HSIC Essentials Electrical Validation and Protocol Decode Solution

Measurements and Setup Library Methods of Implementation (MOI)

Version 1.0

Technical Reference

Copyright © Tektronix. All rights reserved. Licensed software products are owned by Tektronix or its suppliers and are protected by United States copyright laws and international treaty provisions.

Tektronix products are covered by U.S. and foreign patents, issued and pending. Information in this publication supersedes that in all previously published material. Specifications and price change privileges reserved.

TEKTRONIX, TEK and DPOJET are registered trademarks of Tektronix, Inc.

Contacting Tektronix

Tektronix, Inc. 14150 SW Karl Braun Drive P.O. Box 500 Beaverton, OR 97077 USA For product information, sales, service, and technical support: In North America, call 1-800-833-9200.

Revision History			
Version	Issue Date	Pages	Nature of Change
0.1	23 Jul 2012	All	Initial draft version
0.7	27 Sep 2012	All	Added setup files info
0.8	9 Oct 2012	All	Updated with figures.
			Added Host
			measurements
0.9	11 th Oct 2012	All	Incorporated the review
			comments
1.0	18 th Oct 2012	All	Updated version.

Methods of Implementation

С	0	nt	e	nts
_	-		-	

1	Introduction to the DPOJET HSIC Essentials Setup Library	. 1
2	Assumptions	. 1
3	Equipment Requirements	. 2
4	Accessing the DPOJET HSIC Essentials Measurement Menu	. 3
4.1	HSIC Essentials Measurement Setup Library	. 3
4.2	Specification Test Points and Measurement Setup Library	. 4
5	Preparing to Take Measurements	. 6
5.1	Initial Oscilloscope Setup	. 6
5.2	Installation	. 6
6	HSIC Test Procedure	. 7
6.1	Step-by-Step HSIC Device testing	. 7
6.2	Step-by-Step HSIC HOST testing	13
6.3	Bus Timing Measurements	15
7	HSIC Essentials Protocol Decoding	19
7.1	Installation	19
7.2	Performing Protocol Decode	19
7.3	HSIC Host and Device Traffic Distinction	23
8	Measurement Methodologies	25
8.1	High-Low	25
8.2	Eye Width	25
8.3	Eye Height	25
8.4	Rise Slew Rate	26
8.5	Fall Slew Rate	26
8.6	Setup	27
8.7	Hold	27
8.8	Frequency	28
8.9	Mask Hits	28
Арр	endix	29
С	onfiguring the DPOJET HSIC Essentials for additional debug analysis and customization of various measurements	29

1 Introduction to the DPOJET HSIC Essentials Setup Library

This document provides the Methods of Implementation (MOI) for performing HSIC transmitter measurements and HSIC Protocol Decoding with Tektronix MSO/DPO5000, DPO7000C, MSO/DPO/DSA70000C/D Win7 64-bit oscilloscopes enabled with option DJA (DPOJET Advanced Jitter and Eye Analysis Tool), and option HSIC. The oscilloscope should have a bandwidth of at least 2 GHz.

Instrument Setup files using DPOJET base measurements are used to perform HSIC specific measurements. DPOJET along with its associated setup files provides transmitter path measurements (amplitude, timing, and jitter), waveform mask testing and limit testing described in the specifications at respective host/device test points.

Table 1 HSIC specifications

Supported Specification Title	Specifications Revision	HSIC Essentials MOI Test Points Defined
Universal Serial Bus Specification	Rev 2.0	Device and Host
High-Speed Inter-Chip USB Electrical Specification	Ver 1.0	
HSIC ECN	Rev 1.0	

In the subsequent sections, step-by-step procedures are described to help you perform HSIC measurements. Each measurement is described as a Method of Implementation (MOI).

For the latest version of this document and the latest HSIC Setup Library, refer to <u>www.tek.com/downloads</u> (keyword 'HSIC Essentials').

For further details on HSIC test specifications and compliance testing requirements, you can refer to specification documents available on <u>www.usb.org</u> website.

2 Assumptions

The procedures explained in this document assume that the user will have control of the Device Under Test (DUT) configuration such that the DUT will be able to output the required signal for the testing. The procedures also assume that user has configuration control of the voltage swing in environments where the device supports multiple voltage classes.

3 Equipment Requirements

HSIC Essentials is supported on Tektronix MSO/DPO5000, DPO7000C, MSO/DPO/DSA70000C/D Win7 64-bit oscilloscopes. The following table outlines the equipment requirements for each of these oscilloscope families.

Table 2 List of Equipme

Oscilloscope	Software Options	Probes	Accessories
MSO5204 DPO5204	Opt. HSIC Opt. DJA	Qty. 2 TAP1500	PPM100 Probe Holders
DP07254C DP07354C		Qty. 2 TAP1500 or P6245	
MS0/DPO/DSA70000C/D		Oty. 2 P6245 (requires 2 TCA-BNC Adapters. 1 ships with oscilloscope)	

Oscilloscope firmware: TekScope firmware version 6.4.0 or later.

Application Framework: Option DJA: DPOJET Advanced Jitter and Eye Analysis Tool application version 6.0.0 and above.

Application Software: Option HSIC Essentials – Electrical Validation and Protocol Decode Solution (requires DJA). HSIC Essentials software installer includes setup libraries for transmitter measurements and protocol decoder support. Opt. HSIC license key enables setup libraries for transmitter measurements.

4 Accessing the DPOJET HSIC Essentials Measurement Menu

On the oscilloscope TekScope menu, go to Analyze -> HSIC Essentials, and click on it to invoke the HSIC setup library in DPOJET standards tab. Refer to Figure 1.

File	Edit	Vertical	Digital	Horiz/Acq	Trig Dis	splay	Cursors	Measure	Mask	Math	MyScope	Ana	lyze Utilities Help 🔽		Tek 📃 🔀
F						- <u> </u>			1 1	<u> </u>	t ' '		Restore Application		
											ļ		Search		Ch1 Position (a)
F											+ · · · †		Mark		-100.0mdiv
F											ŧ		Jitter and Eye Analysis (DPOJET)		Ch1 Scale
F											<u> </u>		Protocol Decode Event Table	-	200mV
											ţ		Serial Data Link Analysis		200110
E											+		TekExpress PCIe	an Taona ao amin'	
F											÷		PCI Express		
E											<u>†</u>		USB 3.0 Essentials		
											ļ		MIPI® D-PHY Essentials		
E											÷		- MOST Essentials		
<u>(</u>)											├── 		HSIC Essentials		· · · · · · · · · · · · · · · · · · ·
E											ŧ		DDR Analysis	2000	
F											ļ!				· · · · · ·
E															
F															
E											Ī				
E															
F															
E											I · ·				
											Į –				
ſ		200		500 P	46.00								Time 422m2V	20.0	200 m a/ at
	C1	200mV/di	v	5000 W	16.0G							A	C2 Time 132mV	Preview S	ingle Seq
														0 acqs	RL:1.0M
														Man Septembe	er 04, 2012 16:28:27

Figure 1 DPOJET Analyze Menu

4.1 HSIC Essentials Measurement Setup Library

IMPORTANT: Each Setup file is defined with the absolute file paths of the Masks and Limit files used for the respective tests. All Setup files must be in the proper file path locations for correct operation.

The HSIC Measurement Setup Library consists of the following software file types.

HSIC Setup Files

Setup File Library File Path: C:\Users\Public\Tektronix\TekApplications\HSIC\Setups

Description: The HSIC folder contains setup files for the standard. Setup files are available for each group of measurements. Refer to Table 3 of this document for further description.

Saved Setups have been created by using the Save -> Setup function of the supported oscilloscopes. If any changes are made to the Setup file it is recommended you re-save the modified setup file using the Save -> Setup feature of TekScope. Please save them with a different name to avoid writing over the parameters in the factory default distribution files.

HSIC Waveform Masks

Mask Library File Path: C:\Users\Public\Tektronix\TekApplications\HSIC\Masks

Description: The HSIC Mask library contains the waveform mask files used by various setup files. Waveform masks are used to perform Pass/Fail eye diagram template testing on the waveform.

HSIC Limits Files

Limit Library File Path: C:\Users\Public\Tektronix\TekApplications\HSIC\Limits

Description: The HSIC Limits library contains the measurement limit files used by the various setup files. Measurement limits are used to provide Pass/Fail indication for each measurement.

4.2 Specification Test Points and Measurement Setup Library

Test Point Definitions:

Figure 2 Location of HSIC Test Points

The following table describes the setup file names, supported HSIC test names and corresponding DPOJET base measurements as defined at each test point in the Specification. The limits for these measurements are given in Table 4 of this document.

Option HSIC-Setup file Name	Specification - Reference Section	HSIC Specification - Symbol(s)	HSIC Specification - Parameter/Test name	Option HSIC - DPOJET Base Measurement Method
		V _{DD}	HSIC signaling Voltage	High-Low
		T _{slew}	Rise Slew Rate DATA	RiseSlewRate_Data
		T _{slew}	Fall Slew Rate DATA	FallSlewRate_Data
		Ts	Receiver Data Setup Time	Setup
DeviceSignalQualityNearEnd, DeviceSignalQualityFarEnd, HostSignalQualityNearEnd		Ts	Receiver Data Hold Time	Hold
HostSignalQualityFarEnd		F _{strobe}	STROBE Frequency	Frequency
		T _{slew}	Rise Slew Rate STROBE	RiseSlewRate_Strobe
	HSIC spec – Section 4	T _{slew}	Fall Slew Rate STROBE	FallSlewRate_Strobe
				EyeHeight
	USB2 Spec –			EyeWidth
	Section 7.1.2.2			EyeMaskHits

Table 3 List of measurements supported in Option HSIC Essentials

The other setup files available in the library include:

DevicePacketParams

DeviceSuspend

DeviceResume

DeviceResetFromSuspend

DeviceResetFromHS

HostPacketParams

HostSOF_EOP

HostSuspend

HostResume

HostResetFromSuspend

HostResetFromHS

5 Preparing to Take Measurements

5.1 Initial Oscilloscope Setup

Connect the oscilloscope to the DUT by using the proper probes for the test. Connect Ch1 to Data and Ch2 to Strobe. Press the DEFAULT SETUP button on the oscilloscope front panel, and turn on Ch1 and Ch2 on the oscilloscope to view the incoming signals on the oscilloscope screen.

Figure 3 below details the connections at the various HSIC test points.

Figure 3 Example Schematic Diagram for a HSIC Device

5.2 Installation

To install HSIC Essentials, , click on the setup.exe present in the Option HSIC installer distribution. After installation, launch TekScope and the HSIC Essentials package is ready to use.

6 HSIC Test Procedure

This section provides the Methods of Implementation (MOIs) for Transmitter tests using Tektronix real-time oscilloscope, probes, and the HSIC DPOJET module.

Note: It is important that there are probing test points (data and clock) laid out for probing to test this interface. The test points need to be as close to the transmitter and/or the receiver as possible to minimize the reflections observed in the testing of this interface. The reflections will be more pronounced when performing the packet parameter testing and should not impact the ability to make the measurements. In addition, it is important that the test points be of equal length from the transmitter or receiver to ensure accurate setup and hold measurements.

6.1 Step-by-Step HSIC Device testing

6.1.1 Signal Quality Tests

Scope Setup:

- Connect Ch1 to Data
- Connect Ch2 to Strobe
- 1. Launch HSIC Essentials from the Analyze menu.
- 2. In the Standard tab of DPOJET, click on the Setup button.
- **3.** Load setup file DeviceSignalQualityNearEnd.set.
- **4.** Configure the DUT to send out the USB Test Packet. This can done using the HSET (High Speed Electrical Tool) provided by USB-IF. This setup file can also be used on live traffic.

Figure 4 Signal Quality

- 5. After the setup has been completed, click on the single button in DPOJET. The waveform captured will be as shown in Figure 4.
- 6. DPOJET automatically selects the limit file based on the test point. The Pass/Fail status is shown in the DPOJET Results tab. Refer to Figure 5. The limits are shown in Table 4 below.

Test	Min	Nominal	Мах
High-Low Voltage	1.1 V	1.2 V	1.3 V
Rise Skew rate	0.7 V/ns		2 V/ns
Low Skew Rate	–2 V/ns		–0.7 V/ns
Frequency	239.88 MHz	240 MHz	240.12 MHz
Rx Setup and Hold	365 ps		
Rx Setup and Hold	365 ps		
Eye Mask Hits		Mask File Name:	
		SignalQuality_FarEnd OR	
		SignalQuality NearEnd	

Table 4 Device/Host Signal Quality Pass / Fail Limits

Figure 5 Device Signal Quality Measurement Result

- 7. Select the Reports button in the DPOJET menu.
- 8. Press the 'Save As' button and enter the report name.
- 9. The Report is as shown in Figure 6.

tter ar	d Eye Diagram Ana	ysis Tool	s : Meas	urement	Report				Tektronix:				
									October 09, 2012 12:42:39 PM				
Setup	configuration												
Osci	loscope Version	640 Bu	148										
DPO	JET Version	3.6.0 Bu	ld 32										
State	15	Pass											
Measu	irement Configurati	n	1.										
Index	Measurement		(s)	ource Oth	bers								
1	High-Low_Device_Nee	rEnd	a	1 Rat	Config => Bit le: 2.5Gb/s, K lmV, Min -50	Type: All Be nown Data I 0mV. Custo	ts, Measur ⁵ attern: Off m Source M	e the Cent Pattern F Iame:	ir: 1%jof the Bit), Method. Mean i Clock Recovery ≫ Method. PLL – Custem BW, PLL Model. Type I, Damping. 700m, Loop BW: 7MHz, Nominal Data Rate. Off, Bi Iename: C.1TelApplications/DPC/ETPatterns/PRB5127.bd i Filters ≫ F1: Spec. No Filter, F2: Spec. No Filter i General ≫ Measurement Range Limits. Off, Max.				
2	EyeWidth_Device_Nee	rEnd	0	1 Clo	ck Recovery TekApplication	> Method: I siDPOJET	PLL = Cust Patterns/P	om BW, P RBS127.tx	LL Model: Type I, Damping: 700m, Loop BW: 7MHz, Nominal Data Rate: Off, Bit Rate: 2.5Gb/s, Known Data Pattern: Off, Pattern Filename: 1 General => Measurement Range Limits: Off, Max: 1ns, Min: 50ps, Custorn Source Name:				
3	Eyelleight_Device_Ne	rEnd	0	1 Bit File	Config => Bit mame: C \Tel	Type: All Bi Applications	IS Clock P	Recovery = Patterns\P	> Method: PLL – Custom BW, PLL Model: Type I, Damping. 700m, Loop BW. 7MHz, Nominal Data Rate. Off, Bit Rate. 2.5Gb/s, Known Data Pattern: Off, Pattern RBS127.tbt General => Measurement Range Limits: Off, Max: 500mV. Min. 50mV, Custom Source Name. –				
4 Bite Steer State, Data, Device, Jean End Concerner, State, Device, Jean End Concerner, State, Device, Jean End Concerner, State, Device, Jean State, Concerner, State, Device, Devic													
5	FallSlowRate_Data_D	wice_Near		1 Edg	pes ⇒ From I Ins. Custom 5	Level: High, Source Name	To Level: L	ow, Slew R	ate Technique: NominalSlewrateTechnique Fiters => F1: Spec: No Fiter, F2: Spec: No Fiter General => Measurement Range Limits: Off, Max: 0Vins, Mm: -				
6	Setup_Device_NearEn	1	0	2.Ch1 Ed	ges => Clock	Edge: Both.	Data Edge	: Both Fil	ters => F1: Spec: No Filter, F2: Spec: No Filter General => Measurement Range Limits: On, Max: 1.04ns, Min: 0s, Custom Source Name: -				
1	Hold_Device_NearEnd	1	0	2.Ch1 Ed	ges => Clock	Edge: Both,	Data Edge	Both [Fil	ters => F1: Spec: No Fifter, F2: Spec: No Fifter General => Measurement Range Limits: On, Max: 1.04ns, Min: 0s. Custom Source Name				
	Erequency_Device_Ne	erEnd	0	2 E0	pes => Signal	Type: Auto	Clock Edg	e: Rise F	Revision FT, Spec, No Filter, FZ, Spec, No Filter (General => Measurement Range Limits; OR, Max: 10GHz; Min: 1MHz; Custom Source Name = 100 Filter, FZ, Spec, No Filter, FZ, Spec, No Filter, General => Measurement Range Limits; OR, Max: 10GHz; Min: 1MHz; Custom Source Name = 100 Filter, FZ, Spec, No Filter, FZ, Spec, No Filter, General => Measurement Range Limits; OR, Max: 10GHz; Min: 1MHz; Custom Source Name = 100 Filter, FZ, Spec, No Filter, FZ, Spec, No Filter, General => Measurement Range Limits; OR, Max: 10GHz; Min: 1MHz; Custom Source Name = 100 Filter, FZ, Spec, No Filter, FZ, Spec, No Filter, General => Measurement Range Limits; OR, Max: 10GHz; Min: 1MHz; Custom Source Name = 100 Filter, FZ, Spec, No Filter, FZ, Spec, No Filter, General => Measurement Range Limits; OR, Max: 10GHz; Min: 1MHz; Custom Source Name = 100 Filter, FZ, Spec, No Filter, FZ, Spec, No Filter, General => Measurement Range Limits; OR, Max: 10GHz; Min: 1MHz; Custom Source Name = 100 Filter, FZ, Spec, No Filter, FZ, Spec, Name Filter, FZ, S				
9	BiseSlewRate_Strobe	Device_Ne	arEnd C	2 0V	.oges >> rrom Level. Low. to Level. rogt, size rate rechnique rommacowaraterechnique ("raters => r1: Spec. No Filler / Cz Spec. No Filler General => Massurement Range Lands. OR. Mac. TVms, Min. Wins, Custom Source Name								
10	FallSlewRate_Strobe	Device_Nex	erEnd Ca	2 Edj 1V/	ges ⇒ From I Ins. Custorn S	s > From Level: High, To Level: Low, Slew Rate Technique: NominalSlowrateTechnique Filters => F1: Spec: No Filter, F2: Spec: No Filter General => Measurement Range Limits: Oft, Max: UVins, Min: + s, Custom Source Name: -							
11	EynMaskHits_Device_I	learEnd	C	1 Dit 7M 0H	Config => Bit Hz, Nominal E ts, Custom S	Type: All Bi Data Rate: C ource Name	ts, Mask: 4 ff, Bit Rate	2.5Gb/s;	cations/OPOUETMasks/HSICDDevice_SignalQuality_Hearend msk1 (Dock Recovery => Method: PLL = Custom BW, PLL Model: Type I, Damping; 700m, Loop BW; Known Data Pattern: Of, Pattern Filename: C:\TekApplications\DPOUET\Patterns\PRBS127.txt General => Measurement Range Limits: Of, Max: 500Hts, Mn;				
sourc	e Reference Levels												
Sourc	e Autoset Method	Rise High	Dise M	d Rise Los	w Hystorosis	Eall High	Fall Mid	Fall Low					
Ch1	Auto(Low-High(full wfm	0 1.2336V	712mV	190 4ml	/ 39.1mV	1 2336V	712mV	190.4mV					
Ch2	Auto(Low-High(full wfm	0 1.1472V	696mV	244.8mV	/ 33.8mV	1.1472V	696mV	244.8mV					
Ch3	Auto	1V.	0V	-1V	30mV	1V.	OV	-1V					
Ch4	Auto	1V	0V	-1V	30mV	1V	0V	-1V	IS a second s				
Math1	Auto	11	QV	-1V	30mV	1V	OV	-1V	4				
Matha	Auto	1V	0V	-1V	30mV	1V	OV	-1V					
Math3	Auto	11	av	-1V	30mV	11	OV	-1V					
Math	Auto	11	OV	-1V	30mV	11	OV	-1V					
Roff	Auto	1.144V	0.32mV	120mV	35.4mV	1.144V	18.32mV	120mV	4				

Figure 6 Device Signal Quality Measurement Report

6.1.2 Packet Parameter Test

Packet Parameters consist of the following tests:

- Sync Field All transmitted packets (not repeated packets) must begin with a 32 bit SYNC field.
- Inter-packet gap When transmitting after receiving a packet, hosts and devices must provide an interpacket gap of at least 8 bit times and not more than 192 bit times. Hosts transmitting 2 packets in a row must have an inter-packet gap of at least 88 bit times and not more than 192 bit times.
- **EOP** The EOP for all transmitting packets (except SOFs) must be an 8 bit NRZ byte of 01111111 without bit stuffing.

All limits for these measurements are taken from USB 2.0 Specification.

Scope Setup:

- Connect Ch1 to Data
- 1. Launch HSIC Essentials from the Analyze menu.
- 2. In the Standard tab of DPOJET, click on the Setup button.
- 3. Load setup file DevicePacketParams.set.
- **4.** Set trigger to single, then set device to produce the single step set signal. This can done using the HSET (High Speed Electrical Tool) provided by USB-IF. This setup file can also be used on live traffic.
- 5. The waveform should have 3 bursts of data, similar to Figure 7 below.

Fì	le	Edit	t Vert	cal	Digital	Horiz	/Acq	Trig	Disple	iy C	Cursors	Measu	ire	Mask	Math	MyScope	Analyz	e Utilitie	s	Help	•			MS	D720(34 -	Tek			X
					L. I				, La L		! ! .				dia antipa	a l	- (b)	Section 10			,		L.		ļ				ļ	
63) E	1				SYN	30010					SY	NC			کے ق		SYNC												
2	•			- i	-in mi	- 1	ر ال	i kain	÷		<u></u>	in and		المريان	يا السرّ			والمتركر المركر	, diperent	÷				i i	÷					
																													1	· .
		1.1	0																										D	٨
	£4	ŕ۰	YN 1	₩	Mura	whenha	have	w/mw	the start of the s	ለጫቀ	40 levelses	n/ww/ww	twe	walny		el martine	mushaine	ann de production de la constante de la constan La constante de la constante de	NUWY	A.	Anarata	Maria	***	whyter	*****	WAR	rww.d	-	m n	7
	$\left \cdot \right $		141																											
	łł		1111																											
œ	E		ЦŲ,																	-										Sv
٦			1.1																											Ш
	١ſ.	11	11																											
	1		11	х.r	n.h.	No. March	-	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	M.	and the second	Sec.		Servers	ر. مى يەرىيە	****	-	***		we have	front	si-ini	Minutes .	where		(mg and a		Alter a		~	
2	1	۱Į.	1	1																									V	W
		¥	Ų.																										ľ	
	C									\overline{c}				1																
		C1	200m	V/div		500	B W	16.0G			269	0.6ns					A' (C1 Wi	dth				200	ns/di	v 6.2	25GS	/s	160	ps/pt	
		C2	200m	V/div	0.0	500	2 ^B W	16.0G		t	2 445	5.6ns											Sto			Sir	igle S	eq		
		2101	200m	v 20	J.Uhs	254ns	45	4ns		Δ	176	Sns											Tac	ds -		40	2042	RL:12	.5K	52
	(102	200m	v 2	J.Uhs	254ns	45	4ns			<u>∆t</u> 5.6	82MHz		J									Aut	o J	anua	ry 10	, 2013		2:01:	53

Figure 7 Packet Parameter Test – Inter Packet Gap

6. Turn on the Cursors. Click on Cursors menu and select Cursors On. Ensure that the Cursor Type is set to V Bars. Refer to Figure 8.

File	Edit	Vertical	Horiz/Acq	Trig	Display	Cursors	Measure	Mask	Math	MyScope	Analyze	Utilities	Help		DPO	72004C Te	k 🗕	X
E	1 1					Cur	sor Controls	i		, in the second s	1 1 1	<u>' '</u>					1	' ' =
E		a				Cur	sors <u>O</u> n			· · ‡						6		· ·
E						Cur	sor <u>T</u> ype			<u>H</u> Bars								
						Cur	sor <u>M</u> ode	•		<u>V</u> Bars								
E						Cur	sor <u>P</u> osition			<u>W</u> aveform								
	MA	lik A L	AL AN UN	U.	ak dili	Cur	sor <u>S</u> etup			<u>S</u> creen	Ukula	Maa Dill	Million I An	. A la la la la	l date	a hala da da	uðh í í .	計相
9		ille kov	fin the	ψħ.	in ww	Mo	<u>/</u> e Cursors to	Center	V I'Y	WY YE	111 A A A A	TYYNNY	i Mili Mili	MMAR.	NO ANTA A	i Maria	U WAYA	
	WL 13	and all	, dani hili	11	li. Mali	1.111.	ar a contra l	սիսիդ		nh. Ti All		n di Milla	e. Mir wa	dititik hod v	ILLM MILL L	www.chulud	, il di i	막티백
E																		· · -
E																		
	C1	100mV/d	iv ,	₩ ⁶	w:16.0G		t18.0ns	;				A' C1	∫ 0.0V		2.0ns/div	50.0GS/s	20.0p	s/pt
							t2 8.0ns								Run	Sample		
							<u>^t</u> 16.0n	S							2 656 acq	5	RL:1.0	<
							^{//∆t} 62.5M	Hz	J						Auto Ja	nuary 09, 201	3 11	:37:34

Figure 8 Using cursors

7. Turn on the Zoom feature of the TekScope. Select a region of interest using the mouse to bring up a menu and choose Zoom1 On. Refer to Figure 9.

Figure 9 Using zoom feature

8. Turn on the Decode feature. See Section7 of this document for details on setting up the decoder. Ch1 and Ch2 must be turned 'ON' for decoding.

6.1.2.1 Inter Packet Gap Measurement

- 1. For devices, this measurement should be made between the second and third burst.
- 2. Zoom in on the gap between the second and third packet and use the cursors to measure the time between bursts. Place 'Cursor a' at the end of 2^{nd} burst and 'Cursor b' at the beginning of the 3^{rd} burst. ΔT value shows the time between the 2 Cursors 'a' and 'b'. Refer to Figure 7 above.
- **3.** The limits, for this measurement to Pass, are between 16.64 ns and 39.94 ms.

6.1.2.2 Sync Field Measurement

- 1. For devices, this measurement should be made on the third burst.
- 2. Zoom in on the third packet and use the cursors to measure the sync field. Place 'Cursor a' at the beginning of 3rd burst and 'Cursor b' at the end of Sync field (shows up if the Protocol Decode Bus in turned 'ON'. See Section 7 of this document for details on setting up the decoder. Ch1 and Ch2 must be turned 'ON' for decoding.). Refer to Figure 10.

Figure 10 Packet Parameter Test – Sync Field

6.1.2.3 EOP Measurement

1. This measurement is to be done on the third burst. Place 'Cursor a' at the beginning of EOP region of the 3rd burst and 'Cursor b' at the end. Refer to Figure 11.

2. The limits, for this measurement to Pass, are between 14.5 ns and 18.75 ns.

Figure 11 Packet Parameter Test – EOP

Arm the single sequence trigger and forcing the second step of the single step feature to send data from the host; the device should send a response. The waveform should look similar to Figure 12.

6.1.2.4 Second Inter Packet Gap measurement

- 1. The gap between the two packets needs to be measured.
- 2. Use the cursors to measure the gap. Place 'Cursor a' at the end of 1^{st} burst and 'Cursor b' at the beginning of the 2^{nd} burst. ΔT value shows the time between the 2 Cursors 'a' and 'b'. Refer to Figure 12.
- 3. The limits, for the measurement to Pass, are between 16.64 ns and 39.94 ms.

Figure 12 Packet Parameter Test – Inter Packet Gap

In the Reports tab, Press the 'Save As' button and enter the report name. Or press 'Append' to append to the previously saved test report. Screenshots of the zoomed screen will be available in the report.

Alternately, a screenshot can also be saved using the 'Save As' Screen Capture feature of the TekScope.

6.2 Step-by-Step HSIC HOST testing

6.2.1 Signal Quality Test

Scope Setup:

- Connect Ch1 to Data
- Connect Ch2 to Strobe
- 1. Launch HSIC Essentials from the Analyze menu.
- 2. In Standards tab of DPOJET, Click on the Setup button.
- 3. Load setup file HostSignalQualityNearEnd.set.
- **4.** Configure the DUT to send out the USB Test Packet. This can done using the HSET (High Speed Electrical Tool) provided by USB-IF. This setup file can also be used on live traffic. The waveform is similar to the device signal quality.
- 5. Place Cursors on either side of the center data packet as shown in Figure 13. Click on the Single button in DPOJET.
- 6. DPOJET automatically selects the limit file based on the test point with limit values as defined in Table 4 above. The Pass/Fail status is shown in the DPOJET Results tab.
- 7. Select the Reports button in the DPOJET menu.
- 8. Press the 'Save As' button and enter the report name. Or press 'Append' to append to the previously saved test report.

Figure 13 Host Signal Quality

6.2.2 Packet Parameter Test

Scope Setup:

- Connect Ch1 to Data
- **1.** Launch HSIC Essentials from the Analyze menu.
- 2. In the Standard tab of DPOJET, Click on the Setup button.
- **3.** Load setup file HostPacketParams.set.
- 4. Set trigger to single, then set device to produce the single step get dev desc signal. This can done using the HSET (High Speed Electrical Tool) provided by USB-IF. This setup file can also be used on live traffic.

Note: Refer to Section 7.3 on how to distinguish between Host and Device traffic in an acquired signal.

- 5. The waveform should have 3 bursts of data.
- **6.** Turn on the Decode feature. See Section 7 of this document for details on setting up the decoder. Ch1 and Ch2 must be turned 'ON' for decoding.

6.2.2.1 Sync Field Measurement

- 1. For hosts, this measurement should be made on the first and second burst.
- 2. Use the cursors to measure the gap. Place 'Cursor a' at the beginning and 'Cursor b' at the end of the Sync field. ΔT value shows the time between the 2 Cursors 'a' and 'b'. Refer to Figure 10.
- **3.** Limits for this measurement to have a Pass result are between 65.5 ns and 67.7 ns

6.2.2.2 EOP Measurement

- 1. For Hosts, this measurement is to be done on the second burst.
- 2. Use the cursors to measure the gap. Place 'Cursor a' at the beginning and 'Cursor b' at the end of EOP region of the 2nd burst. Refer to Figure 11.
- 3. Limits for this measurement to have a Pass result are between 14.5 ns and 18.75 ns.

6.2.2.3 Inter packet Gap

- 1. For Hosts, this measurement should be made on the first and second burst.
- 2. Use the cursors to measure the gap. Place 'Cursor a' at the end of 1^{st} burst and 'Cursor b' at the beginning of the 2^{nd} burst. ΔT value shows the time between the 2 Cursors 'a' and 'b'.
- **3.** Limits for this measurement to have a Pass result are between 18.3 ns and 39.94 ms.

Arm the single sequence trigger and forcing the second step of the single step get dev desc feature. The waveform should have 3 bursts.

6.2.2.4 Second Inter Packet Gap measurement

- 1. The gap between the second and third packets needs to be measured.
- 2. Use the cursors to measure the gap. Place 'Cursor a' at the end of 2nd burst and 'Cursor b' at the beginning of the 3rd burst. ΔT value shows the time between the 2 Cursors 'a' and 'b'.
- 3. Use the cursors to measure the gap. The limits for a Pass result are between 16.64 ns and 39.94 ms.

6.2.2.5 SOF EOP measurement

- **1.** Launch HSIC Essentials from the Analyze menu.
- 2. In the Standard tab of DPOJET, Click on the Setup button.
- **3.** Load setup file HostSOF_EOP.set.
- 4. Set trigger to Single, this measurement measures the EOP width of the SOF packet.

- 5. Use the cursors to measure the gap. Place 'Cursor a' at the beginning and 'Cursor b' at the end of EOP region.
- **6.** The limit for a Pass result is 83.32 ns.

6.3 Bus Timing Measurements

Given below is the table from High-Speed Inter-Chip USB Electrical Specification. Note from the table that the both Strobe and Data are low during Reset.

	STROBE	DATA	Description
IDLE	Hi	Lo	1 or more Strobe Periods
CONNECT	Lo	Hi	2 Strobe Periods
RESUME	Lo	Hi	For time periods per USB 2.0 SPEC
SUSPEND	Hi	Lo	Per USB 2.0 SPEC
RESET	Lo	Lo	Per USB2.0 SPEC

The tests mentioned below are easier to measure with the HSIC Decode feature. See Section 7 of this document for details on setting up the decoder.

6.3.1 Suspend Test

Scope Setup:

- Connect Ch1 to Data
- Channel Ch2 to Strobe
- 1. Launch HSIC Essentials from the Analyze menu.
- 2. In the Standard tab of DPOJET, Click on the Setup button.
- **3.** Load setup file DeviceSuspend.set.
- **4.** Set trigger to Single on the scope and configure the DUT to send out the Suspend signal. This can done using the HSET (High Speed Electrical Tool) provided by USB-IF. This setup file can also be used on live traffic.
- 5. The waveform should look like Figure 14.
- 6. Once the Idle is found Suspend should last for at least 3 ms. Use Cursors to measure the time duration.

Figure 14 Suspend test

6.3.2 Resume Test

Scope Setup

- Connect Data Signal to Ch1.
- Connect Strobe signal to Ch2.
- **1.** Launch HSIC Essentials from the Analyze menu.
- 2. In the Standard tab of DPOJET, Click on the Setup button.
- **3.** Set the device to suspend mode.
- 4. Load setup file DeviceResume.set.
- 5. Set trigger to single, then set device to produce Resume signal. This can done using the HSET (High Speed Electrical Tool) provided by USB-IF. This setup file can also be used on live traffic.
- **6.** Place the Cursors and measure the time duration for which the strobe signal is low, as shown in Figure 15.
- 7. The measured time duration should be at least 20 ms for a pass.

			B1 Position a 0.0div
•	B\$uspend	Resume	
1			
	c1 200mV/div 50Ω B _W :8.0G c2 200mV/div 50Ω B _W :8.0G	11 -64.0µs 22 20.032ms 34 20.1ms 1141 49.761Hz	708mV 3.2ms/div 625MS/s 1.6ns/pt Preview Single Seq 0 acqs RL:20.0M Man December 11, 2012 05:13:28

Figure 15 Resume Signal. Strobe Signal (Ch2) in Blue

6.3.3 Reset From Suspend

Scope Setup

- Connect Data Signal to Ch1.
- Connect Strobe signal to Ch2.
- 1. Launch HSIC Essentials from the Analyze menu.
- 2. In the Standard tab of DPOJET, Click on the Setup button.
- **3.** Set the device to suspend mode.
- 4. Load setup file DeviceResetFromSuspend.set.
- 5. Set trigger to single, and then reset the device (either a soft or hard reset). This can done using the HSET (High Speed Electrical Tool) provided by USB-IF. This setup file can also be used on live traffic
- 6. The waveform should look like Figure 16.

7. Both strobe and Data lines should be Low for a Pass, after the suspend region. It should last for at least $2.5 \ \mu s$.

Cc2 200mV/div 50Ω ⁴ w/8.0G [12 4.24ms Preview Single Seq

Figure 16 Reset From Suspend

6.3.4 Reset From High Speed

Scope Setup

- Connect Data Signal to Ch1.
- Connect Strobe signal to Ch2.
- 1. Launch HSIC Essentials from the Analyze menu.
- 2. In the Standardtab of DPOJET, Click on the Setup button.
- 3. Load setup file DeviceResetFromHS.set.
- 4. Set the device to High Speed Mode for example configure to send a Test Packet.
- 5. Set trigger to single, and then reset the device (either a soft or hard reset). This can done using the HSET (High Speed Electrical Tool) provided by USB-IF. This setup file can also be used on live traffic.
- 6. The waveform should look like Figure 17.
- 7. Both strobe and Data lines should be Low for a Pass, following the High speed region. Reset should last for at least 3.1 ms.

Figure 17 Reset from High Speed

NOTE: The Bus Timing measurements are similar even for HSIC Host. Please load the corresponding HOST setup file and continue with the measurements as described in the Section 7.3.

A measurement (frequency) is added in Device/HostPacketParams.set and in all setup files mentioned in Section 6.3. This measurement is a report only measurement. Adding this measurement will enable to save/append the report.

7 HSIC Essentials Protocol Decoding

7.1 Installation

To install HSIC Essentials, click on the setup.exe present in the Option HSIC installer distribution. After installation, launch TekScope and the HSIC Decoder package is ready to use.

7.2 Performing Protocol Decode

Click on the Tekscope Vertical menu or Digital Menu (available only on MSO scopes) and go to Bus Setup as shown in the figure below.

Figure 18 Launching Bus Setup from Vertical Menu

In the Config pane, Choose Serial option and select Custom from the dropdown. Once HSIC is chosen in the Custom Decoder drop down, the threshold has to be set manually based on the incoming signal. Both Ch1 and Ch2 must be turned ON.

After configuring, turn Bus1 On by clicking the button under the Bus 1 label. The decoded packets are displayed on the scope graticule.

Note: If decoded packets are not displayed, please verify threshold settings.

File	Edit Ver	tical Digital	Horiz/Acq Trig	Display Cursors M	leasure Mask Ma	ath MyScope	Analyze U	Jtilities Help	•	MS072004 Tel	K 📃 🔀
and a Standard	 						i1 Position a 0.0div b				
2 2											
	C1) 200n C2) 200n	ıV/div ıV/div	50Ω ^B W:16.00 50Ω ^B W:16.00	G G			A' C1) Time 132m)	/ 20 Pr 0 ; Au	Ons/div 6.25GS/s eview acqs uto September 07,	160ps/pt RL:12.5k 2012 11:53:05
57		Bus Set	tup								8
	Config Display	B1 B2 B3 B4 B5 B6 B7	Bus	Bus 1 On Clear Bus Label B1 Bust Position 0.0div a	Bus Type Serial Custom Parallel		Custom HSIC Components Data Strobe	Input Ch1 D Ch2 D	Threshold 700mV 700mV		

Figure 19 Enabling HSIC Decoder

The Display tab provides an option to select Busform and Waveform. The Protocol Decode Event Table showing the list of decoded packets can be viewed by clicking the button under the Protocol Decode Event Table label.

Click on the Export button to export the packets to the .csv format.

The Protocol Decode Event Table can also be accessed from the Tekscope Analyze menu by selecting Analyze->Results Table.

HSIC decoder provides the Search feature. Once a HSIC bus has been created, search can be done on the various packet Fields. Search can be invoked from the Analyze menu as shown in Figure 20.

Figure 20 Invoking Search

Click on Bus in the Search->Select Tab to get the search options defined for HSIC. Refer to Figure 21.

Figure 21 Search->Select Tab

Click on the Configure Tab. Choose from the list of options in the Search For drop down menu. Refer to Figure 22.

;·	Search	n - Config	ure			Sync	All Searches X	
Select		Туре	Source	•	Custom Bus	PID		On Off 刘
Guider	⊡ 1▼	Bus	B1:Custom	€	HSIC	Reset	•	
Configure						Suspend		Mark
Posulte						Connect		A Prev Next ►
Results						Resume		Set/Clr
View						Error		
Mada						Addr		Bring Cursor to Mark
mode						CRC5		Cursor 1 Cursor 2
						CRC16		
		Сору				Data		Bring Zoom to Mark
		Setting	s					Zoom 2 Zoom 3

Figure 22 Search For options for HSIC Decoder

Choose Data to search on the Data field of the packet. The Data format can be either Hex or Binary. Enter the Data Value and Click On. The Search hits are highlighted on the search graticule as in Figure 23.

Fil	e E	dit Ve	ertical	Dig	ital	Horiz	Acq	Trig	Display	Curso	ors M	easure	Masi	< M	ath	MySci	ope	Analy	ze	Utilitie:	s ⊦	lelp	v		1	4807	2004	Tek		X
0	B1								SYNC		•••						••						•••					-	Positio	on ,
ĭ												1.4										1						+	41.4%	6
								1.6.	. n A	<u> </u>	* 1		K.A	1	1	1		Å	h.	.٨		Å,	1			A.	Å		Facto	r
	441	d t d i	A	Ш	11	hi d d	111	Ш	10/1	ANA	MAN	MA	LA (I I	ulliti	ht.	MN-	M	MA	11/	nn	M	11/	10	A) (111	1n	1111			
	Щ	Ű.					01										Щ	441					III I			ļď				Щ
81	B10	Oh C)0h	100	нÅ,	DON X	00h	100	1 AAI	1 AAI	1 AA	h A4	¥h (∕	VAh	AAh		₩ X	AAh	ᄹ	hχ	EEh	EE	h X E	Eh	EEh	X EE	hΧE	Eh) E	Eh 🚶 FEI	h I
			M		l) / 1					JN,					
4		1111		11	Y	V I I	Y I Y	, V V V	I V W	N N I	N W	ΨΨ	Y	rγr	¶n I	n pr	ſ.	ΨV	9	11	W	ł	e V V	N, I	ιψ.	W)	M U Y I	Will	Malati	A.
l	-	1 1	1			1 1							1.1	.,/	, r		· ·	· . ·	1 1		1 1						1 1	1		
	C1	200	mV/d	liv		50Ω	^B w:	16.0G										A'	C1) Tim	10	132m	v	_	200n:	s/div	6.250	SS/s	160ps/	pt
	Z10	200	mV/d	40.01	15 -	982ns	-W	2ns																	0 acq	s			RL:12.5k	
	Z10	200	m٧	40.0	15 -	982ns	-58	2ns																	Auto	Sep	ptemb	er 07, 2	012 11:5	i3:58
ſ	;•		-										_			_				_								All So	rchoe	6
	_		Se	arch	1 - C	onfig	gure		_	_	0					e -												All Sec	Off	
	Se	lect		AUI 1 ▼	1	iype Bus	B1:r	Sou Dustom	rce		Cus	ISIC	IS		Data	36	arcn	For		•							_			- 0
	Con	figure	-	1.2		out	UT.	Javaonn			Data F	orma	t	_	1		-											Ма	rk	
	Re	sults								Hex	(•															Prev	Next ►)
	V	iew											Dat	a Val	ue													Set.	CIr	
		- 4-																Α	<u>۸۸</u>	Edi							Brin	ıg Curs	or to Mark	
																											Curs	ior 1	Cursor 2	
						Cam	_																				Bri	ng Zooi	n to Mark	
					(Setting	IS)																				Zoor	n 2	Zoom 3)

Figure 23 Search Hits

The Results tab shows the list of search hits. Click on the item in the list to go to the specific field on the scope graticule. Refer to Figure 24.

Figure 24 Results: Mark Table

7.3 HSIC Host and Device Traffic Distinction

HSIC Protocol Decoder can be used to distinguish between HOST and Device traffic. Token packets (such as IN, OUT, SETUP) are always issued by USB HSIC hosts. By reading these Token packets through HSIC Protocol Decoder, one would be able to distinguish a Host signal from a Device.

Procedure to identify a HOST packet

- 1. Launch HSIC Essentials from the Analyze menu.
- 2. In the Standard tab of DPOJET, Click on the Setup button.
- **3.** Load setup file DevicePacketParams.set.
- 4. Turn on Ch1 and Ch2.
- 5. Configure the bus as shown in section 7.2 "Performing Protocol Decode"
- 6. Go to the Analyze menu and choose Search.
- 7. In the Configure tab choose Search For PID
- 8. Select any of one these options -IN, OUT, SETUP from the PID Dropdown. Refer to Figure 25.

57	Search	- Config	All Searches X							
Select	🔽 All	Туре	Source		Custom Bus	_	Search For			On Off
	🗹 1 🔻	Bus	B1:Custom	€	HSIC	PID		•		Mark
Configure					PID					Prev Next
Results										
View										Set/Cir
Mode										Bring Cursor to Mark
Mode										Cursor 1 Cursor 2
										Bring Zoom to Mark
		Setting	s							Zoom 2 Zoom 3

Figure 25 Configure tab – Choose PID option

9. Go to Mode tab. Check "Stop Acquisition if event found" option. Refer to Figure 26.

Figure 26 Search-Mode tab to Stop Acquisition when a PID event occurs

- 10. Click on the Run/Stop Button on the oscilloscope front panel.
- **11.** The acquisition will stop when the selected PID event occurs indicating a Host signal capture. Refer to Figure 27.

File	Edit Ve	rtical Digital	Horiz/Acq Tri	ig Display	Cursors Measure	Mask Math	MyScope An	alyze Utilitie	s Help 🔽	MSO	72004 Tek	
2	1				SYNC			SYNC		SY		
								5150	m		YVV-W	ngarang rangan baran
2												And a second sec
	<mark>C1</mark> 200	mV/div	50Ω ^B W:16.0	0G			ſ	A' C1 Wid	th	200ns/div	6.25GS/s	160ps/pt
	200		500 B .464	0.0								
	2001 101 2001	mV/div mV 20.0ns	50Ω ^B W:16.0	0G						Stopped 78 acqs		RL:12.5k
	c2 2001 1c1 2001 1c2 2001	mV/div mV 20.0ns mV 20.0ns	50Ω ^B W:16. 463ns -263ns 463ns -263ns	og s						Stopped 78 acqs Auto Fe	bbruary 05, 20	RL:12.5k 13
37	C2 2001 1C1 2001 1C2 2001	mV/div mV 20.0ns mV 20.0ns Search - C	50Ω ^B _W :16. 463ns -263ns 463ns -263ns 263ns -263ns	DG s s						Stopped 78 acqs Auto Fe	All Sea	RL:12.5k 13 14:43;56 arches
	2001 101 2001 102 2001 102 2001 Select	mV/div mV 20.0ns mV 20.0ns Search - C ▼ All	50Ω B _W :16.0 -463ns -263ns -463ns -263ns -663ns -263ns -60nfigure S Type S	oG s s	Custom Bus HSIC	PID	Search Fo	or V	_	Stopped 78 acqs Auto Fe	All Sea	RL:12.5k 13 14:43:56 arches
2 2 2	c2 2001 (c1 2001 (c2 2001 Select	mV/div mV 20.0ns mV 20.0ns Search - C ▼ All	50Ω Bw:16.1 463ns -263ns 463ns -263ns 463ns -263ns Configure S Type S Bus B1:Cus	og s s s s s s s s s s s s s s s s s s s	Custom Bus HSIC PID	PID	Search Fo	or V	_	Stopped 78 acqs Auto Fe	All Sea	RL:12.5k 13 14:43:56 urches Off rk
2 2 2	c2 2001 sc1 2001 sc2 2001 select onfigure Results	mV/div mV 20.0ns mV 20.0ns Search - C V All	50Ω E _W :16. -463ns -263ns -463ns -263ns -463ns -263ns -Configure S Type S Bus B1:Cus	og s s Source tom	Custom Bus HSIC PID OUT	PID	Search Fo	or V		Stopped 78 acqs Auto Fe	All Sea On Ma Prev	RL:12.5k 13 14:43:56 off rk Next >
	C2 2000 (1C1 2000 (1C2 2000 Select onfigure Results View	mV/div mV 20.0ns mV 20.0ns Search - C ▼ All	50Ω E _W :16. 463ns -263ns 463ns -263ns 463ns -263ns Configure S Type S Bus B1:Cus	og s s s s s ource tom •	Custom Bus HSIC PID OUT	PID	Search Fo	or ▼		Stopped 78 acqs Auto Fe	All Sea On Ma Prev Set	RL:12.5k 13 14:43:56 orf rk Next > CIr
	C2 2000 AC1 2000 AC2 2000 Select onfigure Results View Mode	mV/div mV 20.0ns mV 20.0ns Search - C ▼ All	50Ω E _W :16. 463ns -263ns 463ns -263ns Configure Type Type S Bus B1:Cus	and the second s	Custom Bus HSIC PID OUT	PID	Search Fo	or V		Stopped 78 acqs Auto Fe	All Sea On Ma Prev Set Bring Curs	RL:12.5k 13 14:43:56 off rk Next > Clr cor to Mark
27 27	C2 2000 SC1 2000 Select 2000 Select 2000 Results View Mode	mV/div mV 20.0ns mV 20.0ns Search - C ☑ All ☑ 1 ▼	50Ω E _W :16. 463ns -263ns 463ns -263ns Configure S Type S Bus B1:Cus	iource tom (>)	Custom Bus HSIC PID OUT	PID	Search Fo	or V		Stopped 78 acqs Auto Fe	All Sea On Ma Prev Setu Bring Curso Cursor 1	RL:12.5k 13 14:43:56 off rk Next > Clr cursor to Mark Cursor 2
	cz 2000 stor 2000 stor 2000 Select onfigure Results View Mode	mV/div mV 20.0ns mV 20.0ns Search - C ▼ All	50Ω E _W :16. 463ns -263ns 463ns -263ns Configure Type S Bus B1:Cus Copy	Bource tom (>)	Custom Bus HSIC PID OUT	PID	Search Fo	or ¥		Stopped 78 acqs Auto Fe	All Sea On Ma Prev Set Bring Curss Cursor 1 Bring Zoor	RL:12.5k 13 14:43:56 Off rk Next Cir cor to Mark Cursor 2 m to Mark

Figure 27 PID Out Event indicating a Host signal has triggered an Acquisition Stop

8 Measurement Methodologies

8.1 High-Low

The High-Low measurement calculates the change in voltage level across a transition in the waveform.

The application calculates the High–Low using the following equation:

 $V_{HIGH-LOW}(n) = V_{LEVEL}(i) - V_{LEVEL}(i+1)$

Where:

*V*_{HIGH-LOW} is the high-low amplitude measurement result. *n* is the index of a selected transition. *i* is the index of the UI (bit) location preceding the transition. *i*+1 is the index of the UI (bit) location following the transition. *V*_{LEVEL} = $OP[v_{\text{PERCENT}}(i)]$ is the state level of the unit interval (bit period). $OP[\bullet]$ is the selected Operation (either Mean or Mode). *v*_{PERCENT} is the set of voltage samples over the selected portion (percent) of the unit interval, ranging from 1% to 100%.

NOTE. If there are no waveform samples that fall within the identified percentage of the unit interval, the single nearest waveform sample preceding the center point of the unit interval will be used.

8.2 Eye Width

The Eye Width measurement is the measured minimum horizontal eye opening at the zero reference level.

The application calculates this measurement using the following equation:

 $T_{EYE-WIDTH} = UI_{AVG} - TIE_{pk-pk}$

Where:

 UI_{AVG} is the average UI. TIE_{pk-pk} is the Peak-Peak TIE.

8.3 Eye Height

The Eye Height measurement is the measured minimum vertical eye opening at the UI center as shown in the plot of the eye diagram. There are three types of Eye Height values.

Eye Height

The application calculates this measurement using the following equation:

$$V_{EYE-HEIGHT} = V_{EYE-HI-MIN} - V_{EYE-LO-MAX}$$

Where:

 $V_{EYE-HI-MIN}$ is the minimum of the High voltage at mid UI. $V_{EYE-LO-MAX}$ is the maximum of the Low voltage at mid UI.

Eye Height-Transition

The application calculates this measurement using the following equation:

 $V_{EYE-HEIGHT-TRANS} = V_{EYE-HI-TRAN-MIN} - V_{EYE-LO-TRAN-MAX}$

Where:

VEYE-HI-TRAN-MIN is the minimum of the High transition bit eye voltage at mid UI. *VEYE-LO-TRAN-MAX* is the maximum of the Low transition bit eye voltage at mid UI.

Eye Height-Non-Transition

The application calculates this measurement using the following equation:

 $V_{EYE-HEIGHT-NTRANS} = V_{EYE-HI-NTRAN-MIN} - V_{EYE-LO-NTRAN-MAX}$

Where:

VEYE-HI-NTRAN-MIN is the minimum of the High non- transition bit eye voltage at mid UI. *VEYE-LO-NTRAN-MAX* is the maximum of the Low non-transition bit eye voltage at mid UI.

8.4 Rise Slew Rate

The Rise Slew Rate is defined as the rate of change of the voltage between the crossings of the specified VREFHI and VREFLO reference voltage levels. The voltage difference is measured between the VREFHI reference level crossing and the VREFLO reference level crossing on the rising edge of the waveform. The time difference is measured as the difference between the low time, and the low time at which VREFLO and VREFHI are crossed. The Rise Slew Rate algorithm uses the high and low rise reference voltage levels to configure the values. Each edge is defined by the slope, voltage reference level (threshold), and the hysteresis.

The application calculates this measurement using the following equation:

$$Rise Slew Rate = \frac{V_{REFHI} - V_{REFLO}}{\Delta TR}$$

8.5 Fall Slew Rate

The Fall Slew Rate is defined as the rate of change of the voltage at the specified VREFLO and VREFHI reference voltage levels. The voltage difference is measured between the VREFLO reference level crossing and the VREFHI reference level crossing on the falling edge of the waveform. The time difference is measured as the difference between the high time and low time at which VREFHI and VREFLO are crossed. The Fall Slew Rate algorithm uses the low time and high fall reference voltage levels to configure the values. Each edge is defined by the slope, voltage reference level (threshold), and the hysteresis.

The application calculates this measurement using the following equation:

$$Fall Slew Rate = \frac{V_{REFLO} - V_{REFHI}}{\Delta TF}$$

8.6 Setup

The Setup Time measurement is the elapsed time between the designated edge of a data waveform and when the clock waveform crosses its own voltage reference level. The closest data edge to the clock edge that falls within the range limits is used.

The application calculates this measurement using the following equation:

$$T_n^{Setup} = T_i^{Main} - T_n^{2nd}$$

Where:

T setup is the setup time. T Main is the Main input (clock) VRefMidMain crossing time in the specified direction. T 2nd is the 2nd input (data) VRefMid2nd crossing time in the specified direction.

8.7 Hold

The Hold Time measurement is the elapsed time between when the clock waveform crosses its own voltage reference level and the designated edge of a data waveform. The closest data edge to the clock edge that falls within the range limits is used.

The application calculates this measurement using the following equation:

 $T_n^{Hold} = T_n^{2nd} - T_i^{Main}$

Where:

Thold is the hold time.

T_{Main} is the Main input (clock) VRefMidMain crossing time in the specified direction. *T_{2nd}* is the 2nd input (data) VRefMid2nd crossing time in the specified direction.

8.8 Frequency

The Frequency measurement calculates the inverse of the data period for each cycle.

If the Signal Type is Clock, the application calculates clock frequency measurement using the following equation:

$$F_n^{Clock} = \frac{1}{P_n^{Clock}}$$

Where:

 F_{Clock} is the clock frequency. P_{Clock} is the clock period measurement.

If the Signal Type is Data, the application calculates data frequency measurement using the following equation:

$$F_n^{Data} = \frac{1}{P_n^{Data}}$$

Where:

 F_{Data} is the data frequency. P_{Data} is the data period measurement.

8.9 Mask Hits

The Mask Hits measurement reports the number of unit intervals in the acquisition for which mask hits occurred, for a user-specified mask. In the Results Summary view, the Mask Hits measurement reports the total number of unit intervals for which a mask hit occurred in at least one mask zone. In the Results Details view, the number of hits in each of three segments is reported. The population field shows the total number of unit intervals measured.

The Mask Hits measurement has several unique properties:

- Unlike other measurements, it requires a Mask hits plot. Adding a Mask Hits measurement will cause the corresponding plot to be created automatically. If you delete a Mask Hits plot, the application will remove the corresponding Mask Hits measurement after verifying the action with you.
- The Mask Hits measurement does not support the Worst-Case Waveforms logging feature.
- The Mask Hits measurement does not support Measurement Range Limits.

Appendix

Configuring the DPOJET HSIC Essentials for additional debug analysis and customization of various measurements

On the oscilloscope TekScope menu, go to Analyze > HSIC Essentials, and click on it to invoke the HSIC setup library in DPOJET standards tab as shown in Figure 28 below.

Selecting Measurements

Ensure that HSIC is selected in the standard drop-down list and then click on the Setup button. You select either a single measurement or recall a setup file to run multiple measurements at a time. Recalling a predefined setup file loads all the required setup configurations for each test/measurements supported for the setup file.

Jitter and Eye Diagram Analysis Tools Preferences														
Select Period/ Standard HSIC V	Measurement Source(s) EyeHeight_Device Ch1	Recalc												
Configure Jitter Test Point Device signal Quality Ne Setup HSIC High- HSIC Fall Low HSIC Height Slew Rate HSIC Hold	Clear Selected FallSlewRate_Da > Ch1 FallSlewRate_Dat > Ch1 Setup Device Ne > Ch2 Ch1	Single												
Results Eye XX AV AV	Clear All Frequency_Device Ch2	Run												
Plots Ampl Standard	RiseSlewRate_Str Ch2 FallSlewRate_Stro Ch2 FallSlewRate_Stro Ch2	Show Plots												
Reports	EyeMaskHits_Devi > Ch1													

Figure 28 HSIC Standard option in DPOJET standard menu

Each of the measurements listed under HSIC Standards tab can be selected manually by clicking on them. If the measurements are used without the pre-defined setup files, please follow these instructions to configure the oscilloscope setup.

Selecting Limit Files

If a measurement has a pass/fail limit associated with it in the test point file, go to Analyze -> Jitter and Eye Analysis -> Limits to select the limit file from the folder where the limit files are saved. Measurements with pass/fail limits will show up in the Results Summary panel when the compliance test is run.

Configure Mask file:

In the DPOJET application go to 'Plots' if you want to enable the Mask file.

- 1. Select measurement from the measurement column.
- 2. Click 'Configure' to change the default setup for that measurement. The mask selection window opens as shown:
- **3.** In the Mask file selection window, press the 'Off' button first and then click 'Browse' to select the Mask file.

File	Edit	Vertical	Digital	Horiz/Acq	Trig Di	splay	Cursors	Measure	e Mask	Math	MyScope	Analyze	Utilities	Help	MSO72	1004 1	'ek 📃 🔀
					Open					1010						8	
					O	⊘ °l) « Te	кдриса	tions 🕨 F	HSIC 🕨	IVIASKS		▼ *ĵ	Search Masks		Q	물 이 이 이 이물
		4 111111			Or	ganize	Ne	w folder							= - 1	0	
						Favorit	tes	<u>^</u>	Name		^			Date modified	Туре		
						📃 Desk	top		📄 Sign	alQualit	y_FarEnd.m	nsk		11/20/2012 12:11	MSK File		
						\rm Dow	nloads		📄 Sign	alQualit	y_NearEnd.	msk		11/8/2012 2:36 P	M MSK File		
						🧾 Rece	nt Places										
						Lihrari	es										
E						Doci	uments	E									
				and a second state of the second		🎝 Mus	ic										
						Nictu	ires										
						🗐 Tekt	ronix										
	C1	200mV/d	iv	50Ω ^B W:	16	📑 vide	05										160ps/pt
	UZ	200111070		W.		Comp	uter										RL:12.5k
					6	🍒 Loca	l Disk (C)									, 2012 17:25:44
								-	(÷	
	Jitte	r and E	ye Diag	ram Analys	is			File nar	ne: Signa	alQuality	NearEnd		•	Mask files (*.m	sk)	•	Clear 🛛 🗴
			Measure	ement	s					. ,	-			Onen la	Canco		
	Sel	lect	EyeHeigl	nt_Device										Oben L			Recalc >
			RiseSlev	vRate_Da	Ch1		CI	ock		All Bits		Tra	ansition	Non	Transition		
	Cont	igure	FallSlew	Rate_Dat	💽 Ch1		Rec	оvегу	(Single
	Dee		Setup_D	evice_Ne	Ch2	,Ch1	Ger	neral									Run
	Res	Juits	Hold_De	vice_Near	Ch2	,Ch1	Glo	obal					lack				
	PL	ots	Frequen	cy_Device	Ch2								nask				Show Plots
			RiseSlev	vRate_Str	Ch2				VT.	ekApplica	ations\HSIC	Masks\Sign	nalQuality_N	earEnd.msk	Browse		
	Rep	orts	Failslew	Rate_Stro	Ch2												
	(nop		cyemask	THICS_DEVI	- Chi		<u> </u>										

Figure 29 Selecting a Mask File

- 4. Select the relevant mask file (for example, SignalQuality_Nearend.msk) and click 'Open'.
- 5. Enable the file by selecting the 'On' button, and click OK.

Configuring Source of Waveforms

The selection options are:

- Live/Ref/Math source selection (uses single ended signal as data and clock source)
- Live channel selections-Ch1, Ch2, Ch3, Ch4
- Reference waveform selections–Ref1, Ref2, Ref3, Ref4

Horizontal Setup

1. Go to the 'Horiz/Acq'-> 'Horizontal /Acquisition Setup' and Change the 'Record Length' and 'Sample Rate' to the required value.

57	Horizontal						
Horiz	ontal	Sample Rate	Resolution	Digital Sample Rate	Delay Mode		$\nabla $
Acqui	sition • Automatic	B.2363/s		Divitol		Horizontal Zoom	
	O Constant Sampl	e Rate Scale 200ns	Duration 2.0µs	Resolution 160ps	Before Record Ref Pt After Record		
	<mark>O</mark> Manual					Ext Ref	
		Record Length Limit	Record Length 12500		Position 80.5%		

Figure 30 Horizontal/Acquisition Setup

The horizontal parameters are set in the setup files to acquire the correct signal for various tests.