
cover.frm Black 1

DAS-800 Series
Function Call Driver

User’s Guide

1 titlepgfrm Black 1

DAS-800 Series
Function Call Driver

User’s Guide

Revision A - December 1993
Part Number: 66770

noticep.frm Black 1 +b

The information contained in this manual is believed to be accurate and reliable. However. the
manufacturer assumes no responsibility for its use; nor for any infringements or patents or other rights
of third parties that may result from its use. No license is granted by implication or otherwise under any
patent rights of the manufacturer.

THE MANUFACTURER SHALL NOT BE LIABLE FOR ANY SPECIAL, INCIDENTAL, OR
CONSEQUENTIAL DAMAGES RELATED TO THE USE OF THIS PRODUCT. THIS PRODUCT
IS NOT DESIGNED WITH COMPONENTS OF A LEVEL OF RELIABILITY THAT IS SUITED
FOR USE IN LIFE SUPPORT OR CRITICAL APPLICATIONS.

All brand and product names are trademarks or registered trademarks of their respective companies.

0 Copyright Keithley Instruments, Inc., 1993.

All rights reserved. Reproduction or adaptation of any part of this documentation beyond that permitted
by Section I I7 of the 1976 United States Copyright Act without permission of the Copyright owner is
unlawful.

800fcd.toc Black iii

Table of Contents

Preface

1 Getting Started
Installing the Software.. 1-2

Installing the DAS-800 Series Standard Software Package 1-2
Installing the ASO- Software Package 1-3

DOS Installation.. 1-3
Windows Installation 1-4

Setting Up the Boards l-5
Getting Help.. . . l-6

2 Avallable Operations
Analog Input Operations

Operation Modes.
Memory Allocation and Management
Input Range Qpe
Gains
Channels

Single Channel,
Multiple Channels Using a Group of Consecutive

Channels
Multiple Channels Using a Channel-Gain List

Conversion Clocks
Buffering Mode.
Triggers

Analog Triggers
Digital Triggers

Hardware Gates.
Digital I/O Operations
Counternimer I/O Operations.
System Operations.

Initializing the Driver.
Initializing a Board
Retrieving the Revision Level.
Handling Errors.

,.,2-l
2-2

.2-3
2-5
2-5

.2-6
.,.2-x

.2-9

.2-9
.2-13
.2-16
.2-16
.2-17
.2-20
.2-22
,2-24

: : 2-26 2-27
.2-28
.2-29

: : 2-30 2-30

8OOfcd.toc Black iv

3 Programming with the Function Call Driver
How the Driver Works ,3-l
Programming Overview3-5
Preliminary Tasks.3-6
Operation-Specific Programming Tasks ,3-6

Analog Input Operations. .3-6
Single Mode,3-7
Synchronous Mode3-7
Interrupt Mode.3-9

Digital I/O Operations3-12
Language-Specific Programming Information (3-12

Microsoft C/C++.3-13
Borland C/C++3-14
Microsoft QuickC for Windows3-I5
Microsoft Visual C++3-16
Borland Turbo Pascal3-16
Borland Turbo Pascal for Windows3-17
Specifying the Buffer Address (Pascal)3-1X
Specifying the Channel-Gain List Starting

Address (Pascal).3-19
Microsoft QuickBASIC (Version 4.0)3-20
Microsoft QuickBasic (Version 4.5).3-21
Microsoft Professional Basic (Version 7.0)3-22
Microsoft Visual Basic for DOS 3-23
Microsoft Visual Basic for Windows 3-24
Specifying the Buffer Address (All BASIC Languages) .. .3-25

4 Function Reference
DASXOO-DevOpen
DAS800-GetADGainMode.
DAS800-GetDevHandle
DAS800-Get8254 :
DAS800&SetADGainMode .
DAS800-Set8254
K-ADRead.
K-BufListAdd
K-BufListReset
K-ClearFrame
K-CloseDriver
K-ClrConiRun
K-DASDevInit
K-DIRead

........

........

........

........

........

........

........

........

........

........

........

........

........

........

.4-6

.4-9
.4-II
.4-13
.4-15
.4-17
.4-19
.4-22
.4-24
,4-26
,4-28
.4-30
4-32

.4-33

iv

800fcd.toc Black v

K-DOWrite
K-FormatChanGAry
K-FreeDevHandle
K-FreeFrame
K-GetADFrame.
KGetADTrig
K-GetBuf.
K-GetChn
K-GetChnGAry
K-GetClk
K-GetClkRate
K-GetContRun
K-GetDevHandIe.
K-GetDITrig
K-GetErrMsg.
K-GetG
K-GetGate
K-GetStartStopChn
KGetStartStopG
K-GetTrig
K-GetTrigHyst.
K-GetVer
K-InitFrame.
K-IntAlloc
K-IntFree
K-IntStart.
K-IntStatus
KJntStop.
K-MoveBuffoArray
K-OpenDriver
K-RestoreChanGAry
K-SetADTrig.
K_SetBuf
K-SetBufI
K-SetChn.
K-SetChnGAry
K-SetClk
K-SetClkRate
K-SetContRun.
K-SetDITrig.
K-SetG.
K-SetGate

.4-35

.4-37

.4-3x

.4-39

.4-40

.4-42

.4-44
,446

. ..4-48
.4-50
.4-52
.4-54
.4-56

. ..4-58
.4-60
.4-61
.4-63
.4-65
,4-67
.4-70
.4-72
,4-14
.4-76
.4-7x
,4-80
.4-81
.4-x3
.4-X6
4-88

.4-x9

.4-92

.4-93

.4-95

.4-97

.4-99
,4-101
.4-103
.4-I05
.4-107
.4-109

..4-111
.4-113

SOOfcd.toc Black vi

vi

K-SetStartStopChn4-115
K-SetStartStopG4-l I7
K-SetTrig4-120
K-SetTrigHyst 4-122
K-SyncStart 4-124

A Error/Status Codes

B Data Formats
Converting Raw Counts to Voltage
Converting Voltage to Raw Counts

Specifying an Analog Trigger Level.
Specifying a Hysteresis Value.

Index

List of Figures
Figure 2-l. Analog Input Channels
Figure 2-2. Channel-Gain List (C or Pascal)
Figure 2-3. Sample Channel-Gain List (C or Pascal).
Figure 2-4. Channel-Gain List (BASIC)
Figure 2-5. Sample Channel-Gain List (BASIC).
Figure 2-6. Initiating Conversions
Figure 2-7. Analog Trigger Conditions
Figure 2-8. Using a Hysteresis Value. . .
Figure 2-Y. Initiating Conversions with an External

Analog Trigger

.2-x
.2-IO
.2-I1
.2-I2
.2-12
.2-I5
.2-I7
2-19

.2-20
Figure 2-10. Initiating Conversions with an External

Digital Trigger. . 2-21
Figure 2-l I. Hardware Gate. : : 2-23
Figure 2-12. Digital Input Bits. .2-24
Figure 2-13. Digital Output Bits. .2-25

B-2
.B-3
.B-3
.B-5

SOOfcd.toc Black vii

List of Tables
Table 2-l. Supported Operations .2-l
Table 2-2. Analog Input Ranges., .2-6
Table 2-3. Channels in Maximum Configuration. .2-7
Table 3-l. A/D Frame Elements. .3-3
Table 3-2. Setup Functions for Synchronous-Mode

Operations..3-7
Table 3-3. Setup Functions for Interrupt-Mode Operations .3-IO
Table 4-1. FCD Functions. . .4-2
Table 4-2. Default Configuration .4-7
Table A- I. Error/Status Codes. A-l

vii

800fcd.toc Black viii

preface.frm Black ix +b

Preface

The DAS-BOO Series Function Call Driver User’s Guide describes how to
write application programs for DAS-800 Series boards using the
DA.%800 Series Function Call Driver. The DAS-X00 Series Function Call
Driver supports the following DOS-based languages:

. Microsoft@ QuickBASIC (Version 4.0)

l Microsoft QuickBasicm (Version 4.5 and higher)

. Microsoft Professional Basic (Version 7.0 and higher)

. Microsoft Visual BasicTM for DOS (Version 1.0)

. Microsoft C/C++ (Version 4.0 and higher)

. Borland@ C/C++ (Version I.0 and higher)

l Borland Turbo Pascal@ for DOS (Version 6.0 and higher)

The DAS-800 Series Function Call Driver also supports the following
WindowsTM-based languages:

l Microsoft Visual Basic for Windows (Version 2.0 and higher)

. Microsoft QuickC@ for Windows (Version 1.0)

l Microsoft Visual C++TM (Version I .O)

. Borland Turbo Pascal for Windows (Version 1.0 and higher)

preface.frm Black x
f@

The manual is intended for application programmers using a DAS-800,
DAS-801, or DAS-802 board in an IBM’ PC/XY, ATa or compatible
computer, It is assumed that users have read the DAS-800 Series User’s
Guide to familiarize themselves with the boards’ functions, and that they
have completed the appropriate hardware installation and configuration. It
is also assumed that users are experienced in programming in their
selected language and that they are familiar with data acquisition
principles.

The DAS-800 Series Function Call Driver User’s Guide is organized as
follows:

Chapter I contains the information needed to install the DAS-800
Series Function Call Driver and to set up DAS-800 Series boards.

Chapter 2 contains the background information needed to use the
functions included in the DAS-800 Series Function Call Driver.

Chapter 3 contains programming guidelines and language-specific
information related to using the DA.5800 Series Function Call
Driver.

Chapter 4 contains detailed descriptions of the DAS-XtlO Series
Function Call Driver functions, arranged in alphabetical order.

Appendix A contains a list of the error codes returned by DAS-800
Series Function Call Driver functions.

Appendix B contains instructions for converting raw counts to
voltage and for converting voltage to raw counts.

An index completes this manual.

prefacefrm Black xi

4

Keep the following conventions in mind as you use this manual:

. References to DAS-800 Series boards apply to the DAS-800,
DAS-801, and DAS-802 boards. When a feature applies to a
particular board, that board’s name is used.

. References to BASIC apply to all DOS-based BASIC languages
(Microsoft QuickBASIC (Version 4.0). Microsoft QuickBasic
(Version 4.5), Microsoft Professional Basic, and Microsoft Visual
Basic for DOS). When a feature applies to a specific language, the
complete language name is used. References to Visual Basic for
Windows apply to Microsoft Visual Basic for Windows.

. Keyboard keys are enclosed in square brackets ([1).

xi

4

preface.frm Black xii

4

4

chapOl_.frm Black 1

4

fb

Getting Started

The DAS-800 Series Function Call Driver is a library of data acquisition
and control functions (referred to as the Function Call Driver or FCD
functions). It is part of the following two software packages:

. DAS-X00 Series standard software package -This is the software
package that is shipped with DAS-800 Series boards; it includes the
following:

- Libraries of FCD functions for Microsoft QuickBASIC
(Version 4.0) Microsoft QuickBasic (Version 4.5), Microsoft
Professional Basic, and Microsoft Visual Basic for DOS.

- Support files, containing such program elements as function
prototypes and definitions of variable types, which are required
by the FCD functions.

- Utility programs, running under DOS, that allow you IO
configure, calibrate, and test the functions of DAS-800 Series
boards.

- Language-specific example programs,

. ASO- software package - This is the optional Advanced
Software Option for DAS-800 Series boards. You purchase the
ASO- software package separately from the board; it includes the
following:

Libraries of FCD functions for Microsoft C/C++, Borland
C/C++, and Borland Turbo Pascal.

l-l

4

4

chapOl_.frm Black 2 +D

- Dynamic Link Libraries (DLLs) of FCD functions for Microsoft
Visual Basic for Windows, Microsoft QuickC for Windows,
Microsoft Visual C++. and Borland Turbo Pascal for Windows.

- Support files. containing program elements, such as function
prototypes and definitions of variable types. that are required by
the FCD functions.

- Utility programs, running under DOS and Windows, that allow
you to configure, calibrate, and test the functions of DAS-800
Series boards.

- Language-specific example programs.

This chapter contains the information needed to install the DAS-800
Series Function Call Driver in your computer and set up your DAS-800
Series boards. It also contains information on where to get help if you
have problems installing or using the Function Call Driver.

Installing the Software

Before you can use the Function Call Driver, you must install the
appropriate software package, either the DAS-800 Series standard
software package or the ASO- software package.

The following sections describe how to install the DAS-800 Series
standard software package and how to install the AS0400 software
package from both DOS and Windows.

Installing the DAS-800 Series Standard Software Package

To install the DAS-800 Series standard software package, perform the
following steps:

1. Make a back-up copy of the supplied disks.

2. Insert disk #l into the disk drive.

l-2 Getting Started

chapOl_.frm Black 3

3. Assuming that you are using disk drive A, enter the following at the
DOS prompt:

A:install

The installation program prompts you for your installation
preferences, including the name of the directory you want to copy the
software to. It also prompts you to insert additional disks, as
necessary.

4. Continue to insert disks and respond to prompts, as appropriate.

The installation program expands any files that are stored in a
compressed format and copies them into the directory you specified
(DAS800 directory on hard disk C if you do not specify otherwise).

5. Review the following tiles:

- FILES.TXT lists and describes all the files copied to the hard disk
by the installation program.

- README.TXT contains information that was not available when
this manual was printed.

installing the ASO- Software Package

This section describes how to install the ASO- software package from
both DOS and Windows.

DOS Installation

To install the ASO- software package from DOS, perform the
following steps:

1. Make a back-up copy of the supplied disks.

2. Insert disk #1 into the disk drive.

3. Assuming that you are using disk drive A. enter the following at the
DOS prompt:

A:install

1-3

chapOl_.frm Black 4

The installation program prompts you for your installation
preferences, including the name of the directory you want to copy the
software to. It also prompts you to insert additional disks, as
necessary.

4. Continue to insert disks and respond to prompts, as appropriate.

The installation program expands any files that are stored in a
compressed format and copies them into the directory you specified
(AS0800 directory on hard drive C if you do not specify otherwise).

5. Review the following files:

- FILES.TXT lists and describes all the files copied to the hard disk
by the installation program.

- README.TXT contains information that was not available when
this manual was printed.

Windows Installation

To install the ASO- software package from Windows, perform the
following steps:

I. Make a back-up copy of the ASO-Windows disk

2. Insert the ASO-Windows disk into the disk drive.

3. Start Windows,

4. From the Program Manager menu, choose File and then choose Run.

5. Assuming that you are using disk drive A, type the following at the
command line in the Run dialog box, and then select OK:

A: SETUP

The installation program prompts you for your installation
preferences, including the name of the directory you want to copy the
software to.

6. Type the path name and select Continue.

1-4 Getting Started

chapOl_.frm Black 5 fb

The installation program expands any tiles that are stored in a
compressed format and copies them into the directory you specified
(ASOBOWWINDOWS directory on hard drive C if you do not specify
otherwise).

The installation program also creates a DAS-800 family group; this
group includes example Windows programs and help files.

7. Review the following files:

- FILES.TXT lists and describes all the tiles copied to the hard disk
by the installation program.

- README.TXT contains information that was not available when
this manual was printed.

Setting Up the Boards

Before you use the Function Call Driver. make sure that you have
performed the following steps:

1. Installed the software.

If not, install the appropriate software package (either the DAS-800
Series standard software package or the ASO- software package)
on your IBM PC/XT, AT or compatible computer. Refer to page 1-2
for information on installing the DAS-800 Series standard software
package; refer to page 1-3 for information on installing the ASO-8OU
software package.

2. Created a configuration file.

If not, use the DXOOCFG.EXE utility to create a configuration file for
the DAS-800 Series boards you are using. For each board, make sure
that you specify the board model, the base address, the use of
counter/timer 2 (C/IY2) on the 8254 counter/timer circuitry, the input
range type (unipolar or bipolar), the input configuration (single-ended
or differential) for each channel on each DAS-801 and DAS-802
board, the interrupt level, and the expansion boards used. Refer to the
DAS-800 Series (/ser’s Guide for more information.

l-5

chapOl_.frm Black 6

3. Configured the hardware.

If not, use switches on the boards to set the base address of each
DA.%800 Series board and the input contiguration (single-ended or
differential) for each channel on each DAS-801 and DAS-802 board.
Use the jumper on the boards to set the interrupt level of each
DAS-800 Series board. Refer to the instructions in the
DXOOCFG.EXE utility and the DAS-800 Series User’s Guide for more
information.

4. Installed the board(s).

If not, with the computer powered down, install the DAS-800 Series
boards in your computer. The DAS-800 requires a single, short slot;
the DAS-801 and DAS-802 require a single, l/2-slot. Refer to the
documentation provided with your computer for more information on
installing boards.

Note: The DAS-800 Series Function Call Driver supports a
maximum of four DAS-800 Series boards.

5. Tested the board(s), if desired.

If you want to test the functions of the boards before writing your
application program, use the CTLXOO.EXE utility (for DOS) or the
CTLXOOW.EXE utility (for Windows). Refer to the DA.5800 Series
User’s Guide for more information.

Getting Help

If you need help installing or using the DA.%800 Series Function Call
Driver, contact the factory.

l-6

-

chapOl_.frm Black 7

4

Operating system DOS version
Windows version 3.0 3.1

mode Standard Enhanced

An applications engineer will help you diagnose and resolve your
problem over the telephone. Please make sure that you have the following
information available before you call:

Software package Version
Invoice/order #

Compiler Language
Manufacturer
Version

Computer Manufacturer
CPU type
Clock speed (MHz)
Math coprocessor
Amount of RAM
Video system
BIOS type

8088 286 386 486-
8 12 20 25 33 _
Yes No

CGA Hercules EGA VGA

DAS-800 board Model 800 801 802
Serial I#
Base address setting
Interrupt level setting
Input configuration
Input range type
8254 C/l? usage

2 3 4 5 6 7 None
Single-ended Differential
Unipolar Bipolar
Cascaded Normal

Expansion boards ‘I)pe

;;:

;;:

4

5Pe

l-7

4

chapOl_.frm Black 8

chap02-.frm Black 1

2
Available Operations

This chapter contains the background information you need to use the
FCD functions to perform operations on DAS-800 Series boards. The
supported operations are listed in Table 2- 1.

Table 2-1. Supported Operations

Operation Page Reference

Analog input page 2-I

Counter/timer l/O page 2-26

Analog Input Operations

This section describes the following:

. Analog input operation modes available.

. How to allocate and manage memory.

. How to modify the input range type.

. How to specify channels and gains, a conversion clock source. a
buffering mode, and a trigger source for an analog input operation.

2-l

chap02-.frm Black 2

Operation Modes

The operation mode determines which attributes you can specify for an
analog input operation and whether the operation is performed in the
foreground or in the background. You can perform analog input
operations in one of the following modes:

. Single mode - In single mode, the board acquires a single sample
from an analog input channel. The driver initiates the conversion and
the board acquires the data in the foreground: you cannot perform any
other operation until the single-mode operation is complete.

You use the K-ADHead function to start an analog input operation in
single mode. You specify the board you want to use, the analog input
channel, the gain at which you want to read the signal, and the
variable in which to store the converted data.

. Synchronous mode - In synchronous mode, the board acquires a
single sample or multiple samples from one or more analog input
channels. A hardware conversion clock initiates conversions while
the board acquires data in the foreground: you cannot perform any
other operation until the synchronous-mode operation is complete.
After the driver transfers the specified number of samples to the host.
it returns control to the application program, which reads the data.
Synchronous mode provides the fastest acquisition of multiple
samples.

You use the K-SyncStart function to start an analog input operation
in synchronous mode. You specify the channel(s). gain(s). conversion
clock source, buffer address, and trigger source.

. Interrupt mode - In interrupt mode, the board acquires a single
sample or multiple samples from one or more analog input channels.
A hardware conversion clock initiates conversions while the board
acquires data in the background; system resources can be used by
other programs. The driver transfers data to the host in the
background using an interrupt service routine.

You use the K-In&art function to start an analog input operation in
interrupt mode. You specify the channel(s), gain(s), conversion clock
source, buffering mode, buffer address, and trigger source.

2-2 Available Operations

chap02-.frm Black 3 +b

You can specify either single-cycle or continuous buffering mode for
interrupt-mode operations. Refer to page 2-16 for more information
on buffering modes. You can use the K-IntStop function 10 stop a
continuous-mode interrupt operation.

You can use the K-IntStatus function to determine the current status
of an interrupt operation. In addition, you can use the K-InitFrame
function to determine the status of all interrupt operations on a
particular board.

For single mode, synchronous mode, and interrupt mode, the converted
data is stored as raw counts. For information on converting raw counts to
voltage, refer to Appendix B.

Note: In applications where you must accurately control the sampling
rate, it is recommended that you perform the analog input operation in
either synchronous mode or interrupt mode so that you can specify a
conversion clock source.

Memory Allocation and Management

Synchronous-mode and interrupt-mode analog input operations require a
memory buffer in which to store the acquired data. You can provide the
required memory buffer in one of the following ways:

. Within your application program’s memory area - The local
memory buffer is always available to your program; however. your
application program may require a large amount of memory. You can
dimension a local memory buffer for any supported language. Since
the DAS-800 Series Function Call Driver stores data in l6-bit
integers, you must dimension all local memory buffers as integers.

. Outside of your application program’s memory area - You
allocate memory as needed. For all C languages, all Pascal languages,
and Visual Basic for Windows, you can use the K-IntAlloc function
to allocate memory dynamically, outside of your program’s memory
area. You specify the operation requiring the buffer, the number of
samples to store in the buffer, the starting address of the buffer, and
the name you want to use to identify the buffer (this name is called the
memory handle). When the buffer is no longer required. you can free

2-3

chap02Lfrm Black 4

the buffer for another use by specifying this memory handle in the
K-IntFree function.

Note: You cannot allocate memory dynamically in BASIC; in
BASIC, you must dimension the memory buffer locally.

You can use multiple buffers to increase the number of samples you can
acquire. Each synchronous-mode or interrupt-mode analog input
operation has a buffer list associated with it. You can use the
K-BufListAdd function to add a buffer to the list of multiple buffers.
You can use the K-BufListReset function to clear the list of multiple
buffers.

Note: If you are using a Windows-based language in Enhanced mode,
you may be limited in the amount of memory you can allocate. If you are
allocating memory dynamically or if you are using multiple buffers. it is
recommended that you use the Keithley Memory Manager before you
begin programming to ensure that you can allocate a large enough buffer
or buffers. Refer to the DAS-800 Series User’s Guide for more
information about the Keithley Memory Manager.

After you allocate or dimension your buffer(s). you must specify the
starting address of the buffer(s) and the number of samples to store in the
buffer(s), as follows:

l For BASIC - You use the K SetBufI function to specify the starting
address of a single, locally dimensioned memory buffer. When using
multiple buffers, you use the K-BufListAdd function both IO add
buffers to the multiple-buffer list and to specify the starting address of
each buffer.

. For Visual Basic for Windows - You use the K SetBufl function to
specify the starting address of a single, locally dimensioned integer
memory buffer; you use the K-SetBuf function to specify the starting
address of a single buffer allocated dynamically using K-IntAlloc.
When using multiple buffers, you use the K-BufListAdd function
both to add buffers to the multiple-buffer list and to specify the
starting address of each buffer.

2-4 Available Operations

chap02-.frm Black 5

Note: If you allocated your buffer dynamically using K~lntAlloc,
you must use the K-MoveBufIbArray function to transfer the
acquired data from the dynamically allocated buffer to a local buffer
that your Visual Basic for Windows program can we. Refer to page
3-25 for more information.

l For C and Pascal - You use the K-SetBuf function to specify the
starting address of a single buffer, whether the buffer was
dimensioned locally or allocated dynamically using K-IntAlloc.
When using multiple buffers, you use the K-BuIListAdd function
both to add buffers to the multiple-buffer list and to specify the
starting address of each buffer.

Input Range Type

Normally, the driver determines the input range type for a DAS-801 or
DAS-802 board (bipolar or unipolar) by reading the configuration tile.
You can change the input range type without modifying the configuration
file by using the DAS800-SetADGainMode function.

Note: The input range type of the DAS-800 board is always bipolar.

Use the DAS800-GetADGainMode function to get the current input
range type. If you never used DASSOO SetADGainMode,
DAS800 GetADGainMode reads the%put range type from the
contigu&on file; if you have used DASSOO-SetADGainMode.
DAS800-GetADGainMode reads the last input range type you
programmed through software.

Gains

DAS-800 boards measure analog input signals in the range of f5 V.
DA%801 and DAS-802 boards measure analog input signals in one of
several software-selectable unipolat and bipolar ranges. For each channel
on aDAS- or DAS-802 board, you can select one of five bipolar and
four unipolar analog input ranges.

Z-5

chap02-.frm Black 6

4

Table 2-2 lists the analog input ranges supported by DAS-800 Series
boards and the gain and gain code associated with each range. (The gain
code is used by the FCD functions to represent the gain.)

Table 2-2. Analog Input Ranges

Board isi Gal” Gain Code

I DAS-800 1 fS V 1 Not available 1 lo I

Channels

The analog input channels are the analog input connections from which
you acquire data. DAS-800 Series boards contain eight on-board analog
input channels, numbered 0 through 7. If you require additional channels,
you can use any combination of up to eight I&channel EXP-16 or
EXP-16/A expansion boards and/or 8-channel EXP-GP expansion boards
to increase the number of available channels to 128. You can also use up
to four MB-02 backplanes to increase the number of available channels to
68.

2-6

4

Available Operations

chap02-.fnn Black 7

4

Expansion boards are assigned to consecutive on-board analog input
channels, beginning with on-board channel 0. To ensure that the DA.%X00
Series Function Call Driver reads the channel numbers correctly. you
must attach all EXP- I6 and EXP-16/A expansion boards first, followed
by all EXP-GP expansion boards. You can also use the remaining
on-board channels. Refer to the DAS-800 Series User’s Guide or the
appropriate expansion board documentation for more information.

The maximum supported configuration is eight EXP-16 or EXP- 16/A
expansion boards, eight EXP-GP expansion boards, or four MB-02
backplanes. Table 2-3 lis!s the software channels associated with each
expansion board.

Table 2-3. Channels In Maximum Configuration

Software Channels

Figure 2- 1 illustrates the use of one EXP- 16 expansion board, two
EXP-GP expansion boards, and the five remaining on-board channels.
The channels on the EXP-16 attached to analog input channel 0 are
referred to in software as channels 0 to 15; the channels on the EXP-GP
attached to analog input channel 1 are referred to in software as channels
16 to 23; the channels on the EXP-GP attached to analog input channel 2
are referred to in software as channels 24 to 3 1; the remaining five

4

2-7

chap02-.frm Black 8

on-board analog input channels (3,4,5.6. and 7) are referred to in
software as channels 32,33,34, 35, and 36.

EXP-16 rl channels
0.16

I I

o-
l-

DA8400
sorts. Board

:

:

;

Figure 2-1. Analog input Channels

You can perform an analog input operation on a single channel or on
multiple channels. The following subsections describe how to specify the
channel(s) you are using.

Single Channel

You can acquire a single sample or multiple samples from a single analog
input channel.

For single-mode analog input operations, you can acquire a single sample
from a single analog input channel. You use the K-ADRead function to
specify the channel and the gain code.

For synchronous-mode and interrupt-mode analog input operations. you
can acquire a single sample or multiple samples from a single analog
input channel. You use the K SetChn function to specify the channel and
the K-SetG function to specify the gain code.

2-8 Available Operations

chap02-.frm Black 9

Multiple Channels Using a Group of Consecotlve Channels

For synchronous-mode and intemrpt-mode analog input operations, you
can acquire samples from a group of consecutive channels. You use the
K-SetStartStopChn function to specify the first and last channels in the
group. The channels are sampled in order from first to last; the channels
are then sampled again until the required number of samples are read.

For example, assume that you have an EXP-16/A expansion board
attached to on-board channel 0. You specify the start channel as 14, the
stop channel as 17. and you want to acquire five samples. Your program
reads data first from channels 14 and 15 (on the EXP-16/A), then from
channels 16 and 17 (on-board channels 1 and 2). and fmally from channel
14 again.

If you are not using any expansion boards, you can specify a start channel
that is higher than the stop channel. For example, assume that the start
channel is 7, the stop channel is 2. and you want to acquire five samples.
Your program reads data first from channel 7. then from channels 0. 1,
and 2. and finally from channel 7 again.

You can use the K-SetC function to specify the gain code for ah channels
in the group. (All channels in a group of consecutive channels must use
the same gain code.) You can also use the K-SetStartStopG function to
specify the gain code, the start channel, and the stop channel in a single
function call.

Refer to Table 2-2 on page 2-6 for a list of the analog input ranges
supported by DAM00 Series boards and the gain code associated with
each range.

Multiple Channels Using a Channel-Gain List

For synchronous-mode and interrupt-mode analog input operations. you
can acquire samples from channels in a channel-gain list. In the
channel-gain list, you specify the channels you want to sample, the order
in which you want to sample them, and the gain code for each channel.

2-9

chap02-.frm Black 10

The channels in a channel-gain list are not necessarily in consecutive
order, and you can specify the same channel more than once (up to a total
of 256 channels in the list). For the DAS-801 and DAS-802 boards, you
can use a different gain code for each channel in a channel-gain list; for
the DAS-800 board, every channel must use a gain code of 0 (gain of I).

The channels are sampled in order from the first channel in the list to the
last channel in the list; the channels in the list are then sampled again until
the required number of samples are read.

Refer to Table 2-2 on page 2-6 for a list of the analog input ranges
supported by DAS-X00 Series boards and the gain code associated with
each range.

Note: The maximum attainable conversion frequency when using a
channel-gain list is less than the maximum attainable conversion
frequency when using a group of consecutive channels.

You specify the channels and gains in one of the following ways:

. For C and Pascal - You use two adjacent g-bit bytes to specify a
channel and its gain code (the channel number is specilied in the first
byte; the gain code is specified in the second byte). The first two
bytes in the channel-gain list specify the number of channels
(subsequent pairs of bytes) in the list. Figure 2-2 illustrates the format
of a channel-gain list for C or Pascal, where n is the number of
channels (pairs) in the list.

syte 0 1 2 3 4 6 ~..~.~. 2n 2" + 1

Value " than jeahl than /g&l ..- cbn ~ @"

#Of pairs pair 1 pair 2 pair n

Figure 2-2. Channel-Gain List (C or Pascal)

Z-10 Available Operations

chap02-.frm Black 11

Figure 2-3 illustrates a channel-gain list of four channels on a
DAS-801 board: channel 5 is sampled at a gain of 0.5 (gain code = 1).
channel 2 is sampled at a gain of 10 (gain code = 2) channel 4 is
sampled at a gain of 100 (gain code = 3), and channel 2 is sampled at
a gain of 500 (gain code = 4).

"a,"e 0 4 6 1 2 2 4 3 2 4

Figure 2-3. Sample Channel-Galn List (C or Pascal)

After you create the channel-gain list in C or Pascal, use the
K-SetChnCAry function to specify the starting address of the list.

For Pascal only, you must define a record type for the channel-gain
list before you specify the starting address. Refer to page 3- I9 for
more information.

. For BASIC and Visual Basic for Windows - You use two adjacent
l6-bit words to specify a channel and its gain code (the channel
number is specified in the first word; the gain code is specified in the
second word). The first word in the channel-gain list specifies the
number of channels (subsequent pairs of words) in the list. Figure 2-4
illustrates the format of a channel-gain list for BASIC and Visual
Basic for Windows, where n is the number of channels (pairs) in the
list.

Z-11

chap02-.frm Black 12

Word 0 1 2 2n.1 2n

V&NJ n cflan b-in Ohm win

w Of pairs pair 1 pair n

Figure 24. Channel-Gain List (BASIC)

Figure 2-5 illustrates a channel-gain list of three channels on a
DAS-80 1 board: channel 5 is sampled at a gain of 0.5 (gain code = 1).
channel 2 is sampled at a gain of 10 (gain code = 2), and channel 4 is
sampled at a gain of 100 (gain code = 3).

I IO 11121314151~1 Word

ValUe 3 5 1 2 2 4 3

3 p&s pdr 1 pal, 2 pair 3

2-12

Figure 2-5. Sample Channel-Gain List (BASIC)

After you create your channel-gain list in BASIC or Vwal Basic for
Windows, you must use the K FormatChanCAry function to
convert the 16-bit values to X-bit values that the DAS-800 Series
Function Call Driver can use. After you use K-FormatChanCAry to
convert your list, use the K-SetChnCAry function to specify the
starting address of the list.

Your program cannot read the channel-gain list converted by the
K-FormatChanCAry function; you must use the
K RestoreChanCAry function 10 restore the converted list to its
original format.

Available Operations

chap02-.frm Black 13

Conversion Clocks

The conversion clock determines the time interval between conversions.
For synchronous-mode and interrupt-mode analog input operations, you
can use the K-SetClk function to specify an internal or an external
conversion clock source. These conversion clock sources are described as
follows:

. Internal clock source - The internal clock source is tbc on-board
8254 counter/timer circuitry. The 8254 counter/timer circuitry is
normally in an idle state. When you start the analog input operation
(using K-In&art or K-SyncStart), a conversion is initiated
immediately. The 8254 is loaded with a count value and begins
counting down. When the 8254 counts down to 0, another conversion
is initiated and the process repeats.

Because the 8254 counter/timer uses a I MHz time base, each count
represents I KS. Use the K-SetClkRate to specify the number of
counts (clock ticks) between conversions. For example, if you specify
a count of 25, the time interval between conversions is 25 ps; if you
specify a count of 65535, the time interval between conversions is
65.535 ms.

The 8254 contains three counter/timers: CEO, CR I, and C/IT. If you
are using an internal clock source. the 8254 uses both CM and CK I.
The driver uses C/T2 and CKl in either normal or cascaded mode, as
follows:

- Normal mode - The driver loads the count you specify into Cn2
of the 8254 counter/timer circuitry. Each time C/f2 reaches
terminal count, a conversion is initiated. The time interval
between conversions ranges from 25 bs to 65.535 ms.

- Cascaded mode - The driver divides the count you specify
between Cn2 and Clrl of the 8254 counter/timer circuiuy.
When C/r2 counts down to 0, CR1 decrements by I. Cfl2 is
reloaded with its count value and begins counting down again.
Each time C/T2 counts down to 0. Cfll decrements by I. Each
time both C/l’2 and C/l’1 reach terminal count. a conversion is
initiated, The time interval between conversions ranges from
25 us to 1.2 hours.

2-l 3

chap02-.frm Black I4

2-14

Note: You configure the 8254 counter/timer circuitry for normal
mode or cascaded mode using the DBOOCFG.EXE configuration
utility. Refer to the DAS-800 Series User’s Guide for more
information.

When using an internal clock source, use the following formula to
determine the number of counts to specify:

I MHz
counts =

conversion frequency

For example, if you want a conversion frequency of 10 kHz. specify a
count of 100.

. External clock source - Use an external clock sonrce if you want to
sample at rates not available with the 8254 counter/timer circuitry. if
you want to sample at uneven intervals. or if you want to sample on
the basis of an external event.

You attach an external clock sonrce to the INT-IN / XCLK pin
(pin 24). When you start the analog input operation (using
K-IntStart or K-Sync&art), conversions are armed. At the next
falling edge of the external clock source (and at every subsequent
falling edge of the external clock source), a conversion is initiated.

Figure 2-6 illustrates the initiation of conversions when using an internal
and an external clock source. (Note that Figure 2-6 assumes that you are
not using an external trigger; refer to Figure 2-10 on page 2-21 for an
illustration of conversions when using an external trigger.)

Available Operations

chap02-.frm Black 15 +b

Figure 2-6. Initiating Conversions

Notes: The analog-to-digital converter (ADC) acquires samples at a
maximum of 40 kHz (one sample every 25 us). If you arc using an
external clock, make sure that the clock does not initiate conversions at a
faster rate Tao the ADC can handle.

To achieve full measurement accuracy when using a gain of 500, you
should limit the conversion frequency to a maximum of 25 kHz (one
sample every 40 ps).

If you are acquiring samples from multiple channels, the maximum
sampling rate for each channel is equal to 40 kHz divided by the number
of channels.

The rate at which the computer can reliably read data from the board
depends on a number of factors, including your computer, the operating
system/environment, whether you are using expansion boards, the gains
of the channels, and other software issues.

For single-mode analog input operations, the software initiates each
conversion with a call to the K-ADRead function.

2-15

chap02-.frm Black 16

Buffering Mode

The buffering mode determines how the driver stores the converted data
in the buffer. For interrupt-mode analog input operations. you can specify
one of the following buffering modes:

. Continuous mode - In continuous mode, the board continuously
converts samples and stores them in the buffer until it receives a stop
function; any values already stored in the buffer are overwritten. You
use the K-SetContRun function to specify continuous buffering
mode.

. Single-cycle mode - In single-cycle mode, after the board converts
the specified number of samples and stores them in the buffer. the
operation stops automatically. You use the K-ClrContRun function
to specify single-cycle buffering mode. (Note that single-cycle mode
is the default buffering mode.)

Triggers

A trigger is a set of conditions that must occur before a DAS-800 Series
board starts an analog input operation. For synchronous-mode and
interrupt-mode analog input operations, you can use the K-Setltig
function to specify one of the following trigger sources:

l Internal trigger - An internal trigger is a software trigger; when you
start the analog input operation (using K-IntStart or K-SyncStart).
conversions begin immediately.

. External trigger - An external trigger is either an analog trigger or a
digital trigger; when you start the analog input operation (using
K-IntStart or K-SyncStart), the application program waits until a
trigger event occurs and then begins conversions.

Analog and digital triggers are described in the following subsections.

2-16 Available Operations

chap02-.frm Black 17

Analog Triggers

An analog trigger event occurs when one of the following conditions is
met by the analog input signal on a specified analog trigger channel:

. The analog input signal rises above a specified voltage level
(positive-edge trigger).

. The analog input signal falls below a specified voltage level
(negative-edge trigger).

Figure 2-7 illustrates these analog trigger conditions, where the specitied
voltage level is +5 V.

Flgure 2-7. Analog Trlgger Conditions

You use the K-SetADTrig function to specify the analog input channel to
use as the trigger channel, the voltage level. the trigger polarity, and the
trigger sense.

2-17

chap02-.frm Black 18 fb

2-10

Note: You specify the voltage level as a raw count value between 0 and
4095. Refer to Appendix B for information on how to convert a voltage
value to a raw count value.

You can use the K-Set’lXgHyst function to specify a hysteresis value to
prevent noise from triggering an operation. For a positive-edge trigger,
the analog signal must fall below the specified voltage level by at least the
amount of the hysteresis value before the trigger event can occur; for a
negative-edge trigger, the analog signal must rise above the spccifted
voltage level by at least the amount of the hysteresis value before the
trigger event can occur.

The hysteresis value is an absolute number, which you specify as a raw
count value between 0 and 4095. When you add the hysteresis value to
the voltage level (for a negative-edge trigger) or subtract the hysteresis
value from the voltage level (for a positive-edge trigger). the resulting
value must also be between 0 and 4095. For example, assume that you are
using a negative-edge trigger on a channel configured for a bipolar input
range type. If the voltage level is +4.8 V (4014 counts), you can specify a
hysteresis value of 0.1 V (41 counts), but you cannot specify a hysteresis
value of 0.3 V (123 counts). Refer to Appendix B for information on how
to convert a voltage value to a raw count value.

In Figure 2-8. the specified voltage level is +5 V and the hysteresis value
is 0. I V. The analog signal must fall below i4.9 V and then rise above
+5 V before a positive-edge trigger event occurs; the analog signal must
rise above +5. I V and then fall below +5 V before a negative-edge trigger
event occurs.

Available Operations

chap02Lfrm Black 19

Poalthnadge
trigger event OOO”,~

start fumtlon b mewled

Figure 2-8. Uslng s Hysteresis Value

When using an analog trigger, the driver samples the specified analog
trigger channel to determine whether the trigger condition has been met.
Therefore, a slight time delay may occur between the time the trigger
condition is actually met and the time the driver realizes that the trigger
condition has been met and begins conversions. In addition, the actual
point at which conversions begin depends on whether you are using an
internal or external clock source These considerations are described as
follows:

c Internal clock source - The 8254 counter/timer circuitry remains idle
until the driver detects the trigger event. When the driver detects the
trigger event, the hoard begins conversions immediately.

. External clock souree - Conversions are armed when the driver
detects the trigger event. At the next falling edge of the external clock
source, the board begins conversions.

2-19

chapOZ.frm Black 20

Figure 2-9 illustrates how conversions arc started when using an external
analog trigger.

External Analog /
Tdggsr

Internal Clock
source CclUnt

Figure 2-Q. lnltiating Conversions with an External Analog Trigger

Digital Triggers

1

A digital trigger event occurs when the board detects a rising edge on the
digital trigger signal connected to the IPl /TRIG pin (pin 25). You we the
K-SetDITrig function to specify an external digital trigger.

2-20

chap02-.frm Black 21

When using a digital trigger, the actual point at which conversions begin
depends on whether you are using an internal or external clock source.
These considerations are described as follows:

. Internal clock source -The 8254 counter/timer circuitry remains idle
until the trigger event occurs. When the trigger event occurs. the
board begins conversions immediately.

. External clock source - Conversions are armed wheo the trigger
event occurs. At the next falling edge of the external clock source. the
board begins conversions.

Figure 2-10 illustrates how conversions are started when using an external
digital trigger.

External DIgItal
Trigger

Internal Clock
source

Convenlons begIn

Figure 2-10. Initiating Conversions with an External Digital Trigger

2-21

chap02-.frm Black 22

Hardware Gates

A hardware gate is an externally applied digital signal that determines
whether conversions occur. You connect the gate signal to the IP 1 /TRIG
pin (pin 25) on the main I/O connector. If you have started an analog input
operation (using K-IntStart or K-SyncStart) and the hardware gate is
enabled, the state of the gate signal determines whether conversions
occur.

DAS-800 Series boards support a positive gate only. Therefore, if the
signal to IPl /TRIG is high, conversions occur; if the signal to IPI /
TRIG is low, conversions are inhibited. You use the K-SetGate function
to enable and disable the hardware gate.

You can use the hardware gate with an external analog trigger. The
software waits until the analog trigger event occurs and then checks the
state of the gate signal. If the gate signal is high, conversions begin; if the
gate signal is low, the software waits until the gate signal goes high before
conversions begin.

If you are not using an analog trigger, the gate signal itself can act as a
trigger. If the gate signal is low when you start the analog input operation.
the software waits until the gate signal goes high before conversions
begin.

Note: You cannot use the hardware gate with an external digital trigger. If
you use a digital trigger at one point in your application program and later
want to use a hardware gate, you must first disable the digital trigger. You
disable the digital trigger by specifying an internal trigger in K-SetTrig
or by setting up an analog trigger (using the K-SetAD’kig function).

When the hardware gate is enabled, the way conversions are synchronized
depends on whether you are using an external or an internal clock source.
These considerations are described as follows:

. Internal clock source -The 8254 stops counting when the gate signal
goes low. When the gate signal goes high again, the 8254 is reloaded
with its initial count value and starts counting again; therefore, when
using an internal clock, conversions are synchronized to the rising
edge of the gate signal.

2-22 Available Operations

chap02-.frm Black 23 +b

. External clock source -The signal from the external clock continues
uninterrupted while the gate signal is low. When the gate signal goes
high again, the software waits for the next falling edge of the external
clock before initiating another conversion; therefore, when using an
external clock, conversions are synchronized to the falling edge of the
external clock.

Figure 2-l 1 illustrates the use of the hardware gate with both an external
clock and an internal clock.

Gale Signal -

181 mnverdon
(Internal clock)

Gate b high;
convemlons OCcur

Gstm Is low;
oo”“.,.lo”. InhlMted

3rd conv:nlon
(exlamal dock)

.

II’
4th mnvenlon
(Internalclock)

Figure 2-11. Hardware Gate

2-23

chap02Lfrm Black 24

Digital I/O Operations

2-24

DAS-800 Series boards contain three digital input lines and four digital
output lines. The digital input lines are associated with the IPl /TRIG,
IP2. and IP3 pins on the main I/O connector; the digital output lines are
associated with the OPI, OP2, OP3. and OP4 pins on the main l/O
connector. If the digital I/O lines are not used for an internal operation,
you can use them for general-purpose digital I/O. as follows:

. Digital input -The DAS-800 Series Function Call Driver provides
the K-DIRead function to read the value of digital input channel 0. a
32-bit channel that contains all the digital input lines. The K-DIRead
function stores the value of digital input channel 0 in a 32-bit
variable, where only bits 0, 1. and 2 are meaningful. As shown in
Figure 2-12. bit 0 contains the value of digital input line I (IPI /
TRIG); bit 1 contains the value of digital input line 2 (IP2); bit 2
contains the value of digital input line 3 (IP3).

Figure 2-12. Digital Input Bits

A value of I in the bit position indicates that the input is high; a value
of 0 in the bit position indicates that the input is low. For example, if
the value is 5 (OO...OOlOl), the input at IPI /TRIG and IP3 is high and
the input at IP2 is low.

Available Operations

chap02-.frm Black 25

Notes: If you are using an external digital trigger, you cannot use the
IPl /TRIG pin (pin 25) for general-purpose digital input operations.

If no signal is connected to a digital input line, the input appears high
(value is 1).

l Digital output - The DAS-800 Series Function Call Driver provides
the K DOWrite function to write a value to digital output channel 0.
a 32-l% channel that contains all the digital output lines. The
K-DOWrite function writes the value to digital output channel 0 as a
32-bit variable, where only bits 0, 1, 2, and 3 are meaningful. As
shown in Figure 2-13, bit 0 contains the value written to digital output
line 1 (OPl); bit I contains the value written to digital output line 2
(OP2); bit 2 contains the value written to digital output line 3 (OP3);
bit 3 contains the value written to digital output line 4 (OP4).

bit 31 bit 3 bit 2 bll 1 bit0

. . OP4 OP3 oP2 OPl

Figure 2-13. DlgItaI Output Bits

A value of 1 in the bit position indicates that the output is high: a
value of 0 in the bit position indicates that the output is low. For
example, if the value written is 12 (OO...OlIOO), the output at OPl and
OP2 is forced low and the output at OP3 and OP4 is forced high.

2-25

chap02-.frm Black 26

Notes: The DAS-800 Series Function Call Driver does not provide a
function for reading the current state of the digital output lines. To
determine the last value written to the digital output lines, check your
application program.

If you are using an expansion board for an analog input operation, the
driver uses all four digital output lines to specify the expansion hoard
channel that is acquiring data; in this case, you cannot use the digital
output lines for general-purpose digital output operations.

Counter/Timer I/O Operations

DAS-800 Series boards contain 8254 counter/timer circuitry; the 8254
contains three counter/timers: ClrO, C/II, and C/T2. If these
counter/timers are not being used for an internal operation, you can use
them for another task, such as frequency measurement.

Note: C/TO is always available for general-purpose tasks. If you are
using an internal clock source for an analog input operation, C/r2 and
C/T1 are not available for general-purpose tasks. If you are using an
external clock source, CfTO, C/Tl, and C/T2 are always available for
general-purpose tasks. Refer to page 2-13 for more information about the
use of the 8254 as an internal clock source.

2-26 Available Operations

chap02-.frm Black 27

To configure a counter/timer on the 8254, you can use the
DASIIOO-Set8254 function. You specify both an initial count value to
load into the counter/timer and a counter/timer mode. The initial count
value can range from 2 to 65535. The following counter/timer modes arc
supported:

c Pulse on terminal count

c Programmable one-shot

c Rate generator

c Square-wave generator

c Software-triggered strobe

c Hardware-triggered strobe

Refer to the DAS-800 Series User’s Guide for more information on the
counter/timer modes and on how to program the 8254 counter/timer
circuitry.

Use the DASSOO-Get8254 function to obtain the counter/timer mode and
the current count value of a counter/timer on the 8254 counter/timer
circuitry.

System Operations

This section describes the miscellaneous operations and general
maintenance operations that apply to DAS-800 Series boards and to the
DAS-800 Series Function Call Driver. It includes information on
initializing the driver, initializing a board, retrieving the revision level,
and handling errors.

2-27

chap02-.frm Black 28

Initializing the Driver

Before you can use any of the functions included in the DAS-800 Series
Function Call Driver, you must initialize the driver using one of the
following driver initialization functions:

. Board-specific driver initialization function - You can use the
board-specific driver initialization function DASEOO-DevOpen to
initialize the DAS-800 Series Function Call Driver only. You specify
a configuration file; DASIlOO-DevOpen initializes the driver
according to the configuration file you specify. Refer to the DAS-800
Series User’s Guide for information on creating and modifying
configuration files.

. Generic driver initialization function - If you want to initialize
several different DAS Function Call Drivers from the same
application program, you can use the generic driver initialization
function K-OpenDriver. You specify the DAS board you are using
and a configuration file; K OpenDriver initializes the driver
according to the configuration file you specify. Refer to the DAS-800
Series User’s Guide for information on creating and modifying
configuration files.

You also specify the name you want to use to identify this particular
use of the driver; this name is called the driver handle. You can
specify a maximum of 30 driver handles for all the DAS boards
accessed from your application program.

If a particular use of a driver is no longer required and you want to
free some memory or if you have used all 30 driver handles. you can
use the K-CloseDriver function to free a driver handle and close the
associated use of the driver. K-CloseDriver also frees any system
resources associated with the driver handle.

If the driver handle you free is the last driver handle specified for a
Function Call Driver, the driver is shut down. (For Windows-based
languages only, the DLLs associated with the Function Call Driver
are shut down and unloaded from memory.)

2-28 Available Operations

chap02-.frm Black 29

Initializing a Board

fb

The DAS-800 Series Function Call Driver supports up to four boards.
You must use a board initialization function to specify the board you want
to use and the name you want to use to identify the board: this name is
called the board handle. Board handles allow you to communicate with
more than one board. You use the board handle you specify in the board
initialization function in all subsequent function calls related to the board.

The DAS-800 Series Function Call Driver provides the following board
initialization functions:

. Board-specific board initialization function - You can use the
board-specific board initialization function DAS8OO~GetDevHandle
to initialize a DAS-800 Series board only.

. Generic driver initialization function - If you want to initialize
several different DAS boards from the same application program, you
can use the generic board initialization function K-GetDevHandle.
You can specify a maximum of 30 board handles for all the DAS
boards accessed from your application program.

If a board is no longer being used and you want to free some memory
or if you have used all 30 board handles, you can use the
K-FreeDevHandle function to free a board handle.
K-FreeDevHandle also frees any system resources associated with
the board handle.

To reinitialize a board during an operation, you can use the
K-DASDevInit function. DAS8OO_GetDevHandle, K-GetDevHandle.
and K-DASDevInit perform the following tasks:

. Abort all analog input operations currently in progress that are
associated with the board identified by the board handle.

. Verify that the board identified by the board handle is the board
specified in the configuration tile.

Retrieving the Revision Level

If you are using functions from different DAS Function Call Drivers in
the same application program, you may want to verify which versions of

2-29

chap02-.frm Black 30 +b

the Function Call Drivers are installed on your board to determine if a
particular function is available to you. The K-GetVer function allows
you to get both the revision number of the DAS-800 Series Function Call
Driver and the revision number of the Keithley DAS Driver Specitication
to which the driver conforms.

Handling Errors

Each FCD function returns a code indicating the status of the function. To
ensure that your application program runs successfully. it is recommended
that you check the returned code after the execution of each function. If
the status code equals 0. the function executed successfully and your
program can proceed. If the status code does not equal 0, an error
occurred; ensure that your application program takes the appropriate
action. Refer to Appendix A for a complete list of error codes.

For C-language application programs only, the DAS-800 Series Function
Call Driver provides the K-GetErrMsg function, which gets the address
of the string corresponding to an error code.

2-30 Available ODerations

chap03-.frm Black 1

3
Programming with the

Function Call Driver

This chapter contains an overview of the structure of the DAS-800 Series
Function Call Driver, as well as programming guidelines and
language-specific information to assist you when writing application
programs with the DAS-800 Series Function Call Driver.

How the Driver Works

The Function Call Drivers for all DAS boards allow you to perform I/O
operations in various operation modes. For single mode, the 110 operation
is performed with a single call to a function; the attributes of the I/O
operation are specified as arguments to the function and a single value is
obtained. For other operation modes, such as synchronous mode and
interrupt mode, the driver uses frames to perform the I/O operation. A
frame is a data structure whose elements define the particular I/O
operation.

Frames help you create structured application programs. You set up the
attributes of the I/O operation in advance, using a separate function call
for each attribute, and then start the operation at an appropriate point in
your program. Frames are useful for operations that have many defining
attributes, since providing a separate argument for each attribute could
make a function’s argument list unmanageably long. In addition, some
attributes, such as conversion clock source and trigger source. are only
available for I/O operations that use frames.

3-1

chap03-.frm Black 2

You indicate that you want to perform an I/O operation by getting an
available frame for the driver and specifying the name you want to use to
identify the frame; this name is called the frame handle. You then specify
the attributes of the I/O operation by using setup functions to define the
elements of the frame associated with the operation. For example, to
specify the channel on which to perform an I/O operation, you might use
the K-SetChn setup function.

For each setup function, the Function Call Driver provides a readback
function, which reads the current definition of a particular element. For
example, the K-GetChn readback function reads the channel used for the
I/O operation.

You use the frame handle you specified when accessing the frame in all
setup functions, readback functions, and other functions related to the I/O
operation. This ensures that you are defining the same I/O operation.

When you are ready to perform the I/O operation you have set up, you can
start the operation in the appropriate operation mode. referencing the
appropriate frame handle.

Different I/O operations require different types of frames. For example, to
perform a digital input operation, you use a digital input frame; to
perform an analog output operation, you use an analog output frame.

For DAS-800 Series boards, the only operations that use frames are
synchronous-mode and interrupt-mode analog input operations. The
DAM00 Series Function Call Driver provides eight identical analog
input frames, called A/D (analog-to-digital) frames. You use the
K-GetADFrame function to access an available A/D frame and specify a
frame handle.

Note: Drivers for other DAS boards may provide additional functions for
accessing analog output, digital input, or digital output frames.

If you want to perform a synchronous-mode or interrupt-mode analog
input operation and all eight frames have been accessed, you can use the
K-FreeFrame function to free a frame that is no longer in use. You can
then redefine the elements of the frame for the next operation.

3-2 Programming with the Function Call Driver

chap03-.frm Black 3

Table 3-1 lists the elements of a DAS-800.4/D frame, the default value of
each element, the setup function(s) used to define each element, and the
readback function(s) used to read the current definition of the element.

Element

Buffering Mode

Table 3-1. A/D Frame Elements

Default Value Setup Function Readback Function

Single-cycle K-ClrContRun K-GetContRun
KSetContRun

Number of Samples 0 K-SetBuf K-GetBuf
KSetBufl I

Stop Channel 0 KSetStartStopChn K-GetStartSmpChn
K-SetStartStopG K-GetStartStopG

Trigger ‘&pe 1 Digital I KSetADTrig 1 K-GctAD’IYig I

3-3

chap03-.frm Black 4 fb

Table 3-l. A/D Frame Elements (cont.)

Element Default Value Setup Function Readback Function

Trigger Polarity Positive (for analog K-SetADTrig K-GetADTrig
@%w)

Positive (for digital Not applicable2 Not applicable2

Trigger Pattern Not used3 Not applicable2 Not applicable2

Notes
’ This element must be set.
‘The default value of this element cannot be changed.
3 This element is not currently used: it is included for future compatibility.

3-4

When you access an A/D frame with K-GetADFrame, the elements me
set to their default values. You can also use the K-ClearFrame function
to return all the. elements of a frame to their default values.

Note: The DAS-800 Series Function Call Driver provides many other
functions that are not related to controlling frames, defining the elements
of frames, or reading the values of frame elements. These functions
include single-mode operation functions. initialization functions, memory
management functions. and other miscellaneous functions.

For information about using the FCD functions in your application
program, refer to the following sections of this chapter. For detailed
information about the syntax of FCD functions, refer to Chapter 4.

Programming with the Function Call Driver

chap03-.frm Black 5

Programming Overview

To write an application program using the DAS-800 Series Function Call
Driver, perform the following steps:

1. Define the application’s requirements. Refer to Chapter 2 for a
description of the board operations supported by the Function Call
Driver and the functions that you can use to define each operation,

2. Write your application program. Refer to the following for additional
information:

- Preliminary Tasks, the next section, describes the programming
tasks that are common to all application programs.

- Operation-Specific Programming Tasks, on page 3-6. describes
operation-specific programming tasks and the sequence in which
these tasks must be performed.

- Chapter 4 contains detailed descriptions of the FCD functions.

- The DAS-800 Series standard software package and the
ASO- software package contain several example programs.
The FILES.TXT file in the installation directory lists and
describes the example programs.

3. Compile and link the program. Refer to Language-Specific
Programming Information, starting on page 3-12, for compile and
link statements and other language-specific considerations for each
supported language.

3-5

chap03-.frm Black 6

Preliminary Tasks

fb

For every Function Call Driver application program, you must perform
the following preliminary tasks:

1. Include the function and variable type definition file for your
language. Depending on the specific language you are using, this iile
is included in the DAS-800 Series standard software package or the
ASO-ROO software package.

2. Declare and initialize program variables.

3. Use a driver initialization function (DASSOO-DevOpen or
K-OpenDriver) to initialize the driver.

4. Use a board initialization function (DAS800-GetDevHandle or
K GetDevHandle) to specify the hoard you want to use and to
initialize the board. If you are using more than one hoard, u.se the
board initialization function once for each hoard you are using.

Operation-Specific Programming Tasks

After you perform the preliminary tasks, perform the appropriate
operation-specific programming tasks. The operation-specific tasks for
analog input and digital I/O operations are described in the following
sections.

Note: Any FCD functions that are not mentioned in the
operation-specific programming tasks can be used at any point in your
application program.

Analog Input Operations

The following subsections describe the operation-specific programming
tasks required to perform single-mode, synchronous-mode, and
interrupt-mode analog input operations.

3-6 Programming with the Function Call Driver

chap03-.frm Black 7

Single Mode

To perform a single-mode analog input operation. perform the following
tasks:

1. Declare the buffer or variable that will hold the single value IO be
read.

2. Use the K-ADRead function to read the single analog input value;
specify the attributes of the operation as arguments to the function.

Synchronous Mode

To perform a synchronous-mode analog input operation, perform the
following tasks:

I. Use the K-GetADFrame function to access an A/D frame.

2. Allocate or dimension the buffer(s) in which to store the acquired
data. Use the K IntAlloc function if you want to allocate the
buffer(s) dyna&ally outside your program’s memory area.

3. If you want to use a channel-gain list IO specify rhe channels
acquiring data. define and assign the appropriate values to the list and
oote the starting address. Refer to page 2-9 for more information
about channel-gain lists.

4. Use the appropriate setup functions to assign values to those elements
of the frame that pertain to your application. The setup functions are
listed in Table 3-2.

Table 3-2. Setup Functions for Synchronous-Mode
Operations

Element Setup Function(s)

Buffer’ K-SetBuf
K-SetBufl
KBufListAdd

3-7

chap03-.frm Black 8

3-8

Table 3-2. Setup Functions for Synchronous-Mode
Operations (cont.)

Gain K-SetG
K SetStartStooC I

Conversion Clock KSetClk
SO!XtX I

Trianer Source

Trigger Channel

Trineer Level / KSetADltir I

Hardware Gate

Notes

K-SetGate

’ You must assign the addresses of all allocated or
dimensioned buffers.

Refer to Chapter 2 for background information about the setup
functions; refer to Chapter 4 for detailed descriptions of the setup
functions.

Programming with the Function Call Driver

chap03-.frm Black 9

Interrupt Mode

5. Use the K-SyncStart function to start the synchronous operation.

6. If you are programming in Visual Basic for Windows and you used
K-IntAlloc to allocate your buffer(s), use the K-MoveBuIToArray
function to transfer the acquired data from the allocated buffer to a
local buffer that your program can use.

I. If you used K~lntAlloc to allocate your buffer(s), use the K-IntFree
function to deallocate the buffer(s).

8. If you used KJ3ujListAdd to specify a list of multiple buffers, use the
K-RuI’ListReset function to clear the list.

9. Use the K-FreeFrame function to retnrn the frame you accessed in
step I to the pool of available frames.

To perform an interrnpt-mode analog input operation. pcrfortn the
following tasks:

1. Use the K-GetADFrame function to access an A/D frame.

2. Allocate or dimension the buffer(s) in which to store the acquired
data. Use the K IntAlloc function if you want to allocate the
buffer(s) dyna&ally outside your program’s memory area.

3. If you want to use a channel-gain list to specify the channels
acquiring data, define and assign the appropriate values to the list and
note the starting address. Refer to page 2-9 for more information
about channel-gain lists.

4. Use the appropriate setup functions to assign values to those elements
of the frame that pertain to yow application. The setup functions arc
listed in Table 3-3.

3-9

chap03-.frm Black 10

3-l 0

Table 3-3. Setup Functions for Interrupt-Mode
Operations

Element Setup Function(s)

Buffer’ K-SetBuf
K-S&WI
K-BufListAdd

Buffering Mode K-ChContRun
KSetContRun I

Stop Channel K-SetSlartStopChn
KSetSrartStorXI

Channel-Gain List 1 KS&h&An,

Trigger 7Lpe I<-SetADnig
K SetDITrie I

Notes
’ You must assign the addresses of all allocated or

dimensioned buffers.

Programming with the Function Call Driver

chap03-.frm Black 11

I

Refer t Chapter 2 for background information about the setup
functio : refer to Chapter 4 for detailed descriptions of the setup
functio

5. Use the -In&art function to start the interrupt operation.

6. Use the -1ntStatus function to monitor the status of the interrupt
operati

I. If you s ecified continuous buffering mode, use the K-IntStop
functio to stop die interrupt operation when the appropriate numbct
of sam es has been acquired.

8. If you a e programming in Visual Basic for Windows and you used

I

K-IntA oc to allocate your buffer(s). use the K-MoveButl’oArray
functio to transfer the acquired data from the allocated buffer to a
local b fer that your program can use.

9. If you u ed K-IntAlloc to allocate your buffer(s). use the K-IntFree
functio to deallocate the buffer(s).

10. If you u ed K-RujZisfAdd IO specify a list of mulriple buffers. USC the
K-h istReset function to clear the list.

Il. Use the K-FreeFrame function to rehtm
step I tt the pool of available frames.

the frame you accessed in

3-11

chap03-.frm Black 12

Digital I/O Operations

+B

You can per arm digital I/O operations in single mode only. To perform a
single-mode digital I/O operation, perform the following tasks:

1. Declare he buffer or variable that will hold the single value to be read
or writte 1.

2. Use one of the following digital I/O single-mode operation functions,
specifyi g the attributes of the operation as arguments to the function:

F Jnctlon Purpose

-DIRead Rends a single digital input value.

1 dDOWrite 1 Writes a single digital output value.

Language-Specific Programming Information

3-l 2

This section provides programming information for each of the supported
languages. p ote that the compilation procedures for all languages assume
that the path r and/or environment variables are set correctly.

Programming with the Function Call Driver

chap03-.frm Black 13

Microsoft C/C++

Microsoft C/C++. you need the following files; these files
the AS0400 software package.

1 File 1 1 Description I

xecutable tile in Microsoft C/C++, use the following
statement% Note thatfilename indicates the name of

vpe 01 Compile vpe 01 Compile Compile and Link Statements Compile and Link Statements

C C CL/c fi1enome.c CL/c fi1enome.c
LINKfi/ename+use800.obj...das800+dasrface: LINKfi/ename+use800.obj...das800+dasrface:

c++ c++ CL /cfilename.cpp CL /cfilename.cpp
LLNK~lename+use800.obj...das800+dasrface: LLNK~lename+use800.obj...das800+dasrface:

3-13

chap03-.frm Black 14

Borland C/C++

To program in Borland C/C++, you need the following files; these files
are provided in the ASO- software package.

3-14

File Description

1 DASBOO.LIB 1 Linkable driver. I

DASDECL.HPP Include file when compiling in C++ (.cpp programs).

USE800.0B.l Linkable object.

To create an executable file in Borland C/C++, use the following compile
and link statements. Note thatfilennme indicates the name of your
application program

lE;:e I Compile and Llnk Statements’

C

c++

Notes

BCC -ml~lename.c useEMI.obj das800.lib dasrfacc.lib

BCC -mljilename.cpp us&OO.obj das800,lib dasrface.lib

’ These statements assume a large memory model; however. any memory
model is acceptable.

Programming with the Function Call Driver

chap03-.frm Black 15

Microsoft QuickC for Windows

To program in Microsoft QuickC for Windows, you need the following
files; these files are provided in the ASO- software package.

File Description

DASSHELL.DLL Dynamic Link Library of user-interface functions.

DASROO.DLL Dynamic Link Library of DAS-800 board-specific
functions.

To create an executable file in Microsoft QuickC for Windows. perform
the following steps:

1. Loadfi/ename.c into the QuickC for Windows environment, where
filename indicates the name of your application program.

2. Create a project file. The project file should contain all necessary
files, includingfi/ename.c,filename.rc,fi/ename.def, andfi/enrmw.h,
wherefilename indicates the name of your application program.

3. From the Project menu, choose Build to create a stand-alone
executable file (.EXE) that you can execute from within Windows.

3-l 5

chap03-.frm Black 16

Microsoft Visual C++

To program in Microsoft Visual C++. you need the following tiles; these
files are provided in the ASO- software package.

1 File Description

Refer to the README.TXT file for information about creating an
executable tile in Visual C+t.

Borland Turbo Pascal

3-l 6

To program in Borland Turbo Pascal, you need the following files; these
files are provided in the ASO- software package.

File Description

1 DEOOTP6.TPU Turbo Pascal unit for Version 6.0. I

DBCOTPU.BAT’ Batch file for creating a Turbo Pascal unit.

Notes
’ Used for creating a new Turbo Pascal unit when compiling in Borland Turbo

Pascal for versions higher than 7.0.

Programming with the Function Call Driver

chap03-.frm Black 17

To create an executable tile in Borland Turbo Pascal, use the following
compile and link statement:

TPC filename.pas

wherefilename indicates the name of your application program,

Refer to page 3- 18 for information about specifying the buffer address
when programming in Borland Turbo Pascal. Refer to page 3-19 for
information about specifying the channel-gain list starting address when
programming in Borland Turbo Pascal.

Borland Turbo Pascal for Windows

To program in Borland Turbo Pascal for Windows, you need the
following files; these files are provided in the ASO- software
package.

File Description

ynamic Link Library of DAS-800 board-specific

To create an executable file in Borland Turbo Pascal for Windows,
perform the following steps:

1. Loadfi/ename.pas into the Borland Turbo Pascal for Windows
environment, wherefiletxzme indicates the name of your application
program.

2. From the Compile menu, choose Make.

3-l 7

chap03-.frm Black 18

Refer to the next section for information about specifying the buffer
address when programming in Borland Turbo Pascal for Windows. Refer
to page 3-19 for information about specifying the channel-gain list
starting address when programming in Borland Turbo Pascal for
Windows.

Specifying the Buffer Address (Pascal)

3-1 a

If you are writing your application program in Borland Turbo Pascal or
Borland Turbo Pascal for Windows, perform the following steps to
specify a buffer address:

I Reduce the memory heap reserved by Pascal by entering the
following:

($m (16384, 0, 0))

2. Declare a dummy type array of Alnteger, as in the following example:

TYPO
IntArray : Array[O..ll of ^Integer;

The dimension of this array is irrelevant; it is used only to satisfy
Pascal’s type-checking requirements.

3. Declare an array of the dummy type, as in the following example:

“ZllZ
acqBuf : IntArray;
. . .

4. If you are allocating your buffer dynamically using K~lnt4lloc. use
Pascal’s Addr() function, as in the following example:

err : = K-IntAlloc (frameHandle, samples,
Addr(acqBuf), menHandle);

5. Use K-SetBuf to specify the buffer address, as in the following
example:

err : = K-SetBuf (frameHandle, acqBuf, samplesI;

Programming with the Function Call Driver

chap03-.frm Black 19

This procedure allows you to directly access data stored in the buffer. You
can retrieve data from the buffer, as in the following example:

Foi' I := 0 to (samples - 1) do
Begin;

data := acqBuf^[I];
End;

Specifying the Channel-Gain List Starting Address (Pascal)

If you are writing your application program in Borland Turbo Pascal or
Borland Turbo Pascal for Windows, perform the following steps to
specify a channel-gain list starting address:

1. Define a record type for the channel-gain list. as in the following
example:

TYPO
ChanGainArray = Record;

num-of-codes : Integer;
queue : Array[O..lS] of Byte;

end;

2. Define an array of type ChanGainArray. as in the following example:

var
CGList : ChanGainArray;

.

3. After this is initialized. the array can be passed lo the function, LS in
the following example:

err : = K_SetChnGAry (ADFramel, CGList.num-of-codes);

3-19

chap03-.frm Black 20

Microsoft QuickBASIC (Version 4.0)

To program in Microsoft QuickBASIC (Version 4.0), you need tbe
following tiles; these files are provided in the DA%300 Series standard
software package.

File Description

DgOOQB40,LIB Linkable driver for QuickBASIC. Version 4.0.
stand-alone. executable (.EXB) Droarams. I

1 OB4DECL.BI 1 Include file. I

DASXOO.BI Include file.

3-20

For Microsoft QuickBASIC (Version 4.0). you can create an executable
file from within the programming environment, or you can use a compile
and link statement.

To create an executable file from within the programming environment.
perform the following steps:

1. Enter the following to invoke the environment:

QB /L D800QB40 filename.bas

wherefilename indicates the name of your application program

2. From the Run menu, choose Make EXE File.

To use a compile and link statement, enter the following:

BC filename.bas /O
Link filename.obj,,, D800QB40.lib+BCOM40.lib:

wherefilename indicates the name of your application program.

Refer to page 3-25 for information about specifying the buffer address
when programming in Microsoft QuickBASIC (Version 4.0).

Programming with the Function Call Driver

chap03-.frm Black 21

Microsoft QuickBasic (Version 4.5)

To program in Microsoft QuickBasic (Version 4.5), you need the
following files; these files are provided in the DAS-800 Series standard
software package.

File Description -1
DBOOQB45.LIB Linkable driver for QuickBasic. Version 4.5.

sraad-alone, execurable (.EXE) programs. I

QB4DECLBI Include tile.

For Microsoft QuickBasic (Version 4.5), you can create an executable file
from within the programming environment, or you can use a compile and
link statement.

To create an executable file from within the programming environment,
perform the following steps:

1, Enter the following to invoke the environment:

QB /L DBOOQB45 filename.bas

wherejifilename indicates the name of your application program.

2. From the Run menu. choose Make EXE File

To use a compile and link statement, enter the following:

BC filename.bas /O
Link filename.obj,,, DBOOQB45.lib+BCOM45.lib;

wherefilename indicates the name of your application program.

Refer to page 3-25 for information about specifying the buffer address
when programming in Microsoft QuickBasic (Version 4.5).

3-21

chap03Lfrm Black 22

Microsoft Professional Basic (Version 7.0)

To program in Microsoft Professional Basic (Version 7.0). you need the
following tiles; these files are provided in the DA.%800 Series standard
software package.

3-Z

File Description

D8OOQBX.LIB Linkable driver for Professional Basic. Versions 7.0 and
higher, stand-alone, executable (.EXE) programs.

For Microsoft Professional Basic (Version 7.0), you can create an
executable file from within the programming environment, or you can use
a compile and link statement.

To create an executable file from within the programming environment,
perform the following steps:

1. Enter the following to invoke the environment:

QBX IL DElOOQBX filename.bas

wherefilename indicates the name of your application program

2. From the Run menu, choose Make EXE File.

To use a compile and link statement, enter the following:

BC filename.bas /o;
Link filename.obj,,,D800QBX.lib;

wherefilename indicates the name of your application program.

Refer to page 3-25 for information about specifying the buffer address
when programming in Microsoft Professional Basic (Version 7.0).

Programming with the Function Call Driver

chap03-.frm Black 23

Microsoft Visual Basic for DOS

To program in Microsoft Visual Basic for DOS, you need the following
files; these tiles are provided in the DAS-800 Series standard software
package.

DAS800.BI Include file.

To create an executable tile in Microsoft Visual Basic for DOS, perfoml
the following steps:

1, Invoke the Visual Basic for DOS environment by entering the
following:

VBDOS /L D800VBD.QLB filename.BAS

wherefilename indicates the name of your application program

2. From the Run menu, choose Make EXE File.

Refer to page 3-25 for information about specifying the buffer address
when programming in Microsoft Visual Basic for DOS.

3-23

chap03-.frm Black 24 +b

Microsoft Visual Basic for Windows

To program in Microsoft Visual Basic for Windows, you need the
following tiles; these files are provided in the ASO- software
package.

3-24

File Description

DASSHELL.DLL Dynamic Link Library of user-interface
functions. I

DASBOO.DLL Dynamic Link Library of DAS-KKI
board-specific functions. I

1 DAS8OO.BA.S Include tile: must be added to the Project List.

To create an executable file from the Microsoft Visual Basic for Windows
environment, choose Make EXE File from the Ron menu.

Refer to the next section for information about specifying the buffer
address when programming in Microsoft Visual Basic for Windows.

Programming with the Function Call Driver

4

chap03-.frm Black 25

Specifying the Buffer Address (All BASIC Languages)

This section describes how to specify a buffer address when programming
in BASIC and Visual Basic for Windows.

For Visual Basic for Windows, ifyou are allocating your buffer
dynamically using K-IntAlk, perform the following steps to specify the
buffer address:

1. Declare the allocated buffer pointer, as in the following example:

Global AllocBuf As Long

2. Allocate the buffer, as in the following example:

errnun = K-IntAlloc IframeHandle, samples,
AllocBuf, manHandle)

Refer to page 4-78 for more information about the K-IntAlloc
function.

3. In defining the elements of your frame, specify the buffer address, as
in the following example:

errnum = K-SetBuf (frameHandle, AllocBuf, samples)

Refer to page 4-95 for more information about the K-SetBuf
function.

4. After all your data is acquired, move the data from the allocated
buffer to a local storage buffer that your program can access, as in the
following example:

errnum = K-MoveBufToArray (BufferCOl, AllocBuE.

samples)

Refer to page 4-88 for more information about the
K-MoveRufIbArray function.

3-25

4

4

chap03-.frm Black 26

For BASIC and Visual Basic for Windows, ifyou awdimensioning your
buffer locally, perform the following steps to specify the buffer address:

1. Declare the local buffer, as in the following example:

Global Buffer(20000) As Integer

2. In defining the elements of your frame, specify the buffer address, as
in the following example:

errnum = KLSetBufI (frameHandle, Buffer(O),
samples)

Refer to page 4-97 for more information about the K-SetBufl
function.

Notes: The local buffer is accessible to your program; you do not have to
use. K-MoveButToArray to move it.

Do not use underscores in the BASIC languages.

3-26 Programming with the Function Call Driver

chap04-.frm Black 1

Function Reference

The FCD functions are organized into the following groups:

.

.

.

.

.

.

.

.

.

.

.

Initialization functions

Operation functions

Frame management functions

Memory management functions

Buffer address functions

Buffering mode functions

Channel and gain functions

Conversion clock functions

Trigger functions

Counter/timer functions

Miscellaneous functions

4-l

chap04-.frm Black 2

The particular functions associated with each function group are
presented in Table 4- 1. The remainder of the chapter presents detailed
descriptions of all the FCD functions, arranged in alphabetical order.

Table 4-l. FCD Functions

Function Type Function Name Page Number

Initialization

K GetADFrame

Function Fielerence

chap04-.frm Black 3

Table 4-1. FCD Functions (cont.)

Buffering Mode

chap04-.frm Black 4

4-4 Function Reference

‘I$

chap04-.frm Black 5

Keep the following conventions in mind throughout this chapter:

Although the function names are shown with underscores, do not use
the underscores in the BASIC languages.

The data types DDH. FRAMEH. DWORD. WORD, and BYTE are
defined in the language-specific include tiles.

Variable names are shown in italics.

The return value for all FCD functions is the error/status code. Refer
to Appendix A for more information.

The syntax shows the format of the function and the data types of the
parameters. This line of code is not necessarily the exact line of code
you would enter in your application program. In addition. data types
must be defined before you enter the line of code.

Entry parameters are parameters that are passed to the function but
not changed by the function.

Exit parameters are parameters that are modified by the function.

In the examples, the variables are not defined. It is assumed that they
are defined as shown in the syntax.

4-5

chap04-.frm Black 6

DAS800-DevOpen

Purpose Initializes the DAS-800 Series Function Call Driver.

Syntax c
DAS800-DevOpen (&File, num&vices);
char *c&File;
char *numDevices;

Pascal
DAS800-DevOpen (c&File. numDevices) : Word:
c&File : String;
numDevices : Integer;

Visual Basic for Wlndows
DASSOO-DevOpen (cfgFile, nunDevices) As Integer
Dim &File As String
Dim rumDevices As Integer

BASIC
DASXOODevOpen% (c&file, turnDevices)
Dim c&File As String
Dim numDevices As Integer

Entry Parameters cfgFile Driver configuration tile.
Valid values: 0 = DASSOO.CFG

-I= Default configuration
filename = Any configuration tile

Exit Parameters turnDevices Number of boards defined in cfgFile.
Valid values: 1 to 4

Notes This function initializes the driver according to the information in the
configuration tile specified by cfgFile and stores the number of boards
defined in rumDevices.

You create a configuration file using the D800CFG.EXE utility. Refer to
the DAS-800 Series User’s Guide for more information.

4-6 Function Reference

chap04-.frm Black 7

If cfgFile = 0, DAS800~DevOpen looks for the DASKM.CFG
configuration tile in the current directory and uses those settings. if
available. If &File =-I, DASt?OO-DevOpen initializes the driver to its
defauault configuration; the default configuration is shown in Table 4-2.

Table 4-2. Default Configuration

Attribute Default Configuration I

chap04-.frm Black 8

Example

The Function Call Driver requires null terminated strings. To create null
terminated strings in Pascal, BASIC, and Visual Basic for Windows, refer
to the following examples. These examples assume that the configuration
file (c&File) is DASZ(OO.CFG.

Pascal: &File : = ‘DAS8OO.CFG’ + #O;

BASIC and Visual Basic for Wlndows:

cfgFile = “DAS800,CFG” + CHR$(O)

After you set up your DAM01 board, you created a configuration file to
reflect the settings of the jumper and switches on the board. The name of
the configuration tile is stored in the memory location pointed to by
CONFSOI. You want to initialize the DAS-800 Series Function Call
Driver according to this configuration tile and store the number of boards
defined in the configuration file in a variable called NumberOtBoards.

C
char NumberOfBoards;
err = DAS800-DevOpen (CONFBOI, &NumberOtBoards);

Pascal
err : = DAS800-DevOpen (CONF801[1], NumberOfBoards);

Visual Basic for Windows
ermum = DAS800-DevOpen (CONFBOI. NumberOfBoards)

BASIC
errnum = DAS800DevOpen% (CONFXOl. NumberOfBoards)

4-8 Function Reference

chap04-.frm Black 9 fb

DASBOO-GetADGainMode

Purpose

Syntax

Gets the current input range type (unipolar or bipolar).

c
DASBOO-GetADGainMode (devNumber, mode);
short devhrumber;
short *mode;

Pascal
DAS800-GetADGainMode (devNumber, mode) : Word;
devNumber : Integer;
mode : Integer;

Visual Basic for Windows
DASSOO-GetADGainMode (devNumber, mode) As Integer
Dim devNumber As Integer
Dim mode As Integer

BASIC
DASBOOGetADGainMode% (devNumber, mode)
Dim devNumber As Integer
Dim mode As Integer

Entry Parameters devNumber Board number.
Valid values: 0 to 3

Exit Parameters mode Input range type.
Value stored: 0 = Unipolar

1 = Bipolar

Notes For the board specified by devNumber, this function gets the. current input
range type and stores it in mode.

4-9

Example

chap04-.frm Black 10

You want to store the current input range type for board 1 in a variable
called ADModel.

c
short ADMode I ;
err = DAS800-GetADGainMode (1, &ADModel);

Pascal
err : = DAS800-GetADGainMode (I, ADModel);

Visual Basic for Windows
errnum = DAS800_GetADGainMode% (1. ADModel)

BASIC
errnum = DASgOOGetADGainMode% (I, ADModel)

Function Reference

chap04-.frm Black 11

DAS800-GetDevHandle

Purpose Initializes a DAS-800 Series board.

Syntax c
DAS800-GetDevHandle (devNumber, devHandle);
short devNumber;
DDH *devHandle;

Pascal
DAS800-GetDevHandle (devNumber, devHandle) : Word;
devNumber : Integer;
devHandle : Longint;

Visual Basic for Windows
DAS800-GetDevHandle (devNumber, devHand/e) As Integer
Dim devNumber As Integer
Dim devHandle As Long

BASIC
DAS800GetDevHandle% (devNumber. devtlandle)
Dim devNumber As Integer
Dim devHand/e As Long

Entry Parameters devNumber Board number.
Valid values: 0 to 3

Exit Parameters devHandle Handle associated with the board.

Notes This function initializes the board specified by devhrumber, and stores the
board handle of the specitied board in devHmdle.

The value stored in devHandle is intended to be used exclusively as an
argument to functions that require a board handle. Do not modify the
value stored in devHandle.

4-11

Example

chap04-.frm Black 12

4-12

You want to initialize board 1 and to associate board 1 with a board
handle called BrdHd 1.

C
DDH BrdHdl;
err = DAS800-GetDevHandle (1, &BrdHdl);

Pascal
err : = DAS800-GetDevHandle (I, BrdHdl);

Visual Basic for Windows
errnum = DAS800-GetDevHandle (1. BrdHdl)

BASIC
errnum = DAS80OGetDevHandle% (1, BrdHdl)

Function Reference

chap04_.frm Black 13

DAS800-Get8254

Purpose Gets status of the 8254 counter/timer circuitry.

Syntax C
DAS800-Get8254 (devNumber. counter, mode, count);
short devhrumber;
short counter;
short *mode;
unsigned long ‘count;

Pascal
DAS800-Get8254 (devNumber, counter, mode, counl) : Word;
devNumber : Integer:
counter : Integer;
mode : Integer;
count : Longint;

Visual Basic for Windows
DAS800-Get8254 (devNumber, counter, mode. counr) As Integer
Dim devNumber As Integer
Dim counter As Integer
Dim mode As integer
Dim count As Long

BASIC
DAS80OGet8254% (devNumber, counter. mode, count)
Dim devNumber As Integer
Dim counter As Integer
Dim mode As Integer
Dim count As Long

Entry Parameters devNurnber Board number.
Valid values: 0 to 3

counter Counter/timer.
Valid values: 0 = C/TO

l=C/rl
2=crr2

4-13

chap04-.frm Black 14

Exit Parameters mode Counter/timer mode.
Value stored: 0 = Pulse on terminal count

1 = Programmable one-shot
2 = Rate generator
3 = Square-wave generator
4 = Software-triggered strobe
5 = Hardware-triggered strobe

count Value of counter/timer.
Value stored: 0 to 65535

Notes

Example

4-14

For the counter/timer specified by counter on the 8254 counter/timer
circuitry on the board specified by devhrumber, this function stores the
counter/timer mode in mode and the current value of the counter/timer in
COUIU.

Refer to the DAS-800 Series User’s Guide for an explanation of the
counter/timer modes.

You want to store the counter/timer mode of C/TO on board 1 in a variable
called CTOMode and the value currently loaded in C/TO on board I in a
variable called CTOConnt.

C
short CTOMode;
unsigned long CTOCount:
err = DAS800-Get8254 (1, 0, &CfOMode, &CTOCount);

Pascal
err : = DAS800-Get8254 (1, 0, CTOMode, CTOConnt);

Visual Basic for Windows
ermum = DAS800-Get8254 (1.0, CTOMode, CTOCount)

BASIC
errnnm = DAS800Get8254% (1,O. CTOMode, CfOConnt)

Function Reference

I +B

chap04-.frm Black 15

DAS800-SetADGainMode

Purpose Sets the input range type (unipolar or bipolar).

Syntax c
DASBOO-SetADGainMode (devNumber. mode);
short devhrumber;
short mode;

Pascal
DAS800JWADGainMode (devNumber. mode) : Word;
devNumber : Integer;
mode : Integer;

Visual Basic for Windows
DAS800-SetADGainMode (devNumber. mode) As Integer
Dim devNumber As Integer
Dim mode As Integer

BASIC
DASBOOSetADGainMode% (devNumber. mode)
Dim devNumber As Integer
Dim mode As Integer

Entry Parameters devNumber Board number.
Valid values: 0 to 3

mode Input range type.
Valid values: 0 = Unipolar

1 = Bipolar

Notes For the board specified by devNumber, this function sets the input range
type to mode.

This function is appropriate for DAS-801 and DAS-802 boards only. The
DAS-800 board is always configured for a f5 V bipolar analog input
range type.

4-15

chap04Lfrm Black 16

Example

4-16

The configuration file for board I specifies a bipolar input range type.
You want to change the input range type to unipolar.

C
err = DAS800-SetADGainMode (1.0);

Pascal
err : = DAS800-SetADGainMode (I, 0);

Visual Basic for Windows
errnum = DASBOO-SetADGainMode (1.0)

BASIC
ennum = DASSOOSetADGainMode% (I, 0)

Function Reference

chap04-.frm Black 17

DAS800-Set8254

Purpose Sets up the 8254 counter/timer circuitry.

Syntax C
DAS800Jet8254 (devNumber, counter. mode, count);
short devNumber;
short counter;
short mode;
unsigned long count;

Pascal
DAS800-Set8254 (devNumber. counter. mode, count) : Word;
devNumber : Integer:
counter : Integer;
mode : Integer;
counf : Longint;

Visual Basic for Windows
DAS800-Set8254 (devNumber, counter, mode, count) As Integer
Dim devNumber As Integer
Dim counter As Integer
Dim mode As Integer
Dim count As Long

BASIC
DAS800Set8254% (devNumber, counter, mode, count)
Dim devNumber As Integer
Dim counfer As Integer
Dim mode As Integer
Dim count As Long

Entry Parameters devNumber Board number.
Valid values: 0 to 3

counter Counter/timer.
Valid values: 0 = C/TO

l=C/TI
2=cfr2

4-17

chap04-.frm Black 18

Notes

Example

mode Counter/timer mode.
Valid values: 0 = Pulse on terminal count

1 = Programmable one-shot
2 = Rate generator
3 = Square-wave generator
4 = Software-triggered strobe
5 = Hardware-triggered strobe

COUTU Value of counter/timer.
Valid values: 2 to 65535

For the counter/timer specified by counter on the 8254 counter/timer
circuitry on the board specified by devhrumber, this function sets the
counter/timer mode to mode and the initial count value to counr.

Refer to the DAM00 Series User’s Guide for an explanation of the
counter/timer modes and for more information about the 8254
counter/timer circuitry.

You want to configure C/IO on board 1 as a software-triggered strobe and
load an initial count value of 100 into C/TO.

C
err = DAS800-Set8254 (I, 0.4. 100);

Pascal
err : = DAS800-Set8254 (1.0,4, 100);

Visual Basic for Windows
errnum = DAS800-Set8254 (I, 0.4, 100)

BASIC
ermum = DAS800Set8254% (1.0.4, 100)

4-1 B Function Reference

chap04-.frtn Black 19

K ADRead

Purpose Reads a single analog input value.

Syntax c
K-ADRead (devHandle, than, gainCode. ADvalue);
DDH devHand/e;
unsigned char than;
unsigned char gainCode;
void *ADvalue;

Pascal
K-ADRead (devHandle, chart, gaincode, ADvalue) : Word;
devHandle : Longint;
than : Byte;
gaincode : Byte;
ADvalue : Pointer;

Visual Basic for Windows
K-ADRead (devHandle, chart, gainCode, ADvalue) As Integer
Dim devHandle As Long
Dim than As Integer
Dim gainCode As Integer
Dim ADvalue As Long

BASIC
KADRead% (devHand/e, than, gaincode, ADvalue)
Dim devHandle As Long
Dim than As Integer
Dim gainCode As Integer
Dim ADvalue As Long

Entry Parameters devHandle

than

Handle associated with the board

Analog input channel.
Valid values: 0 to 127

4-19

chap04-.frm Black 20

gainCode Gain code.
Valid values:

DAS-802
Gain

Exit Parameters ADvalue Acquired analog input value.

Notes This function reads the analog input channel than on the board specified
by devHand/e at the gain represented by gaincode, and stores the raw
count in ADvalue.

The range of valid values for than depends on the number of expansion
boards you are using. Refer to page 2-6 for more information.

A gain of 0.5 (gainCode = 1) is valid only for boards configured with a
bipolar input range type. The DAS-800 board supports a gain of I only
(g&Code must equal 0). Refer to Table 2-2 on page 2-6 for a list of the
voltage ranges associated with each gain.

Make sure that the variable used to store ADvalue is dimensioned as a
1 h-bit integer.

Refer to Appendix B for information on converting the raw count stored
in ADvalue to voltage.

4-20 Function Reference

chap04-.frm Black 21

Example You want to perform an analog input operation on a DAS-801 board that
was assigned the hoard handle BrdHdl, You want to read the value of the
signal connected to analog input channel 3 at a gain of IO and store the
raw count in a variable called Chn3Val.

c
short Chn3Val;
err = K-ADRead (BrdHdl. 3.2, &Chn3Vai);

Pascal
err : = K-ADRead (BrdHdl, 3.2, Chn3Val);

Visual Basic for Windows
errnum = K-ADRead (BrdHdl. 3,2. Chn3Val)

BASIC
ermum = KADRead% (BrdHdl, 3.2, Chn3Val)

4-21

chap04-.frm Black 22

K BufListAdd

Purpose Adds a buffer to the list of multiple buffers,

c
K-BufListAdd (frameHandle, acqBuf, samples);
FRAh4EHframeHandle;
void *acqBuf;
DWORD samples;

Pascal
K-B&&Add (frameHandle, acqBuf, samples) : Word;
frameHandle : Longint;
acqBuf : Pointer;
samples : Longint:

Visual Basic for Windows
K-BufListAdd (frameHandle, acqBuf, samples) As Integer
Dim frameHandle As Long
Dim acqBuf As Long
Dim samples As Long

BASIC
KBufListAdd% (frameHandle, acqBaf* samples)
Dim frameHandle As Long
Dim acqBuf As Long
Dim samples As Long

Entry Parameters frameHandle

acqBuf

Handle to the frame that defines the A/D operation.

Starting address of buffer.

Notes

samples Number of samples in the buffer.

For the operation defined by frameHandle, this function adds the buffer at
the address pointed to by acqBuf to the list of multiple buffers; the
number of samples in the buffer is specified in samples.

4-22 Function Reference

chap04-.frm Black 23

Example

You must either allocate the buffer dynamically using K-IntAlloc 01
dimension the buffer locally before you add the buffer to the
multiple-buffer list.

Make sure that you add buffers to the multiple-buffer list in the order in
which you want to use them. The first buffer you add is Buffer I, the
second buffer you add is Buffer 2. and so on. You can add up to 50
buffers. For interrtrpt-mode operations, you can use K-IntStatus to
determine which buffer is currently in use; refer to page 4-83 for more
information.

You allocated a 1000~sample buffer to store data for an analog input
operation defined by the frame ADFramel; the buffer starts at the
memory location pointed to by Buffer. You want to add this buffer to the
list of multiple buffers.

C
err = K-BufListAdd (ADFramel, Buffer, 1000);

Pascal
err : = K-BufListAdd (ADFramel, Buffer, 1000);

Visual Basic for Wlndows
errnum = K-BufListAdd (ADFramel, Buffer, 1000)

BASIC
ermum = KButListAdd% (ADFramel, Buffer, 1000)

4-23

chap04-.frm Black 24

K BufListReset

Purpose Clears the list of multiple buffers.

Syntax C
K-BufListReset (frameHandle);
FRAh4EH frameHandle;

Pascal
K-BufListReset (frameHandle) : Word;
frameHandle : Longint:

Visual Basic for Windows
K-BufListReset (frameHandle) As Integer
DimframeHandle As Long

BASIC
KBufListReset% (frameHandle)
DimframeHondk As Long

Entry Parameters frameHandle Handle to the frame that defines the A/D operation

Notes For the operation defined by frameHandle. this function clears all buffers
from the list of multiple buffers.

This function does not deallocate the buffers in the list. If dynamically
allocated buffers are no longer needed, you can use K-IntFree to free the
buffers. Refer to page 4-80 for more information.

4-24 Function Relerence

chap04-.frm Black 2.5

You want to clear all buffers from the multiple-buffer list associated with
the analog input operation defined by the frame ADFrame I,

C
err = K-BufListReset (ADFramel);

Pascal
err : = K_BufListReset (ADFramel);

Visual Basic for Windows
ermum = K-B&List&set (ADFramel)

BASIC
ermum = KBufListReset% (ADFramel)

4-25

chap04-.frm Black 26

Purpose Sets the elements of a frame to their default values.

Syntax c
K-ClearFrame (frameHandle);
FRAh4EH frameHandle;

Pascal
K-ClearFrame (frameHandle) : Word;
frameHandle : Longint;

Visual Basic for Windows
K-ClearFrame (frameHandle) As Integer
Dim frameHandle As Long

BASIC
KClearFrame% (frameHandle)
Dim frameHandle As Long

K ClearFrame

Entry Parameters frameHandle Handle to the frame that defines the A/D operation.

Notes This function sets the elements of the frame specified by frameHandle to
their default values.

Refer to Table 3-l on page 3-3 for a list of the default values for the
element? of an A/D frame.

4-26 Function Reference

chap04-.frm Black 27

You want to return all the elements of an A/D frame called ADFramel to
their default values.

C
err = K-ClearFrame (ADFramel);

Pascal
err : = K-ClearFrame (ADFramel);

Visual Basic for Windows
errtmm = K-ClearFrame (ADFramel)

BASIC
errrmm = KClearFrame% (ADFramel)

4-27

chap04-.frm Black 28

K-CloseDriver

Purpose Closes a previously initialized DAS Function Call Driver,

Syntax C
K-CloseDriver (driverHandle);
DWORD driverHandle:

Pascal (Windows Only)
K-CloseDriver (driverHandle) : Word;
driverHandle : Longint;

Visual Basic for Windows
K-CloseDriver (driverHandle) As Integer
Dim driverHandle As Long

Entry Parameters driverHandle Driver handle you want to free.

Notes This function frees the driver handle specified by driverHandle and closes
the associated use of the Function Call Driver. This function also frees ail
board handles and frame handles associated with driverHandle.

If driverHandle is the last driver handle specified for the Function Call
Driver, the driver is shut down (for all languages) and unloaded (for
Windows-based languages only).

You cannot USC this function in BASIC or Borland Turbo Pascal for DOS

4-28 Function Reference

chap04-.frm Black 29 fb

You have already initialized the DAM00 Series Function Call Driver and
associated it with a driver handle called Drv800 and now want to
reinitialize the driver according to a different configuration file. You want
to first close 8OODrvl to free the memory used by Drv800 for another use.

C
err = K-CloseDriver (Drv800):

Pascal (Windows Only)
err : = K-CloseDriver (Drv800);

Visual Basic for Windows
ermum = K-CloseDriver (DrvROO)

chap04-.frtn Black 30

K-ClrContRun

Purpose Specifies single-cycle buffering mode.

Syntax C
K-ClrContRun (frameHandle);
F’RAMEHframeHandle;

Pascal
K-ClrContRun (frameHandle) : Word:
frameHandle : Longint;

Visual Basic for Windows
K-ClrContRun (frameHandle) As integer
Dim frameHandle As Long

BASIC
KClrContRun% (frameHandle)
Dim frameHandle As Long

Entry Parameters frameHandle Handle to the frame that defines the A/D operation,

Notes This function sets the buffering mode for the operation defined by
frameHandle to single-cycle mode and sets the Buffering Mode element
in the frame accordingly.

Refer to page 2-16 for more information about buffering modes.

The Buffering Mode element is meaningful for interrupt operations only.

4-30 Function Reference

chap04-.frm Black 31

Example You want to specify single-cycle buffering mode for the analog input
operation defined by a frame called ADFramel.

C
err = K-ClrContRun (ADFramel);

Pascal
err : = K-ClrContRun (ADFramei);

Visual Basic for Windows
errnum = K-CirContRun (ADFrame])

BASIC
errnum = KClrContRun% (ADFramei)

4-31

chap04-.frm Black 32

KmDASDevlnit

Purpose

Syntax

Reinitializes a board.

C
K-DASDevInit (devHandle):
DDH devHandle;

Pascal
K-DASDevInit (devHandle) : Word;
devHandle : Longint;

Visual Basic for Windows
K-DASDevInit (devHandle) As Integer
Dim devHandle As Long

BASIC
KDASDevInit% (devHandle)
Dim devHandle As Long

Entry Parameters devHandle Handle associated with the board.

Notes This function stops all current operations and resets the board specified by
devHundle and the driver to their power-up states.

Example You want to reinitialize the board associated with a board handle called
BrdHdl

C
err = K-DASDevInit (BrdHdl);

Pascal
err : = K-DASDevInit (BrdHdl):

Visual Basic for Windows
ermum = K-DASDevInit (BrdHdl)

BASIC
ermum = KDASDevInit% (BrdHdl)

4-32 Function Reference

chap04-.frm Black 33

K-DIRead

Purpose Reads a single digital input value

Syntax C
K-DIRead (devHandle, than, D/value);
DDH devHandle;
unsigned char than;
void *D/value;

Pascal
K-DIRead (devHandle. than, D/value) : Word;
devHandle : Longint;
than : Byte:
DIvalue : Pointer;

Visual Basic for Windows
K-DIRead (devHnndle, chan, Dlvalue) As Integer
Dim devHandle As Long
Dim than As Integer
Dim D/value As Long

BASIC
KDIRead% (devHandle. chart. Dlvalue)
Dim devHandle As Long
Dim than As Integer
Dim Dlvalue As Long

Entry Parameters devHandle

than

Handle associated with the board.

Digital input channel
Valid value: 0

Exit Parameters Dfvalue Digital input value.

4-33

chap04-.frm Black 34

Notes

Example

This function reads the values of all digital input lines on the board
specified by devHandle, and stores the value in Dlvalue.

Dlvalue is a 32-bit variable. The acquired digital value is stored in bits 0.
1, and 2; the values in the remaining bits of DIva/ue are not defined. Refer
to page 2-24 for more information.

You want to perform a digital input operation on a board that was
assigned the board handle BrdHdl. You want to read the value of all the
bits in digital input channel 0 and store the value in a variable called
DIVaI.

C
long DIVaI;
err = K-DIRead (BrdHdl, 0, &DIVal);

Pascal
err : = K-DIRead (BrdHdl, 0, DIVal);

Visual Bask for Windows
ermum = K-DIRead (BrdHdl. 0, DIVal)

BASIC
errnum = KDIRead% (BrdHdl. 0. DIVaI)

4-34 Function Reference

chap04-.frm Black 35

K DOWrite

Purpose Writes a single digital output value

Syntax c
K-DOW&e (devHandle, than, DOvalue):
DDH devHandle;
unsigned char chun;
long DOvalue;

Pascal
K-DOWrite (devHnndle, than, DOvalue) : Word;
devHandle : Longint;
than : Byte;
DOvalue : Longint;

Visual Basic for Windows
K-DOW& (devHandle, than. DOvalue) As Integer
Dim devHandle As Long
Dim than As Integer
Dim DOvalue As Long

BASIC
KDOWrite% (devHandle, than, DOvalue)
Dim devHandle As Long
Dim than As Integer
Dim DOvalue As Long

Entry Parameters devHandle

than

Handle associated with the board.

Digital output channel
Valid value: 0

DOvalue Digital output value.
Valid values: 0 to 15

4-35

chap04-.frm Black 36

Notes

+b

This function writes the value DOvalue to the digital output channel lines
on the board specified by devHandle.

DOvalue is a 32-bit variable. The value written is stored in bim 0. I, 2.
and 3; the values in the remaining bits of DOvalue are not defined. Refer
to page 2-25 for more information.

If you are using an expansion board for an analog input operation. you
cannot use this function because the driver uses all four digital output
lines to specify the expansion board channel that is acquiring data.

You want to perform a digital output operation on a board that was
assigned the board handle BrdHdl. To force the output high on OPI and
OP2 and low on OP3 and OP4, you must write a value of 3 (OO..COOl I) to
the digital output lines.

err = K-DOWrite (BrdHdl, 0, 3);

Pascal
err : = K-DOWrite (BrdHdl, 0.3);

Visual Basic for Windows
emmm = K_DOWrite (BrdHdl. 0.3)

BASIC
ennum = KDOWrite% (BrdHdl. 0.3)

4-36 Function Reference

chap04-.frm Black 37

K-FormatChanGAry

Purpose

Syntax

Converts the format of a channel-gain list

Visual Basic For Windows
K-FormatChanGAry (chanCainArray) As Integer
Dim chanGainArray(n) As Integer

where n = (number of channels x 2) + 1

BASIC
KFormatChanCAry% (chanGaidrray)
Dim chanGainArray(n) As Integer

where n = (number of channels x 2) + 1

Entry Parameters chanGairulrray(0) Channel-gain list starting address.

Notes This function converts a channel-gain list created in BASIC or Visual
Basic for Windows using double-byte (16.bit) values to a channel-gain
list of single-byte @-bit) values that the K-SetChnCAry function can
use.

After you use this function, your program can no longer read the
converted list. You must use the K-RestoreChanGAry function to return
the list to its original format. Refer to page 4-92 for more information.

You created a channel-gain list in BASIC and named it CGList. You want
to convert the channel-gain list to single-byte values.

Visual Basic For Windows
ermum = K-FormatChanGAry (CGList(0))

BASIC
ermum = KFonnatChanGAry% (CGList(0))

4-37

chap04-.frm Black 38

K-FreeDevHandle

Purpose

Syntax

Frees a previously specified board handle.

c
K-FreeDevHandle (devnandle);
DWORD devHandle;

Pascal (Windows Only)
KPreeDevHandle (devHandle) : Word;
devHandle : Longint;

Visual Basic for Windows
K-FreeDevHandle (devHandle) As Integer
Dim devHandle As Long

Entry Parameters devHandle Board handle you want to free.

Notes This function frees the board handle specified by devHandle. This
function also frees all frame handles associated with devHand/e.

You cannot use this function in BASIC or Borland Turbo Pascal for DOS.

Example You have initialized your DAS-801 board 1 and associated it with a board
handle called BrdHdl. You now want to free the board handle so that it
can be used again.

C
err = K-FreeDevHandle (BrdHdl);

Pascal
err : = K-FreeDevHandle (BrdHdl);

Visual Basic for Windows
ermum = K-FreeDevHandle (BrdHdl)

BASIC
ermum = KFreeDevHandle% (BrdHdl)

4-38 Function Reference

chap04-.frm Black 39

K FreeFrame

Purpose Frees a frame.

Syntax c
K-FreeFrame (frameHandle);
FRAMEHframeHandle;

Pascal
K-FreeFrame (frameHandle) : Word;
frameHandle : Longint;

Visual Basic for Windows
K-FreeFrame (frameHandle) As Integer
Dim frameHandle As Long

BASIC
KFreeFrame% (frameHandle)
Dim frameHandle As Long

4-39

Entry Parameters frameHandle Handle to frame you want to free.

Notes This function frees the frame specified by frameHandle, making the
frame available for another operation.

Example You want to perform an analog input operation, but no frames are
available. The analog input operation defined by the frame ADFrame is
complete. You can free ADFramel and redefine it for your new operation.

C
err = K-FreeFrame (ADFramel);

Pascal
err : = K-FreeFrame (ADFramel):

Visual Basic for Windows
errnum = K-FreeFrame (ADFramel)

BASIC
errnum = KFreeFrame% (ADFramel)

chapOC.frm Black 40

K-GetADFrame

Purpose

Prototype

Accesses an A/D frame for an analog input operation,

C
K-GetADFrame (devHand/e. frameHandle);
DDH devHandle;
FRAMEH *frameHandle;

Pascal
K-GetADFrame (devHandle, frameHandle) : Word;
devHandle : Longint;
frameHandle : Longint:

Visual Basic for Windows
K-GetADFrame (devHandle. frameHandle) As Integer
Dim devHandle As Long
Dim frameHandle As Long

BASIC
KGetADFrame% (devHandle.frameHandle)
Dim devHandle As Long
Dim frameHandle As Long

Entry Parameters devHandle Handle associated with the board.

Exit Parameters frameHandle Handle to the frame that defines the A/D operation

Notes This function specifies that you want to perform a synchronous-mode or
interrupt-mode analog input operation on the board specified by
devHandle. and accesses an available A/D frame with the handle
frameHandle.

4-40 Function Relerence

chap04-.frm Black 41

You want to perform a frame-based analog input operation on a board that
was assigned the board handle BrdHdl and assign the frame handle
ADFrame I to the frame that will define the operation.

C
FRAMEH ADFramel;
err = K-GetADFrame (BrdHdl. &ADFramel);

Pascal
err : = K-GetADFrame (BrdHdl. ADFramel):

Visual Basic for Windows
errnum = K-GetADFrame (BrdHdl, ADFramel)

BASIC
ermum = KGetADFrame% (BrdHdl. ADFramel)

chap04-.frm Black 42 fb

K-GetADTrig

Purpose Reads the current analog trigger conditions.

Syntax C
K-GetADTrig (framehandle, trigOption. than. level);
PRAMEH framehandle:
short *trigOption:
short *than;
long *level;

Pascal
K-GetADTrig (frameHandle, trigOption, than, levelI : Word:
frameHandle : Longint;
trigOpfion : Word;
than : Word;
level : Longint;

Visual Basic for Windows
K-GetADTrig (frameHandle, w&Option. than. /even As Integer
Dim frameHandle As Long
Dim trigOption As Integer
Dim than As Integer
Dim level As Long

BASIC
KGetADTrig% (frameHandle. trigOption, chan, level)
Dim frameHandle As Long
Dim wigOption As Integer
Dim than As Integer
Dim level As Long

Entry Parameters frameHandle

Exit Parameters trigOption

Handle to the frame that defines the A/D operation.

Analog trigger polarity and sense
Value stored: 0 = Positive edge

2 = Negative edge

than

4-42

Analog channel used as trigger channel.
Value stored: 0 to 127

Function Reference

chap04-.frm Black 43

Notes

Example

level Level at which the trigger event occurs
Value stored: 0 to 4095

For the operation defined by frameHandle. this function stores the
channel used for an analog trigger in than. the level used for the analog
trigger in level, and the trigger polarity and trigger sense in wigOption.

The rrigOprion variable contains the value of the Trigger Polarity and
Trigger Sense elements.

The than variable contains the value of the Trigger Channel element. The
location of the channel stored in than depends on the expansion boards
you are using. Refer to page 2-6 for more information.

The level variable contains the value of the Trigger Level element. The
value of level is represented in raw counts. Refer to Appendix B for
information on converting the raw count stored in level to voltage.

You are using an analog trigger to trigger the analog input operation
defined by the frame ADFramel. You want to store the trigger polarity
and sense in a variable called TrigSens, the channel used for the analog
trigger in a variable called TrigChan. and the raw count associated with
voltage that will trigger the operation in a variable called TrigLvl.

C
short TrigSens;
short TrigChan;
long TrigLvl;
err = K-GetADTrig (ADFramel, &TrigSens. &Trig&m. &TrigLvl);

Pascal
err : = K-GetADTrig (ADFramel, TrigSens, Trig&m, TrigLvl);

Visual Basic for Windows
errnum = K-GetADTrig (ADFramel. TrigSens. TrigChan. TrigLvl)

BASIC
crrnum = KGetADTrig% (ADFramel, TrigSens, TrigChan, TrigLvl)

4-43

chap04-.frm Black 44

K-GetBuf

Purpose Reads the address of a buffer.

Syntax c
KGetBuf (frameHandle. acqBuf, samples);
FRAMEHframeHandle;
void *acqBuf;
long *samples:

Pascal
K-GetBuf (frameHandle, acqBuf* samples) : Word;
frameHandle : Longint;
acqBuf : Pointer;
samples : Longint;

Visual Basic for Windows
K-GetESuf (frameHandle, acqEuf, samples) As Integer
Dim frameHandle As Long
Dim acqBuf As Long
Dim samples As Long

BASIC
KGetBuf% (frameHandle. acqBuf, samples)
Dim frameHandle As Long
Dim acqBuf As Long
Dim samples As Long

Entry Parameters frameHandle Handle to the frame that defines the A/D operation.

Exit Parameters acqBuf Starting address of buffer.

samples Number of samples.

Notes For the operation specified by frameHandle, this function stores the
address of the currently allocated buffer in acqBuf and the number of
samples stored in the buffer in samples.

4-44 Function Reference

chap04-.frm Black 45 +P

Use this function to read the address of a single buffer whose address was
specified by K-SetBuf or K-SetBufI.

The acqBuf variable contains the value of the Buffer element

The samples variable contains the value of the Number of Samples
element.

You defined an analog input operation in a frame called ADFramel. You
want to store the starting address of the buffer used to store the acquired
data in a variable called BufAddr and the number of samples acquired in a
variable called NumSamps.

void *BufAddr;
long NumSamps;
err = KGetBuf (ADFramel, &BufAddr. &NumSamps);

Pascal
err : = KGetBuf (ADFramel. BufAddr, NumSamps);

Visual Basic for Windows
errnum = K-GetBuf (ADFramel. BufAddr. NumSamps)

BASIC
errnum = KGetBuf% (ADFramel, BufAddr. NumSamps)

4-45

chap04-.frm Black 46

K-GetChn

Purpose Gets a single channel number.

Syntax c
K-GetChn (frameHandle, than);
FRAMEH frameHandle;
short *than;

Pascal
K-GetChn (frameHandle. than) : Word:
frameHandle : Longint:
than : Word;

Visual Basic for Windows
K-GetChn (frameHandLe, chart) As Integer
Dim frameHandle As Long
Dim than As Integer

BASIC
KGetChn% (frameHandle, than)
Dim frameHandle As Long
Dim than As Integer

Entry Parameters frameHandle

Exit Parameters than

Handle to the frame that defines the A/D operation

Channel on which to perform operation
Value stored: 0 to 127

Notes For the operation defined by frameHandle. this function stores the single
channel number in than.

The than variable contains the value of the Start Channel element. The
location of the channel stored in than depends on the expansion boards
you are using. Refer to page 2-6 for more information.

4-46 Function Reference

chap04-.frm Black 47

Example You defined an analog input operation in a frame called ADFrame and
want to store the number of the channel on which you are acquiring data
in a variable called SingChan.

C
short SingChan;
err = K_GetCbn (ADFramel, &SingChan);

Pascal
err : = K-GetChn (ADFratnel. SingChan);

Visual Basic for Wlndows
errnum = K-GetChn (ADFramel, SingChan)

BASIC
errnum = KGetChn% (ADFramel. SingChan)

4.47

chap04-.frm Black 48

K GetChnGArv

Purpose Gets the starting address of a channel-gain list.

Syntax c
K-GetChnGAry (frameHandle, chanGainArray);
FRAMEH frameHandle:
void *chanGainArray;

Pascal
K-GetChnGAry (frameHandle. chanCainArray) : Word:
frameHandle : Longint:
chanGainArray : Longint;

Visual Basic for Windows
K-GetChnGAry (frameHandle, chanGainArray) As Integer
Dim frameHandle As Long
Dim chanGainArray As Long

BASIC
KGetChnGAry% (frameHandle, chanGain4rray)
Dim frameHandle As Long
Dim chanGainArray As Long

Entry Parameters frameHandle Handle to the frame that defines the A/D operation.

Exit Parameters chanGainArray Channel-gain list starting address.

Notes For the operation defined by frameHandle, this function stores the
starting address of the channel-gain list in chanGainArmy.

The chanGainArray variable contains the value of the Channel-Gain List
element.

Refer to page 2-9 for information on setting up a channel-gain list.

4-48

chap04-.frm Black 49

Example You defined an analog input operation in a frame called ADFramel and
want to store the starting address of the channel-gain list in a variable
called AryAddr.

err = K-GetChnCAry (ADFramel, AryAddr);

Pascal
err : = K_GetChnGAry (ADFramel. AryAddr);

Visual Basic for Windows
errnun = K-GetChnG Ary (ADFrame I, AryAddr)

BASIC
ermum = KGetChnGAryR (ADFramel, AryAddr)

chap04-.frm Black 50

K-GetClk

Purpose Gets the conversion clock source,

Syntax C
K-GetClk (frameHandle, c/kSource);
FRAMEH frameHandle;
short *clkSource;

Pascal
K-GetClk (frameHondle, clkSource) : Word;
frameHandle : Longint;
clkSource : Word;

Visual Basic for Windows
K-GetClk (frameHandle. clkSource) As Integer
Dim frameHandle As Long
Dim clkSource As Integer

BASIC
KGetClk% (frameHandle, clkSource)
Dim frameHandle As Long
Dim c/kSource As Integer

Entry Parameters frameHandle

Exit Parameters elkSource

Handle to the frame that defines the A/D operation.

Conversion clock source.
Value stored: 0 = Internal

1 = External

Notes For the operation defined by frameHandle. this function stores the
conversion clock source in clkSource.

An internal clock source is the 1 MHz time base of the 8254 counter/timer
circuitry; an external clock source is an external signal connected to the
INT-IN / XCLK pin, Refer to page 2-13 for more information about
conversion clock sources.

The c[kSource variable contains the value of the Conversion Clock Source
element.

4-50 Function Reference

chap04-.frm Black 5 1

Example You defined an analog input operation in a frame called ADFramel and
want to store the conversion clock source in a variable called Clock,

C
short Clock;
err = K_GetClk (ADFramel, &Clock);

Pascal
err : = K-GetClk (ADFramel, Clock);

Visual Basic for Windows
ermum = K-GetClk (ADFramel. Clock)

BASIC
emmm = KGetClk% (ADFrame], Clock)

4-51

chap04-.frm Black 52

K GetClkRate

Purpose Gets the clock rate (conversion frequency).

Syntax C
K-GetClkRate (frameHandle. clkTicks);
FRAMEHframeHandle;
long *clkTicks;

Pascal
K-GetClkRate (frameHandle, c/kTicks) : Word:
jrameHand/e : Longint;
clkTicks : Longint;

Visual Basic for Windows
K-GetClkRate (frameHandle. c/kTicks) As Integer
Dim frameHandle As Long
Dim c/kTicks As Long

BASIC
KGetClkRate% (frameHandle. c/kTicks)
DimframeHandle As Long
Dim clkTicks As Long

Entry Parameters jrameHandle

Exit Parameters clkTicks

Handle to the frame that defines the A/D operation.

Number of clock ticks between conversions.
Value stored: 25 to 65,535 (normal mode)

25 to 4,294,967,295 (cascaded mode)

Notes For the operation defined by jrameHandle, this function stores the
number of clock ticks between conversions in c/kTicks.

The clkTicks variable contains the value of the Conversion Frequency
element.

This function applies to an internal clock source only.

4-52 Function Reference

chap04-.frm Black 53

Example

After a synchronous or interrupt operation, the value stored in c/kTicks
represents the actual count, not necessarily the count set by
K-SetClkRate. The counts are different if you use cascaded mode and
specify a count in K-SetClkRale that cannot be divided between C/T1
and C!/r2; in this case, the driver loads C/T1 and C/r2 as accurately m
possible.

You defined an analog input operation in a frame called ADFrame. and
want to store the number of clock ticks between conversions in a variable
called Ticks.

C
long Ticks;
err = K-GetClkRate (ADFramel. &Ticks);

Pascal
err : = K-GetClkRate (ADFramel. Ticks);

Visual Basic for Windows
ermum = K-GetClkRate (ADFramel. Ticks)

BASIC
emmm = KGetClkRate% (ADFramel, Ticks)

chap04-.frm Black 54

K GetContRun

Purpose Gets the buffering mode.

Syntax C
KGetContRun (frameHandle, mode);
FRAMEHframeHandle;
short *mode;

Pascal
KGetContRun (frameHandle, mode) : Word;
frameHandle : Longint;
mode : Word:

Visual Basic for Windows
K-GetContRun (frameHandle, mode) As Integer
Dim frameHandle As Long
Dim mode As Integer

BASIC
KGetContRun% (frameHandle, mode)
Dim jrameHandle As Long
Dim mode As Integer

Entry Parameters jrameHandle

Exit Parameters mode

Handle to the frame that defines the A/D operation.

Buffering mode.
Value stored: 0 = Single-cycle

1 = Continuous

Notes For the operation defied by jromeHandle, this function stores the
buffering mode in mode.

The mode variable contains the value of the Buffering Mode element.

Refer to page 2- I6 for a description of buffering modes.

The Buffering Mode element is meaningful for interrupt operations only.

4-54 Function Reference

chap04Lfrm Black 55

Example You defined an analog input operation in a frame called ADFrameI and
want to store the buffering mode in a variable called BufMode.

C
short BufMode;
err = K-GctContRun (ADFramel. &BufMode);

Pascal
err : = K-GetContRun (ADFramel. BufMode);

Visual Basic for Windows
emmm = K-GetContRun (ADFramel, BufMode)

BASIC
emwm = KGetContRun% (ADFramel, BufMode)

4-55

chap04-.frm Black 56

K-GetDevHandle

Purpose Initializes any DAS board.

Syntax c
K-GetDevHandle (driverHandle. devhrumber. devHandle);
DWORD driverHandle;
WORD devNumber;
DDH *devHandle;

Pascal (Windows Only)
KGetDevHandle (driverHandle, devhrumber, devHandle) : Word;
driverHandle : Longint;
devNumher : Integer;
devHandle : Longint;

Visual Basic for Windows
K-GetDevHandle (driverHandle, devhrumber, devHandle) As Integer
Dim driverHandle As Long
Dim devNumber As Integer
Dim devHandle As Long

Entry Parameters driverHandle

devNumber

Driver handle of the associated Function Call Driver.

Board number.
Valid values: 0 to 3

Exit Parameters devHandle Handle associated with the board.

Notes This function initializes the board associated with driverHandle and
specified by devNumber. and stores the board handle of the specified
board in devHandle.

The value stored in devHand/e is intended to be used exclusively as an
argument to functions that require a board handle. Your program should
not modify the value stored in devtlandle.

You cannot use this function in BASIC or Borland Turbo Pascal for DOS.

4-56 Function Relerence

chap04-.frm Black 57

Example You want to initialize your DAS-801 board 1, which is associated with the
driver handle called DrvXOO, and associate this board with a board handle
called BrdHd 1.

err = K-GetDevHandle (Drv800, 1, &BrdHdl);

Pascal
err : = K-GetDevHandle (Drv800, 1. BrdHdl);

Visual Basic for Windows
ermum = K-GetDevHandle (Drv800. I, BrdHdl)

BASIC
errnum = KGetDevHandle% (Drv800. 1. BrdHdl)

4-57

chap04-.frm Black 58

K-GetDITrig

Purpose

Syntax

Reads the current digital trigger conditions.

c
K-GetDlTrig (FameHandle, trigOption, than, pattern);
FRAh4EHframeHandle;
short *trigOption;
short *chart;
long *pattern;

Pascal
K-GetDITrig (frameHandle. trigOption. than. pattern) : Word;
frameHandle : Longint;
trigOption : Word;
than : Word;
pattern : Longint;

Visual Basic for Windows
KGetDITrig (frameHandle, trigOption. than, pattern) As Integer
Dim frameHandle As Long
Dim trigoption As Integer
Dim than As Integer
Dim pattern As Long

BASIC
KGetDITrig% (frameHandle. trigOption, than, pattern)
Dim frameHandle As Long
Dim trigOption As Integer
Dim than As Integer
Dim pattern As Long

Entry Parameters frameHandle Handle to the frame that defines the A/D operalion.

Exit Parameters r&Option Trigger polarity and sense.
Value stored: 0 = Positive, edge-sensitive

than Digital input channel
Value stored: 0

4-58 Function Reference

chap04-.frm Black 59

Notes

pattern Trigger pattern.

For the operation defined byframeHand/e, this function Stores the trigger
polarity and sense in trigOption, the channel used for the digital trigger in
than, and the trigger pattern in pattern.

Since the DAS-800 Series Function Call Driver does not currently
support digital pattern triggering, the value of pattern is meaningless; the
pattern parameter is provided for future compatibility.

The WigOption variable contains the value of the Trigger Polarity and
Trigger Sense elements.

The than variable contains the value of the Trigger Channel element.

You are using a digital trigger to trigger the analog input operation
detined by the frame ADFramel. You want to store the trigger polarity
and sense in a variable called TrigSens and the channel used for the
analog trigger in a variable called TrigChan. (Reserved is a placeholder
for the trigger pattern, which is not supported at this time.)

C
short TrigSens;
short TrigChan;
long Reserved;
err = K-GetDITrig (ADFramel, &TrigSens, &TrigChan, &Reserved);

Pascal
err : = KGetDITrig (ADFramel, TrigSens, TrigChan, Reserved);

Visual Basic for Wlndows
ermum = K-GetDfTrig (ADFramel. TrigSens, TrigChart. Reserved)

BASIC
ermum = KGetDlTrig% (ADFramel. TrigSens. TrigChart. Reserved)

4-59

chap04-.frm Black 60 +P

K-GetErrMsg

Purpose Gets the address of an error message suing,

Syntax C
K-GetErrMsg (devHandle, msgNum, errMsg);
DDH devHandle;
short msgNum;
char far *errMsg;

Entry Parameters doHandle Handle associated with the board

WlSgNUl” Error message number.

Exit Parameters errMsg Address of error message string.

Notes For the board specified by devHandle. this function stores the address of
the string corresponding to error message number m.rgNum in errMsg.

Refer to page 2-30 for more information about error handling. Refer to
Appendix A for a list of error codes and their meanings.

This function is available for C only.

You are writing a program in C for a board that was assigned the board
handle BrdHdI and want to store the address of the string corresponding
to error message 7801H in a variable called Err%

err = K-GetBrrMsg (BrdHdl, 0x7801, &Err%);

4-60 Function Reierence

chap04-.frm Black 61

Purpose Gets the gain.

Syntax C
K-GetG (frameHandle, gainCode);
FRAMEHfrumeHandle;
short *gainCode;

Pascal
K-GetC fframeHandle. g&Code) : Word;
frameHandle : Longint:
gainCode : Word;

Visual Basic for Wlndows
KG&G (frumeHand/e, gaincode) As Integer
Dim frameHandle As Long
Dim gaincode As Integer

BASIC
KGetG% (frameHandle, gaincode)
Dim frumeHandle As Long
Dim gait&ode As Integer

Entry Parameters frameHandle Handle to the frame that defines the A/D operation.

K GetG

4-61

chap04-.frm Black 62

Exit Parameters gainCode Gain code.
Value stored:

Notes

Example

,::: :::
:::: ::,
L: 1,

t

::: :s
,3 r
:::: ::,

For the operation defined by frameHandle, this function stores the gain
code for a single channel or for a group of consecutive channels in
gaincode.

The gainCode variable contains the value of the Gain element.

A gain of 0.5 (gaincode = 1) is valid only for boards configured with a
bipolar input range type. The DAM00 board supports a gain of I only
(gait&ode must equal 0). Refer to Table 2-2 on page 2-6 for a list of the
voltage ranges associated with each gain.

You defined an analog input operation in a frame called ADFrame and
want to store the gain of the channel on which you are acquiring data in a
variable called SingGain.

C
short SingGain;
err = K-GetG (ADFramel, &SingGain);

Pascal
err : = K-GetG (ADFramel, SingGain);

Visual Basic for Wlndows
emmm = K-GetG (ADFramel, SingGain)

BASIC
errnum = KGetG% (ADFramel, SingGain)

4-62 Function Relerence

chap04-.frm Black 63

K GetGate

Purpose

Syntax

Gets the status of the hardware gate.

C
K-GetGate (frameHandle. gafeopr):
FRAMEHframeHandle;
short *gafeOpf;

Pascal
K-GetGate (frameHandle, gateopt) : Word;
frameHandle : Longint;
gateOpt : Integer;

Visual Basic for Windows
K-GetGate (frameHandle, gateOpt) As Integer
Dim frameHandle As Long
Dim gateOpt As Integer

BASIC
KGetGate% (frameHandle, galeOpt)
Dim frameHandle As Long
Dim gateOpt As Integer

Entry Parameters frameHandle

Exit Parameters gateOpt

Handle to the frame that defines the A/D operation.

Status of the hardware gate
Value stored: 0 = Disabled

1 = Enabled

Notes For the operation defmed by frameHandle. this function stores the status
of the hardware gate in gateOpt.

The gafeOpr variable contains the value of the Hardware Gate element.

DAM00 Series boards support a positive gate only. When the hardware
gate is enabled, conversions occur only while the gate signal is high.

4-63

chap04-.frm Black 64

Example You defined an analog input operation in a frame called ADFrame and
want to store the status of the hardware gate in a variable called Gate.

C
short Gate;
err = K-GetGate (ADFramel, &Gate);

Pascal
err : = K-GetGate (ADFramel. Gate);

Visual Basic for Windows
errnum = K-GetGate (ADFramel, Gate)

BASIC
errnum = KG&Gate% (ADFrame I, Gate)

Function Relerence

chap04-.frm Black 65

K-GetStartStopChn

Purpose Gets the first and last channels in a group of consecutive channels,

Syntax c
K-GetStartStopChn iframeHandle. sfarf, stop);
FRAMEHframeHandle;
short *stun;
short *stop;

Pascal
K-GetStartStopChn (frameHandle, sfarl. stop) : Word;
frameHandle : Longint;
start : Word;
sfop : Word;

Visual Basic for Windows
K-GetStartStopChn (frameHandle. start. stop) As Integer
Dim frameHandle As Long
Dim start As Integer
Dim stop As Integer

BASIC
KGetStartStopChn% (frameHandle, dark stop)
Dim frameHandle As Long
Dim Start As Integer
Dim stop As Integer

Entry Parameters frameHandle Handle to the frame that defines the A/D operation

Exit Parameters slart First channel in a group of consecutive channels.
Value stored: 0 to 127

smp Last channel in a group of consecutive channels.
Value stored: 0 to 127

4-65

chap04-.frm Black 66

Notes

Example

For the operation defined by frameHandle, this function stores the first
channel in a group of consecutive channels in srarr and the last channel in
the group of consecutive channels in srop.

The srarf variable contains the value of the Start Channel element

The stop variable contains the value of the Stop Channel element.

The locations of the channels stored in srarr and stop depend on the
number of expansion boards you are using. Refer to page 2-6 for more
information.

You defined an analog input operation in a frame called ADFramel. You
want to store the first channel in your group of consecutive channels in a
variable called First and the last channel in your group of consecutive
channels in a variable called Last.

C
short First;
short Last;
err = KGetStartStopChn (ADFramel. &First, &Last):

Pascal
err : = K-GetStartStopChn (ADFrame I, First, Last);

Visual Basic for Windows
errnum = K-GetStartStopChn (ADFramel. First, Last)

BASIC
errnum = KGetStartStopChn% (ADFramel, First, Last)

4-66 Function Reference

chap04-.frm Black 67

K-GetStartStopG

Purpose Gets the first and last channels in a group of consecutive channels and the
gain for all channels in the group.

Syntax C
K-GetStartStopG (frameHandle, start. stop. gaincode);
FRUIEHj?ameHandle;
short *srar$
short *stop;
short *gain&de;

Pascal
K-GetStartStopG (frameHandle, start, stop. gaincode) : Word;
frameHandle : Longint;
start : Word;
stop : Word;
gaincode : Word;

Visual Basic for Windows
K-GetStartStopG (frameHandle. start, stop, gaincode) As Integer
Dim frameHandle As Long
Dim srarr As Integer
Dim stop As Integer
Dim gainCode As Integer

BASIC
KGetStartStopG% (frameHandle. start, stop, gaincode)
Dim frameHandle As Long
Dim Starr As Integer
Dim stop As Integer
Dim gaincode As Integer

Entry Parameters frameHandle

Exit Parameters start

Handle to the frame that defines the A/D operation.

First channel in a group of consecutive channels.
Value stored: 0 to 127

stop Last channel in a group of consecutive channels
Value stored: 0 to 127

4-67

chap04-.frm Black 68

Notes

gainCode Gain code.
Value stored:

For the operation defined by frameHandle, this function stores the first
channel in a group of consecutive channels in srarr. the last channel in the
group of consecutive channels in stop. and the gain code for all channels
in the group in gaincode.

The Starr variable contains the value of the Start Channel element.

The stop variable contains the value of the Stop Channel element.

The locations of the channels stored in srarr and srop depend on the
number of expansion boards you are using. Refer to page 2-6 for more
information.

The gaincode variable contains the value of the Gain element.

A gain of 0.5 (gaincode = 1) is valid only for boards configured with a
bipolar input range type. The DAM00 board supports a gain of I only
(gaincode must equal 0). Refer to Table 2-2 on page 2-6 for a list of the
voltage ranges associated with each gain.

4-68 Function Reference

chap04-.frm Black 69

Example You delined an analog input operation in a frame called ADFramel. You
want to store the first channel in your group of consecutive channels in a
variable called First, the last channel in your group of consecutive
channels in a variable called Last, and the gain for all channels in the
group in a variable called ListGain.

short First;
short Last;
short ListGain;
err = K-GetStartStopG (ADFrame], &First, &Last, &ListGain);

Pascal
err : = K-GetStanStopG (ADFramel. First, Last, ListGain);

Visual Basic for Windows
errnum = K-GetStartStopG (ADFramel. First, Last, ListGain)

BASIC
errnum = KGetStartStopG% (ADFramel, First, Last, ListGain)

4-69

chap04-.frm Black 70

K-GetTrig

Purpose Gets the trigger source,

Syntax C
K-GetTrig (frameHandle, trigSource);
FRAMEH frameHandle;
short *W&Source;

Pascal
K-GetTrig (frameHandle. trigSource) : Word;
frameHandle : Longint;
trigSource : Word;

Visual Basic for Windows
K-GetTrig (frameHandle. trigSource) As Integer
Dim frameHandle As Long
Dim trigSource As Integer

BASIC
KGetTrig% (frameHandle, rrigSource)
Dim frameHandle As Long
Dim trigSource As Integer

Entry Parameters frameHandle

Exit Parameters trigSource

Handle to the frame that defines the A/D operation.

Trigger source.
Value stored: 0 = Internal trigger

I= External trigger

Notes For the operation defined byframeHandle, this function stores the trigger
source in trigSource.

The trigSource variable contains the value of the Trigger Source element.

An internal trigger is a software trigger; conversions begin when the
operation is started. An external trigger is either an analog trigger or a
digital trigger: conversions begin when the trigger event occurs. Refer to
page 2-16 for more information about internal and external trigger
sources.

4-70 Function Reference

chap04Lfrm Black 7 1

Example You defined an analog input operation in a frame called ADFrame and
want to store the source of the trigger that will start the operation in a
variable called Trigger.

C
short Trigger;
err = K-GetTrig (ADFramel, &Trigger);

Pascal
err : = K-GetTrig (ADFramel, Trigger);

Visual Basic for Windows
ermum = KGetTrig (ADFrame 1, Trigger)

BASIC
crmum = KGetTrig% (ADFramel, Trigger)

chap04-.frm Black 72

K-GetTrigHyst

Purpose

Syntax

Gets the hysteresis value.

C
K-GetTrigHyst (frameHandle, hysr);
FRAMEH frameHrmdle;
short *bysl;

Pascal
K-GetTrigHyst CframeHandie, hysl) : Word;
frameHandle : Longint;
hyst : Word;

Visual Basic for Windows
K-GetTrigHyst (frameHandle, hyst) As Integer
Dim frameHandle As Long
Dim hyst As Integer

BASIC
KGetTrigHyst% (frameHandle, hysf)
Dim frameHandle As Long
Dim hysr As Integer

Entry Parameters frameHandle Handle to the frame that defines the A/D operation

Exit Parameters hyst Hysteresis value.
Value stored: 0 to 4095

Notes For the operation defined by frameHandle. this function stores the
hysteresis value used for an analog trigger in hysr. The value is
represented in raw counts; refer to Appendix B for information on
converting the raw count to voltage.

The hyst variable contains the value of the Trigger Hysteresis element.

Refer to page 2-17 for more information about analog triggers.

4-72 Function Reference

chap04-.frm Black 73

Example You defined an analog input operation in a frame called ADFramei and
want to store the hysteresis value used by the analog trigger in a variable
called HystVal.

C
short HystVai;
err = K-GetTrigHyst (ADFrame], &HystVal);

Pascal
err : = K-GetTrigHyst (ADFramei, HystVal);

Visual Basic for Windows
errnum = K-GetTrigHyst (ADFrame I, HystVal)

BASIC
errnum = KGetTrigHyst% (ADFrame 1, HystVai)

chap04-.frm Black 74

Purpose Gets revision numbers.

Syntax C
K-GetVer (devHandle, spec, version):
DDH devHandle;
short *spec;
short *version;

Pascal
K-GetVer (devHand/e. spec. version) : Word;
devHandle : Longint;
spec : Word:
version : Word:

Visual Basic for Windows
K-GetVer (devHandle, spec, version) As Integer
Dim devHandle As Long
Dim spec As Integer
Dim version As Integer

BASIC
KGetVer% (devHandle, spec, version)
Dim devHandle As Long
Dim spec As Integer
Dim version As Integer

Entry Parameters devHandle

Exit Parameters spec

version

Handle associated with the board.

Revision number of the Keithley DAS Driver
Specification to which the driver conforms.

Driver version number.

Notes

K GetVer

For the board specified by devHand/e. this function stores the revision
number of the DAS-800 Series Function Call Driver in version and the
revision number of the driver specilication in spec.

4-74 Function Reference

chap04-.frm Black 75

The values stored in spec and version are two-byte (16-bit) integers; the
high byte of each contains the major revision level and the low byte of
each contains the minor revision level. For example. if the driver version
number is 2. I, the major revision level is 2 and the minor revision level is
1; therefore, the high byte of version contains the value of 2 (5 12) and the
low byte of version contains the value of 1; the value of both bytes is 5 13.

To extract the major and minor revision levels from the value stored in
spec or version, use the following equations:

major revision level = Integer portion of returned value
256 I

minor revision level = returned value MOD 256

You are using functions from different DAS Function Call Drivers in your
application program. Before you include a particular function in your
program, you want to check the revision of the Function Call Driver
associated with a particular hoard. The board is associated with the board
handle BrdHdl. You want to store the revision number of the driver in a
variable called BrdlRev and the revision number of the driver
specification in a variable called BrdlSpec.

C
short BrdlSpec;
short BrdlRev;
err = K-GetVer (BrdHdl, &BrdlSpec, &BrdlRev);

Pascal
err : = K-GetVer (BrdHdl, BrdlSpec, BrdlRev);

Visual Basic for Windows
ermum = K-GetVer (BrdHdl, BrdlSpec, BrdlRev)

BASIC
errnum = KGetVer% (BrdHdl. BrdlSpec. BrdlRev)

4-75

chap04-.frm Black 76

K-InitFrame

Purpose Checks the interrupt status.

Syntax C
K-InitFrame (frameHandle);
FRAMEH frameHandle;

Pascal
K-InitFrame (frameHandle) : Word;
frameHandle : Longint;

Visual Basic for Wlndows
K-InitFrame (frameHrmdle) As Integer
Dim frumeHandle As Long

BASIC
KLnitFrame% (frameHandle)
Dim frameHandle As Long

Entry Parameters frameHandle Handle to the frame that defines the A/D operation

Notes This function checks the status of interrupt operations on the board
associated with frameHandle.

If no interrupt operation is active, K-InitFrame checks the validity of the
board associated withfrumeHandle and, if the board is valid, enables A/D
operations.

If an interrupt operation is active, K-InitFrame returns an error
indicating that the board is busy.

4-76 Function Reference

/ chapOC.frm Black 77

Example You defined an analog input operation in a frame called ADFrame 1.
ADFramel is associated with a board that was assigned the board handle
BrdHdl. You want to check the status of interrupt operations on the board
before starting a new analog input operation.

C
err = K-I&Frame (ADFramel):

Pascal
err : = K-InitFrame (ADFramel):

Visual Basic for Windows
ermum = K-I&Frame (ADFrame 1)

BASIC
ennum = KInitFrame% (ADFramel)

4-77

chapOC.frm Black 78

K IntAlloc

Purpose Allocates a buffer.

Syntax C
K-IntAlloc (frameHandle, samples, ocqBuf, memHand/e);
FRAMEHframeHandle:
DWORD samples;
void *acqBuf:
WORD *memHandle;

Pascal
K-IntAlloc (frameHandle, samples, ocqBuf, memHand/e) : Word;
frumeHand/e : Longint;
samples : LongInt;
acqBuf: Pointer;
memHandle : Word;

Visual Basic for Windows
K-IntAIloc (frameHandle. samples, acqBuf, memHandle) As Integer
Dim frameHandle As Long
Dim samples As Long
Dim acqBuf As Long
Dim memHandle As Integer

Entry Parameters frameHandle

samples

Handle to the frame that defines the A/D operation.

Number of samples.
Valid values: 0 to 32767

Exit Parameters acqBuf Starting address of the allocated buffer,

memHandle Handle associated with the allocated buffer,

Notes For the operation defined byframeHandle, this function allocates a buffer
of the size specified by samples, and stores the starting address of the
buffer in acqBuf and the handle of the buffer in memHand/e.

Do not use this function for BASIC; for the BASIC languages, you must
dimension your buffer locally.

4-70 Function Reference

chap04-.frm Black 79

Example You defined an analog input operation in a frame called ADFrame I. You
want to allocate a buffer that will store 1000 samples, store the starting
address of this buffer in a variable called Bufferl, and associate this
buffer with a memory handle called Handlel.

C
err = K-IntAlloc (ADFramel, 1000. Bufferl. HandleI);

Pascal
Refer to page 3- 18 for an example of using K-IntAlloc in Pascal.

Visual Basic for Windows
ermum = K-IntAlloc (ADFramel, 1000, Bufferl. Handlel)

4-79

chap04-.frm Black 80

K IntFree

Purpose

Syntax

Frees a buffer.

C
KJntFree (memhndle);
WORD memHandle:

Pascal
K-IntFree (memHandle) : Word;
memHandle : Word;

Visual Basic for Windows
K-IntFree (memHandle) As Integer
Dim memHand/e As Integer

Entry Parameters memHandle Handle to interrupt buffer,

Notes This function frees the buffer specitied by memHondle; the buffer wa?
previously allocated dynamically using K-IntAlloc.

Example You defined an analog input operation in a frame called ADFrame and
allocated a buffer associated with the memory handle Handlel. You want
to free this buffer for another use.

C
err = K_IntFree (Handlel);

Pascal
err : = K-IntFree (Handle I);

Vlsual Basic for Windows
ermum = K-IntFree (HandleI)

4-80 Function Reference

chap04-.frm Black 8 1

K-IntStart

Purpose

Syntax

Starts an interrupt operation.

c
KJntStart (frumeHand/e);
FRAMEH frameHandle;

Pascal
K-IntStart (frameHandle) : Word:
frameHandle : Longint;

Visual Basic for Windows
K-I&tart (frameHandle) As Integer
Dim frameHandle As Long

BASIC
KIntStart% (frameHandle)
Dim frameHandle As Long

Entry Parameters frameHandle Handle to the frame that defines the A/D operation.

Notes This function starts the interrupt operation defined by frameHandle.

Refer to page 3-9 for a discussion of the programming tasks associated
with interrupt operations.

4-81

chap04-.frm Black 82 +B

You defined an analog input operation in a frame called ADFrame and
want to start the operation in interrupt mode.

C
err = K-IntStart (ADFramel):

Pascal
err : = K-IntStart (ADFramel);

Visual Basic for Windows
ermum = K-IntStart (ADFramel)

BASIC
ernmm = KIntStart% (ADFramel)

Function Reference

4

chapOC.frm Black 83

K-IntStatus

Purpose Gets status of interrupt operation.

Syntax C
K-IntStatus (frameHandle, stafus. samples):
FRAMEHfromeHandle;
short *status;
long *samples;

Pascal
K-IntStatus (frameHandle. status. samples) : Word;
frameHandle : Longint:
status : Word;
samples : Longint;

Visual Basic for Windows
K-IntStatus (frameHandle, status, samples) As Integer
Dim frameHandle As Long
Dim status As Integer
Dim samples As Long

BASIC
KIntStatus% (frameHandle. status, samples)
Dim frameHandle As Long
Dim status As Integer
Dim samples As Long

Entry Parameters frameHandle Handle to the frame that defines the A/D operation.

Exit Parameters status Status of interrupt operation.

samples Number of samples that were acquired,

4

Notes For the interrupt operation defined by frameHandle, this function stores
the status in status and the number of samples acquired in samples.

4-83

4

4

chapOC.frm Black 84

The value stored in status depends on the settings in the Status Word, as
shown below:

AcOve bulfer number +
0 = Bulbr not Hlbd
1 = Buffer Rlled

The bits are described as follows:

l Bit 0 indicates whether an interrupt-mode operation is in progress.

. Bit 1 indicates whether a conversion overflow occurred because the
transfer of data between tbe board and the computer’s memory was
slower than the rate at which the board was acquiring data. When this
bit is set, all conversions stop.

. Bit 4 indicates whether the buffer(s) used for an interrupt-mode
operation running in continuous buffering mode have been tilled. If
this bit is set, the buffer(s) have been filled at least once.

. Bits 8 through 15 indicate which buffer in a multiple-buffer list is
currently active. To determine the active buffer number, divide the
value of the Status word by 256. The first buffer added to the list is
Buffer I, the second buffer added to the list is Buffer 2, and so on.

4-84 Function Reference

4

chap04M.frm Black 85

Example You defined an analog input operation in a frame called ADFramel and
started the operation in interrupt mode. You want to store the status of the
interrupt operation in a variable called IntStat and the number of samples
already acquired in a variable called IntSamp.

C
short IntStat;
long IntSamp;
err = K-IntStatus (ADFramel, &IntStat, &IntSamp);

Pascal
err : = K_IntStatus (ADFramel, IntStat, IntSamp);

Visual Basic for Windows
errnum = K-IntStatus (ADFramel, IntStat. IntSamp)

BASIC
errnum = KIntStatus% (ADFramel. IntStat, IntSamp)

4-05

chap04-.frm Black 86

Purpose Stops an interrupt operation.

Syntax C
K-IntStop (frameHandle. swus. samples);
FRAMEHframeHandle;
short *smms;
long *samples;

Pascal
K-IntStop (frameHandle, sIaIus, samples) : Word:
frameHandle : Longint;
status : Word;
samples : Longint:

Visual Basic for Windows
KJntStop (frameHandle, s1a1us, samples) As Integer
Dim frameHandle As Long
Dim snafus As Integer
Dim samples As Long

BASIC
KIntStop% (frameHandle, skuus. samples)
Dim frameHandle As Long
Dim status As Integer
Dim samples As Long

K IntStop

Entry Parameters frameHandle Handle to the frame that defines the A/D operalion.

Exit Parameters status Status of interrupt operation.
Value stored: 0 to 65535

samples Number of samples that were acquired

Notes This function stops the interrupt operation defined byframeHandle and
stores the status of the interrupt operation in sfafus and the number of
samples acquired in samples.

4-86 Function Reference

chapOC.frm Black 87

Refer to page 4-84 for the meaning of the value stored in SIO~L~.

If an interrupt operation is not in progress, K-IntStop is ignored

You defined an analog input operation in a frame called ADFramel and
started the operation in interrupt mode. You want to stop the interrupt
operation, store the status of the interrupt operation in a variable called
IntStat. and store the number of samples already acquired in a variable
called IntSamp.

C
short IntStat;
long IntSamp;
err = K-IntStop (ADFramel, MntStat. MntSamp);

Pascal
err : = K-IntStop (ADFramel, IntStat. IntSamp);

Visual Basic for Windows
errnum = K-IntStop (ADFramel, IntStat, IntSamp)

BASIC
errnum = KIntStop% (ADFramel. IntStat, IntSamp)

4-87

chap04-.frm Black 88

K MoveBufToArrav

Purpose Transfers data from a buffer allocated through K-IntAiioc to a locally
dimensioned buffer.

Syntax Visual Basic for Windows
K-MoveBufToArray (desf, source. samples) As Integer
Dim dest As Integer
Dim source As Long
Dim samples As Integer

Entry Parameters desr Address of destination buffer

source Address of source buffer.

samples Number of samples to transfer.

Notes

+b

Example

This function transfers the number of samples specified by samples from
the buffer at address source to the buffer at address dest.

If the buffer used to store acquired data for your Visual Basic for
Windows program was allocated through K-IntAiioc, the buffer is not
accessible to your program and you must use this function to move the
data to an accessible buffer. If the buffer used to store acquired data for
your Visual Basic for Windows program was dimensioned locally within
the program’s memory area, the buffer is accessible to your program and
you do not have to use this function. This function is intended for Visual
Basic for Windows only, since other languages can access dynamically
allocated buffers.

You used K-IntAlloc to allocate a buffer to store acquired data for your
Visual Basic for Windows program; this buffer starts at the memory
location pointed to by AllocBuf. You must move the data to another
buffer that is accessible to your program. You want to move 1000 samples
from this buffer to another buffer starting at the memory location pointed
to by BasicBuf.

Visual Basic for Windows
errnum = K-MoveBuffoArray (BasicBuf(O), AllocBuf. 1000)

Function Reference

chap04-.frm Black 89

K ODenDriVet’

Purpose Initializes any DAS Function Call Driver,

Syntax C
K_OpenDriver (deviceName. cfgFi/e. driverHandle):
char *deviceName;
char *cfgFi/e;
DWORD *driverHandle;

Pascal (Windows Only)
K-OpenDriver (deviceName, cfgFile, driverHandle) : Word;
deviceName : String;
cfgFi/e : String:
driver-Handle : Longint;

Visual Basic for Windows
K-OpenDriver (deviceName. cfgFi/e. driverHandle) As Integer
Dim deviceName As String
Dim cfgFile As String
Dim driverHandle As Long

Entry Parameters deviceNume

cfgFile

Board name.
Valid value: DAM00 (for DA.%800 Series boards)

Driver configuration file.
Valid values: 0 = Current configuration

-1 = Default configuration
filename = Any configuration file

Exit Parameters driver-Handle Handle associated with the driver.

Notes This function initializes the Function Call Driver for the board associated
with deviceName according to the information in the configuration file
specified by cfgFile, and stores the driver handle in driverHandle.

4-89

chap04Lfrm Black 90

You can use this function to initialize the Function Call Driver associated
with any DAS board. For DA%800 Series boards, the string stored in
deviceName must be DAS800. Refer to other Function Call Driver user’s
guides for the appropriate string to store in deviceName for other DAS
boards.

The value stored in driverHandle is intended to be used exclusively as an
argument to functions that require a driver handle. Your program should
not modify the value stored in driverHandle.

You create a configuration file using the DBOOCFG.EXE utility. Refer to
the DAS-800 Series User’s Guide for more information.

If cfgFile = 0. K-OpenDriver checks whether the driver has already been
opened and linked to a configuration file and if it has, uses the current
configuration: this is useful in the Windows environment. If cfgFi/e =-I.
K-OpenDriver initializes the driver to its default configuration: the
default configuration is shown in Table 4-2 on page 4-7.

You cannot use this function in BASIC or Borland Turbo Pascal for DOS.

The Function Call Driver requires null terminated strings. To create null
terminated strings in Pascal and Visual Basic for Windows, refer to the
following examples. These examples assume that the board is a DAM00
Series board and that the configuration file (cfgFile) is DASKM.CFG.

Pascal (Windows Only):

deviceName : = ‘DA.7800 + #O;
cfgFile : = ‘DAS800,CFG’ + #O;

Visual Basic for Windows:

deviceName = “DAS800” + CHR$(O)
cfgFi/e = “DASXOO.CFG” + CHR$(O)

4-90 Function Reference

chap04Lfrm Black 91

After you set up your DAS-801 board, you created a configuration file to
reflect the settings of the jumper and switches on the board. The
configuration file is stored in the memory location pointed to by
CONFBOI. You want to initialize the DAS-800 Series Function Call
Driver according to this configuration file. and associate the driver with a
driver handle called Drv800.

C
DWORD 8OODrvl;
err = K-OpenDriver (DASXOO. CONFBOI. &Drv800):

Pascal (Windows Only)
err : = K-OpenDriver (‘DASBOO’ + #IO, CONF801(11, Drv800);

Visual Basic for Windows
ermum = K-OpenDriver (“DAS800” + CHR$(O). CONFROl. Drv800)

4-91

chap04-.frm Black 92

K RestoreChanGArv

Purpose

Syntax

Restores a converted channel-gain list.

Visual Basic For Windows
K-RestoreCbanGAry (chanGainArray) As Integer
Dim chanGainArray(nj As Integer

where n = (number of channels x 2) + 1

BASIC
KRestoreChanGAry% (chanGainArray)
Dim chanCaidrray(n) As Integer

where n = (number of channels x 2) + 1

Entry Parameters chanGairutrray(0) Channel-gain list starting address.

Notes This function restores a channel-gain list that was converted using
K-FormatChanGAry to its original format so that it can be used by your
BASIC or Visual Basic for Windows program.

Refer to page 4-37 for more information about the K-FormatChanGAry
function.

Example You created a channel-gain list in BASIC, named it CGLisl. and then
converted it to single-byte values using K-FormatChanGAry. You want
to restore the channel-gain list to its original format.

Visual Basic For Windows
errnum = K-RestoreChanGAry (CGList(0))

BASIC
errnum = KRestoreChanGAry% (CGList(0))

4-92 Function Reference

chap04-.frm Black 93

K-SetADTrig

Purpose Sets up an analog trigger.

Syntax c
K-SetADTrig (framehandle, trigOption. than. level);
FRAMEH framehandle;
short trigOption:
short than;
long level;

Pascal
K-SetADTrig (frameHandle, trigOption, chon, level) : Word:
frameHandle : Longint;
trigOption : Word;
than : Word;
/eve/ : Longint;

Visual Basic for Windows
K-SetADTtig (frameHandle. trigOption. chon, level) As Integer
Dim frameHandle As Long
Dim trigOption As Integer
Dim than As Integer
Dim level As Long

BASIC
KSetADTrig% (frameHandle, w&Option, chart. level)
Dim frameHandle As Long
Dim trigOption As Integer
Dim than As Integer
Dim level As Long

Entry Parameters frameHandle

trigOption

Handle to the frame that defines the A/D operation.

Analog trigger polarity and sense.
Valid values: 0 = positive edge

2 = negative edge

chart Analog channel used as trigger channel.
Valid values: 0 to 127

4-93

chap04-.frm Black 94

Notes

$
Example

level Level at which the trigger event occurs.
Valid values: 0 to 4095

For the operation defined by frameHandle. this function specifies the
channel used for an analog trigger in than, the level used for the analog
trigger in level, and the trigger polarity and trigger sense in ?rigOprion.

The range of valid values for chon depends on the number of expansion
boards you are using. Refer to page 2-6 for more information.

You specify the value for level in raw counts. Refer to Appendix B for
information on converting the voltage to a raw count.

The values you specify set the following elements in the frame identified
by frameHandle:

. rrigOprion sets the value of the Trigger Polarity and Trigger Sense.
elements.

. than sets the value of the Trigger Channel element.

. level sets the value of the Trigger Level element.

You want to use an analog trigger to trigger the analog input operation
defined by the frame ADFramel. The board is configured for a bipolar
input range type. You want to trigger the operation when the signal
connected to analog input channel 22 rises above +2 V (positive-edge
trigger).

C
err = K-SetADTrig (ADFramel, 0.22,2867);

Pascal
err : = K_SetADTrig (ADFramel, 0.22, 2867);

Visual Basic for Windows
errnum = K-SetADTrig (ADFramel. 0,22,2867)

BASIC
errnum = KSetADTrig% (ADFramel, 0,22,2867)

4-94 Function Reference

chap04-.frm Black 95

K SetBuf

Purpose Specifies the starting address of a previously allocated or dimensioned
buffer.

Syntax c
K-SetBuf (frameHandle, acqBuf, samples);
FRA MEH frameHandle;
void *acqBuJ
long samples;

Pascal
K-SetBuf (frameHandle. ocqBuf, samples) : Word;
frameHandle : Longint;
acqBuf : Pointer;
samples : Longint;

Visual Basic for Windows
K-SetBuf (frrrmeHondle, acqBuf, samples) As Integer
Dim frameHandle As Long
Dim acqBuf As Long
Dim samples As Long

Entry Parameters frameHandle Handle to the frame that defines the A/D operation

Notes

acqBuf Starting address of buffer.

samples Number of samples.

For the operation defined byframeHandle, this function specities the
starting address of a previously allocated buffer in ocqBuf and the number
of samples stored in the buffer in sump/es.

If you are specifying the starting address of a local memory buffer, make
sure that you have dimensioned the buffer as an integer.

Do not use this function for BASIC; for the BASIC languages, use
K-SetBuff. Refer to page 4-97 for more information.

4-95

chap04-.frm Black 96

4-96

For C and Pascal application programs, use this function whether you
dimensioned your buffer locally or allocated your buffer dynamically
using K-IntAlloc. For C. make sure that you use proper typecasting to
prevent C/C++ type-mismatch warnings. For Pascal, a special procedure
is needed to satisfy the type-checking requirements; refer to page 3-1X for
more information.

For Visual Basic for Windows, use this function only for buffers allocated
dynamically using K-IntAlloc. For locally dimensioned buffers. use
K-SetBuff. Refer to page 4-97 for more information.

Do not use this function if you are using multiple buffers. Use
K-BufListAdd to specify the starting addresses of multiple buffers; refer
to page 4-22 for more information.

The syntax of this function in the DAS-800 Series Function Call Driver is
slightly different from the syntax of this function in other DAS Function
Call Drivers. Therefore, you may have to modify application programs
written for other DAS boards before you use them with DAS-800 Series
boards.

The values you specify set the following elements in the frame identified
by frameHandle:

. acqBuf sets the value of the Buffer element.

. samples sets the value of the Number of Samples element.

You allocated a 1000~sample buffer to store data for an analog input
operation defined by the frame ADFramel; the buffer starts at the
memory location pointed to by Buffer. You want to add the starting
address of the buffer and the number of samples to the definition of the
frame.

C
err = K-SetBuf (ADFramel, Buffer. 1000);

Pascal
Refer to page 3-18 for an example of using K-SetBuf in Pascal.

Visual Basic for Windows
ermum = K-SetBuf (ADFramel, Buffer. 1000)

Function Reference

chap04-.frm Black 97

K-SetBufl

Purpose Specifies the starting address of a locally dimensioned integer buffer.

Syntax Visual Elaslc for Windows
K-SetBufI (frameHandle, ncqBuf, samples) As Integer
Dim frameHandle As Long
Dim acqBuf As Integer
Dim samples As Long

BASIC
KSetBufl% (frameHandle, acqBuf, samples)
Dim frameHandle As Long
Dim acqBuf As Integer
Dim samples As Long

Entry Parameters frameHandle

ocqBuf

Handle to the frame that defines the A/D operation

Starting address of the user-dimensioned integer
buffer.

samples Number of samples.

Notes For the operation defined by frameHandle, this function specifies the
starting address of a locally dimensioned integer buffer in acqBuf and the
number of samples stored in the buffer in sump/es.

Do not use this function for C and Pascal; for these languages, use
K-SetBuf. Refer to page 4-95 for more information.

For Visual Basic for Windows, use this function only for locally
dimensioned buffers. For buffers allocated dynamically using
K-IntAlloc, use K-SetBuf. Refer to page 4-95 for more information.

Do not use this function if you are using multiple buffers. Instead. use
K-BufListAdd to specify the starting addresses of multiple buffers; refer
to page 4-22 for more information.

4-97

chap04-.frm Black 98

Example

The values you specify set the following elements in the frame identified
byframeHundle:

. ncqBufsets the value of the Buffer element.

. samples sets the value of the Number of Samples element

You dimensioned a 1000~sample local buffer called Buffer to store data
for an analog input operation defined by the frame ADFramel. You want
to add the starting address of the buffer and the number of samples to the
definition of the frame.

Visual Basic for Windows
errnum = K-SetButl (ADFramel. Buffer(O), 1000)

BASIC
errnum = KSetBufl% (ADFramel, Buffer(O), 1000)

4-98 Function Reference

chap04-.frm Black 99

K-SetChn

Purpose Specifies a single channel

Syntax c
K-SetChn (frameHandle, than);
FRAMEH frameHandle;
short chart;

Pascal
K-SetChn (frameHandle, than) : Word;
frameHandle : Longint;
than : Word;

Visual Basic for Windows
K-SetChn (frameHandle, than) As Integer
Dim frameHandle As Long
Dim than As Integer

BASIC
KSetChn% (frameHandle, chnn)
Dim frameHandle As Long
Dim than As Integer

Entry Parameters frameHandle

than

Handle to the frame that defines the A/D operation

Channel on which to perform operation.
Valid values: 0 to 127

Notes For the operation defined byframeHandle, this function specifies the
single channel used in chart.

The value you specify in than sets the Start Channel element in the frame
identified by frameHandle.

The range of valid values for than depends on the number of expansion
boards you are using. Refer to page 2-6 for more information.

4-99

chap04Lfrm Black 100

You are defining an analog input operation in a frame called ADFrame I
and want to sample data from analog input channel 16.

C
err = K-SetChn (ADFramel. 16);

Pascal
err : = K-SetChn (ADFrame I, 16);

Visual Basic for Windows
errnum = K-SetChn (ADFramel, 16)

BASIC
errnum = KSetClm% (ADFramel. 16)

Function Reference

chap04-.frm Black 101

K SetChnGAry

Purpose Specifies the starting address of a channel-gain list.

Syntax c
K-SetChnGAry (fromeHandle, chanCain4rray);
FRAMEH frameHandle;
void *chanGninArray;

Pascal
KSetChnGAry (frameHandle, chanGain4rray) : Word:
frameHandle : Longint;
chnnGuinArrcry : Integer;

Visual Basic for Windows
K-SetChnCAry (frameHandle, chanCaitu\rroy) As Integer
Dim frameHandle As Long
Dim chanCainArray(n) As Integer

where n = (number of channels x 2) + 1

BASIC
KSetCimGAry% (frameHandle. chanGain4rray)
Dim frameHandle As Long
Dim chanGainArray(nJ As Integer

where n = (number of channels x 2) + 1

Entry Parameters frameHandle

chanCainArray

Handle to the frame that defines the A/D operation

Channel-gain list starting address.

Notes For the operation defined byframeHandle, this function specifies the
starting address of the channel-gain list in chanGainArray.

The value you specify in chanCainArroy sets the Channel-Gain List
element in the frame identified byframeHandle.

Refer to page 2-9 for information on setting up a channel-gain list

4-101

Example

4

chap04-.frm Black 102

If you created your channel-gain list in BASIC or Visual Basic for
Windows, you must use K-FormatChanCAry to convert the
channel-gain list before you specify the address with K-SetChnCAry.

You are defining ao analog input operation in a frame called ADFramel
and want to sample data from the channels in a channel-gain list starting
at the memory location pointed to by CGList.

C
err = K-SetChnGAry (ADFramel, CGList);

Pascal
Refer to page 3-19 for an example of using K-SetChnGAry in Pascal.

Visual Basic for Windows
errnom = K-SetChnGAry (ADFramel, CGList(0))

BASIC
ermum = KSetChnGAry% (ADFrame I, CGList(0))

4

4-102 Function Reference

4

4

chap04-.frm Black 103

K-SetClk

Purpose Specifies the conversion clock source.

Syntax c
K-SetCik (frameHandle, clkSource);
FRAMEH frameHandle;
short clkSource;

Pascal
K-SetClk (frameHandle, clkhurce) : Word:
frameHandle : Longint;
clkSource : Word;

Visual Basic for Windows
K-SetClk (frameHandle, c/kSource) As Integer
Dim frameHandle As Long
Dim c/kSource As Integer

BASIC
KSetCik% (frameHandle, cikburce)
Dim frameHandle As Long
Dim clkSource As Integer

Entry Parameters frameHandle

clkSource

Handle to the frame that defines the A/D operation

Conversion clock source.
Valid values: 0 = Internal

1 = External

Notes For the operation defined by frameHandle, this function specifies the
conversion clock source in elk&wee.

The value you specify in clkSource sets the Conversion Clock Source
element in the frame identified by frameHandle.

The internal clock source is the 1 MHz time base of the 8254
counter/timer circuitry; an external clock source is an external signal
connected to the INT-IN / XCLK pin. Refer to page 2- I3 for more
information about conversion clock sources.

4-103

4

4

chap04-.frm Black 104

Example

+b

You are defining an analog input operation in a frame called ADFrame
and want to use an external clock to determine the time interval between
conversions.

C
err = K-SetClk (ADFramel, I);

Pascal
err : = K-SetClk (ADFramel, I);

Visual Basic for Windows
ermum = K-SetClk (ADFrame 1, 1)

BASIC
ermum = KSetClk% (ADFramel. I)

Function Relerence

chap04-.frm Black 105

K SetClkRate

Purpose

Syntax

Specifies the clock rate (conversion frequency).

C
K-SetClkRate (frameHandle, c/kTick.s):
FRAMEH frameHandle:
long clkTicks;

Pascal
K-SetClkRate (frameHandle, clkTicks) : Word:
frameHandle : Longint;
c/kTicks : Longint:

Visual Basic for Windows
K-SetClkRate (frameHandle. clkTicks) As Integer
Dim frameHandle As Long
Dim clkTicks As Long

BASIC
KSetClkRate% (frameHandle, c/kTicks)
Dim frameHandle As Long
Dim c/kTicks As Long

Entry Parameters frameHandle

clkTicks

Handle to the frame that defines the A/D operation.

Number of clock ticks between conversions.
Valid values: 25 to 65535 (Normal)

25 to 4,294,967,295 (&waded)

Notes For the operation defined by frameHandle, this function specifies the
number of clock ticks between conversions in c/kTicks.

The value you specify in clkTicks sets the Conversion Frequency element
in the frame identified by frameHandle.

This function applies to an internal clock source only.

4-105

chap04-.frm Black 106

Example

4-106

You are defining an analog input operation in a frame called ADFramel.
CR2 on your board is configured for normal mode and you are using the
internal clock to determine the time interval between conversions. You
want to specify a conversion frequency of 25 kHz (40 1s between
conversions).

C
err = K-SetClkRate (ADFramel, 40);

Pascal
err : = K-SetClkRate (ADFramel, 40);

Visual Basic for Windows
crrnum = K-SetClkRate (ADFrame I, 40)

BASIC
crrnum = KSetClkRate% (ADFramel, 40)

Function Reference

chap04-.frm Black 107

K SetContRun

Purpose

Syntax

Specifies continuous buffering mode

C
K-SetContRun (frameHmdle);
FRAMEH frameHandle;

Pascal
K-SetContRun (frameHandle) : Word;
frameHandle : Longint:

Visual Basic for Windows
K_SetContRun (frameHandle) As Integer
Dim frameHandle As Long

BASIC
KSetContRun% (frameHandle)
Dim frameHandle As Long

Entry Parameters frameHandle Handle to the frame that defines the A/D operation

Notes For the operation defined by frameHandle, this function sets the buffering
mode to continuous mode and sets the Buffering Mode element in the
frame accordingly.

Refer to page 2-16 for a description of buffering modes.

The Buffering Mode element is meaningful for interrupt operations only.

4-107

chap04-.frtn Black 108

Example

4-108

You want to specify continuous buffering mode for the analog input
operation defined by a frame called ADFramel.

C
err = K-SetContRun (ADFramel);

Pascal
err : = K-SetContRun (ADFramel);

Visual Basic for Windows
errnum = K-SetContRun (ADFramel)

BASIC
errnum = KSetContRun% (ADFramel)

Function Relerence

chap04-.frm Black 109 +b

K-Set DlTrig

Purpose Sets up a digital trigger.

Syntax c
K-SetDITrig (frameHandle, trigOption. than, pattern);
FRAMEHframeHandle;
short trigOption;
short than;
long pattern;

Pascal
K-SetDITrig (frameHandle. trigOption. than. pattern) : Word;
frameHandle : Longint;
trigOption : Word;
than : Word;
pattern : Longint;

Visual Basic for Windows
K-SetDITrig (frameHandle, trigOption. than. pattern) As Integer
Dim frameHandle As Long
Dim trigOption As Integer
Dim than As Integer
Dim pattern As Long

BASIC
KSetDITrig% (frameHandle, wigOption, than, pattern)
Dim frameHandle As Long
Dim trigOption As Integer
Dim than As Integer
Dim pattern As Long

Entry Parameters frameHandle

trigOption

Handle to the frame that defines the A/D operation

Trigger polarity and sense.
Valid value: 0 = Positive, edge-sensitive

than Digital input channel.
VaIid value: 0

4-109

chap04-.frm Black 110

Notes

6
Example

pattern Trigger pattern.

This function specifies the use of a digital trigger for the operation
defined by frameHandle.

Since the DAS-800 Series Function Call Driver does not currently
support digital pattern triggering, the value of pattern is meaningless: the
pattern parameter is provided for future compatibility.

You cannot set up a digital trigger if the hardware gate is enabled.

The values you specify set the following elements in the frame identified
by frameHandle:

. trigOption sets the value of the Trigger Polarity and Trigger Sense
elements.

. than sets the value of the Trigger Channel element.

. pattern sets the value of the Trigger Pattern element.

You want to use a digital trigger to trigger the analog input operation
defined by the frame ADFramei,

C
err = K-SetDlTrig (ADFramel, 0.0, 0);

Pascal
err : = K-SetDlTrig (ADFramel, 0. 0, 0);

Visual Basic for Wlndows
ermum = K-SetDtTrig (ADFramel, 0,O. 0)

BASIC
errnum = KSetDlTrig% (ADFramel, 0, 0,O)

4-110 Function Reierence

chap04-.frm Black 11 I

K-SetG

Purpose Sets the gain.

Syntax C
K-SecG (frameHandle, gaincode);
F’RAMEH frameHandle;
short gaincode;

Pascal
K-SetG (frameHandle. gaincode) : Word:
frameHandle : Longint;
gaincode : Word;

Visual Basic for Windows
K-SetG (frameHandle, gain&de) As Integer
Dim frameHandle As Long
Dim gaincode As Integer

BASIC
KSetG% (frameHandle. gaincode)
Dim frameHandle As Long
Dim gainCode As Integer

Entry Parameters frameHandle

gainCode

Handle to the frame that defines the A/D operation

Gain code.
Valid values:

4-111

Notes

chap04-.frm Black 112 +b

For the operation defined by frameHandle, this function specifies the gain
code for a single channel or for a group of consecutive channels in
gaincode.

A gain of 0.5 (gaincode = 1) is valid only for boards configured with a
bipolar input range type. The DAS-800 board supports a gain of I only
(gaincode must equal 0). Refer to Table 2-2 on page 2-6 for a list of the
voltage ranges associated with each gain.

The value you specify in gaincode sets the Gain element in the frame
identified by frameHandle.

You are defining an analog input operation for a DAS-801 hoard in a
frame called ADFramel. You want to sample data from a group of
consecutive channels and specify a gain of 10 for all channels in the
group.

C
err = K-SetG (ADFramel, 2);

Pascal
err : = K-SetG (ADFramcl, 2);

Visual Basic for Windows
ermum = K-SetG (ADFramel, 2)

BASIC
errnum = KSetG% (ADFrame l(2)

4-112 Function Reference

chap04-.frm Black 113

K SetGate

Purpose

Syntax

Specifies the status of the hardware gate,

C
K-SetGate (frameHandle. gateopt);
FRAMEH frameHandle;
short gateOpt;

Pascal
K-SetGate (frameHandle, gateOpt) : Word;
frameHandle : Longint;
gateOpt : Integer;

Visual Bask for Windows
K-SetGate (frameHandle, gateopt) As Integer
Dim frameHandle As Long
Dim gateOpt As Integer

BASIC
KSetGate% (frameHandle, gateopt)
Dim frameHandle As Long
Dim gateOpt As Integer

Entry Parameters frameHandle

gateOpt

Handle to the frame that defines the A/D operation.

Status of the hardware gate.
Valid values: 0 = Disabled

1= Enabled

Notes For the operation defiled by frameHandle. this function specifies the
status of the hardware gate in gateopt.

DAS-800 Series boards support a positive gate only. if you enable the
hardware gate, conversions occnr while the gate signal is high and are
inhibited while the gate signal is low.

You cannot enable the hardware gate if you are using an external digital
trigger.

4-113

chap04-.frm Black 114

Example

4-114

You are defining an analog input interrupt operation in a frame called
ADFrame and you want to enable the hardware gate.

C
err = K-SetGate (ADFramel. 1);

Pascal
err : = K-S&Gate (ADFramel. 1);

Visual Basic for Windows
errnum = K-SetGate (ADFramel, I)

BASIC
crmum = KS&Gate% (ADFramel, I)

Function Reference

chap04-.frm Black 115

K-SetStartStopChn

Purpose Specifies the first and last channels in a group of consecutive channels

Syntax C
K-SetStartStopChn (frameHan&, sfarf, stop);
FRAMEH frameHandle;
short start;
short stop;

Pascal
K-SctStartStopChn (frameHandle, start, stop) : Word;
frameHandle : Longint:
start : Word;
stop : Word;

Visual Basic for Windows
K-SctStartStopChn (frameHandle. start, stop) As Integer
Dim frameHandle As Long
Dim start As Integer
Dim sfop As Integer

BASIC
KSetStartStopChn% (frameHandle, start, stop)
Dim frameHandle As Long
Dim start As Integer
Dim stop As Integer

Entry Parameters frameHandle

start

Handle to the frame that defines the A/D operation.

First channel in a group of consecutive channels.
Valid values: 0 to 127

stop Last channel in a group of consecutive channels.
Valid values: 0 to 127

Notes For the operation defined byframeHand/e, this function specifics the first
channel in a group of consecutive channels in start and the last channel in
the group of consecutive channels in sto/>.

4-115

chap04-.frm Black 116

Example

4-116

The range of valid values for starf and stop depends on the ntnnbcr of
expansion boards you are using. Refer to page 2-6 for more information.

The values you specify set the following elements in the frame identified
by frameHandle:

. start sets the value of the Start Channel element.

. stop sets the value of the Stop Channel clement.

You are defining an analog input operation in a frame called ADFrame 1.
You want to sample data from channels 2. 3. and 4 in order.

C
err = K-SetStartStopChn (ADFramel, 2.4);

Pascal
err : = K-SetStartStopCbn (ADFramcl. 2.4);

Visual Basic for Windows
errnum = K-SctStartStopChn (ADFramel, 2.4)

BASIC
errnnm = KSetStartStopChn% (ADFrame I, 2.4)

Function Reference

chap04-.frm Black 117

K-SetStattStopG

Purpose Specifies the first and last channels in a group of consecutive channels
and sets the gain for all channels in the group.

Syntax c
K-SetStartStopG (frameHandle, start, stop, gaincode);
FRAMEHframeHandle;
short start;
short stop;
short gaincode;

Pascal
K-SetStartStopG (frameHandle. start, stop, gaincode) : Word;
frameHandle : Longint;
start : Word;
stop : Word;
gainCode : Word;

Visual Basic for Windows
K-SetStartStopG (frameHandle, start, stop, gainCode) As Integer
Dim frameHandle As Long
Dim start As Integer
Dim stop As Integer
Dim gaincode As Integer

BASIC
KSetStartStopG% (frameHandle. start. stop. gaincode)
Dim frameHandle As Long
Dim start As Integer
Dim stop As Integer
Dim gainCode As Integer

Entry Parameters frameHandle

start

Handle to the frame that defines the A/D operation.

First channel in the group of conscwtivc channels.
Valid values: 0 to 127

stop Last channel in the group of consecutive channels.
Valid values: 0 to 127

4-117

chapO4-.frm Black 118

Notes

gaincode Gain code.
Valid values:

For the operation defined byframeHa&e, this function specifies the first
channel in a group of consecutive channels in sfarf. the last channel in a
group of consecutive channels in stop, and the gain code for all channels
in the group in gaincode.

The range of valid values for Start and stop depends on the number of
expansion boards you are using. Refer to page 2-6 for more information.

A gain of 0.5 (gaincode = 1) is valid only for boards configured with a
bipolar input range type. The DAS-800 board supports a gain of 1 only
(gainCode must equal 0). Refer to Table 2-2 on page 2-6 for a list of tbc
voltage ranges associated with each gain.

The values you specify set the following elements in the frame identified
by frameHandle:

. start sets the value of the Start Channel clement,

. stop sets the value of the Stop Channel element.

. gaincode sets the value of the Gain element

4-118 Function Reference

chap04-.frm Black 119

Example You are defining aa analog input operation for a DAS-80I board in a
frame called ADFramcl. You want to sample data from channels 5,6. and
7 in order, at a gain of 100 for all channels.

C
err = K-SctStartStopG (ADFramci, 5.7. 3);

Pascal
err : = K-SctStartStopG (ADFramel, 5,7, 3);

Visual Basic for Windows
ermum = K-SetStartStopG (ADFramcl. 5.7.3)

BASIC
ermum = KSetStartStopG% (ADFramel, 5.7, 3)

4-119

chapOc.frm Black 120

K-SetTrig

Purpose Specifies the trigger source.

Syntax C
K-SetTrig (frameHandle, trigSource);
FRAMEH frameHandle:
short w&Source;

Pascal
K-SetTrig (frmeHandle, trigSource) : Word:
frameHandle : Longint;
trigSource : Word;

Visual Basic for Windows
K-SetTrig (frameHandle. trigSource) As Integer
Dim frameHandle As Long
Dim rrigSource As Integer

BASIC
KSetTrig% (frameHandle, trigSource)
Dim frameHandle As Long
Dim rrigSource As Integer

Entry Parameters frameHandle

wigSource

Handle to the frame that defines the A/D operation.

Trigger source.
Valid values: 0 = Internal trigger

1 = External trigger

Notes For the operation defined by frameHandle. this function specifies the
trigger source in trigSource.

An internal trigger is a software trigger; conversions begin when the
operation is started. An external trigger is either an analog trigger or a
digital trigger; conversions begin when the trigger event occurs. Refer to
page 2-16 for more information about internal and external trigger
sources.

4-120 Function Reference

chap04-.frm Black 12 1

Example

If wigSource = 1. make sure that you use either K-SetADTrig or
K-SetDIlkig to specify whether the external trigger source is an analog
trigger OT a digital trigger.

You are defining an analog input interrupt operation in a frame called
ADFrame I. You want to specify an internal trigger; you want the
operation to start as soon as K-IntStart is executed.

err = K_SetTrig (ADFramel. 0);

Pascal
err : = K_SetTrig (ADFramel. 0);

Visual Basic for Windows
ermum = K-SetTrig (ADFrame I, 0)

BASIC
emmm = KSetTrig% (ADFrame 1,O)

4-121

chap04-.frm Black 122

K-SetTrigHyst

Purpose Specifies the hysteresis value.

Syntax c
K-SetTrigHyst (frameHandle, hysr);
FRAhIEHframeHandle;
short hysr;

Pascal
K_SetTrigHyst (frameHandle, hyst) : Word;
frameHandle : Longint;
hysr : Word:

Visual Basic for Windows
K-SetTrigHyst (frameHandle, hyst) As Integer
DimfwmeHandle As Long
Dim hysr As Integer

BASIC
KSetTrigHyst% (frameHandle. hysl)
Dim frameHandle As Long
Dim hyst As Integer

Entry Parameters frameHandle

hYSl

Handle to the frame that defines the AiD operation.

Hysteresis value.
Valid values: 0 to 4095

Notes For the operation defined by frameHandle, this function specifies the
hysteresis value used for an analog trigger in hyst. You must specify the
hysteresis value in raw counts. Refer to Appendix B for information on
converting the hysteresis voltage to a raw count.

Refer to page 2-17 for more information about analog triggers.

The value you specify in hyst sets the Trigger Hysteresis elemenl in the
frame identified by frameHandle.

4-l 22 Function Reference

chap04Lfrm Black 123

Example You want to use an analog trigger to trigger the analog input operation
defined by the frame ADFramel. The board is configured for a unipolar
input range type. You used K-SetAD’DGg to specify that you want to
trigger the operation when the signal connected to analog input channel 0
rises above +I V (positive-edge trigger). To prevent noise from causing
the trigger event to occur, you want to specify a hysteresis value of 0.1 V
to make sure that the analog signal falls below +3.9 V before it rises
above +4 V.

C
err = K-SetTrigHyst (ADFramel, 41);

Pascal
err : = K-SetTrigHyst (ADFramel, 41):

Visual Basic for Wlndows
emmm = K-SetTrigHyst (ADFramel, 41)

BASIC
errtmm = KSetTrigHyst% (ADFramel, 41)

4-123

chap(N.frm Black 124

K-SyncStart

Purpose

Syntax

Starts a synchronous operation.

C
K-SyncStart (frameHandle);
FRAMEHfrumeHandle;

Pascal
K-SyncStart (frameHandle) : Word;
frameHandle : Longint;

Visual Basic for Windows
K-SyncStart (frameHandle) As Integer
Dim frameHandle As Long

BASIC
KSyncStart% (frameHandle)
Dim frameHandle As Long

Entry Parameters frameHandle Handle to the frame that defines the A/D operation,

Notes This function starts the synchronous operation defined byfranzeHand/e

Refer to page 3-7 for a discussion of the programming tasks associated
with synchronous operations.

4-124 Function Reference

chapOC.frm Black 125

You defined an analog input operation in a frame called ADFrame and
want to start the operation in synchronous mode.

C
err = K-SyncStart (ADFramel);

Pascal
err : = K-SyncStart (ADFramcl);

Visual Basic for Windows
emmm = K-SyncStart (ADFramel)

BASIC
ermum = KSyncStart% (ADFramel)

4-125

chap04-.frm Black 126

appx-a-.frm Black 1

Error/Status Codes

Table A-l lists the error/status codes that are returned by the DAS-800
Function Call Driver functions. possible causes for error conditions, and
possible solutions for resolving error conditions. The error/status codes
are returned in hexadecimal format.

If you cannot resolve an error condition, contact the factory.

Table A-l. Error/Status Codes

Cause

No error has been detected.

Illegal Base Address in
Configuration File: The base address
specified in the configuration tile is
invalid.

Illegal Gain: The gain code specified
for an analog input operation is out of
range.

- Status only; no action IS necessary.

Use the DSOOCFGEXE utility to
change the base address in the
configuration file.

Specify a legal gain code: 0 to 5
Refer to Table 2-2 on page 2-6 for
more information about the meaning
of the Rain codes.

A-l

appx-a-.frm Black 2

Table A-l. Error/Status Codes (cont.)

I I Error Code Cause Solution I

Configuration File Not Found: The Check that the tile exists at the
driver cannot find the configuration specified path; check that the tile
file specified as an argument to the name is spelled correctly in the driver
driver initialization function. initialization function nammeter list.

600D Bad Frame Handle: The specified
frame handle is not valid for this
operation.

Check that the frame handle exists.
Check that you are using the
appropriate frame handle.

Requested Interrupt Buffer Too Specify a smaller oumber of samples:
Large: The number of samples remove some Terminate and Stay
specified in K~IntAlloc is too large. Resident proguns (TSRs) that are no

lower needed.

6012 Interrupt Buffer Deallocation Remove some Terminate and Stay
Error: For Windows-based Resident programs (TSRs) that arc no
languages only. M error occurred longer needed.
when K-IntFree attempted to free a
memory handle.

A-2 Error/Status Codes

appx-a-.frm Black 3

Table A-l. Error/Status Codes (cont.)

Error Code Cause Solution

602C Number of Samples Too Large: The Specify a value between 0 and 65.536
number of samples you requested in in the KMMSETUP utility.
the Keithley Memory Manager is
greater than 65,536.

6036 6036 Bad Driver Handle: The specified Bad Driver Handle: The specified
driver handle is not valid. driver handle is not valid.

Someone may have closed the driver: Someone may have closed the driver:
if so. use K OpenDriver to reopen if so. use K OpenDriver to reopen
the driver with the desired driver the driver with the desired driver
handle. Try again using another driver handle. Try again using another driver
handle. handle.

No Board Name: The driver Specify a legal
initialization function did not find a configuration file: DASBOO. DASROI,
board name in the specified DAS802

7002 Bad Doard Number: The driver Specify a legal board number: 0 to 3
initialization function found an illegal
board number in the specified
confirmration file.

A-3

appx-a-.frm Black 4

Error Code

Table A-l. Error/Status Codes (cont.)

Cause

Bad Interrupt Level: The driver
initialization function found an illegal
interrupt level in the specified
configuration file.

Bad A/D Gain Mode: The driver
initialization function found an illegal
input range type in the specified
confirmration file.

Bad Number of EXP-16 Expansion
Boards: The driver initialization
function found an illegal number of
EXP-I6 or EXP-16/A expansion
boards in the specified configuration
file.

Dad EXP-16 Expansion Board
Gain: The driver initialization
function found an illegal gain assigned
to one of the EXP-16 or EXP-16/A
expansion boards in the specified
confiruration file.

Specify a legal interrupt level: 2 to 7.
X (disabled)

Specify a legal A/D mode: bipolar,
tmipolar

Specify a legal number of EXP-I6 or
EXP-16/A expansion boards: 1 to 8

Specify a legal gain value for each
EXP-I6 or EXP-16/A expansion
board: 0.5 to 2ooO

A-4 Error/Status Codes

appx-a-.frm Black 5

Table A-l. Error/Status Codas (cont.)

Error Code Cause Solution

Dad EXP-GP Expansion Board
Number: The driver initialization
function found an illegal number
assigned to one of the EXP-GP
expansion boards in the specified
configuration file.

Specify a legal number for each
EXP-GP expansion board: 0 to 7

700E Bad EXP-CP Expansion Board
Channel: The driver initialization
function found an illegal gain assigned
to one of the channels on one of the
EXP-GP expansion boards in the

Specify a legal gain for each EXP-GP
expansion board channel:
1, 10. 100, loo0 (1.0 scfics) or
2.5, 25, 250. 2500 (2.5 series)

7800 Bad Revision Number: The revision
of the driver you are using does not
match the revision of the Keithley
DAS Driver Specification.

Make sure that you are using the
appropriate driver.

A-5

appx-a-.frm Black 6 fb

Table A-l. Error/Status Codes (cont.)

Error Code Cause Solution

7803 Bad Counter Number: You specified Specify a legal counter/timer: 0. I. 2
an illegal counter/timer in

7805 Bad Counter Count: You specified Specify alegal count value:
an illegal wont value in 2 to 65535
DASEOO-Set8254.

7807 I I Illegal Board: You are attempting to Make sure that you are using the
program a board that is not a DA.%800 appropriate softwwe for the
Series board. aoorooriate board. I

Illegal Digltal Trigger: An illegal The trigger polarity and seose value
trigger polarity and sense value is must be 0; only a positive-edge trigger
specified in K;etDITrig. can be used.

780B I I Conversion Underflow: You Check your application program.
attempted to read data, but there was
no data to read.

A-6 Error/Status Codes

appx-a-.frm Black 7

Table A-l. Error/Status Codes (cont.)

I I Error Code Cause Solution I

8001 I I Function Not Supported: You have Conmt the faclory.
attempted 10 use a function not
suooorted bv the DAS-800 Series

Non Valid Error Number: The error Check the error message number and
message number specified it1 try agaln.
K~~GetErrMsg is invalid.

Digital Output Not Initialized: You Disconnect the expansion boards and
may have expansion boards make the appropria~ changes to the
configured that are using the digital configuration file. Do no, attempt to
output lines 10 determine the chzmnel use tbc digital output lines.
to read.

A-7

appx-a-.frm Black 8

appx-b-.frm Black 1

B
Data Formats

When the DAS-800 Series Function Call driver reads data, it stores the
data in the upper 12 bits of a 16-bit integer. Before displaying, printing, or
converting the data, you may want to shift the upper 12 bits right by four
bits so that the data is right-justified. After shifting, you can AND out the
upper four bits to set them to zero. Use one of the following programming
lines, where datu is the value stored by the DAS-800 Series Function Call
Driver:

For C: data = ldata>>4l & OXOFFF

ForPascal: data = [data shr 4) and $OFFF

ForBASIC: data = (data 1 16) And &HOFFF

Note: When you pass analog data to the Function Call Driver, the driver
always assumes that the data is a l2-bit, right-justified value. No shifting
is required.

The DAS-800 Series Function Call Driver can read and write raw county
only. When reading a value (as in K-ADRead), you may want to convert
the raw count to a more meaningful voltage value; when writing a value
(as in K-Set’IXgHyst), you must convert the voltage value to a raw
count.

The remainder of this appendix contains instructions for converting raw
counts to voltage and for converting voltage to raw counts.

B-l

appx-b-.frm Black 2

Converting Raw Counts to Voltage

You may want to convert raw counts to voltage when reading an analog
input value or when reading the analog trigger level or hysteresis value.

To convert a raw count value to voltage, you must first shift the data, as
described previously. Then, use one of the following equations, where
count is the shifted count value, IO V is the span of the analog input
range, 4096 is the number of counts available in I2 bits, gain is the gain
of the analog input channel, and 2048 is the offset value:

DASJOO

Always bipolar input range type:

10
Voltage = (count - 2048) x _

4096

DAS-801 / DAS-802

For unipolar input range type:

Voltage =
IO

count x -
4096

+ gain

For bipolar input range type;

Voltage = (count - 2048) x 0
4096

Note: When converting raw counts to voltage to read an analog trigger
level or hysteresis value, always use a gain of 1 in your equation, no
matter what the gain of the channel is.

B-2

appx-b-.frm Black 3

For example, assume that you want to read analog input data from a
channel on a DAM01 board configured for a unipolar input range type;
the channel collects the data at a gain of 10. The count value after shifting
is 3072. The voltage is determined as follows:

10
3072 x _ + 10 = 0.75 v

4096

As another example, assume that you want to read analog input data from
a channel on a DAS-802 board configured for a bipolar input range type:
the channel collects the data at a gain of 2. The count value after shifting
is 1024. The voltage is determined as follows:

((1024-2048) x&)+2 = -1.25V

Converting Voltage to Raw Counts

You must convert voltage to raw coant~ when specifying an analog uigger
level or hysteresis value. You must specify the voltage value as a 12-bit.
right-justified raw count (0 to 4095).

Specifying an Analog Trigger Level

To convert a voltage value to a raw count when specifying an analog
trigger level, use one of the following equations. where volroge is the
desired voltage in volts, 10 V is the span of the analog input range, 4096
is the number of counts available in 12 bits, and gcrin is the gain (always I
in this case):

DAM00

Always bipolar inpur range fype:

Count = voltage x 4096
+ 2048

10

B-3

appx-b-.fnn Black 4

DAS-801 I DAS-802

For unipolar input range type:

x gain

For bipolar input range type:

Count =
voltage x 4096

10

Note: The driver always interprets the count value you specify for an
analog trigger level as based on a gain of 1 (for unipoiar input range type,
a count of 0 is interpreted as 0 V and a count of 4095 is interpreted as
+9.9976 V; for bipolar input range type, a count of 0 is interpreted as -5 V
and a count of 4095 is interpreted as +4.9976 V).

For example, assume that you want to specify an analog trigger level of
-1.25 V for a channel on a DAS-802 board configured for a bipolar input
range type and a gain of 2. The raw count is determined as follows:

- 1.25 x 4096
+2048 = 1536

10

Note: No matter what the gain of the channel is, always use a gain of 1 in
your equation.

B-4 Data Formats

appx-b-.frm Black 5

Specifying a Hysteresis Value

To convert a voltage value to a raw count when specifying a hysteresis
value, use the following equation. where volrage is the desired voltage in
volts, 10 V is the span of the analog input range, 4096 is the number of
counts available in 12 bits, and gain is the gain (always 1 in this case):

x gain

Note: The driver always interprets the count value you specify for a
hysteresis value as based on a gain of 1 (the span is 10 V).

For example, assume that you want to specify an analog trigger hysteresis
value of 0.05 V for a channel on a DAS-801 board configured for a
unipolar input range type and a gain of 10. The raw count is determined as
follows:

0.05 x 4096
xl =20

10

Note: No matter what the gain of the channel is, always use a gain of I in
your equation.

B-5

appx-b-.frm Black 6

8OOfcd.ix Black 1

Index

A

Accessory boards: see Expansion boards
ADC: see Analog-to-digital converter
Allocating memory 2-3

Windows 2-4
Analog input operations 2- 1

programming tasks 3-6
Analog-to-digital converter 2- 15
Analog triggers 2- 17

time delays 2- 19
Applications Engineering Department 1-6
ASO- software package I- 1

installing from DOS l-3
installing from Windows 1-4

B
BASIC

setting up a channel-gain list 2- 1 1
specifying the buffer address 2-4, 3-26
see nlso Professional Basic,

QuickBASIC (Version 4.0).
QuickBasic (Version 4.5).
Visual Basic for DOS

Bipolar configuration: see Input range type
Board handle 2-29
Board initialization 2-29
Borland C/C++

programming information 3-14
see also C languages

Borland Turbo Pascal: see Turbo Pascal
Borland Turbo Pascal for Windows: see

Turbo Pascal for Windows
Buffer address 2-4,3-l& 3-25
Buffer address functions 4-3
Buffering mode functions 4-3

Buffering modes 2- 16
Buffers 2-3

multiple 2-4

C

C languages
setting up a channel-gain list 2- 10
specifying the buffer address 2-5
see also Borland C/C++, Microsoft

C/C++, QuickC for Windows,
Visual C++

Cascaded mode 2- 13
Channel and gain functions 4-3
Channel-gain list 2-9, 3- 19
Channels

multiple using a channel-gain list 2-9
multiple using a group of consecutive

channels 2-9
number supported 2-6
single 2-8

Clocks: see Conversion clocks, External
clock source, Internal clock source

Commands: see Functions
Common tasks 3-6
Compile and link statements

Borland C/C++ 3- 14
Microsoft C/C++ 3- 13
Professional Basic 3-22
QuickBASIC (Version 4.0) 3-20
QuickBasic (Version 4.5) 3-21
Turbo Pascal 3-17

Configuration tile default values 4-7
Continuous mode 2- 16
Conventions 4-5
Conversion clock functions 4-3
Conversion clocks 2- 13
Conversion frequency 2- 15
Conversion rate: see Conversion frequency

X-l

800fcd.ix Black 2

Converting
raw counts to voltage B-2
voltage to raw counts B-3

Counter/timer functions 4-4
Counter/timer II0 operations 2-26
Counter/timer modes 2-27
Counter/timers: see X254 counter/timer

circuitry
Creating an executable file

Borland C/C++ 3-14
Microsoft C/C++ 3- 13
Professional Basic 3-22
QuickBASIC (Version 4.0) 3-20
QuickBasic (Version 4.5) 3-21
QuickC for Windows 3- I5
Turbo Pascal 3-17
Turbo Pascal for Windows 3- 17
Visual Basic for DOS 3-23
Visual Basic for Windows 3-24

D
DAS800-DevOpen 2-28,4-6
DASSOO_GetADGainMode 2-5.4-9
DAS800-GetDevHandle 2-29,4-l 1
DAS800-Get8254 2-27,4-13
DAS-800 Series Function Call Driver: see

Function Call Driver
DAS-800 Series standard software package

l-l
installing 1-2

DAS800-SetADGainMode 2-5,4- 15
DAS800-Set8254 2-27,4-17
Data formats B- 1
Data transfer modes: see Operation modes
Default values

configuration tile 4-7
frame elements 3-3

X-2

E

8254 counter/timer circuitry 2-26
used as internal clock source 2- 13

Elements of frame 3-2
Error codes A- 1
Error handling 2-30
Executable file: see Creating an executable

tile
Expansion boards 2-6
External clock source 2- 14

used in triggered operation 2- 19, 2-2 1
used with hardware gate 2-23

External trigger 2- 16

Digital I/O operations
input operations 2-24
output operations 2-25
programming tasks 3- I2

Digital triggers 2-20
Dimensioning memory 2-3
Driver: see Function Call Driver
Driver handle 2-28

F

Files required
Borland C/C++ 3- 14
Microsoft C/C++ 3- I3
Professional Basic 3-22. 3-23
QuickBASIC (Version 4.0) 3-20
QuickBasic (Version 4.5) 3-2 1
QuickC for Windows 3- 15
Turbo Pascal 3- 16
Turbo Pascal for Windows 3- 17
Visual Basic for Windows 3-24
Visual C++ 3-16

Frame management functions 4-2

Index

800fcd.ix Black 3

Frames 3- 1
frame elements 3-2
frame handle 3-2
frame types 3-2

Function Call Driver
initialization 2-28
structure 3- 1

Functions
buffer address 4-3
buffering mode 4-3
charmel and gain 4-3
conversion clock 4-3
counter/timer 4-4
DAS800-DevOpen 2-28,4-6
DASEOO-GetADGainMode 2-5.4-9
DAS800-GetDevHandle 2-29,4- 11
DAS800-Get8254 2-27,4- 13
DAS800-SetADGainMode 2-5.4-15
DAS800-Set8254 2-27.4-17
frame management 4-2
gate 4-4
initialization 4-2
K-ADRead 2-2, 2-8, 4- 19
K-BufListAdd 2-4,2-.5,4-22
K-BufListReset 2-4, 4-24
K-ClearFrame 3-4.4-26
K-CloseDriver 2-28.4-28
K-CIrContRun 2-16,4-30
K-DASDevInit 2-29,4-32
K-DIRead 2-24, 4-33
K-DOWritc 2-25,4-35
K-FormatChanGAry 2- 12, 4-37
K-FreeDevHandle 2-29,4-3X
KPreeFrame 3-2,4-39
K-GetADFrame 3-2, 4-40
KGetADTrig 4-42
KGetBuf 4-44
K-GetChn 4-46
K-GetChnGAry 4-48
K_GetClk 4-50
K-GetClkRate 4-52
K-GetContRun 4-54

K-GetDevHandle 2-29.4-56
K-GetDITrig 4-58
KGetErrMsg 2-30.4-60
K-GetG 4-61
K-GetGate 4-63
K-GetStartStopChn 4-65
K-GetStartStopG 4-67
K-GetTrig 4-70
K-GetTrigHyst 4-72
K-GetVer 2-30.4-74
K-InitFrame 2-3,4-76
KJntAlloc 2-3,4-78
K-IntFree 2-4,4-80
K-IntStart 2-2,4-R I
K-IntStatus 2-3, 4-83
K-IntStop 2-3.4-86
K-MoveButToArray 2-5.4-88
K-OpenDriver 2-2X. 4-89
KPestoreChanGAry 2- 12.4-92
KSetADTrig 2-17.4-93
K-SetBuf 2-4,2-5, 4-95
K-SetBufl2-4,4-97
K-SetChn 2-8.4-99
K-SetChnGAry 2- 11,2- 12,4- 10 1
K-SetClk 2-13.4-103
K-SetClkRate 2- 13,4- 105
K-SetContRua 2- 16,4- 107
K-SetDITrig 2-20,4- 109
K-SetG 2-8,2-9,4-l 11
K-SetGate 2-22.4-I 13
K-SetStartStopChn 2-9.4-I I5
K-SetStartStopG 2-9,4- 117
K-S&Trig 2- 16, 4- 120
K-SetTrigHyst 2- 18,4- 122
K-SyncStart 2-2,4- 124
memory management 4-2
miscellaneous 4-4
operation 4-2
readback 3-2, 3-3
setup 3-2.3-3
trigger 4-4

x-3

800fcd.ix Black 4

G
Gain codes 2-6
Gains 2-6

see also analog input ranges 2-5
Gains: see Analog input ranges
Gate functions 4-4
Gates 2-22
Group of consecutive channels 2-9

H
Hardware gates: see Gates
Help 1-6
Hysteresis 2- 18

I

Initialization functions 4-2
Initializing a board 2-29
Initializing the driver 2-28
Input range type 2-5
Installing the software l-2
Internal clock source 2-13

used in triggered operation 2- 19, 2-2 1
used with hardware gate 2-22

Internal trigger 2-16
Interrupt mode 2-2

programming tasks 3-9
Interrupt status 2-3

K
K-ADRead 2-2,2-g, 4- 19
K-BuIListAdd 2-4,2-5,4-22
K-BufListReset 2-4.4-24
K-ClearFrame 3-4,4-26
K-CloseDriver 2-28, 4-28

K-ClrContRun 2-16.4-30
K-DASDevInit 2-29,4-32
K-DIRead 2-24,4-33
K-DOWrite 2-25.4-35
K-FormatChanGAry 2- 12,4-37
K-FreeDevHandle 2-29.4-38
K-FreeFrame 3-2.4-39
K-GetADFrame 3-2, 4-40
KGetADTrig 4-42
KGetBuf 4-44
K-GetChn 4-46
K-GetChnGAry 4-48
K-GetClk 4-50
K-GetClkRate 4-52
K-GetContRun 4-54
K-GetDevHandle 2-29.4-56
KGetDITrig 4-58
K-GetErrMsg 2-30.4-60
K-GetG 4-6 1
K-GetGate 4-63
K-GetStartStopChn 4-65
K-GetStartStopG 4-67
K-GetTrig 4-70
K-GetTrigHyst 4-72
K-GetVer 2-30,4-74
K-InitFrame 2-3,4-76
KJ~tAlloc 2-3.4-78
K-IntFree 2-4,4-80
K-IntStart 2-2.4-81
K-IntStatus 2-3,4-83
K-IntStop 2-3,4-86
K-MoveBufToArray 2-5,4-88
K-OpenDriver 2-28.4-89
K-RestoreChanGAry 2-12.4-92
KSetADTrig 2- 17.4-93
KSetBuf 2-4,2-5,4-95
K-SetBufI 2-4,4-97
K-SetChn 2-8, 4-99
K-SetChnGAry 2- 11,2- 12,4- 10 I
K-SetClk 2-13.4-103
K-SetClkRate 2- 13, 4- 105
K-SetContRun 2- 16,4- 107

x-4 Index

800fcd.ix Black 5

K-SetDITrig 2-20,4- 109
KSetG 2-8.2-9, 4-111
K-SetGate 2-22,4-l 13
K-SetStartStopChn 2-9,4-l 15
K-SetStartStopG 2-9,4- 117
K-SetTrig 2- 16,4- 120
K-SetTrigHyst 2- 18,4- 122
K-SyncStart 2-2.4-124

M
Maintenance operations: see System

operations
Managing memory 2-3
Memory allocation 2-3
Memory handle 2-3
Memory management 2-3
Memory management functions 4-2
Microsoft C/C++

programming information 3-13
see also C languages

Microsoft Professional Basic: see
Professional Basic

Microsoft QuickBASIC (Version 4.0): see
QuickBASIC (Version 4.0)

Microsoft QuickBasic (Version 4.5): see
QuickBasic (Version 4.5)

Microsoft QuickC for Windows: see QuickC
for Windows

Microsoft Visual Basic for DOS: see Visual
Basic for DOS

Microsoft Visual Basic for Windows: see
Visual Basic for Windows

Microsoft Visual C++: see Visual C++
Miscellaneous functions 4-4
Miscellaneous operations: see System

operations
Multiple buffers 2-4

N

Normal mode 2- 13
Null terminated strings

DASSOO-DevOpen 4-8
K-OpenDriver 4-90

Operation functions 4-2
Operation modes 2-2, 3- 1
Operations

analog input 2- 1
counter/timer I/O 2-26
digital I/O 2-24
system 2-27

Operation-specific programming tasks 3-6

P
Pacer clocks: see Conversion clocks
Pascal

setting up a channel-gain list 2- 10
specifying the buffer address 2-5, 3- 18
see also Turbo Pascal, Turbo Pascal for

Windows
Preliminary tasks 3-6
Professional Basic

programming information 3-22
see also BASIC

x-5

800fcd.ix Black 6

Programming information
Borland C/C++ 3-14
Microsoft C/C++ 3- 13
Professional Basic 3-22
QuickBASIC (Version 4.0) 3-20
QuickBasic (Version 4.5) 3-21
QuickC for Windows 3-15
Turbo Pascal 3-16
Turbo Pascal for Windows 3- 17
Visual Basic for DOS 3-23
Visual Basic for Windows 3-24
Visual C++ 3-16

Programming overview 3-5
Programming tasks

analog input operations 3-6
common 3-6
digital I/O operations 3- 12
interrupt-mode analog input operations

3-9
preliminary 3-6
single-mode analog input operations 3-7
synchronous-mode analog input

operations 3-7

Q
QuickBASIC (Version 4.0)

programming information 3-20
see also BASIC

QuickBasic (Version 4.5)
programming information 3-21
see also BASIC

QuickC for Windows
programming information 3-15
see also C languages

R
Readback functions 3-2. 3-3
Retrieving data from buffer 3- 19
Return values 2-30
Revision levels 2-30
Routines: see Functions

S
Sampling rate 2-15
Setting up boards l-5
Setup functions 3-2.3-3

interrupt mode 3-10
synchronous mode 3-7

Signal range: see Input range type
Single channel 2-8
Single-cycle mode 2- 16
Single mode 2-2

programming tasks 3-7
Software

installing 1-2
packages I- 1
see also ASO- software package,

DAS-800 standard software
package

Standard software package I - 1
installing l-2

Starting an analog input operation 2-2
Status codes 2-30, A- 1
Status Word for interrupt-mode operations

4-84
Storing data: see Buffering modes
Synchronous mode 2-2

programming tasks 3-7
System operations 2-27

X-6 Index

800fcd.ix Black 7

T
Technical support 1-6
Time base 2- 13
Trigger functions 4-4
Trigger sources 2- 16
Triggers 2- 16
Triggers, analog: see Analog triggers
Triggers, digital: see Digital triggers
Turbo Pascal

programming information 3-16
specifying the channel-gain list starting

address 3- 19
see also Pascal

Turbo Pascal for Windows
programming information 3- 17
see also Pascal

U
Unipolar configuration: see Input range type

Visual Basic for DOS
programming information 3-23
see also BASIC

Visual Basic for Windows
programming information 3-24
setting up a channel-gain list 2- 11
specifying the buffer address 2-4.3-25,

3-26
Visual C++

programming information 3-16
see ako C languages

W
Windows

allocating memory 2-4

x-7

800fcd.ix Black 8

	TOC:

