MDO4000B Series Mixed Domain Oscilloscopes Specifications and Performance Verification

Technical Reference

MDO4000B Series Mixed Domain Oscilloscopes Specifications and Performance Verification

Technical Reference

This document supports firmware version 3.02 and above for MDO4000B Series instruments.

Warning

The servicing instructions are for use by qualified personnel only. To avoid personal injury, do not perform any servicing unless you are qualified to do so. Refer to all safety summaries prior to performing service.

Revision B

www.tektronix.com

077-0857-00

Copyright © Tektronix. All rights reserved. Licensed software products are owned by Tektronix or its subsidiaries or suppliers, and are protected by national copyright laws and international treaty provisions.

Tektronix products are covered by U.S. and foreign patents, issued and pending. Information in this publication supersedes that in all previously published material. Specifications and price change privileges reserved.

TEKTRONIX and TEK are registered trademarks of Tektronix, Inc.

Contacting Tektronix

Tektronix, Inc. 14150 SW Karl Braun Drive P.O. Box 500 Beaverton, OR 97077 USA

For product information, sales, service, and technical support:

- In North America, call 1-800-833-9200.
- Worldwide, visit www.tektronix.com to find contacts in your area.

Table of Contents

Triggering System Specifications10Digital Acquisition System Specifications15P6616 Digital Probe Input Specifications16RF Input Specifications17Display System Specifications21Interfaces and Input/Output Port Specifications22Data Handling Specifications23Power Supply System Specifications23Environmental Specifications23Environmental Specifications24Mechanical Specifications25TPA-N-PRE Specifications26Performance Verification29Test Record31Performance Verification Procedures67Self Test68Check DC Balance71Check DC Gain Accuracy73Check DC Gian Accuracy77Check Random Noise, Sample Acquisition Mode83Check Delta Time Measurement Accuracy87Check Digital Threshold Accuracy89Check Digital Threshold Accuracy89Check Absolute Amplitude Accuracy90Check Absolute Amplitude Accuracy90Check Absolute Amplitude Accuracy90Check Absolute Amplitude Accuracy90Check Residual Spurious Response90Check Residual Spurious Response110Check Kostalk to RF Channel from Analog Channels112	Important safety information	iv
Terms in this manual viii Symbols and terms on the product. viii Specifications 1 Analog Signal Acquisition System Specifications 1 Time Base System Specifications 10 Digital Acquisition System Specifications 16 RF Input Specifications 17 Dispital Probe Input Specifications 16 RF Input Specifications 17 Display System Specifications 17 Display System Specifications 22 Data Handling Specifications 23 Power Supply System Specifications 23 Environmental Specifications 24 Mechanical Specifications 25 TPA-N-PRE Specifications 26 Performance Verification 29 Test Record 31 Performance Verification Procedures 66 Check DC Gain Accuracy 73 Check DC Gain Accuracy 73 Check DC Offset Accuracy 73 Check DC Offset Accuracy 87 Check DC Offset Accuracy 87 Check Delatine Threshold Accuracy 87 Check	General safety summary	iv
Symbols and terms on the productviiiSpecifications1Analog Signal Acquisition System Specifications1Time Base System Specifications10Digital Acquisition System Specifications10Digital Acquisition System Specifications15P6616 Digital Probe Input Specifications16RF Input Specifications17Display System Specifications17Display System Specifications21Interfaces and Input/Output Port Specifications23Power Supply System Specifications23Power Supply System Specifications23Environmental Specifications24Mcchanical Specifications25TPA-N-PRE Specifications26Performance Verification29Test Record31Performance Verification Procedures69Check DC Balance71Check DC Gain Accuracy73Check DC Gain Accuracy77Check DC Gain Accuracy77Check DC In Accuracy77Check D Dela Masurement Accuracy83Check Dela Time Measurement Accuracy87Check Displayed Average Noise Level (DANL)96Check Third Order Intermodulation Distortion106Check Crosstalk to RF Channel from Analog Channels112	Service safety summary	vii
Specifications 1 Analog Signal Acquisition System Specifications 1 Time Base System Specifications 10 Digital Acquisition System Specifications 10 Digital Acquisition System Specifications 16 RF Input Specifications 17 Display System Specifications 17 Display System Specifications 22 Data Handling Specifications 22 Data Handling Specifications 23 Environmental Specifications 24 Mechanical Specifications 25 TPA-N-PRE Specifications 26 Performance Verification Procedures 26 Performance Verification Procedures 67 Self Test 68 Check DC Balance 71 Check DC Gain Accuracy 73 Check DC Offset Accuracy 77 Check Reference Frequency Error (Cumulative) 83	Terms in this manual v	iii
Analog Signal Acquisition System Specifications 1 Time Base System Specifications 10 Digital Acquisition System Specifications 10 Digital Acquisition System Specifications 15 P6616 Digital Probe Input Specifications 16 RF Input Specifications 17 Display System Specifications 21 Interfaces and Input/Output Port Specifications 22 Data Handling Specifications 23 Power Supply System Specifications 23 Power Supply System Specifications 24 Mechanical Specifications 25 TPA-N-PRE Specifications 26 Performance Verification Procedures 26 Performance Verification Procedures 67 Self Test 68 Check IDC Balance 71 Check DC Gain Accuracy 73 Check DC Offset Accuracy 73 Check Reference Frequency Error (Cumulative) 83 Check Dela Time Measurement Accuracy 87 Check Dela Time Measurement Accuracy 87 Check Displayed Average Noise Level (DANL) 96 Check Absolute Amplitude Accuracy 93 </td <td>Symbols and terms on the productv</td> <td>iii</td>	Symbols and terms on the productv	iii
Time Base System Specifications8Triggering System Specifications10Digital Acquisition System Specifications15P6616 Digital Probe Input Specifications16RF Input Specifications17Display System Specifications21Interfaces and Input/Output Port Specifications22Data Handling Specifications23Power Supply System Specifications23Power Supply System Specifications23Power Supply System Specifications23Power Supply System Specifications24Mechanical Specifications24Mechanical Specifications26Performance Verification29Test Record31Performance Verification Procedures66Check Input Impedance (Resistance)66Check DC Balance71Check DC Gain Accuracy73Check DC Offset Accuracy77Check Random Noise, Sample Acquisition Mode83Check Reference Frequency Error (Cumulative)85Check Digital Threshold Accuracy89Check Absolute Amplitude Accuracy89Check Absolute Amplitude Accuracy89Check Absolute Amplitude Accuracy70Check Absolute Amplitude Accuracy70Check Residual Spurious Response90Check Residual Spurious Response110Check Residual Spurious Response110Check Crosstalk to RF Channel from Analog Channels112	Specifications	1
Triggering System Specifications10Digital Acquisition System Specifications15P6616 Digital Probe Input Specifications16RF Input Specifications17Display System Specifications21Interfaces and Input/Output Port Specifications22Data Handling Specifications23Power Supply System Specifications23Environmental Specifications23Environmental Specifications24Mechanical Specifications25TPA-N-PRE Specifications26Performance Verification29Test Record31Performance Verification Procedures67Self Test68Check DC Balance71Check DC Gain Accuracy73Check DC Gian Accuracy77Check Random Noise, Sample Acquisition Mode83Check Delta Time Measurement Accuracy87Check Digital Threshold Accuracy89Check Digital Threshold Accuracy89Check Absolute Amplitude Accuracy90Check Absolute Amplitude Accuracy90Check Absolute Amplitude Accuracy90Check Absolute Amplitude Accuracy90Check Residual Spurious Response90Check Residual Spurious Response110Check Kostalk to RF Channel from Analog Channels112	Analog Signal Acquisition System Specifications	1
Digital Acquisition System Specifications15P6616 Digital Probe Input Specifications16RF Input Specifications17Display System Specifications21Interfaces and Input/Output Port Specifications22Data Handling Specifications23Power Supply System Specifications23Environmental Specifications23Environmental Specifications24Mechanical Specifications25TPA-N-PRE Specifications26Performance Verification29Test Record31Performance Verification Procedures67Self Test68Check Input Impedance (Resistance)69Check DC Gain Accuracy77Check DC Gain Accuracy77Check Random Noise, Sample Acquisition Mode83Check Delta Time Measurement Accuracy87Check Digital Threshold Accuracy89Check Absolute Amplitude Accuracy89Check Absolute Amplitude Accuracy93Check Absolute Amplitude Accuracy93Check Absolute Amplitude Accuracy94Check Absolute Amplitude Accuracy94Check Absolute Amplitude Accuracy94Check Crosstalk to RF Channel from Analog Channels112	Time Base System Specifications	8
P6616 Digital Probe Input Specifications16RF Input Specifications17Display System Specifications21Interfaces and Input/Output Port Specifications22Data Handling Specifications23Power Supply System Specifications23Environmental Specifications23Environmental Specifications24Mechanical Specifications26Performance Verifications26Performance Verification29Test Record31Performance Verification Procedures67Self Test68Check DC Balance71Check DC Gain Accuracy73Check DC Gain Accuracy73Check DC Gain Accuracy73Check Reference Frequency Error (Cumulative)85Check Delta Time Measurement Accuracy89Check Delta Time Measurement Accuracy89Check Digital Threshold Accuracy90Check Digital Threshold Accuracy90Check Displayed Average Noise Level (DANL)96Check Check Inpiltude Accuracy93Check Asolute Amplitude Accuracy93Check Residual Spurious Response110Check Crosstalk to RF Channel from Analog Channels112	Triggering System Specifications	10
RF Input Specifications 17 Display System Specifications 21 Interfaces and Input/Output Port Specifications 22 Data Handling Specifications 23 Power Supply System Specifications 23 Environmental Specifications 23 Environmental Specifications 24 Mechanical Specifications 25 TPA-N-PRE Specifications 26 Performance Verification 29 Test Record 31 Performance Verification Procedures 67 Self Test 68 Check Input Impedance (Resistance) 69 Check DC Balance 71 Check DC Gain Accuracy 73 Check DC Offset Accuracy 77 Check Analog Bandwidth 79 Check Reference Frequency Error (Cumulative) 85 Check Delta Time Measurement Accuracy 87 Check Digital Threshold Accuracy 89 Check Absolute Amplitude Accuracy 93 Check Absolute Amplitude Accuracy 93 Check Third Order Intermodulation Distortion 100 Check Residual Spurious Response 110	Digital Acquisition System Specifications	15
Display System Specifications21Interfaces and Input/Output Port Specifications22Data Handling Specifications23Power Supply System Specifications23Environmental Specifications24Mechanical Specifications25TPA-N-PRE Specifications26Performance Verification29Test Record31Performance Verification Procedures67Self Test68Check Input Impedance (Resistance)69Check DC Balance71Check DC Gain Accuracy73Check DC Offset Accuracy77Check Random Noise, Sample Acquisition Mode83Check Reference Frequency Error (Cumulative)85Check Delta Time Measurement Accuracy89Check Plase Noise93Check Absolut Amplitude Accuracy93Check Absolut Amplitude Accuracy93Check Absolut Amplitude Accuracy102Check Absolut Amplitude Accuracy102Check Residual Spurious Response110Check Crosstalk to RF Channel from Analog Channels112	P6616 Digital Probe Input Specifications	16
Interfaces and Input/Output Port Specifications22Data Handling Specifications23Power Supply System Specifications23Environmental Specifications24Mechanical Specifications25TPA-N-PRE Specifications26Performance Verification29Test Record31Performance Verification Procedures67Self Test68Check Input Impedance (Resistance)69Check DC Balance71Check DC Gain Accuracy73Check DC Offset Accuracy77Check Random Noise, Sample Acquisition Mode83Check Delta Time Measurement Accuracy87Check Digital Threshold Accuracy89Check Phase Noise93Check Absolute Amplitude Accuracy69Check Displayed Average Noise Level (DANL)96Check Absolute Amplitude Accuracy102Check Residual Spurious Response110Check Residual Spurious Response110Check Residual Spurious Response110Check Crosstalk to RF Channel from Analog Channels112	RF Input Specifications	17
Interfaces and Input/Output Port Specifications22Data Handling Specifications23Power Supply System Specifications23Environmental Specifications24Mechanical Specifications25TPA-N-PRE Specifications26Performance Verification29Test Record31Performance Verification Procedures67Self Test68Check Input Impedance (Resistance)69Check DC Balance71Check DC Gain Accuracy73Check DC Offset Accuracy77Check Random Noise, Sample Acquisition Mode83Check Delta Time Measurement Accuracy87Check Digital Threshold Accuracy89Check Phase Noise93Check Absolute Amplitude Accuracy69Check Displayed Average Noise Level (DANL)96Check Absolute Amplitude Accuracy102Check Residual Spurious Response110Check Residual Spurious Response110Check Residual Spurious Response110Check Crosstalk to RF Channel from Analog Channels112	Display System Specifications	21
Data Handling Specifications23Power Supply System Specifications23Environmental Specifications24Mechanical Specifications25TPA-N-PRE Specifications26Performance Verification29Test Record31Performance Verification Procedures67Self Test68Check Input Impedance (Resistance)69Check DC Balance71Check DC Gain Accuracy73Check DC Offset Accuracy73Check Random Noise, Sample Acquisition Mode83Check Reference Frequency Error (Cumulative)85Check Digital Threshold Accuracy89Check Phase Noise.93Check Displayed Average Noise Level (DANL)96Check Residual Spurious Response110Check Residual Spurious Response112		22
Environmental Specifications24Mechanical Specifications25TPA-N-PRE Specifications26Performance Verification29Test Record31Performance Verification Procedures67Self Test68Check Input Impedance (Resistance)69Check DC Balance71Check DC Gain Accuracy73Check DC Offset Accuracy73Check Analog Bandwidth79Check Reference Frequency Error (Cumulative)85Check Digital Threshold Accuracy89Check Displayed Average Noise Level (DANL)96Check Absolute Amplitude Accuracy102Check Absolute Amplitude Accuracy102Check Refined Sperious Response110Check Residual Spurious Response112		23
Mechanical Specifications25TPA-N-PRE Specifications26Performance Verification29Test Record31Performance Verification Procedures67Self Test68Check Input Impedance (Resistance)69Check DC Balance71Check DC Gain Accuracy73Check DC Offset Accuracy73Check Analog Bandwidth79Check Reference Frequency Error (Cumulative)85Check Delta Time Measurement Accuracy87Check Digital Threshold Accuracy89Check Displayed Average Noise Level (DANL)96Check Absolute Amplitude Accuracy102Check Third Order Intermodulation Distortion106Check Residual Spurious Response110Check Crosstalk to RF Channel from Analog Channels112	Power Supply System Specifications	23
TPA-N-PRE Specifications26Performance Verification29Test Record31Performance Verification Procedures67Self Test68Check Input Impedance (Resistance)69Check DC Balance71Check DC Gain Accuracy73Check DC Offset Accuracy73Check Analog Bandwidth79Check Reference Frequency Error (Cumulative)85Check Delta Time Measurement Accuracy87Check Digital Threshold Accuracy89Check Displayed Average Noise Level (DANL)96Check Absolute Amplitude Accuracy102Check Reidual Spurious Response110Check Crosstalk to RF Channel from Analog Channels112	Environmental Specifications	24
TPA-N-PRE Specifications26Performance Verification29Test Record31Performance Verification Procedures67Self Test68Check Input Impedance (Resistance)69Check DC Balance71Check DC Gain Accuracy73Check DC Offset Accuracy73Check Analog Bandwidth79Check Reference Frequency Error (Cumulative)85Check Delta Time Measurement Accuracy87Check Digital Threshold Accuracy89Check Displayed Average Noise Level (DANL)96Check Absolute Amplitude Accuracy102Check Reidual Spurious Response110Check Crosstalk to RF Channel from Analog Channels112	Mechanical Specifications	25
Test Record31Performance Verification Procedures67Self Test68Check Input Impedance (Resistance)69Check DC Balance71Check DC Gain Accuracy73Check DC Offset Accuracy77Check Analog Bandwidth79Check Random Noise, Sample Acquisition Mode83Check Delta Time Measurement Accuracy87Check Digital Threshold Accuracy89Check Displayed Average Noise Level (DANL)96Check Absolute Amplitude Accuracy102Check Third Order Intermodulation Distortion106Check Residual Spurious Response110Check Crosstalk to RF Channel from Analog Channels112		26
Test Record31Performance Verification Procedures67Self Test68Check Input Impedance (Resistance)69Check DC Balance71Check DC Gain Accuracy73Check DC Offset Accuracy77Check Analog Bandwidth79Check Random Noise, Sample Acquisition Mode83Check Delta Time Measurement Accuracy87Check Digital Threshold Accuracy89Check Displayed Average Noise Level (DANL)96Check Absolute Amplitude Accuracy102Check Third Order Intermodulation Distortion106Check Residual Spurious Response110Check Crosstalk to RF Channel from Analog Channels112	Performance Verification	29
Self Test.68Check Input Impedance (Resistance)69Check DC Balance71Check DC Gain Accuracy.73Check DC Offset Accuracy73Check Analog Bandwidth79Check Random Noise, Sample Acquisition Mode83Check Reference Frequency Error (Cumulative)85Check Delta Time Measurement Accuracy87Check Digital Threshold Accuracy89Check Displayed Average Noise Level (DANL)96Check Absolute Amplitude Accuracy102Check Third Order Intermodulation Distortion106Check Residual Spurious Response110Check Crosstalk to RF Channel from Analog Channels112		31
Check Input Impedance (Resistance)69Check DC Balance71Check DC Gain Accuracy73Check DC Offset Accuracy77Check Analog Bandwidth79Check Random Noise, Sample Acquisition Mode83Check Reference Frequency Error (Cumulative)85Check Delta Time Measurement Accuracy87Check Digital Threshold Accuracy89Check Digital Threshold Accuracy93Check Displayed Average Noise Level (DANL)96Check Third Order Intermodulation Distortion102Check Residual Spurious Response110Check Crosstalk to RF Channel from Analog Channels112	Performance Verification Procedures	67
Check DC Balance	Self Test	68
Check DC Gain Accuracy.73Check DC Offset Accuracy.77Check DC Offset Accuracy.77Check Analog Bandwidth.79Check Random Noise, Sample Acquisition Mode83Check Reference Frequency Error (Cumulative).85Check Delta Time Measurement Accuracy87Check Digital Threshold Accuracy89Check Phase Noise.93Check Displayed Average Noise Level (DANL).96Check Absolute Amplitude Accuracy102Check Third Order Intermodulation Distortion.106Check Residual Spurious Response.110Check Crosstalk to RF Channel from Analog Channels.112	Check Input Impedance (Resistance)	69
Check DC Offset Accuracy77Check Analog Bandwidth79Check Analog Bandwidth79Check Random Noise, Sample Acquisition Mode83Check Reference Frequency Error (Cumulative)85Check Delta Time Measurement Accuracy87Check Digital Threshold Accuracy89Check Phase Noise93Check Displayed Average Noise Level (DANL)96Check Absolute Amplitude Accuracy102Check Third Order Intermodulation Distortion106Check Residual Spurious Response110Check Crosstalk to RF Channel from Analog Channels112	Check DC Balance.	71
Check Analog Bandwidth.79Check Random Noise, Sample Acquisition Mode83Check Reference Frequency Error (Cumulative).85Check Delta Time Measurement Accuracy87Check Digital Threshold Accuracy89Check Phase Noise.93Check Displayed Average Noise Level (DANL)96Check Absolute Amplitude Accuracy102Check Third Order Intermodulation Distortion.106Check Residual Spurious Response.110Check Crosstalk to RF Channel from Analog Channels.112		73
Check Analog Bandwidth.79Check Random Noise, Sample Acquisition Mode83Check Reference Frequency Error (Cumulative).85Check Delta Time Measurement Accuracy87Check Digital Threshold Accuracy89Check Phase Noise.93Check Displayed Average Noise Level (DANL)96Check Absolute Amplitude Accuracy102Check Third Order Intermodulation Distortion.106Check Residual Spurious Response.110Check Crosstalk to RF Channel from Analog Channels.112	Check DC Offset Accuracy	77
Check Reference Frequency Error (Cumulative).85Check Delta Time Measurement Accuracy87Check Digital Threshold Accuracy89Check Phase Noise.93Check Displayed Average Noise Level (DANL).96Check Absolute Amplitude Accuracy102Check Third Order Intermodulation Distortion.106Check Residual Spurious Response.110Check Crosstalk to RF Channel from Analog Channels.112		79
Check Reference Frequency Error (Cumulative).85Check Delta Time Measurement Accuracy87Check Digital Threshold Accuracy89Check Phase Noise.93Check Displayed Average Noise Level (DANL).96Check Absolute Amplitude Accuracy102Check Third Order Intermodulation Distortion.106Check Residual Spurious Response.110Check Crosstalk to RF Channel from Analog Channels.112	Check Random Noise, Sample Acquisition Mode	83
Check Delta Time Measurement Accuracy87Check Digital Threshold Accuracy89Check Phase Noise.93Check Displayed Average Noise Level (DANL)96Check Absolute Amplitude Accuracy102Check Third Order Intermodulation Distortion.106Check Residual Spurious Response.110Check Crosstalk to RF Channel from Analog Channels.112		85
Check Digital Threshold Accuracy89Check Phase Noise93Check Displayed Average Noise Level (DANL)96Check Absolute Amplitude Accuracy102Check Third Order Intermodulation Distortion106Check Residual Spurious Response110Check Crosstalk to RF Channel from Analog Channels112		87
Check Phase Noise.93Check Displayed Average Noise Level (DANL)96Check Absolute Amplitude Accuracy102Check Third Order Intermodulation Distortion.106Check Residual Spurious Response.110Check Crosstalk to RF Channel from Analog Channels.112	-	89
Check Displayed Average Noise Level (DANL)96Check Absolute Amplitude Accuracy102Check Third Order Intermodulation Distortion106Check Residual Spurious Response110Check Crosstalk to RF Channel from Analog Channels112		93
Check Absolute Amplitude Accuracy102Check Third Order Intermodulation Distortion106Check Residual Spurious Response110Check Crosstalk to RF Channel from Analog Channels112		96
Check Third Order Intermodulation Distortion106Check Residual Spurious Response110Check Crosstalk to RF Channel from Analog Channels112		02
Check Residual Spurious Response.110Check Crosstalk to RF Channel from Analog Channels.112		
Check Crosstalk to RF Channel from Analog Channels		
		14

With TPA-N-PRE Attached: Check Displayed Average Noise Level (DANL)...... 118

List of Tables

Table 1: Analog signal acquisition system specifications	1
Table 2: Time base system specifications	8
Table 3: Delta-time measurement accuracy formula	9
Table 4: Trigger specifications	10
Table 5: Digital acquisition specifications	15
Table 6: P6616 digital probe input specifications	16
Table 7: RF input specifications	17
Table 8: Display system specifications	21
Table 9: Interfaces and Input/Output port specifications	22
Table 10: Data handling specifications	23
Table 11: Power supply system specifications	23
Table 12: Environmental specifications	24
Table 13: Mechanical specifications.	25
Table 14: TPA-N-PRE specifications.	26
Table 15: Required equipment	30
Table 16: Gain expected worksheet	75
Table 17: Maximum bandwidth frequency worksheet	80

Important safety information

This manual contains information and warnings that must be followed by the user for safe operation and to keep the product in a safe condition.

To safely perform service on this product, additional information is provided at the end of this section. (See page vii, *Service safety summary*.)

General safety summary

Use the product only as specified. Review the following safety precautions to avoid injury and prevent damage to this product or any products connected to it. Carefully read all instructions. Retain these instructions for future reference.

Comply with local and national safety codes.

For correct and safe operation of the product, it is essential that you follow generally accepted safety procedures in addition to the safety precautions specified in this manual.

The product is designed to be used by trained personnel only.

Only qualified personnel who are aware of the hazards involved should remove the cover for repair, maintenance, or adjustment.

Before use, always check the product with a known source to be sure it is operating correctly.

This product is not intended for detection of hazardous voltages.

Use personal protective equipment to prevent shock and arc blast injury where hazardous live conductors are exposed.

While using this product, you may need to access other parts of a larger system. Read the safety sections of the other component manuals for warnings and cautions related to operating the system.

When incorporating this equipment into a system, the safety of that system is the responsibility of the assembler of the system.

To avoid fire or personal injury Use proper power cord. Use only the power cord specified for this product and certified for the country of use.

Do not use the provided power cord for other products.

Ground the product. This product is grounded through the grounding conductor of the power cord. To avoid electric shock, the grounding conductor must be connected to earth ground. Before making connections to the input or output terminals of the product, make sure that the product is properly grounded.

Do not disable the power cord grounding connection.

Power disconnect. The power cord disconnects the product from the power source. See instructions for the location. Do not position the equipment so that it is difficult to operate the power cord; it must remain accessible to the user at all times to allow for quick disconnection if needed.

Connect and disconnect properly. Do not connect or disconnect probes or test leads while they are connected to a voltage source.

Use only insulated voltage probes, test leads, and adapters supplied with the product, or indicated by Tektronix to be suitable for the product.

Observe all terminal ratings. To avoid fire or shock hazard, observe all ratings and markings on the product. Consult the product manual for further ratings information before making connections to the product. Do not exceed the Measurement Category (CAT) rating and voltage or current rating of the lowest rated individual component of a product, probe, or accessory. Use caution when using 1:1 test leads because the probe tip voltage is directly transmitted to the product.

Do not apply a potential to any terminal, including the common terminal, that exceeds the maximum rating of that terminal.

Do not float the common terminal above the rated voltage for that terminal.

Do not operate without covers. Do not operate this product with covers or panels removed, or with the case open. Hazardous voltage exposure is possible.

Avoid exposed circuitry. Do not touch exposed connections and components when power is present.

Do not operate with suspected failures. If you suspect that there is damage to this product, have it inspected by qualified service personnel.

Disable the product if it is damaged. Do not use the product if it is damaged or operates incorrectly. If in doubt about safety of the product, turn it off and disconnect the power cord. Clearly mark the product to prevent its further operation.

Before use, inspect voltage probes, test leads, and accessories for mechanical damage and replace when damaged. Do not use probes or test leads if they are damaged, if there is exposed metal, or if a wear indicator shows.

Examine the exterior of the product before you use it. Look for cracks or missing pieces.

Use only specified replacement parts.

Use proper fuse. Use only the fuse type and rating specified for this product.

Do not operate in wet/damp conditions. Be aware that condensation may occur if a unit is moved from a cold to a warm environment.

Do not operate in an explosive atmosphere.

Keep product surfaces clean and dry. Remove the input signals before you clean the product.

Provide proper ventilation. Refer to the installation instructions in the manual for details on installing the product so it has proper ventilation.

Slots and openings are provided for ventilation and should never be covered or otherwise obstructed. Do not push objects into any of the openings.

Provide a safe working environment. Always place the product in a location convenient for viewing the display and indicators.

Avoid improper or prolonged use of keyboards, pointers, and button pads. Improper or prolonged keyboard or pointer use may result in serious injury.

Be sure your work area meets applicable ergonomic standards. Consult with an ergonomics professional to avoid stress injuries.

Use only the Tektronix rackmount hardware specified for this product.

Probes and test leads Before connecting probes or test leads, connect the power cord from the power connector to a properly grounded power outlet.

Keep fingers behind the finger guards on the probes.

Remove all probes, test leads and accessories that are not in use.

Use only correct Measurement Category (CAT), voltage, temperature, altitude, and amperage rated probes, test leads, and adapters for any measurement.

Beware of high voltages. Understand the voltage ratings for the probe you are using and do not exceed those ratings. Two ratings are important to know and understand:

- The maximum measurement voltage from the probe tip to the probe reference lead.
- The maximum floating voltage from the probe reference lead to earth ground

These two voltage ratings depend on the probe and your application. Refer to the Specifications section of the manual for more information.

WARNING. To prevent electrical shock, do not exceed the maximum measurement or maximum floating voltage for the oscilloscope input BNC connector, probe tip, or probe reference lead. **Connect and disconnect properly.** Connect the probe output to the measurement product before connecting the probe to the circuit under test. Connect the probe reference lead to the circuit under test before connecting the probe input. Disconnect the probe input and the probe reference lead from the circuit under test before disconnecting the probe from the measurement product.

Connect and disconnect properly. De-energize the circuit under test before connecting or disconnecting the current probe.

Connect the probe reference lead to earth ground only.

Do not connect a current probe to any wire that carries voltages above the current probe voltage rating.

Inspect the probe and accessories. Before each use, inspect probe and accessories for damage (cuts, tears, or defects in the probe body, accessories, or cable jacket). Do not use if damaged.

Ground-referenced oscilloscope use. Do not float the reference lead of this probe when using with ground-referenced oscilloscopes. The reference lead must be connected to earth potential (0 V).

Floating measurement use. Do not float the reference lead of this probe above the rated float voltage.

Service safety summary

The Service safety summary section contains additional information required to safely perform service on the product. Only qualified personnel should perform service procedures. Read this Service safety summary and the General safety summary before performing any service procedures.

To avoid electric shock. Do not touch exposed connections.

Do not service alone. Do not perform internal service or adjustments of this product unless another person capable of rendering first aid and resuscitation is present.

Disconnect power. To avoid electric shock, switch off the product power and disconnect the power cord from the mains power before removing any covers or panels, or opening the case for servicing.

Use care when servicing with power on. Dangerous voltages or currents may exist in this product. Disconnect power, remove battery (if applicable), and disconnect test leads before removing protective panels, soldering, or replacing components.

Verify safety after repair. Always recheck ground continuity and mains dielectric strength after performing a repair.

Terms in this manual

These terms may appear in this manual:

WARNING. Warning statements identify conditions or practices that could result in injury or loss of life.

CAUTION. Caution statements identify conditions or practices that could result in damage to this product or other property.

Symbols and terms on the product

These terms may appear on the product:

- DANGER indicates an injury hazard immediately accessible as you read the marking.
- WARNING indicates an injury hazard not immediately accessible as you read the marking.
- CAUTION indicates a hazard to property including the product.

When this symbol is marked on the product, be sure to consult the manual to find out the nature of the potential hazards and any actions which have to be taken to avoid them. (This symbol may also be used to refer the user to ratings in the manual.)

The following symbol(s) may appear on the product:

 \mathcal{H}

Protective Ground Chassis Ground (Earth) Terminal

Standb

Specifications

This chapter contains specifications for the MDO4000B Series oscilloscopes. All specifications are guaranteed unless noted as "typical." Typical specifications are provided for your convenience but are not guaranteed. Specifications that are marked with the \nvdash symbol are checked in *Performance Verification*.

All specifications apply to all MDO4000B models unless noted otherwise. To meet specifications, two conditions must first be met:

- The oscilloscope must have been operating continuously for twenty minutes within the specified operating temperature range. (See Table 12 on page 24.)
- You must perform the Signal Path Compensation (SPC) operation described in step 2 of the *Self Test* before evaluating specifications. (See page 68, *Self Test*.) If the operating temperature changes by more than 10 °C (18 °F), you must perform the SPC operation again.

Analog Signal Acquisition System Specifications

The following table shows the specifications for the analog signal acquisition system.

Characteristic	Description		
Number of input channels	4 analog channels, o	digitized simultaneously	
Input coupling	DC or AC		
Input resistance	1 MΩ or 50 Ω		
selection	250 k Ω (to be select	ed for performance verificati	on only).
Input impedance,	1 MΩ	1 MΩ ±1%	
DC coupled	50 Ω	50 Ω ±1%	
		MDO4104B-X	VSWR ≤1.5:1 from DC to 1 GHz, typical
		MDO4054B-X	VSWR ≤1.5:1 from DC to 500 MHz, typical
		MDO4034B-3	VSWR ≤1.5:1 from DC to 350 MHz, typical
		MDO4014B-3	VSWR ≤1.5:1 from DC to 100 MHz, typical
Input Capacitance, 1 MΩ DC coupled, typical	13 pF ± 2 pF		

Characteristic	Description		
Maximum input	1 MΩ	300 V _{RMS} at the BNC	
roltage		Installation Category II	
		Derate at 20 dB/decade between 4.5 MHz and 45 MHz	
		Derate 14 dB/decade between 45 MHz and 450 MHz	
		Above 450 MHz, 5 V_{RMS} .	
		Maximum peak input voltage at the BNC, ±424 V	
	250 ΚΩ	75 V _{RMS} at the BNC	
		Installation Category II	
		Derate at 20 dB/decade between 1.3 MHz and 13 MHz	
		Derate 10 dB/decade between 13 MHz and 130 MHz	
		Above 130 MHz, 5 V _{RMS} .	
		Maximum peak input voltage at the BNC, ±106 V	
	50 Ω	5 V_{RMS} with peaks $\leq \pm 20$ V (Duty Factor $\leq 6.25\%$)	
		Overvoltage trip is intended to protect against overloads that might damage termination resistors. A sufficiently large impulse might cause damage regardless of the overvoltage protection circuitry because of the finite time required to detect and respond.	
C Balance	0.1 div with the input DC	C coupled, set to 50 Ω termination, and input terminated with 50 Ω BNC terminator	
	•	the input DC coupled, set to 50 Ω termination, and input terminated with 50 Ω	
	0.2 div with the input DC	C coupled, set to 1 M Ω termination, and input terminated with 50 Ω BNC terminator	
	0.225 div at 1 mV/div wit BNC terminator	th the input DC coupled, set to 1 $M\Omega$ termination, and input terminated with 50 Ω	
Number of digitized	8 bits		
bits	Displayed vertically with	25 digitization levels (DL) per division, 10.24 divisions dynamic range.	
		for "digitization level." A DL is the smallest voltage level change that can be O Converter. This value is also known as the least significant bit (LSB).	
Sensitivity range	1 ΜΩ	1 mV/div to 10 V/div in a 1-2-5 sequence	
coarse)	50 Ω	1 mV/div to 1 V/div in a 1-2-5 sequence	
Sensitivity range (fine)	1 ΜΩ	1 mV/div to 5 V/div < -50% to > +50% of selected setting	
		10 V/div < -50% to 0%	
		Allows continuous adjustment from 1 mV/div to 10 V/div	
	50 Ω	1 mV/div to 500 mV/div < -50% to > +50% of selected setting	
		1 V/div < -50% to 0%	
		Allows continuous adjustment from 1 mV/div to 1 V/div	
Sensitivity resolution (fine), typical	≤1% of current setting		

Characteristic	Description				
DC gain accuracy	For 50 Ω, 1 MΩ, and 250 kΩ (250 kΩ checked indirectly):				
	±1.5%, derated at 0.100%/°C above 30 °C				
	±2.0%, derated at 0.100%/°C above 30 °C, 1 mV/D	Div setting			
	±3.0% variable gain, derated at 0.100%/°C above 3	30 °C			
Offset ranges,	Volts/div setting	Offset range			
minimum		1 MΩ input	50 Ω input		
	1 mV/div to 50 mV/div	±1 V	±1 V		
	50.5 mV/div to 99.5 mV/div	±0.5 V	±0.5 V		
	100 mV/div to 500 mV/div	±10 V	±10 V		
	505 mV/div to 995 mV/div	±5 V	±5 V		
	1 V/div to 5 V/div	±100 V	±5 V		
	5.05 V/div to 10 V/div	±50 V	Not applicable		
	For 50 Ω path, 1 V/div is the maximum vertical setti	ng.			
	The input signal cannot exceed Max Input Voltage for the 50 Ω input path. Refer to the Max Input Voltage specification for more information.				
Position range	±5 divisions				
 Offset accuracy 	±[0.005 × offset – position + DC Balance]				
	Both the position and the constant offset term must volts/div setting.	be converted to volts by	y multiplying by the appropriate		
Number of waveforms	2 to 512 waveforms				
for average acquisition mode	Default of 16 waveforms				
DC voltage	Measurement type	DC Accuracy (in Vo	olts)		
neasurement accuracy	Average of ≥ 16 waveforms		cy × reading – (offset - accuracy + 0.1 division]		
average acquisition node		Refer to DC Gain / derating information	Accuracy for temperature n.		
	Delta Volts between any two averages of ≥16	±[DC gain accuracy × reading + 0.05 div]			
	waveforms acquired with the same oscilloscope setup and ambient conditions	Refer to DC Gain Accuracy for temperature derating information.			
	Offset, position, and the constant offset term must be converted to volts by multiplying by the appropriate volts/div setting.				
	The basic accuracy specification applies directly to any sample and to the following measurements: High, Low, Max, Min, Mean, Cycle Mean, RMS, and Cycle RMS. The delta volt accuracy specification applies to subtractive calculations involving two of these measurements.				
	The delta volts (difference voltage) accuracy specification applies directly to the following measurements: Positive Overshoot, Negative Overshoot, Pk-Pk, and Amplitude.				

Characteristic	Description		
DC voltage measurement accuracy Sample acquisition mode, typical	Measurement type	DC Accuracy (in volts)	
	Any sample	±[DC gain accuracy × reading – (offset – position) + Offset Accuracy + 0.15 div + 0.6 mV]	
		Refer to DC Gain Accuracy for temperature derating information.	
	Delta volts between any two samples acquired with the same oscilloscope setup and ambient	±[DC gain accuracy × reading + 0.15 div + 1.2 mV]	
	conditions	Refer to DC Gain Accuracy for temperature derating information.	

Characteristic	Description					
Analog bandwidth	MDO4104B-6,	MDO4104B-3, MD	O4054B-6, MDO4054B-3, MDO403	34B-3: 20 MHz, 250 MHz, and Full		
selections	MDO4014B-3: 20 MHz and Full					
Analog bandwidth, DC			erature of ≤30°C and the bandwidth for each °C above 30°C	n selection set to FULL. Reduce the		
coupled			Volts/Div setting	Bandwidth		
	50 Ω	MDO4104B-X	5 mV/div — 1 V/div	DC to 1.00 GHz		
			2 mV/div — 4.98 mV/div	DC to 350 MHz		
			1 mV/div — 1.99 mV/div	DC to 175 MHz		
		MDO4054B-X	5 mV/div — 1 V/div	DC to 500 MHz		
			2 mV/div — 4.98 mV/div	DC to 350 MHz		
			1 mV/div — 1.99 mV/div	DC to 175 MHz		
		MDO4034B-3	2 mV/div — 1 V/div	DC to 350 MHz		
			1 mV/div — 1.99 mV/div	DC to 175 MHz		
		MDO4014B-3	1 mV/div — 1 V/div	DC to 100 MHz		
	1 MΩ, typical	MDO4104B-X	5 mV/div — 10 V/div	DC to 500 MHz		
			2 mV/div — 4.98 mV/div	DC to 350 MHz		
			1 mV/div — 1.99 mV/div	DC to 175 MHz		
		MDO4054B-X	5 mV/div — 10 V/div	DC to 380 MHz		
			2 mV/div — 4.98 mV/div	DC to 350 MHz		
			1 mV/div — 1.99 mV/div	DC to 175 MHz		
		MDO4034B-3	2 mV/div — 10 V/div	DC to 350 MHz		
			1 mV/div — 1.99 mV/div	DC to 175 MHz		
		MDO4014B-3	1 mV/div — 10 V/div	DC to 100 MHz		
	With TPPXX00	MDO4104B-X (TPP1000 probe)	50 mV/div — 100 V/div	DC to 1 GHz		
			20 mV/div — 49.8 mV/div	DC to 350 MHz		
	10X probes, typical		10 mV/div — 19.9 mV/div	DC to 175 MHz		
		MDO4054B-X	50 mV/div — 100 V/div	DC to 500 MHz		
		(TPP0500	20 mV/div — 49.8 mV/div	DC to 350 MHz		
		probe)	10 mV/div — 19.9 mV/div	DC to 175 MHz		
		MDO4034B-3	20 mV/div — 100 V/div	DC to 350 MHz		
		(TPP0500)	10 mV/div — 19.9 mV/div	DC to 175 MHz		
		MDO4014B-3 (TPP0500)	10 mV/div — 100 V/div	DC to 100 MHz		
Lower frequency limit,	< 10 Hz when	AC, 1 MΩ coupled				
AC coupled, typical	The AC couple	d lower frequency	limits are reduced by a factor of 10	when 10X passive probes are used.		
Upper frequency limit, 250 MHz bandwidth limited, typical	The AC coupled lower frequency limits are reduced by a factor of 10 when 10X passive probes are used. 250 MHz, ±20%, all models except MDO4014B-3					

Upper frequency limit, 20 MHz bandwidth limited, typical	20 MHz, ±20%			
Calculated rise time at 0.350/BW = t _r , typical		ated by measuring the –3 dB tion of the oscilloscope indep		ppe. The formula accounts for ne signal source.
	Model	50 Ω 1 mV/div to 1.99 mV/div	50 Ω 2 mV/div to 4.98 mV/div	50 Ω 5 mV/div to 1 V/div
	MDO4104B-X	2 ns	1 ns	350 ps
	MDO4054B-X	2 ns	1 ns	700 ps
	MDO4034B-3	2 ns	1 ns	1 ns
	MDO4014B-3	3.5 ns	3.5 ns	3.5 ns
	Model	TPP1000 probe 10 mV/div to 19.9 mV/div	TPP1000 probe 20 mV/div to 49.8 mV/div	TPP1000 probe 50 mV/div to 10 V/div
	MDO4104B-X	2 ns	1 ns	350 ps
	MDO4054B-X	2 ns	1 ns	700 ps
	MDO4034B-3	2 ns	1 ns	1 ns
	MDO4014B-3	3.5 ns	3.5 ns	3.5 ns
	Model	TPP0500 probe 10 mV/div to 19.9 mV/div	TPP0500 probe 20 mV/div to 49.8 mV/div	TPP0500 probe 50 mV/div to 10 V/div
	MDO4104B-X	2 ns	1 ns	700 ps
	MDO4054B-X	2 ns	1 ns	700 ps
	MDO4034B-3	2 ns	1 ns	1 ns
	MDO4014B-3	3.5 ns	3.5 ns	3.5 ns
Peak Detect or	Model		Minimum pulse width	
Envelope mode pulse response, typical	MDO4104B-X (≤2 cł	annels enabled)	>800 ps	
	MDO4104B-X (≥3 ch MDO4054B-X, MDO	annels enabled), 4034B-3, MDO4014B-3	>1.6 ns	

Random Noise,	Model	Bandwidth limit	RMS noise (mV)			
Sample Acquisition			1 Μ Ω	50 Ω		
Mode	MDO4104B-X	Full Bandwidth	≤ (300 µV + 8.0% of Volts/div setting)	≤ (75 µV + 6.0% of Volts/div setting)		
		250 MHz bandwidth	≤ (100 µV + 5.0% of Volts/div setting)	≤ (50 µV + 4.0% of Volts/div setting)		
		20 MHz bandwidth	≤ (100 µV + 5.0% of Volts/div setting)	≤ (50 µV + 4.0% of Volts/div setting)		
	MDO4054B-X, MDO4034B-3,	Full Bandwidth	≤ (130 µV + 8.0% of Volts/div setting)	≤ (130 µV + 8.0% of Volts/div setting)		
	MDO4014B-3	250 MHz bandwidth (except MDO4014B-3)	≤ (100 μV + 6.0% of Volts/div setting)	≤ (100 μV + 6.0% of Volts/div setting)		
		20 MHz bandwidth	≤ (100 µV + 4.0% of Volts/div setting)	≤ (100 µV + 4.0% of Volts/div setting)		
Delay between channels, full	≤100 ps between any two analog channels with input impedance set to 50 Ω, DC coupling, with equal volts/division setting or above 10 mV/div					
bandwidth, typical	All settings in the instrument can be manually time aligned using the Probe Deskew function from –125 ns to +125 ns with a resolution of 20 ps					
	This specification does not pertain to the RF channel. For RF channel delay, see the RF Input Specifications.					
Deskew range	-125 ns to +125 ns with a resolution of 20 ps					
Crosstalk (channel isolation), typical	≥100:1 at ≤100 MHz and ≥30:1 at >100 MHz up to the rated bandwidth for any two channels having equal Volts/Div settings					
TekVPI Interface	The probe interface allows installing, powering, compensating, and controlling a wide range of probes offering a variety of features.			wide range of probes		
	The interface is available on all front panel inputs. (RF channel requires TPA-N-VPI adapter.)					
Total probe power	Five Tektronix VPI-cor	mpliant probe interfaces (one pe	er channel). (RF channel re	quires TPA-N-VPI adapter.)		
	50 W maximum internal probe power (total for all 5 VPI ports)					
Probe power per	Voltage	Max Amperage	Voltage Tolerance			
channel	5 V	50 mA (250 mW)	±5%			
	12 V	2 A (24 W)	±10%			

Time Base System Specifications

The following table shows the horizontal and acquisition system specifications for the MDO4000B Series oscilloscopes.

Table 2: Time base system specifications

Characteristic	Description					
Sample-rate range	MDO4104B-X	2.5 S/s – 5 GS/s (1 – 2 analog channels enabled)				
		2.5 S/s – 2.5 GS/s	; (3 – 4 analog channe	ls enabled)		
	MDO4054B-X, MDO4034B-3, MDO4014B-3	2.5 S/s – 2.5 GS/s	3			
Record Length Range	20 M, 10 M, 1 M, 100 k, 10 k, 1	k				
Seconds/Division range	Instrument	1 k	10 k	100 k – 20 M		
	MDO4104B-X (2 channels enabled)	400 ps – 40 s	400 ps – 400 s	400 ps – 1,000 s		
	MDO4104B-X (4 channels enabled) MDO4054B-X, MDO4034B-3, MDO4014B-3	1 ns – 40 s	1 ns – 400 s	1 ns – 1,000 s		
Maximum triggered acquisition rate	> 50,000 wfm/s					
Aperture Uncertainty	≤(3 ps + 0.1 x 10 ⁻⁶ × record dur	ation) _{RMS} , for records	having ≤1 minute dur	ation		
Reference frequency error	The following is checked direct: Cumulative error: ±1.6 x 10 ⁻⁶					
(cumulative)	The following are not checked direct:					
	Includes allowances for Aging per Year, Reference Frequency Calibration Accuracy, and Temperature Stability					
	Valid over the recommended 1 year calibration interval, from 0 °C to + 50 °C.					
	Aging Per Year: ±1.0 x 10 ⁻⁶					
	Temperature Stability: ±25 x 10 ⁻⁹ total from 0 °C to +50 °C					
Reference frequency calibration	±0.5 × 10 ⁻⁶ when operated withi	n 23 °C ± 5 °C, after	30 minute warm-up			
accuracy	Accuracy at time of factory calibration. Recommended accuracy at beginning of calibrati interval.			ng of calibration		

Characteristic	Description
Delta-time measurement accuracy	The formula to calculate the delta-time measurement accuracy (DTA) for a given instrument setting and input signal is given in the following table. (See Table 3.) The formula assumes insignificant signal content above Nyquist and insignificant error due to aliasing. The abbreviations used in the formula are as follows:
	SR ₁ = slew rate around 1st point in measurement (1st edge)
	SR ₂ = slew rate around 2nd point in measurement (2 nd edge)
	N = input-referred noise (V _{RMS}) (Refer to <i>Random Noise</i> and <i>Sample Acquisition Mode</i> specifications.)
	TBA = time base accuracy (±1.6 x 10 ⁻⁶) (Refer to <i>Reference Frequency Error (Cumulative)</i> specifications.)
	t _p = delta-time measurement duration (sec)
	RD = (record length)/(sample rate)
	t _{sr} = 1/(sample rate)
	assume edge shape that results from Gaussian filter response
	The term under the squareroot sign is the stability and is due to TIE (Time Interval Error). The errors due to this term occur throughout a single-shot measurement. The second term is due to both the absolute center-frequency accuracy and the center-frequency stability of the time base and varies between multiple single-shot measurements over the observation interval (the amount of time from the first single-shot measurement to the final single-shot measurement).

Table 2: Time base system specifications (cont.)

Table 3: Delta-time measurement accuracy formula

The terms used in these formulas are defined under Delta-time measurement accuracy, in the preceding table. (See Table 2.)

$$DTA_{pk-pk} = \pm 5 \times \sqrt{2 \left[\frac{N}{SR_1}\right]^2 + 2 \left[\frac{N}{SR_2}\right]^2 + (3ps + 1 \times 10^{-7} \times RD)^2 + 2t_{sr} + TBA \times t_p}$$
$$DTA_{rms} = \sqrt{2 \left[\frac{N}{SR_1}\right]^2 + 2 \left[\frac{N}{SR_2}\right]^2 + (3ps + 1 \times 10^{-7} \times RD)^2 + \left(\frac{2 \times t_{sr}}{\sqrt{12}}\right)^2} + TBA \times t_p$$

Triggering System Specifications

The following table shows the trigger specifications for analog and digital channels on the MDO4000B Series oscilloscopes. These specifications do not apply to the RF input channel.

NOTE. For RF, see the RF input specifications. (See page 17.)

Characteristic	Description		
Trigger bandwidth, Edge, typical	MDO4104B-X	1 GHz	
	MDO4054B-X	500 MHz	
	MDO4034B-3	350 MHz	
	MDO4014B-3	100 MHz	
Trigger bandwidth, Pulse and Logic,	MDO4104B-X	1 GHz	
ypical	MDO4054B-X	500 MHz	
	MDO4034B-3	350 MHz	
	MDO4014B-3	100 MHz	
Edge-type trigger sensitivity, DC coupled, typical	Model	Trigger Source	Sensitivity
	MDO4104B-X	Any input	50 Ω path:
		channel	0.40 div from DC to 50 MHz, increasing to 1 div at oscilloscope bandwidth
		Any input	50 Ω path:
		channel	1 mV/div to 4.98 mV/div: 0.75 div from DC to 50 MHz, increasing to 1.3 div at oscilloscope bandwidth.
			≥5 mV/div: 0.40 div from DC to 50 MHz, increasing to 1 div at oscilloscope bandwidth.
	All models	Any input	1 MΩ path:
	channel	1 mV/div to 4.98 mV/div: 0.75 div from DC to 50 MHz, increasing to 1.3 div at oscilloscope bandwidth.	
			≥5 mV/div: +0.40 div from DC to 50 MHz, increasing to 1 div at oscilloscope bandwidth.
	All models	Line	Fixed
Trigger jitter, typical	≤10 ps _{RMS} for edge-typ	e trigger	
	≤100 ps _{RMS} for non edg	ge-type trigger modes	

Table 4: Trigger specifications

Characteristic	Description			
Edge-type trigger sensitivity, not DC	Trigger Coupling	Typical Sei	nsitivity	
coupled, typical	AC Coupling	1 div for fre	quencies above 45	Hz.
		Attenuates	signals below 45 H	Ζ.
	NOISE REJ	2.5 times th	ne DC-coupled limit	S
	HF REJ		ne DC-coupled limit signals above 50 k	ts from DC to 50 kHz. Hz
	LF REJ	1.5 times the DC-coupled limits for frequencies above 50 kHz. Attenuates signals below 50 kHz		
Video-type trigger formats and field rates	Triggers from negative sync composite video, field 1, or field 2 for interlaced systems, on any field, specific line, or any line for interlaced or noninterlaced systems. Supported systems include NTSC, PAL, and SECAM.			
Video-type trigger sensitivity, typical	Delayed and main trig	ger		
	Source	Sensitivity		
	Any input channel	0.6 to 2.5 c	livisions of video sy	nc tip
Lowest frequency for successful operation of "Set Level to 50%" function, typical	45 Hz			
Logic-type or logic qualified trigger or events-delay sensitivities, DC coupled, typical	1.0 division from DC to maximum bandwidth			
Pulse-type runt trigger sensitivities, typical	1.0 division from DC to maximum bandwidth			
Pulse-type trigger width and glitch sensitivities, typical	1.0 division			
Logic-type triggering, minimum logic	For all vertical settings, the minimums are:			
or rearm time, typical	Trigger type	Pulse width	Re-arm time	Time between channels
	Logic	Not applicable	2 ns	1 ns
	Time Qualified Logic	4 ns	2 ns	1 ns
	more than one channe	I must exist to be reco	ognized. For events	e a logic state derived from , the time is the minimum time ore than one channel is used.
Minimum clock pulse widths for	For all vertical settings, the minimums are:			
setup/hold time violation trigger,	Clock active Clock inactive			
typical	User hold time + 2.5 ns	s 2 ns		
		el menu item) to its in	active edge. An ina	tive edge (as defined in the ctive pulse width is the width
		he number selected I		

Setup/hold violation trigger, setup	Feature	Min	Max	
and hold time ranges	Setup time	–0.5 ns	1.0 ms	
	Hold time	1 ns	1.0 ms	
	Setup + Hold time	0.5 ns	2.0 ms	
	Input coupling on clock and data channels must be the same.			
	For Setup time, positive nur	mbers mean a data	transition before the clock.	
	For Hold time, positive numbers mean a data transition after the clock edge.			
	Setup + Hold time is the algoright programmed.	gebraic sum of the	Setup Time and Hold Time that you	
Pulse type trigger, minimum pulse, rearm time, transition time	Pulse class	Minimum pulse width	Minimum rearm time	
	Glitch	4 ns	2 ns + 5% of glitch width setting	
	Runt	4 ns	2 ns	
	Time-qualified runt	4 ns	8.5 ns + 5% of width setting	
	Width	4 ns	2 ns + 5% of width upper limit setting	
	Slew rate (transition time)	4 ns	8.5 ns + 5% of delta time setting	
	For the trigger class width and the trigger class runt, the pulse width refers to the width of the pulse being measured. The rearm time refers to the time between pulses.			
	pulse being measured. The For the trigger class slew ra	e rearm time refers ate, the pulse width		
Transition time trigger, delta time range	pulse being measured. The For the trigger class slew ra	e rearm time refers ate, the pulse width	to the time between pulses. refers to the delta time being measured. The	
	pulse being measured. The For the trigger class slew ra rearm time refers to the time	e rearm time refers ate, the pulse width	to the time between pulses. refers to the delta time being measured. The	
range Time range for glitch, pulse width, timeout, or time-qualified runt	pulse being measured. The For the trigger class slew ra rearm time refers to the time 4 ns to 8 s	e rearm time refers ate, the pulse width	to the time between pulses. refers to the delta time being measured. The	
range Time range for glitch, pulse width, timeout, or time-qualified runt triggering	pulse being measured. The For the trigger class slew ra rearm time refers to the time 4 ns to 8 s 4 ns to 8 s	e rearm time refers ate, the pulse width e it takes the signal	to the time between pulses. refers to the delta time being measured. The to cross the two trigger thresholds again.	
range Time range for glitch, pulse width, timeout, or time-qualified runt triggering Time Accuracy for pulse width or	pulse being measured. The For the trigger class slew ra rearm time refers to the time 4 ns to 8 s 4 ns to 8 s <u>Time Range</u>	e rearm time refers ate, the pulse width e it takes the signal <u>Accuracy</u> ±(20% of sett	to the time between pulses. refers to the delta time being measured. The to cross the two trigger thresholds again.	
range Time range for glitch, pulse width, timeout, or time-qualified runt triggering Time Accuracy for pulse width or	pulse being measured. The For the trigger class slew ra rearm time refers to the time 4 ns to 8 s 4 ns to 8 s Time Range 1 ns to 500 ns	e rearm time refers ate, the pulse width e it takes the signal <u>Accuracy</u> ±(20% of sett	to the time between pulses. refers to the delta time being measured. The to cross the two trigger thresholds again.	
range Time range for glitch, pulse width, timeout, or time-qualified runt triggering Time Accuracy for pulse width or timeout triggering B trigger after events, minimum pulse width and maximum event	pulse being measured. The For the trigger class slew rarearm time refers to the time 4 ns to 8 s 4 ns to 8 s <u>Time Range</u> 1 ns to 500 ns 520 ns to 1 s	e rearm time refers ate, the pulse width e it takes the signal <u>Accuracy</u> ±(20% of sett	to the time between pulses. refers to the delta time being measured. The to cross the two trigger thresholds again.	
range Time range for glitch, pulse width, timeout, or time-qualified runt triggering Time Accuracy for pulse width or timeout triggering B trigger after events, minimum pulse width and maximum event frequency, typical	pulse being measured. The For the trigger class slew rarearm time refers to the time 4 ns to 8 s 4 ns to 8 s <u>Time Range</u> 1 ns to 500 ns 520 ns to 1 s 4 ns, 500 MHz 4 ns	e rearm time refers ate, the pulse width e it takes the signal <u>Accuracy</u> ±(20% of sett ±(0.01% of set	to the time between pulses. refers to the delta time being measured. The to cross the two trigger thresholds again.	
range Time range for glitch, pulse width, timeout, or time-qualified runt triggering Time Accuracy for pulse width or timeout triggering B trigger after events, minimum pulse width and maximum event frequency, typical B trigger, minimum time between	pulse being measured. The For the trigger class slew rarearm time refers to the time 4 ns to 8 s 4 ns to 8 s <u>Time Range</u> 1 ns to 500 ns 520 ns to 1 s 4 ns, 500 MHz 4 ns For trigger after time, this is event.	e rearm time refers ate, the pulse width e it takes the signal <u>Accuracy</u> ±(20% of sett ±(0.01% of set t	to the time between pulses. refers to the delta time being measured. The to cross the two trigger thresholds again. ng + 0.5 ns) tting + 100 ns)	
range Time range for glitch, pulse width, timeout, or time-qualified runt triggering Time Accuracy for pulse width or timeout triggering B trigger after events, minimum pulse width and maximum event frequency, typical B trigger, minimum time between	pulse being measured. The For the trigger class slew rarearm time refers to the time 4 ns to 8 s 4 ns to 8 s Ins to 8 s Ins to 500 ns 520 ns to 1 s 4 ns, 500 MHz 4 ns For trigger after time, this is event. For trigger after events, this	e rearm time refers ate, the pulse width e it takes the signal <u>Accuracy</u> ±(20% of sett ±(0.01% of set t	to the time between pulses. refers to the delta time being measured. The to cross the two trigger thresholds again. Ing + 0.5 ns) Itting + 100 ns) the end of the time period and the B trigger	

Trigger level ranges	Source	Range		
	Any input channel	±8 divisions from center of screen		
		±8 divisions from 0 V when vertical LF reject trigger coupling is selected		
	Line	Not applicable		
	Line trigger level is fixed at about	50% of the line voltage.		
	This specification applies to logic and pulse thresholds.			
Trigger level accuracy, DC coupled,	For signals having rise and fall times ≥10 ns.			
ypical	Source	Range		
	Any input channel	±0.20 div		
	Line	Not applicable		
Trigger holdoff range	20 ns minimum to 8 s maximum			
Maximum serial trigger bits	128 bits			
Optional serial bus interface triggering				
l ² C	Address Triggering: 7 and 10 bit user specified addresses, as well as General Call, START byte, HS-mode, EEPROM, and CBUS			
	Data Trigger: 1 to 5 bytes of user specified data			
	Trigger On: Start, Repeated Start, Stop, Missing Ack, Address, Data, or Address and Data			
	Maximum Data Rate: 10 Mbps			
SPI	Data Trigger: 1 to 16 bytes of user-specified data			
	Trigger On: SS Active, MOSI, MISO, or MOSI & MISO			
	Maximum Data Rate: 50 Mbps			
CAN	Data Trigger: 1 to 8 bytes of user-specified data, including qualifiers of equal to (=), not equal to (<>), less than (<), greater than (>), less than or equal to (<=), greater than or equal to (>=)			
	Trigger On: Start of Frame, Type of Frame, Identifier, Data, Identifier and Data, End of Frame, Missing Ack, or Bit Stuffing Errors			
	Frame Type: Data, Remote, Error, Overload			
	Identifier: Standard (11 bit) and Extended (29 bit) identifiers			
	Maximum Data Rate: 1 Mbps			
LIN	Identifier Trigger: 6 bits of user-specified data, equal to (=)			
	Data Trigger: 1 to 8 bytes of user-specified data, including qualifiers of equal to (=), not equal to (<>), less than (<), greater than (>), less than or equal to (<=), greater than or equal to (>=), inside range, or outside range			
	Error: Sync, Identifier Parity, Checksum			
	Trigger On: Sync, Identifier, Data, Identifier & Data, Wakeup Frame, Sleep Frame, or Error			
	Maximum Data Rate: 100 kbps			

FlexRay	Indicator bits: Normal Frame, Payload Frame, Null Frame, Sync Frame, Startup Frame
	Identifier Trigger : 11 bits of user-specified data, equal to (=), not equal to (<>), less than (<), greater than (>), less than or equal to (<=), greater than or equal to (>=), Inside Range, or Outside Range
	Cycle Count Trigger: 6 bits of user-specified data, equal to (=)
	Header Fields Trigger : 40 bits of user-specified data comprising Indicator Bits, Identifier, Payload Length, Header CRC, Cycle Count, equal to (=)
	Data Trigger: 1 to 16 Bytes of user-specified data, with 0 to 253, or "don't care" bytes of data offset, including qualifiers of equal to (=), not equal to <>, less than (<), greater than (>), less than or equal to (<=), greater than or equal to (>=), lnside Range, Outside Range
	End Of Frame: User-chosen types Static, Dynamic (DTS), and All
	Error: Header CRC, Trailer CRC, Null Frame-static, Null Frame-dynamic, Sync Frame, Startup Frame
	Trigger On: Start of Frame, Type of Frame, Indicator Bits, Identifier, Cycle Count, Header Fields, Data, Identifier & Data, End of Frame, or Error
	Maximum Data Rate: 100 Mbps
Audio	
12S	Data Trigger: 32 bits of user-specified data in a left word, right word, or either, including qualifiers of equal to (=), not equal to <>, less than (<), greater than (>), less than or equal to (<=), greater than or equal to (>=), inside range, outside range
	Trigger on: Word Select, Data
	Maximum Data Rate: 12.5 Mbps
Left Justified	Data Trigger: 32 bits of user-specified data in a left word, right word, or either, including qualifiers of equal to (=), not equal to <>, less than (<), greater than (>), less than or equal to (<=), greater than or equal to (>=), inside range, outside range
	Trigger on: Word Select, Data
	Maximum Data Rate: 12.5 Mbps
Right Justified	Data Trigger: 32 bits of user-specified data in a left word, right word, or either, including qualifiers of equal to (=), not equal to <>, less than (<), greater than (>), less than or equal to (<=), greater than or equal to (>=), inside range, outside range
	Trigger on: Word Select, Data
	Maximum Data Rate: 12.5 Mbps
TDM	Data Trigger: 32 bits of user-specified data in a channel 0-7, including qualifiers of equal to (=), not equal to <>, less than (<), greater than (>), less than or equal to (<=), greater than or equal to (>=), inside range, outside range
	Trigger on: Frame Sync, Data
	Maximum Data Rate: 25 Mbps
RS-232	Bit Rate: 50 bps to 10 Mbps
	Data Bits: 7, 8, or 9
	Parity: None, Odd, or Even
	Trigger on: Tx Start bit, Rx Start bit, Tx End of Packet, Rx End of Packet, Tx Data, Rx Data, Tx Parity Error, Rx Parity Error
	End of Packet: 00 (NUL), OA (LF), OD (CR), 20 (SP), FF

MIL-STD-1553	Bit Rate: 1 Mb/s
	Trigger on: Sync, Word Type (Command, Status, Data), Command Word (set RT Address $(=, \neq, <, >, \leq, \geq)$, inside range, outside range), T/R, Sub-address/Mode, Data Word Count/Mode Code, and Parity individually), Status Word (set RT Address ($(=, \neq, <, >, \leq, \geq)$, inside range, outside range), Message Error, Instrumentation, Service Request Bit, Broadcast Command Received, Busy, Subsystem Flag, Dynamic Bus Control Acceptance (DBCA), Terminal Flag, and Parity individually) Data Word (user-specified 16-bit data value) Error (Sync, Parity, Manchester, Non-contiguous data) Idle Time (minimum time selectable from 4 μ s to 100 μ s; maximum time selectable from 12 μ s to 100 μ s; trigger on < minimum, > maximum, inside range, outside range)
	Trigger selection of Command Word will trigger on Command and ambiguous Command/Status words. Trigger selection of Status Word will trigger on Status and ambiguous Command/Status words.
USB	Data Rates Supported: HS: 480 Mbps, Full: 12 Mbps, Low: 1.5 Mbps
	Trigger On: Sync, Reset, Suspend, Resume, End of Packet, Token (Address) Packet, Data Packet, Handshake Packet, Special Packet, Error
	NOTE. HIGH SPEED support available only on MDO4104B-3 and MDO4104B-6 models.
Ethernet	Bit Rate: 10BASE-T, 10 Mbps; 100BASE-TX, 100 Mbps
	Trigger On: Start Frame Delimiter (SFD), MAC Address, MAC Length/Type, IP Header, TCP Header, TCP/IPv4/MAC Client Data, End of Packet, Idle, FCS (CRC) Error, MAC Q-Tag Control Information.

Digital Acquisition System Specifications

The following table shows the digital acquisition specifications for the MDO4000B Series oscilloscopes.

Characteristic	Description
Threshold voltage range	-40 V to +40 V
Digital channel timing resolution	2 ns main memory, 60.6 ps for MagniVu memory
Logic threshold accuracy	±(100 mV + 3% of threshold setting after calibration)
	Requires valid SPC, as described in step 2 of the Self Test. (See page 68, Self Test.)
Minimum detectable pulse width,	1 ns
typical	Using MagniVu memory. Requires the use of 342-1140-00 ground clip on each channel.

Table 5: Digital acquisition specifications

P6616 Digital Probe Input Specifications

The following table shows the P6616 Digital Probe specifications.

Table 6: P6616 digital probe input sp	ecifications
---------------------------------------	--------------

Characteristic	Description		
Number of channels	16 digital inputs		
Input resistance, typical	100 kΩ to ground		
Input capacitance, typical	3.0 pF		
	Measured at the podlet input. Requires the use of 342-1140-00 ground clip on each channel		
Minimum input signal swing, typical	400 mV _{p-p}		
	Requires the use of 342-1140-00 ground clip on each channel		
Maximum input signal swing, typical	30 $V_{p:p}$ for $f_{in} \le$ 200 MHz (centered around the DC threshold voltage) at the P6616 probe tip.		
	10 $V_{\text{p-p}}$ for f_{in} >200 MHz (centered around the DC threshold voltage) at the P6616 probe tip.		
	Failure to meet this input signal requirement will compromise the AC performance of the digital channel. It might also damage the input circuitry. See the Absolute maximum input voltage specification.		
Maximum Input Toggle Rate, typical	500 MHz		
	Maximum frequency sine wave input (at the minimum signal swing amplitude) that can accurately be reproduced as a logic square wave.		
	Requires the use of a 342-1140-00 ground clip on each channel.		
	Higher toggle rates can be achieved with higher amplitudes.		
Absolute maximum input voltage, typical	±42 V peak at the P6616 input (not at the instrument input)		
	Probe input voltages beyond this limit could permanently damage the instrument and the P6616 probe.		
Channel-to-channel skew, typical	200 ps		
	Digital channel to digital channel only.		
	This is the propagation path skew and ignores skew contributions due to threshold inaccuracies (see Threshold accuracy) and sample binning (see Digital channel timing resolution). Factory calibration/deskew is required to achieve this number.		

RF Input Specifications

The following table shows the RF input specifications for the MDO4000B Series oscilloscopes.

Characteristic	Description			
Center frequency range	MDO4104B-6, MDO4054B-6 9 kHz to 6 GHz			
	MDO4104B-3, MDO4054B-3, 9 kHz to 3 GHz MDO4034B-3, MDO4014B-3			
Frequency measurement resolution	1 Hz			
Span	MDO4XX4B-6 Span: 1 kHz to 6 GHz			
	MDO4XX4B-3 Span: 1 kHz to 3 GHz			
	Span adjustable in 1-2-5 sequence			
	Variable resolution = 1% of the next span setting			
Resolution bandwidth (RBW) range	Adjustable in 1-2-3-5 sequence.			
	RBW ranges for the Windowing functions are as follows:			
	Kaiser (default), Blackman-Harris: 20 Hz – 200 MHz			
	Rectangular, Hamming, Hanning: 10 Hz – 200 MHz			
	Flat-Top: 30 Hz – 200 MHz			
	Kaiser, Blackman-Harris RBW shape factor: 60 dB / 3 dB shape factor: \ge 4:1 ratio			
Input vertical range	Vertical measurement range +30 dBm to DANL.			
	Vertical setting of 1 dB/div to 20 dB/div in a 1-2-5 sequence			
Level display range	Log scale and units: dBm, dBmV, dBµV, dBµW, dBmA, dBµA			
	Measurement points: 1000			
	Marker level readout resolution: Log scale: 0.1 dB			
	Maximum number of RF traces: 4			
	Trace functions: maximum hold, average, minimum hold, normal, spectrogram slice (uses normal trace)			
	Detection methods: positive-peak, negative-peak, sample, average			
Reference level	Setting range: -140 dBm to +30 dBm, in steps of 1 dB			
	Default setting: 0 dBm			
Vertical position	-100 divisions to +100 divisions (displayed in dB)			
Maximum operating input level	Average continuous power: +30 dBm (1 W) for reference levels ≥ -20 dBm			
	Average continuous power: +24 dBm (0.25 W) for reference levels < -20 dBm			
	DC maximum before damage: $\pm 40 V_{dc}$			
	Maximum "no damage": 32 dBm (1.6 W) CW for reference levels ≥ -20 dBm			
	25 dBm (0.32 W) for reference levels of < -20 dBm			
	Peak pulse power: +45 dBm (32 W)			
	Peak Pulse Power is defined as: <10 us pulse width, <1% duty cycle, and a reference level of ≥ +10 dBm.			

Table 7: RF input specifications

Characteristic	Description			
Marker frequency measurement	±((Reference Frequency Error x Ma	arkerFrequency) + (0.001 x span + 2)) Hz		
accuracy	Marker Frequency with Span/RBW ≤ 1000:1			
	Reference Frequency Error with Ma	arker level to displayed noise level > 30 dB		
Phase noise at 1 GHz	1 kHz: (< -104 dBc/Hz, typical)			
	10 kHz offset: < –108 dBc/Hz (< –1	111 dBc/Hz, typical)		
	100 kHz offset: < –110 dBc/Hz (< -	-113 dBc/Hz, typical)		
	1 MHz offset: < –120 dBc/Hz (< –1	23 dBc/Hz, typical)		
Resolution bandwidth (RBW) accuracy	Max RBW % Error = (0.5/(25 x WF)) * 100		
	WF =			
	Rectangular: 0.89			
	Hamming: 1.30			
	Hanning: 1.44			
	Blackman-Harris: 1.90			
	Kaiser: 2.23			
	Flat-Top: 3.77			
Displayed average noise level	Frequency range	DANL		
(DANL)	9 kHz – 50 kHz	< –116 dBm/Hz (< –120 dBm/Hz, typical)		
	50 kHz – 5 MHz	< –130 dBm/Hz (< –134 dBm/Hz, typical)		
	5 MHz – 400 MHz	< –146 dBm/Hz (< –148 dBm/Hz, typical)		
	400 MHz – 3 GHz	< –147 dBm/Hz (< –149 dBm/Hz, typical)		
	3 GHz – 4 GHz (MDO4XX4B-6 models only)	< –148 dBm/Hz (< –152 dBm/Hz, typical)		
	4 GHz – 6 GHz (MDO4XX4B-6 models only)	< –140 dBm/Hzz (< –144 dBm/Hz, typical)		
Absolute amplitude accuracy	< \pm 1.0 dB, (< \pm 0.5 dB, typical), 18 °C – 28 °C temperature range, 50 kHz to 6 GHz frequency range, reference levels –25, -20, –15, –10, –5, 0, 5, 10 dBm.			
	< \pm 1.0 dB, typical, 50 kHz to 6 GHz, all other reference levels, 18 °C – 28 °C temperature range:			
	< ±1.5 dB, typical, 50 kHz to 6 GHz, all reference levels, 0 °C to 50 °C temperature range			
	< ± 2.0 dB, typical, 9 kHz to 50 kHz, all reference levels, 18 °C to 28 °C temperature range			
	< ±3.0 dB, typical, 9 kHz to 50 kHz, all reference levels, 0 °C to 50 °C temperature range			
	Specification applies to signal to noise ratios > 40 dB.			
	Accuracy of power level measurements at the center frequency. At frequencies away from center frequency, add Channel Response to the Absolute Amplitude Accuracy.			

Characteristic	Description				
Channel response, typical	Measurement center frequency range	Span	Amplitude flatness, pk-pk, typical	Amplitude flatness, RMS, typical	Phase linearity, RMS, typical
	15 MHz – 6 GHz	10 MHz	0.3 dB	0.15 dB	1.5°
	60 MHz – 6 GHz	≤100 MHz	0.75 dB	0.27 dB	1.5°
	170 MHz – 6 GHz	≤320 MHz	0.85 dB	0.27 dB	2.5°
	510 MHz – 6 GHz	≤1000 MHz	1.0 dB	0.3 dB	3.0°
	Any, (for Start Frequency > 10 MHz)	>1000 MHz	1.2 dB	N/A	N/A
	Valid over 18 °C	– 28 °C temperat	ure range		
	Specification app	olies to signal to n	oise ratios >40 dB.		

Characteristic	Description			
Spurious response	2nd and 3rd harmonic distortion >100 MHz: < -60 dBc (< -65 dBc typical)			
	with auto settings on and signals 10 dB below reference level			
	2nd and 3rd harmonic distortion: 9 kHz to 100 MHz: < -60 dBc (< -65 dBc typical)			
	with auto settings on, signals 10 dB below reference level, and reference level \leq –15 dBm			
	2nd order intermodulation distortion: >100 MHz: < -60 dBc (< -65 dBc typical)			
	with auto settings on and signals 10 dB below reference level			
	2nd order intermodulation distortion: 9 kHz to 100 MHz: < -60 dBc (< -65 dBc, typical)			
	with auto settings on, signals 10 dB below reference level, and reference level \leq –15 dBm			
	✓ 3rd order intermodulation distortion: > 15 MHz			
	< –62 dBc, (<–65 dBc, typical),			
	with auto settings on and signals 10 dB below reference level			
	3rd order intermodulation distortion: 9 kHz to 15 MHz			
	< -62 dBc (<-65 dBc, typical),			
	for reference levels < –15 dBm, with auto settings on and signals 10 dB below reference level			
	A/D spurs			
	< –60 dBc (< –65 dBc typical)			
	with auto settings on, signals 5 dB below reference level. Excludes A/D aliasing spurs			
	A/D aliasing spurs:			
	at (5 GHz – F _{in}) and at (8 GHz - F _{in}): < –55 dBc (< –60 dBc, typical)			
	with auto settings on and signals 5 dB below reference level			
	Specifications that apply only to MDO4XX4B-6 models			
	IF Rejection (All input frequencies except: 1.00 GHz to 1.25 GHz and 2 GHz to 2.4 GHz): (< –55 dBc, typical)			
	IF spurs at (5.0 GHz – F_{in}) for input frequencies from 1.00 GHz to 1.25 GHz: (< –50 dBc, typical)			
	IF spurs at (6.5 GHz – F _{in}) for input frequencies from 2.0 GHz to 2.4 GHz: (< –50 dBc, typical)			
	Image Rejection: < -50 dBc (for input frequencies from 5.5 GHz to 9.5 GHz)			
Residual spurious response	< -85 dBm at all points except 2.5 GHz, 3.75 GHz, 4.0 GHz, and 5.0 GHz			
	< –78 dBm at 2.5 GHz, 3.75 GHz, 4.0 GHz, and 5.0 GHz			
	\leq –25 dBm reference level and RF input terminated with 50 Ω			

Characteristic	Description
RF input level trigger frequency and	Frequency range:
amplitude range	1 MHz to 3 GHz (MDO4XX4B-3 models)
	1 MHz to 3.75 GHz (MDO4XX4B-6 models)
	2.75 GHz to 4.5 GHz (MDO4XX4B-6 models)
	3.5 GHz to 6.0 GHz (MDO4XX4B-6 models)
	Amplitude range:
	RF Level Trigger Amplitude Operating Level: 0 dB to –30 dB from Reference Level
	RF Level Trigger Amplitude Adjustment Range: +10 dB to –40 dB from Reference Level and within the range of –65 dBm to +30 dBm
Power level trigger minimum pulse duration	Minimum pulse duration: 10 μs ON time with a minimum settling OFF time of 10 $\mu s.$
RF to analog channel skew, typical	< 5 ns
Crosstalk to RF channel from	< -68 dB from reference level (<1 GHz oscilloscope input frequencies)
analog channels	< -48 dB from reference level (>1 GHz to 2 GHz oscilloscope input frequencies)
	Full scale amplitude with 50 Ω input and 100 mV/div vertical setting with direct input (no probes).
Occupied bandwidth accuracy, typical	± Span/1000
Adjacent channel power ratio, typical	W–CDMA: –57 dBc
	W–CDMA with test model 1, Reference level 30 dBm to –10 dBm, with signal level at 1 dB below A/D overrange.

Display System Specifications

The following table shows the display specifications for the MDO4000B Series oscilloscopes.

Table 8:	Display	system	specifications
----------	---------	--------	----------------

Characteristic	Description
Display type	Display area: 210.4 mm (8.28 in) (H) x 157.8 mm (6.21 in) (V), 264 mm (10.4 in) diagonal, 6-bit RGB full color, XGA (1024 x 768) TFT liquid crystal display (LCD).
Display resolution	1024 X 768 XGA display resolution
Luminance, typical	400 cd/m ²
Waveform display color scale	The TFT display can support up to 262,144 colors. A subset of these colors is used for the oscilloscope display. The colors that are used are fixed and not changeable by the user.

Interfaces and Input/Output Port Specifications

The following table shows the interfaces and input/output port specifications for the MDO4000B Series oscilloscopes.

Table 9: Interfaces and Input/Output port specifications

Characteristic	Description		
Ethernet interface	Standard on all models: 10/100/1000 Mbps		
GPIB interface	Available as an optional acce to the USB Device and USB	essory (TEK-USB-488 GPIB to USB Adapter), which connects Host port.	
	The control interface is incor	porated into the instrument user interface.	
Video signal output	A 15-pin D-sub VGA connector.		
USB interface	4 USB host connectors (2.0 I	HS), two on the instrument front and two on the rear.	
	1 USB device connector (2.0 HS), on the instrument rear panel.		
	All are standard on all models.		
Probe compensator output voltage	Output Voltage		
and frequency, typical	Default: 0 – 2.5 V amplitude, \pm 2% (Source Impedance of 1k Ω)		
	TPPXX00 Cal Mode: 0 – 2.5 V amplitude, \pm 5% (Source Impedance of \leq 25 Ω)		
	Frequency		
	1 kHz, ± 25%		
Auxiliary output (AUX OUT)	You can set the Auxiliary output to Trigger Out or Reference Clock Out.		
Trigger Out or	Reference Clock Out: Outputs the 10 MHz oscilloscope reference clock.		
Reference Clock Out	Trigger Out: A HIGH to LOW transition indicates that the trigger occurred.		
	Trigger output logic levels		
	Characteristic	Limits	
	Vout (HI)	≥2.5 V open circuit	
		≥1.0 V into a 50 Ωload to ground	
	Vout (LO)	≤0.7 V into a load of ≤4 mA	
		≤0.25 V into a 50 Ωload to ground	
External Reference nominal input	10 MHz		
frequency	You must select either the internal reference (default) or 10 MHz external.		
External Reference input frequency variation tolerance, typical	$\geq \pm 2 \times 10^{-6}$		
External Reference input sensitivity, typical	1.5 V _{p-p}		
External Reference input maximum input signal	7 V _{p-p}		
External Reference input impedance, typical	Rin = $1.5 \text{ k}\Omega \pm 20\%$ in paralle	el with 15 pF ±5 pF at 10 MHz	

Data Handling Specifications

The following table shows the data handling specifications for the MDO4000B Series oscilloscopes.

Table 10: Data handling specifications

Characteristic	Description
Nonvolatile memory retention time,	No time limit for front-panel settings, saved waveforms, setups, or calibration constants.
typical	10 M and 20 M records saved as Reference waveforms are not saved in the nonvolatile memory and they will not be saved across a power cycle.
Real-time clock	A programmable clock providing time in years, months, days, hours, minutes, and seconds

Power Supply System Specifications

The following table shows the power supply system specifications for the MDO4000B Series oscilloscopes.

Characteristic	Description
Operating line frequency and voltage	Volts: 100 – 240; Hz: 50 – 60
range	Volts: 115: Hz: 400
Maximum power consumption, typical	250 W
Source voltage	100 V to 240 V ±10%
Source frequency	(85 to 264 V) 45 Hz to 66 Hz
	(100 V to 132 V) 360 Hz to 440 Hz
Fuse rating	T6.3AH, 250 VAC
	The fuse cannot be replaced by the user.

Table 11: Power supply system specifications

Environmental Specifications

The following table shows the environmental specifications for the MDO4000B Series oscilloscopes.

Table 12: Environmental specifications

Characteristic	Description	
Temperature	Operating: 0 °C to +50 °C (32 °F to +122 °F)	
	Nonoperating: -20 °C to +60 °C (-4 °F to +140 °F)	
Humidity	Operating:	
	High: 40 °C to 50 °C (104 °F to 122 °F), 10% to 60% relative humidity Low: 0 °C to 40 °C (32 °F to 104 °F), 10% to 90% relative humidity	
	Nonoperating:	
	High: 40 °C to 60 °C (104 °F to 140 °F), 5% to 60% relative humidity Low: 0 °C to 40 °C (32 °F to 104 °F), 5% to 90% relative humidity	
Altitude	Operating: 3,000 m (9,843 ft)	
	Nonoperating: 12,000 m (39,370 ft)	
Pollution Degree	Pollution Degree 2, indoor, dry location use only	
Mechanical Specifications

The following table shows the mechanical specifications for the MDO4000B Series oscilloscopes.

Characteristic	Description
Weight	Benchtop configuration (oscilloscope only)
	Requirements that follow are nominal: 11.0 lbs (5.0 kg), stand-alone instrument, without front cover. 18.8 lbs (8.5 kg), instrument with rackmount, without front cover
	23.6 lbs (10.7 kg), when packaged for domestic shipment (without rackmount)
Dimensions	Benchtop configuration (oscilloscope only)
	Requirements that follow are nominal and unboxed Height: 9.0 in (229 mm) feet folded in, handle folded down 9.8 in (249 mm) feet folded out, handle folded down 11.5 in (292 mm) feet folded in, handle folded up 12.3 in (312 mm) feet folded out, handled folded up
	Width: 17.3 in (439 mm) from handle hub to handle hub
	Depth: 5.8 in (147 mm) from back of feet to front of knobs 6.1 in (155 mm) from back of feet to front of front cover 9.8 in (249 mm) from handle to front of knobs (handle folded to back side of unit)
	Box Dimensions: Height: 15.7 in (399 mm) Width: 15.6 in (396 mm) Length: 22.2 in (564 mm)
	Rackmount configuration Requirements that follow are nominal and unboxed (5U rack sizes): Height: 8.6 in (218 mm) Width: 19.2 in (488 mm), from outside of handle to outside of handle Depth: 15.1 in (384 mm), from outside of handle to back of slide
Clearance Requirements	0 mm (0 in), top
	0 in (0 mm), bottom, on feet, with flip stands down
	2 in (50.8 mm), left side (facing the front of the instrument)
	0 in (0 mm), right side (facing the front of the instrument)
	2 in (50.8 mm), rear (where the power cord is plugged in)

Table 13: Mechanical specifications

TPA-N-PRE Specifications

The following table shows the TPA-N-PRE Preamplifier specifications.

Table 14: TPA-N-PRE specifications

Characteristic	Description			
Frequency range	Preamp: 9 kHz to 6 GHz			
	MDO4XX4B-6 with preamp: 9 kHz to 6 GHz			
	MDO4XX4B-3 with preamp: 9 kHz to 3 GHz			
Input vertical range	MDO4000B with preamp attached (Amplifying state): -30 dBm to DANL			
	MDO4000B with preamp attached (Bypass state): +30 dBm to DANL			
Preamp gain	Gain of preamp in Amplifying state: +12 dB (nominal)			
	Gain of preamp in Bypass state: -1.5 dB (nominal)			
	This refers to the amount of gain of the preamp alone, or in other words, the amount of gain that the preamp will add to the beginning of the MDO RF input when attached.			
Displayed average noise level	With the preamp mode set to "Auto" and the reference level set to -40 dBm			
(DANL) of the MDO4000B with the	MDO4XX4B-6:			
preamp attached to the MDO's RF input	9 kHz to 50 kHz: < –119 dBm/Hz (Max), (–123 dBm/Hz, typical)			
input	50 kHz to 5 MHz: < –140 dBm/Hz (Max), (–144 dBm/Hz, typical)			
	5 MHz to 400 MHz: < –156 dBm/Hz (Max), (–158 dBm/Hz, typical)			
	400 MHz to 3 GHz: < –157 dBm/Hz (Max), (–159 dBm/Hz, typical)			
	3 GHz to 4 GHz: < –158 dBm/Hz (Max), (–162 dBm/Hz, typical)			
	4 GHz to 6 GHz: < –150 dBm/Hz (Max), (–154 dBm/Hz, typical)			
	MDO4XX4B-3:			
	9 kHz to 50 kHz: < –119 dBm/Hz (Max), (–123 dBm/Hz, typical)			
	50 kHz to 5 MHz: < –140 dBm/Hz (Max), (–144 dBm/Hz, typical)			
	5 MHz to 400 MHz: < –156 dBm/Hz (Max), (–158 dBm/Hz, typical)			
	400 MHz to 3 GHz: < –157 dBm/Hz (Max), (–159 dBm/Hz, typical)			
Absolute amplitude accuracy and channel response, typical	This specification applies to the MDO4000B series oscilloscope RF channel with the preamp attached to the RF input of the MDO.			
	Absolute amplitude accuracy (AAA): Accuracy of power level measurements at the center frequency.			
	Channel Response (CR): Accuracy of power level measurements over the whole span relative to the accuracy at the center frequency. Add AAA and CR to find total power level measurement accuracy.			
	AAA: ≤ ±1.5 dB, typical, 18 °C – 28 °C temperature range, either preamp state.			
	AAA: $\leq \pm 2.3$ dB, typical, over full operating range, either preamp state.			
	CR: 0.0 dB			
	Specifications exclude mismatch error at the preamp input.			
	Preamp mode set to "Auto". Reference level 10 dBm to -40 dBm. Input level ranging from reference level to 30 dB below reference level.			

Characteristic	Description			
Maximum operating input level	The maximum voltage that the preamp input can withstand without creating a shock hazard or damaging the input.			
	Average continuous power: +30 dBm (1 W)			
	DC maximum before damage: ±20 V DC			
	Maximum power before damage: +30 dBm (1 W) CW.			
	Peak Pulse Power: +45 dBm (32 W)			
	Peak Pulse Power defined as <10 us pulse width, <1% duty cycle, and reference level of \ge +10 dBm.			
Connector type	SMA – female (outside threads)			
Temperature	Operating: 0 °C to +50 °C			
	Non-operating: -20 °C to +60 °C			
Humidity	Operating:			
	High: 40 °C to 50 °C (104 °F to 122 °F), 10% to 60% RH			
	Low: 0 °C to 40 °C (32 °F to 104 °F), 10% to 90% RH			
	Non-operating:			
	High: 40 °C to 60 °C (104 °F to 140 °F), 5% to 60% RH			
	Low: 0 °C to 40 °C (32 °F to 104 °F), 5% to 90% RH			
Altitude	Operating: Up to 3,000 meters			
	Non-operating: Up to 12,000 meters			
Recommended oscilloscopes	MDO4000B Mixed Domain Oscilloscopes			
	NOTE. For best probe support, download and install the latest version of the oscilloscope firmware from www.tektronix.com			

Specifications

Performance Verification

The performance verification procedures verify the performance of your instrument. They do not adjust your instrument. If your instrument fails any of the performance verification tests, you should contact Tektronix to have a factory adjustment performed. See the contact information on the back of the title page of this manual.

This section contains performance verification procedures for the specifications marked with the \varkappa symbol. These procedures cover all MDO4000B Series models. Please ignore checks that do not apply to the specific model you are testing.

Print the test record on the following pages and use it to record the performance test results for your oscilloscope.

NOTE. Completion of the performance verification procedure does not update the stored time and date of the latest successful adjustment. The date and time are updated only when the instrument is adjusted by Tektronix.

The following equipment, or a suitable equivalent, is required to complete these procedures. You might need additional cables and adapters, depending on the actual test equipment you use.

Table 15: Required equipment

Description	Minimum requirements	Examples
DC voltage source	3 mV to 4 V, ±0.1% accuracy	Fluke 9500B Oscilloscope Calibrator with
Leveled sine wave generator	50 kHz to 1000 MHz, ±4% amplitude accuracy	a 9510 Output Module
Time mark generator	80 ms period, ±1 x 10 ^{_6} accuracy, rise time < 50 ns	
Signal generator	Frequency: to at least 6 GHz	Anritsu MG3692C Options 2A, 4, 6, 15A,
	Frequency accuracy: 5 ppm	16, 22, SM6452
	Low phase noise	Rohde & Schwarz SMT06
		(Two generators are needed for checking Third Order Intermodulation Distortion)
Hybrid coupler (power combiner)	Connects the output of two generators to the oscilloscope RF input	Krytar 3005070
Logic probe	Low capacitance digital probe, 16 channels.	P6616 probe; standard accessory shipped with MDO4000B Series oscilloscopes.
BNC-to-0.1 inch pin adapter to connect the logic probe to the signal source.	BNC-to-0.1 inch pin adapter; female BNC to 2x16. 01 inch pin headers.	Tektronix adapter part number 679-6240-00; to connect the Fluke 9500B to the P6616 probe.
Digital multimeter (DMM)	0.1% accuracy or better	Fluke 177 Series Digital Multimeter
Power meter		Agilent N1913A Single-Channel Power Meter
Power head	Frequency range at least 50 kHz – 6 GHz	Agilent E9304A Average Power Sensor
Power splitter		Agilent 11667A Power Splitter
Male N-N adapter		For connecting between the power splitter and the oscilloscope RF Input
One 50 Ω terminator	Impedance 50 Ω ; connectors: female BNC input, male BNC output	Tektronix part number 011-0049-02
One 50 Ω terminator	Impedance 50 Ω Male N connector	For terminating the RF Input
One 50 Ω BNC coaxial cable	Male-to-male connectors	Tektronix part number 012-0057-01
One 50 Ω SMA coaxial cable	N connector to SMA	
Three SMA cables	With the correct connector to fit your	Tektronix part number 174-6025-00 (6 ft)
	generator output.	Tektronix part number 174-6026-00 (2 ft)

Test Record

Model	Serial		Procedure performed by C	Date
Test	Pa	assed	Failed	
Self Test				
Input Impedance				
Performance checks	Vertical scale	Low limit	Test result	High limit
Channel 1 Input	10 mV/div	990 kΩ		1.01 MΩ
Impedance, 1 MΩ	100 mV/div	990 kΩ		1.01 MΩ
	1 V/div	990 kΩ		1.01 MΩ
Channel 1 Input Impedance, 250 kΩ	100 mV/div	245 kΩ		255 kΩ
Channel 1 Input Impedance, 50 Ω	10 mV/div	49.5 Ω		50.5 Ω
	100 mV/div	49.5 Ω		50.5 Ω
Channel 2 Input Impedance, 1 M Ω	10 mV/div	990 kΩ		1.01 MΩ
	100 mV/div	990 kΩ		1.01 MΩ
	1 V/div	990 kΩ		1.01 MΩ
Channel 2 Input Impedance, 250 kΩ	100 mV/div	245 kΩ		255 kΩ
Channel 2 Input	10 mV/div	49.5 Ω		50.5 Ω
Impedance, 50 Ω	100 mV/div	49.5 Ω		50.5 Ω
Channel 3 Input	10 mV/div	990 kΩ		1.01 MΩ
Impedance, 1 MΩ	100 mV/div	990 kΩ		1.01 MΩ
	1 V/div	990 kΩ		1.01 MΩ
Channel 3 Input Impedance, 250 kΩ	100 mV/div	245 kΩ		255 kΩ
Channel 3 Input	10 mV/div	49.5 Ω		50.5 Ω
mpedance, 50 Ω	100 mV/div	49.5 Ω		50.5 Ω
Channel 4 Input	10 mV/div	990 kΩ		1.01 MΩ
Impedance, 1 MΩ	100 mV/div	990 kΩ		1.01 MΩ
	1 V/div	990 kΩ		1.01 MΩ
Channel 4 Input Impedance, 250 kΩ	100 mV/div	245 kΩ		255 kΩ
Channel 4, Input	10 mV/div	49.5 Ω		50.5 Ω
Impedance, 50 Ω	100 mV/div	49.5 Ω		50.5 Ω

Performance checks	Vertical scale	Low limit	Test result	High limit
Channel 1 DC	1 mV/div	–0.2 mV		0.2 mV
Balance, 50 Ω, 20 MHz	2 mV/div	–0.2 mV		0.2 mV
BW	5 mV/div	–0.5 mV		0.5 mV
	10 mV/div	–1 mV		1 mV
	20 mV/div	–2 mV		2 mV
	49.8 mV/div	-4.98 mV		4.98 mV
	50 mV/div	–5 mV		5 mV
	100 mV/div	–10 mV		10 mV
	200 mV/div	–20 mV		20 mV
	500 mV/div	–50 mV		50 mV
	1 V/div	–100 mV		100 mV
Channel 1 DC	1 mV/div	–0.225 mV		0.225 mV
Balance, 1 MΩ,	2 mV/div	–0.4 mV		0.4 mV
20 MHz BW	5 mV/div	–1 mV		1 mV
	10 mV/div	–2 mV		2 mV
	20 mV/div	–4 mV		4 mV
	100 mV/div	–20 mV		20 mV
	500 mV/div	–100 mV		100 mV
	1 V/div	–200 mV		200 mV
	10 V/div	–2 V		2 V
Channel 1 DC Balance, 50 Ω 250 MHz BW	20 mV/div	–2 mV		2 mV
Channel 1 DC Balance, 1 MΩ 250 MHz BW	20 mV/div	-4 mV		4 mV
Channel 1 DC Balance, 50 Ω, Full BW	20 mV/div	–2 mV		2 mV
Channel 1 DC Balance, 1 MΩ, Full BW	20 mV/div	–4 mV		4 mV

Performance checks	Vertical scale	Low limit	Test result	High limit
Channel 2 DC	1 mV/div	–0.2 mV		0.2 mV
Balance, 50 Ω, 20 MHz	2 mV/div	–0.2 mV		0.2 mV
BW	5 mV/div	–0.5 mV		0.5 mV
	10 mV/div	–1 mV		1 mV
	20 mV/div	–2 mV		2 mV
	49.8 mV/div	–4.98 mV		4.98 mV
	50 mV/div	–5 mV		5 mV
	100 mV/div	–10 mV		10 mV
	200 mV/div	–20 mV		20 mV
	500 mV/div	–50 mV		50 mV
	1 V/div	–100 mV		100 mV
Channel 2 DC	1 mV/div	–0.225 mV		0.225 mV
Balance, 1 MΩ	2 mV/div	–0.4 mV		0.4 mV
20 MHz BW	5 mV/div	–1 mV		1 mV
	10 mV/div	–2 mV		2 mV
	20 mV/div	–4 mV		4 mV
	100 mV/div	–20 mV		20 mV
	500 mV/div	–100 mV		100 mV
	1 V/div	–200 mV		200 mV
	10 V/div	–2 V		2 V
Channel 2 DC Balance, 50 Ω 250 MHz BW	20 mV/div	–2 mV		2 mV
Channel 2 DC Balance, 1 MΩ, 250 MHz BW	20 mV/div	–4 mV		4 mV
Channel 2 DC Balance, 50 Ω, Full BW	20 mV/div	–2 mV		2 mV
Channel 2 DC Balance, 1 MΩ, Full BW	20 mV/div	–4 mV		4 mV

Performance checks	Vertical scale	Low limit	Test result	High limit
Channel 3 DC	1 mV/div	–0.2 mV		0.2 mV
Balance, 50 Ω, 20 MHz	2 mV/div	–0.2 mV		0.2 mV
BW	5 mV/div	–0.5 mV		0.5 mV
	10 mV/div	–1 mV		1 mV
	20 mV/div	–2 mV		2 mV
	49.8 mV/div	–4.98 mV		4.98 mV
	50 mV/div	–5 mV		5 mV
	100 mV/div	–10 mV		10 mV
	200 mV/div	–20 mV		20 mV
	500 mV/div	–50 mV		50 mV
	1 V/div	–100 mV		100 mV
Channel 3 DC	1 mV/div	–0.225 mV		0.225 mV
Balance, 1 MΩ	2 mV/div	–0.4 mV		0.4 mV
20 MHz BW	5 mV/div	–1 mV		1 mV
	10 mV/div	–2 mV		2 mV
	20 mV/div	–4 mV		4 mV
	500 mV/div	–100 mV		100 mV
	100 mV/div	–20 mV		20 mV
	1 V/div	–200 mV		200 mV
	10 V/div	–2 V		2 V
Channel 3 DC Balance, 50 Ω 250 MHz BW	20 mV/div	–2 mV		2 mV
Channel 3 DC Balance, 1 MΩ, 250 MHz BW	20 mV/div	–4 mV		4 mV
Channel 3 DC Balance, 50 Ω, Full BW	20 mV/div	–2 mV		2 mV
Channel 3 DC Balance, 1 MΩ Full BW	20 mV/div	-4 mV		4 mV

Performance checks	Vertical scale	Low limit	Test result	High limit
Channel 4 DC	1 mV/div	–0.2 mV		0.2 mV
Balance, 50 Ω, 20 MHz	2 mV/div	–0.2 mV		0.2 mV
BW	5 mV/div	–0.5 mV		0.5 mV
	10 mV/div	–1 mV		1 mV
	20 mV/div	–2 mV		2 mV
	49.8 mV/div	–4.98 mV		4.98 mV
	50 mV/div	–5 mV		5 mV
	100 mV/div	–10 mV		10 mV
	200 mV/div	–20 mV		20 mV
	500 mV/div	–50 mV		50 mV
	1 V/div	–100 mV		100 mV
Channel 4 DC	1 mV/div	–0.225 mV		0.225 mV
Balance, 1 MΩ	2 mV/div	–0.4 mV		0.4 mV
20 MHz BW	5 mV/div	–1 mV		1 mV
	10 mV/div	–2 mV		2 mV
	20 mV/div	–4 mV		4 mV
	500 mV/div	–100 mV		100 mV
	100 mV/div	–20 mV		20 mV
	1 V/div	–200 mV		200 mV
	10 V/div	–2 V		2 V
Channel 4 DC Balance, 50 Ω 250 MHz BW	20 mV/div	–2 mV		2 mV
Channel 4 DC Balance, 1 MΩ, 250 MHz BW	20 mV/div	–4 mV		4 mV
Channel 4 DC Balance, 50 Ω, Full BW	20 mV/div	–2 mV		2 mV
Channel 4 DC Balance, 1 MΩ, Full BW	20 mV/div	–4 mV		4 mV

Performance checks	Bandwidth	Vertical scale	Low limit	Test result	High limit
All models					
Channel 1	20 MHz	1 mV/div	-2.0%		2.0%
DC Gain Accuracy,		2 mV/div	-1.5%		1.5%
0 V offset, 0 V vertical position, 50 Ω		5 mV/div	-1.5%		1.5%
p • • • • • • • • • • • • • • • • • • •		10 mV/div	-1.5%		1.5%
		20 mV/div	-1.5%		1.5%
		49.8 mV/div	-3.0%		3.0%
		50 mV/div	-1.5%		1.5%
		100 mV/div	-1.5%		1.5%
		200 mV/div	-1.5%		1.5%
		500 mV/div	-1.5%		1.5%
		1 V/div	-1.5%		1.5%
	250 MHz	20 mV/div	-1.5%		1.5%
	Full	20 mV/div	-1.5%		1.5%
Channel 2	20 MHz	1 mV/div	-2.0%		2.0%
DC Gain Accuracy,		2 mV/div	-1.5%		1.5%
0 V offset, 0 V vertical position, 50 Ω		5 mV/div	-1.5%		1.5%
p • • • • • • • • • • • • • • • • • • •		10 mV/div	-1.5%		1.5%
		20 mV/div	-1.5%		1.5%
		49.8 mV/div	-3.0%		3.0%
		50 mV/div	-1.5%		1.5%
		100 mV/div	-1.5%		1.5%
		200 mV/div	-1.5%		1.5%
		500 mV/div	-1.5%		1.5%
		1 V/div	-1.5%		1.5%
	250 MHz	20 mV/div	-1.5%		1.5%
	Full	20 mV/div	-1.5%		1.5%

Performance checks	Bandwidth	Vertical scale	Low limit	Test result	High limit
All models					
Channel 3	20 MHz	1 mV/div	-2.0%		2.0%
DC Gain Accuracy,		2 mV/div	-1.5%		1.5%
0 V offset, 0 V vertical position, 50 Ω		5 mV/div	-1.5%		1.5%
p • • • • • • • • • • • • • • • • • • •		10 mV/div	-1.5%		1.5%
		20 mV/div	-1.5%		1.5%
		49.8 mV/div	-3.0%		3.0%
		50 mV/div	-1.5%		1.5%
		100 mV/div	-1.5%		1.5%
		200 mV/div	-1.5%		1.5%
		500 mV/div	-1.5%		1.5%
		1 V/div	-1.5%		1.5%
	250 MHz	20 mV/div	-1.5%		1.5%
	Full	20 mV/div	-1.5%		1.5%
Channel 4	20 MHz	1 mV/div	-2.0%		2.0%
DC Gain Accuracy, 0 V offset, 0 V vertical		2 mV/div	-1.5%		1.5%
position, 50 Ω		5 mV/div	-1.5%		1.5%
		10 mV/div	-1.5%		1.5%
		20 mV/div	-1.5%		1.5%
		49.8 mV/div	-3.0%		3.0%
		50 mV/div	-1.5%		1.5%
		100 mV/div	-1.5%		1.5%
		200 mV/div	-1.5%		1.5%
		500 mV/div	-1.5%		1.5%
		1 V/div	-1.5%		1.5%
	250 MHz	20 mV/div	-1.5%		1.5%
	Full	20 mV/div	-1.5%		1.5%

Performance checks	Bandwidth	Vertical scale	Low limit	Test result	High limit
All Models					
Channel 1	20 MHz	1 mV/div	-2.0%		2.0%
DC Gain Accuracy, 0 V offset, 0 V vertical		2 mV/div	-1.5%		1.5%
position, 1 M Ω		5 mV/div	-1.5%		1.5%
poenien, 1		10 mV/div	-1.5%		1.5%
		20 mV/div	-1.5%		1.5%
		50 mV/div	-1.5%		1.5%
		63.5 mV/div	-3.0%		3.0%
		100 mV/div	-1.5%		1.5%
		200 mV/div	-1.5%		1.5%
		500 mV/div	-1.5%		1.5%
		1 V/div	-1.5%		1.5%
		5 V/div	-1.5%		1.5%
	250 MHz	20 mV/div	-1.5%		1.5%
	(Not applicable for the MDO4014B-3)				
	FULL	20 mV/div	-1.5%		1.5%
Channel 2	20 MHz	1 mV/div	-2.0%		2.0%
DC Gain Accuracy,		2 mV/div	-1.5%		1.5%
0 V offset, 0 V vertical position, 1 M Ω		5 mV/div	-1.5%		1.5%
		10 mV/div	-1.5%		1.5%
		20 mV/div	-1.5%		1.5%
		50 mV/div	-1.5%		1.5%
		63.5 mV/div	-3.0%		3.0%
		100 mV/div	-1.5%		1.5%
		200 mV/div	-1.5%		1.5%
		500 mV/div	-1.5%		1.5%
		1 V/div	-1.5%		1.5%
		5 V/div	-1.5%		1.5%
	250 MHz	20 mV/div	-1.5%		1.5%
	(Not applicable for the MDO4014B-3)				
	FULL	20 mV/div	-1.5%		1.5%

Performance checks	Bandwidth	Vertical scale	Low limit	Test result	High limit
All Models					
Channel 3	20 MHz	1 mV/div	-2.0%		2.0%
DC Gain Accuracy, 0 V offset, 0 V vertical		2 mV/div	-1.5%		1.5%
position, 1 M Ω		5 mV/div	-1.5%		1.5%
· · · · · ,		10 mV/div	-1.5%		1.5%
		20 mV/div	-1.5%		1.5%
		50 mV/div	-1.5%		1.5%
		63.5 mV/div	-3.0%		3.0%
		100 mV/div	-1.5%		1.5%
		200 mV/div	-1.5%		1.5%
		500 mV/div	-1.5%		1.5%
		1 V/div	-1.5%		1.5%
		5 V/div	-1.5%		1.5%
	250 MHz	20 mV/div	-1.5%		1.5%
	(Not applicable for the MDO4014B-3)				
	FULL	20 mV/div	-1.5%		1.5%
Channel 4	20 MHz	1 mV/div	-2.0%		2.0%
DC Gain Accuracy,		2 mV/div	-1.5%		1.5%
0 V offset, 0 V vertical		5 mV/div	-1.5%		1.5%
		10 mV/div	-1.5%		1.5%
		20 mV/div	-1.5%		1.5%
		50 mV/div	-1.5%		1.5%
		63.5 mV/div	-3.0%		3.0%
		100 mV/div	-1.5%		1.5%
		200 mV/div	-1.5%		1.5%
		500 mV/div	-1.5%		1.5%
		1 V/div	-1.5%		1.5%
		5 V/div	-1.5%		1.5%
	250 MHz	20 mV/div	-1.5%		1.5%
	(Not applicable				
	for the MDO4014B-3)				

DC Offset Accuracy

Performance checks	Vertical scale	Vertical offset ¹	Low limit	Test result	High limit
All models:					
Channel 1	1 mV/div	900 mV	895.3 mV		904.7 mV
DC Offset Accuracy,	1 mV/div	–900 mV	–904.7 mV		–895.3 mV
20 MHz BW, 50 Ω	100 mV/div	5.0 V	4.965 V		5.035 V
	100 mV/div	–5.0 V	–5.035 V		-4.965 V
Channel 1	1 mV/div	900 mV	895.3 mV		904.7 mV
DC Offset Accuracy,	1 mV/div	–900 mV	–904.7 mV		–895.3 mV
20 MHz BW, 1 MΩ	100 mV/div	9.0 V	8.935 V		9.065 V
	100 mV/div	–9.0 V	–9.065 V		-8.935 V
	500 mV/div	9.0 V	8.855 V		9.145 V
	500 mV/div	–9.0 V	–9.145 V		-8.855 V
	1.01 V/div	99.5 V	98.80 V		100.2 V
	1.01 V/div	–99.5 V	–100.2 V		-98.80 V
	3 V/div	99.5 V	98.40 V		100.6 V
	3 V/div	–99.5 V	–100.6 V		-98.4 V
	5 V/div	99.5 V	98.00 V		101.0 V
	5 V/div	–99.5 V	-101.0 V		-98.00 V
Channel 2	1 mV/div	900 mV	895.3 mV		904.7 mV
DC Offset Accuracy,	1 mV/div	–900 mV	–904.7 mV		–895.3 mV
20 MHz BW, 50 Ω	100 mV/div	5.0 V	4.965 V		5.035 V
	100 mV/div	–5.0 V	–5.035 V		-4.965 V
Channel 2	1 mV/div	900 mV	895.3 mV		904.7 mV
DC Offset Accuracy,	1 mV/div	–900 mV	–904.7 mV		–895.3 mV
20 MHz BW, 1 MΩ	100 mV/div	9.0 V	8.935 V		9.065 V
	100 mV/div	–9.0 V	–9.065 V		-8.935 V
	500 mV/div	9.0 V	8.855 V		9.145 V
	500 mV/div	– 9.0 V	–9.145 V		-8.855 V
	1.01 V/div	99.5 V	98.80 V		100.2 V
	1.01 V/div	–99.5 V	–100.2 V		–98.80 V
	3 V/div	99.5 V	98.40 V		100.6 V
	3 V/div	–99.5 V	–100.6 V		–98.4 V
	5 V/div	99.5 V	98.00 V		101.0 V
	5 V/div	–99.5 V	–101.0 V		-98.00 V

Performance checks	Vertical scale	Vertical offset ¹	Low limit	Test result	High limit
Channel 3	1 mV/div	900 mV	895.3 mV		904.7 mV
DC Offset Accuracy, 20 MHz BW, 50 Ω	1 mV/div	–900 mV	–904.7 mV		-895.3 mV
20 MHZ BVV, 50 Ω	100 mV/div	5.0 V	4.965 V		5.035 V
	100 mV/div	–5.0 V	–5.035 V		-4.965 V
Channel 3	1 mV/div	900 mV	895.3 mV		904.7 mV
DC Offset Accuracy,	1 mV/div	–900 mV	–904.7 mV		–895.3 mV
20 MHz BW, 1 MΩ	100 mV/div	9.0 V	8.935 V		9.065 V
	100 mV/div	–9.0 V	–9.065 V		-8.935 V
	500 mV/div	9.0 V	8.855 V		9.145 V
	500 mV/div	– 9.0 V	–9.145 V		–8.855 V
	1.01 V/div	99.5 V	98.80 V		100.2 V
	1.01 V/div	–99.5 V	–100.2 V		–98.80 V
	3 V/div	99.5 V	98.40 V		100.6 V
	3 V/div	–99.5 V	–100.6 V		–98.4 V
	5 V/div	99.5 V	98.00 V		101.0 V
	5 V/div	–99.5 V	–101.0 V		–98.00 V
Channel 4	1 mV/div	900 mV	895.3 mV		904.7 mV
DC Offset Accuracy,	1 mV/div	–900 mV	–904.7 mV		–895.3 mV
20 MHz BW, 50 Ω	100 mV/div	5.0 V	4.965 V		5.035 V
	100 mV/div	–5.0 V	–5.035 V		-4.965 V
Channel 4	1 mV/div	900 mV	895.3 mV		904.7 mV
DC Offset Accuracy,	1 mV/div	–900 mV	–904.7 mV		–895.3 mV
20 MHz BW, 1 MΩ	100 mV/div	9.0 V	8.935 V		9.065 V
	100 mV/div	–9.0 V	-9.065 V		-8.935 V
	500 mV/div	9.0 V	8.855 V		9.145 V
	500 mV/div	–9.0 V	–9.145 V		-8.855 V
	1.01 V/div	99.5 V	98.80 V		100.2 V
	1.01 V/div	–99.5 V	–100.2 V		-98.80 V
	3 V/div	99.5 V	98.40 V		100.6 V
	3 V/div	–99.5 V	–100.6 V		–98.4 V
	5 V/div	99.5 V	98.00 V		101.0 V
	5 V/div	–99.5 V	–101.0 V		–98.00 V

DC Offset Accuracy

¹ Use this value for both the calibrator output and the oscilloscope offset setting.

Analog Bandwidth Performance check

							Test result
Bandwidth		Vertical	Horizontal		V		Gain =
at Channel	Impedance	scale	scale	V _{in-pp}	V_{bw-pp}	Limit	V _{bw-pp} /V _{in-pp}
All Models							
Channel 1 50 Ω	50 Ω	1 mV/div	4 ns/div (175 MHz for all models except the 100 MHz MDO4014B-3)			≥ 0.707	
		2 mV/div	2 ns/div (350 MHz for all models except the 100 MHz MDO4014B-3)			≥ 0.707	
		5 mV/div	1 ns/div (Full BW)			≥ 0.707	
		10 mV/div	1 ns/div (Full BW)			≥ 0.707	
		50 mV/div	1 ns/div (Full BW)			≥ 0.707	
		100 mV/div	1 ns/div (Full BW)			≥ 0.707	
		1 V/div	1 ns/div (Full BW)			≥ 0.707	
MDO4104B-3,	MDO4104B-6 M	odels Only					
Channel 1	1 ΜΩ	1 mV/div	4 ns/div (175 MHz)			≥ 0.707	
		2 mV/div	2 ns/div (350 MHz)			≥ 0.707	
		5 mV/div	1 ns/div (500 MHz)			≥ 0.707	
		10 mV/div	1 ns/div (500 MHz)			≥ 0.707	
		50 mV/div	1 ns/div (500 MHz)			≥ 0.707	
		100 mV/div	1 ns/div (500 MHz)			≥ 0.707	
		1 V/div	1 ns/div (500 MHz)			≥ 0.707	

Bandwidth at Channel	Impedance	Vertical scale	Horizontal scale	V _{in-pp}	V _{bw-pp}	Limit	Test result Gain = V _{bw-pp} /V _{in-pp}
MDO4054B-3,	MDO4054B-6 M	odels Only					
Channel 1	1 MΩ	1 mV/div	4 ns/div (175 MHz)			≥ 0.707	
		2 mV/div	2 ns/div (350 MHz)			≥ 0.707	
		5 mV/div	1 ns/div (380 MHz)			≥ 0.707	
		10 mV/div	1 ns/div (380 MHz)			≥ 0.707	
		50 mV/div	1 ns/div (380 MHz)			≥ 0.707	
		100 mV/div	1 ns/div (380 MHz)			≥ 0.707	
		1 V/div	1 ns/div (380 MHz)			≥ 0.707	
All Other Mod	lels						
Channel 1	1 MΩ	1 mV/div	4 ns/div (175 MHz)			≥ 0.707	
		2 mV/div	2 ns/div (Full BW)			≥ 0.707	
		5 mV/div	1 ns/div (Full BW)			≥ 0.707	
		10 mV/div	1 ns/div (Full BW)			≥ 0.707	
		50 mV/div	1 ns/div (Full BW)			≥ 0.707	
		100 mV/div	1 ns/div (Full BW)			≥ 0.707	
		1 V/div	1 ns/div (Full BW)			≥ 0.707	

Performance Bandwidth at Channel	Impedance	Vertical	Horizontal	V	V	Limit	Test result Gain =
All Models	Impedance	scale	scale	V _{in-pp}	V_{bw-pp}	Limit	V _{bw-pp} /V _{in-pp}
Channel 2 50 Ω	50 Ω	1 mV/div	4 ns/div (175 MHz for all models except the 100 MHz MDO4014B-3)			≥ 0.707	
		2 mV/div	2 ns/div (350 MHz for all models except the 100 MHz MDO4014B-3)			≥ 0.707	
		5 mV/div	1 ns/div (Full BW)			≥ 0.707	
		10 mV/div	1 ns/div (Full BW)			≥ 0.707	
		50 mV/div	1 ns/div (Full BW)			≥ 0.707	
		100 mV/div	1 ns/div (Full BW)			≥ 0.707	
		1 V/div	1 ns/div (Full BW)			≥ 0.707	
MDO4104B-3,	MDO4104B-6 M	odels Only					
Channel 2	1 MΩ	1 mV/div	4 ns/div (175 MHz)			≥ 0.707	
		2 mV/div	2 ns/div (350 MHz)			≥ 0.707	
		5 mV/div	1 ns/div (500 MHz)			≥ 0.707	
		10 mV/div	1 ns/div (500 MHz)			≥ 0.707	
		50 mV/div	1 ns/div (500 MHz)			≥ 0.707	
		100 mV/div	1 ns/div (500 MHz)			≥ 0.707	
		1 V/div	1 ns/div (500 MHz)			≥ 0.707	

Performance ch	ecks
----------------	------

Bandwidth at Channel	Impedance	Vertical scale	Horizontal scale	V _{in-pp}	V _{bw-pp}	Limit	Test result Gain = V _{bw-pp} /V _{in-pp}
	MDO4054B-6 M			FF	FF		
Channel 2	1 MΩ	1 mV/div	4 ns/div (175 MHz)			≥ 0.707	
		2 mV/div	2 ns/div (350 MHz)			≥ 0.707	
		5 mV/div	1 ns/div (380 MHz)			≥ 0.707	
		10 mV/div	1 ns/div (380 MHz)			≥ 0.707	
		50 mV/div	1 ns/div (380 MHz)			≥ 0.707	
		100 mV/div	1 ns/div (380 MHz)			≥ 0.707	
		1 V/div	1 ns/div (380 MHz)			≥ 0.707	
All Other Mode	els						
Channel 2	1 MΩ	1 mV/div	4 ns/div (175 MHz)			≥ 0.707	
		2 mV/div	2 ns/div (Full BW)			≥ 0.707	
		5 mV/div	1 ns/div (Full BW)			≥ 0.707	
		10 mV/div	1 ns/div (Full BW)			≥ 0.707	
		50 mV/div	1 ns/div (Full BW)			≥ 0.707	
		100 mV/div	1 ns/div (Full BW)			≥ 0.707	
		1 V/div	1 ns/div (Full BW)			≥ 0.707	

Analog Bandwidth Performance check

Performance							Test manult
Bandwidth at Channel	Impedance	Vertical scale	Horizontal scale	V _{in-pp}	V _{bw-pp}	Limit	Test result Gain = V _{bw-pp} /V _{in-pp}
All Models	·						
Channel 3 50 Ω	50 Ω	1 mV/div	4 ns/div (175 MHz for all models except the 100 MHz MDO4014B-3)			≥ 0.707	
		2 mV/div	2 ns/div (350 MHz for all models except the 100 MHz MDO4014B-3)			≥ 0.707	
		5 mV/div	1 ns/div (Full BW)			≥ 0.707	
		10 mV/div	1 ns/div (Full BW)			≥ 0.707	
		50 mV/div	1 ns/div (Full BW)			≥ 0.707	
		100 mV/div	1 ns/div (Full BW)			≥ 0.707	
		1 V/div	1 ns/div (Full BW)			≥ 0.707	
MDO4104B3, I	MDO4104B-6 Mo	odels Only					
Channel 3	1 ΜΩ	1 mV/div	4 ns/div (175 MHz)			≥ 0.707	
		2 mV/div	2 ns/div (350 MHz)			≥ 0.707	
		5 mV/div	1 ns/div (500 MHz)			≥ 0.707	
		10 mV/div	1 ns/div (500 MHz)			≥ 0.707	
		50 mV/div	1 ns/div (500 MHz)			≥ 0.707	
		100 mV/div	1 ns/div (500 MHz)			≥ 0.707	
		1 V/div	1 ns/div (500 MHz)			≥ 0.707	

Performance ch	ecks
----------------	------

Bandwidth at Channel	Impedance	Vertical scale	Horizontal scale	V _{in-pp}	V _{bw-pp}	Limit	Test result Gain = V _{bw-pp} /V _{in-pp}
	MDO4054B-6 M			PP	2.1.66		2.1 PP PP
Channel 3	1 MΩ	1 mV/div	4 ns/div (175 MHz)			≥ 0.707	
		2 mV/div	2 ns/div (350 MHz)			≥ 0.707	
		5 mV/div	1 ns/div (380 MHz			≥ 0.707	
		10 mV/div	1 ns/div (380 MHz)			≥ 0.707	
		50 mV/div	1 ns/div (380 MHz)			≥ 0.707	
		100 mV/div	1 ns/div (380 MHz)			≥ 0.707	
		1 V/div	1 ns/div (380 MHz)			≥ 0.707	
All Other Mode	els						
Channel 3	1 ΜΩ	1 mV/div	4 ns/div (175 MHz)			≥ 0.707	
		2 mV/div	2 ns/div (Full BW)			≥ 0.707	
		5 mV/div	1 ns/div (Full BW)			≥ 0.707	
		10 mV/div	1 ns/div (Full BW)			≥ 0.707	
		50 mV/div	1 ns/div (Full BW)			≥ 0.707	
		100 mV/div	1 ns/div (Full BW)			≥ 0.707	
		1 V/div	1 ns/div (Full BW)			≥ 0.707	

Analog Bandwidth Performance check

							Test result
Bandwidth	I	Vertical	Horizontal	V	V	1.1	Gain =
at Channel	Impedance	scale	scale	V _{in-pp}	V_{bw-pp}	Limit	V _{bw-pp} /V _{in-pp}
All Models							
Channel 4	50 Ω	1 mV/div	4 ns/div (175 MHz for all models except the 100 MHz MDO4014B-3)			≥ 0.707	
		2 mV/div	2 ns/div (350 MHz for all models except the 100 MHz MDO4014B-3)			≥ 0.707	
		5 mV/div	1 ns/div (Full BW)			≥ 0.707	
		10 mV/div	1 ns/div (Full BW)			≥ 0.707	
		50 mV/div	1 ns/div (Full BW)			≥ 0.707	
		100 mV/div	1 ns/div (Full BW)			≥ 0.707	
		1 V/div	1 ns/div (Full BW)			≥ 0.707	
MDO4104B-3,	MDO4104B-6 M	odels Only					
Channel 4	1 MΩ	1 mV/div	4 ns/div (175 MHz)			≥ 0.707	
		2 mV/div	2 ns/div (350 MHz)			≥ 0.707	
		5 mV/div	1 ns/div (500 MHz)			≥ 0.707	
		10 mV/div	1 ns/div (500 MHz)			≥ 0.707	
		50 mV/div	1 ns/div (500 MHz)			≥ 0.707	
		100 mV/div	1 ns/div (500 MHz)			≥ 0.707	
		1 V/div	1 ns/div (500 MHz)			≥ 0.707	

Performance ch	ecks
----------------	------

Bandwidth at Channel	Impedance	Vertical scale	Horizontal scale	V _{in-pp}	V _{bw-pp}	Limit	Test result Gain = V _{bw-pp} /V _{in-pp}
	MDO4054B-6 Mo			FF	FF		FF FF
Channel 4	1 MΩ	1 mV/div	4 ns/div (175 MHz)			≥ 0.707	
		2 mV/div	2 ns/div (350 MHz)			≥ 0.707	
		5 mV/div	1 ns/div (380 MHz)			≥ 0.707	
		10 mV/div	1 ns/div (380 MHz)			≥ 0.707	
		50 mV/div	1 ns/div (380 MHz)			≥ 0.707	
		100 mV/div	1 ns/div (380 MHz)			≥ 0.707	
		1 V/div	1 ns/div (380 MHz)			≥ 0.707	
All Other Mode	els						
Channel 4	1 MΩ	1 mV/div	4 ns/div (175 MHz)			≥ 0.707	
		2 mV/div	2 ns/div (Full BW)			≥ 0.707	
		5 mV/div	1 ns/div (Full BW)			≥ 0.707	
		10 mV/div	1 ns/div (Full BW)			≥ 0.707	
		50 mV/div	1 ns/div (Full BW)			≥ 0.707	
		100 mV/div	1 ns/div (Full BW)			≥ 0.707	
		1 V/div	1 ns/div (Full BW)			≥ 0.707	

		Vertical scale = 10	0 mV/div		
Performance checks		1 MΩ		50 Ω	
	Bandwidth	Test result (mV)	High limit (mV)	Test result (mV)	High limit (mV)
MDO4104B-3, N	IDO4104B-6				
Channel 1	Full		8.30		6.08
	250 MHz limit		5.10		4.05
	20 MHz limit		5.10		4.05
Channel 2	Full		8.30		6.08
	250 MHz limit		5.10		4.05
	20 MHz limit		5.10		4.05
Channel 3	Full		8.30		6.08
	250 MHz limit		5.10		4.05
	20 MHz limit		5.10		4.05
Channel 4	Full		8.30		6.08
	250 MHz limit		5.10		4.05
	20 MHz limit		5.10		4.05
All other model	S				
Channel 1	Full		8.13		8.13
	250 MHz limit		6.10		6.10
	20 MHz limit		4.10		4.10
Channel 2	Full		8.13		8.13
	250 MHz limit		6.10		6.10
	20 MHz limit		4.10		4.10
Channel 3	Full		8.13		8.13
	250 MHz limit		6.10		6.10
	20 MHz limit		4.10		4.10
Channel 4	Full		8.13		8.13
	250 MHz limit		6.10		6.10
	20 MHz limit		4.10		4.10

Random Noise, Sample Acquisition Mode

Check Reference Frequency Error (Cumulative)

Performance checks	Low limit	Test result	High limit	
	–640 ns		+640 ns	

Delta Time Measurement Accuracy

Ρ	erfo	rmar	nce c	hec	ks
	0110				

MDO4104B-3, MDO4104B-6

Cha	nnel	1					
N	MDO	= 4	ns/div,	Source	freq	= 240	MHz
-			,			-	

MDO V/div	Source V _{pp}	Test result	High limit
5 mV	40 mV		118 ps
100 mV	800 mV		117 ps
500 mV	4 V		117 ps
1 V	4 V		122 ps
IDO = 40 ns/div, Source	e freq = 24 MHz		
1 mV	8 mV		464 ps
5 mV	40 mV		276 ps
100 mV	800 mV		234 ps
500 mV	4 V		232 ps
1 V	4 V		417 ps
IDO = 400 ns/div, Sour	ce freq = 2.4 MHz		
1 mV	8 mV		4.50 ns
5 mV	40 mV		2.52 ns
100 mV	800 mV		2.05 ns
500 mV	4 V		2.03 ns
1 V	4 V		4.01 ns
IDO = 4 µs/div, Source	freq = 240 kHz		
1 mV	8 mV		45.0 ns
5 mV	40 mV		25.2 ns
100 mV	800 mV		20.5 ns
500 mV	4 V		20.3 ns
1 V	4 V		40.1 ns
IDO = 40 µs/div, Sourc	e freq = 24 kHz		
1 mV	8 mV		450 ns
5 mV	40 mV		252 ns
100 mV	800 mV		205 ns
500 mV	4 V		203 ns
1 V	4 V		401 ns
IDO = 400 µs/div, Sour	ce freq = 2.4 kHz		
1 mV	8 mV		4.50 µs
5 mV	40 mV		2.52 µs
100 mV	800 mV		2.05 µs
500 mV	4 V		2.03 µs
1 V	4 V		4.01 µs

Delta Time Measurement Accuracy

MDO4104B-3,	MDO4104B-6
WDO4104D-3,	WD04104D-0

MDO = 4 ns/div, Source	freq = 240 MHz		
MDO V/div	Source V _{pp}	Test result	High limit
5 mV	40 mV		118 ps
100 mV	800 mV		117 ps
500 mV	4 V		117 ps
1 V	4 V		122 ps
MDO = 40 ns/div, Sourc	e freq = 24 MHz		
1 mV	8 mV		464 ps
5 mV	40 mV		276 ps
100 mV	800 mV		234 ps
500 mV	4 V		232 ps
1 V	4 V		417 ps
MDO = 400 ns/div, Sour	ce freq = 2.4 MHz		
1 mV	8 mV		4.50 ns
5 mV	40 mV		2.52 ns
100 mV	800 mV		2.05 ns
500 mV	4 V		2.03 ns
1 V	4 V		4.01 ns
MDO = 4 µs/div, Source	freq = 240 kHz		
1 mV	8 mV		45.0 ns
5 mV	40 mV		25.2 ns
100 mV	800 mV		20.5 ns
500 mV	4 V		20.3 ns
1 V	4 V		40.1 ns
MDO = 40 µs/div, Sourc	e freq = 24 kHz		
1 mV	8 mV		450 ns
5 mV	40 mV		252 ns
100 mV	800 mV		205 ns
500 mV	4 V		203 ns
1 V	4 V		401 ns
MDO = 400 µs/div, Sour	ce freq = 2.4 kHz		
1 mV	8 mV		4.50 µs
5 mV	40 mV		2.52 µs
100 mV	800 mV		2.05 µs
500 mV	4 V		2.03 µs
1 V	4 V		4.01 µs

Delta Time Measurement Accuracy

a Time Measurement Acc			
O4104B-3, MDO4104B-	6		
annel 3			
MDO = 4 ns/div, Source	e freq = 240 MHz		
MDO V/div	Source V _{pp}	Test result	High limit
5 mV	40 mV		118 ps
100 mV	800 mV		117 ps
500 mV	4 V		117 ps
1 V	4 V		122 ps
MDO = 40 ns/div, Sour	ce freq = 24 MHz		
1 mV	8 mV		464 ps
5 mV	40 mV		276 ps
100 mV	800 mV		234 ps
500 mV	4 V		232 ps
1 V	4 V		417 ps
MDO = 400 ns/div, Sou	rce freq = 2.4 MHz		
1 mV	8 mV		4.50 ns
5 mV	40 mV		2.52 ns
100 mV	800 mV		2.05 ns
500 mV	4 V		2.03 ns
1 V	4 V		4.01 ns
MDO = 4 µs/div, Source	e freq = 240 kHz		
1 mV	8 mV		45.0 ns
5 mV	40 mV		25.2 ns
100 mV	800 mV		20.5 ns
500 mV	4 V		20.3 ns
1 V	4 V		40.1 ns
MDO = 40 µs/div, Sour	ce freq = 24 kHz		
1 mV	8 mV		450 ns
5 mV	40 mV		252 ns
100 mV	800 mV		205 ns
500 mV	4 V		203 ns
1 V	4 V		401 ns
MDO = 400 µs/div, Sou	rce freq = 2.4 kHz		
1 mV	8 mV		4.50 µs
5 mV	40 mV		2.52 µs
100 mV	800 mV		2.05 µs
500 mV	4 V		2.03 µs
1 V	4 V		4.01 µs

Delta Time Measurement Accuracy

MDO4104B-3,	MD04104B-6
WD04104D-J,	WD04104D-0

freg = 240 MHz		
	Test result	High limit
40 mV		118 ps
800 mV		117 ps
4 V		117 ps
4 V		122 ps
freq = 24 MHz		
8 mV		464 ps
40 mV		276 ps
800 mV		234 ps
4 V		232 ps
4 V		417 ps
e freq = 2.4 MHz		
8 mV		4.50 ns
40 mV		2.52 ns
800 mV		2.05 ns
4 V		2.03 ns
4 V		4.01 ns
freq = 240 kHz		
8 mV		45.0 ns
40 mV		25.2 ns
800 mV		20.5 ns
4 V		20.3 ns
4 V		40.1 ns
e freq = 24 kHz		
8 mV		450 ns
40 mV		252 ns
800 mV		205 ns
4 V		203 ns
4 V		401 ns
e freq = 2.4 kHz		
8 mV		4.50 µs
40 mV		2.52 µs
800 mV		2.05 µs
4 V		2.03 µs
	800 mV 4 V 4 V freq = 24 MHz 8 mV 40 mV 800 mV 4 V 4 V 4 V 4 V 4 V 4 V 4 V 4 V 4 V 8 mV 40 mV 800 mV 4 V 8 mV 40 mV 800 mV 4 V 4 V 4 V 4 V 8 mV 40 mV 800 mV 4 V 4 V 4 V 4 V 4 V 4 V 4 V 4 0 mV 800 mV 4 V 4 V 4 V 4 V 8 mV 4 0 mV 800 mV 4 V 8 mV 8 mV 8 mV	Source V _{pp} Test result 40 mV 800 mV 4 V 4 V 4 V 4 V 6 mV 8 mV 40 mV 800 mV 40 mV 800 mV 4 V 40 mV 800 mV 4 V 4 V 4 V 4 V 4 V 6 freq = 2.4 MHz 8 mV 800 mV 40 mV 800 mV 40 mV 800 mV 4 V 4 V 4 V 5 mV 40 mV 800 mV 4 V 4 V 4 V 4 V 4 V 4 V 4 V 4 V 4 V 4 V 4 V 4 V 4 V 4 0 mV 800 mV 4 V 4 V 4 V 4 V 8 mV 4 V 4 V 4 V 8 mV 4 V 8 mV 4 V 8 mV 4 V

J4034D-3, INIDO4034D-0	6, MDO4034B-3, MDO4014B-3		
nnel 1			
MDO = 4 ns/div, Source	e freq = 240 MHz (except for the	MDO4014B-3)	
MDO V/div	Source V _{pp}	Test result	High limit
5 mV	40 mV		234 ps
100 mV	800 mV		233 ps
500 mV	4 V		233 ps
1 V	4 V		237 ps
MDO = 40 ns/div, Sourc	ce freq = 24 MHz		
1 mV	8 mV		736 ps
5 mV	40 mV		423 ps
100 mV	800 mV		357 ps
500 mV	4 V		354 ps
1 V	4 V		581 ps
MDO = 400 ns/div, Sou	rce freq = 2.4 MHz		
1 mV	8 mV		6.99 ns
5 mV	40 mV		3.54 ns
100 mV	800 mV		2.73 ns
500 mV	4 V		2.69 ns
1 V	4 V		5.34 ns
MDO = 4 µs/div, Source	e freq = 240 kHz		
1 mV	8 mV		69.9 ns
5 mV	40 mV		35.4 ns
100 mV	800 mV		27.3 ns
500 mV	4 V		26.9 ns
1 V	4 V		53.4 ns
MDO = 40 µs/div, Sourc	ce freq = 24 kHz		
1 mV	8 mV		699 ns
5 mV	40 mV		354 ns
100 mV	800 mV		273 ns
500 mV	4 V		269 ns
1 V	4 V		534 ns
MDO = 400 µs/div, Sou	rce freq = 2.4 kHz		
1 mV	8 mV		6.99 µs
5 mV	40 mV		3.54 µs
100 mV	800 mV		2.73 µs
500 mV	4 V		2.69 µs
1 V	4 V		5.34 µs

nnel 2			
MDO = 4 ns/div, Source	freq = 240 MHz (except for the	MDO4014B-3)	
MDO V/div	Source V _{pp}	Test result	High limit
5 mV	40 mV		234 ps
100 mV	800 mV		233 ps
500 mV	4 V		233 ps
1 V	4 V		237 ps
IDO = 40 ns/div, Source	e freq = 24 MHz		
1 mV	8 mV		736 ps
5 mV	40 mV		423 ps
100 mV	800 mV		357 ps
500 mV	4 V		354 ps
1 V	4 V		581 ps
/IDO = 400 ns/div, Sourc	ce freq = 2.4 MHz		
1 mV	8 mV		6.99 ns
5 mV	40 mV		3.54 ns
100 mV	800 mV		2.73 ns
500 mV	4 V		2.69 ns
1 V	4 V		5.34 ns
/IDO = 4 µs/div, Source	freq = 240 kHz		
1 mV	8 mV		69.9 ns
5 mV	40 mV		35.4 ns
100 mV	800 mV		27.3 ns
500 mV	4 V		26.9 ns
1 V	4 V		53.4 ns
/IDO = 40 μs/div, Source	e freq = 24 kHz		
1 mV	8 mV		699 ns
5 mV	40 mV		354 ns
100 mV	800 mV		273 ns
500 mV	4 V		269 ns
1 V	4 V		534 ns
IDO = 400 μs/div, Sourc	ce freq = 2.4 kHz		
1 mV	8 mV		6.99 µs
5 mV	40 mV		3.54 µs
100 mV	800 mV		2.73 µs
500 mV	4 V		2.69 µs

	, MDO4034B-3, MDO4014B-3		
innel 3			
MDO = 4 ns/div, Source	freq = 240 MHz (except for the	MDO4014B-3)	
MDO V/div	Source V _{pp}	Test result	High limit
5 mV	40 mV		234 ps
100 mV	800 mV		233 ps
500 mV	4 V		233 ps
1 V	4 V		237 ps
MDO = 40 ns/div, Source	e freq = 24 MHz		
1 mV	8 mV		736 ps
5 mV	40 mV		423 ps
100 mV	800 mV		357 ps
500 mV	4 V		354 ps
1 V	4 V		581 ps
MDO = 400 ns/div, Sour	ce freq = 2.4 MHz		
1 mV	8 mV		6.99 ns
5 mV	40 mV		3.54 ns
100 mV	800 mV		2.73 ns
500 mV	4 V		2.69 ns
1 V	4 V		5.34 ns
MDO = 4 µs/div, Source	freq = 240 kHz		
1 mV	8 mV		69.9 ns
5 mV	40 mV		35.4 ns
100 mV	800 mV		27.3 ns
500 mV	4 V		26.9 ns
1 V	4 V		53.4 ns
MDO = 40 µs/div, Source	e freq = 24 kHz		
1 mV	8 mV		699 ns
5 mV	40 mV		354 ns
100 mV	800 mV		273 ns
500 mV	4 V		269 ns
1 V	4 V		534 ns
MDO = 400 µs/div, Sour	ce freq = 2.4 kHz		
1 mV	8 mV		6.99 µs
5 mV	40 mV		3.54 µs
100 mV	800 mV		2.73 µs
500 mV	4 V		2.69 µs
1 V	4 V		5.34 µs

nnel 4			
MDO = 4 ns/div, Source	freq = 240 MHz (except for the	MDO4014B-3)	
MDO V/div	Source V _{pp}	Test result	High limit
5 mV	40 mV		234 ps
100 mV	800 mV		233 ps
500 mV	4 V		233 ps
1 V	4 V		237 ps
MDO = 40 ns/div, Source	e freq = 24 MHz		
1 mV	8 mV		736 ps
5 mV	40 mV		423 ps
100 mV	800 mV		357 ps
500 mV	4 V		354 ps
1 V	4 V		581 ps
MDO = 400 ns/div, Sourc	e freq = 2.4 MHz		
1 mV	8 mV		6.99 ns
5 mV	40 mV		3.54 ns
100 mV	800 mV		2.73 ns
500 mV	4 V		2.69 ns
1 V	4 V		5.34 ns
MDO = 4 µs/div, Source	freq = 240 kHz		
1 mV	8 mV		69.9 ns
5 mV	40 mV		35.4 ns
100 mV	800 mV		27.3 ns
500 mV	4 V		26.9 ns
1 V	4 V		53.4 ns
/IDO = 40 µs/div, Source	e freq = 24 kHz		
1 mV	8 mV		699 ns
5 mV	40 mV		354 ns
100 mV	800 mV		273 ns
500 mV	4 V		269 ns
1 V	4 V		534 ns
/IDO = 400 µs/div, Sourc	e freq = 2.4 kHz		
1 mV	8 mV		6.99 µs
5 mV	40 mV		3.54 µs
100 mV	800 mV		2.73 µs
500 mV	4 V		2.69 µs

Performance	checks:					
Digital channel	Threshold	V _{slow}	V_{shigh}	Low limit	Test result	High limit
D0	0 V			–0.1 V		0.1 V
	4 V			3.78 V		4.22 V
D1	0 V			–0.1 V		0.1 V
	4 V			3.78 V		4.22 V
D2	0 V			–0.1 V		0.1 V
	4 V			3.78 V		4.22 V
D3	0 V			–0.1 V		0.1 V
	4 V			3.78 V		4.22 V
D4	0 V			–0.1 V		0.1 V
	4 V			3.78 V		4.22 V
D5	0 V			–0.1 V		0.1 V
	4 V			3.78 V		4.22 V
D6	0 V			–0.1 V		0.1 V
	4 V			3.78 V		4.22 V
D7	0 V			–0.1 V		0.1 V
	4 V			3.78 V		4.22 V
D8	0 V			–0.1 V		0.1 V
	4 V			3.78 V		4.22 V
D9	0 V			–0.1 V		0.1 V
	4 V			3.78 V		4.22 V
D10	0 V			–0.1 V		0.1 V
	4 V			3.78 V		4.22 V
D11	0 V			–0.1 V		0.1 V
	4 V			3.78 V		4.22 V
D12	0 V			–0.1 V		0.1 V
	4 V			3.78 V		4.22 V
D13	0 V			–0.1 V		0.1 V
	4 V			3.78 V		4.22 V
D14	0 V			–0.1 V		0.1 V
	4 V			3.78 V		4.22 V
D15	0 V			–0.1 V		0.1 V
	4 V			3.78 V		4.22 V

Digital Threshold Accuracy

Phase Noise at 1 GHz

Performance checks	Offset	Low limit	Test result	High limit
Center Frequency	10 kHz	N/A		–108 dBc/Hz
1 GHz	100 kHz	N/A		–110 dBc/Hz
	1 MHz	N/A		–120 dBc/Hz

Displayed Average Noise Level (DANL)

Performance checks		Low limit	Test result	High limit
All models	9 kHz – 50 kHz	N/A		< –116 dBm/Hz
	50 kHz – 5 MHz	N/A	< –130 dBm/	
	5 MHz – 400 MHz	N/A		<
	400 MHz – 3 GHz	N/A		< – 147 dBm/Hz
MDO4104B-6 and MDO4054B-6 only	3 GHz – 4 GHz	N/A		< – 148 dBm/Hz
	4 GHz – 6 GHz	N/A		< – 140 dBm/Hz

Absolute Amplitude Accuracy

Performance check	S		Low limit	Test result	High limit
+10 dBm	All models	50 kHz – 950 kHz	–1 dBm		+1 dBm
		1 MHz – 9 MHz	–1 dBm		+1 dBm
		10 MHz – 90 MHz	–1 dBm		+1 dBm
		100 MHz – 3 GHz	–1 dBm		+1 dBm
	MDO4XX4B-6 only	>3 GHz – 6 GHz	-1 dBm		+1 dBm
0 dBm	All models	50 kHz – 950 kHz	–1 dBm		+1 dBm
		1 MHz – 9 MHz	–1 dBm		+1 dBm
		10 MHz – 90 MHz	–1 dBm		+1 dBm
		100 MHz – 3 GHz	–1 dBm		+1 dBm
	MDO4XX4B-6 only	> 3 GHz – 6 GHz	–1 dBm		+1 dBm
–15 dBm	All models	50 kHz – 950 kHz	–1 dBm		+1 dBm
		1 MHz – 9 MHz	–1 dBm		+1 dBm
		10 MHz – 90 MHz	–1 dBm		+1 dBm
		100 MHz – 3 GHz	–1 dBm		+1 dBm
	MDO4XXB-6 only	>3 GHz – 6 GHz	–1 dBm		+1 dBm

Third Order Intermodulation Distortion

Performance checks			Low limit	Test result	High limit
All models	Center Frequency	Intermod spur 1	N/A		–62 dBc
2.745 GHz	Intermod spur 2	N/A		–62 dBc	
MDO4XX4B-6 Center Frequency 4.5 GHz	Center Frequency	Intermod spur 1	N/A		–62 dBc
	Intermod spur 2	N/A		–62 dBc	
Performance checks		Low limit	Test result	High limit	
--------------------	---------------------	-----------	-------------	------------	
All models	9 kHz to 50 kHz	N/A		–85 dBm	
	50 kHz to 3 GHz			–85 dBm	
MDO4XX4B-6	2.75 GHz to 4.5 GHz	N/A		–85 dBm	
	3.5 GHz to 6.0 GHz	N/A		–85 dBm	
	2.5 GHz	N/A		–78 dBm	
	3.75 GHz	N/A		–78 dBm	
	4 GHz	N/A		–78 dBm	
	5 GHz	N/A		–78 dBm	

Residual Spurious Response

Performance checks						
Channel 1 crosstalk		Low limit	Test result	High limit		
Generator signal frequency and	105 MHz	N/A		–68 dBm		
Dscilloscope Center Frequency setting	205 MHz	N/A		–68 dBm		
	305 MHz	N/A		–68 dBm		
	405 MHz	N/A		–68 dBm		
	505 MHz	N/A		–68 dBm		
	605 MHz	N/A		–68 dBm		
	705 MHz	N/A		–68 dBm		
	805 MHz	N/A		–68 dBm		
	905 MHz	N/A		–68 dBm		
	1.005 GHz	N/A		–68 dBm		
	1.105 GHz	N/A		–48 dBm		
	1.205 GHz	N/A		–48 dBm		
	1.305 GHz	N/A		–48 dBm		
	1.405 GHz	N/A		–48 dBm		
	1.505 GHz	N/A		–48 dBm		
	1.605 GHz	N/A		–48 dBm		
	1.705 GHz	N/A		–48 dBm		
	1.805 GHz	N/A		–48 dBm		
	1.905 GHz	N/A		–48 dBm		
	2.005 GHz	N/A		–48 dBm		

Channel 2 crosstalk	Low limit	Test result	High limit	
Generator signal frequency and	105 MHz	N/A		–68 dBm
Oscilloscope Center Frequency setting	205 MHz	N/A		–68 dBm
	305 MHz	N/A		–68 dBm
	405 MHz	N/A		–68 dBm
	505 MHz	N/A		–68 dBm
	605 MHz	N/A		–68 dBm
	705 MHz	N/A		–68 dBm
	805 MHz	N/A		–68 dBm
	905 MHz	N/A		–68 dBm
	1.005 GHz	N/A		–68 dBm
	1.105 GHz	N/A		–48 dBm
	1.205 GHz	N/A		–48 dBm
	1.305 GHz	N/A		–48 dBm
	1.405 GHz	N/A		–48 dBm
	1.505 GHz	N/A		–48 dBm
	1.605 GHz	N/A		–48 dBm
	1.705 GHz	N/A		–48 dBm
	1.805 GHz	N/A		–48 dBm
	1.905 GHz	N/A		–48 dBm
	2.005 GHz	N/A		–48 dBm

Channel 3 crosstalk	Low limit	Test result	High limit	
Generator signal frequency and	105 MHz	N/A		–68 dBm
Oscilloscope Center Frequency setting	205 MHz	N/A		–68 dBm
	305 MHz	N/A		–68 dBm
	405 MHz	N/A		–68 dBm
	505 MHz	N/A		–68 dBm
	605 MHz	N/A		–68 dBm
	705 MHz	N/A		–68 dBm
	805 MHz	N/A		–68 dBm
	905 MHz	N/A		–68 dBm
	1.005 GHz	N/A		–68 dBm
	1.105 GHz	N/A		–48 dBm
	1.205 GHz	N/A		–48 dBm
	1.305 GHz	N/A		–48 dBm
	1.405 GHz	N/A		-48 dBm
	1.505 GHz	N/A		–48 dBm
	1.605 GHz	N/A		–48 dBm
	1.705 GHz	N/A		–48 dBm
	1.805 GHz	N/A		–48 dBm
	1.905 GHz	N/A		–48 dBm
	2.005 GHz	N/A		–48 dBm

Channel 4 crosstalk	Low limit	Test result	High limit	
Generator signal frequency and	105 MHz	N/A		–68 dBm
Oscilloscope Center Frequency setting	205 MHz	N/A		–68 dBm
	305 MHz	N/A		–68 dBm
	405 MHz	N/A		–68 dBm
	505 MHz	N/A		–68 dBm
	605 MHz	N/A		–68 dBm
	705 MHz	N/A		–68 dBm
	805 MHz	N/A		–68 dBm
	905 MHz	N/A		–68 dBm
	1.005 GHz	N/A		–68 dBm
	1.105 GHz	N/A		–48 dBm
	1.205 GHz	N/A		–48 dBm
	1.305 GHz	N/A		–48 dBm
	1.405 GHz	N/A		–48 dBm
	1.505 GHz	N/A		–48 dBm
	1.605 GHz	N/A		–48 dBm
	1.705 GHz	N/A		–48 dBm
	1.805 GHz	N/A		–48 dBm
	1.905 GHz	N/A		–48 dBm
	2.005 GHz	N/A		–48 dBm

Auxiliary (Trigger) Output

Performance check	S	Low limit	Test result	High limit
Trigger Output	High 1 M Ω	≥ 2.5 V		-
	Low 1 MΩ	-		≤ 0.7 V
Trigger Output	High 50 Ω	≥ 1.0 V		-
	Low 50 Ω	-		≤ 0.25 V

With TPA-N-PRE Attached:

With TPA-N-PRE attached: Displayed Average Noise Level (DANL)

Performance checks		Low limit	Test result	High limit
All models (with	9 kHz – 50 kHz	N/A		–119 dBm/Hz
TPA-N-PRE attached)	50 kHz – 5 MHz	N/A		–140 dBm/Hz
	5 MHz – 400 MHz	N/A		–156 dBm/Hz
	5 MHz – 3 GHz	N/A		–157 dBm/Hz
MDO4XX4B-6 only (with TPA-N-PRE attached)	3 GHz – 4 GHz	N/A		–158 dBm/Hz
	4 GHz – 6 GHz	N/A		–150 dBm/Hz

Performance Verification Procedures

The Performance Verification Procedures consist of a self test and several check steps, which check the oscilloscope performance to specifications. The following three conditions must be met before performing these procedures:

- 1. The oscilloscope must have been operating continuously for twenty (20) minutes in an environment that meets the operating range specifications for temperature and humidity.
- 2. You must perform the Signal Path Compensation (SPC) operation described in step 2 of the *Self Test* before evaluating specifications. (See page 68, *Self Test*.) If the operating temperature changes by more than 10 °C (18 °F), you must perform the SPC operation again.
- **3.** You must connect the oscilloscope and the test equipment to the same AC power circuit. Connect the oscilloscope and test instruments to a common power strip if you are unsure of the AC power circuit distribution. Connecting the oscilloscope and test instruments to separate AC power circuits can result in offset voltages between the equipment, which can invalidate the performance verification procedure.

The time required to complete the entire procedure is approximately ten hours. To ensure instrument performance to the Absolute Amplitude Accuracy specification, it is necessary to check at many points, which can add significant time to the procedure.

WARNING. Some procedures use hazardous voltages. To prevent electrical shock, always set voltage source outputs to 0 V before making or changing any connections.

- **Self Test** This procedure uses internal routines to verify that the oscilloscope functions and passes its internal self tests. No test equipment or hookups are required.
 - **1.** Run the System Diagnostics (may take several minutes):
 - a. Disconnect everything from the oscilloscope inputs.
 - **b.** Push the front-panel **Default Setup** button.
 - c. Push the Utility menu button.
 - d. Push the Utility Page lower-bezel button.
 - e. Select Self Test.
 - **f.** Push the **Self Test** lower-bezel button. The Loop X Times side-bezel menu will be set to **Loop 1 Times**.
 - g. Push the OK Run Self Test side-bezel button.
 - **h.** Wait. The internal diagnostics perform an exhaustive verification of proper instrument function. This verification may take several minutes.
 - i. Verify that the status of all tests on the readout is **Pass**.
 - j. Push the Menu button twice to clear the dialog box and Self Test menu.
 - 2. Run the signal path compensation routine (may take 5 to 15 minutes):
 - a. Push the front-panel **Default Setup** button.
 - **b.** Push the Utility menu button.
 - c. Push the Utility Page lower-bezel button.
 - d. Select Calibration.
 - e. Push the Signal Path lower-bezel button.
 - f. Push the OK-Compensate Signal Paths side bezel button.
 - **g.** When the signal path compensation is complete, push the **Menu** button twice to clear the dialog box and Self Test menu.
 - h. Check the lower-bezel Signal Path button to verify that the status is Pass.

Check Input Impedance (Resistance)

This test checks the Input Impedance.

1. Connect the output of the oscilloscope calibrator (for example, the Fluke 9500) to the oscilloscope channel 1 input, as shown below.

 \wedge

- **2.** Set the calibrator impedance to 1 M Ω .
- 3. Push the front-panel Default Setup button.
- **4.** Set the oscilloscope impedance to $1 M\Omega$ as follows:
 - **a.** Push the channel 1 button.
 - **b.** Set the **Termination** (input impedance) to $1 \text{ M}\Omega$.
- 5. Set the Vertical Scale to 10 mV/division.
- 6. Measure the input resistance of the oscilloscope with the calibrator. Record this value in the test record.
- 7. Repeat steps 5 and 6 for each vertical scale setting in the test record.
- **8.** Repeat the tests at 250 k Ω as follows:
 - **a.** Set the calibrator impedance to 1 M Ω .
 - **b.** Push the Utility front-panel button.
 - c. Push the Utility Page lower-bezel button.
 - d. Select Self Test.
 - e. Push the 250 k Ω Termination Verification lower-bezel button to set the oscilloscope input impedance to 250 k Ω .
 - f. Push the channel 1 side-bezel button to enable channel 1.

- g. Set the Vertical Scale to 100 mV/division.
- **h.** Measure the input resistance of the oscilloscope with the calibrator. Record this value in the test record.
- **9.** Repeat the tests at 50 Ω as follows:
 - **a.** Set the calibrator impedance to 50 Ω .
 - **b.** Set the oscilloscope impedance to 50 Ω as follows: Push the channel 1 button. Set the **Termination** (input impedance) to **50** Ω .
 - c. Repeat steps 5 through 7.
- **10.** Repeat the procedure for all remaining channels as follows:
 - **a.** Push the front-panel channel button to deselect the channel that you already tested.
 - **b.** Connect the calibrator to the input for the next channel to be tested.
 - c. Starting from step 4, repeat the procedure for each channel.

Check DC Balance

This test checks the DC balance. You do not need to connect any equipment (other than a 50Ω terminator) to the oscilloscope to perform this check.

- 1. Attach a 50 Ω terminator to the oscilloscope channel 1 input.
- 2. Push the front-panel **Default Setup** button.
- **3.** Set the input impedance to 50 Ω as follows:
 - **a.** Push the channel 1 button.
 - **b.** Set the **Termination** (input impedance) to **50** Ω .
- 4. Set the bandwidth to 20 MHz:
 - a. Push the lower-bezel Bandwidth button.
 - b. Push the side-bezel button for 20 MHz.
- 5. Set the Horizontal Scale to 1 ms per division.
- 6. Set the Acquisition mode to Average as follows:
 - a. Push the front-panel Acquire button.
 - b. Push the Average side-bezel button.
 - c. Make sure that the number of averages is 16.
- 7. Set the trigger source to AC line as follows:
 - a. Push the Trigger Menu front-panel button.
 - **b.** Select the AC Line trigger source.
- 8. Set the Vertical Scale to 1 mV per division.
- 9. Select the mean measurement (if not already selected) as follows:
 - a. Push the front-panel Wave Inspector Measure button.
 - **b.** Push the **Add Measurement** lower-bezel button.
 - c. Select the Mean measurement.
 - d. Push the OK Add Measurement side-bezel button.
 - e. View the Mean measurement value in the display.

- 10. Enter the mean value as the test result in the test record.
- 11. Repeat steps 8 and 10 for each vertical scale setting in the test record.
- **12.** Push the channel 1 button and then repeat steps 4, 8, and 10 for each bandwidth setting.

NOTE. The MDO4014B-3 does not have a 250 MHz BW limit setting.

- **13.** Repeat the tests at 1 $M\Omega$ impedance as follows:
 - **a.** Push the front-panel channel 1 button.
 - **b.** Set the **Termination** (input impedance) to $1M \Omega$.
 - c. Repeat steps 4 through 12.
- **14.** *Repeat the procedure for all remaining channels as follows:*
 - **a.** Deselect the channel that you already tested.
 - **b.** Move the 50 Ω terminator to the next channel input to be tested.
 - c. Starting from step 2, repeat the procedure for each channel.

Check DC Gain Accuracy

This test checks the DC gain accuracy.

1. Connect the oscilloscope to a DC voltage source. If using the Fluke 9500 calibrator, connect the calibrator head to the oscilloscope channel to test.

- 2. Push the front-panel **Default Setup** button. The Termination (input impedance) is set to 1 M Ω and channel 1 input is selected.
- **3.** Select 50 Ω input impedance as follows:
 - **a.** Set the calibrator to 50 Ω output impedance.
 - **b.** Push the channel 1 button.
 - c. Set the Termination (input impedance) to 50 Ω .
- 4. Set the bandwidth to 20 MHz as follows:
 - a. Push the lower-bezel Bandwidth button.
 - b. Push the 20 MHz side-bezel button to select the bandwidth.
- 5. Set the Acquisition mode to Average as follows:
 - **a.** Push the front-panel **Acquire** button.
 - **b.** Push the **Mode** lower-bezel button (if it is not already selected), and then push the **Average** side bezel button.
 - c. Make sure that the number of averages is 16.
- 6. Select the Mean measurement as follows:
 - a. Push the front-panel Wave Inspector Measure button.
 - **b.** Push the **Add Measurement** lower-bezel button (if it is not already selected).

- c. Select the Mean measurement.
- d. Push the OK Add Measurement side-bezel button.
- 7. Set the trigger source to AC line as follows:
 - a. Push the Trigger Menu button on the front panel.
 - b. Push the Source lower-bezel button.
 - c. Select the AC Line as the trigger source.
- 8. Set the Vertical Scale to 1 mV/division.
- **9.** *Record the negative-measured and positive-measured mean readings in the worksheet as follows:*
 - **a.** Set the DC Voltage Source to $V_{negative}$.
 - b. Push the front-panel Wave Inspector Measure button.
 - c. Push the More lower-bezel button.
 - d. Push Reset Statistics in the side-bezel menu.
 - e. Enter the mean reading in the worksheet as V_{negative-measured}. (See Table 16.)
 - f. Set the DC Voltage Source to V_{positive}
 - g. Push Reset Statistics in the side-bezel menu again.
 - h. Enter the mean reading in the worksheet as V_{positive-measured}

	Vertical							DC Gain
Termination	Scale	V _{diffExpected}	V _{negative}	V _{positive}	V _{negative-measured}	V _{positive-measured}	V_{diff}	Accuracy
50Ω	1 mV	9 mV	–4.5 mV	+4.5 mV				
	2 mV	18 mV	–9 mV	+9 mV				
	5 mV	45 mV	–22.5 mV	+22.5 mV				
	10 mV	90 mV	–45 mV	+45 mV				
	20 mV	180 mV	–90 mV	+90 mV				
	49.8 mV	448.2 mV	–224.1 mV	+224.1 mV				
	50 mV	450 mV	–225 mV	+225 mV				
	100 mV	900 mV	–450 mV	+450 mV				
	200 mV	1800 mV	–900 mV	+900 mV				
	500 mV	4900 mV	–2450 mV	+2450 mV				
	1 V	9000 mV	–4500 mV	+4500 mV				
1MΩ	1 mV	9 mV	–4.5 mV	+4.5 mV				
	2 mV	18 mV	–9 mV	+9 mV				
	5 mV	45 mV	–22.5 mV	+22.5 mV				
	10 mV	90 mV	–45 mV	+45 mV				
	20 mV	180 mV	–90 mV	+90 mV				
	50 mV	450 mV	–225 mV	+225 mV				
	63.5 mV	571.5 mV	–285.75 mV	+285.75 mV				
	100 mV	900 mV	–450 mV	+450 mV				
	200 mV	1800 mV	–900 mV	+900 mV				
	500 mV	4900 mV	–2450 mV	+2450 mV				
	1 V	9000 mV	–4500 mV	+4500 mV				
	5 V	45 V	–22.5 V	+22.5 V				

Table 16: Gain expected worksheet

10. Record Gain Accuracy:

a. Calculate V_{diff} as follows:

 $V_{diff} = |V_{negative-measured} - V_{positive-measured}|$

- **b.** Enter V_{diff} in the worksheet. (See Table 16.)
- c. Calculate Gain Accuracy as follows:

Gain Accuracy = $((V_{diff} - V_{diffExpected}) / V_{diffExpected}) * 100\%$

- d. Enter Gain Accuracy in the worksheet and in the test record.
- 11. Repeat steps 8 through 10 for each vertical scale setting in the test record.
- 12. Repeat steps 8 through 11 for each bandwidth setting in the test record.

- **13.** *Repeat the procedure for all remaining channels as follows:*
 - **a.** Push the front-panel button to deselect the channel that you have already tested.
 - **b.** Move the DC voltage source connection to the next channel input to be tested.
 - c. Starting from step 8, repeat the procedure for each channel.
- 14. Repeat tests at 1 M Ω impedance:
 - **a.** Set the calibrator to 1 M Ω output.
 - **b.** Push the front-panel channel 1 button.
 - c. Set the Termination to 1 M Ω .
 - d. Repeat steps 8 through 13.

Check DC Offset Accuracy

This test checks the DC offset accuracy.

1. Connect the oscilloscope to a DC voltage source. If you are using the Fluke 9500 calibrator as the DC voltage source, connect the calibrator head to the oscilloscope channel 1.

- 2. Push the front-panel **Default Setup** button.
- 3. Set the Acquisition mode to Average as follows:
 - **a.** Push the front-panel Acquire button.
 - **b.** Push the **Mode** lower-bezel button (if not already selected).
 - c. Push the Average side-bezel button.
 - d. Make sure that the number of averages is set to 16.
- 4. Set the trigger source to AC line:
 - a. Push the Trigger Menu front-panel button.
 - **b.** Push the **Source** lower-bezel button.
 - c. Select AC Line as the trigger source.
- 5. Set the Horizontal Scale to 1.00 ms per division.
- 6. Set the Bandwidth to 20 MHz as follows:
 - **a.** Push the channel 1 button.
 - b. Push the lower-bezel Bandwidth button.
 - c. Push the side-bezel button to set the bandwidth to 20 MHz.

- 7. Check that the vertical position is set to 0 divs:
 - a. Push the lower-bezel More button to select Position.
 - **b.** In the side-bezel button, check that the Vertical Position is set to 0 divs.
 - c. If it is not 0 divs, turn the Vertical **Position** knob to set the position to 0.
- **8.** Select 50 Ω impedance as follows:
 - **a.** Set the calibrator to 50 Ω output impedance (50 Ω source impedance).
 - **b.** Push the channel 1 button.
 - c. Set the Termination to 50 Ω .
- 9. Set the vertical Scale to 1 mV per division.
- **10.** Set the offset as follows:
 - a. Set the calibrator to 900 mV vertical offset.
 - b. Push the lower-bezel More button to select Offset.
 - c. Set the Vertical Offset to 900 mV, as shown in the test record.
- **11.** Select the Mean measurement (if not already selected) as follows:
 - a. Push the front-panel Wave Inspector Measure button.
 - b. Push the Add Measurement lower-bezel button.
 - c. Select the Mean measurement.
 - d. Push the OK Add Measurement side-bezel button.
- **12.** View the mean value in the measurement pane at the bottom of the display and enter it as the test result in the test record.
- **13.** Repeat step 12 for each vertical scale and offset setting combination shown in the test record.
- **14.** Repeat the tests at 1 $M\Omega$ impedance as follows:
 - **a.** Change the calibrator impedance to $1 \text{ M}\Omega$.
 - **b.** Push the front-panel channel 1 button.
 - c. Set the Termination (input impedance) to $1 \text{ M}\Omega$.
 - **d.** Repeat steps 9 through 13.
- **15.** *Repeat the procedure for all remaining channels as follows:*
 - a. Deselect the channel that you have already tested.
 - **b.** Move the DC voltage source connection to the next channel to be tested.
 - c. Starting from step 6, repeat the procedure for each channel.

Check Analog Bandwidth

- This test checks the bandwidth at 50 Ω and 1 M Ω for each channel.
- 1. Connect the output of the leveled sine wave generator (for example, Fluke 9500) to the oscilloscope channel 1 input as shown in the following illustration.

- 2. Push the front-panel **Default Setup** button.
- **3.** Select 50 Ω impedance as follows:
 - **a.** Set the calibrator to 50 Ω output impedance and to generate a sine wave.
 - **b.** Push the front-panel channel 1 button.
 - c. Set the Termination (input impedance) to 50 Ω .
- 4. Set the Acquisition mode to Sample as follows:
 - **a.** Push the front-panel Acquire button.
 - **b.** Push the **Mode** lower-bezel button (if not already selected).
 - c. Push the Sample side-bezel button.
- 5. Set the Vertical Scale to 1 mV per division.
- 6. For vertical scales less than 500 mV/div, adjust the signal source to at least 8 vertical divisions at the selected vertical scale with a set frequency of 50 kHz. For example, at 5 mV/div, use a ≥40 mV_{p-p} signal, at 2 mV/div, use a ≥16 mV_{p-p} signal, and at 1 mV/div, use a ≥8 mV_{p-p} signal. For vertical scales of 500 mV/div and 1 V/div adjust the signal source to 3 V_{p-p}. Use a sine wave for the signal source.
- 7. Set the Horizontal Scale to $10 \ \mu s$ per division.

- 8. Record the peak-to-peak measurement:
 - a. Push the front-panel Wave Inspector Measure button.
 - b. Select the Peak-to-Peak measurement.
 - c. Push the OK Add Measurement side-bezel button.
 - **d.** This will provide a mean V_{p-p} of the signal. Call this value V_{in-pp} .
 - e. Enter this value in the test record.
- 9. Set the Horizontal Scale to 4 ns per division.
- **10.** Adjust the signal source to the maximum bandwidth frequency for the bandwidth and model desired, as shown in the following worksheet.
- 11. Record the peak-to-peak measurement as follows:
 - **a.** View the mean V_{p-p} of the signal. Call this value V_{bw-pp} .
 - **b.** Enter this value in the test record.

NOTE. For more information on the contents of this worksheet, refer to the bandwidth specifications. (See Table 1 on page 1.)

Table 17: Maximum bandwidth frequency worksheet

Impedance	Vertical Scale	Maximum bandwidth	
50 Ω	5 mV/div – 1 V/div	1 GHz	
	2 mV/div – 4.98 mV/div	350 MHz	
	1 mV/div – 1.99 mV/div	175 MHz	

Model: MDO4104B-3, MDO4104B-6

Table 17: Maximum bandwidth frequency worksheet (cont.)

Impedance	Vertical Scale	Maximum bandwidth
1 MΩ	5 mV/div – 1 V/div	500 MHz ¹
	2 mV/div – 4.98 mV/div	350 MHz
	1 mV/div – 1.99 mV/div	175 MHz
Model: MDO4054B-3, M	MDO4054B-6	
	5 mV/div – 1 V/div	500 MHz
	2 mV/div – 4.98 mV/div	350 MHz
50 Ω	1 mV/div – 1.99 mV/div	175 MHz
Model: MDO4054B-3, M	MDO4054B-6	
1 MΩ	5 mV/div – 1 V/div	380 MHz
	2 mV/div – 4.98 mV/div	350 MHz
	1 mV/div – 1.99 mV/div	175 MHz
Model: MDO4034B-3		
50 Ω and 1 M Ω	2 mV/div – 1 V/div	350 MHz
	1 mV/div – 1.99 mV/div	175 MHz
Model: MDO4014B-3		
50 Ω and 1 M Ω	1 mV/div – 1 V/div	100 MHz

1 For MDO4104B-3 and MDO4104B-6 performance verification, use 500 MHz, rather than 1 GHz, on the 5 mV/div vertical scale.

12. Use the values of V_{bw-pp} and V_{in-pp} that you entered in the test record to calculate the *Gain* at bandwidth with the following equation:

 $Gain = V_{bw-pp} / V_{in-pp}$

To pass the performance measurement test, Gain should be ≥ 0.707 . Enter *Gain* in the test record.

- **13.** Repeat steps 5 through 12 for all combinations of Vertical Scale and Horizontal Scale settings listed in the test record.
- **14.** Repeat the tests at 1 $M\Omega$ impedance as follows:
 - **a.** Change the calibrator impedance to $1 \text{ M}\Omega$.
 - **b.** Push the front-panel channel 1 button.

- c. Set the Termination (input impedance) to 1 M Ω .
- **d.** Repeat steps 5 through 13.

15. *Repeat the procedure for all remaining channels as follows:*

- **a.** Push the front-panel button to deselect the channel that you have already tested.
- **b.** Move the calibrator connection to the next channel input to be tested.
- c. Starting from step 3, repeat the procedure for each input channel.

Check Random Noise, Sample Acquisition Mode

This test checks random noise. You do not need to connect any test equipment to the oscilloscope for this test.

- 1. Disconnect everything from the oscilloscope inputs.
- 2. Push the front-panel **Default Setup** button.
- 3. Set Gating to Off as follows:
 - a. Push the front-panel Wave Inspector Measure button.
 - b. Push the bottom-bezel More button to select Gating.
 - c. Push the side-bezel Off (Full Record) button.
- 4. Select the RMS measurement as follows:
 - a. Push the bottom-bezel Add Measurement button.
 - b. Select the RMS measurement.
 - c. Push the side-bezel OK Add Measurement button.
- 5. *Reset statistics as follows:*
 - a. Push the bottom-bezel More button to select Statistics.
 - b. Push the side-bezel Reset Statistics button.
- **6.** Read and make a note of the RMS Mean value. This is the Sampled Mean Value (SMV).
- 7. Set the Acquisition mode to Average as follows:
 - **a.** Push the front-panel **Acquire** button.
 - **b.** Push the bottom-bezel **Mode** button to display the Acquisition Mode menu (if it is not already selected).
 - c. Push the side-bezel Average button.
 - d. Make sure that the number of averages is set to 16.
- 8. Reset statistics as follows:
 - a. Push the front-panel Wave Inspector Measure button.
 - **b.** Push the bottom-bezel **More** button to select **Statistics** (if it is not already selected).
 - c. Push the side-bezel Reset Statistics button.
- **9.** Read and make a note of the RMS Mean value. This is the Averaged Mean Value (AMV).
- 10. Calculate the RMS noise (RMS noise = SMV AMV), and enter the calculated RMS noise in the test record.

- **11.** Set the Acquisition mode to Sample as follows:
 - **a.** Push the front-panel **Acquire** button.
 - b. Push the Mode lower-bezel button (if it is not already selected).
 - c. Push the Sample side-bezel button.
- **12.** Repeat the tests at 50 Ω as follows:
 - a. Push the front-panel channel 1 button.
 - **b.** Set the Termination (input impedance) to 50 Ω .
 - **c.** Push the front-panel Wave Inspector **Measure** button, and repeat steps 5 through 11.
- 13. Repeat the tests at 250 MHz bandwidth as follows:
 - a. Push the front-panel channel 1 button.
 - **b.** Set the **Termination** (input impedance) to 1 M Ω .
 - c. Push the bottom-bezel Bandwidth button.
 - d. Push the side-bezel 250 MHz button.
 - e. Push the front-panel Wave Inspector Measure button.
 - f. Repeat steps 5 through 12.
- 14. Repeat the tests at 20 MHz bandwidth as follows:
 - a. Push the front-panel channel 1 button.
 - **b.** Set the **Termination** (input impedance) to $1 \text{ M}\Omega$.
 - c. Push the bottom-bezel Bandwidth button.
 - d. Push the side-bezel 20 MHz button.
 - e. Push the front-panel Wave Inspector Measure button.
 - **f.** Repeat steps 5 through 12.
- **15.** Repeat the procedure for all remaining channels as follows:
 - **a.** Push the front-panel button to deselect the channel that you have already tested.
 - **b.** Starting from step 3, repeat the procedure for each input channel.

Check Reference Frequency Error (Cumulative)

This test checks the reference frequency error (time base).

1. Connect the output of a time mark generator to the oscilloscope channel 1 input using a 50 Ω cable, as shown in the following illustration.

- 2. Set the time mark generator period to 400 ms. Use a time mark waveform with a fast rising edge.
- 3. Push the front-panel Default Setup button.
- **4.** Set the impedance to 50 Ω as follows:
 - **a.** Push the front-panel channel 1 button.
 - **b.** Set the **Termination** to **50** Ω .
- 5. If it is adjustable, set the time mark amplitude to approximately $2 V_{p-p}$.
- 6. Set the Vertical Scale to 500 mV per division.
- 7. Set the Horizontal Scale to 20 ms per division.
- 8. Adjust the Vertical Position knob to center the time mark signal on the screen.
- 9. Set the trigger Mode to Normal. Do this by pushing Trigger on the front panel, pushing Mode, Auto, & Holdoff on the bottom menu, and selecting Normal from the side menu.
- 10. Adjust the Trigger Level as necessary for a triggered display.
- 11. Set the delay to 400 ms as follows:
 - a. Push the front-panel Acquire button.
 - **b.** Push the lower-bezel **Delay** button to turn delay on (if it is not already on).
 - c. Turn the Horizontal **Position** knob counter-clockwise to set the delay to exactly **400 ms**.

- 12. Set the Horizontal Scale to 200 ns/div.
- 13. Compare the rising edge of the marker with the center horizontal graticule line. The rising edge should be within ± 640 ns of center graticule. Enter the deviation in the test record.

NOTE. 640 ns from graticule center corresponds to $a \pm 1.6 \times 10^{-6}$ time base error.

Check Delta Time Measurement Accuracy

This test checks the Delta-time measurement accuracy (DTA) for a given instrument setting and input signal.

Connect a 50 Ω coaxial cable from the signal source to the oscilloscope channel 1, as shown in the following illustration.

- 2. Push the oscilloscope front-panel **Default Setup** button.
- **3.** Select 50 Ω impedance as follows:
 - **a.** Set the sine wave generator output impedance to 50 Ω .
 - **b.** Push the channel 1 button to display the channel 1 menu.
 - c. Set the **Termination** (input impedance) to 50 Ω .
- 4. Set the trigger source to channel 1 as follows:
 - a. Push the Trigger Menu button.
 - **b.** Push the **Source** lower-bezel button (if not already selected).
 - c. Select channel 1 (if not already selected).
- 5. Set the Mean & St Dev Samples to 100 as follows:
 - a. Push the Wave Inspector Measure button.
 - b. Push the bottom-bezel Add Measurement button.
 - c. Select the Delay measurement.
 - d. Push the side-bezel Configure Delay button.
 - e. Select the falling Delay Edge.
 - f. Set the Delay Edge Occurrence to Last.
 - g. Push the side-bezel OK Add Measurement button.

- h. Push the bottom-bezel More button to select Statistics.
- i. Set the Mean & Std Dev Samples to 100, as shown in the side menu.
- 6. Set the signal source to 240 MHz and 40 mV as shown in the test record.

NOTE. To provide consistent results, set the signal source frequency such that the zero crossing does not occur at the beginning or end of the record.

- 7. Set the Horizontal Scale to 4 ns per division.
- 8. Set the Vertical Scale to 5 mV per division.
- 9. Record the Std Dev value as follows:
 - a. Push the side-bezel Reset Statistics button.
 - **b.** Push the **Menu** button to remove the side-bezel menu.
 - **c.** Wait five or 10 seconds for the oscilloscope to acquire all of the samples.
 - d. Verify that the Std Dev is less than the upper limit shown in the test record.
 - e. Enter the reading in the test record.
- 10. Repeat steps 6 through 9 for each setting combination shown in the test record.
- **11.** *Repeat the procedure for all remaining channels as follows:*
 - **a.** Push the front-panel button to deselect the channel that you have already tested.
 - **b.** Connect the signal source to the input for the next channel to be tested.
 - c. Repeat the procedure from step 3 until all channels have been tested.

Check Digital Threshold Accuracy

This test checks the threshold accuracy of the digital channels. This procedure applies to digital channels D0 through D15, and to threshold values of 0 V and +4 V.

- 1. Connect the P6616 digital probe to the oscilloscope, as shown in the following illustration:
 - a. Connect the DC voltage source to the digital channel D0.
 - **b.** If you are using the Fluke 9500 calibrator as the DC voltage source, connect the calibrator head to the digital channel D0, using the BNC-to-0.1 inch pin adapter listed in the Required Equipment table. (See Table 15 on page 30.)

 \triangle

- 2. Turn on the digital channels as follows:
 - a. Push the front-panel **D15-D0** button.
 - b. Push the D15-D0 On/Off lower-bezel button.
 - c. Push the **Turn On D7 D0** and the **Turn On D15 D8** side-bezel buttons to turn these channels On.
 - d. Make sure that the side-bezel Display selection is On.
 - e. The instrument will display the 16 digital channels.

- **3.** Set the channel threshold to 0 V as follows:
 - a. Push the Thresholds lower-bezel button (if not already selected).
 - **b.** Select channel **D0**.
 - **c.** Set the value to **0.00 V** (0 V/div), using the coarse and fine settings of the knob as necessary to set the exact value.
- 4. Push the Menu button and then set the Horizontal Scale to $4\mu s$ per division.
- 5. Set the Trigger source as follows:
 - a. Push the front-panel Trigger Menu button.
 - **b.** Push the **Source** lower-bezel button (if not already selected).
 - **c.** Select channel D0.
- 6. Set the trigger Mode to Normal. Do this by pushing Trigger on the front panel, pushing Mode, Auto, & Holdoff on the bottom menu, and selecting Normal from the side menu.
- Set the DC voltage source (Vs) to -400 mV. Wait 3 seconds. Check the logic level of the channel D0 signal display. If it is at a static logic high, change the DC voltage source Vs to -500 mV.
- 8. Increment Vs by +10 mV. Wait 3 seconds and check the logic level of the channel D0 signal display. If it is a static logic high, record the Vs value as in the 0 V row of the test record.

If the signal level is a logic low or is alternating between high and low, repeat this step (increment Vs by 10 mV, wait 3 seconds, and check for a static logic high) until a value for V_{s} is found.

- 9. Click the lower-bezel Slope button to change the slope to Falling.
- **10.** Set the DC voltage source (Vs) to +400 mV. Wait 3 seconds. Check the logic level of the channel D0 signal display.

If it is at a static logic low, change the DC voltage source Vs to +500 mV.

11. Reduce Vs by -10 mV. Wait 3 seconds and check the logic level of the channel D0 signal display. If it is a static logic low, record the Vs value as V_{s+} in the 0 V row of the test record.

If the signal level is a logic high or is alternating between high and low, repeat this step (decrement Vs by 10 mV, wait 3 seconds, and check for a static logic low) until a value for V_{s+} is found.

12. Find the average using this formula: $V_{sAvg} = (V_{s-} + V_{s+})/2$. Record the average as the test result in the test record.

Compare the test result to the limits. If the result is between the limits, continue with the procedure to test the channel at the +4 V threshold value.

- **13.** Set the channel threshold to +4 V as follows:
 - a. Push the front-panel **D15-D0** button.
 - **b.** Push the **Thresholds** lower-bezel button.
 - c. Select channel **D0**.
 - d. Push the Fine front-panel button to turn off the fine adjustment.
 - e. Set the value near 4.00 V (4 V/div).
 - f. Push the Fine button to turn the fine adjustment on again.
 - g. Set the value to exactly 4.00 V (4 V/div).
- **14.** Set the DC voltage source (Vs) to +4.4 V. Wait 3 seconds. Check the logic level of the channel D0 signal display.
- 15. Decrement Vs by -10 mV. Wait 3 seconds and check the logic level of the channel D0 signal display. If it is a static logic low, record the Vs value as V_{s+} in the 4 V row of the test record.

If the signal level is a logic high or is alternating between high and low, repeat this step (decrement Vs by 10 mV, wait 3 seconds, and check for a static logic low) until a value for V_{s+} is found.

- 16. Push the front-panel Trigger Menu button.
- 17. Click the lower-bezel Slope button to change the slope to Rising.
- **18.** Set the DC voltage source (Vs) to +3.6 V. Wait 3 seconds. Check the logic level of the channel D0 signal display.

If the signal level is a static logic high, change the DC voltage source Vs to +3.5 V.

19. Increment Vs by +10 mV. Wait 3 seconds and check the logic level of the channel D0 signal display. If it is a static logic high, record the Vs value as V_s in the 4 V row of the test record.

If the signal level is a logic low or is alternating between high and low, repeat this step (increment Vs by 10 mV, wait 3 seconds, and check for a static logic high) until a value for V_s is found.

20. Find the average using this formula: $V_{sAvg} = (V_{s-} + V_{s+})/2$. Record the average as the test result in the test record.

Compare the test result to the limits. If the result is between the limits, the channel passes the test.

- **21.** Repeat the procedure for all remaining digital channels as follows:
 - **a.** Push the D15–D0 button.
 - **b.** Move the DC voltage source connection, including the ground lead, to the next digital channel to be tested.
 - **c.** Starting from step 3, repeat the procedure until all 16 digital channels have been tested.

Check Phase Noise

This step checks the phase noise measured at 10 kHz, 100 kHz, and 1 MHz offsets from a 1 GHz CW signal.

WARNING. The generator is capable of providing dangerous voltages. Be sure to set the generator to off or 0 volts before connecting, disconnecting, and/or moving the test hookup during the performance of this procedure.

NOTE. Do not use an N connector with the Anritsu generator. Equipment damage will result if an N connector is used.

1. Connect the output of a signal generator, such as the Anritsu generator, to the oscilloscope RF Input, using a 50 Ω SMA coaxial cable (see the following figure).

- 2. Set the generator for a 1 GHz, 0 dBm signal.
- 3. Initial oscilloscope setup:
 - a. Push the front-panel Default Setup button.
 - **b.** Turn Channel 1 off.
 - **c.** Push the front-panel **RF** button to turn on the RF channel and display the bottom-bezel RF menu.
 - **d.** *Turn on the average trace as follows:*
 - Push the bottom-bezel **Spectrum Traces** button.
 - = Push the side-bezel Average button to set the Average Trace to On.
 - Push the side-bezel Normal button twice to set the Normal Trace to Off.

- e. Turn on average detection as follows:
 - Push the bottom-bezel **Detection Method** button.
 - Push the side-bezel button to set the detection method to Manual.
 - Push the side-bezel Average Trace button.
 - Set the detection method to Average.
- f. Set the center frequency to 1 GHz as follows:
 - Push the front-panel Freq/Span button.
 - Push the side-bezel Center Frequency button.
 - = Set the center frequency to 1 GHz.
- g. Set the Span to 50.0 kHz.
- h. Center the signal on the display. To do this:
 - Push the Markers front-panel button.
 - = Push the **R To Center** side-bezel button.
- i. Set the resolution bandwidth (RBW) to 250 Hz as follows:
 - = Push the front-panel **BW** button.
 - Push the side-bezel **RBW Mode** button to set the RBW mode to Manual.
 - Set the resolution bandwidth to 250 Hz.
- j. Set the markers to delta as follows:
 - Push the front-panel Markers button.
 - Push the side-bezel Manual Markers button to set the manual markers to On.
 - Push the side-bezel **Readout** button to select **Delta**.
- **4.** Check at 10 kHz:
 - a. Push the front-panel Markers button.
 - **b.** Set marker a to the signal peak.
 - c. Set marker b to 10 kHz offset, as shown in the following figure.

- **d.** Note the bottom value in the marker b readout (in dBc/Hz) and enter it in the test record. Make sure that the instrument meets the specification given in the test record.
- 5. Repeat the check at 100 kHz:
 - **a.** Change the span to 500 kHz.
 - **b.** Change the resolution bandwidth (RBW) to 1 kHz.
 - c. Set marker a to the signal peak.
 - d. Set marker b to 100 kHz offset.
 - e. Note the bottom value in the marker b readout (in dBc/Hz) and enter it in the test record. Make sure that the instrument meets the specification given in the test record.
- 6. Repeat the check at 1 MHz:
 - **a.** Change the span to 5 MHz.
 - **b.** Change the resolution bandwidth (RBW) to 50 kHz.
 - c. Set marker a to the signal peak.
 - **d.** Set marker b to 1 MHz offset.
 - e. Note the bottom value in the marker b readout (in dBc/Hz) and enter it in the test record. Make sure that the instrument meets the specification given in the test record.

Check Displayed Average Noise Level (DANL)

This test does not require an input signal.

The test measures the average internal noise level of the instrument, ignoring residual spurs.

It checks six ranges:

- 9 kHz to 50 kHz (all models)
- 50 kHz to 5 MHz (all models)
- 5 MHz to 400 MHz (all models)
- 400 MHz to 3 GHz (all models)
- 3 GHz to 4 GHz (MDO4104B-6 and MDO4054B-6 only)
- 4 GHz to 6 GHz (MDO4104B-6 and MDO4054B-6 only)

NOTE. If the specific measurement frequency results in measuring a residual spur that is visible above the noise level, the DANL specification applies not to the spur but to the noise level on either side of the spur. Please refer to the Spurious Response specifications. (See page 20.)
- **1.** *Initial oscilloscope setup:*
 - **a.** Terminate the RF input in 50 Ω and make sure that no input signal is applied.
 - b. Push the front-panel Default Setup button.
 - c. Turn channel 1 off.
 - **d.** Push the front-panel **RF** button to turn on the RF channel and display the bottom-bezel RF menu.
 - e. Turn on the average trace as follows:
 - Push the bottom-bezel Spectrum Traces button.
 - = Push the side-bezel Average button to set average trace to **On**.
 - Set the side-bezel Normal button to Off.
 - f. Turn on average detection as follows:
 - Push the bottom-bezel **Detection Method** button.
 - = Push the side-bezel button to set the detection method to Manual.
 - = Push the side-bezel Average Trace button.
 - Set the detection method to Average.
 - **g.** Set the reference level to -25.0 dBm as follows:
 - Push the front-panel Ampl button.
 - Push the side-bezel **Ref Level** button.
 - = Set the Ref Level to -25.0 dBm.
- 2. Check from 9 kHz to 50 kHz (all models):
 - **a.** Set the start and stop frequencies as follows:
 - = Push the front-panel **Freq/Span** button.
 - Push the side-bezel Stop button.
 - Set the stop frequency to 50 kHz.
 - = Push the side-bezel **Start** button.

- = Set the start frequency to 9 kHz.
- Wait 60 seconds. Due to the low RBW for this span, it takes a little while for the instrument to compute a valid average.
- **b.** Set Manual Marker (a) at the frequency with the highest noise level as follows:
 - Push the **Markers** front-panel button.
 - Push the Manual Markers side-bezel button to turn on the markers.
 - Turn Multipurpose knob a to move the marker to the frequency at the noise threshold (highest point of noise), ignoring any spurs. See the following figure.

- **c.** Record the noise threshold value (in dBm/Hz) in the test record and make sure that the instrument meets the specification.
- **3.** Check from 50 kHz to 5 MHz (all models):
 - **a.** Set the start and stop frequency as follows:
 - = Push the front-panel **Freq/Span** button.
 - Push the side-bezel **Stop** button.
 - = Set the stop frequency to 5 MHz.

- = Push the side-bezel **Start** button.
- Set the start frequency to 50 kHz.
- **b.** Set Manual Marker (a) at the frequency with the highest noise level as follows:
 - = Push the **Markers** front-panel button.
 - Push the Manual Markers side-bezel button to turn on the markers.
 - Turn Multipurpose knob a to move the marker to the frequency at the noise threshold (highest point of noise), ignoring any spurs. See the following figure.

- **c.** Record the noise threshold value (in dBm/Hz) in the test record and compare it to the instrument specification.
- 4. Check from 5 MHz to 400 MHz (all models):
 - **a.** Set the stop frequency to 400 MHz.
 - **b.** Set the start frequency to 5 MHz.
 - **c.** Set Manual Marker (a) at the frequency of the highest noise, ignoring any spurs.
 - **d.** *Set the center frequency as follows:* Push the **R To Center** side-bezel button.

- e. Set the span to 10 MHz as follows:
 - = Push the side-bezel **Span** button.
 - = Set the Span to 10 MHz.
- **f.** Record the highest noise value (in dBm/Hz) in the test record and compare it to the instrument specification.
- 5. Check from 400 MHz to 3 GHz (all models):
 - **a.** Set the stop frequency to 3 GHz.
 - **b.** Set the start frequency to 400 MHz.
 - **c.** Set Manual Marker (a) at the frequency of the highest noise, ignoring any spurs.
 - **d.** Set the center frequency as follows: Push the **R To Center** side-bezel button.
 - e. Set the span to 10 MHz as follows:
 - = Push the side-bezel **Span** button.
 - = Set the Span to 10 MHz.
 - **f.** Record the highest noise value (in dBm/Hz) in the test record and compare it to the instrument specification.
- 6. Check from 3 GHz to 4 GHz (MDO4104B-6 and MDO4054B-6 only):
 - **a.** Set the stop frequency to 4 GHz.
 - **b.** Set the start frequency to 3 GHz.
 - **c.** Set Manual Marker (a) at the frequency of the highest noise, ignoring any spurs.
 - **d.** Set the center frequency as follows: Push the **R To Center** side-bezel button.
 - e. Set the span to 10 MHz as follows:
 - Push the side-bezel Span button.
 - = Set the Span to 10 MHz.
 - **f.** Record the highest noise value (in dBm/Hz) in the test record and compare it to the instrument specification.
- 7. Check from 4 GHz to 6 GHz (MDO4104B-6 and MDO4054B-6 only):
 - **a.** Set the stop frequency to 6 GHz.
 - **b.** Set the start frequency to 4 GHz.
 - **c.** Set Manual Marker (a) at the frequency of the highest noise, ignoring any spurs.

- **d.** *Set the center frequency as follows:* Push the **R To Center** side-bezel button.
- e. Set the span to 10 MHz as follows:
 - = Push the side-bezel **Span** button.
 - = Set the Span to 10 MHz.
- **f.** Record the highest noise value (in dBm/Hz) in the test record and compare it to the instrument specification.

Check Absolute Amplitude Accuracy

This test checks the absolute amplitude accuracy at three reference levels: +10 dBm, 0 dBm, and -15 dBm. This check uses the generator to step frequencies across four spans to verify that the instrument meets the specification.

For this check, you will need the following equipment, which is described in the Required Equipment table. (See Table 15 on page 30.)

- Generator, such as the Anritsu generator
- Power meter
- Power head
- Power splitter
- Adapters and cables as shown in the following figure.

WARNING. The generator is capable of providing dangerous voltages. Be sure to set the generator to off or 0 volts before connecting, disconnecting, and/or moving the test hookup during the performance of this procedure.

NOTE. Use an SMA connector with the Anritsu generator. Equipment damage will result if an N connector is used.

1. Connect the equipment as shown in the following figure.

- 2. Initial oscilloscope setup:
 - a. Push the front-panel **Default Setup** button.
 - **b.** Turn Channel 1 off.
 - c. Push the front-panel **RF** button to turn on the RF channel.

- **3.** *Check at* +10 *dBm:*
 - a. Set the reference level to +10 dBm as follows: Push the front-panel
 Ampl button. Push the side-bezel Ref Level button. Set the Ref Level to +10 dBm.
 - **b.** Set the frequency range as follows:
 - = Push the front-panel **Freq/Span** button.
 - Push the side-bezel Center Frequency button.
 - Set the center frequency to 50 kHz.
 - Push the side-bezel **Span** button.
 - Set the span to 100 kHz.
 - c. Set the generator to provide a 50 kHz, +10 dBm signal.
 - **d.** Step the generator and MDO Center Frequency, in 100 kHz intervals, through frequencies from 50 kHz to 950 kHz. At each interval, determine the test result as follows:
 - Note the reading on the power meter and the readout for the Reference marker on the oscilloscope.
 - Calculate the difference between the two readings. This is the test result.
 - e. In the test record, enter the greatest result determined within this frequency range (50 kHz to 950 kHz).
 - f. Change the center frequency and span as follows:
 - At each interval ensure the MDO4000B center frequency and generator output are set to the same frequency.
 - Change the center frequency to 1 MHz.
 - Change the span to 2 MHz.
 - **g.** Set the generator to provide a 1 MHz, +10 dBm signal.
 - **h.** Step the generator and MDO Center Frequency, in 1 MHz intervals, through frequencies from 1 MHz to 9 MHz. At each interval, determine the test result as follows:
 - Note the reading on the power meter and the readout for the Reference marker on the oscilloscope.
 - Calculate the difference between the two readings. This is the test result.
 - i. In the test record, enter the greatest result determined within this frequency range (1 MHz to 9 MHz).

- j. Change the center frequency and span as follows:
 - Change the center frequency to 10 MHz.
 - Change the span to 20 MHz.
- **k.** Set the generator to provide a 10 MHz, +10 dBm signal.
- **I.** Step the generator and MDO4000B Center Frequency, in 10 MHz intervals, through frequencies from 10 MHz to 90 MHz. At each interval ensure the MDO4000B center frequency and generator output are set to the same frequency. At each interval, determine the test result as follows:
 - Note the reading on the power meter and the readout for the Reference marker on the oscilloscope.
 - Calculate the difference between the two readings. This is the test result.
- **m.** In the test record, enter the greatest result determined within this frequency range (10 MHz to 90 MHz).
- **n.** Change the center frequency and span as follows:
 - Change the center frequency to 100 MHz.
 - Change the span to 50 MHz.
- o. Set the generator to provide a 100 MHz, +10 dBm signal.
- **p.** Step the generator, in 100 MHz intervals, through frequencies from 100 MHz to 2.9 GHz. At each interval, determine the test result as follows:
 - At each interval ensure the MDO center frequency and generator output are set to the same frequency.
 - Note the reading on the power meter and the readout for the Reference marker on the oscilloscope.
 - Calculate the difference between the two readings. This is the test result.
- **q.** In the test record, enter the greatest result determined within this frequency range (100 MHz to 3 GHz).

For MDO4104B-6 and MDO4054B-6 Only (steps r through s)

- **r.** Step the generator, in 100 MHz intervals, through frequencies from 3.1 GHz to 5.9 GHz. At each interval, determine the test result as follows:
 - At each interval ensure the MDO center frequency and generator output are set to the same frequency
 - Note the reading on the power meter and the readout for the Reference marker on the oscilloscope.
 - Calculate the difference between the two readings. This is the test result.
- **s.** In the test record, enter the greatest result determined within this frequency range (3.1 GHz to 6 GHz).
- **4.** *Check at 0 dBm:*
 - **a.** Set the reference level to 0 dBm as follows: Push the front-panel **Ampl** button. Push the side-bezel **Ref Level** button. Set the Ref Level to 0 dBm.
 - **b.** Set the generator to provide a 1 MHz, 0 dBm signal.
 - **c.** Repeat step 3 while keeping the generator output level and the instrument reference level set to 0 dBm.
- **5.** Check at –15 dBm:
 - **a.** Set the reference level to -15 dBm as follows: Push the front-panel **Ampl** button. Push the side-bezel **Ref Level** button. Set the Ref Level to -15 dBm.
 - **b.** Set the generator to provide a 1 MHz, -15 dBm signal.
 - c. Repeat step 3 while keeping the generator output level and the instrument reference level set to -15 dBm.

Check Third Order Intermodulation Distortion

This check verifies that the oscilloscope meets the specification for Third Order Intermodulation Distortion.

WARNING. The generators are capable of providing dangerous voltages. Be sure to set the generators to off or 0 volts before connecting, disconnecting, and/or moving the test hookup during the performance of this procedure.

Required equipment. You will need the following equipment for this check. All items are shown in the required equipment list. (See Table 15.)

- Two generators. Each generator must be capable of providing signals up to 6 GHz. You can use two of the same model generator, or two different generators, depending on what you have available. Example generators are the Anritsu MG3691C and the Rohde & Schwarz SMT06.
- A power combiner (hybrid coupler), such as the Krytar 3005070.
- Three SMA cables. Use cables that will connect to your generators' outputs.

- 1. Connect the equipment as follows. (See the following figure.)
 - Connect an SMA cable from the RF input on the oscilloscope to the power combiner connector labeled "IN."
 - Connect an SMA cable from the RF output of a generator to a –3 dB input on the power combiner.
 - Connect an SMA cable from the RF output of the other generator to the other -3 dB input on the power combiner.

- **2.** Set generator 1 to provide a 2.735 GHz, -10 dBm signal at the RF input of the oscilloscope.
- **3.** Set generator 2 to provide a 2.755 GHz, -10 dBm signal at the RF input of the oscilloscope.
- 4. Initial oscilloscope setup:
 - a. Push the front-panel Default Setup button.
 - b. Turn channel 1 off.
 - **c.** Push the front-panel **RF** button to turn on the RF channel and show the bottom-bezel menu.
 - **d.** *Turn on the average trace as follows:* Push the bottom-bezel **Spectrum Traces** button. Push the side-bezel **Average** button to set the Average Traces to On. Push the side-bezel **Normal** button twice to set the Normal Trace to **Off**.

- e. Set the center frequency as follows: Push the front-panel Freq/Span button. Push the side-bezel Center Frequency button. Set the center frequency to 2.745 GHz.
- **f.** *Set the span as follows:* Push the side-bezel **Span** button. Set the Span to 100 MHz.
- **g.** *Set the resolution bandwidth (RBW) as follows:* Push the front-panel **BW** button. Push the side-bezel **RBW Mode** button to select Manual. Push the side-bezel **RBW** button. Set the resolution bandwidth to 100 kHz.
- h. Push the front-panel Markers button.
- i. Push the side-bezel **Manual Markers** button to set the manual markers to On.
- j. Push the side-bezel **Readout** button to select **Delta**.
- 5. Check at 2.745 GHz as follows (all models):
 - **a.** Set marker a to the peak of the generator 1 signal (2.735 GHz).
 - **b.** Check for peaks at two frequencies:
 - = 20 MHz lower frequency than the generator 1 signal
 - = 20 MHz higher frequency than the generator 2 signal
 - c. Set marker b to each of these two peaks in turn. See the following figure.

- **d.** Record the values in dBc units for both peaks in the test record and verify that the values are below the specified limit.
- 6. Check at 4.5 GHz as follows (MDO4104B-6 and MDO4054B-6 only):
 - **a.** Set generator 1 to provide a 4.49 GHz, -10 dBm signal at the RF input of the oscilloscope.
 - **b.** Set generator 2 to provide a 4.510 GHz, -10 dBm signal at the RF input of the oscilloscope.
 - c. Set the Center Frequency to 4.5 GHz.
 - d. Set marker a to the peak of the generator 1 signal (4.49 GHz).
 - e. Check for peaks at two frequencies:
 - = 20 MHz lower frequency than the generator 1 signal
 - = 20 MHz higher frequency than the generator 2 signal
 - f. Set marker b to each of these two peaks in turn.
 - **g.** Record the values in dBc units for both peaks in the test record and verify that the values are below the specified limit.

Check Residual Spurious Response

This check verifies that the oscilloscope meets the specification for residual spurious response. This check does not require an input signal.

- 1. Terminate the oscilloscope RF input in 50 Ω and make sure that no input signal is applied.
- 2. Initial oscilloscope setup:
 - a. Push the front-panel **Default Setup** button.
 - b. Turn Channel 1 off.
 - c. Push the front-panel **RF** button to turn on the RF channel.
 - **d.** Set the reference level to -25 dBm as follows:
 - Push the front-panel **Ampl** button.
 - Push the side-bezel Ref Level button.
 - Set the Ref Level to -25 dBm.
 - e. Turn on Average spectrum traces, set to 32 averages and turn off Normal spectrum traces as follows:
 - Press the **RF** button.
 - Push the Spectrum Traces bottom-bezel button.
 - Push the Average side-bezel button.
 - Set averaging to 32.
 - Push the **Normal** side-bezel button until it is turned off.
- 3. Check in the range of 9 kHz to 50 kHz as follows:
 - **a.** Push the front-panel **Freq/Span** button. Push the side-bezel **Start** button. Set the start frequency to 9 kHz. Push the side-bezel **Stop** button. Set the stop frequency to 50 kHz.
 - **b.** Set the resolution bandwidth (RBW) to 300 Hz as follows:
 - = Push the front-panel **BW** button.
 - Push the side-bezel **RBW Mode** button to select Manual.
 - Push the side-bezel **RBW** button.
 - Set the resolution bandwidth to 300 Hz.
 - **c.** Observe any spurs that are greater than -85 dBm and note them in the test record.

- 4. Check in the range of 50 kHz to 3 GHz as follows:
 - **a.** Push the front-panel **Freq/Span** button. Push the side-bezel **Start** button. Set the start frequency to 50 kHz. Push the side-bezel **Stop** button. Set the stop frequency to 3 GHz.
 - **b.** Set the resolution bandwidth (RBW) to 50 kHz as follows:
 - = Push the front-panel **BW** button.
 - = Push the side-bezel **RBW Mode** button to select Manual.
 - Push the side-bezel **RBW** button.
 - Set the resolution bandwidth to 50 kHz.
 - **c.** Excluding the spur at 2.5 GHz, observe any spurs that are greater than -85 dBm and note them in the test record.
 - **d.** If the spur at 2.5 GHz is greater than -78 dBm, note it in the test record.
- **5.** For MDO4XX4B-6 instruments: Check in the range of 2.75 GHz to 4.5 GHz as follows:
 - **a.** Change the oscilloscope start frequency to 2.75 GHz and the stop frequency to 4.5 GHz.
 - **b.** Excluding the spur at 3.75 GHz, observe any spurs that are greater than -85 dBm and note them in the test record.
 - **c.** If the spur at 3.75 GHz is greater than –78 dBm, note it in the test record.
- **6.** For MDO4XX4B-6 instruments: Check in the range of 3.5 GHz to 6.0 GHz as follows:
 - **a.** Change the oscilloscope start frequency to 3.5 GHz and the stop frequency to 6.0 GHz.
 - **b.** Excluding any spurs at 4 GHz and 5 GHz, observe any spurs that are greater than -85 dBm and note them in the test record.
 - **c.** If the spur at 4 GHz or 5 GHz is greater than -78 dBm, note it in the test record.

Check Crosstalk to RF Channel from Analog Channels

This check verifies that the oscilloscope meets the specification for crosstalk from an analog channel to the RF channel.

WARNING. The generator is capable of providing dangerous voltages. Be sure to set the generator to off or 0 volts before connecting, disconnecting, and/or moving the test hookup during the performance of this procedure.

- 1. Terminate the oscilloscope RF input in 50 Ω .
- 2. Connect the output of a signal generator to all four analog inputs on the oscilloscope. If you are using the Fluke 9500 oscilloscope calibrator as the signal generator, you can connect the active heads to all four analog inputs at once (Ch 1, Ch 2, Ch 3, and Ch 4). If your generator does not have the capacity to hook up all four channels at once, you can move the connector to each channel in turn.

- 3. Set the generator to provide a 105 MHz, 633 mV_{p-p} (0 dBm) sine wave signal.
- 4. Initial oscilloscope setup:
 - a. Push the front-panel **Default Setup** button.
 - **b.** Select all analog channels (CH1, CH2, CH3, and CH4), and in the vertical menu, push **Termination** to select **50** Ω impedance.
 - **c.** Push the front-panel **RF** button to turn on the RF channel and display the bottom-bezel menu.
 - *Turn on the average trace as follows:* Push the bottom-bezel Spectrum Traces button. Push the side-bezel Average button to set the Average Traces to On, with 16 averages. Push the side-bezel Normal button twice to turn the Normal Trace Off.
 - e. *Set the span to 50 MHz as follows:* Push the front-panel Freq/Span button. Push the side-bezel Span button. Set the Span to 50 MHz.
- 5. Set the generator to provide the signal to channel 1.

- 6. Measure the Channel 1 crosstalk at 105 MHz as follows:
 - **a.** Set the center frequency to 105 MHz as follows: Push the front-panel **Freq/Span** button. Push the side-bezel **Center Frequency** button. Set the center frequency to 105 MHz.
 - **b.** Use a marker to measure the amplitude of the Channel 1 signal at the center frequency. Be sure to ignore spurs that are unrelated to this measurement. See the following figure.

- **c.** Record the amplitude of the Channel 1 signal in the test record. Make sure that it is within the specified limit.
- 7. Repeat step 6, changing the generator signal frequency and the oscilloscope Center Frequency settings as indicated in the test record. Check all listed frequencies and record the results in the test record.
- 8. Repeat steps 5 through 7 to check crosstalk on channels 2-4.

Check Trigger Out

This test checks the Trigger Output.

1. Connect the Trigger Out signal from the rear of the instrument to the channel 1 input using a 50 Ω cable, as shown in the following illustration.

- 2. Push the front-panel Default Setup button.
- 3. Set the Vertical Scale to 1 V per division.
- **4.** Record the Low and High measurements at 1 $M\Omega$ as follows:
 - a. Push the front-panel Wave Inspector Measure button.
 - b. Push the Add Measurement lower-bezel button.
 - c. Select the Low measurement.
 - d. Push the OK Add Measurement side-bezel button.
 - e. Enter the Low measurement reading in the test record.
 - f. Select the High measurement.
 - g. Push the OK Add Measurement side-bezel button.
 - h. Enter the High measurement reading in the test record.
- 5. Record the Low and High measurements at 50 Ω as follows:
 - a. Push the front-panel channel 1 button.
 - **b.** Set the **Termination** (input impedance) to **50** Ω .
 - c. Repeat step 4.

When the MDO4000B Has a TPA-N-PRE Attached to its RF Input

The following instructions apply to situations where the MDO4000B has a TPA-N-PRE preamplifier attached to its RF input

Perform the following functional check to ensure proper operation of the TPA-N-PRE/MDO4000B system.

For this check, you will need the following equipment, which is described in the Required Equipment table. (See Table 15 on page 30.)

- Generator, such as the Anritsu generator
- Power meter
- Power head
- Power splitter
- Adapters and cables as shown in the following figure.

WARNING. The generator is capable of providing dangerous voltages. Be sure to set the generator to off or 0 volts before connecting, disconnecting, and/or moving the test hookup during the performance of this procedure.

NOTE. Use an SMA connector with the Anritsu generator. Equipment damage will result if an N connector is used.

1. Connect the equipment as shown in the following figure.

- 2. Initial oscilloscope setup:
 - a. Push the front-panel **Default Setup** button.
 - **b.** Turn Channel 1 off.

- c. Push the front-panel **RF** button to turn on the RF channel.
- **d.** Push the Menu button on the TPA-N-PRE preamplifier. On the MDO4000B, for the Mode, select **Auto**.
- 3. Check at 1.7 GHz
 - a. Set the reference level to -25 dBm as follows: Push the front-panel Ampl button. Push the side-bezel Ref Level button. Set the Ref Level to -25 dBm.
 - **b.** Set the frequency range as follows:
 - Push the front-panel **Freq/Span** button.
 - Push the side-bezel Center Frequency button.
 - Set the center frequency to 1.7 GHz.
 - Push the side-bezel Span button.
 - = Set the span to 50 MHz.
 - **c.** Set the generator to provide a 1.7 GHz, -30 dBm signal.
 - **d.** Note the reading on the power meter and the readout for the Reference marker on the oscilloscope. See the following figure:

- e. The absolute difference between the two readings should be small (~ 2dB or less). If the MDO4000B reading is too low, tighten the preamp more firmly to the MDO4000B by hand and check the reading again.
- f. Check at the -40 dBm reference level.
 - = Set the generator to provide a 1.7 GHz, -45 dBm signal..
 - = Set the reference level to -40 dBm.
 - Compare the MDO4000B and the power meter readings as before. The absolute difference between the readings should be ~2dB or less. If the MDO4000B reading is too low, tighten the preamp more firmly to the MDO4000B by hand and check the reading again.
- 4. Check at 5.5 GHz
 - a. Set the reference level to -25 dBm as follows: Push the front-panel Ampl button. Push the side-bezel Ref Level button. Set the Ref Level to -25 dBm.
 - **b.** Set the frequency range as follows:
 - = Set the center frequency to 5.5 GHz.
 - = Set the span to 50 MHz.
 - c. Set the generator to provide a 5.5 GHz, -30 dBm signal.
 - **d.** Note the reading on the power meter and the readout for the Reference marker on the oscilloscope.
 - e. The absolute difference between the two readings should be small (~ 2dB or less). If the MDO4000B reading is too low, tighten the preamp more firmly to the MDO4000B by hand and check the reading again.
 - f. Check at the -40 dBm reference level.
 - = Set the generator to provide a 5.5 GHz, -45 dBm signal..
 - Set the reference level to −40 dBm.
 - Compare the MDO4000B and the power meter readings as before. The absolute difference between the readings should be ~2dB or less. If the MDO4000B reading is too low, tighten the preamp more firmly to the MDO4000B by hand and check the reading again.

With TPA-N-PRE Attached: Check Displayed Average Noise Level (DANL)

This test does not require an input signal.

The test measures the average internal noise level of the instrument, ignoring residual spurs.

It checks six ranges:

- 9 kHz to 50 kHz (all models)
- 50 kHz to 5 MHz (all models)
- 5 MHz to 400 MHz (all models)
- 400 MHz to 3 GHz (all models)
- 3 GHz to 4 GHz (MDO4104B-6 and MDO4054B-6 only)
- 4 GHz to 6 GHz (MDO4104B-6 and MDO4054B-6 only)

NOTE. If the specific measurement frequency results in measuring a residual spur that is visible above the noise level, the DANL specification applies not to the spur but to the noise level on either side of the spur. Please refer to the Spurious Response specifications. (See page 20.)

- **1.** *Initial oscilloscope setup:*
 - **a.** Terminate the TPA-N-PRE preamp input in 50 Ω and make sure that no input signal is applied.
 - b. Push the front-panel Default Setup button.
 - c. Turn channel 1 off.
 - **d.** Push the front-panel **RF** button to turn on the RF channel and display the bottom-bezel RF menu.
 - e. Turn on the average trace as follows:
 - = Push the bottom-bezel **Spectrum Traces** button.
 - = Push the side-bezel Average button to set average trace to **On**.
 - = Set the side-bezel Normal to Off.
 - f. Turn on average detection as follows:
 - Push the bottom-bezel **Detection Method** button.
 - Push the side-bezel button to set the detection method to Manual.
 - = Push the side-bezel Average Trace button.
 - Set the detection method to Average.
 - **g.** Push the **Menu** button on the TPA-N-PRE preamplifier. On the MDO4000B, verify that the side-bezel **Mode** button is set to **Auto**.
 - **h.** Set the reference level to -40.0 dBm as follows:
 - Push the front-panel Ampl button.
 - Push the side-bezel **Ref Level** button.
 - = Set the Ref Level to -40.0 dBm.
- 2. Check from 9 kHz to 50 kHz (all models):
 - **a.** Set the stop and start frequencies as follows:
 - Push the front-panel Freq/Span button.
 - = Push the side-bezel **Stop** button.
 - Set the stop frequency to 50 kHz.
 - Push the side-bezel Start button.

- = Set the start frequency to 9 kHz.
- Wait 60 seconds. Due to the low RBW for this span, it takes a little while for the instrument to compute a valid average.
- **b.** Set Manual Marker (a) at the frequency with the highest noise level as follows:
 - Push the **Markers** front-panel button.
 - Push the Manual Markers side-bezel button to turn on the markers.
 - Turn Multipurpose knob a to move the marker to the frequency at the noise threshold (highest point of noise), ignoring any spurs. See the following figure.

- **c.** Record the highest noise value (in dBm/Hz) in the test record and compare it to the instrument specification.
- **3.** Check from 50 kHz to 5 MHz (all models):
 - **a.** Set the start and stop frequency as follows:
 - Push the front-panel Freq/Span button.
 - Push the side-bezel Stop button.
 - = Set the stop frequency to 5 MHz.

- = Push the side-bezel **Start** button.
- = Set the start frequency to 50 kHz.
- **b.** Set Manual Marker (a) at the frequency with the highest noise level as follows:
 - = Push the **Markers** front-panel button.
 - Push the Manual Markers side-bezel button to turn on the markers.
 - Turn Multipurpose knob a to move the marker to the frequency at the noise threshold (highest point of noise), ignoring any spurs. See the following figure.

- **c.** Record the noise threshold value (in dBm/Hz) in the test record and compare it to the instrument specification.
- 4. Check from 5 MHz to 400 MHz (all models):
 - **a.** Set the stop frequency to 400 MHz.
 - **b.** Set the start frequency to 5 MHz.
 - **c.** Set Manual Marker (a) at the frequency of the highest noise, ignoring any spurs.
 - **d.** *Set the center frequency as follows:* Push the **R To Center** side-bezel button.

- e. Set the Span to 10 MHz.
 - = Push the side-bezel **Span** button.
 - = Set the Span to 10 MHz.
- **f.** Record the highest noise value (in dBm/Hz) in the test record and compare it to the instrument specification.
- 5. Check from 400 MHz to 3 GHz (all models):
 - **a.** Set the stop frequency to 3 GHz.
 - **b.** Set the start frequency to 400 MHz.
 - **c.** Set Manual Marker (a) at the frequency of the highest noise, ignoring any spurs.
 - **d.** Set the center frequency as follows: Push the **R To Center** side-bezel button.
 - e. Set the Span to 10 MHz as follows.
 - = Push the side-bezel **Span** button.
 - = Set the Span to 10 MHz.
 - **f.** Record the highest noise value (in dBm/Hz) in the test record and compare it to the instrument specification.
- 6. Check from 3 GHz to 4 GHz (MDO4104B-6 and MDO4054B-6 only):
 - **a.** Set the stop frequency to 4 GHz.
 - **b.** Set the start frequency to 3 GHz.
 - **c.** Set Manual Marker (a) at the frequency of the highest noise, ignoring any spurs.
 - **d.** Set the center frequency as follows: Push the **R To Center** side-bezel button.
 - e. Set the Span to 10 MHz as follows.
 - Push the side-bezel Span button.
 - = Set the Span to 10 MHz.
 - **f.** Record the highest noise value (in dBm/Hz) in the test record and compare it to the instrument specification.
- 7. Check from 4 GHz to 6 GHz (MDO4104B-6 and MDO4054B-6 only):
 - **a.** Set the stop frequency to 6 GHz.
 - **b.** Set the start frequency to 4 GHz.
 - **c.** Set Manual Marker (a) at the frequency of the highest noise, ignoring any spurs.

- **d.** *Set the center frequency as follows:* Push the **R To Center** side-bezel button.
- e. Set the Span to 10 MHz as follows:
 - = Push the side-bezel **Span** button.
 - = Set the Span to 10 MHz.
- **f.** Record the highest noise value (in dBm/Hz) in the test record and compare it to the instrument specification.

This completes the performance verification procedure.