
www.keithley.com

A G R E A T E R M E A S U R E O F C O N F I D E N C E

DTx-EZ
Getting Started Manual
DTXEZ-903-01 Rev. A / January 2005

WARRANTY
Keithley Instruments, Inc. warrants this product to be free from defects in material and workmanship for a period of 3 years from
date of shipment.

Keithley Instruments, Inc. warrants the following items for 90 days from the date of shipment: probes, cables, rechargeable batteries,
diskettes, and documentation.

During the warranty period, we will, at our option, either repair or replace any product that proves to be defective.

To exercise this warranty, write or call your local Keithley representative, or contact Keithley headquarters in Cleveland, Ohio.
You will be given prompt assistance and return instructions. Send the product, transportation prepaid, to the indicated service facil-
ity. Repairs will be made and the product returned, transportation prepaid. Repaired or replaced products are warranted for the bal-
ance of the original warranty period, or at least 90 days.

LIMITATION OF WARRANTY

This warranty does not apply to defects resulting from product modification without Keithley’s express written consent, or misuse
of any product or part. This warranty also does not apply to fuses, software, non-rechargeable batteries, damage from battery leak-
age, or problems arising from normal wear or failure to follow instructions.

THIS WARRANTY IS IN LIEU OF ALL OTHER WARRANTIES, EXPRESSED OR IMPLIED, INCLUDING ANY IMPLIED
WARRANTY OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR USE. THE REMEDIES PROVIDED HEREIN
ARE BUYER’S SOLE AND EXCLUSIVE REMEDIES.

NEITHER KEITHLEY INSTRUMENTS, INC. NOR ANY OF ITS EMPLOYEES SHALL BE LIABLE FOR ANY DIRECT,
INDIRECT, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE USE OF ITS INSTRU-
MENTS AND SOFTWARE EVEN IF KEITHLEY INSTRUMENTS, INC., HAS BEEN ADVISED IN ADVANCE OF THE
POSSIBILITY OF SUCH DAMAGES. SUCH EXCLUDED DAMAGES SHALL INCLUDE, BUT ARE NOT LIMITED TO:
COSTS OF REMOVAL AND INSTALLATION, LOSSES SUSTAINED AS THE RESULT OF INJURY TO ANY PERSON,
OR DAMAGE TO PROPERTY.

A G R E A T E R M E A S U R E O F C O N F I D E N C E

Keithley Instruments, Inc.

Corporate Headquarters • 28775 Aurora Road • Cleveland, Ohio 44139
440-248-0400 • Fax: 440-248-6168 • 1-888-KEITHLEY (534-8453) • www.keithley.com

12/04

DTx-EZ
Getting Started Manual

©2005, Keithley Instruments, Inc.
All rights reserved.

First Printing, January 2005
Cleveland, Ohio, U.S.A.

Document Number: DTXEZ-903-01 Rev. A

Manual Print History

The print history shown below lists the printing dates of all Revisions and Addenda created for this manual. The Revi-
sion Level letter increases alphabetically as the manual undergoes subsequent updates. Addenda, which are released
between Revisions, contain important change information that the user should incorporate immediately into the manual.
Addenda are numbered sequentially. When a new Revision is created, all Addenda associated with the previous Revision
of the manual are incorporated into the new Revision of the manual. Each new Revision includes a revised copy of this
print history page.

Revision A (Document Number DTXEZ-903-01A) ... January 2005

All Keithley product names are trademarks or registered trademarks of Keithley Instruments, Inc.
Other brand and product names are trademarks or registered trademarks of their respective holders.

Safety Precautions

5/03
The following safety precautions should be observed before using
this product and any associated instrumentation. Although some in-
struments and accessories would normally be used with non-haz-
ardous voltages, there are situations where hazardous conditions
may be present.

This product is intended for use by qualified personnel who recog-
nize shock hazards and are familiar with the safety precautions re-
quired to avoid possible injury. Read and follow all installation,
operation, and maintenance information carefully before using the
product. Refer to the manual for complete product specifications.

If the product is used in a manner not specified, the protection pro-
vided by the product may be impaired.

The types of product users are:

Responsible body is the individual or group responsible for the use
and maintenance of equipment, for ensuring that the equipment is
operated within its specifications and operating limits, and for en-
suring that operators are adequately trained.

Operators use the product for its intended function. They must be
trained in electrical safety procedures and proper use of the instru-
ment. They must be protected from electric shock and contact with
hazardous live circuits.

Maintenance personnel perform routine procedures on the prod-
uct to keep it operating properly, for example, setting the line volt-
age or replacing consumable materials. Maintenance procedures
are described in the manual. The procedures explicitly state if the
operator may perform them. Otherwise, they should be performed
only by service personnel.

Service personnel are trained to work on live circuits, and perform
safe installations and repairs of products. Only properly trained ser-
vice personnel may perform installation and service procedures.

Keithley products are designed for use with electrical signals that
are rated Measurement Category I and Measurement Category II, as
described in the International Electrotechnical Commission (IEC)
Standard IEC 60664. Most measurement, control, and data I/O sig-
nals are Measurement Category I and must not be directly connect-
ed to mains voltage or to voltage sources with high transient over-
voltages. Measurement Category II connections require protection
for high transient over-voltages often associated with local AC
mains connections. Assume all measurement, control, and data I/O
connections are for connection to Category I sources unless other-
wise marked or described in the Manual.

Exercise extreme caution when a shock hazard is present. Lethal
voltage may be present on cable connector jacks or test fixtures.
The American National Standards Institute (ANSI) states that a
shock hazard exists when voltage levels greater than 30V RMS,
42.4V peak, or 60VDC are present. A good safety practice is to ex-
pect that hazardous voltage is present in any unknown circuit
before measuring.
Operators of this product must be protected from electric shock at
all times. The responsible body must ensure that operators are pre-
vented access and/or insulated from every connection point. In
some cases, connections must be exposed to potential human con-
tact. Product operators in these circumstances must be trained to
protect themselves from the risk of electric shock. If the circuit is
capable of operating at or above 1000 volts, no conductive part of
the circuit may be exposed.

Do not connect switching cards directly to unlimited power circuits.
They are intended to be used with impedance limited sources.
NEVER connect switching cards directly to AC mains. When con-
necting sources to switching cards, install protective devices to limit
fault current and voltage to the card.

Before operating an instrument, make sure the line cord is connect-
ed to a properly grounded power receptacle. Inspect the connecting
cables, test leads, and jumpers for possible wear, cracks, or breaks
before each use.

When installing equipment where access to the main power cord is
restricted, such as rack mounting, a separate main input power dis-
connect device must be provided, in close proximity to the equip-
ment and within easy reach of the operator.

For maximum safety, do not touch the product, test cables, or any
other instruments while power is applied to the circuit under test.
ALWAYS remove power from the entire test system and discharge
any capacitors before: connecting or disconnecting cables or jump-
ers, installing or removing switching cards, or making internal
changes, such as installing or removing jumpers.

Do not touch any object that could provide a current path to the com-
mon side of the circuit under test or power line (earth) ground. Always
make measurements with dry hands while standing on a dry, insulated
surface capable of withstanding the voltage being measured.

The instrument and accessories must be used in accordance with its
specifications and operating instructions or the safety of the equip-
ment may be impaired.

Do not exceed the maximum signal levels of the instruments and ac-
cessories, as defined in the specifications and operating informa-
tion, and as shown on the instrument or test fixture panels, or
switching card.

When fuses are used in a product, replace with same type and rating
for continued protection against fire hazard.

Chassis connections must only be used as shield connections for
measuring circuits, NOT as safety earth ground connections.

If you are using a test fixture, keep the lid closed while power is ap-
plied to the device under test. Safe operation requires the use of a
lid interlock.

If a screw is present, connect it to safety earth ground using the
wire recommended in the user documentation.

The symbol on an instrument indicates that the user should re-
fer to the operating instructions located in the manual.

The symbol on an instrument shows that it can source or mea-
sure 1000 volts or more, including the combined effect of normal
and common mode voltages. Use standard safety precautions to
avoid personal contact with these voltages.

The symbol indicates a connection terminal to the equipment
frame.

The WARNING heading in a manual explains dangers that might
result in personal injury or death. Always read the associated infor-
mation very carefully before performing the indicated procedure.

The CAUTION heading in a manual explains hazards that could
damage the instrument. Such damage may invalidate the warranty.

Instrumentation and accessories shall not be connected to humans.

Before performing any maintenance, disconnect the line cord and
all test cables.

To maintain protection from electric shock and fire, replacement
components in mains circuits, including the power transformer, test
leads, and input jacks, must be purchased from Keithley Instru-
ments. Standard fuses, with applicable national safety approvals,
may be used if the rating and type are the same. Other components
that are not safety related may be purchased from other suppliers as
long as they are equivalent to the original component. (Note that se-
lected parts should be purchased only through Keithley Instruments
to maintain accuracy and functionality of the product.) If you are
unsure about the applicability of a replacement component, call a
Keithley Instruments office for information.

To clean an instrument, use a damp cloth or mild, water based
cleaner. Clean the exterior of the instrument only. Do not apply
cleaner directly to the instrument or allow liquids to enter or spill on
the instrument. Products that consist of a circuit board with no case
or chassis (e.g., data acquisition board for installation into a com-
puter) should never require cleaning if handled according to instruc-
tions. If the board becomes contaminated and operation is affected,
the board should be returned to the factory for proper cleaning/ser-
vicing.

!

Table of Contents

About this Manual . xiii

Intended Audience. xiii

What You Should Learn from this Manual. xiii

Organization of this Manual. xiv

Conventions Used in this Manual . xiv

Related Information . xv

Where to Get Help . xvi

Chapter 1: Overview . 1

What is DTx-EZ?. 2

Conforms to the DT-Open Layers Standard 2

Provides Custom Controls . 2

The Data Acquisition Custom Control 3

The DT Plot Custom Control . 3

Provides Properties, Methods, and Events 4

Provides Function and Subroutine Libraries 5

Follows Object-Oriented Design. 6

Provides Extensive Example Programs 6

Provides Multiple Board Support. 6

Provides High Performance . 7

What You Need. 8

Installation. 9

Adding DTx-EZ Custom Controls to Your Project 10

Adding to a Visual Basic 6.0 Project . 10

Adding to a Visual C++ 6.0 Project. 11

Creating an Application . 12

Using the DTx-EZ Online Help . 13
vii

Contents

viii
Chapter 2: Using the DTx-EZ Examples 15

About the Examples. 16

Running the Examples as Applications 17

Opening the Examples from within Visual Basic 18

Opening the Examples from within Visual C++ 19

A/D Burst Example . 20

DAC Waveform Generator Example . 25

Continuous A/D Example . 29

Single-Value Example . 31

About-Trigger Example . 33

Digital I/O Example . 35

DDE Server and Client Examples . 37

Waveform Generator Example . 39

Continuous FFT Example . 40

ChartIt Example . 41

Scope Example . 42

Chapter 3: Property, Method, Function, and Subroutine
Summary . 45

Introduction. 46

Data Acquisition Custom Control . 47

Information Properties and Methods. 47

Initialization Properties . 57

Configuration Properties and Functions 58

Operation Properties, Methods, Functions, and
Subroutines . 61

Data Management DLLs . 64

Buffer Management Functions and Subroutines 64

Conversion Functions and Subroutines. 67

DT Plot Custom Control . 69

Plot Appearance . 69

Contents
Plot Pre-Display Operational Parameters 70

Grids . 71

Markers. 71

x-Axis Parameters . 72

y-Axis Parameters . 73

Plotting Operation Control Parameters 73

Chapter 4: Programming Flowcharts. 75

Introduction. 76

Single-Value Operations . 77

Continuous Buffered Input Operations . 79

Continuous Buffered Output Operations 81

Event Counting Operations . 83

Frequency Measurement Operations . 85

Pulse Output Operations. 87

Plotting Control Operations . 89

Chapter 5: Software Architecture. 91

Introduction. 92

System Operations . 93

Initializing and Specifying a Board . 93

Specifying a Subsystem . 94

Configuring a Subsystem. 95

Handling Events . 96

Handling Errors. 96

Halting the Operation. 98

Analog and Digital I/O Operations . 99

Data Encoding . 99

Resolution. 100

Channels . 100

Specifying the Channel Type . 101
ix

Contents

x

Specifying a Single Channel . 102

Specifying One or More Channels 102

Specifying the Channel List Size 103

Specifying the Channels in the Channel List 104

Inhibiting Channels in the Channel List 105

Specifying Synchronous Digital I/O Values
in the Channel List . 106

Ranges. 108

Gains . 109

Specifying the Gain for a Single Channel 109

Specifying the Gain for One or More Channels 109

Filters. 111

Data Flow Modes . 112

Single-Value Operations . 112

Continuous Operations . 113

Continuous (Post-Trigger) Mode 114

Continuous Pre-Trigger Mode 115

Continuous About-Trigger Mode. 116

Triggered Scan Mode . 118

Scan-Per-Trigger Mode . 119

Internal Retrigger Mode . 120

Retrigger Extra Mode . 121

Clock Sources. 122

Internal Clock Source . 122

External Clock Source . 123

Extra Clock Source . 124

Trigger Sources . 124

Software (Internal) Trigger Source 125

External Digital (TTL) Trigger Source 125

External Analog Threshold (Positive) Trigger Source 126

Contents
External Analog Threshold (Negative) Trigger
Source . 126

Analog Event Trigger Source . 127

Digital Event Trigger Source . 127

Timer Event Trigger Source . 127

Extra Trigger Source . 127

Buffers . 128

Ready Queue . 128

Done Queue . 131

Buffer and Queue Management 133

Buffer Wrap Modes . 134

DMA Resources . 135

Counter/Timer Operations. 137

Counter/Timer Operation Mode . 138

Event Counting . 138

Frequency Measurement . 140

Using the Windows Timer. 140

Using a Pulse of a Known Duration 142

Rate Generation . 144

One-Shot . 148

Repetitive One-Shot . 151

C/T Clock Sources . 154

Internal C/T Clock . 155

External C/T Clock . 155

Internally Cascaded Clock . 156

Extra C/T Clock Source . 157

Gate Types . 157

Software Gate Type . 158

High-Level Gate Type . 158

Low-Level Gate Type . 158
xi

Contents

xii
Low-Edge Gate Type . 159

High-Edge Gate Type . 159

Any Level Gate Type . 159

High-Level, Debounced Gate Type 160

Low-Level, Debounced Gate Type 160

High-Edge, Debounced Gate Type 160

Low-Edge, Debounced Gate Type 161

Level, Debounced Gate Type . 161

Pulse Output Types and Duty Cycles 162

Simultaneous Operations . 164

Plot Control Operations. 166

Plotting Data . 166

Data Identification Properties . 166

Plotting Mechanics Properties . 167

Appearance . 167

Stripchart Mode . 168

Specifying a Grid. 168

Specifying Markers . 169

Appendix A: Flowcharts for Substeps 171

Chapter 6: Product Support . 191

General Checklist . 192

Service and Support . 193

Index . 195

About this Manual
This manual describes how to get started using DTx-EZ™ to develop
application programs for data acquisition boards that conform to the
DT-Open LayersTM standard.

Intended Audience

This document is intended for engineers, scientists, technicians, or
others responsible for developing application programs using the
Microsoft Visual Basic™ or Visual C++™ compiler to perform data
acquisition operations.

It is assumed that you are a proficient programmer, that you are
experienced programming in the Windows® 98, Windows NT,
Windows Me (Millennium Edition), or Windows 2000 operating
environment on the IBM PC or compatible computer platform, that
you have familiarity with data acquisition principles, and that you
have clearly defined your requirements.

What You Should Learn from this Manual

This manual provides installation instructions, summarizes the
functions provided by the DTx-EZ, and describes how to use the
properties, methods, functions, and subroutines to develop a data
acquisition program. Using this manual, you should be able to
successfully install the DTx-EZ software and get started writing an
application program for data acquisition.

This manual is intended to be used with the online help for the
DTx-EZ, which you can find in the same program group as the
DTx-EZ software. The online help for the DTx-EZ contains all of the
specific reference information for each of the properties, methods,
functions, subroutines, error codes, and Windows messages (events).
xiii

About this Manual

xiv
Organization of this Manual

This manual is organized as follows:

• Chapter 1, “Overview,” provides an overview of DTx-EZ.

• Chapter 2, “Using the DTx-EZ Examples,” describes how to use
the example programs provided with DTx-EZ.

• Chapter 3, “Property, Method, Function, and Subroutine
Summary,” summarizes the properties, methods, functions, and
subroutines provided with DTx-EZ.

• Chapter 4, “Programming Flowcharts,” provides programming
flowcharts for using the properties, methods, functions, and
subroutines provided with DTx-EZ.

• Chapter 5, “Software Architecture,” describes the architecture
and concepts of DTx-EZ software.

• Chapter 6, “Product Support,” describes how to get help if you
have trouble using DTx-EZ.

• Appendix A, “Flowcharts for Substeps,” provides additional
flowcharts for performing substeps required for an operation.

• An index completes this document.

Conventions Used in this Manual

The following conventions are used in this manual:

• Notes provide useful information that requires special emphasis,
cautions provide information to help you avoid losing data or
damaging your equipment, and warnings provide information to
help you avoid catastrophic damage to yourself or your
equipment.

• Items that you select or type are shown in bold. Property,
method, function, and subroutine names also appear in bold.

• Code fragments appear in courier font.

About this Manual
• In syntax, items inside square brackets are optional.

• In syntax, a vertical bar between braces indicates that you must
choose between two or more items. You must choose an item
unless all of the items are also enclosed in curly brackets. For
example, { True | False } indicates that you must select one of
these choices.

• When navigating the screens, an instruction such as Configure >
Board means to select “Board” from the drop-down menu under
“Configure.”

Related Information

Refer to the following documentation for more information on using
DTx-EZ:

• DTx-EZ Online Help. This Windows help file is located in the
same program group as the DTx-EZ software and contains all of
the specific reference information for each of the properties,
methods, subroutines, functions, error codes, and Windows
messages (events) provided by DTx-EZ. Refer to page 13 for
information on how to launch this help file.

• Device Driver documentation for your board. This
documentation describes the capabilities supported by the device
driver for your board. Refer to this documentation as you
develop application programs using DTx-EZ.

• User manual for your data acquisition board. This manual
describes the capabilities of the hardware as well as how to set up
and install your board.

• For Visual Basic and Visual C++ programmers, see the online
help in your programming environment.

• Windows programming documentation.
xv

About this Manual

xvi
Where to Get Help

Should you run into problems installing or using DTx-EZ, the
Keithley Technical Support Department is available to provide
technical assistance.

1
Overview

What is DTx-EZ?. 2

What You Need. 8

Installation. 9

Adding DTx-EZ Custom Controls to Your Project 10

Creating an Application . 12

Using the DTx-EZ Online Help . 13
1

Chapter 1

2

What is DTx-EZ?
DTx-EZ is a set of Object-Linking and Embedding (OLE) controls that
facilitate rapid data acquisition application development in Visual
Basic and Visual C++ environments.

DTx-EZ supplies the programming tools to transform Visual Basic
and Visual C++ into a powerful data acquisition application
development environment. With DTx-EZ, you can quickly develop
applications with analog and digital I/O, real-time data display, and
a graphical user interface (GUI), while operating in a true Windows
environment.

Conforms to the DT-Open Layers Standard

DTx-EZ is fully compatible with DT-Open Layers.

DT-Open Layers is a set of open standards for developing integrated,
modular software under Microsoft Windows. Because it is modular
and uses Windows DLLs, DT-Open Layers is easily expanded to
support new, more powerful hardware devices without re-linking or
rebuilding applications. Therefore, you do not need to rewrite your
code when adding new data acquisition boards that have DT-Open
Layers-compliant device drivers. DT-Open Layers protects your
software investment now and in the future.

Provides Custom Controls

The DTx-EZ provides two custom controls:

• Data Acquisition Custom Control, and

• Plotting Custom Control.

The following subsections describe these controls.

Overview

1

1

1

1

1

1

1

1

1

The Data Acquisition Custom Control

The Data Acquisition Custom Control facilitates performing data
acquisition functions. Each copy of the Data Acquisition Custom
Control operates on a single subsystem of the supported board at a
time. However, Visual Basic and Visual C++ lets you use multiple
copies of this control operating simultaneously, controlling different
subsystems on the same board or even on different boards.

DTx-EZ determines the capabilities of each subsystem for your data
acquisition board. The board’s supported capabilities are listed in the
custom control’s Properties window. You can control the subsystem's
operation by manipulating the subsystem's properties. You can
change the properties at design time in the Properties window or at
run time using simple Visual Basic or Visual C++ code.

Each subsystem may have multiple channels. For example, the A/D
subsystem on the DataAcq-EZ boards has 16 available channels. To
access multiple channels, you must set up a list of channels you want
to sample. The DataAcq-EZ boards also provide programmable
gains. To program the gains on the channels, you need to set up a
gain list to accompany the channel list.

The DT Plot Custom Control

The DT Plot Custom Control is a high-speed plotting control, useful
for plotting fixed- or floating-point data in your Visual Basic or Visual
C++ application. Since the DT Plot Custom Control works directly
with DT-Open Layers hBuf data, the need to copy the buffer to an
array is eliminated.
3

Chapter 1

4

You fill a buffer with data you want to plot and assign it to the plot’s
Buffer property. You can plot from 1 to 16 channels of data at a time,
all with different colors. You may also choose from a variety of line
styles and the following features:

• x and y grid lines that you can set to automatically scale to your
data or to remain at fixed spacing intervals.

• x and y markers that can be used to indicate a zoom-in section of
the data or to determine the data value at that position.

• A stripchart mode so you can plot many buffers of
rapidly-changing, continuous data and see all of them on the
plot’s display.

• A single-point feature when in strip charting mode that allows
you to add one point of data at a time to the display.

At design time, the DT Plot Custom Control displays a
randomly-generated data plot that shows you what your plots will
look like. Whenever you change a property, the plot immediately
displays the effects of your changes. For some properties, you can
enter new data for the plot at either design time or run time.

Provides Properties, Methods, and Events

The Data Acquisition and DT Plot Custom Controls have unique
properties, methods, and events, described as follows:

• Properties represent the variables that allow you to configure the
data acquisition or plotting operation. Many read/write
properties are accessible in the Properties window at design time
or at runtime. Some read/write properties are lists that may be
accessed through the control’s custom property pages. Other
properties are read-only; you can access them only at runtime.
These read-only properties represent variables that you can use
to determine data acquisition or plotting capabilities.

Overview

1

1

1

1

1

1

1

1

1

Note: Each Data Acquisition Custom Control can be associated
with a single subsystem at a time. This means that you must first
select the board and subsystem you want to use before you can configure
the subsystem's properties. When a custom control is created, its
properties are set to the default settings. You must modify the
properties if you want to change their values from the default
settings.

• Methods are tools that are used in the Visual Basic or Visual C++
code to provide runtime control of data acquisition operations;
no methods are associated with the DT Plot Custom Control.

• Events have procedures that execute code when the specified
data acquisition event occurs during runtime in the case of the
Data Acquisition Custom Control or when the specified mouse or
keyboard event occurs during runtime in the case of the DT Plot
Custom Control. Most OLE custom control events are based on
user interactions.

Note, however, that the Data Acquisition Custom Control events
are based on specific data acquisition events that could occur
within your application. Most of the Data Acquisition Custom
Control events are used for either continuous acquisition
operation or for error tracking.

All of the DT Plot Custom Control events are standard Microsoft
events. Refer to your Visual Basic or Visual C++ online help for
more information about them.

Provides Function and Subroutine Libraries

In addition to custom controls, DTx-EZ provides a library of
DT-Open Layers functions and subroutines for Visual Basic and for
Visual C++. These libraries add facilities for managing buffers,
simultaneously starting multiple subsystems, and performing FFT
analysis.
5

Chapter 1

6

Follows Object-Oriented Design

For easy programming, DTx-EZ’s Application Programming
Interface (API) emphasizes polymorphism — it uses nearly identical
interface functions to communicate with each type of data acquisition
subsystem: analog input (A/D), analog output (D/A), digital input
(DIN), digital output (DOUT), and counter/timer (C/T).

The features provided by each supported data acquisition board
vary; for a complete list of capabilities supported by your board, refer
to board's driver documentation.

The API provides a full set of functions to query and set all possible
device capabilities. The library hides device details and presents a
consistent interface to each subsystem.

Provides Extensive Example Programs

To get your application up and running quickly, a comprehensive set
of Visual Basic and Visual C++ example programs is provided. You
can use these examples as tutorials to learn how DTx-EZ operates, or
you can modify one or more examples to form the basis of your own
custom data acquisition application. Source code is included, so you
can customize the examples to complete your Visual Basic or Visual
C++ application.

Provides Multiple Board Support

The DTx-EZ is hardware-independent. You can add support for new
boards without altering or recompiling code at the application level
simply by adding a new DT-Open Layers device driver. You install
the device driver separately (in the Windows environment); refer to
your board and/or device driver documentation for more
information on installing device drivers.

The library functions are designed to fully support all board features.

Overview

1

1

1

1

1

1

1

1

1

Provides High Performance

DTx-EZ was designed with an intimate knowledge of the Windows
operating environment and the IBM PC computer system. As a result,
it takes unique advantage of the Windows architecture to achieve
maximum performance. By using sophisticated software buffering
(part of the DT-Open Layers standard), and the PCI bus, USB bus, or
DMA capabilities of the hardware, the software can achieve
continuous throughput to or from memory at greater than 1 MHz.
7

Chapter 1

8

What You Need
To use DTx-EZ, you need the following:

• Pentium or higher-based PC with a CD-ROM drive and a
minimum of 32 Mbytes of RAM;

• One or more supported data acquisition boards;

• Microsoft Windows 2000 or XP.

• Microsoft Visual C++ 6.0 or Microsoft Visual Basic 6.0.

Overview

1

1

1

1

1

1

1

1

1

Installation
DTx-EZ is installed automatically when you install the device driver
for the module. Refer to the getting started manual for your module
for more information.
9

Chapter 1

10
Adding DTx-EZ Custom Controls to Your
Project

The following subsections describe how to add DTx-EZ Custom
Controls to:

• A Visual Basic 6.0 project (this page),

• A Visual C++ 6.0 project (page 11).

Adding to a Visual Basic 6.0 Project

Before you begin using the DT-EZ, add the DTx-EZ Data Acquisition
and DT Plotting Custom Controls and definition files. Add the files
DTACQ32.OCX, DTPLOT32.OCX, OLMEMDEFS.BAS,
OLDADEFS.BAS and OLDSPDEFS.BAS to your project file as follows
from Visual Basic 6.0:

1. Select Project > Components.
The Components dialog box appears.

2. Click the Controls tab.

3. Click DTAcq32 OLE Custom Control module and/or DTPlot32
OLE Custom Control module, then click OK.

4. Choose Project > Add Module.
The Add Module dialog box appears.

5. Select the Existing tab.

6. Select OLMEMDEFS.BAS, OLDEFS.BAS, and/or
OLDSPDEFS.BAS from the \DTx-EZ\INCLUDE directory, and
click Open.

Overview

1

1

1

1

1

1

1

1

1

When the DTx-EZ custom controls are loaded, the DTACQ32 and
DTPLOT32 icons appear in the Toolbox as follows:

Adding to a Visual C++ 6.0 Project

Before you begin using the DT-EZ, add the DTx-EZ Data Acquisition
and DT Plotting Custom Controls.

1. Start Windows 95 and launch Microsoft Visual C++ 6.0.

2. Create a new MFC project using the application wizard.
Ensure you add support for ActiveX controls in Step 2.

3. Select Project > Add to Project > Components and Controls.
The “Component and Controls Gallery” appears.

4. Double-click the Registered ActiveX Controls folder.

5. Select the DTPlot32 Control and click Insert.
The program prompts you to insert the component and to confirm the
creation of a wrapper class for accessing the control through Visual
C++.

6. Repeat step 5 for the DTAcq32 Control.
11

Chapter 1

12
Creating an Application
You can use the Data Acquisition Custom Control and DT Plot
Custom Control just like other ActiveX or OLE custom controls to
integrate data acquisition into your Windows application. Create
your application as follows:

1. Add the Data Acquisition or DT Plot Custom Control to your
form by selecting it from the toolbox and placing it on your form.
For information on adding a DTx-EZ Custom Control to a project, see
page 10. Once added to your project, you can select the DTx-EZ
Custom Control from the toolbox.

2. Configure your control object for the desired function by setting
values in the Properties window.
Refer to Chapter 5, “Software Architecture,” for more information.
Context-sensitive online help is available for the DTx-EZ Custom
Controls as well. To access online help, simply press F1, and
information related to the current operation appears on the screen.

3. Add code, as needed, using the Code window to

− Respond to user actions,

− Change the properties at run time, or

− Control data acquisition operations.

Refer to Chapter 2, “Using the DTx-EZ Examples,” for more
information.

4. When you are ready to run your application outside your
development environment, create an executable file (.EXE) by
choosing Make EXE file from the File menu.

Note: When you create and distribute applications that use the
Data Acquisition Custom Control and DT Plot Custom Control,
review the licensing material included in the DTx-EZ online help.

Overview

1

1

1

1

1

1

1

1

1

Using the DTx-EZ Online Help
This manual is intended to be used with the online help for DTx-EZ.
The online help contains all of the specific reference information for
each of the functions, error codes, and Windows messages not
included in this manual.

To launch this online help, double-click the DTx-EZ help icon in the
KUSB Series program group or folder.
13

Chapter 1

14

2
Using the DTx-EZ Examples

About the Examples. 16

A/D Burst Example . 20

DAC Waveform Generator Example . 25

Continuous A/D Example . 29

Single-Value Example . 31

About-Trigger Example . 33

Digital I/O Example . 35

DDE Server and Client Examples . 37

Waveform Generator Example . 39

Continuous FFT Example . 40

ChartIt Example . 41

Scope Example . 42
15

Chapter 2

16
About the Examples
DTx-EZ provides the software tools to create Visual Basic and
Visual C++ data acquisition applications quickly and easily. A
comprehensive set of examples shows you how to use DTx-EZ's Data
Acquisition and DT Plotting Custom Controls in the Visual Basic or
Visual C++ environment. If your needs are simple, choose one of the
example programs; DTx-EZ will perform data acquisition right out of
the box. Since all example source code is included, you can easily
modify the examples to suit your needs, combine two or more
examples, or extend the examples with your own code.

The following examples are provided:

• A/D Burst Example − Acquires data to disk; demonstrates
channel-gain list setup (page 20).

• DAC Waveform Generator Example − Generates sine, square, or
triangle output waveforms. It also demonstrates “zooming in”
using the plot control (page 25).

• Continuous A/D Example − Continuously samples and displays
multiple data points (page 29).

• Single Value Example − Acquires a single value from an A/D
subsystem; outputs a single value to a D/A subsystem (page 31).

• About-Trigger Example − Acquires data to disk from
initialization until the trigger event occurs and then for one
second after (page 33).

• Digital I/O Example − Controls digital I/O lines (page 35).

• DDE Server and Client Example − Moves data to or from other
applications using Window's Dynamic Data Exchange (page 37).

• Waveform Generator Example − Demonstrates the use of
counter/timers to generate square waves (page 39).

• Continuous FFT Example − Computes and displays FFTs of the
input data (page 40).

Using the DTx-EZ Examples

2

2

2

2

2

2

2

2

2

• ChartIt Example − Demonstrates how to use the stripchart mode
to display single points of data (page 41).

• Scope Example − Generates and displays analog input channels
including typical oscilloscope functions (page 42).

This chapter explains how to use each example. To see actual signals
being acquired, connect a signal source to the analog inputs of your
data acquisition board. (You can choose to run the examples without
connecting a signal source to the board.)

You can run the examples as applications. However, if you wish to
view or modify the source code for the examples, open the associated
.VBP files from within Visual Basic (see page 18), or open the
associated .MDP files from within Visual C++ (see page 19).

Note: Before running the examples, make sure the device driver for
your data acquisition board has been installed.

Running the Examples as Applications

If you wish to use them as tutorials to learn how DTx-EZ operates,
you can run the examples as applications as follows:

1. Start your operating system.

2. In the start menu, select the icon for the desired example from the
DTx-EZ program group.
17

Chapter 2

18
Opening the Examples from within Visual Basic

To customize the DTx-EZ example code for your own application,
you must open the example’s build file, .VBP, from within Visual
Basic as follows:

1. Start your operating system, and start Visual Basic.

2. Choose File > Open Project.

3. Select the examples from the directory DTx-EZ\examples\vb.
(The examples have a .VBP extension.)

4. Select Run > Start to run each example.

Table 1: Visual Basic Example Programs and Their .VBP Files

Example Directory

A/D Burst \adburst\adburst.vbp

DAC Waveform \dacwave\dacwave.vbp

Continuous A/D \contdisp\contdisp.vbp

Single value \sv\sv.vbp

Digital I/O \dio\dio.vbp

DDE Server \dde\server.vbp

DDE Client \dde\client.vbp

Wave Generator \wavegen\wavegen.vbp

About-Trigger \abouttrigger\abouttrigger.vbp

Continuous FFT \contfft\contfft.vbp

ChartIt \chartit\chartit.vbp

Scope \scope\scope.vbp

Using the DTx-EZ Examples

2

2

2

2

2

2

2

2

2

Opening the Examples from within Visual C++

To customize the DTx-EZ example code for your own application,
you must open the example’s build file, .MDP, from within
Visual C++ as follows:

1. Start your operating system, and start Visual C++.

2. Choose File > Open Workspace.

3. Select the examples from the directory DTx-EZ\examples\cpp.
(The examples have a .MDP extension.)

4. Select Run > Start to run each example.

Table 2: Visual C++ Example Programs and Their .MDP Files

Example Directory

A/D Burst \adburst\adburst.mdp

DAC Waveform \dacwave\dacwave.mdp

Continuous A/D \contdisp\contdisp.mdp

Single value \sv\sv.mdp

Digital I/O \dio\dio.mdp

DDE Server \dde\server\server.mdp

DDE Client \dde\client\client.mdp

Wave Generator \wavegen\wavegen.mdp

About-Trigger \abouttrigger\abouttrigger.mdp

Continuous FFT \contfft\contfft.mdp

ChartIt \chartit\chartit.mdp

Scope \scope\scope.mdp
19

Chapter 2

20
A/D Burst Example
This example (adburst.vbp or adburst.mdp) samples multiple analog
input channels and places the resulting data in a disk file for
archiving and post-acquisition analysis. This example also
demonstrates how to configure a channel-gain list and the A/D
subsystem for a data acquisition board. You could use this example
once your application is debugged to store actual data values.

When you run the example, the “Select Board” dialog box appears.
The A/D Buffer To File screen is shown in Figure 1.

Figure 1: A/D Buffer To File Screen

Follow these steps:

1. Select Configure > Board to select a board from the list.

2. Select Configure > CGL to set up your board's channel-gain list.
The Channel/Gain List Setup dialog box, shown in Figure 2, appears.

Using the DTx-EZ Examples

2

2

2

2

2

2

2

2

2

Figure 2: Setting Up a Channel-Gain List

During data acquisition, the channel-gain list automatically
selects channel and gain values without compromising
throughput. You can configure the list with channel numbers and
associated gains.

To set up the channel-gain list, perform the following steps:

a. Select the list size, and then choose channel and gain values
for each entry in the list.

b. After changing each item, click Set Entry to confirm the
setting.

c. When you have completed the setup, click Done to return to
the main menu.
21

Chapter 2

22
The screen shown in Figure 2 illustrates a 512-entry channel-gain
list that repeatedly scans channels 0 through 5 using a gain of 1
for channels 0-2 and a gain of 8 for channels 3-5.

3. Select Configure > Input to configure the analog input settings
for your data acquisition board.
The Input Options dialog box, shown in Figure 3, appears.

Figure 3: Configure the Analog Input Settings

Using the DTx-EZ Examples

2

2

2

2

2

2

2

2

2

Any settings that are not software-configurable for your board
are inactive. The available settings are as follows:

− Interface Mode — allows you to select either single-ended or
differential inputs. Most data acquisition boards can be
configured for either 16 single-ended or 8 differential input
channels. Single-ended inputs share a common ground.
Differential inputs use a separate ground for each channel
(which halves the channel capacity). Differential inputs can
improve accuracy where long cables, low-level input ranges
(< 1 V full-scale), or high resolution converters (> 12 bits) are
used.

Note: If your board uses an onboard jumper to set the input
mode, do not change this setting until you remove the board and
change the jumper configuration to correspond with the new
selection. If your board provides software-configurable input
mode selection, you do not need to change any jumper settings.

− Clock Source and Trigger Source — You can select either an
internal or an external clock source and trigger source. Clock
frequency sources and triggers help you synchronize data
conversions with off-board events. External frequency sources
can also be used to produce clock frequencies that cannot be
achieved with the board’s onboard oscillator.

− Range — allows you to select the input voltage range. Ranges
can be unipolar or bipolar.

− Encoding — lets you choose the input data encoding format.
23

Chapter 2

24
Note: Because older boards use an onboard jumper to set the
input voltage range and data encoding format, these settings
cannot be changed until you remove the board and change the
jumper configuration to correspond with the new selections. (If
your board provides software-configurable settings, you do not
need to change any jumper settings.)

− Triggered Scan — You can enable this mode on boards that
support this feature. (Refer to your board’s driver
documentation to determine if it is supported on your board.)
Triggered scan mode performs scans through the
channel-gain list, where each scan is initiated by the onboard
trigger. On some boards, the interval between the scans is
programmable.

4. Select the desired options and click OK.

5. When you have completed the configuration, select Start! to
begin acquiring data.
Note that the menu name changes to Stop! until the operation is done.
You can choose Stop! to halt the operation at any time.

When the acquisition is complete, a message indicates that a
buffer of data was collected and where the file was created.

Using the DTx-EZ Examples

2

2

2

2

2

2

2

2

2

DAC Waveform Generator Example
The DAC (digital-to-analog converter) waveform generator example
(dacwave.vbp or dacwave.mdp) uses the D/A subsystem to
continuously output a sine wave, square wave, or triangle wave. You
can specify waveform frequency and the board on which to output
the signal. You could use this example to supply a test signal for
circuit evaluation or a stimulus to your experiment.

When you run the example, the Select Board dialog box appears.
Choose the desired board from the list and click OK. The DAC
Waveform Generator screen, shown in Figure 4, appears.

Figure 4: DAC Waveform Generator Screen
25

Chapter 2

26
Follow these steps:

1. Select Configure > Board to choose a data acquisition board from
the list.

2. Select Configure > Output to configure the analog output
settings for your board.
The Output Options dialog box, shown in Figure 5, appears. Refer to
the A/D Burst example in the previous section for information on these
settings.

Figure 5: Configure the Analog Output Settings

3. Select Configure > Acquisition to configure your output
waveform.
The Acquisition Options dialog box, shown in Figure 6, appears.

Using the DTx-EZ Examples

2

2

2

2

2

2

2

2

2

Figure 6: Configure Output Waveform

− Click Use DMA to enable direct memory access (DMA) for
data transfer operations. (For optimum speed, DMA should
be enabled on boards that support it.)

− Select the type of waveform you wish to produce, and then
select the waveform’s peak voltage, the wave frequency, and
the board’s sample frequency.

4. When you've completed the setup, click OK.

5. Select Start! to begin outputting a continuous waveform.
Note that the name changes to Stop! until the operation completes. You
can choose Stop! to halt the operation at any time.

6. Select ViewOutput! to display the waveform on your screen.
Figure 7 shows a typical sine wave.
27

Chapter 2

28
Figure 7: Displaying a Waveform

You can zoom in on a portion of the data by right-clicking on the
plot and then dragging the red dotted selection bars.
Double-click the left mouse button to zoom out again.

Using the DTx-EZ Examples

2

2

2

2

2

2

2

2

2

Continuous A/D Example
This example (contdisp.vbp or contdisp.mdp) continuously samples
a single analog input channel to memory and plots the data on screen
using pre-defined buffer and frequency settings. You could use this
example to detect data trends by immediately viewing the effect of
changing stimulus.

Click Start to begin the acquisition; click Stop to end it. Figure 8
shows a typical acquisition.

Figure 8: Continuous A/D Display
29

Chapter 2

30
The Y-axis setting (volts) corresponds to the minimum and maximum
voltage settings for the selected board. The X-axis setting (seconds) is
determined by the data buffer size and selected sampling frequency.
(You can modify these properties within the example’s form_load()
event subroutine.)

Using the DTx-EZ Examples

2

2

2

2

2

2

2

2

2

Single-Value Example
This example (sv.vbp or sv.mdp) acquires a single sample from a
single analog input channel and outputs a single value on the DAC
you specify. You can use this example to check for correct
configuration, to monitor slowly-changing inputs, or to provide a
constant or slowly-varying voltage output.

When you run it, the example prompts you for the board’s name.
After the board is located, a display allows you to monitor inputs and
generate outputs. A single value is continuously input and displayed
in a text box and on the scroll bar, as shown in Figure 9.

Figure 9: Monitoring Inputs and Outputs for a Single-Value Operation
31

Chapter 2

32
A single value can also be output continuously. You can change the
output voltage setting by entering a new value in the text box or by
adjusting the scroll bar.

Note: The actual read and write rate is set (to 100 ms) by the timer
control. The clock timer control runs from the system clock.

Using the DTx-EZ Examples

2

2

2

2

2

2

2

2

2

About-Trigger Example
This example (abouttrig.vbp or abouttrig.mdp) samples a single
analog input channel to memory and plots the data on screen using
pre-defined buffer and frequency settings until the main trigger
event. After the trigger, the example samples the channel for one
second and then stops. You could use this example to collect data
before and after a specific event (trigger) occurs. In this example, the
marker is used to show the first point collected after the trigger event,
so you can see the triggering point.

This example also demonstrates using the stripchart mode to plot
entire buffers of data rather than single points, one at a time.

Click Start to begin the acquisition; click Stop to end it. Figure 10
shows a typical acquisition.

Figure 10: About-Trigger A/D Display
33

Chapter 2

34
The y-axis setting (volts) corresponds to the minimum and maximum
voltage settings for the selected board. The x-axis setting (number of
samples) is determined by the data buffer size and selected sampling
frequency. (You can modify these properties within the example’s
form_load() event subroutine.)

Using the DTx-EZ Examples

2

2

2

2

2

2

2

2

2

Digital I/O Example
This example (dio.vbp or dio.mdp) demonstrates the use of a single
value operation with DIN and DOUT subsystems. You could use this
example to interface with sensors and control devices that use digital
signals.

After selecting the board, the screen shown in Figure 11 appears.

Figure 11: Monitoring Digital I/O Operations

The “light bulbs” represent the digital input and output data. A timer
control reads the digital input data at regular intervals. The light
bulbs turn “on” and “off” to indicate the value read from the DIN
subsystem.

You can change the digital output value by clicking the light bulbs in
the bottom half of the display. As you turn them on and off, the new
values are written to the DOUT subsystem.
35

Chapter 2

36
Note: The actual read and write rate is set (to 100 ms) by the timer
control. The timer control runs from the system clock.

Using the DTx-EZ Examples

2

2

2

2

2

2

2

2

2

DDE Server and Client Examples
The DDE server and client examples demonstrate the use of
Windows Dynamic Data Exchange (DDE) between applications. In
Visual Basic, these examples (server.vbp and client.vbp) reside in the
same directory; in Visual C++, these examples (server.mdp and
client.mdp) reside in their own directories. In either platform, the two
examples are designed to be used together. These examples allow you
to send acquired voltage values to other applications for analysis and
display and to move voltage values calculated in another application
to DTx-EZ for conversion and output. You could use this example for
report generation and data analysis or data generation using any
Windows spreadsheet, word processing, or analysis package.

For more information on DDE operation, refer to your development
environment’s programming guide.

Open the Server and Client examples to display the forms shown in
Figure 12.

Figure 12: DDE Forms
37

Chapter 2

38
These forms allow you to share data between the two examples. The
Server represents the A/D subsystem and the Client represents the
D/A subsystem. The Server continuously updates the input data
values in the scroll bar and text box.

Follow these steps:

1. Click Copy Link on the Server form to copy the data link to the
clipboard.

2. Click Paste Link on the Client form to continuously output data
from the clipboard and to display it in the Client form’s scroll bar
and text box.
Note that the Paste Link command has toggled to Close DDE Link.

3. Click Close DDE Link to stop the data exchange into the D/A
subsystem.

Using the DTx-EZ Examples

2

2

2

2

2

2

2

2

2

Waveform Generator Example
This example (wavegen.vbp or wavegen.mdp) generates a square
wave from counter/timer 0. Set the frequency by entering the value
(in hertz) in the text box at runtime, as shown in Figure 13.

Figure 13: Setting the Waveform Frequency
39

Chapter 2

40
Continuous FFT Example
This example (contfft.vbp or contfft.mdp) acquires data from a single
analog input channel, performs frequency analysis on the data using
an FFT (Fast Fourier Transform), and plots the result of the analysis.
You could use this example for vibration analysis, to calculate
transfer functions, or to monitor the frequency content of an audio
signal.

Click Start to begin the FFT; click Stop to end it. A typical FFT display
is shown in Figure 14.

Figure 14: FFT Display

Using the DTx-EZ Examples

2

2

2

2

2

2

2

2

2

ChartIt Example
This example (chartit.vbp or chartit.mdp) acquires data using the
GetSingleValue method and plots the data using the plotting
control’s SinglePoint property in stripchart mode.

Click Start to begin sampling. A timer control samples and plots each
data point every 500 ms. Click Stop to halt sampling. A typical
stripchart display is shown in Figure 15.

Figure 15: Stripchart Display
41

Chapter 2

42
Scope Example
This example generates and displays data from one to four analog
input channels. It includes typical oscilloscope functions such as
single sweep or continuous scan, horizontal and vertical offsets, and
adjustable time and amplitude settings. The example also operates as
a single-channel spectrum analyzer with a number of popular
windowing selections.

You may apply gains and filters (if available) and even invert
Channel 2 data and add it to Channel 1 data. Both manual and auto
triggering as well as external triggering are possible. By clicking the
mouse on the plot display, an exact voltage reading for each channel
and the time of acquisition is displayed.

For further analysis, you can apply various windowing formulas as
well as FFTs to a single channel of data. Both of these are performed at
a user-selected acquisition rate.

Starting the example produces a screen similar to that shown in
Figure 16.

Using the DTx-EZ Examples

2

2

2

2

2

2

2

2

2

Figure 16: Sample Scope Screen
43

Chapter 2

44

3
Property, Method, Function,

and Subroutine Summary
Introduction. 46

Data Acquisition Custom Control . 47

Data Management DLLs . 64

DT Plot Custom Control . 69
45

Chapter 3

46
Introduction
This chapter summarizes the properties, methods, functions, and
subroutines provided by the Data Acquisition and the DT Plot
Custom Controls in DTx-EZ.

Property, Method, Function, and Subroutine Summary

3

3

3

3

3

3

3

3

3

Data Acquisition Custom Control
The Data Acquisition Custom Control provides the following
categories of data acquisition tools:

• Information properties and methods (page 47);

• Initialization properties (page 57);

• Configuration properties and functions (page 58); and

• Operation properties, methods, functions, and subroutines (page
61).

The following subsections briefly describe these tools.

Note: For specific information about each of these tools, refer to the
DTx-EZ online help. See page 13 for information on launching the
online help file.

Information Properties and Methods

To determine the capabilities of your installed boards, subsystems on
each board, and software, use the information properties and
methods listed in Table 4.
47

Chapter 3

48
Table 4: Information Properties and Methods

Query About Properties and Methods Description

Boards and
Devices

BoardList Property Lists all currently-installed DT-Open
Layers data acquisition boards
(devices).

numBoards Property Returns the number of DT-Open
Layers boards currently installed in
the system.

EnumBoards Method Invokes the board enumeration
sequence.

DeviceName Property Gets the full name of the specified
device (this name is set by the driver
as part of the installation procedure).

hDev Property Returns the handle of the current
subsystem’s device.

Subsystems numSubSystems Property Returns the number of available
subsystems for the selected
DT-Open Layers board.

SubSystemList Property Lists the subsystems available for
the selected DT-Open Layers board.

EnumSS Method Lists the names, types, and element
number for each subsystem
supported by the specified device.

GetDevCaps Method Returns the number of elements for
a specified subsystem type on a
specified device.

Property, Method, Function, and Subroutine Summary

3

3

3

3

3

3

3

3

3

Subsystems
(cont.)

GetSSCaps Method Returns whether a specified
subsystem capability is supported
and/or the number of capabilities
supported. Refer to Table 5 for a list
of possible capabilities and return
values.

GetSSCapsEx Method Gets information about extended
subsystem capabilities including the
minimum and maximum throughput,
retrigger frequency, clock divider
value, and base clock frequency.

EnumSSCaps Method Lists the possible settings for
specified subsystem capabilities
including filters, ranges, gains, and
resolution.

numFilters Property Returns the number of available filter
settings for a subsystem.

FilterValues Property Lists filters available to the selected
subsystem.

numGains Property Returns the number of available gain
settings for a subsystem.

GainValues Property Lists the subsystem’s available gain
values.

numResolutions Property Returns the number of available
resolution settings for a subsystem.

ResolutionValues Property Lists a subsystem’s available
resolution values.

numRanges Property Returns the number of available
range settings for a subsystem.

MaxRangeValues Property Lists a subsystem’s maximum
voltage range values.

Table 4: Information Properties and Methods (cont.)

Query About Properties and Methods Description
49

Chapter 3

50
Table 5 lists the subsystem capabilities that you can query using the
GetSSCaps method. Note that capabilities may be added as new
boards are developed; for the most recent set of capabilities, refer to
the DTx-EZ online help.

Subsystems
(cont.)

MinRangeValues Property Lists a subsystem’s minimum voltage
range values.

hDass Property Returns the handle of the current
subsystem.

Software LastError Property Retrieves the last known DT-Open
Layers error generated by the
DTAcq32 Control.

LastErrorDescription
Property

Retrieves a string representation of
the last known DT-Open Layers error
generated by the DTAcq32 Control.

Table 5: Capabilities to Query with the GetSSCaps Method

Query About Capability Method Returns

Data Flow
Mode

OLSSC_SUP_SINGLEVALUE Non-zero if subsystem supports
single value operations.

OLSSC_SUP_CONTINUOUS Non-zero if subsystem supports
continuous (post-trigger)
operations.

OLSSC_SUP_CONTINUOUS_
PRETRIG

Non-zero if subsystem supports
continuous pre-trigger operations.

OLSSC_SUP_CONTINUOUS_
ABOUTTRIG

Non-zero if subsystem supports
continuous about-trigger (both
pre- and post-trigger) operations.

Table 4: Information Properties and Methods (cont.)

Query About Properties and Methods Description

Property, Method, Function, and Subroutine Summary

3

3

3

3

3

3

3

3

3

Simultaneous
Operations

OLSSC_SUP_
SIMULTANEOUS_START

Non-zero if subsystem can be
started simultaneously with
another subsystem on the device.

Pausing
Operations

OLSSC_SUP_PAUSE Non-zero if subsystem supports
pausing during continuous
operation.

Windows
Messaging

OLSSC_SUP_POSTMESSAGE Non-zero if subsystem supports
asynchronous operations.

Buffering OLSSC_SUP_BUFFERING Non-zero if subsystem supports
buffering.

OLSSC_SUP_WRPSINGLE Non-zero if subsystem supports
single buffer wrap mode.

OLSSC_SUP_WRPMULTIPLE Non-zero if subsystem supports
multiple buffer wrap mode.

OLSSC_SUP_INPROCESS_
FLUSH

Non-zero if subsystem supports
copying a buffer on subsystem’s
inprocess queue.

DMA OLSSC_NUMDMACHANS Number of DMA channels
supported.

OLSSC_SUP_GAPFREE_
NODMA

Non-zero if subsystem supports
gap-free continuous operation
with no DMA.

DMA (cont.) OLSSC_SUP_GAPFREE_
SINGLEDMA

Non-zero if subsystem supports
gap-free continuous operation
with a single DMA channel.

OLSSC_SUP_GAPFREE_
DUALDMA

Non-zero if subsystem supports
gap-free continuous operation
with two DMA channels.

Table 5: Capabilities to Query with the GetSSCaps Method (cont.)

Query About Capability Method Returns
51

Chapter 3

52
Triggered
Scan Mode

OLSSC_SUP_TRIGSCAN Non-zero if subsystem supports
triggered scans.

OLSSC_MAXMULTISCAN Maximum number of scans per
trigger or retrigger supported by
the subsystem.

OLSSC_SUP_RETRIGGER_
SCAN_PER_TRIGGER

Non-zero if subsystem supports
scan-per-trigger triggered scan
mode (retrigger is the same as
the initial trigger source).

OLSSC_SUP_RETRIGGER_
INTERNAL

Non-zero if subsystem supports
internal retriggered scan mode.
(retrigger source is on the board;
initial trigger is any available
trigger source).

OLSSC_SUP_RETRIGGER_
EXTRA

Non-zero if subsystem supports
retrigger-extra triggered scan
mode (retrigger can be any
supported trigger source; initial
trigger combinations may be
limited by the driver).

Channel-Gain
List

OLSSC_CGLDEPTH Number of entries in channel-gain
list.

OLSSC_SUP_RANDOM_CGL Non-zero if subsystem supports
random channel-gain list setup.

OLSSC_SUP_SEQUENTIAL_
CGL

Non-zero if subsystem supports
sequential channel-gain list setup.

Table 5: Capabilities to Query with the GetSSCaps Method (cont.)

Query About Capability Method Returns

Property, Method, Function, and Subroutine Summary

3

3

3

3

3

3

3

3

3

Channel-Gain
List (cont.)

OLSSC_SUP_
ZEROSEQUENTIAL_CGL

Non-zero if subsystem supports
sequential channel-gain list setup
starting with channel zero.

OLSSC_SUP_
SIMULTANEOUS_SH

Non-zero if subsystem supports
simultaneous sample-and-hold
operations.The channel-gain list
must be set up with both a
sample channel and a hold
channel.

OLSSC_SUP_CHANNELLIST_
INHIBIT

Non-zero if subsystem supports
channel-gain list entry inhibition.

Gain OLSSC_SUP_PROGRAMGAIN Non-zero if subsystem supports
programmable gain.

OLSSC_NUMGAINS Number of gain selections.

Synchronous
Digital I/O

OLSSC_SUP_
SYNCHRONOUS_DIGITALIO

Non-zero if subsystem supports
synchronous digital output
operations.

OLSSC_MAXDIGITALIOLIST_
VALUE

Maximum value for synchronous
digital output channel list entry.

I/O Channels OLSSC_NUMCHANNELS Number of I/O channels.

Channel Type OLSSC_SUP_SINGLEENDED Non-zero if subsystem supports
single-ended inputs.

OLSSC_MAXSECHANS Number of single-ended
channels.

OLSSC_SUP_DIFFERENTIAL Non-zero if subsystem supports
differential inputs.

OLSSC_MAXDICHANS Number of differential channels.

Filters OLSSC_SUP_
FILTERPERCHAN

Non-zero if subsystem supports
filtering per channel.

OLSSC_NUMFILTERS Number of filter selections.

Table 5: Capabilities to Query with the GetSSCaps Method (cont.)

Query About Capability Method Returns
53

Chapter 3

54
Ranges OLSSC_NUMRANGES Number of range selections.

OLSSC_SUP_
RANGEPERCHANNEL

Non-zero if subsystem supports
different range settings for each
channel.

Resolution OLSSC_SUP_
SWRESOLUTION

Non-zero if subsystem supports
software-programmable
resolution.

OLSSC_NUMRESOLUTIONS Number of different resolutions
that you can program for the
subsystem.

Data
Encoding

OLSSC_SUP_BINARY Non-zero if subsystem supports
binary encoding.

OLSSC_SUP_2SCOMP Non-zero if subsystem supports
twos complement encoding.

Triggers OLSSC_SUP_SOFTTRIG Non-zero if subsystem supports
internal software trigger.

OLSSC_SUP_EXTERNTRIG Non-zero if subsystem supports
external digital (TTL) trigger.

OLSSC_SUP_
THRESHTRIGPOS

Non-zero if subsystem supports
positive analog threshold trigger.

OLSSC_SUP_
THRESHTRIGNEG

Non-zero if subsystem supports
negative analog threshold trigger.

OLSSC_SUP_
ANALOGEVENTTRIG

Non-zero if subsystem supports
analog event trigger.

OLSSC_SUP_
DIGITALEVENTTRIG

Non-zero if subsystem supports
digital event trigger.

OLSSC_SUP_
TIMEREVENTTRIG

Non-zero if subsystem supports
timer event trigger.

OLSSC_
NUMEXTRATRIGGERS

Number of extra trigger sources
supported.

Table 5: Capabilities to Query with the GetSSCaps Method (cont.)

Query About Capability Method Returns

Property, Method, Function, and Subroutine Summary

3

3

3

3

3

3

3

3

3

Clocks OLSSC_SUP_INTCLOCK Non-zero if subsystem supports
internal clock.

OLSSC_SUP_EXTCLOCK Non-zero if subsystem supports
external clock.

OLSSC_NUMEXTRACLOCKS Number of extra clock sources.

Counter/Timer
Modes

OLSSC_SUP_CASCADING Non-zero if subsystem supports
cascading.

OLSSC_SUP_CTMODE_
COUNT

Non-zero if subsystem supports
event counting mode.

OLSSC_SUP_CTMODE_RATE Non-zero if subsystem supports
rate generation (continuous pulse
output) mode.

OLSSC_SUP_CTMODE_
ONESHOT

Non-zero if subsystem supports
(single) one-shot mode.

OLSSC_SUP_CTMODE_
ONESHOT_RPT

Non-zero if subsystem supports
repetitive one-shot mode.

Counter/Timer
Pulse Output
Types

OLSSC_SUP_PLS_HIGH2LOW Non-zero if subsystem supports
high-to-low output pulses.

OLSSC_SUP_PLS_LOW2HIGH Non-zero if subsystem supports
low-to-high output pulses

Table 5: Capabilities to Query with the GetSSCaps Method (cont.)

Query About Capability Method Returns
55

Chapter 3

56
Counter/Timer
Gates

OLSSC_SUP_GATE_NONE Non-zero if subsystem supports
an internal (software) gate type.

OLSSC_SUP_GATE_HIGH_
LEVEL

Non-zero if subsystem supports
high-level gate type.

OLSSC_SUP_GATE_LOW_
LEVEL

Non-zero if subsystem supports
low-level gate type.

OLSSC_SUP_GATE_HIGH_
EDGE

Non-zero if subsystem supports
high-edge gate type.

OLSSC_SUP_GATE_LOW_
EDGE

Non-zero if subsystem supports
low-edge gate type.

OLSSC_SUP_GATE_LEVEL Non-zero if subsystem supports
level change gate type.

OLSSC_SUP_GATE_HIGH_
LEVEL_DEBOUNCE

Non-zero if subsystem supports
high-level gate type with input
debounce.

OLSSC_SUP_GATE_LOW_
LEVEL_DEBOUNCE

Non-zero if subsystem supports
low-level gate type with input
debounce.

OLSSC_SUP_GATE_HIGH_
EDGE_DEBOUNCE

Non-zero if subsystem supports
high-edge gate type with input
debounce.

OLSSC_SUP_GATE_LOW_
EDGE_DEBOUNCE

Non-zero if subsystem supports
low-edge gate type with input
debounce.

OLSSC_SUP_GATE_LEVEL_
DEBOUNCE

Non-zero if subsystem supports
level change gate type with input
debounce.

Interrupt OLSSC_SUP_INTERRUPT Non-zero if subsystem supports
interrupt-driven I/O.

Table 5: Capabilities to Query with the GetSSCaps Method (cont.)

Query About Capability Method Returns

Property, Method, Function, and Subroutine Summary

3

3

3

3

3

3

3

3

3

Initialization Properties

Once you have identified the available devices, use the initialization
properties described in Table 6.

FIFOs OLSSC_SUP_FIFO Non-zero if subsystem has a
FIFO in the data path.

Processors OLSSC_SUP_PROCESSOR Non-zero if subsystem has a
processor on board.

Software
Calibration

OLSSC_SUP_SWCAL Non-zero if subsystem supports
software calibration.

Table 6: Initialization Properties

Property Description

Board Property Provides the means for the software to associate specific
requests with a particular board; it must be called before any
other property. This property loads a specified board’s
software support. Specify the alias name assigned to the
board upon its installation.

SubSystem Property Provides the means for the software to associate specific
requests with a particular subsystem on a board; it must be
called after the Board property and before any other tool.

SubSysElement
Property

Sets and returns the subsystem’s element number. May be
used in conjunction with the SubSysType property as a
replacement for the SubSystem property.

SubSysType Property Sets and returns the subsystem’s type. May be used in
conjunction with the SubSysElement property as a
replacement for the SubSystem property.

Table 5: Capabilities to Query with the GetSSCaps Method (cont.)

Query About Capability Method Returns
57

Chapter 3

58
Configuration Properties and Functions

Once you have initialized a board and subsystem and determined
what its capabilities are, set or return the value of the subsystem’s
parameters using the configuration properties and functions listed in
Table 7.

Note that italic text indicates a the name of an alternate function call.

Table 7: Configuration Properties and Functions

Feature Properties and Functions Description

Data Flow
Mode

DataFlow Property Sets and returns the data flow
mode.

Buffer Wrap
Mode

WrapMode Property Sets and returns the buffer
processing wrap mode.

DMA DmaUsage Property Sets and returns the number of
DMA channels to be used.

Triggered
Scans

TriggeredScan Property Enables or disables triggered
scan mode.

MultiscanCount Property Sets and returns the number of
times to scan per
trigger/retrigger.

RetriggerMode Property Sets and returns the retrigger
mode.

RetriggerFreq Property Sets and returns the frequency
of the internal retrigger when
using internal retrigger mode.

Property, Method, Function, and Subroutine Summary

3

3

3

3

3

3

3

3

3

Channel-
Gain List

ListSize Property Sets and returns the size of the
channel-gain list.

ChannelList Property Sets and returns the channel
number of a channel-gain list
entry.

GainList Property Sets a gain value for a
channel-gain list entry.

InhibitList Property Enables/disables channel entry
inhibition for a channel-gain list
entry.

DIOList Property Sets and returns the digital
value to output for the
channel-gain list entry.

Synchronous
Digital I/O

SyncDIOUsage Property Enables/disables synchronous
digital I/O operations.

Channel
Type

ChannelType Property Sets and returns the channel
configuration type of a channel.

Filters FilterList Property Sets and returns the analog
filter that may be applied to
each input or output channel.

Ranges Range Property Sets and returns the voltage
range for a subsystem.

Get Channel Range Function
olDaGetChannelRange

Gets the voltage range for a
channel.

MaxRange Property Returns the maximum voltage
value of the current range
setting.

MinRange Property Returns the minimum voltage
value of the current range
setting.

Table 7: Configuration Properties and Functions (cont.)

Feature Properties and Functions Description
59

Chapter 3

60
Resolution Resolution Property Sets and returns the number of
bits of resolution.

Data
Encoding

Encoding Property Sets and returns the data
encoding type.

Triggers Trigger Property Sets and returns the
post-trigger source.

PreTrigger Property Sets and returns the
pre-trigger source.

ReTrigger Property Sets and returns the retrigger
source for retrigger-extra
retrigger mode.

Clocks ClockSource Property Sets and returns the clock
source.

Frequency Property Sets and returns the frequency
of the internal clock or a
counter/timer’s output
frequency.

ClockDivider Property Sets and returns the divider
value applied to the external
clock.

Counter/Tim
ers

CTMode Property Sets and returns the
counter/timer mode.

CascadeMode Property Sets and returns the
counter/timer cascade mode.

GateType Property Sets and returns the gate type
for the counter/timer mode.

PulseType Property Sets and returns the pulse type
for the counter/timer mode.

PulseWidth Property Sets and returns the pulse
output width for the
counter/timer mode.

Table 7: Configuration Properties and Functions (cont.)

Feature Properties and Functions Description

Property, Method, Function, and Subroutine Summary

3

3

3

3

3

3

3

3

3

Operation Properties, Methods, Functions, and
Subroutines

Once you have set the parameters of a subsystem, use the operation
properties, methods, functions, and subroutines listed in Table 8.
Note that italic text indicates a the name of an alternate function call.

Table 8: Operation Properties, Methods, Functions, and Subroutines

Operation
Properties, Methods,

Functions, and Subroutines Description

Single-Value
Operations

GetSingleValue Method Reads a single input value from
the specified subsystem channel.

PutSingleValue Method Writes a single output value to the
specified subsystem channel.

All Other
Operations

Config Method After setting up a specified
subsystem using the configuration
tools, configures the subsystem
with new parameter values.

Start Method Starts the operation for which the
subsystem has been configured.

Pause Method Pauses a continuous operation on
the subsystem.

Continue Method Continues the previously paused
operation on the subsystem.

Stop Method Stops the operation and returns
the subsystem to the ready state.

Abort Method Stops the subsystem’s operation
immediately.

Reset Method Causes the operation to terminate
immediately, and reinitializes the
subsystem.
61

Chapter 3

62
Buffer
Operations

Flush Method Transfers all data buffers held by
the subsystem to the done queue.

Queue Property Adds buffers to the ready queue
and retrieves buffers from the
done queue.

QueueSize Property Gets the size of the specified
queue (ready, done or inprocess)
for a specified subsystem. The
size indicates the number of
buffers on the specified queue.

Counter/Timer
Operations

CTReadEvents Method Gets the number of events that
have been counted since the
subsystem was started with the
Start method.

MeasureFrequency Method Measures the frequency of the
input clock source for the selected
counter/timer.

Power
Operations

PowerOn Method Powers on a USB module and
restores the configuration of the
module at the time that it was last
powered down.

PowerOff Method Stores the configuration of the
USB module and powers down the
module.

Errors ClearError Method Clears the LastErrNum property.

LastErrNum Property Retrieves the last known DT-Open
Layers error generated by the
DTAcq32 Control.

LastErrDescription Property Retrieves a string representation
of the last known DT-Open Layers
error generated by the DTAcq32
Control.

Table 8: Operation Properties, Methods, Functions, and Subroutines (cont.)

Operation
Properties, Methods,

Functions, and Subroutines Description

Property, Method, Function, and Subroutine Summary

3

3

3

3

3

3

3

3

3

Simultaneous
Operations

GetSimultaneousStartList
Function
olDaGetSSList

Creates a simultaneous start list
and returns a handle to it.

PutSubSysOnSSList
Subroutine
olDaPutDassToSSList

Puts the specified subsystem on
the simultaneous start list.

SimultaneousPreStart
Subroutine
olDaSimultaneousPreStart

Simultaneously prestarts
(performs setup operations on) all
subsystems on the specified
simultaneous start list.

SimultaneousStart Subroutine
olDaSimultaneousStart

Simultaneously starts all
subsystems on the specified
simultaneous start list.

ReleaseSimultaneousStartList
olDaReleaseSSList

Releases all subsystems from the
simultaneous start list and
removes the list itself.

Table 8: Operation Properties, Methods, Functions, and Subroutines (cont.)

Operation
Properties, Methods,

Functions, and Subroutines Description
63

Chapter 3

64
Data Management DLLs
In addition to the Data Acquisition Custom Control, DTx-EZ offers
the following data management tools:

• Buffer management functions and subroutines (page 64) and

• Conversion functions and subroutines (page 67).

Buffer Management Functions and Subroutines

The buffer management functions and subroutines form one of the
basic elements of the DT-Open Layers architecture. They “glue” the
various layers together. The fundamental data object in DTx-EZ is a
buffer. All functions that create, manipulate, and delete buffers are
encapsulated in the data management portion of DTx-EZ.

The buffer management functions and subroutines, listed in Table 9,
are intended for use by both application and system programmers.
They provide a set of object-oriented buffer management facilities.
When a buffer object is created, a buffer handle (hbuf) is returned.
This handle is used in all subsequent buffer manipulation.

Note: The buffer management functions and subroutines, listed in
Table 9, are intended for use by both application and system
programmers. They provide a set of object-oriented buffer
management facilities. When a buffer object is created, a buffer
handle (hbuf) is returned. This handle is used in all subsequent
buffer manipulation.

Property, Method, Function, and Subroutine Summary

3

3

3

3

3

3

3

3

3

Note: Because of the differences in the two compliers, the Visual
Basic and Visual C++ libraries exist as separate entities; however,
they are nearly identical in functionality. In Table 9, a function or
subroutine name followed by a parenthetical, italicized name
indicates that Visual Basic and Visual C++ each have their own tools.
In such cases, the Visual C++ name appears in italics following the
Visual Basic name.

For specific information about each of these functions and
subroutines, refer to the DTx-EZ online help. See page 13 for
information on launching the online help file.

Table 9: Buffer Management Functions and Subroutines

Functions and Subroutines Description

AllocBuffer Function
olDmAllocBuffer

Creates a buffer object of a specified number of
samples, where each sample is 2 bytes.

CallocBuffer Function
olDmCallocBuffer

Creates a buffer object of a specified number of
samples of a specified size.

CopyChannelFromBuffer
Subroutine*

Copies one selected channel’s data from a buffer to
the specified array.

CopyLongChannelFromBuffer
Subroutine*

Copies one selected channel’s data from a buffer to
the specified array.

CopySingleChannelFromBuffer
Subroutine*

Copies one selected channel’s data from a buffer to
the specified array.

CopyChannelToBuffer
Subroutine*

Copies one selected channel’s data from a buffer to
the specified array.

CopyLongChannelToBuffer
Subroutine*

Copies one selected channel’s data from a buffer to
the specified array.

* These functions were instituted for Visual Basic users since direct buffer access cannot be
65

achieved; Visual C++ users can access the buffer directly with olDmGetBufferPtr.

Chapter 3

66
CopySingleChannelToBuffer
Subroutine*

Copies one selected channel’s data from a buffer to
the specified array.

CopyFromBuffer Subroutine* Copies data from a buffer to the specified array.

CopyToBuffer Subroutine* Copies data from an array to the specified buffer.

FreeBuffer Subroutine
olDmFreeBuffer

Deletes a buffer object.

olDmGetBufferPtr Gets a pointer to the buffer data.

GetBufferSize Function
olDmGetBufferSize

Gets the physical buffer size (in bytes).

GetDataBits Function
olDmGetDataBits

Gets the number of valid data bits.

GetDataWidth Function
olDmGetDataWidth

Gets the width of each data sample.

GetErrorString Function
olDaGetErrorString
olDmGetErrorString
olDspGetErrorString

Gets the string corresponding to a data
management error code value.

GetMaxSamples Function
olDmGetMaxSamples

Gets the physical size of the buffer (in samples).

GetTimeDateStamp Function
olDmGetTimeDateStamp

Gets the time and date of the buffer's data.

SetValidSamples Function
olDmSetValidSamples

Sets the number of valid samples in the buffer.

Table 9: Buffer Management Functions and Subroutines (cont.)

Functions and Subroutines Description

Property, Method, Function, and Subroutine Summary

3

3

3

3

3

3

3

3

3

Conversion Functions and Subroutines

The data conversion utilities that are available in DTx-EZ are listed in
Table 10.

Note: The conversion utilities, listed in Table 10, are intended for
use by both application and system programmers. Because of the
differences in the two compliers, the Visual Basic and Visual C++
libraries exist as separate entities; however, they are nearly identical
in functionality. In Table 10, a function or subroutine name followed
by a parenthetical, italicized name indicates that Visual Basic and
Visual C++ each have their own tools. In such cases, the Visual C++
name appears in italics following the Visual Basic name.

For specific information about each of these functions and
subroutines, refer to the DTx-EZ online help. See page 13 for
information on launching the online help file.

GetValidSamples Function
olDmGetValidSamples

Gets the number of valid samples.

ReallocBuffer Subroutine
olDmReAllocBuffer

Reallocates a buffer object (alloc() interface).

ReCallocBuffer Subroutine
olDmReCallocBuffer

Reallocates a buffer object (calloc() interface).

Table 9: Buffer Management Functions and Subroutines (cont.)

Functions and Subroutines Description
67

Chapter 3

68
Table 10: Conversion Utilities

Functions and Subroutines Description

ValueToVolts Function Converts a value into a voltage value as a
single-precision value.

VoltsToOutput Subroutine
olDspVoltsToOutput

Converts input voltage values to an output buffer
that is compatible with the current setting of the
specified subsystem.

VoltsToValue Function Converts the specified voltage into units that are
appropriate for the specified subsystem.

InputToVolts Subroutine
olDspInputToVolts

Converts a subsystem input buffer into the
corresponding voltage values.

MagToDB Subroutine
olDspMagToDB

Converts the input buffer data into decibels (dB).

RealFFT Subroutine
olDspRealFFT

Performs a Fast Fourier Transform (FFT) on the
specified data buffer.

Window Subroutine
olDspWindow

Converts the input data buffer into floating-point
and applies the specified window.

Property, Method, Function, and Subroutine Summary

3

3

3

3

3

3

3

3

3

DT Plot Custom Control
The DT Plot Custom Control provides the following categories of
plotting control properties:

• Plot appearance (this page),

• Plot pre-display operational parameters (page 70),

• Grids (page 71),

• Markers (page 71),

• x-Axis parameters (page 72),

• y-Axis parameters (page 73), and

• Plotting operation control parameters (page 73).

The following subsections briefly describe these properties.

Note: For specific information about each of these properties, refer
to the DTx-EZ online help. See page 13 for information on launching
the online help file.

Plot Appearance

The properties outlined in Table 11 allow you to affect the display’s
basic appearance.
69

Chapter 3

70
Plot Pre-Display Operational Parameters

The properties outlined in Table 12 allow you to define how the plot
functions and outputs data.

Table 11: Plot Appearance

Property Description

BackColor Sets the display’s background color (Microsoft
standard property)

ForeColor Sets the plot lines’ colors (Microsoft standard
property)

Palette Property Sets the color of each channel’s plot line
individually.

LineStyle Property Sets the style of the data plotting lines.

LineWidth Property Sets the width of the data plotting lines.

Table 12: Plot Pre-Display Operational Parameter Properties

Property Description

StripChartMode Property Enables/Disables the stripchart mode.

StripChartSize Property Sets and returns the maximum number of data
points to store and that can be displayed per
channel when in stripchart mode.

DataType Property Sets the type of data in the buffer object
(unsigned fixed point, singed fixed point, or
floating-point).

numChannels Property Specifies the number of data channels in the
buffer object.

Property, Method, Function, and Subroutine Summary

3

3

3

3

3

3

3

3

3

Grids

The properties in Table 13 allow you to affect the display’s grid
appearance.

Markers

The properties outlined in Table 14 allow you to affect the display’s
marker appearance.

Table 13: Grid Properties

Property Description

GridAutoScale Property Enables/Disables grid autoscale mode.

GridColor Property Sets and returns the grid color.

GridStyle Property Sets and returns the grid’s line style.

GridXOn Property Displays/Hides vertical grid lines.

GridXSpacing Property Sets vertical grid line spacing.

GridXStart Property Sets the position of the first vertical grid line.

GridYOn Property Displays/Hides horizontal grid lines.

GridYSpacing Property Sets horizontal grid line spacing.

GridYStart Property Sets the position of the first horizontal grid line.

Table 14: Marker Properties

Property Description

MarkerColor Property Sets the color for the horizontal and vertical
markers.

MarkerH1On Property Displays/Hides the first horizontal marker.
71

Chapter 3

72
x-Axis Parameters

The properties outlined in Table 15 allow you to affect a plot’s x-axis.

MarkerH1Pos Property Sets the position of the first horizontal marker.

MarkerH2On Property Displays/Hides the second horizontal marker.

MarkerH2Pos Property Sets the position of the second horizontal
marker.

MarkerV1Data Property Sets and returns the value of the data point at
the location of the first marker.

MarkerV1On Property Displays/Hides the first vertical marker.

MarkerV1Pos Property Sets the position of the first vertical marker.

MarkerV2Data Property Sets and returns the value of the data point at
the location of the second marker.

MarkerV2On Property Displays/Hides the second vertical marker.

MarkerV2Pos Property Sets the position of the second vertical marker.

Table 15: x-Axis Parameter Properties

Property Description

xAutoScale Property Enables/Disables setting the xStart and
xLength properties automatically for each new
data buffer.

xLength Property Specifies the amount of data per channel to
display.

xScale Property Sets the x-axis scaling of the input data buffer.

xStart Property Sets the first data point to be displayed.

Table 14: Marker Properties (cont.)

Property Description

Property, Method, Function, and Subroutine Summary

3

3

3

3

3

3

3

3

3

y-Axis Parameters

The properties outlined in Table 16 allow you to affect a plot’s y-axis.

Plotting Operation Control Parameters

The properties outlined in Table 17 allow you to affect how the
DT Plot Custom Control handles and plots data.

Table 16: x-Axis Parameter Properties

Property Description

yAutoScale Property Enables/Disables setting the yMin and yMax
properties automatically for each new data
buffer.

yMax Property Specifies the upper limit of the plot’s y-axis.

yMin Property Specifies the lower limit of the plot’s y-axis.

Table 17: Plotting Operation Control Parameter Properties

Property Description

Buffer Property Plots a buffer of data.

ForceRepaint Property Enables/Disables the repainting mode.

MouseXPos Property Returns the x coordinate of the current mouse
position.

MouseYPos Property Returns the y coordinate of the current mouse
position.

SinglePoint Property Plots a single point in stripchart mode.

UpdateMode Property Enables/Disables the plot update mode.
73

Chapter 3

74

4
Programming Flowcharts
Introduction. 76

Single-Value Operations . 77

Continuous Buffered Input Operations . 79

Continuous Buffered Output Operations 81

Event Counting Operations . 83

Frequency Measurement Operations . 85

Pulse Output Operations. 87

Plotting Control Operations . 89
75

Chapter 4

76
Introduction
If you are unfamiliar with the capabilities of your board and/or
subsystem, query the device as follows:

• To determine the number and types of DT-Open Layers boards
and drivers installed, use the numBoards and the BoardList
properties.

• To determine the subsystems supported by the board, use the
EnumSS or GetDevCaps method.

• To determine the capabilities of a subsystem, use the GetSSCaps
or GetSSCapsEx method, specifying one of the capabilities listed
in Table 5 on page 50.

• To determine the gains, filters, resolutions, and ranges if more
than one is available, use the EnumSSCaps method, or these sets
of properties:

− Gains numGains and GainValues

− Filters numFilters and FilterValues

− Resolutions numResolutions and
ResolutionsValues

− Ranges numRanges, MinRangeValues, and
MaxRangeValues

Then, follow the flowcharts presented in the remainder of this
chapter to perform the desired operation.

Note: Although the flowcharts do not show error checking, it is
recommended that you check for errors after using each property,
method, function, and subroutine.

Programming Flowcharts

4

4

4

4

4

4

4

4

4

Single-Value Operations
The flowchart in Figure 17 provides an overview of the steps required
to perform a single-value operation. Some steps represent several
substeps; if you are unfamiliar with the functions required to perform
a step, refer to the indicated page in Appendix A for more
information.

Figure 17: Performing Single-Value Operations

Set the subsystem parameters
(see page 172).

Specify a single value operation by setting
the DataFlow property to 1.

Specify the subsystem to perform the
operation with the SubSystem property

(or use the SubSysType and
SubSysElement properties).

Select the board with the Board
property.

Configure the subsystem using the
Config method.

Go to the next page.

Specify A/D for an analog input subsystem, D/A
for an analog output subsystem, DIN for a digital
input subsystem, or DOUT for a digital output
subsystem.
77

Chapter 4

78
Figure 17: Performing Single-Value Operations (cont.)

Acquiring
data?

Yes

No

Acquire a single value using the
GetSingleValue method.

Output a single value using the
PutSingleValue method.

Acquire/output
another
value?

Yes

Continued from previous page.

Programming Flowcharts

4

4

4

4

4

4

4

4

4

Continuous Buffered Input Operations
The flowchart in Figure 18 provides an overview of the steps required
to perform a continuous buffered analog input or digital input
operation. Many steps represent several substeps; if you are
unfamiliar with the functions required to perform a step, refer to the
indicated page in Appendix A for more information. Optional steps
appear in shaded boxes.

Figure 18: Performing a Continuous Buffered Input Operation

Select the board with the Board
property.

Set up the channel list and channel
parameters (see page 173).

Set the subsystem parameters
(see page 172).

Set the data flow with the DataFlow
property.1

Set the DMA channel usage using the
DmaUsage property.

Go to the next page.

1 Specify continuous (0) for post-trigger operations, continuous pre-trigger (4)
for continuous pre-trigger operations, or continuous about-trigger (5) for
continuous about-trigger operations).

Specify the subsystem to perform the
operation with the SubSystem property

(or use the SubSysType and
SubSysElement properties).
79

Chapter 4

80

Figure 18: Performing a Continuous Buffered Input Operation (cont.)

Set up the clocks, triggers, and
pre-triggers (see page 174).

Set up buffering (see page 176).

Configure the subsystem using the
Config method.

Deal with events and buffers
(see page 178).

Start the operation with the Start
method.

Stop the operation
(see page 184).

Continued from previous page.

If you want to use triggered scan mode,
set up the scan (see page 175.)

Programming Flowcharts

4

4

4

4

4

4

4

4

4

Continuous Buffered Output Operations
The flowchart in Figure 19 provides an overview of the steps required
to perform a continuous buffered analog output or digital output
operation. Many steps represent several substeps; if you are
unfamiliar with the functions required to perform a step, refer to the
indicated page in Appendix A for more information. Optional steps
appear in shaded boxes.

Figure 19: Performing a Continuous Buffered Output Operation

Select the board with the Board
property.

Set up the channel list and channel
parameters (see page 173).

Set the subsystem parameters
(see page 172).

Select continuous data flow by setting
the DataFlow property to

continuous (0).

Set the DMA channel usage using the
DmaUsage property.

Go to the next page.

Specify the subsystem to perform the
operation with the SubSystem property

(or use the SubSysType and
SubSysElement properties).
81

Chapter 4

82

Figure 19: Performing a Continuous Buffered Output Operation (cont.)

Set up buffering (see page 177).

Configure the D/A or DOUT subsystem
using the Config method.

Deal with events and buffers
(see page 181).

Start the operation with the Start
method.

Continued from previous page.

Set up the clocks and triggers
 (see page 181).

Stop the operation
(see page 184).

Programming Flowcharts

4

4

4

4

4

4

4

4

4

Event Counting Operations
The flowchart in Figure 20 provides an overview of the steps required
to perform an event counting operation. Many steps represent several
substeps; if you are unfamiliar with the functions required to perform
a step, refer to the indicated page in Appendix A for more
information. Optional steps appear in shaded boxes.

Figure 20: Performing an Event Counting Operation

Select the board with the Board property.

Set up the clocks and gates
(see page 183).

Set the cascade mode using the
CascadeMode property.

Specify the count events counter/timer mode
by setting the CTMode property to event

counting (0).

Configure the subsystem using the Config
method.

Go to the next page.

Select a C/T subsystem with the
SubSystem property (or use the

SubSysType and SubSysElement
properties).
83

Chapter 4

84
Figure 20: Performing an Event Counting Operation (cont.)

Start the operation using the Start method.

Read the events counted using the
CTReadEvents method.

Continued from previous page.

Get update
of events

total?

Yes

No

Stop the operation
(see page 184).

Programming Flowcharts

4

4

4

4

4

4

4

4

4

Frequency Measurement Operations
The flowchart in Figure 21 provides an overview of the steps required
to perform a frequency measurement operation. Many steps
represent several substeps; if you are unfamiliar with the functions
required to perform a step, refer to the indicated page in Appendix A
for more information. Optional steps appear in shaded boxes.

Note: If you need more accuracy than the Windows timer provides,
refer to page 140.

Figure 21: Performing a Frequency Measurement Operation

Select the board with the Board
property.

Set up the clocks
(see page 183).

Specify the count events counter/timer mode
by setting the CTMode property to 0.

Go to the next page.

Set the cascade mode using the
CascadeMode property.

Select a C/T subsystem with the SubSystem
property (or use the SubSysType and

SubSysElement properties).
85

Chapter 4

86
Figure 21: Performing a Frequency Measurement Operation (cont.)

Configure the subsystem using the
Config method.

Continued from previous page.

Start the frequency measurement
operation using the MeasureFrequency

method.

Get the
MeasureDone

event?

Yes

No

Use the LongtoFreq (IParam)
macro to get the measured

frequency value:
float = Freq;

Freq = LongtoFreq (IParam);

Programming Flowcharts

4

4

4

4

4

4

4

4

4

Pulse Output Operations
The flowchart in Figure 22 provides an overview of the steps required
to perform a pulse output operation, including rate generation, single
one-shot, or repetitive one-shot. Many steps represent several
substeps; if you are unfamiliar with the functions required to perform
a step, refer to the indicated page in Appendix A for more
information. Optional steps appear in shaded boxes.

Figure 22: Performing a Pulse Output Operation

Select the board with the Board
property.

Set up the clocks and gates
(see page 183).

Set the cascade mode using the
CascadeMode property.

Specify the counter/timer mode using
the CTMode property.1

Go to the next page.

1 Specify 1 for rate generation (continuous pulse output), 2 for single
one-shot, or 3 for repetitive one-shot.

Select a C/T subsystem with the
SubSystem property (or use the

SubSysType and SubSysElement
properties).
87

Chapter 4

88
Figure 22: Performing a Pulse Output Operation (cont.)

Specify the output pulse type using
the PulseType property.

Specify the duty cycle of the output
pulse using the PulseWidth property.

Continued from previous page.

Configure the subsystem using the
Config method.

Start the operation using the Start
method.

Stop the operation
(see page 184).

Programming Flowcharts

4

4

4

4

4

4

4

4

4

Plotting Control Operations
The flowchart in Figure 23 provides an overview of the steps required
to plot data. Many steps represent several substeps; if you are
unfamiliar with the functions required to perform a step, refer to the
indicated page in Appendix A for more information. Optional steps
appear in shaded boxes.

Figure 23: Plotting Data

Set the UpdateMode property to FALSE.

Set up the plot’s appearance
(see page 185).

Set up the plot’s pre-operation parameters
(see page 186).

Go to the next page.

Set up the plot’s x-axis
(see page 187).

Set up the plot’s y-axis
(see page 188).

Set up the grid’s appearance
(see page 189).Set the ForceRepaint property.

Plot the data with either the Buffer or the
SinglePoint property.

Set the UpdateMode property to True.

Set up the mouse and marker
parameters (see page 190).
89

Chapter 4

90

Figure 23: Plotting Data (cont.)

Continued from previous page.

Change
viewing
area?

Yes

No

Set the UpdateMode property to False.

Set the UpdateMode property to True.

Set up the grid’s appearance
(see page 189).

Plot new
data?

Yes

Return to the symbol on page 89.

Set up the plot’s x-axis
(see page 187).

Set up the plot’s y-axis
(see page 188).

Set the UpdateMode property to False.

5
Software Architecture

Introduction. 92

System Operations . 93

Analog and Digital I/O Operations . 99

Counter/Timer Operations. 137

Simultaneous Operations . 164

Plot Control Operations. 166
91

Chapter 5

92
Introduction
This chapter provides conceptual information to describe the
following operations provided by DTx-EZ:

• System operations, described starting on page 93;

• Analog and digital I/O operations, described starting on page 99;

• Counter/timer operations, described starting on page 137;

• Simultaneous operations, described starting on page 164; and

• Plot control operations, described starting on page 166.

Use this information with the reference information provided in
DTx-EZ online help when programming your data acquisition
boards; refer to page 13 for more information on launching this help
file.

Software Architecture

5

5

5

5

5

5

5

5

5

System Operations
DTx-EZ provides functions to perform the following general system
operations:

• Initializing and specifying a board (this page),

• Specifying a subsystem (this page),

• Configuring a subsystem (page 95),

• Handling events (page 96),

• Handling errors (page 96), and

• Halting the operation (page 98).

The following subsections describe these operations in more detail.

Initializing and Specifying a Board

To perform any data acquisition operation, your application program
must initialize the device driver for a specified board using the Board
property. At run-time, you can use the BoardList property. This
property lists the DT-Open Layers boards available in your system.
Use the numBoards property to determine the number of DT-Open
Layers boards currently installed in your system.

Once you have selected a board, you can specify a subsystem, as
described in the next section.
93

Chapter 5

94
Specifying a Subsystem

A subsystem refers to the major circuitry on a board. DTx-EZ defines
the following subsystems:

• Analog input (A/D subsystem),

• Analog output (D/A subsystem),

• Digital input (DIN subsystem),

• Digital output (DOUT subsystem),

• Counter/timer (C/T subsystem), and

• Serial port (SRL subsystem).

Note: The SRL subsystem is provided for future use. It is not
currently used by any DT-Open Layers compatible data acquisition
device.

A board can have multiple elements of the same subsystem type. Each
of these elements is a subsystem of its own and is identified by a
subsystem type and element number. Element numbering is
zero-based; that is, the first instance of the subsystem is called
element 0, the second instance of the subsystem is called element 1,
and so on. For example if two digital I/O ports are on your board,
two DIN or DOUT subsystems are available, differentiated as
element 0 and element 1.

Once you have selected a board, you must specify the
subsystem/element using the SubSystem property. This property
returns a subsystem handle, called hdass. To directly access a
subsystem via the DT-Open Layers DLLs, you need one subsystem
handle for each subsystem.

Alternately, you can use the SubSysType and SubSysElement
properties at runtime to create a device-independent application.

Software Architecture

5

5

5

5

5

5

5

5

5

With these two properties, you can set up the application to use a
specific subsystem type and element on any selected device (for
example, the first element of type A/D). In comparison, the
Subsystem property simply selects the Nth subsystem on the board,
which prevents device-independent operation.

If you are unsure of the subsystems on a device, use the EnumSS or
the GetDevCaps method. EnumSS lists the names and types of
elements for all subsystems supported by the specified device.
GetDevCaps returns the number of elements for a specified
subsystem type on a specified device. Additionally, during runtime,
use the numSubSystems and SubSystemList properties to list the
number of subsystems available on a DT-Open Layers board.

Once you have specified a subsystem/element, you can configure the
subsystem and perform a data acquisition operation, as described in
the following section.

Configuring a Subsystem

You configure a subsystem by setting its parameters or capabilities.
For more information on the capabilities you can query and specify,
refer to the following:

• For analog and digital I/O operations, refer to page 99;

• For the counter/timer operations, refer to page 137, and

• For simultaneous operations, refer to page 164.

Once you have set up the parameters appropriately for the operation
you want to perform, use the Config method to configure the
parameters before performing the operation.
95

Chapter 5

96
Handling Events

The data acquisition board notifies your application of buffer
movement and other activities by generating events.

Refer to DTx-EZ online help for more information on the events that
can be generated.

Handling Errors

DTx-EZ Custom Controls produce two types of errors. The first is an
OLE automation error that occurs when accessing one of the control’s
properties or methods. The second type of error occurs during the
actual operation of the control's subsystem and is signaled by the
OverrunError Event, UnderrunError Event, TriggerError event, or
EventError Event.

Resolve the second error type by entering code in your control’s
event handler subroutine. Resolve an OLE automation error with one
of the following routines (depending on your development
environment):

From Visual Basic

On Error GoTo DealWithIt
DTAcq321.Start'start the subsystem
Exit Sub

DealWithIt:
if Err.Number = 440 then
'OLE automation error occurred

MsgBox "DTAcq321 Produced DT-Open Layers
error:"+ CStr(DTAcq321.LastError) + ", " +

DTAcq321.LastErrDescription
End If

Software Architecture

5

5

5

5

5

5

5

5

5

From Visual C++

try
{

m_DTAcq321.Start()//start the subsystem
}
catch(COleDispatchException* e)
{

char myError[100];
sprintf(myError,"DT-Open Layers Error: %ld ,
%s", e->m_scError - DTACQ32_ERRORBASE,
e->m_strDescription);
AfxMessageBox(myError);
e-Delete();

//delete what you have dealt with

DTx-EZ Visual Basic functions raise errors and you can deal with
them in the following manner:

From Visual Basic

On Error GoTo TrapIt
ValidSamples = ValidSamples(hbuf)

'…
Exit Sub

TrapIt:
MsgBox Err.Source + " Error = " +

CStr(Err.Number - vbObjectError) +
": " + Err.Description

End Sub
97

Chapter 5

98
From Visual C++

ECODE ecode = olDmGetValidSamples(hbuf,
&ulNumSamples);

if(ecode != OLNOERROR)
{

char msg[100];
olDmGetErrorString(ecode,msg,100);
AfxMessageBox(msg);

Halting the Operation

When you are finished performing data acquisition operations, stop
each subsystem with the Stop method. Then, release the
simultaneous start list, if used, using the
ReleaseSimultaneousStartList subroutine (for Visual Basic) or
olDaReleaseSSList (for Visual C++).

Software Architecture

5

5

5

5

5

5

5

5

5

Analog and Digital I/O Operations
DTx-EZ defines the following capabilities that you can query and/or
specify for analog and/or digital I/O operations:

• Data encoding (this page),

• Resolution (page 100),

• Channels (including channel type, channel list, channel inhibit
list, and synchronous digital I/O list) (page 100),

• Ranges (page 108),

• Gains (page 109),

• Filters (page 111),

• Data flow modes (page 112),

• Triggered scan mode (page 118),

• Clock sources (page 122),

• Trigger sources (page 124),

• Buffers (page 128), and

• DMA resources (page 135).

The following subsections describe these capabilities in more detail.

Data Encoding

For A/D and D/A subsystems only, DTx-EZ defines two data
encoding types: binary and twos complement.

To determine the data encoding types supported by the subsystem,
use the GetSSCaps method, specifying the capability
OLSSC_SUP_BINARY for binary data encoding or
OLSSC_SUP_2SCOMP for twos complement data encoding. If this
method returns a non-zero value, the capability is supported.
99

Chapter 5

100
Use the Encoding property to specify the data encoding type.

Resolution

Different subsystems may support a number of
software-programmable resolutions. To determine if the subsystem
supports software-programmable resolution, use the GetSSCaps
method, specifying the capability OLSSC_SUP_SWRESOLUTION. If
this method returns a non-zero value, the capability is supported.

To determine the number of resolution settings supported by the
subsystem, use the GetSSCaps method, specifying the capability
OLSSC_NUMRESOLUTION. To list the actual bits of resolution
supported, use the EnumSSCaps function, specifying the
OL_ENUM_RESOLUTION capability.

During runtime, use the numResolutions property to list the number
of resolutions available to the subsystem; use the ResolutionValues
property to list the actual resolutions available to the subsystem.

Use the Resolution property to specify the number of bits of
resolution to use for the subsystem.

Channels

Each subsystem (or element of a subsystem type) can have multiple
channels. To determine how many channels the subsystem supports,
use the GetSSCaps method, specifying the
OLSSC_NUMCHANNELS capability.

Software Architecture

5

5

5

5

5

5

5

5

5

Specifying the Channel Type

DTx-EZ supports the following channel types:

• Single-ended − Use this configuration when you want to
measure high-level signals, noise is insignificant, the source of
the input is close to the device, and all the input signals are
referred to the same common ground.

To determine if the subsystem supports the single-ended channel
type, use the GetSSCaps method, specifying the
OLSSC_SUP_SINGLEENDED capability. If this method returns a
non-zero value, the capability is supported.

To determine how many single-ended channels are supported by
the subsystem, use the GetSSCaps method, specifying the
OLSSC_MAXSECHANS capability.

• Differential − Use this configuration when you want to measure
low-level signals (less than 1 V), you are using an A/D converter
with high resolution (> 12 bits), noise is a significant part of the
signal, or common-mode voltage exists.
To determine if the subsystem supports the differential channel
type, use the GetSSCaps method, specifying the
OLSSC_SUP_DIFFERENTIAL capability. If this method returns a
non-zero value, the capability is supported.

To determine how many differential channels are supported by
the subsystem, use the GetSSCaps method, specifying the
OLSSC_MAXDICHANS capability.

• Specify the channel type as differential for each channel using the
ChannelType property.
101

Chapter 5

102
Notes: For pseudo-differential analog inputs, specify the
single-ended channel type; in this case, how you wire these signals
determines the configuration. This option provides less noise
rejection than the differential configuration, but twice as many
analog input channels.

For older model boards, this setting is jumper-selectable and must be
specified in the driver configuration dialog.

The channel list is not used to set the channel type.

 The following subsections describe how to specify channels.

Specifying a Single Channel

The simplest way to acquire data from or output data to a single
channel is to specify the channel for a single value operation; refer to
page 112 for more information on single value operations.

You can also specify a single channel using a channel list, described in
the next section.

Specifying One or More Channels

You acquire data from or output data to one or more channels using a
channel list.

DTx-EZ provides features that allow you to group the channels in the
list sequentially (either starting with 0 or with any other analog input
channel) or randomly. In addition, DTx-EZ allows you to specify a
single channel or the same channel more than once in the list. Your
device, however, may limit the order in which you can enter channel
in the channel list.

Software Architecture

5

5

5

5

5

5

5

5

5

To determine how the channels can be ordered in the channel list for
your subsystem, use the GetSSCaps method, specifying the
OLSSC_RANDOM_CGL capability. If this method returns a non-zero
value, the capability is supported; you can order the channels in the
channel list in any order, starting with any channel. If this capability
is not supported, use the GetSSCaps method, specifying the
OLSSC_SUP_SEQUENTIAL_CGL capability. If this method returns a
non-zero value, the capability is supported; you must order the
channels in the channel list in sequential order, starting with any
channel. If this capability is not supported, use the GetSSCaps
method, specifying the OLSSC_SUP_ZEROSEQUENTIAL_CGL
capability. If this method returns a non-zero value, the capability is
supported; you must order the channels in the channel list in
sequential order, starting with channel 0.

To determine if the subsystem supports simultaneous
sample-and-hold mode use the GetSSCaps method, specifying the
OLSSC_SUP_SIMULTANEOUS_SH capability. If this method returns
a non-zero value, the capability is supported. You must enter at least
two channels in the channel list. Generally, the first channel is the
sample channel and the remaining channels are the hold channels.

The following subsections describe how to specify channels in a
channel list.

Specifying the Channel List Size

To determine the maximum size of the channel list for the subsystem,
use the GetSSCaps method, specifying the OLSSC_CGLDEPTH
capability.

Use the ListSize property to specify the size of the channel list.
103

Chapter 5

104
Note: The OLSSC_CGLDEPTH capability specifies the maximum
size of the channel list, channel inhibit list, synchronous digital I/O
list, and gain list.

Specifying the Channels in the Channel List

Use the ChannelList property to specify the channels in the channel
list in the order you want to sample them or output data from them.

The channels are sampled or output in order from the first entry to
the last entry in the channel list. Channel numbering is zero-based;
that is, the first entry in the channel list is entry 0, the second entry is
entry 1, and so on.

For example, if you want to sample channel 4 twice as frequently as
channels 5 and 6, you could program the channel list as follows:

In this example, channel 4 is sampled first, followed by channel 5,
channel 4 again, then channel 6.

Channel-List
Entry Channel Description

0 4 Sample channel 4.

1 5 Sample channel 5.

2 4 Sample channel 4 again.

3 6 Sample channel 6.

Software Architecture

5

5

5

5

5

5

5

5

5

Inhibiting Channels in the Channel List

If supported, you can set up a channel-inhibit list; this feature is
useful if you want to discard values acquired from specific channels,
as is typical in simultaneous sample-and-hold applications.

To determine if a subsystem supports a channel-inhibit list, use the
GetSSCaps method, specifying the
OLSSC_SUP_CHANNELLIST_INHIBIT capability. If this method
returns a non-zero value, the capability is supported.

Using the InhibitList property, you can enable or disable inhibition
for each entry in the channel list. If enabled, the acquired value is
discarded after the channel entry is sampled; if disabled, the acquired
value is stored after the channel entry is sampled.

Consider the following example:

In this example, the values acquired from channels 11 and 9 are
discarded and the values acquired from channels 10 and 8 are stored.

Channel-List
Entry Channel

Channel Inhibit
Value Description

0 11 True Sample channel 11 and discard
the value.

1 10 False Sample channel 10 and store the
value.

2 9 True Sample channel 9 and discard the
value.

3 8 False Sample channel 8 and store the
value.
105

Chapter 5

106
Specifying Synchronous Digital I/O Values in the Channel List

If supported, you can set up a synchronous digital I/O list; this
feature is useful if you want to write a digital output value to
dynamic digital output channels when an analog input channel is
sampled.

To determine if the subsystem supports synchronous (dynamic)
digital output operations, use the GetSSCaps method, specifying the
OLSSC_SUP_SYNCHRONOUSDIGITALIO capability. If this method
returns a non-zero value, the capability is supported.

Use the SyncDIOUsage property to enable or disable synchronous
(dynamic) digital output operation for a specified subsystem.

Once you enable a synchronous digital output operation, specify the
values to write to the synchronous (dynamic) digital output channels
using the DIOList property for each entry in the channel list.

To determine the maximum digital output value that you can specify,
use the GetSSCaps method, specifying the
OLSSC_MAXDIGITALIOLIST_VALUE capability.

As each entry in the channel list is scanned, the corresponding value
in the synchronous digital I/O list is output to the dynamic digital
output channels. Consider the following example:

Software Architecture

5

5

5

5

5

5

5

5

5

In this case, when channel 7 is sampled, a value of 1 is output to the
dynamic digital output channels. When channel 5 is sampled, a value
of 1 is output to the dynamic digital output channels. When channels
6 and 4 are sampled, a value of 0 is output to the dynamic digital
output channels.

If your device had two dynamic digital output bits and a value of 1 is
output (01 in binary format), a value of 1 is written to dynamic digital
output bit 0 and a value of 0 is written to dynamic digital output bit 1.
Similarly, if a value of 2 is output (10 in binary format), a value of 0 is
written to dynamic digital output bit 0 and a value of 1 is written to
dynamic digital output bit 1.

Note: If you are controlling sample-and-hold devices with these
channels, you may need to program the first channel at the sample
logic level and the following channels at the hold logic level; see
your board/device driver documentation for details.

Channel-List
Entry Channel

Synchronous
Digital I/O Value Description

0 7 1 Sample channel 7 and output a
value of 1 to the dynamic digital
output channels.

1 5 1 Sample channel 5 and output a
value of 1 to the dynamic digital
output channels.

2 6 0 Sample channel 6 and output a
value of 0 to the dynamic digital
output channels.

3 4 0 Sample channel 4 and output a
value of 0 to the dynamic digital
output channels.
107

Chapter 5

108
Ranges

The range capability applies to A/D and D/A subsystems only.

Depending on your subsystem, you can set the range for the entire
subsystem or the range for each channel.

To determine if the subsystem supports the range-per-channel
capability, use the GetSSCaps method, specifying the
OLSSC_SUP_RANGEPERCHANNEL capability. If this method
returns a non-zero value, the capability is supported.

To determine how many ranges the subsystem supports, use the
GetSSCaps method, specifying the OLSSC_NUMRANGES
capability.

To list the minimum and maximum ranges supported by the
subsystem, use the EnumSSCaps function, specifying the
OL_ENUM_RANGES capability.

During runtime, use the MaxRange and MinRange properties to
return the maximum and minimum voltage values or a range setting.
Use the MaxRangeValues and MinRangeValues properties to list the
maximum and minimum voltage range values available to the
subsystem. Use the numRanges property to list the number of
available voltage ranges for the subsystem.

Use the Range property to specify the range for a subsystem.

Note: The channel list is not used to set the range for a channel.

For older board models, the range is jumper-selectable and must be
specified in the driver configuration dialog.

Software Architecture

5

5

5

5

5

5

5

5

5

Gains

The range divided by the gain determines the effective range for the
entry in the channel list. For example, if your board provides a range
of ±10 V and you want to measure a ±1.5 V signal, specify a range of
±10 V and a gain of 4; the effective input range for this channel is then
±2.5 V (10/4), which provides the best sampling accuracy for that
channel.

The way you specify gain depends on how you specified the
channels, as described in the following subsections.

Specifying the Gain for a Single Channel

The simplest way to specify gain for a single channel is to specify the
gain in a single value operation; refer to page 112 for more
information on single value operations.

You can also specify the gain for a single channel using a gain list,
described in the next section.

Specifying the Gain for One or More Channels

You can specify the gain for one or more channels using a gain list.
The gain list parallels the channel list. (The two lists together are often
referred to as the channel-gain list or CGL.)

To determine if the subsystem supports programmable gain, use the
GetSSCaps method, specifying the OLSSC_SUP_PROGRAMGAIN
capability. If this method returns a non-zero value, the capability is
supported.

To determine how many gains the subsystem supports, use the
GetSSCaps method, specifying the OLSSC_NUMGAINS capability.

To list the gains supported by the subsystem, use the EnumSSCaps
function, specifying the OL_ENUM_GAINS capability.
109

Chapter 5

110
During runtime, to list the gains available to the subsystem use the
GainValues property; to determine the number of gains available to
the subsystem, use the numGains property.

You specify the gain for each entry in the channel list using the
GainList property.

Consider the following example:

In this example, a gain of 2 is applied to channel 5, a gain of 4 is
applied to channel 6, and a gain of 1 is applied to channel 7.

Note: If your subsystem does not support programmable gain,
enter a value of 1 for all entries.

If your subsystem does not support the gain-per-channel capability,
set all entries in the gain list to the same value.

Channel-List
Entry Channel Gain Description

0 5 2 Sample channel 5 using a gain of 2.

1 6 4 Sample channel 6 using a gain of 4.

2 7 1 Sample channel 7 using a gain of 1.

Software Architecture

5

5

5

5

5

5

5

5

5

Filters

This capability applies to A/D subsystems only.

Depending on your subsystem, you can specify a filter for each
channel. To determine if the subsystem supports a filter for each
channel, use the GetSSCaps method, specifying the
OLSSC_SUP_FILTERPERCHAN capability. If this method returns a
non-zero value, the capability is supported.

To determine how many filters the subsystem supports, use the
GetSSCaps method, specifying the OLSSC_NUMFILTERS capability.

To list the cut-off frequency of all filters supported by the subsystem,
use the EnumSSCaps method, specifying the OL_ENUM_FILTERS
capability.

During runtime, to list the filters available to the subsystem use the
FilterValues property; to determine the number of filters available to
the subsystem, use the numFilters property.

If the subsystem supports filtering per channel, specify the filter for
each channel using the FilterList property. The filter is equal to or
greater than a cut-off frequency that you supply.

Note: The channel list is not used to set the filter for a channel.

If the subsystem supports more than one filter but does not support
a filter per channel, the filter specified for channel 0 is used for all
channels.
111

Chapter 5

112
Data Flow Modes

DTx-EZ defines the following data flow modes for A/D, D/A, C/T,
DIN, and DOUT subsystems:

• Single value (this page), and

• Continuous (post-trigger, pre-trigger, and about-trigger)
(page 113).

The following subsections describe these data flow modes in detail.

Single-Value Operations

Single value operations are the simplest to use but offer the least
flexibility and efficiency. In a single value operation, a single data
value is read or written at a time. The data is returned immediately.

To determine if the subsystem supports single value operations, use
the GetSSCaps method, specifying the capability
OLSSC_SUP_SINGLEVALUE. If this method returns a non-zero
value, the capability is supported.

Specify the operation mode as single value (1) using the DataFlow
property.

For a single value operation, you can specify the data encoding,
resolution, channel type, range, and filter, if supported, for the
specified channel using the specified gain. You cannot specify other
parameters, such as a channel-gain list, clock source, trigger source,
DMA channel, or buffer.

Single value operations stop automatically when finished; you cannot
stop a single value operation manually.

Once you have set up the parameters for a single value operation, use
the GetSingleValue method to acquire a single analog or digital

Software Architecture

5

5

5

5

5

5

5

5

5

value; use the PutSingleValue method to output a single analog or
digital value.

Continuous Operations

For a continuous operation, you can specify any supported
subsystem capability, including a channel-gain list, clock source,
trigger source, pre-trigger source, retrigger source, DMA channel,
and buffer.

Call the Start method to start a continuous operation.

To stop a continuous operation, perform either an orderly stop using
the Stop method or an abrupt stop using the Abort or Reset method.

In an orderly stop (Stop method), the board finishes acquiring the
specified number of samples, stops all subsequent acquisition, and
transfers the acquired data to a buffer on the done queue; all
subsequent triggers or retriggers are ignored.

In an abrupt stop (Abort method), the board stops acquiring samples
immediately; the acquired data is transferred to a buffer and put on
the done queue; however, the buffer may not be completely filled. All
subsequent triggers or retriggers are ignored.

The Reset method reinitializes the subsystem after stopping it
abruptly. (Refer to page 128 for more information on buffers and
queues.)

Note: For analog output operations, you can also stop the operation
by not sending new data to the board. The operation stops when no
more data is available.
113

Chapter 5

114
Some subsystems also allow you to pause the operation using the
Pause method and to resume the paused operation using the
Continue method. To determine if pausing is supported, use the
GetSSCaps method, specifying the OLSSC_SUP_PAUSE capability. If
this method returns a non-zero value, the capability is supported.

The following continuous modes are supported by DTx-EZ:
continuous (post-trigger), continuous pre-trigger, and continuous
about-trigger. These modes are described in the following
subsections.

Continuous (Post-Trigger) Mode

Use continuous (post-trigger) when you want to acquire or output
data continuously when a trigger occurs.

To determine if the subsystem supports continuous (post-trigger)
operations, use the GetSSCaps method, specifying the capability
OLSSC_SUP_CONTINUOUS. If this method returns a non-zero
value, the capability is supported.

For continuous (post-trigger) mode, specify the operation mode as
continuous (0) using the DataFlow property.

Use the Trigger property to specify the trigger source that starts the
operation. Refer to page 124 for more information on supported
trigger sources.

When the post-trigger occurrence is detected, the board cycles
through the channel list, acquiring and/or outputting the value for
each entry in the channel list; this process is defined as a scan. The
board then wraps to the start of the channel list and repeats the
process continuously until either the allocated buffers are filled or
you stop the operation. Refer to page 102 for more information on
channel lists; refer to page 128 for more information on buffers.

Software Architecture

5

5

5

5

5

5

5

5

5

Figure 24 illustrates continuous post-trigger mode using a channel
list of three entries: channel 0, channel 1, and channel 2. In this
example, post-trigger analog input data is acquired on each clock
pulse of the A/D sample clock; refer to page 122 for more
information on clock sources. The board wraps to the beginning of
the channel list and repeats continuously.

Figure 24: Continuous Post-Trigger Mode

Continuous Pre-Trigger Mode

Use continuous pre-trigger mode when you want to acquire data
before a specific external event occurs.

To determine if the subsystem supports continuous pre-trigger mode,
use the GetSSCaps method, specifying the
OLSSC_SUP_CONTINUOUS_PRETRIG capability. If this method
returns a non-zero value, the capability is supported.

Specify the operation mode as continuous pre-trigger (4) using the
DataFlow property.

Pre-trigger acquisition starts when the device detects the pre-trigger
source and stops when the board detects an external post-trigger
source, indicating that the first post-trigger sample was acquired (this
sample is ignored).

Post-trigger event occurs

Chan 0
Chan 1

Chan 2 Chan 0
Chan 1

Chan 2 Chan 0
Chan 1

Chan 2 Chan 0
Chan 1

Chan 2

A/D
Sample
Clock

Post-trigger data acquired
continuously
115

Chapter 5

116
Use the PreTrigger property to specify the trigger source that starts
the pre-trigger operation (generally this is a software trigger). Specify
the post-trigger source that stops the operation using the Trigger
property. Refer to page 124 and to your board/driver documentation
for supported sources.

Figure 25 illustrates continuous pre-trigger mode using a channel list
of three entries: channel 0, channel 1, and channel 2. In this example,
pre-trigger analog input data is acquired on each clock pulse of the
A/D sample clock; refer to page 122 for more information on clock
sources. The board wraps to the beginning of the channel list and the
acquisition repeats continuously until the post-trigger event occurs.
As your buffers are filled and placed on the done queue,
PreTriggerBufferDone events occur. When the post-trigger action
occurs, acquisition stops, and a QueueStopped event occurs.

Figure 25: Continuous Pre-Trigger Mode

Continuous About-Trigger Mode

Use continuous about-trigger mode when you want to acquire data
both before and after a specific external event occurs. This operation
is equivalent to doing both a pre-trigger and a post-trigger
acquisition.

Pre-trigger event occurs

Chan 0
Chan 1

Chan 2 Chan 0
Chan 1

Chan 2

A/D
Sample
Clock

Post-trigger event occurs

Chan 0

Pre-trigger data acquired Acquisition stops

Software Architecture

5

5

5

5

5

5

5

5

5

To determine if the subsystem supports continuous about-trigger
mode, use the GetSSCaps method, specifying the
OLSSC_SUP_CONTINUOUS_ABOUTTRIG capability. If this method
returns a non-zero value, the capability is supported.

Specify the operation mode as continuous about-trigger (5) using the
DataFlow property.

The about-trigger acquisition starts when the board detects the
pre-trigger source. When it detects an external post-trigger source,
the board stops acquiring pre-trigger data and starts acquiring
post-trigger data.

Use the PreTrigger property to specify the pre-trigger source that
starts the pre-trigger operation (this is generally a software trigger)
and the Trigger property to specify the trigger source that stops the
pre-trigger acquisition and starts the post-trigger acquisition. Refer to
page 124 and to your board/driver documentation for supported
pre-trigger and post-trigger sources.

The about-trigger operation stops when the specified number of
post-trigger samples has been acquired or when you stop the
operation.

Figure 26 illustrates continuous about-trigger mode using a channel
list of three entries: channel 0, channel 1, and channel 2. In this
example, pre-trigger analog input data is acquired on each clock
pulse of the A/D sample clock. The board wraps to the beginning of
the channel list and the acquisition repeats continuously until the
post-trigger event occurs. When the post-trigger event occurs,
post-trigger acquisition begins on each clock pulse of the A/D
sample clock; refer to page 122 for more information on clock sources.
The board wraps to the beginning of the channel list and acquires
post-trigger data continuously.
117

Chapter 5

118
Figure 26: Continuous About-Trigger Mode

As your buffers fill during the pre-trigger state, the buffers are placed
on the done queue, and a PreTriggerBufferDone event occurs. Buffers
filled during the post-trigger state are placed on the done queue, and
a BufferDone event occurs. Check the valid number of samples in the
buffers before using them, since the last buffer filled prior to
switching to the post-trigger state may be only partially full.

Triggered Scan Mode

In triggered scan mode, the board scans the entries in a channel-gain
list a specified number of times when it detects the specified trigger
source, acquiring the data for each entry that is scanned.

To determine if the subsystem supports triggered scan mode, use the
GetSSCaps method, specifying the OLSSC_SUP_TRIGSCAN
capability. If this method returns a non-zero value, the capability is
supported. Note that you cannot use triggered scan mode with single
value operations.

To enable (or disable) triggered scan mode, use the TriggeredScan
property.

Pre-trigger event occurs

Chan 0
Chan 1

Chan 0

.. .
A/D
Sample
Clock

Post-trigger event occurs

Pre-trigger data acquired Post-trigger data acquired

Chan 1

Chan 0
Chan 1

Chan 0

Chan 1

Chan 0
Chan 1

Chan 0

Chan 1

Software Architecture

5

5

5

5

5

5

5

5

5

To determine the maximum number of times that the board can scan
the channel-gain list per trigger, use the GetSSCaps method,
specifying the OLSSC_MAXMULTISCAN capability.

Use the MultiscanCount property to specify the number of times to
scan the channel-gain list per trigger.

DTx-EZ defines the following retrigger modes for a triggered scan;
these retrigger modes are described in the following subsections:

• Scan-per-trigger (page 119),

• Internal retrigger (page 120), and

• Retrigger extra (page 121).

Note: If your device driver supports it, retrigger extra is the
preferred triggered scan mode.

Scan-Per-Trigger Mode

Use scan-per-trigger mode if you want to accurately control the
period between conversions of individual channels and retrigger the
scan based on an internal or external event. In this mode, the retrigger
source is the same as the initial trigger source.

To determine if the subsystem supports scan-per-trigger mode, use
the GetSSCaps method, specifying the
OLSSC_SUP_RETRIGGER_SCAN_PER_TRIGGER capability. If this
method returns a non-zero value, the capability is supported.

Specify the retrigger mode as OL_TRIGGER_SCAN_PER_TRIGGER
using the RetriggerMode property.
119

Chapter 5

120
When it detects an initial trigger (post-trigger source only), the board
scans the channel-gain list a specified number of times (determined
by the MultiscanCount property), then stops. When the external
retrigger occurs, the process repeats.

The conversion rate of each channel in the scan is determined by the
frequency of the A/D sample clock; refer to page 122 for more
information on clock sources. The conversion rate of each scan is
determined by the period between retriggers; therefore, it cannot be
accurately controlled. The board ignores external triggers that occur
while it is acquiring a scan of data. Only retrigger events that occur
when the board is waiting for a trigger are detected and acted on.
Some boards may generate a TriggerError event.

Internal Retrigger Mode

Use internal retrigger mode if you want to accurately control both the
period between conversions of individual channels in a scan and the
period between each scan.

To determine if the subsystem supports internal retrigger mode, use
the GetSSCaps method, specifying the
OLSSC_SUP_RETRIGGER_INTERNAL capability. If this method
returns a non-zero value, the capability is supported.

Specify the retrigger mode as OL_RETRIGGER_INTERNAL using
the RetriggerMode property.

The conversion rate of each channel in the scan is determined by the
frequency of the A/D sample clock; refer to page 122 for more
information on clock sources. The conversion rate between scans is
determined by the frequency of the internal retrigger clock on the
board. You specify the frequency on the internal retrigger clock using
the RetriggerFreq property.

Software Architecture

5

5

5

5

5

5

5

5

5

When it detects an initial trigger (pre-trigger source or post-trigger
source), the board scans the channel-gain list a specified number of
times (determined by the MultiscanCount property), then stops.
When the internal retrigger occurs, determined by the frequency of
the internal retrigger clock, the process repeats.

It is recommended that you set the retrigger frequency as follows:

Min. Retrigger = # of CGL entries x # of CGLs per trigger + 2 µs
Period A/D sample clock frequency

Max. Retrigger = 1
Frequency Min. Retrigger Period

For example, if you are using 512 channels in the channel-gain list
(CGL), scanning the channel-gain list 256 times every trigger or
retrigger, and using an A/D sample clock with a frequency of 1 MHz,
set the maximum retrigger frequency to 7.62 Hz, since

7.62 Hz = _ __1_______
(512 * 256) +2 µs

1 MHz

Retrigger Extra Mode

Use retrigger extra mode if you want to accurately control the period
between conversions of individual channels and retrigger the scan on
a specified retrigger source; the retrigger source can be any of the
supported trigger sources.

To determine if the subsystem supports retrigger extra mode, use the
GetSSCaps method, specifying the
OLSSC_SUP_RETRIGGER_EXTRA capability. If this method returns
a non-zero value, the capability is supported.

Specify the retrigger mode as OL_RETRIGGER_EXTRA using the
RetriggerMode property.
121

Chapter 5

122
Use the ReTrigger property to specify the retrigger source. Refer to
page 124 and to your board/device driver documentation for
supported triggering sources.

The conversion rate of each channel in the scan is determined by the
frequency of the A/D sample clock; refer to page 122 for more
information on clock sources. The conversion rate of each scan is
determined by the period between retriggers. For external retriggers,
the period between retriggers cannot be accurately controlled. For
internal retriggers, specify the period between retriggers using the
RetriggerFreq property (see page 120). The board ignores triggers
that occur while it is acquiring data. Only retrigger events that occur
when the board is waiting for a trigger are detected and acted on.
Some boards may generate a TriggerError event.

Clock Sources

DTx-EZ defines internal (this page), external (page 123), and extra
(page 124) clock sources, described in the following subsections. Note
that you cannot specify a clock source for single value operations.

Internal Clock Source

The internal clock is the clock source on the board that paces data
acquisition or output for each entry in the channel-gain list.

To determine if the subsystem supports an internal clock, use the
GetSSCaps method, specifying the OLSSC_SUP_INTCLOCK
capability. If this method returns a non-zero value, the capability is
supported.

Specify the clock source as internal (0) using the ClockSource
property. Then, use the Frequency property to specify the frequency
at which to pace the operation.

Software Architecture

5

5

5

5

5

5

5

5

5

To determine the maximum frequency that the subsystem supports,
use the GetSSCapsEx method, specifying the
OLSSCE_MAXTHROUGHPUT capability. To determine the
minimum frequency that the subsystem supports, use the
GetSSCapsEx method, specifying the OLSSCE_MINTHROUGHPUT
capability.

Note: According to sampling theory (Nyquist Theorem), you
should specify a frequency for an A/D signal that is at least twice as
fast as the input’s highest frequency component. For example, to
accurately sample a 20 kHz signal, specify a sampling frequency of
at least 40 kHz. Doing so avoids an error condition called aliasing, in
which high frequency input components erroneously appear as
lower frequencies after sampling.

External Clock Source

The external clock is a clock source attached to the board that paces
data acquisition or output for each entry in the channel-gain list. This
clock source is useful when you want to pace at rates not available
with the internal clock or if you want to pace at uneven intervals.

To determine if the subsystem supports an external clock, use the
GetSSCaps method, specifying the OLSSC_SUP_EXTCLOCK
capability. If this method returns a non-zero value, the capability is
supported.

Specify the clock source as external using the ClockSource property.
Then, use the ClockDivider property to specify the clock divider
used to determine the frequency at which to pace the operation; the
clock input source divided by the clock divider determines the
frequency of the clock signal.
123

Chapter 5

124
To determine the maximum clock divider that the subsystem
supports, use the GetSSCapsEx method, specifying the
OLSSCE_MAXCLOCKDIVIDER capability. To determine the
minimum clock divider that the subsystem supports, use the
GetSSCapsEx method, specifying the
OLSSCE_MINCLOCKDIVIDER capability.

Extra Clock Source

Your device driver may define extra clock sources that you can use to
pace acquisition or output operations.

To determine how many extra clock sources are supported by your
subsystem, use the GetSSCaps method, specifying the
OLSSC_NUMEXTRACLOCKS capability. Refer to your board/driver
documentation for a description of the extra clock sources.

The extra clock sources may be internal or external. Refer to the
previous sections for information on how to specify internal and
external clocks and their frequencies or clock dividers.

Trigger Sources

DTx-EZ defines the following trigger sources:

• Software (internal) trigger (this page),

• External digital (TTL) trigger (page 125),

• External analog threshold (positive) trigger (page 126),

• External analog threshold (negative) trigger (page 126),

• Analog event trigger (page 127),

• Digital event trigger (page 127),

• Timer event trigger (page 127), and

• Extra trigger (page 127).

Software Architecture

5

5

5

5

5

5

5

5

5

To specify a post-trigger source, use the Trigger property; refer to
page 114 for more information. To specify a pre-trigger source, use
the PreTrigger property; see page 115 for more information. To
specify a retrigger source, use the ReTrigger property; see page 121
for more information.

The following subsections describe these trigger sources. Note that
you cannot specify a trigger source for single value operations.

Software (Internal) Trigger Source

A software trigger occurs when you start the operation; internally, the
computer writes to the board to begin the operation.

To determine if the subsystem supports a software trigger, use the
GetSSCaps method, specifying the capability
OLSSC_SUP_SOFTTRIG. If this method returns a non-zero value, the
capability is supported.

External Digital (TTL) Trigger Source

An external digital trigger is a digital (TTL) signal attached to the
device.

To determine if the subsystem supports an external digital trigger,
use the GetSSCaps method, specifying the capability
OLSSC_SUP_EXTERNTRIG. If this method returns a non-zero value,
the capability is supported.
125

Chapter 5

126
External Analog Threshold (Positive) Trigger Source

An external analog threshold (positive) trigger is generally either an
analog signal from an analog input channel or an external analog
signal attached to the device. An analog trigger occurs when the
device detects a transition from a negative to positive value that
crosses a threshold value. The threshold level is generally set using a
D/A subsystem on the device.

To determine if the subsystem supports analog threshold triggering
(positive polarity), use the GetSSCaps method, specifying the
capability OLSSC_SUP_THRESHTRIGPOS. If this method returns a
non-zero value, the capability is supported.

Refer to your board/device driver documentation for a description of
this trigger source.

External Analog Threshold (Negative) Trigger Source

An external analog threshold (negative) trigger is generally either an
analog signal from an analog input channel or an external analog
signal attached to the device. An analog trigger event occurs when
the device detects a transition from a positive to negative value that
crosses a threshold value. The threshold level is generally set using a
D/A subsystem on the device.

To determine if the subsystem supports analog threshold triggering
(negative polarity), use the GetSSCaps method, specifying the
capability OLSSC_SUP_THRESHTRIGNEG. If this method returns a
non-zero value, the capability is supported.

Refer to your board/device driver documentation for a description of
this trigger source.

Software Architecture

5

5

5

5

5

5

5

5

5

Analog Event Trigger Source

For this trigger source, a trigger is generated when an analog event
occurs. To determine if the subsystem supports an analog event
trigger, use the GetSSCaps method, specifying the capability
OLSSC_SUP_ANALOGEVENTTRIG. If this method returns a
non-zero value, the capability is supported.

Digital Event Trigger Source

For this trigger source, a trigger is generated when a digital event
occurs. To determine if the subsystem supports a digital event trigger,
use the GetSSCaps method, specifying the capability
OLSSC_SUP_DIGITALEVENTTRIG. If this method returns a
non-zero value, the capability is supported.

Timer Event Trigger Source

For this trigger source, a trigger is generated when a counter/timer
event occurs. To determine if the subsystem supports a timer event
trigger, use the GetSSCaps method, specifying the capability
OLSSC_SUP_TIMEREVENTTRIG. If this method returns a non-zero
value, the capability is supported.

Extra Trigger Source

Extra trigger sources may be defined by your device driver. To
determine how many extra triggers are supported by the subsystem,
use the GetSSCaps method, specifying the capability
OLSSC_NUMEXTRATRIGGERS. Refer to your board/driver
documentation for a description of these triggers.

The extra trigger sources may be internal or external. Refer to the
previous sections for information on how to specify internal and
external triggers.
127

Chapter 5

128
Buffers

The buffering capability usually applies to A/D and D/A subsystems
only. Note that you cannot use a buffer with single value operations.

A data buffer is a memory location that you allocate in host memory.
This memory location is used to store data for continuous input and
output operations.

To determine if the subsystem supports buffers, use the GetSSCaps
method, specifying the capability OLSSC_SUP_BUFFERING. If this
method returns a non-zero value, the capability is supported.

Buffers are stored on one of three queues: the ready queue (this page),
the inprocess queue (page 130), or the done queue (page 131). These
queues are described in more detail in the following subsections.

Note: In these subsections, a function or subroutine name followed
by a parenthetical, italicized name indicates that Visual Basic and
Visual C++ each have their own tools. In such cases, the Visual C++
name appears in italics following the Visual Basic name.

Ready Queue

For input operations, the ready queue holds buffers that are empty
and ready for input. For output operations, the ready queue holds
buffers that you have filled with data and that are ready for output.

Allocate the buffers using the AllocBuffer (olDmAllocBuffer) or the
CallocBuffer (olDmCallocBuffer) function. AllocBuffer
(olDmAllocBuffer) allocates a buffer of samples, where each sample
is 2 bytes; CallocBuffer (olDmCallocBuffer) allocates a buffer of
samples of a specified size.

Software Architecture

5

5

5

5

5

5

5

5

5

For analog input operations, it is recommended that you allocate a
minimum of three buffers; for analog output operations, you can
allocate one or more buffers. The size of the buffers should be at least
as large as the sampling or output rate; for example, if you are using a
sampling rate of 100 ksamples/s (100 kHz), specify a buffer size of
100,000 samples.

Once you have allocated the buffers (and, for output operations,
filled them with data and set the valid number of samples), put the
buffers on the ready queue using the Queue property.

For example, assume that you are performing an analog input
operation, that you allocated three buffers, and that you put these
buffers on the ready queue. The queues appear on the ready queue as
shown in Figure 27.

Figure 27: Example of the Ready Queue

Ready Queue

Inprocess Queue

Done Queue

Buffer 1 Buffer 2 Buffer 3
129

Chapter 5

130
Inprocess Queue

When you start a continuous (post-trigger, pre-trigger, or
about-trigger) operation, the data acquisition board takes the first
available buffer from the ready queue and places it on the inprocess
queue.

The inprocess queue holds the buffer that the specified data
acquisition board is currently filling (for input operations) or
outputting (for output operations). The buffer is filled or emptied at
the specified clock rate.

Continuing with the previous example, when you start the analog
input operation, the driver takes the first available buffer (Buffer 1, in
this case), puts it on the inprocess queue, and starts filling it with
data. The queues appear as shown in Figure 28.

Figure 28: Example of the Inprocess Queue

If you want to transfer data from a partially-filled buffer, you can use
the FlushFromBufferInProcess (olDaFlushFromBufferInprocess)
subroutine to transfer data from the buffer on an inprocess queue to
another buffer you allocate, if this capability is supported. Typically,
you would use this function when your data acquisition operation is
running slowly.

Ready Queue

Inprocess Queue

Done Queue

Buffer 1

Buffer 2 Buffer 3

Software Architecture

5

5

5

5

5

5

5

5

5

To determine if the subsystem supports transferring data from a
buffer on the inprocess queue, use the GetSSCaps method,
specifying the OLSSC_SUP_INPROCESS_FLUSH capability. If this
method returns a non-zero value, this capability is supported.

Done Queue

Once the data acquisition board has filled the buffer (for input
operations) or emptied the buffer (for output operations), the buffer is
moved from the inprocess queue to the done queue. Then, either the
BufferDone event is generated when the buffer contains post-trigger
data, or in the case of pre- and about-trigger acquisitions, a
PreTrigBufferDone event is generated when the buffer contains
pre-trigger data.

Note: When the pre-trigger acquisition operation completes or you
stop an acquisition, the QueueStopped event is also generated.

Continuing with the previous example, the queues appear as shown
in Figure 29 when you get the first BufferDone event.

Figure 29: Example of the Done Queue

Ready Queue

Inprocess Queue

Done Queue
Buffer 1

Buffer 2 Buffer 3
131

Chapter 5

132
Then, the driver moves Buffer 2 from the ready queue to the
inprocess queue and starts filling it with data. When Buffer 2 is filled,
Buffer 2 is moved to the done queue and another BufferDone event is
generated.

The driver then moves Buffer 3 from the ready queue to the inprocess
queue and starts filling it with data. When Buffer 3 is filled, Buffer 3 is
moved to the done queue and another BufferDone event is generated.
Figure 30 shows how the buffers are moved.

Figure 30: How Buffers are Moved to the Done Queue

If you transferred data from an inprocess queue to a new buffer using
the FlushFromBufferInprocess (olDaFlushFromBufferInprocess)
subroutine, the new buffer is put on the done queue for your
application to process. When the buffer on the inprocess queue
finishes being filled, this buffer is also put on the done queue; the
buffer contains only the samples that were not previously transferred.

Ready Queue

Inprocess Queue

Done Queue Buffer 1 Buffer 2 Buffer 3

Software Architecture

5

5

5

5

5

5

5

5

5

Buffer and Queue Management

Each time it gets a BufferDone event, your application program
should remove the buffers from the done queue using the Queue
property.

Your application program can then process the data in the buffer. For
an input operation, you can copy the data from the buffer to an array
in your application program using the CopyFromBuffer
(olDmGetBufferPtr) subroutine. For continuously-paced analog
output operations, you can fill the buffer with new output data using
the CopyToBuffer (olDmGetBufferPtr) subroutine.

When you are finished processing the data, you can put the buffer
back on the ready queue using the Queue property if you want your
operation to continue.

For example, assume that you processed the data from Buffer 1 and
put it back on the ready queue. The queues would appear as shown
in Figure 31.

Figure 31: Putting Buffers Back on the Ready Queue

Ready Queue

Inprocess Queue

Done Queue

Buffer 1

Buffer 2

Buffer 3
133

Chapter 5

134
When the data acquisition operation is finished, use the Flush
method to transfer any data buffers left on the subsystem’s ready
queue to the done queue.

Once you have processed the data in the buffers, free the buffers from
the memory using the FreeBuffer (olDmFreeBuffer) subroutine.

Buffer Wrap Modes

Most Keithley data acquisition boards can provide gap-free data,
meaning no samples are missed when data is acquired or output. You
can acquire gap-free data by manipulating data buffers so that no
gaps exist between the last sample of the current buffer and the first
sample of the next buffer.

Note: The number of DMA channels, number of buffers, and buffer
size are critical to the board’s ability to provide gap-free data. It is
also critical that the application process the data in a timely fashion.

If you want to acquire gap-free input data, it is recommended that
you specify a buffer wrap mode of none (0) using the WrapMode
property. When a buffer wrap mode of none is selected, if you process
the buffers and put them back on the ready queue in a timely manner,
the operation continues indefinitely. When no buffers are available on
the ready queue, the operation stops, and a QueueDone event is
generated.

Software Architecture

5

5

5

5

5

5

5

5

5

If you want to continuously reuse the buffers in the queues and you
are not concerned with gap-free data, specify multiple buffer wrap
mode (1) using the WrapMode property. When multiple wrap mode
is selected and no buffers are available on the ready queue, the driver
moves the oldest buffer from the done queue to the inprocess queue
(regardless of whether you have processed its data), and overwrites
the data in the buffer. This process continues indefinitely unless you
stop it. When it reuses a buffer on the done queue, the driver
generates a BufferReused event.

If you want to perform gap-free waveform generation analog output
operations, specify single buffer wrap mode (2) using the WrapMode
property. When single wrap mode is specified, a single buffer is
reused continuously. In this case, the driver moves the buffer from
the ready queue to the inprocess queue and outputs the data from the
buffer. However, when the buffer is emptied, the driver (or board)
reuses the data and continuously outputs it. This process repeats
indefinitely until you stop it. When you stop the operation, the buffer
is moved to the done queue. No messages are posted in this mode
until you stop the operation.

To determine the buffer wrap modes available for the subsystem, use
the GetSSCaps method, specifying the capability
OLSSC_SUP_WRPSINGLE (for single wrap mode) or
OLSSC_SUP_WRPMULTIPLE (for multiple wrap mode). If this
method returns a non-zero value, the capability is supported.

DMA Resources

You cannot use DMA or interrupt resources for single value
operations.

To determine if your subsystem supports interrupt resources, use the
GetSSCaps method, specifying the capability
OLSSC_SUP_INTERRUPT. If this method returns a non-zero value,
the capability is supported.
135

Chapter 5

136
Note: If supported, all DT-Open Layers boards use interrupt
resources.

Generally, you specify interrupt resources on the board itself and in
the driver configuration dialog.

To determine if the subsystem supports DMA resources, use the
GetSSCaps method, specifying the capability
OLSSC_NUMDMACHANS to determine how many DMA channels
are supported. If supported, these channels must be specified in the
driver configuration dialog. In addition, specify
OLSSC_SUP_GAPFREE_NODMA (for gap free data using no DMA
channels), OLSSC_SUP_GAPFREE_SINGLEDMA (for gap free data
using one DMA channel), or OLSSC_SUP_GAPFREE_DUALDMA
(for gap free data using two DMA channels). If this method returns a
non-zero value, the capability is supported.

Use the DmaUsage property to specify the number of DMA channels
to use.

Note: DMA channels are a limited resource and the request may
not be honored if the requested number of channels is unavailable.
For example, suppose that a device that supports both A/D and
D/A subsystems provides hardware for two DMA channels, and
that one DMA channel is currently allocated to the A/D subsystem.
In this case, a request to the D/A subsystem to use two DMA
channels will fail.

Software Architecture

5

5

5

5

5

5

5

5

5

Counter/Timer Operations
Each user counter/timer channel accepts a clock input signal and
gate input signal and outputs a clock output signal (also called a
pulse output signal), as shown in Figure 32.

Figure 32: Counter/Timer Channel

Each counter/timer channel corresponds to a counter/timer (C/T)
subsystem. To specify the counter to use in software, specify the
appropriate C/T subsystem. For example, counter 0 corresponds to
C/T subsystem element 0; counter 3 corresponds to C/T subsystem
element 3.

DTx-EZ defines the following capabilities that you can query and/or
configure for counter/timer operations:

• Counter/timer operation mode (page 138);

• Clock source (page 154);

• Gate type (page 157); and

• Pulse output type, output duty cycle, and width (page 162).

The following subsections describe these capabilities in more detail.

Clock Input SIgnal
(internal, external, or
internally cascaded)

Counter/Timer

Gate Input Signal
(software or
external input)

Pulse Output
Signal
137

Chapter 5

138
Counter/Timer Operation Mode

DTx-EZ supports the following counter/timer operations:

• Event counting (this page),

• Frequency measurement (page 140),

• Rate generation (continuous pulse output) (page 144),

• One-shot (page 148), and

• Repetitive one-shot (page 151).

The following subsections describe these counter/timer operations.

Event Counting

Use event counting mode to count events from the counter’s
associated clock input source.

To determine if the subsystem supports event counting, use the
GetSSCaps method, specifying the capability
OLSSC_SUP_CTMODE_COUNT. If this method returns a non-zero
value, the capability is supported.

To specify an event counting operation, use the CTMode property,
specifying the count events (0) parameter.

Specify the C/T clock source for the operation. In event counting
mode, an external C/T clock source is more useful than the internal
C/T clock source; refer to page 154 for more information on
specifying the C/T clock source.

Also specify the gate type that enables the operation; refer to page 157
for more information on specifying the gate type.

Start an event counting operation using the Start method. To read the
current number events counted, use the CTReadEvents method.

Software Architecture

5

5

5

5

5

5

5

5

5

To stop the event counting operation, call the Stop, Abort, or Reset
method; Reset stops the operation and reinitializes the subsystem
after stopping it.

Some subsystems also allow you to pause the operation using the
Pause method and then resume the paused operation using the
Continue method. To determine if pausing is supported, use the
GetSSCaps method, specifying the OLSSC_SUP_PAUSE capability. If
this method returns a non-zero value, the capability is supported.

Figure 33 shows an example of an event counting operation. In this
example the gate type is low level.

Figure 33: Example of Event Counting

Gate Input
Signal

low level
enables operation

high level
disables operation

External C/T
Clock
Input Signal

event counting
operation starts

event counting
operation stops

3 events are counted while
the operation is enabled
139

Chapter 5

140
Frequency Measurement

You can also use event counting mode to measure the frequency of
the clock input signal for the counter, since frequency is the number
events divided by a specified duration.

To determine if the subsystem supports event counting (and
therefore, frequency measurement), use the GetSSCaps method,
specifying the capability OLSSC_SUP_CTMODE_COUNT. If this
method returns a non-zero value, the capability is supported.

You can perform a frequency measurement operation in one of two
ways: using the Windows timer to specify the duration (this page) or
using a pulse of a known duration as the gate input signal to a
counter/timer configured for event counting mode (page 142). The
following subsections describe these ways of measuring frequency.

Using the Windows Timer

To perform a frequency measurement operation on a single C/T
subsystem using the Windows timer to specify the duration, perform
the following steps:

1. Use the CTMode property, specifying the count events (0)
parameter.

2. Specify the input clock source using the ClockSource property. In
frequency measurement mode, an external C/T clock source is
more useful than the internal C/T clock source; refer to page 154
for more information on the external C/T clock source.

3. Use the GateType property, specifying the no gate type
parameter (0), to set the gate type to software.

4. Use the MeasureFrequency method to specify the duration of the
Windows timer (which has a resolution of 1 ms) and to start the
frequency measurement operation.

Software Architecture

5

5

5

5

5

5

5

5

5

Frequency is determined using the following equation:

Frequency = Number of Events
Duration of the Windows Timer

When the operation is complete, the MeasureDone event is
generated. Use the LongtoFreq (IParam) macro, described in DTx-EZ
online help, to get the measured frequency value.

Figure 34 shows an example of a frequency measurement operation.
Three events are counted from the clock input signals during a
duration of 300 ms. The frequency is 10 Hz (3/.3).

Figure 34: Example of Frequency Measurement

External C/T
Clock
Input Signal

frequency measurement
starts

frequency
measurement stop

Duration over which the
frequency is measured = 300 ms

3 Events Counted
141

Chapter 5

142
Using a Pulse of a Known Duration

If you need more accuracy than the Windows timer provides, you can
connect a pulse of a known duration to the external gate input of a
counter/timer configured for event counting; refer to the boards’ user
manuals for wiring details.

The following example describes how to use DTx-EZ to measure
frequency using two C/T subsystems: one that generates a
variable-width one-shot pulse as the gate input to a second C/T
subsystem configured for event counting mode:

1. Set up one C/T subsystem for one-shot mode as follows:

a. Use the CTMode function, specifying the one-shot parameter
(2).

b. For this C/T subsystem, specify the clock source (with the
ClockSource property), the clock frequency (with the
Frequency property if using an internal clock source or the
ClockDivider property if using an external clock source), the
gate type (with the GateType property), the type of output
pulse (with the PulseType property), and the pulse width
(with the PulseWidth property). The pulse width and period
are used to determine the time that the gate is active.

c. Configure this C/T subsystem with the Config method.

2. Set up another C/T subsystem for event counting mode:

a. Use the CTMode property, specifying the count events
parameter (0), to set up this C/T subsystem for event
counting mode (and, therefore, a frequency measurement
operation).

b. For this C/T subsystem, use the ClockSource property to
specify the clock source you wish to measure. For frequency
measurement operations, an external C/T clock source is
more useful than the internal C/T clock source; refer to page
154 for more information on the external C/T clock source.

Software Architecture

5

5

5

5

5

5

5

5

5

c. For this C/T subsystem, use the GateType property to
specify the gate type; ensure that the gate type for this C/T
subsystem matches the active period of the output pulse
from the C/T subsystem configured for one-shot mode.

d. Configure this C/T subsystem with the Config method.

3. Start the counter/timer configured for event counting mode with
the Start method.

4. Start the counter/timer configured for one-shot mode with the
Start method.

5. Allow a delay approximately equal to the measurement period to
allow the one-shot to finish; events are counted only during the
active period of the one-shot pulse.

6. For the event-counting C/T subsystem, read the number of
events counted with the CTReadEvents method.

7. Determine the measurement period using the following
equation:

Measurement = 1 * Active Pulse Width of
Period Actual Clock Frequency One-Shot C/T

of One-Shot C/T

8. Determine the frequency of the clock input signal using the
following equation:

Frequency Measurement = Number of Events
Measurement Period
143

Chapter 5

144
Rate Generation

Use rate generation mode to generate a continuous pulse output
signal from the counter; this mode is sometimes referred to as
continuous pulse output or pulse train output. You can use this pulse
output signal as an external clock to pace analog input, analog
output, or other counter/timer operations.

To determine if the subsystem supports rate generation, use the
GetSSCaps method, specifying the capability
OLSSC_SUP_CTMODE_RATE. If this method returns a non-zero
value, the capability is supported.

To specify a rate generation mode, use the CTMode property,
specifying the generate rate parameter (1).

Specify the C/T clock source for the operation. In rate generation
mode, either the internal or external C/T clock input source is
appropriate depending on your application; refer to page 154 for
information on specifying the C/T clock source.

Specify the frequency of the C/T clock output signal. For an internal
C/T, the Frequency property determines the frequency of the output
pulse. For an external C/T clock source, the frequency of the clock
input source divided by the clock divider (specified with the
ClockDivider property) determines the frequency of the output
pulse.

Specify the polarity of the output pulses (high-to-low transitions or
low-to-high transitions) and the duty cycle of the output pulses; refer
to page 162 for more information.

Also specify the gate type that enables the operation; refer to page 157
for more information on specifying the gate type.

Software Architecture

5

5

5

5

5

5

5

5

5

Start rate generation mode using the Start method. While rate
generation mode is enabled, the counter outputs a pulse of the
specified type and frequency continuously. As soon as the operation
is disabled, the pulse output operation stops.

To stop rate generation if it is in progress, call the Stop, Abort, or
Reset method; Reset stops the operation and reinitializes the
subsystem after stopping it.

Some subsystems also allow you to pause the operation using the
Pause method and resume the paused operation using the Continue
method. To determine if pausing is supported, use the GetSSCaps
method, specifying the OLSSC_SUP_PAUSE capability. If this
method returns a non-zero value, the capability is supported.

Figure 35 shows an example of an enabled rate generation operation
using an external C/T clock source with an input frequency of 4 kHz,
a clock divider of 4, a low-to-high pulse type, and a duty cycle of 50%.
(The gate type does not matter for this example.) A 1 kHz square
wave is the generated output.
145

Chapter 5

146
Figure 35: Example of Rate Generation Mode with a 50% Duty Cycle

Figure 36 shows the same example using a duty cycle of 75%.

Pulse
Output
Signal

External C/T
Clock
Input Signal
(4 kHz)

50% duty cycle

Continuous Pulse
Output Operation Starts

Software Architecture

5

5

5

5

5

5

5

5

5

Figure 36: Example of Rate Generation Mode with a 75% Duty Cycle

Figure 37 shows the same example using a duty cycle of 25%.

Pulse
Output
Signal

External C/T
Clock
Input Signal
(4 kHz)

75% duty cycle

Continuous Pulse
Output Operation Starts
147

Chapter 5

148
Figure 37: Example of Rate Generation Mode with a 25% Duty Cycle

One-Shot

Use one-shot mode to generate a single pulse output signal from the
counter when the operation is triggered (determined by the gate
input signal). You can use this pulse output signal as an external
digital (TTL) trigger to start analog input, analog output, or other
operations.

To determine if the subsystem supports one-shot mode, use the
GetSSCaps method, specifying the capability
OLSSC_SUP_CTMODE_ONESHOT. If this method returns a
non-zero value, the capability is supported.

To specify a one-shot operation, use the CTMode property, specifying
the repetitive one-shot parameter (3).

Pulse
Output
Signal

External C/T
Clock
Input Signal
(4 kHz)

25% duty cycle

Continuous Pulse
Output Operation Starts

Software Architecture

5

5

5

5

5

5

5

5

5

Specify the C/T clock source for the operation. In one-shot mode, the
internal C/T clock source is more useful than an external C/T clock
source; refer to page 154 for more information on specifying the C/T
clock source.

Specify the polarity of the output pulse (high-to-low transition or
low-to-high transition) and the duty cycle of the output pulse; refer to
page 162 for more information.

Note: In the case of a one-shot operation, use a duty cycle as close
to 100% as possible to output a pulse immediately. Using a duty
cycle less then 100% acts as a pulse output delay.

Also specify the gate type that triggers the operation; refer to page
157 for more information.

To start a one-shot pulse output operation, use the Start method.
When the one-shot operation is triggered (determined by the gate
input signal), a single pulse is output; then, the one-shot operation
stops. All subsequent clock input signals and gate input signals are
ignored.

Use software to specify the counter/timer mode as one-shot and wire
the signals appropriately.

Figure 38 shows an example of a one-shot operation using an external
gate input (rising edge), a clock output frequency of 1 kHz (one pulse
every 1 ms), a low-to-high pulse type, and a duty cycle of 99.99%.
Figure 39 shows the same example using a duty cycle of less than or
equal to 1%.
149

Chapter 5

150
Figure 38: Example of One-Shot Mode Using a 99.99% Duty Cycle

Pulse
Output
Signal

External
Gate
Signal

99.99% duty cycle

One-Shot Operation
Starts

1 ms period

Clock

Software Architecture

5

5

5

5

5

5

5

5

5

Figure 39: Example of One-Shot Mode Using a Duty Cycle Less Than or

Equal to 1%

Repetitive One-Shot

Use repetitive one-shot mode to generate a pulse output signal each
time the board detects a trigger (determined by the gate input signal).
You can use this mode to clean up a poor clock input signal by
changing its pulse width, then outputting it.

To determine if the subsystem supports repetitive one-shot mode, use
the GetSSCaps method, specifying the capability
OLSSC_SUP_CTMODE_ONESHOT_RPT. If this method returns a
non-zero value, the capability is supported.

To specify a repetitive one-shot operation, use the CTMode property,
specifying the repetitive one-shot parameter (3).

Pulse
Output
Signal

External
Gate
Signal

< 1% duty cycle

One-Shot Operation
Starts

1 ms period

-

Clock
151

Chapter 5

152
Specify the C/T clock source for the operation. In repetitive one-shot
mode, the internal C/T clock source is more useful than an external
C/T clock source; refer to page 154 for more information on
specifying the C/T clock source.

Specify the polarity of the output pulses (high-to-low transitions or
low-to-high transitions) and the duty cycle of the output pulses; refer
to page 162 for more information. Also specify the gate type that
triggers the operation; refer to page 157 for more information.

To start a repetitive one-shot pulse output operation, use the Start
method. When the one-shot operation is triggered (determined by the
gate input signal), a pulse is output. When the board detects the next
trigger, another pulse is output.

This operation continues until you stop the operation using the Stop,
Abort, or Reset method; Reset stops the operation and reinitializes
the subsystem after stopping it.

Some subsystems also allow you to pause the operation using the
Pause method and resume the paused operation using the Continue
method. To determine if pausing is supported, use the GetSSCaps
method, specifying the OLSSC_SUP_PAUSE capability. If this
method returns a non-zero value, the capability is supported.

Note: Gates that occur while the pulse is being output may not
detected by the board, depending upon your board’s counter/timer.
See your driver documentation for details.

Figure 40 shows an example of a repetitive one-shot operation using
an external gate (rising edge); a clock output frequency of 1 kHz (one
pulse every 1 ms), a low-to-high pulse type, and a duty cycle of
99.99%.

Software Architecture

5

5

5

5

5

5

5

5

5

Figure 40: Example of Repetitive One-Shot Mode Using a 99.99% Duty Cycle

Figure 41 shows the same example using a duty cycle of 50%.

Pulse
Output
Signal

External
Gate
Signal

99.99% duty cycle

Repetitive One-Shot
Operation Starts

1 ms period

99.99% duty cycle 99.99%
duty cycle

1 ms period
Clock Clock
153

Chapter 5

154
Figure 41: Example of Repetitive One-Shot Mode Using a 50% Duty Cycle

C/T Clock Sources

DTx-EZ defines the following clock sources for counter/timers:

• Internal C/T clock (this page),

• External C/T clock (page 155),

• Internally cascaded clock (page 156), and

• Extra C/T clocks (page 157).

The following subsections describe these clock sources.

Pulse
Output
Signal

External
Gate
Signal

50% duty
cycle

Repetitive One-Shot
Operation Starts

1 ms period

50% duty
cycle

1 ms period
Clock Clock

Software Architecture

5

5

5

5

5

5

5

5

5

Internal C/T Clock

The internal C/T clock is the clock source on the board that paces a
counter/timer operation for a C/T subsystem.

To determine if the subsystem supports an internal C/T clock, use the
GetSSCaps method, specifying the OLSSC_SUP_INTCLOCK
capability. If this method returns a non-zero value, the capability is
supported.

To specify the clock source, use the ClockSource property.

Using the Frequency property, specify the frequency of the clock
output signal.

To determine the maximum frequency that the subsystem supports,
use the GetSSCapsEx method, specifying the
OLSSCE_MAXTHROUGHPUT capability. To determine the
minimum frequency that the subsystem can produce, use the
GetSSCapsEx method, specifying the OLSSCE_MINTHROUGHPUT
capability.

External C/T Clock

The external C/T clock is a clock source attached to the board that
paces counter/timer operations for a C/T subsystem. The external
C/T clock is useful when you want to produce at rates not available
with the internal clock or if you want to produce rates at uneven
intervals.

To determine if the subsystem supports an external C/T clock, use
the GetSSCaps method, specifying the OLSSC_SUP_EXTCLOCK
capability. If this method returns a non-zero value, the capability is
supported.
155

Chapter 5

156
Specify the clock source using the ClockSource property. Specify the
clock divider using the ClockDivider property; the clock input signal
divided by the clock divider determines the frequency of the clock
output signal.

To determine the maximum clock divider that the subsystem
supports, use the GetSSCapsEx method, specifying the
OLSSCE_MAXCLOCKDIVIDER capability. To determine the
minimum clock divider that the subsystem supports, use the
GetSSCapsEx method, specifying the
OLSSCE_MINCLOCKDIVIDER capability

Internally Cascaded Clock

You can also internally connect or cascade the clock output signal
from one counter/timer to the clock input signal of the next
counter/timer in software. In this way, you can create a 32-bit counter
out of two 16-bit counters.

To determine if the subsystem supports internal cascading, use the
GetSSCaps method, specifying the OLSSC_SUP_CASCADING
capability. If this method returns a non-zero value, the capability is
supported.

Specify whether the subsystem is internally cascaded or not (single)
using the CascadeMode property.

Note: If a counter/timer is cascaded, you specify the clock input
and gate input for the first counter in the cascaded pair. For example,
if counters 1 and 2 are cascaded, specify the clock input and gate
input for counter 1. However, use the output from counter 2.

Software Architecture

5

5

5

5

5

5

5

5

5

Extra C/T Clock Source

Extra C/T clock sources may be defined by your device driver.

To determine how many extra clock sources are supported by your
subsystem, use the GetSSCaps method, specifying the
OLSSC_NUMEXTRACLOCKS capability. Refer to your board/driver
documentation for a description of these clocks.

To specify internal or external extra clock sources and their
frequencies and/or clock dividers, refer to the previous subsections.

Gate Types

The active edge or level of the gate input to the counter enables or
triggers counter/timer operations. DTx-EZ defines the following gate
input types:

• Software (page 158),

• High-Level (page 158),

• Low-Level (page 158),

• High-Edge (page 159),

• Low-Edge (page 159),

• Any level (page 159),

• High-Level debounced (page 160),

• Low-Level debounced (page 160),

• High-Edge debounced (page 160),

• Low-Edge debounced (page 161), and

• Any level debounced (page 161).

To specify the gate type, use the GateType property. The following
subsections describe these gate types.
157

Chapter 5

158
Software Gate Type

A software gate type enables any specified counter/timer operation
immediately when the GateType property is executed.

To determine if the subsystem supports a software gate, use the
GetSSCaps method, specifying the OLSSC_SUP_GATE_NONE
capability. If this method returns a non-zero value, the capability is
supported.

High-Level Gate Type

A high-level external gate type enables a counter/timer operation
when the external gate signal is high, and disables a counter/timer
operation when the external gate signal is low. Note that this gate
type is used only for event counting, frequency measurement, and
rate generation; refer to page 138 for more information on these
modes.

To determine if the subsystem supports a high-level external gate
input, use the GetSSCaps method, specifying the
OLSSC_SUP_GATE_HIGH_LEVEL capability. If this method returns
a non-zero value, the capability is supported.

Low-Level Gate Type

A low-level external gate type enables a counter/timer operation
when the external gate signal is low, and disables the counter/timer
operation when the external gate signal is high. Note that this gate
type is used only for event counting, frequency measurement, and
rate generation; refer to page 138 for more information on these
modes.

To determine if the subsystem supports a low-level external gate
input, use the GetSSCaps method, specifying the
OLSSC_SUP_GATE_LOW_LEVEL capability. If this method returns a
non-zero value, the capability is supported.

Software Architecture

5

5

5

5

5

5

5

5

5

Low-Edge Gate Type

A low-edge external gate type triggers a counter/timer operation on
the transition from the high level to the low level (falling edge). Note
that this gate type is used only for one-shot and repetitive one-shot
mode; refer to page 151 for more information on these modes.

To determine if the subsystem supports a low-edge external gate
input, use the GetSSCaps method, specifying the
OLSSC_SUP_GATE_LOW_EDGE capability. If this method returns a
non-zero value, the capability is supported.

High-Edge Gate Type

A high-edge external gate type triggers a counter/timer operation on
the transition from the low level to the high level (rising edge). Note
that this gate type is used only for one-shot and repetitive one-shot
mode; refer to page 138 for more information on these modes.

To determine if the subsystem supports a high-edge external gate
input, use the GetSSCaps method, specifying the
OLSSC_SUP_GATE_HIGH_EDGE capability. If this method returns a
non-zero value, the capability is supported.

Any Level Gate Type

A level gate type enables a counter/timer operation on the transition
to any level. Note that this gate type is used only for event counting,
frequency measurement, and rate generation; refer to page 138 for
more information on these modes.

To determine if the subsystem supports a level external gate input,
use the GetSSCaps method, specifying the
OLSSC_SUP_GATE_LEVEL capability. If this method returns a
non-zero value, the capability is supported.
159

Chapter 5

160
High-Level, Debounced Gate Type

A high-level, debounced gate type enables a counter/timer operation
when the external gate signal is high and debounced. Note that this
gate type is used only for event counting, frequency measurement,
and rate generation; refer to page 138 for more information on these
modes.

To determine if the subsystem supports a high-level debounced
external gate input, use the GetSSCaps method, specifying the
OLSSC_SUP_GATE_HIGH_LEVEL_DEBOUNCE capability. If this
method returns a non-zero value, the capability is supported.

Low-Level, Debounced Gate Type

A low-level, debounced gate type enables a counter/timer operation
when the external gate signal is low and debounced. Note that this
gate type is used only for event counting, frequency measurement,
and rate generation; refer to page 138 for more information on these
modes.

To determine if the subsystem supports a low-level debounced
external gate input, use the GetSSCaps method, specifying the
OLSSC_SUP_GATE_LOW_LEVEL_DEBOUNCE capability. If this
method returns a non-zero value, the capability is supported.

High-Edge, Debounced Gate Type

A high-edge, debounced gate type triggers a counter/timer operation
on the rising edge of the external gate signal; the signal is debounced.
Note that this gate type is used only for one-shot and repetitive
one-shot mode; refer to page 138 for more information on these
modes.

Software Architecture

5

5

5

5

5

5

5

5

5

To determine if the subsystem supports a high-edge debounced
external gate input, use the GetSSCaps method, specifying the
OLSSC_SUP_GATE_HIGH_EDGE_DEBOUNCE capability. If this
method returns a non-zero value, the capability is supported.

Low-Edge, Debounced Gate Type

A low-edge, debounced gate type triggers a counter/timer operation
on the falling edge of the external gate signal; the signal is
debounced. Note that this gate type is used only for one-shot and
repetitive one-shot mode; refer to page 138 for more information on
these modes.

To determine if the subsystem supports a low-edge debounced
external gate input, use the GetSSCaps method, specifying the
OLSSC_SUP_GATE_LOW_EDGE_DEBOUNCE capability. If this
method returns a non-zero value, the capability is supported.

Level, Debounced Gate Type

A level, debounced gate type enables a counter/timer operation on
the transition of any level of the external gate signal; the signal is
debounced. Note that this gate type is used only for event counting,
frequency measurement, and rate generation; refer to page 138 for
more information on these modes.

To determine if the subsystem supports a high-edge debounced
external gate input, use the GetSSCaps method, specifying the
OLSSC_SUP_GATE_LEVEL_DEBOUNCE capability. If this method
returns a non-zero value, the capability is supported.
161

Chapter 5

162
Pulse Output Types and Duty Cycles

DTx-EZ defines the following pulse output types:

• High-to-low transitions − The low portion of the total pulse
output period is the active portion of the counter/timer clock
output signal.

To determine if the subsystem supports high-to-low transitions
on the pulse output signal, use the GetSSCaps method,
specifying the OLSSC_SUP_PLS_HIGH2LOW capability. If this
method returns a non-zero value, the capability is supported.

• Low-to-high transitions − The high portion of the total pulse
output period is the active portion of the counter/timer pulse
output signal.

To determine if the subsystem supports low-to-high transitions
on the pulse output signal, use the GetSSCaps method,
specifying the OLSSC_SUP_PLS_LOW2HIGH capability. If this
method returns a non-zero value, the capability is supported.

Specify the pulse output type using the PulseType property.

The duty cycle (or pulse width) indicates the percentage of the total
pulse output period that is active. A duty cycle of 50, then, indicates
that half of the total pulse is low and half of the total pulse output is
high. Specify the pulse width using the PulseWidth property.

Figure 42 illustrates a low-to-high pulse with a duty cycle of
approximately 30%.

Software Architecture

5

5

5

5

5

5

5

5

5

Figure 42: Example of a Low-to-High Pulse Output Type

Total Pulse Period

Active Pulse Width

low pulse

high pulse
163

Chapter 5

164
Simultaneous Operations
If supported, you can synchronize subsystems to perform
simultaneous operations. Note that you cannot perform
simultaneous operations on subsystems configured for single value
operations.

Note: In this section, a function or subroutine name followed by a
parenthetical, italicized name indicates that Visual Basic and Visual
C++ each have their own tools. In such cases, the Visual C++ name
appears in italics following the Visual Basic name.

To determine if the subsystems support simultaneous operations, use
the GetSSCaps method for each subsystem, specifying the
OLSSC_SUP_SIMULTANEOUS_START capability. If this method
returns a non-zero value, the capability is supported.

You can synchronize the triggers of subsystems by specifying the
same trigger source for each of the subsystems that you want to start
simultaneously and wiring them to the device, if appropriate.

Use the GetSimultaneousStartList (olDaGetSSList) function to
allocate a simultaneous start list. Then, use the PutSubSysOnSSList
(olDaPutDassToSSList) subroutine to put the subsystems that you
want to start simultaneously on the start list.

Pre-start the subsystems using the SimultaneousPreStart
(olDaSimultaneousPreStart) subroutine. Pre-starting a subsystem
ensures a minimal delay once the subsystems are started. Once you
call the SimultaneousPreStart (olDaSimultaneousPreStart)
subroutine, do not alter the settings of the subsystems on the
simultaneous start list.

Software Architecture

5

5

5

5

5

5

5

5

5

Start the subsystems using the SimultaneousStart
(olDaSimultaneousStart) subroutine. When started, both subsystems
are triggered simultaneously.

Note: Do not call the Start method when using simultaneous start
lists, since the subsystems are already started.

When you are finished with the operations, call the
ReleaseSimultaneousStartList (olDaReleaseSSList) subroutine to
free the simultaneous start list.

To stop the simultaneous operations, call the Stop (for an orderly
stop), Abort (for an abrupt stop) or Reset method (for an abrupt stop
that reinitializes the subsystem).
165

Chapter 5

166
Plot Control Operations
DTx-EZ provides properties to perform the following general
plotting operations:

• Plotting data (this page),

• Specifying a grid (page 168), and

• Specifying markers (page 169).

The following subsections describe these operations in more detail.

Plotting Data

When designing how your application displays data, DTx-EZ
provides properties to affect the following:

• Data identification (this page),

• Plotting mechanics (page 167), and

• Appearance (page 167).

DTx-EZ provides a stripchart mode for additional flexibility as well
(see page 168).

The following subsections describe these properties and the
stripchart mode.

Data Identification Properties

Before you can display data, you must identify the type of
information in the buffer. Use the DataType property to identify the
data as unsigned fixed point, signed fixed point, or floating point.
Use the numChannels property to specify the number of data
channels in the buffer.

Software Architecture

5

5

5

5

5

5

5

5

5

Plotting Mechanics Properties

When you plot data, you must define where in the display to start
plotting data. Use the xStart property to set the plot’s starting point.

Next, you must define the data’s scale (microseconds, seconds, and so
on), the length of the x-axis, and the limits of the y-axis. Use the
xAutoScale and yAutoScale properties to define these parameters
automatically.

If you prefer, you can manually define these parameters. To change
the plot’s scale, use the xScale property. To set the x-axis’ length, use
the xLength property. Use yMin to set the y-axis’ lowest possible
value and yMax to set the y-axis’ highest possible value.

Appearance

You can affect the color, style, and width of the lines you use to plot
data. To change a line’s color, use the Palette property. To change a
line’s style (that is, dashed, dotted, and so on), use the LineStyle
property. To change a line’s width, use the LineWidth property.

You may also enable or disable two modes that affect how data is
displayed overall if the system displays data while processing it. Set
the ForceRepaint property to TRUE if you want the system to redraw
the entire display each time a data element changes. Set the
UpdateMode property to TRUE if you want the plot to reflect each
element change.

Note: In most cases, you should set the UpdateMode property to
FALSE while setting a display’s parameters. After setting the
parameters, change the UpdateMode property to TRUE. Doing so
helps avoid errors.
167

Chapter 5

168
Stripchart Mode

When plotting rapidly-changing continuous data, it may be easiest to
use stripchart mode. Typically, the stripchart size is several times
greater than the size of each buffer. When the stripchart display
reaches the maximum size, the oldest data is removed from the left of
the display (and internal buffer) to make room for the newest data on
the right side of the plot display.

To turn stripchart mode on, set the StripChartMode property to
TRUE. To set the maximum number of data points to store and
display per channel, use the StripChartSize property.

Specifying a Grid

A grid is the underlying framework of lines on which the data is
plotted. You can change the grid’s appearance independently from
the data’s appearance. You can also choose not to display a grid at all.

You can change the grid’s overall color with the GridColor property.
You can change the grid’s overall line style (dashed, dotted, and so
on), with the GridStyle property.

Use the GridXStart and GridYStart properties to set the first line on
the x- and y-axes. Use the GridXSpacing and the GridYSpacing to
draw the rest of the grid lines. You can keep the x- and y-axis lines
from displaying with the GridXOn and the GridYOn properties.

Finally, in response to zooming in or out of a display or to differing
buffer sizes, you can choose to keep the units between the gridlines
constant or to increase or decrease the space between the grid lines
using the GridAutoScale property.

Software Architecture

5

5

5

5

5

5

5

5

5

Specifying Markers

Markers are lines that you can “overlay” on a plot as reference points;
they are unaffected by the plotting of data. DTx-EZ allows you to
define and place up to two pairs of markers. Each pair has a
horizontal and vertical line, although you may place one or two
horizontal or vertical lines alone if you prefer.

To display the first pair of markers, set the MarkerH1On and the
MarkerV1On properties to TRUE. To display the second pair, set the
MarkerH2On and the MarkerV2On properties to TRUE.

To set the markers’ positions, use the MarkerH1Pos and
MarkerH2Pos properties for the horizontal markers and the
MarkerV1Pos and the MarkerV2Pos properties for the vertical
markers. Note that the xScale property affects these positions. For
example, if xScale is set to 10, setting MarkerH1Pos to 2 causes the
marker to appear at the 20 unit spot. If xScale is set to 15, setting
MarkerH1Pos to 3 causes the marker to appear at the 45 unit spot.

Alternately, you can use the MouseXPos and MouseYPos properties
to set the markers’ positions with the mouse.

To change the markers’ color, use the MarkerColor property. This
property affects all the markers.

Finally, you can alter the data at each marker. Setting a value in the
MarkerV1Data or MarkerV2Data properties alters the value of the
point covered by the marker to that value specified by its respective
property (MarkerV1Data or MarkerV2Data).
169

Chapter 5

170

6
Product Support

General Checklist . 192

Service and Support . 193
191

Chapter 6

192
General Checklist
Should you experience problems using DTx-EZ, perform the
following steps:

1. Read all the appropriate sections of this manual. Make sure that
you have added any “Read This First” information to your
manual and that have used this information.

2. Check your distribution disk for a README file. If present, this
disk will include the latest installation and configuration
information.

3. Check that you have installed the device driver for your board
properly.

4. Check that you have installed your hardware properly.

Note: If you are still having problems, follow the instructions
provided in the next section.

Product Support

6

6

6

6

6

6

6

6

6

Service and Support
For the latest tips, software fixes, and other product information, you
can always access our World-Wide Web site at the following address:
http://www.keithley.com

If you have difficulty using DTx-EZ, the Keithley Technical Support
Department is available to provide technical assistance.

For the most efficient service, complete the form on page 194 and be
at your computer when you call for technical support. This
information helps to identify specific system and
configuration-related problems and to replicate the problem in
house, if necessary.
193

Chapter 6

194
Information Required for Technical Support

Name:___Phone__________________________

Contract Number: __

Address: ___

__

Hardware product(s): ___

serial number: ___

configuration: ___

Device driver: ____________________________________ ________________________________

version:__

Software:__ ________________________________

serial number: ________________________________ version:__________________________

PC make/model: ___

operating system: _____________________________ version:__________________________

Windows version: __

processor: ___________________________________ speed:___________________________

RAM: _______________________________________ hard disk space:____________________

network/number of users: _______________________ disk cache:________________________

graphics adapter: _____________________________ data bus:_________________________

I have the following boards and applications installed in my system:____________________________

__

__

I am encountering the following problem(s): __

__

__

__

and have received the following error messages/codes: ____________________________________

__

__

I have run the board diagnostics with the following results: __________________________________

__

You can reproduce the problem by performing these steps:

1. ___

__

2. ___

__

3. ___

__

A
Flowcharts for Substeps
171

Appendix A

172
Set Subsystem Parameters

Note: Depending on your board, some of these settings may not be
programmable. Refer to your device driver documentation for
details.

ChannelType Property

Specify the channel type (single-ended (0) or
differential (1)). Specify single-ended if you are using
pseudo-differential channels.

Resolution Property
Specify the resolution (usually for DIN or DOUT).

Encoding Property

For A/D and D/A subsystems, specify the data
encoding type (binary (0) or twos complement (1)).

Range Property
For A/D and D/A subsystems, specify the voltage
range for the subsystem.

FilterList Property Specify the filter for each A/D channel.

Flowcharts for Substeps

A

A

A

A

A

A

A

A

A

Set Up Channel List and Channel Parameters

ListSize Property
Specify the size of the channel list, gain list,
channel inhibit list, and synchronous digital
I/O list.

ChannelList Property Set up the channel list for the subsystem.

GainList Property

Specify the gain for each channel in the channel list
(the gain list parallels the channel list). Use a gain
of 1 for channels that do not support programmable
gain.

InhibitList Property

Enable/disable inhibition for the specified channel
entries. If inhibited, the acquired values from the
specified entries are discarded.

SyncDIOUsage Property
Enable/disable a synchronous digital output
operation.

DIOList Property

For subsystems that support synchronous digital
I/O, specify the values to output to the dynamic
digital output channels as each entry in the
channel list is sampled.
173

Appendix A

174
Set Clocks, Triggers, and Pre-Triggers

Specify external (1) to select the external
clock or one of the hardware-specific clocks
(extra+N) to select an extra available
external clock.

Using an
internal
clock?

ClockSource Property

Specify internal (0 –
the default) to select
the internal clock or

one of the
hardware-specific clocks (extra+N) to select
an extra available internal clock.

Frequency Property

Specify the
frequency of the
internal clock. The

driver sets the actual
frequency as closely as possible to the
number specified.

ClockSource Property

Specify the source of the trigger to start post-trigger
acquisition or output, or for A/D subsystems only, to
stop pre-trigger acquisition if used. Refer to your
device driver documentation for details.

ClockDivider Property

Yes

No

Trigger Property

Specify a clock divider to apply to the
external clock source. The driver sets the
actual clock divider as closely as possible
to the number specified.

Using pre- or
about-trigger

mode?

Yes

PreTrigger Property

For A/D subsystems
only, specify the
trigger (usually

software) to start
the pre-trigger or about-trigger acquisition.

Flowcharts for Substeps

A

A

A

A

A

A

A

A

A

Set Up Triggered Scan

Specify the retrigger mode: OL_RETRIGGER_
INTERNAL (internal retrigger clock is the retrigger;
any supported trigger source is initial trigger),
OL_RETRIGGER_SCAN_PER_TRIGGER (retrigger
source same as initial trigger source), or
OL_RETRIGGER_EXTRA (external retrigger source
is the retrigger; any supported trigger source is the
initial trigger).

RetriggerMode Property

Specify the retrigger
source. Refer to your
device driver
documentation for
details.

Set the frequency of the
retrigger clock. The
driver sets the actual

frequency as closely as possible to the number
specified.

TriggeredScan Property Enable triggered scan mode.

Using internal
retrigger
mode?

Yes

RetriggerFreq Property

No

Using
re-trigger

extra mode?

Yes

No

ReTrigger Property

Specify the number of times to scan the channel-gain
list per trigger/retrigger.MultiscanCount Property
175

Appendix A

176
Set Up Input Buffering

In this flowchart, a function or subroutine name followed by a
parenthetical, italicized name indicates that Visual Basic and Visual
C++ each have their own tools. In such cases, the Visual C++ name
appears in italics following the Visual Basic name.

Allocate
more

buffers?

Yes

Use the AllocBuffer function (olDmAllocBuffer) to
allocate a buffer of samples, where each sample is 2
bytes; use the CallocBuffer function
(olDmCallocBuffer) to allocate a buffer of samples
of a specified size

WrapMode Property

A minimum of three buffers is recommended for
continuous input operations if you are not using
single -wrap mode.

AllocBuffer Function
(olDmAllocBuffer) or
CallocBuffer Function
(olDmCallocBuffer)

Specify the buffer wrapping mode (if none (0), buffers
are not reused if no buffers are found on the ready
queue; if multiple (1), completed buffers are taken
from the done queue and continuously reused when
no buffers are found on the ready queue; if single (2),
a single buffer is continuously reused).

Put the buffer onto the ready queue.Queue Property

Flowcharts for Substeps

A

A

A

A

A

A

A

A

A

Set Up Output Buffering

In this flowchart, a function or subroutine name followed by a
parenthetical, italicized name indicates that Visual Basic and Visual
C++ each have their own tools. In such cases, the Visual C++ name
appears in italics following the Visual Basic name.

Allocate
more

buffers?

Yes

SetValidSamples Function
(olDaSetValidSamples)

Specify the valid number of data points in the buffer.

Fill the buffer.

Use the AllocBuffer function (olDmAllocBuffer) to
allocate a buffer of samples, where each sample is 2
bytes; use the CallocBuffer function
(olDmCallocBuffer) to allocate a buffer of samples
of a specified size

WrapMode Property

AllocBuffer Function
(olDmAllocBuffer) or
CallocBuffer Function
(olDmCallocBuffer)

Specify the buffer wrapping mode (if none (0), buffers
are not reused if no buffers are found on the ready
queue; if multiple (1), completed buffers are taken
from the done queue and continuously reused when
no buffers are found on the ready queue; if single (2),
a single buffer is continuously reused).

A minimum of three buffers is recommended for
continuous input operations if you are not using
single -wrap mode.

Put the buffer onto the ready queue.Queue Property
177

Appendix A

178
Deal with Events and Buffers for Input Operations

Get error
event?

Retrieve the
buffer from the
done queue.

No

Go to the next page.

Yes
Report the error.

Get
BufferReused

event?

No

Yes
You may want to

increment a counter.

Get
queue-relat
ed event?

No

Yes Report that the
operation has stopped.

Get buffer
done

event?

No

Yes Process
data?

No

Yes
Queue Property

Determine the
number of
samples in the
buffer.

GetValidSamples
Function

(olDaGetValidSamples)

Go to the next page.

The following error events can occur:
OverrunError or TriggerError.

The queue-related events are
QueueDone and QueueStopped.

The buffer done events are BufferDone and
PreTrigBufferDone.

In this flowchart, a function or
subroutine name followed by a
parenthetical, italicized name
indicates that Visual Basic and
Visual C++ each have their own
tools. In such cases, the Visual C++
appears in italics following the Visual
Basic name.

Flowcharts for Substeps

A

A

A

A

A

A

A

A

A

Deal with Events and Buffers for Input Operations (cont.)

Continued from previous page. Continued from previous page.

Yes

No

Using
Visual
Basic?

Copy all the
samples in the
buffer to a Visual
Basic array.

CopyFromBuffer
Subroutine

olDmGetBufferPtr
Get a pointer
to the buffer.

Process the data/buffer
in your program.

Recycle the
buffer if you
want the

subsystem to fill it
again when using no buffer or multiple
buffer wrap. See page 180 if you want
to transfer data from an inprocess
buffer.Wait for

message?

Yes
Return to the top of

page 178.

Queue Property
179

Appendix A

180
Transfer Data from an Inprocess Buffer

In this flowchart, a function or subroutine name followed by a
parenthetical, italicized name indicates that Visual Basic and Visual
C++ each have their own tools. In such cases, the Visual C++ name
appears in italics following the Visual Basic name.

QueueSize Property

Determine the number of buffers on the inprocess
queue (at least one buffer must be on the inprocess
queue to perform this operation).

Copy the data from the inprocess buffer to the
allocated buffer for immediate processing. A
BufferDone event occurs when the operation
completes.

FlushFromBufferInProcess
Subroutine

(olDaFlushFromBufferInprocess)

See page 178 to deal with the
buffers.

Use the AllocBuffer function (olDmAllocBuffer) to
allocate a buffer of samples, where each sample is 2
bytes; use the CallocBuffer function
(olDmCallocBuffer) to allocate a buffer of samples
of a specified size

AllocBuffer Function
(olDmAllocBuffer) or
CallocBuffer Function
(olDmCallocBuffer)

Flowcharts for Substeps

A

A

A

A

A

A

A

A

A

Deal with Events and Buffers for Output Operations

Get error
event?

No

Yes
Report the error.

Get
BufferReused

event?

No

Yes
You may want to

increment a counter.

Get
queue-relat
ed event?

No

Yes Report that the
operation has stopped.

Go to the next page.

The following error events can occur:
UnderrunError or TriggerError.

The queue-related events are
QueueDone and QueueStopped.

In this flowchart, a function or
subroutine name followed by a
parenthetical, italicized name
indicates that Visual Basic and
Visual C++ each have their own
tools. In such cases, the Visual C++
appears in italics following the Visual
Basic name.
181

Appendix A

182
Deal with Events and Buffers for Output Operations
(cont.)

Continued from previous page.

Yes

No

Using
Visual
Basic?

Copy all the
samples from a
Visual Basic array
to a buffer.

CopyToBuffer
Subroutine

olDmGetBufferPtr
Get a pointer
to the buffer.

Fill the buffer.

Recycle the
buffer if you
want the

subsystem to fill it again when using no
buffer or multiple buffer wrap.Wait for

message?

Yes
Return to the top of

page 181.

Get
BufferDone

event?

No

Yes Refill
buffers?

No

Yes

SetValidSamples
Subroutine

(olDaGetValidSamples)

Indicate the
number of
valid samples
in the buffer.

Queue Property

Flowcharts for Substeps

A

A

A

A

A

A

A

A

A

Set Clocks and Gates for Counter/Timer Operations

GateType Property
Specify the gate to enable or trigger a
counter/timer operation.

Specify external (1) to select the external
clock or one of the hardware-specific clocks
(extra+N) to select an extra available
external clock.

Using an
internal
clock?

ClockSource Property

Specify internal (0 –
the default) to select
the internal clock or

one of the
hardware-specific clocks (extra+N) to select
an extra available internal clock.

Frequency Property

Specify the
frequency of the
C/T output. The C/T

subsystem produces
the actual frequency as closely as possible
to the number specified.

ClockSource Property

ClockDivider Property

Yes

No

Specify a clock divider to apply to the
external clock source. The driver sets the
actual clock divider as closely as possible
to the number specified.
183

Appendix A

184
Stop the Operation

The Abort and Reset
methods stop the operation

on the subsystem immediately; the current buffers are
not filled or emptied before they are put on the done
queue. Reset also reinitializes the subsystem to a
known state and flushes all buffers to the done queue.

Stop in an
orderly
way?

Stop Method

The Stop method stops the
operation on the subsystem
in the recommended way;

the current inprocess buffers are filled or emptied and
put on the done queue. The driver posts at least one
BufferDone and QueueStopped event.

Reset Method

Abort Method

Yes

No

Reinitialize?

Yes

No

Pause
the

operation
?

Yes

No

Pause Method

Continue a
paused

operation?

Yes

No

Continue Method

Flowcharts for Substeps

A

A

A

A

A

A

A

A

A

Set Plot Appearance

Plotting a
single

channel?

No

Yes

Palette Property

ForeColor Property Set the plot line’s color.

Set each plot line’s color (each channel may be
represented by a different
color, if you wish).

BackColor Property

LineStyle Property

LineWidth Property Change the plot line’s width.

Set the plot’s background color.

Change the plot line’s width.
185

Appendix A

186
Set Pre-Operation Parameters

Using
stripchart
mode?

Yes

No

StripChartMode
Property

Set the StripChartMode
property to TRUE.

Set the number of data points
you wish to plot (the default
size is 1000).

DataType Property Indicate the data type in the buffer.

numChannels
Property

Indicate the number of channels to plot.

StripChartSize
Property

Flowcharts for Substeps

A

A

A

A

A

A

A

A

A

Set the Plot’s x-Axis

Autoscale
x-axis?

No

Yes

Set the plot’s starting point.

Set the number of data
points to display.

Enable the autoscale feature for the x-axis by setting
the xAutoScale property to True.

xScale Property Set the plot’s scale.

xStart Property

xLength Property

xAutoScale Property
187

Appendix A

188
Set the Plot’s y-Axis

Autoscale
y-axis?

No

Yes

Set the axis’ lower limit.

Set the axis’ upper limit.

Enable the autoscale feature for the y-axis by setting
the yAutoScale property to True.

yMin Property

yMax Property

yAutoScale Property

Flowcharts for Substeps

A

A

A

A

A

A

A

A

A

Set Grid Parameters

Set the line style for the grid.GridStyle Property

Display
x-axis on

grid?

Yes

No

GridXOn Property
Enable the x-axis grid lines.

GridXStart Property
Set the first line on the x-axis.

GridXSpacing
Property

Specify the amount of space
to place between the lines on
the x-axis.

Display
y-axis on

grid?

Yes

No

GridYOn Property
Enable the y-axis grid lines.

GridYStart Property
Set the first line on the y-axis.

GridYSpacing
Property

Specify the amount of space
to place between the lines on
the y-axis.

Yes
GridAutoScale

Property

Set the GridAutoScale property equal to TRUE.
Doing so means the grid lines never seem to change

position to reflect buffers of
varying size (or zooming on
the part of the user).
Instead, the scaling

between the lines changes, allowing the grid lines to
remain in a fixed position.

Make line
spacing
relative?
189

Appendix A

190
Set Marker Parameters

Modify
marker data

point?

If you wish to alter the
value of the data point at a
marker, enter the desired
value into the appropriate
property. Use
MarkerH1Data for the
point at the first horizontal
marker, MarkerH2Data

for the point at the second horizontal marker,
MarkerV1Data for the point at the first horizontal
marker, and MarkerV2Data for the point at the
second horizontal marker. (The plot must have buffer
data to use these properties.)

Yes

MarkerH1On and
MarkerV1On Property

MarkerH2On and
MarkerV2On Property

Display the second horizontal (MarkerH2On) and
vertical (MarkerV2On) marker lines.

MarkerH1Pos
(MarkerH2Pos) and

MarkerV1Pos
(MarkerV2Pos) Property

Set the position of the active markers with
MarkerH1Pos for the first horizontal marker,
MarkerH2Pos for the second horizontal marker,
MarkerV1Pos for the first vertical marker, and
MarkerV2Pos for the second vertical marker.

Display the horizontal (MarkerH1On) and vertical
(MarkerV1On) marker lines.

MarkerColor Property Change the marker lines’ color.

MarkerH1Data
(MarkerH2Data) and

MarkerV1Data
(MarkerV2Data)

Property

Index
A
A/D

burst example 20
continuous example 29

abort
a simultaneous operation 165
an operation 184

Abort method 61, 184
in continuous operations 113
in event counting operations 139
in rate generation operations 145
in repetitive one-shot operations 152
in simultaneous operations 165

about-trigger
continuous operation 116

support for 50, 117
example using 33

allocate
a buffer 128
a simultaneous start list 164

AllocBuffer function 65, 128
in inprocess buffer transfer 180
in input buffering 176
in output buffering 177

analog event trigger 127
support for 55, 127

application
creating 12
creating a device-independent 94

asynchronous operations
support for 51

B
BackColor property

in setting plot appearance 185
binary encoding

support for 54, 99
board

initializing and specifying 93
listing available at runtime 93
quantity installed 93
query for processor 57

Board property 57, 93
in continuous buffered input

operations 79
in continuous buffered output

operations 81
in event counting operations 83
in frequency measurement

operations 85
in pulse output operations 87
in single-value operations 77

BoardList property 48, 76, 93
buffer 128

allocating 128
events 178
identify data in for plotting 166
multiple-wrap mode support 51, 135
removing from done queue 133
set up for input 176
set up for output 177
single-wrap mode support 51, 135
specify quantity of channels in for

plotting 166
195

Index

196
support for 51, 128
transfer data from inprocess 180
wrap 134
write to inprocess support 51, 131

Buffer property 73
in plotting control operations 4, 89

BufferDone event 118, 131, 133
in buffer input operations 178
in buffer output operations 182

BufferReused event
in buffer input operations 178
in buffer output operations 181
with multiple buffer wrap mode 135

C
calibration

support for with software 57
CallocBuffer function 65, 128

in inprocess buffer transfer 180
in input buffering 176
in output buffering 177

CascadeMode property 60, 156
in event counting operations 83
in frequency measurement

operations 85
in pulse output operations 87

cascading 156
support for 55, 156

channel 100
differential 101
quantity of differential 54, 101
quantity of DMA 51, 136
quantity of I/O 53, 100
quantity of single-ended 53, 101
set parameters 173
single-ended 101

specify gain for one or more 109
specify gain for single 109
specify one or more 102
specify single 102
specify type 101
support for filter per 54, 111
support for range per 54, 108

channel expansion 53, 100
channel-gain list

adding channels to 104
configuration example 20
determine range for entry on 109
entry inhibit support 53, 105
inhibiting entries on 105
quantity of entries on 52, 103
random support 52, 103
sequential support 52, 103
set size of 103
setting up 102, 173
specify gain for entry on 109
zero-sequential support 53, 103

ChannelList property 59, 104
in setting channel parameters 173

ChannelType property 59, 101
in setting parameters 172

ChartIt example 41
ClearError method 62
clock 154

cascading 156
external 123, 155

support for 55, 123, 155
extra 124, 157
internal 122, 155

support for 55, 122, 155
maximum internal frequency 123,

155
minimum internal frequency 123, 155

Index
quantity of extra 55, 124, 157
set parameters for C/T operations

183
specifying 174

clock divider
maximum supported 124, 156
minimum supported 124, 156

ClockDivider property 60
in C/T operations 183
in frequency measurement

operations 142
in rate generation operations 144
in setting clock parameters 174
with external clock 123, 156

ClockSource property 60, 142
example using 23
in C/T operations 183
in frequency measurement

operations 140, 142
in setting clock parameters 174
with external clock 123, 156
with internal clock 122, 155

color
set grid line’s 168
set maker line’s 169
set plot line’s 167

Config method 61, 95
in continuous buffered input

operations 80
in continuous buffered output

operations 82
in event counting operations 83
in frequency measurement

operations 86, 142, 143
in pulse output operations 88
in single-value operations 77

configure a subsystem 95
continue an operation 184
Continue method 61, 184

in continuous operations 114
in event counting operations 139
in rate generation operations 145
in repetitive one-shot operations 152

continuous (post-trigger) mode 114
continuous A/D

example of 29
continuous about-trigger operation

116
support for 50

continuous about-trigger operation
support

for 117
continuous FFT example 40
continuous operation 113

performing input 79
performing output 81
support for 50, 114

continuous pre-trigger operation 115
support for 50, 115

continuous pulse output
support for 55, 144

conventions used xiv
conversion rate

in internal retrigger mode 120
in retrigger extra mode 122
in scan-per-trigger triggered scan

mode 120
CopyChannelFromBuffer subroutine

65
CopyChannelToBuffer subroutine 65
CopyFromBuffer subroutine 66, 133

in buffer input operations 179
197

Index

198
CopyLongChannelFromBuffer
subroutine 65

CopyLongChannelToBuffer
subroutine 65

CopySingleChannelFromBuffer
subroutine 65

CopySingleChannelToBuffer
subroutine 66

CopyToBuffer subroutine 66, 133
in buffer output operations 182

counter/timer 137
cascading 156

support for 55, 156
event counting operations 138

performing 83
support for 55, 138

frequency measurement operations
support for 85, 140

high-to-low output pulse
support for 55, 162

low-to-high output pulse support 55,
162

one-shot operations 148
support for 55, 148

pulse output operations
performing 87

rate generation operations 144
support for 55, 144

repetitive one-shot operations 151
support for 55, 151

CTMode function
in frequency measurement

operations 142
CTMode property 60

in event counting operations 83, 138
in frequency measurement

operations 85, 140, 142

in one-shot operations 148
in pulse output operations 87
in rate generation operations 144
in repetitive one-shot operations 151

CTReadEvents method 62, 138
in event counting operations 84
in frequency measurement

operations 143
custom control

adding to Visual Basic 10
adding to Visual C++ 11
Data Acquisition Custom Control 3
DT Plotting Custom Control 3

cut-off frequency
list 111

D
DAC Waveform Generator example 25
Data Acquisition Custom Control 3

adding to Visual Basic 10
adding to Visual C++ 11

data encoding 99
DataFlow property 58

in continuous (post-trigger)
operations 114

in continuous about-trigger
operations 117

in continuous buffered input
operations 79

in continuous buffered output
operations 81

in continuous pre-trigger operations
115

in single-value operations 77, 112

Index
DataType property 70, 166
in setting plot re-operation

parameters 186
DDE Server and Client example 37
DeviceName property 48
differential channel type 101
differential input

quantity of channels for 54, 101
support for 54, 101

digital event trigger 127
support for 55, 127

digital I/O
example of 35

DIOList property 59, 106
in setting channel parameters 173

divider
maximum supported 156
minimum supported 156

DMA 135
quantity of channels supported 51,

136
support for gap-free continuous

operation with dual 51, 136
support for gap-free continuous

operation with no 51, 136
support for gap-free continuous

operation with single 51, 136
DmaUsage property 58, 136

in continuous buffered input
operations 79

in continuous buffered output
operations 81

done queue 131
removing buffers from 133

DT Plotting Custom Control 3
adding to Visual Basic 10
adding to Visual C++ 11

DT-Open Layers 2
DTx-EZ 2
duty cycle 162

in one-shot operations 149

E
element

defined 94
list names and types 95
list quantity of 95
selecting 94

encoding 99
binary support 54, 99
twos complement support 54, 99

Encoding property 60, 100
example using 23
in setting parameters 172

EnumBoards method 48
EnumSS method 48, 76, 95
EnumSSCaps method 49, 76
error checking 76
event 96

defined 5
respond to 178

event counting operation 138
performing 83
support for 55, 138

example
A/D burst 20
About-Trigger 33
ChartIt 41
Continuous A/D 29
Continuous FFT 40
DAC Waveform Generator 25
DDE Server and Client 37
Digital I/O 35
199

Index

200
Scope 42
Single Value 31

external analog threshold (negative)
trigger 126

support for 54, 126
external analog threshold (positive)

trigger 126
support for 54, 126

external clock 123, 155
support for 55, 123, 155

external digital (TTL) trigger 125
support for 54, 125

extra clock 124, 157
quantity of 55, 124, 157

extra trigger 127
quantity supported 55, 127

F
Fast Fourier Transform

example of 40
FFT example 40
FIFO

present in data path 57
filter 111

list available during runtime 111
list cut-off frequency 111
per channel support 54, 111
quantity available during runtime

111
quantity of selections 54, 111

FilterList property 59, 111
in setting parameters 172

FilterValues property 49, 76, 111
Flush method 62, 134

FlushFromBufferInProcess
subroutine

in inprocess buffer transfer 180
with inprocess queue 130

FlushFromBufferInprocess
subroutine

with done queue 132
ForceRepaint property 73, 167

in plotting control operations 89
ForeColor property

in setting plot appearance 185
FreeBuffer subroutine 66, 134
frequency measurement operation 140

performing 85
support for 140

Frequency property 60
in C/T operations 183
in frequency measurement

operations 142
in rate generation operations 144
in setting clock parameters 174
with internal clock 122, 155

G
gain 109

list available 109
list available during runtime 110
programmable support 53, 109
quantity available during runtime

110
quantity of selections 53, 109
specify for one or more channels 109
specify for single channel 109

GainList property 59, 110
in setting channel parameters 173

GainValues property 49, 76, 110

Index
gap-free
continuous operation with dual

DMA support 51, 136
continuous operation with no DMA

support 51, 136
continuous operation with single

DMA support 51, 136
input data 134

gate 157
high-edge 159

support for 56, 159
high-edge debounced 160

support for 56, 161
high-level 158

support for 56, 158
high-level debounced 160

support for 56, 160
internal (software) 158

support for 56, 158
level 159

support for 56, 159
level debounced 161

support for 56, 161
low-edge 159

support for 56, 159
low-edge debounced 161

support for 56, 161
low-level 158

support for 56, 158
low-level debounced 160

support for 56, 160
set for cascaded clocks 156
set parameters 183

GateType property 60, 157
in C/T operations 183
in frequency measurement

operations 140, 142, 143

with software gate 158
generate waveform

example of 25
Get Channel Range function 59
GetBufferSize function 66
GetDataBits function 66
GetDataWidth function 66
GetDevCaps method 48, 76, 95
GetErrorString function 66
GetMaxSamples function 66
GetSimultaneousStartList function

63, 164
GetSingleValue method 61

example using 41
in single-value operations 78, 112

GetSSCaps method 49, 76
GetSSCapsEx method 49, 76
GetTimeDateStamp function 66
GetValidSamples function 67

in buffer input operations 178
grid 168

define first axes lines 168
enable/disable relative line spacing

168
set color 168
set line’s style 168
set parameters 189
show/hide lines 168
space lines on 168

GridAutoScale property 71, 168
in setting grid parameters 189

GridColor property 71, 168
GridStyle property 71, 168

in setting grid parameters 189
GridXOn property 71, 168

in setting grid parameters 189
201

Index

202
GridXSpacing property 71, 168
in setting grid parameters 189

GridXStart property 71, 168
in setting grid parameters 189

GridYOn property 71, 168
in setting grid parameters 189

GridYSpacing property 71, 168
in setting grid parameters 189

GridYStart property 71, 168
in setting grid parameters 189

H
handle 94
hdass 94
hDass property 50
hDev property 48
help

online help 12, 13
technical support xvi

high-edge debounced gate 160
support for 56, 161

high-edge gate 159
support for 56, 159

high-level debounced gate 160
support for 56, 160

high-level gate 158
support for 56, 158

high-to-low output pulse 162
support for 55, 162

I
InhibitList property 59, 105

in setting channel parameters 173
inprocess queue 130

support for write to 51, 131

transfer data from 180
InputToVolts subroutine 68
internal (software) gate

support for 56, 158
internal clock 122, 155

support for 55, 122, 155
internal retriggered scan mode 120

support for 52, 120
internal software trigger

support for 54, 125
interrupt 135

support for 56, 135

L
LastError property 50
LastErrorDescription property 50
level debounced gate 161

support for 56, 161
level gate 159

support for 56, 159
line

enable/disable relative spacing on
grid 168

set color for grid 168
set color for marker 169
set color for plot 167
set style for grid 168
set style for plot 167
set width for plot 167
show/hide on grid 168
space on grid 168

LineStyle property 70, 167
in setting plot appearance 185

LineWidth property 70, 167
in setting plot appearance 185

Index
ListSize property 59, 103
in setting channel parameters 173

LongtoFreq (IParam) macro 86, 141
low-edge debounced gate 161

support for 56, 161
low-edge gate 159

support for 56, 159
low-level debounced gate 160

support for 56, 160
low-level gate 158

support for 56, 158
low-to-high pulse output 162

support for 55, 162

M
MagToDB subroutine 68
marker 169

alter data at 169
enable/disable 169
set line’s color 169
set parameters 190
set position with code 169
set position with mouse 169

MarkerColor property 71, 169
in setting marker parameters 190

MarkerH1Data property
in setting marker parameters 190

MarkerH1On property 71, 169
in setting marker parameters 190

MarkerH1Pos property 72, 169
in setting marker parameters 190

MarkerH2Data property
in setting marker parameters 190

MarkerH2On property 72, 169
in setting marker parameters 190

MarkerH2Pos property 72, 169
in setting marker parameters 190

MarkerV1Data property 72, 169
in setting marker parameters 190

MarkerV1On property 72, 169
in setting marker parameters 190

MarkerV1Pos property 72, 169
in setting marker parameters 190

MarkerV2Data property 72, 169
in setting marker parameters 190

MarkerV2On property 72, 169
in setting marker parameters 190

MarkerV2Pos property 72, 169
in setting marker parameters 190

MaxRange property 59, 108
MaxRangeValues property 49, 76, 108
MeasureDone event

in frequency measurement
operations 86, 141

MeasureFrequency method 62, 140
in frequency measurement

operations 86
method 5
MinRange property 59, 108
MinRangeValues property 50, 76, 108
MouseXPos property 73, 169
MouseYPos property 73, 169
multiple board support 6
multiple-buffer wrap mode 135

support for 51, 135
MultiscanCount property 58

in internal retrigger mode 121
in scan-per-trigger mode 120
in triggered scan mode 119, 175
203

Index

204
N
negative analog threshold trigger

support 54, 126
numBoards property 48, 76, 93
numChannels property 70, 166

in setting plot re-operation
parameters 186

numFilters property 49, 76, 111
numGains property 49, 76, 110
numRanges property 49, 76, 108
numResolutions property 49, 76, 100
numSubSystems property 48, 95
Nyquist Theorem 123

O
object-oriented design 6
OL_ENUM_FILTERS 111
OL_ENUM_GAINS 109
OL_ENUM_RANGES 108
OL_ENUM_RESOLUTION 100
olDaFlushFromBufferInprocess

in inprocess buffer transfer 180
with done queue 132
with inprocess queue 130

olDaGetChannelRange 59
olDaGetErrorString 66
olDaGetSSList 63, 164
olDaGetValidSamples

in buffer input operations 178
olDaGetValidSamples subroutine

in buffer output operations 182
olDaPutDassToSSList 63, 164
olDaReleaseSSList 63, 98, 165
olDaSetValidSamples

in output buffering 177
olDaSimultaneousPreStart 63, 164

olDaSimultaneousStart 63, 165
olDmAllocBuffer 65, 128

in inprocess buffer transfer 180
in input buffering 176
in output buffering 177

olDmCallocBuffer 65, 128
in inprocess buffer transfer 180
in input buffering 176
in output buffering 177

olDmFreeBuffer 66, 134
olDmGetBufferPtr 66, 133

in buffer input operations 179
in buffer output operations 182

olDmGetBufferSize 66
olDmGetDataBits 66
olDmGetDataWidth 66
olDmGetErrorString 66
olDmGetMaxSamples 66
olDmGetTimeDateStamp 66
olDmGetValidSamples 67
olDmReAllocBuffer 67
olDmReCallocBuffer 67
olDmSetValidSamples 66
olDspGetErrorString 66
olDspInputToVolts 68
olDspMagToDB 68
olDspRealFFT 68
olDspVoltsToOutput 68
olDspWindow 68
OLSSC_CGLDEPTH 52, 103
OLSSC_MAXDICHANS 54, 101
OLSSC_MAXDIGITALIOLIST_

VALUE 53, 106
OLSSC_MAXMULTISCAN 52, 119
OLSSC_MAXSECHANS 53, 101
OLSSC_NUMCHANNELS 53, 100
OLSSC_NUMDMACHANS 51, 136

Index
OLSSC_NUMEXTRACLOCKS 55, 124,
157

OLSSC_NUMEXTRATRIGGERS 55,
127

OLSSC_NUMFILTERS 54, 111
OLSSC_NUMGAINS 53, 109
OLSSC_NUMRANGES 54, 108
OLSSC_NUMRESOLUTIONS 54, 100
OLSSC_SUP_

SIMULTANEOUS_START 51, 164
OLSSC_SUP_

ZEROSEQUENTIAL_CGL 53, 103
OLSSC_SUP_2SCOMP 54, 99
OLSSC_SUP_ANALOGEVENTTRIG

55, 127
OLSSC_SUP_BINARY 54, 99
OLSSC_SUP_BUFFERING 51, 128
OLSSC_SUP_CASCADING 55, 156
OLSSC_SUP_CHANNELLIST_

INHIBIT 53, 105
OLSSC_SUP_CONTINUOUS 50, 114
OLSSC_SUP_CONTINUOUS_ABOUT

TRIG 50, 117
OLSSC_SUP_CONTINUOUS_

PRETRIG 50, 115
OLSSC_SUP_CTMODE_COUNT 55,

138, 140
OLSSC_SUP_CTMODE_ONESHOT

55, 148
OLSSC_SUP_CTMODE_ONESHOT_

RPT 55, 151
OLSSC_SUP_CTMODE_RATE 55, 144
OLSSC_SUP_DIFFERENTIAL 54, 101
OLSSC_SUP_DIGITALEVENTTRIG

55, 127
OLSSC_SUP_EXP2896 53, 100
OLSSC_SUP_EXP727 53, 100

OLSSC_SUP_EXTCLOCK 55, 123, 155
OLSSC_SUP_EXTERNTRIG 54, 125
OLSSC_SUP_FIFO 57
OLSSC_SUP_FILTERPERCHAN 54,

111
OLSSC_SUP_GAPFREE_DUALDMA

51, 136
OLSSC_SUP_GAPFREE_NODMA 51,

136
OLSSC_SUP_GAPFREE_SINGLEDM

A 51, 136
OLSSC_SUP_GATE_HIGH_EDGE 56,

159
OLSSC_SUP_GATE_HIGH_EDGE_

DEBOUNCE 56, 161
OLSSC_SUP_GATE_HIGH_LEVEL

56, 158
OLSSC_SUP_GATE_HIGH_LEVEL_

DEBOUNCE 56, 160
OLSSC_SUP_GATE_LEVEL 56, 159
OLSSC_SUP_GATE_LEVEL_

DEBOUNCE 56, 161
OLSSC_SUP_GATE_LOW_ EDGE 56,

159
OLSSC_SUP_GATE_LOW_EDGE_

DEBOUNCE 56, 161
OLSSC_SUP_GATE_LOW_LEVEL 56,

158
OLSSC_SUP_GATE_LOW_LEVEL_

DEBOUNCE 56, 160
OLSSC_SUP_GATE_NONE 56, 158
OLSSC_SUP_INPROCESS_FLUSH 51,

131
OLSSC_SUP_INTCLOCK 55, 122, 155
OLSSC_SUP_INTERRUPT 56, 135
OLSSC_SUP_PAUSE 51
OLSSC_SUP_PLS_HIGH2LOW 55, 162
205

Index

206
OLSSC_SUP_PLS_LOW2HIGH 55, 162
OLSSC_SUP_POSTMESSAGE 51
OLSSC_SUP_PROCESSOR 57
OLSSC_SUP_PROGRAMGAIN 53,

109
OLSSC_SUP_RANDOM_CGL 52, 103
OLSSC_SUP_RANGEPERCHANNEL

54, 108
OLSSC_SUP_RETRIGGER_EXTRA 52,

121
OLSSC_SUP_RETRIGGER_

INTERNAL 52, 120
OLSSC_SUP_RETRIGGER_SCAN_

PER_TRIGGER 52, 119
OLSSC_SUP_SEQUENTIAL_CGL 52,

103
OLSSC_SUP_SIMULTANEOUS_SH

53, 103
OLSSC_SUP_SINGLEENDED 53, 101
OLSSC_SUP_SINGLEVALUE 50, 112
OLSSC_SUP_SOFTTRIG 54, 125
OLSSC_SUP_SWCAL 57
OLSSC_SUP_SWRESOLUTION 54,

100
OLSSC_SUP_SYNCHRONOUS_

DIGITALIO 53, 106
OLSSC_SUP_THRESHTRIGNEG 54,

126
OLSSC_SUP_TIMEREVENTTRIG 55,

127
OLSSC_SUP_TRIGSCAN 52, 118
OLSSC_SUP_WRPMULTIPLE 51, 135
OLSSC_SUP_WRPSINGLE 51, 135
OLSSCE_MAXCLOCKDIVIDER 124,

156
OLSSCE_MAXTHROUGHPUT 123,

155

OLSSCE_MINCLOCKDIVIDER 124,
156

OLSSCE_MINTHROUGHPUT 123,
155

one-shot operation 148
repetitive support 55, 151
support for 55, 148

online help 12, 13
operation

stopping 98
OverrunError event

in buffer input operations 178
in buffer output operations 181

P
Palette property 70, 167

in setting plot appearance 185
parameters

set for channel 173
set for grid 189
set for markers 190
set for subsystem 172

pause an operation 184
support for 51

Pause method 61, 184
in continuous operations 114
in event counting operations 139
in rate generation operations 145
in repetitive one-shot operations 152

plot
automatic scaling 167
enable/disable repaint 167
enable/disable update on each

element change 167
set appearance 185
set line style 167

Index
set line’s color 167
set line’s width 167
set pre-operation parameters 186
set scale for 167
set starting point 167

plotting control operations
performing 89

plotting data 166
positive analog threshold trigger

support 54, 126
PowerOff method 62
PowerOn method 62
pre-starting subsystems 164
PreTrigBufferDone event 131

in buffer input operations 178
pre-trigger

continuous operations 115
specifying 174
support for continuous operation 50,

115
PreTrigger function

in continuous about-trigger
operations 117

PreTrigger property 60, 125
in continuous pre-trigger operations

116
in setting pre-trigger parameters 174

PreTriggerBufferDone event 116, 118
processor

present on board 57
product support 191
Properties window 3
property 4
pseudo-differential analog input 102
pulse output 162

high-to-low 162
low-to-high 162

performing operation 87
pulse type

high-to-low support 55, 162
low-to-high support 55, 162

pulse width 162
PulseType property 60, 162

in frequency measurement
operations 142

in pulse output operations 88
PulseWidth property 60, 162

in frequency measurement
operations 142

in pulse output operations 88
PutSingleValue method 61

in single-value operations 78, 113
PutSubSysOnSSList subroutine 63,

164

Q
Queue property 62, 129, 133

in buffer input operations 178, 179
in buffer output operations 182
in input buffering 176
in output buffering 177

QueueDone event
in buffer input operations 178
in buffer output operations 181
with buffer wrap mode none 134

QueueSize property 62
in inprocess buffer transfer 180

QueueStopped event 116, 131
in buffer input operations 178
in buffer output operations 181
207

Index

208
R
range 108

maximum value during runtime 108
maximum voltage range available

108
minimum and maximum supported

108
minimum value during runtime 108
minimum voltage range available

108
per channel support 54, 108
quantity of selections 54, 108
quantity of voltage ranges available

108
specify 108

Range property 59, 108
example using 23
in setting parameters 172

rate generation operation 144
support for 55, 144

ready queue 128
RealFFT subroutine 68
ReAllocBuffer subroutine 67
ReCallocBuffer subroutine 67
redraw 167
related documents xv
ReleaseSimultaneousStartList

subroutine 63, 98, 165
repaint 167
repetitive one-shot operation 151

support for 55, 151
requirements 8
reset

a simultaneous operation 165
an operation 184

Reset method 61, 184
in continuous operations 113

in event counting operations 139
in rate generation operations 145
in repetitive one-shot operations 152
in simultaneous operations 165

resolution 100
actual available during runtime 100
bits of supported 100
quantity available during runtime

100
quantity of 54, 100
software-programmable support 54,

100
specify number of bits 100

Resolution property 60, 100
in setting parameters 172

ResolutionsValues property 76
ResolutionValues property 49, 100
retrigger

extra mode 121
internal mode 120
maximum scans per 52, 119
setting the frequency for 121

ReTrigger property 60, 125
in retrigger extra mode 122
in triggered scan mode 175

retrigger scan
support for extra triggered scan

mode 52, 121
retriggered scan

support for internal mode 52, 120
RetriggerFreq property 58

in internal retrigger mode 120
in retrigger extra mode 122
in triggered scan mode 175

RetriggerMode property 58
in internal retrigger mode 120
in retrigger extra mode 121

Index
in scan-per-trigger mode 119
in triggered scan mode 175

S
sampling theory 123
scale

automatically for plots 167
setting 167

scan
internal retrigger mode support 52,

120
maximum per trigger or retrigger 52,

119
multiple on trigger 118
retrigger-extra mode support 52, 121
setting up 175
triggered support 52, 118

scan-per-trigger triggered scan mode
support for 52, 119

Scope example 42
service and support procedure 193
SetValidSamples function 66

in output buffering 177
SetValidSamples subroutine

in buffer output operations 182
simultaneous operation 164
simultaneous sample-and-hold 103,

107
support for 53, 103

simultaneous start
allocating list 164
ending operation 165
free list 165
pre-starting subsystems on list 164
put subsystem on list 164
releasing list 98

starting subsystems on list 165
support for 51, 164

SimultaneousPreStart subroutine 63,
164

SimultaneousStart subroutine 63, 165
single value

example of 31
single-buffer wrap mode

support for 51, 135
single-ended

quantity of channels 53, 101
single-ended channel input 101

support for 53, 101
single-ended channel type 101
SinglePoint property 73

example using 41
in plotting control operations 89

single-value operation 112
performing 77
support for 50, 112

software (internal) trigger 125
software gate 158
SRL subsystem

restrictions on 94
start a simultaneous operation 165
Start method 61

example using 24, 27, 41
in continuous buffered input

operations 80
in continuous buffered output

operations 82
in continuous operations 113
in event counting operations 84, 138
in frequency measurement

operations 143
in one-shot operations 149
in pulse output operations 88
209

Index

210
in rate generation operations 145
in repetitive one-shot operations 152

starting point
set for plot 167

stop
a simultaneous operation 165
an operation 98, 184

Stop method 61, 98, 184
example using 24, 27, 41
in continuous operations 113
in event counting operations 139
in rate generation operations 145
in repetitive one-shot operations 152
in simultaneous operations 165

stripchart mode 168
enable/disable 168
example using 27, 33, 41

StripChartMode property 70, 168
in setting plot re-operation

parameters 186
StripChartSize property 70, 168

in setting plot re-operation
parameters 186

style
set grid line’s 168
set plot line’s 167

SubSysElement property 57, 94
in continuous buffered input

operations 79
in continuous buffered output

operations 81
in event counting operations 83
in frequency measurement

operations 85
in pulse output operations 87
in single-value operations 77

subsystem
configuring 95
defined 94
pre-starting 164
put on simultaneous start list 164
quantity available 95
set parameters 172

subsystem handle 94
SubSystem property 57, 94

in continuous buffered input
operations 79

in continuous buffered output
operations 81

in event counting operations 83
in frequency measurement

operations 85
in pulse output operations 87
in single-value operations 77

SubSystemList property 48, 95
SubSysType property 57, 94

in continuous buffered input
operations 79

in continuous buffered output
operations 81

in event counting operations 83
in frequency measurement

operations 85
in pulse output operations 87
in single-value operations 77

support 191
SyncDIOUsage property 59, 106

in setting channel parameters 173
synchronous digital I/O

setting up a channel-gain list for 106
synchronous digital output channel list

maximum value 53, 106

Index
synchronous digital output operation
support for 53, 106

T
technical support xvi, 191, 193
timer event trigger 127

support for 55, 127
trigger

acquire data before 115
acquire data before and after 116
acquire or output data continuously

on 114
analog event 127

support for 55, 127
digital event 127

support for 55, 127
external analog threshold (negative)

126
support for 54, 126

external analog threshold (positive)
126

support for 54, 126
external digital (TTL) 125

support for 54, 125
extra 127
internal retrigger mode 120
maximum scans per 52, 119
quantity of extra 55, 127
restrictions 152
retrigger extra mode 121
scan CGL multiple times on 118
scan-per-trigger triggered scan mode

119
software (internal) 125

support for 54, 125
specifying 174

synchronizing 164
timer event 127

support for 55, 127
Trigger property 60, 125

example using 23
in continuous (post-trigger) mode

114
in continuous about-trigger mode

117
in continuous pre-trigger mode 116
in setting trigger parameters 174

triggered scan 118
setting up 175
support for 52, 118
support for scan-per-trigger mode 52,

119
TriggeredScan property 58, 118

example using 24
in setting up triggered scan 175

TriggerError event 120
in buffer input operations 178
in buffer output operations 181
in retrigger extra mode 122

troubleshooting
service and support procedure 193

troubleshooting checklist 192
twos complement encoding

support for 54, 99

U
UpdateMode property 73, 167

in plotting control operations 89

V
ValueToVolts function 68
211

Index

212
Visual Basic project
adding custom controls to 10

Visual C++ project
adding custom controls to 11

VoltsToOutput subroutine 68
VoltsToValue function 68

W
waveform

example of generating 25
Waveform Generator example 39
what you need 8
width

set plot line’s 167
Window subroutine 68
Windows timer

using 140
wrap mode 134

multiple support 51, 135
single support 51, 135

WrapMode property 58
in input buffering 176
in output buffering 177
with buffer wrap mode none 134
with multiple buffer wrap mode 135
with single buffer wrap mode 135

X
xAutoScale property 72, 167
x-axis

automatic scaling 167
set first line on 168
set length of 167
show/hide lines on 168

xLength property 72, 167

xScale property 72, 167, 169
in setting plot x-axis 187

xStart property 72, 167

Y
yAutoScale property 73, 167

in setting plot y-axis 188
y-axis

automatic scaling 167
define upper and lower limits 167
set first line on 168
show/hide lines on 168

yMax property 73, 167
in setting plot y-axis 188

yMin property 73, 167
in setting plot y-axis 188

Z
zooming, example of 28

12/04

Specifications are subject to change without notice.
All Keithley trademarks and trade names are the property of Keithley Instruments, Inc.
All other trademarks and trade names are the property of their respective companies.

A G R E A T E R M E A S U R E O F C O N F I D E N C E

Keithley Instruments, Inc.
Corporate Headquarters • 28775 Aurora Road • Cleveland, Ohio 44139 • 440-248-0400 • Fax: 440-248-6168 • 1-888-KEITHLEY (534-8453) • www.keithley.com

	Front Cover
	Warranty Page
	Title Page
	Manual Print History
	Safety Page
	Table of Contents
	About this Manual
	Intended Audience
	What You Should Learn from this Manual
	Organization of this Manual
	Conventions Used in this Manual
	Related Information
	Where to Get Help

	Overview
	What is DTx-EZ?
	Conforms to the DT-Open Layers Standard
	Provides Custom Controls
	The Data Acquisition Custom Control
	The DT Plot Custom Control

	Provides Properties, Methods, and Events
	Provides Function and Subroutine Libraries
	Follows Object-Oriented Design
	Provides Extensive Example Programs
	Provides Multiple Board Support
	Provides High Performance

	What You Need
	Installation
	Adding DTx-EZ Custom Controls to Your Project
	Adding to a Visual Basic 6.0 Project
	Adding to a Visual C++ 6.0 Project

	Creating an Application
	Using the DTx�EZ Online Help

	Using the DTx-EZ Examples
	About the Examples
	Running the Examples as Applications
	Opening the Examples from within Visual Basic
	Opening the Examples from within Visual C++

	A/D Burst Example
	DAC Waveform Generator Example
	Continuous A/D Example
	Single-Value Example
	About-Trigger Example
	Digital I/O Example
	DDE Server and Client Examples
	Waveform Generator Example
	Continuous FFT Example
	ChartIt Example
	Scope Example

	Property, Method, Function, and Subroutine Summary
	Introduction
	Data Acquisition Custom Control
	Information Properties and Methods
	Initialization Properties
	Configuration Properties and Functions
	Operation Properties, Methods, Functions, and Subroutines

	Data Management DLLs
	Buffer Management Functions and Subroutines
	Conversion Functions and Subroutines

	DT Plot Custom Control
	Plot Appearance
	Plot Pre-Display Operational Parameters
	Grids
	Markers
	x-Axis Parameters
	y-Axis Parameters
	Plotting Operation Control Parameters

	Programming Flowcharts
	Introduction
	Single-Value Operations
	Continuous Buffered Input Operations
	Continuous Buffered Output Operations
	Event Counting Operations
	Frequency Measurement Operations
	Pulse Output Operations
	Plotting Control Operations

	Software Architecture
	Introduction
	System Operations
	Initializing and Specifying a Board
	Specifying a Subsystem
	Configuring a Subsystem
	Handling Events
	Handling Errors
	Halting the Operation

	Analog and Digital I/O Operations
	Data Encoding
	Resolution
	Channels
	Specifying the Channel Type
	Specifying a Single Channel
	Specifying One or More Channels
	Specifying the Channel List Size
	Specifying the Channels in the Channel List
	Inhibiting Channels in the Channel List
	Specifying Synchronous Digital I/O Values in the Channel List

	Ranges
	Gains
	Specifying the Gain for a Single Channel
	Specifying the Gain for One or More Channels

	Filters
	Data Flow Modes
	Single-Value Operations
	Continuous Operations
	Continuous (Post-Trigger) Mode
	Continuous Pre-Trigger Mode
	Continuous About-Trigger Mode

	Triggered Scan Mode
	Scan-Per-Trigger Mode
	Internal Retrigger Mode
	Retrigger Extra Mode

	Clock Sources
	Internal Clock Source
	External Clock Source
	Extra Clock Source

	Trigger Sources
	Software (Internal) Trigger Source
	External Digital (TTL) Trigger Source
	External Analog Threshold (Positive) Trigger Source
	External Analog Threshold (Negative) Trigger Source
	Analog Event Trigger Source
	Digital Event Trigger Source
	Timer Event Trigger Source
	Extra Trigger Source

	Buffers
	Ready Queue
	Done Queue
	Buffer and Queue Management
	Buffer Wrap Modes

	DMA Resources

	Counter/Timer Operations
	Counter/Timer Operation Mode
	Event Counting
	Frequency Measurement
	Using the Windows Timer
	Using a Pulse of a Known Duration

	Rate Generation
	One-Shot
	Repetitive One-Shot

	C/T Clock Sources
	Internal C/T Clock
	External C/T Clock
	Internally Cascaded Clock
	Extra C/T Clock Source

	Gate Types
	Software Gate Type
	High-Level Gate Type
	Low-Level Gate Type
	Low-Edge Gate Type
	High-Edge Gate Type
	Any Level Gate Type
	High-Level, Debounced Gate Type
	Low-Level, Debounced Gate Type
	High-Edge, Debounced Gate Type
	Low-Edge, Debounced Gate Type
	Level, Debounced Gate Type

	Pulse Output Types and Duty Cycles

	Simultaneous Operations
	Plot Control Operations
	Plotting Data
	Data Identification Properties
	Plotting Mechanics Properties
	Appearance
	Stripchart Mode

	Specifying a Grid
	Specifying Markers

	Product Support
	General Checklist
	Service and Support

	Flowcharts for Substeps
	Index
	Back Cover

