
CTM-PER

Continuous-Period
Counter

Keithley MetraByte Corporation

CTM-PER Continuous-Period Counter

Manual Part Number: 24826

Printed: March 1990

Rev. 1.0

Copyright @ 1990

KEITHLEY METRABYTE/ASYST/DAC

440 Myles Standish Boulevard
Taunton, Massachusetts 02780

Telephone 5081880-3000
FAX 508/880-0179

WARNING
Eeithley MetraByte assumes no liability for damages consequent to the use of

reliability suitable for use in life support or critical applications.
this product. This product is not designed with components of a level of

Information furnished by Keithley MetraE3yte is believed to be accurate and reliable. However, the
Keithley MetraByte Corporation assumes no responsibility for the use of such information nor for
any infringements of patents or other rights of third parties that may result from its use. No license
is granted by implication or otherwise under any patent rights of Keithley MetraByte Corporation.

Eeithley MetraByte/Asyst/DAC is also referred to here-in as Keith@ MefmByte.

BasicTM is a trademark of Dartmouth College.

lBM@ is a registered trademark of International Business Machines Corporation.

PC, XT, and AT@ are trademarks of International Business Machines Corporation.

Microsoft* is a registered trademark of Microsoft Corporation.

Turbo C* is a registered trademark of Borland International.

...
-111 *

WARRANTY INFORMATION
All products manufactured by Keithley MetraByte are warranted against defective materials and
worksmanship for a period of one year from the date of delivery to the original purchaser. Any
product that is found to be defective within the warranty period will, at the option of Keithley
MetraI3yte. be repaired or replaced. This warranty does not apply to products damaged by
improper use.

- iv -

CONTENTS

CHAPTER 1

1.1
1.2
1.3
1.3.1
1.3.2
1.3.3
1.3.4

CHAPTER 2
2.1
2.2
2.2.1
2.2.2
2.3
2.4
2.5
2.6
2.7

CHAPTER 3

3.1
3.2
3.3
3.4
3.5
3.6
3.6.1
3.6.2
3.6.3
3.6.4
3.6.5
3.6.6
3.6.7
3.6.8
3.6.9
3.6.1 0
3.6.1 1

CHAPTER 4

CHAPTER 5

APPENDIX A

APPENDIX B

INTRODUCTION

General 1-1
Functional Detail 1-1
Specifications 1-2

SIGNAL & GATE Inputs 1-1
Crystal Clock & Counter 1-2
Programmed Control 1-2
Environmental 1-3

HARDWARE INSTALLATION & SETUP

Introduction 2-1
Copying The Distribution Diskettes 2-1

Procedure For Dual-Floppy Disk Computers 2-1
Procedure For Hard-Disk Computers 2-1

Unpacking and Inspecting 2-2
Selecting & Setting The Base Address 2-2
Hardware Installation 2-3
Cabling 2-4
Register Maps 2-4

PROGRAMMING

Introduction 3-1
Loading The CTMPERBIN Driver Routine 3-1
CALL Statement Format 3-2
Use Of The CALL Routine 3-2
CALL Sequence 3-3
Mode CALL Descriptions _.... 3-4

Mode 0 - Initialize 3-4
Mode 1 - StartlStop Clock ..._. 3-4
Mode 2 - Setup GATE, Edges, Scaling 3-5
Mode 3 - Data Collection, Single 3-6
Mode 4 - Data Colection, Multiple 3-7
Mode 5 - Data Collection, Multiple Delta 3-8
Mode 6 - Data Collection Via Interrupt 3-8
Mode 7 - Delta Collection Via Interrupt 3-9
Mode 8 - Data Collection Via DMA 3-9
Mode 9 - Transfer From Memory To Array 3-10
Mode 10 - Monitor Status 3-1 1

CALIBRATION & TEST

FACTORY RETURN INFORMATION

SUMMARY OF ERROR CODES

CTM-PER: PASCAL, C, FORTRAN DRIVERS FOR CTM-PER

- v -

CTM-PER CHAPTER 1 - INTRODUCTION

Chapter 1
INTRODUCTION

1.1 GENERAL
The CTM-PER is a PC-computer accessory board for monitoring timing changes in an on-going l T L
signal. The board measures consecutive periods of a l T L signal and makes the results available for
review, analysis, etc. For example, the results can be presented to the PC monitor in an array of
consecutive measurements.

TIl signal frequencies may range from 0 (DC) to 80 KHz. The 80KHz upper frequency limit actually
depends on frequency limits of the computer. In some computers, the upper frequency limit will be
no more than 20 KHz.)

An important part of the CTM-PER package is the distributed software. The software enables the user
to set up the board, to specify start/stop parameters for board operation, to control data flow, and to
determine data formats for the array. The distributed software also contains CALL subroutines for
use with BASIC, QUICKBASIC, PASCAL, C, and FORTRAN. In addition, there are commented
examples and utility setup programs with sources.

CTM-PER software supports all common memory models for the following languages: Microsoft C
(V4.0-5.1), Microsoft Quick-C (V1.0-2.0), Turbo C (V1.0-2.0), Microsoft Pascal (V3.0-4.0), Turbo Pascal
(V3.0-5.0), Microsoft FORTRAN W4.0-5.0), Lahey Personal Fortran (V1.0-2.0), QuickBASIC (V4.0 &
higher), and GW, COMPAQ, and IBM BASIC (V2.0 & higher).

Typical CTM-PER applications include monitoring a Doppler signal and measuring output intervals
of a rotating sensor. BNC connectors labeled SIGNAL and GATE are available at the board's rear
plate. GATE can be programmed with selective polarity and used to enable measurements. SIGNAL
can measure the timing of positive, negative, or both edges.

1.2 FUNCTIONAL DETAIL

1 0 Mnz
CRYSTAL

SIGNAL

I OPTOCOUPLER GATE

I I

DIP SWITCH 4 PC'BUS INTERFACE1 11

Figure 1-1. Block diagram of the CTM-PER Board.

Introduction - 1 - 1

CHAPTER 1 - INTRODUCTION CTM-PER

The CTM-PER relies on an internal, crystalcontrolled, lOMHz oscillator clock and a 28-bit up-counter
register, as shown in Figure 1-1. It detects a signal edge by sensing a change in level. On detecting a
signal edge, it loads the value of the 2Sbit counter and the state of the GATE and SIGNAL into FIFO
(First In, First Out) memory as four bytes (32 bits). Succeeding level changes cause successive counter
values to load into FTFO memory.

While FIFO memory loads and unloads continuously, a slowing of the unload rate can cause a
backup. FIFO memory can hold a backup of up to four counter values. Any attempt to load beyond
the four-value limit causes an overrun error.

Load speed is a factor only while FIFO memory is holding less than four counter values (F'IFO can
hold no more than four counter values); it is a function of the rate at which the on-board state machine
detects level changes and is limited to 1.0 MHz.

Unload speed depends on the technique for unloading FIFO and storing data in computer memory.
DMA (Direct Memory Access) is the fastest technique and is the one used by the CTM-PER. This
technique yields a speed range of 20KHz to 80KHz, depending on the computer. The lower limit of a
period being timed can be considered as the roll-over time for the 10 MHz clock and the 28 bit counter:
about 26.8 seconds.

Information about a measured period or interval is taken from the difference between two consecutive
counter values. Because the clock is IOMHz, the resolution of the period is 0.1 microsecond.

Total data accumulation is limited only by total computer memory (or disk capacity if a product like
MetraByte's STREAMER is used to stream data onto disk). The upper limit of frequency is controlled
by two factors: the speeds at which FIFO memory loads and is unloaded.

1.3 SPECIFICATIONS

1.3.1 SIGNAL and GATE Inputs
CoMectOrs:
SIGNAL/GATE Load:
High-Level Input
Low-Level Input
High-Level Input Current
Low-Level Input Current
Absolute Maximum Inpur
Input Protection:
Transient Immunity:

Isolation Voltage:
Common Mode)

1.3.2 Crystal Clock and Counter
Frequency:
Frequency Stability:
Measurement Resolution:
Measurement Rollover:
Measurement Bits:

Type: BNC (2)
1 LSTTL UNIT LOAD
2.0 VDC (minimum)
0.8 VDC (maximum)
40 pi4 (maximum)
-0.4 mA (maximum)
7 VDC
100 ohms in series with input and 6.8 V Zener
5000 V/us (min)

500 VDC (Input to computer)

1o.Ooo M H Z
+/-0.01% (+/-lo0 ppm)
0.1 microsecond
26.8 seconds
28

~ 1 - 2 - Introduction

CTM-PER ChXPTER 1 - INTRODUCTION

1.3.3 Programmed Control
GATE:
Minimum GATE Trigger
Signal Edges:

Maximum Signal Frequency:

Data Acquisition Modes:

Interrupt Levels:

DMA Levels:

1.3.4 Environmental
Operating Temperature:

Bus:

Power Requirements:

Positive, negative, or none
100 nsec.
Positive, negative, or both

1 .O MHz (burst of 4), 20 to 80 KHz (continuous DMA)
(Computer dependent)

Programmed, interrupt, or DMA

2,3,4,5,6,7, or none

1,3, or none

0 to 50 Degree Celcius

IBM K/XT Compatible

+5 VDC @ 600 mA (typical)

l -

l -

Introduction - 1 - 3

CTM-PER CHAPTER 2 - INSTALLATION & SETUP

Chapter 2
INSTALLATION & SETUP

2.1 INTRODUCTION
CTM-PER distribution software is on a 5.25", 360K floppy diskette (DOS 2.10 format); it is also
available on a 3.5" diskette. This software is licensed to permit multiple copies for non-commeraal
use, not for resale.

Installation of your CIU-PER Software will require the following procedures:

Making a working copy of your CTM-PER Distribution diskette(s).
Unpacking and inspecting the board.
Selecting a Base Address for your CTM-PER driver board.
Installation.

2.2 COPYING THE DISTRIBUTION DISKETTES
Make working copies of your CTM-PER Distribution Software diskettek) and store your original copy
in a safe place. To copy the Distribution diskette(s1, use a procedure (from the two that follow) that
suits your particular computer configuration. The first procedure is for a computer with dual floppy-
disk drives, the second is for a computer with both a floppy- and a hard-disk drive.

1.

2.

3.

4.

6.

7.

8.

2.2.1 Procedure for Dual Floppy-Disk Computers
With your your computer on and booted, place your DOS disk containing DISKCOPY.EXE in
the A Drive.

Log to the A Drive by typing A: <Enter>

At the DOS A> prompt, type &DISKCOPY A: B: <Enter,
Insert the sourcediskette (the CTM-PER Distribution diskette) into the A Drive. The system
will prompt you through the disk copying process, asking you to insert the target diskette into
the B Drive.

When you have completed copying, the computer will ask COPY ANOTHER (Y/N)?
If you are copying two diskettes, respond by typing
Y <Enter> and follow the prompts to copy the second diskette. Otherwise, type N <Enten.

Put the original CTM-PER diskettds) in a safe place for storage. Then label your back-up
disk(s) as your CTM-PER working copies.

2.2.2 Procedure for Hard-Disk Computers
1.

2.

With your computer on and booted, log to the drive to be used for your CTM-PER Distribution
files. (In most cases, this will be the C Drive.)

The following instructions create a directory named CTlM for the CTM-PER Distribution files. If
you prefer a name other than W, substitute your preference in place of CTMin Step a.
(immediately following). If you intend to use an existing directory, skip these instructions, log
to that directory, and go to Step 3.

a.

b.

Make a CTM subdirectory by typing MD CTM <Enter>

Change to the CTh4 directory by typing CD CTM <Enter>

Installation & Setup - 2 - 1

CHAPTER 2 - INSTALLATION & SETUP CTM-PER

3.

3.

5.

Place the CTU-PER Distribution Disk into a floppy Drive A.

Type the copy-all-files command, as COPY &*.* <Enter>

If copying two diskettes, repeat Steps 3 and 4 for the second diskette.

With the CTM-PER Distribution files copied to your hard drive, put the original Utility Diskette(s) in a
safe storage area.

2.3 UNPACKING AND INSPECTING
After you remove the wrapped board from its outer shipping carton, proceed as follows:

1. Place one hand firmly on a metal portion of the computer chassis (the computer must be turned
Off and grounded). You place your hand on the chassis to drain off static electricity from the
package and your body, thereby preventing damage to board components.

Allow a moment for static electricity discharge; carefully unwrap the board from its anti-static
wrapping material.

Inspect the board for signs of damage. If any damage is apparent, return the board to the
factory.

Check the contents of your mM-PER package against its packing list to be sure the order is
complete. Report any missing items to MetraByte immediately.

You may find it advisable to retain the packing material in case the board must be returned to the
factory.

2.

3.

4.

2.4 SELECTING AND SETTING THE BASE ADDRESS
The CTM-PER requires four consecutive address locations in 1/0 space. Since some 1/0 address
locations are already occupied by internal I/O and other peripheral cards, you have the option of
resetting the CTM-PER I/O base address by means of an on-board Base Address DIP switch. The
Base Address switch is located as shown in Figure 2-1, and it appears as shown in Figure 2-2.
Referring to Figure 2-2, you set the base address on a four-byte boundary to 3FC Hex (300 Hex is
shown).

7

SIGNAL

GATE

DIP SWITCH

I

Q I

Figure 2-1. CTM-PER board outline, showing Base Address switch location.

2 - 2 - Installation & Setup

CTM-PER CHAPTER 2 - INSTALLATION & SETUP

Figure 2-2. Base Address switch.

The board is preset for a base address of 300 HEX. If this
address is not satisfactory, your distribution software
contains a program called called DIPSW.EXE that asks for
base address and shows a picture of the DIP switch setting.
Use this program by logging to its location (to the floppy
drive containing the distribution diskette or to the harddrive directory containing your distribution
files) and typing DIPSW

When the computer responds with Desired base address?, type your choice in decimal or IBM &H-
format and press <Enfer>.

2.5 HARDWARE INSTALLATION
To install the CTM-PER in a PC, proceed as follows.

W A R " G : ANY ATTEMPT TO INSERT OR REMOVE ANY ADAPTER BOARD WITH THE
COMPUTER POWER ON COULD DAMAGE YOUR COMPUTER!

1.

2.

3.

4.

5.
5.

7.

8.

Turn Off power to the PC and all attached equipment.

Remove the cover of the PC as follows: First remove the cover-mounting screws from the rear
panel of the computer. Then, slide the cover of the computer about 3/4 of the way forward.
Finally, tilt the cover upwards and remove.

Choose an available option slot. Loosen and remove the screw at the top of the blank adapter
plate. Then slide the plate up and out to remove.

Hold the CI'M-PER board in one hand placing your other hand on any metallic part of the PC
chassis (but not on any components). This will safely discharge any static electricity from your
body.

Make sure the board switches have been properly set (refer to the preceding section).

Align the board connector with the desired accessory slot and with the corresponding rear-
panel slot. Gently press the board downward into the socket. Secure the board in place by
inserting the rear-panel adapter-plate screw.

Replace the computer's cover. Tilt the cover up and slide it onto the system's base, making sure
the front of the cover is under the rail along the front of the frame. Replace the mounting
screws.

Plug in all cords and cables. Turn the power to the computer back on.

MetraByte recommends that you retain the static-shield packaging for possible future removal and
handling of the CTM-PER board.

2.6 CABLING
Connect the cable carrying the TTL signal to be monitored to BNC Connector J1 (Figure 2-1), which is
labelled SIGNAL. BNC Connector J2 (GATE) is an optional ?TL input. If GATE is not enabled in
software, this connector can be left open.

Installation h Setup - 2 - 3

CHAPTER 2 - INSTALLATION & SETUP CTM-PER

2.7 REGISTER MAPS
Board Address + 0:

I I I I I I I
READ: C3 C2 C1 CO GTI ' S G l '0 0

I 1 I I I I I I I
READ: C11 C10 C9 C8 C7 C6 C5 C4

I I
READ: Cl9 ICl8 IC17 ICl6 ' C I S 'C14 IC13 'C12

I 1 I 1 1 I I I 1
READ: C27 C26 C25 C24 C23 C22 C21 C20

FIFO DATA @ata stored as 4 Bytes).
1st = LS Nibble Count + GATE + SIGNAL.
2nd = 3rd Byte Count (2A1 1 to 2q).
3rd = 2nd Byte Count (2"19 to 2A12).
4th = MSB Count (2A27 u) 2"20).

SG/ = l/O of signal after Trigger,
1 -> Falliig Edge Trigger (negative signal trigger),

0 -> Rising Edge Trigger (positive signal trigger).
GT/ = O/l of GATE after Trigger.

I I I I I I 1 I I
WRITE:

Board Address + 1 : (Not Used).

Board Address + 2:

I I I I I I I I 1
READ: CLR OVR GPL GTE GAT SIG S1 SO

r I I I I I I 1
WRITE: CLR - GPL GTE TEN TST S1 SO '

CLR = CLEAR; 0 -> Count to 0, FIFO cleared and OVR to 0.

O W = OverRun Error, 1 -> FIFO overrun occurred since CLEAR.
GPL = GATE Polarity; 1/0 -> GATE l/O to count, 0/1 to hold.
GTE = GATE Enable; 1 -> GATE used, 0 -> GATE ignored.
GAT = GATE, 1/0 -> GATE Level at Trigger.
SIG = SIGNAL; 1/0 -> SIGNAL Level at Trigger.
TEN = 0 -> GATE used as Trigger, 1 -> GATE used as gate.

TST = Stop signal, 0 -> Stop data collection, 1 -> Collect.
S 1 = Single or Dual Edge Signal Trigger; 0 -> Single, 1 -> Dual.
SO = Positive or Negative Signal Trigger, 0 -> Positive, 1 -> Negative.

1 -> Co~nte r~ Count (Normal) +FIFO Nom~al.

2 - 4 - Installation & Setup

CTM-PER CHAPTER 2 - INSTALLATION & SETUP

Board Address + 3:

I I I I I 1 I I I
READ: DOR IT/ DME LEV INE IL2 IL1 ILO

1 I I I I I
WRITE: DME 'LEV IINE '112 IL1 ILO

DOR = DATA-OUT-READY; 1 -> Data In FIFO.
lT/ = INTERRm, 0 -> Interrupt pending.
DME = DMA ENABLE; 1 -> Enable DMA, 0 -> Disable.
LEV = DMA LEVEL; 0 -> Level 1 , l -> Level 3.
INE = INTERRUPT ENABLE on data (if not DMA);

IL2, ILl, M3 = INTERRUPT LEVEL;
100 -> IRQ4
101 -> IRQS
110 -> IRQ6

INTERRUPT ENABLE on TC (if DMA); 1 -> Enable, 0 -> Disable.

OOO -> None
001 -> NOW
010 -> IRQ2
011 -> IRQ3 111 -> IRQ7

Installation & Setup - 2 - 5

CTM-PER C H e E R 3 - PROGRAMMING

Chapter 3
PROGRAMMING

3.1 INTRODUCTION
The CTM-PER is programmable at the lowest level using input and output instructions. In BASIC
these are the INPW and OUT X,Y functions. Assembly language and most other high level languages
have equivalent instructions.

To simplify program generation, the distribution software contains the I/O driver routine
CTMPERBIN. This routine is accessible from BASIC using a single-line CALL statement, and it
covers the majority of common operating modes.

The benefits of using CT"ER.BIN are largely in significant reduction of programming time. The
driver also supports data collection on interrupt or DMA. Note, however, that BASIC has no interrupt
or DMA processing functions, and so-called background data collection using these methods is
available only by using the CALL routines.

3.2 LOADING THE CTMPER.BIN DRIVER ROUTINE (BASIC)
To use the CTMPER.BIN driver, load it into memory. Avoid loading it over any part of memory used
by another program. An example of loading this routine using IBM BASIC is as follows:

100
110
120
130
140
150
160
170
180

CLEAR, 48'1 024
DEF SEG=O
SG=256'PEEK(&H511)+PEEK(&H510) 'BASIC WORKSPACE SEGMENT
SG=SG+48'1024/16
DEF SEG=SG
BLOAD "CTMPER.BIN",O
CTM PER=O
DIM D%(15) 'DECLARE ARRAY
FLAGY-0 'DECLARE VARIABLE

'CONTRACT WORKSPACE TO 48K

'LOAD IN ASSEMBLY DRIVER

A second option applies when you have memory outside the BASIC workspace; it should be used for
non-IBM BASIC (when the PEEKS of line 120 above will not work).

21 0 DEF SEG=&H7000
220 BLOAD "CTMPER.BIN",O
230 CTMPER=O
240 DIM D%(15)
250 FIAG%=O

'LOAD IN ASSEMBLY DRIVER

'DECLARE ARRAY
'DECLARE VARIABLE

Before you try loading outside the workspace, be sure you really do have unused memory (large
enough for the CTMPER.BIN file) at the location in line 210. You can change the line 210 DEF
SEG=&H7000 and experiment with loading the CALL routine at other locations. Usually any clash
with another program's use of the memory results in a failure to exit and return from the routine. The
computer hangs up, and the only cure is to switch OFF, wait a few seconds, and turn on the power.
Try a different memory location until the program works.

Programming - 3 - 1

CHAPTER 3 - PROGRAMMING CTM-PER

3.3 CALL STATEMENT FORMAT (BASIC)
Prior to entering the CALL, the DEF SEG=SG statement sets the segment address at which the CALL
subroutine is located. The CALL statement for the C"ER.BIN driver must use the form:

xxxxx CALL CTMPER(MD%, D%(O), FLAG%)

C " E R is the address offset from the current segment of memory, as defined in the last DEF SEG
statement. In all the examples, the current segment is defined to correspond with the starting address
of the CALL routine. This offset is therefore zero and CTMPER=O (see line 160).

The three variables within brackets are known as the CALL parameters; their meaning depends on the
Mode, as described in the following sections. On executing the CALL, the addresses of the variables
(pointers) are passed in the sequence written to BASICS stack. The CALL routine unloads these
pointers from the stack and uses them to locate the variables in BASIC's data space so data can be
exchanged. Four important format requirements must be met:

1. The CALL parameters are positional. The subroutine knows nothing of the names of the
variables, just their locations from the order of their pointers on the stack. The parameters must
always be written in the correct order:

(mode, data, errors)

2. The CALL routine expects its parameters to be integer-type Variables and will write and read to
the variables on this basis.

You cannot perform any arithmetic functions within the parameter list brackets of the CALL
statement. For example, the following is an illegal statement:

3.

CALL CTMPER(MD%+2,D%(0)+8,FLAG%)
4. You cannot use constants for any of the parameters in the CALL statement. For example, the

following is an illegal statement:

CALL CTMPER(7,2,FLAG%)

Apart from these restrictions, you can name the integer variables what you want; the names in the
examples are just convenient conventions. Strictly, you should declare the variables before executing
the CALL.

3.4 USE OF THE CALL ROUTINE
The following subsections contain details and examples of using the CALL routine in all ten CTM-PER
Modes. Note that delta is defined as the difference between the current and last data value; the deZta is
scaled by a power of two and stored as 16 bits (an unsigned integer). The Modes are selected by the
MD% parameter in the CALL as follows:

MODE (MDI) FUNCTION

0 Initialize, store CTM-PER base address, interrupt level, and DMA level.

1 Start the counter or to stop the counter and stop data collection. shuts down
interrupts and/or DMA.

(continued on next page)

~ ~ ~~ ~

3 - 2 - Programming

CTM-PER CHAPl'ER 3 - PROGRAMMING

MODE @ID%) FUNCTION

2

3

Setup gate, edge, and scaling parameters.

Start data collection and return next data.

4 Start data collection and return array of data.

5 Start data collection and return array of deltas.

6 Start data collection of data into memory via interrupt.

7

8

Start data collection of deltas into memory via interrupt.

Start data collection of data into memory via DMA.

9 Transfer data/delta from memory into array.

10 Check status of data collection.

Note that the mode used for data collection depends on what else the computer is doing, the
computer's speed, and the speed of the signal being measured. In all cases, it is recommended that the
user vary the signal frequency, monitor the overrun error, and check the data for his/her particular
computer and application program in order to establish full performance details.

MODE MODE SPEED

3,43 slow (several hundred Hertz)

67 medium (several thousand Hertz)

8 high (up to 20 to 80 KHz)

3.5 CALL SEQUENCE
Mode 0 must always be called initially. Mode 1 is optional to start the sequence and should be used to
terminate interrupt or DMA operation when an operation is aborted before normal completion. Mode
2 must be called at least once before starting data collection. The normal minimum sequences of calls
are as follows:

PROGRAMMED COLLECTION OF DATmELTA

MODE 0

MODE 2

MODE 3,4, or 5

I
I

Programming - 3 - 3

CHAPTER 3 - PROGRAMMING CTM-PER

INTERRUPT COLLECTION OF DATUDELTA

MODE 0

MODE 2

MODE 6 or 7

MODE 10 <

I
I
I
I -1 done?

I
MODE 9

DMA COLLECTION OF DATUDELTA

MODE 0

MODE 2

MODE 8

MODE 10 <

I
I
I

done?

MODE F 9

3.6 MODE CALL DESCRIPTIONS

3.6.1 MODE 0 - INITIALIZE
Mode 0 checks whether the base I/O address is in the legal range of 256 - 1020 (Hex 100 - 3FC) for the
IBM PC. If not, an error exit occurs. The user-selected interrupt and DMA levels are then unloaded
from the data array, checked and stored.

Data is passed in array:

ENTRY:

m
ERRORS:

D%(O) = Base I/O address
D%(W = Interrupt level (0 for disabled)
D%(2) = DMA level (0 for disabled)

D%(O) through D%(15) - unchanged

Error #0, no error
Error #3, base I/O address <255 or >lo20
Error #4, interrupt level not 0 or <2 or >7
Error #5, DMA level not 0 or 1 or 3

~

3 - 4 - Programming

CTM-PER CHAPTER 3 - PROGRAMMING

EXAMPLE:

200 MDY'O
210 D%(0)=768 : D%(1)=3 D%(2)=1
220
230

CALL CTMPER(MDYo,DYo(O) , FLAG%)
IF FLAG%<> 0 M E N GOTO 1000

3.6.2 MODE 1 - STARTSTOP Clock
Mode 1 is used to start or stop the counter. Data collection is not started by this command (only the
clock). The stop command clears any pending data out of the FIFO. An error is reported if, when the
CTM-PER is stopped, an overrun error is pending. The clock may also be turned on through one of
the data collection modes; MODE 1 is used to start the clock only if it is to be started prior to the start
of data collection. The stop command will also shutdown ongoing interrupts or DMA operations.

Data is passed in array:

ENTRY: D%(O) = 0 for stop, else for start

E m : D%(O) through D%(15) - unchanged

ERRORS: Error #0, no error
Error #1, driver not initialized
Error #6, overrun error pending

EXAMPLE:

580 MDY-1
590 DYo(O)=O 'O=STOP ELSESTART CLOCK
600 CALL CTMPER(MD%,D%(O),FLAG%)
61 0 IF FLAG%<> 0 M E N GOTO 1000

3.6.3 MODE 2 - Setup GATE, EDGES, SCALING
Mode 2 is used to setup (or change) the EDGE and GATE parameters -3r data collection and the
SCALING factor for deltas. Data collection is not actually started with this mode. The scaling factor is
used to reduce the delta count to 16 bits of resolution.

where Tg) = current count
TaV1) = last count
SCALE = D%(4) parameter (0 to 28)

Data is passed in array:-

ENTRY:

EXIT:

D%(O) = Gate enable, 1 for gate used
D%(U = Gate polarity, 1/0 for 1/0 active
D%(2) = Edges, 0 -> single, 1-> dual
D%(3) = If single edge, 0 -> pos., 1 -> neg.
D%(4) = Scaling factor power of 2 (0 to 28)
D%(5) = 0 -> gate as trigger, 1 -> gate as gate

D%(O) through D%(14) - unchanged
D%(15) - control word (for debug use only)

Programming - 3 - 5

CHAPTER 3 - PROGRAMMING CTM-PER

ERRORS: Error #0, no error
Error #1, driver not initialized
Error #7, illegal gate parameters
Error #8, illegal scale factor

EXAMPLE:

250
260
270
280
290
300
31 0
320
330
340
350
360
370

MD%=2
D%(O)=O 'O=NOT GATED, 1 =GATE USED
D%(1)=0 'GATE POLARITY 1/0 FOR 1/0 ACTIVE
D%(2)=0 'EDGES, OzSINGLE l=BOTH
D%(3)=0 'IF SINGLE EDGE, O=POS 1 =NEG
D%(4)=0 'SCALE FACTOR FOR DELTA MEASUREMENT
D%(5)=0 'O=TRIGGERED, 1 =GATED

'NOTE: DELTAS ARE 0.1 MICROSECONDS COUNTS TO 65535.
'IN OTHER WORDS, PERIODS TO 6.5535 MILLISECONDS CAN BE
'MEASURED WITHOUT SCALING. IF LONGER PERIODS ARE TO BE
'MEASURED, D%(4) CAN BE SET TO ANY POWER OF 2,O TO 28.

CALL CTMPER(M D%, D%(O), FLAG%)
IF FLAG%<> 0 THEN GOT0 1000

GATE 1
SIGNAL,

CLEAR I
I I I I I I

I I I 1 I I

I I I I I I

COUNT ---loo -200- ---3oo-- 4w- 5C)o----@-

DATA 180 270 330 390 450 510

DELTA 180 90 60 60 60 60

Figure 2-3. GATE and SIGNAL waveforms with GATE Enabled, positive polarity,
GATE used a s GATE, single-positive-edge triggering.

GATE

SIGNAL
L

CLEAR I
I I I I I I

I I I I I I

I I I I I I

COUNT ---loo --200-- ---3C)o-- -400-- 500 _____ o--

DATA 180 270 330 390 450 510

DELTA 180 90 60 60 60 60

Figure 2-4. GATE and SIGNAL waveforms with GATE Enabled, positive polarity,
GATE used as Trigger, single-positive-edge triggering.

3 - 6 - Programming

CTM-PER CHAPTER 3 - P R O G M M Z V G

3.6.4 MODE 3 - Data Collection, Single
Mode 3 is used to collect data, one point at a time, under program control. The program must be able
to keep up with the data or else an overrun error will occur. Pressing any key, once Mode 3 is
started, will produce an immediate return to calling program with error code 11.

Data is passed in array:

ENTRY D%(O) = Last LSB (2"3 to 2"0, GAT/, SIG/, 00)
D%(l) = Last 3rd Byte (2"11 to 2"4)
D%(2) = Last 2rd Byte (2"19 to 2"12)
D%(3) = Last MSB (2"27 to 2"ZO)

EMT:

ERRORS:

D%(O) = Current LSB (2"3 to 2"0, GAT/, SIG/, 00)
D%(1) = Current 3rd Byte (2"11 to 2"4)
D%(2) = Current 2rd Byte (2"19 to 2"12)
D%(3) = Current MSB (P27 to 2"20)
D%(4) = Current scaled DELTA (unsigned integer)
D%(5) through D%(15) - unchanged

Error #0, no error
Error #1, driver not initialized
Error #6, overrun error pending
Error #9, control not setup (Mode 2 call)
Error #lo, DELTA overflow, >65535

Error #11, Keyboard termination
NOTE: D%(O) to D%(3) set correctly, DELTA, D%(4), set to 0

3.6.5 MODE 4 - Data Collection, Multiple
Mode 4 is used to collect an array of data under program control. Data is stored in the array using
two words of the integer array. The first word being the first two bytes out of the FlFO (the 2"11 bit to
2"O bit plus GATE/, SIGNAL/, and two zeros). The second word being the next two bytes out of the
F'IFO (the 2"27 bit to 2"12 bit). The program must be able to keep up with the data or else an overrun
error will occur. The data is passed as two successive words in the array. Pressing any key, once
Mode 4 is started, will produce an immediate return to calling program with error code 11.

Data is passed in array:

ENTRY:

EXIT:

ERRORS:

D%(O) = Number of conversions required
NOTE: Array size (integer words) must be twice the

number of conversions
D%(1) = Segment of array (-1 if caller's segment)
D%(2) = Offset of array

D%(O) through D%(15) - unchanged

Error #0, no error
Error #1, driver not initialized
Error #6, overrun error pending
Error #9, control not setup (Mode 2 call)
Error #11, Keyboard termination
Error #12, Sample count 0 or negative

l - Programming - 3 - 7

CHAPTER 3 - PROGRAMMING CTM-PER

EXAMPLE:

100

180
190
200
21 0
220
230
240
250
260
270
280

DIM XYo(1 9) ,X(1 9)

MD%=4

CALL CTMPER(M D%,D%(0) ,FLAG%)
Do/o(0)=l 0 : D%(l)=-1 Do/,(2)=VARPTR(Xo/o(0))

IF FLAG% <> 0 THEN GOTO 1000
FOR 1=0 TO 19
IF X%(l)<O THEN X(1)=65536!+Xo/o(i) ELSE X(I)=X0/o(l)
NEXT
FOR 1=0 TO 18 STEP 2
T=INT(X(I)/16)+X(l+l)'4096
PRINT T
NEXT

3.6.6 MODE 5 - Data Collection, Multiple Delta
Mode 5 is used to collect an array of deltas under program control. The program must be able to keep
up with the data or else an overrun error will occur. An initial value of zero for the data is assumed.
Note that the DELTA overflow error is not indicated in this mode but the DELTA value comes out
mro. The delta has been scaled by the parameter setup in Mode 2. Pressing any key, once Mode 5 is
started, produces an immediate return to calling program with Error Code 11.

Data is passed in array:

ENTRY:

EXIT:

ERRORS:

EXAMPLE

D%(O) = Number of conversion DELTAS required
D%(1) = Segment of array (-1 if caller's segment)
D%(2) = Offset of array

D%(O) through D%(15) - unchanged

Error #0, no error
Error #1, driver not initialized
Error #6, overrun error pending
Error #9, control not setup (Mode 2 call)
Error #11, Keyboard termination
Error #12, Sample count 0 or negative

200
21 0
220
230
240
250
260
270

MD%=5
D0/0(0)=20 : D'Xo(l)=-l D%(2)=VARPTR(XO/o(O))
CALL CTMPER(MD%,DO/(O), FLAG%)
IF FLAG%oO THEN GOTO 1000
FOR 1=0 TO 19

PRINT XZASCALING
NEXT

IF X%(l)<O THEN X=65536!+X%(I) ELSE X=X%(I)

3.6.7 MODE 6 - Data Collection Via Interrupt
Mode 6 is used to collect data into memory via interrupt control. The program must be able to keep
up with the data or else an overrun error will occur. MODE 9 can be used to move the data (two

3 - 8 - Programming

CTM-PER CHAPTER 3 - PROGRAMMING
~~ ~

successive words) or deltas (one word), into an array. Data collection is stopped and the FWO cleared
when the sample count is done or when an overrun is encountered.

Data is passed in array:-
-

ENTRY:

c

m
ERRORS:

210
220
230
240

D%(O) = Number of conversion required
NOTE: MEMORY size in words must be twice D%(O)
(four times in bytes)

D%(1) = Segment of MEMORY (-1 if caller’s segment)
D%(2) = Offset of MEMORY to receive data
D%(3) = Recycle flag:

0 -> Non-recycle, done flag set after number of samples
1 -> Recycle, samples continuously written and rewritten

D%(O) through D%(1)5 - unchanged

Error #O, no error
Error #1, Driver not initialized
Error #6, Overrun error pending
Error #9, Control not setup (Mode 2 call)
Error #12, Sample count 0 or negative
Error #13, DMAhterrupt already active
Error #16, Interrupt must be installed for this mode.

MD%=6
D%(O)=20 : D%(l)=&H7000 : D%(2)=0 : D%(3)=0
CALL C”MPER(MD%,D%(O>,FLAG%)
IF FLAG%oO THEN GOT0 lo00

3.6.8 MODE 7 - Delta Collection Via Interrupt
Mode 7 is used to collect Deltas (one unsigned integer word) into memory via interrupt. The program
must be able to keep up with the data or an overrun error occurs. MODE 9 can be used to move the
Deltas, passed as one word, into an array. Data collection is stopped and the FIFO cleared when the
sample count is done or when an overrun is encountered. For collection of Deltas, an initial value of
zero is used. Deltas greater then 65535 are indicated by a zero, no other error flag is used for the Delta
overflow.

Data is passed in array:

ENTRY
l -

l -

I .-

l -

D%(O) = Number of conversions required
D%(1) = Segment of MEMORY (-1 if caller’s segment)
D%(2) = Offset of MEMORY to receive data
D%(3) = Recycle flag

0 -> Non-recycle, done flag set after
number of samples
1 -> Recycle, samples continuously written
and re-written

l -

l -

EXIT: DWO) through D%(15) - unchanged

Programming - 3-9

CHAPTER 3 - PROGRAMMING CTM-PER

ERRORS:

EXAMPLE:

Error #0, no error
Error #1, Driver not initialized
Error #6, Overmn error pending
Error #9, Control not setup (Mode 2 call)
Error #12, Sample count 0 or negative
Error #13, DMA/Intermpt already active
Error #16, Interrupt must be installed for this mode.

210 MD0/o=7
220 D%(O)=ZO : D%(l)=&H7000 Do/0(2)=0 D%(3)=0
230 CALL CTMPER(MD%,DO/o(O),FLAG%)
240 IF FLAGO/ooO THEN GOTO 1000

3.6.9 MODE 8 - Data Collection Via DMA
Mode 8 is used to collect data via DMA. In general, this is the mode normally used to collect data.
MODE 9 can be used to move the data or Deltas, passed as two successive words or one word, into an
array.

Data is passed in array:

ENTRY D%(O) = Number of samples required (1 to 16384)

EXIT

ERRORS:

EXAMPLE:

D%(1) = w e n t of MEMORY (-1 if caller's segment)
D%(2) = Offset of MEMORY to receive data

NOTE: two words (four bytes) per sample
D%(3) = Recycle flag

0 -> Non-recycle, done flag set after

1 -> Recycle, samples continuously written
number of samples

and rewritten

D%(O) through D%(15) - unchanged

Error #0, no error
Error #1, Driver not initialized
Error #6, Overrun error pending
Error #9, Control not setup (Mode 2 call)
Error #12, Sample count 0 or negative
Error #13, DMADnterrupt already active
Error #15, DMA wrap around of page

21 0
220
230
240
250
260
270
280
290

MD%=8
D%(0)=1024 : D%(l)=&H7000
CALL CTMPER(MD%,D%(0) ,FLAG%)
IF FLAG%<>O THEN GOTO 1000
MD%=lO
CALL CTMPER(MD'?'o,D%(O),FLAG%)
IF D%(O)o 1 THEN GOTO 2000
PRINT "SAMPLE COUNT = ";D%(2)
IF D%(1)=1 THEN GOTO 260

D%(2)=0 : D%(3)=0

'MUST BE DMA OPERATION

'WAIT ON DONE

3 - 10 - Programming

CTM-PER CHAPTER 3 - PROGRAMMING

3.6.10 MODE 9 - Transfer From Memory To Array
Mode 9 transfers data from any segment/offset of memory to an integer array in BASIC‘s workspace.
Data can be converted in the process from data to Deltas. NOTE that the initial value of the count
used is zero. NOTE ALSO that for languages other than BASIC, this mode is not usually needed; it
can be used to convert data to Delta for any language.

Data is passed in array:

ENTRY:

m
ERRORS:

D%(O) = Number of samples to transfer (1 to 32767)
D%(1) = Source segment in memory
D%(2) = Source offset in memory
D%(3) = Starting sample offset number

0 to 32767 for deltas
0 to 16383 for data

offset (bytes) = samples * 2 for deltas
offset (bytes) = samples * 4 for data

D%(4) = segment of destination array (-1 if caller’s segment)
D%(5) = Offset of destination array

NO’TE: Two array (2 words) positions per data
One array (1 word) position per delta

D%(6) = data/DELTA flag
0 -> data

2 -> data available, convert to DELTA
1 -> DELTA

D%(O) through D%(1)5 - unchanged

Error #0, no error
Error #1, Driver not initialized
Error #14, Illegal start offset or number of samples.
Error #lo, DELTA overflow, >65536

NOTE: Non-fatal, DELTA set to 0

EXAMPLE:

31 0
320
330
340
360
370
380
390

3.6.1 1

MD%=9
D%(O)=20 : D%(l)=&H7000 : D%(2)=0
D%(4)=-1 : D%(S)=VARPTR(X”/o(O)) D%(6)=2
CALL CTMPER(MD%,D%(O) ,FLAG%)
FOR 1=0 TO 19
IF X0/o(l)<O THEN X=65536!+X%(I) ELSE X=X%(I)
PRINT X
NEXT

D%(3)=0

MODE 10 - Monitor Status
Mode 10 is used to monitor the status of the data collection during interrupt or DMA operations.

Data is passed in array:

ENTRY. D%(O) through D%(15) - not used

Programming - 3 - 11

CHAPTER3 - PROGRAMMING CTM-PER

EXIT:

ERRORS

EXAMPLE:

D%(O) = Type of operation (last or current)
0 = none or programed
1 = DMA
2 = interrupt

0 = done or inactive
1 = active

D%(1) = Status

D%(2) = Current sample count
D%(3) = Error flag (set only after status D%U)

inactive, cleared by this mode
0 = no error
1 = overrun error

see register map

see register map

D%(4) = Read of ba-2 (control register)

D%(5) = Read of base+3 (intenupt/DMA register)

Error #0, no error
Error #1, Driver not initialized

250 MD%=lO
260 CALL CTMPER(MD'Yo,D'Xo(O),FLAG%)
270 IF D%(O)<> 1 THEN GOTO 2000
280 PRINT "SAMPLE COUNT = ";D%(2)
290 IF D%(l)=l THEN GOTO 260

'MUST BE DMA OPERATION

'WAIT ON DONE

..or..

250 MD'Y'l 0
260 CALL CTMPER(M D%,D%(O) , FLAG%)
270 IF Do/O(0)o 2 THEN GOTO 2000
280 PRINT "SAMPLE COUNT = ";D0h(2)
290 IF D%(l)=l THEN GOTO 260

'MUST BE INTERRUPT

'WAIT ON DONE

3 - 12 - Programming

CTM-PER C H m E R 4 - CALIBRATION & TEST

Chapter 4
CALIBRATION & TEST

The CTM-PER board requires no adjustments. Accuracy is soley a function the 10 MHz Crystal and
can be checked using an external counter on the 10 h4Hz Crystal or by inputting a known frequency to
the SIGNAL input of the board and allowing the CTM-PER to measure the periods. It is important
that you use a very stable and accurate source for this purpose.

l -

Calibration & Test - 4 - 1

CTM-PER CHAPTER 5 - FACTORY RETURN INFORMATION

Chapter 5
FACTORY RETURN INFORMATION

Before returning any equipment for repair, please call 508/880-3OOO to notify MetraByte's technical
service personnel. If possible, a technical representative will diagnose and resolve your problem by
telephone. If a telephone resolution is not possible, the technical representative will issue you a
Return Material Authorization (RMA) number and ask you to return the equipment. Please reference
the RMA number in any documentation regarding the equipment and on the outside of the shipping
container.

Note that if you are submitting your equipment for repair under warranty, you must furnish the
invoice number and date of purchase.

When returning equipment for repair, please include the following information:

1.

2.

3.

Your name, address, and telephone number.

The invoice number and date of equipment purchase.

A description of the problem or its symptoms.

Repackage the equipment. Handle it with ground protection; use its original anti-static wrapping, if
possible.

Ship the equipment to

Repair Department
Keithley MetraByte

440 Myles Standish Boulevard
Taunton, Massachusetts 02780

Telephone 508/8803000
Telex 503989

FAX 508/880-0179

Be sure to reference the Rh4A number on the outside of the package!

Factory Return Information - 5 - 1

CTM-PER APPENDlX A - SUMMARY OF ERROR CODES

Appendix A
SUMMARY OF ERROR CODES

Error codes are returned in the FLAG% variable as follows:

CODE ERROR DESCRIPTION

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16

No Errors
Driver not initialized.
Mode number c0 or >N.
Invalid base address, a 5 6 or >1020.
Interrupt level out of range, not 0 or c2 or >7
DMA level not 0 or 1 or 3.
Overrun error encountered.
Illegal gate parameters
Illegal scale factor
Control not setup (Mode 2 call)
DELTA overflow, >65535
Keyboard ternination
Sample count 0 or negative
DMA/Intermpt already active
Illegal start offset or number of samples
DMA wrap around of page
This mode needs an Interrupt (can't be 0)

Summary of Error Codes - A - 1

CTM-PER APPENDIX B - CTM-PER DRIVERS

Appendix B

CTM-PER: PASCAL, C, FORTRAN DRIVERS FOR CTM-PER

B.l

B.2

B.3

B.4

B.5

B .6

8.7

B .8

B .9

B.10

TABLE OF CONTENTS

CTM-PER General Description

Microsoft 'C' & Quick 'C': Small Model; Medium Model; Large Model; Microsoft 'C' Example
Program

Borland Turbo 'C' (V1 .O - 2.0): Small Model; Medium Model; Large Model; Turbo C Example
Program

Microsoft PASCAL (V3.0 - 4.0): Medium Model; Microsoft PASCAL Example Program

Borland Turbo PASCAL (V3.0 - 4.0): Compact Model; Large Model; Turbo PASCAL Example
Program

Microsoft FORTRAN (V4.0 & Higher): Large Model; INOUT.FOR Function Example Program;
Integer Function or Subroutine; Microsoft FORTRAN Example Program

Lahey Personal FORTRAN (V1 .O & Higher): Large Model; Integer Function or Subroutine;
Lahey Personal FORTRAN Example Program

Interpreted BASIC (GW, COMPAQ, IBM, etc.): Medium Model; Interpreted BASIC Example
Program

QUICK BASIC: Medium Model; QUICK BASIC Example Program

CTMPER.LIB General Purpose Library; File Listing for CTM-PER

CTM-PER Drivers - B - 1

APPENDLX B - CTM-PER DRWERS CTM-PER

B.1 INTRODUCTION

B.l . l CTM-PER General Description
Keithley MetraByte's CTM-PER is a programming tool for writing data acquisition and control
routines in Pascal, C, and Fortran for for the CI'M-PER. CTM-PER supports all memory models for
the following languages; Microsoft C (V4.0-5.11, Microsoft Quick-C W1.0-2.0), Turbo C (V1.0-2.0),
Microsoft PASCAL (V3.0-4.01, Turbo PASCAL (V3.0-5.0), Microsoft FORTRAN (V4.0-4.1), Lahey
Personal Fortran (V1.0-2.0), QuickBASIC (V4.0 & higher), and GW, COMPAQ, and IBM BASIC W2.0
& higher). CTM-PER consists of several assembly-language drivers and example programs for each
supported language. This Section is structured to illustrate useage for each memory model of each
supported language, and it includes an example program at the end of each language section. Full
source listings are included in the distribution software. You should be familiar with the board's
operating MODES, PARAMETERS, and ERROR codes before attempting CTM-PER implementation.

B.1.2 Implementation
Software drivers of the CIU-PER are limited to the actual language interface for the supported
languages. To simplify programming and illustrate actual language interface, the following sections
contain a very brief introductory explanation followed by an actual example for each language. Each
interface driver (implemented via a CALL statement) consists of three positiondependent parameters,
namely MODE, ARGUMENT (or PARAM), and FLAG. MODE is the type of function to be executed
by the board. PARAM is the function-dependent arguments required for execution. FLAG is the
error number, if any, corresponding to selected MODE.

B - 2 - CTM-PER Drivers i

CTM-PER APPENDIX B - CTM-PER DRIVERS

B.2 MICROSOFT 'C' 014.0-5.0) & QUICK'C' (V1 .O-2.0)

8.2.1 Small Model
Model:
Passes:
Sequence:
Default
Calling Convention:

Small ("/AS") switch on command line
Word size pointers (offset, no DS register)
Arguments Passed Right to Left

Arguments Passed by ValuefFassing pointers to a subroutine is
considered pass-by-value convention)

Example
'C call:
'C Declaration: extem void mscs-ctmper(int*,int*);
.ASM Subroutine:

mscs-ctmper (&Mode, Params, &Hag);

The following assembly code shows how the driver handles user arguments:

- mscs-ctmper proc near
push bp
mov bp,sp

; save base pointer
; save stack pointer
; [bp+4] holds offset of Mode
; [bp+6] holds offset of Params
; [bp+8] holds offset of Flag
; Program execution here

pop bP
ret

- mscs-ctrnper endp

;restore bp & sp prior to exit
;return

Other
This information is provided for those wishing to create their own drivers:

- mscs-ctmper is declared "PUBLIC" in the .ASM file
mscs-ctmper is declared "extem" in the "C" file
The .ASM file contains the ".model small" directive (MASM & TASM only)
Add leading underscore "-I' to all mscs-ctmper occurrences in .ASM file
mscs-ctmper is a near call
mscs-ctmper must be in a segment fname-IEXT (where fname is the name of the file where
mscs-ctmper resides) if .ASM file contains mixed model procedures.

CTM-PER Drivers - B - 3

APPENDLY B - CTM-PER DRNERS CTM-PER

8.2.2 Medium Model
Model:
Passes:
Sequence:
Default
Calling Convention:

Medium ("/AM") switch on command line
Word size pointers (offset, no DS register)
Arguments Passed Right to Left

Arguments Passed by Value

Example
'C call: mscm-ctmper (&Mode, Params, &Flag);
'C Declaration: extem void mscm_ctmper(int*,int*,int*);
.ASM Subroutine:

The following assembly code shows how the driver handles user arguments:

- mscm-ctmper proc far ; far CALL (dword return address)
; save base pointer
; save stack pointer
; [bp+6] holds offset of Mode
; [bp+8] holds offset of Params
; [bp+l 01 holds offset of Flag
; Program execution here

push bp
mov bp,sp

9

POP bP
ret

- mscm-ctmper endp

;restore bp & sp prior to exit
;return

Other
This information is provided for those wishing to create their own drivers:

- mscm-ctmper is declared "PUBLIC" in the .ASM file
mscm-ctmper is declared "extern" in the "C" file
The .ASM file contains the ".model medium" directive (MASM & TASM only)
Add leading underscore "-" to all man-ctmper occurrences in .ASM file
mscm-ctmper is a far call
mscm-dmper must be in a segment fname-TEXT (where fname is the name of the file where
mscm-ctmper resides), else Linker returns an error.

~

B - 4 - CTM-PER Drivers

CTM-PER APPENDIX B - CTM-PER D R N E R S

B.2.3 Large Model
Model:
Passes:
Sequence:
Default
Calling Convention:

Large ("/AL") switch on command line
dword size pointers (offset and DS register)
Arguments Passed Right to Left

Arguments Passed by Value

Example
'C Call:
'C Declaration: extem void mscl_ctmper(ine,int*,ints);
.ASM Subroutine:

mscm-ctmper (&Mode, Params, &Flag);

The following assembly code shows how the driver handles user arguments:

- rnscl-ctrnper proc far ; far CALL (dword return address)
; save base pointer
; save stack pointer
; [bp+6] holds offset of Mode
; [bp+l 01 holds off set of Params
; [bp+l4] holds off set of Flag
; Program execution here

push bp
rnov bp,sp

,

pop bP
ret ;return

;restore bp & sp prior to exit

- rnscl-ctrnper endp

Other
This information is provided for those wishing to create their own drivers:

- mscl_ctmper is declared "PUBLIC' in the .ASM file
mscl-ctmper is declared "extern" in the "C" file
The .ASM file contains the ".model large" directive (MASM & TASM only)
Add leading underscore 'I-" to all mscl-ctmper occurrences in .ASM file
mscl-ctmper is a far call
mxm-ctmper must be in a segment fname-TEXT (where fname is the name of the file where
mscl-ctmper resides), else Linker returns an error.

~~ ~

CTM-PER Drivers - B - 5

APPENDIX B - CTM-PER DRIVERS CTM-PER

8.2.4 Microsoft 'C' Example

#include "stdi0.h"
#include "coni0.h"

extern rnscm-ctrnper(int*,int',int*); r declare driver call

main()
I

int Mode, Flag, Pararns[l5];

P Initialize CTM-PER using Mode 0

Mode = 0;
Pararns[O] = 768;
Pararns[l] = 2;
Params[2] = 3;
Pararns[3] = 0;

r Base Address of Board
P Interrupt level
P DMA level
r No Auto-Calibration

rnscrn-ct mper(&Mode, Pa rams, &Flag) ;
if (Flag !=O)

{

1
printf("\n\nMode 0 Error FLag = O/odn",Flag);

REMAINDER OF CODE

I B - 6 - CTM-PERDn'uers

CTM-PER APPENDIX B - CTM-PER DRNERS

B.3 BORLAND TURBO 'C' (V1.0-2.0)
B.3.1 Small Model

Model:
Passes:
Sequence:
Default
Calling Convention:

Small ("-ms") switch on command line
word size pointers (offset, no DS register)
Arguments Passed Right to Left

Arguments Passed by Value

Example
'C call: tcs-ctmpr (&Mode, Params, &Flag);
'C Declaration: extern void tcs_ctmper(int*,int*,int*);
.ASM Subroutine:

The following assembly code shows how the driver handles user arguments:

- tcs-ctrnper proc near
push bp
rnov bp,sp

; save base pointer
; save stack pointer
; [bp+4] holds offset of Mode
; [bp+6] holds offset of Params
; [bp+8] holds off set of Flag
; Program execution here

pop bP
ret

- tcs-ctrnper endp

;restore bp & sp prior to exit
;return

Other
This information is provided for those wishing to create their own drivers:

- tcs-ctmper is declared "PUBLIC' in the .ASM file
tcs-ctmper is declared "extern" in the "C" file
The .ASM file contains the ".model small" directive (MASM & TASM only)
Add leading underscore "-" to all tcs-ctmper occurrences in .ASM file
tcs-ctmper is a near call
tcs-ctmper must be in a segment fname-TEXT (where fname is the name of the file where
tcs-ctmper resides), else Linker returns an error.

CTM-PER Drivers - B - 7

APPENDIX B - CTM-PER DRNERS CTM-PER

B.3.2 Medium Model
Model:
Passes:
Sequence:
Default
Calling Convention:

Medium ("-mm") switch on command line
word size pointers (offset, no DS register)
Arguments Passed Right to Left

Arguments Passed by Value

Example
'C call: tcm-ctmper (&Mode, Params, &Flag);
'C Declaration: extern void tcm_ctmper(inrc,int*,int*);
.ASM Subroutine:

The following assembly code shows how the driver handles user arguments:

- tcm-ctmper proc far ; Word pointer return address
; save base pointer
; save stack pointer
; [bp+6] holds offset of Mode
; [bp+8] holds offset of Params
; [bp+l 01 holds off set of Flag
; Program execution here

push bp
mov bp,sp

,
t

POP bP
ret ;return

;restore bp & sp prior to exit

- tcm-ct mpe r e ndp . ..

--
Other
This information is provided for those wishing to create their own drivers:

. - tcm-ctmper is declared "PUBLIC" in the .ASM file
tan-ctmper is declared "extem" in the "C" file
The .ASM file contains the ".model medium" directive (MASM & TASM only)
Add leading underscore "-" to all tan-ctrnper occurrences in .ASM file
tan-ctmper is a near call
tan-ctmper must be in a segment fname-TEXT (where fname is the name of the file where
tan-ctmper resides), else Linker returns an error.

8 - 8 - CTM-PERDrivers

CTM-PER APPENDIX B - CTM-PER D R N E R S

B.3.3 Large Model
Model:
Passes:
Sequence:
Default
Calling Convention:

Large ("-ml") switch on command line
dword size pointers (offset, no DS register)
Arguments Passed Right to Left

Arguments Passed by Value

Example
'C call: tcl-ctmper (&Mode, Params, &Flag);
'C Declaration: extern void tcl_ctm~r(int+,inec,int*);
.ASM Subroutine:

The following assembly code shows how the driver handles user arguments:

- tcl-ctmper proc far ; Word pointer return address
push bp
mov bp,sp

; save base pointer
; save stack pointer
; [bp+6] holds offset of Mode
; [bp+l 01 holds off set of Params
; [bp+l4] holds off set of Flag
; Program execution here

POP bP
ret

- tcl-ctmper endp

;restore bp & sp prior to exit
;return

Other
This information is provided for those wishing to create their own drivers:

- tcl-ctmper is declared "PUBLIC" in the .ASM file
td-ctmper is declared "extern" in the "C" file
The .ASM file contains the ".model large" directive (MASM & TASM only)
Add leading underscore "-" to all tcl-ctmper occurrences in .ASM file
Both code & data use dword (segment/offset) pointers
tcl-ctmper must be in a segment fname-TEXT (where fname is the name of the file where
tcl-ctmper resides), else Linker returns an error.

CTM-PER Drivers - B - 9

APPENDLY B - CTM-PER DRIVERS CTM-PER

B.3.4 Turbo 'C' Example
/ .

f TCEXAMPLE-C
f
f USING TURBO C MEDIUM MODEL
f******************t***~**~*~

CTM-PER EXAMPLE OF MODE 0

#include "stdi0.h"
##include "conio.h"

extern tcm-ctrnper(int*,int*,int*);

main()
I

int Mode, Flag, Params[151;

f initialize CTM-PER using Mode 0

Mode = 0;
Params[O] = 768;
Params[l] = 2;
Params[2] = 3;
Params[3] = 0;

f declare driver call

tcm-ctmper(&Mode, Params, &Flag);

if(Flag !=O)
{

1
printf(ln\nMode 0 Error FLag = %d\n",Flag);

REMAINDER OF CODE

f Base Address of Board
P Interrupt level
P DMA level
f No Auto-Calibration

1 B - 10 - CTM-PER Drivers

CTM-PER APPENDDZ B - CTM-PER DRIVERS

B.4 MICROSOFT PASCAL (V3.0-4.0)

i -

8.4.1 Medium Model
Model:
Passes:
Sequence:
Default
Calling Convention:

Medium
word sue pointers (offset address only)
Arguments Passed Left to Right

Arguments Passed by Value

Example
PASCAL Call:
'C' Declaration:

.ASM Subroutine:

Result = mspdmper (Varl, Var2, Var3);
FUNCTION msp-ctmper(VAR Var1:integer;VA.R Var2;VAR Var3:
integer):integer;extemal;

The following assembly code shows how the driver handles user arguments:

msp-ctmper proc far ; far call (dword return address)
push bp
mov bp,sp; save stack pointer

; save base pointer

; [bp+4] holds offset of Mode
; [bp+6] holds offset of Params
; [bp+8] holds offset of Flag
; Program execution here

,
mov ax,n

ret 6

; Return Value for Function In ax register

; return and pop bp & sp values prior to exit
pop bP ,

msp-ctrnper endp

Other
This information is provided for those wishing to create their own drivers:

msp-ctmper is declared "PUBLIC" in the .ASM file
msp-ctmper is declared external in the calling program
msp-ctmper resides in segment-TEXT (default of the .model command)

CTM-PER Drivers - B - 11

APPEND= B - CTM-PER DRIVERS CTM-PER

Parray = array[l ..16] of word;

Var

Params : Parray;
Mode,Flag : integer;
Result : integer;

(* Define Driver Function Call *)

FUNCTION msp-ctmper(VAR Mode:integer;VAR Params:Parray;VAR
F1ag:integer):INTEGER;EXTERN;

(* MAIN *)

BEGIN
Mode:= 0;
Params[l]:= 768;
Params[2]:= 2;
Params[S]:= 3; DMA level *)
Params[4]:= 0;

r Base Address of Board *)
(* Interrupt level *)

r No Auto-Calibration *)
Result:= rnsp-ctmperf Mode,Params,Flag);

. .-

-. .

.-

if(Result c> 0) then
WriteLn('Mode 0 Error # = ',Result);

REMAINDER OF CODE

END.

B - 12 - CTM-PER Drivers

CTM-PER APPEND= B - CTM-PER DRIVERS

B.5 BORLAND TURBO PASCAL (VER 3.0 - 4.0)
Borlands Turbo PASCAL supports a compact- and a large-memory model. The compact model
supports one code segment and multiple data segments. In this model, the code segment is limited to
64K with assembly routine calls being near calls. The data segment is unlimited. The large model
permits unlimited code and data segments with assembly calls and data access being fa r calls.

The program (TINST.EXE) shipped with TURBO PASCAL can change the calling convention so that
you may not know which convention you are using. The default state is "OFF' or compact mode. In
order to ascertain which mode you are using, run the "TINST.EXE" program.

B.5.1 Compact Model
Model:
Passes:
Sequence:
Default
Calling Convention:

Compact (Forces far call "OFF" in TlNST.EXE)
dword size pointers (offset and segment)
Arguments Passed Left to Right

Arguments Passed by Value

Example
PASCAL Call:
PASCAL Declaration:

.ASM Subroutine: (Either Model)

Result = tp-ctmper (Varl, Var2, Var3);
FUNCTION tp-ctmper(VAR Var1:integer;VA.R Var2;VAR Var3:
integer):integer;external;

The following assembly code shows how the driver handles user arguments:

tp-ctmper proc near
push bp
mov bpsp

mov ax,n
POP bP
ret 12

tp-ctmper endp

; near call (single word return address)
; save base pointer
; save stack pointer
; [bp+4] holds offset of VAR3
; [bp+6] holds offset of VAR2
; [bp+8] holds offset of VAR1
; Program execution here .
; return Value for Function In ax register

; return & pop values prior to exit

Other
This information is provided for those wishing to create their own drivers:

Use the $L 'Metacommand to link the object file containing external function tp-ctmper, i.e. ($1
tpctmper} (Link to file tpctmper.obj).
The VAR declarative forces pass by reference (address of variable) in the function declaration.
Default is pass by value (pushing the actual integer value onto the stackhtp-ctmper is declared
external in the calling program along with the type of return value (integer).
Remember that in PASCAL, functions return a value whereas procedures never do.
The .ASM file contains an explicit declaration of the code segment containing tp-ctmper. Turbo
PASCAL handles segments in a primitive manner which is not compatible with the '.model'
statements available in MASM or TASM. The function tp-ctmper must reside in a segment
called 'CODE! Turbo PASCAL will not accept any other segment name. If tp-ctmper is not in

-~ ~~ ~

CTM-PER Drivers - B - 13

APPENDIX B - CTM-PER DRIVERS CTM-PER

segment "the linker returns an "unresolved external" error. The Segment Declaration for "CODE"
in the .ASM file must appear as:

CODE SEGMENT WORD PUBLIC
ASSUME CS:CODE

; CODE GOES HERE

CODE ENDS

B.5.2 Large Model
Model:
Passes:
Sequence:
Default
Calling Convention:

Large (Forces far call "ON in TINST-EXE)
dword size pointers (offset and segment)
Arguments Passed Left to Right

Arguments Passed by Value

Example
PASCALcalk
PASCAL Declaration:

.ASM Subroutine: (Either Model)

Result = tp-ctmper (Varl, Var2, Var3);
FUNCTION tp-ctmper(VAR Var1:integer;VAR Var2;VAR Var3:
integer1:integer;external;

The following assembly code shows how the driver handles user arguments:

tp-ctmper proc near
push bp
mov bp,sp

tp-ctmper

mov ax,n
pop bP
ret 12
endp

;far call (dword return address)
; save base pointer
; save stack pointer
; [bp+4] holds offset of VAR3
; [b w] holds offset of VAR2
; Ibp+l2] holds off set of VARl
; Program execution here .
1

; return Value for Function In ax register

; return & pop values prior to exit

Other
This information is provided for those wishing to create their own drivers:

0 Use the $L 'Metacommand to link the object file containing external function tp-ctmper, i.e. {Sl
tpctmper) (Link to file tpctmper.obj).

0 The VAR declarative forces pass by reference (address of variable) in the function declaration.
Default is pass by value (pushing the actual integer value onto the stackhtp-ctmper is declared
external in the calling program along with the type of return value (integer).

0 Remember that in PASCAL, functions return a value whereas procedures never do.
0 The .ASM file contains an explicit declaration of the code segment containing tp-ctmper.

B - 14 - CTM-PER Drivers

CTM-PER APPENDlX B - CTM-PER DRIVERS

B.5.3 Turbo PASCAL Example
{S$R-}
{$I-}
W+}
{SS+}
{$N-1

1 (**~*~*****~~~*+**********++********+***********+********++++**+

{$L TURBOCTM} (* Link TURBOCTM for CTM-PER *)
{$M 65500,16384,655360)

(+ TPEXAMPLE.PAS *)

(+USING TURBO PASCAL.)
(* CN-PER EXAMPLE OF MODE 0')

1 (*+**~~*~+****~+*+***+****+**************+**+**********+********

Type
Parray = anay[l ..lS] of word;
Var

Params : Parray;
Mode,Flag : integer;
Result : integer;

(+ Define Driver Function Call *)

FUNCTION tp-ctmper(VAR M0de:integer:VAR Params:Parray;VAR F1ag:integer):INTEGER;EXTERN;

(* MAIN *)

BEGIN
Mode:= 0;
Params[l]:= 768;
Params[2]:= 2;
Params[3]:= 3;
Params[4]:= 0 ;

(* Use Mode 0 *)

(+ Interrupt level *)
(+ DMA level +)
(+ No Auto-Calibration *)

Base Address of Board *)

Result:= tp-ctmper(Mode, Params, Flag) ;

if(ResuR C> 0) then
WriteLn('Mode 0 Error # = ',Result);

REMAINDER OF CODE

END.

~~ ~

CTM-PER Drivers - B - 15

CTM-PER APPENDIX B - CTM-PER DRIVERS

B.6.2 FORTRAN INOUT-FOR Function Example
C INOUT.FOR
C Example for using INBYT 8 OUTBYT Functions

program inout
integer'2 port,outdat
integer'l indat

pOrt=O
outdat=O

do 35 i=l,10,1
write (',lo)

10 format('Enter Port Address(Decima1): ')

read(*,l5) port
15 format(i3)

write(',20)
20 format(' Enter data to write(-1 = exit) ')

read(*,25) outdat
25 format(i3)

if(outdat .EQ. -1) go to 45

write (',30) outdat
30 format(' Data Written = ',z)

call outbyt(port,outdat)
indat=inbyt(port)

35 wrlte(*,40) indat
40 format(' Data Read = ',z)
45 end

8.6.3 Integer (Default) Function or Subroutine
The following assembly code shows how the driver handles user arguments:

fctmper proc far ; Word pointer return address
push bp
mov bp,sp

; save base pointer
; save stack pointer
; [bp+6] holds offset of VAR3
; [bp+l 01 holds offset of VAR2
; [bp+l4] holds offset of VARl
; Program execution here

mov ax,n
POP bP
ret

; return Value for Function In ax register

fctmper endp

CTM-PER Drivers - B - 17

CTM-PER APPENDIX B - CTM-PER DRIVERS

B.7 LAHEY PERSONAL FORTRAN (V1.0 & HIGHER)
8.7.1 Large Model (Only Model Available)

Model: Large
Passes:
Sequence:
Default
Calling Convention:

dword size pointers (offset and DS register)
Arguments Passed Left to Right (Opposite MS)

Arguments Passed by Reference

Example
FORTRAN Call:
FORTRAN Declaration:

call lhy-ctmper(Var1, Var2, Var3);
None necessary in FORTRAN source file (Fortran assumes that
undeclared subroutines or functions are external. It is left to the linking
process to provide the required .LIB or .OBJ files. However, the function
name should conform to ANSI FORTRAN rules for integer functions.

.ASM Subroutines:

NOTE: FORTRAN integer functions (those beginning with the letters i, j, or k) return results in
the ax register, whereas non-integer functions reserve 4 bytes on the calling stack for a far
pointer to the returned result. Non-integer functions pass their arguments starting at
location bp+lO after the "push bp" and "mov bp,sp" instructions have been executed.
MetraByte's FORTRAN <--> Assembly routines predominantly use type integer so that
this is not a problem. Using non-integer functions may become a problem when
returning pointers, floating point results, long integers, etc. To avoid undue problems,
use the IMPUCIT INTEGER (A-Z) which causes all Functions and Variables to be
implicitly type integer unless expressly declared otherwise.

Also note that FORTRAN Calls By Reference. This method places the address of the
passed parameters onto the stack at the time of the call to any function or subroutine
rather than the parameters themselves.

8.7.2 Integer (Default) Function or Subroutine
The following assembly code shows how the driver handles user arguments:

Ihy-ctmper proc far ; dword pointer return address
push bp
mov b p m

; save base pointer
; save stack pointer
; [bp+6] holds offset of VAR3
; [bp+lO] holds offset of VAR2
; [bp+14] holds offset of VARl
; Program execution here
I

POP bP
ret

Ihy-ctmper endp

; Restore bp & sp prior to exit

NOTES 1. VAR3 = Return Value of Function.
2. Function lhy-ctmper must be declared as an integer * 2.

I -

CTM-PER Drivers - B - 19

APPEND= B - CTM-PER DRWERS CTM-PER

.-

integer*2 Params(16), Mode, Flag, Ihy-ctmper

Mode = 0;
Params(1) := 768 ;
Params(2):= 2;
Params(3):= 3;
Params(4):= 0;

(* Use Mode 0 *)
r Base Address of Board *)
(* Interrupt level *)
r DMA level *)
(* No Auto-Calibration *)

call Ihy-ctmper(Mode, Params(l), Flag);

if (Flag .NE. 0) then
print *,'Mode 0 Error # =',Flag

REMAINDER OF CODE

B - 20 - CTM-PER Drivers

CTM-PER APPENDIX B - CTM-PER DRIVERS

B 8 INTERPRETED BASIC (GW, COMPAQ, IBM, ETC.)
B.8.1 Medium Model (Only Model Available)

Model: Medium (Far Single Data)
Passes:
Sequence:
Default
Calling Convention:

word size pointers (offset and no DS Register)
Arguments Passed Left to Right

Arguments Passed by Reference

Example
BASIC Call:
BASIC Declaration:

1250 CALL CTMPER(MODE%, PARAMS%(O), FLAG%)
NONE NECESSARY IN BASIC SOURCE CODE. However, a "BLOAD"
(Binary load of .BIN file) of the binary file containing the external
subroutine must be done prior to calling that subroutine.

.ASM Subroutine:

The following assembly code shows how the driver handles user arguments:

Location 0 (Beginning of Code Segment)
jrnp ctrnper

ctrnperproc far ; far call (dword return address)
push bp
mov bpsp

; save base pointer
; save stack pointer
; [bp+6] holds offset of Mode
; [bp+8] holds offset of Params
; [bp+l 01 holds offset of Flag

; Program execution here

POP bP
ret

ctrnper endp

; restore bp & sp prior to exit

NOTE: BASIC requires that the .BIN file containing the callable subroutine "ctmper(Mode%,
Params%(O), Flag%)" reside at location 0 in the .ASM segment or to "imp" (unconditional
jump) to the .BIN file. A BASIC "imp " will always jump to location 0 in the .ASM code
segment. Creation of a .BIN file is accomplished as follows:

1. Create the .ASM Source Code File 'EXAMPLE.ASM
2. Assemble 'EXAMPLE.ASM thus creating 'EXAMPLEOBJ'
3. Link 'EXAMPLE.0BJ' to create 'EXAMPLE.EXE'
4. Run EXE2BIN on 'EXAMPLE.EXE' (DOS Utility) to create 'EXAMPLE.COM'
5. Run MAKEBNEXE (MetraByte Utility) on 'EXAMPLE.COM to create'EXAMPLE.BN

MASM EXAMPLE ;
LINK EXAMPLE ;
EXE2BIN EXAMPLE-EXE DOUIFLE.COM MAKEBIN EXAMPLE.COM

The .BIN file is loaded at a certain location within a specified segment defined by the
"DEF SEG command. This location is then supplied to BASIC via a pointer residing at
locations &h510 and &H511. This allows the user to perform a BLOAD at a known
address in relation to BASIC's starting address. GW-BASIC does not supply this

I - CTM-PER Drivers - B - 21

APPENDIX B - CTM-PER DRZVERS CTM-PER

information so that the user must specify the address when BLOADing the .BIN file.
Notice that the example program arbitrarily uses &H8000 for the BLOAD segment.
Caution should be exerhowever, to avoid overwriting any existing programs loaded in
high memory.

8.8.2 Interpreted BASIC Example Program
100
110
120
1 30
140
150
160
170
180
190
200
21 0
220
225
230
240
250
260
270
280

etc.

,****t**t**ttt**~*~.*****t*~***t*tt********~****~**tt**********.******

'*BAS EXAM P . BAS

'*USING BASIC

SG = &H8000
DEF SEG = SG
BLOAD "CTMPER.BIN", 0
DIM PARAMSYo(15)
MODEYo = O'USE MODE 0
PARAMS%(O) = 768'BASE ADDRESS
PARAMSYo(1) = 2'SET INTERRUPT LEVEL
PARAMSYo(2) = 3'SPECIN DMA LEVEL
PARAMSYo(3) = O"O AUTOCALIBRATION
CALL CTMPER(MODEYo,PARAMS%,FLAGO/o)'CALL TO DRIVER

IF FLAGYO <> 0 THEN PRINT "MODE 0 ERROR #",FLAG%

"CTM-PER EXAMPLE OF MODE 0

~***,**t*tt*tCtt**********t**tt*t**t*+*******************+t**********

I

,
B - 22 - CTM-PER Drivers

.- CTM-PER APPENDIX B - CTM-PER DRNERS

B.9 QUICK BASIC
B.9.1 Medium Model (Only Model Available)

Model:
Passes:
Sequence:
Default
Calling Convention:

Example
BASIC Call:
BASIC Declaration:

Medium (Far Single Data)
word size pointers (offset and no DS Register)
Arguments Passed Left to Right

Arguments Passed by Reference

CALL QBC"ER(MODE%, VARPTR(PARAMS%(O)), FLAG%)
The Declaration tells QuickBASIC that the subroutine expects three
arguments and that the middle argument is to be passed by value.
Remember that BASIC normally passes all arguments by reference
(address). This is the only method for passing an array to a subroutine in
BASIC passing the value of the address of the array in effect passes the
array by reference. To make use of the callable assembly routine, a
".QLB" (Quick Library) file is created out of the original .ASM source file.
Although the format of the subroutine is identical to those used by
interpreted BASIC packages, both the Quick BASIC integrated
development environment (QB.EXE) and the command line complier
(BCEXE) expect the subroutine to be in a specially formatted .QLB
library file. Unlike interpreted BASIC packages, Quick BASIC actually
links to the assembly .QLB library file so it is not necessary to include the
"jmp QBCTMPER" instruction at location 0 (of the source file) as in
interpreted BASIC.

.ASM Subroutine:

The following assembly code shows how the driver handles user arguments:

QBCTMPER proc far ; far call (dword return address)
push bp
rnov bp,sp

; save base pointer
; save stack pointer
; [bp+6] holds offset of Mode
; [bp+8] holds offset of Pararns
; [bp+l 01 holds offset of Flag

; Program execution here

pop bP
ret

; restore bp & sp prior to exit

QBCTMPER endp

NOTE When creating a .QLB file, it is good practice to make a .LIB of the same version as a
backup file. Creation of a .QLB file is accomplished as follows:

1. Create the .ASM Source Code File 'EXAMPLE.ASM'

2. Assemble 'EXAMPLEASM' thus creating 'EXAMPLE.OBJ'

3. Link 'EXAMPLEOBJ' with the "/q" option to create 'EXAMPLE.QLB
MASM EXAMPLE;
LINK /q EXAMPLE ;

CTM-PER Drivers - B - 23

CTM-PER APPENDIXB - CTM-PER DRIVERS

:
:
:
:
:
:
: Call from Microsoft PASCAL
: Call from Microsoft QuickBASIC
: Call from Microsoft FORTRAN
: Call from Lahey FORTRAN

Call from Microsoft C Small Model
Call from Microsoft C Medium Model
Call from Microsoft C Large Model
Call from Turbo C Small Model
Call from Turbo C Medium Model
Call from Turbo C Large Model

Linking the Library "ctmper.lib" to the user program is accomplished after program compilation by
including it in the link line as follows:

link userprog.obj,userprog,,user.iib-ctmper.lib;

userprog.obj is an object module produced by compilation of the user program
userprog should be used for the resultant executable .EXE file
user-lib is any other user library, if applicable

For TurboPASCAL, the entry point is:

: Call from TurboPASCAL program

The user program should have the directive

{$L turboctrn} Link in turboctrn.obj 30

B.10.2 Files Listing for CTM-PER
FILE NAME

FILES.DOC
PCFCTMPER.DOC
README-DOC
MSCDEMO.EXE
TPDEMO.D(E
MSPDEMO.EXE
CTMPER.LIB
TURBOCTM.OBJ

DESCRIF'TION

File Listing
Information concerning mu1 ti-language call structures
REV. 1 Information on CTM-PER
Microsoft "C" example of Mode 3 usage
Turbo PASCAL example of Mode 3 usage
Microsoft PASCAL example of Mode 3 usage
Driver for "C", PASCAL, and FORTRAN
CTM-PER Driver for Turbo PAS

B.10.3 Source C, PASCAL, and FORTRAN Programs
FILE NAME DESCRIPTION

CTMPER. ASM
CTMPERPCF.ASM
MSCDEM0.C
TCDEM0.C
TPDEMOPAS
MSPDEMO.PAS
MSFDEMO-FOR
LHYDEMO.FOR
DEM0G.C
DEM06L.C

Source code CTM-PER Driver (Common Modes)
CTM-PER Source code Language Interface
Microsoft "C" example of Mode 3 usage
Turbo "C" example of Mode 3 usage
Turbo PASCAL example of Mode 3 usage
Microsoft PASCAL example of Mode 3 usage
Microsoft FORTRAN example of Mode 3 usage
Lahey Fortran Example of Mode 3 usage
Microsoft "C" Example of Mode 6
Microsoft "C", Large Model Example of Mode 6

CTM-PER Drivers - B - 25

	w/o:

