on conversion modes.		
See Also	K_SetADFreeRun		
Usage	C/C++ #include "DASDECL.H" // Use "DASDECL.HPP for C++		
	WORD wMode;		
	 wDasErr = K_GetADFreeRun (hAD, &wMode);		
	Turbo Pascal uses D1800TP7; (* Use D1800TP6 for TP ver 6.0 *)		
	 wMode : Word;		
	 wDasErr := K_GetADFreeRun (hAD, wMode);		
	Turbo Pascal for Windows {\$I DASDECL.INC}		
	 wMode : Word;		
	 wDasErr := K_GetADFreeRun (hAD, wMode);		
	Visual Basic for Windows (Include DASDECL.BAS in your program make file)		
	 Global wMode As Integer 		
	wDasErr = K_GetADFreeRun (hAD, wMode)		

÷

Function Reference

Ð

 \oplus

4-74

 \oplus

 $\overline{\Phi}$

-+ chap04_.frm Page 75 Thursday, April 14, 1994 1:57 PM

 \oplus

 \oplus

 \oplus

K_GetADFreeRun (cont.)

BASIC
' \$INCLUDE: 'DASDECL.BI'
...
DIM wMode AS INTEGER
...
wDasErr = KGetADFreeRun% (hAD, wMode)

K_GetADMode

Boards Supported	All		
Purpose	Get a DAS board's A/D) input range type.	
Prototype	C/C++ DASErr far pascal K_C WORD far * <i>pMode</i>);	GetADMode (DWORD hDev,	
	Turbo Pascal Function K_GetADMo	de (hDev : Longint; Var pMode : Word) : Word;	
	Turbo Pascal for Wind Function K_GetADMo far; external 'DASSHE	lows de (<i>hDev</i> : Longint; Var <i>pMode</i> : Word) : Word; LL';	
	Visual Basic for Wind Declare Function K_Ge (ByVal hDev As Long,	ows etADMode Lib "DASSHELL.DLL" pMode As Integer) As Integer	¢
	BASIC DECLARE FUNCTIO (BYVAL <i>hDev</i> AS LO)	N KGetADMode% ALIAS "K_GetADMode" NG, SEG <i>pMode</i> AS INTEGER)	
Parameters	hDev	Handle associated with the board.	
	pMode	A/D input range type. Value stored: 0 for Bipolar 1 for Unipolar	
Return Value	This function returns at indicates that the function code indicates that an endination.	n integer error/status code. Error/status code 0 ion executed successfully. A non-zero error/status error occurred. Refer to Appendix A for additional	
Remarks	This function stores the the board specified by	e code that indicates the A/D input range type for <i>hDev</i> in <i>pMode</i> .	
4-76		Function Reference	

 $\overline{\Phi}$

 $\overline{\Phi}$

 \oplus

 \oplus

Φ

See Also	K_SetADMode
Usage	<pre>C/C++ #include "DASDECL.H" // Use "DASDECL.HPP for C++ DWORD hAD; wDasErr = K_GetADMode (hDev, &nADMode);</pre>
	Turbo Pascal uses D1800TP7; (* Use D1800TP6 for TP ver 6.0 *) hAD : Longint; wDasErr := K_GetADMode (hDev, wADMode);
	Turbo Pascal for Windows <pre>(\$I DASDECL.INC) hAD : Longint; wDasErr := K_GetADMode (hDev, wADMode);</pre>
	Visual Basic for Windows (<i>Include DASDECL.BAS in your program make file</i>) Global hAD As Long wDasErr = K_GetADMode (hDev, wADMode)
	BASIC ' \$INCLUDE: 'DASDECL.BI' DIM hAD AS LONG wDasErr = KGetADMode% (hDev, wADMode)

K_GetADTrig

Boards Supported	All		
Purpose	Gets the current analog	trigger conditions.	
Prototype	C/C++ DASErr far pascal K_GetADTrig (DWORD <i>hFrame</i> , short far * <i>pOpt</i> , short far * <i>pChan</i> , DWORD far * <i>pLevel</i>);		
	Turbo Pascal Function K_GetADTrig Var <i>pChan</i> : Word; Var <i>p</i>	(hFrame : Longint; Var pOpt : Word; bLev : Longint) : Word;	
	Turbo Pascal for Windows Function K_GetADTrig (<i>hFrame</i> : Longint; Var <i>pOpt</i> : Word; Var <i>pChan</i> : Word; Var <i>pLev</i> : Longint) : Word; far; external 'DASSHELL';		
	Visual Basic for Windows Declare Function K_GetADTrig Lib "DASSHELL.DLL" (ByVal hFrame As Long, pOpt As Integer, pChan As Integer, pLevel As Long) As Integer		
	BASIC DECLARE FUNCTION (BYVAL <i>hF rame</i> AS Lo SEG <i>pChan</i> AS INTEG	N KGetADTrig% ALIAS "K_GetADTrig" ONG, SEG <i>pOpt</i> AS INTEGER, ER, SEG <i>pLevel</i> AS LONG)	
Parameters	hFrame	Handle to the frame that defines the operation.	
	pOpt	Analog trigger polarity. Value stored: 0 for Positive edge 2 for Negative edge	

Function Reference

 \oplus

Φ

 \oplus

 $\overline{\Phi}$

K_GetADTrig (cont.)

pChan Ana Val	alog input channel used id values:	as trigger channel.	
	Valid channel numbers		
Board	Differential	Single-ended	
DAS-1800HC	0 to 31	0 to 63	
DAS-1800ST/HR without EXP-1800 expansion boards attached	0 10 7	0 to 15	
DAS-1800ST/HR with N EXP-1800 expansion boards attached	Not applicable	0 to 15(N + 1)	

pLevel	Level at which the trigger event occurs.

Return ValueThis function returns an integer error/status code. Error/status code 0
indicates that the function executed successfully. A non-zero error/status
code indicates that an error occurred. Refer to Appendix A for additional
information.

RemarksFor the operation defined by hFrame, this function stores the channel
used for an analog trigger in pChan, the level used for the analog trigger
in pLevel, and the trigger polarity in pOpt.

 \oplus

The pOpt variable contains the value of the Trigger Polarity element.

The pChan variable contains the value of the Trigger Channel element.

The *pLevel* variable contains the value of the Trigger Level element. The value of *pLevel* is represented in raw counts. Refer to Appendix B for information on converting the raw count stored in *pLevel* to voltage.

See Also K_SetADTrig

K_GetADTrig (cont.)

Usage

 \oplus

 $\overline{\Phi}$

#include	"DASDECL.H" // Use "DASDECL.HPP for C+
int nOpt	, nChan;
DWORD dw	Level;
wDasErr	= K_GetADTrig (hAD, &nOpt, &nChan, &dwLev
Turbo Pas	cal
uses D18	00TP7; (* Use D1800TP6 for TP ver 6.0 *
nOpt : I	nteger;
nChan :	Integer;
dwLevel	: Longint;
 wDasErr	:= K_GetADTrig (hAD, nOpt, nChan, dwLevel
Turbo Pas	cal for Windows
{\$I DASD	ECL.INC)
 nOpt : I nChan : dwLevel	nteger; Integer; : Longint;
 wDasErr	:= K_GetADTrig (hAD, nOpt, nChan, dwLevel
Visual Bas	i ic for Windows
(Include D.	ASDECL.BAS in your program make file)
	Opt As Integer
Global n	Chan As Integer
Global n Global d	wLevel As Long

Function Reference

chap04_.frm Page 81 Thursday, April 14, 1994 1:57 PM

\oplus

 \oplus

 \oplus

K_GetADTrig (cont.)

BASIC ' \$INCLUDE: 'DASDECL.BI' ... DIM nOpt AS INTEGER DIM nChan AS INTEGER DIM dwLevel AS LONG ... wDasErr = KGetADTrig% (hAD, nOpt, nChan, dwLevel)

 \oplus

4-81

K_GetBuf

Boards Supported	All		
Purpose	Returns the address and	size of a buffer assigned to a frame.	
Prototype	C/C++ DASErr far pascal K_GetBuf (DWORD <i>hFrame</i> , void far * far * <i>pBuf</i> , DWORD far * <i>pSamples</i>);		
	Turbo Pascal Function K_GetBuf (<i>hFrame</i> : Longint; Var <i>pBuf</i> : Pointer; Var <i>pSamples</i> : Longint) : Word;		
Turbo Pascal for Windows Function K_GetBuf (<i>hFrame</i> : Longint; Var <i>pBuf</i> : Pointer; Var <i>pSamples</i> : Longint) : Word; far; external 'DASSHELL';			
Visual Basic for A Declare Function I (ByVal hFrame As		bws tBuf Lib "DASSHELL.DLL" g, <i>pBuf</i> As Long, <i>pSamples</i> As Long) As Integer	
	BASIC DECLARE FUNCTION (BYVAL <i>hFrame</i> AS L SEG <i>pSamples</i> AS LON	N KGetBuf% ALIAS "K_GetBuf" ONG, SEG <i>pBuf</i> AS LONG, NG)	
Parameters	hFrame	Handle to the frame that defines the operation.	
	pBuf	Starting address of buffer.	
	pSamples	Number of samples. Value stored: 0 to 65,535	
Return Value	This function returns an indicates that the function code indicates that an ex- information.	a integer error/status code. Error/status code 0 on executed successfully. A non-zero error/status rror occurred. Refer to Appendix A for additional	

 \oplus

 \oplus

Φ

Function Reference

<u> </u>.,

 \oplus

Φ

K_GetBuf (cont.)

Remarks	For the operation specified by $hFrame$, this function stores either the address of the currently allocated buffer (if you are using a single buffer) or the address of the first buffer (if you are using multiple buffers) in $pBuf$ and the number of samples stored in that buffer in <i>pSamples</i> .			
	Use this function to retrieve the address of the buffer whose address was specified by K_SetBuf, K_SetBufI, or K_BufListAdd.			
	The <i>pBuf</i> variable contains the value of the Buffer element.			
	The <i>pSamples</i> variable contains the value of the Number of Samples element.			
See Also	K_BufListAdd, K_SetBuf, K_SetBufI			
Usage	C/C++ #include "DASDECL.H" // Use "DASDECL.HPP for C++			
	 void far *pADBuffer; DWORD dwSamples;			
	 wDasErr = K_GetBuf (hAD, &pADBuffer, &dwSamples);			
	Turbo Pascal uses D1800TP7; (* Use D1800TP6 for TP ver 6.0 *)			
	pADBuffer : Longint; dwSamples : Longint;			
	wDasErr = K_GetBuf (hAD, @pADBuffer, dwSamples);			
	Turbo Pascal for Windows {\$I DASDECL.INC} pADBuffer : Longint; dwSamples : Longint;			
	wDasErr = K_GetBuf (hAD, @pADBuffer, dwSamples);			

K_GetBuf (cont.)

Visual Basic for Windows
(Include DASDECL.BAS in your program make file)
...
Dim pADBuffer As Long
...
wDasErr = K_GetBuf (hAD, pADBuffer, dwSamples);
BASIC
' \$INCLUDE: 'DASDECL.BI'
...
Dim pADBuffer As Long
...
wDasErr = K_GetBuf% (hAD, pADBuffer, dwSamples);

4-84

 \oplus

 \oplus

 \oplus

 \oplus

 \oplus

Φ

nengrast even

K_GetBurstTicks

Boards Supported	All		
Purpose	Gets the number of cloo burst mode conversion	ck ticks between conversions to determine the rate.	
Prototype	C/C++ DASErr far pascal K_GetBurstTicks (DWORD <i>hFrame</i> , short far * <i>pTicks</i>);		
	Turbo Pascal Function K_GetBurstTicks (<i>hFrame</i> : Longint; Var <i>pTicks</i> : Word) : Word;		
	Turbo Pascal for Windows Function K_GetBurstTicks (<i>hFrame</i> : Longint; Var <i>pTicks</i> : Word) : Word; far; external 'DASSHELL';		
	Visual Basic for Windows Declare Function K_GetBurstTicks Lib "DASSHELL.DLL" (ByVal hFrame as Long, pTicks As Integer) As Integer		
	BASIC DECLARE FUNCTION KGetBurstTicks% ALIAS "K_GetBurstTicks" (BYVAL hFrame AS LONG, SEG pTicks AS INTEGER)		
Parameters	hFrame	Handle to the frame that defines the operation.	
	pTicks	Number of clock ticks between conversions. Value stored: 3 to 255	
Return Value	This function returns at indicates that the functi code indicates that an e information.	n integer error/status code. Error/status code 0 on executed successfully. A non-zero error/status rror occurred. Refer to Appendix A for additional	

 \oplus

er e ve

K_GetBurstTicks (cont.)

Remarks	For the operation defined by $hFrame$, this function stores the number of clock ticks between conversions of each channel in a scan in <i>pTicks</i> .		
	The <i>pTicks</i> variable contains the value of the Burst Clock Rate element.		
See Also	K_SetBurstTicks		
Usage	<pre>C/C++ #include "DASDECL.H" // Use "DASDECL.HPP for C++ int nCount; wDasErr = K_GetBurstTicks (hAD, &nCount);</pre>		
	<pre>Turbo Pascal uses D1800TP7; (* Use D1800TP6 for TP ver 6.0 *) nCount : Integer; wDasErr := K_GetBurstTicks (hAD, nCount);</pre>		
	<pre>Turbo Pascal for Windows (\$I DASDECL.INC) nCount : Integer; wDasErr := K_GetBurstTicks (hAD, nCount); Visual Basic for Windows (Include DASDECL.BAS in your program make file) Global nCount As Integer</pre>		
	wDasErr = K_GetBurstTicks (hAD, nCount)		

 \oplus

Function Reference

 \oplus

φ

 \oplus

\

chap04_.frm Page 87 Thursday, April 14, 1994 1:57 PM

 \oplus

 \oplus

\oplus

 \oplus

K_GetBurstTicks (cont.)

BASIC
' \$INCLUDE: 'DASDECL.BI'
...
DIM nCount AS INTEGER
...
wDasErr = KGetBurstTicks% (hAD, nCount)

 \oplus

4-87

K_GetChn

Boards Supported	All
Purpose	Gets a single channel number.
Prototype	C/C++ DASErr far pascal K_GetChn (DWORD <i>hFrame</i> , short far * <i>pChan</i>);
	Turbo Pascal
	Function K_GetChn (hFrame : Longint; Var pChan : Word) : Word;
	Turbo Pascal for Windows Function K_GetChn (<i>hFrame</i> : Longint; Var <i>pChan</i> : Word) : Word; far; external 'DASSHELL';
	Visual Basic for Windows
	Declare Function K_GetChn Lib "DASSHELL.DLL"
	(By Val hFrame As Long, pChan As Integer) As Integer
	BASIC
	DECLARE FUNCTION KGetChn% ALIAS "K_GetChn"
	(BYVAL hFrame AS LONG, SEG pChan AS INTEGER)

⊕

Function Reference

 \oplus

 $\bar{\Phi}$

 $\overline{\Phi}$

K_GetChn (cont.)

 \oplus

 \oplus

 \oplus

Parameters	hFrame Hand	e to the frame that d	efines the operation.	
	<i>pChan</i> Channel on which to perform the operation. Valid values:			
		Valid channel numbers		
	Board	Differential	Single-ended	
	DAS-1800HC	0 to 31	0 to 63	
	DAS-1800ST/HR without EXP-1800 expansion boards attached	0 w 7	0 to 15	
	DAS-1800ST/HR with N EXP-1800 expansion boards attached	Not applicable	0 to 15(N + 1)	
Remarks	code indicates that an error oc information. For the operation defined by <i>h</i>	curred. Refer to App <i>Frame</i> , this function	endix A for addition stores the channel	
	number in pChan.			
	The <i>pChan</i> variable contains the contains t	he value of the Start	Channel and Stop	
See Also	K_SetChn, K_SetStartStopCh	n, K_SetStartStopG		
Usage	C/C++ #include "DASDECL.H" // Use "DASDECL.HPP for C++			
	 short nChan:			
	bilore nomani,			

K_GetChn (cont.)

```
Turbo Pascal
uses D1800TP7; (* Use D1800TP6 for TP ver 6.0 *)
...
nChan : Integer;
...
wDasErr := K_GetChn (hAD, nChan);
```

Turbo Pascal for Windows

{\$I DASDECL.INC}
...
nChan : Integer;
...
wDasErr := K_GetChn (hAD, nChan);

Visual Basic for Windows

(Include DASDECL.BAS in your program make file)

... Global nChan AS Integer ... wDasErr = K_GetChn (hAD, nChan)

BASIC

' \$INCLUDE: 'DASDECL.BI'
...
DIM nChan AS INTEGER
...
wDasErr = KGetChn% (hAD, nChan)

 $\overline{\Phi}$

 \oplus

 \oplus

K_GetChnGAry

Boards Supported	All		
Purpose	Gets the starting addres	ss of a channel-gain queue.	
Prototype	C/C++ DASErr far pascal K_(void far * far * <i>pArray</i>)	GetChnGAry (DWORD hFrame, ;	
	Turbo Pascal Function K_GetChnGAry (<i>hFrame</i> : Longint; Var <i>pArray</i> : Integer) : Word;		
	Turbo Pascal for Windows Function K_GetChnGAry (<i>hFrame</i> : Longint; Var <i>pArray</i> : Integer) : Word; far; external 'DASSHELL';		
	Visual Basic for Windows Declare Function K_GetChnGAry Lib "DASSHELL.DLL" (ByVal hFrame As Long, pArray As Long) As Integer		
	BASIC DECLARE FUNCTION KGetChnGAry% ALIAS "K_GetChnGAry" (BYVAL hFrame AS LONG, SEG pArray AS LONG)		
Parameters	hFrame	Handle to the frame that defines the operation.	
	pArray	Channel-gain queue starting address.	
Return Value	This function returns a indicates that the funct code indicates that an e information.	n integer error/status code. Error/status code 0 ion executed successfully. A non-zero error/status error occurred. Refer to Appendix A for additional	

K_GetChnGAry (cont.)

Remarks	For the operation defined by <i>hFrame</i> , this function stores the starting address of the channel-gain queue in <i>pArray</i> . The <i>pArray</i> variable contains the value of the Channel-Gain Queue element.			
	Refer to page 2-14 for information on setting up a channel-gain queue.			
See Also	K_SetChnGAry			
Usage	C/C++ #include "DASDECL.H" // Use "DASDECL.HPP for C++ void far *pArray; wDasErr = K_GetChnGAry (hAD, &pArray);			
	Turbo Pascal uses D1800TP7; (* Use D1800TP6 for TP ver 6.0 *) pArray : Integer; wDasErr = K_GetChnGAry (hAD, pArray);			
	Turbo Pascal for Windows (\$1 DASDECL.INC)			
	pArray : Integer; wDasErr = K_GetChnGAry (hAD, pArray);			
	Visual Basic for Windows (Include DASDECL.BAS in your program make file)			
	 wDasErr = K_GetChnGAry (hAD, pArray)			
	BASIC ' \$INCLUDE: 'DASDECL.BI'			
	wDasErr = K_GetChnGAry (hAD, pArray)			

 \oplus

Function Reference

 \oplus

 Φ

4-92

 \oplus

 $\bar{\Phi}$

 \oplus

Boards Supported	All	
Purpose	Gets the pacer clock s	ource.
Prototype	C/C++ DASErr far pascal K_	GetClk (DWORD <i>hFrame</i> , short far * <i>pMode</i>);
	Turbo Pascal Function K_GetClk (<i>h</i>	Frame : Longint; Var pMode : Word) : Word;
	Turbo Pascal for Windows Function K_GetClk (<i>hFrame</i> : Longint; Var <i>pMode</i> : Word) : Word; far; external 'DASSHELL';	
	Visual Basic for Wine Declare Function K_C (ByVal hFrame As Lo	dows etClk Lib "DASSHELL.DLL" ng, <i>pMode</i> As Integer) As Integer
	BASIC DECLARE FUNCTIC (BYVAL <i>hFrame</i> AS 1	ON KGetClk% ALIAS "K_GetClk" LONG, SEG <i>pMode</i> AS INTEGER)
Parameters	hFrame	Handle to the frame that defines the operation.
	pMode	Pacer clock source. Value stored: 0 for Internal 1 for External
Return Value	This function returns a indicates that the function code indicates that an information.	an integer error/status code. Error/status code 0 tion executed successfully. A non-zero error/status error occurred. Refer to Appendix A for additional
Remarks	For the operation defined source in <i>pMode</i> .	ned by hFrame, this function stores the pacer clock

 \oplus

K_GetClk (cont.)

	An internal clock source is the output of the onboard counter/timer circuitry; an external clock source is an external signal connected to the DI0/XPCLK pin (DAS-1800HC Series) or XPCLK pin (DAS-1800ST/HR Series). Refer to page 2-15 (for analog input operations), page 2-29 (for analog output operations), and page 2-36 (for digital I/O operations) for more information about pacer clock sources. The <i>pMode</i> variable contains the value of the Clock Source element.		
See Also	K_SetClk, K_SetClkRate		
Usage	C/C++ #include "DASDECL.H" // Use "DASDECL.HPP for C++		
	Word wMode;		
	 wDasErr = K_GetClk (hAD, &wMode);		
	Turbo Pascal uses D1800TP7; (* Use D1800TP6 for TP ver 6.0 *)		
	wMode : Word;		
	 wDasErr := K_GetClk (hAD, wMode);		
	Turbo Pascal for Windows {\$1 DASDECL.INC}		
	 wMode : Word;		
	 wDasErr := K_GetClk (hAD, wMode);		
	Visual Basic for Windows (Include DASDECL.BAS in your program make file)		
	 Global wMode As Integer		
	 wDasErr = K_GetClk (hAD, wMode)		

Function Reference

 \oplus

¢

4-94

chap04_.frm Page 95 Thursday, April 14, 1994 1:57 PM

 \oplus

φ

K_GetClk (cont.)

BASIC
' \$INCLUDE: 'DASDECL.BI'
...
DIM wMode AS INTEGER
...
wDasErr = KGetClk% (hAD, wMode)

K_GetClkRate

Boards Supported	All	
Purpose	Gets the internal clock	divisor (clock ticks) for the 5 MHz clock source.
Prototype	C/C++ DASErr far pascal K_(DWORD far * <i>pRate</i>);	GetClkRate (DWORD hFrame,
	Turbo Pascal Function K_GetClkRa	te (<i>hFrame</i> : Longint; Var <i>pRate</i> : Longint) : Word;
	Turbo Pascal for Win Function K_GetClkRat far; external 'DASSHE	dows te (<i>hFrame</i> : Longint; Var <i>pRate</i> : Longint) : Word; LL';
	Visual Basic for Wind Declare Function K_G (ByVal <i>hFrame</i> As Lor	l ows etClkRate Lib "DASSHELL.DLL" ng, <i>pRate</i> As Long) As Integer
	BASIC DECLARE FUNCTIO (BYVAL <i>hFrame</i> AS I	N KGetClkRate% ALIAS "K_GetClkRate" LONG, SEG pRate AS LONG)
Parameters	hFrame	Handle to the frame that defines the operation.
	pRate	Number of clock ticks between conversions. Value stored: 15 to 4,294,967,295
Return Value	This function returns an integer error/status code. Error/status code 0 indicates that the function executed successfully. A non-zero error/status code indicates that an error occurred. Refer to Appendix A for additional information.	
Remarks	For the operation defin clock ticks between co	ed by <i>hFrame</i> , this function stores the number of nversions in <i>pRate</i> .
	The <i>pRate</i> variable con	tains the value of the Pacer Clock Rate element.

 \oplus

4-96

 \oplus

 $\overline{\Phi}$

Function Reference

 \oplus

Φ

 \oplus

K_GetClkRate (cont.)

This function applies to an internal clock source only.

After an interrupt-mode or DMA-mode analog input operation, the value stored in *pRate* represents the actual count used, not necessarily the count set by $K_SetClkRate$.

See Also	K_SetClkRate
Usage	<pre>C/C++ #include "DASDECL.H" // Use "DASDECL.HPP for C++ DWORD dwRate; wDasErr = K_GetClkRate (hAD, &dwRate);</pre>
	Turbo Pascal uses D1800TP7; (* Use D1800TP6 for TP ver 6.0 *) dwRate : Longint; wDasErr := K_GetClkRate (hAD, dwRate);
	Turbo Pascal for Windows (\$I DASDECL.INC) dwRate : Longint; wDasErr := K_GetClkRate (hAD, dwRate);
	Visual Basic for Windows

(Include DASDECL.BAS in your program make file)

Œ

...
Global dwRate As Long
...
wDasErr = K_GetClkRate (hAD, dwRate)

K_GetClkRate (cont.)

BASIC

```
' $INCLUDE: 'DASDECL.BI'
...
DIM dwRate AS LONG
...
wDasErr = KGetClkRate% (hAD, dwRate)
```

 \oplus

 \oplus

¢

 $\overline{\Phi}$

 \oplus

 \oplus

K_GetContRun

Boards Supported	Ali	
Purpose	Gets the buffering m	node.
Prototype	C/C++ DASErr far pascal K short far * <i>pMode</i>);	K_GetContRun (DWORD hFrame,
	Turbo Pascal Function K_GetCon	tRun (<i>hFrame</i> : Longint; Var <i>pMode</i> : Word) : Word;
	Turbo Pascal for W Function K_GetCon far; external 'DASSI	/indows tRun (<i>hFrame</i> : Longint;Var <i>pMode</i> : Word) : Word; HELL';
	Visual Basic for Wi Declare Function K_ (ByVal <i>hFrame</i> As I	ndows _GetContRun Lib "DASSHELL.DLL" Long, <i>pMode</i> As Integer) As Integer
	BASIC DECLARE FUNCT (BYVAL <i>hFrame</i> A)	ION KGetContRun% ALIAS "K_GetContRun" S LONG, SEG <i>pMode</i> AS INTEGER)
Parameters	hFrame	Handle to the frame that defines the operation.
	pMode	Buffering mode. Value stored: 0 for Single-cycle 0 for Continuous
Return Value	This function returns indicates that the fur code indicates that a information.	s an integer error/status code. Error/status code 0 action executed successfully. A non-zero error/status n error occurred. Refer to Appendix A for additional
Remarks	For the operation demode in <i>pMode</i> .	fined by <i>hFrame</i> , this function stores the buffering

K_GetContRun (cont.)

	The <i>pMode</i> variable contains the value of the Buffering Mode element. Refer to page 2-18 (for analog input operations), page 2-30 (for analog output operations) section, and page 2-38 (for digital I/O operations) for a description of buffering modes.		
See Also	K_SetContRun, K_ClrContRun		
Usage	<pre>C/C++ #include "DASDECL.H" // Use "DASDECL.HPP for C++ WORD wMode; wDasErr = K_GetContRun (hAD, &wMode);</pre>		
	Turbo Pascal uses D1800TP7; (* Use D1800TP6 for TP ver 6.0 *) wMode : Word; wDasErr := K_GetContRun (hAD, wMode);		
	Turbo Pascal for Windows (\$I DASDECL.INC) wMode : Word; wDasErr := K_GetContRun (hAD, wMode); Visual Basic for Windows		
	visual basic for windows (Include DASDECL.BAS in your program make file)		
	 Global wMode As Integer		

wDasErr = K_GetContRun (hAD, wMode)

 \oplus

. . .

Function Reference

 \oplus

 \oplus

chap04_.frm Page 101 Thursday, April 14, 1994 1:57 PM

 \oplus

 \oplus

 \oplus

K_GetContRun (cont.)

BASIC
' \$INCLUDE: 'DASDECL.BI'
...
DIM wMode AS INTEGER
...
wDasErr = KGetContRun% (hAD, wMode)

K_GetDAFrame

Boards Supported	DAS-1801HC, DAS-1802HC		
Purpose	Accesses a D/A frame for an analog output operation.		
Prototype	 C/C++ DASErr far pascal K_GetDAFrame (DWORD hDev, DWORD far * pFrame); Turbo Pascal Function K_GetDAFrame (hDev : Longint; Var pFrame : Longint) : Word; Turbo Pascal for Windows Function K_GetDAFrame (hDev : Longint; Var pFrame : Longint) : Word; far; external 'DASSHELL'; Visual Basic for Windows Declare Function K_GetDAFrame Lib ''DASSHELL.DLL'' (ByVal hDev As Long, pFrame As Long) As Integer DECLARE FUNCTION KGetDAFrame% ALIAS ''K_GetDAFrame" (BYVAL hDev AS LONG, SEG hFrame AS LONG) 		
Parameters	hDev	Handle associated with the board.	
	pFrame	Handle to the frame that defines the D/A operation.	
Return Value	This function returns an integer error/status code. Error/status code 0 indicates that the function executed successfully. A non-zero error/status code indicates that an error occurred. Refer to Appendix A for additional information.		

 \oplus

 \oplus

 $\overline{\Phi}$

Function Reference

 Φ

Φ

 $[\overline{W}\overline{V}, V_{1,2}] \in \mathbb{R}^{d}$

 $\overline{\Phi}$

Φ

 \oplus

 \oplus

Remarks	This function specifies that you want to perform an interrupt-mode analog output operation on the board specified by $hDev$, and accesses an available D/A frame with the handle <i>pFrame</i> . The frame is initialized to its default settings; the default settings are given in Table 3-2 on page 3-7.				
See Also	K_FreeFrame, K_ClearFrame				
Usage	<pre>C/C++ #include "DASDECL.H" // Use "DASDECL.HPP for C++ DWORD hDA; wDasErr = K_GetDAFrame (hDev, &hDA); Turbo Pascai uses D1800TP7; (* Use D1800TP6 for TP ver 6.0 *) hDA : Longint; wDasErr := K_GetDAFrame (hDev, hDA); Turbo Pascai for Windows (\$I DASDECL.INC) hDA : Longint; wDasErr := K_GetDAFrame (hDev, hDA); Visual Basic for Windows (Include DASDECL.BAS in your program make file)</pre>				
	 Global hDA As Long wDasErr = K_GetDAFrame (hDev, hDA)				

K_GetDAFrame (cont.)

BASIC

' \$INCLUDE: 'DASDECL.BI'
...
DIM hDA AS LONG
...
wDasErr = KGetDAFrame% (hDev, hDA)

 \oplus

Æ

 $\overline{\oplus}$

K_GetDevHandle

Boards Supported	All			
Purpose	Initializes any supported DAS board.			
Prototype	C/C++ DASErr far pascal K_GetDevHandle (DWORD <i>hDrv</i> , WORD <i>nBoardNum</i> , DWORD far * <i>pDev</i>);			
	Turbo Pascal Not supported			
	Turbo Pascal for Windows Function K_GetDevHandle (<i>hDrv</i> : Longint; <i>nBoardNum</i> : Integer; Var <i>pDev</i> : Longint) : Word; far; external 'DASSHELL';			
	Visual Basic for Windows Declare Function K_GetDevHandle Lib "DASSHELL.DLL" (ByVal hDrv As Long, ByVal nBoardNum As Integer, pDev As Long) As Integer		¢	
	BASIC Not supported			
Parameters	hDrv	Driver handle of the associated Function Call Driver.		
	nBoardNum	Board number. Valid values: 0 to 2		
	pDev	Handle associated with the board.		

 \oplus

4-105

 \oplus

Ŧ
K_GetDevHandle (cont.)

Return Value	This function returns an integer error/status code. Error/status code 0 indicates that the function executed successfully. A non-zero error/status code indicates that an error occurred. Refer to Appendix A for additional information.		
Remarks	This function initializes the board associated with $hDrv$ and specified by $nBoardNum$, and stores the board handle of the specified board in pDev.		
	The value stored in $pDev$ is intended to be used exclusively as an argument to functions that require a board handle. Your program should not modify the value stored in $pDev$.		
	This function is available for C, Borland Turbo Pascal for Windows, and Visual Basic for Windows application programs only.		
See Also	K_FreeDevHandle		
Usage	C/C++ #include "DASDECL.H" // Use "DASDECL.HPP for C++ DWORD hDev; WDasErr = K GetDevHandle (hDrv. 0 & & bDev);		
	Turbo Pascal for Windows <pre>{\$I DASDECL.INC} hDev : Longint; wDasErr := K_GetDevHandle (hDrv, 0, hDev);</pre>		
	Visual Basic for Windows (Include DASDECL.BAS in your program make file) Global hDev As Long wDasErr = K GetDevHandle (hDrv, 0, hDev)		

Function Reference

 \oplus

Φ

4-106

 \oplus

 $\bar{\Phi}$

 \oplus

 \oplus

 $\overline{\Phi}$

K_GetDIFrame

Boards Supported	All		
Purpose	Accesses a DI frame for a digital input operation.		
Prototype	C/C++ DASErr far pascal K_GetDIFrame (DWORD <i>hDev</i> , DWORD far * <i>pFrame</i>);		
Turbo Pascal Function K_GetDIFrame (<i>hDev</i> : Longint; Var <i>pFrame</i> : Longint)			
	Turbo Pascal for Windows Function K_GetDIFrame (<i>hDev</i> : Longint; Var <i>pFrame</i> : Longint) : Word; far; external 'DASSHELL';		
	Visual Basic for Windows Declare Function K_GetDIFrame Lib "DASSHELL.DLL" (By Val hDev As Long, pFrame As Long) As Integer BASIC DECLARE FUNCTION KGetDIFrame% ALIAS "K_GetDIF (BY VAL hDev AS LONG, SEG pFrame AS LONG)		
Parameters	hDev	Handle associated with the board.	
	pFrame	Handle to the frame that defines the digital input operation.	
Return Value	This function returns an integer error/status code. Error/status code 0 indicates that the function executed successfully. A non-zero error/status code indicates that an error occurred. Refer to Appendix A for additional information.		

 \oplus

4-107

K_GetDIFrame (cont.)

Remarks	This function specifies that you want to perform an interrupt-mode digital input operation on the board specified by $hDev$, and accesses an available digital input frame with the handle <i>pFrame</i> . The frame is initialized to its default settings; the default settings are given in Table 3-3 on page 3-8.			
See Also	K_FreeFrame, K_ClearFrame			
Usage	C/C++ #include "DASDECL.H" // Use "DASDECL.HPP for C++ DWORD hDI; wDasErr = K_GetDIFrame (hDev, &hDI);			
	Turbo Pascal uses D1800TP7; (* Use D1800TP6 for TP ver 6.0 *) hDI : Longint; wDasErr := K_GetDIFrame (hDev, hDI);			
	<pre>Turbo Pascal for Windows (\$I DASDECL.INC) hDI : Longint; wDasErr := K_GetDIFrame (hDev, hDI);</pre>			
	Visual Basic for Windows (Include DASDECL.BAS in your program make file) Global hDI As Long wDasErr = K_GetDIFrame (hDev, hDI)			

 \oplus

 \oplus

¢

 \oplus

 $\bar{\Phi}$

-+ chap04_.frm Page 109 Thursday, April 14, 1994 1:57 PM

 \oplus

Φ

- -- -

K_GetDIFrame (cont.)

BASIC
' \$INCLUDE: 'DASDECL.BI'
...
DIM hDI AS LONG
...
wDasErr = KGetDIFrame% (hDev, hDI)

 \oplus

K_GetDITrig

Boards Supported	All		
Purpose	Reads the current digital trigger conditions.		
Prototype	C/C++ DASErr far pascal K_GetDITrig (DWORD <i>hFrame</i> , short far * <i>pOpt</i> , short far * <i>pChan</i> , DWORD far * <i>pPattern</i>);		
	Turbo Pascal Function K_GetDITrig (<i>hFrame</i> : Longint; Var <i>pOpt</i> : Word; Var <i>pChan</i> : Word; Var <i>pPattern</i> : Longint) : Word;		
	Turbo Pascal for Windows Function K_GetDITrig (<i>hFrame</i> : Longint; Var <i>pOpt</i> : Word; Var <i>pChan</i> : Word; Var <i>pPattern</i> : Longint) : Word; far; external 'DASSHELL';		
	Visual Basic for Windows Declare Function K_GetDITrig Lib "DASSHELL.DLL" (ByVal hFrame As Long, pOpt As Integer, pChan As Integer, pPattern As Long) As Integer		
	BASIC DECLARE FUNCTION KGetDITrig% ALIAS "K_GetDITrig" (BYVAL hFrame AS LONG, SEG pOpt AS INTEGER, SEG pChan AS INTEGER, SEG pPattern AS LONG)		
Parameters	hFrame	Handle to the frame that defines the operation.	
	pOpt	Trigger polarity and sensitivity.Value stored: 0 for Positive edge2 for Negative edge	
	pChan	Trigger channel. Value stored: 0	
	pPattern	Trigger pattern.	

 \oplus

 \oplus

 Φ

Function Reference

 $\overline{\mathbf{\Phi}}$

K_GetDITrig (cont.)

Return Value	This function returns an integer error/status code. Error/status code 0 indicates that the function executed successfully. A non-zero error/status code indicates that an error occurred. Refer to Appendix A for additional information.		
Remarks	For the operation defined by $hFrame$, this function stores the trigger polarity and trigger sensitivity in $pOpt$, the channel used for the digital trigger in $pChan$, and the trigger pattern in $pPattern$. Since the DAS-1800 Series Function Call Driver does not currently support digital pattern triggering, the value of $pPattern$ is meaningless; the $pPattern$ parameter is provided for future compatibility.		
	The <i>pOpt</i> variable contains the value of the Trigger Polarity and Trigger Sensitivity elements.		
	The pChan variable contains the value of the Trigger Channel element.		
See Also	K_SetDITrig		
Usage	<pre>C/C++ #include "DASDECL.H" // Use "DASDECL.HPP for C++ short nOpt, nChan, WORD wPat; wDasErr = K_GetDITrig (hAD, &nOpt, &nChan, &wPat);</pre>		
	<pre>Turbo Pascal uses D1800TP7; (* Use D1800TP6 for TP ver 6.0 *) nOpt : Integer; nChan : Integer; wPat : Word; wDasErr := K_GetDITrig (hAD, nOpt, nChan, wPat);</pre>		

 \oplus

4-11**1**

K_GetDITrig (cont.)

Turbo Pascal for Windows

{\$I DASDECL.INC}
...
nOpt : Integer;
nChan : Integer;
wPat : Word;
...
wDasErr := K_GetDITrig (hAD, nOpt, nChan, wPat);

Visual Basic for Windows

(Include DASDECL.BAS in your program make file)

...
Global nOpt As Integer
Global nChan As Integer
Global wPat As Integer
...
wDasErr = K_GetDITrig (hAD, nOpt, nChan, wPat)

BASIC

' \$INCLUDE: 'DASDECL.BI'
...
DIM nOpt AS INTEGER
DIM nChan AS INTEGER
DIM wPat AS INTEGER
...
wDasErr = KGetDITrig% (hAD, nOpt, nChan, wPat)

 $\overline{\mathbf{\Phi}}$

 \oplus

K_GetDOCurVal

Boards Supported	All		
Purpose	Gets the digital outp	but value.	
Prototype	C/C++ DASErr far pascal K_GetDOCurVal (DWORD hFrame, void far *pValue);		
Turbo Pascal Function K_GetDOCurVal (<i>hFrame</i> : Longint; Var <i>pValue</i> : Longint) : Word;			
	Turbo Pascal for Windows Function K_GetDOCurVal (<i>hFrame</i> : Longint; Var <i>pValue</i> : Longint) : Word; far; external 'DASSHELL'; Visual Basic for Windows Declare Function K_GetDOCurVal Lib "DASSHELL.DLL" (ByVal <i>hFrame</i> As Long, <i>pValue</i> As Long) As Integer		
	BASIC DECLARE FUNCTION KGetDOCurVal% ALIAS "K_GetDOCurVal" (BYVAL hFrame AS LONG, SEG pValue AS LONG)		
Parameters	hFrame	Handle to the frame that defines the digital output operation.	
	pValue	Digital output value. Value stored: 0 to 255 for DAS-1800HC Series boards 0 to 15 for DAS-1800ST/HR Series boards	

 \oplus

4-113

 $(2^{n})^{1/2} (\sqrt{n})^{-1}$

K_GetDOCurVal (cont.)

Return Value	This function returns an integer error/status code. Error/status code 0 indicates that the function executed successfully. A non-zero error/status code indicates that an error occurred. Refer to Appendix A for additional information.		
Remarks	On return, <i>pValue</i> contains the digital output value that was specified as the <i>pValue</i> parameter in the most recent call to K_DOWrite . This value is not necessarily the current value at the digital output channel.		
	Only the least-significant eight bits of $pValue$ are valid for DAS-1800HC Series boards; only the least-significant four bits of $pValue$ are valid for DAS-1800ST/HR Series boards.		
See Also	K_DOWrite		
Usage	<pre>C/C++ #include "DASDECL.H" // Use "DASDECL.HPP for C++ DWORD dwDOValue; wDasErr = K_GetDOCurVal (hDO, &dwDOValue);</pre>		
	<pre>Turbo Pascal uses D1800TP7; (* Use D1800TP6 for TP ver 6.0 *) dwDOValue : Longint; wDasErr := K_GetDOCurVal (hD0, dwDOValue);</pre>		
	Turbo Pascal for Windows {\$I DASDECL.INC} dwDOValue : Longint;		
	<pre> wDasErr := K_GetDOCurVal (hDO, dwDOValue);</pre>		

 \oplus

 \oplus

Φ

4-114

K_GetDOCurVal (cont.)

Visual Basic for Windows

(Include DASDECL.BAS in your program make file)

... Global dwDOValue As Long ... wDasErr = K_GetDOCurVal (hDO, dwDOValue) BASIC

' \$INCLUDE: 'DASDECL.BI'
...
DIM dwDOValue AS LONG
...
wDasErr = KGetDOCurVal% (hDO, dwDOValue)

K_GetDOFrame

Boards Supported	All		
Purpose	Accesses a DO frame for a digital output operation.		
Prototype	C/C++ DASErr far pascal K_GetDOFrame (DWORD <i>hDev</i> , DWORD far * <i>pFrame</i>);		
	Turbo Pascal Function K_GetDOFran Var <i>pFrame</i> : Longint)	Turbo Pascal Function K_GetDOFrame (<i>hDev</i> : Longint; Var <i>pFrame</i> : Longint) : Word;	
	Turbo Pascal for Windows Function K_GetDOFrame (<i>hDev</i> : Longint; Var <i>pFrame</i> : Longint) : Word; far; external 'DASSHELL';		
	Visual Basic for Windows Declare Function K_GetDOFrame Lib "DASSHELL.DLL" (ByVal hDev As Long, pFrame As Long) As Integer		
	BASIC DECLARE FUNCTION KGetDOFrame% ALIAS "K_GetDOFrame" (BYVAL hDev AS LONG, SEG pFrame AS LONG)		
Parameters	hDev	Handle associated with the board.	
	hFrame	Handle to the frame that defines the digital output operation.	
Return Value	This function returns an integer error/status code. Error/status code 0 indicates that the function executed successfully. A non-zero error/status code indicates that an error occurred. Refer to Appendix A for additional information.		

 \oplus

 \oplus

 \oplus

Function Reference

 $\overline{\Phi}$

 \oplus

φ

K_GetDOFrame (cont.)

Remarks	This function specifies that you want to perform an interrupt-mode digita output operation on the board specified by <i>hDev</i> and accesses an availabl digital output frame with the handle <i>hFrame</i> . The frame is initialized to its default settings; the default settings are given in Table 3-4 on page 3-5 K_FreeFrame, K_ClearFrame			
See Also				
Usage	<pre>C/C++ #include "DASDECL.H" // Use "DASDECL.HPP for C++ DWORD hDO; wDasErr = K_GetDOFrame (hDev, &hDO);</pre>			
	<pre>Turbo Pascal uses D1800TP7; (* Use D1800TP6 for TP ver 6.0 *) hD0 : Longint; wDasErr := K_GetDOFrame (hDev, hD0);</pre>			
	<pre>Turbo Pascal for Windows (\$I DASDECL.INC) hDO : Longint; wDasErr := K_GetDOFrame (hDev, hDO); Visual Basic for Windows (Include DASDECL.BAS in your program make file) Global hDO As Long wDasErr = K_GetDOFrame (hDev, hDO)</pre>			

K_GetDOFrame (cont.)

BASIC

```
' $INCLUDE: 'DASDECL.BI'
...
DIM hDO AS LONG
...
wDasErr = KGetDOFrame% (hDev, hDO)
```

 \oplus

 \oplus

 $\chi_{1} = \cdots = \pi$

and a second straight provide

 \oplus

 \oplus

÷

K_GetErrMsg

Boards Supported	All	
Purpose	Gets the address of an error message string.	
Prototype	 C/C++ DASErr far pascal K_GetErrMsg (DWORD hDev, short nDASErr, char far * far * pErrMsg); Turbo Pascal Not supported Turbo Pascal for Windows Not supported Visual Basic for Windows Not supported BASIC Not supported 	
Parameters	hDev	Handle associated with the board.
	nDASErr	Error message number.
	pErrMsg	Address of error message string.
Return Value	This function returns an integer error/status code. Error/status code 0 indicates that the function executed successfully. A non-zero error/status code indicates that an error occurred. Refer to Appendix A for additional information.	
Remarks	For the board specified string corresponding to	by hDev, this function stores the address of the perror message number nDASErr in pErrMsg.
	Refer to page 2-4 for more information about error handling. Refer to Appendix A for a list of error codes and their meanings.	

 \oplus

4-119

÷-

K_GetErrMsg (cont.)

Usage	C/C++					
	<pre>#include "DASDECL.H" // Use "DASDECL.HPP for C++</pre>					
	 char far *pErrMsg;					
	 wDasErr = K_GetErrMsg (hDev, wDasErr, &pErrMsg);					

 \oplus

Φ

 \oplus

Ē

 $\overline{\Phi}$

K_GetExtClkEdge

Boards Supported	All		
Purpose	Reads the active edge of the external clock.		
Prototype	ototypeC/C++ DASErr far pascal K_GetExtClkEdge (DWORD hFrame, short far *pEdge);Turbo Pascal Function K_GetExtClkEdge (hFrame : Longint; 		
	Visual Basic for Windows Declare Function K_GetExtClkEdge Lib "DASSHELL.DLL" (ByVal hFrame As Long, pEdge As Integer) As Integer		
	BASIC DECLARE FUNCTION KGetExtClkEdge% ALIAS "K_GetExtClkEdge" (BYVAL <i>hFrame</i> AS LONG, SEG <i>pEdge</i> AS INTEGER)		
Parameters	hFrame	Handle to the frame that defines the operation.	
	pEdge	Active edge of external clock. Value stored: 0 for Negative edge 1 for Positive edge	
Return Value	This function returns an integer error/status code. Error/status code 0 indicates that the function executed successfully. A non-zero error/status code indicates that an error occurred. Refer to Appendix A for additional information.		

4-121

 \oplus

 \oplus

K_GetExtClkEdge (cont.)

Remarks	For the operation defined by $hFrame$, this function stores the active edge of the external clock in <i>pEdge</i> .		
	The $pEdge$ variable contains the value of the External Clock Edge element.		
See Also	K_SetExtClkEdge		
Usage	<pre>C/C++ #include "DASDECL.H" // Use "DASDECL.HPP for C++ WORD wMode; wDasErr = K_GetExtClkEdge (hAD, &wMode);</pre>		
	<pre>Turbo Pascal uses D1800TP7; (* Use D1800TP6 for TP ver 6.0 *) wMode : Word; wDasErr := K_GetExtClkEdge (hAD, wMode);</pre>		
	Turbo Pascal for Windows (\$I DASDECL.INC) wMode : Word;		
	 wDasErr := K_GetExtClkEdge (hAD, wMode);		
	Visual Basic for Windows (Include DASDECL.BAS in your program make file)		
	 Global wMode As Integer		
	 wDasErr = K GetExtClkEdge (hAD, wMode)		

 \oplus

 \oplus

φ

-+ chap04_.frm Page 123 Thursday, April 14, 1994 1:57 PM

 \oplus

Ð

 \oplus

K_GetExtClkEdge (cont.)

BASIC
' \$INCLUDE: 'DASDECL.BI'
...
DIM wMode AS INTEGER
...
wDasErr = KGetExtClkEdge% (hAD, wMode)

K_GetG

Boards Supported	All		
Purpose	Gets the gain.		
Prototype	C/C++ DASErr far pascal K_C	GetG (DWORD hFrame, short far *pGain);	
	Turbo Pascal Function K_GetG (<i>hFr</i>	ame : Longint; Var pGain : Word) : Word;	
	Turbo Pascal for Windows Function K_GetG (<i>hFrame</i> : Longint; Var <i>pGain</i> : Word) : Word; far; external 'DASSHELL';		
	Visual Basic for Windows Declare Function K_GetG Lib "DASSHELL.DLL" (ByVal hFrame As Long, pGain As Integer) As Integer		
	BASIC DECLARE FUNCTIO (BYVAL <i>hFrame</i> AS L	N KGetG% ALIAS "K_GetG" ONG, SEG pGain AS INTEGER)	
Parameters	hFrame	Handle to the frame that defines the operation.	
	pGain	Gain code. Valid values: 0 to 3 for DAS board channels 0 to 7 for EXP-1800 channels Refer to Table 2-2 on page 2-10 for the gain and input ranges associated with each gain code.	
Return Value	This function returns and indicates that the function code indicates that an e information.	n integer error/status code. Error/status code 0 ion executed successfully. A non-zero error/status error occurred. Refer to Appendix A for additional	

 \oplus

 \oplus

Function Reference

 \oplus

÷

 \oplus

 \oplus

 \oplus

Remarks	For the operation defined by $hFrame$, this function stores the gain code for a single channel or for a group of consecutive channels in pGain.
See Also	K_SetG, K_SetStartStopG
Usage	C/C++ #include "DASDECL.H" // Use "DASDECL.HPP for C++
	WORD wGain;
	wDasErr = K_GetG (hAD, &wGain);
	Turbo Pascal uses D1800TP7; (* Use D1800TP6 for TP ver 6.0 *)
	WGain : Word;
	 wDasErr := K_GetG (hAD, wGain);
	Turbo Pascal for Windows {\$1 DASDECL.INC}
	wGain : Word;
	wDasErr := K_GetG (hAD, wGain);
	Visual Basic for Windows (Include DASDECL.BAS in your program make file)
	 Global wGain As Integer
	 wDasErr = K_GetG (hAD, wGain)
	BASIC ' \$INCLUDE: 'DASDECL.BI'
	DIM wGain AS INTEGER
	 wDasErr = KGetG% (hAD, wGain)

 \oplus

4-125

K_GetGate

Boards Supported	All		
Purpose	Gets the status of the ha	ardware gate.	
Prototype	C/C++ DASErr far pascal K_C	GetGate (DWORD <i>hFrame</i> , short far * <i>pMode</i>);	
	Turbo Pascal Function K_GetGate (<i>h</i>	Frame : Longint; Var pMode : Word) : Word;	
	 Turbo Pascal for Windows Function K_GetGate (<i>hFrame</i> : Longint; Var <i>pMode</i> : Word) : Word; far external 'DASSHELL'; Visual Basic for Windows Declare Function K_GetGate Lib "DASSHELL.DLL" (ByVal <i>hFrame</i> As Long, <i>pMode</i> As Integer) As Integer 		
	BASIC DECLARE FUNCTIO (BYVAL <i>hFrame</i> AS L	N KGetGate% ALIAS "K_GetGate" .ONG, SEG <i>pMode</i> AS INTEGER)	
Parameters	hFrame	Handle to the frame that defines the operation.	
	pMode	Status of the hardware gate. Value stored: 0 for Gate disabled 1 for Positive gate enabled 2 for Negative gate enabled	
Return Value	This function returns an indicates that the function code indicates that an e information.	n integer error/status code. Error/status code 0 on executed successfully. A non-zero error/status rror occurred. Refer to Appendix A for additional	

 \oplus

 \oplus

 Φ

 \oplus

 \oplus

K_GetGate (cont.)

Remarks	For the operation defined by $hFrame$, this function stores the status of the hardware gate in $pMode$.	
	The <i>pMode</i> variable contains the value of the Hardware Gate element.	
See Also	K_SetGate	
Usage	<pre>C/C++ #include "DASDECL.H" // Use "DASDECL.HPP for C++ WORD wMode; wDasErr = K_GetGate (hAD, &wMode);</pre>	
	<pre>Turbo Pascal uses D1800TP7; (* Use D1800TP6 for TP ver 6.0 *) wMode : Word; wDasErr := K_GetGate (hAD, wMode);</pre>	
	<pre>Turbo Pascal for Windows (\$I DASDECL.INC) wMode : Word; wDasErr := K_GetGate (hAD, wMode);</pre>	
	Visual Basic for Windows (Include DASDECL.BAS in your program make file) Global wMode As Integer wDasErr = K_GetGate (hAD, wMode)	

 \oplus

4-127

¢

K_GetGate (cont.)

BASIC

```
' $INCLUDE: 'DASDECL.BI'
...
DIM wMode AS INTEGER
...
wDasErr = KGetGate% (hAD, wMode)
```


 \oplus

 $\overline{\Phi}$

 $\oplus (\pi + \cdots + \pi)$

- A STATE STATE

Ð

 $\overline{\Phi}$

 \oplus

 \oplus

 \oplus

Boards Supported	All		
Purpose	Gets the current DAS s	shell version.	
Prototype	C/C++ DASErr far pascal K_C	GetShellVer (WORD far *pVersion);	
	Turbo Pascal Function K_GetShellV	er (Var pVersion : Word) : Word;	
	Turbo Pascal for Win Function K_GetShellV external 'DASSHELL';	dows er (Var <i>pVersion</i> : Word) : Word; far;	
	Visual Basic for Windows Declare Function K_GetShellVer Lib "DASSHELL.DLL" (pVersion As Integer) As Integer		
	BASIC DECLARE FUNCTIO (SEG <i>pVersion</i> AS INT	N KGetShellVer% ALIAS "K_GetShellVer" TEGER)	
Parameters	pVersion	A word value containing the major and minor version numbers of the DAS shell.	
Return Value	This function returns a indicates that the funct code indicates that an e information.	n integer error/status code. Error/status code 0 ion executed successfully. A non-zero error/status error occurred. Refer to Appendix A for additional	
Remarks	To obtain the major ve 256. To obtain the min Boolean AND operation	rsion number of the DAS shell, divide <i>pVersion</i> by or version number of the DAS shell, perform a on with <i>pVersion</i> and 256 (0FF hex).	

 \oplus

4-129

K_GetShellVer (cont.)

Usage

```
C/C++
#include "DASDECL.H" // Use "DASDECL.HPP for C++
...
WORD wShellVer;
...
wDasErr = K_GetShellVer (&wShellVer);
printf ("Shell Ver %d.%d", wShellVer >> 8, wShellVer & 0xff);
```

Turbo Pascal

```
uses D1800TP7; (* Use D1800TP6 for TP ver 6.0 *)
...
wShellVer : Word;
...
wDasErr := K_GetShellVer (wShellVer);
FormatStr(VerStr, ' %4x ', nShellVer / 256, '.', nShellVer And
$ff);
writeln(' Shell Ver ', VerStr);
```

Turbo Pascal for Windows

```
{$I DASDECL.INC)
...
wShellVer : Word;
...
wDasErr := K_GetShellVer (wShellVer);
FormatStr(VerStr, ' %4x ', nShellVer / 256, '.', nShellVer And
$ff);
writeln(' Shell Ver ', VerStr);
```

Visual Basic for Windows

```
(Include DASDECL.BAS in your program make file)
...
Global wShellVer As Integer;
...
wDasErr = K_GetShellVer (wShellVer)
ShellVer$ = LTRIM$(STR$(wShellVer / 256)) + "." + :
LTRIM$(STR$(wShellVer AND &HFF))
PRINT "Driver Ver: " + ShellVer$
```

Function Reference

4-130

chap04_.frm Page 131 Thursday, April 14, 1994 1:57 PM

 \oplus

Φ

K_GetShellVer (cont.)

BASIC
' \$INCLUDE: 'DASDECL.BI'
...
DIM wShellVer AS INTEGER
...
wDasErr = KGetShellVer% (wShellVer)
ShellVer\$ = LTRIM\$(STR\$(nShellVer / 256)) + "." + :
LTRIM\$(STR\$(nShellVer AND &HFF))
PRINT "Shell Ver: " + ShellVer\$

 \oplus

4-131

K_GetSSH

Boards Supported	Ali		
Purpose	Gets the status of the SS	SH mode.	
Prototype	C/C++ DASErr far pascal K_GetSSH (DWORD <i>hFrame</i> , WORD far * <i>pMode</i>);		
	Turbo Pascal Function K_GetSSH (h	Frame : Longint; Var pMode : Word) : Word;	
	 Turbo Pascal for Windows Function K_GetSSH (<i>hFrame</i> : Longint; Var <i>pMode</i> : Word) : Word; far external 'DASSHELL'; Visual Basic for Windows Declare Function K_GetSSH Lib "DASSHELL.DLL" (ByVal <i>hFrame</i> As Long, <i>pMode</i> As Integer) As Integer BASIC DECLARE FUNCTION KGetSSH% ALIAS "K_GetSSH" (BYVAL <i>hFrame</i> AS LONG, SEG <i>pMode</i> AS INTEGER)		
Parameters	hFrame	Handle to the frame that defines the operation.	
	pMode	Code that indicates the SSH mode. Value stored: 0 for Disabled 1 for Enabled	
Return Value	This function returns ar indicates that the functi code indicates that an e information.	n integer error/status code. Error/status code 0 on executed successfully. A non-zero error/status rror occurred. Refer to Appendix A for additional	

 \oplus

 $\bar{\Phi}$

Function Reference

Φ

Φ

÷

 \oplus

¢

 \oplus

φ

Remarks	For the operation defined by $hFrame$, this function stores the code that indicates the SSH mode in <i>pMode</i> .		
	The <i>pMode</i> variable contains the value of the SSH Mode element.		
	Refer to page 2-15 for information on conversion modes.		
See Also	K_SetSSH		
Usage	C/C++ #include "DASDECL.H" // Use "DASDECL.HPP for C++ WORD wMode; 		
	wDasErr = K_GetSSH (hAD, &wMode);		
	Turbo Pascal uses D1800TP7; (* Use D1800TP6 for TP ver 6.0 *) wMode : Word;		
	wDasErr := K_GetSSH (hAD, wMode);		
	Turbo Pascal for Windows (\$I DASDECL.INC)		
	wMode : Word;		
	 wDasErr := K_GetSSH (hAD, wMode);		
	Visual Basic for Windows (Include DASDECL.BAS in your program make file)		
	 Global wMode As Integer 		
	wDasErr = K_GetSSH (hAD, wMode)		

K_GetSSH (cont.)

BASIC

' \$INCLUDE: 'DASDECL.BI'
...
DIM wMode AS INTEGER
...
wDasErr = KGetSSH% (hAD, wMode)

 \oplus

 \oplus

 $\bar{\Phi}$

 \oplus

¢

 $\overline{\Phi}$

 \oplus

K_GetStartStopChn

Boards Supported	All	
Purpose	Gets the first and last channels in a group of consecutive channels.	
Prototype	C/C++ DASErr far pascal K_GetStartStopChn (DWORD <i>hFrame</i> , short far * <i>pStart</i> , short far * <i>pStop</i>);	
	Turbo Pascal Function K_GetStartStopChn (<i>hFrame</i> : Longint; Var <i>pStart</i> : Word; Var <i>pStop</i> : Word) : Word;	•
	Turbo Pascal for Windows Function K_GetStartStopChn (<i>hFrame</i> : Longint; Var <i>pStart</i> : Word; Var <i>pStop</i> : Word) : Word; far; external 'DASSHELL';	;
	Visual Basic for Windows Declare Function K_GetStartStopChn Lib "DASSHELL.DLL" (ByVal hFrame As Long, pStart As Integer, pStop As Integer) As In	iteger
	BASIC DECLARE FUNCTION KGetStartStopChn% ALIAS "K_GetStartStopChn" (BYVAL <i>hFrame</i> AS LONG, SEG <i>pStart</i> AS INTEGER, SEG <i>pStop</i> AS INTEGER)	
Parameters	hFrame Handle to the frame that defines the operation	on.

 \oplus

4-135

K_GetStartStopChn (cont.)

pStart First of Valid	channel in a group of values:	f consecutive channels.	
	Valid channel numbers		
Board	Differential	Single-ended	
DAS-1800HC	0 to 31	0 to 63	
DAS-1800ST/HR without EXP-1800 expansion boards attached	0 to 7	0 to 15	
DAS-1800ST/HR with N EXP-1800 expansion boards attached	Not applicable	0 to 15(N + 1)	

	pStop	Last channel in a group of consecutive channels. Valid values: Same as for <i>pStart</i> above
Return Value	This function retuindicates that the code indicates that information.	arns an integer error/status code. Error/status code 0 function executed successfully. A non-zero error/status at an error occurred. Refer to Appendix A for additional
Remarks	For the operation defined by <i>hFrame</i> , this function stores the first channel in a group of consecutive channels in <i>pStart</i> and the last channel in the group of consecutive channels in <i>stop</i> . The <i>pStart</i> variable contains the value of the Start Channel element.	
	The <i>pStop</i> variabl	e contains the value of the Stop Channel element.
See Also	K_SetStartStopCl	nn, K_GetStartStopG
Usage	C/C++ #include "DAS short nStart, wDasErr = K_G	DECL.H" // Use "DASDECL.HPP for C++ nStop; etStartStopChn (hAD, &nStart, &nStop);
4.400		

4-136

Function Reference

 \oplus

K_GetStartStopChn (cont.)

Turbo Pascal

uses D1800TP7; (* Use D1800TP6 for TP ver 6.0 *)
...
nStart : Integer;
nStop : Integer;
...
wDasErr := K_GetStartStopChn (hAD, nStart, nStop)

Turbo Pascal for Windows

(\$I DASDECL.INC)
...
nStart : Integer;
nStop : Integer;
...
wDasErr := K_GetStartStopChn (hAD, nStart, nStop)

Visual Basic for Windows

(Include DASDECL.BAS in your program make file)

...
Global nStart As Integer
Global nStop As Integer
...
wDasErr = K_GetStartStopChn (hAD, nStart, nStop)

BASIC

 \oplus

' \$INCLUDE: 'DASDECL.BI'
...
DIM nStart AS INTEGER
DIM nStop AS INTEGER
...
wDasErr = KGetStartStopChn% (hAD, nStart, nStop)

4-137

K_GetStartStopG

Boards Supported	All
Purpose	Gets the first and last channels in a group of consecutive channels and the gain for all channels in the group.
Prototype	C/C++ DASErr far pascal K_GetStartStopG (DWORD <i>hFrame</i> , short far * <i>pStart</i> , short far * <i>pStop</i> , short far * <i>pGain</i>);
	Turbo Pascal Function K_GetStartStopG (<i>hFrame</i> : Longint; Var <i>pStart</i> : Word; Var <i>pStop</i> : Word; Var <i>pGain</i> : Word) : Word;
	Turbo Pascal for Windows Function K_GetStartStopG (<i>hFrame</i> : Longint; Var <i>pStart</i> : Word; Var <i>pStop</i> : Word; Var <i>pGain</i> : Word) : Word; far; external 'DASSHELL';
	Visual Basic for Windows Declare Function K_GetStartStopG Lib "DASSHELL.DLL" (By Val hFrame As Long, pStart As Integer, pStop As Integer, pGain As Integer) As Integer
	BASIC DECLARE FUNCTION KGetStartStopG% ALIAS "K_GetStartStopG" (BYVAL hFrame AS LONG, SEG pStart AS INTEGER, SEG pStop AS INTEGER, SEG pGain AS INTEGER)

 \oplus

4-138

 \oplus

 \oplus

Function Reference

 $\bar{\oplus}$

K_GetStartStopG (cont.)

Parameters	hF rame	Handle to the frame that defines the operation.			
	Valid values:				
			Valid chan	annel numbers	
	Board	Differ	rential	Single-ended	
	DAS-1800HC	0 to 31	1	0 to 63	
	DAS-1800ST/HR withou EXP-1800 expansion boa attached	t 0 to 7 rds		0 to 15	
	DAS-1800ST/HR with N EXP-1800 expansion boa attached	rds Not ap	plicable	0 to 15 (<i>N</i> + 1)	
	pStop	Last channel in a group of consecutive channels. Valid values: Same as for <i>pStart</i> above			
	pGain	Gain code. Valid values: 0 to 3 for DAS board channels 0 to 7 for EXP-1800 channels Refer to Table 2-2 on page 2-10 for the gain and input ranges associated with each gain code.			
Return Value	This function returns an indicates that the function	integer error/sta	atus code. Er	ror/status code 0	

Return Value This function returns an integer error/status code. Error/status code 0 indicates that the function executed successfully. A non-zero error/status code indicates that an error occurred. Refer to Appendix A for additional information.

Đ

4-139

K_GetStartStopG (cont.)

Remarks	For the operation defined by $hFrame$, this function stores the first channel in a group of consecutive channels in <i>pStart</i> , the last channel in the group of consecutive channels in <i>pStop</i> , and the gain code for all channels in the group in <i>pGain</i> .				
	The pStart variable contains the value of the Start Channel element.				
	The <i>pStop</i> variable contains the value of the Stop Channel element. The <i>pGain</i> variable contains the value of the Gain element.				
See Also	K_SetStartStopG				
Usage	<pre>C/C++ #include "DASDECL.H" // Use "DASDECL.HPP for C++ short nStart, nStop, nGain; wDasErr = K_GetStartStopG (hAD, &nStart, &nStop, &nGain); Turbo Pascal uses D1800TP7; (* Use D1800TP6 for TP ver 6.0 *) nStart : Integer; nStop : Integer; nGain : Integer; wDasErr := K_GetStartStopG (hAD, nStart, nStop, nGain) Turbo Pascal for Windows (\$I DASDECL.INC)</pre>				
	nStart : Integer; nStop : Integer; nGain : Integer; wDasErr := K_GetStartStopG (hAD, nStart, nStop, nGain)				

 \oplus

.

 \oplus

0

⇔ chap04_.frm Page 141 Thursday, April 14, 1994 1:57 PM

 \oplus

.

⊕

K_GetStartStopG (cont.)

Visual Basic for Windows (Include DASDECL.BAS in your program make file)

 \oplus

... Global nStart As Integer Global nStop As Integer Global nGain As Integer ... wDasErr = K_GetStartStopG (hAD, nStart, nStop, nGain) BASIC ' \$INCLUDE: 'DASDECL.BI' ... DIM nStart AS INTEGER DIM nStop AS INTEGER DIM nGain AS INTEGER ... wDasErr = KGetStartStopG% (hAD, nStart, nStop, nGain)

4-141
K_GetTrig

Boards Supported	All		
Purpose	Gets the start trigger so	urce.	
Prototype	C/C++ DASErr far pascal K_GetTrig (DWORD <i>hFrame</i> , short far * <i>pMode</i>);		
	Turbo Pascal Function K_GetTrig (<i>h</i> .	Frame : Longint; Var pMode : Word) : Word;	
	Turbo Pascal for Windows Function K_GetTrig (<i>hFrame</i> : Longint; Var <i>pMode</i> : Word) : Word; far external 'DASSHELL';		
	Visual Basic for Windows Declare Function K_GetTrig Lib "DASSHELL.DLL" (ByVal hFrame As Long, pMode As Integer) As Integer		
	BASIC DECLARE FUNCTION (BYVAL <i>hFrame</i> AS L	N KGetTrig% ALIAS "K_GetTrig" ONG, SEG <i>pMode</i> AS INTEGER)	
Parameters	hFrame	Handle to the frame that defines the operation.	
	pMode	Start trigger source. Value stored: 0 for Internal trigger 1 for External trigger	
Return Value	This function returns an integer error/status code. Error/status code 0 indicates that the function executed successfully. A non-zero error/status code indicates that an error occurred. Refer to Appendix A for additional information.		
Remarks	For the operation defined by $hFrame$, this function stores the trigger source in <i>pMode</i> .		

 \oplus

0

 \oplus

Function Reference

 \oplus

K_GetTrig (cont.)

The pMode variable contains the value of the Start Trigger Source element. An internal trigger is a software trigger; conversions begin when the operation is started. An external trigger is either an analog trigger or a digital trigger; conversions begin when the trigger event occurs. Refer to page 2-25 for more information about internal and external trigger sources. See Also K_SetTrig Usage C/C++ // Use "DASDECL.HPP for C++ #include "DASDECL.H" . . . WORD wMode; . . . wDasErr = K_GetTrig (hAD, &wMode); **Turbo Pascal** uses D1800TP7; (* Use D1800TP6 for TP ver 6.0 *) . . . wMode : Word; . . . wDasErr := K_GetTrig (hAD, wMode); **Turbo Pascal for Windows** (\$I DASDECL.INC) . . . wMode : Word; . . . wDasErr := K_GetTrig (hAD, wMode); **Visual Basic for Windows** (Include DASDECL.BAS in your program make file) . . . Global wMode As Integer

wDasErr = K_GetTrig (hAD, wMode)

 \oplus

K_GetTrig (cont.)

BASIC

```
' $INCLUDE: 'DASDECL.BI'
...
DIM wMode AS INTEGER
...
wDasErr = KGetTrig% (hAD, wMode)
```

 \oplus

 \oplus

ese arres

 $\overline{\mathbf{\Phi}}$

 \oplus

 \oplus

K_GetTrigHyst

Boards Supported	All		
Purpose	Gets the trigger hystere	esis value.	
Prototype	C/C++ DASErr far pascal K_GetTrigHyst (DWORD hFrame, short far *pHyst);		
	Turbo Pascal Function K_GetTrigHyst (<i>hFrame</i> : Longint; Var <i>pHyst</i> : Word) : Word;		
	Turbo Pascal for Windows Function K_GetTrigHyst (<i>hFrame</i> : Longint; Var <i>pHyst</i> : Word) : Word; far; external 'DASSHELL';		
	Visual Basic for Windows Declare Function K_GetTrigHyst Lib "DASSHELL.DLL" (ByVal hFrame As Long, pHyst As Integer) As Integer		
	BASIC DECLARE FUNCTION KGetTrigHyst% ALIAS "K_GetTrigHyst" (BYVAL hFrame AS LONG, SEG pHyst AS INTEGER)		
Parameters	hFrame	Handle to the frame that defines the operation.	
	pHyst	Hysteresis value. Value stored: 0 to 4,095 for DAS-1800HC/ST Series boards 0 to 65,535 for DAS-1800HR Series boards	
Return Value	This function returns a indicates that the funct code indicates that an e information.	n integer error/status code. Error/status code 0 ion executed successfully. A non-zero error/status error occurred. Refer to Appendix A for additional	

 \oplus

K_GetTrigHyst (cont.)

Remarks	For the operation defined by $hFrame$, this function stores the hysteresis value used for an analog trigger in <i>pHyst</i> . The value is represented in raw counts; refer to Appendix B for information on converting the raw count to voltage.			
	The <i>pHyst</i> variable contains the value of the Trigger Hysteresis element.			
	Refer to page 2-20 for more information about analog triggers.			
See Also	K_SetTrigHyst			
Usage	C/C++ #include "DASDECL.H" // Use "DASDECL.HPP for C++			
	short nHyst;			
	 wDasErr = K_GetTrigHyst (hAD, &nHyst);			
	Turbo Pascal uses D1800TP7; (* Use D1800TP6 for TP ver 6.0 *)			
	nHyst : Integer;			
	wDasErr := K_GetTrigHyst (hAD, nHyst);			
	Turbo Pascal for Windows {\$I DASDECL.INC}			
	nHyst : Integer;			
	wDasErr := K_GetTrigHyst (hAD, nHyst);			
	Visual Basic for Windows (Include DASDECL.BAS in your program make file)			
	Global nHyst As Integer;			
	wDasErr = K_GetTrigHyst (hAD, nHyst)			

 \oplus

Function Reference

 \oplus

 \oplus

 \oplus

4-146

 \oplus

- chap04_.frm Page 147 Thursday, April 14, 1994 1:57 PM

 \oplus

 \oplus

\oplus

 \oplus

K_GetTrigHyst (cont.)

BASIC
' \$INCLUDE: 'DASDECL.BI'
...
DIM nHyst AS INTEGER
...
wDasErr = KGetTrigHyst% (hAD, nHyst)

K_GetVer

Boards Supported	All		
Purpose	Gets revision numbers.		
Prototype	C/C++ DASErr far pascal K_C short far * <i>pDrvVer</i>);	SetVer (DWORD <i>hDev</i> , short far * <i>pSpecVer</i> ,	
	Turbo Pascal Function K_GetVer (<i>hL</i> Var <i>pDrvVer</i> : Word) : V	Dev : Longint; Var <i>pSpecVer</i> : Word; Word;	
	Turbo Pascal for Windows Function K_GetVer (<i>hDev</i> : Longint; Var <i>pSpecVer</i> : Word; Var <i>pDrvVer</i> : Word) : Word; far; external 'DASSHELL';		
	Visual Basic for Wind Declare Function K_Ge (ByVal hDev As Long, Integer	ows etVer Lib "DASSHELL.DLL" <i>pSpecVer</i> As Integer, <i>pDrvVer</i> As Integer) As	
	BASIC DECLARE FUNCTIO (BYVAL <i>hDev</i> AS LOI SEG <i>pDrvVer</i> AS INTE	N KGetVer% ALIAS "K_GetVer" NG, SEG <i>pSpecVer</i> AS INTEGER, EGER)	
Parameters	hDev	Handle associated with the board.	
	pSpecVer	Revision number of the DAS Driver Specification to which the driver conforms.	
	pDrvVer	Driver version number.	
Return Value	This function returns ar indicates that the functi code indicates that an e information.	n integer error/status code. Error/status code 0 on executed successfully. A non-zero error/status rror occurred. Refer to Appendix A for additional	
4-148		Function Poteroneo	

 \oplus

 \oplus

 $\overline{\Phi}$

Function Reference

Remarks For the board specified by hDev, this function stores the revision number of the DAS-1800 Series Function Call Driver in pDrvVer and the revision number of the driver specification in pSpecVer.

The values stored in *pSpecVer* and *pDrvVer* are two-byte (16-bit) integers; the high byte of each contains the major revision level and the low byte of each contains the minor revision level. For example, if the driver version number is 2.1, the major revision level is 2 and the minor revision level is 1; therefore, the high byte of *pDrvVer* contains the value of 2 (512) and the low byte of *pDrvVer* contains the value of 1; the value of both bytes is 513.

To extract the major and minor revision levels from the value stored in pDrvVer or pSpecVer, use the following equations:

major revision level = Integer portion of $\left(\frac{\text{returned value}}{256}\right)$

minor revision level = returned value MOD 256

Usage

ŧ

```
C/C++
#include "DASDECL.H"
                        // Use "DASDECL.HPP for C++
. . .
short nSpecVer, nDrvVer;
. . .
wDasErr = K_GetVer (hDev, &nSpecVer, &nDrvVer);
printf ("Driver Ver %d.%d", nDrvVer >> 8, nDrvVer & 0xff);
Turbo Pascal
uses D1800TP7;
                  (* Use D1800TP6 for TP ver 6.0 *)
. . .
nSpecVer : Integer
nDrvVer : Integer
. . .
wDasErr := K_GetVer (hDev, nSpecVer, nDrvVer);
```

```
FormatStr(VerStr, ' %4x ', nDrvVer / 256, '.', nDrvVer And $ff);
writeln(' Driver Ver ', VerStr);
```

K_GetVer (cont.)

Turbo Pascal for Windows

{\$I DASDECL.INC}
...
nSpecVer : Integer
nDrvVer : Integer
...
wDasErr := K_GetVer (hDev, nSpecVer, nDrvVer);
FormatStr(VerStr, ' %4x ', nDrvVer / 256, '.', nDrvVer And \$ff);
writeln(' Driver Ver ', VerStr);

Visual Basic for Windows

(Include DASDECL.BAS in your program make file)
...
Global nSpecVer As Integer
Global nDrvVer As Integer
...
wDasErr = K_GetVer (hDev, nSpecVer, nDrvVer)
DrvVer\$ = LTRIM\$(STR\$(nDrvVer / 256)) + "." + :
LTRIM\$(STR\$(nDrvVer AND &HFF))
PRINT "Driver Ver: " + DrvVer\$

BASIC

```
' $INCLUDE: 'DASDECL.BI'
...
DIM nSpecVer AS INTEGER
DIM nDrvVer AS INTEGER
...
wDasErr = KGetVer% (hDev, nSpecVer, nDrvVer)
DrvVer$ = LTRIM$(STR$(nDrvVer / 256)) + "." + :
LTRIM$(STR$(nDrvVer AND &HFF))
PRINT "Driver Ver: " + DrvVer$
```

Function Reference

K_IntAlloc

Boards Supported	All		
Purpose	Allocates a buffer for a	an interrupt-mode operation.	
Prototype	C/C++ DASErr far pascal K_IntAlloc (DWORD <i>hFrame</i> , DWORD <i>dwSamples</i> , void far * far * <i>pBuf</i> , WORD far * <i>pMem</i>);		
	Turbo Pascal Function K_IntAlloc (<i>hFrame</i> : Longint; <i>dwSamples</i> : Longint; <i>pBuf</i> : Pointer; Var <i>pMem</i> : Word) : Word;		
	Turbo Pascal for Windows Function K_IntAlloc (<i>hFrame</i> : Longint; <i>dwSamples</i> : Longint; <i>pBuf</i> : Pointer; Var <i>pMem</i> : Word) : Word; far; external 'DASSHELL';		
	Visual Basic for Windows Declare Function K_IntAlloc Lib "DASSHELL.DLL" (ByVal hFrame As Long, ByVal dwSamples As Long, pBuf As Long, pMem As Integer) As Integer		
	BASIC DECLARE FUNCTIO (BYVAL <i>hF rame</i> AS I SEG <i>pBuf</i> AS LONG,	N KIntAlloc% ALIAS "K_IntAlloc" .ONG, BYVAL <i>dwSamples</i> AS LONG, SEG <i>pMem</i> AS INTEGER)	
Parameters	hFrame	Handle to the frame that defines the operation.	
	dwSamples	Number of samples. Valid values: 1 to 32,767 for Visual Basic for Windows and BASIC 1 to 65,536 for all other languages	
	pBuf	Starting address of the allocated buffer.	
	pMem	Handle associated with the allocated buffer.	

4-151

 \oplus

•

K_IntAlloc (cont.)

Return Value	eturn Value This function returns an integer error/status code. Error/status code 0 indicates that the function executed successfully. A non-zero error/status code indicates that an error occurred. Refer to Appendix A for addition information.			
Remarks	For the operation defined by $hFrame$, this function allocates a buffer of the size specified by <i>dwSamples</i> , and stores the starting address of the buffer in <i>pBuf</i> and the handle of the buffer in <i>pMem</i> .			
	Turbo Pascal and BASIC require that you re-distribute available memory before you dynamically allocate a buffer. Refer to "Reducing the Memory Heap" on page 3-32 (Turbo Pascal) or page 3-46 (BASIC) for additional information.			
See Also	K_IntFree, K_SetBuf, K_BufListAdd			
Usage				
C/C++ #include "D2	ASDECL.H" // Use "DASDECL.HPP for C++			
void far *pl WORD hMem;	Buf; // Pointer to allocated buffer // Memory Handle to buffer			
 wDasErr = K	_IntAlloc (hAD, dwSamples, &pBuf, &hMem);			
Turbo Pascal uses D1800TI 	P7; (* Use D1800TP6 for TP ver 6.0 *)			
TYPE BufType = A: VAR	rray [01] of Integer;			
pBuf : ^Buf! hMem : Word	<pre>Iype; { buffer pointer } ; { Handle to buffer }</pre>			
 wDasErr := 1	<pre>K_IntAlloc(hAD, dwSamples, Addr(pBuf), hMem);</pre>			

 \oplus

Function Reference

4-152

 \oplus

-⊕-

Turbo Pascal for Windows

```
($I DASDECL.INC)
...
TYPE
BufType = Array [0..1] of Integer;
VAR
pBuf : ^BufType; { buffer pointer }
hMem : Word; { Handle to buffer }
...
wDasErr := K_IntAlloc(hAD, dwSamples, Addr(pBuf), hMem);
```

Visual Basic for Windows

```
(Include DASDECL.BAS in your program make file)
...
Global pBuf As Long
Global hMem As Integer
...
wDasErr = K_IntAlloc (hAD, dwSamples, pBuf, hMem)
```

BASIC

```
' $INCLUDE: 'DASDECL.BI'
...
DIM pBuf AS LONG
DIM hMem AS INTEGER
...
wDasErr = KINTAlloc% (hAD, dwSamples, pBuf, hMem)
```

4-153

K_IntFree

Boards Supported	All
Purpose	Frees a buffer allocated for an interrupt-mode operation.
Prototype	C/C++ DASErr far pascal K_IntFree (WORD hMem);
	Turbo Pascal Function K_IntFree (<i>hMem</i> : Word) : Integer;
	Turbo Pascal for Windows Function K_IntFree (<i>hMem</i> : Word) : Integer; far; external 'DASSHELL';
	Visual Basic for Windows Declare Function K_IntFree Lib "DASSHELL.DLL" (ByVal hMem As Integer) As Integer
	BASIC DECLARE FUNCTION KIntFree% ALIAS "K_IntFree" (BYVAL hMem AS INTEGER)
Parameters	hMem Handle to interrupt buffer.
Return Value	This function returns an integer error/status code. Error/status code 0 indicates that the function executed successfully. A non-zero error/status code indicates that an error occurred. Refer to Appendix A for additional information.
Remarks	This function frees the buffer specified by <i>hMem</i> ; the buffer was previously allocated dynamically using K_IntAlloc .
See Also	K_IntAlloc

Function Reference

 \oplus

 $\bar{\Phi}$

 $\bar{\Phi}$

K_IntFree (cont.)

Usage	<pre>C/C++ #include "DASDECL.H" // Use "DASDECL.HPP for C++ wDasErr = K_IntFree (hMem);</pre>		
	Turbo Pascal uses D1800TP7; (* Use D1800TP6 for TP ver 6.0 *)		
	<pre>wDasErr := K_IntFree (hMem); Turbo Pascal for Windows {\$I DASDECL.INC}</pre>		
	<pre>wDasErr := K_IntFree (hMem); Visual Basic for Windows (Include DASDECL BAS in your program make file)</pre>		
	wDasErr = K_IntFree (hMem)		
	BASIC ' \$INCLUDE: 'DASDECL.BI' wDasErr = KIntFree% (hMem)		

 \oplus

 $\overline{\Phi}$

 Φ

K_IntStart

Boards Supported	All
Purpose	Starts an interrupt operation.
Prototype	C/C++ DASErr far pascal K_IntStart (DWORD <i>hFrame</i>);
	Turbo Pascal Function K_IntStart (<i>hFrame</i> : Longint) : Word;
	Turbo Pascal for Windows Function K_IntStart (<i>hFrame</i> : Longint) : Word; far; external 'DASSHELL';
	Visual Basic for Windows Declare Function K_IntStart Lib "DASSHELL.DLL" (ByVal hFrame As Long) As Integer
	BASIC DECLARE FUNCTION KIntStart% ALIAS "K_IntStart" (BYVAL hFrame AS LONG)
Parameters	<i>hFrame</i> Handle to the frame that defines the operation.
Return Value	This function returns an integer error/status code. Error/status code 0 indicates that the function executed successfully. A non-zero error/status code indicates that an error occurred. Refer to Appendix A for additional information.
Remarks	This function starts the interrupt operation defined by $hFrame$. Refer to Chapter 3 for a discussion of the programming tasks associated with interrupt operations.
See Also	K_IntStatus, K_IntStop

 \oplus

 $\overline{\Phi}$

Function Reference

 \oplus

 \oplus

K_IntStart (cont.)

Usage C/C++ #include "DASDECL.H" // Use "DASDECL.HPP for C++ . . . wDasErr = K_IntStart (hAD); Turbo Pascal uses D1800TP7; (* Use D1800TP6 for TP ver 6.0 *) . . . wDasErr := K_IntStart (hAD); **Turbo Pascal for Windows** {\$I DASDECL.INC} . . . wDasErr := K_IntStart (hAD); **Visual Basic for Windows** (Include DASDECL.BAS in your program make file) . . . wDasErr = K_IntStart (hAD) BASIC ' \$INCLUDE: 'DASDECL.BI' . . . wDasErr = KIntStart% (hAD)

⊕

K_IntStatus

Boards Supported	All		
Purpose	Gets status of interrupt of	operation.	
Prototype	C/C++ DASErr far pascal K_IntStatus (DWORD <i>hFrame</i> , short far * <i>pStatus</i> , DWORD far * <i>pCount</i>);		
	Turbo Pascal Function K_IntStatus (<i>hFrame</i> : Longint; Var <i>pStatus</i> : Word; Var <i>pCount</i> : Longint) : Word;		
Turbo Pascal for Windows Function K_IntStatus (<i>hFrame</i> : Longint; Var <i>pStatus</i> : Word Var <i>pCount</i> : Longint) : Word; far; external 'DASSHELL';			
	Visual Basic for Windows Declare Function K_IntStatus Lib "DASSHELL.DLL" (ByVal hFrame As Long, pStatus As Integer, pCount As Long) As Integer		
	BASIC DECLARE FUNCTION (BYVAL <i>hFrame</i> AS LONG) SEG <i>pCount</i> AS LONG	V KIntStatus% ALIAS "K_IntStatus" ONG, SEG <i>pStatus</i> AS INTEGER,)	
Parameters	hFrame	Handle to the frame that defines the operation.	
	pStatus	Status of interrupt operation; see Remarks below for value stored.	
	pCount	Number of samples that were acquired. Value stored: 0 to 65,536	

 \oplus

 \oplus

 \oplus

Function Reference

 \oplus

Φ

- **Return Value** This function returns an integer error/status code. Error/status code 0 indicates that the function executed successfully. A non-zero error/status code indicates that an error occurred. Refer to Appendix A for additional information.
- **Remarks** For the interrupt operation defined by *hFrame*, this function stores the status in *pStatus* and the number of samples acquired in *pCount*.

The value stored in *pStatus* depends on the settings in the Status word, as shown below:

K_IntStatus (cont.)

The bits are described as follows:

- Bit 0: Indicates whether an interrupt-mode operation is in progress.
- Bit 1: The Buffer A/B active bit. If you are using multiple buffers, this bit toggles each time acquisition sample storage is switched to a new buffer. If you are using a single buffer and the operation is in continuous mode, this bit toggles each time an acquisition sample is stored at the beginning of the buffer.
- Bit 2: When set, this bit indicates that the onboard FIFO has overflowed. This event automatically stops all conversions.
- Bit 3: When set, this bit indicates that the board issued an interrupt while the CPU was processing a previous interrupt from the same board.
- Bit 4: This bit is used during continuous buffering mode; it is set when all data acquisition buffers that are currently assigned to the active operation have been filled with data at least once.
- Bits 5-7: Unassigned.
- Bits 8-15: In multiple-buffer acquisitions, these bits indicate the current active buffer number. The active buffer number is related to the Status word as follows:

active buffer =
$$\frac{\text{Status word}}{256}$$

See Also K_IntStart, K_IntStop

Usage C/C++ #include "DASDECL.H" // Use "DASDECL.HPP for C++ ... WORD wStatus; DWORD dwCount; ... wDasErr = K_IntStatus (hAD, &wStatus, &dwCount);

4-160

Function Reference

Turbo Pascal

uses D1800TP7; (* Use D1800TP6 for TP ver 6.0 *) . . . wStatus : Word; dwCount : Longint; . . . wDasErr := K_IntStatus (hAD, wStatus, dwCount); **Turbo Pascal for Windows** (\$1 DASDECL.INC) . . . wStatus : Word; dwCount : Longint; . . . wDasErr := K_IntStatus (hAD, wStatus, dwCount); **Visual Basic for Windows** (Include DASDECL.BAS in your program make file) . . . Global wStatus As Integer Global dwCount As Long . . . wDasErr = K_IntStatus (hAD, wStatus, dwCount) BASIC ' \$INCLUDE: 'DASDECL.BI' . . . DIM wStatus AS INTEGER DIM dwCount AS LONG . . . wDasErr = KIntStatus% (hAD, wStatus, dwCount)

 \oplus

4-161

K_IntStop

 \oplus

 \oplus

Boards Supported	All		
Purpose	Stops an interrupt oper	ation.	
Prototype	C/C++ DASErr far pascal K_l DWORD far * <i>pCount</i>)	IntStop (DWORD <i>hFrame</i> , sho ;	ort far * <i>pStatus</i> ,
	Turbo Pascal Function K_IntStop (<i>h</i> Var <i>pCount</i> : Longint)	<i>Frame</i> : Longint; Var <i>pStatus</i> : : Word;	Word;
	Turbo Pascal for Windows Function K_IntStop (<i>hFrame</i> : Longint; Var <i>pStatus</i> : Word; Var <i>pCount</i> : Longint) : Word; far; external 'DASSHELL';		
	Visual Basic for Wind Declare Function K_Ir (ByVal hFrame As Log Integer	lows atStop Lib "DASSHELL.DLL" ng, <i>pStatus</i> As Integer, <i>pCount</i>	As Long) As
	BASIC DECLARE FUNCTIC (BYVAL hFrame AS I SEG pCount AS LON	ON KIntStop% ALIAS "K_IntS LONG, SEG <i>pStatus</i> AS INTE G)	Stop" GER,
Parameters	hFrame	Handle to the frame that def	ines the operation.
	pStatus	Status of interrupt operation.	
	pCount	Number of samples that wer Value stored: 0 to 65,536	e acquired.
Return Value	This function returns a indicates that the funct code indicates that an information.	an integer error/status code. Err tion executed successfully. A n error occurred. Refer to Appen	or/status code 0 on-zero error/status dix A for additional
4-162			Function Reference

.

 $|\Phi|$

 \oplus

¢

 \oplus

Remarks	This function stops the interrupt operation defined by $hFrame$ and stores the status of the interrupt operation in <i>pStatus</i> and the number of samples acquired in <i>pCount</i> .		
	Refer to page 4-159 for the meaning of the value stored in pStatus.		
	If an interrupt operation is not in progress, K_IntStop is ignored.		
See Also	K_IntStart, K_IntStatus		
Usage	<pre>C/C++ #include "DASDECL.H" // Use "DASDECL.HPP for C++ WORD wStatus; DWORD dwCount; wDasErr = K_IntStop (hAD, &wStatus, &dwCount); Turbo Pascal uses D1800TP7; (* Use D1800TP6 for TP ver 6.0 *) wStatus : Word; dwCount : Longint; wDasErr := K_IntStop (hAD, wStatus, dwCount); Turbo Pascal for Windows (\$I DASDECL.INC) wStatus : Word; dwCount : Longint; wDasErr := K_IntStop (hAD, wStatus, dwCount);</pre>		

 \oplus

4-163

103

. . .

K_IntStop (cont.)

Visual Basic for Windows
(Include DASDECL.BAS in your program make file)
....
Global wStatus As Integer
Global dwCount As Long
....
wDasErr = K_IntStop (hAD, wStatus, dwCount)
BASIC
' \$INCLUDE: 'DASDECL.BI'
....
DIM wStatus AS INTEGER
DIM dwCount As LONG

wDasErr = KIntStop% (hAD, wStatus, dwCount)

 \oplus

Ð

 $\overline{\Phi}$

 \oplus

 \oplus

KMakeDMABuf

Boards Supported	All	
Purpose	Converts a local array operations.	to a buffer suitable for a DMA-mode analog input
Prototype	C/C++ Not supported	
	Turbo Pascal Not supported	
	Turbo Pascal for Windows Not supported Visual Basic for Windows Not supported BASIC DECLARE FUNCTION KMakeDMABuf% ALIAS "K_MakeDMABuf" (dwSamples AS LONG, pBuf AS INTEGER, pBufAddr AS LONG, pStartlx AS INTEGER)	
Parameters	dwSamples	Number of samples.
	pBuf	\$DYNAMIC integer array.
	pBufAddr	Starting address of the DMA buffer.
	pStartIx	Index into $pBuf$ that identifies the location in which the first sample is stored.
Return Value	This function returns an integer error/status code. Error/status code 0 indicates that the function executed successfully. A non-zero error/status code indicates that an error occurred. Refer to Appendix A for additional information.	

 \oplus

KMakeDMABuf (cont.)

Remarks	This function ensures that the array address provided to K_SetDMABuf is suitable for a DMA-mode analog input operation.		
	The size of the array given by $pBuf$ must be declared so as to accommodate twice the number of samples as given by <i>dwSamples</i> ; refer to page 3-46 for additional information.		
See Also	K_SetDMABuf, K_BufListAdd		
Usage			

```
BASIC
```

 \oplus

```
' $INCLUDE: 'DASDECL.BI'
...
$DYNAMIC
DIM ADBuf(10000)As Integer
$STATIC
DIM pDMABuf AS LONG
...
wDasErr = KMakeDMABuf% (dwSamp, ADBuf, pDMABuf, nStartIx)
```

 \oplus

⊕

 \oplus

K_MoveArrayToBuf

Boards Supported	All	
Purpose	Transfers data from a least through K_IntAlloc or	ocally dimensioned buffer to a buffer allocated K_DMAAlloc .
Prototype	C/C++ Not supported	
	Turbo Pascal Not supported	
	Turbo Pascal for Wine Not supported	dows
	Visual Basic for Windows Declare Function K_MoveArrayToBuf Lib "DASSHELL.DLL" Alias "K_MoveDataBuf" (ByVal pDest As Long, pSource As Integer, ByVal nCount As Integer) As Integer	
	BASIC DECLARE FUNCTION KMoveArrayToBuf% ALIAS "K_MoveArrayToBuf" (ByVal <i>pDest</i> As Long, SEG <i>pSource</i> As Integer, ByVal <i>nCount</i> As Integer)	
Parameters	pDest	Address of destination buffer.
	pSource	Address of source buffer.
	nCount	Number of samples to transfer. Value values: 1 to 32,767
Return Value	This function returns an integer error/status code. Error/status code 0 indicates that the function executed successfully. A non-zero error/status code indicates that an error occurred. Refer to Appendix A for additional information.	

 \oplus

K_MoveArrayToBuf (cont.)

Remarks	This function transfers the number of samples specified by $nCount$ from the buffer at address $pSource$ to the buffer at address $pDest$.
	If the buffer used to store output data for your program was allocated through K_IntAlloc or K_DMAAlloc , the buffer is not accessible to the driver and you must use this function to move the data to a buffer that the driver can use. If the buffer used to store output data for your program was dimensioned locally within the program's memory area, the buffer is accessible to the driver and you do not have to use this function.

See Also K_DMAAlloc, K_IntAlloc

Usage

 \oplus

 \oplus

Visual Basic for Windows

(Include DASDECL.BAS in your program make file)
...
wDasErr = K_IntAlloc (hDA, dwSamples, pBuf, hMem)
...
wDasErr = K_MoveArrayToBuf (pBuf, DACArray(0), dwSamples)

BASIC

```
' $INCLUDE: 'DASDECL.BI'
...
wDasErr = KIntAlloc% ( hDA, dwSamples, pBuf, hMem )
...
wDasErr = KMoveArrayToBuf% ( pBuf, DACArray(0), dwSamples )
```

4-168

Function Reference

⊕

۲

 \oplus

 $\bar{\Phi}$

 \oplus

÷⊕

K_MoveBufToArray

Boards Supported	Ail		
Purpose	Transfers data from a buffer allocated through K_IntAlloc or K_DMAAlloc to a locally dimensioned buffer.		
Prototype	C/C++ Not supported		
	Turbo Pascal Not supported		
	Turbo Pascal for Wind Not supported	Turbo Pascal for Windows Not supported	
	 Visual Basic for Windows Declare Function K_MoveBufToArray Lib "DASSHELL.DLL "K_MoveDataBuf" (<i>pDest</i> As Integer, ByVal <i>pSource</i> As Long ByVal <i>nCount</i> As Integer) As Integer BASIC DECLARE FUNCTION KMoveBufToArray% ALIAS "K_MoveBufToArray" (SEG <i>pDest</i> As Integer, ByVal <i>pSource</i> ByVal <i>nCount</i> As Integer) 		
Parameters	pDest	Address of destination buffer.	
	pSource	Address of source buffer.	
	nCount	Number of samples to transfer. Value values: 1 to 32,767	
Return Value	This function returns an integer error/status code. Error/status code 0 indicates that the function executed successfully. A non-zero error/status code indicates that an error occurred. Refer to Appendix A for additional information.		

 \oplus

K_MoveBufToArray (cont.)

Remarks	This function transfers the number of samples specified by <i>nCount</i> from the buffer at address <i>pSource</i> to the array at address <i>pDest</i> .
	If the buffer used to store acquired data for your program was allocated through K_IntAlloc or K_DMAAlloc , the buffer is not accessible to your program and you must use this function to move the data to an accessible buffer. If the buffer used to store acquired data for your program was dimensioned locally within the program's memory area, the buffer is accessible to your program and you do not have to use this function.

See Also K_DMAAlloc, K_IntAlloc

Usage

 \oplus

Visual Basic for Windows

(Include DASDECL.BAS in your program make file)
...
wDasErr = K_IntAlloc (hAD, dwSamples, pBuf, hMem)
...
wDasErr = K_MoveBufToArray (ADArray(0), pBuf, dwSamples)

BASIC

```
' $INCLUDE: 'DASDECL.BI'
...
wDasErr = KIntAlloc% ( hAD, dwSamples, pBuf, hMem )
...
wDasErr = K_MoveBufToArray% ( ADArray(0), pBuf, dwSamples)
```

 \oplus

Function Reference

 $\bar{\Phi}$

 \oplus

 \oplus

K_OpenDriver

Boards Supported	All		
Purpose	Initializes any support	ed DAS Function	on Call Driver.
Prototype	C/C++ DASErr far pascal K_OpenDriver (char far * <i>szDevName</i> , char far * <i>szCfgName</i> , DWORD far * <i>pDrv</i>);		
	Turbo Pascal Not supported		
	Turbo Pascal for Windows Function K_OpenDriver (Var <i>szDevName</i> : char; Var <i>szCfgName</i> : char; Var <i>pDrv</i> : LongInt) : Word; far; external 'DASSHELL';		
	Visual Basic for Windows Declare Function K_OpenDriver Lib "DASSHELL.DLL" (ByVal szDASName As String, ByVal szCfgName As String, pDrv As Long) As Integer		
	BASIC Not supported		
Parameters	szDASName	Board name. Valid value:	"DAS1800" (for DAS-1800 Series boards)
	szCfgName	Driver config Valid values:	guration file. The name of a configuration file 0 if driver has already been opened
	pDrv	Handle assoc	ciated with the driver.
Return Value	This function returns indicates that the func	an integer error, tion executed s	/status code. Error/status code 0 uccessfully. A non-zero error/status

 \oplus

K_OpenDriver (cont.)

	code indicates that an error occurred. Refer to Appendix A for additional information.		
Remarks	This function initializes the Function Call Driver for the board associated with <i>szDASName</i> according to the information in the configuration file specified by <i>szCfgName</i> , and stores the driver handle in <i>pDrv</i> .		
	You can use this function to initialize the Function Call Driver associated with any supported DAS board. For DAS-1800 Series boards, the string stored in <i>szDASName</i> must be DAS1800. Refer to other Function Call Driver user's guides for the appropriate string to store in <i>szDASName</i> for other supported DAS boards.		
	The value stored in $pDrv$ is intended to be used exclusively as an argument to functions that require a driver handle. Your program should not modify the value stored in $pDrv$.		
	You create a configuration file using the D1800CFG.EXE utility. Refer to your DAS-1800 Series board user's guide for more information.		
	If $szCfgName = 0$, K_OpenDriver checks whether the driver has already been opened and linked to a configuration file and if it has, uses the current configuration; this is useful in the Windows environment.		
See Also	DAS1800_DevOpen		
Usage			
C/C++ #include "DA	SDECL.H" // Use "DASDECL.HPP for C++		
DWORD hDrv;			

wDasErr = K_OpenDriver ("DAS1800", "DAS1802.CFG", &hDrv);

 \oplus

. . .

 \oplus

Ŷ

⊕

ŧ

K_OpenDriver (cont.)

Turbo Pascal for Windows

{\$I DASDECL.INC}
...
szDrvName : String;
szCfgName : String;
hDrv : Longint;
...
szDrvName := 'DAS1800' + #0;
szCfgName := 'DAS1802.CFG' + #0;
wDasErr := K_OpenDriver (szDrvName[1], szCfgName[1], hDrv)

Visual Basic for Windows

. . .

 \oplus

(Include DASDECL.BAS in your program make file)

DIM hDrv As Long
...
wDasErr = K_OpenDriver("DAS1800", "DAS1802.CFG", hDrv)

K_RestoreChnGAry

Boards Supported	All	
Purpose	Restores a converted channel-gain queue.	
Prototype	C/C++ Not supported	
	Turbo Pascal Not supported	
	Turbo Pascal for Windows Not supported	
	Visual Basic for Windows Declare Function K_RestoreChnGAry Lib "DASSHELL.DLL" (pArray As Integer) As Integer	
	BASIC DECLARE FUNCTION KRestoreChanGAry% ALIAS "K_RestoreChnGAry" (SEG pArray AS INTEGER)	
Parameters	<i>pArray</i> Channel-gain queue starting address.	
Return Value	This function returns an integer error/status code. Error/status code 0 indicates that the function executed successfully. A non-zero error/status code indicates that an error occurred. Refer to Appendix A for additional information.	
Remarks	This function restores a channel-gain queue that was converted using K_FormatChnGAry to its original format so that it can be used by your BASIC or Visual Basic for Windows program.	
	Refer to page 4-59 for more information about the K_FormatChnGAry function.	
See Also	K_FormatChnGAry, K_SetChnGAry	

 \oplus

 \oplus

 $\overline{\Phi}$

Function Reference

 \oplus

()

K_RestoreChnGAry (cont.)

Usage Visual Basic for Windows (Include DASDECL.BAS in your program make file) ... Global ChanGainArray(16) As Integer ' Chan/Gain array ... wDasErr = K_RestoreChnGAry (ChanGainArray(0)) BASIC ' \$INCLUDE: 'DASDECL.BI' ... DIM ChanGainArray(16) AS INTEGER ' Chan/Gain array ... wDasErr = KRestoreChnGAry% (ChanGainArray(0))

4-175

 \oplus

 $\bar{\Phi}$

K_SetAboutTrig

Boards Supported	All		
Purpose	Enables the about trigge samples.	er and specifies the number of post-trigger	
Prototype	C/C++ DASErr far pascal K_SetAboutTrig (DWORD <i>hFrame</i> , DWORD <i>dwSamples</i>); Turbo Pascal Function K_SetAboutTrig (<i>hFrame</i> : Longint; <i>dwSamples</i> : Longint) : Word;		
	Turbo Pascal for Windows Function K_SetAboutTrig (<i>hFrame</i> : Longint; <i>dwSamples</i> : Longint) : Word; far; external 'DASSHELL';		
	Visual Basic for Windows Declare Function K_SetAboutTrig Lib "DASSHELL.DLL" (ByVal hFrame As Long, ByVal dwSamples As Long) As Integer BASIC DECLARE FUNCTION KSetAboutTrig% ALIAS "K_SetAboutTrig" (BYVAL hFrame AS LONG, BYVAL dwSamples AS LONG)		
Parameters	hFrame	Handle to the frame that defines the operation.	
	dwSamples	Number of post-trigger samples. Valid values: 1 to 65,535	
Return Value	This function returns an integer error/status code. Error/status code 0 indicates that the function executed successfully. A non-zero error/status code indicates that an error occurred. Refer to Appendix A for additional information.		

 \oplus

 \oplus

 $\bar{\Phi}$

Function Reference

 \oplus

÷

 \oplus

K_SetAboutTrig (cont.)

Remarks	For the DMA-mode analog input operation defined by <i>hFrame</i> , this function enables the about trigger and specifies the number of post-trigger samples.
See Also	K_ClrAboutTrig, K_GetAboutTrig
Usage	<pre>C/C++ #include "DASDECL.H" // Use "DASDECL.HPP for C++ DWORD dwSamples; wDasErr = K_SetAboutTrig (hAD, dwSamples);</pre>
	<pre>Turbo Pascal uses D1800TP7; (* Use D1800TP6 for TP ver 6.0 *) dwSamples : Longint; wDasErr := K_SetAboutTrig (hAD, dwSamples);</pre>
	<pre>Turbo Pascal for Windows {\$I DASDECL.INC} dwSamples : Longint; wDasErr := K_SetAboutTrig (hAD, dwSamples); Visual Basic for Windows</pre>
	<pre>(Include DASDECL.BAS in your program make file) Global dwSamples As Long wDasErr = K_SetAboutTrig (hAD, dwSamples)</pre>

 \oplus

4-177
K_SetAboutTrig (cont.)

BASIC

' \$INCLUDE: 'DASDECL.BI'
...
DIM dwSamples AS LONG
...
wDasErr = KSetAboutTrig% (hAD, dwSamples)

 \oplus

 \oplus

 \oplus

 \oplus

. ಶಾಂಗ್ ಸ್ಟೇಟ್ ಸ

K_SetADCommonMode

Boards Supported	Ali		
Purpose	Set a DAS boar	d's A/D common-mode ground reference.	
Prototype	C/C++ DASErr far pas WORD <i>nMode</i>)	C/C++ DASErr far pascal K_SetADCommonMode (DWORD <i>hDev</i> , WORD <i>nMode</i>);	
	 Turbo Pascal Function K_SetADCommonMode (hDev : Longint; nMode : Word) : Word; Turbo Pascal for Windows Function K_SetADCommonMode (hDev : Longint; nMode : Word) : Word; far; external 'DASSHELL'; 		
	Visual Basic for Windows Declare Function K_SetADCommonMode Lib "DASSHELL.DLL" (ByVal hDev As Long, ByVal nMode As Integer) As Integer		
	BASIC DECLARE FUNCTION KSetADCommonMode% ALIAS "K_SetADCommonMode" (BYVAL hDev AS LONG, BYVAL nMode AS INTEGER)		
Parameters	hDev	Handle to the frame that defines the operation.	
	nMode	A/D common-mode ground reference. Value stored: 0 for LL-GND 1 for user-defined	
Return Value	This function returns an integer error/status code. Error/status code 0 indicates that the function executed successfully. A non-zero error/status code indicates that an error occurred. Refer to Appendix A for additional information.		

 \oplus

ga nam

 $\overline{\Phi}$

K_SetADCommonMode (cont.)

Remarks	For the board specified by $hDev$, this function specifies the A/D common-mode ground reference in <i>nMode</i> .			
See Also	K_GetADCommonMode			
Usage	C/C++ #include "DASDECL.H" // Use "DASDECL.HPP for C++			
	WORD nMode;			
	wDasErr = K_SetADCommonMode (hDev, nMode);			
	Turbo Pascal uses D1800TP7; (* Use D1800TP6 for TP ver 6.0 *)			
	nMode : Word;			
	 wDasErr = K_SetADCommonMode (hDev, nMode);			
	Turbo Pascal for Windows {\$I DASDECL.INC}			
	nMode : Word; wDasErr = K_SetADCommonMode (hDev, nMode);			
	Visual Basic for Windows (Include DASDECL.BAS in your program make file)			
	 DIM nMode As Integer			
	wDasErr = K_SetADCommonMode (hDev, nMode)			
	BASIC ' \$INCLUDE: 'DASDECL.BI'			
	 DIM nMode AS INTEGER			
	wDasErr = KSetADCommonMode% (hDev, nMode)			

 \oplus

Function Reference

 \oplus

 \oplus

4-180

 \oplus

 $\bar{\Phi}$

K_SetADConfig

Boards Supported	All		
Purpose	Set a DAS board's A/D input channel configuration.		
Prototype	 C/C++ DASErr far pascal K_SetADConfig (DWORD hDev, WORD nMode); Turbo Pascal Function K_SetADConfig (hDev : Longint; nMode : Word) : Word; Turbo Pascal for Windows Function K_SetADConfig (hDev : Longint; nMode : Word) : Word; far; external 'DASSHELL'; Visual Basic for Windows Declare Function K_SetADConfig Lib "DASSHELL.DLL" (ByVal hDev As Long, ByVal nMode As Integer) As Integer BASIC DECLARE FUNCTION KSetADConfig% ALIAS "K_SetADConfig" (BYVAL hDev AS LONG, BYVAL nMode AS INTEGER) 		
Parameters	hFrame	Handle associated with the board.	
	nMode	A/D input channel configuration. Value stored: 0 for Differential 1 for Single-ended	
Return Value	This function returns an integer error/status code. Error/status code 0 indicates that the function executed successfully. A non-zero error/status code indicates that an error occurred. Refer to Appendix A for additional information.		
Remarks	This function specifies, in $nMode$, the A/D input channel configuration for the board specified by $hDev$.		

 \oplus

y

K_SetADConfig (cont.)

See Also	K_GetADConfig			
Usage	C/C++ #include "DASDECL.H" // Use "DASDECL.HPP for C++			
	WORD nMode;			
	wDasErr = K_SetADConfig (hDev, nMode);			
	Turbo Pascal uses D1800TP7; (* Use D1800TP6 for TP ver 6.0 *)			
	nMode : Word;			
	 wDasErr = K_SetADConfig (hDev, nMode);			
	Turbo Pascal for Windows (\$I DASDECL.INC)			
	nMode : Word;			
	 wDasErr = K_SetADConfig (hDev, nMode);			
	Visual Basic for Windows (Include DASDECL.BAS in your program make file)			
	 DIM nMode As Integer			
	wDasErr = K_SetADConfig (hDev, nMode)			
	BASIC ' \$INCLUDE: 'DASDECL.BI'			
	DIM nMode AS INTEGER			
	wDasErr = KSetADConfig% (hDev, nMode)			

 \oplus

Function Reference

 \oplus

Φ

4-182

 \oplus

 $\overline{\Phi}$

 $\overline{\Phi}$

-

Φ

K_SetADFreeRun

Boards Supported	All		
Purpose	Specifies burst conversion mode.		
Prototype	C/C++ DASErr far pascal K_SetADFreeRun (DWORD <i>hFrame</i>);		
	Turbo Pascal Function K_SetADFreeRun (<i>hFrame</i> : Longint) : Word;		
	Turbo Pascal for Windows Function K_SetADFreeRun (<i>hFrame</i> : Longint) : Word; far; external 'DASSHELL';		
	Visual Basic for Windows Declare Function K_SetADFreeRun Lib "DASSHELL.DLL" (ByVal hFrame As Long) As Integer		
	BASIC DECLARE FUNCTION KSetADFreeRun% ALIAS "K_SetADFreeRun" (BYVAL <i>hFrame</i> AS LONG)		
Parameters	<i>hFrame</i> Handle to the frame that defines the operation.		
Return Value	This function returns an integer error/status code. Error/status code 0 indicates that the function executed successfully. A non-zero error/status code indicates that an error occurred. Refer to Appendix A for additional information.		
Remarks	This function sets the conversion mode for the operation defined by $hFrame$ to burst mode. Refer to page 2-15 for information on conversion modes.		
See Also	K_ClrADFreeRun, K_GetADFreeRun		

K_SetADFreeRun (cont.)

Usage	C/C++ #include "DASDECL.H" // Use "DASDECL.HPP for C++			
	<pre>wDasErr = K_SetADFreeRun (hAD, 1);</pre>			
	Turbo Pascal uses D1800TP7; (* Use D1800TP6 for TP ver 6.0 *) wDasErr := K_SetADFreeRun (hAD, 1);			
	Turbo Pascal for Windows (\$I DASDECL.INC) wDasErr := K_SetADFreeRun (hAD, 1);			
	Visual Basic for Windows (Include DASDECL.BAS in your program make file)			
	 wDasErr = K_SetADFreeRun (hAD, 1)			
	BASIC ' \$INCLUDE: 'DASDECL.BI'			
	 wDasErr = KSetADFreeRun% (hAD, 1)			

 \oplus

4-184

 \oplus

 \oplus

¢

 \oplus

Φ

· \oplus

 \oplus

Boards Supported	Ali		
Purpose	Set a DAS board's A/E) input range type.	
Prototype	C/C++ DASErr far pascal K_SetADMode (DWORD hDev, WORD nMode);		
	Turbo Pascal Function K_SetADMo	 Turbo Pascal Function K_SetADMode (hDev : Longint; nMode : Word) : Word; Turbo Pascal for Windows Function K_SetADMode (hDev : Longint; nMode : Word) : Word; far; external 'DASSHELL'; 	
	Turbo Pascal for Wine Function K_SetADMo external 'DASSHELL';		
	Visual Basic for Windows Declare Function K_SetADMode Lib "DASSHELL.DLL" (ByVal hDev As Long, ByVal nMode As Integer) As Integer BASIC DECLARE FUNCTION KSetADMode% ALIAS "K_SetADMode" (BYVAL hDev AS LONG, BYVAL nMode AS INTEGER)		
Parameters	hDev	Handle associated with the board.	
	nMode	A/D input range type. Valid values: 0 for Bipolar 1 for Unipolar	
Return Value	This function returns an integer error/status code. Error/status code 0 indicates that the function executed successfully. A non-zero error/status code indicates that an error occurred. Refer to Appendix A for additional information.		
Remarks	For the board specified range type in <i>nMode</i> .	1 by $hDev$, this function specifies the A/D input	

K_SetADMode (cont.)

```
See Also
                K_GetADMode
                C/C++
Usage
                #include "DASDECL.H" // Use "DASDECL.HPP for C++
                . . .
                WORD nMode;
                . . .
                wDasErr = K_SetADMode (hDev, nMode);
                Turbo Pascal
                uses D1800TP7; (* Use D1800TP6 for TP ver 6.0 *)
                 . . .
                nMode : Word;
                 . . .
                wDasErr = K_SetADMode (hDev, nMode);
                Turbo Pascal for Windows
                {$I DASDECL.INC}
                 . . .
                nMode : Word;
                 . . .
                wDasErr = K_SetADMode (hDev, nMode);
                Visual Basic for Windows
                (Include DASDECL.BAS in your program make file)
                 . . .
                DIM nMode As Integer
                 . . .
                wDasErr = K_SetADMode (hDev, nMode)
                BASIC
                 ' $INCLUDE: 'DASDECL.BI'
                 . . .
                DIM nMode AS INTEGER
                 . . .
                wDasErr = KSetADMode% (hDev, nMode)
```

 $\overline{\mathbf{\Phi}}$

\oplus

 \oplus

 \oplus

K_SetADTrig

Boards Supported	All		
Purpose	Sets up an analog start	t trigger.	
Prototype	C/C++ DASErr far pascal K_ short <i>nChan</i> , DWORI	SetADTrig (DWORD <i>hFrame</i> , short <i>nOpt</i> , D <i>dwLevel</i>);	
	Turbo Pascal Function K_SetADTrig (<i>hFrame</i> : Longint; <i>nOpt</i> : Word; <i>nChan</i> : Word; <i>dwLevel</i> : Longint) : Word;		
	Turbo Pascal for Windows Function K_SetADTrig (<i>hFrame</i> : Longint; <i>nOpt</i> : Word; <i>nChan</i> : Word; <i>dwLevel</i> : Longint) : Word; far; external 'DASSHELL';		
	Visual Basic for Windows Declare Function K_SetADTrig Lib "DASSHELL.DLL" (ByVal hFrame As Long, ByVal nOpt As Integer, ByVal nChan As Integer, ByVal dwLevel As Long) As Integer		
	BASIC DECLARE FUNCTION KSetADTrig% ALIAS "K_SetADTrig" (BYVAL hFrame AS LONG, BYVAL nOpt AS INTEGER, BYVAL nChan AS INTEGER, BYVAL dwLevel AS LONG)		
Parameters	hFrame	Handle to the frame that defines the operation.	
	nOpt	Analog trigger polarity and sensitivity.Valid values: 0 for Positive edge2 for Negative edge	

 \oplus

K_SetADTrig (cont.)

nChan	Analog input channel used as trigger channel. Valid values:		
	Valid channel numbers		
Board	Differential	Single-ended	
DAS-1800HC	0 to 31	0 to 63	
DAS-1800ST/HR without EXP-1800 expansion boar attached	0 to 7 ds	0 to 15	
DAS-1800ST/HR with N EXP-1800 expansion boar attached	rds Not applicable	0 to 15 (<i>N</i> + 1)	

dwLevel Level at which the trigger event occurs, specified in raw counts. Valid values: DAS-1800HC/ST Series boards: 0 to 4,095 (Unipolar) -2048 to 2047 (Bipolar) DAS-1800HR Series boards: 0 to 65,535 (Unipolar) -32,768 to 32,767 (Bipolar) **Return Value** This function returns an integer error/status code. Error/status code 0 indicates that the function executed successfully. A non-zero error/status code indicates that an error occurred. Refer to Appendix A for additional information. Remarks For the operation defined by hFrame, this function specifies the channel used for an analog trigger in *nChan*, the level used for the analog trigger in *dwLevel*, and the trigger polarity and trigger sensitivity in *nOpt*. You specify the value for dwLevel in raw counts. Refer to Appendix B for information on converting the actual voltage to a raw count.

K_SetADTrig (cont.)

BASIC
' \$INCLUDE: 'DASDECL.BI'
...
wDasErr = KSetADTrig% (hAD, 0, 0, 2047)

 \oplus

4-190

 $\overline{\Phi}$

 \oplus

 Φ

K_SetBuf

Boards Supported	All		
Purpose	Specifies the starting ad buffer.	dress of a previously allocated or dimensioned	
Prototype	 C/C++ DASErr far pascal K_SetBuf (DWORD <i>hFrame</i>, void far *<i>pBuf</i>, DWORD <i>dwSamples</i>); Turbo Pascal Function K_SetBuf (<i>hFrame</i> : Longint; <i>pBuf</i> : Pointer; <i>dwSamples</i> : Longint) : Word; 		
	Turbo Pascal for Windows Function K_SetBuf (<i>hFrame</i> : Longint; <i>pBuf</i> : Pointer; <i>dwSamples</i> : Longint) : Word; far; external 'DASSHELL';		
	Visual Basic for Windows Declare Function K_SetBuf Lib "DASSHELL.DLL" (ByVal hFrame As Long, ByVal pBuf As Long, ByVal dwSamples As Long) As Integer		
	BASIC Not supported		
Parameters	hFrame	Handle to the frame that defines the operation.	
	pBuf	Starting address of buffer.	
	dwSamples	Number of samples. Valid values: 0 to 65,535	
Return Value	This function returns an indicates that the function code indicates that an existence information.	in integer error/status code. Error/status code 0 on executed successfully. A non-zero error/status rror occurred. Refer to Appendix A for additional	

K_SetBuf (cont.)

Remarks	For the operation defined by $hFrame$, this function specifies the starting address of a previously allocated buffer in $pBuf$ and the number of samples (the size of the buffer) in $dwSamples$.		
	 Do not use this function for BASIC; for the BASIC languages, use K_SetBufI. Refer to page 4-194 for more information. For C and Pascal application programs, use this function whether you dimensioned your buffer locally or allocated your buffer dynamically using K_IntAlloc. For buffers allocated dynamically using K_DMAAlloc, use K_SetDMABuf. For C, make sure that you use proper typecasting to prevent C/C++ type-mismatch warnings. For Pascal, a special procedure is needed to satisfy the type-checking requirements; refer to page 3-33 for more information. For Visual Basic for Windows, use this function only for buffers allocated dynamically using K_DMAAlloc, use K_SetDMABuf. For locally dimensioned buffers, use K SetBufI. 		
	Do not use this function if you are using multiple buffers. Use K_BufListAdd to specify the starting addresses of multiple buffers.		
	The values you specify set the following elements in the frame identified by $hFrame$:		
	• $pBuf$ sets the value of the Buffer element.		
	• <i>dwSamples</i> sets the value of the Number of Samples element.		
See Also	K_DMAAlloc, K_IntAlloc, K_BufListAdd, K_SetBufI, K_SetDMABuf		
Usage			
C/C++ #include "Di	ASDECL.H" // Use "DASDECL.HPP for C++		
<pre> void far *pBuf; // Pointer to allocated buffer wDasErr = K_IntAlloc (hAD, dwSamples, &pBuf, &hMem);</pre>			

 \oplus

wDasErr = K_SetBuf (hAD, pBuf, dwSamples);

Function Reference

4-192

 \oplus

 \oplus

K_SetBuf (cont.)

Turbo Pascal

```
uses D1800TP7; (* Use D1800TP6 for TP ver 6.0 *)
...
TYPE
BufType = Array [0..1] of Integer;
VAR
pBuf : ^BufType; { buffer pointer }
...
wDasErr := K_IntAlloc(hAD, dwSamples, Addr(pBuf), hMem);
wDasErr := K_SetBuf (hAD, pBuf, dwSamples);
```

Turbo Pascal for Windows

```
($I DASDECL.INC)
...
TYPE
BufType = Array [0..1] of Integer;
VAR
pBuf : ^BufType; { buffer pointer }
...
wDasErr := K_IntAlloc(hAD, dwSamples, Addr(pBuf), hMem);
wDasErr := K_SetBuf (hAD, pBuf, dwSamples);
```

Visual Basic for Windows

(Include DASDECL.BAS in your program make file)
...
Global pBuf As Long
...
wDasErr = K_IntAlloc (hAD, dwSamples, pBuf, hMem)
wDasErr = K_SetBuf (hAD, pBuf, dwSamples)

K_SetBufl

Boards Supported	All		
Purpose	Specifies the starting ad	ddress of a locally dimensioned integer buffer.	
Prototype	C/C++ Not supported		
	Turbo Pascal Not supported		
	Turbo Pascal for Windows Not supported		
	Visual Basic for Windows Declare Function K_SetBufI Lib "DASSHELL.DLL" Alias "K_SetBuf" (ByVal hFrame As Long, pBuf As Integer, ByVal dwSize As Long) As Integer		
	BASIC DECLARE FUNCTION K_SETBUFI Alias "K_SetBuf" (BYVAL <i>hFrame</i> AS Long, <i>pBuf</i> AS Integer, BYVAL <i>dwSize</i> AS Long) AS INTEGER		
Parameters	hFrame	Handle to the frame that defines the operation.	
	pBuf	Starting address of the user-dimensioned integer buffer.	
	dwSize	Number of samples. Valid values: 0 to 65,535	
Return Value	This function returns ar indicates that the functi code indicates that an e information.	n integer error/status code. Error/status code 0 on executed successfully. A non-zero error/status rror occurred. Refer to Appendix A for additional	

 \oplus

 \oplus

 $\bar{\Phi}$

Function Reference

Ð

÷

 $\overline{\Phi}$

K_SetBufl (cont.)

ŧ

-()-

Ð

 $\tau \neq \gamma \gamma_{1}$

Remarks	 For the operation defined by <i>hFrame</i>, this function specifies the starting address of a locally dimensioned integer buffer in <i>pBuf</i> and the number of samples stored in the buffer in <i>dwSize</i>. Do not use this function for C and Pascal; for these languages, use K_SetBuf. 			
	 For Visual Basic for Windows, use this function only for locally dimensioned buffers. For buffers allocated dynamically using K_IntAlloc, use K_SetBuf. For buffers allocated dynamically using K_DMAAlloc, use K_SetDMABuf. Do not use this function if you are using multiple buffers. Instead, use K_BufListAdd to specify the starting addresses of multiple buffers. The values you specify set the following elements in the frame identified by <i>hFrame</i>: <i>pBuf</i> sets the value of the Buffer element. 			
	• <i>dwSize</i> sets the value of the Number of Samples element.			
See Also	K_DMAAlloc, K_IntAlloc, K_BufListAdd, K_SetBuf, K_SetDMABuf			
Usage	Visual Basic for Windows (Include DASDECL.BAS in your program make file)			
	 Dim ADData(2000) As Integer			
	wDasErr = K_SetBufI (hAD, ADData(0), 2000)			
	BASIC ' \$INCLUDE: 'DASDECL.BI'			
	Dim ADData(2000) As Integer			
	 wDasErr = KSetBufI% (hAD, ADData(0), 2000)			

 \oplus

K_SetBurstTicks

Boards Supported	All		
Purpose	Sets the burst mode conversion rate.		
Prototype	C/C++ DASErr far pascal K_SetBurstTicks (DWORD <i>hFrame</i> , short <i>nTick</i> .		
	Turbo Pascal Function K_SetBurstTicks (<i>hFrame</i> : Longint; <i>nTicks</i> : Word) : Word;		
	Turbo Pascal for Windows Function K_SetBurstTicks (<i>hFrame</i> : Longint; <i>nTicks</i> : Word) : Word; far; external 'DASSHELL';		
	Visual Basic for Windows Declare Function K_SetBurstTicks Lib "DASSHELL.DLL" (ByVal hFrame as Long, ByVal <i>nTicks</i> As Integer) As Integer		
	BASIC DECLARE FUNCTION KSetBurstTicks% ALIAS "K_SetBurstTicks" (BYVAL hFrame AS LONG, BYVAL nTicks AS INTEGER)		
Parameters	hFrame	Handle to the frame that defines the A/D operation.	
	nTicks	The number of clock ticks between conversions of each channel in a scan. Valid values: 3 to 255	
Return Value	This function returns an integer error/status code. Error/status code 0 indicates that the function executed successfully. A non-zero error/status code indicates that an error occurred. Refer to Appendix A for additional information.		

 \oplus

 \oplus

 Φ

Function Reference

 \oplus

 \oplus

 \oplus

¢

K_SetBurstTicks (cont.)

Remarks	For the operation defined by <i>hFrame</i> , this function stores the number of clock ticks between conversions in <i>nTicks</i> .	
	Refer to page 2-17 for more information on burst mode conversion rate.	
See Also	K_GetBurstTicks	
Usage	C/C++ #include "DASDECL.H" // Use "DASDECL.HPP for C++ wDasErr = K_SetBurstTicks (hAD, 10);	
	Turbo Pascal uses D1800TP7; (* Use D1800TP6 for TP ver 6.0 *) wDasErr := K_SetBurstTicks (hAD, 10);	
	Turbo Pascal for Windows (\$1 DASDECL.INC)	
	<pre>wDasErr := K_SetBurstTicks (hAD, 10);</pre>	
	Visual Basic for Windows (Include DASDECL.BAS in your program make file)	
	 wDasErr = K_SetBurstTicks (hAD, 10)	
	BASIC ' \$INCLUDE: 'DASDECL.BI'	
	wDasErr = KSetBurstTicks% (hAD, 10)	

 \oplus

K_SetChn

Boards Supported	All		
Purpose	Specifies a single channel.		
Prototype	C/C++ DASErr far pascal K_SetChn (DWORD <i>hFrame</i> , short <i>nChan</i>);		
	Turbo Pascal		
	Function K_SetChn (<i>hFrame</i> : Longint; <i>nChan</i> : Word) : Word;		
	Turbo Pascal for Windows		
	Function K_SetChn (<i>hFrame</i> : Longint; <i>nChan</i> : Word) : Word; far; external 'DASSHELL';		
	Visual Basic for Windows		
	Declare Function K_SetChn Lib "DASSHELL.DLL"		
	(ByVal hFrame As Long, ByVal nChan As Integer) As Integer		
	BASIC		
	DECLARE FUNCTION KSetChn% ALIAS "K_SetChn"		
	(BYVAL hFrame AS LONG, BYVAL nChan AS INTEGER)		

 \oplus

 \oplus

€

 Φ

K_SetChn (cont.)

 \oplus

 \oplus

 \oplus

	nChan Cham Valid	nel on which to perfo values:	orm operation.
		Valid channel numbers	
	Board	Differential	Single-ended
	DAS-1800HC	0 to 31	0 to 63
	DAS-1800ST/HR without EXP-1800 expansion boards attached	0 10 7	0 to 15
	DAS-1800ST/HR with N EXP-1800 expansion boards attached	Not applicable	0 to $15(N+1)$
	indicates that the function exe		
	code indicates that an error oc information.	curred. Refer to App	non-zero error/sta endix A for additio
Remarks	code indicates that an error oc information.For the operation defined by <i>h</i> channel used in <i>nChan</i>.	<i>Frame</i> , this function	non-zero error/sta endix A for addition specifies the single
Remarks	 code indicates that an error oc information. For the operation defined by <i>h</i> channel used in <i>nChan</i>. The value you specify in <i>nCha</i> Stop Channel element in the function of the stop channel element in the function of the stop channel element in the function of the stop channel element in the function. 	<i>Frame</i> , this function <i>Frame</i> , this function <i>n</i> sets the Start Char rame identified by <i>h</i>	a non-zero error/sta endix A for addition specifies the single number of the specifies the single result of the specifies the single specifies the specifies the single specifies the sp
Remarks See Also	 code indicates that an error oc information. For the operation defined by <i>h</i> channel used in <i>nChan</i>. The value you specify in <i>nCha</i> Stop Channel element in the find K_GetChn, K_GetStartStopCh 	Frame, this function <i>Frame</i> , this function <i>n</i> sets the Start Char rame identified by <i>h</i> nn, K_GetStartStopC	A non-zero error/sta endix A for addition specifies the single nucl element and the <i>rame</i> .

 \oplus

K_SetChn (cont.)

```
Turbo Pascal
uses D1800TP7; (* Use D1800TP6 for TP ver 6.0 *)
...
wDasErr := K_SetChn (hAD, 2);
```

Turbo Pascal for Windows

(\$I DASDECL.INC)
...
wDasErr := K_SetChn (hAD, 2);

Visual Basic for Windows

(Include DASDECL.BAS in your program make file)

÷

wDasErr = K_SetChn (hAD, 2)

BASIC

. . .

' \$INCLUDE: 'DASDECL.BI'

...
wDasErr = KSetChn% (hAD, 2)

 $\overline{\Phi}$

 \oplus

 \oplus

K_SetChnGAry

Boards Supported	All		
Purpose	Specifies the starting address of a channel-gain queue.		
Prototype	C/C++ DASErr far pascal K_SetChnGAry (DWORD <i>hFrame</i> , void far * <i>pArray</i>);		
	Turbo Pascal Function K_SetChnGAry (<i>hFrame</i> : Longint; Var <i>pArray</i> : Integer) : Word;		
	 Turbo Pascal for Windows Function K_SetChnGAry (<i>hFrame</i> : Longint; Var <i>pArray</i> : Integer) : Word; far; external 'DASSHELL'; Visual Basic for Windows Declare Function K_SetChnGAry Lib "DASSHELL.DLL" (ByVal <i>hFrame</i> As Long, <i>pArray</i> As Integer) As Integer 		
	BASIC DECLARE FUNCTIO (BYVAL <i>hFrame</i> AS I	N KSetChnGAry% ALIAS "K_SetChnGAry" .ONG, SEG pArray AS INTEGER)	
Parameters	hFrame	Handle to the frame that defines the operation.	
	pArray	Channel-gain queue starting address.	
Return Value	This function returns a indicates that the funct code indicates that an e information.	n integer error/status code. Error/status code 0 ion executed successfully. A non-zero error/status error occurred. Refer to Appendix A for additional	

 \oplus

K_SetChnGAry (cont.)

Remarks	For the operation defined by <i>hFrame</i> , this function specifies the starting address of the channel-gain queue in <i>pArray</i> .
	The value you specify in <i>pArray</i> sets the Channel-Gain Queue element in the frame identified by <i>hFrame</i> .
	Refer to page 2-14 for information on setting up a channel-gain queue.
	If you created your channel-gain queue in BASIC or Visual Basic for Windows, you must use K_FormatChnGAry to convert the channel-gain queue before you specify the address with K_SetChnGAry .
See Also	K_FormatChnGAry, K_RestoreChnGAry

Usage

```
C/C++
#include "DASDECL.H" // Use "DASDECL.HPP for C++
....
// DECLARE AND INITIALIZE CHAN/GAIN PAIRS
// (GainChanTable-TYPE IS DEFINED IN dasdecl.h)
GainChanTable ChanGainArray= {2, // # of entries
    0, 0, // chan 0, gain 1
    1, 1}; // chan 1, gain 2 (DAS-1802)
...
wDasErr = K_SetChnGAry (hAD, &ChanGainArray);
```

Turbo Pascal

```
uses D1800TP7; (* Use D1800TP6 for TP ver 6.0 *)
...
{ Define Gain/Channel array type }
TYPE GainChanTable = Record
    num_of_codes : Integer;
    queue : Array[0..15] of Byte;
    END;
CONST ChanGainArray : GainChanTable = (
    num_of_codes : (8); { # of chan/gain pairs }
    queue : (0,0, 1,1)
);
...
wDasErr := K_SetChnGAry (hAD, ChanGainArray.num_of_codes);
```

Function Reference

K_SetChnGAry (cont.)

Turbo Pascal for Windows

```
($I DASDECL.INC)
...
{ Define Gain/Channel array type }
TYPE GainChanTable = Record
    num_of_codes : Integer;
    queue : Array[0..15] of Byte;
    END;
CONST ChanGainArray : GainChanTable = (
    num_of_codes : (8); { # of chan/gain pairs }
    queue : (0,0, 1,1)
);
...
wDasErr := K_SetChnGAry (hAD, ChanGainArray.num_of_codes);
```

Visual Basic for Windows

(Include DASDECL.BAS in your program make file)
...
Global ChanGainArray(16) As Integer
...
' Create the array of channel/gain pairs
ChanGainArray(0) = 2 ' # of chan/gain pairs
ChanGainArray(1) = 0: ChanGainArray(2) = 0
ChanGainArray(3) = 1: ChanCainArray(4) = 1
wDasErr = K_FormatChnGAry (ChanGainArray(0))
wDasErr = K_SetChnGAry (hAD, ChanGainArray(0))

BASIC

```
' $INCLUDE: 'DASDECL.BI'
...
DIM ChanGainArray(16) AS INTEGER
...
' Create the array of channel/gain pairs
ChanGainArray(0) = 2 ' # of chan/gain pairs
ChanGainArray(1) = 0: ChanGainArray(2) = 0
ChanGainArray(3) = 1: ChanGainArray(4) = 1
wDasErr = KFormatChnGAry% (ChanGainArray(0))
wDasErr = KSetChnGAry% (hAD, ChanGainArray(0))
```

K_SetClk

Boards Supported	All		
Purpose	Specifies the pacer clock source.		
Prototype	C/C++ DASErr far pascal K_SetClk (DWORD <i>hFrame</i> , short <i>nMode</i>);		
	Turbo Pascal Function K_SetClk (<i>hF</i>	<i>rame</i> : Longint; <i>nMode</i> : Word) : Word;	
	 Turbo Pascal for Windows Function K_SetClk (<i>hFrame</i> : Longint; <i>nMode</i> : Word) : Word; external 'DASSHELL'; Visual Basic for Windows Declare Function K_SetClk Lib "DASSHELL.DLL" (ByVal <i>hFrame</i> As Long, ByVal <i>nMode</i> As Integer) As Integer 		
	BASIC DECLARE FUNCTION KSetClk% ALIAS "K_SetClk" (BYVAL <i>hFrame</i> AS LONG, BYVAL <i>nMode</i> AS INTEGER)		
Parameters	<i>hFrame</i> Handle to the frame that defines the open		
	nMode	Pacer clock source. Valid values: 0 for Internal 1 for External	
Return Value	This function returns an integer error/status code. Error/status code 0 indicates that the function executed successfully. A non-zero error/status code indicates that an error occurred. Refer to Appendix A for additional information.		

 \oplus

 \oplus

 Φ

 $\overline{\oplus}$

θ

•

 \oplus

Remarks	For the operation defined by $hFrame$, this function specifies the pacer clock source in $nMode$.
	The value you specify in <i>nMode</i> sets the Clock Source element in the frame identified by <i>hFrame</i> .
	The internal clock source is the output of the onboard counter/timer circuitry; an external clock source is an external signal connected to the DI0/XPCLK pin (DAS-1800HC Series) or XPCLK pin (DAS-1800ST/HR Series). Refer to page 2-15 (for analog input operations), page 2-29 (for analog output operations), and page 2-36 (for digital I/O operations) for more information about pacer clock sources.
	K_GetADFrame, K_GetDAFrame, K_GetDIFrame, K_GetDOFrame, and K_ClearFrame specify internal as the default clock source. The default active edge is negative for an external clock source; use K_SetExtClkEdge to specify a positive active edge.
See Also	K_GetClk
Usage	C/C++ #include "DASDECL.H" // Use "DASDECL.HPP for C++ wDasErr = K_SetClk (hAD, 1);
	Turbo Pascal uses D1800TP7; (* Use D1800TP6 for TP ver 6.0 *)
	WDaserr := K_SetCIK (NAD, I);
	(\$I DASDECL.INC)
	wDasErr := K_SetClk (hAD, 1);
	Visual Basic for Windows (Include DASDECL.BAS in your program make file)

 \oplus

K_SetClk (cont.)

BASIC
' \$INCLUDE: 'DASDECL.BI'
...
wDasErr = KSetClk% (hAD, 1)

÷

4-206

 \oplus

 \oplus

 \oplus

 $\overline{\Phi}$

 \oplus

ф-

K_SetClkRate

Boards Supported	All		
Purpose	Specifies the clock divisor for the internal 5 MHz clock source.		
Prototype	 C/C++ DASErr far pascal K_SetClkRate (DWORD <i>hFrame</i>, DWORD <i>dwDivisor</i>); Turbo Pascal Function K_SetClkRate (<i>hFrame</i> : Longint; <i>dwDivisor</i> : LongInt) : Word; Turbo Pascal for Windows Function K_SetClkRate (<i>hFrame</i> : Longint; <i>dwDivisor</i> : LongInt) : Word; far; external 'DASSHELL'; 		
	Visual Basic for Windows Declare Function K_SetClkRate Lib "DASSHELL.DLL" (ByVal hFrame As Long, ByVal dwDivisor As Long) As Integer		
	BASIC DECLARE FUNCT (BYVAL <i>hFrame</i> A	'ION KSetClkRate% ALIAS "K_SetClkRate" S LONG, BYVAL <i>dwDivisor</i> AS LONG)	
Parameters	hFrame	Handle to the frame that defines the operation.	
	dwDivisor	Number of clock ticks between conversions. Valid values: 15 to 4,294,967,295	
Return Value	This function returns an integer error/status code. Error/status code 0 indicates that the function executed successfully. A non-zero error/status code indicates that an error occurred. Refer to Appendix A for additional information.		

 \oplus

K_SetClkRate (cont.)

Remarks	For the operation defined by <i>hFrame</i> , this function specifies the number of clock ticks between conversions in <i>dwDivisor</i> .			
	The value you specify in <i>dwDivisor</i> sets the Pacer Clock Rate element in the frame identified by <i>hFrame</i> .			
	This function applies to an internal clock source only. The tick resolution is $0.2 \ \mu s$.			
	Refer to page 2-15 for more information on the pacer clock.			
See Also	K_GetClkRate			
Usage	C/C++ #include "DASDECL.H" // Use "DASDECL.HPP for C++ DWORD dwClkDiv;			
	 dwClkDiv = 5000000 / 10000 wDasErr = K_SetClkRate (hAD, dwClkDiv);			
	<pre>Turbo Pascal uses D1800TP7; (* Use D1800TP6 for TP ver 6.0 *) dwClkDiv : Longint; dwClkDiv := 5000000 / 10000 wDasErr := K_SetClkRate (hAD, dwClkDiv);</pre>			
	<pre>Turbo Pascal for Windows {\$I DASDECL.INC} dwClkDiv : Longint; dwClkDiv := 5000000 / 10000 wDasErr := K_SetClkRate (hAD, dwClkDiv);</pre>			

 \oplus

Function Reference

 \oplus

φ

4-208

 \oplus

 $\overline{\Phi}$

Chap04_.frm Page 209 Thursday, April 14, 1994 1:57 PM

K_SetClkRate (cont.)

Visual Basic for Windows (Include DASDECL.BAS in your program make file)

... Global dwClkDiv As Long ... dwClkDiv = 5000000 / 10000 wDasErr = K_SetClkRate (hAD, dwClkDiv);

BASIC

 \oplus

 \oplus

' \$INCLUDE: 'DASDECL.BI'
...
DIM dwClkDiv AS LONG
...
dwClkDiv = 5000000 / 10000
wDasErr = KSetClkRate% (hAD, dwClkDiv)

 \oplus

K_SetContRun

Boards Supported	All		
Purpose	Specifies continuous buff	ering mode.	
Prototype	C/C++ DASErr far pascal K_Set	ContRun (DWORD hFrame);	
	Turbo Pascal Function K_SetContRun	(hFrame : Longint) : Word;	
	Turbo Pascal for Windows Function K_SetContRun (<i>hFrame</i> : Longint) : Word; far; external 'DASSHELL';		
	Visual Basic for Windows Declare Function K_SetContRun Lib "DASSHELL.DLL" (ByVal hFrame As Long) As Integer		
	BASIC DECLARE FUNCTION (BYVAL <i>hFrame</i> AS LO	KSetContRun% ALIAS "K_SetContRun" NG)	
Parameters	hFrame I	landle to the frame that defines the operation.	
Return Value	This function returns an i indicates that the function code indicates that an erro information.	nteger error/status code. Error/status code 0 a executed successfully. A non-zero error/status or occurred. Refer to Appendix A for additional	
Remarks	For the operation defined mode to continuous mode frame accordingly.	by <i>hFrame</i> , this function sets the buffering e and sets the Buffering Mode element in the	
	K_GetADFrame, K_Ge K_GetDOFrame, and K buffering mode.	tDAFrame, K_GetDIFrame, _ClearFrame specify single-cycle as the default	

 \oplus

Ţ Ţ **Function Reference**

⊕

 \oplus

Φ

⇔ chap04_.frm Page 211 Thursday, April 14, 1994 1:57 PM

K_SetContRun (cont.)

Refer to page 2-38 (for analog input operations), page 2-38 (for analog output operations) section, and page 2-38 (for digital I/O operations) for a description of buffering modes. See Also K_GetContRun C/C++ Usage #include "DASDECL.H" // Use "DASDECL.HPP for C++ . . . wDasErr = K_SetContRun (hAD) Turbo Pascal uses D1800TP7; (* Use D1800TP6 for TP ver 6.0 *) . . . wDasErr := K_SetContRun (hAD) **Turbo Pascal for Windows** {\$I DASDECL.INC} . . . wDasErr := K_SetContRun (hAD) **Visual Basic for Windows** (Include DASDECL.BAS in your program make file) . . . wDasErr = K_SetContRun (hAD) BASIC ' \$INCLUDE: 'DASDECL.BI' . . . wDasErr = KSetContRun% (hAD)

K_SetDITrig

Boards Supported	All		
Purpose	Sets up a digital trigger		
Prototype	C/C++ DASErr far pascal K_SetDITrig (DWORD <i>hFrame</i> , short <i>nOpt</i> , short <i>nChan</i> , DWORD <i>nPattern</i>);		
	Turbo Pascal Function K_SetDITrig (<i>hFrame</i> : Longint; <i>nOpt</i> : Word; <i>nChan</i> : Word; <i>nPattern</i> : Longint) : Word;		
	Turbo Pascal for Windows Function K_SetDITrig (<i>hFrame</i> : Longint; <i>nOpt</i> : Word; <i>nChan</i> : Word; <i>nPattern</i> : Longint) : Word; far; external 'DASSHELL';		
	Visual Basic for Windows Declare Function K_SetDITrig Lib "DASSHELL.DLL" (ByVal hFrame As Long, ByVal nOpt As Integer, ByVal nChan As Integer, ByVal nPattern As Long) As Integer		
	BASIC DECLARE FUNCTION KSetDITrig% ALIAS "K_SetDITrig" (BYVAL hFrame AS LONG, BYVAL nOpt AS INTEGER, BYVAL nChan AS INTEGER, BYVAL nPattern AS LONG)		
Parameters	hFrame	Handle to the frame that defines the operation.	
	nOpt	Trigger polarity and sensitivity. Valid values: 0 for Positive edge 2 for Negative edge	
	nChan	Digital input channel. Valid value: 0	
	nPattern	Trigger pattern.	

 \oplus

 \oplus

 $\bar{\Phi}$

 \oplus

 $\overline{\Phi}$

 \oplus

K_SetDITrig (cont.)

Φ

 \oplus

φ

Return Value	This function returns an integer error/status code. Error/status code 0 indicates that the function executed successfully. A non-zero error/status code indicates that an error occurred. Refer to Appendix A for additional information.		
Remarks	 This function specifies the use of a digital trigger for the operation defined by <i>hF rame</i>. Since the DAS-1800 Series Function Call Driver does not currently support digital pattern triggering, the value of <i>nPattern</i> is meaningless; the <i>nPattern</i> parameter is provided for future compatibility. The values you specify set the following elements in the frame identified by <i>hF rame</i>: <i>nOpt</i> sets the value of the Trigger Polarity and Trigger Sensitivity elements. <i>nChan</i> sets the value of the Trigger Channel element. <i>nPattern</i> sets the value of the Trigger Pattern element. 		
	K_SetDITrig does not affect the operation defined by <i>hFrame</i> unless the Trigger Source element is set to External (by a call to K_SetTrig) before <i>hFrame</i> is used as a calling argument to K_IntStart or K_DMAStart .		
See Also	K_GetDITrig		
Usage	C/C++ #include "DASDECL.H" // Use "DASDECL.HPP for C++ wDasErr = K_SetDITrig (0, 0, 0);		
	Turbo Pascal uses D1800TP7; (* Use D1800TP6 for TP ver 6.0 *) wDasErr := K_SetDITrig (0, 0, 0);		

4-213
K_SetDITrig (cont.)

Turbo Pascal for Windows

(\$I DASDECL.INC)
...
wDasErr := K_SetDITrig (0, 0, 0);

Visual Basic for Windows

(Include DASDECL.BAS in your program make file)

 \oplus

...
wDasErr = K_SetDITrig (0, 0, 0)

BASIC

' \$INCLUDE: 'DASDECL.BI'
...
wDasErr = KSetDITrig% (0, 0, 0)

 \oplus

 \oplus

 $\overline{\mathbf{\Phi}}$

 \oplus

 \oplus

K_SetDMABuf

Boards Supported	All		
Purpose	Sets the values of a DMA buffer address and number of samples elements.		
Prototype	C/C++ DASErr far pascal K_SetDMABuf (DWORD <i>hFrame</i> , void far * <i>pBuf</i> , DWORD <i>dwSamples</i>);		
	Turbo Pascal Function K_SetDMABuf (<i>hFrame</i> : Longint; <i>pBuf</i> : Pointer; <i>dwSamples</i> : Longint) : Word;		
	Turbo Pascal for Windows Function K_SetDMABuf (<i>hFrame</i> : Longint; <i>pBuf</i> : Pointer; <i>dwSamples</i> : Longint) : Word; far; external 'DASSHELL';		
	Visual Basic for Windows Declare Function K_SetDMABuf Lib "DASSHELL.DLL" (By Val hFrame As Long, By Val pBuf As Long, By Val dwSamples As Long) As Integer		
	BASIC DECLARE FUNCTION KSetDMABuf% ALIAS "K_SetDMABuf" (BYVAL hFrame AS LONG, BYVAL pBuf AS LONG, BYVAL dwSamples AS LONG)		
Parameters	hFrame	Handle to the frame that defines the DMA-mode analog input operation.	
	pBuf	Starting address of buffer.	
	dwSamples	Number of samples. Valid values: 0 to 65,535	

 \oplus

4-215

K_SetDMABuf (cont.)

Return Value	This function returns an integer error/status code. Error/status code 0 indicates that the function executed successfully. A non-zero error/status code indicates that an error occurred. Refer to Appendix A for additional information.		
Remarks	For the operation specified by $hFrame$, this function stores the address of the currently allocated buffer in <i>pBuf</i> and the number of samples stored in the buffer in <i>dwSamples</i> .		
	The <i>pBuf</i> variable contains the value of the Buffer element.		
	The <i>dwSamples</i> variable contains the value of the Number of Samples element.		

See Also K_DMAAlloc, KMakeDMABuf, K_BufListAdd

Usage

```
C/C++
#include "DASDECL.H" // Use "DASDECL.HPP for C++
...
void far *pBuf; // Pointer to allocated buffer
...
wDasErr = K_DMAAlloc (hAD, dwSamples, &pBuf, &hMem);
wDasErr = K_SetDMABuf (hAD, pBuf, dwSamples);
```

Turbo Pascal

```
uses D1800TP7; (* Use D1800TP6 for TP ver 6.0 *)
...
TYPE
BufType = Array [0..1] of Integer;
VAR
pBuf : ^BufType; { buffer pointer }
...
wDasErr := K_DMAAlloc(hAD, dwSamples, Addr(pBuf), hMem);
wDasErr := K_SetDMABuf (hAD, pBuf, dwSamples);
```

Function Reference

4-216

K_SetDMABuf (cont.)

Turbo Pascal for Windows

```
{$I DASDECL.INC}
...
TYPE
BufType = Array [0..1] of Integer;
VAR
pBuf : ^BufType; { buffer pointer }
...
wDasErr := K_DMAAlloc(hAD, dwSamples, Addr(pBuf), hMem);
wDasErr := K_SetDMABuf (hAD, pBuf, dwSamples);
```

Visual Basic for Windows

```
(Include DASDECL.BAS in your program make file)
...
Global pBuf As Long
...
wDasErr = K_DMAAlloc (hAD, dwSamples, pBuf, hMem)
wDasErr = K_SetDMABuf (hAD, pBuf, dwSamples)
```

BASIC

```
' $INCLUDE: 'DASDECL.BI'
...
DIM pBuf AS LONG
...
wDasErr = KDMAAlloc% (hAD, dwSamples, pBuf, hMem)
wDasErr = KSetDMABuf% (hAD, pBuf, dwSamples)
```

4-217

K_SetExtClkEdge

All		
Specifies the active edge of the external pacer clock.		
C/C++ DASErr far pascal K_SetExtClkEdge (DWORD <i>hFrame</i> , short <i>nEdge</i>);		
Turbo Pascal Function K_SetExtClkE	Edge (<i>hFrame</i> : Longint; <i>nEdge</i> : Word) : Word;	
Turbo Pascal for Windows Function K_SetExtClkEdge (<i>hFrame</i> : Longint; <i>nEdge</i> : Word) : Word; far; external 'DASSHELL';		
Visual Basic for Windows Declare Function K_SetExtClkEdge Lib "DASSHELL.DLL" (ByVal hFrame As Long, ByVal nEdge As Integer) As Integer		
BASIC DECLARE FUNCTION KSetExtClkEdge% ALIAS "K_SetExtClkEdge" (BYVAL hFrame AS LONG, BYVAL nEdge AS INTEGER)		
hFrame	Handle to the frame that defines the operation.	
nEdge	Active edge of external pacer clock. Valid values: 0 for Negative edge 1 for Positive edge	
This function returns an integer error/status code. Error/status code 0 indicates that the function executed successfully. A non-zero error/status code indicates that an error occurred. Refer to Appendix A for additional information.		
For the operation defined by <i>hFrame</i> , this function sets the active edge of the external pacer clock and sets the External Clock Edge element in the frame accordingly.		
	All Specifies the active edg C/C++ DASErr far pascal K_S Turbo Pascal Function K_SetExtClkE function K_SetExtClkE far; external 'DASSHEL Visual Basic for Winde Declare Function K_Set (By Val <i>hFrame</i> As Lon BASIC DECLARE FUNCTION (BY VAL <i>hFrame</i> AS L <i>hFrame</i> <i>nEdge</i> This function returns an indicates that the function code indicates that an extination. For the operation define the external pacer clock frame accordingly.	

 \oplus

Ē,

Function Reference

.

chap04_.frm Page 219 Thursday, April 14, 1994 1:57 PM

 \oplus

€

φ

 \oplus

 \oplus

K_SetExtClkEdge (cont.)

	 K_SetExtClkEdge does not affect the operation defined by hFrame unless the Trigger Source element is set to External (by a call to K_SetTrig) before hFrame is used as a calling argument to K_IntStart or K_DMAStart. K_GetExtClkEdge 		
See Also			
Usage	C/C++ #include "DASDECL.H" // Use "DASDECL.HPP for C++ wDasErr = K_SetExtClkEdge (hAD, 1)		
	Turbo Pascai uses D1800TP7; (* Use D1800TP6 for TP ver 6.0 *) wDasErr :≃ K_SetExtClkEdge (hAD, 1)		
	Turbo Pascal for Windows (\$I DASDECL.INC) wDasErr := K_SetExtClkEdge (hAD, 1)		
	Visual Basic for Windows (Include DASDECL.BAS in your program make file)		
	 wDasErr = K_SetExtClkEdge (hAD, 1)		
	BASIC ' \$INCLUDE: 'DASDECL.BI'		
	 wDasErr = KSetExtClkEdge% (hAD, 1)		

 \oplus

4-219

K_SetG

Boards Supported	All		
Purpose	Sets the gain.		
Prototype	C/C++ DASErr far pascal K_SetG (DWORD <i>hFrame</i> , short <i>nGain</i>);		
	Turbo Pascal Function K_SetG (<i>hFrd</i>	ame : Longint; nGain : Word) : Word;	
	Turbo Pascal for Windows Function K_SetG (<i>hFrame</i> : Longint; <i>nGain</i> : Word) : Word; far; external 'DASSHELL';		
	Visual Basic for Windows Declare Function K_SetG Lib "DASSHELL.DLL" (ByVal hFrame As Long, ByVal nGain As Integer) As Integer		
	BASIC DECLARE FUNCTION KSetG% ALIAS "K_SetG" (BYVAL hFrame AS LONG, BYVAL nGain AS INTEGER)		
Parameters	hFrame	Handle to the frame that defines the operation.	
	nGain	Gain code. Valid values: 0 to 3 for DAS board channels 0 to 7 for EXP-1800 channels Refer to Table 2-2 on page 2-10 for the gain and input ranges associated with each gain code.	
Return Value	This function returns an indicates that the functic code indicates that an existing formation.	integer error/status code. Error/status code 0 on executed successfully. A non-zero error/status rror occurred. Refer to Appendix A for additional	

 \oplus

ф

-0

Function Reference

 \oplus

 $\overline{\Phi}$

 \oplus

 \oplus

 \oplus

 $|\overline{\Phi}|$

Remarks	For the operation defined by $hFrame$, this function specifies the gain code for a single channel or for a group of consecutive channels in <i>nGain</i> .		
	The value you specify in $nGain$ sets the Gain element in the frame identified by $hFrame$.		
	K_GetADFrame, K_GetDAFrame, K_GetDIFrame, K_GetDOFrame, and K_ClearFrame specify 1 (gain code 0) as the default gain.		
	This function is valid for A/D frames only.		
See Also	K_GetG, K_SetStartStopG		
Usage	C/C++ #include "DASDECL.H" // Use "DASDECL.HPP for C++ wDasErr = K_SetG (hAD, 1)		
	Turbo Pascal uses D1800TP7; (* Use D1800TP6 for TP ver 6.0 *) wDasErr := K_SetG (hAD, 1)		
	Turbo Pascal for Windows (\$I DASDECL.INC)		
	wDasErr := K_SetG (hAD, 1)		
	Visual Basic for Windows (Include DASDECL.BAS in your program make file)		
	 wDasErr = K_SetG (hAD, 1)		
	BASIC ' \$INCLUDE: 'DASDECL.BI'		
	wDasErr = KSetG% (hAD, 1)		

 \oplus

4-221

K_SetGate

Boards Supported	All		
Purpose	Specifies the status of the hardware gate.		
Prototype	C/C++ DASErr far pascal K_SetGate (DWORD <i>hFrame</i> , short <i>nMode</i>);		
	Turbo Pascal Function K_SetGate (h	Frame : Longint; nMode : Word) : Word;	
	Turbo Pascal for Windows Function K_SetGate (<i>hFrame</i> : Longint; <i>nMode</i> : Word) : Word; far; external 'DASSHELL';		
	Visual Basic for Windows Declare Function K_SetGate Lib "DASSHELL.DLL" (ByVal hFrame As Long, ByVal nMode As Integer) As Integer		
	BASIC DECLARE FUNCTION KSetGate% ALIAS "K_SetGate" (BYVAL hFrame AS LONG, BYVAL nMode AS INTEGER)		
Parameters	hFrame	Handle to the frame that defines the operation.	
	nMode	 Status of the hardware gate. Valid values: 0 for Gate disabled 1 for Positive gate enabled 2 for Negative gate enabled 	
Return Value	This function returns an integer error/status code. Error/status code 0 indicates that the function executed successfully. A non-zero error/status code indicates that an error occurred. Refer to Appendix A for additional information		

- \oplus

 $\bar{\Phi}$

K_SetGate (cont.)

 \oplus

 \oplus

 \oplus

Remarks	For the operation defined by $hFrame$, this function specifies the status of the hardware gate in <i>nMode</i> . External gating is supported for analog input operations only. Also, you cannot enable the hardware gate if you are using an external digital trigger.		
	K_GetADFrame, K_GetDAFrame, K_GetDIFrame, K_GetDOFrame, and K_ClearFrame specify disabled as the default gate setting.		
See Also	K_GetGate		
Usage	C/C++ #include "DASDECL.H" // Use "DASDECL.HPP for C++		
	wDasErr = K_SetGate (hAD, 1)		
	Turbo Pascal uses D1800TP7; (* Use D1800TP6 for TP ver 6.0 *) 		
	Turbo Pascal for Windows		
	wDasErr := K_SetGate (hAD, 1)		
	Visual Basic for Windows (Include DASDECL.BAS in your program make file)		
	 wDasErr = K_SetGate (hAD, 1)		
	BASIC ' \$INCLUDE: 'DASDECL.BI'		
	wDasErr = KSetGate% (hAD, 1)		

 \oplus

4-223

K_SetSSH

Boards Supported	All		
Purpose	Enables and disables SS	SH mode.	
Prototype	C/C++ DASErr far pascal K_SetSSH (DWORD hFrame, WORD nMode);		
	Turbo Pascal Function K_SetSSH (<i>hFrame</i> : Longint; <i>nMode</i> : Word) : Word;		
	Turbo Pascal for Windows Function K_SetSSH (<i>hFrame</i> : Longint; <i>nMode</i> : Word) : Word; far; external 'DASSHELL';		
	Visual Basic for Windows Declare Function K_SetSSH Lib "DASSHELL.DLL" (ByVal hFrame As Long, ByVal nMode As Integer) As Integer		
	BASIC DECLARE FUNCTION KSetSSH% ALIAS "K_SetSSH" (BYVAL hFrame AS LONG, BYVAL nMode AS INTEGER)		
Parameters	hFrame	Handle to the frame that defines the operation.	
	nMode	Code that indicates the status of SSH mode. Valid values: 0 for Disabled 1 for Enabled	
Return Value	This function returns ar indicates that the functi code indicates that an e information.	n integer error/status code. Error/status code 0 on executed successfully. A non-zero error/status rror occurred. Refer to Appendix A for additional	

 \oplus

 \oplus

Function Reference

 \oplus

 $\bar{\Phi}$

 $\overline{\mathbf{\Phi}}$

K_SetSSH (cont.)

θ

 \oplus

Φ

Remarks	For the operation defined by <i>hFrame</i> , this function stores the code that indicates the SSH mode in <i>nMode</i> .		
	K_GetADFrame and K_ClearFrame also disable SSH mode.		
	Refer to page 2-15 for information on SSH mode.		
See Also	K_GetSSH		
Usage	C/C++ #include "DASDECL.H" // Use "DASDECL.HPP for C++ 		
	wDasErr = K_SetSSH (hAD, 1)		
	Turbo Pascal uses D1800TP7; (* Use D1800TP6 for TP ver 6.0 *)		
	wDasErr := K_SetSSH (hAD, 1)		
	Turbo Pascal for Windows {\$I DASDECL.INC}		
	wDasErr := K_SetSSH (hAD, 1)		
	Visual Basic for Windows (Include DASDECL.BAS in your program make file)		
	 wDasErr = K_SetSSH (hAD, 1)		
	BASIC ' \$INCLUDE: 'DASDECL.BI'		
	 wDasErr = KSetSSH% (hAD, 1)		

 \oplus

4-225

enere e

K_SetStartStopChn

Boards Supported	All
Purpose	Specifies the first and last channels in a group of consecutive channels.
Prototype	C/C++ DASErr far pascal K_SetStartStopChn (DWORD <i>hFrame</i> , short <i>nStart</i> , short <i>nStop</i>);
	Turbo Pascal Function K_SetStartStopChn (<i>hFrame</i> : Longint; <i>nStart</i> : Word; <i>nStop</i> : Word) : Word;
	Turbo Pascal for Windows Function K_SetStartStopChn (<i>hFrame</i> : Longint; <i>nStart</i> : Word; <i>nStop</i> : Word) : Word; far; external 'DASSHELL';
	Visual Basic for Windows Declare Function K_SetStartStopChn Lib "DASSHELL.DLL" (ByVal hFrame As Long, ByVal nStart As Integer, ByVal nStop As Integer) As Integer
	BASIC DECLARE FUNCTION KSetStartStopChn% ALIAS "K_SetStartStopChn" (BYVAL <i>hFrame</i> AS LONG, BYVAL <i>nStart</i> AS INTEGER, BYVAL <i>nStop</i> AS INTEGER)

 \oplus

4-226

 \oplus

 \oplus

Function Reference

 \oplus

information.

 \oplus

 $\bar{\Phi}$

K_SetStartStopChn (cont.)

hFrame Har	dle to the frame that d	efines the operation.	
<i>nStart</i> First channel in a group of consecutive channels. Valid values:			
······································	nnel numbers		
Board	Differential	Single-ended	
DAS-1800HC	0 to 31	0 to 63	
DAS+1800ST/HR without EXP-1800 expansion boards attached	0 ω7	010 15	
DAS-1800ST/HR with N EXP-1800 expansion boards attached	Not applicable	0 to $15(N + 1)$	
 <i>nStop</i> Last channel in a group of consecutive channels. Valid values: Same as for <i>nStart</i> above This function returns an integer error/status code. Error/status code 0 indicates that the function executed successfully. A non-zero error/status 			
	hFrameHarnStartFirsNStartFirsValidBoardDAS-1800HCDAS-1800ST/HR withoutEXP-1800 expansion boardsattachedDAS-1800ST/HR with NEXP-1800 expansion boardsattachednStopLasValidThis function returns an inteindicates that the function expansion of expansion of expansion of expansion boardsnStopLasvalidNote: the function of expansion of expansion of expansion of expansion of expansion of expansion boardsnStopLasvalidNational expansion of expansion	hFrameHandle to the frame that dnStartFirst channel in a group of Valid values:BoardValid chaDAS-1800HC0 to 31DAS-1800BT/HR without0 to 7EXP-1800 expansion boards attachedNot applicableDAS-1800ST/HR with N EXP-1800 expansion boards attachedNot applicablenStopLast channel in a group of Valid values: Same as for This function returns an integer error/status code. H indicates that the function executed successfully. A code indicates that an error occurred Befer to App	

-

4-227

 $\overline{\Phi}$

0

K_SetStartStopChn (cont.)

Remarks	For the operation defined by <i>hFrame</i> , this function specifies the first channel in a group of consecutive channels in <i>nStart</i> and the last channel in the group of consecutive channels in <i>nStop</i> . The values you specify set the following elements in the frame identified by <i>hFrame</i> :			
	• <i>nStart</i> sets the value of the Start Channel element.			
	• <i>nStop</i> sets the value of the Stop Channel element.			
	K_GetADFrame, K_GetDAFrame, K_GetDIFrame, K_GetDOFrame and K_ClearFrame set the Start Channel and Stop Channel elements to 0.			
See Also	K_GetStartStopChn, K_SetStartStopG			
Usage	C/C++ #include "DASDECL.H" // Use "DASDECL.HPP for C++			
	<pre>wDasErr = K_SetStartStopChn (hAD, 0, 7);</pre>			
	Turbo Pascal uses D1800TP7; (* Use D1800TP6 for TP ver 6.0 *) wDasErr := K SetStartStopChn (hAD, 0, 7);			
	wbashii .~ K_secsequescopenn (IRD, 0, 7),			
	Turbo Pascal for Windows {\$1 DASDECL.INC}			
	 wDasErr := K_SetStartStopChn (hAD, 0, 7);			
	Visual Basic for Windows (Include DASDECL.BAS in your program make file)			
	 wDasErr = K_SetStartStopChn (hAD, 0, 7)			

 \oplus

Function Reference

 \oplus

Φ

4-228

 \oplus

.

K_SetStartStopChn (cont.)

BASIC
' \$INCLUDE: 'DASDECL.BI'
...
wDasErr = KSetStartStopChn% (hAD, 0, 7)

 \oplus

K_SetStartStopG

Boards Supported	All
Purpose	Specifies the first and last channels in a group of consecutive channels and sets the gain for all channels in the group.
Prototype	C/C++ DASErr far pascal K_SetStartStopG (DWORD <i>hFrame</i> , short <i>nStart</i> , short <i>nStop</i> , short <i>nGain</i>);
	Turbo Pascal Function K_SetStartStopG (<i>hFrame</i> : Longint; <i>nStart</i> : Word; <i>nStop</i> : Word; <i>nGain</i> : Word) : Word;
	Turbo Pascal for Windows Function K_SetStartStopG (<i>hFrame</i> : Longint; <i>nStart</i> : Word; <i>nStop</i> : Word; <i>nGain</i> : Word) : Word; far; external 'DASSHELL';
	Visual Basic for Windows Declare Function K_SetStartStopG Lib "DASSHELL.DLL" (ByVal hFrame As Long, ByVal nStart As Integer, ByVal nStop As Integer, ByVal nGain As Integer) As Integer
	BASIC DECLARE FUNCTION KSetStartStopG% ALIAS "K_SetStartStopG" (BYVAL <i>hFrame</i> AS LONG, BYVAL <i>nStart</i> AS INTEGER, BYVAL <i>nStop</i> AS INTEGER, BYVAL <i>nGain</i> AS INTEGER)

 \oplus

 \oplus

 \oplus

Function Reference

 \oplus

¢

 $\overline{\oplus}$

K_SetStartStopG (cont.)

 \oplus

 \oplus

Φ

Parameters	hFrame Har	dle to the frame that d	efines the operation.	
	<i>nStart</i> First channel in a group of consecutive channels. Valid values:			
		Valid cha	nnel numbers	
	Board	Differential	Single-ended	
	DAS-1800HC	0 to 31	0 to 63	
	DAS-18003T/HR without EXP-1800 expansion boards attached	0 w 7	0 to 15	
	DAS-1800ST/HR with N EXP-1800 expansion boards attached	Not applicable	0 to 15 (<i>N</i> + 1)	
	nStop Las Val	t channel in a group of id values: Same as for	consecutive channels. <i>nStart</i> above	
	nGain Gai Val Ref inp	n code. id values: 0 to 3 for D 0 to 7 for E er to Table 2-2 on page ut ranges associated wi	AS board channels XP-1800 channels e 2-10 for the gain and th each gain code.	
Return Value	This function returns an interindicates that the function excode indicates that an error of information.	ger error/status code. I secuted successfully. A occurred. Refer to App	Error/status code 0 non-zero error/status endix A for additional	
Remarks	For the operation defined by channel in a group of consec group of consecutive channed in the group in <i>nGain</i> .	<i>hFrame</i> , this function sutive channels in <i>nSta</i> als in <i>nStop</i> , and the gai	specifies the first rt, the last channel in a in code for all channels	

 \oplus

K_SetStartStopG (cont.)

The values you specify set the following elements in the frame identified by *hFrame*:

- *nStart* sets the value of the Start Channel element.
- *nStop* sets the value of the Stop Channel element.
- *nGain* sets the value of the Gain element.

K_GetADFrame and **K_ClearFrame** set the Start Channel, Stop Channel, and Gain elements to 0.

See Also K_GetStartStopG

C/C++
#include "DASDECL.H" // Use "DASDECL.HPP for C++
...
wDasErr = K_SetStartStopG (hAD, 0, 7, 0);

Turbo Pascal

uses D1800TP7; (* Use D1800TP6 for TP ver 6.0 *)
...
wDasErr := K_SetStartStopG (hAD, 0, 7, 0);

Turbo Pascal for Windows

{\$I DASDECL.INC}
...
wDasErr := K_SetStartStopG (hAD, 0, 7, 0);

Visual Basic for Windows

(Include DASDECL.BAS in your program make file)

wDasErr = K_SetStartStopG (hAD, 0, 7, 0)

BASIC

' \$INCLUDE: 'DASDECL.BI'
...
wDasErr = KSetStartStopG% (hAD, 0, 7, 0)

Function Reference

4-232

 \oplus

Usage

 Φ

 \oplus

 \oplus

· · .= · · · · ·

K_SetTrig

Boards Supported	All		
Purpose	Specifies the trigger so	purce.	
Prototype	C/C++ DASErr far pascal K_SetTrig (DWORD <i>hFrame</i> , short <i>nMode</i>);		
	Turbo Pascai Function K_SetTrig (<i>h</i>	Frame : Longint; nMode : Word) : Word;	
	Turbo Pascal for Win Function K_SetTrig (<i>h</i> external 'DASSHELL'	dows Frame : Longint; nMode : Word) : Word; far; ;	
	Visual Basic for Windows Declare Function K_SetTrig Lib "DASSHELL.DLL" (ByVal hFrame As Long, ByVal nMode As Integer) As Integer		
	BASIC DECLARE FUNCTION KSetTrig% ALIAS "K_SetTrig" (BYVAL <i>hFrame</i> AS LONG, BYVAL <i>nMode</i> AS INTEGER)		
Parameters	hFrame	Handle to the frame that defines the operation.	
	nMode	Trigger source. Valid values: 0 for Internal trigger 1 for External trigger	
Return Value	This function returns an integer error/status code. Error/status code 0 indicates that the function executed successfully. A non-zero error/status code indicates that an error occurred. Refer to Appendix A for additional information.		
Remarks	For the operation defined source in <i>nMode</i> .	aed by hFrame, this function specifies the trigger	

4-233

 \oplus

K_SetTrig (cont.)

An internal trigger is a software trigger; conversions begin when the operation is started. An external trigger is either an analog trigger or a digital trigger; conversions begin when the trigger event occurs. Refer to page 2-25 for more information about internal and external trigger sources.

When performing a pre-trigger or about-trigger acquisition operation, mode, *nMode* refers to the start trigger.

If nMode = 1, an external digital trigger (positive edge on DI1/TGIN for DAS-1800HC Series boards, positive edge on TGIN for DAS-1800ST/HR Series boards) is assumed. Use **K_SetDITrig** to change the conditions of the digital trigger. Use **K_SetADTrig** to specify the conditions for an external analog trigger.

K_GetADFrame and **K_ClearFrame** set the trigger source to internal. The external trigger source is relevant for analog input operations only.

See Also

Usage

C/C++
#include "DASDECL.H" // Use "DASDECL.HPP for C++
...
wDasErr = K_SetTrig (hAD, 1);

Turbo Pascal

K_GetTrig

uses D1800TP7; (* Use D1800TP6 for TP ver 6.0 *)
...
wDasErr := K_SetTrig (hAD, 1);

Turbo Pascal for Windows

(\$I DASDECL.INC)
...
wDasErr := K_SetTrig (hAD, 1);

Visual Basic for Windows

(Include DASDECL.BAS in your program make file)

... wDasErr = K_SetTrig (hAD, 1)

Function Reference

4-234

+ chap04_.frm Page 235 Thursday, April 14, 1994 1:57 PM

 \oplus

Φ

K_SetTrig (cont.)

BASIC
' \$INCLUDE: 'DASDECL.BI'
...
wDasErr = KSetTrig% (hAD, 1)

 \oplus

K_SetTrigHyst

Boards Supported	All		
Purpose	Specifies the hysteresis	value.	
Prototype	C/C++ DASErr far pascal K_SetTrigHyst (DWORD hFrame, short nHyst);		
	Turbo Pascal Function K_SetTrigHys	st (<i>hFrame</i> : Lo	ongint; <i>nHyst</i> : Word) : Word;
	Turbo Pascal for Wind Function K_SetTrigHys external 'DASSHELL';	lows st (<i>hFrame</i> : Lo	ongint; <i>nHyst</i> : Word) : Word; far;
	Visual Basic for Windows Declare Function K_SetTrigHyst Lib "DASSHELL.DLL" (ByVal hFrame As Long, ByVal nHyst As Integer) As Integer		
	BASIC DECLARE FUNCTION KSetTrigHyst% ALIAS "K_SetTrigHyst" (BYVAL hFrame AS LONG, BYVAL nHyst AS INTEGER)		
Parameters	hFrame	Handle to the	frame that defines the operation.
	nHyst	Hysteresis val Valid values:	lue, specified in raw counts. 0 to 4,095 for DAS-1800HC/ST Series boards 0 to 65,535 for DAS-1800HR Series boards
Return Value	This function returns an indicates that the function code indicates that an existence information.	n integer error/s on executed su rror occurred. I	status code. Error/status code 0 ccessfully. A non-zero error/status Refer to Appendix A for additional

 \oplus

 \oplus

Function Reference

1941.00 The State

 \oplus

\

K_SetTrigHyst (cont.)

 \oplus

Remarks	For the operation defined by <i>hFrame</i> , this function specifies the hysteresis value used for an analog trigger in <i>nHyst</i> . You must specify the hysteresis value in raw counts. Refer to Appendix B for information on converting the hysteresis voltage to a raw count.		
	The value you specify in <i>hyst</i> sets to the Trigger Hysteresis element in the frame identified by <i>hFrame</i> .		
	K_SetTrigHyst does not affect the operation defined by <i>hFrame</i> unless the Trigger Source element is set to External (by a call to K_SetTrig) before <i>hFrame</i> is used as a calling argument to K_IntStart or K DMAStart.		
	Refer to page 2-19 for more information about analog triggers.		
See Also	K_GetTrigHyst		
Usage	<pre>C/C++ #include "DASDECL.H" // Use "DASDECL.HPP for C++ wDasErr = K_SetTrigHyst (hAD, 50);</pre>		
	Turbo Pascal uses D1800TP7; (* Use D1800TP6 for TP ver 6.0 *) wDasErr := K_SetTrigHyst (hAD, 50);		
	Turbo Pascal for Windows (\$I DASDECL.INC)		
	wDasErr := K_SetTrigHyst (hAD, 50);		

 \oplus

4-237

K_SetTrigHyst (cont.)

Visual Basic for Windows (Include DASDECL.BAS in your program make file)

wDasErr = K_SetTrigHyst (hAD, 50)

BASIC

. . .

' \$INCLUDE: 'DASDECL.BI'
...
wDasErr = KSetTrigHyst% (hAD, 50)

Ð

4-238

 \oplus

 \oplus

 \oplus

Œ

ŧ

A

Error/Status Codes

Table A-1 lists the error/status codes that are returned by the DAS-1800 Series Function Call Driver, possible causes for error conditions, and possible solutions for resolving error conditions.

If you cannot resolve an error condition, contact the factory.

Error Code			
Hex	Decimal	- Cause	Solution
0	0	No error has been detected.	Status only; no action is necessary.
6000	24576	Error in configuration file: The configuration file you specified in the driver initialization function is corrupt, does not exist, or contains one or more undefined keywords:	Check that the file exists in the specified path. Check for illegal keywords in file; you can avoid illegal keywords by using the D1800CFG.EXE utility to create and modify configuration files.
6001	24577	Illegal base address in configuration file: The base address specified in the configuration file is invalid.	Use the D1800CFG.EXE utility to change the base address in the configuration file. The address must be on a 16-byte boundary between 200h and 3F0h.
6005	24581	Illegal Channel Number: The specified channel is out of range.	Specify a legal channel number. Refer to the table on page 4-15 for valid channel numbers.
6006	24582	Illegal gain code: The gain code specified for an analog input operation is out of range.	Specify a legal gain code. Refer to Table 2-2 on page 2-10 for valid gain codes.

Table A-1. Error/Status Codes

A-1

Error Code				
Hex	Decimal		Solution	
6007	24583	Illegal DMA address: A FCD function specified an invalid address for the buffer required in a DMA analog input operation.	Specify a valid DMA buffer address.	
6008	24584	Illegal number in configuration file: The configuration file contains a numeric value that is not in the correct format.	Check all numeric entries in the configuration file; make sure that &H precedes hexadecimal numbers. Use the D1800CFG.EXE utility to modify the configuration file.	
600A	24586	Configuration file not found: The driver cannot find the configuration file specified as an argument to the driver initialization function.	Check that the file exists at the specified path; check that the file name is spelled correctly in the driver initialization function parameter list.	
600B	24587	Error returning DMA buffer: DOS returned an error in INT 21H function 49H during the execution of K_DMAFree .	Check that the memory handle passed as an argument to K_DMAFree was previously obtained via K_DMAAlloc .	
600C	24588	Error returning interrupt buffer: The memory handle specified in K_IntFree is invalid.	Check the memory handle stored by K_IntAlloc and make sure that it was not modified.	
600D	24589	Illegal frame handle: The specified frame handle is not valid for this operation.	Check that the frame handle exists. Check that you are using the appropriate frame handle.	
600E	24590	No more frame handles: No frames are left in the pool of available frames.	Use K_FreeFrame to free a frame that the application is no longer using.	
600F	24591	Requested buffer size too large: The number of samples specified in K_IntAlloc is too large.	Specify a smaller number of samples; the number of samples must be in the range 1 to 65,536.	

Table A-1. Error/Status Codes (cont.)

 \oplus

 \oplus

 \oplus

Error Code			
Hex	Decimal	- Cause	aoiution
6010	24592	Cannot allocate interrupt buffer: (Windows-based ianguages only) K_ImAlloc failed because there was not enough available DOS memory.	Remove some Terminate and Stay Resident programs (TSRs) that are no longer needed.
6012	24594	Interrupt buffer deallocation error: (Windows-based languages only) An error occurred when K_IntFree attempted to free a memory handle.	Remove some Terminate and Stay Resident programs (TSRs) that are no longer needed.
6015	24597	DMA Buffer too large: The number of samples specified in K_DMAAlloc is too large.	Specify a smaller number of samples; the number of samples must be in the range 1 to 65,536.
602B	24619	Not enough memory to accommodate request: The number of samples you requested in the Keithley Memory Manager is greater than the largest contiguous block available in the reserved heap.	Specify a smaller number of samples; free a previously allocated buffer; use the KMMSETUP utility to expand the reserved heap.
602C	24620	Requested buffer size > 65536: The number of samples you requested from the Keithley Memory Manager is greater than 63,536.	Specify a value between 1 and 65,536 when calling K_DMAAlloc in Windows enhanced mode.
602D	24621	Illegal device handle: A bad device handle was passed to a function such as K_GetADFrame. The handle used was not initialized through a call to K_GetDevHandle or DAS1800_GetDevHandle, or it was corrupted by your program.	Check device handle value.

 \oplus

Table A-1. Error/Status Codes (cont.)

an e

 \oplus

 \oplus

¢

Error Code		0		
Hex	Decimal	- Cause	Solution	
6028	24622	Dynamic memory block destroyed: An illegal option was specified to a function that accepts a user option, such as K_SetDITrig:	Check the option value passed to the function where the error occurred.	
6030	24624	DMA word-page wrap : During K_DMAAlloc , a DMA word-page wrap condition occurred and the allocation attempt failed since there is not enough free memory to accommodate the allocation request.	Reduce the number of samples and retry. If in Windows enhanced mode, install and configure VDMAD.386.	
6031	24625	Requested buffer size exceeds maximum: A bad memory handle was passed to K. IntFree or K_DMAFree. The handle used was not initialized through a call to K_IntAlloc or K_DMAAlloc or was corrupted by you program.	Restart your program and monitor the memory handle value(s).	
6032	24626	Out of memory handles: An attempt to allocate a memory block using K_IntAlloc or K_DMAAlloc failed because the maximum number of handles (50) has already been assigned.	Use K_IntFree or K_DMAFree to free previously allocated memory blocks before allocating again.	
6033	24627	Illegal interrupt setup: You have requested multiple buffers whose aggregate size is less than 512 samples for an interrupt-mode acquisition operation.	Use a single buffer for operations in which less than 512 samples are acquired.	

Table A-1. Error/Status Codes (cont.)

Error/Status Codes

 \oplus

 \oplus

 \oplus

Error Code				
Hex	Decimal	Cause	Solution	
6034	24628	Memory corrupted: Int 21H function 48H, used to allocate a memory block from the DOS far heap, returned the DOS error 7; memory corrupted. It is likely that you stored (through a DMA-mode or interrupt-mode operation) data into an illegal area of the DOS memory.	Recheck the parameters set by K_DMAAlloc and K_SetDMABuf . If fatal system error; restart your computer.	
6035	24629	Driver in use: The driver attempted to configure a device that had already been configured by a call to K_OpenDriver (this can occur since, under Windows, it is possible to open the same driver from multiple programs that are running simultaneously).	The driver for a particular device should be configured only once during a single Windows session. If the driver has already been configured, pass a null string as the second argument to K_OpenDriver.	
6036	24630	Illegal driver handle: The specified driver handle is not valid.	Someone may have closed the driver; if so, use K_OpenDriver to reopen the driver with the desired driver handle. Try again using another driver handle.	
6037	24631	Driver not found: The specified driver cannot be found.	Check your link statement to make sure the specified driver is included. Make sure that the device name string is entered correctly in K_OpenDriver.	
7000	28672	No board name: The driver initialization function did not find a board name in the specified configuration file.	Specify a legal board name in the configuration file.	
7001	28673	Bud board name: The board name in the specified configuration file is illegal.	Specify a legal board name in the configuration file.	

 \oplus

Table A-1. Error/Status Codes (cont.)

 \oplus

Error Code		0	On hulling
Hex	Decimal	Cause	Solution
7002	28674	Bad board number : The driver initialization function found an illegal board number in the specified configuration file.	Specify a legal board number: 0, 1, or 2
7003	28675	Bad base address: The driver initialization function found an illegal base address in the specified configuration file.	Specify a base address in the inclusive range &H200 (512) to &H3F0 (1008) in increments of 10H (16). Make sure that &H precedes hexadocimal numbers.
7004	28676	Bad DMA channel: The driver initialization function found an illegal DMA channel in the specified configuration file.	Specify a legal DMA channel: 5, 6, 7, 5+6, 6+7, or 7+5
7005	28677	Bad interrupt level: The driver initialization function found an illegal interrupt level in the specified configuration file.	Specify a legal interrupt level: 3, 5, 7, 10, 11, or 15
7007	28679	Bad A/D channel mode: The driver initialization function found an illegal input range type in the specified configuration file.	Specify a legal input range type: bipolar, unipolar
7008	28680	Bad A/D channel configuration: The driver inutalization function found an illegal input configuration in the specified configuration file.	Specify a legal input configuration: single-ended, differential
700A	28682	Bad number of SSH8: The number of SSH-8s in the configuration file is not valid.	Run D1800CFG.EXE and specify the number of SSH-8s as a number in the range 0 to 8.
700B	28683	Bad SSH-8 channel: The SSH-8 channel in the configuration file is not valid.	Run D1800CFG.EXE and specify the SSH-8 channel as a number in the range 0 to 7.
700C	28684	Bad SSH-8 gain: The SSH-8 channel gain in the configuration file is not valid.	Run D1800CFG.EXE and specify the SSH-8 channel gain as 0.5, 5, 50, or 250.

Table A-1. Error/Status Codes (cont.)

Error/Status Codes

0

 \oplus

			•
Error	Code		
Hex	Decimal	Cause	
700E	28686	Error - Resource busy. The application program attempted to start an operation while a similar operation was in progress.	Use K. IntStop or K. DMAStop to step the in-progress operation before initiating the second operation.
700F	28687	Unknown error number: The error number passed to K_GetErrMsg was invalid.	Check the error number passed to K_GetErrMsg.
7012	28690	Bad burst divider: The burst rate divider passed to K_SetBurstFlicks is out of range.	Specify a burst rate divider in the range 3 to 255.
7013	28691	Error - DMA channel busy: The application program attempted to start a DMA-mode analog input operation while another DMA-mode analog input operation was active.	Use K_DMAStop to stop the active operation before initiating the second operation.
7014	28692	Error - Counter 0 busy: The application program attempted to start n DMA-mode analog input operation with about-trigger mode enabled while another DMA-mode with about-trigger operation was active.	Use K_DMAStop to stop the active operation before initiating the second operation
7015	28693	Error - About count illegal: The number of samples passed to K_SetAboutTrig is out of range.	Specify a number of samples in the range 1 to 65,536.
7016	28694	Error • About trigger illegal: About trigger mode was enabled for un interrupt-mode operation.	Disable about-trigger mode (about-trigger mode is available for DMA-mode analog input operations only).
7017	28695	Illegal number of EXP-1800: The number of EXP-1800 expansion boards specified in the configuration file is not valid.	Run D1800CFG.EXE and specify the number of EXP-1800 expansion boards as a number in the range 0 to 16.

 \oplus

Table A-1. Error/Status Codes (cont.)

A-7

 \oplus

 $\overline{\mathbf{\Phi}}$

-

المالية والمستحدث والمقاطع

 \oplus

Error Code		0	Osladian
Hex	Decimal	Cause	Solution
8001	32769	Function not supported: You have attempted to use a function not supported by the DAS-1800 Series Function Call Driver.	Contact the factory.
8003	32771	Illegal board number : An illegal board number was specified in the board initialization function.	Specify a legal board number: 0, 1, or 2.
8004	32772	Illegal error number: The error message number specified in K_GetErrMsg is invalid.	Check the error message number and try again.
8005	32773	Board not found at configured address: The board initialization function does not detect the presence of a board.	Make sure that the base address setting of the switches on the board matches the base address setting in the configuration file.
800B	32779	Conversion overrun: Data was overwritten before it was transferred to the computer's memory.	Adjust the clock source to slow down the rate at which the board acquires data. Remove other application programs that are running and using computer resources.
8016	32790	Interrupt overrun: During an interrupt-mode analog output or digital I/O operation, an interrupt was detected from a DAS-1800 Series board while the software was servicing a previous interrupt from the same board.	Use K_SetClkRate to reduce the pacer clock rate. Analog output and digital I/O operations are limited to the following throughputs: 5 kHz in DOS and Windows Standard mode; 1 kHz in Windows enhanced mode (the throughputs listed are approximate; they are limited by the PC's resources and Windows setup).
801A	32794	Interrupts already active: You have attempted to start an operation whose interrupt level is heing used by another system resource.	Use K_IntStop to stop the first operation before starting the second operation.

Table A-1. Error/Status Codes (cont.)

A-8

Error/Status Codes

 \oplus

 \oplus

ಕೊನ ಕಾರ್ಯ

Ē

Error Code		00000	Colution
Hex	Decimal	- Cause	Solution
801B	32795	DMA already active: You attempted to start an DMA-mode analog input operation with K_DMAStart while another was already in progress.	Use K_DMAStop to stop the first operation before starting the second operation.
8020	32800	FIFO Overflow event detected: During a DMA-mode or interrupt-mode input operation, the onboard data FIFO overflowed; the hardware automatically stopped the acquisition.	The conversion rate you are using is too fast for the operating environment you are in. Use K_SetClkRate to reduce your conversion rate and/or reconfigure your board to use dual-DMA if using DMA mode (run D1800CFG.EXE and restart your program).
FFFF	65535	User aborted operation	You pressed [Ctrl]+[Break] while waiting for an analog trigger event to occur.

 \oplus

Table A-1. Error/Status Codes (cont.)

happx_a_.frm Page 10 Thursday, April 14, 1994 2:07 PM

•

¦⊕

 \oplus

 $|\Phi|$

 $\pm i \sim \cdots \sim i$

 \oplus

÷

B

Data Formats

The DAS-1800 Series Function Call Driver can read and write raw counts only. When reading a value (as in **K_ADRead**), you may want to convert the raw count to a more meaningful voltage value; when writing a value (as in **K_SetTrigHyst**), you must convert the voltage value to a raw count.

The remainder of this appendix contains instructions for converting raw counts to voltage and for converting voltage to raw counts.

Converting Raw Counts to Voltage

 \oplus

You may want to convert raw counts to voltage when reading an analog input value or when reading the analog trigger level or hysteresis value.

To convert an analog input value to a voltage, use one of the following equations, where *count* is the count value, and *span* is the appropriate value from Table B-1 on page B-2:

Voltage = $\frac{\text{count} \times \text{span}}{4096}$ (DAS-1800HC/ST Series boards)

Voltage = $\frac{\text{count} \times \text{span}}{65,536}$ (DAS-1800HR Series boards)
Board	Input Range Type	Gain	Input Range	Span (V)
DAS-1801HC DAS-1801ST	Unipolar	1	0 to 5 V	5
		5	0 to 1 V	1
		50	0 to 100 mV	0.1
		250	0 to 20 mV	0.02
	Bipolar	1	5 to 5 V	10
		5	1 to 1 V	2
		50	-100 to 100 mV	0.2
		250	-20 to 20 mV	0.04
DAS-1802HC DAS-1802ST DAS-1802HR	Unipolar	1	0 to 10 V	10
		2	0 to 5 V	5
		4	0 to 2.5 V	2.5
		8	0 to 1.25 V	1.25
	Bipolar	1	-10 to 10 V	20
		2	-510 5 V	10
		4	-2.5 to 2.5 V	5
		8	~1.25 to 1.25 V	2.5

 Table B-1. Span Values For Data Conversion Equations

For example, assume that you want to read analog input data from a channel on a DAS-1801HC board configured for unipolar input range type; the channel collects the data at a gain of 1. The count value is 3072. The voltage is determined as follows:

$$\frac{3072 \times 5 \text{ V}}{4096} = 3.75 \text{ V}$$

 \oplus

Data Formats

 \oplus

 \oplus

B-2

 \oplus

As another example, assume that you want to read analog input data from a channel on a DAS-1802HC board configured for a bipolar input range type; the channel collects the data at a gain of 2. The count value is 1024. The voltage is determined as follows:

$$\frac{1024 \times 10 \text{ V}}{4096} = 2.5 \text{ V}$$

Converting Voltage to Raw Counts

You must convert voltage to raw counts when specifying an analog output value, analog trigger level or hysteresis value.

Specifying an Analog Output Value (DAS-1800HC Series only)

To convert a voltage value to a raw count when specifying an analog output value, use the following equation, where *voltage* is the desired voltage:

$$Count = \frac{voltage \times 4096}{20 V} + 2048$$

For example, assume that you want to specify an analog output value of 5 V for a channel on a DAS-1802HC. The raw count is determined as follows:

$$\frac{5 \text{ V} \times 4096}{20 \text{ V}} + 2048 = 3072$$

B-3

Specifying an Analog Trigger Level

To convert a voltage value to a raw count when specifying an analog trigger level, use one of the following equations, where V_{trig} is the desired voltage, and *span* is the appropriate value from Table B-1 on page B-2:

Count = $\frac{V_{trig} \times 4096}{\text{span}}$ (DAS-1800HC/ST Series boards)

Count = $\frac{V_{trig} \times 65536}{\text{span}}$ (DAS-1800HR Series boards)

Note: When converting voltage to raw counts to specify an analog trigger level, always use a gain of 1 to determine which span value to use from Table B-1, no matter what the gain of the channel is.

For example, assume that you want to specify an analog trigger level of 2.5 V for a channel on a DAS-1801HC board configured for a bipolar input range type. The raw count is determined as follows:

$$\frac{2.5 \text{ V} \times 4096}{10 \text{ V}} = 1024$$

Data Formats

Specifying a Hysteresis Value

To convert a voltage value to a raw count when specifying a hysteresis value, use one of the following equations, where V_{hyst} is the desired voltage, and *span* is the appropriate value from Table B-1 on page B-2:

Count =
$$\frac{V_{\text{hyst}} \times 4096}{\text{span}}$$
 (DAS-1800HC/ST Series boards)
Count = $\frac{V_{\text{hyst}} \times 65536}{\text{span}}$ (DAS-1800HR Series boards)

Note: When converting voltage to raw counts to specify a hysteresis value, always use a gain of 1 to determine which span value to use from Table B-1, no matter what the gain of the channel is.

For example, assume that you want to specify an analog trigger hysteresis value of 0.5 V for a channel on a DAS-1801HC board configured for a bipolar input range type. The raw count is determined as follows:

$$\frac{1.25 \text{ V} \times 4096}{10 \text{ V}} = 512$$

appx_b_.frm Page 6 Thursday, April 14, 1994 2:08 PM

 \oplus

 \oplus

.

 \oplus

φ

 \oplus

¢

Index

A

allocating memory analog input operations 2-6 analog output operations 2-27 digital I/O operations 2-33 analog input operations 2-4 programming tasks 3-11 analog output operations 2-26 programming tasks 3-18 analog-to-digital converter 2-17 ASO-1800 software package 1-1

B

Ð

BASIC allocating and assigning dynamic memory buffers 3-46 creating a channel-gain queue 3-50 see also Professional Basic, QuickBasic, Visual Basic for DOS 3-46 board handle 2-2 board initialization 2-2 Borland C/C++ programming information 3-29 see also C languages Borland Turbo Pascal: see Turbo Pascal Borland Turbo Pascal for Windows: see Turbo Pascal for Windows buffer address analog input operations 2-9 analog output operations 2-28 digital I/O operations 2-33 buffer address functions 4-3 buffering mode functions 4-3

buffering modes analog input operations 2-18 analog output 2-30 digital I/O operations 2-38 buffers analog input operations 2-6 analog output operations 2-27 digital I/O operations 2-33 multiple 2-6

С

C languages allocating and assigning dynamic memory buffers 3-23 creating a channel-gain queue 3-27 dimensioning and assigning local arrays 3-25 see also Borland C/C++, Microsoft C/C++, QuickC for Windows, Visual C++ channel and gain functions 4-4 channel-gain queue 2-14 channels multiple using a channel-gain queue 2 - 14multiple using a group of consecutive channels 2-13 number supported 2-10, 2-28 clock functions 4-4 clock source analog input operations 2-15 analog output operation 2-29 digital I/O operations 2-36 commands: see functions common mode ground reference 2-11 common tasks 3-11

compile and link statements Borland C/C++ 3-29 Microsoft C/C++ 3-28 Professional Basic 3-54 QuickBasic (Version 4.0) 3-52 QuickBasic (Version 4.5) 3-52 Turbo Pascal 3-38 continuous mode analog input operations 2-18 analog output operations 2-30 digital I/O operations 2-38 conventions 4-5 conversion mode functions 4-3 conversion rate 2-17 converting raw counts to voltage B-1 voltage to raw counts B-3 creating an executable file Borland C/C++ 3-29 Microsoft C/C++ 3-28 Professional Basic 3-54 QuickBasic (Version 4.0) 3-51 QuickBasic (Version 4.5) 3-53 QuickC for Windows 3-30 Turbo Pascal 3-38 **Turbo Pascal for Windows 3-39** Visual Basic for DOS 3-55 Visual Basic for Windows 3-45

D

DAS1800_DevOpen 2-2, 4-8 DAS1800_GetDevHandle 2-3, 4-11 DAS-1800 Series Function Call Driver: see Function Call Driver DAS-1800 Series standard software package 1-1 data formats B-1 data transfer modes: see operation modes default values frame elements 3-5, 3-7, 3-8, 3-9 digital I/O operations 2-31 programming tasks 3-20 digital-to-analog converter 2-28 dimensioning memory analog input operations 2-6 analog output operations 2-6 digital I/O operations 2-33 driver: *see* Function Call Driver driver handle 2-2

Ε

elements of frame 3-2 error codes A-1 error handling 2-4 executable file: *see* creating an executable file

F

files required Borland C/C++ 3-29 Microsoft C/C++ 3-28 Professional Basic 3-53, 3-55 QuickBasic (Version 4.0) 3-51 QuickBasic (Version 4.5) 3-52 QuickC for Windows 3-30 Turbo Pascal 3-38 Turbo Pascal for Windows 3-39 Visual Basic for Windows 3-45 Visual C++ 3-31 frame management functions 4-2 frames 3-2 frame elements 3-2 frame handle 3-2 frame types 3-3

Function Call Driver initialization 2-2 structure 3-1 functions buffer address 4-1 buffering mode 4-1 channel and gain 4-1 clock 4-1 conversion mode 4-1 frame management 4-1 gate 4-1 initialization 4-1 memory management 4-1 miscellaneous 4-1 operation 4-1 trigger 4-1

G

gain codes 2-10 gains 2-10 see also analog input ranges 2-9 gains: see Analog input ranges gate functions 4-5 gates 2-25 group of consecutive channels 2-13

Η

hardware gates: see gates hysteresis 2-21

I

initialization functions 4-2 initializing a board 2-2 initializing the driver 2-2 input range type 2-9 internal pacer clock 2-16, 2-29, 2-36 interrupt mode analog input operations 2-5 analog output operations 2-27 digital I/O operations 2-32

Κ

 \oplus

K_ADRead 2-5, 2-13, 2-27, 2-28, 4-14 K BufListAdd 2-9, 4-17 K_BufListReset 2-9, 4-21 K_ClearFrame 3-4, 4-23 K_CloseDriver 2-2, 4-25 K_ClrAboutTrig 4-27 K_ClrADFreeRun 4-29 K_ClrContRun 4-31 K_DASDevInit 2-3, 4-33 K_DAWrite 4-35 K_DIRead 2-31, 4-38 K DMAAlloc 2-8, 4-41 K DMAFree 2-8, 4-45 K DMAStart 4-47 K_DMAStatus 4-49 K_DMAStop 4-53 K_DOWrite 2-31, 4-56 K_FormatChnGAry 4-59 K_FreeDevHandle 2-3, 4-61 K FreeFrame 3-4, 4-63 K_GetAboutTrig 4-65 K GetADCommMode 4-67 K GetADConfig 4-69 K GetADFrame 3-3, 3-4, 4-71 K_GetADFreeRun 4-73 K GetADMode 4-76 K_GetADTrig 4-78 K GetBuf 4-82 K_GetBurstTicks 4-85 K_GetChn 4-88 K_GetChnGAry 4-91 K_GetClk 4-93

🕀 draft3.ix Page 4 Thursday, April 14, 1994 2:08 PM

K_GetClkRate 4-96 K_GetContRun 4-99 K_GetDAFrame 4-102 K_GetDevHandle 2-3, 4-105 K_GetDIFrame 4-107 K GetDITrig 4-110 K GetDOCurVal 4-113 K_GetDOFrame 4-116 K_GetErrMsg 2-4, 4-119 K_GetExtClkEdge 4-121 K_GetG 4-124 K_GetGate 4-126 K_GetShellVer 2-4, 4-129 K_GetSSH 4-132 K_GetStartStopChn 4-135 K_GetStartStopG 4-138 K_GetTrig 4-142 K_GetTrigHyst 4-145 K_GetVer 2-4, 4-148 K_IntAlloc 2-8, 2-28, 2-33, 4-151 K_IntFree 2-8, 2-28, 2-33, 4-154 K_IntStart 2-5, 2-6, 2-27, 2-32, 4-156 K_IntStatus 2-5, 2-6, 2-27, 2-32, 4-158 K_IntStop 2-5, 2-6, 2-27, 2-32, 4-162 K_MoveArrayToBuf 4-167 K_MoveBufToArray 4-169 K_OpenDriver 2-2, 4-171 K_RestoreChnGAry 4-174 K_SetAboutTrig 4-176 K_SetADCommMode 4-179 K_SetADConfig 4-181 K_SetADFreeRun 2-15, 4-183 K_SetADMode 4-185 K_SetADTrig 4-187 K_SetBuf 4-191 K SetBufI 4-194 K_SetBurstTicks 2-17, 4-196 K_SetChn 2-13, 2-28, 4-198 K_SetChnGAry 2-14, 4-201 K_SetClk 2-16, 4-204 K_SetClkRate 2-16, 2-29, 2-36, 4-207 K_SetContRun 2-18, 2-30, 2-38, 4-210

K_SetDITrig 4-212 K_SetDMABuf 4-215 K_SetExtClkEdge 4-218 K_SetG 2-13, 2-14, 4-220 K_SetGate 2-26, 4-222 K_SetSSH 4-224 K_SetSSH 4-224 K_SetStartStopChn 2-13, 2-28, 4-226 K_SetStartStopG 2-14, 4-230 K_SetTrig 4-233 K_SetTrig 4-233 K_SetTrigHyst 2-21, 4-236 KMakeDMABuf 4-165

Μ

maintenance operations: see system operations managing memory analog input operations 2-6 analog output operations 2-27 digital I/O operations 2-33 memory allocation analog input operations 2-6 analog output operations 2-27 digital I/O operations 2-33 in BASIC 3-46 in C/C++ 3-23 in Pascal 3-32 in Visual Basic for Windows 3-40 memory handle analog input operations 2-8 analog output operations 2-28 digital I/O operations 2-33 memory management analog input operations 2-6 analog output operations 2-27 digital I/O operations 2-33 in BASIC 3-46 in C/C++ 3-23 in Pascal 3-32 in Visual Basic for Windows 3-40

X-4

Hraft3.ix Page 5 Thursday, April 14, 1994 2:08 PM

memory management functions 4-3 Microsoft C/C++ programming information 3-28 see also C languages Microsoft Professional Basic: see **Professional Basic** Microsoft QuickBasic (Version 4.0): see QuickBasic (Version 4.0) Microsoft QuickBasic (Version 4.5): see QuickBasic (Version 4.5) Microsoft QuickC for Windows: see QuickC for Windows Microsoft Visual Basic for DOS: see Visual Basic for DOS Microsoft Visual Basic for Windows: see Visual Basic for Windows Microsoft Visual C++: see Visual C++ Miscellaneous functions 4-5 Miscellaneous operations: see System operations multiple buffers 2-6

0

operation functions 4-2 operation modes analog input operations 2-5 analog output operations 2-27 digital I/O operations 2-31 operations analog input 2-4 analog output 2-26 digital I/O 2-31 system 2-1

Ρ

Pascal allocating and assigning dynamic memory buffers 3-32 creating a channel-gain queue 3-37 dimensioning and assigning local arrays 3-35 see also Turbo Pascal, Turbo Pascal for Windows preliminary tasks 3-11 **Professional Basic** programming information 3-53 see also BASIC programming information Borland C/C++ 3-29 Microsoft C/C++ 3-28 Professional Basic 3-53 QuickBasic (Version 4.0) 3-51 OuickBasic (Version 4.5) 3-52 QuickC for Windows 3-30 Turbo Pascal for Windows 3-39 Visual Basic for DOS 3-55 Visual Basic for Windows 3-40, 3-45 Visual C++ 3-31 programming overview 3-10 programming tasks analog input operations 3-11 analog output operations 3-18 common 3-11 digital I/O operations 3-20 preliminary 3-11

Q

QuickBasic (Version 4.0) programming information 3-51 see also BASIC QuickBasic (Version 4.5) programming information 3-52 see also BASIC QuickC for Windows programming information 3-30 see also C languages

R

return values 2-4 revision levels 2-4 routines: *see* functions

S

scan 2-13 single-cycle mode analog input operations 2-18 analog output operations 2-30 digital I/O operations 2-38 software packages 1-1 see also ASO-1800 software package, DAS-1800 Series standard software package standard software package 1-1 starting a digital I/O operation 2-31 starting an analog input operation 2-5 starting an analog output operation 2-27 status codes 2-4, A-1 storing data: see buffering modes system operations 2-1

T

tasks operation-specific 3-11 preliminary 3-11 time base analog input operations 2-16, 2-17 analog output operations 2-29 digital I/O operations 2-36 trigger functions 4-5 triggers 2-25 Turbo Pascal for Windows programming information 3-39 *see also* Pascal

V

Visual Basic for DOS programming information 3-55 see also BASIC Visual Basic for Windows allocating and assigning dynamic memory buffers 3-40 dimensioning and assigning local arrays 3-42, 3-48 programming information 3-40, 3-45 Visual C++ programming information 3-31 see also C languages

Index