MSO3000 and DPO3000 Series
Digital Phosphor Oscilloscopes
Programmer Manual
MSO3000 and DPO3000 Series
Digital Phosphor Oscilloscopes
Programmer Manual
Table of Contents

Getting Started .. 1-1
Instrument Functionality Updates that Impact the Programmatic Command Set 1-1
Setting Up Remote Communications Hardware ... 1-2
 Ethernet .. 1-2
 USB ... 1-2
 GPIB .. 1-4
Setting Up Remote Communications Software .. 1-5
 Using VISA .. 1-5
 Using e*Scope .. 1-6
 Using a Socket Server .. 1-7
Command Syntax ... 2-1
 Command and Query Structure .. 2-1
 Clearing the oscilloscope ... 2-3
 Command Entry .. 2-3
 Constructed Mnemonics .. 2-5
 Argument Types .. 2-7
Command Groups ... 2-11
 Acquisition Command Group .. 2-11
 Alias Command Group .. 2-12
 Bus Command Group ... 2-13
 Calibration and Diagnostic Command Group ... 2-17
 Configuration Command Group .. 2-17
 Cursor Command Group .. 2-21
 Display Command Group ... 2-22
 Ethernet Command Group .. 2-23
 File System Command Group .. 2-24
 Hard Copy Command Group ... 2-25
 Horizontal Command Group ... 2-27
 Mark Command Group ... 2-27
 Math Command Group ... 2-29
 Measurement Command Group .. 2-30
 Miscellaneous Command Group .. 2-33
 PictBridge Command Group ... 2-35
 Power Command Group .. 2-35
 Save and Recall Command Group .. 2-43
 Search Command Group .. 2-45
 Status and Error Command Group ... 2-56
 Trigger Command Group .. 2-57
 Vertical Command Group .. 2-75
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Waveform Transfer Command Group</td>
<td>2-78</td>
</tr>
<tr>
<td>Zoom Command Group</td>
<td>2-91</td>
</tr>
<tr>
<td>Commands Listed in Alphabetical Order</td>
<td>2-93</td>
</tr>
<tr>
<td>Status and Events</td>
<td>3-1</td>
</tr>
<tr>
<td>Registers</td>
<td>3-1</td>
</tr>
<tr>
<td>Queues</td>
<td>3-4</td>
</tr>
<tr>
<td>Event Handling Sequence</td>
<td>3-5</td>
</tr>
<tr>
<td>Synchronization Methods</td>
<td>3-7</td>
</tr>
<tr>
<td>Appendix A: Character Set</td>
<td>A-1</td>
</tr>
<tr>
<td>Appendix B: Reserved Words</td>
<td>B-1</td>
</tr>
<tr>
<td>Appendix C: Programming Example</td>
<td>C-1</td>
</tr>
<tr>
<td>Appendix D: Waveform Transfer (WFMOutpre and CURVe Query) Examples</td>
<td>D-1</td>
</tr>
<tr>
<td>Example 1: Analog Waveform (Channels 1–4)</td>
<td>D-1</td>
</tr>
<tr>
<td>Example 2: Digital Waveform (Channels DO-D15)</td>
<td>D-3</td>
</tr>
<tr>
<td>Example 3: The Digital Collection with 4 Bytes Per Point and MagniVu Off</td>
<td>D-5</td>
</tr>
<tr>
<td>Example 4: The Digital Collection with 8 Bytes Per Point and MagniVu Off</td>
<td>D-7</td>
</tr>
<tr>
<td>Example 5: The Digital Collection with 4 Bytes Per Point and MagniVu On</td>
<td>D-10</td>
</tr>
<tr>
<td>Example 6: The Digital Collection with 8 Bytes Per Point and MagniVu On</td>
<td>D-12</td>
</tr>
<tr>
<td>Appendix E: Search and Trigger Command Sequence Examples</td>
<td>E-1</td>
</tr>
<tr>
<td>Example 1: Single Threshold Edge Search</td>
<td>E-1</td>
</tr>
<tr>
<td>Example 2: Single Threshold Edge Trigger</td>
<td>E-2</td>
</tr>
<tr>
<td>Example 3: Dual Threshold Runt Search</td>
<td>E-2</td>
</tr>
<tr>
<td>Example 4: Single Threshold Logic Search on Three Waveforms</td>
<td>E-3</td>
</tr>
<tr>
<td>Index</td>
<td></td>
</tr>
</tbody>
</table>
Getting Started

This manual explains the use of commands for remotely controlling your oscilloscope. With this information, you can write computer programs to perform functions, such as setting the front-panel controls, taking measurements, performing statistical calculations, and exporting data for use in other programs. You can use these commands with these oscilloscope models:

MSO3054, MSO3034, MSO3032, MSO3014, MSO3012, DPO3054, DPO3052, DPO3034, DPO3032, DPO3014, DPO3012

Instrument Functionality Updates that Impact the Programmatic Command Set

The following lists some of the instrument functionality updates that impact the programmatic command set, along with links to some of the corresponding commands:

<table>
<thead>
<tr>
<th>Feature</th>
<th>Use these commands</th>
</tr>
</thead>
<tbody>
<tr>
<td>Support for the MIL-STD-1553 bus (requires the DPO3AERO application module)</td>
<td>(See page 2-13, Bus Command Group.)</td>
</tr>
<tr>
<td></td>
<td>(See page 2-57, Trigger Command Group.)</td>
</tr>
<tr>
<td></td>
<td>(See page 2-45, Search Command Group.)</td>
</tr>
<tr>
<td>Support for the FlexRay bus (requires the DPO3FLEX application module)</td>
<td>(See page 2-13, Bus Command Group.)</td>
</tr>
<tr>
<td></td>
<td>(See page 2-57, Trigger Command Group.)</td>
</tr>
<tr>
<td></td>
<td>(See page 2-45, Search Command Group.)</td>
</tr>
<tr>
<td></td>
<td>SEARCH:SEARCH<x>:TRIGger:A:PULSEWidth:LOWLimit</td>
</tr>
<tr>
<td>Support for timeout trigger and search</td>
<td>TRIGger:A:TYPE, SEARCH:SEARCH<x>:TRIGger:A:TYPE</td>
</tr>
<tr>
<td>Ability to query instrument configuration settings</td>
<td>(See page 2-17, Configuration Command Group.)</td>
</tr>
<tr>
<td>Ability to turn waveform display persistence off on</td>
<td>DISplay:PERSistence OFF</td>
</tr>
<tr>
<td>Support for choosing the number of waveforms included in an envelope for envelope acquisition mode</td>
<td>ACQuire:NUMEnv</td>
</tr>
<tr>
<td>Ability to import .CSV waveform files</td>
<td>RECALL:WAVEform</td>
</tr>
<tr>
<td>Support for socket server interface</td>
<td>(See page 1-2, Setting Up Remote Communications Hardware.)</td>
</tr>
<tr>
<td>Ability to select solid graticule</td>
<td>DISplay:GRAticule</td>
</tr>
<tr>
<td>Ability to transfer licenses between modules and oscilloscope</td>
<td>APPLication:LICENSE:SLOT<x>:LOCation?, APPLication:LICENSE:SLOT<x>:TRANSFER, APPLication:LICENSE:SLOT<x>:TYPE?</td>
</tr>
<tr>
<td>Ability to press and hold front panel buttons (only the Cursors button is currently supported)</td>
<td>FPAnel:HOLD</td>
</tr>
</tbody>
</table>
Getting Started

Setting Up Remote Communications Hardware

You can remotely communicate between your oscilloscope and PC via Ethernet, USB, GPIB, or via a socket server.

Ethernet

If you are using Ethernet, start by connecting an appropriate Ethernet cable to the Ethernet port (RJ-45 connector) on the rear panel of your oscilloscope. This connects the oscilloscope to a 10/100 Base-T local area network.

To change the Ethernet settings on your oscilloscope, do the following:

1. On the front panel, push **Utility**.
2. Push **Utility Page**.
3. Select **I/O** with the Multipurpose knob.
4. Push **Ethernet Network Settings**.
5. On the side menu, if you are on a DHCP Ethernet network and using a through cable, set DHCP/BOOTP to **On**.
6. If you are using a cross-over cable, set DHCP/BOOTP to **Off**, and push **Change Instrument Settings** to set a hard coded IP address.

USB

If you are using USB, start by connecting the appropriate USB cable to the USB 2.0 high-speed (HS) device port on the rear panel of your oscilloscope. This port requires that the cable connected from the port to the host computer meets the USB 2.0 specification for high speed connections. Typically, such cables should be 3 feet or shorter in length, but this is determined by the quality of the cable and, with higher quality cables, this length can be extended. (It is also dependent upon the drive capability of the host USB port to which the instrument is connected.) The use of high quality short cables is recommended to avoid USB connection problems.
With USB, the system automatically configures itself. To verify that the USB is enabled:

1. On the front panel, push **Utility**.
2. Push **Utility Page**.
3. Select **I/O** with the Multipurpose knob.
4. Push **USB/Computer**, and verify that USB is enabled.
5. If USB is disabled, push **Connect to computer** on the side menu.

After connection, the host, with appropriate software, can list the oscilloscope as a USB device with the following parameters.

Table 1-1: USB Device Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Manufacturer ID</td>
<td>0x0699 (decimal 1689)</td>
</tr>
<tr>
<td>Product ID</td>
<td>0x0410 (decimal 1040) DPO3012</td>
</tr>
<tr>
<td></td>
<td>0x0411 (decimal 1041) DPO3014</td>
</tr>
<tr>
<td></td>
<td>0x0412 (decimal 1042) DPO3032</td>
</tr>
<tr>
<td></td>
<td>0x0413 (decimal 1043) DPO3034</td>
</tr>
<tr>
<td></td>
<td>0x0414 (decimal 1044) DPO3052</td>
</tr>
<tr>
<td></td>
<td>0x0415 (decimal 1045) DPO3054</td>
</tr>
<tr>
<td></td>
<td>0x0420 (decimal 1056) MSO3012</td>
</tr>
<tr>
<td></td>
<td>0x0421 (decimal 1057) MSO3014</td>
</tr>
<tr>
<td></td>
<td>0x0422 (decimal 1058) MSO3032</td>
</tr>
<tr>
<td></td>
<td>0x0423 (decimal 1059) MSO3034</td>
</tr>
<tr>
<td></td>
<td>0x0425 (decimal 1061) MSO3054</td>
</tr>
<tr>
<td>Serial number</td>
<td>Serial number</td>
</tr>
<tr>
<td>Manufacturer description</td>
<td>“Tektronix”</td>
</tr>
<tr>
<td>Interface description</td>
<td>“USBTMC-USB488”</td>
</tr>
</tbody>
</table>
To use GPIB, start by connecting an appropriate USB cable to the USB 2.0 high-speed device port on the rear panel of your oscilloscope. Connect the other end to the TEK-USB-488 Adapter host port. Then connect a GPIB cable from the TEK-USB-488 Adapter to your PC.

Supply power to the Adapter in either of these two ways:

1. Use the optional 5 VDC power adapter connected to the 5 VDC power input on the Adapter.
2. Use an appropriate USB cable connected to a powered USB host port on your PC and the Device port on the TEK-USB-488 Adapter.

The oscilloscope has a USB 2.0 high-speed device port to control the oscilloscope through USBTMC or GPIB with a TEK-USB-488 Adapter. The USBTMC protocol allows USB devices to communicate using IEEE488 style messages. This lets you run your GPIB software applications on USB hardware.

Before setting up the oscilloscope for remote communication using the electronic (physical) GPIB interface, you should familiarize yourself with the following GPIB requirements:

- A unique device address must be assigned to each device on the bus. No two devices can share the same device address.
- No more than 15 devices can be connected to any one line.
- One device should be connected for every 6 feet (2 meters) of cable used.
- No more than 65 feet (20 meters) of cable should be used to connect devices to a bus.
- At least two-thirds of the devices on the network should be powered on while using the network.
- Connect the devices on the network in a star or linear configuration. Do not use loop or parallel configurations.

To function correctly, your oscilloscope must have a unique device address. The default setting for the GPIB configuration is GPIB Address 1.
To change the GPIB address settings, do the following:

1. On the front panel, push Utility.
3. Select I/O with the Multipurpose knob.
4. Push GPIB.
5. Enter the GPIB address on the side menu, using the multipurpose knob. This will set the GPIB address on an attached TEK-USB-488 Adapter.

The oscilloscope is now set up for bidirectional communication with your controller.

Setting Up Remote Communications Software

Connect your oscilloscope directly to a computer to let the PC analyze your data, collect screen images, or to control the oscilloscope using a program of your own creation. Three ways to connect your oscilloscope to a computer are through the VISA drivers, the e*Scope Web-enabled tools, or via a socket server.

Using VISA

VISA lets you use your MS-Windows computer to acquire data from your oscilloscope for use in an analysis package that runs on your PC, such as Microsoft Excel, National Instruments LabVIEW, Tektronix OpenChoice Desktop software, or your own custom software. You can use a common communications connection, such as USB, Ethernet, or GPIB, to connect the computer to the oscilloscope.

To set up VISA communications between your oscilloscope and a computer:
1. Load the VISA drivers on your computer. Also, load your application, such as OpenChoice Desktop. You will find the drivers and OpenChoice Desktop software on the appropriate CD that comes with your oscilloscope or at the Tektronix software finder Web page (www.tektronix.com).

2. Connect the oscilloscope to your computer with the appropriate USB or Ethernet cable. You will find the drivers and OpenChoice Desktop software on the appropriate CD that comes with your oscilloscope or at the Tektronix software finder Web page (www.tektronix.com/downloads).

3. On the front panel, push Utility.

5. Turn multipurpose knob a and select I/O.

6. If you are using USB, the system sets itself up automatically for you, if USB is enabled. Check USB on the lower menu to be sure that USB is enabled. If it is not enabled, push USB. Then push Connect to Computer on the side menu.

7. To use Ethernet, push Ethernet Network Settings on the lower menu. Use the side menu buttons to adjust your network settings, as needed. For more information, see the e*Scope setup information below.

8. If you want to change socket server parameters, push Socket Server and enter new values through the resulting side menu.

9. If you are using GPIB, push GPIB. Enter the GPIB address on the side menu, using multipurpose knob a.

10. Run your application software on your computer.

Quick Tips

- Your oscilloscope shipped with a CD containing a variety of Windows-based software tools for efficient connectivity between your oscilloscope and your computer. These include toolbars that speed connectivity with Microsoft Excel and Word. There are also two standalone acquisition programs called NI LabVIEW SignalExpress™, Tektronix Edition and Tektronix OpenChoice Desktop.

- The rear-panel USB 2.0 device port is the correct USB port for computer connectivity. Use the rear- and front-panel USB 2.0 host ports to connect your oscilloscope to USB flash drives, printers and keyboards. Use the USB Device port to connect your oscilloscope to a PC or a PictBridge printer.

Using e*Scope

With e*Scope, you can use a web browser on your computer to send and receive commands using any connected MSO/DPO3000 Series oscilloscope. To set up e*Scope communications between your oscilloscope and a Web browser running on a remote computer:
1. Connect the oscilloscope to your computer network with an appropriate Ethernet cable.

2. On the front panel, push Utility.

4. Turn multipurpose knob a and select I/O.

6. Push Change Instrument Settings to display and change the instrument setup on your oscilloscope. Optional: enter an Instrument IP address if you’d like to manually configure it.

7. Push Test Connection to check if your oscilloscope can find an attached network.

8. Start your browser on your remote computer. In the browser address line, enter the host name, a dot, and the domain name together. Alternatively, just enter the IP address of the instrument. Either way, you should then see the e*Scope page on your Web browser on your computer screen.

9. Click on the Data tab on the e*Scope page. Under Talk/Listen, you may enter and send commands to the connected oscilloscope.

Using a Socket Server

A socket server provides two-way communication over an Internet Protocol-based computer network. You can use your oscilloscope’s socket server feature to let your oscilloscope talk to a remote-terminal device or computer.

To set up and use a socket server between your oscilloscope and a remote terminal or computer:

1. Connect the oscilloscope to your computer network with an appropriate Ethernet cable.

4. Turn multipurpose knob a and select I/O.

5. Push Socket Server.

6. On the resulting Socket Server side menu, push the top entry to highlight Enabled.

7. Choose whether the protocol should be None or Terminal. A communication session run by a human at a keyboard typically uses a terminal protocol. An automated session might handle its own communications without using such a protocol.

8. If required, change the port number by rotating multipurpose knob a.

9. If required, press OK to set the new port number.
10. After setting up the socket server parameters, you can now have the computer talk to the oscilloscope. If you are running an MS Windows PC, you could run its default client with its command-like interface. One way to do this is by typing “Telnet” in the Run window. The Telnet window will open on the PC.

NOTE. On MS Windows 7, you must first enable Telnet for it to work.

11. Start a terminal session between your computer and your oscilloscope by typing in an open command with the oscilloscope's LAN address and port #.

 You can obtain the LAN address by pushing the **Ethernet Network Settings** bottom menu item and then **Change Instrument Settings** on the resulting side menu.

 You can obtain the port number by pushing the **Socket Server** bottom menu item and viewing the **Current Port** side menu item.

 For example, if the oscilloscope IP address was 123.45.67.89 and the port # was the default of 4000, you could open a session by writing into the MS Windows Telnet screen:

 o 123.45.67.89 4000

12. You can now type in a standard query, as found in the programmer manual, such as *idn?

 The Telnet session window will respond by displaying a character string describing your instrument.

 You can type in more queries and view more results on this Telnet session window. You can find the syntax for relevant queries and related status codes in other sections of this manual.

NOTE. Do not use the computer’s backspace key during an MS Windows' Telnet session with the oscilloscope.

Socket Server Terminal Protocol Mode Commands. Following are Tektronix Instrument Control Terminal Session Control commands:

 !t <timeout> : set the response timeout in milliseconds.

 !d : send device clear to the instrument.

 !r : read response from instrument.

 !h : print this usage info.
NOTE. Commands containing a ? are treated as queries, and the responses are read automatically.

Documentation

The following documents are available for download on the Manuals Finder Web site at www.tektronix.com/downloads:

MSO3000 and DPO3000 Series User Manual. Information about installing and operating the oscilloscope.

Getting Started with OpenChoice™ Solutions Manual. Options for getting data from your oscilloscope into any one of several available analysis tools.

TekVISA Programmer Manual. Description of TekVISA, the Tektronix implementation of the VISA Application Programming Interface (API). TekVISA is industry-compliant software for writing interoperable oscilloscope drivers in a variety of Application Development Environments (ADEs).
Command Syntax

You can control the operations and functions of the oscilloscope through the Ethernet port or the USB 2.0 device port using commands and queries. The related topics listed below describe the syntax of these commands and queries. The topics also describe the conventions that the oscilloscope uses to process them. See the Command Groups topic in the table of contents for a listing of the commands by command group, or use the index to locate a specific command.

Backus-Naur Form Notation

This documentation describes the commands and queries using Backus-Naur Form (BNF) notation. Refer to the following table for the symbols that are used.

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td><></td>
<td>Defined element</td>
</tr>
<tr>
<td>=</td>
<td>Is defined as</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>{}</td>
<td>Group; one element is required</td>
</tr>
<tr>
<td>[]</td>
<td>Optional; can be omitted</td>
</tr>
<tr>
<td>. . .</td>
<td>Previous element(s) may be repeated</td>
</tr>
<tr>
<td>()</td>
<td>Comment</td>
</tr>
</tbody>
</table>

Command and Query Structure

Commands consist of set commands and query commands (usually called commands and queries). Commands modify oscilloscope settings or tell the oscilloscope to perform a specific action. Queries cause the oscilloscope to return data and status information.

Most commands have both a set form and a query form. The query form of the command differs from the set form by its question mark at the end. For example, the set command ACQuire:MODe has a query form ACQuire:MODe?. Not all commands have both a set and a query form. Some commands have set only and some have query only.

Messages

A command message is a command or query name followed by any information the oscilloscope needs to execute the command or query. Command messages may contain five element types, defined in the following table.
Table 2-2: Command Message Elements

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td><code><Header></code></td>
<td>This is the basic command name. If the header ends with a question mark, the command is a query. The header may begin with a colon (:) character. If the command is concatenated with other commands, the beginning colon is required. Never use the beginning colon with command headers beginning with a star (*).</td>
</tr>
<tr>
<td><code><Mnemonic></code></td>
<td>This is a header subfunction. Some command headers have only one mnemonic. If a command header has multiple mnemonics, a colon (:) character always separates them from each other.</td>
</tr>
<tr>
<td><code><Argument></code></td>
<td>This is a quantity, quality, restriction, or limit associated with the header. Some commands have no arguments while others have multiple arguments. A <code><space></code> separates arguments from the header. A <code><comma></code> separates arguments from each other.</td>
</tr>
<tr>
<td><code><Comma></code></td>
<td>A single comma is used between arguments of multiple-argument commands. Optionally, there may be white space characters before and after the comma.</td>
</tr>
<tr>
<td><code><Space></code></td>
<td>A white space character is used between a command header and the related argument. Optionally, a white space may consist of multiple white space characters.</td>
</tr>
</tbody>
</table>

Commands

Commands cause the oscilloscope to perform a specific function or change one of the settings. Commands have the structure:

```
[:]<Header>[<Space><Argument>[<Comma>  <Argument>]]...]
```

A command header consists of one or more mnemonics arranged in a hierarchical or tree structure. The first mnemonic is the base or root of the tree and each subsequent mnemonic is a level or branch off the previous one. Commands at a higher level in the tree may affect those at a lower level. The leading colon (:) always returns you to the base of the command tree.
Queries

Queries cause the oscilloscope to return status or setting information. Queries have the structure:

- `[:<Header>`
- `[:<Header>[:<Space><Argument>[:<Comma><Argument>]]]...`

You can specify a query command at any level within the command tree unless otherwise noted. These branch queries return information about all the mnemonics below the specified branch or level.

Headers

Use the HEAder command to control whether the oscilloscope returns headers as part of the query response. If header is on, the query response returns command headers, then formats itself as a valid set command. When header is off, the response includes only the values. This may make it easier to parse and extract the information from the response. The table below shows the difference in responses.

Table 2-3: Comparison of Header Off and Header On Responses

<table>
<thead>
<tr>
<th>Query</th>
<th>Header Off</th>
<th>Header On</th>
</tr>
</thead>
<tbody>
<tr>
<td>TIME?</td>
<td>14:30:00</td>
<td>:TIME "14:30:00"</td>
</tr>
<tr>
<td>ACQuire:NUMAVg?</td>
<td>100</td>
<td>:ACQUIRE:NUMAVG 100</td>
</tr>
</tbody>
</table>

Clearing the oscilloscope

You can clear the Output Queue and reset the oscilloscope to accept a new command or query by using the selected Device Clear (DCL) function.

Command Entry

The following rules apply when entering commands:

- You can enter commands in upper or lower case.
- You can precede any command with white space characters. White space characters include any combination of the ASCII control characters 00 through 09 and 0B through 20 hexadecimal (0 through 9 and 11 through 32 decimal).
- The oscilloscope ignores commands consisting of any combination of white space characters and line feeds.
Abbreviating

You can abbreviate many oscilloscope commands. Each command in this documentation shows the minimum acceptable abbreviations in capitals. For example, you can enter the command ACQuire:NUMAvg simply as ACQ:NUMA or acq:numa.

Abbreviation rules may change over time as new oscilloscope models are introduced. Thus, for the most robust code, use the full spelling.

If you use the HEADer command to have command headers included as part of query responses, you can further control whether the returned headers are abbreviated or are full-length with the VERBose command.

Concatenating

You can concatenate any combination of set commands and queries using a semicolon (;). The oscilloscope executes concatenated commands in the order received.

When concatenating commands and queries, you must follow these rules:

1. Separate completely different headers by a semicolon and by the beginning colon on all commands except the first one. For example, the commands TRIGger:MODE NORMal and ACQuire:NUMAVg 8, can be concatenated into the following single command:

 TRIGger:MODE NORMal;:ACQuire:NUMAVg 8

2. If concatenated commands have headers that differ by only the last mnemonic, you can abbreviate the second command and eliminate the beginning colon. For example, you can concatenate the commands ACQuire:MODE ENvelope and ACQuire:NUMAVg 8 into a single command:

 ACQuire:MODE ENvelope; NUMAVg 8

 The longer version works equally well:

 ACQuire:MODE ENvelope;:ACQuire:NUMAVg 8

3. Never precede a star (*) command with a colon:

 ACQuire:STATE 1;*OPC

 Any commands that follow will be processed as if the star command was not there so the commands, ACQuire:MODE ENvelope;*OPC;NUMAVg 8 will set the acquisition mode to envelope and set the number of acquisitions for averaging to 8.

4. When you concatenate queries, the responses to all the queries are concatenated into a single response message. For example, if the display graticule is set to Full and the display style is set to dot only, the concatenated query DISPlay:GRAticule?;STYle:DOTsonly? will return the following.

 If the header is on:

 DISPLAY:GRATICULE FULL;:DISPLAY:STYLE:DOTONLY 1
If the header is off:

```
FULL;1
```

5. Set commands and queries may be concatenated in the same message. For example,

```
ACQuire:MODe SAMPLE;NUMAVg?;STATE?
```

is a valid message that sets the acquisition mode to sample. The message then queries the number of acquisitions for averaging and the acquisition state. Concatenated commands and queries are executed in the order received.

Here are some invalid concatenations:

```
DISPlay:STYle:NORMal;ACQuire:NUMAVg 8 (no colon before ACQuire)
```
```
DISPlay:GRAticule FULL;:DOTSONLY OFF (extra colon before DOTSONLY. You could use DISPlay:DOTSONLY OFF instead)
```
```
DISPlay:GRAticule FULL;:*TRG (colon before a star (*) command)
```
```
MATH:HORizontal:SCAle 1.0e-1;HORizontal:POSition 5.0e1 (levels of the mnemonics are different; either remove the second use of HORizontal: or place :MATH in front of HORizontal:POSition)
```

Terminating

This documentation uses `<EOM>` (End of Message) to represent a message terminator.

Table 2-4: End of Message Terminator

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td><code><EOM></code></td>
<td>Message terminator</td>
</tr>
</tbody>
</table>

The end-of-message terminator must be the END message (EOI asserted concurrently with the last data byte). The last data byte may be an ASCII line feed (LF) character.

This oscilloscope does not support ASCII LF only message termination. The oscilloscope always terminates outgoing messages with LF and EOI.

Constructed Mnemonics

Some header mnemonics specify one of a range of mnemonics. For example, a channel mnemonic can be CH1, CH2, CH3, or CH4. You use these mnemonics in the command just as you do any other mnemonic. For example, there is a CH1:POSition command, and there is also a CH2:POSition command. In the command descriptions, this list of choices is abbreviated as CH<x>.
Cursor Position Mnemonics

When cursors are displayed, commands may specify which cursor of the pair to use.

Table 2-5: Channel Mnemonics

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>CH<x></td>
<td>A channel specifier; <x> is 1 through 4.</td>
</tr>
</tbody>
</table>

Table 2-6: Cursor Mnemonics

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>CURSOR<x></td>
<td>A cursor selector; <x> is either 1 or 2.</td>
</tr>
<tr>
<td>POSITION<x></td>
<td>A cursor selector; <x> is either 1 or 2.</td>
</tr>
<tr>
<td>HPOS<x></td>
<td>A cursor selector; <x> is either 1 or 2.</td>
</tr>
</tbody>
</table>

Math Specifier Mnemonics

Commands can specify the mathematical waveform to use as a mnemonic in the header.

Table 2-7: Math Specifier Mnemonics

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>Math<x></td>
<td>A math waveform specifier; <x> is 1.</td>
</tr>
</tbody>
</table>

Measurement Specifier Mnemonics

Commands can specify which measurement to set or query as a mnemonic in the header. Up to four automated measurements may be displayed.

Table 2-8: Measurement Specifier Mnemonics

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>MEAS<x></td>
<td>A measurement specifier; <x> is 1 through 4.</td>
</tr>
</tbody>
</table>

Channel Mnemonics

Commands specify the channel to use as a mnemonic in the header.

Reference Waveform Mnemonics

Commands can specify the reference waveform to use as a mnemonic in the header.

Table 2-9: Reference Waveform Mnemonics

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>REF<x></td>
<td>A reference waveform specifier; <x> is 1, 2, 3, or 4 for 4-channel oscilloscopes and 1 or 2 for 2-channel oscilloscopes.</td>
</tr>
</tbody>
</table>
Argument Types

Commands use arguments such as enumeration, numeric, quoted string and block. Each of these arguments are listed in detail below.

Enumeration

Enter these arguments as unquoted text words. Like key words, enumeration arguments follow the same convention where the portion indicated in uppercase is required and that in lowercase is optional.

For example: `SAVE:WAVEform:FILEFormat INTERNAL`

Numeric

Many oscilloscope commands require numeric arguments. The syntax shows the format that the oscilloscope returns in response to a query. This is also the preferred format when sending the command to the oscilloscope though any of the formats will be accepted. This documentation represents these arguments as described below.

Table 2-10: Numeric Arguments

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td><NR1></td>
<td>Signed integer value</td>
</tr>
<tr>
<td><NR2></td>
<td>Floating point value without an exponent</td>
</tr>
<tr>
<td><NR3></td>
<td>Floating point value with an exponent</td>
</tr>
<tr>
<td><bin></td>
<td>Digital data in binary format</td>
</tr>
</tbody>
</table>

Most numeric arguments will be automatically forced to a valid setting, by either rounding or truncating, when an invalid number is input, unless otherwise noted in the command description.

Quoted String

Some commands accept or return data in the form of a quoted string, which is simply a group of ASCII characters enclosed by a single quote (') or double quote ("). The following is an example of a quoted string: "This is a quoted string". This documentation represents these arguments as follows:

Table 2-11: Quoted String Argument

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td><QString></td>
<td>Quoted string of ASCII text</td>
</tr>
</tbody>
</table>
A quoted string can include any character defined in the 7-bit ASCII character set. Follow these rules when you use quoted strings:

1. Use the same type of quote character to open and close the string. For example: "this is a valid string".

2. You can mix quotation marks within a string as long as you follow the previous rule. For example: "this is an 'acceptable' string".

3. You can include a quote character within a string by repeating the quote. For example: "here is a "" mark".

4. Strings can have upper or lower case characters.

5. If you use a GPIB network, you cannot terminate a quoted string with the END message before the closing delimiter.

6. A carriage return or line feed embedded in a quoted string does not terminate the string. The return is treated as another character in the string.

7. The maximum length of a quoted string returned from a query is 1000 characters.

Here are some invalid strings:

- "Invalid string argument' (quotes are not of the same type)
- "test<EOI>" (termination character is embedded in the string)

Block

Several oscilloscope commands use a block argument form, as defined in the table below.

Table 2-12: Block Argument

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td><NZDig></td>
<td>A nonzero digit character in the range of 1–9</td>
</tr>
<tr>
<td><Dig></td>
<td>A digit character, in the range of 0–9</td>
</tr>
<tr>
<td><DChar></td>
<td>A character with the hexadecimal equivalent of 00 through FF (0 through 255 decimal)</td>
</tr>
<tr>
<td><Block></td>
<td>A block of data bytes defined as: <Block> ::= (#<NZDig><Dig>[<Dig>...][<DChar>...][#0]<DChar>...<terminator>)</td>
</tr>
</tbody>
</table>

<NZDig> specifies the number of <Dig> elements that follow. Taken together, the <NZDig> and <Dig> elements form a decimal integer that specifies how many <DChar> elements follow.
Command Syntax

```
AliAs:DEFINE "SETUp1", #231AUT0Set EXECute;:SELect;REF1 ON
```

Block Argument

Block Header

Specifies Data Length

Specifies Number of Length Digits that Follow
Command Syntax
This manual lists the MSO/DPO3000 Series IEEE 488.2 commands in two ways. First, it presents them by functional groups. Then, it lists them alphabetically. The functional group list starts below. The alphabetical list provides detail on each command. (See page 2-93, Commands Listed in Alphabetical Order.)

Acquisition Command Group

Use the commands in the Acquisition Command Group to set up the modes and functions that control how the oscilloscope acquires signals input to the channels, and processes them into waveforms.

Using the commands in this group, you can do the following:

- Start and stop acquisitions.
- Control whether each waveform is simply acquired, averaged, or enveloped over successive acquisitions of that waveform.
- Set the controls or conditions that start and stop acquisitions.
- Control acquisition of channel waveforms.
- Set acquisition parameters.

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACQuire?</td>
<td>Returns the acquisition parameters</td>
</tr>
<tr>
<td>ACQuire:MAGnivu</td>
<td>Sets or returns the MagniVu feature</td>
</tr>
<tr>
<td>ACQuire:MAXSamplerate?</td>
<td>Returns the maximum real-time sample rate</td>
</tr>
<tr>
<td>ACQuire:MODe</td>
<td>Sets or returns the acquisition mode</td>
</tr>
<tr>
<td>ACQuire:NUMACq?</td>
<td>Returns the number of acquisitions that have occurred</td>
</tr>
<tr>
<td>ACQuire:NUMAVg</td>
<td>Sets or returns the number of acquisitions for an averaged waveform</td>
</tr>
<tr>
<td>ACQuire:NUMEnv</td>
<td>This command controls the number of envelopes (when acquisition mode has been set to ENvelope using ACQuire:MODe). The number of envelopes can be set from 1 to 2000 in increments of 1, or to INfInite.</td>
</tr>
<tr>
<td>ACQuire:STATE</td>
<td>Starts or stops the acquisition system</td>
</tr>
<tr>
<td>ACQuire:STOPAfter</td>
<td>Sets or returns whether the acquisition is continuous or single sequence</td>
</tr>
</tbody>
</table>
Alias Command Group

Use the Alias commands to define new commands as a sequence of standard commands. You may find this useful when repeatedly using the same commands to perform certain tasks like setting up measurements.

Aliases are similar to macros but do not include the capability to substitute parameters into alias bodies. The alias mechanism obeys the following rules:

- The alias name must consist of a valid IEEE488.2 message unit, which may not appear in a message preceded by a colon, comma, or a command or query program header.
- The alias name may not appear in a message followed by a colon, comma, or question mark.
- An alias name must be distinct from any keyword or keyword short form.
- An alias name cannot be redefined without first being deleted using one of the alias deletion functions.
- Alias names do not appear in response messages.

Table 2-14: Alias Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ALIas</td>
<td>Sets or returns the alias state</td>
</tr>
<tr>
<td>ALIas:CATalog?</td>
<td>Returns a list of the currently defined alias labels</td>
</tr>
<tr>
<td>ALIas:DEFine</td>
<td>Assigns a sequence of program messages to an alias label</td>
</tr>
<tr>
<td>ALIas:DELETE</td>
<td>Removes a specified alias</td>
</tr>
<tr>
<td>ALIas:DELETE:ALL</td>
<td>Deletes all existing aliases</td>
</tr>
<tr>
<td>ALIas:DELETE[:NAME]</td>
<td>Removes a specified alias</td>
</tr>
<tr>
<td>ALIas[:STATE]</td>
<td>Sets or returns the alias state</td>
</tr>
</tbody>
</table>
Bus Command Group

Use the Bus commands when working with serial or parallel bus measurements.

- Install the DPO3EMBD application module when working with I²C or SPI bus signals.
- Install the DPO3AUTO module when working with CAN or LIN bus signals.
- Install the DPO3COMP module when working with RS-232, RS-422, RS-485, and UART bus signals.
- Install the DPO3AUDIO module when working with I²S, Left Justified (LJ), Right Justified (RJ), and TDM bus signals.
- Install the DPO3AERO module when working with MIL-STD-1553 bus signals.
- Install the DPO3FLEX module when working with FlexRay bus signals.

NOTE. Parallel bus trigger and analysis functionality is included standard with the MSO Series.

NOTE. The Search Command Group and the Trigger Command Group also contain bus-related commands.

Table 2-15: Bus Commands

<table>
<thead>
<tr>
<th>Commands</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>BUS</td>
<td>Returns the parameters for each bus</td>
</tr>
<tr>
<td>BUS:B<x>:AUDio:BITDelay</td>
<td>Sets or returns the number of delay bits for the AUDIO bus</td>
</tr>
<tr>
<td>BUS:B<x>:AUDio:BITOrder</td>
<td>Sets or returns the bit order for the AUDIO bus</td>
</tr>
<tr>
<td>BUS:B<x>:AUDio:CHANnel:SIZE</td>
<td>Sets or returns the number of bits per channel for the AUDIO bus</td>
</tr>
<tr>
<td>BUS:B<x>:AUDio:CLOCk:POLarity</td>
<td>Sets or returns the clock polarity for the AUDIO bus</td>
</tr>
<tr>
<td>BUS:B<x>:AUDio:CLOCk:SOUrce</td>
<td>Sets or returns the clock source waveform for the AUDIO bus</td>
</tr>
<tr>
<td>BUS:B<x>:AUDio:DATa:POLarity</td>
<td>Sets or returns the data polarity for the AUDIO bus</td>
</tr>
<tr>
<td>BUS:B<x>:AUDio:DATa:SIZe</td>
<td>Sets or returns the number of bits per word for the AUDIO bus</td>
</tr>
<tr>
<td>BUS:B<x>:AUDio:DATa:SOUrce</td>
<td>Sets or returns the data source waveform for the AUDIO bus</td>
</tr>
</tbody>
</table>
Table 2-15: Bus Commands (cont.)

<table>
<thead>
<tr>
<th>Commands</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>BUS:B<x>:AUDio:DISplay:FORMat</td>
<td>Sets or returns the display format for the AUDIO bus</td>
</tr>
<tr>
<td>BUS:B<x>:AUDio:FRAME:SZIZe</td>
<td>Sets or returns the number of channels in each frame for the AUDIO bus</td>
</tr>
<tr>
<td>BUS:B<x>:AUDio:FRAME:SYNC:POLarity</td>
<td>Sets or returns the frame sync polarity for the AUDIO bus</td>
</tr>
<tr>
<td>BUS:B<x>:AUDio:FRAME:SYNC:SOUrce</td>
<td>Sets or returns the frame sync source waveform for the AUDIO bus</td>
</tr>
<tr>
<td>BUS:B<x>:AUDio:TYPe</td>
<td>Sets or returns the audio format (type) for the AUDIO bus</td>
</tr>
<tr>
<td>BUS:B<x>:AUDio:WORDSel:POLarity</td>
<td>Sets or returns the word select polarity for the AUDIO bus</td>
</tr>
<tr>
<td>BUS:B<x>:AUDio:WORDSel:SOUrce</td>
<td>Sets or returns the word select source waveform for the AUDIO bus</td>
</tr>
<tr>
<td>BUS:B<x>:CAN:BITRate</td>
<td>Sets or returns the bit rate for the CAN bus</td>
</tr>
<tr>
<td>BUS:B<x>:CAN:PRObe</td>
<td>Sets or returns the probing method used to probe the CAN bus</td>
</tr>
<tr>
<td>BUS:B<x>:CAN:SAMPLEpoint</td>
<td>Sets or returns the sample point (in %) to sample during each bit period</td>
</tr>
<tr>
<td>BUS:B<x>:CAN:SOUrce</td>
<td>Sets or returns the CAN data source</td>
</tr>
<tr>
<td>BUS:B<x>:DI5play:FORMAt</td>
<td>Sets the display format for the numerical information in the specified bus waveform</td>
</tr>
<tr>
<td>BUS:B<x>:DI5play:TYPe</td>
<td>Sets the display type for the specified bus</td>
</tr>
<tr>
<td>BUS:B<x>:FLE5ray:BITRate</td>
<td>This command specifies the bit rate for FlexRay</td>
</tr>
<tr>
<td>BUS:B<x>:FLE5ray:CHANnel</td>
<td>This command specifies the FlexRay ID format</td>
</tr>
<tr>
<td>BUS:B<x>:FLE5ray:SIGnal</td>
<td>Specifies which FlexRay standard to use: BDIFFBP, BM or TXRX.</td>
</tr>
<tr>
<td>BUS:B<x>:FLE5ray:SOUrce</td>
<td>This command specifies the FlexRay data source</td>
</tr>
<tr>
<td>BUS:B<x>:I2C:ADDRESS:RWINClude</td>
<td>Sets and returns whether the read/write bit is included in the address</td>
</tr>
<tr>
<td>BUS:B<x>:I2C:(CLOCK</td>
<td>SCLK):SOUrce</td>
</tr>
<tr>
<td>BUS:B<x>:I2C:(DATA</td>
<td>SDATA):SOUrce</td>
</tr>
<tr>
<td>BUS:B<x>:LABel</td>
<td>Sets or returns the waveform label for the specified bus</td>
</tr>
<tr>
<td>BUS:B<x>:LIN:BITRate</td>
<td>Sets or returns the bit rate for LIN</td>
</tr>
<tr>
<td>BUS:B<x>:LIN:IDFORmat</td>
<td>Sets or returns the LIN ID format</td>
</tr>
<tr>
<td>BUS:B<x>:LIN:POLARity</td>
<td>Sets or returns the LIN polarity</td>
</tr>
</tbody>
</table>
Table 2-15: Bus Commands (cont.)

<table>
<thead>
<tr>
<th>Commands</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>BUS:B<x>:LIN:SAMPLEpoint</td>
<td>Sets or returns the sample point (in %) at which to sample during each bit period</td>
</tr>
<tr>
<td>BUS:B<x>:LIN:SOURce</td>
<td>Sets or returns the LIN data source</td>
</tr>
<tr>
<td>BUS:B<x>:LIN:STANDARD</td>
<td>Sets or returns the LIN standard</td>
</tr>
<tr>
<td>BUS:B<x>:MIL1553B:POLarity</td>
<td>This command sets the MIL-STD-1553 bus polarity to normal or inverted.</td>
</tr>
<tr>
<td>BUS:B<x>:MIL1553B:RESPonsetime:MAXimum</td>
<td>This command specifies the maximum response time to a valid command issued.</td>
</tr>
<tr>
<td>BUS:B<x>:MIL1553B:RESPonsetime:MINimum</td>
<td>This command specifies the minimum response time to a valid command issued.</td>
</tr>
<tr>
<td>BUS:B<x>:MIL1553B:SOURce</td>
<td>This command specifies the MIL-STD-1553 bus source for differential input.</td>
</tr>
<tr>
<td>BUS:B<x>:PARallel:BIT<x>:SOURce</td>
<td>Sets or returns the parallel bit source for the specified bus</td>
</tr>
<tr>
<td>BUS:B<x>:PARallel:CLOCK:EDGE</td>
<td>Sets or returns the parallel clock edge for the specified bus</td>
</tr>
<tr>
<td>BUS:B<x>:PARallel:CLOCK:ISCLOCKed</td>
<td>Sets or returns the parallel bus clock function for the specified bus</td>
</tr>
<tr>
<td>BUS:B<x>:PARallel:CLOCK:SOURce</td>
<td>Sets or returns the parallel clock source for the specified bus</td>
</tr>
<tr>
<td>BUS:B<x>:PARallel:WIDTH</td>
<td>Sets or returns the width of the parallel bus</td>
</tr>
<tr>
<td>BUS:B<x>:POSition</td>
<td>Sets or returns the position of the specified bus waveform</td>
</tr>
<tr>
<td>BUS:B<x>:RS232C:BITRate</td>
<td>Sets or returns the RS-232 bit rate for the specified bus</td>
</tr>
<tr>
<td>BUS:B<x>:RS232C:DATABits</td>
<td>Sets or returns the number of bits for the data frame</td>
</tr>
<tr>
<td>BUS:B<x>:RS232C:DELIMiter</td>
<td>Sets or returns the RS-232 delimiting value for a packet on the specified bus</td>
</tr>
<tr>
<td>BUS:B<x>:RS232C:DISplaymode</td>
<td>Sets or returns the display mode for the specified bus display and event table</td>
</tr>
<tr>
<td>BUS:B<x>:RS232C:PARity</td>
<td>Sets or returns the parity for RS-232 data</td>
</tr>
<tr>
<td>BUS:B<x>:RS232C:POLarity</td>
<td>Sets or returns the RS-232C polarity for the specified bus</td>
</tr>
<tr>
<td>BUS:B<x>:RS232C:RX:SOURce</td>
<td>Sets or returns the RS-232 RX source</td>
</tr>
<tr>
<td>BUS:B<x>:RS232C:TX:SOURce</td>
<td>Sets or returns the RS-232 TX Source</td>
</tr>
<tr>
<td>BUS:B<x>:SPI:{CLOCK</td>
<td>:SCLK}:Polarity</td>
</tr>
<tr>
<td>BUS:B<x>:SPI:{CLOCK</td>
<td>:SCLK}:SOURce</td>
</tr>
<tr>
<td>BUS:B<x>:SPI:DATA:{IN</td>
<td>:MISO}:Polarity</td>
</tr>
<tr>
<td>BUS:B<x>:SPI:DATA:{IN</td>
<td>:MISO}:SOURce</td>
</tr>
</tbody>
</table>
Table 2-15: Bus Commands (cont.)

<table>
<thead>
<tr>
<th>Commands</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>BUS:B<x>:SPI:DATA{:OUT</td>
<td>:MOSI}:POLARity</td>
</tr>
<tr>
<td>BUS:B<x>:SPI:DATA{:OUT</td>
<td>:MOSI}:SOURce</td>
</tr>
<tr>
<td>BUS:B<x>:SPI{:SELect</td>
<td>:SS}:POLARity</td>
</tr>
<tr>
<td>BUS:B<x>:SPI{:SELect</td>
<td>:SS}:SOURce</td>
</tr>
<tr>
<td>BUS:B<x>:SPI:FRAMing</td>
<td>Sets or returns the type of SPI framing</td>
</tr>
<tr>
<td>BUS:B<x>:STATE</td>
<td>Turns the specified bus on and off</td>
</tr>
<tr>
<td>BUS:B<x>:TYPE</td>
<td>Sets or returns the specified bus type</td>
</tr>
<tr>
<td>BUS:LOWerthreshold:CH<x></td>
<td>Sets or returns the lower threshold for each channel</td>
</tr>
<tr>
<td>BUS:THReshold:D<x></td>
<td>Sets or returns the threshold for a digital channel</td>
</tr>
<tr>
<td>BUS:UPPerthreshold:CH<x></td>
<td>Sets or returns the upper threshold for each channel</td>
</tr>
</tbody>
</table>
Calibration and Diagnostic Command Group

The Calibration and Diagnostic commands provide information about the current state of oscilloscope calibration. They also initiate internal signal path calibration (SPC) or execute diagnostic tests. Commands that are specific to factory calibration are not described in this manual. They are described in the Service manual, located on the DPO3000 Documentation CD-ROM in PDF format. You can also order a printed copy.

Table 2-16: Calibration and Diagnostic Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>*CAL?</td>
<td>Instructs the oscilloscope to perform self-calibration and returns the oscilloscope self calibration status</td>
</tr>
<tr>
<td>CALibrate:FACTory:STATus?</td>
<td>Returns the factory calibration status value saved in nonvolatile memory</td>
</tr>
<tr>
<td>CALibrate:INTERNal</td>
<td>Starts a signal path compensation</td>
</tr>
<tr>
<td>CALibrate:INTERNal:STARt</td>
<td>Starts the internal signal path calibration</td>
</tr>
<tr>
<td>CALibrate:INTERNal:STATus?</td>
<td>Returns the current status of the internal signal path calibration</td>
</tr>
<tr>
<td>CALibrate:RESULTS?</td>
<td>Returns the status of all calibration subsystems without performing an SPC operation</td>
</tr>
<tr>
<td>CALibrate:RESULTS:FACTory?</td>
<td>Returns the status of internal and factory calibration</td>
</tr>
<tr>
<td>CALibrate:RESULTS:SPC?</td>
<td>Returns the results of the last SPC operation</td>
</tr>
<tr>
<td>DIAg:LOOP:OPTION</td>
<td>Sets the self-test loop option</td>
</tr>
<tr>
<td>DIAg:LOOP:OPTION:NTIMes</td>
<td>Sets the self-test loop option to run N times</td>
</tr>
<tr>
<td>DIAg:LOOP:STOP</td>
<td>Stops the self-test at the end of the current loop</td>
</tr>
<tr>
<td>DIAg:RESULT:FLAG?</td>
<td>Returns the pass/fail status from the last self-test sequence execution</td>
</tr>
<tr>
<td>DIAg:RESULT:LOG?</td>
<td>Returns the internal results log from the last self-test sequence execution</td>
</tr>
<tr>
<td>DIAg:SELECT:<function></td>
<td>Selects one of the available self-test areas</td>
</tr>
<tr>
<td>DIAg:STATE</td>
<td>Sets the oscilloscope operating state</td>
</tr>
<tr>
<td>DIAg:SELECT</td>
<td>Sets the type of diagnostics grouping</td>
</tr>
</tbody>
</table>

Configuration Command Group

Use the queries in the Configuration Command Group to determine whether a particular feature is present.
<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>CONFIGuration:ADVMATH?</td>
<td>This query returns a boolean value to indicate whether the advanced math feature is present.</td>
</tr>
<tr>
<td>CONFIGuration:ANALOg:GNDcPLG?</td>
<td>This query returns a boolean value to indicate whether the ground coupling feature for analog channels is present.</td>
</tr>
<tr>
<td>CONFIGuration:ANALOg:MAXBANDWidth?</td>
<td>This query returns the maximum bandwidth for analog channels.</td>
</tr>
<tr>
<td>CONFIGuration:ANALOg:MAXSAMPLERate?</td>
<td>This query returns the maximum sample rate for analog channels.</td>
</tr>
<tr>
<td>CONFIGuration:ANALOg:NUMCHANnels?</td>
<td>This query returns the number of analog channels.</td>
</tr>
<tr>
<td>CONFIGuration:ANALOg:RECLENS?</td>
<td>This query returns a comma-separated list of supported record lengths for the analog channels.</td>
</tr>
<tr>
<td>CONFIGuration:ANALOg:VERTINVert?</td>
<td>This query returns a boolean value to indicate whether the vertical invert feature for analog channels is present.</td>
</tr>
<tr>
<td>CONFIGuration:APPLications:LIMITMask?</td>
<td>This query returns a boolean value to indicate whether the optional mask/limit test application feature is present. As the MSO/DPO3000 Series oscilloscopes do not support this feature, this query always returns 0.</td>
</tr>
<tr>
<td>CONFIGuration:APPLications:POWer?</td>
<td>This query returns a boolean value to indicate whether the optional power application feature is present.</td>
</tr>
<tr>
<td>CONFIGuration:AUXIN?</td>
<td>This query returns a boolean value to indicate whether the instrument has an auxiliary input.</td>
</tr>
<tr>
<td>CONFIGuration:BUSWAVEFORMS:AUDIO?</td>
<td>This query returns a boolean value to indicate whether the optional audio bus triggering and analysis feature is present.</td>
</tr>
<tr>
<td>CONFIGuration:BUSWAVEFORMS:CAN?</td>
<td>This query returns a boolean value to indicate whether the optional CAN bus triggering and analysis feature is present.</td>
</tr>
<tr>
<td>CONFIGuration:BUSWAVEFORMS:ETHERNET?</td>
<td>This query returns a boolean value to indicate whether the optional Ethernet triggering and analysis feature is present. As the MSO/DPO3000 Series oscilloscopes do not support this feature, this query always returns 0.</td>
</tr>
<tr>
<td>CONFIGuration:BUSWAVEFORMS:FLEXRAY?</td>
<td>This query returns a boolean value to indicate whether the optional FlexRay bus triggering and analysis feature is present.</td>
</tr>
</tbody>
</table>
Table 2-17: Configuration Commands (cont.)

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>CONFIGuration:BUSWAVEFORMS:I2C?</td>
<td>This query returns a boolean value to indicate whether the optional I2C bus triggering and analysis feature is present.</td>
</tr>
<tr>
<td>CONFIGuration:BUSWAVEFORMS:LIN?</td>
<td>This query returns a boolean value to indicate whether the optional LIN bus triggering and analysis feature is present.</td>
</tr>
<tr>
<td>CONFIGuration:BUSWAVEFORMS:MIL1553B?</td>
<td>This query returns a boolean value to indicate whether the optional MIL-STD-1553 bus triggering and analysis feature is present.</td>
</tr>
<tr>
<td>CONFIGuration:BUSWAVEFORMS:NUMBUS?</td>
<td>This query returns the number of bus waveforms.</td>
</tr>
<tr>
<td>CONFIGuration:BUSWAVEFORMS:PARALLEL?</td>
<td>This query returns a boolean value to indicate whether the parallel bus triggering and analysis feature is present.</td>
</tr>
<tr>
<td>CONFIGuration:BUSWAVEFORMS:RS232?</td>
<td>This query returns a boolean value to indicate whether the optional RS232 bus triggering and analysis feature is present.</td>
</tr>
<tr>
<td>CONFIGuration:BUSWAVEFORMS:SPI?</td>
<td>This query returns a boolean value to indicate whether the optional SPI bus triggering and analysis feature is present.</td>
</tr>
<tr>
<td>CONFIGuration:BUSWAVEFORMS:USB?</td>
<td>This query returns a boolean value to indicate whether the USB bus triggering and analysis feature is present. As the MSO/DPO3000 Series oscilloscopes do not support this feature, this query always returns 0.</td>
</tr>
<tr>
<td>CONFIGuration:BUSWAVEFORMS:USB:HS?</td>
<td>This query returns a boolean value to indicate whether the high-speed USB bus triggering and analysis feature is present. As the MSO/DPO3000 Series oscilloscopes do not support this feature, this query always returns 0.</td>
</tr>
<tr>
<td>CONFIGuration:DIGITAl:MAGNIVU?</td>
<td>This query returns a boolean value to indicate whether the instrument supports the MagniVu feature for digital channels. If there are no digital channels, the value returned is 0.</td>
</tr>
<tr>
<td>CONFIGuration:DIGITAl:MAXSAMPLERate?</td>
<td>This query returns the maximum sample rate for digital channels, in samples per second. If there are no digital channels, the value returned is 0.</td>
</tr>
<tr>
<td>CONFIGuration:DIGITAl:NUMCHANnels?</td>
<td>This query returns the number of digital channels.</td>
</tr>
<tr>
<td>CONFIGuration:EXTVIDEO?</td>
<td>This query returns a boolean value to indicate whether the optional extended video trigger features are present.</td>
</tr>
</tbody>
</table>
Table 2-17: Configuration Commands (cont.)

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>CONFIGuration:HISTOGRAM?</td>
<td>This query returns a boolean value to indicate whether the histogram feature is present. As the MSO/DPO3000 Series oscilloscopes do not support this feature, this query always returns 0.</td>
</tr>
<tr>
<td>CONFIGuration:NETWORKDRIVES?</td>
<td>This query returns a boolean value to indicate whether network drives are present. As the MSO/DPO3000 Series oscilloscopes do not support this feature, this query always returns 0.</td>
</tr>
<tr>
<td>CONFIGuration:NUMMEAS?</td>
<td>This query returns the number of periodic measurements.</td>
</tr>
<tr>
<td>CONFIGuration:REFS:NUMREFS?</td>
<td>This query returns the number of reference waveforms.</td>
</tr>
<tr>
<td>CONFIGuration:RF:ADVTRIG?</td>
<td>This query returns a boolean value to indicate whether the advanced RF trigger feature is present. As the MSO/DPO3000 Series oscilloscopes do not support this feature, this query always returns 0.</td>
</tr>
<tr>
<td>CONFIGuration:RF:MAXBANDWidth?</td>
<td>This query returns the maximum bandwidth, in Hertz, for RF channels. As the MSO/DPO3000 Series oscilloscopes do not support this feature, this query always returns 0.</td>
</tr>
<tr>
<td>CONFIGuration:RF:NUMCHANnels?</td>
<td>This query returns the number of RF channels present. As the MSO/DPO3000 Series oscilloscopes do not support this feature, this query always returns 0.</td>
</tr>
<tr>
<td>CONFIGuration:ROSC?</td>
<td>This query returns a boolean value to indicate whether the external reference oscillator (ROSC) input is present.</td>
</tr>
</tbody>
</table>
Cursor Command Group

Use the commands in the Cursor Command Group to control the cursor display and readout. You can use these commands to control the setups for cursor 1 and cursor 2, such as cursor position.

You can also use the commands to select one of the following cursor functions:
- Off. Turns off the display of all cursors.
- Waveform Cursors. Consists of two cursors. Waveform cursors enable you to conveniently measure waveform amplitude and time.
- Screen Cursors. Consists of two pairs of independent horizontal and vertical cursors. You can use these cursors to indicate an arbitrary position within the waveform display area.

Table 2-18: Cursor Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>CURSor?</td>
<td>Returns the cursor settings</td>
</tr>
<tr>
<td>CURSor:DDT?</td>
<td>Returns the cursor deltaY/deltaT (dY/dT) readout</td>
</tr>
<tr>
<td>CURSor:FUNCtion</td>
<td>Sets or returns the cursor type</td>
</tr>
<tr>
<td>CURSor:HBArs?</td>
<td>Returns the hbar cursor settings</td>
</tr>
<tr>
<td>CURSor:HBArs:DELTa?</td>
<td>Returns the hbars cursors vertical difference</td>
</tr>
<tr>
<td>CURSor:HBArs:POSITION<x></td>
<td>Sets or returns the hbar cursor<x> vertical position</td>
</tr>
<tr>
<td>CURSor:HBArs:UNIts</td>
<td>Returns the hbar cursor units</td>
</tr>
<tr>
<td>CURSor:HBArs:USE</td>
<td>Sets the horizontal bar cursor measurement scale, for use with ratio cursors</td>
</tr>
<tr>
<td>CURSor:MODe</td>
<td>Sets or returns whether cursors move in unison or separately</td>
</tr>
<tr>
<td>CURSor:VBArs?</td>
<td>Sets or returns the position of vertical bar cursors</td>
</tr>
<tr>
<td>CURSor:VBArs:ALTERNATE<x>?</td>
<td>Returns the alternate readout for the waveform (Vbar) cursors</td>
</tr>
<tr>
<td>CURSor:VBArs:DELta?</td>
<td>Returns the horizontal difference between vbar cursors</td>
</tr>
<tr>
<td>CURSor:VBArs:POSItion<x>?</td>
<td>Returns the vertical value of the specified vertical bar tick</td>
</tr>
<tr>
<td>CURSor:VBArs:POSItion<x></td>
<td>Sets or returns the vbar cursor<x> horizontal position</td>
</tr>
<tr>
<td>CURSor:VBArs:UNIts</td>
<td>Sets or returns the horizontal units for vbar cursors</td>
</tr>
<tr>
<td>CURSor:VBArs:USE</td>
<td>Sets the vertical bar cursor measurement scale</td>
</tr>
</tbody>
</table>
Table 2-18: Cursor Commands (cont.)

<table>
<thead>
<tr>
<th>Command Description</th>
<th>Command</th>
</tr>
</thead>
<tbody>
<tr>
<td>Returns the vertical difference between the two vertical bar cursor ticks</td>
<td>CURSor:VBArs:VDELTa?</td>
</tr>
<tr>
<td>Returns the difference between the cursors X radius and the cursor Y radius</td>
<td>CURSor:XY:POLar:RADIUS:DELta?</td>
</tr>
<tr>
<td>Returns the polar radius of the specified cursor</td>
<td>CURSor:XY:POLar:RADIUS:POSITION<x>?</td>
</tr>
<tr>
<td>Returns the polar radius units</td>
<td>CURSor:XY:POLar:RADIUS:UNIts?</td>
</tr>
<tr>
<td>Returns the XY cursor polar coordinate delta</td>
<td>CURSor:XY:POLar:THETA:DELta?</td>
</tr>
<tr>
<td>Returns the cursor X or cursor Y polar coordinate</td>
<td>CURSor:XY:POLar:THETA:POSITION<x>?</td>
</tr>
<tr>
<td>Returns the cursor polar coordinate units</td>
<td>CURSor:XY:POLar:THETA:UNIts?</td>
</tr>
<tr>
<td>Returns the difference between the cursors X position and cursor Y position</td>
<td>CURSor:XY:PRODUCT:DELta?</td>
</tr>
<tr>
<td>Returns the position of the X or Y cursor used to calculate the X × Y cursor measurement</td>
<td>CURSor:XY:PRODUCT:POSITION<x>?</td>
</tr>
<tr>
<td>Returns the XY cursor product units</td>
<td>CURSor:XY:PRODUCT:UNIts?</td>
</tr>
<tr>
<td>Returns the ratio of the difference between the cursor X position and cursor Y position</td>
<td>CURSor:XY:RATIO:DELta?</td>
</tr>
<tr>
<td>Returns the X or Y position for the specified cursor</td>
<td>CURSor:XY:RATIO:POSITION<x>?</td>
</tr>
<tr>
<td>Returns the X and Y cursor units for the ratio measurement</td>
<td>CURSor:XY:RATIO:UNIts?</td>
</tr>
<tr>
<td>Sets or returns the XY cursor readout selection</td>
<td>CURSor:XY:READOUT</td>
</tr>
<tr>
<td>Returns the X delta value in rectangular coordinates</td>
<td>CURSor:XY:RECTangular:X:DELta?</td>
</tr>
<tr>
<td>Sets or returns the cursor X rectangular coordinates</td>
<td>CURSor:XY:RECTangular:X:POSITION<x></td>
</tr>
<tr>
<td>Returns the cursor X rectangular units</td>
<td>CURSor:XY:RECTangular:X:UNIts?</td>
</tr>
<tr>
<td>Returns the cursor Y delta value in rectangular coordinates</td>
<td>CURSor:XY:RECTangular:Y:DELta?</td>
</tr>
<tr>
<td>Sets or returns the cursor Y rectangular coordinate</td>
<td>CURSor:XY:RECTangular:Y:POSITION<x></td>
</tr>
<tr>
<td>Returns the cursor Y rectangular units</td>
<td>CURSor:XY:RECTangular:Y:UNIts?</td>
</tr>
</tbody>
</table>

Display Command Group

Use the commands in the Display Command Group to change the graticule style, the display intensities, and to set the characteristics of the waveform display. Also, use it to send messages to the display.
NOTE. Your settings globally affect all displayed waveforms.

Table 2-19: Display Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>DISplay?</td>
<td>Returns the current display settings</td>
</tr>
<tr>
<td>DISplay:CLOCK</td>
<td>Sets or returns the display of the date/time stamp</td>
</tr>
<tr>
<td>DISplay:DIGital:HEight</td>
<td>Sets or returns the number of available digital waveform position slots</td>
</tr>
<tr>
<td>DISplay:GRAticule</td>
<td>This command specifies the type of graticule the oscilloscope displays.</td>
</tr>
<tr>
<td>DISplay:INTENSITy?</td>
<td>Returns all the display intensity settings</td>
</tr>
<tr>
<td>DISplay:INTENSITy:BACKLight</td>
<td>Sets or returns the backlight intensity for the display</td>
</tr>
<tr>
<td>DISplay:INTENSITy:GRAticule</td>
<td>Sets or returns the graticule intensity for the display</td>
</tr>
<tr>
<td>DISplay:INTENSITy:WAVEform</td>
<td>Sets or returns the intensity of the waveforms</td>
</tr>
<tr>
<td>DISplay:PERSistance</td>
<td>Sets or returns the display persistence setting</td>
</tr>
<tr>
<td>DISplay:STYle:DOTsonly</td>
<td>Sets a dots-only display</td>
</tr>
<tr>
<td>DISplay:XY</td>
<td>This command turns on or off the XY display mode.</td>
</tr>
<tr>
<td>MESSAGE</td>
<td>Sets or queries message box (screen annotation) parameters</td>
</tr>
<tr>
<td>MESSAGE:BOX</td>
<td>Sets or returns the coordinates of the message box</td>
</tr>
<tr>
<td>MESSAGE:CLEAR</td>
<td>Clears the contents of the message box</td>
</tr>
<tr>
<td>MESSAGE:SHOW</td>
<td>Sets or returns the contents of the message box</td>
</tr>
<tr>
<td>MESSAGE:STATE</td>
<td>Controls the display of the message box</td>
</tr>
</tbody>
</table>

Ethernet Command Group

Use the commands in the Ethernet Command Group to set up the Ethernet remote interface.

Table 2-20: Ethernet Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ETHERnet:DHCPbootp</td>
<td>Sets or returns the network initialization search for a DHCP/BOOTP server</td>
</tr>
</tbody>
</table>
Table 2-20: Ethernet Commands (cont.)

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ETHERnet:DNS:IPADDress</td>
<td>Sets or returns the network Domain Name Server (Dns) IP address</td>
</tr>
<tr>
<td>ETHERnet:DOMAINname</td>
<td>Sets or returns the network domain name</td>
</tr>
<tr>
<td>ETHERnet:ENET:ADAddress?</td>
<td>Returns the Ethernet address value assigned to the oscilloscope</td>
</tr>
<tr>
<td>ETHERnet:GATEWay:IPADDress</td>
<td>Sets or returns the remote interface gateway IP address</td>
</tr>
<tr>
<td>ETHERnet:HTTPPort</td>
<td>Sets or returns the remote interface HTTP port value</td>
</tr>
<tr>
<td>ETHERnet:IPADDress</td>
<td>Sets or returns the IP address assigned to the oscilloscope</td>
</tr>
<tr>
<td>ETHERnet:NAME</td>
<td>Sets or returns the network name assigned to the oscilloscope</td>
</tr>
<tr>
<td>ETHERnet:PASSWord</td>
<td>Sets or returns the Ethernet access password</td>
</tr>
<tr>
<td>ETHERnet:PING</td>
<td>Causes the oscilloscope to ping the gateway IP address</td>
</tr>
<tr>
<td>ETHERnet:PING:STATUS?</td>
<td>Returns the results from pinging the gateway IP address</td>
</tr>
<tr>
<td>ETHERnet:SUBNETMask</td>
<td>Sets or returns the remote interface subnet mask value</td>
</tr>
</tbody>
</table>

File System Command Group

Use the commands in the File System Command Group to help you use USB media. You can use the commands to do the following:

- List the contents of a directory
- Create and delete directories
- Create, read, rename, or delete a file
- Format media

When using these commands, keep the following points in mind:

- File arguments are always enclosed within double quotes: "E:/MYDIR/TEK00001.SET"
- File names follow the non-case sensitive, MSDOS format: [DRIVE:]\[PATH\]filename
- Path separators may be either forward slashes (/) or back slashes (\)
NOTE. Using back slash as a path separator may produce some unexpected results, depending on how your application treats escaped characters. Many applications recognize the sequence of back slash followed by an alphabetic character as an escaped character; and, as such, interpret that alphabetic character as a control character. For example, the sequence "\n" may be interpreted as a newline character; "\t" may be interpreted as a tab character. To ensure that this interpretation does not occur, you can use double back slashes. For example, "E:\\testfile.txt".

Table 2-21: File System Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>FILESystem?</td>
<td>Returns the directory listing of the current working directory and the number of bytes of free space available</td>
</tr>
<tr>
<td>FILESystem:CWD</td>
<td>Sets or returns the current working directory for FILESystem commands</td>
</tr>
<tr>
<td>FILESystem:DELETE</td>
<td>Deletes a named file or directory</td>
</tr>
<tr>
<td>FILESystem:DIR?</td>
<td>Returns a list of directory contents</td>
</tr>
<tr>
<td>FILESystem:FORMAT</td>
<td>Formats a named drive</td>
</tr>
<tr>
<td>FILESystem:FREESPACE?</td>
<td>Returns the number of bytes of free space on the current drive</td>
</tr>
<tr>
<td>FILESystem:MKDir</td>
<td>Creates a new directory</td>
</tr>
<tr>
<td>FILESystem:READFile</td>
<td>Writes the contents of the specified file to the specified interface</td>
</tr>
<tr>
<td>FILESystem:REName</td>
<td>Assigns a new name to an existing file</td>
</tr>
<tr>
<td>FILESystem:RMDir</td>
<td>Deletes a named directory</td>
</tr>
<tr>
<td>FILESystem:WRITEFile</td>
<td>Writes the specified block data to the oscilloscope current working directory</td>
</tr>
</tbody>
</table>

Hard Copy Command Group

Use the commands in the Hard Copy Command Group to make hard copies. PictBridge commands belong to a separate group. (See page 2-35, PictBridge Command Group.)

Table 2-22: Hard Copy Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>HARDCopy</td>
<td>Sends a copy of the screen display to the selected printer</td>
</tr>
<tr>
<td>HARDCopy:ACTIVEprinter</td>
<td>Sets or returns the currently active printer</td>
</tr>
<tr>
<td>HARDCopy:INKSaver</td>
<td>Changes hard copy output to print color traces and graticule on a white background</td>
</tr>
</tbody>
</table>
Table 2-22: Hard Copy Commands (cont.)

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>HARDCopy:LAYout</td>
<td>Sets or returns the page orientation for hard copy</td>
</tr>
<tr>
<td>HARDCopy:PREVIEW</td>
<td>Previews the current screen contents with the InkSaver palette applied</td>
</tr>
<tr>
<td>HARDCopy:PRINter:ADD</td>
<td>Adds a network printer to the list of available printers</td>
</tr>
<tr>
<td>HARDCopy:PRINter:DELeTe</td>
<td>Removes a network printer from the list of available printers</td>
</tr>
<tr>
<td>HARDCopy:PRINter:LIST?</td>
<td>Returns the list of currently attached printers</td>
</tr>
<tr>
<td>HARDCopy:PRINter:REName</td>
<td>Renames a network printer in the list of available printers</td>
</tr>
</tbody>
</table>
Horizontal Command Group

Use the commands in the Horizontal Command Group to control the oscilloscope horizontal parameters.

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>HORizontal?</td>
<td>Returns settings for the horizontal commands</td>
</tr>
<tr>
<td>HORizontal:DELay:MODE</td>
<td>Sets or returns the horizontal delay mode</td>
</tr>
<tr>
<td>HORizontal:DELay:TIME</td>
<td>Sets or returns the horizontal delay time (position) that is used when delay is on</td>
</tr>
<tr>
<td>HORizontal:DiGital:RECORdlength:MAgnivu?</td>
<td>Returns the record length of the MagniVu digital acquisition</td>
</tr>
<tr>
<td>HORizontal:DiGital:RECORdlength:MAIN?</td>
<td>Returns the record length of the main digital acquisition</td>
</tr>
<tr>
<td>HORizontal:DiGital:SAMPLERate:MAgnivu?</td>
<td>Returns the sample rate of the MagniVu digital acquisition</td>
</tr>
<tr>
<td>HORizontal:DiGital:SAMPLERate:MAIN?</td>
<td>Returns the sample rate of the main digital acquisition</td>
</tr>
<tr>
<td>HORizontal:POSition</td>
<td>Sets or returns the horizontal position, in percent, that is used when delay is off</td>
</tr>
<tr>
<td>HORizontal:PREViewstate?</td>
<td>Returns the display system preview state</td>
</tr>
<tr>
<td>HORizontal:RECORdlength</td>
<td>Sets or returns the record length</td>
</tr>
<tr>
<td>HORizontal:SAMPLERate</td>
<td>Sets or returns the sample rate</td>
</tr>
<tr>
<td>HORizontal:SCAle</td>
<td>Sets or returns the horizontal scale</td>
</tr>
<tr>
<td>HORizontal:DiGital:RECORdlength:MAgnivu?</td>
<td>Returns the record length of the MagniVu digital acquisition</td>
</tr>
<tr>
<td>HORizontal:DiGital:RECORdlength:MAIN?</td>
<td>Returns the record length of the main digital acquisition</td>
</tr>
<tr>
<td>HORizontal:DiGital:SAMPLERate:MAgnivu?</td>
<td>Returns the sample rate of the MagniVu digital acquisition</td>
</tr>
<tr>
<td>HORizontal:DiGital:SAMPLERate:MAIN?</td>
<td>Returns the sample rate of the main digital acquisition</td>
</tr>
</tbody>
</table>

Mark Command Group

Use the commands in the Mark Command Group to identify areas of the acquired waveform that warrant further investigation.
Table 2-24: Mark Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>MARK</td>
<td>Moves to the next or previous reference mark on the waveform. Returns the current mark position</td>
</tr>
<tr>
<td>MARK:CREATE</td>
<td>Creates a mark on a particular waveform or all waveforms in a column</td>
</tr>
<tr>
<td>MARK:DELETE</td>
<td>Deletes a mark on a particular waveform, all waveforms in a column, or all marks</td>
</tr>
<tr>
<td>MARK:FREE?</td>
<td>Returns how many marks are free to be used</td>
</tr>
<tr>
<td>MARK:SELECTED:END?</td>
<td>Returns the end of the selected mark, in terms of 0 to 100% of the waveform</td>
</tr>
<tr>
<td>MARK:SELECTED:FOCUS?</td>
<td>Returns the focus of the selected mark, in terms of 0 to 100% of the waveform</td>
</tr>
<tr>
<td>MARK:SELECTED:MARKSINCOLUMN?</td>
<td>Returns how many marks are in the current zoom pixel column</td>
</tr>
<tr>
<td>MARK:SELECTED:OWNER?</td>
<td>Returns the owner of the selected mark</td>
</tr>
<tr>
<td>MARK:SELECTED:SOURCE?</td>
<td>Returns the source waveform of the selected mark</td>
</tr>
<tr>
<td>MARK:SELECTED:START?</td>
<td>Returns the start of the selected mark, in terms of 0 to 100% of the waveform</td>
</tr>
<tr>
<td>MARK:SELECTED:STATE?</td>
<td>Returns the on or off state of the selected mark</td>
</tr>
<tr>
<td>MARK:SELECTED:ZOOM:POSITION?</td>
<td>Returns the position of the selected mark, in terms of 0 to 100% of the upper window</td>
</tr>
<tr>
<td>MARK:TOTAL?</td>
<td>Returns how many marks are used</td>
</tr>
</tbody>
</table>
Math Command Group

Use the commands in the Math Command Group to create and define a math waveform. Use the available math functions to define your math waveform.

The math waveform you create depends on sources listed in the math expression. If you change these sources, the math waveform you previously defined will be affected.

Math expressions can be simple, containing no mathematical computation, such as CH1, which specifies that a waveform shows the signal source of Channel 1. Math expressions can also be complex, consisting of up to 128 characters and comprising many sources, functions, and operands.

When a live waveform is updated or a reference waveform is altered, math waveforms containing those waveforms as sources are also updated to reflect the changes. Remember that sources must exist, but do not need to be displayed, to be used in and to update math waveforms.

Table 2-25: Math Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>MATH[1]?</td>
<td>Returns the definition of the math waveform</td>
</tr>
<tr>
<td>MATH[1]:DEFine</td>
<td>Sets or returns the current math function as a text string</td>
</tr>
<tr>
<td>MATH[1]:HORizontal:SCAle</td>
<td>Sets or returns the math horizontal display scale for FFT or for Dual Math waveforms</td>
</tr>
<tr>
<td>MATH[1]:HORizontal:UNIts</td>
<td>Returns the math waveform horizontal unit value</td>
</tr>
<tr>
<td>{MATH</td>
<td>MATH1}:LABel</td>
</tr>
<tr>
<td>MATH[1]:SPECTral:MAG</td>
<td>Sets or returns the units of spectral magnification in the math string</td>
</tr>
<tr>
<td>MATH[1]:SPECTral:WINdow</td>
<td>Sets or returns the window function for math waveform spectral input data</td>
</tr>
<tr>
<td>MATH[1]:VERTical:POSition</td>
<td>Sets or returns the vertical position of the currently selected math type</td>
</tr>
<tr>
<td>MATH[1]:VERTical:SCAle</td>
<td>Sets or returns the vertical scale of the currently selected math type</td>
</tr>
<tr>
<td>MATH[1]:VERTical:UNIts</td>
<td>Returns the math waveform vertical units</td>
</tr>
<tr>
<td>MATH[1]:HORizontal:POSition</td>
<td>Sets or returns the math horizontal display position for FFT or (non-live) math reference waveforms</td>
</tr>
<tr>
<td>MATH[1]:TYPe</td>
<td>Sets or returns the math waveform mode type</td>
</tr>
</tbody>
</table>
Table 2-25: Math Commands (cont.)

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>MATHVAR?</td>
<td>Returns all numerical values used within math expressions</td>
</tr>
<tr>
<td>MATHVAR:VAR<x></td>
<td>Sets or returns numerical values you can use within math expressions</td>
</tr>
</tbody>
</table>

Measurement Command Group

Use the commands in the Measurement Command Group to control the automated measurement system.

Up to four automated measurements can be displayed on the screen. In the commands, these measurement readouts are named MEAS<x>, where <x> is the measurement number.

In addition to the four displayed measurements, the measurement commands let you specify an additional measurement, IMMed. The immediate measurement has no front-panel equivalent. Immediate measurements are never displayed. Because they are computed only when needed, immediate measurements slow the waveform update rate less than displayed measurements.

Whether you use displayed or immediate measurements, use the VALue query to obtain measurement results.

Measurement commands can set and query measurement parameters. You can assign some parameters, such as waveform sources, differently for each measurement. Other parameters, such as reference levels, have only one value, which applies to all measurements.

Table 2-26: Measurement Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>MEASUrement?</td>
<td>Returns all measurement parameters</td>
</tr>
<tr>
<td>MEASUrement:CLEARSNapshot</td>
<td>Removes the measurement snapshot display</td>
</tr>
<tr>
<td>MEASUrement:GATing</td>
<td>Sets or returns the measurement gating</td>
</tr>
<tr>
<td>MEASUrement:IMMed?</td>
<td>Returns all immediate measurement setup parameters</td>
</tr>
<tr>
<td>MEASUrement:IMMed:DElay?</td>
<td>Returns information about the immediate delay measurement</td>
</tr>
<tr>
<td>MEASUrement:IMMed:DElay:DIRection</td>
<td>Sets or returns the search direction to use for immediate delay measurements</td>
</tr>
<tr>
<td>MEASUrement:IMMed:DElay:EDGE<x></td>
<td>Sets or returns the slope of the edge used for immediate delay “from” and “to” waveform measurements</td>
</tr>
<tr>
<td>Command</td>
<td>Description</td>
</tr>
<tr>
<td>-------------------------</td>
<td>---</td>
</tr>
<tr>
<td>MEASUrement:IMMed:SOURce<x></td>
<td>Sets or returns the source for the current single channel measurement</td>
</tr>
<tr>
<td>MEASUrement:IMMed:SOURce1</td>
<td>Sets or returns the “from” source for all single channel immediate measurements</td>
</tr>
<tr>
<td>MEASUrement:IMMed:SOURce2</td>
<td>Sets or returns the source to measure “to” for phase or delay immediate measurements</td>
</tr>
<tr>
<td>MEASUrement:IMMed:TYPE</td>
<td>Sets or returns the type of the immediate measurement</td>
</tr>
<tr>
<td>MEASUrement:IMMed:UNIts?</td>
<td>Returns the units of the immediate measurement</td>
</tr>
<tr>
<td>MEASUrement:IMMed:VALue?</td>
<td>Returns the value of the immediate measurement</td>
</tr>
<tr>
<td>MEASUrement:INDICators?</td>
<td>Returns all measurement indicator parameters</td>
</tr>
<tr>
<td>MEASUrement:INDICators:HORZ<x>?</td>
<td>Returns the position of the specified horizontal measurement indicator</td>
</tr>
<tr>
<td>MEASUrement:INDICators:NUMHORZ?</td>
<td>Returns the number of horizontal measurement indicators currently being displayed</td>
</tr>
<tr>
<td>MEASUrement:INDICators:NUMVERT?</td>
<td>Returns the number of vertical measurement indicators currently being displayed</td>
</tr>
<tr>
<td>MEASUrement:INDICators:STATE</td>
<td>Sets or returns the state of visible measurement indicators</td>
</tr>
<tr>
<td>MEASUrement:INDICators:VERT<x>?</td>
<td>Returns the value of the specified vertical measurement indicator</td>
</tr>
<tr>
<td>MEASUrement:MEAS<x>?</td>
<td>Returns all measurement parameters</td>
</tr>
<tr>
<td>MEASUrement:MEAS<x>:COUNT?</td>
<td>Returns the number of values accumulated since the last statistical reset</td>
</tr>
<tr>
<td>MEASUrement:MEAS<x>:DELAY?</td>
<td>Returns the delay measurement parameters for the specified measurement</td>
</tr>
<tr>
<td>MEASUrement:MEAS<x>:DELAY:DIRection</td>
<td>Sets or returns the search direction to use for delay measurements</td>
</tr>
<tr>
<td>MEASUrement:MEAS<x>:DELAY:EDGE<x></td>
<td>Sets or returns the slope of the edge to use for delay “from” and “to” waveform measurements</td>
</tr>
<tr>
<td>MEASUrement:MEAS<x>:MAXimum?</td>
<td>Returns the maximum value found since the last statistical reset</td>
</tr>
<tr>
<td>MEASUrement:MEAS<x>:MEAN?</td>
<td>Returns the mean value accumulated since the last statistical reset</td>
</tr>
<tr>
<td>MEASUrement:MEAS<x>:MINimum?</td>
<td>Returns the minimum value found since the last statistical reset</td>
</tr>
<tr>
<td>Command</td>
<td>Description</td>
</tr>
<tr>
<td>---------</td>
<td>-------------</td>
</tr>
<tr>
<td>MEASure:MEAS<x>:SOURce<x></td>
<td>Sets or returns the source for the specified measurement</td>
</tr>
<tr>
<td>MEASure:MEAS<x>:SOURCE[1]</td>
<td>Sets or returns the channel from which measurements are taken</td>
</tr>
<tr>
<td>MEASure:MEAS<x>:SOURCE2</td>
<td>Sets or returns the channel to which measurements are sent</td>
</tr>
<tr>
<td>MEASure:MEAS<x>:STATE</td>
<td>Sets or returns whether the specified measurement slot is computed and displayed</td>
</tr>
<tr>
<td>MEASure:MEAS<x>:STDdev?</td>
<td>Returns the standard deviation of values accumulated since the last statistical reset</td>
</tr>
<tr>
<td>MEASure:MEAS<x>:TYPE</td>
<td>Sets or returns the measurement<x> type</td>
</tr>
<tr>
<td>MEASure:MEAS<x>:UNIts?</td>
<td>Returns measurement<x> units</td>
</tr>
<tr>
<td>MEASure:MEAS<x>:VALue?</td>
<td>Returns the value of measurement<x></td>
</tr>
<tr>
<td>MEASure:METHod</td>
<td>Sets or returns the method used for calculating reference levels</td>
</tr>
<tr>
<td>MEASure:REFLevel?</td>
<td>Returns the current reference level parameters</td>
</tr>
<tr>
<td>MEASure:REFLevel:ABSolute:HIGH</td>
<td>Sets or returns the top reference level for rise and fall time</td>
</tr>
<tr>
<td>MEASure:REFLevel:ABSolute:LOW</td>
<td>Sets or returns the low reference level for rise and fall time</td>
</tr>
<tr>
<td>MEASure:REFLevel:ABSolute:MID</td>
<td>Sets or returns the mid reference level for measurements</td>
</tr>
<tr>
<td>MEASure:REFLevel:ABSolute:MID<x></td>
<td>Sets or returns the mid reference level in absolute units (e.g. volts)</td>
</tr>
<tr>
<td>MEASure:REFLevel:ABSolute:MID2</td>
<td>Sets or returns the mid reference level for delay "to" measurements</td>
</tr>
<tr>
<td>MEASure:REFLevel:METHod</td>
<td>Specifies or returns the reference level units used for measurement calculations</td>
</tr>
<tr>
<td>MEASure:REFLevel:PERCent:HIGH</td>
<td>Sets or returns the top reference percent level for rise and fall time</td>
</tr>
<tr>
<td>MEASure:REFLevel:PERCent:LOW</td>
<td>Sets or returns the low reference percent level for rise and fall time</td>
</tr>
<tr>
<td>MEASure:REFLevel:PERCent:MID</td>
<td>Sets or returns the mid reference percent level for waveform measurements</td>
</tr>
<tr>
<td>MEASure:REFLevel:PERCent:MID<x></td>
<td>Sets or returns the mid reference percent level for the specified channel in percent</td>
</tr>
<tr>
<td>MEASure:REFLevel:PERCent:MID2</td>
<td>Sets or returns the mid reference percent level for second waveform measurements</td>
</tr>
<tr>
<td>MEASure:SNAPShot</td>
<td>Displays the measurement snapshot list</td>
</tr>
</tbody>
</table>
Measurement Commands (cont.)

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>MEASUREMENT:STATISTICS:MODE</code></td>
<td>Turns measurement statistics on or off</td>
</tr>
<tr>
<td><code>MEASUREMENT:STATISTICS</code></td>
<td>Clears or returns all of the statistics accumulated for all period measurements (MEAS1 through MEAS4)</td>
</tr>
<tr>
<td><code>MEASUREMENT:STATISTICS:WEIGHTING</code></td>
<td>Controls the responsiveness of the mean and standard deviation to waveform changes</td>
</tr>
</tbody>
</table>

Miscellaneous Command Group

Use the commands in the Miscellaneous Command Group to perform actions that do not fit into other categories.

Several commands and queries are common to all 488.2-1987 devices. The 488.2-1987 standard defines these commands. The common commands begin with an asterisk (*) character.

Table 2-27: Miscellaneous Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>APPLICATION:LICENSE:SLOT<x>:LOCATION?</code></td>
<td>This query returns the application license location. <code><x></code> can be slot number 1–4.</td>
</tr>
<tr>
<td><code>APPLICATION:LICENSE:SLOT<x>:TRANSFER</code></td>
<td>You can use this command to transfer an application license from the module to internal memory in the oscilloscope, and transfer it back.</td>
</tr>
<tr>
<td><code>APPLICATION:LICENSE:SLOT<x>:TYPE?</code></td>
<td>This query returns the application license type of the module that is currently inserted in the specified application module slot.</td>
</tr>
<tr>
<td><code>AUTOSET</code></td>
<td>Sets the vertical, horizontal, and trigger controls of the oscilloscope to automatically acquire and display the appropriate waveform(s). This is equivalent to pressing the front panel Autoset button</td>
</tr>
<tr>
<td><code>AUTOSET:ENABLE</code></td>
<td>Enables or disables the autoset feature</td>
</tr>
<tr>
<td><code>CLEARMENU</code></td>
<td>Clears the current menu from the display</td>
</tr>
<tr>
<td><code>DATE</code></td>
<td>Sets or returns the date displayed by the oscilloscope</td>
</tr>
<tr>
<td><code>*DDT</code></td>
<td>Sets or returns the commands that will be executed by the group execute trigger</td>
</tr>
<tr>
<td><code>FPANEL:HOLD</code></td>
<td>This command is used to emulate the button push-and-hold feature. Presently, only the Cursors button is supported by this command.</td>
</tr>
</tbody>
</table>
Table 2-27: Miscellaneous Commands (cont.)

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>FPAnel:PRESS</td>
<td>Simulates the action of pressing a specified front-panel button</td>
</tr>
<tr>
<td>FPAnel:TURN</td>
<td>Duplicates the action of turning a specified front-panel control knob</td>
</tr>
<tr>
<td>GPIBUsb:ADDRESS?</td>
<td>Returns the current GPIB address</td>
</tr>
<tr>
<td>GPIBUsb:ID?</td>
<td>Returns the identification string of the connected adaptor module and firmware version</td>
</tr>
<tr>
<td>HEADer</td>
<td>Sets or returns the Response Header Enable State</td>
</tr>
<tr>
<td>ID?</td>
<td>Returns identifying information about the oscilloscope and its firmware</td>
</tr>
<tr>
<td>*IDN?</td>
<td>Returns the same information as the ID? command except the data is formatted according to Tektronix Codes & Formats</td>
</tr>
<tr>
<td>LANGUAGE</td>
<td>Sets or returns the user interface display language</td>
</tr>
<tr>
<td>LOCK</td>
<td>Sets or returns the front panel lock state</td>
</tr>
<tr>
<td>*LRN?</td>
<td>Returns a listing of oscilloscope settings</td>
</tr>
<tr>
<td>MESSAGE</td>
<td>Sets or queries message parameters</td>
</tr>
<tr>
<td>NEWpass</td>
<td>Changes the password for user protected data</td>
</tr>
<tr>
<td>PASSWord</td>
<td>Enables the *PUD and NEWpass set commands</td>
</tr>
<tr>
<td>REM</td>
<td>Specifies a comment, which is ignored by the oscilloscope</td>
</tr>
<tr>
<td>SET?</td>
<td>Returns a listing of oscilloscope settings</td>
</tr>
<tr>
<td>TEKSecure</td>
<td>Initializes both waveform and setup memories</td>
</tr>
<tr>
<td>TIME</td>
<td>Sets or returns the time displayed by the oscilloscope</td>
</tr>
<tr>
<td>TOTaluptime?</td>
<td>Returns the total number of hours that the oscilloscope has been turned on since the nonvolatile memory was last programmed</td>
</tr>
<tr>
<td>*TRG</td>
<td>Performs the group execute trigger (GET)</td>
</tr>
<tr>
<td>*TST?</td>
<td>Tests the interface and returns the status</td>
</tr>
<tr>
<td>UNLock</td>
<td>Unlocks front panel</td>
</tr>
<tr>
<td>USBTMC?</td>
<td>Returns the USBTMC information used by the USB hosts to determine the instrument interfaces</td>
</tr>
</tbody>
</table>
Table 2-27: Miscellaneous Commands (cont.)

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>USBTMC:PRODUCTID:DECimal?</td>
<td>Returns the product ID of the USBTMC device in decimal format</td>
</tr>
<tr>
<td>USBTMC:PRODUCTID:HEXadecimal?</td>
<td>Returns the product ID of the USBTMC device in hexadecimal format</td>
</tr>
<tr>
<td>USBTMC:SERIALnumber?</td>
<td>Returns the serial number of the USBTMC device</td>
</tr>
<tr>
<td>USBTMC:VENDORID:DECimal?</td>
<td>Returns the vendor ID of the USBTMC device in decimal format</td>
</tr>
<tr>
<td>USBTMC:VENDORID:HEXadecimal?</td>
<td>Returns the vendor ID of the USBTMC device in hexadecimal format</td>
</tr>
<tr>
<td>VERBose</td>
<td>Sets or returns the verbose state</td>
</tr>
</tbody>
</table>

PictBridge Command Group

Use the commands in the PictBridge Command Group to store printer settings.

Table 2-28: PictBridge Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>PICTBridge:DATEPrint</td>
<td>Enables or disables printing the date on the print output</td>
</tr>
<tr>
<td>PICTBridge:DEFault</td>
<td>Sets the arguments for all PICTBridge commands to their default values</td>
</tr>
<tr>
<td>PICTBridge:IDPrint</td>
<td>Enables or disables printing the oscilloscope model and serial number on the print output</td>
</tr>
<tr>
<td>PICTBridge:IMAGESize</td>
<td>Sets or returns the image print size</td>
</tr>
<tr>
<td>PICTBridge:PAPERSize</td>
<td>Sets the output print paper size</td>
</tr>
<tr>
<td>PICTBridge:PAPERType</td>
<td>Sets or returns the paper type</td>
</tr>
<tr>
<td>PICTBridge:PRINTQual</td>
<td>Sets or returns the output print quality</td>
</tr>
<tr>
<td>USBDevice:CONFigure</td>
<td>Enables or disables the rear USB port for use with Pictbridge printers</td>
</tr>
</tbody>
</table>

Power Command Group

Use the commands in the Power Command Group for power analysis. The power measurements include:
Command Groups

- Power quality
- Switching loss
- Safe operating area
- Harmonics
- Ripple
- Modulation analysis

This command group is available when the DPO3PWR application module is installed.

Table 2-29: Power Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>POWer:CURRENTSOunce</td>
<td>Sets or returns the current source for the power application</td>
</tr>
<tr>
<td>POWer:DISplay</td>
<td>Sets or returns the display state for the power application</td>
</tr>
<tr>
<td>POWer:GATESOunce</td>
<td>Sets or returns the gate source for the power application</td>
</tr>
<tr>
<td>POWer:GATing</td>
<td>Sets or returns the power application gating</td>
</tr>
<tr>
<td>POWer:HARMonics:DISPLAY:SESelect</td>
<td>Sets or returns the harmonics to be displayed when the harmonics standard is None</td>
</tr>
<tr>
<td>POWer:HARMonics:DISPLAY:TYPe</td>
<td>Sets or returns the display type for harmonics tests</td>
</tr>
<tr>
<td>POWer:HARMonics:FREQRef</td>
<td>Sets or returns the frequency reference waveform for harmonics tests</td>
</tr>
<tr>
<td>POWer:HARMonics:FREQRef:FIXEDFREQValue</td>
<td>Sets or returns the fixed reference frequency value for harmonics measurements</td>
</tr>
<tr>
<td>POWer:HARMonics:IEC:CLAss</td>
<td>Sets or returns the filtering class for IEC harmonics</td>
</tr>
<tr>
<td>POWer:HARMonics:IEC:FILIter</td>
<td>Sets or returns the enabled state for filtering of IEC harmonics</td>
</tr>
<tr>
<td>POWer:HARMonics:IEC:FUNDamental</td>
<td>Sets or returns the fundamental current for IEC harmonics</td>
</tr>
<tr>
<td>POWer:HARMonics:IEC:GROUPing</td>
<td>Sets or returns the enabled state for grouping of IEC harmonics</td>
</tr>
<tr>
<td>POWer:HARMonics:IEC:INPUTPOWer</td>
<td>Sets of returns the class D input power for IEC harmonics</td>
</tr>
<tr>
<td>POWer:HARMonics:IEC:LINEFREQuency</td>
<td>Sets or returns the line frequency for the IEC standard</td>
</tr>
<tr>
<td>POWer:HARMonics:IEC:OBSPERiod</td>
<td>Sets or returns the IEC observation period</td>
</tr>
<tr>
<td>POWer:HARMonics:IEC:POWERFACTor</td>
<td>Sets or returns the power factor for IEC harmonics</td>
</tr>
</tbody>
</table>
Table 2-29: Power Commands (cont.)

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>POWer:HARMonics:MIL:FUNDamental:CALCmethod</td>
<td>Sets or returns the measurement method for the MIL harmonics fundamental frequency</td>
</tr>
<tr>
<td>POWer:HARMonics:MIL:FUNDamental:USER:CURRent</td>
<td>Sets or returns RMS amperes for User calculation method</td>
</tr>
<tr>
<td>POWer:HARMonics:MIL:LINEFREQuency</td>
<td>Sets or returns the line frequency for MIL-STD-1399 harmonics tests</td>
</tr>
<tr>
<td>POWer:HARMonics:MIL:POWERLEVel</td>
<td>Sets or returns the power level for MIL-STD-1399 harmonics tests</td>
</tr>
<tr>
<td>POWer:HARMonics:NR_HARMonics</td>
<td>Sets or returns the number of harmonics (a value in the range of 20 to 400) when the harmonics standard is NONe</td>
</tr>
<tr>
<td>POWer:HARMonics:RESults:HAR<1-400>:FREQuency?</td>
<td>Returns the frequency of the harmonic</td>
</tr>
<tr>
<td>POWer:HARMonics:RESults:HAR<1-400>:IECMAX?</td>
<td>The IEC standard specifies harmonics measurements to be computed in windows of time, with each time window being nominally 200 ms. This returns the maximum of the RMS magnitude of the harmonic, computed across successive 200 ms time windows within an observation period entered by the user</td>
</tr>
<tr>
<td>POWer:HARMonics:RESults:HAR<1-400>:LIMIT?</td>
<td>The IEC and MIL standards specify a limit for each harmonic magnitude. Returns the limit in absolute units, or as a percentage of the fundamental as specified by the standard. IEC Class C (Table 2) and MIL standards specify the limit as a percentage of the fundamental</td>
</tr>
<tr>
<td>POWer:HARMonics:RESults:HAR<1-400>:PHASE?</td>
<td>Returns the phase of the harmonic in degrees. The phase is measured relative to the zero-crossing of the reference waveform. When there is no reference waveform, the phase is relative to the fundamental component</td>
</tr>
<tr>
<td>POWer:HARMonics:RESults:HAR<1-400>:RMS:ABSolute?</td>
<td>Returns the RMS magnitude of the harmonic expressed in absolute units</td>
</tr>
<tr>
<td>POWer:HARMonics:RESults:HAR<1-400>:RMS:PERCent?</td>
<td>Returns the RMS magnitude of the harmonic expressed as a percentage of the fundamental</td>
</tr>
<tr>
<td>POWer:HARMonics:RESults:HAR<1-400>:TEST:IEC:CLASSALIMIT?</td>
<td>Returns PASS, FAIL or NA. Specifies if the IEC Class A higher harmonic limit (and conditions) are met</td>
</tr>
<tr>
<td>POWer:HARMonics:RESults:HAR<1-400>:TEST:IEC:NORMAL?</td>
<td>Returns PASS, FAIL or NA. Specifies if the Normal IEC harmonic limits are met</td>
</tr>
<tr>
<td>Command</td>
<td>Description</td>
</tr>
<tr>
<td>---------</td>
<td>-------------</td>
</tr>
<tr>
<td>POWer:HARMonics:RESults:HAR<1-400>:TEST:IEC:POHCLIMit?</td>
<td>Returns PASS, FAIL or NA. Specifies if the higher harmonic limit (and conditions) for the 21st and higher order odd harmonics are met</td>
</tr>
<tr>
<td>POWer:HARMonics:RESults:HAR<1-400>:TEST:MIL:NORMAL?</td>
<td>Returns the test result for the specified harmonic for the MIL-STD-1399 testing standard</td>
</tr>
<tr>
<td>POWer:HARMonics:RESults:IEC:FUNDamental?</td>
<td>Returns the IEC fundamental frequency</td>
</tr>
<tr>
<td>POWer:HARMonics:RESults:IEC:HARM3ALTernate?</td>
<td>Returns the IEC harmonics test result for the 3rd harmonic: PASS, FAIL or NA</td>
</tr>
<tr>
<td>POWer:HARMonics:RESults:IEC:HARM5ALTernate?</td>
<td>Returns the IEC harmonics test result for the 5th harmonic: PASS, FAIL or NA</td>
</tr>
<tr>
<td>POWer:HARMonics:RESults:IEC:POHC?</td>
<td>Returns the IEC POHC measurement</td>
</tr>
<tr>
<td>POWer:HARMonics:RESults:IEC:POHL?</td>
<td>Returns the IEC POHL measurement</td>
</tr>
<tr>
<td>POWer:HARMonics:RESults:IEC:POWER?</td>
<td>Returns the IEC input power measurement</td>
</tr>
<tr>
<td>POWer:HARMonics:RESults:IEC:POWERFactor?</td>
<td>Returns the IEC power factor measurement</td>
</tr>
<tr>
<td>POWer:HARMonics:RESults:PASSFail?</td>
<td>Returns the overall harmonics test result: PASS, FAIL or NA</td>
</tr>
<tr>
<td>POWer:HARMonics:RESults:RMS?</td>
<td>Returns the root mean square value of the source waveform</td>
</tr>
<tr>
<td>POWer:HARMonics:RESults:SAVe</td>
<td>Saves the harmonic results to the specified file in CSV format</td>
</tr>
<tr>
<td>POWer:HARMonics:RESults:THDF?</td>
<td>Returns the Total Harmonic Distortion (THD) in percentage, measured as a ratio to the RMS value of the fundamental component of the source waveform</td>
</tr>
<tr>
<td>POWer:HARMonics:RESults:THDR?</td>
<td>Returns the Total Harmonic Distortion (THD) in percentage, measured as a ratio to the RMS value of the source waveform</td>
</tr>
<tr>
<td>POWer:HARMonics:SOURce</td>
<td>Sets or returns the source waveform for harmonics tests</td>
</tr>
<tr>
<td>POWer:HARMonics:STANDard</td>
<td>Sets or returns the standard for harmonics tests</td>
</tr>
<tr>
<td>POWer:INDICators</td>
<td>Sets or returns the state of the measurement indicators for the power application</td>
</tr>
<tr>
<td>POWer:MODulation:SOURce</td>
<td>Sets or returns the source waveform for modulation tests</td>
</tr>
<tr>
<td>POWer:MODulation:TYPE</td>
<td>Sets or returns the modulation type</td>
</tr>
<tr>
<td>POWer:QUALity:APPpwr?</td>
<td>Returns the apparent power measurement</td>
</tr>
<tr>
<td>POWer:QUALity:DISSplay:APPpwr</td>
<td>Sets or returns the display state for the apparent power readout</td>
</tr>
<tr>
<td>Command</td>
<td>Description</td>
</tr>
<tr>
<td>---------</td>
<td>-------------</td>
</tr>
<tr>
<td>POWer:QUALity:DIsplay:FREQuency</td>
<td>Sets or returns the display state for the frequency readout</td>
</tr>
<tr>
<td>POWer:QUALity:DIsplay:ICRESTfactor</td>
<td>Sets or returns the display state for the current crest factor readout</td>
</tr>
<tr>
<td>POWer:QUALity:DIsplay:IRMS</td>
<td>Sets or returns the display state for the RMS current (IRMS) readout</td>
</tr>
<tr>
<td>POWer:QUALity:DIsplay:PHASEangle</td>
<td>Sets or returns the display state for the phase angle readout</td>
</tr>
<tr>
<td>POWer:QUALity:DIspay:POWERFACTOR</td>
<td>Sets or returns the display state for the power factor readout</td>
</tr>
<tr>
<td>POWer:QUALity:DIspay:REACTpwr</td>
<td>Sets or returns the display state for the reactive power readout</td>
</tr>
<tr>
<td>POWer:QUALity:DIspay:TRUEpwr</td>
<td>Sets or returns the display state for the true power readout</td>
</tr>
<tr>
<td>POWer:QUALity:DIspay:VCRESTfactor</td>
<td>Sets or returns the display state for the voltage crest factor readout</td>
</tr>
<tr>
<td>POWer:QUALity:DIspay:VRMS</td>
<td>Sets or returns the display state for the RMS voltage (VRMS) readout</td>
</tr>
<tr>
<td>POWer:QUALity:FREQREFERENCE</td>
<td>Sets or returns the power quality frequency reference</td>
</tr>
<tr>
<td>POWer:QUALity:FREQuency?</td>
<td>Returns the frequency measurement</td>
</tr>
<tr>
<td>POWer:QUALity:ICRESTfactor?</td>
<td>Returns the current crest factor measurement</td>
</tr>
<tr>
<td>POWer:QUALity:IRMS?</td>
<td>Returns the RMS current measurement</td>
</tr>
<tr>
<td>POWer:QUALity:PHASEangle?</td>
<td>Returns the phase angle measurement</td>
</tr>
<tr>
<td>POWer:QUALity:POWERFACTOR?</td>
<td>Returns the power factor measurement</td>
</tr>
<tr>
<td>POWer:QUALity:REACTpwr?</td>
<td>Returns the reactive power measurement</td>
</tr>
<tr>
<td>POWer:QUALity:TRUEpwr?</td>
<td>Returns the true power measurement</td>
</tr>
<tr>
<td>POWer:QUALity:VRMS?</td>
<td>Returns the RMS voltage measurement</td>
</tr>
<tr>
<td>POWer:REFLevel:ABSolute</td>
<td>Sets the reference levels to their default unit values</td>
</tr>
<tr>
<td>POWer:REFLevel:ABSolute:HIGH</td>
<td>Sets or returns the top reference level for rise time</td>
</tr>
<tr>
<td>POWer:REFLevel:ABSolute:LOW</td>
<td>Sets or returns the low reference level for rise time</td>
</tr>
<tr>
<td>POWer:REFLevel:ABSolute:MID<1-3></td>
<td>Sets or returns the mid reference level for measurements</td>
</tr>
<tr>
<td>POWer:REFLevel:HYSTeresis</td>
<td>Sets or returns the measurement reference level hysteresis value</td>
</tr>
<tr>
<td>POWer:REFLevel:METHod</td>
<td>Sets or returns the method used to calculate the 0% and 100% reference level</td>
</tr>
<tr>
<td>Command</td>
<td>Description</td>
</tr>
<tr>
<td>---------</td>
<td>-------------</td>
</tr>
<tr>
<td>POWer:REFLevel:PERCent</td>
<td>Sets the reference levels to the default percentage values</td>
</tr>
<tr>
<td>POWer:REFLevel:PERCent:HIGH</td>
<td>Sets or returns the top reference percent level for rise time</td>
</tr>
<tr>
<td>POWer:REFLevel:PERCent:LOW</td>
<td>Sets or returns the low reference percent level for rise time</td>
</tr>
<tr>
<td>POWer:REFLevel:PERCent:MID<1-3></td>
<td>Sets or returns the mid reference percent level for waveform measurements</td>
</tr>
<tr>
<td>POWer:RIpple</td>
<td>Sets the vertical offset of the source waveform</td>
</tr>
<tr>
<td>POWer:RIpple:RESults:AMPLitude?</td>
<td>Returns the peak-to-peak ripple measurement</td>
</tr>
<tr>
<td>POWer:RIpple:RESults:MAX?</td>
<td>Returns the maximum of the peak-to-peak ripple measurements</td>
</tr>
<tr>
<td>POWer:RIpple:RESults:MEAN?</td>
<td>Returns the mean of the peak-to-peak ripple measurements</td>
</tr>
<tr>
<td>POWer:RIpple:RESults:MIN?</td>
<td>Returns the minimum of the peak-to-peak ripple measurement</td>
</tr>
<tr>
<td>POWer:RIpple:RESults:STDdev?</td>
<td>Returns the standard deviation of the peak-to-peak ripple measurements</td>
</tr>
<tr>
<td>POWer:RIpple:SOUrce</td>
<td>Sets or returns the source waveform for ripple tests</td>
</tr>
<tr>
<td>POWer:SOA:LINear:XMAX</td>
<td>Sets or returns the user XMAX value for use in linear SOA calculations</td>
</tr>
<tr>
<td>POWer:SOA:LINear:XMIN</td>
<td>Sets or returns the user XMIN value for use in linear SOA calculations</td>
</tr>
<tr>
<td>POWer:SOA:LINear:YMAX</td>
<td>Sets or returns the user YMAX value for use in linear SOA calculations</td>
</tr>
<tr>
<td>POWer:SOA:LINear:YMIN</td>
<td>Sets or returns the user YMIN value for use in linear SOA calculations</td>
</tr>
<tr>
<td>POWer:SOA:LOG:XMAX</td>
<td>Sets or returns the user XMAX value for use in log SOA calculations</td>
</tr>
<tr>
<td>POWer:SOA:LOG:XMIN</td>
<td>Sets or returns the user XMIN value for use in log SOA calculations</td>
</tr>
<tr>
<td>POWer:SOA:LOG:YMAX</td>
<td>Sets or returns the user YMAX value for use in log SOA calculations</td>
</tr>
<tr>
<td>POWer:SOA:LOG:YMIN</td>
<td>Sets or returns the user YMIN value for use in log SOA calculations</td>
</tr>
<tr>
<td>POWer:SOA:MASK:DEFine</td>
<td>Sets or returns the X (Volts) and Y (Amps) coordinates of the current SOA mask</td>
</tr>
<tr>
<td>POWer:SOA:MASK:MAXAmps</td>
<td>Sets or returns the maximum current applied to SOA mask testing</td>
</tr>
</tbody>
</table>
Table 2-29: Power Commands (cont.)

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>POWer:SOA:MASK:MAXVolts</td>
<td>Sets or returns the maximum voltage applied to SOA mask testing</td>
</tr>
<tr>
<td>POWer:SOA:MASK:MAXWatts</td>
<td>Sets or returns the maximum power applied to SOA mask testing</td>
</tr>
<tr>
<td>POWer:SOA:MASK:NR_PT?</td>
<td>Returns the number of mask points defined</td>
</tr>
<tr>
<td>POWer:SOA:MASK:STATe</td>
<td>Sets or returns the state of the mask for SOA calculations</td>
</tr>
<tr>
<td>POWer:SOA:MASK:STOPOnviol</td>
<td>Sets or returns the enabled state of the mask stop on violation condition</td>
</tr>
<tr>
<td>POWer:SOA:PLOTTYPe</td>
<td>Sets or returns the SOA plot type</td>
</tr>
<tr>
<td>POWer:SOA:RESult:FAILures:QTY?</td>
<td>Returns the number of failures in the test</td>
</tr>
<tr>
<td>POWer:SOA:RESult:NUMACq?</td>
<td>Returns the number of acquisitions in the test</td>
</tr>
<tr>
<td>POWer:SOA:RESult:STATe?</td>
<td>Returns the pass/fail state of the SOA test</td>
</tr>
<tr>
<td>POWer:STATIstics</td>
<td>Clears all the accumulated statistics of all measurements</td>
</tr>
<tr>
<td>POWer:STATIstics:MODE</td>
<td>Enables or disables the display of the measurement statistics</td>
</tr>
<tr>
<td>POWer:STATIstics:WEIghting</td>
<td>Sets the number of samples which are included for the statistics computations for mean and the standard deviation</td>
</tr>
<tr>
<td>POWer:SWLoss:CONDCALCmethod</td>
<td>Sets or returns the power application switching loss conduction calculation method</td>
</tr>
<tr>
<td>POWer:SWLoss:CONDuction:ENERGY:MAX?</td>
<td>Returns the maximum conduction energy for the switching loss calculation</td>
</tr>
<tr>
<td>POWer:SWLoss:CONDuction:ENERGY:MEAN?</td>
<td>Returns the mean conduction energy for the switching loss calculation</td>
</tr>
<tr>
<td>POWer:SWLoss:CONDuction:ENERGY:MIN?</td>
<td>Returns the minimum conduction energy for the switching loss calculation</td>
</tr>
<tr>
<td>POWer:SWLoss:CONDuction:POWER:MAX?</td>
<td>Returns the maximum conduction power for the switching loss calculation</td>
</tr>
<tr>
<td>POWer:SWLoss:CONDuction:POWER:MEAN?</td>
<td>Returns the mean conduction power for the switching loss calculation</td>
</tr>
<tr>
<td>POWer:SWLoss:CONDuction:POWER:MIN?</td>
<td>Returns the minimum conduction power for the switching loss calculation</td>
</tr>
<tr>
<td>POWer:SWLoss:DISplay</td>
<td>Sets or returns the display selection for switching loss results</td>
</tr>
<tr>
<td>POWer:SWLoss:GATe:POLarity</td>
<td>Sets or returns the switching loss gate polarity</td>
</tr>
<tr>
<td>POWer:SWLoss:GATe:TURNON</td>
<td>Sets or returns the gate turn on level for switching loss power measurements</td>
</tr>
</tbody>
</table>
Table 2-29: Power Commands (cont.)

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>POWer:SWLoss:NUMCYCles?</td>
<td>Returns the number of cycles counted for the switching loss calculation</td>
</tr>
<tr>
<td>POWer:SWLoss:RDSon</td>
<td>Sets or returns RDSON value for use in switching loss calculations when the conduction calculation method is RDSON</td>
</tr>
<tr>
<td>POWer:SWLoss:REFLevel:ABSolute:GATEMid</td>
<td>Sets or returns the mid voltage reference level used in switching loss power measurements in volts</td>
</tr>
<tr>
<td>POWer:SWLoss:REFLevel:ABSolute:LOWCurrent</td>
<td>Sets or returns the low current reference level used in switching loss power measurements in amperes</td>
</tr>
<tr>
<td>POWer:SWLoss:REFLevel:ABSolute:LOWVoltage</td>
<td>Sets or returns the low voltage reference level used in switching loss power measurements in volts</td>
</tr>
<tr>
<td>POWer:SWLoss:REFLevel:PERCent:GATEMid</td>
<td>Sets or returns the mid voltage reference level used in switching loss power measurements in percentage</td>
</tr>
<tr>
<td>POWer:SWLoss:REFLevel:PERCent:LOWCurrent</td>
<td>Sets or returns the low current reference level used in switching loss power measurements in percentage</td>
</tr>
<tr>
<td>POWer:SWLoss:REFLevel:PERCent:LOWVoltage</td>
<td>Sets or returns the low voltage reference level used in switching loss power measurements in percentage</td>
</tr>
<tr>
<td>POWer:SWLoss:TOFF:ENERGY:MAX?</td>
<td>Returns the maximum Toff energy for the switching loss calculation</td>
</tr>
<tr>
<td>POWer:SWLoss:TOFF:ENERGY:MEAN?</td>
<td>Returns the mean Toff energy for the switching loss calculation</td>
</tr>
<tr>
<td>POWer:SWLoss:TOFF:ENERGY:MIN?</td>
<td>Returns the minimum Toff energy for the switching loss calculation</td>
</tr>
<tr>
<td>POWer:SWLoss:TOFF:POWER:MAX?</td>
<td>Returns the number of maximum Toff power switching loss calculation</td>
</tr>
<tr>
<td>POWer:SWLoss:TOFF:POWER:MEAN?</td>
<td>Returns the mean Toff power for the switching loss calculation</td>
</tr>
<tr>
<td>POWer:SWLoss:TOFF:POWER:MIN?</td>
<td>Returns the minimum Toff power for the switching loss calculation</td>
</tr>
<tr>
<td>POWer:SWLoss:TON:ENERGY:MAX?</td>
<td>Returns the maximum Ton energy for the switching loss calculation</td>
</tr>
<tr>
<td>POWer:SWLoss:TON:ENERGY:MEAN?</td>
<td>Returns the mean Ton energy for the switching loss calculation</td>
</tr>
<tr>
<td>POWer:SWLoss:TON:ENERGY:MIN?</td>
<td>Returns the minimum Ton energy for the switching loss calculation</td>
</tr>
<tr>
<td>POWer:SWLoss:TON:POWER:MAX?</td>
<td>Returns the maximum Ton power for the switching loss calculation</td>
</tr>
</tbody>
</table>
Table 2-29: Power Commands (cont.)

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>POWer:SWLoss:TON:POWER:MEAN?</td>
<td>Returns the mean Ton power for the switching loss calculation</td>
</tr>
<tr>
<td>POWer:SWLoss:TON:POWER:MIN?</td>
<td>Returns the minimum Ton power for the switching loss calculation</td>
</tr>
<tr>
<td>POWer:SWLoss:TOTal:ENERGY:MAX?</td>
<td>Returns the maximum total energy for the switching loss calculation</td>
</tr>
<tr>
<td>POWer:SWLoss:TOTal:ENERGY:MEAN?</td>
<td>Returns the mean total energy for the switching loss calculation</td>
</tr>
<tr>
<td>POWer:SWLoss:TOTal:ENERGY:MIN?</td>
<td>Returns the minimum total energy for the switching loss calculation</td>
</tr>
<tr>
<td>POWer:SWLoss:TOTal:POWER:MAX?</td>
<td>Returns the maximum total power for the switching loss calculation</td>
</tr>
<tr>
<td>POWer:SWLoss:TOTal:POWER:MEAN?</td>
<td>Returns the mean total power for the switching loss calculation</td>
</tr>
<tr>
<td>POWer:SWLoss:TOTal:POWER:MIN?</td>
<td>Returns the minimum total power for the switching loss calculation</td>
</tr>
<tr>
<td>POWer:SWLoss:VCEsat</td>
<td>Sets or returns VCESAT value for use in switching loss calculations when the conduction calculation method is VCESAT</td>
</tr>
<tr>
<td>POWer:TYPE</td>
<td>Sets or returns the power application measurement type</td>
</tr>
<tr>
<td>POWer:VOLTAGESSource</td>
<td>Sets or returns the voltage source for the power application</td>
</tr>
</tbody>
</table>

Save and Recall Command Group

Use the commands in the Save and Recall Command Group to store and retrieve waveforms and settings. When you save a setup, you save all the settings of the oscilloscope. When you recall a setup, the oscilloscope restores itself to the state it was in when you originally saved the setting.

Table 2-30: Save and Recall Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>FACTory</td>
<td>Resets the oscilloscope to factory default settings</td>
</tr>
<tr>
<td>*RCL</td>
<td>Recalls saved oscilloscope settings</td>
</tr>
<tr>
<td>RECALL:SETUp</td>
<td>Recalls saved oscilloscope settings</td>
</tr>
<tr>
<td>Command</td>
<td>Description</td>
</tr>
<tr>
<td>-------------------------</td>
<td>---</td>
</tr>
<tr>
<td><code>RECAll:WAVEform</code></td>
<td>This command (no query form) recalls a stored waveform to a reference location. Only the first waveform in a .CSV file is recalled for multiple waveform .CSV files. Recall of digital waveforms (D0 through D15) is not supported.</td>
</tr>
<tr>
<td><code>*SAV</code></td>
<td>Stores the state of the oscilloscope to a specified memory location</td>
</tr>
<tr>
<td><code>SAVe:ASSIgn:YPE</code></td>
<td>Sets or returns the assignment of the Save button</td>
</tr>
<tr>
<td><code>SAVe:EVENTable:BUS<x></code></td>
<td>Saves event table data from bus<x> to a specified file</td>
</tr>
<tr>
<td><code>SAVe:IMAGE</code></td>
<td>Saves a capture of the screen image to the specified file</td>
</tr>
<tr>
<td><code>SAVe:IMAGE:FILEFormat</code></td>
<td>Sets or returns the file format to use for saving screen images. The file format is not automatically determined by the file name extension. You need to choose a file name with an extension which is consistent with the selected file format</td>
</tr>
<tr>
<td><code>SAVe:IMAGE:INKSaver</code></td>
<td>Sets or returns the current inksaver setting for the <code>SAVe:IMAGE</code> command</td>
</tr>
<tr>
<td><code>SAVe:IMAGE:LAYout</code></td>
<td>Sets or returns the layout to use for saved screen images</td>
</tr>
<tr>
<td><code>SAVe:SETUp</code></td>
<td>Saves the state of the oscilloscope to a specified memory location or file</td>
</tr>
<tr>
<td><code>SAVe:WAVEform</code></td>
<td>Saves a waveform to one of the reference memory locations or a file</td>
</tr>
<tr>
<td><code>SAVe:WAVEform:FILEFormat</code></td>
<td>Sets or returns the format for saved waveforms</td>
</tr>
<tr>
<td><code>SAVe:WAVEform:GATIng</code></td>
<td>Specifies whether save waveform operations should save the entire waveform or a specified portion of the waveform</td>
</tr>
<tr>
<td><code>SETUP<x>:DATE?</code></td>
<td>Returns the date when the specified oscilloscope setup was saved</td>
</tr>
<tr>
<td><code>SETUP<x>:LABEL</code></td>
<td>Sets or returns the specified oscilloscope setup label</td>
</tr>
<tr>
<td><code>SETUP<x>:TIME?</code></td>
<td>Returns the time when the specified oscilloscope setup was saved</td>
</tr>
</tbody>
</table>
Search Command Group

The search commands let you analyze your source waveform record for conditions specified by a search’s criteria. Once these criteria are matched, the oscilloscope places a search mark at that location in the waveform record. You can then navigate or save the marks. (See page 2-27, Mark Command Group.)

When performing an edge, pulse width, runt, rise/fall time, time-out, or bus search, you can use only one waveform at a time.

When performing a logic or a setup/hold search, you can use more than one displayed waveform at the same time. For example, with a logic search, you can search for instances when CH1 is high and CH2 is low.

With pulse width searching, the oscilloscope can search for pulses with widths less than, greater than, equal to, or not equal to a specified time. Additionally, it can search for pulses with widths within, or outside of a range of two different specified times. Searching can take place on either positive or negative pulses.

NOTE. Although it is possible to trigger using a video signal, it is not possible to do a search using a video signal.

To see example command sequences showing different searches and triggers, see Appendix G. (See page E-1, Search and Trigger Command Sequence Examples.)

Searching using Thresholds

All search types except bus searches use thresholds, which are vertical values that the source waveform must cross in order for a mark to be placed. For example, if you set the search type to EDGE, and the search source to CH1, the search’s slope to RISE, and the search’s threshold value to 1.5V, then that search will find all places where CH1 transitions from below 1.5 volts to above 1.5 volts.

Each individual search source waveform has two threshold values: a low threshold and a high threshold. Note that if you change the search source waveform, you must explicitly set the thresholds. For example, if you set the search’s CH1 lower threshold to 1.5 volts, and then decide to change the search’s source waveform to CH2, you must then explicitly set CH2’s lower threshold value to the value you would like (it will not automatically be 1.5 volts). If you have an edge search set up on CH1 with the threshold you’d like, then decide to change to a logic search and change the threshold on CH1 to fit your logic search, and then change back to an edge search, your initial threshold setting on the edge search will be lost.
- Install the DPO3EMBD application module when working with I²C or SPI bus signals.
- Install the DPO3AUTO module when working with CAN or LIN bus signals.
- Install the DPO3COMP module when working with RS-232, RS-422, RS-485, and UART bus signals.
- Install the DPO3AUDIO module when working with I²S, Left Justified (LJ), Right Justified (RJ), and TDM bus signals.
- Install the DPO3AERO module when working with MIL-STD-1553 bus signals.
- Install the DPO3FLEX module when working with FlexRay bus signals.

Search Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>SEARCH?</td>
<td>Returns all search-related settings</td>
</tr>
<tr>
<td>SEARCH:SEARCH<x>:COPY</td>
<td>Copies the search criteria to the trigger, or the trigger criteria to the search.</td>
</tr>
<tr>
<td>SEARCH:SEARCH<x>:STATE</td>
<td>Sets the search state to on or off</td>
</tr>
<tr>
<td>SEARCH:SEARCH<x>:TOTAL?</td>
<td>Returns the total number of matches for search <x></td>
</tr>
<tr>
<td>SEARCH:SEARCH<x>:TRIGger:A:BUS?</td>
<td>This command returns the bus type being used in a search operation (CAN, I²C, SPI, RS-232, MIL-STD-1553, LIN, audio, FlexRay or Parallel).</td>
</tr>
<tr>
<td>SEARCH:SEARCH<x>:TRIGger:A:BUS:B<x>:AUDio:CONDition</td>
<td>This command sets the condition (start of frame or matching data) to be used to search on audio bus data.</td>
</tr>
<tr>
<td>SEARCH:SEARCH<x>:TRIGger:A:BUS:B<x>:AUDio:DATa:HIVALue</td>
<td>This command sets the upper word value to be used to search on audio bus data.</td>
</tr>
<tr>
<td>SEARCH:SEARCH<x>:TRIGger:A:BUS:B<x>:AUDio:DATa:OFFSet</td>
<td>This command sets the data offset value to be used to search on audio bus data.</td>
</tr>
<tr>
<td>SEARCH:SEARCH<x>:TRIGger:A:BUS:B<x>:AUDio:DATa:QUALifier</td>
<td>This command sets the qualifier (<?, >?, =, <=, >=, not =, in range, out of range) to be used to search on audio bus data.</td>
</tr>
<tr>
<td>SEARCH:SEARCH<x>:TRIGger:A:BUS:B<x>:AUDio:DATa:VALue</td>
<td>This command sets the lower word value to be used to search on audio bus data.</td>
</tr>
<tr>
<td>SEARCH:SEARCH<x>:TRIGger:A:BUS:B<x>:AUDio:DATa:WORD</td>
<td>This command sets the alignment of the data (left, right or either) to be used to search on audio bus data.</td>
</tr>
<tr>
<td>SEARCH:SEARCH<x>:TRIGger:A:BUS:B<x>:CAN:CONDition</td>
<td>This command sets the condition (start of frame, frame type, identifier, matching data, EOF, missing ACK field, bit-stuffing error) to be used to search on CAN bus data.</td>
</tr>
<tr>
<td>Command</td>
<td>Description</td>
</tr>
<tr>
<td>---------</td>
<td>-------------</td>
</tr>
<tr>
<td>SEARCH:SEARCH<x>:TRIGger:A:BUS:<x>:CAN:DATa:DiRection</td>
<td>This command sets the data direction (read, write or either) to be used to search on CAN bus data.</td>
</tr>
<tr>
<td>SEARCH:SEARCH<x>:TRIGger:A:BUS:<x>:CAN:DATa:QUALifier</td>
<td>This command sets the qualifier (<, >, =, not =, <=) to be used to search on CAN bus data.</td>
</tr>
<tr>
<td>SEARCH:SEARCH<x>:TRIGger:A:BUS:<x>:CAN:DATa:SiZe</td>
<td>This command sets the length of the data string, in bytes, to be used to search on CAN bus data.</td>
</tr>
<tr>
<td>SEARCH:SEARCH<x>:TRIGger:A:BUS:<x>:CAN:FRAMetype</td>
<td>This command sets the frame type (data, remote, error or overload) to be used to search on CAN bus data.</td>
</tr>
<tr>
<td>SEARCH:SEARCH<x>:TRIGger:A:BUS:<x>:CAN{:IDenti</td>
<td>ADDRess}:MODe</td>
</tr>
<tr>
<td>SEARCH:SEARCH<x>:TRIGger:A:BUS:<x>:CAN{:IDenti</td>
<td>ADDRess}:VALue</td>
</tr>
<tr>
<td>SEARCH:SEARCH<x>:TRIGger:A:BUS:<x>:FLEXray:CONDition</td>
<td>This command specifies the condition to use when searching on FlexRay bus data (start of frame, frame type, ID, cycle count, header, data, ID and data, EOF, error).</td>
</tr>
<tr>
<td>SEARCH:SEARCH<x>:TRIGger:A:BUS:<x>:FLEXray:CYCLEcount:HIVALue</td>
<td>This command specifies the upper data value of the range to be used when searching on the FlexRay bus cycle count field.</td>
</tr>
<tr>
<td>SEARCH:SEARCH<x>:TRIGger:A:BUS:<x>:FLEXray:CYCLEcount:QUALifier</td>
<td>This command specifies the qualifier (<, >, =, <=, >=, not =, in range, out of range) to use when searching on the FlexRay bus cycle count field.</td>
</tr>
<tr>
<td>SEARCH:SEARCH<x>:TRIGger:A:BUS:<x>:FLEXray:CYCLEcount:VALue</td>
<td>This command specifies the low data value to be used when searching on the FlexRay bus cycle count field.</td>
</tr>
<tr>
<td>SEARCH:SEARCH<x>:TRIGger:A:BUS:<x>:FLEXray:DA</td>
<td>TA:HIVALue</td>
</tr>
<tr>
<td>SEARCH:SEARCH<x>:TRIGger:A:BUS:<x>:FLEXray:DATa:OFFSet</td>
<td>This command specifies the offset of the data string in bytes to be used when searching on the FlexRay bus data field.</td>
</tr>
<tr>
<td>SEARCH:SEARCH<x>:TRIGger:A:BUS:<x>:FLEXray:DATa:QUALifier</td>
<td>This command specifies the qualifier (<, >, =, <=, >=, not =, in range, out of range) to use when searching on the FlexRay bus data field.</td>
</tr>
</tbody>
</table>
Search Commands (cont.)

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>SEARCH:SEARCH<x>:TRIGger:A:BUS:B<x>:FLEXray:DATA:Size</td>
<td>This command specifies the length of the data string, in bytes, to use when searching on the FlexRay bus data field.</td>
</tr>
<tr>
<td>SEARCH:SEARCH<x>:TRIGger:A:BUS:B<x>:FLEXray:DATA:Value</td>
<td>This command specifies the low value to use when searching on the FlexRay bus data field.</td>
</tr>
<tr>
<td>SEARCH:SEARCH<x>:TRIGger:A:BUS:B<x>:FLEXray:_EOF:TYPE</td>
<td>This command specifies which end of file type to use (static, dynamic or any) when searching on the FlexRay bus EOF field.</td>
</tr>
<tr>
<td>SEARCH:SEARCH<x>:TRIGger:A:BUS:B<x>:FLEXray:ERROR:TYPE</td>
<td>This command specifies the error type to use when searching on the FlexRay bus signal.</td>
</tr>
<tr>
<td>SEARCH:SEARCH<x>:TRIGger:A:BUS:B<x>:FLEXray:FRAME:ID:HIGH:VALUE</td>
<td>This command specifies the high value to use when searching on the FlexRay bus frame ID field.</td>
</tr>
<tr>
<td>SEARCH:SEARCH<x>:TRIGger:A:BUS:B<x>:FLEXray:FRAME:ID:QUALIFIER</td>
<td>This command specifies the qualifier to use when searching on the FlexRay bus frame ID field.</td>
</tr>
<tr>
<td>SEARCH:SEARCH<x>:TRIGger:A:BUS:B<x>:FLEXray:FRAME:ID:LOW:VALUE</td>
<td>This command specifies the low value to use when searching on the FlexRay bus frame ID field.</td>
</tr>
<tr>
<td>SEARCH:SEARCH<x>:TRIGger:A:BUS:B<x>:FLEXray:FRAME:TYPE</td>
<td>This command specifies the frame type (normal, payload, null, sync or startup) to use when searching on FlexRay bus data.</td>
</tr>
<tr>
<td>SEARCH:SEARCH<x>:TRIGger:A:BUS:B<x>:FLEXray:HEADER:CRC</td>
<td>This command specifies the CRC portion of the binary header string to be used when searching on FlexRay bus data.</td>
</tr>
<tr>
<td>SEARCH:SEARCH<x>:TRIGger:A:BUS:B<x>:FLEXray:HEADER:CYCLE:COUNT</td>
<td>This command specifies to use the cycle count portion of the binary header string when searching on the FlexRay bus header.</td>
</tr>
<tr>
<td>SEARCH:SEARCH<x>:TRIGger:A:BUS:B<x>:FLEXray:HEADER:FRAME:ID</td>
<td>This command specifies to use the frame ID portion of the binary header string when searching on the FlexRay bus header.</td>
</tr>
<tr>
<td>SEARCH:SEARCH<x>:TRIGger:A:BUS:B<x>:FLEXray:HEADER:IND:BITS</td>
<td>This command specifies to use the indicator bits portion of the binary header string when searching on the FlexRay bus header.</td>
</tr>
<tr>
<td>SEARCH:SEARCH<x>:TRIGger:A:BUS:B<x>:FLEXray:HEADER:PAY:Length</td>
<td>This command specifies to use the payload length portion of the binary header string when searching on the FlexRay bus header.</td>
</tr>
<tr>
<td>SEARCH:SEARCH<x>:TRIGger:A:BUS:B<x>:I2C:ADDRESS:MODE</td>
<td>Sets or returns the I2C address mode to 7 or 10-Bit</td>
</tr>
<tr>
<td>SEARCH:SEARCH<x>:TRIGger:A:BUS:B<x>:I2C:ADDRESS:TYPE</td>
<td>Sets or returns the I2C address type to I2C special addresses</td>
</tr>
<tr>
<td>SEARCH:SEARCH<x>:TRIGger:A:BUS:B<x>:I2C:ADDRESS:VALUE</td>
<td>Sets or returns the binary address string to be used for I2C search</td>
</tr>
</tbody>
</table>
Search Commands (cont.)

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>SEARCH:SEARCH:TRIGger:A:BUS::I2C:CONDITION</code></td>
<td>Sets or returns the search condition for I2C search</td>
</tr>
<tr>
<td><code>SEARCH:SEARCH:TRIGger:A:BUS::I2C:DATa:DIRection</code></td>
<td>Sets or returns the I2C search condition to be valid on a READ, WRITE or either</td>
</tr>
<tr>
<td><code>SEARCH:SEARCH:TRIGger:A:BUS::I2C:DATa:SIZE</code></td>
<td>Sets or returns the length of the data string in bytes to be used for I2C search</td>
</tr>
<tr>
<td><code>SEARCH:SEARCH:TRIGger:A:BUS::I2C:DATa:VALue</code></td>
<td>Sets or returns the binary data string to be used for I2C search</td>
</tr>
<tr>
<td><code>SEARCH:SEARCH:TRIGger:A:BUS::LIN:CONDITION</code></td>
<td>Sets or returns the search condition for a LIN search</td>
</tr>
<tr>
<td><code>SEARCH:SEARCH:TRIGger:A:BUS::LIN:DATa:HIVALue</code></td>
<td>Sets or returns the binary data string to be used for LIN searches if the search condition is ID or IDANDDATA</td>
</tr>
<tr>
<td><code>SEARCH:SEARCH:TRIGger:A:BUS::LIN:DATa:QUALifier</code></td>
<td>Sets or returns the LIN data qualifier</td>
</tr>
<tr>
<td><code>SEARCH:SEARCH:TRIGger:A:BUS::LIN:DATa:SIZE</code></td>
<td>Sets or returns the length of the data string in bytes</td>
</tr>
<tr>
<td><code>SEARCH:SEARCH:TRIGger:A:BUS::LIN:DATa:VALue</code></td>
<td>Sets or returns the binary data string used for a LIN search</td>
</tr>
<tr>
<td><code>SEARCH:SEARCH:TRIGger:A:BUS::LIN:ERRTYPE</code></td>
<td>Sets or returns the error type used for a LIN Search</td>
</tr>
<tr>
<td><code>SEARCH:SEARCH:TRIGger:A:BUS::LIN:IDeNTifier:VALue</code></td>
<td>Sets or returns the binary address string used for LIN search</td>
</tr>
<tr>
<td><code>SEARCH:SEARCH:TRIGger:A:BUS::MIL1553B:COMMAND:ADDress:HIVALue</code></td>
<td>When the MIL-STD-1553 bus search condition is set to COMMAND, and the qualifier is set to INrange or OUTrange, this command specifies the upper limit of the range for the remote terminal address field.</td>
</tr>
<tr>
<td><code>SEARCH:SEARCH:TRIGger:A:BUS::MIL1553B:COMMAND:ADDress:QUALifier</code></td>
<td>When the MIL-STD-1553 bus search condition is set to COMMAND, this command specifies the qualifier to be used with the remote terminal address field.</td>
</tr>
<tr>
<td><code>SEARCH:SEARCH:TRIGger:A:BUS::MIL1553B:COMMAND:ADDress:VALue</code></td>
<td>When the MIL-STD-553 bus search condition is set to COMMAND, and the qualifier is set to LESSthan, MOREthan, EQUAL, UNEQUAL, LESSEQUAL or MOREEQUAL, this command specifies the value of the 5–bit remote terminal address to be used in the search.</td>
</tr>
<tr>
<td><code>SEARCH:SEARCH:TRIGger:A:BUS::MIL1553B:COMMAND:COUNT</code></td>
<td>When the MIL-STD-1553 bus search condition is set to COMMAND, this command specifies the bit pattern for the 5–bit Word Count/Mode Code sub-address field that is to be used in the search.</td>
</tr>
</tbody>
</table>
Search Commands (cont.)

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
</table>
| SEARCH:SEARCH<
\x>:TRIGger:A:BUS:B<
\x>:MIL1553B:COMMAND:PARity | When the MIL-STD-1553 bus search condition is set to COMMAND, this command specifies the Command word parity that is to be used in the search. |
| SEARCH:SEARCH<
\x>:TRIGger:A:BUS:B<
\x>:MIL1553B:COMMAND:SUBADdress | When the MIL-STD-1553 bus search condition is set to COMMAND, this command specifies the 5 bit sub-address that is to be used in the search. |
| SEARCH:SEARCH<
\x>:TRIGger:A:BUS:B<
\x>:MIL1553B:COMMAND:TRBit | When the MIL-STD-1553 bus search condition is set to COMMAND, this command specifies that the transmit/receive bit (bit 9) is to be used in the search. |
| SEARCH:SEARCH<
\x>:TRIGger:A:BUS:B<
\x>:MIL1553B:CONDITION | This command specifies the condition to use (sync, command, status, data, time, or error) when searching on MIL-STD-1553 bus data. |
| SEARCH:SEARCH<
\x>:TRIGger:A:BUS:B<
\x>:MIL1553B:DATa:PARity | When the MIL-STD-1553 bus search condition is set to DATa, this command specifies the data parity bit to be used in the search. |
| SEARCH:SEARCH<
\x>:TRIGger:A:BUS:B<
\x>:MIL1553B:DATa:VALue | When the MIL-STD-1553 bus search condition is set to DATa, this command specifies the data binary pattern to be used in the search. |
| SEARCH:SEARCH<
\x>:TRIGger:A:BUS:B<
\x>:MIL1553B:ERRTYPE | When the MIL-STD-1553 bus search condition is set to ERROR, this command specifies the signaling error type to be used in the search: Parity, Sync, Manchester or Data. |
| SEARCH:SEARCH<
\x>:TRIGger:A:BUS:B<
\x>:MIL1553B:STATus:ADDRess:HIVALue | When the MIL-STD-1553 bus search condition is set to STATus, and the qualifier is set to INrange or OUTrange, this command specifies the upper limit for the 5 bit remote terminal address field of the Status word. |
| SEARCH:SEARCH<
\x>:TRIGger:A:BUS:B<
\x>:MIL1553B:STATus:ADDRess:VALue | When the MIL-STD-1553 bus search condition is set to STATus, and the qualifier is set to LESSthan, MOREthan, EQUAL,UNEQUAL, LESSEQUAL or MOREEQUAL, this command specifies the value of the 5–bit remote terminal address to be used in the search. |
| SEARCH:SEARCH<
\x>:TRIGger:A:BUS:B<
\x>:MIL1553B:STATus:ADDRess:QUALifier | When the MIL-STD-1553 bus search condition is set to STATus, this command specifies the qualifier to be used with the address field. |
Search Commands (cont.)

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>SEARCH:SEARCH<x>:TRIGger:A:BUS:B<x>:MIL1553B:STATus:BIT:BCR</td>
<td>When the MIL-STD-1553 bus search condition is set to STATus, this command specifies the status word broadcast command received (BCR) bit value (bit 15) to be used in the search.</td>
</tr>
<tr>
<td>SEARCH:SEARCH<x>:TRIGger:A:BUS:B<x>:MIL1553B:STATus:BIT:BUSY</td>
<td>When the MIL-STD-1553 bus search condition is set to STATus, this command specifies the status word busy bit value (bit 16) to be used in the search.</td>
</tr>
<tr>
<td>SEARCH:SEARCH<x>:TRIGger:A:BUS:B<x>:MIL1553B:STATus:BIT:DBCA</td>
<td>When the MIL-STD-1553 bus search condition is set to STATus, this command specifies the status word dynamic bus control acceptance (DBCA) bit value (bit 18) to be used in the search.</td>
</tr>
<tr>
<td>SEARCH:SEARCH<x>:TRIGger:A:BUS:B<x>:MIL1553B:STATus:BIT:INSTR</td>
<td>When the MIL-STD-1553 bus search condition is set to STATus, this command specifies the status word instrumentation bit value (bit 10) to be used in the search.</td>
</tr>
<tr>
<td>SEARCH:SEARCH<x>:TRIGger:A:BUS:B<x>:MIL1553B:STATus:BIT:ME</td>
<td>When the MIL-STD-1553 bus search condition is set to STATus, this command specifies the status word message error bit value (bit 9) to be used in the search.</td>
</tr>
<tr>
<td>SEARCH:SEARCH<x>:TRIGger:A:BUS:B<x>:MIL1553B:STATus:BIT:SRQ</td>
<td>When the MIL-STD-1553 bus search condition is set to STATus, this command specifies the status word service request (SRQ) bit value (bit 11) to be used in the search.</td>
</tr>
<tr>
<td>SEARCH:SEARCH<x>:TRIGger:A:BUS:B<x>:MIL1553B:STATus:BIT:SUBSF</td>
<td>When the MIL-STD-1553 bus search condition is set to STATus, this command specifies the status word subsystem flag bit value (bit 17) to be used in the search.</td>
</tr>
<tr>
<td>SEARCH:SEARCH<x>:TRIGger:A:BUS:B<x>:MIL1553B:STATus:BIT:TF</td>
<td>When the MIL-STD-1553 bus search condition is set to STATus, this command specifies the status word terminal flag bit value (bit 19) to be used in the search.</td>
</tr>
<tr>
<td>SEARCH:SEARCH<x>:TRIGger:A:BUS:B<x>:MIL1553B:STATus:PARity</td>
<td>When the MIL-STD-1553 bus search condition is set to STATus, this command specifies the status parity bit value to be used in the search.</td>
</tr>
<tr>
<td>SEARCH:SEARCH<x>:TRIGger:A:BUS:B<x>:MIL1553B:TIMe:LESSLimit</td>
<td>When the MIL-STD-1553 bus search condition is set to TIMe, this command specifies either the minimum remote terminal response time (RT) limit for the amount of time the terminal has to transmit, or it specifies the minimum inter-message gap (IMG).</td>
</tr>
</tbody>
</table>
Search Commands (cont.)

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>SEARCH:SEARCH<x>:TRIGger:A:BUS: B<x>:MIL1553B:TIME:MORELimit</td>
<td>When the MIL-STD-1553 bus search condition is set to TIME, this command specifies either the maximum remote terminal response time (RT) limit for the amount of time the terminal has to transmit, or it specifies the maximum inter-message gap (IMG).</td>
</tr>
<tr>
<td>SEARCH:SEARCH<x>:TRIGger:A:BUS: B<x>:MIL1553B:TIME:QUALifier</td>
<td>When the MIL-STD-1553 bus search condition is set to TIME, this command specifies the trigger data time qualifier.</td>
</tr>
<tr>
<td>SEARCH:SEARCH<x>:TRIGger:A:BUS: B<x>:PARallel:VALUE</td>
<td>Sets or returns the binary data string to be used for a Parallel search</td>
</tr>
<tr>
<td>SEARCH:SEARCH<x>:TRIGger:A:BUS: B<x>:RS232C:CONDITION</td>
<td>Sets or returns the trigger condition for an RS-232 trigger</td>
</tr>
<tr>
<td>SEARCH:SEARCH<x>:TRIGger:A:BUS: B<x>:RS232C:RX:DATA:SIZE</td>
<td>Sets or returns the length of the data string for an RS-232 trigger, if the trigger condition is RX</td>
</tr>
<tr>
<td>SEARCH:SEARCH<x>:TRIGger:A:BUS: B<x>:RS232C:RX:DATA:VALUE</td>
<td>Sets or returns the binary data string for an RS-232 trigger, if the condition involves RX</td>
</tr>
<tr>
<td>SEARCH:SEARCH<x>:TRIGger:A:BUS: B<x>:RS232C:TX:DATA:SIZE</td>
<td>Sets or returns the length of the data string to be used for an RS-232 Trigger, if the Trigger condition is TX</td>
</tr>
<tr>
<td>SEARCH:SEARCH<x>:TRIGger:A:BUS: B<x>:RS232C:TX:DATA:VALUE</td>
<td>Sets or returns the binary data string to be used for an RS-232 trigger, if the condition involves RX</td>
</tr>
<tr>
<td>SEARCH:SEARCH<x>:TRIGger:A:BUS: B<x>:SPI:CONDITION</td>
<td>Sets or returns the search condition for SPI search</td>
</tr>
<tr>
<td>SEARCH:SEARCH<x>:TRIGger:A:BUS: B<x>:SPI:DATA:{MISO</td>
<td>IN}:VALUE</td>
</tr>
<tr>
<td>SEARCH:SEARCH<x>:TRIGger:A:BUS: B<x>:SPI:DATA:{MOSI</td>
<td>OUT}:VALUE</td>
</tr>
<tr>
<td>SEARCH:SEARCH<x>:TRIGger:A:BUS: B<x>:SPI:DATA:SIZE</td>
<td>Sets or returns the length of the data string in bytes to be used for SPI search</td>
</tr>
<tr>
<td>SEARCH:SEARCH<x>:TRIGger:A:BUS: SOURce</td>
<td>Sets or returns a bus serial search. <x> is the search number</td>
</tr>
<tr>
<td>SEARCH:SEARCH<x>:TRIGger:A:EDGE: SLOpe</td>
<td>Sets or returns the slope for an edge search</td>
</tr>
<tr>
<td>SEARCH:SEARCH<x>:TRIGger:A:EDGE: SOURce</td>
<td>Sets or returns the source waveform for an edge search</td>
</tr>
<tr>
<td>SEARCH:SEARCH<x>:TRIGger:A:LEVEL</td>
<td>Sets or returns the level for an edge search</td>
</tr>
</tbody>
</table>
Search Commands (cont.)

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>SEARCH:SEARCH<x>:TRIGger:A:LEVel:CH<x></td>
<td>Sets or returns the level for an edge search of the specified channel</td>
</tr>
<tr>
<td>SEARCH:SEARCH<x>:TRIGger:A:LEVel:MATH</td>
<td>Sets or returns the math waveform level for edge search</td>
</tr>
<tr>
<td>SEARCH:SEARCH<x>:TRIGger:A:LEVel:REF<x></td>
<td>Sets or returns the reference waveform level for edge search</td>
</tr>
<tr>
<td>SEARCH:SEARCH<x>:TRIGger:A:LOGIc:FUNCtion</td>
<td>Sets or returns the logic operator for the logic search</td>
</tr>
<tr>
<td>SEARCH:SEARCH<x>:TRIGger:A:LOGIc:INPut:CH<x></td>
<td>Sets or returns the Boolean logic criteria for the logic search</td>
</tr>
<tr>
<td>SEARCH:SEARCH<x>:TRIGger:A:LOGIc:INPut:CLOCk:EDGE</td>
<td>Sets or returns whether the clock edge is rise or fall for a logic search</td>
</tr>
<tr>
<td>SEARCH:SEARCH<x>:TRIGger:A:LOGIc:INPut:CLOCk:SOUrce</td>
<td>Sets or returns the clock source definition for logic search</td>
</tr>
<tr>
<td>SEARCH:SEARCH<x>:TRIGger:A:LOGIc:INPut:D<x></td>
<td>Sets or returns the criteria for a logic search to determine where to place a mark for digital channel <x></td>
</tr>
<tr>
<td>SEARCH:SEARCH<x>:TRIGger:A:LOGIc:INPut:MATH</td>
<td>Sets or returns the Boolean logic criteria for the logic search</td>
</tr>
<tr>
<td>SEARCH:SEARCH<x>:TRIGger:A:LOGIc:INPut:REF<x></td>
<td>Sets or returns the Boolean logic criteria for the logic search</td>
</tr>
<tr>
<td>SEARCH:SEARCH<x>:TRIGger:A:LOGIc:PATtern:INPut:CH<x></td>
<td>Sets or returns the Boolean logic criteria for the logic search</td>
</tr>
<tr>
<td>SEARCH:SEARCH<x>:TRIGger:A:LOGIc:PATtern:INPut:D<x></td>
<td>Sets or returns the criteria for a pattern search to determine where to place a mark for digital channel <x></td>
</tr>
<tr>
<td>SEARCH:SEARCH<x>:TRIGger:A:LOGIc:PATtern:INPut:MATH</td>
<td>Sets or returns the Boolean logic criteria for the logic search</td>
</tr>
<tr>
<td>SEARCH:SEARCH<x>:TRIGger:A:LOGIc:PATtern:INPut:REF<x></td>
<td>Sets or returns the Boolean logic criteria for the logic search</td>
</tr>
<tr>
<td>SEARCH:SEARCH<x>:TRIGger:A:LOGIc:PATtern:WHEn</td>
<td>Sets or returns the condition for generating a logic pattern search</td>
</tr>
<tr>
<td>SEARCH:SEARCH<x>:TRIGger:A:LOGIc:PATtern:WHEn:LESSLimit</td>
<td>Sets or returns the maximum time that the selected pattern may be true</td>
</tr>
<tr>
<td>SEARCH:SEARCH<x>:TRIGger:A:LOGIc:PATtern:WHEn:MORELimit</td>
<td>Sets or returns the minimum time that the selected pattern may be true</td>
</tr>
<tr>
<td>SEARCH:SEARCH<x>:TRIGger:A:LOGIc:THReshold:CH<x></td>
<td>Sets or returns the channel threshold level for an logic search</td>
</tr>
<tr>
<td>SEARCH:SEARCH<x>:TRIGger:A:LOGIc:THReshold:MATH</td>
<td>Sets or returns the math waveform threshold level for logic search</td>
</tr>
<tr>
<td>SEARCH:SEARCH<x>:TRIGger:A:LOGIc:THReshold:REF<x></td>
<td>Sets or returns the reference waveform threshold level for logic search</td>
</tr>
</tbody>
</table>
Command Groups

Search Commands (cont.)

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>SEARCH:SEARCH<x>:TRIGger:A:LOWerthreshold:CH<x></td>
<td>Sets or returns the lower waveform threshold level for all channel waveform searches</td>
</tr>
<tr>
<td>SEARCH:SEARCH<x>:TRIGger:A:LOWerthreshold:MATH</td>
<td>Sets or returns the lower waveform threshold level for all math waveform searches</td>
</tr>
<tr>
<td>SEARCH:SEARCH<x>:TRIGger:A:LOWerthreshold:REF<x></td>
<td>Sets or returns the lower waveform threshold level for all reference waveform searches</td>
</tr>
<tr>
<td>SEARCH:SEARCH<x>:TRIGger:A:PULSEWidth:HIGHLimit</td>
<td>This command specifies the upper limit, in seconds, when searching the record for pulses whose widths are within or outside of a specified range of two values. (Use SEARCH:SEARCH<x>:TRIGger:A:PULSEWidth:LOWLimit to specify the lower limit of the range.)</td>
</tr>
<tr>
<td>SEARCH:SEARCH<x>:TRIGger:A:PULSEWidth:LOWLimit</td>
<td>This command specifies the lower limit, in seconds, when searching the record for pulses whose widths are within or outside of a specified range of two values. (Use SEARCH:SEARCH<x>:TRIGger:A:PULSEWidth:HIGHLimit to specify the upper limit of the range.)</td>
</tr>
<tr>
<td>SEARCH:SEARCH<x>:TRIGger:A:PULSEWidth:POLarity</td>
<td>Sets or returns the polarity setting for a pulse search</td>
</tr>
<tr>
<td>SEARCH:SEARCH<x>:TRIGger:A:PULSEWidth:SOUrce</td>
<td>Sets or returns the source waveform for a pulse search</td>
</tr>
<tr>
<td>SEARCH:SEARCH<x>:TRIGger:A:PULSEWidth:WHEn</td>
<td>This command specifies the search for the waveform record for pulses with a width (duration) that is less than, greater than, equal to, or unequal to a specified value (set using SEARCH:SEARCH<x>:TRIGger:A:PULSEWidth:WIDth), OR whose widths fall outside of or within a specified range of two values (set using SEARCH:SEARCH<x>:TRIGger:A:PULSEWidth:LOWLimit and SEARCH:SEARCH<x>:TRIGger:A:PULSEWidth:HIGHLimit).</td>
</tr>
<tr>
<td>SEARCH:SEARCH<x>:TRIGger:A:PULSEWidth:WIDth</td>
<td>Sets or returns the pulse width setting for a pulse width search</td>
</tr>
<tr>
<td>SEARCH:SEARCH<x>:TRIGger:A:RUNT:POLarity</td>
<td>Sets or returns the polarity setting for a runt search</td>
</tr>
<tr>
<td>SEARCH:SEARCH<x>:TRIGger:A:RUNT:SOUrce</td>
<td>Sets or returns the source setting for a runt search</td>
</tr>
<tr>
<td>SEARCH:SEARCH<x>:TRIGger:A:RUNT:WHEn</td>
<td>Sets or returns the condition setting for a runt search</td>
</tr>
<tr>
<td>SEARCH:SEARCH<x>:TRIGger:A:RUNT:WIDth</td>
<td>Sets or returns the width setting for a runt search</td>
</tr>
</tbody>
</table>
Search Commands (cont.)

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>SEARCH:SEARCH<x>:TRIGGER:A:SETHold:CLOCK:EDGE</td>
<td>Sets or returns the clock slope setting for a setup/hold search</td>
</tr>
<tr>
<td>SEARCH:SEARCH<x>:TRIGGER:A:SETHold:CLOCK:SOURCE</td>
<td>Sets or returns the clock source setting for a setup/hold search</td>
</tr>
<tr>
<td>SEARCH:SEARCH<x>:TRIGGER:A:SETHold:CLOCK:THRESHOLD</td>
<td>Sets or returns the clock threshold setting for a setup/hold search</td>
</tr>
<tr>
<td>SEARCH:SEARCH<x>:TRIGGER:A:SETHold:DATA:SOURCE</td>
<td>Sets or returns the data source setting for a setup/hold search</td>
</tr>
<tr>
<td>SEARCH:SEARCH<x>:TRIGGER:A:SETHold:DATA:THRESHOLD</td>
<td>Sets or returns the data threshold setting for a setup/hold search</td>
</tr>
<tr>
<td>SEARCH:SEARCH<x>:TRIGGER:A:SETHold:HOLDTIME</td>
<td>Sets or returns the hold time setting for a setup/hold search</td>
</tr>
<tr>
<td>SEARCH:SEARCH<x>:TRIGGER:A:SETHold:SETTIME</td>
<td>Sets or returns the setup time setting for a setup/hold search</td>
</tr>
<tr>
<td>SEARCH:SEARCH<x>:TRIGGER:A:SETHold:THRESHOLD:CH<x></td>
<td>Sets or returns the trigger search setup and hold threshold for the selected channel</td>
</tr>
<tr>
<td>SEARCH:SEARCH<x>:TRIGGER:A:SETHold:THRESHOLD:SOURCE</td>
<td>Sets or returns the trigger search setup and hold threshold for the math waveform</td>
</tr>
<tr>
<td>SEARCH:SEARCH<x>:TRIGGER:A:SETHold:THRESHOLD:REF<x></td>
<td>Sets or returns the trigger search setup and hold threshold for the selected reference waveform</td>
</tr>
<tr>
<td>SEARCH:SEARCH<x>:TRIGGER:A:TRANSITION:RISE:DELTIME</td>
<td>Sets or returns the transition time setting for an transition search</td>
</tr>
<tr>
<td>SEARCH:SEARCH<x>:TRIGGER:A:TRANSITION:RISE:POLARITY</td>
<td>Sets or returns the polarity setting for an transition search</td>
</tr>
<tr>
<td>SEARCH:SEARCH<x>:TRIGGER:A:TRANSITION:RISE:SOURCE</td>
<td>Sets or returns the source setting for an transition search</td>
</tr>
<tr>
<td>SEARCH:SEARCH<x>:TRIGGER:A:TRANSITION:RISE:WHEN</td>
<td>Sets or returns the condition setting for an transition search</td>
</tr>
<tr>
<td>SEARCH:SEARCH<x>:TRIGGER:A:TYPe</td>
<td>Sets or returns the trigger type setting for a search</td>
</tr>
<tr>
<td>SEARCH:SEARCH<x>:TRIGGER:A:UPPER:THRESHOLD:CH<x></td>
<td>Sets or returns the waveform upper threshold level for all channel waveform searches</td>
</tr>
<tr>
<td>SEARCH:SEARCH<x>:TRIGGER:A:UPPER:THRESHOLD:MATH</td>
<td>Sets or returns the waveform upper threshold level for all math waveform searches</td>
</tr>
<tr>
<td>SEARCH:SEARCH<x>:TRIGGER:A:UPPER:THRESHOLD:REF<x></td>
<td>Sets or returns the waveform upper threshold level for all reference waveform searches</td>
</tr>
</tbody>
</table>
Status and Error Command Group

Use the commands in the Status and Error Command Group to determine the status of the oscilloscope and control events.

Several commands and queries used with the oscilloscope are common to all IEEE488.2 compliant devices. The IEEE Std 488.2-1987 defines these commands and queries. The common commands begin with an asterisk (*) character.

Table 2-31: Status and Error Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ALLEv?</td>
<td>Returns all events and their messages</td>
</tr>
<tr>
<td>BUSY?</td>
<td>Returns oscilloscope status</td>
</tr>
<tr>
<td>*CLS</td>
<td>Clears status</td>
</tr>
<tr>
<td>DESE</td>
<td>Sets or returns the bits in the Device Event Status Enable Register</td>
</tr>
<tr>
<td>*ESE</td>
<td>Sets or returns the bits in the Event Status Enable Register</td>
</tr>
<tr>
<td>*ESR?</td>
<td>Returns the contents of the Standard Event Status Register</td>
</tr>
<tr>
<td>EVENT?</td>
<td>Returns event code from the event queue</td>
</tr>
<tr>
<td>EVMsg?</td>
<td>Returns event code, message from the event queue</td>
</tr>
<tr>
<td>EVQty?</td>
<td>Return number of events in the event queue</td>
</tr>
<tr>
<td>*OPC</td>
<td>Generates the operation complete message in the standard event status register when all pending operations are finished Or returns "1" when all current operations are finished</td>
</tr>
<tr>
<td>*PSC</td>
<td>Sets or returns the power on status flag</td>
</tr>
<tr>
<td>*PUD</td>
<td>Sets or returns a string of protected user data</td>
</tr>
<tr>
<td>*RST</td>
<td>Resets the oscilloscope to factory default settings</td>
</tr>
<tr>
<td>*SRE</td>
<td>Sets or returns the bits in the Service Request Enable Register</td>
</tr>
<tr>
<td>*STB?</td>
<td>Returns the contents of the Status Byte Register</td>
</tr>
<tr>
<td>*WAI</td>
<td>Prevents the oscilloscope from executing further commands until all pending operations finish</td>
</tr>
</tbody>
</table>
Command Groups

Trigger Command Group

Use the commands in the Trigger Command Group to control all aspects of triggering for the oscilloscope.

There are two triggers: A and B. Where appropriate, this command set has parallel construction between triggers.

You can set the A or B triggers to edge mode. Edge triggering lets you display a waveform at or near the point where the signal passes through a voltage level of your choosing.

You can also set the A trigger to pulse width, logic, video, runt, timeout, rise/fall time (also called transition), setup and hold and bus modes.

With pulse width triggering, the oscilloscope triggers whenever it detects a pulse that is less than, greater than, equal to, or not equal to a specified duration (width). Additionally, it can trigger when the pulse width is within, or outside of a range of two different specified times. You can trigger on either positive or negative pulses.

Logic triggering lets you logically combine the signals on one or more channels; the oscilloscope then triggers when it detects a certain combination of signal levels.

Video triggering enables you to trigger on the most common Standard Definition video standards.

Runt triggering lets you trigger on a pulse amplitude that crosses one threshold but fails to cross a second threshold before recrossing the first.

Timeout triggering causes a trigger whenever no pulse has been detected within a specified amount of time.

Rise/fall time (also called transition) triggering causes a trigger on pulse edges that traverses between two thresholds at a rate faster than or slower than the specified time.

Setup and Hold causes a trigger when a logic data input changes state inside of the setup or hold time relative to a clock edge.

You can use your oscilloscope to trigger on a variety of data buses, if you have the appropriate application module installed. (The exception is the parallel bus trigger and analysis functionality, which is included standard with the MSO Series.) Once you specify which bus (1–4) to trigger on, you must then set the appropriate trigger criteria according to the bus type (i.e., parallel, PC, etc.)

NOTE. When performing a setup/hold or logic trigger or search, you can use more than one displayed waveform at the same time. When performing an edge, pulse width, runt, rise/fall time, time-out or bus trigger or search, you can use only one waveform at a time.
To see example command sequences showing different triggers and searches, see Appendix G. (See page E-1, Search and Trigger Command Sequence Examples.)

- Install the DPO3EMBD application module when working with I2C or SPI bus signals.
- Install the DPO3AUTO module when working with CAN or LIN bus signals.
- Install the DPO3COMP module when working with RS-232, RS-422, RS-485, and UART bus signals.
- Install the DPO3AUDIO module when working with I2S, Left Justified (LJ), Right Justified (RJ), and TDM bus signals.
- Install the DPO3AERO module when working with MIL-STD-1553 bus signals.
- Install the DPO3FLEX module when working with FlexRay bus signals.

Table 2-32: Trigger Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>TRIGger</td>
<td>Forces a trigger event to occur</td>
</tr>
<tr>
<td>TRIGger:A</td>
<td>Sets A trigger level to 50% or returns current A trigger parameters</td>
</tr>
<tr>
<td>TRIGger:A:BUS</td>
<td>This command specifies the bus type to be used in a trigger operation (CAN, I2C, SPI, RS-232, MIL-STD-1553, LIN, audio, FlexRay or Parallel).</td>
</tr>
<tr>
<td>TRIGger:A:BUS:B<x>:AUDio:CONDition</td>
<td>This command sets the condition (start of frame or matching data) to be used when triggering on audio bus data.</td>
</tr>
<tr>
<td>TRIGger:A:BUS:B<x>:AUDio:DATa:HIVALue</td>
<td>This command sets the upper word value to be used when triggering on audio bus data.</td>
</tr>
<tr>
<td>TRIGger:A:BUS:B<x>:AUDio:DATa:OFFSet</td>
<td>This command sets the data offset value to be used when triggering on audio bus data.</td>
</tr>
<tr>
<td>TRIGger:A:BUS:B<x>:AUDio:DATa:QUALi</td>
<td>This command sets the qualifier (<, >, =, <=, >=, not =, in range, out of range) to be used when triggering on audio bus data.</td>
</tr>
<tr>
<td>Command</td>
<td>Description</td>
</tr>
<tr>
<td>---------</td>
<td>-------------</td>
</tr>
<tr>
<td>TRIGger:A:BUS:B<x>:AUDio:DATa:VALue</td>
<td>This command sets the lower word value to be used when triggering on audio bus data.</td>
</tr>
<tr>
<td>TRIGger:A:BUS:B<x>:AUDio:DATa:WORD</td>
<td>This command sets the alignment of the data (left, right or either) to be used to search on audio bus data.</td>
</tr>
<tr>
<td>TRIGger:A:BUS:B<x>:CAN:CONDition</td>
<td>This command sets the condition (start of frame, frame type, identifier, matching data, EOF, missing ACK field, bit-stuffing error) to be used when triggering on CAN bus data.</td>
</tr>
<tr>
<td>TRIGger:A:BUS:B<x>:CAN:DATa:DIRection</td>
<td>This command sets the data direction (read, write or nocare) to be used to search on CAN bus data.</td>
</tr>
<tr>
<td>TRIGger:A:BUS:B<x>:CAN:DATa:QUALifier</td>
<td>This command sets the qualifier (<, >, =, not =, <=) to be used when triggering on CAN bus data.</td>
</tr>
<tr>
<td>TRIGger:A:BUS:B<x>:CAN:DATa:SIZE</td>
<td>This command sets the length of the data string, in bytes, to be used when triggering on CAN bus data.</td>
</tr>
<tr>
<td>TRIGger:A:BUS:B<x>:CAN:DATa:VALue</td>
<td>This command sets the binary data value to be used when triggering on CAN bus data.</td>
</tr>
<tr>
<td>TRIGger:A:BUS:B<x>:CAN:FRAMEtype</td>
<td>This command sets the frame type (data, remote, error or overload) to be used when triggering on CAN bus data.</td>
</tr>
<tr>
<td>TRIGger:A:BUS:B<x>:CAN:IDenti</td>
<td>ADdress</td>
</tr>
<tr>
<td>TRIGger:A:BUS:B<x>:CAN:IDenti</td>
<td>ADdress:VALue</td>
</tr>
</tbody>
</table>
Table 2-32: Trigger Commands (cont.)

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>TRIGger:A:BUS:B<x>:FLEXray:CONDition</td>
<td>This command specifies the condition to use when triggering on the FlexRay bus signal (start of frame, frame type, ID, cycle count, header, data, ID and data, EOF, error).</td>
</tr>
<tr>
<td>TRIGger:A:BUS:B<x>:FLEXray:CYCLEcount:HIVALue</td>
<td>This command specifies the high value when triggering on the FlexRay bus cycle count field.</td>
</tr>
<tr>
<td>TRIGger:A:BUS:B<x>:FLEXray:CYCLEcount:QUALifier</td>
<td>This command specifies the qualifier (<, >, =, <=, >=, not =, in range, out of range) to use when triggering on the FlexRay bus cycle count field.</td>
</tr>
<tr>
<td>TRIGger:A:BUS:B<x>:FLEXray:CYCLEcount:VALue</td>
<td>This command specifies the low value when triggering on the FlexRay bus cycle count field.</td>
</tr>
<tr>
<td>TRIGger:A:BUS:B<x>:FLEXray:DATa:HIVALue</td>
<td>This command specifies the high value when triggering on the FlexRay bus data field.</td>
</tr>
<tr>
<td>TRIGger:A:BUS:B<x>:FLEXray:DATa:OFFSet</td>
<td>This command specifies the offset of the data string, to use, in bytes, when triggering on the FlexRay bus data field.</td>
</tr>
<tr>
<td>TRIGger:A:BUS:B<x>:FLEXray:DATa:QUALifier</td>
<td>This command specifies the qualifier (<, >, =, <=, >=, not =, in range, out of range) to use when triggering on the FlexRay bus data field.</td>
</tr>
<tr>
<td>TRIGger:A:BUS:B<x>:FLEXray:DATa:SIZe</td>
<td>This command specifies the length of the data string, in bytes, when triggering on the FlexRay bus data field.</td>
</tr>
<tr>
<td>TRIGger:A:BUS:B<x>:FLEXray:DATa:VALue</td>
<td>This command specifies the low value when triggering on the FlexRay bus data field.</td>
</tr>
<tr>
<td>Command</td>
<td>Description</td>
</tr>
<tr>
<td>---------</td>
<td>-------------</td>
</tr>
<tr>
<td>TRIGger:A:BUS:B<x>:FLEXray:EOFTYPE</td>
<td>This command specifies which end of file type to use (static, dynamic or any) when triggering on the FlexRay bus EOF field.</td>
</tr>
<tr>
<td>TRIGger:A:BUS:B<x>:FLEXray:ERRTYPE</td>
<td>This command specifies the error type when triggering on the FlexRay bus signal.</td>
</tr>
<tr>
<td>TRIGger:A:BUS:B<x>:FLEXray:FRAMEID:HIVALue</td>
<td>This command specifies the binary data string to be used for FlexRay frame ID high value</td>
</tr>
<tr>
<td>TRIGger:A:BUS:B<x>:FLEXray:FRAMEID:QUALifier</td>
<td>This command specifies the qualifier when triggering on the FlexRay bus frame ID.</td>
</tr>
<tr>
<td>TRIGger:A:BUS:B<x>:FLEXray:FRAMEID:VALue</td>
<td>This command specifies the binary data string to be used for FlexRay frame ID low value</td>
</tr>
<tr>
<td>TRIGger:A:BUS:B<x>:FLEXray:FRAMEType</td>
<td>This command specifies the frame type (normal, payload, null, sync or startup) when triggering on the FlexRay bus signal.</td>
</tr>
<tr>
<td>TRIGger:A:BUS:B<x>:FLEXray:HEADER:CRC</td>
<td>This command specifies the CRC portion of the binary header string when triggering on the FlexRay bus signal.</td>
</tr>
<tr>
<td>TRIGger:A:BUS:B<x>:FLEXray:HEADER:CYCLEcount</td>
<td>This command specifies the cycle count portion of the binary header string when triggering on the FlexRay bus header.</td>
</tr>
<tr>
<td>TRIGger:A:BUS:B<x>:FLEXray:HEADER:FRAMEID</td>
<td>This command specifies the frame ID portion of the binary header string when triggering on the FlexRay bus header.</td>
</tr>
<tr>
<td>TRIGger:A:BUS:B<x>:FLEXray:HEADER:INDBits</td>
<td>This command specifies the indicator bits portion of the binary header string when triggering on the FlexRay bus header.</td>
</tr>
</tbody>
</table>
Table 2-32: Trigger Commands (cont.)

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>TRIGger:A:BUS:B<x>:FLEXray:HEADER:PAYLength</td>
<td>This command specifies the payload length portion of the binary header string when triggering on the FlexRay bus header.</td>
</tr>
<tr>
<td>TRIGger:A:BUS:B<x>:LIN:CONDITION</td>
<td>Sets or returns the trigger condition for LIN</td>
</tr>
<tr>
<td>TRIGger:A:BUS:B<x>:LIN:DATA:HIGH</td>
<td>Sets or returns the binary data string to be used for LIN trigger</td>
</tr>
<tr>
<td>TRIGger:A:BUS:B<x>:LIN:DATA:QUALifier</td>
<td>Sets or returns the LIN data qualifier</td>
</tr>
<tr>
<td>TRIGger:A:BUS:B<x>:LIN:DATA:SIZE</td>
<td>Sets or returns the length of the data string in bytes to be used for LIN trigger</td>
</tr>
<tr>
<td>TRIGger:A:BUS:B<x>:LIN:DATA:VALUE</td>
<td>Sets or returns the binary data string</td>
</tr>
<tr>
<td>TRIGger:A:BUS:B<x>:LIN:ERROR</td>
<td>Sets or returns the error type</td>
</tr>
<tr>
<td>TRIGger:A:BUS:B<x>:LIN:IDENTIFIER:VALUE</td>
<td>Sets or returns the binary address string used for LIN trigger</td>
</tr>
<tr>
<td>TRIGger:A:BUS:B<x>:I2C:ADDRESS:MODE</td>
<td>Sets or returns the I2C address mode to 7 or 10-bit</td>
</tr>
<tr>
<td>TRIGger:A:BUS:B<x>:I2C:ADDRESS:TYPE</td>
<td>Sets or returns the I2C address type to USER</td>
</tr>
<tr>
<td>TRIGger:A:BUS:B<x>:I2C:ADDRESS:VALUE</td>
<td>Sets or returns the binary address string used for the I2C trigger</td>
</tr>
<tr>
<td>TRIGger:A:BUS:B<x>:I2C:CONDITION</td>
<td>Sets or returns the trigger condition for I2C trigger</td>
</tr>
<tr>
<td>TRIGger:A:BUS:B<x>:I2C:DATA:DIRECTION</td>
<td>Sets or returns the I2C trigger condition valid on a READ, WRITE, or either</td>
</tr>
<tr>
<td>TRIGger:A:BUS:B<x>:I2C:DATA:SIZE</td>
<td>Sets or returns the length of the data string in bytes to be used for I2C trigger</td>
</tr>
<tr>
<td>TRIGger:A:BUS:B<x>:I2C:DATA:VALUE</td>
<td>Sets or returns the binary data string used for I2C triggering</td>
</tr>
</tbody>
</table>
Table 2-32: Trigger Commands (cont.)

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>TRIGger:A:BUS:B<x>:MIL1553B:COMMAND:ADDRess:HIVALue</td>
<td>When the MIL-STD-1553 bus trigger condition is set to COMMAND, and the qualifier is set to INrange or OUTrange, this command specifies the upper limit of the range for the remote terminal address field.</td>
</tr>
<tr>
<td>TRIGger:A:BUS:B<x>:MIL1553B:COMMAND:ADDRess:QUALifier</td>
<td>When the MIL-STD-1553 bus trigger condition is set to COMMAND, this command specifies the qualifier to be used with the remote terminal address field.</td>
</tr>
<tr>
<td>TRIGger:A:BUS:B<x>:MIL1553B:COMMAND:ADDRess:VALue</td>
<td>When the MIL-STD-1553 bus trigger condition is set to COMMAND, and the qualifier is set to LESSthan, MOREthan, EQUAL, UNEQUAL, LESSEQUAL or MOREEQUAL, this command specifies the value of the 5-bit remote terminal address to be used in the trigger.</td>
</tr>
<tr>
<td>TRIGger:A:BUS:B<x>:MIL1553B:COMMAND:COUNt</td>
<td>When the MIL-STD-1553 bus trigger condition is set to COMMAND, this command specifies the bit pattern for the 5-bit Word Count/Mode Code sub-address field that is to be used in the trigger.</td>
</tr>
<tr>
<td>TRIGger:A:BUS:B<x>:MIL1553B:COMMAND:PARity</td>
<td>When the MIL-STD-1553 bus trigger condition is set to COMMAND, this command specifies the Command word parity that is to be used in the trigger.</td>
</tr>
<tr>
<td>TRIGger:A:BUS:B<x>:MIL1553B:COMMAND:SUBADdress</td>
<td>When the MIL-STD-1553 bus trigger condition is set to COMMAND, this command specifies the 5-bit sub-address that is to be used in the trigger.</td>
</tr>
</tbody>
</table>
Table 2-32: Trigger Commands (cont.)

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>TRIGger:A:BUS:B<x>:MIL1553B:COMMAND:TRBit</td>
<td>When the MIL-STD-1553 bus trigger condition is set to COMMAND, this command specifies that the transmit/receive bit (bit 9) is to be used in the trigger.</td>
</tr>
<tr>
<td>TRIGger:A:BUS:B<x>:MIL1553B:CONDITION</td>
<td>This command specifies the condition (sync, command, status, data, time, or error) to use when triggering on a MIL-STD-1553 bus signal.</td>
</tr>
<tr>
<td>TRIGger:A:BUS:B<x>:MIL1553B:DATA:PARity</td>
<td>When the MIL-STD-1553 bus trigger condition is set to DATA, this command specifies the data parity bit to be used in the trigger.</td>
</tr>
<tr>
<td>TRIGger:A:BUS:B<x>:MIL1553B:DATA:VALUE</td>
<td>When the MIL-STD-1553 bus trigger condition is set to DATA, this command specifies the data binary pattern to be used in the trigger.</td>
</tr>
<tr>
<td>TRIGger:A:BUS:B<x>:MIL1553B:ERRTYPE</td>
<td>When the MIL-STD-1553 bus trigger condition is set to ERROR, this command specifies the signaling error type to be used in the trigger: Parity, Sync, Manchester or Data.</td>
</tr>
<tr>
<td>TRIGger:A:BUS:B<x>:MIL1553B:STATUS:ADDRESS:HIVALue</td>
<td>When the MIL-STD-1553 bus trigger condition is set to STATus, and the qualifier is set to INRange or OUTrange, this command specifies the upper limit for the 5 bit remote terminal address field of the Status word.</td>
</tr>
<tr>
<td>TRIGger:A:BUS:B<x>:MIL1553B:STATUS:ADDRESS:QUALifier</td>
<td>When the MIL-STD-1553 bus trigger condition is set to STATus, this command specifies the qualifier to be used with the address field.</td>
</tr>
<tr>
<td>Command</td>
<td>Description</td>
</tr>
<tr>
<td>--</td>
<td>---</td>
</tr>
<tr>
<td>TRIGger:A:BUS:B<x>:MIL1553B:STATus:ADDRess:VALue</td>
<td>When the MIL-STD-1553 bus trigger condition is set to STATus, and the qualifier is set to LESSthan, MOREthan, EQUAL, UNEQUAL, LESSEQUAL or MOREEQUAL, this command specifies the value of the 5-bit remote terminal address to be used in the trigger.</td>
</tr>
<tr>
<td>TRIGger:A:BUS:B<x>:MIL1553B:STATus:BIT:BCR</td>
<td>When the MIL-STD-1553 bus trigger condition is set to STATus, this command specifies the status word broadcast command received (BCR) bit value (bit 15) to be used in the trigger.</td>
</tr>
<tr>
<td>TRIGger:A:BUS:B<x>:MIL1553B:STATus:BIT:BUSY</td>
<td>When the MIL-STD-1553 bus trigger condition is set to STATus, this command specifies the status word busy bit value (bit 16) to be used in the trigger.</td>
</tr>
<tr>
<td>TRIGger:A:BUS:B<x>:MIL1553B:STATus:BIT:DBCA</td>
<td>When the MIL-STD-1553 bus trigger condition is set to STATus, this command specifies the status word dynamic bus control acceptance (DBCA) bit value (bit 18) to be used in the trigger.</td>
</tr>
<tr>
<td>TRIGger:A:BUS:B<x>:MIL1553B:STATus:BIT:INSTR</td>
<td>When the MIL-STD-1553 bus trigger condition is set to STATus, this command specifies the status word instrumentation bit value (bit 10) to be used in the trigger.</td>
</tr>
<tr>
<td>TRIGger:A:BUS:B<x>:MIL1553B:STATus:BIT:ME</td>
<td>When the MIL-STD-1553 bus trigger condition is set to STATus, this command specifies the status word message error bit value (bit 9) to be used in the trigger.</td>
</tr>
</tbody>
</table>
Table 2-32: Trigger Commands (cont.)

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>TRIGger:A:BUS:B<x>:MIL1553B:STATus:BIT:SRQ</td>
<td>When the MIL-STD-1553 bus trigger condition is set to STATus, this command specifies the status word service request (SRQ) bit value (bit 11) to be used in the trigger.</td>
</tr>
<tr>
<td>TRIGger:A:BUS:B<x>:MIL1553B:STATus:BIT:SUBSF</td>
<td>When the MIL-STD-1553 bus trigger condition is set to STATus, this command specifies the status word subsystem flag bit value (bit 17) to be used in the trigger.</td>
</tr>
<tr>
<td>TRIGger:A:BUS:B<x>:MIL1553B:STATus:BIT:TF</td>
<td>When the MIL-STD-1553 bus trigger condition is set to STATus, this command specifies the status word terminal flag bit value (bit 19) to be used in the trigger.</td>
</tr>
<tr>
<td>TRIGger:A:BUS:B<x>:MIL1553B:STATus:PARity</td>
<td>When the MIL-STD-1553 bus trigger condition is set to STATus, this command specifies the status parity bit value to be used in the trigger.</td>
</tr>
<tr>
<td>TRIGger:A:BUS:B<x>:MIL1553B:TIMe:LESSLimit</td>
<td>When the MIL-STD-1553 bus trigger condition is set to TIMe, this command specifies either the minimum remote terminal response time (RT) limit for the amount of time the terminal has to transmit, or it specifies the minimum inter-message gap (IMG).</td>
</tr>
<tr>
<td>TRIGger:A:BUS:B<x>:MIL1553B:TIMe:MORELimit</td>
<td>When the MIL-STD-1553 bus trigger condition is set to TIMe, this command specifies either the maximum remote terminal response time (RT) limit for the amount of time the terminal has to transmit, or it specifies the maximum inter-message gap (IMG).</td>
</tr>
<tr>
<td>Command</td>
<td>Description</td>
</tr>
<tr>
<td>---------</td>
<td>-------------</td>
</tr>
<tr>
<td>TRIGger:A:BUS:B<x>:MIL1553B:TiMe:QUALifier</td>
<td>When the MIL-STD-1553 bus trigger condition is set to TiMe, this command specifies the trigger data time qualifier.</td>
</tr>
<tr>
<td>TRIGger:A:BUS:B<x>:PARallel:VALue</td>
<td>Sets or returns the binary data string to be used for a Parallel trigger.</td>
</tr>
<tr>
<td>TRIGger:A:BUS:B<x>:RS232C:RX:DATa:SiZe</td>
<td>Sets or returns the length of the data string in Bytes for an RX RS-232 Trigger.</td>
</tr>
<tr>
<td>TRIGger:A:BUS:B<x>:RS232C:TX:DATa:SiZe</td>
<td>Sets or returns the length of the data string for a TX RS-232 trigger.</td>
</tr>
<tr>
<td>TRIGger:A:BUS:B<x>:RS232C:TX:DATa:VALue</td>
<td>Sets or returns the binary data string for an RS-232 trigger if the trigger condition involves TX.</td>
</tr>
<tr>
<td>TRIGger:A:BUS:B<x>:SPI:CONDition</td>
<td>Sets or returns the trigger condition for SPI triggering.</td>
</tr>
<tr>
<td>TRIGger:A:BUS:B<x>:SPI:DATa{:IN</td>
<td>MISO}:VALue</td>
</tr>
<tr>
<td>TRIGger:A:BUS:B<x>:SPI:DATa{:OUT</td>
<td>MOSI}:VALue</td>
</tr>
<tr>
<td>TRIGger:A:BUS:B<x>:SPI:DATa:SiZe</td>
<td>Sets or returns the length of the data string in bytes to be used for SPI trigger if the trigger condition is MISO, MOSI, or MISOMOSI.</td>
</tr>
<tr>
<td>TRIGger:A:BUS:SOUrce</td>
<td>Sets or returns the source for a Serial bus trigger.</td>
</tr>
<tr>
<td>TRIGger:A:EDGE?</td>
<td>Returns the source, coupling and source for the A edge trigger.</td>
</tr>
</tbody>
</table>
Table 2-32: Trigger Commands (cont.)

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>TRIGger:A:EDGE:COUPling</td>
<td>Sets or returns the type of coupling for the A edge trigger</td>
</tr>
<tr>
<td>TRIGger:A:EDGE:SLOpe</td>
<td>Sets or returns the slope for the A edge trigger</td>
</tr>
<tr>
<td>TRIGger:A:EDGE:SOUrce</td>
<td>Sets or returns the source for the A edge trigger</td>
</tr>
<tr>
<td>TRIGger:A:HOLDoff?</td>
<td>Returns the A trigger holdoff parameters</td>
</tr>
<tr>
<td>TRIGger:A:HOLDoff:TIMe</td>
<td>Sets or returns the A trigger holdoff time</td>
</tr>
<tr>
<td>TRIGger:A:LEVel</td>
<td>Sets or returns the trigger level for the A trigger</td>
</tr>
<tr>
<td>TRIGger:A:LEVel:AUXin</td>
<td>Sets or returns the trigger level for the AUXIN port</td>
</tr>
<tr>
<td>TRIGger:A:LEVel:CH<x></td>
<td>Specifies or returns the trigger level for the specified trigger channel</td>
</tr>
<tr>
<td>TRIGger:A:LEVel:D<x></td>
<td>Sets or returns the trigger level for the specified digital channel</td>
</tr>
<tr>
<td>TRIGger:A:LOGIc?</td>
<td>Returns all A trigger logic settings</td>
</tr>
<tr>
<td>TRIGger:A:LOGIc:CLAss</td>
<td>This command sets the class of the logic trigger (logic or setup/hold). This command is used in conjunction with the TRIGger:A:TYPe command.</td>
</tr>
<tr>
<td>TRIGger:A:LOGIc:FUNCTION</td>
<td>Sets or returns the logical combination of the input channels for the A logic trigger</td>
</tr>
<tr>
<td>TRIGger:A:LOGIc:INPut?</td>
<td>Returns the logic input values for all channels</td>
</tr>
<tr>
<td>TRIGger:A:LOGIc:INPut:CH<x></td>
<td>Specifies or returns the logic setting for the specified channel</td>
</tr>
<tr>
<td>TRIGger:A:LOGIc:INPut:CLOCk:EDGE</td>
<td>Sets the polarity of the clock channel</td>
</tr>
<tr>
<td>TRIGger:A:LOGIc:INPut:CLOCk:SOUrce</td>
<td>Sets or returns the channel to use as the clock source</td>
</tr>
<tr>
<td>Command</td>
<td>Description</td>
</tr>
<tr>
<td>---------</td>
<td>-------------</td>
</tr>
<tr>
<td>TRIGger:A:LOGIC:Input:D<x></td>
<td>Sets or returns the logic pattern for a trigger on digital channel<x></td>
</tr>
<tr>
<td>TRIGger:A:LOGIC:Pattern?</td>
<td>Returns the conditions for generating an A logic pattern trigger</td>
</tr>
<tr>
<td>TRIGger:A:LOGIC:Pattern:DELTagtime</td>
<td>Sets or returns the pattern trigger delta time value</td>
</tr>
<tr>
<td>TRIGger:A:LOGIC:Pattern:Input:D<x></td>
<td>Sets or returns the A logic trigger pattern for a trigger on digital channel<x></td>
</tr>
<tr>
<td>TRIGger:A:LOGIC:Pattern:WHen</td>
<td>Sets or returns the pattern logic condition on which to trigger the oscilloscope</td>
</tr>
<tr>
<td>TRIGger:A:LOGIC:Pattern:WHen:LESSLimit</td>
<td>Sets or returns the maximum time that the selected pattern may be true and still generate an A logic pattern trigger</td>
</tr>
<tr>
<td>TRIGger:A:LOGIC:Pattern:WHen:MORELimit</td>
<td>Sets or returns the minimum time that the selected pattern may be true and still generate an A logic pattern trigger</td>
</tr>
<tr>
<td>TRIGger:A:LOGIC:Threshold:CH<x></td>
<td>Sets or queries the trigger A logic threshold voltage for the specified channel</td>
</tr>
<tr>
<td>TRIGger:A:LOGIC:Threshold:D<x></td>
<td>Sets or returns the trigger A logic threshold level for the specified digital channel</td>
</tr>
<tr>
<td>TRIGger:A:LOWerthreshold:CH<x></td>
<td>Sets or returns the lower threshold for the channel selected</td>
</tr>
<tr>
<td>TRIGger:A:LOWerthreshold:D<x></td>
<td>Sets the A trigger lower threshold for the digital channel selected</td>
</tr>
<tr>
<td>TRIGger:A:LOWerthreshold{:EXT</td>
<td>:AUX}</td>
</tr>
<tr>
<td>TRIGger:A:MODE</td>
<td>Sets or returns the A trigger mode</td>
</tr>
<tr>
<td>TRIGger:A:PULse?</td>
<td>Returns the A pulse trigger parameters</td>
</tr>
</tbody>
</table>
Table 2-32: Trigger Commands (cont.)

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>TRIGger:A:PULse:CLass</td>
<td>This command sets the type of pulse on which to trigger (runt, width, transition or timeout). This command is used in conjunction with the TRIGger:A:TYPe command.</td>
</tr>
<tr>
<td>TRIGger:A:PULSEWIDth?</td>
<td>Returns the trigger A pulse width parameters</td>
</tr>
<tr>
<td>TRIGger:A:PULSEWidth:HIGHLimit</td>
<td>This command specifies the upper limit to use, in seconds, when triggering on detection of a pulse whose duration is inside or outside a range of two values. (Use TRIGger:A:PULSEWidth:LOWLimit to specify the lower value of the range.)</td>
</tr>
<tr>
<td>TRIGger:A:PULSEWidth:LOWLimit</td>
<td>This command specifies the lower limit to use, in seconds, when triggering on detection of a pulse whose duration is inside or outside a range of two values. (Use TRIGger:A:PULSEWidth:HIGHLimit to specify the upper limit of the range.)</td>
</tr>
<tr>
<td>TRIGger:A:PULSEWidth:POLarity</td>
<td>Sets or returns the polarity for the A pulse width trigger</td>
</tr>
<tr>
<td>TRIGger:A:PULSEWidth:SOUrce</td>
<td>Sets or returns the source for the pulse width trigger</td>
</tr>
<tr>
<td>TRIGger:A:PULSEWidth:WHEn</td>
<td>This command specifies to trigger when a pulse is detected with a width (duration) that is less than, greater than, equal to, or unequal to a specified value (set using TRIGger:A:PULSEWidth:WIDth), OR whose width falls outside of or within a specified range of two values (set using TRIGger:A:PULSEWidth:LOWLimit and TRIGger:A:PULSEWidth:HIGHLimit).</td>
</tr>
</tbody>
</table>
Table 2-32: Trigger Commands (cont.)

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>TRIGger:A:PULSEWidth:Width</td>
<td>Sets or returns the width setting for the pulse width trigger</td>
</tr>
<tr>
<td>TRIGger:A:RUNT?</td>
<td>Returns the current A runt pulse trigger logic parameters</td>
</tr>
<tr>
<td>TRIGger:A:RUNT:POLarity</td>
<td>Sets or returns the polarity for the A pulse runt trigger</td>
</tr>
<tr>
<td>TRIGger:A:RUNT:SOURce</td>
<td>Sets or returns the source for the A pulse runt trigger</td>
</tr>
<tr>
<td>TRIGger:A:RUNT:WHEn</td>
<td>Sets or returns the type of pulse width the trigger checks for when it uncovers a runt</td>
</tr>
<tr>
<td>TRIGger:A:RUNT:Width</td>
<td>Sets or returns the minimum width for A pulse runt trigger</td>
</tr>
<tr>
<td>TRIGger:A:SETHold?</td>
<td>Returns settings for setup and hold violation triggering</td>
</tr>
<tr>
<td>TRIGger:A:SETHold:CLOCK?</td>
<td>Returns clock edge polarity, voltage threshold and source input for setup/hold triggering</td>
</tr>
<tr>
<td>TRIGger:A:SETHold:CLOCK:EDGE</td>
<td>Sets or returns the clock edge polarity for setup and hold triggering</td>
</tr>
<tr>
<td>TRIGger:A:SETHold:CLOCK:SOURce</td>
<td>Sets or returns the clock source for the A logic trigger setup and hold input</td>
</tr>
<tr>
<td>TRIGger:A:SETHold:CLOCK:THReshold</td>
<td>Sets or returns the clock voltage threshold for setup and hold trigger</td>
</tr>
<tr>
<td>TRIGger:A:SETHold:DATa?</td>
<td>Returns the voltage threshold and data source for the setup/hold trigger</td>
</tr>
<tr>
<td>TRIGger:A:SETHold:DATa:SOURce</td>
<td>Sets or returns the data source for the setup and hold trigger</td>
</tr>
<tr>
<td>TRIGger:A:SETHold:DATa:THReshold</td>
<td>Sets or returns the data voltage threshold for setup and hold trigger</td>
</tr>
<tr>
<td>TRIGger:A:SETHold:HOLDTime</td>
<td>Sets or returns the hold time for the setup and hold violation triggering</td>
</tr>
</tbody>
</table>
Table 2-32: Trigger Commands (cont.)

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>TRIGger:A:SETHold:SETTime</td>
<td>Sets or returns the setup time for setup and hold violation triggering</td>
</tr>
<tr>
<td>TRIGger:A:SETHold:THReshold:CH<x></td>
<td>Sets or queries the threshold for the channel</td>
</tr>
<tr>
<td>TRIGger:A:SETHold:THReshold:D<x></td>
<td>Sets the A trigger setup and hold threshold for the selected digital channel</td>
</tr>
<tr>
<td>TRIGger:A:UPPerthreshold:CH<x></td>
<td>Sets the upper threshold for the channel selected</td>
</tr>
<tr>
<td>TRIGger:A{:TRANsition</td>
<td>:RISEFall}?</td>
</tr>
<tr>
<td>TRIGger:A{:TRANsition</td>
<td>:RISEFall}:DELTatime</td>
</tr>
<tr>
<td>TRIGger:A{:TRANsition</td>
<td>:RISEFall}:POLarity</td>
</tr>
<tr>
<td>TRIGger:A{:TRANsition</td>
<td>:RISEFall}:SOUrce</td>
</tr>
<tr>
<td>TRIGger:A{:TRANsition</td>
<td>:RISEFall}:WHEn</td>
</tr>
<tr>
<td>TRIGger:A:TYPe</td>
<td>This command sets the type of A trigger (edge, logic, pulse, bus or video). If you set the trigger type to LOGIc, you also need to set the logic trigger class (logic or setup/hold) using the command TRIGger:A:LOGIc:CLAss. If you set the trigger type to PULSe, you also need to set the pulse trigger class (runt, width, transition or timeout), using the command TRIGger:A:PULse:CLAss. If you set the trigger type to BUS, you also need to set the bus type (CAN, I2C, SPI, RS-232, MIL-STD-1553, LIN, audio, FlexRay or parallel) using the command TRIGger:A:BUS.</td>
</tr>
</tbody>
</table>

2-72 MSO3000 and DPO3000 Series Programmer Manual
Table 2-32: Trigger Commands (cont.)

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>TRIGger:A:VIDeo?</td>
<td>Returns the video parameters for the A trigger</td>
</tr>
<tr>
<td>TRIGger:A:VIDeo:CUSTom:FORMat</td>
<td>This command sets the video trigger format (either interlaced or progressive) to use for triggering on video signals.</td>
</tr>
<tr>
<td>TRIGger:A:VIDeo:CUSTom:LINEPeriod</td>
<td>This command sets the line period for the standard under test.</td>
</tr>
<tr>
<td>TRIGger:A:VIDeo:CUSTom:SYNCInterval</td>
<td>This command sets the sync interval for the standard under test to use for triggering on video signals. This is only required for BiLevel Custom.</td>
</tr>
<tr>
<td>TRIGger:A:VIDeo:HOLDoff:FIELD</td>
<td>This command sets the video trigger holdoff, in terms of video fields, to use for triggering on video signals.</td>
</tr>
<tr>
<td>TRIGger:A:VIDeo:LINE</td>
<td>This command sets the video line number to use for triggering on video signals.</td>
</tr>
<tr>
<td>TRIGger:A:VIDeo:POLarity</td>
<td>This command sets the polarity to use for triggering on video signals.</td>
</tr>
<tr>
<td>TRIGger:A:VIDeo:SOURrce</td>
<td>This command sets the source channel to use for triggering on video signals.</td>
</tr>
<tr>
<td>TRIGger:A:VIDeo:STANdard</td>
<td>This command sets the standard to use for triggering on video signals (NTSC, PAL, SECAM, HDTV, bi-level custom or tri-level custom).</td>
</tr>
<tr>
<td>TRIGger:A:VIDeo{:SYNC{:FIELD}}</td>
<td>This command sets the video field or line to use for triggering on video signals.</td>
</tr>
<tr>
<td>TRIGger:B</td>
<td>Sets the B trigger level to 50% or returns the B trigger parameters</td>
</tr>
<tr>
<td>TRIGger:B:BY</td>
<td>Sets or returns B trigger time or event qualifiers</td>
</tr>
<tr>
<td>TRIGger:B:EDGE?</td>
<td>Returns B trigger edge type parameters</td>
</tr>
</tbody>
</table>
Table 2-32: Trigger Commands (cont.)

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>TRIGger:B:EDGE:COUpling</td>
<td>Sets or returns the type of B trigger coupling</td>
</tr>
<tr>
<td>TRIGger:B:EDGE:SLOpe</td>
<td>Sets or returns the B edge trigger slope</td>
</tr>
<tr>
<td>TRIGger:B:EDGE:SOUrce</td>
<td>Sets or returns the B edge trigger source</td>
</tr>
<tr>
<td>TRIGger:B:EVENTS?</td>
<td>Returns the current B trigger events parameter</td>
</tr>
<tr>
<td>TRIGger:B:EVENTS:COUNt</td>
<td>Sets or returns the number of events that must occur before the B trigger occurs</td>
</tr>
<tr>
<td>TRIGger:B:LEVel</td>
<td>Sets or returns the level for the B trigger</td>
</tr>
<tr>
<td>TRIGger:B:LEVel:CH<x></td>
<td>Sets or returns the level for the B trigger for a specific channel</td>
</tr>
<tr>
<td>TRIGger:B:LEVel:D<x></td>
<td>Sets or returns the B trigger level for digital channel<x></td>
</tr>
<tr>
<td>TRIGger:B:LOWerthreshold:CH<x></td>
<td>Sets or returns the B trigger lower threshold for the channel selected</td>
</tr>
<tr>
<td>TRIGger:B:LOWerthreshold:D<x></td>
<td>Sets or queries the B trigger lower threshold for the digital channel selected</td>
</tr>
<tr>
<td>TRIGger:B:STATE</td>
<td>Returns the current state of the B trigger</td>
</tr>
<tr>
<td>TRIGger:B:TIMe</td>
<td>Sets or returns the B trigger delay time</td>
</tr>
<tr>
<td>TRIGger:B:TYPe</td>
<td>Sets or returns the type of B trigger</td>
</tr>
<tr>
<td>TRIGger:B:UPPerthreshold:CH<x></td>
<td>Sets or returns the B trigger upper threshold for the channel selected</td>
</tr>
<tr>
<td>TRIGger:EXTernal?</td>
<td>Returns external trigger parameters</td>
</tr>
<tr>
<td>TRIGger:EXTernal:PRObe</td>
<td>Sets or returns the attenuation factor value of the external probe connector</td>
</tr>
<tr>
<td>TRIGger:EXTernal:YUNIts?</td>
<td>Returns the external trigger vertical (Y) units value</td>
</tr>
</tbody>
</table>
Table 2-32: Trigger Commands (cont.)

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>TRIGger:FREQuency?</td>
<td>Returns the trigger frequency in Hertz. This command</td>
</tr>
<tr>
<td>TRIGger:STATE?</td>
<td>Returns the current state of the triggering system</td>
</tr>
</tbody>
</table>

Vertical Command Group

Use the commands in the Vertical Command Group to control the vertical setup of all live (channel) waveforms for acquisition and display of channel, reference, and math waveforms.

Use the command `CH<x>:YUNits` to set the vertical units for each channel. The vertical units affect the “Probe Type” that is shown in the “Probe Setup” menu:

- Setting `CH<x>:YUNits` to “V” causes the probe type to be displayed as “Voltage”.
- When `CH1:AMSVIAVOLTS:ENAble` is set to OFF, setting `CH<x>:YUNits` to “A” causes the probe type to be displayed as “Current”.
- Setting `CH<x>:YUNits` to anything else causes the probe type not to be displayed (neither “Voltage” nor “Current” are highlighted).

Table 2-33: Vertical Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>AUXin?</td>
<td>Returns auxiliary input parameters</td>
</tr>
<tr>
<td>AUXin:PRObe</td>
<td>Returns all information concerning the probe attached to auxiliary input</td>
</tr>
<tr>
<td>AUXin:PRObe:AUTOZero</td>
<td>Sets the TekVPI probe attached to the auxiliary input to autozero</td>
</tr>
<tr>
<td>AUXin:PRObe:COMMAND</td>
<td>Sets the state of the specified probe control</td>
</tr>
<tr>
<td>AUXin:PRObe:DEGAUss</td>
<td>Starts a degauss/autozero cycle on a TekVPI current probe attached to the auxiliary input</td>
</tr>
<tr>
<td>AUXin:PRObe:DEGAUss:STATE?</td>
<td>Returns the degauss state of the TekVPI current probe attached to the auxiliary input</td>
</tr>
<tr>
<td>AUXin:PRObe:FORCEDRange</td>
<td>Sets or returns the range of the TekVPI probe attached to the auxiliary input</td>
</tr>
<tr>
<td>AUXin:PRObe:GAIN</td>
<td>Sets or returns the gain factor of the probe that is attached to the auxiliary input</td>
</tr>
<tr>
<td>AUXin:PRObe:ID:SERnumber?</td>
<td>Returns the serial number of the probe that is attached to the auxiliary input</td>
</tr>
<tr>
<td>AUXin:PRObe:ID:TYPE?</td>
<td>Returns the type of probe that is attached to the auxiliary input</td>
</tr>
</tbody>
</table>
Table 2-33: Vertical Commands (cont.)

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>AUXin:PRObe:RESistance?</td>
<td>Returns the resistance of the probe that is attached to the Auxiliary input</td>
</tr>
<tr>
<td>AUXin:PRObe:SIGnal</td>
<td>Sets or returns the input bypass setting on VPI probes that support input bypass</td>
</tr>
<tr>
<td>AUXin:PRObe:UNIts?</td>
<td>Returns the units of measure of the probe that is attached to the auxiliary input</td>
</tr>
<tr>
<td>CH<x>?</td>
<td>Returns vertical parameters for the specified channel</td>
</tr>
<tr>
<td>CH<x>:AMPSVIAVOLTs:ENAble</td>
<td>Sets or returns the state of the amps via volts feature</td>
</tr>
<tr>
<td>CH<x>:AMPSVIAVOLTs:FACTor</td>
<td>Sets or returns the amps via volts factor</td>
</tr>
<tr>
<td>CH<x>:BANdwidth</td>
<td>Sets or returns the bandwidth of the specified channel</td>
</tr>
<tr>
<td>CH<x>:COUPling</td>
<td>Sets or returns the coupling setting for the specified channel</td>
</tr>
<tr>
<td>CH<x>:DESKew</td>
<td>Sets or returns the deskew time for the specified channel</td>
</tr>
<tr>
<td>CH<x>:INVert</td>
<td>Sets or returns the invert function for the specified channel</td>
</tr>
<tr>
<td>CH<x>:LABel</td>
<td>Sets or returns the waveform label for channel <x></td>
</tr>
<tr>
<td>CH<x>:OFFSet</td>
<td>Sets or returns the channel offset</td>
</tr>
<tr>
<td>CH<x>:POSition</td>
<td>Sets or returns the channel vertical position</td>
</tr>
<tr>
<td>CH<x>:PRObe?</td>
<td>Returns the gain, resistance, units, and ID of the probe that is attached to the specified channel</td>
</tr>
<tr>
<td>CH<x>:PRObe:AUTOZero</td>
<td>Sets the TekVPI probe attached to the specified channel input to autozero</td>
</tr>
<tr>
<td>CH<x>:PRObe:COMMAND</td>
<td>Sets the state of the specified probe control</td>
</tr>
<tr>
<td>CH<x>:PRObe:DEGAUss</td>
<td>Starts a de gauss/autozero cycle on a TekVPI current probe attached to the specified channel</td>
</tr>
<tr>
<td>CH<x>:PRObe:DEGAUss:STATE?</td>
<td>Returns the state of the probe de gauss</td>
</tr>
<tr>
<td>CH<x>:PRObe:FORCEDRange</td>
<td>Sets or returns the range on a TekVPI probe attached to the specified channel</td>
</tr>
<tr>
<td>CH<x>:PRObe:GAIN</td>
<td>Sets or returns the gain factor of the probe that is attached to the specified channel</td>
</tr>
<tr>
<td>CH<x>:PRObe:ID?</td>
<td>Returns the type and serial number of the probe that is attached to the specified channel</td>
</tr>
<tr>
<td>CH<x>:PRObe:ID:SERnumber?</td>
<td>Returns the serial number of the probe that is attached to the specified channel</td>
</tr>
<tr>
<td>Command</td>
<td>Description</td>
</tr>
<tr>
<td>---------------</td>
<td>---</td>
</tr>
<tr>
<td>CH<x>:PRObe:ID:TYPE?</td>
<td>Returns the type of probe that is attached to the specified channel</td>
</tr>
<tr>
<td>CH<x>:PRObe:MODel</td>
<td>Sets or returns the probe model for the specified channel</td>
</tr>
<tr>
<td>CH<x>:PRObe:PROPDElay</td>
<td>Sets or returns the propagation delay for the probe connected to the specified channel</td>
</tr>
<tr>
<td>CH<x>:PRObe:RECDEskew?</td>
<td>Returns the recommended deskew for the probe connected to the specified channel</td>
</tr>
<tr>
<td>CH<x>:PRObe:RESistance?</td>
<td>Returns the resistance of the probe that is attached to the specified channel</td>
</tr>
<tr>
<td>CH<x>:PRObe:SIGnal</td>
<td>Sets or returns the input bypass setting of channel <x> TekVPI probe</td>
</tr>
<tr>
<td>CH<x>:PRObe:UNItsx?</td>
<td>Returns the units of measure of the probe that is attached to the specified channel</td>
</tr>
<tr>
<td>CH<x>:SCAle</td>
<td>Sets or returns the vertical scale of the specified channel</td>
</tr>
<tr>
<td>CH<x>:TERmination</td>
<td>Sets or returns channel input termination</td>
</tr>
<tr>
<td>CH<x>:YUNIts</td>
<td>Sets or returns the units for the specified channel</td>
</tr>
<tr>
<td>D<x></td>
<td>Returns parameters for digital channel<x></td>
</tr>
<tr>
<td>D<x>:LABel</td>
<td>Sets or returns the waveform label for digital channel<x></td>
</tr>
<tr>
<td>D<x>:POSition</td>
<td>Sets or returns the vertical position for digital channel<x></td>
</tr>
<tr>
<td>D<x>:THREshold</td>
<td>Sets or returns the logical threshold for digital channel<x></td>
</tr>
<tr>
<td>DESkew</td>
<td>Causes the deskew values for all channels to be set to the recommended values</td>
</tr>
<tr>
<td>DESkew:DISPlay</td>
<td>Sets or returns the state of the deskew table display</td>
</tr>
<tr>
<td>REF<x>?</td>
<td>Returns reference waveform settings for waveform reference <x></td>
</tr>
<tr>
<td>REF<x>:DATE?</td>
<td>Returns the date that a reference waveform was stored</td>
</tr>
<tr>
<td>REF<x>:HORizontal:DELay:TIMe</td>
<td>Sets or returns the horizontal delay time for reference waveform <x>, where x is the reference channel number. The delay time is expressed in seconds and is limited to ±5 times the reference horizontal scale</td>
</tr>
<tr>
<td>REF<x>:HORizontal:SCAle</td>
<td>Sets or returns the horizontal scale for a reference waveform</td>
</tr>
</tbody>
</table>
Table 2-33: Vertical Commands (cont.)

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>REF<x>:LABel</td>
<td>Sets or returns the specified reference waveform label</td>
</tr>
<tr>
<td>REF<x>:TIMe?</td>
<td>Returns the time that a reference waveform was stored</td>
</tr>
<tr>
<td>REF<x>:VERTical:POSition</td>
<td>Sets or returns the vertical position of the specified reference waveform</td>
</tr>
<tr>
<td>REF<x>:VERTical:SCAle</td>
<td>Sets or returns the reference waveform vertical scale in vertical units/div</td>
</tr>
<tr>
<td>SELect</td>
<td>Returns information on which waveforms are on or off and which waveform is selected</td>
</tr>
<tr>
<td>SELect:BUS<x></td>
<td>Turns on or off the specified bus waveform or returns whether the specified bus channel is on or off</td>
</tr>
<tr>
<td>SELect:CH<x></td>
<td>Turns on or off the specified waveform or returns whether the specified channel is on or off</td>
</tr>
<tr>
<td>SELect:CONTOl</td>
<td>Sets or returns the waveform that is selected as the implied recipient of channel-related commands</td>
</tr>
<tr>
<td>SELect:D<x></td>
<td>Turns on the display of digital channel<x> and resets the acquisition</td>
</tr>
<tr>
<td>SELect:MATH[1]</td>
<td>Turns on or off the math waveform or returns whether the math waveform is on or off</td>
</tr>
<tr>
<td>SELect:REF<x></td>
<td>Turns on or off the specified reference waveform or returns whether the specified reference waveform is on or off</td>
</tr>
</tbody>
</table>

Waveform Transfer Command Group

The CURve and other commands and queries in the Waveform Transfer Command Group are used to transfer waveform data points to and from the oscilloscope. The waveform data points are a collection of values that represent the amplitude of the waveform samples. One data value usually represents one data point in the waveform record. Only one waveform can be transferred at a time.

Each waveform you transfer has an associated waveform preamble, which contains information such as data format, horizontal scale, vertical scale, and the other settings in effect when the waveform was created. When you transfer a waveform, you need to specify at least some of the general and preamble settings (using the DATA, WFMInpre or WFMOutpre commands) before you specify the raw data point information (using the CURve command or query.)
Waveform data can be transferred to or from the oscilloscope using the Ethernet or USBTMC interfaces in binary or ASCII format. Binary data transfer is considerably more efficient than ASCII data transfer. Binary data is transferred to and from the oscilloscope using the IEEE488.2 arbitrary block format (7.7.6 of the IEEE488.2 spec) which we refer to in this document as “binary block format”. A binary block is represented as:

`#N<N-Digits><binary data>`

Where:

- The “#” is the arbitrary block token.
- N is a single hexadecimal digit specifying how many decimal digits immediately follow.
- `<N-Digits>` is a decimal number N digits long, that specifies the number of binary data bytes to follow.
- `<binary data>` is the binary data which should be exactly N-Digits bytes in length.

NOTE. If you would like to save or recall a waveform to or from a file, use the `SAVE:WAVEform` and `RECALL:WAVEform` commands.

Transferring a Waveform From an Oscilloscope to a Computer

Use the `DATa` commands and `WFMOupre` commands to specify the attributes of the waveform being transferred from the oscilloscope. You must, at a minimum, specify the waveform source (using the `DATa:SOUrce` command) and data format (using the `DATa:ENCdg` and `DATa:WIDth` commands).

Then, use the `WFMOupre` query, which provides the context needed to interpret the waveform data points. Finally, use the `CURVe` query to transfer the waveform data points. (You can also use the `WAVFrm` query, which concatenates the `WFMOupre` and `CURVe` queries.)

NOTE. In order to guarantee that the waveform data returned from `CURVe` queries of multiple waveforms are correlated to the same acquisition, you should use single sequence acquisition mode to acquire the waveform data from a single acquisition. Single sequence acquisition mode is enabled using `ACQuire:STOPAfter SEQuence`.

NOTE. The `WFMOupre:BYT_Nr` and `WFMOupre:BIT_Nr` settings are directly related; setting one causes the other to be set accordingly. For example, `WFMOupre:BYT_Nr 2` causes `WFMOupre:BIT_Nr` to be set to 16 (2 * 8 bits/byte). Similarly, setting `WFMOupre:BIT_Nr` to 16 causes `WFMOupre:BYT_Nr` to be set to 2.
Following is an example command sequence that illustrates how to transfer waveform data from the oscilloscope to the computer.

In this case, let’s say you’d like to transfer 10,000 points from channel 1, in ASCII format with 1 byte per point, to your computer program.

<table>
<thead>
<tr>
<th>Item</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>:DATA:SOURce CH1</td>
<td>Sets the source waveform to be transferred to Channel 1.</td>
</tr>
<tr>
<td>:DATA:START 1</td>
<td>This, along with :DATA:STOP, specifies the portion of the waveform record that will be transferred.</td>
</tr>
<tr>
<td>:DATA:STOP 10000</td>
<td></td>
</tr>
<tr>
<td>:DATA:ENCdg ASCII</td>
<td>Sets the data format to ASCII. (This command replaces WFMOutpre:ENCdg, WFMOutpre:BN_Fmt and WFMOutpre:BYT_Or with a single command.)</td>
</tr>
<tr>
<td>:DATA:WIDTH 1</td>
<td>Sets 1 byte per point (same as WFMOutpre:BYT_Nr).</td>
</tr>
<tr>
<td>:HEADER 1</td>
<td>Turning on HEADER and VERBose will allow you to view the WFMOutpre? parameters in context.</td>
</tr>
<tr>
<td>:VERBose 1</td>
<td>1</td>
</tr>
<tr>
<td>:WFMOutpre?</td>
<td>The WFMOutpre? query provides the information needed to interpret the waveform data point information that will be returned from the CURve query.</td>
</tr>
<tr>
<td>:HEADER 0</td>
<td>You may want to turn the header off before doing the CURve query, because with the header on, a CURve query will return the CURve command header followed by a space and the ASCII waveform data.</td>
</tr>
<tr>
<td>:CURve?</td>
<td>Transfers the data points.</td>
</tr>
</tbody>
</table>

NOTE. For more command sequence examples as well as several comprehensive examples of what the WFMOutpre? query might return using different data sources, see Appendix D. (See page D-1, Waveform Transfer (WFMOutpre and CURve Query) Examples.)

Example 1: Analog Waveform (channel 1 - 4)

Example 2: Digital Waveform (channel DO-D15)

Example 3: The Digital Collection with 4 Bytes Per Point with MagniVu Off

Example 4: The Digital Collection with 8 Bytes Per Point with MagniVu Off

Example 5: The Digital Collection with 4 Bytes Per Point with MagniVu On

Example 6: The Digital Collection with 8 Bytes Per Point with MagniVu On

NOTE. When you do a WFMOutpre? query in an interactive session during program development, it’s a good idea to first turn on the header and verbose features (using the HEADER and VERBose commands) in order to see the returned values in context.
Waveform Sources. Valid waveform sources that can be transferred from the oscilloscope (using the `DATA:SOURce` command) include:

CH1 – CH4 – Analog channels. When `DATA:SOURce` is set to one of these sources, the data points represent digitizing levels. There are 25 digitizing levels per vertical division for 1-byte data, and 6400 digitizing levels per vertical division for 2-byte data. These data points can be transferred in signed or unsigned integer formats.

D0 – D15 — The digital input channels (MSO models only). When `DATA:SOURce` is set to one of these, the data points are binary states (0 or 1). These data points can be transferred in widths of 1 or 2 bytes, as signed or unsigned integers.

DIGital — The Digital Collection. These data points are binary states (0 or 1) that can be transferred in widths of 4 or 8 bytes, as signed or unsigned integers. For ASCII encoding, the data is transferred as hexadecimal values with leading zeroes suppressed. When `DATA:SOURce` is set to DIGital, this represents a collection of information that differs depending on the data width (set using either the `DATA:WIDth` or `WFMOutpre:BYT_Nr` command.)

- When the data width is set to 4 bytes, the Digital Collection is the states of digital channels D0 – D15, plus the digital representations of analog channels 1 – 4, plus the trigger state.
- When the data width is set to 8 bytes, the Digital Collection is the transition state information for digital channels D0 – D15, plus the digital representations of analog channels 1 – 4. For more information, see the section below “Further Explanation of Digital Collection Data”. (MSO models only.)

MATH — The format of MATH data is dependent upon the sources for the math waveform. For analog channel sources, the format is that for the analog channels described above.

REF1-REF4 — The format of REF data is dependent upon the sources from which the reference waveform was created. For analog channel sources, the format is that for the analog channels described above.

NOTE. When you change the `DATA:SOURce` setting, all of the associated settings for the waveform preamble (`WFMOutpre` commands) are automatically adjusted for the specified source waveform. The specified source waveform must be turned on.

Data Encoding and Widths. Data transferred from the oscilloscope using the `CURVe` query can be sent in either ASCII or binary formats. ASCII data is sent as a comma-separated list of decimal values. Binary data is sent with the IEEE488.2 binary block header, immediately followed by the binary data.

You can specify the format for waveform transfers from the oscilloscope using the combination of `WFMOutpre:ENCdg`, `WFMOutpre:BN_Fmt` and
Command Groups

WFMOutpre:BYT_Or commands. Or else you can simply use the DATa:ENCdg command, which combines all three.

ASCII data is represented by signed integer values for analog and digital channels. The range of the values depends on the data width (specified using the WFMOutpre:BYT-Nr or DATa:WIDth command). One byte wide data ranges from -128 to 127. Two byte wide data ranges from -32768 to 32767. For digital channels D0 through D15, the values returned are 0 or 1. For the Digital Collection, ASCII data is returned in hexadecimal format with any leading zeroes omitted.

Transferring a Waveform From a Computer to an Oscilloscope’s Internal Reference Memory

Waveforms sent from a computer program to the oscilloscope are always stored in one of the internal reference memory locations (REF1-4). Use DATa:DESTination to specify the reference memory location, as well other DATa commands to specify record start and stop points. Next, use the WFMInpre commands to specify the waveform’s data format, scale, domain and other attributes that will be used to convert raw data points into the scope’s internal waveform points. Then, use WFMInpre? to verify your settings. Finally, use the CURve command to transfer the raw data points.

Following is an example command sequence that illustrates how to transfer waveform data to the oscilloscope’s internal reference memory.

In this case, let’s say you have created a waveform on your computer and would like to transfer 10,000 data points of it, in ASCII format with 1 byte per point, to your oscilloscope’s internal reference memory location REF2.

NOTE. The WFMInpre:BYT_Nr and WFMInpre:BIT_Nr settings are directly related; setting one causes the other to be set accordingly. For example, WFMInpre:BYT_Nr 2 causes WFMInpre:BIT_Nr to be set to 16 (2 * 8 bits/byte). Similarly, setting WFMInpre:BIT_Nr to 16 causes WFMInpre:BYT_Nr to be set to 2.

<table>
<thead>
<tr>
<th>Item</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>:DATa:DESTination REF2</td>
<td>Selects REF 2 as the internal reference memory location that the incoming waveform will be transferred to.</td>
</tr>
<tr>
<td>:DATa:STARt 1</td>
<td>This, along with DATa:STOP, specifies the starting and ending points of the waveform record that will be transferred to REF2.</td>
</tr>
<tr>
<td>:DATa:STOP</td>
<td>10000</td>
</tr>
<tr>
<td>WFMInpre:BYT_Nr 1</td>
<td>Sets the number of bytes per data point in the waveform data to be sent to REF2 to 1.</td>
</tr>
<tr>
<td>:WFMInpre:BIT_Nr 8</td>
<td>Sets the number of bits per binary data point to 8.</td>
</tr>
<tr>
<td>:WFMInpre:ENCdg ASCII</td>
<td>Specifies that the incoming waveform uses the ASCII format.</td>
</tr>
<tr>
<td>:WFMInpre:NR_Pt 10000</td>
<td>Sets the number of data points that are being sent to REF2 to 10000.</td>
</tr>
</tbody>
</table>
Table 2-35: Example Command Sequence for Transferring Waveform Data From Computer to Oscilloscope (cont.)

<table>
<thead>
<tr>
<th>Item</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>:WFMInpre:PT_Fmt Y</td>
<td>Specifies that the incoming waveform is a normal one, where one ASCII or binary data point is transmitted for each point in the waveform record (as opposed to envelope).</td>
</tr>
<tr>
<td>:WFMInpre:XUNit "S"</td>
<td>Sets the horizontal units of the x-axis of the data points to seconds.</td>
</tr>
<tr>
<td>:WFMInpre:XINcr 4.0000E-9</td>
<td>Sets the horizontal interval between the incoming waveform points, using the units specified above.</td>
</tr>
<tr>
<td>:WFMInpre:XZERo -20.0000E-6</td>
<td>Sets the position value of the first data point in the incoming waveform record.</td>
</tr>
<tr>
<td>:WFMInpre:YUNit "V"</td>
<td>Specifies that Volts are the vertical units of the data points being sent.</td>
</tr>
<tr>
<td>:WFMInpre:YMUlt 4.0000E-3</td>
<td>Specifies the vertical scale multiplying factor used to convert the incoming data points from digitizing levels into the units specified above.</td>
</tr>
<tr>
<td>:WFMInpre:YOFF 0.0E+0</td>
<td>Specifies that the vertical position in digitizing levels of the incoming reference waveform is 0.</td>
</tr>
<tr>
<td>:WFMInpre:YZEro 0.0E+0</td>
<td>Specifies that the vertical offset of the incoming waveform is 0.</td>
</tr>
<tr>
<td>:HEADer 1</td>
<td>Turning on HEADer and VERBose will allow the WFMInpre? parameters to be viewed in context.</td>
</tr>
<tr>
<td>:VERBose 1</td>
<td>Do this query to verify your settings.</td>
</tr>
<tr>
<td>:WFMInpre?</td>
<td>Sends the data points to REF2.</td>
</tr>
</tbody>
</table>

Scaling Waveform Data

Once you transfer waveform data from an oscilloscope to a computer, you can convert the data points (which are digitizing levels) into engineering units such as Volts or Amps for analysis using information from the waveform preamble.

The following is an example for converting transferred data into the appropriate engineering units. The transfer data is from an analog waveform in YT (single point) format. (See WFMInpre:PT_FMT for the definition of the point formats.) The data points returned from the CURVE? query for analog channel data are in digitizing levels. The YMULT value is in vertical units (e.g. volts) per digitizing level.

Formula for computing horizontal (time) point value:

\[X_i = XZERo + XINcr \times (i - 1) \]

Formula for computing vertical (amplitude) point value:

\[Y_i = YZERo + (YMUlt \times DataPoint_i) \]

where:

- \(i \) is the index of a curve data point (1–based: first data point is point number 1)
- \(X_i \) is the \(i \)th horizontal value in XUNits
- \(Y_i \) is the \(i \)th vertical value in YUNits
DataPoint is the waveform data point value, in digitizing levels.

Commands used:

```
:DATa:SOURce CH1
:DATa:START 1
:DATa:STOP 1000
:WFMOutpre:NR_pt? 1000
:WFMOutpre:XUNit? "s"
:WFMOutpre:XZEro? -500.000E-3
:WFMOutpre:XINcr? 1.0000E-3
:WFMOutpre:YUNit? "V"
:WFMOutpre:YZEro? 0.0E+0
:WFMOutpre:YMUlt? 4.0000E-3
:WFMOutpre:BYT_nr? 1
```

Horizontal (time) values:

\[X_i = XZEro + XINcr \times (i - 1) \]

\[X_1 = -500ms + 1ms \times (1 - 1) = -500ms \]

\[X_2 = -500ms + 1ms \times (2 - 1) = -499ms \]

\[\ldots \]

\[X_{1000} = -500ms + 1ms \times (1000 - 1) = 499ms \]

Vertical (amplitude) values:

\[Y_i = YZEro + (YMUlt \times DataPoint_i) \]

\[Y_1 = 0.0V + (0.004 \times DataPoint_i) \]

YZERO is in vertical units; in this example, 0.0 Volts.

YMULT is in vertical units per digitizing level (DL), in this example, 0.004 Volts per digitizing level.

From **CURVe** query:

```
DataPoint_1 = -10
DataPoint_2 = -11
```
DataPoint_{1000} = 23
Y_1 = 0.0V + (0.004V/DL * -10DL) = -0.040V
Y_2 = 0.0V + (0.004V/DL * -11DL) = -0.044V
Y_{1000} = 0.0V + (0.004V/DL * 23DL) = 0.092V

When the waveform source is set to DIGital using the DATa:SOURce command, a WFMOutpre? and CURve? query (or a WAVFRM? query) will return the Digital Collection data. The format and content of this data will depend upon the width that has been specified using the DATa:WIDth command, which can be either 4 or 8 bytes per point.

4 Byte Data. When the data width is set to 4 bytes (using either DATa:WIDth or WFMOutpre:BYT_Nr, the Digital Collection represents

- the states of digital channels D0 – D15,
- the digital representations of analog Channels 1 – 4, and
- the trigger state.

In this case, the Digital Collection data returned will be 32-bit packed integers, where each point is represented as follows. Note that the trigger state bit described below is only available when ACQuire:MAgnivu is 1 (on).

Table 2-36: Digital Collection: 4 Byte Data

<table>
<thead>
<tr>
<th>Bit number</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>31–22</td>
<td>not used</td>
</tr>
<tr>
<td>21</td>
<td>trigger state</td>
</tr>
<tr>
<td>20</td>
<td>not used (always 1)</td>
</tr>
<tr>
<td>19</td>
<td>CH4 digital state</td>
</tr>
<tr>
<td>18</td>
<td>CH3 digital state</td>
</tr>
<tr>
<td>17</td>
<td>CH2 digital state</td>
</tr>
<tr>
<td>16</td>
<td>CH1 digital state</td>
</tr>
<tr>
<td>15</td>
<td>D15 state</td>
</tr>
<tr>
<td>...</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>D1 state</td>
</tr>
<tr>
<td>0</td>
<td>D0 state</td>
</tr>
</tbody>
</table>

8 Byte Data. When the data width is set to 8 bytes, the Digital Collection represents

- the transition state information for digital channels D0 – D15 and
- the digital representations of analog Channels 1 – 4.
The "transition state" refers to MSB and LSB bits which together represent the state of the digital channel during the sampling period, as follows:

<table>
<thead>
<tr>
<th>MSB</th>
<th>LSB</th>
<th>Transition/State</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>Low</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>High</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>Single transition</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>Multiple transitions</td>
</tr>
</tbody>
</table>

If the width specified using the **DAIa:WIDth** command is 8 bytes, the Digital Collection data returned will be 64-bit packed integers, where each point is represented as follows:

Table 2-37: Digital Collection: 8 Byte Data

<table>
<thead>
<tr>
<th>Bit Number</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>63 — 52</td>
<td>not used</td>
</tr>
<tr>
<td>51</td>
<td>CH4 transition state MSB</td>
</tr>
<tr>
<td>50</td>
<td>CH3 transition state MSB</td>
</tr>
<tr>
<td>49</td>
<td>CH2 transition state MSB</td>
</tr>
<tr>
<td>48</td>
<td>CH1 transition state MSB</td>
</tr>
<tr>
<td>47</td>
<td>D15 transition state MSB</td>
</tr>
<tr>
<td>...</td>
<td></td>
</tr>
<tr>
<td>33</td>
<td>D1 transition state MSB</td>
</tr>
<tr>
<td>32</td>
<td>D0 transition state MSB</td>
</tr>
<tr>
<td>31 — 20</td>
<td>not used</td>
</tr>
<tr>
<td>19</td>
<td>CH4 transition state LSB</td>
</tr>
<tr>
<td>18</td>
<td>CH3 transition state LSB</td>
</tr>
<tr>
<td>17</td>
<td>CH2 transition state LSB</td>
</tr>
<tr>
<td>16</td>
<td>CH1 transition state LSB</td>
</tr>
<tr>
<td>15</td>
<td>D15 transition state LSB</td>
</tr>
<tr>
<td>...</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>D1 transition state LSB</td>
</tr>
<tr>
<td>0</td>
<td>D0 transition state LSB</td>
</tr>
</tbody>
</table>

For example, to find the transition state of the digital channel D0, set **DAIa:SOUrce** to **DIGITAL** and **DAIa:WIDth** to 8. Look at bits 0 and 32 in the data returned by the **CURVe?** or **WAVFrm?** queries, where bit 0 is the transition state LSB and bit 32 is the transition state MSB for D0.
Table 2-38: Waveform Transfer Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>CURVe</td>
<td>The CURVe command transfers the waveform data points TO the oscilloscope’s internal reference memory location (REF1–4), which is specified by the DATa:DESTination command. The CURVe? query transfers data FROM the oscilloscope; the source waveform is specified by the DATa:SOURCE command. The first and last data points are specified by the DATa:START and DATa:STOP commands. Associated with each waveform transferred using the CURVe command or query is a waveform preamble that provides the data format, scale and associated information needed to interpret the waveform data points. The preamble information for waveforms sent TO the oscilloscope is specified using the WFMINpre commands. The preamble information for waveforms transferred FROM the oscilloscope is specified or queried using the WFMOutpre commands. If the waveform is not displayed, the query form generates an error. The CURVe command and CURVe? query transfer waveform data in ASCII or binary format. ASCII data is sent as a comma-separated list of decimal values. Binary data is sent with the IEEE488.2 binary block header immediately followed by the binary data.</td>
</tr>
<tr>
<td>DATa</td>
<td>These commands specify the format and location of waveform data that is transferred using the CURVe command, or return the format and location of the waveform data that is transferred with the CURVe? query. You can use the INIT argument to reset all of the DATa parameters to default values. (Note that the *RST and FACTory commands do not reset the DATa parameters.) You can use the SNAP argument to automatically set the DATa:START and DATa:STOP values to the starting and stopping point of the waveform cursors (if on). Note that setting DATa:START and DATa:STOP automatically sets WFMOutpre:NR_Pt.</td>
</tr>
<tr>
<td>DATa:DESTination</td>
<td>This command specifies the reference memory location (REF1–4) for storing waveform data transferred into the oscilloscope using the CURVe command.</td>
</tr>
<tr>
<td>DATa:ENCdg</td>
<td>This command specifies the encoding format for outgoing waveform data. This command is equivalent to setting WFMOutpre:ENCdg, WFMOutpre:BN_FMT, and WFMOutpre:BYT_OR. Setting the DATa:ENCdg value causes the corresponding WFMOutpre values to be updated.</td>
</tr>
<tr>
<td>DATa:SOURCE</td>
<td>This command specifies the source waveform to be transferred from the oscilloscope using the CURVe? query. The valid waveform sources are CH1-CH4, MATH, REF1-REF4, D0-D15, and DIGital. Setting DATa:SOURCE automatically constrains the following to valid values for the specified source waveform: WFMOutpre:BYT_NR, WFMOutpre:BIT_NR and WFMOutpre:BN_FMT.</td>
</tr>
<tr>
<td>DATa:START</td>
<td>This command specifies the starting data point for incoming or outgoing waveform transfer using the CURVe command or query. (Use DATa:STOP to specify the ending data point.) You can set the DATa:START and DATa:STOP values automatically to the starting and stopping points of the waveform cursors, if on, using DATa SNAP. Note that setting DATa:START and DATa:STOP automatically sets WFMOutpre:NR_Pt.</td>
</tr>
<tr>
<td>DATa:STOP</td>
<td>This command specifies the final data point that will be transferred when using the CURVe command or query for incoming or outgoing waveform transfer. (Use DATa:START to specify the starting data point.)</td>
</tr>
<tr>
<td>DATa:WIDth</td>
<td>This command specifies the width, in bytes per point, for waveform data transferred from the scope via the CURVe? query. (This command is synonymous with WFMOutpre:BYT_NR.) When the source is CH1-CH4, REF1-REF4, MATH or D0-D15, the default width is 1 byte.</td>
</tr>
</tbody>
</table>
Table 2-38: Waveform Transfer Commands (cont.)

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>WAVFrm?</td>
<td>This query returns the waveform preamble and the waveform data for the source waveform specified by the DATA:SOURce command. This command is equivalent to sending both WFMOutpre? and CURve?, with the additional provision that the response to WAVFrm? is guaranteed to provide a synchronized preamble and curve.</td>
</tr>
<tr>
<td>WFMImpre?</td>
<td>Returns the waveform formatting and scaling specifications to be applied to the next incoming CURve command data.</td>
</tr>
<tr>
<td>WFMImpre:BIT_Nr</td>
<td>This command specifies the number of bits per data point in the waveform data to be sent to the oscilloscope using the CURve command. Changing this value also changes the value of WFMImpre:BYT_Nr.</td>
</tr>
<tr>
<td>WFMImpre:BN_Fmt</td>
<td>This command specifies the format of the data for outgoing waveforms when WFMImpre:ENCdg is set to BInary. The format can either be RI (signed integer) or RP (positive integer).</td>
</tr>
<tr>
<td>WFMImpre:BYT_Nr</td>
<td>This command specifies which byte of incoming binary waveform data is transmitted first (the byte order). The byte order can either be MSB (most significant byte first) or LSB (least significant byte first, also known as IBM format). This specification only has meaning when WFMImpre:ENCdg is set to BInary and WFMImpre:BYT_Nr is 2.</td>
</tr>
<tr>
<td>WFMImpre:CENTERFREQuency</td>
<td>This command specifies the center frequency of an incoming RF trace. This command is provided for waveform transfer compatibility with mixed domain oscilloscopes only. The command form is ignored, and the query always returns 0.0000.</td>
</tr>
<tr>
<td>WFMImpre:DOMain</td>
<td>This command is provided for waveform transfer compatibility with mixed domain oscilloscopes only. The command form is ignored and the query always returns TIMe.</td>
</tr>
<tr>
<td>WFMImpre:ENCdg</td>
<td>This command specifies the type of encoding of the incoming waveform data to be sent to the oscilloscope using the CURve command. Supported types are BInary and ASCii.</td>
</tr>
<tr>
<td>WFMImpre:NR_Pt</td>
<td>This command specifies the number of data points that are in the incoming waveform record to be sent to the oscilloscope using the CURve command.</td>
</tr>
<tr>
<td>WFMImpre:PT_Fmt</td>
<td>This command specifies the format of the data points to be sent to the oscilloscope using the CURve command. This can be Y for YT format, or ENV for envelope format (min/max pairs). Regardless of the argument used, the scale, offset, and so on are interpreted similarly. When ENV is used, waveform data is interpreted as min-max pairs (the minimum value precedes the maximum for each pair); when Y is used, it is interpreted over a single point.</td>
</tr>
<tr>
<td>WFMImpre:PT_Off</td>
<td>The set form of this command is ignored. The query form always returns a 0.</td>
</tr>
<tr>
<td>WFMImpre:REFLevel</td>
<td>This command specifies the Reference Level of the incoming waveform. This command is provided for waveform transfer compatibility with mixed domain oscilloscopes only. The command form is ignored, and the query always returns 0.0000.</td>
</tr>
<tr>
<td>WFMImpre:SPAN</td>
<td>This command specifies the frequency span of an incoming RF trace. This command is provided for waveform transfer compatibility with mixed domain oscilloscopes only. The command form is ignored, and the query always returns 0.0000.</td>
</tr>
<tr>
<td>WFMImpre:WFM TYPE</td>
<td>This command specifies the type of waveform that is being transferred to the oscilloscope for storage in one of the REF1 — REF4 memory locations. This command is provided for waveform transfer compatibility with mixed domain oscilloscopes only. The command form is ignored and the query always returns ANALOG.</td>
</tr>
<tr>
<td>Command</td>
<td>Description</td>
</tr>
<tr>
<td>------------------</td>
<td>--</td>
</tr>
<tr>
<td>WFMInpre:XINcr</td>
<td>This command specifies the horizontal interval between incoming waveform points sent to the oscilloscope using the CURVE command. The units can be time, in seconds, or frequency, in hertz, and can be specified or queried using the WFMInpre:XUNIT command.</td>
</tr>
<tr>
<td>WFMInpre:XUNIT</td>
<td>This command specifies the horizontal units of the x-axis of the data points being sent to the oscilloscope using the CURVE command. This value can be in “s” or “Hz”.</td>
</tr>
<tr>
<td>WFMInpre:XZERo</td>
<td>This command specifies the position value of the first data point in the incoming waveform record being sent to the oscilloscope using the CURVE command. The units are determined or queried using the WFMInpre:XUNIT command and are typically time, in seconds, or frequency, in hertz. This time or frequency is relative to the time or frequency of the trigger, which is always 0. Thus, the XZERo value can be negative.</td>
</tr>
<tr>
<td>WFMInpre:YMULT</td>
<td>This command specifies the vertical scale multiplying factor to be used to convert the incoming data point values being sent to the oscilloscope, from digitizing levels into the units specified by the WFMInpre:YUNIT command. For one byte waveform data, there are 256 digitizing levels. For two byte waveform data there are 65,536 digitizing levels.</td>
</tr>
<tr>
<td>WFMInpre:YOFF</td>
<td>This command specifies the vertical position of the destination reference waveform in digitizing levels. There are 25 digitizing levels per vertical division for 1-byte data, and 6400 digitizing levels per vertical division for 2-byte data. Variations in this number are analogous to changing the vertical position of the waveform.</td>
</tr>
<tr>
<td>WFMInpre:YUNIT</td>
<td>This command specifies the vertical units of data points in the incoming waveform record sent to the oscilloscope using the CURVE command. This can be any of several string values, depending upon the vertical units of the waveform being sent.</td>
</tr>
<tr>
<td>WFMInpre:YZERO</td>
<td>This command specifies the vertical offset of the destination reference waveform in units specified by the WFMInpre:YUNIT command. Variations in this number are analogous to changing the vertical offset of the waveform. The WFMInpre:YMULT, WFMInpre:YOFF, and WFMInpre:YZERO commands are used to convert waveform record values to units specified using the WFMInpre:YUNIT command (YUNIT units).</td>
</tr>
<tr>
<td>WFMOutpre?</td>
<td>This query returns the information needed to interpret the waveform data points returned by the CURVE? query. It returns the waveform transmission and formatting parameters for the waveform specified by the DATA:SOURce command.</td>
</tr>
<tr>
<td>WFMOutpre:BIT_NR</td>
<td>This command specifies the number of bits per data point in the outgoing waveform being transferred using the CURVE? query. Changing the value of WFMOutpre:BIT_NR also changes the values of WFMOutpre:BYT.OR and DATA:WIDTH.</td>
</tr>
<tr>
<td>WFMOutpre:BN_FMT</td>
<td>This command specifies the format of the binary data for outgoing waveforms when WFMOutpre:ENCdg is set to BINARY. The format can be RI (signed integer) or RP (positive integer) for analog channels. Changing the value of WFMOutpre:BN_FMT also changes the value of DATA:ENCdg. The waveform is specified by the DATA:SOURce command.</td>
</tr>
<tr>
<td>WFMOutpre:BYT_NR</td>
<td>This command specifies the number of bits per data point in the outgoing waveform being transferred using the CURVE? query. Changing the value of WFMOutpre:BIT_NR also changes the values of WFMOutpre:BYT.OR and DATA:WIDTH. Note that changing WFMOutpre:BYT_NR also changes WFMOutpre:BIT_NR and DATA:WIDTH.</td>
</tr>
<tr>
<td>WFMOutpre:BYT_OR</td>
<td>This command specifies which byte of outgoing binary waveform data is transmitted first (the byte order). The byte order can either be MSB (most significant byte first) or LSB (least significant byte first, also known as IBM format). This specification only has meaning when WFMOutpre:ENCdg is set to BINARY and WFMOutpre:BYT_NR is 2.</td>
</tr>
</tbody>
</table>
Table 2-38: Waveform Transfer Commands (cont.)

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>WFMOutpre:CENTERFREQuency?</td>
<td>This query returns the center frequency of an incoming waveform. This command is provided for waveform transfer compatibility with mixed domain oscilloscopes only. The command form is ignored, and the query always returns 0.0000.</td>
</tr>
<tr>
<td>WFMOutpre:DOMain?</td>
<td>This query is provided for waveform transfer compatibility with mixed domain oscilloscopes only and always returns TIME.</td>
</tr>
<tr>
<td>WFMOutpre:ENCdg</td>
<td>This command specifies the type of encoding (BiNary or ASCii) of the outgoing waveform data queried using the CURve? query. (This can also be set using the DATa:ENCdg command, which provides the ability to set WFMOutpre:ENCdg, WFMOutpre:BN_FMT, and WFMOutpre:BYT_OR using a single command.)</td>
</tr>
<tr>
<td>WFMOutpre:NR_Pt?</td>
<td>This query returns the number of data points in the waveform record that will be transmitted in response to a CURve? query. This value is the adjusted range specified by DATA:START and DATA:STOP commands. Note that the oscilloscope automatically adjusts the DATA:START and DATA:STOP values when the DATA:STOP value is less than the DATA:START value, and when the DATA:START and/or DATA:STOP value is greater than the record length of the source waveform. The adjusted DATA:START and DATA:STOP values determine WFMOUTPRE:NR_PT. (You can use DATA:STARt and DATA:STOP to transfer partial waveforms.) If the waveform specified by the DATa:SOUrce command is not turned on, an error will be generated.</td>
</tr>
<tr>
<td>WFMOutpre:PT_Fmt?</td>
<td>This query returns the point format of the data points in the outgoing waveform record transferred using the CURve? query. The returned values can be Y, which indicates normal waveform points for YT format, or ENV, which indicates envelope mode format in which the data is returned as a series of min/max pairs. The minimum value precedes the maximum. The outgoing waveform is specified by the DATa:SOUrce command. The query command will time out and an error will be generated if the waveform specified by DATa:SOUrce is not turned on.</td>
</tr>
<tr>
<td>WFMOutpre:PT_Off?</td>
<td>This query always returns 0 if the outgoing waveform specified by DATA:SOURce is on or displayed.</td>
</tr>
<tr>
<td>WFMOutpre:PT_ORder?</td>
<td>This query returns the point ordering, which is always linear.</td>
</tr>
<tr>
<td>WFMOutpre:REFLEvel?</td>
<td>This query returns the Reference Level of an outgoing waveform. This query is provided for waveform transfer compatibility with mixed domain oscilloscopes only and always returns 0.0000.</td>
</tr>
<tr>
<td>WFMOutpre:SPAN?</td>
<td>This query returns the frequency span of the outgoing waveform. This command is provided for waveform transfer compatibility with mixed domain oscilloscopes only. The command form is ignored, and the query always returns 0.0000.</td>
</tr>
<tr>
<td>WFMOutpre:WFId?</td>
<td>This query returns a string that describes several aspects of the acquisition parameters for the source waveform, including Source, Coupling, Vertical Scale, Horizontal Scale, Record Length and Acquisition Mode. If the waveform specified by DATa:SOUrce command is not turned on, an error will be generated.</td>
</tr>
<tr>
<td>WFMOutpre:WFMTYPe?</td>
<td>This query returns the type of the outgoing waveform. This command is provided for waveform transfer compatibility with mixed domain oscilloscopes only. The command form is ignored, and the query always returns ANALOG.</td>
</tr>
<tr>
<td>WFMOutpre:XINcr?</td>
<td>This query returns the horizontal point spacing in units of time (seconds), or frequency (hertz) between data points in the waveform record transferred using the CURve? query. This value corresponds to the sampling interval.</td>
</tr>
</tbody>
</table>
Table 2-38: Waveform Transfer Commands (cont.)

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>WFMOutpre:XUNit?</td>
<td>This query indicates the horizontal units of the x-axis of the waveform record transferred using the \texttt{CURve?} query. Typically, this value is "s" when the waveform source is displayed in the time domain, and "Hz" when the waveform source is displayed in the frequency domain. When the waveform source is Math or a reference waveform, the value can be "s" or "Hz".</td>
</tr>
<tr>
<td>WFMOutpre:XZEr?</td>
<td>This query returns the time coordinate, in seconds, or frequency, in hertz, of the first data point in the outgoing waveform record transferred using the \texttt{CURve?} query. This time or frequency is relative to the time of the trigger, which is always 0. Thus, the XZEr time or frequency can be negative.</td>
</tr>
<tr>
<td>WFMOutpre:YMUlt?</td>
<td>This query returns the vertical scale multiplying factor used to convert the waveform data point values in the outgoing waveform record from digitizing levels to the YUNit units. You can determine the units by using the \texttt{WFMOutpre:YUNit} query. See the description of the \texttt{WFMInpre:YMUlt} command to see how this scale factor is used to convert waveform sample values to volts.</td>
</tr>
<tr>
<td>WFMOutpre:YOF?</td>
<td>This query returns the vertical position of the source waveform in digitizing levels. There are 25 digitizing levels per vertical division for 1-byte data, and 6400 digitizing levels per vertical division for 2-byte data. See the description of \texttt{WFMInpre:YOF} to see how this position is used to convert waveform sample values to volts.</td>
</tr>
<tr>
<td>WFMOutpre:YUNit?</td>
<td>This query returns the units of data points in the outgoing waveform record transferred using the \texttt{CURve?} query. This can be any of several string values, depending upon the vertical units of the source waveform (specified by the \texttt{DATa:SOUrce} command). Typically, this is "V" for volts.</td>
</tr>
<tr>
<td>WFMOutpre:YZer?</td>
<td>This query returns the vertical offset of the source waveform. You can determine the units using the \texttt{WFMOutpre:YUNit?} query. See the description of \texttt{WFMInpre:YZer} to see how this offset is used to convert waveform sample values to volts.</td>
</tr>
</tbody>
</table>

Zoom Command Group

Use the commands in the Zoom Command Group to expand and position the waveform display horizontally, without changing the time base settings.

Table 2-39: Zoom Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ZOOM?</td>
<td>Returns the current horizontal positioning and scaling of the zoom display</td>
</tr>
<tr>
<td>ZOOM:MODe</td>
<td>Sets or returns the zoom mode</td>
</tr>
<tr>
<td>ZOOM:ZOOM<x>?</td>
<td>Returns the current horizontal positioning and scaling of the display. <x> can only be 1</td>
</tr>
<tr>
<td>ZOOM:ZOOM<x>:FACT or?</td>
<td>Returns the zoom factor of the zoom window. <x> can only be 1</td>
</tr>
<tr>
<td>Command</td>
<td>Description</td>
</tr>
<tr>
<td>---------</td>
<td>-------------</td>
</tr>
<tr>
<td>ZOOM:ZOOM<x>:POSition</td>
<td>Sets or returns the horizontal position of the zoom window, in terms of 0 to 100.0% of the zoom window. <x> can only be 1.</td>
</tr>
<tr>
<td>ZOOM:ZOOM<x>:SCAle</td>
<td>Sets or returns the horizontal scale of the zoom window. <x> can only be 1.</td>
</tr>
<tr>
<td>ZOOM:ZOOM<x>:STATE</td>
<td>Specifies or returns a trace as zoomed, on or off. <x> can only be 1.</td>
</tr>
</tbody>
</table>
 Commands Listed in Alphabetical Order

ACQuire? (Query Only)

Returns the following current acquisition parameters:

- Stop after
- Acquisition state
- Mode
- Number of averages
- Sampling mode

Group Acquisition
Syntax ACQuire?
Related Commands ACQuire:MODe, ACQuire:NUMACq?, ACQuire:NUMAVg, ACQuire:STOPAfter

ACQuire:MA Gnivu

Sets or returns the MagniVu feature, which provides up to 32 times signal detail for fast viewing of short events. This feature is not recommended for slow data formats such as RS-232.

NOTE. MagniVu channel sampling is available on MSO oscilloscopes only.

Group Acquisition
Syntax ACQuire:MA Gnivu {OFF|ON|0|1}
 ACQuire:MA Gnivu?
Arguments OFF, 0 disables the MagniVu feature; any other value turns this feature on.
 ON, 1 enables the MagniVu feature.
ACQuire:MAXSamplerate? (Query Only)

Returns the maximum real-time sample rate, which varies from model to model.

Group Acquisition

Syntax ACQuire:MAXSamplerate?

Examples ACQUIRE:MAXSAMPLERATE? might return 2.5000E+9 in a DPO3034 indicating the maximum real-time sample rate is 2.5GS/s.

ACQuire:MODe

Sets or returns the acquisition mode of the oscilloscope for all live waveforms.

Waveforms are the displayed data point values taken from acquisition intervals. Each acquisition interval represents a time duration set by the horizontal scale (time per division). The oscilloscope sampling system always samples at the maximum rate, so the acquisition interval may include than one sample.

The acquisition mode (which you set using this ACQuire:MODe command) determines how the final value of the acquisition interval is generated from the many data samples.

Group Acquisition

Syntax ACQuire:MODe {SAMPLE|PEAKdetect|HIRes|AVErage|ENVelope}

ACQuire:MODe?

Related Commands ACQuire:NUMAVg, CURVe

Arguments

SAMPLE specifies that the displayed data point value is the first sampled value that is taken during the acquisition interval. In sample mode, all waveform data has 8 bits of precision. You can request 16 bit data with a CURVe query but the lower-order 8 bits of data will be zero. SAMPLE is the default mode.

PEAKdetect specifies the display of high-low range of the samples taken from a single waveform acquisition. The high-low range is displayed as a vertical column that extends from the highest to the lowest value sampled during the acquisition interval. PEAKdetect mode can reveal the presence of aliasing or narrow spikes.

HIRes specifies Hi Res mode where the displayed data point value is the average of all the samples taken during the acquisition interval. This is a form
of averaging, where the average comes from a single waveform acquisition. The number of samples taken during the acquisition interval determines the number of data values that compose the average.

Average specifies averaging mode, in which the resulting waveform shows an average of sample data points from several separate waveform acquisitions. The oscilloscope processes the number of waveforms you specify into the acquired waveform, creating a running exponential average of the input signal. The number of waveform acquisitions that go into making up the average waveform is set or queried using the ACQUIRE:NUMAVG command.

Envelope specifies envelope mode, where the resulting waveform shows the PEAK detect range of data points from every waveform acquisition.

Examples

ACQUIRE:MODE ENVELOPE sets the acquisition mode to display a waveform that is an envelope of many individual waveform acquisitions.

ACQUIRE:MODE? might return:ACQUIRE:MODE AVERAGE indicating that the displayed waveform is the average of the specified number of waveform acquisitions.

ACQUIRE:NUMACQ? (Query Only)

Returns the number of waveform acquisitions that have occurred since starting acquisition with the ACQUIRE:STATE:RUN command. This value is reset to zero when any acquisition, horizontal, or vertical arguments that affect the waveform are changed. The maximum number of acquisitions that can be counted is 2^{32}.

Group

Acquisition

Syntax

ACQUIRE:NUMACQ?

Related Commands

ACQUIRE:STATE

Returns

ACQUIRE:NUMACQ? might return :ACQUIRE:NUMACQ 350 indicating that 350 acquisitions have occurred since executing an ACQUIRE:STATE RUN command.

ACQUIRE:NUMAVG

Sets or returns the number of waveform acquisitions that make up an averaged waveform. Use the ACQUIRE:MODE command to enable the Average mode. Sending this command is equivalent to turning a multipurpose knob to enter the number of waveform acquisitions to average.
Group
Acquisition

Syntax
ACQuire:NUMAVg <NR1>
ACQuire:NUMAVg?

Related Commands
ACQuire:MODe

Arguments
<NR1> is the number of waveform acquisitions to average. The range of values is from 2 to 512 in powers of two.

Examples
ACQUIRE:NUMAVG 16 specifies that 16 waveform averages will be performed before exponential averaging starts.
ACQUIRE:NUMAVG? might return :ACQUIRE:NUMAVG 64 indicating that there are 64 acquisitions specified for averaging.

ACQuire:NUMEnv
This command controls the number of envelopes (when acquisition mode has been set to ENVelope using ACQuire:MODe). The number of envelopes can be set from 1 to 2000 in increments of 1, or to INFINite. Setting the value to a number greater than 2000 sets the number of envelopes to INFINite.

Group
Acquisition

Syntax
ACQuire:NUMEnv {<NR1>|INFINite}
ACQuire:NUMEnv?

Related Commands
ACQuire:MODe, ACQuire:STATE

Arguments
<NR1> is an integer that specifies the number of envelopes to use when the acquisition mode has been set to ENVelope.
INFINite specifies to use an infinite number of envelopes.

Examples
ACquire:NUMEnv 22 sets the number of envelopes to 22.
ACquire:NUMEnv? returns the number of envelopes that has been specified, either an integer or INFINITE.
ACQuire:STATE

Starts or stops acquisitions. When state is set to ON or RUN, a new acquisition will be started. If the last acquisition was a single acquisition sequence, a new single sequence acquisition will be started. If the last acquisition was continuous, a new continuous acquisition will be started.

If RUN is issued in the middle of completing a single sequence acquisition (for example, averaging or enveloping), the acquisition sequence is restarted, and any accumulated data is discarded. Also, the oscilloscope resets the number of acquisitions. If the RUN argument is issued while in continuous mode, acquisition continues.

Group

Acquisition

Syntax

ACQuire:STATE \{OFF|ON|RUN|STOP|<NR1>\}

ACQuire:STATE?

Related Commands

ACQuire:STOPEAfter

Arguments

OFF stops acquisitions.

STOP stops acquisitions.

ON starts acquisitions.

RUN starts acquisitions.

<NR1> = 0 stops acquisitions; any other value starts acquisitions.

Examples

ACQUIRE:STATE RUN starts the acquisition of waveform data and resets the count of the number of acquisitions.

ACQUIRE:STATE? might return:ACQUIRE:STATE 0 indicating that the acquisition is stopped.

ACQuire:STOPEAfter

Sets or returns whether the oscilloscope continually acquires acquisitions or acquires a single sequence.

Group

Acquisition
Commands Listed in Alphabetical Order

ACQuire:STOPAfter

Syntax

```
ACQuire:STOPAfter {RUNSTop|SEQUence}
ACQuire:STOPAfter?
```

Related Commands

ACQuire:STATE

Arguments

RUNSTop specifies that the oscilloscope will continually acquire data, if ACQuire:STATE is turned on.

SEQUence specifies that the next acquisition will be a single-sequence acquisition.

Examples

```
ACQUIRE:STOPAFTER RUNSTOP
```

sets the oscilloscope to continually acquire data.

```
ACQUIRE:STOPAFTER?
```

might return `:ACQUIRE:STOPAFTER SEQUENCE`

indicating that the next acquisition the oscilloscope makes will be of the single-sequence type.

ALIas

Sets or returns the state of alias functionality. Use Alias commands to define new commands as a sequence of standard commands. You may find this useful when repeatedly using the same commands to perform certain tasks like setting up measurements. Aliases are similar to macros but do not include the capability to substitute parameters into alias bodies.

To use Alias commands, first define the alias, then turn on the alias state.

Group

Alias

Syntax

```
ALIas {OFF|ON|<NR1>}
ALIas?
```

Related Commands

ALIas:DEFine

ALIas[:STATE]

Arguments

OFF turns alias expansion off. If a defined alias is sent when ALIas is off, a command error (110) will be generated.

ON turns alias expansion on. When a defined alias is received, the specified command sequence is substituted for the alias and executed.

<NR1> = 0 disables alias mode; any other value enables alias mode.
Examples

ALIAS ON turns the alias feature on. When a defined alias is received, the specified command sequence is substituted for the alias and executed.

ALIAS? might return :ALIAS 1 indicating that the alias feature is on.

ALIAS:CATAlog? (Query Only)

Returns a list of the currently defined alias labels, separated by commas. If no aliases are defined, the query returns the string "".

Group Alias

Syntax ALIAS:CATAlog?

Examples ALIAS:CATAlog? might return the string :ALIAS:CATAlog "SETUP1", "TESTMENU1", "DEFAULT" showing that there are three aliases named SETUP1, TESTMENU1, and DEFAULT.

ALIAS:DEFine

Assigns a sequence of program messages to an alias label. These messages are then substituted for the alias whenever it is received as a command or query, provided that ALIAS:STATE has been turned on. The query form of this command returns the definitions of a selected alias.

NOTE. Attempting to give two aliases the same name causes an error. To give a new alias the name of an existing alias, the existing alias must first be deleted.

Group Alias

Syntax ALIAS:DEFine <QString>,{<QString>|<Block>}

ALIAS:DEFine? <QString>

Related Commands ALIAS[:STATE]

Arguments The first <QString> is the alias label.

This label cannot be a command name. Labels must start with a letter and can contain only letters, numbers, and underscores; other characters are not allowed. The label must be less than or equal to 12 characters.
The second `<QString>` or `<Block>` is a complete sequence of program messages. The messages can contain only valid commands that must be separated by semicolons and must follow all rules for concatenating commands. The sequence must be less than or equal to 256 characters.

Examples

| ALIAS:DEFINE "ST1"," :RECALL:SETUP 5;:AUTOSET EXECUTE;:SELECT:CH1 ON" defines an alias named "ST1" that sets up the oscilloscope.
| ALIAS:DEFINE? "ST1" returns :ALIAS:DEFINE "ST1",#246 :RECALL:SETUP 5;:AUTOSET EXECUTE;:SELECT:CH1 ON

ALIAS:DELETE (No Query Form)

Removes a specified alias and is identical to ALIAS:DELETE:NAME. An error message is generated if the named alias does not exist.

Group

Alias

Syntax

ALIAS:DELETE <QString>

Related Commands

*ESR?, ALIAS:DELETE:ALL

Arguments

<QString> is the name of the alias to be removed. Using ALIAS:DELETE without specifying an alias causes an execution error. <QString> must be a previously defined value.

Examples

ALIAS:DELETE "SETUP1" deletes the alias named SETUP1.

ALIAS:DELETE:ALL (No Query Form)

 Deletes all existing aliases.

Group

Alias

Syntax

ALIAS:DELETE:ALL

Related Commands

ALIAS:DELETE, ALIAS:DELETE[:NAME]
Examples ALIAS:DELETE:ALL deletes all existing aliases.

ALIAS:DELETE[:NAME] (No Query Form)

Removes a specified alias. This command is identical to ALIAS:DELETE

Group Alias

Syntax ALIAS:DELETE[:NAME] <QString>

Arguments <QString> is the name of the alias to remove. Using ALIAS:DELETE[:NAME] without specifying an alias causes an execution error. <QString> must be an existing alias.

Examples ALIAS:DELETE[:NAME] “STARTUP” deletes the alias named STARTUP.

ALIAS[:STATE]

Turns aliases on or off. This command is identical to the ALIAS command.

Group Alias

Syntax ALIAS[:STATE] {<NR1>|OFF|ON}
ALIAS[:STATE]?

Arguments OFF or <NR1> = 0 turns alias expansion off. If a defined alias is sent when ALIAS:STATE is OFF, a command error (102) is generated.

ON or <NR1>0 turns alias expansion on. When a defined alias is received, the specified command sequence is substituted for the alias and executed.

Examples ALIAS[:STATE] OFF turns the command alias feature off.
ALIAS[:STATE]? returns 0 when the alias feature is off.

ALLEv? (Query Only)

Prompts the oscilloscope to return all events and their messages (delimited by commas), and removes the returned events from the Event Queue. Use the *ESR?
query to enable the events to be returned. This command is similar to repeatedly sending *EVMsg? queries to the oscilloscope.

Group Status and Error

Syntax ALLEV?

Related Commands *ESR?, EVMsg?

Examples ALLEV? might return :ALLEV 2225, “Measurement error, No waveform to measure; “420, “Query UNTERMINATED;”

APPLication:LICENSE:SLOT<x>:LOCation? (Query Only)

This query returns the application license location. <x> can be slot number 1–4.

NOTE. In order to use many of the advanced oscilloscope features, you must purchase an application module license. The module can be inserted into any of the four application module slots in the oscilloscope. However, more than four concurrent applications can be supported at the same time even though there are only four slots. The license can be transferred from the physical application module to an internal location in the oscilloscope, enabling the simultaneous use of more than four.

Group Miscellaneous

Syntax APPLication:LICENSE:SLOT<x>:LOCation?

Related Commands APPLication:LICENSE:SLOT<x>:TRANSFER,
APPLication:LICENSE:SLOT<x>:TYPE?

Returns SCOPE - The application license has been transferred to the oscilloscope and is active internally within the scope.

MODULE - The application license is in the module and has not been transferred to the scope.

BOTH - The application license is in the module and the license from another application module of the same type has already been transferred to the scope.
NEITHER - The application license is neither in the module nor in the scope's internal memory. (In this situation, the license must have been transferred to a different oscilloscope.)

NONE - There is no application module in the slot.

Examples

APPLICATION:LICENSE:SLOT1:LOCATION? might return SCOPE, indicating that the license is active internally within the scope.

APPLICATION:LICENSE:SLOT<x>:TRANSFER (No Query Form)

You can use this command to transfer an application license from the module to internal memory in the oscilloscope, and transfer it back. When a license has been transferred to the oscilloscope, the module can be removed from the slot, thereby freeing up the slot for another application module to be inserted.

Once the license has been transferred from the module to internal memory, the license is no longer present in the module and the module cannot be used to enable the application. The license can be transferred back to the module from the oscilloscope's internal memory. <x> can be slot number 1–4.

NOTE. In order to use many of the advanced oscilloscope features, you must purchase an application module license. The module can be inserted into any of the four application module slots in the oscilloscope. However, more than four concurrent applications can be supported at the same time even though there are only four slots.

Conditions

If the application license currently resides in the module and the license does not also reside in the scope, it is transferred to the scope and the license is no longer in the module.

If the application license currently resides in the scope and the license does not also reside in the module, the license is transferred from the scope to the module.

If the application module slot is empty, an error event is posted to the event queue so indicating and no operation is performed.

If the application license resides in both the scope and the module, an error event is posted to the event queue so indicating and no operation is performed.

If the application license resides in neither the scope nor the module, an error event is posted to the event queue so indicating and no operation is performed.

Group

Miscellaneous
Commands Listed in Alphabetical Order

Syntax
APPLication:LICENSE:SLOT<x>:TRANSFER EXECute

Related Commands
APPLication:LICENSE:SLOT<x>:LOCation?,
APPLication:LICENSE:SLOT<x>:TYPe?

APPLication:LICENSE:SLOT<x>:TYPe? (Query Only)

This query returns the application license type of the module that is currently inserted in the specified application module slot. If there is no application module in the slot, NONE is returned. < x> can be slot number 1–4.

NOTE. In order to use many of the advanced oscilloscope features, you must purchase an application module license. The module can be inserted into any of the four application module slots in the oscilloscope. However, more than four concurrent applications can be supported at the same time even though there are only four slots.

Group
Miscellaneous

Syntax
APPLication:LICENSE:SLOT<x>:TYPe?

Related Commands
APPLication:LICENSE:SLOT<x>:TRANSFER,
APPLication:LICENSE:SLOT<x>:LOCation?

Examples
APPLication:MODULE:SLOT1:TYPe? might return DPO3FLEX, indicating that the DPO3FLEX license is installed in slot 1.

AUTOSet (No Query Form)

Sets the vertical, horizontal, and trigger controls of the oscilloscope to automatically acquire and display the selected waveform.

Group
Miscellaneous

Syntax
AUTOSet {EXECute|UNDo}
Arguments

- EXECute autosets the displayed waveform.
- UNDo restores the oscilloscope settings to those present prior to the autoset execution.

Examples

AUTOSET EXECUTE vertical, horizontal, and trigger controls of the oscilloscope to automatically acquire and display the selected waveform.

AUTOSet:ENAble

Enables or disables the autoset feature. This is useful for classroom purposes where the instructor wants the students to achieve the desired instrument settings without the benefit of the autoset feature. This setting is not saved in setup files or SET? or *LRN? queries. The default state is 1 (autoset enabled).

Group

- Miscellaneous

Syntax

```
AUTOSet:ENAble {OFF|ON|0|1}
AUTOSet:ENAble?
```

Arguments

- OFF or 0 disables autoset.
- ON or 1 enables autoset.

Examples

```
AUTOSET:ENABLE 1 enables the front-panel Autoset button.
AUTOSET:ENABLE? might return AUTOSET:ENABLE 0 indicating that the autoset feature is disabled.
```

AUXin? (Query Only)

Returns all auxiliary input parameters.

Group

- Vertical

Syntax

```
AUXin?
```

AUXin:PRObe

Returns all information concerning the probe attached to auxiliary input.
Command Listed in Alphabetical Order

Group Vertical

Syntax AUXin:PRObe
AUXin:PRObe?

Examples AUXIN:PROBE? might return AUXIN:PROBE:ID:TYPE "No Probe
Detected"; SERNUMBER ""; AUXIN:PROBE:UNITS ""; RESISTANCE
1.0000E+6 giving information about the probe attached to the AUX In input.

AUXin:PRObe:AUTOZero (No Query Form)

Sets the TekVPI probe attached to the Aux In input to autozero. The oscilloscope
will ignore this command if the Auxiliary input does not have a TekVPI probe
connected to it.

Group Vertical

Syntax AUXin:PRObe:AUTOZero {EXECute}

Arguments EXECute sets the probe to autozero.

Examples AUXin:PROBE:AUTOZERO EXECUTE

AUXin:PRObe:COMMAND (No Query Form)

Sets the state of the probe control specified with the first argument to the state
specified with the second argument. The commands and states are unique to the
attached probe type. Only certain VPI probes support this command. See the
probe documentation for how to set these string arguments.

Group Vertical

Syntax AUXin:PRObe:COMMAND <QString>, <QString>

Arguments <QString> are quoted strings specifying the probe command and value to set in
the probe attached to the auxiliary input.
Examples AUXIN:PROBE:COMMAND “OUTPUT”, “ON” turns the output of a Tektronix VPI-DPG probe on.

AUXIN:PROBE:COMMAND “MODE”, “4–4V1MHz” sets a Tektronix VPI-DPG probe to the 4-4V1MHz mode.

AUXIN:PROBE:COMMAND? “MODE” might return AUXIN:PROBE:COMMAND “MODE”, “4-4V1MHZ”.

AUXin:PRObe:DEGAUss (No Query Form)

Starts a degauss/autozero cycle on a TekVPI current probe attached to the Aux In input. If you send this command to a probe that does not support this function, it is ignored.

Group Vertical

Syntax AUXin:PRObe:DEGAUss {EXECute}

Arguments EXECute starts a probe degauss cycle.

Examples AUXin:PROBE:DEGAUSS EXECUTE degausses the probe attached to the Aux In input.

AUXin:PRObe:DEGAUss:STATE? (Query Only)

Returns the state of the probe degauss (NEEDED, RECOMMENDED, PASSED, FAILED, RUNNING). The command will return PASSED for probes that do not support degauss operations.

Group Vertical

Syntax AUXin:PRObe:DEGAUss:STATE?

Examples AUXin:PROBE:DEGAUSS:STATE? might return: AUXin:PROBE:DEGAUSS:STATE PASSED indicating that the probe has been degaussed.
AUXin:PRObe:FORCEDRange

Changes or returns the range on a TekVPI probe attached to the Aux In input.

Group
Vertical

Syntax
AUXin:PRObe:FORCEDRange <NR3>
AUXin:PRObe:FORCEDRange?

Arguments
<NR3> is the probe range, which is probe dependent.

AUXin:PRObe:GAIN

Sets or returns the gain factor of a probe that is attached to the Aux In input.

Group
Vertical

Syntax
AUXin:PRObe:GAIN <NR3>
AUXin:PRObe:GAIN?

Arguments
<NR3> is the probe gain, which is probe dependent.

Examples
AUXin:PROBE:GAIN? might return :AUXin:PROBE:GAIN 100.0000E-3 indicating that the attached 10x probe delivers 0.1 V to the Aux In BNC for every 1.0 V applied to the probe input.

AUXin:PRObe:ID:SERnumber? (Query Only)

Returns the serial number of the probe that is attached to the auxiliary input.

Group
Vertical

Syntax
AUXin:PRObe:ID:SERnumber?

AUXin:PRObe:ID:TYPE? (Query Only)

Returns the type of probe that is attached to the auxiliary input.
AUXin:PRObe:RESistance? (Query Only)

Returns the resistance of the probe attached to the front panel Aux In connector.

Examples

AUXin:PRObe:RESistance? might return :AUXin:PROBE:RESISTANCE 1.0000E+6 indicating that the input resistance of the probe attached to the front panel Aux In connector is 1 MΩ.

NOTE. This query will return 0.0 if no probe is attached or the attached probe does not report the input resistance.

AUXin:PRObe:SIGnal

This command changes the input bypass setting on VPI probes that support input bypass, for example the TCP0001. If sent to a probe that does not support input bypass, it is ignored.

Arguments

ByPass sets the probe to Bypass mode.
PASS sets the probe to Pass mode.
Commands Listed in Alphabetical Order

AUXin:PRObE:UNIts?

- **Group**: Vertical
- **Syntax**: `AUXin:PRObe:UNIts?`
- **Examples**: `AUXin:PROBE:UNITS?` might return `AUXin:PROBE:UNITS “V”` indicating that the units of measure for the attached probe are volts.

BUS?

- **Description**: Returns the parameters for each bus. These parameters affect either the Serial Trigger Setup or the Bus Display.
- **Conditions**: This command requires a DPO3AUTO, DPO3EMBD, or DPO3COMP application module.

BUS:B<x>:AUDio:BITDelay

- **Group**: Bus
- **Syntax**: `BUS` followed by applicable command
- **Description**: Sets or returns the number of delay bits for the AUDIO bus.
- **Conditions**: This command requires a DPO3AUDIO application module.

Syntax

- `BUS:B<x>:AUDio:BITDelay <NR1>`
- `BUS:B<x>:AUDio:BITDelay?`

Arguments

- `<NR1>` specifies the number of delay bits.
Examples

BUS:B1:AUDIO:BITDELAY 2 sets the bit delay to 2.

BUS:B<x>:AUDio:BITOrder

Sets or returns the bit order for the AUDIO bus.

Conditions
This command requires a DPO3AUDIO application module.

Group
Bus

Syntax
BUS:B<x>:AUDio:BITOrder {MSB|LSB}
BUS:B<x>:AUDio:BITOrder?

Arguments
- MSB specifies that the most significant bit will be expected first in the order.
- LSB specifies that the least significant bit will be expected first in the order.

Examples

BUS:B1:AUDIO:BITORDER LSB sets the bit order to LSB.

BUS:B<x>:AUDio:CHANnel:SIZe

Sets or returns the number of bits per channel for the AUDIO bus.

NOTE. This command is applicable only for TDM audio bus type (BUS:B<x>AUDio:TYPE TDM)

Conditions
This command requires a DPO3AUDIO application module.

Group
Bus

Syntax
BUS:B<x>:AUDio:CHANnel:SIZe <NR1>
BUS:B<x>:AUDio:CHANnel:SIZe?
Arguments <NR1> specifies the number of bits per channel.

Examples BUS:B1:AUDIO:CHANNEL:SIZE 8 sets the number of bits per channel to 8.
 :BUS:B1:AUDIO:CHANNEL:SIZE 24 indicating that the number of bits per
 channel is 24.

BUS:B<x>:AUDio:CLOCk:POLarity

Sets or returns the clock polarity for the AUDIO bus.

Conditions This command requires a DPO3AUDIO application module.

Group Bus

Syntax BUS:B<x>:AUDio:CLOCk:POLarity {FALL|RISe}
 BUS:B<x>:AUDio:CLOCk:POLarity?

Arguments FALL sets falling edge as the clock polarity.
 RISe sets rising edge as the clock polarity.

Examples BUS:B1:AUDIO:CLOCK:POLARITY Fall sets the clock polarity to Fall.
 :BUS:B1:AUDIO:CLOCK:POLARITY RISe indicating that the clock polarity
 is set to Rise.

BUS:B<x>:AUDio:CLOCk:SOUrce

Sets or returns the clock source waveform for the AUDIO bus.

Conditions This command requires a DPO3AUDIO application module.

Group Bus

Syntax BUS:B<x>:AUDio:CLOCk:SOUrce {CH1|CH2|CH3|CH4|
 D0|D1|D2|D3|D4|D5|D6|D7|D8|D9|D10|D11|D12|D13|D14|D15}
 BUS:B<x>:AUDio:CLOCk:SOUrce?
Arguments CH1–Ch4 or D0–D15 specifies the clock source for the audio bus.

Examples BUS:B1:_AUDIO:CLOCK:SOURCE D1 sets D1 as the clock source for the audio bus.

BUS:B<x>:AUDio:DATa:POLarity

Sets or returns the data polarity for the AUDIO bus.

Conditions This command requires a DPO3AUDIO application module.

Group Bus

Syntax BUS:B<x>:AUDio:DATa:POLarity {NORMal|INVERTed}
 BUS:B<x>:AUDio:DATa:POLarity?

Arguments NORMal specifies positive data polarity for the audio bus.
INVERTed specifies negative data polarity for the audio bus.

Examples BUS:B1:AUDio:DATa:POLarity INVERTed sets the data polarity to Inverted.

BUS:B<x>:AUDio:DATa:SIZe

Sets or returns the number of bits per word for the AUDIO bus.

NOTE. The number of bits specified for this command must be always less than or equal to the number of bits per channel (BUS:B<x>:AUDio:CHANnel:SIZe)

Conditions This command requires a DPO3AUDIO application module.

Group Bus
Syntax

BUS:B<x>:AUDio:DATa:SIZE <NR1>
BUS:B<x>:AUDio:DATa:SIZE?

Arguments

NR1 specifies the number of bits per word.

Examples

BUS:B1:AUDIO:DATA:SIZE 8 sets the number of bits per word to 8.

BUS:B<x>:AUDio:DATa:SOUrce

Sets or returns the data source waveform for the AUDIO bus.

Conditions

This command requires a DPO3AUDIO application module.

Group

Bus

Syntax

BUS:B<x>:AUDio:DATa:SOUrce {CH1|CH2|CH3|CH4|D0|D1|D2|D3|D4|D5|D6|D7|D8|D9|D10|D11|D12|D13|D14|D15}
BUS:B<x>:AUDio:DATa:SOUrce?

Arguments

CH1–Ch4 or D0–D15 specifies the channel to use for data source for the audio bus.

Examples

BUS:B1:AUDIO:DATA:SOURCE D1 sets the data source to D1.

BUS:B<x>:AUDio:DISplay:FORMat

Sets or returns the display format for the AUDIO bus.

Conditions

This command requires a DPO3AUDIO application module.

Group

Bus
Syntax
BUS:B<x>:AUDio:DISplay:FORMAT
{BINary|HEXadecimal|SIGNEDDEcima|l}
BUS:B<x>:AUDio:DISplay:FORMAT?

Arguments
BINary specifies a binary data display.
HEXadecimal specifies a hexadecimal data display.
SIGNEDDEcima|l specifies a signed decimal data display.

Examples
BUS:B1:AUDIO:DISPLAY:FORMAT BINARY sets the display format to Binary.
display format is set to signed decimal.

BUS:B<x>:AUDio:FRAME:SIZe
Sets or returns the number of channels in each frame for the AUDIO bus.

NOTE. This command is applicable only for TDM audio bus type
(BUS:B<x>AUDio:TYPE TDM)

Conditions
This command requires a DPO3AUDIO application module.

Group
Bus

Syntax
BUS:B<x>:AUDio:FRAME:SIZe <NR1>
BUS:B<x>:AUDio:FRAME:SIZe?

Arguments
<NR1> specifies the number of channels in each frame.

Examples
BUS:B1:AUDIO:FRAME:SIZe 2 sets the frame size to 2.

BUS:B<x>:AUDio:FRAMESync:POLarity
Sets or returns the frame sync polarity for the AUDIO bus.
Conditions This command requires a DPO3AUDIO application module.

Group Bus

Syntax

\[
\text{BUS:B<x>:AUDio:FRAMESync:POLarity \{FALL|RISe\}} \\
\text{BUS:B<x>:AUDio:FRAMESync:POLarity?}
\]

Arguments

FALL specifies the falling edge as the frame sync polarity.

RISe specifies the rising edge as the frame sync polarity.

Examples

\[
\text{BUS:B1:AUDIO:FRAMESYNC:POLARITY FALL sets the falling edge for frame sync polarity.} \\
\]

BUS:B<x>:AUDio:FRAMESync:SOUrce

Sets or returns the frame sync source waveform for the AUDIO bus.

Conditions This command requires a DPO3AUDIO application module.

Group Bus

Syntax

\[
\text{BUS:B<x>:AUDio:FRAMESync:SOUrce \{CH1|CH2|CH3|CH4|D0|D1|D2|D3|D4|D5|D6|D7|D8|D9|D10|D11|D12|D13|D14|D15\}} \\
\text{BUS:B<x>:AUDio:FRAMESync:SOUrce?}
\]

Arguments

CH1–CH4 or D0–D15 specifies the channel to use as the frame sync source.

Examples

\[
\text{BUS:B1:AUDIO:FRAMESYNC:SOURCE CH1 sets CH1 as the frame sync source.} \\
\text{BUS:B1:AUDIO:FRAMESYNC:SOURCE? might return :BUS:B1:AUDIO:FRAMESYNC:SOURCE Ch2 indicating that the source is set to Ch2.}
\]
BUS:B<x>:AUDio:TYPe

Sets or returns the audio format (type) for the AUDIO bus.

Conditions
This command requires a DPO3AUDIO application module.

Group
Bus

Syntax

```plaintext
BUS:B<x>:AUDio:TYPe {I2S|LJ|RJ|TDM}
BUS:B<x>:AUDio:TYPe?
```

Arguments

- **I2S** specifies I²S audio format.
- **LJ** specifies left-justified audio format.
- **RJ** specifies right justified audio format.
- **TDM** specifies time-division multiplexing audio format.

Examples

- `BUS:B1:AUDIO:TYPE RJ` sets right-justified as the audio format.
- `BUS:B1:AUDIO:TYPE?` might return `:BUS:B1:AUDIO:TYPE I2S` indicating that the audio format is set to I²S.

BUS:B<x>:AUDio:WORDSel:POLarity

Sets or returns the word select polarity for the AUDIO bus.

Conditions
This command requires a DPO3AUDIO application module.

Group
Bus

Syntax

```plaintext
BUS:B<x>:AUDio:WORDSel:POLarity {NORMal|INVERTed}
BUS:B<x>:AUDio:WORDSel:POLarity?
```

Arguments

- **NORMal** specifies positive WORDSel polarity.
- **INVERTed** specifies negative WORDSel polarity.

Examples

- `BUS:B1:AUDIO:WORDSEL:POLARITY NORMal` sets normal as the word select polarity.
BUS:B1:AUDIO:WORDSel:POLARITY? might return
:BUS:B1:AUDIO:WORDSel:POLARITY NORMAL indicating that the word select
polarity is set to normal.

BUS:B<x>:AUDio:WORDSel:SOUrce

Sets or returns the word select source waveform for the AUDIO bus.

Conditions
This command requires a DPO3AUDIO application module.

Group
Bus

Syntax
```
BUS:B<x>:AUDio:WORDSel:SOUrce {CH1|CH2|CH3|CH4
|D0|D1|D2|D3|D4|D5|D6|D7|D8|D9|D10|D11|D12|D13|D14|D15}
BUS:B<x>:AUDio:WORDSel:SOUrce?
```

Arguments
CH1–CH4 specifies the channel to use as the word select source.
D0–D15 specifies the digital channel to use as the word select source.

Examples
```
BUS:B1:AUDIO:WORDSel:SOUrce CH1 sets CH1 as the word select source.
BUS:B1:AUDIO:WORDSel:SOUrce? might return
:BUS:B1:AUDIO:WORDSel:SOUrce CH2 indicating that the word select source
is set to CH2.
```

BUS:B<x>:CAN:BITRate

Sets or returns the bit rate for CAN bus <x>, where x is the bus number.

Conditions
This command requires a DPO3AUTO application module.

Group
Bus

Syntax
```
BUS:B<x>:CAN:BITRate <NR1>|{RATE10K|RATE20K|RATE33K|RATE37K|RATE50K|RATE62K|
RATE83K|RATE92K|RATE100K|RATE125K|RATE250K|RATE500K|
RATE800K|RATE1M}
BUS:B<x>:CAN:BITRate?
```

2-118 MSO3000 and DPO3000 Series Programmer Manual
Arguments

<NR1> sets the bit rate to the closest bit rate supported by the instrument.

- RATE10K sets the bit rate to 10 kbps.
- RATE20K sets the bit rate to 20 kbps.
- RATE33K sets the bit rate to 33 kbps.
- RATE37K sets the bit rate to 37 kbps.
- RATE50K sets the bit rate to 50 kbps.
- RATE62K sets the bit rate to 62 kbps.
- RATE83K sets the bit rate to 83 kbps.
- RATE97K sets the bit rate to 97 kbps.
- RATE100K sets the bit rate to 100 kbps.
- RATE125K sets the bit rate to 125 kbps.
- RATE250K sets the bit rate to 250 kbps.
- RATE500K sets the bit rate to 500 kbps.
- RATE800K sets the bit rate to 800 kbps.
- RATE1M sets the bit rate to 1 Mbps.

Returns

The query always returns the numerical bit rate value.

Examples

bus:b1:can:bitrate rate400k sets the CAN bit rate to 400K.
bus:b1:can:bitrate? might return :BUS:B1:CAN:BITRATE RATE800K indicating the bit rate is set to 800K.

BUS:B<x>:CAN:PRObe

Sets or returns the probing method to probe CAN bus <x>, where x is the bus number.

Conditions

This command requires a DPO3AUTO application module.

Group

Bus

Syntax

BUS:B<x>:CAN:PRObe {CANH|CANL|RX|TX|DIFFerential}
BUS:B<x>:CAN:PRObe?
Arguments

CANH specifies the single-ended CANH signal, as specified by the CAN standard.
CANL specifies the single-ended CANL signal, as specified by the CAN standard.
RX specifies the receive signal on the bus side of the CAN transceiver.
TX specifies the transmit signal.
DIFFerential specifies the differential CAN signal.

BUS:B<x>:CAN:SAMPLEpoint

Sets or returns the sampling point during each bit period for bus <x>, where x is the bus number.

Conditions
This command requires a DPO3AUTO application module.

Group
Bus

Syntax
BUS:B<x>:CAN:SAMPLEpoint <NR1>
BUS:B<x>:CAN:SAMPLEpoint?

Arguments
<NR1> is the sample point in percent. Values are limited to 25, 30, ... 70, 75.

BUS:B<x>:CAN:SOUrce

Sets or returns the CAN bus data source for bus <x>, where x is the bus number.

Conditions
This command requires a DPO3AUTO application module.

Group
Bus

Syntax
BUS:B<x>:CAN:SOURce {CH1|CH2|CH3|CH4|
D0|D1|D2|D3|D4|D5|D6|D7|D8|D9|D10|D11|D12|D13|D14|D15}
BUS:B<x>:CAN:SOURce?

Arguments
CH1–CH4 is the analog channel to use as the data source.
D0–D15 is the digital channel to use as the data source.
BUS:B<x>:DISPLAY:FORMAT

Sets or returns the display format for the numerical information in the bus waveform <x>, where x is the bus number.

Table 2-40: Supported display formats

<table>
<thead>
<tr>
<th>Bus type</th>
<th>Display format</th>
</tr>
</thead>
<tbody>
<tr>
<td>Audio</td>
<td>BINary</td>
</tr>
<tr>
<td>CAN</td>
<td>BINary</td>
</tr>
<tr>
<td>FlexRay</td>
<td>BINary</td>
</tr>
<tr>
<td>I2C</td>
<td>BINary</td>
</tr>
<tr>
<td>LIN</td>
<td>BINary</td>
</tr>
<tr>
<td>MIL-STD-1553</td>
<td>BINary</td>
</tr>
<tr>
<td>Parallel</td>
<td>BINary</td>
</tr>
<tr>
<td>RS232C</td>
<td>BINary</td>
</tr>
<tr>
<td>SPI</td>
<td>BINary</td>
</tr>
</tbody>
</table>

1 SIGNEDDECimal is set using the audio application **BUS:B<x>:AUDI0:DISPLAY:FORMAT** command.

Conditions

This command requires the application module appropriate for the bus. (See page 2-13, *Bus Command Group*.)

Group

Bus

Syntax

BUS:B<x>:DISPLAY:FORMAT

{BINary|HEXadecimal|ASCII|MIXed|BLOCKHEX}

BUS:B<x>:DISPLAY:FORMAT?

Related Commands

BUS:B<x>:TYPE

Arguments

- **BINary** – All values are displayed in binary.
- **HEXadecimal** – All values are displayed in hexadecimal.
- **ASCII** – All values are displayed in an ASCII format, for RS-232 only.
- **MIXed** – Values are displayed in a mixture of hexadecimal, binary, and decimal, depending on the field.
- **BLOCKHEX** – Displays the 16-bits of each payload as a block of 4 hexadecimal digits.
BUS:B<x>:DISPLAY:TYPE

Sets or returns the display type for bus <x>, where x is the bus number. You can set up the bus to display the protocol information, the logic waveforms that comprise the bus, or both.

Group
Bus

Syntax

BUS:B<x>:DISPLAY:TYPE {BUS|BOTh}
BUS:B<x>:DISPLAY:TYPE?

Arguments

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>BUS</td>
<td>displays the bus waveforms only.</td>
</tr>
<tr>
<td>BOTh</td>
<td>displays both the bus and logic waveforms.</td>
</tr>
</tbody>
</table>

BUS:B<x>:FLEXRAY:BITRATE

Specifies the bit rate for FlexRay. The maximum bitrate is 100 Mbps. B<x> is the serial bus number, which can be 1–4.

Conditions
This command requires a DPO3FLEX application module.

Group
Bus

Syntax

BUS:B<x>:FLEXRAY:BITRATE <NR1>
BUS:B<x>:FLEXRAY:BITRATE?

Arguments

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><NR1></td>
<td>specifies the FlexRay bit rate. You can enter any positive integer, and the instrument will coerce the value to the closest supported bit rate.</td>
</tr>
</tbody>
</table>

Examples

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>BUS:B1:FLEXRAY:BITRATE 9600</td>
<td>sets the FlexRay bit rate to 9600 bits per second.</td>
</tr>
<tr>
<td>BUS:B1:FLEXRAY:BITRATE?</td>
<td>might return BUS:B1:FLEXRAY:BITRATE 10000000 indicating the FlexRay bit rate is 10,000,000 bits per second.</td>
</tr>
</tbody>
</table>

BUS:B<x>:FLEXRAY:CHANNEL

Specifies the FlexRay ID format. B<x> is the serial bus number, which can be 1–4.
BUS:B<x>:FLEXray:Channel

Syntax

- `BUS:B<x>:FLEXray:Channel {A|B}
- `BUS:B<x>:FLEXray:Channel?`

Arguments

- **A** sets the FlexRay ID format to channel A.
- **B** sets the FlexRay ID format to channel B.

Examples

- `BUS:B1:FLEXRAY:CHANNEL B`
 sets the FlexRay ID format to channel B.
- `BUS:B1:FLEXRAY:CHANNEL?`
 might return
 `BUS:B1:FLEXRAY:CHANNEL A`
 indicating that FlexRay ID format is channel A.

BUS:B<x>:FLEXray:Signal

Specifies which FlexRay standard to use: BDIFFBP, BM or TXRX. B<x> is the serial bus number, which can be 1–4.

Conditions

This command requires a DPO3FLEX application module.

Group

Bus

Syntax

- `BUS:B<x>:FLEXray:Signal {BDIFFBP|BM|TXRX}
- `BUS:B<x>:FLEXray:Signal?`

Arguments

- **BDIFFBP** sets the FlexRay standard to BDIFFBP.
- **BM** sets the FlexRay standard to BM.
- **TXRX** sets the FlexRay standard to TXRX.

Examples

- `BUS:B1:FLEXRAY:SIGnal BM`
 sets the FlexRay standard is BM.
- `BUS:B1:FLEXRAY:SIGnal?`
 might return
 `BUS:B1:FLEXRAY:SIGnal BDIFFBP`
 indicating the FlexRay standard is BDIFFBP.
BUS:B<x>:FLEXray:SOUrce

Specifies the FlexRay bus as the data source.

Conditions
This command requires a DPO3FLEX application module.

Group
Bus

Syntax

```
BUS:B<x>:FLEXray:SOUrce
{CH1|CH2|CH3|CH4|D0|D1|D2|D3|D4|D5|D6|D7|D8|D9|D10
|D11|D12|D13|D14|D15}
```

```
BUS:B<x>:FLEXray:SOUrce?
```

Arguments

CH1–CH4 specifies the analog channel to use as the data source waveform for the FlexRay bus.

D0–D15 specifies the digital channel to use as the data source waveform for the FlexRay bus. (MSO models only.)

Examples

```
BUS:B1:FLEXRAY:SOURCE CH4
```

sets the FlexRay source to channel 4.

```
BUS:B1:FLEXRAY:SOURCE?
```

might return `BUS:B1:FLEXRAY:SOURcE CH1` indicating the FlexRay source is channel 1.

BUS:B<x>:I2C:ADDRess:RWINClude

Sets and returns whether the read/write bit is included in the address.

Group
Bus

Syntax

```
BUS:B<x>:I2C:ADDRess:RWINClude {<NR1>|OFF|ON}
BUS:B<x>:I2C:ADDRess:RWINClude?
```

Arguments

<NR1> = 0 does not include the read/write bit in the address; any other value includes the read/write bit in the address.

OFF does not include the read/write bit in the address.

ON includes the read/write bit in the address.
Examples

BUS:B1:I2C:ADDRESS:RWINCLUDE ON includes the read/write bit in the address.

BUS:B1:I2C:ADDRESS:RWINCLUDE? might return
BUS:B1:I2C:ADDRESS:RWINCLUDE 0 indicating the read/write bit is not included in the address.

BUS:B<x>:I2C{:CLOCK|:SCLK}:SOUrce

Sets or returns the I2C SCLK source for bus <x>, where x is the bus number.

Conditions
This command requires a DPO3EMBD or DPO3COMP application module.

Group
Bus

Syntax
BUS:B<x>:I2C{:CLOCK|:SCLK}:SOUrce {CH1|CH2|CH3|CH4|D0|D1|D2|D3|D4|D5|D6|D7|D8|D9|D10|D11 |D12|D13|D14|D15}
BUS:B<x>:I2C{:CLOCK|:SCLK}:SOUrce?

Arguments
CH1–CH4 specifies the analog channel to use as the I2C SCLK source.
D0–D15 specifies the digital channel to use as the I2C SCLK source.

BUS:B<x>:I2C{:DATA|:SDATA}:SOUrce

Sets or returns the I2C SDATA source for bus <x>, where x is the bus number.

Conditions
This command requires a DPO3EMBD application module.

Group
Bus

Syntax
BUS:B<x>:I2C{:DATA|:SDATA}:SOUrce {CH1|CH2|CH3|CH4|D0|D1|D2|D3|D4|D5|D6|D7|D8|D9|D10|D11 |D12|D13|D14|D15}
BUS:B<x>:I2C{:DATA|:SDATA}:SOURCE?

Arguments

CH1–CH4 specifies the analog channel to use as the I2C SDATA source.

D0–D15 specifies the digital channel to use as the I2C SDATA source.

BUS:B<x>:LABel

Sets or returns the waveform label for bus <x>, where x is the bus number 1 through 4.

Group Bus

Syntax

BUS:B<x>:LABel <Qstring>

BUS:B<x>:LABel?

Arguments

<Qstring> is an alpha-numeric string of text, enclosed in quotes, that contains the text label information for bus <x>. The text string is limited to 30 characters.

BUS:B<x>:LIN:BITRate

Sets or returns the bit rate for LIN.

Group Bus

Syntax

BUS:B<x>:LIN:BITRate <NR1>

BUS:B<x>:LIN:BITRate?

Arguments

<NR1> is the LIN bit rate.

Examples

BUS:B1:LIN:BITRATE 9600 sets the bit rate 9600.

BUS:B<x>:LIN:IDFORmat

Sets or returns the LIN ID format.
BUS:B<x>:LIN:IDFORmat

Sets or returns the LIN id format.

Syntax

BUS:B<x>:LIN:IDFORmat {NOPARity|PARity}

Arguments

- **NOPARity** sets the LIN id format to no parity.
- **PARity** sets the LIN id format to parity.

Examples

BUS:B1:LIN:IDFORMAT PARITY sets the LIN id format to parity.

BUS:B<x>:LIN:POLARity

Sets or returns the LIN polarity.

Syntax

BUS:B<x>:LIN:POLARity {NORMal|INVerted}

Arguments

- **NORMal** specifies normal LIN polarity.
- **INVerted** specifies inverted LIN polarity.

Examples

BUS:B1:LIN:POLARITY INVERTED sets the LIN polarity to INVERTED.

BUS:B<x>:LIN:SAMPLEpoint

Sets or returns the sample point (in %) at which to sample during each bit period.

Syntax

BUS:B<x>:LIN:SAMPLEpoint <NR1>

Arguments

- **<NR1>** specifies the sample point.
Arguments

<NR1> is the sample point (in %) at which to sample during each bit period.

Examples

BUS:B1:LIN:SAMPLEPOINT 10 sets the sample point is at 10% of the bit period.

BUS:B1:LIN:SAMPLEPOINT? might return BUS:B1:LIN:SAMPLEPOINT 50 indicating that the sample point is at 50% of the bit period.

BUS:B<x>:LIN:SOURce

Sets or returns the LIN data source.

Group

Bus

Syntax

BUS:B<x>:LIN:SOURce {CH1|CH2|CH3|CH4|}

BUS:B<x>:LIN:SOURce?

Arguments

CH<x> specifies the LIN source channel where x is 1 to 4.

Examples

BUS:B1:LIN:SOURce CH4 sets the LIN source to channel 4.

BUS:B1:LIN:SOURce? might return BUS:B1:LIN:SOURce CH1 indicating the LIN source is channel 1.

BUS:B<x>:LIN:STANDard

Sets or returns the LIN standard.

Group

Bus

Syntax

BUS:B<x>:LIN:STANDard {V1X|V2X|MIXed}

BUS:B<x>:LIN:STANDard?

Arguments

V1X sets the LIN standard to V1X.

V2X sets the LIN standard to V2X.

MIXed sets the LIN standard to MIXED.
Commands Listed in Alphabetical Order

Examples

BUS:B1:LIN:STANDARD V1X sets the LIN standard is V1X.

BUS:B1:LIN:STANDARD? might return BUS:B1:LIN:STANDARD V2X indicating the LIN standard is V2X.

BUS:B<x>:MIL1553B:POLarity

This command sets the MIL-STD-1553 bus polarity to normal or inverted.

Conditions

This command requires a DPO3AERO application module.

Group

Bus

Syntax

BUS:B<x>:MIL1553B:POLarity {NORMal|INVERTed}

BUS:B<x>:MIL1553B:POLarity?

Related Commands

TRIGger:A:BUS:B<x>:MIL1553B:CONDition

SEARCH:SEARCH<x>:TRIGger:A:BUS:B<x>:MIL1553B:CONDition

BUS:B<x>:MIL1553B:SOUrce

Arguments

NORMal — A high-low transition represents a 1 on the Data+ line.

INVERTed — A high-low transition represents a 0 on the Data+ line.

Examples

BUS:B1:MIL1553B:POLarity INVERTed sets the MIL-STD-1553 bus polarity so that a high-low transition represents a 0 on the Data+ line.

BUS:B1:MIL1553B:POLarity? might return NORMAL.

BUS:B<x>:MIL1553B:RESPonsetime:MAXimum

This command specifies the maximum response time to a valid command issued. B<x> is the serial bus number, which can be 1–4.

NOTE. The MIL-STD-1553 specification requires devices to respond to a valid command within 4 to 12 microseconds.

Conditions

This command requires a DPO3AERO application module.
Group
Bus

Syntax
BUS:B<x>:MIL1553B:RESPonsetime:MAXimum <NR3>
BUS:B<x>:MIL1553B:RESPonsetime:MAXimum?

Related Commands
BUS:B<x>:MIL1553B:RESPonsetime:MINimum

Arguments
<NR3> is a floating point number that specifies the maximum response time, in seconds.

Examples
BUS:B1:MIL1553B:RESPonsetime:MAXimum 12.0E-6 specifies the maximum response time to a valid command received to be 12.0000E-6 microseconds.

BUS:B<x>:MIL1553B:RESPonsetime:MINimum

This command specifies the minimum response time to a valid command issued. B<x> is the serial bus number, which can be 1–4.

NOTE. The MIL-STD-1553 specification requires devices to respond to a valid command within 4 to 12 microseconds.

Conditions
This command requires a DPO3AERO application module.

Group
Bus

Syntax
BUS:B<x>:MIL1553B:RESPonsetime:MINimum <NR3>
BUS:B<x>:MIL1553B:RESPonsetime:MINimum?

Related Commands
BUS:B<x>:MIL1553B:RESPonsetime:MAXimum

Arguments
<NR3> is a floating point number that specifies the minimum response time in seconds.

Examples
BUS:B1:MIL1553B:RESPonsetime:MINimum 4.0E-6 specifies the minimum response time to a valid command received to 4.0E-6 microseconds.
BUS:B<x>:MIL1553B:SOURce

This command specifies the MIL-STD-1553 bus source for differential input. The supported source waveforms are channels 1–4, math waveform, and reference waveforms 1–4. The default is channel 1. \(B<x> \) is the serial bus number, which can be 1–4.

Conditions

This command requires a DPO3AERO application module.

Group

Bus

Syntax

```
BUS:B<x>:MIL1553B:SOURce
{CH1|CH2|CH3|CH4|MATH|REF1|REF2|REF3|REF4}
BUS:B<x>:MIL1553B:SOURce?
```

Related Commands

SEARCH:SEARCH<x>:TRIGger:A:BUS:B<x>:MIL1553B:CONDition
TRIGger:A:BUS:B<x>:MIL1553B:CONDition

Arguments

CH1–4 specifies to use one of the analog channels as the MIL-STD-1553 source for differential input. The number of channels available depends upon the model.

MATH specifies to use the math waveform as the MIL-STD-1553 source for differential input.

REF1–4 specifies to use one of the reference waveforms as the MIL-STD-1553 bus source for differential input.

Examples

```
BUS:B1:MIL1553B:SOURce ref4 specifies to use reference waveform 4 as the source for MIL-STD-1553 input.

BUS:B1:MIL1553B:SOURce? might return CH2, indicating that channel 2 is the currently specified source for MIL-STD-1553 input.
```

BUS:B<x>:PARallel:BIT<x>:SOURce

Sets or returns the parallel bit source for \(B<x> \), where \(x \) is the bus number and Bit\(<x> \) is the bit number.

Group

Bus
Syntax
BUS:B<x>:PARallel:BIT<x>:SOURce
{CH1|CH2|CH3|CH4|D1|D2|D3|D4|D5|D6|D7|D8|D9|D10|D11
|D12|D13|D14|D15}
BUS:B<x>:PARallel:BIT<x>:SOURce?

Arguments
CH1–CH4 or D0–D15 specifies the bit source B<x>. BIT<x> specifies the bit number.

BUS:B<x>:PARallel:CLOCK:EDGE

Sets or returns the parallel clock edge for bus <x>, where x is the bus number.

Group
Bus

Syntax
BUS:B<x>:PARallel:CLOCK:EDGE {EITHER|RISING|FALLING}
BUS:B<x>:PARallel:CLOCK:EDGE?

Arguments
EITHER specifies either edge as the clock edge.
RISING specifies the rising edge as the clock edge.
FALLING specifies the falling edge as the clock edge.

BUS:B<x>:PARallel:CLOCK:ISLOCKed

Sets or returns the parallel bus clock function for bus <x>, where x is the bus number.

Group
Bus

Syntax
BUS:B<x>:PARallel:CLOCK:ISLOCKed {YES|NO}
BUS:B<x>:PARallel:CLOCK:ISLOCKed?

Arguments
YES specifies that the Parallel bus is clocked.
NO specifies that the Parallel bus is not clocked.

BUS:B<x>:PARallel:CLOCK:SOURce

Sets or returns the Parallel bus source <x>, where x is the bus number.
BUS:B<x>:PARallel:CLOCK:SOUrce

Group Bus

Syntax
BUS:B<x>:PARallel:CLOCK:SOUrce {CH1|CH2|CH3|CH4|D0|D1|D2|D3|D4|D5|D6|D7|D8|D9|D10|D11|D12|D13|D14|D15}
BUS:B<x>:PARallel:CLOCK:SOUrce?

Arguments CH1–CH4 or D0–D15 specifies the channel to use as the Parallel bit source.

BUS:B<x>:PARallel:WIDth

Sets or returns the number of bits used for the width of the Parallel bus <x>, where x is the bus number.

Group Bus

Syntax
BUS:B<x>:PARallel:WIDth <NR1>
BUS:B<x>:PARallel:WIDth?

Arguments <NR1> is the number of bits.

BUS:B<x>:POSition

Sets or returns the position of the bus <x> waveform on the display, where x is the bus number 1 through 4.

Conditions This command requires a DPO3AUTO, DPO3EMBD, or DPO3COMP application module.

Group Bus

Syntax
BUS:B<x>:POSition <NR3>
BUS:B<x>:POSition?

Arguments <NR3> specifies the position.

BUS:B<x>:RS232C:BITRate

Sets or returns the RS-232 bit rate for bus <x>, where x is the bus number.
Commands Listed in Alphabetical Order

BUS:B<x>:RS232C:BITRate

Sets or returns the bit rate in bits-per-second: 50, 75, 110, 134, 150, 300, 600, 1200, 1800, 2000, 2400, 3600, 4800, 7200, 9600, 14400, 15200, 19200, 28800, 31250, 38400, 56000, 57600, 76800, 115200, 128000, 230400, 460800, 921600, 1382400, 1843200, 2764800. You can enter any positive integer, and the instrument will coerce the value to the closest supported bit rate.

BUS:B<x>:RS232C:DATABits

Sets or returns the number of RS-232 data bits for bus <x>, where x is the bus number.

Arguments 7 specifies seven bits in the RS-232 data frame.

8 specifies eight bits in the RS-232 data frame.

8 specifies nine bits in the RS-232 data frame.

BUS:B<x>:RS232C:DELIMiter

Sets or returns the RS-232 delimiting value for a packet on bus <x>, where x is the bus number.
Syntax

BUS:B<x>:RS232C:DELIMiter {NUL|LF|CR|SP|XFF}
BUS:B<x>:RS232C:DELIMiter?

Arguments

NUL specifies 0x00.
LF specifies 0x0A.
CR specifies 0x0D.
XFF specifies 0xFF.

BUS:B<x>:RS232C:DISPLAYMODE

Sets or returns the display mode for the bus <x> display and event table, where x is the bus number.

Conditions

This command requires a DPO3COMP application module.

Group

Bus

Syntax

BUS:B<x>:RS232C:DISPLAYMODE {FRAME|PACKET}
BUS:B<x>:RS232C:DISPLAYMODE?

Arguments

FRAME displays each frame as a single entity.

PACKET displays a group of frames terminated with a single frame defined by the BUS:B<x>:RS232C:DELIMITER command or the front panel.

BUS:B<x>:RS232C:PARITY

Sets or returns the RS-232C parity for bus <x>, where x is the bus number.

Conditions

This command requires a DPO3COMP application module.

Group

Bus

Syntax

BUS:B<x>:RS232C:PARITY {NONE|EVEN|ODD}
BUS:B<x>:RS232C:PARITY?
Arguments

None specifies no parity.

Even specifies even parity.

Odd specifies odd parity.

BUS:B<x>:RS232C:POLarity

Sets or returns the RS-232C polarity for bus <x>, where x is the bus number.

Conditions

This command requires a DPO3COMP application module.

Group

Bus

Syntax

BUS:B<x>:RS232C:POLarity {NORMAL|INVERTed}

BUS:B<x>:RS232C:POLarity?

Arguments

NORMAL sets the RS-232C bus polarity to positive.

INVERTed sets the RS-232C bus polarity to negative.

BUS:B<x>:RS232C:RX:SOURce

Sets or returns the RS-232 RX source for bus <x>, where x is the bus number.

Conditions

This command requires a DPO3COMP application module.

Group

Bus

Syntax

BUS:B<x>:RS232C:RX:SOURce {CH1|CH2|CH3|CH4|D0|D1|D2|D3|D4|D5|D6|D7|D8|D9|D10|D11|D12|D13|D14|D15}

BUS:B<x>:RS232C:RX:SOURce?

Arguments

CH1–CH4 or D0–D15 specifies the channel to use for the RS-232 RX source.

BUS:B<x>:RS232C:TX:SOURce

Sets or returns the RS-232 TX Source for bus <x>, where x is the bus number.
Conditions
This command requires a DPO3COMP application module.

Group
Bus

Syntax
BUS:B<x>:RS232C:TX:SOURce {CH1|CH2|CH3|CH4|D0|D1|D2|D3|D4|D5|D6|D7|D8|D9|D10|D11|D12|D13|D14|D15}
BUS:B<x>:RS232C:TX:SOURce?

Arguments
CH1–CH4 or D0–D15 specifies the channel to use as the RS-232 TX source.

BUS:B<x>:SPI{:CLOCK|:SCLK}:POLARity
Sets or returns the SPI SCLK polarity for bus <x>, where x is the bus number.

Conditions
This command requires a DPO3EMBD application module.

Group
Bus

Syntax
BUS:B<x>:SPI{:CLOCK|:SCLK}:POLARity {FALL|RISe}
BUS:B<x>:SPI{:CLOCK|:SCLK}:POLARity?

Arguments
FALL specifies the falling edge.
RISe specifies the rising edge.

BUS:B<x>:SPI{:CLOCK|:SCLK}:SOURce
Sets or returns the SPI SCLK source for bus <x>, where x is the bus number.

Conditions
This command requires a DPO3EMBD application module.

Group
Bus

Syntax
BUS:B<x>:SPI{:CLOCK|:SCLK}:SOURce {CH1|CH2|CH3|CH4|D0|D1|D2|D3|D4|D5|D6|D7|D8|D9|D10|D11|D12|D13|D14|D15}
BUS:B<x>:SPI{:CLOCK|:SCLK}:SOURce?
Arguments

CH1–CH4 or D0–D15 is the channel to use as the SPI SCLK source.

BUS:B<x>:SPI:DATA{:IN|:MISO}:POLARity

Sets or returns the SPI MISO polarity for bus <x>, where x is the bus number.

Conditions

This command requires a DPO3EMBD application module.

Group

Bus

Syntax

BUS:B<x>:SPI:DATA{:IN|:MISO}:POLARity {LOW|HIGH}

BUS:B<x>:SPI:DATA{:IN|:MISO}:POLARity?

Arguments

LOW specifies an active low polarity.

HIGH specifies an active high polarity.

BUS:B<x>:SPI:DATA{:IN|:MISO}:SOUrce

Sets or returns the SPI MISO source for bus <x>, where x is the bus number.

Conditions

This command requires a DPO3EMBD application module.

Group

Bus

Syntax

BUS:B<x>:SPI:DATA{:IN|:MISO}:SOUrce {CH1|CH2|CH3|CH4|D0|D1|D2|D3|D4|D5|D6|D7|D8|D9|D10|D11|D12|D13|D14|D15}

BUS:B<x>:SPI:DATA{:IN|:MISO}:SOUrce?

Arguments

CH1–CH4 or D0–D15 is the channel to use as the SPI MISO source.

BUS:B<x>:SPI:DATA{:OUT|:MOSI}:POLARity

Sets or returns the SPI MOSI polarity for bus <x>, where x is the bus number.

Conditions

This command requires a DPO3EMBD application module.
Group
Bus

Syntax
BUS:B<x>:SPI:DATA{:OUT|:MOSI}:POLARity {LOW|HIGH}
BUS:B<x>:SPI:DATA{:OUT|:MOSI}:POLARity?

Arguments
LOW specifies the active low polarity.
HIGH specifies the active high polarity.

BUS:B<x>:SPI:DATA{:OUT|:MOSI}:SOUrce
Sets or returns the SPI MOSI source for bus <x, where x is the bus number>.

Conditions
This command requires a DPO3EMBD application module.

Group
Bus

Syntax
BUS:B<x>:SPI:DATA{:OUT|:MOSI}:SOUrce {CH1|CH2|CH3|CH4|D0|D1|D2|D3|D4|D5|D6|D7|D8|D9|D10|D11|D12|D13|D14|D15}
BUS:B<x>:SPI:DATA{:OUT|:MOSI}:SOUrce?

Arguments
CH1–CH4 or D0–D15 is the channel to use as the SPI MISO source.

BUS:B<x> SPI:FRAMing
Sets or returns the type of SPI framing.

Group
Bus

Syntax
BUS:B<x> SPI:FRAMing {SS|IDLEtime}
BUS:B<x> SPI:FRAMing ?

Related Commands

Arguments
SS specifies framing by SS (non 2-wire).
IDLEtime specifies framing by Idle Time (2-wire).
Examples

- **BUS:B1:SPI:FRAMING SS** sets the SPI framing type to SS.
- **BUS:B1:SPI:FRAMING IDELTIME** might return **BUS:B1:SPI:FRAMING IDELTIME** indicating the SPI framing type is set to IDELTIME.

BUS:B<x>:SPI{:SELect|:SS}:POLARity

Sets or returns the SPI SS polarity for bus <x>, where x is the bus number.

Conditions

This command requires a DPO3EMBD application module.

Group

Bus

Syntax

- **BUS:B<x>:SPI{:SELect|:SS}:POLARity {LOW|HIGH}**
- **BUS:B<x>:SPI{:SELect|:SS}:POLARity?**

Arguments

- LOW specifies an active low polarity.
- HIGH specifies an active high polarity.

BUS:B<x>:SPI{:SELect|:SS}:SOURce

Sets or returns the SPI SS source for bus <x>, where x is the bus number.

Conditions

This command requires a DPO3EMBD application module.

Group

Bus

Syntax

- **BUS:B<x>:SPI{:SELect|:SS}:SOURce {CH1|CH2|CH3|CH4|D0|D1|D2|D3|D4|D5|D6|D7|D8|D9|D10|D11|D12|D13|D14|D15}**
- **BUS:B<x>:SPI{:SELect|:SS}:SOURce?**

Arguments

- CH1–CH4 or D0–D15 is the channel to use as the SPI SS source.

BUS:B<x>:STATE

Sets or returns the on/off state of bus <x>, where x is the bus number.
Group Bus

Syntax

`BUS:B<x>:STATE {<NR1>|OFF|ON}
BUS:B<x>:STATE?`

Related Commands

`SELect:BUS<x>`

Arguments

ON or `<NR1>` ≠ 0 turns on the bus.

OFF or `<NR1>` = 0 turns off the bus.

BUS:B<x>:TYPE

Sets or returns the bus type for `<x>`, where `x` is the bus number. The supported bus types are dependent on the oscilloscope model and the installed application keys.

Group Bus

Syntax

`BUS:B<x>:TYPE {I2C|SPI|CAN|RS232C|PARallel|LIN|FLEXRay|AUDio|MIL1553B}
BUS:B<x>:TYPE?`

Arguments

`I2C` specifies the Inter-IC bus.

`SPI` specifies the Serial Peripheral Interface bus (not available on two-channel models). Supported up to 50 Mbits.

`CAN` specifies the Controller Area Network bus.

`RS232C` specifies the RS-232C bus.

`PARallel` specifies the Parallel bus.

`LIN` specifies the LIN bus.

`FLEXRay` specifies the FLexRay bus.

`AUDio` specifies the audio bus.

`MIL1553B` specifies the MIL-STD-1553 bus.
BUS:LOWerthreshold:CH<x>

Sets the lower threshold for each channel. This applies to all search and trigger types that use the channel. This command supersedes the :BUS:THReshold:CH<x> above.

Group

Bus

Syntax

BUS:LOWerthreshold:CH<x> {<NR3>|ECL|TTL}

BUS:LOWerthreshold:CH<x>?

Arguments

<NR3> specifies the threshold in volts.

ECL specifies a preset ECL high level of -1.3V.

TTL specifies a preset TTL high level of 1.4V.

Examples

BUS:LOWERTHRESHOLD:CH1 TTL sets the CH1 lower threshold to 800mV.

BUS:LOWERTHRESHOLD:CH1? might return :BUS:LOWERTHRESHOLD:CH1 -800.0000E-3 indicating the CH1 lower threshold is -800 mV.

BUS:THReshold:D<x>

Sets or returns the threshold for digital channel <x>, where x is the digital channel number. This will apply to all Search and Trigger Types that use the channel.

Conditions

This command requires a DPO3COMP application module or RS-232C.

Group

Bus

Syntax

BUS:THReshold:D<x> {<NR3>|ECL|TTL}

BUS:THReshold:D<x>?

Related Commands

TRIGger:A:LEVel:D<x>

Arguments

ECL specifies a preset ECL high level of -1.3V.

TTL specifies a preset TTL high level of 1.4V.

<NR3> specifies the threshold level in volts.
BUS:UPPPerthreshold:CH<x>

Sets the upper threshold for each channel. This applies to all search and trigger types that use the channel.

Group
Bus

Syntax
BUS:UPPPerthreshold:CH<x> \{<NR3>|ECL|TTL\}
BUS:UPPPerthreshold:CH<x>?

Arguments

`<NR3>` specifies the threshold in volts.
ECL specifies a preset ECL high level of –1.3V.
TTL specifies a preset TTL high level of 1.4V.

Examples

BUS:UPPPerthreshold:CH1 800.0000E-3 sets the CH1 upper threshold to 800 mV.

BUS:UPPPerthreshold:CH1? might return :BUS:UPPPerthreshold:CH1 -800.0000E-3 indicating that the CH1 upper threshold is set to -800 mV.

BUSY? (Query Only)

Returns the status of the oscilloscope. This command allows you to synchronize the operation of the oscilloscope with your application program.

Group
Status and Error

Syntax
BUSY?

Related Commands
*OPC, *WAI

Returns

`<NR1>` = 0 means the oscilloscope is not busy processing a command whose execution time is extensive.

`<NR1>` = 1 means the oscilloscope is busy processing one of the commands listed in the table below.
Commands that affect BUSY? response

<table>
<thead>
<tr>
<th>Operation</th>
<th>Command</th>
</tr>
</thead>
<tbody>
<tr>
<td>Single sequence acquisition</td>
<td>ACQuire:STATE ON or ACQuire:STATE RUN or ACQuire:STATE1 (when ACQuire:STOPAfter is set to SEQuence)</td>
</tr>
<tr>
<td>Hard copy operation</td>
<td>HARDCopy STArt</td>
</tr>
<tr>
<td>Calibration step</td>
<td>Refer to the optional oscilloscope Service Manual.</td>
</tr>
</tbody>
</table>

Examples

BUSY? might return :BUSY 1 indicating that the oscilloscope is currently busy.

CAL? (Query Only)

Performs an internal self-calibration and returns the oscilloscope calibration status.

NOTE. Disconnect or otherwise remove all input signals prior to starting self-calibration. The self-calibration can take several minutes to complete.

No other commands are executed until calibration is complete.

Group

Calibration and Diagnostic

Syntax

*CAL?

Returns

<NR1> = 1 indicates the calibration did not complete successfully.

<NR1> = 0 indicates the calibration completed without errors.

Examples

*CAL? starts the internal signal path calibration and might return 0 to indicate that the calibration was successful.

CALibrate:FACTory:STATus? (Query Only)

Returns the factory calibration status value saved in nonvolatile memory.

Group

Calibration and Diagnostic

Syntax

CALibrate:FACTory:STATus?
Examples CAL:FAc:STA? might return CALIBRATE:FACTORY:STATUS PASS indicating that factory calibration passed.

CALibrate:INTERNal (No Query Form)

This command starts a signal path compensation.

Group Calibration and Diagnostic

Syntax CALibrate:INTERNal

Arguments None

Examples CALIBRATE:INTERNAL starts a serial path compensation cycle.

CALibrate:INTERNal:START (No Query Form)

Starts the internal signal path calibration (SPC) of the oscilloscope. You can use the CALibrate:INTERNal:STATus? query to return the current status of the internal signal path calibration of the oscilloscope.

Group Calibration and Diagnostic

Syntax CALibrate:INTERNal:START

Related Commands CALibrate:RESults:SPC?

Examples CALIBRATE:INTERNAL:START initiates the internal signal path calibration of the oscilloscope.

CALibrate:INTERNal:STATus? (Query Only)

Returns the current status of the oscilloscope internal signal path calibration for the last SPC operation.

Group Calibration and Diagnostic
Syntax CALibrate:INTERNal:STATus?

Related Commands *CAL?

Returns This query will return one of the following:

- INIT indicates the oscilloscope has not had internal signal path calibration run.
- PASS indicates the signal path calibration completed successfully.
- FAIL indicates the signal path calibration did not complete successfully.
- RUNNING indicates the signal path calibration is currently running.

Examples CAL:INTERN:STAT? might return :CALIBRATE:INTERNAL:STATUS INIT indicating that the current status of the internal signal path calibration is that it has not been run.

CALibrate:RESults? (Query Only)

Returns the status of internal and factory calibrations, without performing any calibration operations. The results returned do not include the calibration status of attached probes. The CALibrate:RESults? query is intended to support GO/NoGO testing of the oscilloscope calibration readiness: all returned results should indicate PASS status if the oscilloscope is "fit for duty". It is quite common, however, to use uncalibrated probes (particularly when the oscilloscope inputs are connected into a test system with coaxial cables).

Group Calibration and Diagnostic

Syntax CALibrate:RESults?

Related Commands *CAL?

CALibrate:RESults:FACtory? (Query Only)

Returns the status of internal and factory calibration, without performing any calibration operations.

Group Calibration and Diagnostic
Syntax
CALibrate:RESults:FACTory?

CALibrate:RESults:SPC? (Query Only)
Returns the status of the SPC operation. This query does not initiate a SPC.

Group
Calibration and Diagnostic

Syntax
CALibrate:RESults:SPC?

Related Commands
*CAL?

Returns
INIT indicates that SPC has never successfully completed.
PASS indicates that the last SPC operation passed.
FAIL indicates that the last SPC operation failed.
RUNNING indicates that the SPC operation is running.

Examples
CALIBRATE:RESULTS:SPC? returns the results of the last SPC operation: either PASS or FAIL.

CH<x>? (Query Only)
Returns the vertical parameters for channel <x>, where x is the channel number.

Group
Vertical

Syntax
CH<x>?

CH<x>:AMPSVIAVOLTs:ENAble
Sets or returns the state of the amps via volts feature for the specified channel. This feature supports measuring current via the voltage drop across a resistor.

Group
Vertical
Commands Listed in Alphabetical Order

Syntax

```plaintext
CH<x>:AMPSVIAVOLTS:ENABLE {<NR1>|OFF|ON}
CH<x>:AMPSVIAVOLTS:ENABLE?
```

Arguments

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>OFF</td>
<td>sets the amps via volts function for channel <x> to off.</td>
</tr>
<tr>
<td>ON</td>
<td>sets the amps via volts function for channel <x> to on.</td>
</tr>
<tr>
<td><NR1></td>
<td>= 0 sets the amps via volts function to off. Any other value sets the function to on.</td>
</tr>
</tbody>
</table>

Examples

```plaintext
CH1:AMPSVIAVOLTS:ENABLE ON turns on the amps via volts feature for channel 1.
```

CH<x>:AMPSVIAVOLTS:FACtor

Sets or returns the amps via volts factor for the specified channel.

Group

Vertical

Syntax

```plaintext
CH<x>:AMPSVIAVOLTS:FACtor <NR3>
CH<x>:AMPSVIAVOLTS:FACtor?
```

Arguments

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><NR3></td>
<td>is a double-precision ASCII string that represents the amps via volts factor.</td>
</tr>
</tbody>
</table>

Examples

```plaintext
CH1:AMPSVIAVOLTS:FACTOR 15.5 sets the amps via volts factor for channel 1 to 15.5.
```

CH<x>:BANdwidth

Sets or returns the selectable low-pass bandwidth limit filter for channel <x>, where x is the channel number.

Group

Vertical

Syntax

```plaintext
CH<x>:BANdwidth {TWEnty|ONEfifty|FULl|<NR3>}
CH<x>:BANdwidth?
```

Arguments

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>TWEnty</td>
<td>sets the upper bandwidth limit of channel <x> to 20 MHz.</td>
</tr>
<tr>
<td>ONEfifty</td>
<td>sets the upper bandwidth limit of channel <x> to 150 MHz.</td>
</tr>
</tbody>
</table>

```
FUL1 disables any optional bandwidth limiting. The specified channel operates at its maximum attainable bandwidth.

<NR3> is a double-precision ASCII string. The oscilloscope rounds this value to an available bandwidth using geometric rounding, and then uses this value to set the upper bandwidth limit.

**NOTE.** Other values may be possible depending on the attached probes.

### Examples

CH1:BANDWIDTH TWENTY sets the bandwidth of channel 1 to 20 MHz.

### CH<x>:COUPling

Sets or returns the input attenuator coupling setting for channel <x>, where x is the channel number.

#### Group

Vertical

#### Syntax

CH<x>:COUPling {AC|DC|GND}

CH<x>:COUPling?

#### Arguments

AC sets channel <x> to AC coupling.

DC sets channel <x> to DC coupling.

GND sets channel <x> to ground. Only a flat, ground-level waveform will be displayed.

#### Examples

CH2:COUPling GND sets channel 2 to ground.

CH3:COUPling? might return :CH3:COUPling DC indicating that channel 3 is set to DC coupling.

### CH<x>:DESKew

Sets or returns the deskew time for channel <x>, where x is the channel number. You can adjust the deskew time to add an independent, channel-based delay time to the delay (set by the horizontal position control and common to all channels) from the common trigger point to first sample taken for each channel. This lets you compensate individual channels for different delays introduced by their individual input hook ups.
Commands Listed in Alphabetical Order

**Group**  
Vertical

**Syntax**  
CH<x>:DESkew <NR3>  
CH<x>:DESkew?

**Arguments**  
<NR3> is the deskew time for channel <x>, ranging from -100 ns to +100 ns with a resolution of 1 ps.

**Examples**  
CH4:DESkew 5.0E-9 sets the deskew time for channel 4 to 5 ns.  
CH2:DESkew? might return :CH2:DESKew 2.0000E-09 indicating that the deskew time for channel 2 is set to 2 ns.

**CH<x>:INVert**

Sets or returns the invert function for channel <x>, where <x> is the channel number. When on, the invert function inverts the waveform for the specified channel.

**NOTE.** This command inverts the waveform for display purposes only. The oscilloscope does not use an inverted waveform for triggers or trigger logic inputs.

**Group**  
Vertical

**Syntax**  
CH<x>:INVert {ON|OFF}  
CH<x>:INVert?

**Arguments**  
OFF sets the invert function for channel <x> to off.  
ON sets the invert function for channel <x> to on.

**Examples**  
CH4:INVert ON inverts the waveform on channel 4.  
CH2:INVert? might return :CH2:INVERT 0 indicating that channel 2 is not inverted.

**CH<x>:LABel**

Sets or returns the waveform label for channel <x>, where x is the channel number.

**Group**  
Vertical
Syntax

CH<x>:LABel <Qstring>
CH<x>:LABel?

Arguments

<Qstring> is an alpha-numeric string of text, enclosed in quotes, that contains the text label information for the channel <x> waveform. The text string is limited to 30 characters.

CH<x>:OFFSET

Sets or returns the vertical offset for channel <x>, where x is the channel number.

This command offsets the vertical acquisition window (moves the level at the vertical center of the acquisition window) for the specified channel. Visualize offset as scrolling the acquisition window towards the top of a large signal for increased offset values, and scrolling towards the bottom for decreased offset values. The resolution of the vertical window sets the offset increment for this control.

Offset adjusts only the vertical center of the acquisition window for channel waveforms to help determine what data is acquired. The oscilloscope always displays the input signal minus the offset value.

The channel offset range depends on the vertical scale factor.

Table 2-41: Channel Offset Range

<table>
<thead>
<tr>
<th>V/Div Setting</th>
<th>Offset range</th>
<th>1 MΩ Input</th>
<th>50/75 Ω Input</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 mV/div — 50 mV/div</td>
<td>±1 V</td>
<td>±1 V</td>
<td></td>
</tr>
<tr>
<td>50.5 mV/div — 99.5 mV/div</td>
<td>±0.5 V</td>
<td>±0.5 V</td>
<td></td>
</tr>
<tr>
<td>100 mV/div — 500 mV/div</td>
<td>±10 V</td>
<td>±5 V</td>
<td></td>
</tr>
<tr>
<td>505 mV/div — 995 mV/div</td>
<td>±5 V</td>
<td>±5 V</td>
<td></td>
</tr>
<tr>
<td>1 V/div — 5 V/div</td>
<td>±100 V</td>
<td>±5 V</td>
<td></td>
</tr>
<tr>
<td>1 V/div — 10 V/div</td>
<td>±50 V</td>
<td>N/A</td>
<td></td>
</tr>
</tbody>
</table>

1 For 50/75 Ω input, 1 V/div is the maximum setting.

NOTE. The above table describes oscilloscope behavior only when no probe is attached, and when the external attenuation factor is 1.0.

Group

Vertical
Syntax

CH<x>:OFFSet <NR3>
CH<x>:OFFSet?

Related Commands

CH<x>:POSition

Arguments

<NR3> is the offset value for the specified channel <x>.

Examples

CH3:OFFSet 2.0E-3 sets the offset for channel 3 to 2 mV.
CH4:OFFSet? might return :CH4:OFFSET 1.0000E-03 indicating that the offset for channel 4 is set to 1 mV.

CH<x>:POSition

Sets or returns the vertical position of channel <x>, where x is the channel number. The position value is applied to the signal before it is digitized.

Increasing the position value of a waveform causes the waveform to move up. Decreasing the position value causes the waveform to move down. The position value determines the vertical graticule coordinate at which input signal values, minus the present offset setting for that channel, are displayed. For example, if the position for Channel 3 is set to 2.0 and the offset is set to 3.0, then input signals equal to 3.0 units are displayed 2.0 divisions above the center of the screen (at 1 V/div).

Group

Vertical

Syntax

CH<x>:POPosition <NR3>
CH<x>:POPosition?

Related Commands

CH<x>:OFFSet, REF<x>:VERTical:POSition, MATH[1]:VERTical:POSition

Arguments

<NR3> is the position value for channel <x>, in divisions, from the center graticule. The range is 8 to -8 divisions.

Examples

CH2:POPosition 1.3 positions the Channel 2 input signal 1.3 divisions above the center graticule.
CH1:POPosition? might return :CH1:POSITION -1.3000 indicating that the current position of Channel 1 is 1.3 divisions below the center graticule.
**CH<x>:PRObe? (Query Only)**

Returns all information concerning the probe attached to channel <x>, where x is the channel number.

**Group** Vertical

**Syntax** CH<x>:PRObe?

**CH<x>:PRObe:AUTOZero (No Query Form)**

Sets the TekVPI probe attached to channel <x> to zero, where x is the channel number.

**Group** Vertical

**Syntax** CH<x>:PRObe:AUTOZero EXECute

**Arguments** Execute auto zeros the probe.

**CH<x>:PRObe:COMMAND (No Query Form)**

Sets the state of the probe control specified with the first argument to the state specified with the second argument. The commands and states are unique to the attached probe type. Only certain VPI probes support this command. See the probe documentation for how to set these string arguments.

**Group** Vertical

**Syntax** CH<x>:PRObe:COMMAND <QString>, <QString>

**Arguments** <QString> are quoted strings specifying the probe command and value to set in the probe attached to the specified channel.

**Examples** CH1:PROBE:COMMAND “MODE”, “4–4V1MHz” sets a Tektronix VPI-DPG probe to the 4-4V1MHz mode.

CH1:PROBE:COMMAND “OUTPUT”, “ON” turns the output of a Tektronix VPI-DPG probe on.
CH1:PROBE:COMMAND? "MODE" might return CH1:PROBE:COMMAND "MODE", "4-4V1MHZ".

CH<x>:PRObe:DEGAUss (No Query Form)

Starts a degauss auto-zero cycle on a TekVPI current probe attached to the input channel specified by <x>, where x is the channel number.

Group Vertical
Syntax CH<x>:PRObe:DEGAUss EXECute
Arguments EXECute initiates the degauss operation.

CH<x>:PRObe:DEGAUss:STATE? (Query Only)

Returns the state of the probe degauss for the channel specified by <x>, where is x is the channel number.

NOTE. This command will return PASSED for probes that do not support degauss operations.

Group Vertical
Syntax CH<x>:PRObe:DEGAUss:STATE?
Returns
NEEDED indicates the probe should be degaussed before taking measurements.
RECOMMENDED indicates the measurement accuracy might be improved by degaussing the probe.
PASSED indicates the probe is degaussed.
FAILED indicates the degauss operation failed.
RUNNING indicates the probe degauss operation is currently in progress.

CH<x>:PRObe:FORCEDRange

Sets or returns the range of a TekVPI probe attached to the channel specified by <x>, where x is the channel number.
NOTE. This command will return PASSED for probes that do not support degauss operations.

**Group**
Vertical

**Syntax**
CH<x>:PRObe:FORCEDRange <NR3>
CH<x>:PRObe:FORCEDRange?

**Arguments**
<NR3> specifies the range, which is probe specific.

**Returns**
This command returns 0.0 for probes that do not support forced range.

**CH<x>:PRObe:GAIN**

Sets or returns the gain factor for the probe attached to the channel specified by <x>, where x is the channel number. The "gain" of a probe is the output divided by the input transfer ratio. For example, a common 10x probe has a gain of 1.

**Group**
Vertical

**Syntax**
CH<x>:PRObe:GAIN <NR3>
CH<x>:PRObe:GAIN?

**Related Commands**
CH<x>:SCA1e

**Arguments**
<NR3> is the probe gain. Allowed values depend on the specific probe.

**Examples**
CH2:PROBE:GAIN? might return :CH2:PROBE:GAIN 0.1000E+00 indicating that the attached 10x probe delivers 1.0 V to the channel 2 BNC for every 10 V applied to the probe input.

**CH<x>:PRObe:ID? (Query Only)**

Returns the type and serial number of the probe attached to channel <x>, where x is the channel number.

**Group**
Vertical
Syntax  CH<x>:PRObe:ID?

Examples  CH2:PROBE:ID? might return :CH2:PROBE:ID:TYPE "10X"; SERNUMBER "N/A" indicating that a passive 10x probe of unknown serial number is attached to channel 2.

**CH<x>:PRObe:ID:SERNumber? (Query Only)**

Returns the serial number of the probe attached to channel <x>, where x is the channel number.

*NOTE. For Level 0 and 1 probes, the serial number will be ".".*

Group  Vertical

Syntax  CH<x>:PRObe:ID:SERNumber?

Examples  CH1:PROBE:ID:SERNUMBER? might return :CH1:PROBE:ID:SERNUMBER "B010289" indicating that the serial number of the probe attached to channel 1 is B010289.

**CH<x>:PRObe:ID:TYPE? (Query Only)**

Returns the type of probe attached to the channel specified by <x>, where x is the channel number. Level 2 (or higher) probes supply their exact product nomenclature; for Level 0 or 1 probes, a generic “No Probe Detected” message is returned.

*NOTE. Use the command CH<x>:YUNits to query the probe type – either “Voltage” or “Current”.*

Group  Vertical

Syntax  CH<x>:PRObe:ID:TYPE?

Examples  CH1:PROBE:ID:TYPE? might return :CH1:PROBE:ID:TYPE "P6203" indicating that P6203-type probe is attached to channel 1.
**CH<x>:PRObe:MODel**

Sets or returns the probe model for the specified channel. If a coded probe is attached or the specified model is not recognized, an error event is set. The argument must be a supported probe.

To find the list of supported probes, push the front-panel channel 1, 2, 3, or 4 button, then push the lower-menu More item as many times as needed to select Deskew. Push Probe Model on the side menu and turn knob a to help you read from the resulting list. Alternatively, you can push Test > Analysis > Deskew > Configure > Probe Model and read from the resulting list.

**Group** Vertical

**Syntax**

CH<x>:PRObe:MODel<String>
CH<x>:PRObe:MODel?

**CH<x>:PRObe:PROPDELay**

Sets or returns the propagation delay for the probe connected to the specified channel.

**Group** Vertical

**Syntax**

CH<x>:PRObe:PROPDELay<NR3>
CH<x>:PRObe:PROPDELay?

**Arguments**

<NR3> specifies the propagation time delay for the connected probe.

**Examples**

CH1:PROBE:PROPDELAY 100E-12 sets the CH1 propagation delay to 100 ps.

CH1:PROBE:PROPDELAY? might return :CH1:PROBE:PROPDELAY 1.1E-9 indicating that the CH1 propagation delay is set to 1.1 ns.

**CH<x>:PRObe:RECDESkew? (Query Only)**

Returns the recommended deskew for the probe connected to the specified channel.

**Group** Vertical
Syntax  CH<x>:PRObe:RECDESkew?

**CH<x>:PRObe:RESistance? (Query Only)**

Returns the resistance factor of the probe attached to channel <x>, where x is the channel number.

**Group**  Vertical

**Syntax**  CH<x>:PRObe:RESistance?

**Examples**  CH2:PROBE:RESISTANCE? might return :CH2:PROBE:RESISTANCE 10.0000E+6 indicating that the input resistance of the probe attached to Channel 2 is 1 MΩ.

**NOTE.** This query will return 0.0 if no probe is attached or the attached probe does not report the input resistance.

**CH<x>:PRObe:SIGnal**

Sets or returns the input bypass setting of a TekVPI probe attached to channel <x>, where x is the channel number. The probe must support input bypass, for example TCP0001. This command is ignored if sent to an unsupported probe.

**Group**  Vertical

**Syntax**  CH<x>:PRObe:SIGnal {BYPass|PASS}

**Arguments**  BYPass sets the probe to Bypass mode.

PASS sets the probe to Pass mode.

**CH<x>:PRObe:UNIts? (Query Only)**

Returns a string describing the units of measure for the probe attached to channel <x>, where x is the channel number.
NOTE. Use the command \texttt{CH<x>:YNits} to set the probe type to “Voltage” or “Current”.

**Group** Vertical

**Syntax** \texttt{CH<x>:PRObe:UNIts?}

**Examples** \texttt{CH4:PROBE:UNITS?} might return \texttt{CH4:PROBE:UNITS "V"}, indicating that the units of measure for the probe attached to channel 4 are volts.

**CH<x>:SCAle**

Sets or returns the vertical scale for the channel specified by \texttt{<x>}, where \texttt{x} is the channel number.

Each waveform has a vertical scale parameter. For a signal with constant amplitude, increasing the Scale causes the waveform to be displayed smaller. Decreasing the scale causes the waveform to be displayed larger.

Scale affects all waveforms, but affects channel waveforms differently from other waveforms:

- For channel waveforms, this setting controls the vertical size of the acquisition window as well as the display scale. The range and resolution of scale values depends on the probe attached and any other external factors you have specified.
- For reference and math waveforms, this setting controls the display only, graphically scaling these waveforms and having no affect on the acquisition hardware.

**Group** Vertical

**Syntax** \texttt{CH<x>:SCAle <NR3>}
\texttt{CH<x>:SCAle?}

**Related Commands** \texttt{CH<x>:OFFSet, CH<x>:POSition, REF<x>:VERTical:SCAle, MATH[1]:VERTical:SCAle}

**Arguments** \texttt{<NR3>} is the vertical channel scale in units-per-division. The value entered here is truncated to three significant digits.
Examples

CH4:SCALE 100E-03 sets the channel 4 scale to 100 mV per division.

CH2:SCALE? might return :CH2:SCALE 1.0000 indicating that the current scale setting of channel 2 is 1 V per division.

**CH<x>:TERmination**

Sets the connected-disconnected status of a 50 Ω resistor, which may be connected between the specified channel's coupled input and oscilloscope ground. The channel is specified by <x>. There is also a corresponding query that requests the termination parameter and translates this enumeration into one of the two float values.

**Group**
Vertical

**Syntax**

CH<x>:TERmination {FIFTy|SEVENTYFive|MEG|<NR3>}

CH<x>:TERmination?

**Arguments**

FIFTy sets the channel <x> input resistance to 50 Ω.

SEVENTYFive sets the channel <x> input resistance to 75 Ω.

MEG sets the channel <x> input resistance to 1 MΩ.

<NR3> specifies the channel <x> input resistance numerically.

**Examples**

CH4:TERMINATION 50.0E+0 establishes 50 Ω impedance on channel 4.

CH2:TERMINATION? might return :CH2:TERMINATION 50.0E+0 indicating that channel 2 is set to 50 Ω impedance.

**CH<x>:YUNits**

Sets or returns the units for the channel specified by <x>, where x is the channel number. String arguments are case insensitive and any unsupported units will generate an error.

Supported units are:


The vertical units affect the “Probe Type” that is shown in the “Probe Setup” menu:
- Setting CH<x>:YUNITs to “V” causes the probe type to be displayed as “Voltage”.
- When CH1:AMSVI:VOLTage:ENAbLe is set to OFF, setting CH<x>:YUNITs to “A” causes the probe type to be displayed as “Current”.
- Setting CH<x>:YUNITs to anything else causes the probe type not to be displayed (neither “Voltage” nor “Current” are highlighted).

**Group**  
Vertical

**Syntax**  
CH<x>:YUNITs <QString>
CH<x>:YUNITs?

**Arguments**  
QString is a string of text surrounded by quotes, specifying the supported units.

**CLEARMenu (No Query Form)**

Clears the current menu from the display. This command is equivalent to pressing the front panel Menu off.

**Group**  
Miscellaneous

**Syntax**  
CLEARMenu

**CLS (No Query Form)**

Clears the following:
- Event Queue
- Standard Event Status Register
- Status Byte Register (except the MAV bit)

If the *CLS command immediately follows an <EOI>, the Output Queue and MAV bit (Status Byte Register bit 4) are also cleared. The MAV bit indicates that information is in the output queue. The device clear (DCL) GPIB control message will clear the output queue and thus MAV. *CLS does not clear the output queue or MAV.

*CLS can suppress a Service Request that is to be generated by an *OPC. This will happen if a single sequence acquisition operation is still being processed when the *CLS command is executed.
### Commands Listed in Alphabetical Order

<table>
<thead>
<tr>
<th>Group</th>
<th>Status and Error</th>
</tr>
</thead>
<tbody>
<tr>
<td>Syntax</td>
<td>*CLS</td>
</tr>
<tr>
<td>Examples</td>
<td>*CLS clears the oscilloscope status data structures.</td>
</tr>
</tbody>
</table>

#### CONFIGuration:ADVMATH? (Query Only)

This query returns a boolean value to indicate whether the advanced math feature is present.

<table>
<thead>
<tr>
<th>Group</th>
<th>Configuration</th>
</tr>
</thead>
<tbody>
<tr>
<td>Syntax</td>
<td>CONFIGuration:ADVMATH?</td>
</tr>
<tr>
<td>Related Commands</td>
<td>MATH[1]:TYPE ADVanced</td>
</tr>
</tbody>
</table>
| Returns  | <NR1> = 1 if the advanced math feature is present.  
          | <NR1> = 0 if the advanced math feature is not present. |

#### CONFIGuration:ANALOg:GNDCPLG? (Query Only)

This query returns a boolean value to indicate whether the ground coupling feature for analog channels is present.

<table>
<thead>
<tr>
<th>Group</th>
<th>Configuration</th>
</tr>
</thead>
<tbody>
<tr>
<td>Syntax</td>
<td>CONFIGuration:ANALOg:GNDCPLG?</td>
</tr>
<tr>
<td>Related Commands</td>
<td>(See page 2-75, Vertical Command Group.)</td>
</tr>
</tbody>
</table>
| Returns  | <NR1> = 1 if the ground coupling feature is present.  
          | <NR1> = 0 if the ground coupling feature is not present. |
**CONFIGuration:ANALOg:MAXBANDWidth? (Query Only)**

This query returns the maximum bandwidth for analog channels.

**Group**  
Configuration

**Syntax**  
CONFIGuration:ANALOg:MAXBANDWidth?

**Related Commands**  
(See page 2-27, Horizontal Command Group.)

**Returns**  
<NR3>, which is a floating point number that represents the maximum bandwidth, in Hertz, for the analog channels.

**CONFIGuration:ANALOg:MAXSAMPLERate? (Query Only)**

This query returns the maximum sample rate for analog channels.

**Group**  
Configuration

**Syntax**  
CONFIGuration:ANALOg:MAXSAMPLERate?

**Related Commands**  
(See page 2-27, Horizontal Command Group.)

**Returns**  
<NR3>, which is a floating point number that represents the maximum sample rate, in samples per second, for the analog channels.

**CONFIGuration:ANALOg:NUMCHANnels? (Query Only)**

This query returns the number of analog channels.

**Group**  
Configuration

**Syntax**  
CONFIGuration:ANALOg:NUMCHANnels?

**Returns**  
<NR1>
**CONFIGuration:ANALOG:RECLENS? (Query Only)**

This query returns a comma-separated list of supported record lengths for the analog channels.

- **Group**: Configuration
- **Syntax**: `CONFIGuration:ANALOG:RECLENS?`
- **Related Commands**: (See page 2-27, *Horizontal Command Group.*)
- **Returns**: List of `<NR1>` values.

**CONFIGuration:ANALOG:VERTINVert? (Query Only)**

This query returns a boolean value to indicate whether the vertical invert feature for analog channels is present.

- **Group**: Configuration
- **Syntax**: `CONFIGuration:ANALOG:VERTINVert?`
- **Related Commands**: (See page 2-75, *Vertical Command Group.*)
- **Returns**: `<NR1> = 1` if the vertical invert feature is present.  
  `<NR1> = 0` if the vertical invert feature is not present.

**CONFIGuration:APPLICATIONs:LIMITMask? (Query Only)**

This query returns a boolean value to indicate whether the optional mask/limit test application feature is present. As the MSO/DPO3000 Series oscilloscopes do not support this feature, this query always returns 0.

- **Group**: Configuration
- **Syntax**: `CONFIGuration:APPLICATIONs:LIMITMask?`
**Returns** 0

**CONFIGuration:APPLlications:POWer? (Query Only)**

This query returns a boolean value to indicate whether the optional power application feature is present. (Enabling this feature requires installation of a DPO3PWR application module.)

**Group** Configuration

**Syntax** CONFIGuration:APPLlications:POWer?

**Related Commands** (See page 2-35, **Power Command Group**.)

**Returns** <NR1> = 1 if the power application feature is present.
<NR1> = 0 if the power application feature is not present.

**CONFIGuration:AUXIN? (Query Only)**

This query returns a boolean value to indicate whether the instrument has an auxiliary input.

**Group** Configuration

**Syntax** CONFIGuration:AUXIN?

**Related Commands** (See page 2-75, **Vertical Command Group**.)

**Returns** <NR1> = 1 if the instrument has an auxiliary input.
<NR1> = 0 if the instrument does not have an auxiliary input.

**CONFIGuration:BUSWAVEFORMS:AUDIO? (Query Only)**

This query returns a boolean value to indicate whether the optional audio bus triggering and analysis feature is present. (Enabling this feature requires installation of a DPO3AUDIO application module.)
Group: Configuration

Syntax: CONFIGuration:BUSWAVEFORMS:AUDIO?

Related Commands: (See page 2-13, Bus Command Group.)
(See page 2-57, Trigger Command Group.)
(See page 2-45, Search Command Group.)

Returns: <NR1> = 1 if the audio bus feature is present.
<NR1> = 0 if the audio bus feature is not present.

CONFIGuration:BUSWAVEFORMS:CAN? (Query Only)

This query returns a boolean value to indicate whether the optional CAN bus triggering and analysis feature is present. (Enabling this feature requires installation of a DPO3AUTO application module.)

Group: Configuration

Syntax: CONFIGuration:BUSWAVEFORMS:CAN?

Related Commands: (See page 2-13, Bus Command Group.)
(See page 2-57, Trigger Command Group.)
(See page 2-45, Search Command Group.)

Returns: <NR1> = 1 if the CAN bus feature is present.
<NR1> = 0 if the CAN bus feature is not present.

CONFIGuration:BUSWAVEFORMS:ETHERNET? (Query Only)

This query returns a boolean value to indicate whether the optional Ethernet triggering and analysis feature is present. As the MSO/DPO3000 Series oscilloscopes do not support this feature, this query always returns 0.

Group: Configuration
Commands Listed in Alphabetical Order

Syntax

CONFIGuration:BUSWAVEFORMS:ETHERNET?

Returns

0

**CONFIGuration:BUSWAVEFORMS:FLEXRAY? (Query Only)**

This query returns a boolean value to indicate whether the optional FlexRay bus triggering and analysis feature is present. (Enabling this feature requires installation of a DPO3FLEX application module.)

Group Configuration

Syntax CONFIGuration:BUSWAVEFORMS:FLEXRAY?

Related Commands (See page 2-13, *Bus Command Group.*)
(See page 2-57, *Trigger Command Group.*)
(See page 2-45, *Search Command Group.*)

Returns <NR1> = 1 if the FlexRay bus feature is present.
<NR1> = 0 if the FlexRay bus feature is not present.

**CONFIGuration:BUSWAVEFORMS:I2C? (Query Only)**

This query returns a boolean value to indicate whether the optional I2C bus triggering and analysis feature is present. (Enabling this feature requires installation of a DPO3EMBD application module.)

Group Configuration

Syntax CONFIGuration:BUSWAVEFORMS:I2C?

Related Commands (See page 2-13, *Bus Command Group.*)
(See page 2-57, *Trigger Command Group.*)
(See page 2-45, *Search Command Group.*)

Returns <NR1> = 1 if the I2C bus feature is present.
<NR1> = 0 if the I²C bus feature is not present.

**CONFIGuration:BUSWAVEFORMS:LIN? (Query Only)**

This query returns a boolean value to indicate whether the optional LIN bus triggering and analysis feature is present. (Enabling this feature requires installation of a DPO3AUTO application module.)

**Group**  
Configuration

**Syntax**  
CONFIGuration:BUSWAVEFORMS:LIN?

**Related Commands**  
(See page 2-13, *Bus Command Group.*)  
(See page 2-57, *Trigger Command Group.*)  
(See page 2-45, *Search Command Group.*)

**Returns**  
<NR1> = 1 if the LIN bus feature is present.  
<NR1> = 0 if the LIN bus feature is not present.

**CONFIGuration:BUSWAVEFORMS:MIL1553B? (Query Only)**

This query returns a boolean value to indicate whether the optional MIL-STD-1553 bus triggering and analysis feature is present. (Enabling this feature requires installation of a DPO3AERO application module.)

**Group**  
Configuration

**Syntax**  
CONFIGuration:BUSWAVEFORMS:MIL1553B?

**Related Commands**  
(See page 2-13, *Bus Command Group.*)  
(See page 2-57, *Trigger Command Group.*)  
(See page 2-45, *Search Command Group.*)

**Returns**  
<NR1> = 1 if the MIL-STD-1553 bus feature is present.  
<NR1> = 0 if the MIL-STD-1553 bus feature is not present.
**CONFIGuration:BUSWAVEFORMS:NUMBUS? (Query Only)**

This query returns the number of bus waveforms.

**Group**
Configuration

**Syntax**
CONFIGuration:BUSWAVEFORMS:NUMBUS?

**Returns**
<NR1>

**CONFIGuration:BUSWAVEFORMS:PARALLEL? (Query Only)**

This query returns a boolean value to indicate whether the parallel bus triggering and analysis feature is present. (This feature is only available for the MSO3000 Series oscilloscopes. Unlike other bus features, the parallel bus feature does not require an application module.)

**Conditions**

**Group**
Configuration

**Syntax**
CONFIGuration:BUSWAVEFORMS:PARALLEL?

**Related Commands**
(See page 2-13, Bus Command Group.)
(See page 2-57, Trigger Command Group.)
(See page 2-45, Search Command Group.)

**Returns**
<NR1> = 1 if the parallel bus feature is present.
<NR1> = 0 if the parallel bus feature is not present.

**CONFIGuration:BUSWAVEFORMS:RS232? (Query Only)**

This query returns a boolean value to indicate whether the optional RS232 bus triggering and analysis feature is present. (Enabling this feature requires installation of a DPO3COMP application module.)
**CONFIGuration:BUSWAVEFORMS:RS232? (Query Only)**

This query returns a boolean value to indicate whether the RS232 bus feature is present. (Enabling this feature requires installation of a DPO3EMBD application module.)

**Group**  
Configuration

**Syntax**  
CONFIGuration:BUSWAVEFORMS:RS232?

**Related Commands**  
(See page 2-13, Bus Command Group.)
(See page 2-57, Trigger Command Group.)
(See page 2-45, Search Command Group.)

**Returns**  
<NR1> = 1 if the RS232 bus feature is present.
<NR1> = 0 if the RS232 bus feature is not present.

**CONFIGuration:BUSWAVEFORMS:SPI? (Query Only)**

This query returns a boolean value to indicate whether the optional SPI bus triggering and analysis feature is present. (Enabling this feature requires installation of a DPO3EMBD application module.)

**Group**  
Configuration

**Syntax**  
CONFIGuration:BUSWAVEFORMS:SPI?

**Related Commands**  
(See page 2-13, Bus Command Group.)
(See page 2-57, Trigger Command Group.)
(See page 2-45, Search Command Group.)

**Returns**  
<NR1> = 1 if the SPI bus feature is present.
<NR1> = 0 if the SPI bus feature is not present.

**CONFIGuration:BUSWAVEFORMS:USB? (Query Only)**

This query returns a boolean value to indicate whether the USB bus triggering and analysis feature is present. As the MSO/DPO3000 Series oscilloscopes do not support this feature, this query always returns 0.

**Group**  
Configuration
Syntax       CONFIGuration:BUSWAVEFORMS:USB?

Returns      0

**CONFIGuration:BUSWAVEFORMS:USB:HS? (Query Only)**

This query returns a boolean value to indicate whether the high-speed USB bus triggering and analysis feature is present. As the MSO/DPO3000 Series oscilloscopes do not support this feature, this query always returns 0.

**Group**       Configuration

**Syntax**       CONFIGuration:BUSWAVEFORMS:USB:HS?

**Returns**      0

**CONFIGuration:DIGITAL:MAXSAMPLERate? (Query Only)**

This query returns the maximum sample rate for digital channels, in samples per second. If there are no digital channels, the value returned is 0.

**Group**       Configuration
Syntax  CONFIGuration:DIgITAl:MAXSAMPLerate?

Related Commands  (See page 2-27, Horizontal Command Group.)

Returns  <NR3>, which is a floating point number.

**CONFIGuration:DIgITAl:NUMCHANnels? (Query Only)**

This query returns the number of digital channels.

Group  Configuration

Syntax  CONFIGuration:DIgITAl:NUMCHANnels?

Related Commands  (See page 2-27, Horizontal Command Group.)

Returns  <NR1>

**CONFIGuration:EXTVIDEO? (Query Only)**

This query returns a boolean value to indicate whether the optional extended video trigger features are present. (Enabling this feature requires installation of a DPO3VID application module.)

Group  Configuration

Syntax  CONFIGuration:EXTVIDEO?

Related Commands  (See page 2-57, Trigger Command Group.)
(See page 2-45, Search Command Group.)

Returns  <NR1> = 1 if the extended video trigger features are present.
<NR1> = 0 if the extended video trigger features are not present.
**CONFIGuration:HISTOGRAM? (Query Only)**

This query returns a boolean value to indicate whether the histogram feature is present. As the MSO/DPO3000 Series oscilloscopes do not support this feature, this query always returns 0.

**Group**  
Configuration

**Syntax**  
CONFIGuration:HISTOGRAM?

**Returns**  
0

**CONFIGuration:NETWORKDRIVES? (Query Only)**

This query returns a boolean value to indicate whether network drives are present. As the MSO/DPO3000 Series oscilloscopes do not support this feature, this query always returns 0.

**Group**  
Configuration

**Syntax**  
CONFIGuration:NETWORKDRIVES?

**Returns**  
0

**CONFIGuration:NUMMEAS? (Query Only)**

This query returns the number of periodic measurements.

**Group**  
Configuration

**Syntax**  
CONFIGuration:NUMMEAS?

**Related Commands**  
(See page 2-30, Measurement Command Group.)

**Returns**  
<NR1>
**CONFIGuration:REFS:NUMREFS? (Query Only)**

This query returns the number of reference waveforms.

**Group**  
Configuration

**Syntax**  
CONFIGuration:REFS:NUMREFS?

**Related Commands**  
(See page 2-75, Vertical Command Group.)

**Returns**  
<NR1>

**CONFIGuration:RF:ADVTRIG? (Query Only)**

This query returns a boolean value to indicate whether the advanced RF trigger feature is present. As the MSO/DPO3000 Series oscilloscopes do not support this feature, this query always returns 0.

**Group**  
Configuration

**Syntax**  
CONFIGuration:RF:ADVTRIG?

**Returns**  
0

**CONFIGuration:RF:MAXBANDWidth? (Query Only)**

This query returns the maximum bandwidth, in Hertz, for RF channels. As the MSO/DPO3000 Series oscilloscopes do not support this feature, this query always returns 0.

**Group**  
Configuration

**Syntax**  
CONFIGuration:RF:MAXBANDWidth?

**Returns**  
0
CONFIGuration:RF:NUMCHANnels? (Query Only)

This query returns the number of RF channels present. As the MSO/DPO3000 Series oscilloscopes do not support this feature, this query always returns 0.

**Group**  
Configuration

**Syntax**  
CONFIGuration:RF:NUMCHANnels?

**Returns**  
0

CONFIGuration:ROSC? (Query Only)

This query returns a boolean value to indicate whether the external reference oscillator (ROSC) input is present.

**Group**  
Configuration

**Syntax**  
CONFIGuration:ROSC?

**Returns**  
<NR1> = 1 if a ROSC input is present.  
<NR1> = 0 if a ROSC input is not present.

CURSor?

Returns all of the current cursor settings.

**Group**  
Cursor

**Syntax**  
CURSor?

**Examples**  
CURSOR? might return the following as the current cursor settings:  
:CURSOR:FUNCTION SCREEN;HBARS:POSITION1 0.0000;POSITION2 0.0000;UNITS BASE;:CURSOR:MODE INDEPENDENT;VBARS:POSITION1 -19.0006E-6;POSITION2 -18.9994E-6;UNITS SECONDS
**CURSor:DDT? (Query Only)**

Returns the cursor deltaY/deltaT (dY/dT) readout.

**Conditions**  
This command requires a DPO3PWR application module.

**Group**  
Cursor

**Syntax**  
CURSor:DDT?

**Examples**  
CURSOR:DDT? might return :CURSOR:DDT -166.6670 indicating that the cursor dV/dt read out is -166.6670

---

**CURSor:FUNCTion**

Sets or returns the cursor type. Cursors are attached to the selected waveform in Waveform mode and are attached to the display area in Screen mode.

**Group**  
Cursor

**Syntax**  
CURSor:FUNCTion {OFF|SCREEN|WAVEform}  
CURSor:FUNCTion?

**Arguments**  
OFF removes the cursors from the display but does not change the cursor type.  
SCREEN specifies both horizontal and vertical bar cursors, which measure the selected waveform in horizontal and vertical units. Use these cursors to measure anywhere in the waveform display area.  
WAVEform specifies paired cursors in YT display format for measuring waveform amplitude and time. In XY and XYZ format, these cursors indicate the amplitude positions of an XY pair (Ch1 vs Ch2 voltage, where Ch1 is the X axis and Ch2 is the Y axis) relative to the trigger.

**Examples**  
CURSOR:FUNCTION WAVEFORM selects the paired cursors for measuring waveform amplitude and time.  
CURSOR:FUNCTION? might return :CURSOR:FUNCTion SCREEN indicating that the screen cursors are currently selected.
CURSor:HBArs? (Query Only)

Returns the current settings for the horizontal bar cursors.

Group  Cursor

Syntax  CURSor:HBArs?

Examples  CURSOR:HBARS? might return the horizontal bar setting as :CURSOR:HBARS:POSITION1 320.0000E-03;POSITION2-320.0000E-03;UNITS BASE

CURSor:HBArs:DELTa? (Query Only)

Returns the vertical difference between the two horizontal bar cursors.

Group  Cursor

Syntax  CURSor:HBArs:DELTa?

Related Commands  CURSor:HBArs:UNIts

Returns  A floating point value with an exponent.

Examples  CURSOR:HBARS:DELTA? might return :CURSOR:HBARS:DELTA 5.0800E+00 indicating that the difference between the two cursors is 5.08.

CURSor:HBArs:POSITION<x>

Sets or returns the horizontal bar cursor position relative to ground, which is expressed in vertical units (usually volts). The cursor is specified by x, which can be 1 or 2.

Group  Cursor

Syntax  CURSor:HBArs:POSITION<x> <NR3> CURSor:HBArs:POSITION<x>?
Related Commands  CURSor:FUNCtion

Arguments  <NR3> specifies the cursor position relative to ground.

Examples  CURSOR:HBARS:POSITION1 25.0E-3 positions Cursor 1 of the horizontal cursors at 25 mV.
  CURSOR:HBARS:POSITION2? might return :CURSOR:HBARS:POSITION2 -64.0000E-03 indicating that Cursor 2 of the horizontal bar cursors is at -64 mV.

CURSor:HBARS:UNIts

Sets or returns the units for the horizontal bar cursors.

Group  Cursor

Syntax  CURSor:HBARS:UNIts {BASE|PERcent}
  CURSor:HBARS:UNIts?

Arguments  BASE selects the vertical units for the selected waveform.
  PERcent selects ratio cursors.

Examples  CURSOR:HBARS:UNITS might return :CURSOR:HBARS:UNITS BASE indicating that the units for the horizontal bar cursors are base.

CURSor:HBARS:USE (No Query Form)

Sets the horizontal bar cursor measurement scale. This command is only applicable when ratio cursors are on.

Group  Cursor

Syntax  CURSor:HBARS:USE {CURrent|HALFgrat}

Related Commands  CURSor:HBARS:UNIts

Arguments  CURrent sets the H Bar measurement scale so that 0% is the current position of the lowest H Bar cursor and 100% is the current position of the highest H Bar cursor.
HALFgrat sets H Bar measurement scale so that half the screen major divisions (four on the DPO3000) is 100%, where 0% is -2 divisions and 100% is +2 divisions from the center horizontal graticule.

Examples
CURSOR:HBARS:USE HALFGRAT sets the H Bar measurement scale so that four screen major divisions equals 100%.

CURSor:MODe

Sets or returns whether the two cursors move linked together in unison or separately. This applies to the Waveform cursors display mode.

Conditions
This command is only applicable when waveform cursors are displayed.

Group
Cursor

Syntax
CURSor:MODe {TRACk|INDependent}
CURSor:MODe?

Arguments
TRACK ties the navigational functionality of the two cursors together. For cursor 1 adjustments, this ties the movement of the two cursors together; however, cursor 2 continues to move independently of cursor 1.

INDependent allows independent adjustment of the two cursors.

Examples
CURSOR:MODE TRACK specifies that the cursor positions move in unison.
CURSOR:MODE? might return :CURSOR:MODE TRACK indicating that the two cursors move in unison.

CURSor:VBArs? (Query Only)

Returns the current settings for the vertical bar cursors.

Group
Cursor

Syntax
CURSor:VBArs?
Examples
CURSOR:VBARS? might return the following vertical bar settings:
:CURSOR:VBARS:UNITS SECONDS; POSITION1 1.0000E-06; POSITION2 9.0000E-06

CURSor:VBAr:s:ALTERNATE<x>? (Query Only)
Returns the alternate readout for the waveform (Vbar) cursors specified by <x>. This alternate readout is in effect for a bus or digital waveform.

Group Cursor
Syntax CURSor:VBAr:s:ALTERNATE<x>?  
Arguments
X = 1 specifies vertical bar cursor1.
X = 2 specifies vertical bar cursor2.

CURSor:VBAr:s:DELTA? (Query Only)
Returns the horizontal difference between the two vertical bar cursors. The units are specified by the CURSor:VBAr:s:UNIts command.
This is equivalent to watching the cursor readout in the display while using the appropriate cursor mode.

Group Cursor
Syntax CURSor:VBAr:s:DELTA?
Related Commands CURSor:VBAr:s:UNIts
Returns <NR3>
Examples CURSOR:VBARS:DELTA? might return CURSOR:VBARS:DELTA 1.0640E+00 indicating that the time between the vertical bar cursors is 1.064 s.

CURSor:VBAr:s:HPOS<x>? (Query Only)
Returns the vertical value of the specified vertical bar ticks for cursor <x>. 

Commands Listed in Alphabetical Order

Group: Cursor

Syntax: `CURSor:VBArs:HPOS<x>?`

Related Commands: `CURSor:VBArs:UNIts`

Arguments: `<x>` specifies the cursor. Valid values are 1 and 2.

Returns: `<NR3>` indicates the value of one of the ticks. The units are the same as used in the selected waveform.

Examples: `CURSor:VBArs:HPOS2?` might return `CURSOR:VBARS:HPOS2 100E-3`, indicating that the waveform value where the cursor intersects it is 0.100.

**CURSor:VBArs:POSITION<x>**

Sets or returns the horizontal position for the specified vertical bar cursor. The cursor is specified by `<x>`, which can be 1 or 2. Values are with respect to trigger position or the zero reference point for the designated waveform (if horizontal units are not set to time). Use the `CURSor:VBArs:UNIts` command to specify units.

Group: Cursor

Syntax: `CURSor:VBArs:POSITION<x> <NR3>`
`CURSor:VBArs:POSITION<x>?`

Related Commands: `CURSor:VBArs:UNIts`

Arguments: `<NR3>` specifies the cursor position.

Returns: A floating point value with an exponent.

Examples: `CURSor:VBArs:POSITION2 9.00E-6` positions the cursor2 vertical bar cursor at 9 ms.
CURSor:VBAr:s:POSITION1? this command might return
:CURSOR:VBARS:POSITION1 1.0000E-06 indicating that the
cursor1 vertical bar is positioned at 1 μs.

**CURSor:VBAr:s:UNItS**

Sets or returns the units for the vertical bar cursors.

**Group**  Cursor

**Syntax**  CURSor:VBAr:s:UNItS {SEConds|HERtz|DEGrees|PERcent}
CURSor:VBAr:s:UNItS?

**Arguments**  SEConds sets the units of the vertical bar cursors for the time domain (seconds).
HERtz sets the units of the vertical bar cursors for the frequency domain (Hertz).
DEGrees sets the units to degrees for measuring phase.
PERcent sets the units to percent for use with ratio cursors.

**Returns**  SECONDS, HERTZ, DEGREES, or PERCENT, depending on the current vertical bar cursor units.

**Examples**  CURSOR:VBARS:UNITS HERTZ sets the units of the VBar:s cursors to 1/seconds.
CURSOR:VBARS:UNITS? might return :CURSOR:VBARS:UNITS SECONDS indicating that the units for the vertical bar cursor are currently set to seconds.

**CURSor:VBAr:s:USE (No Query Form)**

Sets the vertical bar cursor measurement scale.

**Conditions**  This command is only applicable when ratio cursors are on.

**Group**  Cursor

**Syntax**  CURSor:VBAr:s:USE {CURrent|HALFgrat}

**Related Commands**  CURSor:VBAr:s:UNItS
**Arguments**

`CURRENT` sets the V Bar measurement scale so that 0% is the current position of the left-most V Bar cursor and 100% is the current position of the right-most V Bar cursor.

`HALFgrat` resets the ratio range to the default positions on the screen, half of the number of horizontal divisions (four on the MSO/DPO3000), from 25% to 75% of the screen.

**Examples**

`CURSOR:VBARS:USE CURRENT` sets the V Bar measurement scale to use the current cursor positions as 0% and 100% of scale if units are set to %.

---

**CURSor:VBArS:VDELTa? (Query Only)**

Returns the vertical difference between the two vertical bar cursor ticks.

**Group**

Cursor

**Syntax**

`CURSor:VBArS:VDELTa?`

**Related Commands**

`CURSor:HBArs:UNIts`

**Returns**

<NR3> indicates the vertical difference between the two vertical bar cursors' ticks.

**Examples**

`CURSOR:VBARS:VDELTA?` might return `CURSOR:VBARS:VDELTA 1.064E+0`, indicating that the vertical difference between the vertical bar cursors ticks is 1.064 units.

---

**CURSor:XY:POLar:RADIUS:DELta? (Query Only)**

Returns the difference between the cursors X radius and the cursor Y radius ($\Delta Y$, $\Delta X$). The ratio is calculated as $(\text{cursor 2 Y} - \text{cursor 1 Y}) \div (\text{cursor 2 X} - \text{cursor 1 X})$.

**Group**

Cursor

**Syntax**

`CURSor:XY:POLar:RADIUS:DELta?`

---

**CURSor:XY:POLar:RADIUS:POSITION<x>? (Query Only)**

Returns the polar radius for the specified cursor, where x can be either 1 or 2.
Commands Listed in Alphabetical Order

**Group**  Cursor

**Syntax**  CURSor:XY:POLar:RADIUS:POSITION<x>?

**CURSor:XY:POLar:RADIUS:UNIts? (Query Only)**

Returns the polar radius units.

**Group**  Cursor

**Syntax**  CURSor:XY:POLar:RADIUS:UNIts?

**CURSor:XY:POLar:THETA:DELta? (Query Only)**

Returns the XY cursor polar angle delta.

**Group**  Cursor

**Syntax**  CURSor:XY:POLar:THETA:DELta?

**CURSor:XY:POLar:THETA:POSITION<x>? (Query Only)**

Returns the cursor X or cursor Y polar coordinate, where x is either 1 or 2.

**Group**  Cursor

**Syntax**  CURSor:XY:POLar:THETA:POSITION<x>?

**CURSor:XY:POLar:THETA:UNIts? (Query Only)**

Returns the cursor coordinate units.

**Group**  Cursor

**Syntax**  CURSor:XY:POLar:THETA:UNIts?
CURSor:XY:PRODUCT:DELta? (Query Only)

Returns the difference between the cursors X position and cursor Y position. The \( \Delta X \times \Delta Y \) value is calculated as \((X_2 - X_1) \times (Y_2 - Y_1)\).

**Group**  
Cursor

**Syntax**  
CURSor:XY:PRODUCT:DELta?

CURSor:XY:PRODUCT:POSITION<x>? (Query Only)

Returns the position of the X or Y cursor used to calculate the \(X \times Y\) cursor measurement, Position 1 = \((X_1 \times Y_1)\); Position 2 = \((X_2 \times Y_2)\). The cursor is specified by \(x\), which can be 1 or 2.

**Group**  
Cursor

**Syntax**  
CURSor:XY:PRODUCT:POSITION<x>?

CURSor:XY:PRODUCT:UNIts? (Query Only)

Returns the XY cursor product units.

**Group**  
Cursor

**Syntax**  
CURSor:XY:PRODUCT:UNIts?

CURSor:XY:RATIO:DELta? (Query Only)

Returns the ratio of the difference between the cursors X position and cursor Y position \(\Delta Y, \Delta X\). The ratio is calculated as \((Y_2 - Y_1) / (X_2 - X_1)\).

**Group**  
Cursor

**Syntax**  
CURSor:XY:RATIO:DELta?
**CURSor:XY:RATIO:POSITION<x>? (Query Only)**

Returns the X (horizontal) or Y (vertical) position for the specified cursor, which can be 1 (X) or 2 (Y). The ratio is calculated as Position 1 = (Y1/X1); Position 2 = (Y2/X2).

**Group**  
Cursor

**Syntax**  
`CURSor:XY:RATIO:POSITION<x>`?

---

**CURSor:XY:RATIO:UNIts? (Query Only)**

Returns the cursor X and cursor Y units for the ratio measurement.

**Group**  
Cursor

**Syntax**  
`CURSor:XY:RATIO:UNIts?`

---

**CURSor:XY:READOUT**

Sets or returns the XY cursor readout selection. This command is useful for oscilloscope models with limited display room. Oscilloscopes with sufficient display, such as the DPO/MSO4000 series, show all the readouts simultaneously.

**Group**  
Cursor

**Syntax**  
`CURSor:XY:READOUT {RECTangular|POLAR Cord|PRODUCT|RATIO}`

**Arguments**  
- **RECTangular** specifies the XY readout as rectangular coordinates.
- **POLAR Cord** specifies the XY readout as polar coordinates.
- **PRODUCT** specifies the XY readout in X*Y format.
- **RATIO** specifies the XY readout in X:Y format.

**CURSor:XY:RECTangular:X:DELta? (Query Only)**

Returns the cursor X delta value in rectangular coordinates.
**CURSor:XY:RECTangular:X:POSITION<x>**

Sets or returns the X rectangular coordinate for cursor 1 or cursor 2. The cursor is specified by x and can be either 1 or 2.

**ARGUMENTS**

<NR3> is the coordinate in volts.

**CURSor:XY:RECTangular:X:UNIts? (Query Only)**

Returns the cursor X rectangular units.

**CURSor:XY:RECTangular:Y:DELta? (Query Only)**

Returns the cursor Y delta value in rectangular coordinates.

**CURSor:XY:RECTangular:Y:POSITION<x>**

Sets or returns the Y rectangular coordinate for cursor 1 or cursor 2. The cursor is specified by x and can be either 1 or 2.
Group  Cursor

Syntax  CURSor:XY:RECTangular:Y:POSITION<x> <NR3>
CURSor:XY:RECTangular:Y:POSITION<x>?

Arguments  <NR3> is the coordinate in volts.

CURSor:XY:RECTangular:Y:UNIts? (Query Only)

Returns the cursor Y rectangular units.

Group  Cursor

Syntax  CURSor:XY:RECTangular:Y:UNIts?

CURVe

The CURVe command transfers the waveform data points TO the oscilloscope's internal reference memory location (REF1–4), which is specified by the DATA:DESTination command. The CURVe? query transfers data FROM the oscilloscope; the source waveform is specified by the DATA:SOURCE command. The first and last data points are specified by the DATA:START and DATA:STOP commands.

Associated with each waveform transferred using the CURVe command or query is a waveform preamble that provides the data format, scale and associated information needed to interpret the waveform data points. The preamble information for waveforms sent TO the oscilloscope is specified using the WFMInpre commands. The preamble information for waveforms transferred FROM the oscilloscope is specified or queried using the WFMOutpre commands. If the waveform is not displayed, the query form generates an error.

The CURVe command and CURVe? query transfer waveform data in ASCII or binary format. ASCII data is sent as a comma-separated list of decimal values. Binary data is sent with the IEEE488.2 binary block header immediately followed by the binary data. The IEEE488.2 binary block header is defined as follows:

#N<N-digits>

where: N is a single decimal or hexadecimal digit indicating the number of digits to follow. <N-digits> are the decimal digits representing the number of bytes in the data that immediately follows this binary block header.

The Waveform Transfer command group text contains more comprehensive information. (See page 2-78, Waveform Transfer Command Group.)
NOTE. In order to guarantee that the waveform data returned from CURVe? queries of multiple waveforms are correlated to the same acquisition, you should use single sequence acquisition mode to acquire the waveform data from a single acquisition. Single sequence acquisition mode is enabled using ACQuire:STOPAfter SEQuence.

NOTE. For command sequence examples, see Appendix D. (See page D-1, Waveform Transfer (WFMOutpre and CURVe Query) Examples.)

Example 1: Analog Waveform (channel 1 - 4)
Example 2: Digital Waveform (channel DO-D15)
Example 3: The Digital Collection with 4 Bytes Per Point with MagniVu Off
Example 4: The Digital Collection with 8 Bytes Per Point with MagniVu Off
Example 5: The Digital Collection with 4 Bytes Per Point with MagniVu On
Example 6: The Digital Collection with 8 Bytes Per Point with MagniVu On

<table>
<thead>
<tr>
<th>Group</th>
<th>Waveform Transfer</th>
</tr>
</thead>
<tbody>
<tr>
<td>Syntax</td>
<td>CURve {&lt;block&gt;</td>
</tr>
<tr>
<td></td>
<td>CURve?</td>
</tr>
<tr>
<td>Related Commands</td>
<td>DATa:DESTination</td>
</tr>
<tr>
<td></td>
<td>DATa:ENCdg</td>
</tr>
<tr>
<td></td>
<td>DATa:SOURce</td>
</tr>
<tr>
<td></td>
<td>DATa:STARt</td>
</tr>
<tr>
<td></td>
<td>DATa:STOP</td>
</tr>
<tr>
<td></td>
<td>WFMInpre?</td>
</tr>
<tr>
<td></td>
<td>WFMOutpre?</td>
</tr>
<tr>
<td></td>
<td>ACQuire:MODe</td>
</tr>
<tr>
<td>Arguments</td>
<td>&lt;block&gt; is the waveform data in binary format. The waveform is formatted as follows:</td>
</tr>
<tr>
<td></td>
<td>&lt;IEEE488.2 binary block header&gt;&lt;data&gt;&lt;newline&gt;</td>
</tr>
</tbody>
</table>
<IEEE488.2 binary block> is the header, which is defined as #N<N-digits>

N is a single decimal or hexadecimal digit indicating the number of digits to follow.

<N-digits> are the decimal digits representing the number of bytes in the data that immediately follows this binary block header. (Use the WFMInpre:BYT_Nr command to set the width for waveforms transferred into the oscilloscope. Use WFMOutpre:BYT_Nr to set the width for waveforms transferred out from the oscilloscope.)

<data> is the curve data.

<newline> is a single byte new line character at the end of the data.

<asc curve> is the waveform data in ASCII format. The format for ASCII data is <NR1>[,<NR1>...], where each <NR1> represents a data point.

Examples

CURVe 0,1,4,32,-120 ... — This command sends ASCII data values to the specified destination reference waveform (DATa:DESTination).

CURVe #510000<10000 binary bytes> — This command sends 10,000 binary data bytes to the specified destination reference waveform (DATa:DESTination).

CURVe? with ASCII encoding, START and STOP of 1 and 10 respectively, and a width set to 1 might return :CURVe 61,62,61,60,60,-59,-59,-58,-58,-59

CURVe? with ASCII encoding, START and STOP of 1 and 5 respectively, and DATa:SOURce set to RF_NORMal might return :CURVe 1.20635E-11,6.30522E-12,1.46334E-11,8.97143E-12,4.87173E-12.

NOTE. Curve data is transferred from the oscilloscope asynchronously, depending on the length of the curve record. Such transfers may require several seconds to complete. During this period, the oscilloscope will not respond to the user controls. You can interrupt these asynchronous data transfers by sending a device clear message to the oscilloscope or by interrupting the query with another command or query. In order to verify that curve data has been completely transferred, it is recommended that you follow such queries with an *ESR? query to verify there are no error bits set. You can also check the event queue to determine the cause of the error, if any. If the error was caused by an interrupted query, then the asynchronous data transfer was not complete when the *ESR? query was sent. In such cases, it may be necessary to increase the program's time-out value to ensure that all data is transferred and read.

DATa

These commands specify the format and location of waveform data that is transferred using the CURVe command, or return the format and location of the
waveform data that is transferred with the CURVe? query. You can use the INIT
argument to reset all of the DATa parameters to default values. (Note that the *RST
and FACTory commands do not reset the DATa parameters.) You can use the
SNap argument to automatically set the DATa:STARt and DATa:STOP values to
the starting and stopping point of the waveform cursors (if on). Note that setting
DATa:STARt and DATa:STOP automatically sets WFMOutpre:NR_Pt.

(See page 2-78, Waveform Transfer Command Group.)

**Group**
Waveform Transfer

**Syntax**
DATa {INIT|SNap}
DATa?

**Related Commands**
CURVe,
DATa:STARt,
DATa:STOP,
DATa:ENCdg,
WFMInpre:NR_Pt,
WFMOutpre:NR_Pt?

**Arguments**
INIT initializes the waveform data parameters to their factory defaults except for
DATa:STOP, which is set to the current acquisition record length. The data
waveform preamble parameters are initialized to the following values:

:DATa:SOUrce CH1
:DATa:DESTination REF1

:WFMInpre:BYT_NR 1
:WFMInpre:BIT_NR 8
:WFMInpre:ENCDG BINARY
:WFMInpre:BN_FMT RI
:WFMInpre:BYT_OR MSB
:WFMInpre:PT_FMT Y

:WFMOutpre:BYT_NR 1
:WFMOutpre:BIT_NR 8
Commands Listed in Alphabetical Order

:WFMOutpre:ENCDG BINARY
:WFMOutpre:BN_FMT RI
:WFMOutpre:BYT_OR MSB
:WFMOutpre:NR_PT <current acquisition record length>
:WFMOutpre:PT_FMT Y

SNAP sets DATa:STARt and DATa:STOP to match the current waveform cursor positions.

**Examples**

DATA? might return :DATA:DESTINATION REF1:ENCDG RIBINARY;SOURCE CH1;START 1;STOP 500;WIDTH 1

DATA INIT initializes the waveform data parameters to their factory defaults.

**DATa:DESTination**

This command specifies the reference memory location (REF1–4) for storing waveform data transferred into the oscilloscope using the CURVe command.

(See page 2-78, *Waveform Transfer Command Group*.)

**Group** Waveform Transfer

**Syntax**

DATa:DESTination REF<x>
DATa:DESTination?

**Related Commands** CURVe

**Arguments**

REF<x> is the reference location where the waveform will be stored.

**Examples**

DATA:DESTINATION? might return :DATA:DESTINATION REF3 indicating that reference 3 is the currently selected reference memory location for incoming waveform data. DATA:DESTINATION REF1 indicates that incoming waveform data be stored in reference 1.

**DATa:ENCdg**

This command specifies the encoding format for outgoing waveform data. This command is equivalent to setting WFMOutpre:ENCdg, WFMOutpre:BN_Fmt,
and WFMOutpre:BYT_Or. Setting the DATa:ENGdg value causes the corresponding WFMOutpre values to be updated.

**NOTE.** This command and query does not apply to incoming waveform data.

(See page 2-78, *Waveform Transfer Command Group.*)

(See page D-1, *Waveform Transfer (WFMOutpre and CURVe Query) Examples.*)

**Group**  
Waveform Transfer

**Syntax**  

```
DATa:ENCdg
{ASCIi|FAStest|RIBinary|RPBinary|SRIBinary|SRPbinary}
```

```
DATa:ENCdg?
```

**Related Commands**  
WFMOutpre:ENCdg,

WFMOutpre:BN_Fmt,

WFMOutpre:BYT_Or

**Arguments**  

ASCIi specifies to use ASCII encoding for the waveform data queried using the CURVe? query. Data values are returned as signed decimal integers for analog channel data, or hexadecimal values for Digital Collection data with 4 or 8 bytes per point. The maximum number of ASCII data points that can be queried using the CURVe? query is 1 million points. If more than 1 million points are desired, you must use one of the binary encodings. If ASCII is the value, then BN_Fmt and BYT_Or are ignored.

FAStest specifies the encoding which results in the fastest waveform data transfer rate. This sets the following: WFMOutpre:ENCdg BINary, WFMOutpre:BIN_Fmt RI and WFMOutpre:BYT_Or MSB.

RIBinary specifies the signed integer data point format, with the most significant byte transferred first.

When DATa:WIDTH is set to 1, the range is from -128 through 127. When DATa:WIDTH is 2, the range is from -32,768 through 32,768. Center screen is 0 (zero). The upper limit is the top of the screen and the lower limit is the bottom of the screen. The default encoding is RIBINARY. This sets the following: WFMOutpre:ENCdg BINary, WFMOutpre:BN_Fmt RI and WFMOutpre:BYT_Or MSB.

RPBinary specifies the positive integer data-point representation, with the most significant byte transferred first.
When BYT_Nr is 1, the range of data values is 0 through 255. When BYT_Nr is 2, the range of data values is 0 to 65,535. The center of the screen is 127 for 1-byte data and is 32768 for 2-byte data. The upper limit is the top of the screen and the lower limit is the bottom of the screen. This sets the following: :WFMOutpre:ENCdg BINary,:WFMOutpre:BN_Fmt RP and WFMOutpre:BYT_Or MSB.

SRIbinary specifies the signed integer format. It is the same as RIBinary except that the byte order is swapped, meaning that the least significant byte is transferred first. This sets the following: WFMOutpre:ENCdg BINary, WFMOutpre:BIN_Fmt RI and WFMOutpre:BYT_Or LSB.

SRPbinary specifies the positive integer format. It is the same as RPBinary except that the byte order is swapped, meaning that the least significant byte is transferred first. This sets the following: WFMOutpre:ENCdg BINary, WFMOutpre:BN_Fmt RP and WFMOutpre:BYT_Or LSB.

Table 2-42: DATa and WFMOutpre Parameter Settings

<table>
<thead>
<tr>
<th>DATa:ENCdg Setting</th>
<th>WFMOutpre Settings</th>
<th>:ENCdg</th>
<th>:BN_Fmt</th>
<th>:BYT_Or</th>
<th>:BYT_NR</th>
</tr>
</thead>
<tbody>
<tr>
<td>ASCii</td>
<td>ASC</td>
<td>N/A</td>
<td>N/A</td>
<td></td>
<td>1,2,4,8</td>
</tr>
<tr>
<td>FASTest</td>
<td>BIN</td>
<td>RI</td>
<td>MSB</td>
<td>1,2</td>
<td></td>
</tr>
<tr>
<td>RIBinary</td>
<td>BIN</td>
<td>RI</td>
<td>MSB</td>
<td>1,2</td>
<td></td>
</tr>
<tr>
<td>RPBinary</td>
<td>BIN</td>
<td>RP</td>
<td>MSB</td>
<td>1,2</td>
<td></td>
</tr>
<tr>
<td>SRIbinary</td>
<td>BIN</td>
<td>RI</td>
<td>LSB</td>
<td>1,2</td>
<td></td>
</tr>
<tr>
<td>SRPbinary</td>
<td>BIN</td>
<td>RP</td>
<td>LSB</td>
<td>1,2</td>
<td></td>
</tr>
<tr>
<td>FPBinary</td>
<td>BIN</td>
<td>FP</td>
<td>MSB</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>SFPbinary</td>
<td>BIN</td>
<td>FP</td>
<td>LSB</td>
<td>4</td>
<td></td>
</tr>
</tbody>
</table>

Examples

DATA:ENCDG? might return :DATa:ENCDG SRPBINARY for the format of the outgoing waveform data.

DATA:ENCDG RPBinary sets the data encoding format to be a positive integer where the most significant byte is transferred first.

DATa:SOUrce

This command specifies the source waveform to be transferred from the oscilloscope using the CURve? query. The valid waveform sources are CH1-CH4, MATH, REF1-REF4, D0-D15, or DIGital. Setting DATa:SOUrce automatically constrains the following to valid values for the specified source waveform: WFMOutpre:BYT_Nr, WFMOutpre:BIT_Nr and WFMOutpre:BN_Fmt.

(See page 2-78, Waveform Transfer Command Group.)
Group

Waveform Transfer

Syntax

```
DATa:SOURce
{CH1|CH2|CH3|CH4|MATH|REF1|REF2|REF3|REF4|D0|D1|D2|D3
 |D4|D5|D6|D7|D8|D9|D10|D11|D12|D13|D14|D15|DIGital}
```

`DATa:SOURce?`

Related Commands

CURVe

Arguments

CH1–CH4 specifies which analog channel waveform data will be transferred from the oscilloscope to the controller, channels 1 through 4.

MATH specifies that the Math waveform data will be transferred from the oscilloscope to the controller.

REF1–REF4 specifies which Reference waveform data will be transferred from the oscilloscope to the controller.

D0–D15 specifies which digital channel waveform data will be transferred from the oscilloscope to the controller. (MSO models only)

DIGital specifies that the Digital Collection waveform data will be transferred from the oscilloscope to the controller. (MSO models only)

Examples

`DATA:SOURCE?` might return `:DATA:SOURCE REF3` indicating that the source for the waveform data which is transferred using a CURVe? query is reference 3.

`DATA:SOURCE CH1` specifies that the CH1 waveform will be transferred in the next CURVe? query.

**DATa:STARt**

This command specifies the starting data point for incoming or outgoing waveform transfer using the CURVe command or query. (Use `DATa:STOP` to specify the ending data point.) You can set the `DATa:START` and `DATa:STOP` values automatically to the starting and stopping points of the waveform cursors, if on, using `DATa SNAP`. Note that setting `DATa:START` and `DATa:STOP` automatically sets `WFMOutpre:NR_Pt`.

(See page 2-78, *Waveform Transfer Command Group*.)

Group

Waveform Transfer
Commands Listed in Alphabetical Order

Syntax

DATa:STARt <NR1>
DATa:STARt?

Related Commands

CURVe,
DATa,
DATa:STOP,
WFMImpre:NR_Pt,
WFMOutpre:NR_Pt?

Arguments

<NR1> is the first data point that will be transferred, which ranges from 1 to the record length. Data will be transferred from <NR1> to DATa:STOP or the record length, whichever is less. If <NR1> is greater than the record length, the last data point in the record is transferred.

DATa:STARt and DATa:STOP are order independent. When DATa:STOP is greater than DATa:STARt, the values will be swapped internally for the CURVe? query.

Examples

DATA:START? might return :DATA:START 214 indicating that data point 214 is the first waveform data point that will be transferred.

DATA:START 10 specifies that the waveform transfer will begin with data point 10.

DATa:STOP

This command specifies the final data point that will be transferred when using the CURVe command or query for incoming or outgoing waveform transfer. (Use DATa:START to specify the starting data point.)

NOTE. The oscilloscope automatically adjusts the DATa:START and DATa:STOP values for CURVe queries when the DATa:STOP value is less than the DATa:START value, and also when the DATa:START and/or DATa:STOP values are greater than the record length of the source waveform. The adjusted DATa:START and DATa:STOP values determine WFMOutpre:NR_Pt.

You can set the DATa:START and DATa:STOP values to automatically to the starting and stopping points of the waveform cursors, if on, using the DATa command with the SNap argument. Note that setting DATa:START and DATa:STOP automatically sets WFMOutpre:NR_Pt.

Changes to the record length value are not automatically reflected in the DATa:STOP value. As record length is varied, the DATa:STOP value must be
explicitly changed to ensure the entire record is transmitted. In other words, curve results will not automatically and correctly reflect increases in record length if the difference of \texttt{DATa:START} and \texttt{DATa:STOP} remains smaller than the increased record length. Note that \texttt{DATa:STOP} can be larger than the record length. (Use \texttt{WFMOutpre:NR_Pt?} to find how many samples are available.)

(See page 2-78, *Waveform Transfer Command Group*.)

**Group**: Waveform Transfer

**Syntax**

\[
\text{DATa:STOP <NR1>}
\]

\[
\text{DATa:STOP?}
\]

**Related Commands**

\texttt{CURVe, DATa, DATa:START, WFMInpre:NR_Pt, WFMOutpre:NR_Pt?}

**Arguments**

\(<\text{NR1}>\) is the last data point that will be transferred, which ranges from 1 to the record length. If \(<\text{NR1}>\) is greater than the record length, then data will be transferred up to the record length. If both \texttt{DATa:START} and \texttt{DATa:STOP} are greater than the record length, the last data point in the record is returned.

\texttt{DATa:START} and \texttt{DATa:STOP} are order independent. When \texttt{DATa:STOP} is less than \texttt{DATa:START}, the values will be swapped internally for the \texttt{CURVe?} query.

If you always want to transfer complete waveforms, set \texttt{DATa:START} to 1 and \texttt{DATa:STOP} to the record length of the source waveform, or larger.

**Examples**

\texttt{DATA:STOP?} might return \texttt{DATA:STOP 14900} indicating that 14900 is the last waveform data point that will be transferred.

\texttt{DATA:STOP 15000} specifies that the waveform transfer will stop at data point 15000.

**DATa:WIDth**

This command specifies the width, in bytes per point, for waveform data transferred from the scope via the \texttt{CURVe?} query. (This command is synonymous with \texttt{WFMOutpre:BYT_Nr}.) When the source is CH1-CH4, REF1-REF4, or
MATH, the default width is 1 byte. When the source is DIGital, the default width is 4 bytes.

**NOTE.** This command is equivalent to the WFMOutpre:BYT_Nr command.
(See page 2-78, Waveform Transfer Command Group.)

### Group
Waveform Transfer

### Syntax
```plaintext
DATa:WIDth <NR1>
DATa:WIDth?
```

### Related Commands
- CURVe?,
- DATa:SOUrce,
- DATa:DESTination,
- WFMOutpre:BYT_Nr

### Arguments

<NR1> is an integer that indicates the number of bytes per point for the outgoing waveform data when queried using the CURVe? command. For analog channels, the values can be 1 or 2. For digital channels (D0 through D15), the values can be 1 or 2. For the digital collection (DATa:SOUrce DIGital), the values can be 4 or 8.

### Examples
```
DATa:WIDth 2 sets the width of waveform data to be read from the scope to 2 bytes.
DATa:WIDth? might return 1, indicating that a width of 1 byte has been set.
```

---

### DATE

Sets or returns the date the oscilloscope displays.

### Group
Miscellaneous

### Syntax
```plaintext
DATE <QString>
DATE?
```

### Related Commands
TIME
Arguments

<QString> is a date in the form "yyyy-mm-dd" where yyyy refers to a four-digit year number, mm refers to a two-digit month number from 01 to 12, and dd refers to a two-digit day number in the month.

Examples

DATE "2006-01-24" specifies that the date is set to January 24, 2006.

DATE? might return :DATE 2006-01-24 indicating the current date is set to January 24, 2006.

*DDT

Allows you to specify a command or a list of commands that execute when the oscilloscope receives a *TRG command or the GET IEEE488.2 interface message. Define Device Trigger (*DDT) is a special alias that the *TRG command uses.

Group

Miscellaneous

Syntax

*DDT {<Block>|<QString>}

*DDT?

Related Commands

ALIas, *TRG

Arguments

<Block> is a complete sequence of program messages. The messages can contain only valid commands that must be separated by semicolons and must follow all rules for concatenating commands. The sequence must be less than or equal to 80 characters. The format of this argument is always returned as a query.

<QString> is a complete sequence of program messages. The messages can contain only valid commands that must be separated by semicolons and must follow all rules for concatenating commands. The sequence must be less than or equal to 80 characters.

Examples

*DDT #OACQUIRE:STATE RUN specifies that the acquisition system will be started each time a *TRG command is sent.

DESE

Sets or returns the bits in the Device Event Status Enable Register (DESER). The DESER is the mask that determines whether events are reported to the Standard Event Status Register (SESR), and entered into the Event Queue. For a detailed discussion of the use of these registers, see Registers.
Commands Listed in Alphabetical Order

**Group**  Status and Error

**Syntax**  DESE <NR1>
DESE?


**Arguments**  <NR1> sets the binary bits of the DESER according to this value, which ranges from 1 through 255. For example, DESE 209 sets the DESER to the binary value 11010001 (that is, the most significant bit in the register is set to 1, the next most significant bit to 1, the next bit to 0, etc.).

The power-on default for DESER is all bits set if *PSC is 1. If *PSC is 0, the DESER maintains the previous power cycle value through the current power cycle.

**Examples**  DESE 209 sets the DESER to binary 11010001, which enables the PON, URQ, EXE and OPC bits.

DESE? might return :DESE 186, showing that the DESER contains the binary value 10111010.

**DESkew (No Query Form)**

Causes the deskew values for all channels to be set to the recommended values. Equivalent to pressing the "Set all deskews to recommended values" button in the application UI.

**NOTE.** Setting the DESER and ESER to the same value allows only those codes to be entered into the Event Queue and summarized on the ESB bit (bit 5) of the Status Byte Register. Use the *ESE command to set the ESER.

**Arguments**  <SETALLtorec> sets the deskew for all channels to the recommended values.

**Syntax**  DESkew {SETALLtorec}
**DESkew:DISPlay**

Sets or returns the state of the deskew table display.

**Group**  
Vertical

**Syntax**  
DESkew:DISPlay {OFF|ON|0|1}  
DESkew:DISPlay?

**Arguments**  
OFF or 0 turns off the deskew table display.  
ON or 1 turns on the deskew table display.

**DIAg:LOOP:OPTion**

Sets the self-test loop option.

**Group**  
Calibration and Diagnostic

**Syntax**  
DIAg:LOOP:OPTion {ALWAYS|FAIL|ONFAIL|ONCE|NTIMES}

**Arguments**  
ALWAYS continues looping until the self tests (diagnostics) are stopped via the front panel or by an oscilloscope command.  
FAIL causes looping until the first self test (diagnostic) failure or until self tests (diagnostics) are stopped.  
ONFAIL causes looping on a specific test group as long as a FAIL status is returned from the test.  
ONCE executes self test (diagnostics test) sequence once.  
NTIMES runs “n” number of loops.

**Examples**  
DIAg:LOOP:OPTion ONCE runs one loop of self tests.

**DIAg:LOOP:OPTion:NTIMes**

Sets the self-test loop option to run N times.

**Group**  
Calibration and Diagnostic
Commands Listed in Alphabetical Order

**Syntax**

DIAg:LOOP:OPTion:NTIMes <NR1>
DIAg:LOOP:OPTion:NTIMes?

**Arguments**

<NR1> is the number of self-test loops.

**Examples**

DIAg:LOOP:OPTion:NTIMes 3 sets the self-test loop to run three times.

DIAg:LOOP:OPTion:NTIMes? might return :DIAg:LOOP:OPTion:NTIMes 5, indicating the self-test loop is set to run five times.

**DIAg:LOOP:STOP (No Query Form)**

Stops the self-test at the end of the current loop.

**Group**

Calibration and Diagnostic

**Syntax**

DIAg:LOOP:STOP

**Examples**

DIAg:LOOP:STOP stops the self test at the end of the current loop.

**DIAg:RESUlt:FLAg? (Query Only)**

Returns the pass/fail status from the last self-test sequence execution. Use this query to determine which test(s) has failed.

**Group**

Calibration and Diagnostic

**Syntax**

DIAg:RESUlt:FLAg?

**Related Commands**

DIAg:RESUlt:LOG?

**Returns**

PASS indicates that all of the selected self (diagnostic) tests have passed.

FAIL indicates that at least one of the selected self (diagnostic) tests has failed.

IN PROGRESS indicates that at least one of the selected self (diagnostic) tests is ongoing.

NOT RUN indicates that the selected diagnostic test suite has not been run since the instrument was powered on.
Examples  DIAG:RESULT:FLAG? might return DIAG:RESULT:FLAG PASS.

**DIAg:RESULT:LOG? (Query Only)**

Returns the internal results log from the last self-test sequence execution. The list contains all modules and module interfaces that were tested along with the pass/fail status of each.

**Group**  Calibration and Diagnostic

**Syntax**  DIAg:RESUlt:LOG?

**Returns**  <QString> in the following format:
<Status>--<Module name>[,<Status>--<Module name>...]

**Examples**  DIAG:RESULT:LOG? might return:
DIAG:RESULT:LOG "NOT RUN--CPU,NOT RUN--DISPLAY,NOT RUN--FPANEL,NOT RUN--IO,NOT RUN--ACQ,NOT RUN--ROM,NOT RUN--APPKEY"

**DIAg:SELect (No Query Form)**

Sets the type of diagnostics grouping.

**Group**  Calibration and Diagnostic

**Syntax**  DIAg:SELect {ALL|APPKey|CPU|DISplay|FPAnel|IO|ROM|ACQ}

**Arguments**  ALL runs all diagnostic groups.
APPKey runs just the application key diagnostic group.
CPU runs just the CPU diagnostic group.
DISPLAY runs just the display circuit diagnostic group.
FPAnel runs just the front panel diagnostic group.
IO runs just the IO board diagnostic group.
ROM runs just the IO board diagnostic group.
ACQ runs just the acquisition system diagnostic group.

**DIAg:SELect:<function> (No Query Form)**

Runs self-tests on the specified system subsystem.

**Group**  
Calibration and Diagnostic

**Syntax**  
DIAg:SELect:<function>

**Arguments**  
<function> specifies a single oscilloscope subsystem on which to run self tests (diagnostics). Valid values are:
- ACQ tests the acquisition system.
- APPKey tests the application keys.
- CPU tests the CPU.
- DISp1ay tests the display.
- FPAne1 tests the front panel controls.
- IO tests the IO ports.
- ROM tests the system read only memory.

**Examples**  
DIAg:SELECT:CPU sets the oscilloscope to run just CPU tests.

**DIAg:STATE (No Query Form)**

This command starts or stops the oscilloscope self-test. Depending on the argument, self-test capabilities are either turned on or off.

**Group**  
Calibration and Diagnostic

**Syntax**  
DIAg:STATE {EXECute|ABORT}

**Arguments**  
EXECute starts diagnostics.
ABORT stops diagnostics at the end of the current loop.
Examples  

**DISplay**? (Query Only)  

Returns the current display settings.

**Group**  

Display

**Syntax**  

DISplay?

**DISplay:CLOCk**  

Sets or returns whether the oscilloscope displays the date and time. The query form of this command returns an ON (1) or an OFF (0).

**Group**  

Display

**Syntax**  

DISplay:CLOCk {ON|OFF|<NR1>}

DISplay:CLOCk?

**Related Commands**  

DATE, TIME

**Arguments**  

ON enables the display of date and time.

OFF disables the display of date and time.

<NR1> = 0 disables the display of date and time; any other value enables the display of date and time.

**Examples**  

DISplay:CLOCk ON enables display of date and time.

DISplay:CLOCk? might return :DISplay:CLOCk 1 indicating that the display of date and time is currently enabled.

**DISplay:DIGital:HEIght**  

Sets or returns the number of available digital waveform position slots.

**NOTE.** If the number of live digital channels exceeds the number of slots, their height is reduced to a smaller size, allowing all digital channels to be displayed.
Commands Listed in Alphabetical Order

**DISplay:DIgital:HEIght**

<table>
<thead>
<tr>
<th><strong>Group</strong></th>
<th>Display</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Syntax</strong></td>
<td>DISPLAY:DIgital:HEIght {SMALL</td>
</tr>
<tr>
<td></td>
<td>DISPLAY:DIgital:HEIght?</td>
</tr>
<tr>
<td><strong>Arguments</strong></td>
<td>SMALL sets the height to 40.</td>
</tr>
<tr>
<td></td>
<td>MEDium sets the height to 20.</td>
</tr>
<tr>
<td></td>
<td>LARge sets the height to 10.</td>
</tr>
</tbody>
</table>

**DISplay:GRAticule**

This command specifies the type of graticule the oscilloscope displays.

<table>
<thead>
<tr>
<th><strong>Group</strong></th>
<th>Display</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Syntax</strong></td>
<td>DISPLAY:GRAticule {CROSSHair</td>
</tr>
<tr>
<td></td>
<td>DISPLAY:GRAticule?</td>
</tr>
<tr>
<td><strong>Arguments</strong></td>
<td>CROSSHair specifies a frame and cross hairs.</td>
</tr>
<tr>
<td></td>
<td>FRAME specifies a frame only.</td>
</tr>
<tr>
<td></td>
<td>FULL specifies a frame, a grid and cross hairs.</td>
</tr>
<tr>
<td></td>
<td>GRID specifies a frame and grid only.</td>
</tr>
<tr>
<td></td>
<td>SOLID specifies a solid graticule.</td>
</tr>
</tbody>
</table>

**Examples**

DISPLAY:GRAticule FRAME sets the graticule type to display the frame only.

DISPLAY:GRAticule? might return :DISPLAY:GRAticule FULL indicating that all graticule elements are selected.

**DISPLAY:INTENSITy? (Query Only)**

Returns the display intensity settings.

<table>
<thead>
<tr>
<th><strong>Group</strong></th>
<th>Display</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Syntax</strong></td>
<td>DISPLAY:INTENSITy?</td>
</tr>
</tbody>
</table>

MSO3000 and DPO3000 Series Programmer Manual
**Examples**

`DISPLAY:INTENSITY?` might return:

```
:DISPLAY:INTENSITY:WAVEFORM 30;GRATICULE 75;BACKLIGHT HIGH
```

**DISplay:INTENSITy:BACKLight**

Sets and returns the waveform backlight intensity settings.

- **Group**: Display
- **Syntax**
  ```
 DISplay:INTENSITy:BACKLight {LOW|MEDium|HIGH}
 DISplay:INTENSITy:BACKLight?
  ```
- **Examples**
  ```
 DISPLAY:INTENSITY:BACKLIGHT?
  ```
  might return
  ```
 DISPLAY:INTENSITY:BACKLIGHT HIGH
  ```

**DISplay:INTENSITy:GRAticule**

Sets and returns the display graticule intensity settings.

- **Group**: Display
- **Syntax**
  ```
 DISplay:INTENSITy:GRAticule <NR1>
 DISplay:INTENSITy:GRAticule?
  ```
- **Arguments**
  `<NR1>` is the graticule intensity and ranges from 0 to 100 percent.
- **Examples**
  ```
 DISPLAY:INTENSITY:GRATICULE?
  ```
  might return
  ```
 DISPLAY:INTENSITY:GRATICULE 30
  ```

**DISplay:INTENSITy:WAVEform**

Sets and returns the display waveform intensity settings.

- **Group**: Display
- **Syntax**
  ```
 DISplay:INTENSITy:WAVEform <NR1>
 DISplay:INTENSITy:WAVEform?
  ```
Arguments  <NR1> is the waveform intensity and ranges from 1 to 100 percent.

Examples  DISPLAY:INTENSITY:WAVEFORM? might return
           DISPLAY:INTENSITY:WAVEFORM 60
           as the intensity of the waveforms.

**DISPLAY:PERSistence**

Sets or returns the display persistence. This affects the display only.

Group  Display

Syntax  DISPLAY:PERSistence {<NR3>|CLEAR|AUTO|INFinite|OFF}
        DISPLAY:PERSistence?

Arguments  <NR3> is a floating point number that specifies the time of the persistence.

            CLEAR resets the persist time count down and clears the display of acquired points.
            INFinite displays waveform points until a control change resets the acquisition system.

**NOTE.** When persistence is set to infinite, it does not mean that the brightness of any pixel should never decrease. The brightness of a pixel is proportionally dependent on the ratio between its intensity, which does NOT decrease at infinite persistence, and the maximum value of intensity of any pixel on the screen. Thus, if a particular pixel gets hit less often than others, its brightness will decrease over time. It will become less bright relative to the pixels that get hit more often.

            AUTO specifies that the oscilloscope automatically determines the best waveform persistence based on the value of waveform intensity (DISPLAY:INTENSITY:WAVEform)

            OFF turns off DPO mode (0 seconds of persistence).

Examples  DISPLAY:PERSISTENCE 3 specifies that the waveform points are displayed fading for 3 seconds before they completely disappear.

**DISPLAY:STYLE:DOTsonly**

 Turns on or off the dots-only mode for the waveform display.
**Group** Display

**Syntax**

DISPLAY:STYLE:DOTsonly {ON|OFF|<NR1>}

DISPLAY:STYLE:DOTsonly?

**Arguments**

ON or <NR1> ≠ 0 turns on the dots-only display.

OFF or <NR1> = 0 turns off the dots-only display.

**DISplay:XY**

This command turns on or off the XY display mode.

**Group** Display

**Syntax**

DISPLAY:XY {OFF|TRIGGERed}

DISPLAY:XY?

**Related Commands** All CURSOR:XY commands.

**Arguments**

OFF — The channels are displayed individually as a function of time.

TRIGGERed — The channels are displayed in “X-Y” pairs with CH1 being displayed as a function of CH2, and so on.

**Examples**

DISPLAY:XY TRIG specifies to use the XY display mode.

DISPLAY:XY? might return OFF, indicating that the XY display mode is not currently on.

**D<x>**

Sets or returns parameters for digital channel <x>, where x is the channel number.

**Group** Vertical

**Syntax**

D<x>
D<x>:LABel

Sets or returns the waveform label for digital channel <x>, where x is the channel number.

**Group** Vertical

**Syntax**

D<x>:LABel <Qstring>
D<x>:LABel?

**Arguments**

<Qstring> is an alpha-numeric string of text, enclosed in quotes, that contains the text label information for the digital channel <x> waveform. The text string is limited to 30 characters.

**Examples**

D4:LABEL? might return :D4:LABEL “Clk Wfm 4”.

D<x>:POSition

Sets or returns the vertical position for digital channel <x>, where x is the channel number.

**NOTE.** Unlike analog channels, which use the center baseline as the zero point, digital channels use the bottom logic level as the zero point. Because of the slot model used to describe digital channel position, the oscilloscope rounds off divisions to the nearest slot.

**Group** Vertical

**Syntax**

D<x>:POSition <NR3>
D<x>:POSition?

**Arguments**

<NR3> is the position of the digital channel in slot units. Use the oscilloscope front-panel controls to place the channel; then query the channel to obtain an exact value for the position.

D<x>:THREshold

Sets or returns the logical threshold for digital channel <x>, where x is the channel number.
Commands Listed in Alphabetical Order

**Group**  
Vertical

**Syntax**  
D<x>:THRESHold \{ECL|TTL|<NR3>\}  
D<x>:THRESHold?

**Arguments**  
ECL sets the digital threshold for channel <x> to a preset ECL high level of –1.3V.  
TTL sets the digital threshold for channel <x> to a preset TTL high level of 1.4V.  
<NR3> specifies the digital threshold for channel <x> in volts.

**Examples**  
D5:THRESHOLD ECL sets the threshold for D5 digital channel to ECL levels.  
D14:threshold? might return :D14:THRESHOLD 1.2500 indicating that the threshold level for the D14 digital channel is 1.25 volts.

**ESE**

Sets and queries the bits in the Event Status Enable Register (ESER). The ESER prevents events from being reported to the Status Byte Register (STB). For a detailed discussion on how to use registers, see Registers.

**Group**  
Status and Error

**Syntax**  
*ESE <NR1>  
*ESE?

**Related Commands**  
*CLS, DESE, *ESR?, EVENT?, EVMsg?, *SRE, *STB?

**Arguments**  
<NR1> specifies the binary bits of the ESER according to this value, which ranges from 0 through 255.  
The power-on default for the ESER is 0 if *PSC is 1. If *PSC is 0, the ESER maintains the previous power cycle value through the current power cycle.

**Examples**  
*ESE 209 sets the ESER to binary 11010001, which enables the PON, URQ, EXE, and OPC bits.

**NOTE.** Setting the DESER and the ESER to the same values allows only those codes to be entered into the Event Queue and summarized on the ESB bit (bit 5) of the Status Byte Register. Use the DESE command to set the DESER.
*ESE? might return 186, showing that the ESER contains the binary value 10111010.

*ESR? (Query Only)

Returns the contents of the Standard Event Status Register (ESR). *ESR? also clears the SESR (reading the SESR clears it). For a detailed discussion on how to use registers, see Registers.

Group Status and Error

Syntax *ESR?

Related Commands ALLEv?, *CLS, DESE, *ESE, EVENT?, EVMsg?, *SRE, *STB?

Examples *ESR? might return 213, showing that the SESR contains the binary value 11010101.

ETHERnet:DHCPbootp

Sets or returns the network initialization search for a DHCP/BOOTP server.

Group Ethernet

Syntax ETHERnet:DHCPbootp {ON|OFF}

Arguments ON enables the oscilloscope to search the network for a DHCP or BOOTP server in order to automatically assign a dynamic IP address to the oscilloscope.

Example

NOTE. Do not use DHCP/BOOTP searching if your oscilloscope has been assigned a static address on a network. If you set this command to ON, the DHCP/BOOTP search will delete or change your static IP address information.

OFF disables the oscilloscope to search the network for a DHCP or BOOTP server.

Examples ETHERNET:DHCPBOOTP ON sets the oscilloscope to search for a DHCP or BOOTP server and assign a dynamic IP address to the oscilloscope.
ETHERnet:DNS:IPADDRess

Sets or returns the network Domain Name Server (Dns) IP address.

- **Group**: Ethernet
- **Syntax**: ETHERnet:DNS:IPADDress <QString>
  ETHERnet:DNS:IPADDress?
- **Arguments**: <QString> is a standard IP address value, enclosed in quotes.
- **Examples**: ETHERNET:DNS:IPADDRESS “128.196.13.352” sets the Dns IP address that the oscilloscope uses to communicate with the network.

ETHERnet:DOMAINname

Sets or returns the network domain name.

- **Group**: Ethernet
- **Syntax**: ETHERnet:DOMAINname <QString>
  ETHERnet:DOMAINname?
- **Arguments**: <QString> is the network domain name, enclosed in quotes.
- **Examples**: ETHERNET:DOMAINNAME “Alpha1.Mycorp.com” sets the domain name that the oscilloscope uses to communicate with the network.

ETHERnet:ENET:ADDdress? (Query Only)

Returns the Ethernet address value assigned to the oscilloscope. This is assigned at the factory and can not be changed.

- **Group**: Ethernet
- **Syntax**: ETHERnet:ENET:ADDress?
**Examples**

ETHERNET:ENET:ADDRESS? returns an Ethernet address such as 08:00:11:01:02:03

---

**ETHERnet:GATEway:IPADDress**

Sets or returns the remote interface gateway IP address.

**Group**

Ethernet

**Syntax**

ETHERnet:GATEway:IPADDress <QString>

ETHERnet:GATEway:IPADDress?

**Arguments**

<QString> is a standard IP address value, enclosed in quotes.

**Examples**

ETHERNET:GATEWAY:IPADDRESS "128.143.16.1" sets the gateway IP address.

---

**ETHERnet:HTTPPort**

Sets or returns the remote interface HTTP port value.

**Group**

Ethernet

**Syntax**

ETHERnet:HTTPPort <QString>

ETHERnet:HTTPPort?

**Arguments**

<QString> is an integer port number, enclosed in quotes.

**NOTE.** Consider the following if you are using the e*Scope™ control software. If you don't enter a port address in the URL, then the ETHERnet:HTTPPort value must be set to "80", which is the default port for HTTP protocol. If you use a URL with a port address (for example: http://DPO3104-04WKL4:1234), the port number is specified by the number after the colon. Set the ETHERnet:HTTPPort value to this same number.

**Examples**

ETHERNET:HTTPPORT "80" sets the HTTP port value to 80.
**ETHERnet:IPADDress**

Sets or returns the IP address assigned to the oscilloscope.

**Group**
Ethernet

**Syntax**

ETHERnet:IPADDress <QString>
ETHERnet:IPADDress?

**Arguments**

<QString> is a standard IP address value, enclosed in quotes.

**Examples**

ETHERNET:IPADDRESS “123.121.13.214” sets the oscilloscope's IP address.

**ETHERnet:NAME**

Sets or returns the network name assigned to the oscilloscope.

**Group**
Ethernet

**Syntax**

ETHERnet:NAME <QString>
ETHERnet:NAME?

**Arguments**

<QString> is the network name assigned to the oscilloscope, enclosed in quotes.

**Examples**

ETHERNET:NAME “labscope1” sets the oscilloscope's network name.

**ETHERnet:PASSWord**

Sets or returns the HTTP Ethernet access password. If a password is set, the user must enter the password before the user's Web browser can access the oscilloscope.

**Group**
Ethernet

**Syntax**

ETHERnet:PASSWord <new>
ETHERnet:PASSWord?

**Arguments**

<new> is a new password, enclosed in quotes.
**Examples**

ETHERNET:PASSWORD "ZEN53" replaces the current Ethernet password with the new password ZEN53.


---

**ETHERnet:PING (No Query Form)**

Causes the oscilloscope to ping the gateway IP address.

**Syntax**

ETHERnet:PING EXECute

**Examples**

ETHERNET:PING EXECUTE causes the oscilloscope to ping the gateway IP address.

---

**ETHERnet:PING:STATUS? (Query Only)**

Returns the results from sending the ETHERnet:PING command to ping the gateway IP address.

**Group**

Ethernet

**Syntax**

ETHERnet:PING:STATUS?

**Returns**

OK is returned if the computer at the gateway IP address answers.

NORESPONSE is returned if the computer at the gateway IP address does not answer.

INPROGRESS is returned if the ping operation is still executing.

---

**ETHERnet:SUBNETMask**

Sets or returns the remote interface subnet mask value.

**Group**

Ethernet

**Syntax**

ETHERnet:SUBNETMask <QString>

ETHERnet:SUBNETMask?


Commands Listed in Alphabetical Order

**Arguments**

<QString> is the subnet mask value, enclosed in quotes.

**Examples**

ETHERNET:SUBNETMASK "255.255.255.0" sets the subnet mask value using standard IP address notation format.

**EVENT? (Query Only)**

Returns an event code from the Event Queue that provides information about the results of the last *ESR? read. EVENT? also removes the returned value from the Event Queue.

**Group** Status and Error

**Syntax** EVENT?

**Related Commands** ALLEv?, *CLS, DESE, *ESE, *ESR?, EVMsg?, *SRE, *STB?

**Examples** EVENT? might return :EVENT 110, showing that there was an error in a command header. (See page 3-13, Messages.)

**EVMsg? (Query Only)**

Removes a single event code from the Event Queue that is associated with the results of the last *ESR? read and returns the event code along with an explanatory message. For information, see Event Handling.

**Group** Status and Error

**Syntax** EVMsg?

**Related Commands** ALLEv?

*CLS, DESE, *ESE, *ESR?, EVENT?, *SRE, *STB?

**Returns** The event code and message in the following format:

<Event Code><Comma><QString>[<Event Code><Comma><QString>...]><QString>::= <Message>;<[<Command>] where <Command> is the command that caused the error and may be returned when a
command error is detected by the oscilloscope. As much of the command will be returned as possible without exceeding the 60 character limit of the <Message> and <Command> string combined. The command string is right-justified.

**Examples**

EVMSG? might return :EVMSG 110,"Command header error".

**EVQty? (Query Only)**

Returns the number of event codes in the Event Queue. This is useful when using the ALLEv? query, which returns the exact number of events.

**Group** Status and Error

**Syntax** EVQty?

**Related Commands** ALLEv?, EVENT?, EVMsg?

**Examples** EVQTY? might return :EVQTY 3, indicating the number of event codes in the Event Queue.

**FACTory (No Query Form)**

Resets the oscilloscope to its factory default settings.

This command does the following:

- Clears the Event Status Enable Register
- Clears the Service Request Enable Register
- Sets the Device Event Status Enable Register to 255
- Purges all defined aliases
- Enables all Command Headers
- Sets the macro defined by *DDT to a "zero-length field"
- Clears the pending operation flag and associated operations
This command does not reset the following:

- Communication settings
- Selected GPIB address.
- State of the VXI-11 (Ethernet IEEE Std 488.2) interface.
- Calibration data that affects device specifications
- Protected user data
- Stored settings
- Power On Status Clear Flag
- Oscilloscope password

**FACTORY**

**Group** Save and Recall

**Syntax** FACTORY


**Arguments** None

**Examples** FACTORY resets the oscilloscope to its factory default settings.

**FILESystem? (Query Only)**

Returns the directory listing of the current working directory and the number of bytes of free space available. This query is the same as the FILESystem:DIR? query and the FILESystem:FREESpace? query.

**Group** File System

**Syntax** FILESystem?

**Related Commands** FILESystem:CWD, FILESystem:DELETE, FILESystem:DIR?, FILESystem:RENAME

**Arguments** None.
Example FILESYSTEM? might return:

:FILESYSTEM:DIR
"tek00000.bmp","elusiveGlitch1.png","TEMP.TMP","file1.wfm","file2.wfm","MATH1.wfm","REF1.wfm","REF2.wfm";FREESPACE 30212096

**FILESystem:CWD**

Sets or returns the current working directory (CWD) for FILESystem commands. The default working directory is "D:/". Anytime you use this command to change the directory, the directory that you specify is retained as the current working directory until you either change the directory or you delete the directory. If you delete the current working directory, the oscilloscope resets current working directory to the default directory (D:) the next time the oscilloscope is powered on or the next time you execute a file system command.

This command supports the permutations of file and directory names supported by Microsoft Windows:
- Relative path names; for example, "./Temp"
- Absolute path names; for example, "D:/MyWaveform"
- Implied relative path names; for example "newfile.txt" becomes "D:/TekScope/newfile.txt" if the current working directory is "D:/TekScope"

**Group**

File System

**Syntax**

FILESystem:CWD \{<new working directory path>\}

**Arguments**

\(<new working directory path>\) is a quoted string that defines the current working; a directory name can be up to 128 characters.

**Examples**

FILESYSTEM:CWD "D:/TekScope/images" sets the current working directory to images.

FILESYSTEM:CWD? might return

:FILESYSTEM:CWD "D:/TekScope/waveforms" indicating that the current working directory is set to Waveforms.

**FILESystem:DELETE (No Query Form)**

This command deletes a named file. If you specify a directory name, it will delete the directory and all of its contents, the same as the RMDir command. You can
also specify the filename as *.* to delete all of the files in the current or specified directory.

### Group
File System

### Syntax
`FILESystem:DELETE <file path>`

### Related Commands
- `FILESystem:CWD`
- `FILESystem:RMDir`

### Arguments
- `<file path>` is a quoted string that defines the file name and path. If the file path is within the current working directory, you need only specify the file name.

The argument *.* will delete all files and subdirectories within the current working directory.

### Examples
`FILESYSTEM:DELETE "NOT_MINE.SET"` deletes the file named NOT_MINE.SET from the current working directory.

### FILESystem:DIR? (Query Only)

Returns a list of quoted strings. Each string contains the name of a file or directory in the current working directory.

### Group
File System

### Syntax
`FILESystem:DIR?`

### Related Commands
- `FILESystem:CWD`, `FILESystem:MKDir`

### Arguments
None

### Returns
`FILESystem:DIR?` returns a list of files and directories in the current working directory.
Examples

FILESYSTEM:DIR? might return
:FILESYSTEM:DIR
"tek00000.png","my_CAN_setup.set","savedwf1.isf","myImages"

FILESystem:FORMat (No Query Form)

Formats a mass storage device. This command should be used with extreme
care as it causes all data on the specified mass storage device to be lost.
Drive letters (e.g., E:) are case sensitive and must be upper case. For all other
FILESYSTEM commands, drives letters are not case sensitive. Example:
FILES:FORMAT "E:/" Formats the USB flash drive installed in the oscilloscope's
front panel USB port.

Syntax

FILESystem:FORMat

Arguments

<drive name> is a quoted string that defines the disk drive to format.

Examples

FILESYSTEM:FORMAT "E:/"
Formats the USB flash drive installed in the oscilloscope's front panel USB port.

FILESystem:FREESpace? (Query Only)

Returns the number of bytes of free space on the current drive.

Syntax

FILESystem:FREESpace?

Related Commands

FILESystem:FREESpace?, FILESystem:CWD

FILESystem:MKDir (No Query Form)

Creates a new folder.

Group

File System
Syntax  
`FILESystem:MKDir <directory path>`

Related Commands  
`FILESystem:CWD, FILESystem:DIR?`

Arguments  
`<directory path>` is a quoted string that specifies the directory to create

Examples  
`FILESYSTEM:MKDIR "E:/NewDirectory"` creates the directory named `NewDirectory` at the root of the E drive.

These two commands create the directory `MyNewSubDirectory` within the existing directory `MyDirectory` at the root of the E drive:

```
```

This, of course, assumes that `E:/MyDirectory` already existed and was not a read-only directory.

**FILESystem:READFile (No Query Form)**

Writes the contents of the specified file to the specified interface. If the specified file does not exist or is not readable, an appropriate error event is posted.

Group  
File System

Syntax  
`FILESystem:READFile <QString>`

Related Commands  
`FILESystem:CWD`

Arguments  
`<QString>` is a quoted string that defines the file name and path. If the file path is within the current working directory, specify only the file name.

Examples  
`FILESYSTEM:READFILE "E:/test_data/tek00016CH1.csv"` reads the content of the specified file, if the file exists and is readable, and sends the content of the file to the current interface.

**FILESystem:REName (No Query Form)**

Assigns a new name to an existing file.
Group       File System

Syntax      FILESystem:REName <old file path>,<new file path>

Related Commands         FILESystem:CWD

Arguments  
<old file path> is a quoted string that defines the file name and path. If the file path is within the current working directory, you need only specify the file name.

<new file path> is a quoted string that defines the file name and path. If the file path is within the current working directory, you need only specify the file name.

Examples    
FILESYSTEM:RENAME "E:/TEK00000.SET", "D:/MYSETTING.SET" gives the file named TEK00000.SET the new name of MYSETTING.SET. The file remains in the root directory on the D drive.

FILESystem:RMDir (No Query Form)

Deletes a named directory. This command deletes the specified directory and all of its contents. The directory must not be a read-only directory.

Group       File System

Syntax      FILESystem:RMDir <directory path>

Related Commands         FILESystem:CWD

Arguments  
<directory path> is a quoted string that defines the directory name and path. If the file path is within the current working directory, you need only specify the file name.

Examples    
FILESYSTEM:RMDIR "E:/OldDirectory" removes the directory named OldDirectory from the root of the D drive.

FILESystem:WRITEFile (No Query Form)

Writes the specified block data to a file in the oscilloscope current working directory. If the specified file does not exist or is not readable, an appropriate error event is posted.
Commands Listed in Alphabetical Order

**Group**  File System

**Syntax**  FILESystem:WRITEFile <file path>, <data>

**Related Commands**  FILESystem:CWD

**Arguments**  
- `<file path>` is the quoted string that defines the file name and path. If the path is within the current working directory, specify the file name only.
- `<data>` can be either DEFINITE LENGTH encoding or INDEFINITE LENGTH ARBITRARY BLOCK PROGRAM DATA encoding as described in IEEE488.2.

**FPAnel:HOLD (No Query Form)**

This command is used to emulate the button push-and-hold feature. Presently, only the Cursors button is supported by this command, even though any of the button enumerations described for FPAnel:PRESS are accepted. (When the Cursors button on the front panel is held, the cursor menu is displayed on screen.)

This command contains two arguments: a button, and an optional hold time.

**Group**  Miscellaneous

**Syntax**  FPAnel:HOLD CURsor [,<NR1>]

**Related Commands**  FPAnel:PRESS, FPAnel:TURN

**Arguments**  
- `CURsor` — currently this is the only button supported by this command. If the hold time is not specified, it defaults to 1200 milliseconds. The range is 0 to 10,000 milliseconds. The system expects a minimum of 1 second to recognize a hold.
- `<NR1>` (optional), an integer, is the hold time — ie. the time to emulate holding the button down before releasing it, in milliseconds. If the hold time is not specified, it defaults to 1200 milliseconds.

**Examples**  
- FPAnel:HOLD CURsor — This simulates pressing and holding the CURSOR button for 1200 milliseconds.
FPAnel:PRESS (No Query Form)

Simulates the action of pressing a specified front-panel button.

When the front panel is locked, the front-panel button and multipurpose knob operations are suspended. The FPAnel:PRESS and the FPAnel:TURN commands will also not work. You can work around this by using the appropriate programmatic interface commands, instead of the front-panel commands.

Group      Miscellaneous
Syntax     FPAnel:PRESS <button>
Arguments  <button> is the name of a front-panel button. Most of the argument names associate directly with their front panel buttons. For example, AUTOSet is for the Autoset button. The few commands that do not have obvious associations are listed below.

Table 2-43: FPAnel:PRESS arguments

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACQuire</td>
<td>Acquire button</td>
</tr>
<tr>
<td>AUTOset</td>
<td>Autoset button</td>
</tr>
<tr>
<td>BMENU&lt;x&gt;</td>
<td>Screen bottom menu buttons, where &lt;x&gt;=1 for the left-most bottom menu button and &lt;x&gt;=7 for the right-most bottom menu button</td>
</tr>
<tr>
<td>B&lt;x&gt;</td>
<td>Bus select buttons, where &lt;x&gt; = 1,2.</td>
</tr>
<tr>
<td>CH&lt;x&gt;</td>
<td>Channel select button, where &lt;x&gt;=1 for channel 1, &lt;x&gt;=2 for channel 2, and so on</td>
</tr>
<tr>
<td>CURsor</td>
<td>Cursors button</td>
</tr>
<tr>
<td>D15DO0</td>
<td>D15–D0 button</td>
</tr>
<tr>
<td>DEFaultsetup</td>
<td>Default Setup button</td>
</tr>
<tr>
<td>FiNe</td>
<td>Fine button</td>
</tr>
<tr>
<td>FORCetrig</td>
<td>Force Trig button</td>
</tr>
<tr>
<td>HARDcopy</td>
<td>Hardcopy button</td>
</tr>
<tr>
<td>INTensity</td>
<td>Intensity button</td>
</tr>
<tr>
<td>MAGnify</td>
<td>Magnify (zoom) button (not the zoom/pan knob)</td>
</tr>
<tr>
<td>MARk</td>
<td>Mark Set/Clear button</td>
</tr>
<tr>
<td>MATH</td>
<td>M button</td>
</tr>
<tr>
<td>MENUOff</td>
<td>Menu Off button</td>
</tr>
<tr>
<td>MEASurement</td>
<td>Measure button</td>
</tr>
<tr>
<td>NEXT</td>
<td>Next arrow button</td>
</tr>
</tbody>
</table>
Table 2-43: FPAnel:PRESS arguments (cont.)

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>PAUse</td>
<td>Play/pause button</td>
</tr>
<tr>
<td>PREv</td>
<td>Previous arrow button</td>
</tr>
<tr>
<td>REF</td>
<td>R button</td>
</tr>
<tr>
<td>RMENU&lt;x&gt;</td>
<td>Screen side menu buttons, where &lt;x&gt;=1 for the top-most side menu button and &lt;x&gt;=5 for the bottom-most side menu button</td>
</tr>
<tr>
<td>RUNstop</td>
<td>Run/Stop button</td>
</tr>
<tr>
<td>SAVEButton</td>
<td>Save button</td>
</tr>
<tr>
<td>SAVERecall</td>
<td>Save/Recall Menu button</td>
</tr>
<tr>
<td>SEARCH</td>
<td>Search button</td>
</tr>
<tr>
<td>SELECT</td>
<td>Select button</td>
</tr>
<tr>
<td>SINGleseq</td>
<td>Single button</td>
</tr>
<tr>
<td>TEST</td>
<td>Test button</td>
</tr>
<tr>
<td>TRIGger</td>
<td>Trigger Menu button</td>
</tr>
<tr>
<td>UTILity</td>
<td>Utility button</td>
</tr>
</tbody>
</table>

**Examples**

FPANEL:PRESS AUTOSET executes the oscilloscope Autoset function.

**FPAnel:TURN (No Query Form)**

Simulates the action of turning a specified front-panel control knob.

When the front panel is locked, the front-panel button and multipurpose knob operations are suspended. The FPAnel:PRESS and FPAnel:TURN commands will also not work, and they will not generate an error. You can work around this by using the appropriate programmatic interface commands, instead of the front-panel commands. For example, to set the trigger level to 50%, you could use TRIGger:A SETLevel. To force a trigger, you could use TRIGger FORCE.

**Group**

Miscellaneous

**Syntax**

FPAnel:TURN <knob>,<n>

**Arguments**

<knob> is the name of a rotating control.

A comma (,) separates the control knob argument from the numeric rotation value argument. You do not need a white space between the arguments and the comma.
<n> represents the rotation direction and magnitude of rotation. Negative values represent a counterclockwise knob rotation, and positive values represent a clockwise rotation. The magnitude of <n> specifies the amount of the turn, where <n> = 1 represents turning the knob one unit, <n> = 2 represents turning the knob two units, <n> = 4 represents turning the knob four units, and so on. The range of units depends on which front panel knob is specified.

Table 2-44: FPAnel:TURN arguments

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>GPKNOB1</td>
<td>Multipurpose a knob</td>
</tr>
<tr>
<td>GPKNOB2</td>
<td>Multipurpose b knob</td>
</tr>
<tr>
<td>HORZPos</td>
<td>Horizontal Position knob</td>
</tr>
<tr>
<td>HORZScale</td>
<td>Horizontal Scale knob</td>
</tr>
<tr>
<td>PANKNOB1</td>
<td>Outer pan knob</td>
</tr>
<tr>
<td>TRIGLevel</td>
<td>Trigger Level knob</td>
</tr>
<tr>
<td>VERTPOS&lt;n&gt;</td>
<td>Vertical Position knob</td>
</tr>
<tr>
<td>VERTSCALE&lt;n&gt;</td>
<td>Vertical Scale knob</td>
</tr>
<tr>
<td>ZOOM</td>
<td>Inner zoom knob</td>
</tr>
</tbody>
</table>

Examples

FPANEL:TURN TRIGLEVEL, 10 duplicates turning the front-panel Trigger Level knob clockwise by 10 units.

GPIBUsb:ADDress? (Query Only)

Returns the current GPIB address setting for a connected TEK-USB-488 adaptor module.

Group            | Miscellaneous

Syntax           | GPIBUsb:ADDress?

GPIBUsb:ID? (Query Only)

Returns the identification string of the connected TEK-USB-488 adaptor module and firmware version. If a TEK-USB-488.2 module is not connected, the system returns “Not detected”.

Group            | Miscellaneous
**HARDCopy (No Query Form)**

Sends a hard copy of the screen display to the currently active printer using the current palette and layout settings.

**Group** Hard Copy

**Syntax**

```
HARDCopy {START}
HARDCopy?
```

**Arguments**

START sends a block of data representing the current screen image to the requested port. The data sent is in the image format specified by the `SAVe:IMAGe:FILEFormat` command and the compression level is controlled by the selected format (BMP and TIFF are uncompressed while PNG is compressed). The `SAVe:IMAGe:INKSaver` determines whether the data sent is in InkSaver mode.

**Related Commands**

*WAI, *CLS

**Examples**

HARDCOPY initiates a screen copy to the active printer.

**HARDCopy:ACTIVeprinter**

Sets or returns the currently active printer. When a hard copy operation is performed, the output will be sent to this printer. One of two methods of specifying the printer can be used: specifying an index value obtained from looking at the list of attached printers or by specifying the printer name.

**Group** Hard Copy

**Syntax**

```
HARDCopy:ACTIVeprinter {<NR1>|<name>}
HARDCopy:ACTIVeprinter?
```
Arguments

<NR1> is the index of the desired printer as returned from HARDCopy:PRINTER:LIST?

$name$ is the name of the printer as specified in the printer list. This name is case sensitive and must be entered exactly as shown in the list.

HARDCopy:INKSaver

Changes hard copy output to print traces and graticule on a white background while retaining waveform color information (except for channel 1, which prints as dark blue because yellow does not show up well and is difficult to see on a white background). This option can significantly reduce print time and quantities of ink required compared with WYSIWYG dark background images.

Group

Hard Copy

Syntax

HARDCopy:INKSaver?

Arguments

ON or <NR1> ≠ 0 sets the ink saver mode on.

OFF or <NR1> = 0 sets the ink saver mode off.

Examples

HARDCOPY:INKSAVER ON will cause subsequent hard copy output to display the screen on a white background.

HARDCopy:LAYout

Sets or returns the page orientation for hard copy. If you set the layout to LANDscape, the printer will print hard copies in landscape mode where the long edge of the screen will print to the long edge of the sheet of paper. If you set the layout to PORTRait, the printer will print hard copies in portrait mode.

This command is not applicable for PictBridge hardcopies.

Group

Hard Copy

Syntax

HARDCopy:LAYout {PORTRait|LANDscape}

HARDCopy:LAYout?

Arguments

PORTRait orients the screen image vertically on the printed page.

LANDscape orients the screen image horizontally on the printed page.
**Examples**

HARDCOPY: LAYOUT LANDSCAPE sets the hard copy page orientation to Landscape.

HARDCOPY: LAYOUT? might return :HARDCOPY: LAYOUT PORTRAIT indicating that the hard copy page orientation is set to portrait.

---

**HARDCopy:PREVIEW (No Query Form)**

Displays a preview of the current screen contents with the InkSaver palette applied.

**Group**

Hard Copy

**Syntax**

HARDCopy: PREVIEW {ON|OFF|<NR1>}

**Arguments**

ON or <NR1> ≠ 0 turns preview mode on.

OFF or <NR1> = 0 turns preview mode off.

---

**HARDCopy:PRINTER:ADD (No Query Form)**

Adds a network printer to the list of available printers. All three arguments must be present, but only one of server name or server IP address may be specified. An empty string can be used for blank arguments.

**Group**

Hard Copy

**Syntax**

HARDCopy: PRINTER:ADD <name>,<server>,<address>

**Arguments**

<name> is the name of the network printer queue.

<server> is the host name of the print (LPR) server.

<address> is the IP address of the print server.

---

**HARDCopy:PRINTER:DELETE (No Query Form)**

Removes a network printer from the list of available printers. The printer name is case sensitive.

**Group**

Hard Copy
### HARDCopy:PRINTer:DELETE <name>

**Syntax**

HARDCopy:PRINTer:DELETE <name>

**Arguments**

<name> is the name of the printer to be deleted.

### HARDCopy:PRINTer:LIST? (Query Only)

Returns a list of currently attached printers.

**Group**

Hard Copy

**Syntax**

HARDCopy:PRINTer:LIST?

### HARDCopy:PRINTer:REName (No Query Form)

Renames a network printer on the list of available printers, replacing the currently stored settings with the settings specified in this command. Four arguments must be present, but the arguments may be empty strings if the value for a field is to be deleted.

**Group**

Hard Copy

**Syntax**

HARDCopy:PRINTer:REName

<name>,<new_name>,<new_server>,<new_address>

**Arguments**

<name> is the name of the printer to be deleted.

<new_name> is the new name for this printer.

<new_server> is the new print server for this printer.

<new_address> is the new IP address for the server.

### HEADer

Sets or returns the Response Header Enable State that causes the oscilloscope to either include or omit headers on query responses.

**NOTE.** This command does not affect IEEE Std 488.2-1987 Common Commands (those starting with an asterisk); these commands never return headers. This command does affect the Response Header Enable State of both the USBTMC and VXI-11 interfaces. Refer to the Introduction for additional information.
Commands Listed in Alphabetical Order

Group	Miscellaneous
Syntax | HEADer {OFF|ON|<NR1>}
        | HEADer?
Related Commands | VERBose
Arguments | OFF sets the Response Header Enable State to false. This causes the oscilloscope to omit headers on query responses, so that only the argument is returned.
        | ON sets the Response Header Enable State to true. This causes the oscilloscope to include headers on applicable query responses. You can then use the query response as a command.
        | <NR1> = 0 sets the Response Header Enable State to false; any other value sets this state to true.
Examples | HEADER OFF specifies that the oscilloscope omits headers on query responses, so that only the argument is returned.
        | HEADER? might return :HEADER 1 indicating that the oscilloscope is including headers on applicable query responses.

HORizontal? (Query Only)

Returns all settings for the horizontal commands.

Group	Horizontal
Syntax | HORizontal?
Examples | HORizontal? might return the following horizontal settings
        | :HORIZONTAL:DELAY:MODE 1;TIME 0.0000;:HORIZONTAL:MAIN:SCALE 20.0000E-9;SAMPLERATE 2.5000E+9;UNITS "s";UNITS:STRING "s";:HORIZONTAL:SAMPLERATE 2.5000E+9;RECORDLENGTH 5000000

HORizontal:DELay:MODE

Sets or returns the horizontal delay mode.

Group | Horizontal
Syntax

HORizontal:DELay:MODe {OFF|ON|<NR1>}
HORizontal:DELay:MODe?

Related Commands

HORizontal:POSition

Arguments

OFF sets the Horizontal Delay Mode to off. This causes the HORizontal:POSition command to operate like the HORIZONTAL POSITION knob on the front panel.

ON sets the Horizontal Delay Mode to on. This causes the HORizontal:DELay:TIMe command to operate like the HORIZONTAL POSITION knob on the front panel.

<NR1> = 0 sets the Horizontal Delay Mode to off; any other value sets this mode to on.

Examples

HORIZONTAL:DELAY:MODE OFF sets the Horizontal Delay Mode to off, allowing the horizontal position command to operate like the HORIZONTAL POSITION knob on the front panel.

HORIZONTAL:DELAY:MODE? might return HORIZONTAL:DELAY:MODE OFF indicating that the Horizontal Delay Mode is off and that the horizontal position command operates like the HORIZONTAL POSITION knob on the front panel.

HORizontal:DELay:TIMe

Sets or returns the horizontal delay time (position) that is used when delay is on (the default mode).

Group

Horizontal

Syntax

HORizontal:DELay:TIMe <NR3>
HORizontal:DELay:TIMe?

Related Commands

HORizontal:POSition

Arguments

NR3 is the delay in seconds.

Examples

HORIZONTAL:DELAY:TIME 0.3 sets the delay of acquisition data so that the resulting waveform is centered 300 ms after the trigger occurs.
HORizontal:DIgital:RECORdlength:MAGnivu? (Query Only)

Returns the record length of the MagniVu digital acquisition.

Group  
Horizontal

Syntax  
HORizontal:DIgital:RECORdlength:MAGnivu?

HORizontal:DIgital:RECORdlength:MAIN? (Query Only)

Returns the record length of the main digital acquisition.

Group  
Horizontal

Syntax  
HORizontal:DIgital:RECORdlength:MAIN?

HORizontal:DIgital:SAMPLERate:MAGnivu? (Query Only)

Returns the sample rate of the MagniVu digital acquisition.

Group  
Horizontal

Syntax  
HORizontal:DIgital:SAMPLERate:MAGnivu?

HORizontal:DIgital:SAMPLERate:MAIN? (Query Only)

Returns the sample rate of the main digital acquisition.

Group  
Horizontal

Syntax  
HORizontal:DIgital:SAMPLERate:MAIN?

HORizontal:POSition

Sets or returns the horizontal position, in percent, that is used when delay is off. If Horizontal Delay Mode is turned off, this command is equivalent to adjusting the HORIZONTAL POSITION knob on the front panel. When Horizontal Delay
Mode is on, this command stores a new horizontal position that is used when Horizontal Delay Mode is turned off.

**Group** Horizontal

**Syntax**

HORIZONTAL:POSITION <NR3>

HORIZONTAL:POSITION?

**Related Commands**

HORIZONTAL:DELAY:TIME

**Arguments**

<NR3> is the horizontal position expressed as the percentage of the waveform acquired before the trigger.

**Examples**

HORIZONTAL:POSITION 50 sets the horizontal position to 50%.

HORIZONTAL:POSITION? might return :HORIZONTAL:POSITION 100 indicating that the horizontal position is set to 100%.

**HORizontal:PREViewstate? (Query Only)**

Returns a boolean value to indicate whether the display system is in the preview state.

**Group** Horizontal

**Syntax**

HORIZONTAL:PREViewstate?

**Returns**

<NR1> = 1 if the display system is in the preview state.

<NR1> = 0 if the display system is not in the preview state.

**HORizontal:RECOrdlength**

Sets the horizontal record length. The query form of this command returns the current horizontal record length.

**Group** Horizontal
Commands Listed in Alphabetical Order

Syntax

HORizontal:RECORDlength <NR1>
HORizontal:RECORDlength?

Arguments

<NR1> represents the supported values for horizontal record lengths, which are: 1000, 10000, 100000, 1000000, or 5000000.

Examples

HORIZONTAL:RECORDLENGTH 10000 specifies that 10000 data points will be acquired for each record.

HORIZONTAL:RECORDLENGTH? might return :HORIZONTAL:RECORDlength 1000 indicating that the horizontal record length is equal to 1000 data points.

HORizontal:SAMPLERate

Sets or returns the current horizontal sample rate.

Group

Horizontal

Syntax

HORizontal:SAMPLERate <NR3>
HORizontal:SAMPLERate?

Arguments

<NR3> is the rate in samples per second.

HORizontal:SCAle

Sets or returns the time base horizontal scale.

Group

Horizontal

Syntax

HORizontal:SCAle <NR3>
HORizontal:SCAle?

Arguments

<NR3> specifies the range from 1 ns to 1000 s, depending on the record length.

Examples

HORIZONTAL:SCALE 2E-6 sets the main scale to 2µs per division.

HORIZONTAL:SCALE? might return :HORIZONTAL:MAIN:SCALE 2.0000E-06 indicating that the main scale is currently set to 2 µs per division.
**ID? (Query Only)**

Returns identifying information about the oscilloscope and related firmware.

**Group**
Miscellaneous

**Syntax**
ID?

**Related Commands**
*IDN?

**Examples**
ID? might return `TEK/DPO3034,CF:91.1CT,FV:v1.0000`. This indicates the oscilloscope model number, configured format, and firmware version number.

***IDN? (Query Only)**

Returns the oscilloscope identification code.

**Group**
Miscellaneous

**Syntax**
*IDN?

**Related Commands**
ID?

**Examples**
*IDN? might return `:TEKTRONIX,DPO3034,SN123456789,CF:91.1CT,FV:v1.00000` indicating the oscilloscope model number, serial number, configured number, and firmware version number.

**LANGuage**

Sets or returns the user interface display language. This command only affects the oscilloscope displayed language. Remote commands and their responses are always in English.

**Group**
Miscellaneous

**Syntax**
LANGuage
{ENGLISH|FRENCH|GERMan|ITALian|SPANish|PORTUguese|JAPAnese|KOREan|RUSSian|SIMplifiedchinese|TRADitionalchinese}
LANGuage?

Examples

LANGUAGE? might return :LANGUAGE ENGLISH.

LOCk

Enables or disables all front-panel buttons and knobs. There is no front panel equivalent.

When the front panel is locked, neither the FPanel:PRESS nor the FPanel:TURN commands will work. They will not generate an error event either. You can work around this by using the appropriate programmatic interface commands, instead of the front-panel commands. For example, to set the trigger level to 50%, you could use TRIGger:A SETLevel. To force a trigger, you could use TRIGger FORCE.

Group

Miscellaneous

Syntax

LOCk \{ALL | NONE\}
LOCk?

Related Commands

USBTMC:SERIALnumber?

Arguments

ALL disables all front-panel controls.
NONE enables all front-panel controls. This is equivalent to the UNLock ALL command.

Examples

LOCK ALL locks the front-panel controls.
LOCk? might return :LOCk NONE indicating that the front-panel controls are enabled by this command.

*LRN? (Query Only)

Returns the commands that list the oscilloscope settings except for configuration information for the calibration values, the WFMInpre? query, and the WFMOutpre? query. This query allows you to record or "learn" the current oscilloscope settings. You can use these commands to return the oscilloscope to the state it was in when you made the *LRN? query. This command is identical to the SET? Command.

Group

Miscellaneous
Syntax  
*Lrn?

Related Commands  
SET?

Examples  
*Lrn? might return a long response, part of which could be as follows:

```
```

MARK

Moves to the next or previous reference mark on the waveform. Returns the current mark mark position.

Group  
Mark
Syntax
MARK {NEXT|PREVIOUS}
MARK?

Arguments
NEXT moves to the next reference mark on the right.
PREVIOUS moves to the next reference mark on the left.

MARK:CREATE (No Query Form)
Creates a mark on a specified waveform or all waveforms in a column.

Group
Mark

Syntax
MARK:CREATE {CH<x>|MATH|B<x>|REF<x>|DIGital|COLUMN}

Arguments
CH<x> creates the mark on a channel waveform, where <x> is the channel number.
MATH creates the mark on the math waveform.
B<x> creates the mark on a bus waveform, where <x> is the bus number.
REF<x> creates the mark on a reference waveform, where <x> is the reference waveform number.
DIGital creates the mark on a digital waveform. (An error will result if no digital channel is turned on.)
COLUMN creates marks on all waveforms in the current zoom pixel column.

MARK:DELETE (No Query Form)
Deletes a mark on a particular waveform, all waveforms in a column, the selected mark, or all marks.

Group
Mark

Syntax
MARK:DELETE {CH<x>|MATH|B<x>|REF<x>|DIGital|COLUMN}

Arguments
CH<x> deletes the mark on a channel waveform, where <x> is the channel number.
MATH deletes the mark on the math waveform.
B<x> deletes the mark on a bus waveform, where <x> is the bus number.
Commands Listed in Alphabetical Order

REF<x> deletes the mark on a reference waveform, where <x> is the reference waveform number.

DIGital deletes all marks on all digital channels.

COLUMN deletes marks on all waveforms in the current zoom pixel column.

**MARK:FREE? (Query Only)**

Returns how many marks are available for use.

<table>
<thead>
<tr>
<th>Group</th>
<th>Mark</th>
</tr>
</thead>
<tbody>
<tr>
<td>Syntax</td>
<td>MARK:FREE?</td>
</tr>
</tbody>
</table>

**MARK:SELECTed:END? (Query Only)**

Returns the end of the selected mark, 0 to 100% of the waveform.

<table>
<thead>
<tr>
<th>Group</th>
<th>Mark</th>
</tr>
</thead>
<tbody>
<tr>
<td>Syntax</td>
<td>MARK:SELECTed:END?</td>
</tr>
</tbody>
</table>

**MARK:SELECTed:FOCUS? (Query Only)**

Returns the focus of the selected mark, 0 to 100% of the waveform.

<table>
<thead>
<tr>
<th>Group</th>
<th>Mark</th>
</tr>
</thead>
<tbody>
<tr>
<td>Syntax</td>
<td>MARK:SELECTed:FOCUS?</td>
</tr>
</tbody>
</table>

**MARK:SELECTed:MARKSINCOLUMN? (Query Only)**

Returns the number of marks in the current zoom pixel column.

<table>
<thead>
<tr>
<th>Group</th>
<th>Mark</th>
</tr>
</thead>
<tbody>
<tr>
<td>Syntax</td>
<td>MARK:SELECTed:MARKSINCOLUMN?</td>
</tr>
</tbody>
</table>
MARK:SELeected:OWNer? (Query Only)

Returns the owner of the selected mark.

Group  Mark

Syntax  MARK:SELeected:OWNer?

Returns  <QString> is the owner of the mark.

Examples  MARK:SELeected:OWNer? might return: USER, SEARCH1

MARK:SELeected:SOURCE? (Query Only)

Returns the source waveform for the selected mark.

Group  Mark

Syntax  MARK:SELeected:SOURCE?

MARK:SELeected:STARt? (Query Only)

Returns the starting point of the selected mark, 0 to 100% of the waveform.

Group  Mark

Syntax  MARK:SELeected:STARt?

MARK:SELeected:STATe? (Query Only)

Returns the on or off state of the selected mark. The selected mark is at or near the center of the screen. If you press the front-panel Set/Clear button, this mark will disappear.

Group  Mark

Syntax  MARK:SELeected:STATe?
### MARK:SELected:ZOOm:POSition? (Query Only)

Returns the position of the selected mark, 0 to 100% of the zoom overview window.

<table>
<thead>
<tr>
<th>Group</th>
<th>Mark</th>
</tr>
</thead>
<tbody>
<tr>
<td>Syntax</td>
<td>MARK:SELected:ZOOm:POSition?</td>
</tr>
</tbody>
</table>

### MARK:TOTal? (Query Only)

Returns how many marks are currently in use.

<table>
<thead>
<tr>
<th>Group</th>
<th>Mark</th>
</tr>
</thead>
<tbody>
<tr>
<td>Syntax</td>
<td>MARK:TOTal?</td>
</tr>
</tbody>
</table>

### {MATH|MATH1}:LABel

Sets or queries the waveform label for the math waveform.

<table>
<thead>
<tr>
<th>Group</th>
<th>Math</th>
</tr>
</thead>
<tbody>
<tr>
<td>Syntax</td>
<td>{MATH</td>
</tr>
<tr>
<td>Arguments</td>
<td>&lt;QString&gt; is the quoted string used as the label for the math waveform.</td>
</tr>
<tr>
<td>Examples</td>
<td>MATH:LABEL &quot;Output&quot; sets the label for the math waveform to Output. MATH:LABEL? might return MATH:LABEL &quot;Sum of channel 1 and channel 2&quot; indicating the current label for the math waveform.</td>
</tr>
</tbody>
</table>

### MATH[1]? (Query Only)

Returns the definition of the math waveform. The returned data depends on the setting of the MATH[1]:TYPe command.
**Group**
Math

**Syntax**
MATH[1]?

**Related Commands**
MATH[1]:TYPe

**Examples**
MATH? or MATH1? might return:
```
:MATH:TYPE DUAL;DEFINE "CH1+CH2";VERTICAL:SCALE 100.0000E-3;POSITION 0.0000;UNITS "V";
:MATH:HORIZONTAL:SCALE 4.0000E-6;POSITION 50.0000;UNITS "s";
:MATH:SPECTRAL:MAG DB;WINDOW HANNING
```

**MATH[1]:DEFine**

Sets or returns the current math function as a text string.

Dual math is defined if the string is of the form `<wfm> <operation> <wfm>`, where the `<wfm>`s are any combination of live channels or reference waveforms, `<operation>` is any of +, -, *, or /, and the MATH[1]:TYPe is DUAL.

FFT math is defined if the string is in the form FFT(<wfm>), where `<wfm>` is any live channel or reference waveform, and the MATH[1]:TYPe is FFT.

Advanced math is defined if the contents of the string can be parsed by the advanced math parser without errors and the MATH[1]:TYPe is ADVanced.

On the front panel, the Dual Wfm Math, FFT and Advanced Math menus contain controls that allow building equivalent math expressions to those described above.

**Group**
Math

**Syntax**
MATH[1]:DEFine <QString>
MATH[1]:DEFine?

**Related Commands**
MATHVAR:VAR<x>, MATH[1]:TYPe

**Arguments**
<QString> quoted string argument is the mathematical expression that defines the waveform.
### Table 2-45: Advanced Math expression elements

<table>
<thead>
<tr>
<th>Expression</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>CH1-CH4, REF1-REF4</td>
<td>Specifies a waveform data source.</td>
</tr>
<tr>
<td>FFT( ), INTG( ), DIFF( )</td>
<td>Executes a Fast Fourier Transform, integration, or differentiation operation on the expression that follows. The FFT operator must be the first (left-most) operator in an expression. All these operations must end with a right parenthesis.</td>
</tr>
<tr>
<td>AMPlitude( ), AREa( ), BURst( ), CARea( ), CMEan( ), CRMs( ), DELay( ), FALL( ), FREQuency( ), HIGH( ), LOW( ), MAXimum( ), MEAN( ), MINImum( ), NOVershoot( ), NWIdth( ), PDUTy( ), PERiod( ), PHAse( ), PK2pk( ), POVershoot( ), PWIdth( ), RISE( ), RMS( ), !()</td>
<td>Executes the selected measurement operation on the waveform (active or reference) that follows. All these operations must end with a right parenthesis.</td>
</tr>
<tr>
<td>LOG( ), EXP( ), SQRT( ), SINE( ), COSINE( ), TANGENT( )</td>
<td>Executes trigonometric and other functions. All these operations must end with a right parenthesis.</td>
</tr>
<tr>
<td>VAR1, VAR2</td>
<td>Adds the user-defined variable to the expression. Refer to the MATHVAR&lt;x&gt; command.</td>
</tr>
<tr>
<td>+, -, *, /</td>
<td>Executes an addition, subtraction, multiplication, or division operation on the following expression. + and - are also unary; use - to negate the expression that follows.</td>
</tr>
<tr>
<td>&lt;, &gt;, &lt;=, &gt;=, ==, ≠,</td>
<td></td>
</tr>
<tr>
<td>( ),</td>
<td>Parentheses provide a way to control evaluation order in an expression. The comma is used to separate the &quot;from&quot; and &quot;to&quot; waveforms in Delay and Phase measurement operations.</td>
</tr>
<tr>
<td>1-0 . . E</td>
<td>Specifies a numeric value in (optional) scientific notation.</td>
</tr>
</tbody>
</table>

#### Examples

**MATH1:DEFINE" CH1+CH2"** adds the Ch 1 waveform and Ch 2 waveform, storing the results in Math 1.

**MATH:DEFINE?** might return :MATH1:DEFINE "CH2#REF2" as the expression that defines Math 1.

#### MATH[1]:HORizontal:POSition

Sets or returns the math horizontal display position for FFT or (non-live) math reference waveforms.
Commands Listed in Alphabetical Order

Group Math

Syntax MATH[1]:HORIZONTAL:POSITION <NR3>
       MATH[1]:HORIZONTAL:POSITION?

Arguments <NR3> is the % of the math waveform that precedes center screen. It can vary from 0.0 to 100.0.

Examples MATH:HORIZONTAL:POSITION 10 sets the horizontal position to 10% pretrigger

MATH[1]:HORIZONTAL:SCALE

Sets or returns the math horizontal display scale for FFT or for dual math waveforms that have source waveforms that are reference waveforms. The horizontal scale of a dual math waveform with a channel source waveform is set through the HORIZONTAL:SCALE command.

Group Math

Syntax MATH[1]:HORIZONTAL:SCALE <NR3>
       MATH[1]:HORIZONTAL:SCALE?

Arguments <NR3> is the math horizontal scale in seconds.

Examples MATH:HORIZONTAL:SCALE? might return MATH:HORIZONTAL:SCALE 2.0E-4 indicating that the math horizontal scale is 200 μ

MATH[1]:HORIZONTAL:UNITS

Returns the math waveform horizontal measurement unit value.

Group Math

Syntax MATH[1]:HORIZONTAL:UNITS?
Examples

MATH:HORIZONTAL:UNITS? might return MATH:HORIZONTAL:UNITS "?"
indicating that the math horizontal unit label for unknown values is the default
question mark unit.

**MATH[1]:SPECTral:MAG**

Sets or returns the units of the Spectral Magnification function in the math string.

**Group**
Math

**Syntax**
MATH[1]:SPECTral:MAG {LINEAr|DB}
MATH[1]:SPECTral:MAG?

**Arguments**
LINEAR sets the SpectralMag units to linear.
DB sets the SpectralMag units to decibels.

**Examples**
MATH1:SPECTRAL:MAG DB sets the SpectralMag units for Math1 to decibels.
MATH1:SPECTRAL:MAG? might return :MATH1:SPECTRAL:MAG DB indicating
that the SpectralMag units for Math1 are set to decibels.

**MATH[1]:SPECTral:WINdow**

Sets or returns the window function for the spectral analyzer input data for the
specified math waveform. A spectral window determines what the filter shape
of the spectral analyzer will be in the frequency domain. It can be described by
a mathematical function that is multiplied point-by-point times the input data to
the spectral analyzer.

**Group**
Math

**Syntax**
MATH[1]:SPECTral:WINdow
{RECTangular|HAMming|HANning|BLACKmanharris}
MATH[1]:SPECTral:WINdow?

**Arguments**
RECTangular window function is equivalent to multiplying all gate data by one.
HAMming window function is based on a cosine series.
HANning window function is based on a cosine series.
BLACKmanharris window function is based on a cosine series.

**Examples**

MATH1:SPECTRAL:WINDOW HANNING applies a Hanning window to the spectral analyzer input data.

MATH1:SPECTRAL:WINDOW? might return :MATH1:SPECTRAL:WINDOW HAMMING indicating that the window function used to multiply the spectral analyzer input data is the Hamming window.

**MATH[1]:TYPE**

Sets or returns the math waveform mode type.

**Group** Math

**Syntax**

MATH[1]:TYPE {ADVanced|DUAL|FFT}
MATH[1]:TYPE?

**Arguments**

ADVanced sets the math waveform mode to advanced math.
DUAL sets the math waveform mode to dual waveform math.
FFT sets the math waveform mode to FFT math.

**Examples**

MATH:TYPE FFT sets the math waveform mode to FFT.

MATH:TYPE FFT;:MATH:DEFINE “FFT(CH1)” sets the math type to FFT and displays an FFT waveform of the channel 1 waveform, using the current FFT scale and window settings.

MATH:TYPE ADVANCED;:MATH:DEFINE “INTG(REF1*CH3)+DELAY(CH1,CH2)” sets the math type to FFT and displays an advanced math waveform that is the integration of the product of REF1 and CH3 plus the result of the delay measurement between channel 1 and 2.

**MATH[1]:VERTical:POSITION**

Sets or returns the vertical position of the currently selected math type.

**Group** Math
Syntax
MATH[1]:VERTical:POSITION <NR3>
MATH[1]:VERTical:POSITION?

Related Commands
CH<x>:POSition, REF<x>:VERTical:POSition

Arguments
<NR3> is the desired position in divisions from the center graticule.

Examples
MATH1:VERTICAL:POSITION 1.3E+00 positions the Math 1 input signal 1.3 divisions higher than a position of 0.
MATH1:VERTICAL:POSITION? might return :MATH1:VERTICAL:POSITION -1.3000E+00 indicating that the current position of Math 1 is 1.3 divisions below the center graticule.

MATH[1]:VERTical:SCAle
Sets or returns the vertical scale of the currently selected math type.

Group
Math

Syntax
MATH[1]:VERTical:SCAle <NR3>
MATH[1]:VERTical:SCAle?

Related Commands
CH<x>:SCAle, REF<x>:VERTical:SCAle

Arguments
<NR3> is the scale-per-division in the current math vertical units. The range is from 1.0E-12 through 500.0E+12.

Examples
MATH1:VERTICAL:SCALE 100E-03 sets the Math scale to 100 mV per division.
MATH:VERTICAL:SCALE? might return :MATH:VERTICAL:SCALE 1.0000E+00 indicating that the current scale setting of Math is 1 V per division.

MATH[1]:VERTical:UNIts
Returns the math waveform vertical measurement unit value.

Group
Math
Syntax
MATH[1]:VERTical:UNIts?

Examples
MATH:VERTICAL:UNITS? might return MATH:VERTICAL:UNITS "joules" indicating that the math vertical unit label for unknown values is joules.

MATHVAR? (Query Only)

Queries both numerical values you can use within math expressions.

Group
Math

Syntax
MATHVAR?

Related Commands
MATHVAR:VAR<x>, MATH[1]:DEFine

Returns
<NR3> are the stored numerical values.

Examples
MATHVAR? returns the values of all variables stored in locations 1 through 2.

MATHVAR:VAR<x>

Sets or returns one of two different numerical values you can use within math expressions. These values can range from -10.0e-18 to 1.0e+15; the default values are 0.0. <x> specifies the location, 1 or 2, in which you can store values. Stored math variables can be referenced within math expressions as VAR1 and VAR2.

For example, the following command defines MATH1 as the product of Channel 1 and math variable 1: MATH1:DEFINE "CH1 * VAR1".

Group
Math

Syntax
MATHVAR:VAR<x> <NR3>
MATHVAR:VAR<x>? 

Related Commands
MATHVAR:VAR<x>, MATH[1]:DEFine

Arguments
<NR3> specifies the numerical value to be stored in location x <1 through 2>. 
Examples

MATHVAR:VAR2  -2.43E-5 stores the value -2.43e-5 in the second math variable location.


MEASUrement? (Query Only)

Returns all measurement parameters.

Group
Measurement

Syntax
MEASUrement?

Examples
MEASUREMENT? might return :MEASUREMENT:IMMED:DELAY:DIRECTION
FORWARDS;EDGE1 RISE;EDGE2 RISE;:MEASUREMENT:IMMED:TYPE
PERIOD;UNITS "s";SOURCE1 CH1;SOURCE2
CH2,:MEASUREMENT:MEAS1:DELAY:DIRECTION FORWARDS;EDGE1
RISE;EDGE2 RISE;:MEASUREMENT:MEAS1:STATE 1;TYPE
FREQUENCY;UNITS "Hz";SOURCE1 CH1;SOURCE2 CH2;COUNT
0;MAXIMUM 0.0000;MEAN 0.0000;MINIMUM 0.0000;STDDEV
0.0000;:MEASUREMENT:MEAS2:DELAY:DIRECTION FORWARDS;EDGE1
RISE;EDGE2 RISE;:MEASUREMENT:MEAS2:STATE 1;TYPE PERIOD;UNITS
"s";SOURCE1 CH1;SOURCE2 CH2;COUNT 0;MAXIMUM 0.0000;MEAN
0.0000;MINIMUM 0.0000;STDDEV 0.0000;:MEASUREMENT:MEAS3:
DELAY:DIRECTION FORWARDS;EDGE1 RISE;EDGE2
RISE;:MEASUREMENT:MEAS3:STATE 1;TYPE PK2PK;UNITS "V";SOURCE1
CH1;SOURCE2 CH2;COUNT 0;MAXIMUM 0.0000;MEAN 0.0000;MINIMUM
0.0000;STDDEV 0.0000;:MEASUREMENT:MEAS4:DELAY:DIRECTION
FORWARDS;EDGE1 RISE;EDGE2 RISE;:MEASUREMENT:MEAS4:STATE
0;TYPE PERIOD;UNITS "s";SOURCE1 CH1;SOURCE2 CH2;COUNT
0;MAXIMUM 0.0000;MEAN 0.0000;MINIMUM 0.0000;STDDEV
0.0000;:MEASUREMENT:METHOD AUTO;REFLEVEL:METHOD
PERCENT;ABSOLUTE:HIGH 0.0000;LOW 0.0000;MID1
0.0000;MID2 0.0000;:MEASUREMENT:REFLEVEL:PERCENT:HIGH
90.0000;LOW 10.0000;MID1 50.0000;MID2
50.0000;:MEASUREMENT:INDICATORS:STATE
OFF;NUMHORZ 0;NUMVERT 0;HORIZ1 99.0000E+36;HORIZ2
99.0000E+36;HORIZ3 99.0000E+36;HORIZ4 99.0000E+36;VERT1
99.0000E+36;VERT2 99.0000E+36;VERT3 99.0000E+36;VERT4
99.0000E+36;:MEASUREMENT:STATISTICS:MODE OFF;WEIGHTING
32;:MEASUREMENT:GATING SCREEN.
MEASUREment:CLEARSNapshot (No Query Form)

Removes the measurement snapshot display.

**Group**  
Measurement

**Syntax**  
MEASUREment:CLEARSNapshot

**Related Commands**  
CLEARMenu

MEASUREment:GATING

Specifies or returns the measurement gating setting.

**Group**  
Measurement

**Syntax**  
MEASUREment:GATING {OFF|SCREen|CURSor}  
MEASUREment:GATING?

**Arguments**  
OFF turns off measurement gating (full record).

SCREen turns on gating, using the left and right edges of the screen.

CURSor limits measurements to the portion of the waveform between the vertical bar cursors, even if they are off screen.

**Examples**  
MEASUREMENT:GATING CURSOR turns on measurement gating using the cursors as limits.

MEASUREMENT:GATING? might return :MEASUREMENT:GATING CURSOR indicating that measurements are limited to the portion of the waveform between the vertical bar cursors.

MEASUREMENT:IMMed? (Query Only)

Returns all immediate measurement setup parameters.

**Group**  
Measurement

**Syntax**  
MEASUREMENT:IMMed?
Examples  MEASUREMENT:IMMED? might return
:MEASUREMENT:IMMED:DELAY:DIRECTION FORWARDS;EDGE1 RISE;EDGE2 RISE;:MEASUREMENT:IMMED:TYPE PERIOD;UNITS "s";SOURCE1 CH1;SOURCE2 CH2

MEASUREmp:IMMed:DELAy? (Query Only)

Returns information about the immediate delay measurement. This command is equivalent to viewing the delay measurement settings on the measurement readout.

Group  Measurement

Syntax  MEASUREmp:IMMed:DELAy?

Examples  MEASUREMENT:IMMED:DELAY? might return
:MEASUREMENT:IMMED:DELAY:DIRECTION FORWARDS; EDGE1 RISE;EDGE2 RISE

MEASUREMENT:IMMed:DELAy:DIRec tm

Sets or returns the starting point and direction that determines the delay "to" edge when taking an immediate delay measurement.

NOTE. Use the MEASUREMENT:IMMed:SOUrce2 command to specify the delay "to" waveform.

Group  Measurement

Syntax  MEASUREMENT:IMMed:DELAY:DIRection {BACKwards|FORwards}
MEASUREMENT:IMMed:DELAY:DIRection?

Related Commands  MEASUREMENT:IMMed:SOUrce2

Arguments  BACKwards starts the search at the end of the waveform and looks for the last rising or falling edge in the waveform.

FORwards starts the search at the beginning of the waveform and looks for the first rising or falling edge in the waveform.
**Examples**

MEASUREMENT:IMMED:DELAY:DIRECTION FORWARDS starts searching from the beginning of the waveform record and looks for the first rising or falling edge.

MEASUREMENT:IMMED:DELAY:DIRECTION? might return :MEASUREMENT:IMMED:DELAY:DIRECTION BACKWARDS indicating that searching begins at the end of the waveform record and looks for the last rising or falling edge.

**MEASUREMENT:IMMED:DELAY:EDGE<x>**

Sets or returns the slope of the edge the oscilloscope uses for the delay "from" or "to" waveform when taking an immediate delay measurement.

**Group**

Measurement

**Syntax**

MEASUREMENT:IMMED:DELAY:EDGE<x> {FALL|RISe}
MEASUREMENT:IMMED:DELAY:EDGE<x>?

**Related Commands**

MEASUREMENT:IMMED:SOURce1
MEASUREMENT:IMMED:SOURce2

**Arguments**

<x> specifies which waveform to use, where <x> = 1 is the "from" waveform, and <x> = 2 is the "to" waveform.

FALL specifies the falling edge.

RISe specifies the rising edge.

**Examples**

MEASUREMENT:IMMED:DELAY:EDGE1 RISE specifies that the "from" waveform rising edge be used for the immediate delay measurement.

MEASUREMENT:IMMED:DELAY:EDGE1? returns either RISE or FALL.

**MEASUREMENT:IMMED:SOURce1**

Sets or returns the source for all single source immediate measurements and specifies the source to measure "from" when taking an immediate delay measurement or phase measurement.

**NOTE. If you do not specify a numerical suffix, the source is assumed to be SOURCE 1.**
**MEASUrement:IMMed:SOUrce1**

Syntax:

```
MEASUrement:IMMed:SOUrce1 {CH<x>|MATH<y>|REF<x>|D<x>}
MEASUrement:IMMed:SOUrce1?
```

**Arguments**

- `CH<x>` is an input channel waveform. The x variable can be expressed as an integer, where x is the channel number.
- `MATH<y>` is a math waveform. The y variable can be expressed as an integer of 1.
- `REF<x>` is a reference waveform. The x variable can be expressed as an integer, where x is the reference channel number.
- `D<x>` is a digital waveform. The x variable can be expressed as an integer, where x is the digital channel number. Digital channels are available only on MSO models.

**Examples**

```
MEASUREMENT:IMMED:SOURCE1 1 MATH1
```

specifies Math1 as the immediate measurement source.

```
MEASUREMENT:IMMED:SOURCE1?
```

might return

```
:MEASUREMENT:IMMED:SOURCE1 CH3
```

indicating that channel 3 is the immediate measurement source.

**MEASUrement:IMMed:SOUrce2**

Sets or returns the source to measure "to" for phase or delay immediate measurements.

Tip: Source2 measurements only apply to phase and delay measurement types, which require both a target (Source1) and reference (Source2) source.

**Group** Measurement

**Syntax**

```
MEASUrement:IMMed:SOUrce2 {CH<x>|MATH<y>|REF<x>|D<x>}
MEASUrement:IMMed:SOUrce2?
```

**Related Commands**

- MEASUrement:IMMed:SOUrce1
Arguments

CH<x> is an input channel waveform, where x is the channel number.
MATH<y> is a math waveform. The y variable can be expressed as an integer of 1.
REF<x> is a reference waveform, where x is the reference channel number.
D<x> is a digital waveform. The x variable can be expressed as an integer, where x is the digital channel number. Digital channels are available only on MSO models.

Examples

MEASUREMENT:IMMED:SOURCE2 REF3 sets the waveform in reference memory location 3 as the delay "to" source when making delay measurements.
MEASUREMENT:IMMED:SOURCE2? might return :MEASUREMENT:IMMED:SOURCE2 MATH1 indicating that Math1 is the immediate measurement source.

MEASUREMENT:IMMED:SOURCE<x>

For SOURce1: Sets or returns the source for all single channel measurements. For delay or phase measurements, sets or returns the waveform to measure "from".

For SOUrce2: Sets or returns the waveform to measure "to" when taking a delay measurement or phase measurement.

Group Measurement

Syntax MEASUREMENT:IMMED:SOURCE<x> {CH1|CH2|CH3|CH4|MATH|D<x>} MEASUREMENT:IMMED:SOURCE<x>? Arguments CH1–CH4 or MATH is the source waveform.

D<x> is a digital waveform. The x variable can be expressed as an integer, where x is the digital channel number. Digital channels are available only on MSO models.

MEASUREMENT:IMMED:TYPE

Sets or returns the immediate measurement type.

Digital channel measurements do not have a user-settable midRef threshold. If you specify a digital channel measurement that is not available on MSO models, measurement error 2200: measurement system error occurs and 9.9e37 is returned.

Group Measurement
Syntax

MEASUrement:IMMed:TYPe
{AMPlitude|AREa|BURst|CARea|CMEan|CRMs|DELay|FALL|FREQuency
|HIGH|LOW|MAXimum|MEAN|MINImum|NDUty|NEDGECount|NOVershoot
|NPULSECount|NWIdth|PEDGECount|PDUty
|PERTod|PHAsed|PK2Pk|POVershoot|PPULSECount|PWIdth|RISe|RMS}
MEASUrement:IMMed:TYPe?

Arguments

AMPlitude measures the amplitude of the selected waveform. In other words, it measures the high value less the low value measured over the entire waveform or gated region.

Amplitude = High - Low

AREa measures the voltage over time. The area is over the entire waveform or gated region and is measured in volt-seconds. The area measured above the ground is positive, while the area below ground is negative.

BURst measures the duration of a burst. The measurement is made over the entire waveform or gated region.

CARea (cycle area) measures the voltage over time. In other words, it measures, in volt-seconds, the area over the first cycle in the waveform or the first cycle in the gated region. The area measured above the common reference point is positive, while the area below the common reference point is negative.

CMEan (cycle mean) measures the arithmetic mean over the first cycle in the waveform or the first cycle in the gated region.

CRMs (cycle RMS) measures the true Root Mean Square voltage over the first cycle in the waveform or the first cycle in the gated region.

DELay measures the time between the middle reference (default = 50%) amplitude point of the source waveform and the destination waveform.

FALL measures the time taken for the falling edge of the first pulse in the waveform or gated region to fall from a high reference value (default is 90%) to a low reference value (default is 10%).

FREQuency measures the first cycle in the waveform or gated region. Frequency is the reciprocal of the period and is measured in hertz (Hz), where 1 Hz = 1 cycle per second.

HIGH measures the High reference (100% level, sometimes called Topline) of a waveform.

LOW measures the Low reference (0% level, sometimes called Baseline) of a waveform.

MAXimum finds the maximum amplitude. This value is the most positive peak voltage found. It is measured over the entire waveform or gated region.

MEAN amplitude measurement finds the arithmetic mean over the entire waveform or gated region.
MINImum finds the minimum amplitude. This value is typically the most negative peak voltage. It is measured over the entire waveform or gated region.

NDUty (negative duty cycle) is the ratio of the negative pulse width to the signal period, expressed as a percentage. The duty cycle is measured on the first cycle in the waveform or gated region.

\[ \text{Negative Duty Cycle} = \left( \frac{\text{Negative Width}}{\text{Period}} \right) \times 100\% \]

NEDGECOUNT is the count of falling edges.

NOVershoot (negative overshoot) finds the negative overshoot value over the entire waveform or gated region.

\[ \text{Negative Overshoot} = \left( \frac{\text{Low} - \text{Minimum}}{\text{Amplitude}} \right) \times 100\% \]

NPULSECount is the count of negative pulses.

NWIdth (negative width) measurement is the distance (time) between the middle reference (default = 50%) amplitude points of a negative pulse. The measurement is made on the first pulse in the waveform or gated region.

PDuty (positive duty cycle) is the ratio of the positive pulse width to the signal period, expressed as a percentage. It is measured on the first cycle in the waveform or gated region.

\[ \text{Positive Duty Cycle} = \left( \frac{\text{Positive Width}}{\text{Period}} \right) \times 100\% \]

PEDGECOUNT is the count of rising edges.

PERIod is the time required to complete the first cycle in a waveform or gated region. Period is the reciprocal of frequency and is measured in seconds.

PHASE measures the phase difference (amount of time a waveform leads or lags the reference waveform) between two waveforms. The measurement is made between the middle reference points of the two waveforms and is expressed in degrees, where 360° represents one waveform cycle.

PK2Pk (peak-to-peak) finds the absolute difference between the maximum and minimum amplitude in the entire waveform or gated region.

POVershoot is the positive overshoot value over the entire waveform or gated region.

\[ \text{Positive Overshoot} = \left( \frac{\text{Maximum} - \text{High}}{\text{Amplitude}} \right) \times 100\% \]

PPULSECount is the count of positive pulses.

PWIdth (positive width) is the distance (time) between the middle reference (default = 50%) amplitude points of a positive pulse. The measurement is made on the first pulse in the waveform or gated region.

RISe timing measurement finds the rise time of the waveform. The rise time is the time it takes for the leading edge of the first pulse encountered to rise from a low reference value (default is 10%) to a high reference value (default is 90%).
RMS amplitude measurement finds the true Root Mean Square voltage in the entire waveform or gated region.

**Examples**

MEASUREMENT:IMMED:TYPE FREQUENCY defines the immediate measurement to be a frequency measurement.

MEASUREMENT:IMMED:TYPE? might return :MEASUREMENT:IMMED:TYPE RMS indicating that the immediate measurement is the true Root Mean Square voltage.

**MEASUrement:IMMed:UNIts? (Query Only)**

Returns the units of the immediate measurement:


**Group**

Measurement

**Syntax**

MEASUREMENT:IMMED:UNIts?

**Examples**

MEASUREMENT:IMMED:UNITS? might return

:MEASUREMENT:IMMED:UNIts "s"

indicating that units for the immediate measurement are in seconds.

**MEASUrement:IMMed:VALue? (Query Only)**

Returns the value of the measurement specified by the MEASUrement:IMMed:TYPE command. The measurement is immediately taken on the source(s) specified by a MEASUrement:IMMed:SOUrce1 command.

**NOTE.** A change to HORizontal:MAIn:SCALe or CH<x>:SCALe will not necessarily have taken affect if immediately followed by this command.
Commands Listed in Alphabetical Order

**Group**  
Measurement

**Syntax**  
MEASUrement:IMMed:VALue?

**Related Commands**  
MEASUrement:IMMed:TYPe, MEASUrement:IMMed:SOUrce1, *ESR?, ALLEv?

**Examples**  
MEASUREMENT:IMMED:VALUE? might return 
:MEASUREMENT:IMMED:VALUE 9.9000E+37. If the measurement has an error or warning associated with it, then an item is added to the error queue. The error can be checked for with the *ESR? and ALLEv? commands.

**MEASUrement:INDICators? (Query Only)**  
Returns all measurement indicator parameters.

**Group**  
Measurement

**Syntax**  
MEASUrement:INDICators?

**Examples**  
MEASUREMENT:INDICATORS? might return 
MEASUREMENT:INDICATORS:STATE MEAS1;NUMHORZ 0;NUMVERT 4;HORZ1 7.5E0;HORZ2 -3.400000095367E0;HORZ3 0.0E0;HORZ4 0.0E0;VERT1 -6.351123E-6;VERT2 -3.179753E-6;VERT3 -6.40943E-6;VERT4 -6.403E-6

**MEASUrement:INDICators:HORZ<x>? (Query Only)**  
Returns the position of the specified horizontal measurement indicator <x>, where <x> can be 1, 2, 3, or 4.

**Group**  
Measurement

**Syntax**  
MEASUrement:INDICators:HORZ<x>?

**Examples**  
MEASUREMENT:INDICATORS:HORZ1? might return 
MEASUREMENT:INDICATORS:HORZ1 -2.0E-3 indicating that horizontal indicator1 has a value of -2mV.
MEASUrement:INDICators:NUMHORZ? (Query Only)

Returns the number of horizontal measurement indicators currently being displayed.

**Group**  
Measurement

**Syntax**
MEASUrement:INDICators:NUMHORZ?

**Examples**
MEASUREMENT:INDICATORS:NUMHORZ? might return 
MEASUREMENT:INDICATORS:NUMHORZ 2 indicating there are currently 2 horizontal lines drawn on the graticule. The indicators show where the measurement specified by MEASUrement:INDICators:STATE is being performed.

MEASUrement:INDICators:NUMVERT? (Query Only)

Returns the number of vertical measurement indicators currently being displayed.

**Group**  
Measurement

**Syntax**
MEASUrement:INDICators:NUMVERT?

**Examples**
MEASUREMENT:INDICATORS:NUMVERT? might return 
MEASUREMENT:INDICATORS:NUMVERT 2 indicating there are currently 2 vertical lines drawn on the graticule. The indicators show where the measurement specified by MEASUrement:INDICators:STATE is being performed.

MEASUrement:INDICators:STATE

Sets or returns the state of visible measurement indicators.

**Group**  
Measurement

**Syntax**
MEASUrement:INDICators:STATE {OFF|MEAS<x>}
MEASUrement:INDICators:STATE?
Arguments

OFF turns the visible measurement indicators off.

MEAS<x> displays the visible measurement indicators for measurement <x>, where <x> can be 1, 2, 3, or 4.

NOTE. There must be an active measurement before you can activate an indicator for a specified measurement.

Examples

MEASUREMENT:INDICATORS:STATE MEAS2 turns on the display of visible measurement indicators for measurement 2.

MEASUREMENT:INDICATORS:STATE? might return MEASUREMENT:INDICATORS:STATE OFF indicating that no measurement indicators are active.

MEASUREMENT:INDICATORS:VERT<x>? (Query Only)

Returns the value of the specified vertical measurement indicator <x> from the trigger point, where <x> can be 1, 2, 3, or 4. A negative value means that the indicator is positioned earlier in the waveform record than the trigger point.

Group Measurement

Syntax MEASUREMENT:INDICATORS:VERT<x>?

Examples MEASUREMENT:INDICATORS:VERT2? might return MEASUREMENT:INDICATORS:VERT2 -3.724507E-6 indicating that the second measurement indicator is positioned 3.72 μs before the trigger point.

MEASUREMENT:MEAS<x>? (Query Only)

Returns all measurement parameters for the specified active measurement <x>.

Group Measurement

Syntax MEASUREMENT:MEAS<x>?
**MEASUrement:MEAS<x>:COUNT? (Query Only)**

Returns the number of values accumulated for this measurement since the last statistical reset. Values may be ignored if they generated an error. Measurements are specified by x, which ranges from 1 through 4.

**Group**  
Measurement

**Syntax**  
MEASUrement:MEAS<x>:COUNT?

**Examples**  

**MEASUrement:MEAS<x>:DELay? (Query Only)**

Returns the delay measurement parameters for the measurement specified by <x>, which ranges from 1 through 4.

**Group**  
Measurement

**Syntax**  
MEASUrement:MEAS<x>:DELay?

**Examples**  
MEASUREMENT:MEAS1? might return :MEASUREMENT:MEAS1:DELAY:DIRECTION FORWARDS;EDGE1 RISE;EDGE2 RISE.

**MEASUrement:MEAS<x>:DELay:DIRection**

Sets or returns the starting point and direction that determines the delay "to" edge when taking a delay measurement. Use the MEASUrement:MEAS<x>:SOURCE2 command to specify the waveform.

**Group**  
Measurement

**Syntax**  
MEASUrement:MEAS<x>:DELay:DIRection {BACKwards|FORwards}  
MEASUrement:MEAS<x>:DELay:DIRection?

**Related Commands**  
MEASUrement:MEAS<x>:SOURCE2
Arguments

**BACKWards** means the search starts at the end of the waveform and looks for the last rising or falling edge in the waveform. Use the `MEASUrement:MEAS<x>:DELay:EDGE<x>` command to specify the slope of the edge.

**FORWards** means the search starts at the beginning of the waveform and looks for the first rising or falling edge in the waveform. Use the `MEASUrement:MEAS<x>:DELay:EDGE<x>` command to specify the slope of the edge.

Examples

`MEASUREMENT:MEAS3:DELAY:DIRECTION BACKWARDS` starts searching from the end of the waveform record.


**MEASUrement:MEAS<x>:DELay:EDGE<x>**

Sets or returns the slope of the edge used for the delay "from" or "to" waveform when taking an immediate delay measurement. The waveform is specified by `MEASUrement:MEAS<x>:SOURCE[1]`.

Group

Measurement

Syntax

`MEASUrement:MEAS<x>:DELay:EDGE<x> {FALL|RISe}`

`MEASUrement:MEAS<x>:DELay:EDGE<x>?`

Arguments

`<x>` specifies which waveform to use, where `<x> = 1` is the "from" waveform, and `<x> = 2` is the "to" waveform.

**FALL** specifies the falling edge.

**RISe** specifies the rising edge.

Examples

`MEASUREMENT:MEAS1:DELAY:EDGE1 RISe` specifies that the "from" waveform rising edge be used for the immediate delay measurement.

`MEASUREMENT:MEAS1:DELAY:EDGE1?` returns either RISE or FALL.

**MEASUrement:MEAS<x>:MAXimum? (Query Only)**

Returns the maximum value found for this measurement since the last statistical reset. Measurements are specified by `<x>`, which ranges from 1 through 4.
Commands Listed in Alphabetical Order

**Group** Measurement

**Syntax** MEASUREMENT:MEAS<x>:MAXimum?


**MEASUREMENT:MEAS<x>:MEAN? (Query Only)**

Returns the mean value accumulated for this measurement since the last statistical reset. Measurements are specified by x, which ranges from 1 through 4.

**Group** Measurement

**Syntax** MEASUREMENT:MEAS<x>:MEAN?


**MEASUREMENT:MEAS<x>:MINimum? (Query Only)**

Returns the minimum value for this measurement since the last statistical reset. Measurements are specified by <x>, which ranges from 1 through 4.

**Group** Measurement

**Syntax** MEASUREMENT:MEAS<x>:MINimum?


**MEASUREMENT:MEAS<x>:SOURCE[1]**

Sets or returns the source for all single source measurements and specifies the source to measure "from" when taking a delay measurement or phase measurement. Measurements are specified by <x>, which ranges from 1 through 4.
**Group**  Measurement

**Syntax**  
`MEASUREMENT:MEAS<x>:SOURCE[1] {CH<x>|MATH<y>|REF<x>}`  
`MEASUREMENT:MEAS<x>:SOURCE[1]?`

**Arguments**  
- `CH<x>` is an input channel waveform, where `x` is the channel number.  
- `MATH<y>` is a math waveform, where `y` is 1.  
- `REF<x>` is a reference waveform, where `x` is the reference channel number.

**Examples**  
- `MEASUREMENT:MEAS2:SOURCE1 MATH1` specifies Math 1 as the measurement 2 source.  

**MEASUrement:MEAS<x>:SOURCE2**

Sets or returns the reference source to measure "to" when taking a delay measurement or phase measurement. Measurements are specified by `<x>`, which ranges from 1 through 4.

Tip: Source2 measurements only apply to phase and delay measurement types, which require both a target (Source1) and reference (Source2) source.

**Group**  Measurement

**Syntax**  
`MEASUREMENT:MEAS<x>:SOURCE2 {CH<x>|MATH<y>|REF<x>|D<x>}`  
`MEASUREMENT:MEAS<x>:SOURCE2?`

**Related Commands**  
`MEASUREMENT:MEAS<x>:TYPE`

**Arguments**  
- `CH<x>` is an input channel waveform, where `x` is the channel number.  
- `MATH<y>` is the math waveform, which is always 1.  
- `REF<x>` is a reference waveform, where `x` is the reference channel number.  
- `D<x>` is a digital waveform, where `x` is the digital channel number. Digital channels are available only on MSO models.
Examples

**MEASUREMENT:MEAS4:SOUR2**  CH1 specifies CH1 as the delay "to" source when making delay measurement.

**MEASUREMENT:MEAS2:SOUR2?**  might return

**:MEASUREMENT:MEAS2:SOUR2**  MATH1 indicating that Math 1 is the measurement 2 source.

**MEASUrement:MEAS<x>:SOURce<x>**

For **SOURce1**: Sets or returns the source for all single channel measurements. For delay or phase measurements, sets or returns the waveform to measure "from".

For **SOURce2**: Sets or returns the waveform to measure "to" when taking a delay measurement or phase measurement.

**Group**  Measurement

**Syntax**  

**MEASUrement:MEAS<x>:SOURce<x>**  

{CH<x>|MATH|D<x>}

**MEASUrement:MEAS<x>:SOURce<x>?**

**Arguments**

CH<x> is an input channel waveform, where x is the channel number.

MATH is the math waveform.

REF<x> is a reference waveform, where x is the reference channel number.

D<x> is a digital waveform, where x is the digital channel number. Digital channels are available only on MSO models.

**MEASUrement:MEAS<x>:STATE**

Sets or returns whether the specified measurement slot is computed and displayed. The measurement slot is specified by <x>, which ranges from 1 through 4.

For a measurement to display, you must have selected a source waveform and defined the measurement you want to take and display. You select the measurement using the **MEASUrement:MEAS<x>:SOURCE[1]** command. You define the measurement type using the **MEASUrement:MEAS<x>:TYPE** command.

**Group**  Measurement

**Syntax**  

**MEASUrement:MEAS<x>:STATE**  

{OFF|ON|<NR1>}

**MEASUrement:MEAS<x>:STATE?**
Related Commands  
MEASUrement:MEAS<x>:SOURCE[1], MEASUrement:MEAS<x>:TYPe

Arguments  
OFF disables calculation and display of the specified measurement slot.
ON enables calculation and display of the specified measurement slot.

<NR1> = 0 disables calculation and display of the specified measurement slot; any other value enables calculation and display of the specified measurement slot.

Examples  
MEASUREMENT:MEAS2:STATE ON computes and displays the measurement defined as measurement 2.

MEASUREMENT:MEAS1:STATE? might return :MEASUREMENT:MEAS1:STATE 0 indicating that measurement defined for measurement slot 1 is disabled.

MEASUrement:MEAS<x>:STDdev? (Query Only)

Returns the standard deviation of values accumulated for this measurement since the last statistical reset. Measurements are specified by <x>, the measurement slots, from 1 through 4.

Group  Measurement

Syntax  
MEASUrement:MEAS<x>:STDdev?

Examples  

MEASUrement:MEAS<x>:TYPe

Sets or returns the measurement type defined for the specified measurement slot. The measurement slot is specified by <x>, which ranges from 1 through 4.

Digital channel measurements do not have a user-settable midRef threshold. If you specify a digital channel measurement that is not available on MSO models, measurement error 2200: measurement system error occurs and 9.9e37 is returned.

Group  Measurement

Syntax  
MEASUrement:MEAS<x>:TYPe  
{AMPlitude|AREa|BURst|CARea|CMEan|CRMs|DElay|FALL|FREQuency|HIGH|LOW|MAXimum|MEAN|MINImum|NDUty|NEDGECount|NOVershoot}
### Arguments

- **AMplitude** measures the amplitude of the selected waveform. In other words, it measures the high value less the low value measured over the entire waveform or gated region.

  \[ \text{Amplitude} = \text{High} - \text{Low} \]

- **AREa** measures the voltage over time. The area is over the entire waveform or gated region and is measured in volt-seconds. The area measured above the ground is positive, while the area below ground is negative.

- **BURst** measures the duration of a burst. The measurement is made over the entire waveform or gated region.

- **CAREa (cycle area)** measures the voltage over time. In other words, it measures, in volt-seconds, the area over the first cycle in the waveform or the first cycle in the gated region. The area measured above the common reference point is positive, while the area below the common reference point is negative.

- **CMEan (cycle mean)** measures the arithmetic mean over the first cycle in the waveform or the first cycle in the gated region.

- **CRMS (cycle RMS)** measures the true Root Mean Square voltage over the first cycle in the waveform or the first cycle in the gated region.

- **DELay** measures the time between the middle reference (default = 50%) amplitude point of the source waveform and the destination waveform.

- **FALL** measures the time taken for the falling edge of the first pulse in the waveform or gated region to fall from a high reference value (default is 90%) to a low reference value (default is 10%).

- **FREQuency** measures the first cycle in the waveform or gated region. Frequency is the reciprocal of the period and is measured in hertz (Hz), where 1 Hz = 1 cycle per second.

- **HIGH** measures the High reference (100% level, sometimes called Topline) of a waveform.

- **LOW** measures the Low reference (0% level, sometimes called Baseline) of a waveform.

- **MAXimum** finds the maximum amplitude. This value is the most positive peak voltage found. It is measured over the entire waveform or gated region.

- **MEAN** amplitude measurement finds the arithmetic mean over the entire waveform or gated region.

- **MINimum** finds the minimum amplitude. This value is typically the most negative peak voltage. It is measured over the entire waveform or gated region.
NDuty (negative duty cycle) is the ratio of the negative pulse width to the signal period, expressed as a percentage. The duty cycle is measured on the first cycle in the waveform or gated region.

\[
\text{Negative Duty Cycle} = \left(\frac{\text{Negative Width}}{\text{Period}}\right) \times 100\%
\]

NEDGECOUNT is the count of negative edges.

NOvershoot (negative overshoot) finds the negative overshoot value over the entire waveform or gated region.

\[
\text{Negative Overshoot} = \left(\frac{\text{Low} - \text{Minimum}}{\text{Amplitude}}\right) \times 100\%
\]

NPULSECOUNT is the count of negative pulses.

NWIdth (negative width) measurement is the distance (time) between the middle reference (default = 50%) amplitude points of a negative pulse. The measurement is made on the first pulse in the waveform or gated region.

PDUty (positive duty cycle) is the ratio of the positive pulse width to the signal period, expressed as a percentage. It is measured on the first cycle in the waveform or gated region.

\[
\text{Positive Duty Cycle} = \left(\frac{\text{Positive Width}}{\text{Period}}\right) \times 100\%
\]

PEDGECOUNT is the count of positive edges.

PERIOD is the time required to complete the first cycle in a waveform or gated region. Period is the reciprocal of frequency and is measured in seconds.

PHASE measures the phase difference (amount of time a waveform leads or lags the reference waveform) between two waveforms. The measurement is made between the middle reference points of the two waveforms and is expressed in degrees, where 360° represents one waveform cycle.

PK2Pk (peak-to-peak) finds the absolute difference between the maximum and minimum amplitude in the entire waveform or gated region.

POVershoot is the positive overshoot value over the entire waveform or gated region.

\[
\text{Positive Overshoot} = \left(\frac{\text{Maximum} - \text{High}}{\text{Amplitude}}\right) \times 100\%
\]

PPULSECOUNT is the count of positive pulses.

PWIdth (positive width) is the distance (time) between the middle reference (default = 50%) amplitude points of a positive pulse. The measurement is made on the first pulse in the waveform or gated region.

RISe timing measurement finds the rise time of the waveform. The rise time is the time it takes for the leading edge of the first pulse encountered to rise from a low reference value (default is 10%) to a high reference value (default is 90%).

RMS amplitude measurement finds the true Root Mean Square voltage in the entire waveform or gated region.
**Examples**

`MEASUREMENT:MEAS2:TYPE FREQUENCY` defines measurement 2 as a measurement of the frequency of a waveform.

`MEASUREMENT:MEAS1:TYPE?` might return `:MEASUREMENT:MEAS1:TYPE RMS` indicating that measurement 1 is defined to measure the RMS value of a waveform.

---

**MEASUrement:MEAS<x>:UNIts? (Query Only)**

Returns the units associated with the specified measurement. The measurement slots are specified by `<x>`, which ranges from 1 through 4.

**Group**
Measurement

**Syntax**
`MEASUrement:MEAS<x>:UNIts?`

**Related Commands**
`MEASUrement:MEAS<x>:TYPe`

**Examples**
`MEASUREMENT:MEAS1:UNITS?` might return `:MEASUREMENT:MEAS1:UNIts %` indicating units for measurement 1 are set to percent.

---

**MEASUrement:MEAS<x>:VALue? (Query Only)**

Returns a calculate value for the measurement specified by `<x>`, which ranges from 1 through 4.

**NOTE.** This is the same value as displayed on-screen. If measurement statistics are enabled, a new value is calculated with every waveform. In addition, this value is updated approximately every 1/3 second. If you are acquiring a long acquisition record, the oscilloscope may take longer to update.

**Group**
Measurement

**Syntax**
`MEASUrement:MEAS<x>:VALue?`

**Related Commands**
`MEASUrement:MEAS<x>:UNIts?, *ESR?, ALLEv?`

**Examples**
`MEASUREMENT:MEAS1:VALUE?` might return `:MEASUREMENT:MEAS1:VALUE 2.8740E-06`. If the measurement has an error or warning associated with it,
then an item is added to the error queue. The error can be checked for with the
*ESR? and ALLEv? commands.

**MEASUrement:METHod**

Sets or returns the method used to calculate the 0% and 100% reference level.

**Group** Measurement

**Syntax** MEASUrement:METHod {Auto|HISTogram|MINMax}
MEASUrement:METHod?


**Arguments**

Auto selects the best method for each data set.

HISTogram sets the high and low waveform levels statistically using a histogram algorithm.

MINMax uses the highest and lowest values of the waveform record. This selection is best for examining waveforms with no large, flat portions of a common value, such as sine waves and triangle waves.

**Examples** MEASUREMENT:METHOD? might return :MEASUREMENT:METHOD MINMAX indicating that the reference levels are set to MIN and MAX.

**MEASUrement:REFLevel? (Query Only)**

Returns the current reference level parameters.

**Group** Measurement

**Syntax** MEASUrement:REFLevel?

**Examples** MEASUREMENT:REFLEVEL? might return these reference level settings :MEASUREMENT:REFLEVEL:METHOD PERCENT;ABSOLUTE:HIGH 0.0000;LOW 0.0000;MID1 0.0000 ;MID2
MEASUrement:REFLevel:ABSolute:HIGH

Sets or returns the high reference level, and is the upper reference level when MEASUrement:REFLevel:METHod is set to Absolute. This command affects the results of rise and fall measurements.

**NOTE.** this command affects the associated reference level parameter for all MEASurements:IMMed and the four periodic measurements.

**Group**  
Measurement

**Syntax**  
MEASUrement:REFLevel:ABSolute:HIGH <NR3>  
MEASUrement:REFLevel:ABSolute:HIGH?

**Related Commands**  
MEASUrement:REFLevel:METHod, MEASUrement:IMMed:TYPe, MEASUrement:MEAS<x>:TYPe

**Arguments**  
<NR3> is the high reference level, in volts. The default is 0.0 V.

**Examples**  
MEASUREMENT:REFLEVEL:ABSOLUTE:HIGH 1.71 sets the high reference level to 1.71 V.

MEASUREMENT:REFLEVEL:ABSOLUTE:HIGH? might return :MEASUREMENT:REFLEVEL:ABSOLUTE:HIGH 1.7100E+00 indicating that the absolute high reference level is set to 1.71 V.

MEASUrement:REFLevel:ABSolute:LOW

Sets or returns the low reference level, and is the lower reference level when MEASUrement:REFLevel:METHod is set to Absolute.

**NOTE.** this command affects the associated reference level parameter for all MEASurements:IMMed and the four periodic measurements.

**Group**  
Measurement
**MEASurement:REFLevel:ABSolute:LOW**

Syntax

```
MEASUrement:REFLevel:ABSolute:LOW <NR3>
MEASUrement:REFLevel:ABSolute:LOW?
```

Related Commands


Arguments

`<NR3>` is the low reference level, in volts. The default is 0.0 V.

Examples

```
MEASUREMENT:REFLEVEL:ABSOLUTE:LOW 0.0 sets the low reference level to 0.0 V.

MEASUREMENT:REFLEVEL:ABSOLUTE:LOW? might return
:MEASUREMENT:REFLEVEL:ABSOLUTE:LOW 0.0000E+00 indicating
that the absolute low reference level is set to 0.0 V.
```

**MEASUrement:REFLevel:ABSolute:MID[1]**

Sets or returns the mid reference level, and is the 50% reference level when `MEASUrement:REFLevel:METHod` is set to Absolute. This command affects the results of period, frequency, delay, and all cyclic measurements.

```
NOTE. this command affects the associated reference level parameter for all
MEASurements:IMMed and the four periodic measurements.
```

Group

Measurement

Syntax

```
MEASUrement:REFLevel:ABSolute:MID[1]?
```

Related Commands

`MEASUrement:REFLevel:METHod`

Arguments

`<NR3>` is the mid reference level, in volts. The default is 0.0 V.

Examples

```
MEASUREMENT:REFLEVEL:ABSOLUTE:MID 0.71 sets the mid reference level to .71 V.

MEASUREMENT:REFLEVEL:ABSOLUTE:MID? might return
:MEASUREMENT:REFLEVEL:ABSOLUTE:MID 0.7100E+00 indicating
that the absolute mid1 reference level is set to .71 V.
```
**MEASUrement:REFLevel:ABSolute:MID2**

Sets or returns the mid reference level for the "to" waveform when taking a delay measurement, and is the 50% reference level when **MEASUrement:REFLevel:METHod** is set to Absolute. This command affects the results of delay measurements.

*NOTE.* this command affects the associated reference level parameter for all **MEASUrements:IMMed** and the four periodic measurements.

**Group** Measurement

**Syntax**

- `MEASUrement:REFLevel:ABSolute:MID2 <NR3>`
- `MEASUrement:REFLevel:ABSolute:MID2?`

**Arguments**

- `<NR3>` is the mid reference level, in volts. The default is 0.0 V.

**Examples**

- `MEASUREMENT:REFLEVEL:ABSOLUTE:MID2 0.5` sets the mid reference level for the delay waveform to 0.5 V.
- `MEASUREMENT:REFLEVEL:ABSOLUTE:MID2?` might return `:MEASUREMENT:REFLEVEL:ABSOLUTE:MID2 0.5000E+00` indicating that the absolute mid2 reference level is set to 0.5 V.

**MEASUrement:REFLevel:ABSolute:MID<x>**

Sets or returns the mid reference level for channel `<x>`, where x is the measurement channel.

**Group** Measurement

**Syntax**

- `MEASUrement:REFLevel:ABSolute:MID<x> <NR3>`
- `MEASUrement:REFLevel:ABSolute:MID<x>?`

**Arguments**

- `<NR3>` is the mid reference level in volts.
**MEASUrement:REFLevel:METHod**

Specifies or returns the reference level units used for measurement calculations.

**NOTE.** this command affects the associated reference level parameter for all MEASurements:IMMed and the eight periodic measurements. To change the parameter for individual measurements, use the MEASUrement:MEAS<x>:REFLevel commands.

**Group**  Measurement

**Syntax**  MEASUrement:REFLevel:METHod {ABSolute|PERCent}

**Arguments**

- **ABSolute** specifies that the reference levels are set explicitly using the MEASUrement:REFLevel:ABSolute commands. This method is useful when precise values are required (for example, when designing to published interface specifications, such as RS-232-C).

- **PERCent** specifies that the reference levels are calculated as a percent relative to HIGH and LOW. The percentages are defined using the MEASUrement:REFLevel:PERCent commands.

**Examples**

- MEASUREMENT:REFLEVEL:METHOD ABSOLUTE specifies that explicit user-defined values are used for the reference levels.

- MEASUREMENT:REFLEVEL:METHOD? might return :MEASUREMENT:REFLEVEL:METHOD PERCENT indicating that the reference level units used are calculated as a percent relative to HIGH and LOW.

**MEASUrement:REFLevel:PERCent:HIGH**

Sets or returns the percent (where 100% is equal to HIGH) used to calculate the high reference level when MEASUrement:REFLevel:METHod is set to Percent. This command affects the results of rise and fall measurements.

**NOTE.** This command affects the associated reference level parameter for all MEASurements:IMMed and the four periodic measurements.

**Group**  Measurement
Commands Listed in Alphabetical Order

**MEASUrement:REFLevel:PERCent:HIGH**

**Syntax**

```
MEASUREMENT:REFLeve1:PERCent:HIGH <NR3>
MEASUREMENT:REFLevel:PERCent:HIGH?
```

**Related Commands**

`MEASUREMENT:REFLevel:METHod`, `MEASUREMENT:IMMed:TYPe`, `MEASUREMENT:MEAS<x>:TYPe`

**Arguments**

<NR3> is the high reference level, ranging from 0 to 100%. The default high reference level is 90%.

**Examples**

```
MEASUREMENT:REFLEVEL:PERCENT:HIGH 95 sets the high reference level to 95% of HIGH.
MEASUREMENT:REFLEVEL:PERCENT:HIGH? might return :MEASUREMENT:REFLEVEL:PERCENT:HIGH 90 indicating that the percentage high reference level is set to 90% of HIGH.
```

**MEASUrement:REFLevel:PERCent:LOW**

Sets or returns the percent (where 100% is equal to HIGH) used to calculate the low reference level when `MEASUrement:REFLevel:METHod` is set to Percent. This command affects the results of rise and fall measurements.

**NOTE.** This command affects the associated reference level parameter for all `MEASures:IMMed` and the four periodic measurements.

**Group**

Measurement

**Syntax**

```
MEASUREMENT:REFLevel:PERCent:LOW <NR3>
MEASUREMENT:REFLevel:PERCent:LOW?
```

**Related Commands**

`MEASUREMENT:REFLevel:METHod`, `MEASUREMENT:IMMed:TYPe`, `MEASUREMENT:MEAS<x>:TYPe`

**Arguments**

<NR3> is the low reference level, ranging from 0 to 100%. The default low reference level is 10%.

**Examples**

```
MEASUREMENT:REFLEVEL:PERCENT:LOW 15 sets the high reference level to 15% of HIGH.
```
MEASUREMENT:REFLEVEL:PERCENT:LOW? might return :MEASUREMENT:REFLEVEL:PERCENT:LOW 10 indicating that the percentage high reference level is set to 10% of HIGH.

**MEASUrement:REFLevel:PERCent:MID[1]**

Sets or returns the percent (where 100% is equal to HIGH) that is used to calculate the mid reference level when MEASUrement:REFLevel:METHod is set to Percent. This command affects the results of period, frequency, delay, and all cyclic measurements.

**NOTE.** this command affects the associated reference level parameter for all MEASUrements:IMMed and the four periodic measurements.

<table>
<thead>
<tr>
<th>Group</th>
<th>Measurement</th>
</tr>
</thead>
<tbody>
<tr>
<td>Related Commands</td>
<td>MEASUrement:REFLevel:METHod</td>
</tr>
<tr>
<td>Arguments</td>
<td>&lt;NR3&gt; is the mid reference level, ranging from 0 to 100%. The default mid reference level is 50%.</td>
</tr>
<tr>
<td>Examples</td>
<td>MEASUrement:REFLEVEL:PERCENT:MID 60 sets the mid reference level to 60% of HIGH. MEASUrement:REFLEVEL:PERCENT:MID? might return :MEASUrement:REFLEVEL:PERCENT:MID 65 indicating that the percentage mid reference level is set to 65% of HIGH.</td>
</tr>
</tbody>
</table>

**MEASUrement:REFLevel:PERCent:MID2**

Sets or returns the percent (where 100% is equal to HIGH) that is used to calculate the mid reference level for the second waveform specified when MEASUrement:REFLevel:METHod is set to Percent. This command affects the results of delay measurements.

**NOTE.** this command affects the associated reference level parameter for all MEASUrements:IMMed and the four periodic measurements.
Commands Listed in Alphabetical Order

**Group** Measurement

**Syntax**

```
MEASUrement:REFLevel:PERCent:MID2 <NR3>
MEASUrement:REFLevel:PERCent:MID2?
```

**Related Commands**

`MEASUrement:REFLevel:METHod`

**Arguments**

`<NR3>` is the mid reference level, ranging from 0 to 100%. The default mid reference level is 50%.

**Examples**

- `MEASUREMENT:REFLEVEL:PERCENT:MID2 40` sets the mid2 reference level to 40% of HIGH.
- `MEASUREMENT:REFLEVEL:PERCENT:MID2?` might return `:MEASUREMENT:REFLEVEL:PERCENT:MID2 45` indicating that the percentage mid2 reference level is set to 45% of HIGH.

**MEASUrement:REFLevel:PERCent:MID<x>**

Sets or returns the mid reference level for channel `<x>`, where `<x>` is the measurement channel.

**Group** Measurement

**Syntax**

```
MEASUrement:REFLevel:PERCent:MID<x> <NR3>
MEASUrement:REFLevel:PERCent:MID<x>?
```

**Arguments**

`<NR3>` is the mid reference level in percent.

**MEASUrement:SNAPShot (No Query Form)**

Displays the measurement snapshot list on the oscilloscope screen. The list contains the immediate values for all available measurements of the active signal.

**Group** Measurement

**Syntax**

```
MEASUrement:SNAPShot
```
**MEASUrement:STATIstics (No Query Form)**

Clears all of the statistics accumulated for all periodic measurements (MEAS1 through MEAS4).

The query form returns statistic settings.

**Group** Measurement

**Syntax**

MEASUrement:STATIstics RESET
MEASUrement:STATIstics?

**Arguments**

RESET clears the measurements.

**MEASUrement:STATIstics:MODE**

Controls the operation and display of management statistics.

**Group** Measurement

**Syntax**

MEASUrement:STATIstics:MODE {OFF|ON}
MEASUrement:STATIstics:MODE?

**Related Commands** MEASUrement:STATIstics

**Arguments**

OFF turns all measurements off. This is the default value.

ON turns on statistics and displays all statistics for each measurement.

**Examples**

MEASUREMENT:STATISTICS:MODE OFF turns statistic measurements off.

MEASUREMENT:STATISTICS:MODE? might return
:MEASUREMENT:STATISTICS:MODE ON indicating that measurement statistics are turned on and all statistics are being displayed for each measurement.

**MEASUrement:STATIstics:WEIghting**

Sets or returns the time constant for mean and standard deviation statistical accumulations.
Commands Listed in Alphabetical Order

**Group**  Measurement

**Syntax**  
MEASUREMENT:STATISTICS:WEIGHTING <NR1>
MEASUREMENT:STATISTICS:WEIGHTING?

**Related Commands**  MEASUREMENT:STATISTICS:MODE

**Arguments**  
<NR1> is the number of samples used for the mean and standard deviation statistical accumulations.

**Examples**  
MEASUREMENT:STATISTICS:WEIGHTING 4 sets statistical weighting to four samples.

MEASUREMENT:STATISTICS:WEIGHTING? might return :MEASUREMENT:STATISTICS:WEIGHTING 4 indicating that measurement statistics weighting is currently set to 4 samples.

**MESSAGE**
This command sets or queries message box (screen annotation) parameters.

**Group**  Display

**Syntax**  
MESSAGE
MESSAGE?

**Examples**  
MESSAGE? might return MESSAGE:SHOW "TP401";BOX 271,82,292,114;STATE 0 indicating the message parameters.

**MESSAGE:BOX**
Sets or returns the co-ordinates of the message box. This command does not display the message unless MESSAGE:STATE is on.

X1 and Y1 are the screen coordinates of the top left corner of the message box. X2 and Y2 are the screen coordinates of the bottom right corner of the message box. All four coordinates are returned by the query.

Changing the text in the message box, using the MESSAGE:SHOW command, automatically resizes the message box. If you want a custom message box size, send the MESSAGE:BOX command after changing the text using the MESSAGE:SHOW command.
Message box settings and data are saved and restored in saved setups.

**Group**  
Display

**Syntax**  
MESSage:BOX <X1>,<Y1>[,<X2>,<Y2>]
MESSage:BOX?

**Related Commands**  
MESSage:STATE, MESSage:SHOW, MESSage:CLEAR

**Arguments**  
<x1> and <x2> = 0 to 1023, and are pixel positions along the horizontal axis. <x1> defines the left and <x2> defines the right side of the window.

<y1> and <y2> = 0 to 767, and are pixel positions along the vertical axis. <y1> defines the top and <y2> defines the bottom of the window. The reserved height of all characters is 16 pixels so the window must be at least that high to fully display characters. <x2> and <y2> are optional because the MESSAGE:SHOW command automatically sizes the box to fit the message. All four values are returned in a query.

**MESSage:CLEAR (No Query Form)**
Clears the contents of the message box.

**Group**  
Display

**Syntax**  
MESSage:CLEAR

**Related Commands**  
MESSage:BOX, MESSage:SHOW, MESSage:STATE

**Examples**  
MESSage:CLEAR  
clears the contents of the message box

**MESSage:SHOW**
Sets or returns the contents of the message box. MESSage:SHOW <Qstring> defines the content of the message box. Change in string length causes automatic resize of the message box to fit the text. The box may be resized using the MESSage:BOX command. The MESSage:STATE command is used to turn on and off the message box display.
MESSage:SHOW <QString>
MESSage:SHOW?

MESSage:BOX, MESSage:CLEAR, MESSage:STATE

<QString> is the message and can include any of the characters shown in the Character Set, Appendix A. The maximum length of the message is 1000 characters; the instrument ignores longer strings.

The message box size is set to fit the message. You can also set the message area height and width using the MESSage:BOX command. The length of the message that fits in the message area depends on the contents of the message because the width of characters varies.

If the message exceeds the limits of the message box, either horizontally or vertically, the portion of the message that exceeds the limits will not be displayed. The message string itself is not altered. The entire message can be returned as a query response regardless of what is displayed in the message box.

The message is left-justified, and is displayed on a single line starting with the topmost line in the window. A new line character can be embedded in the string to position the message on multiple lines. You can also use white space and tab characters to position the message within a line. Text which does not fit within the message box is truncated. Defining a message box text string erases any previously displayed text within the message box.

You can send a tab by transmitting a tab character (\t or \x09) followed characters representing the most significant eight bits followed by significant eight bits of a 16-bit number. The number specifies the position relative to the left margin of the message area. For example, to tab send TAB (\t or \x09), NUL (decimal 0), and CR (decimal 13).

For example, using hexadecimal escape sequences, MESSAGE:SHOW '\x09\x01\x17Hello' when sent as a command would cause the 'Hello' to be displayed starting at pixel position 279 relative to the left margin set by the MESSAGE:BOX command. If you want to display characters starting at position 279, then 279 = 0x0117; split the hexadecimal number into two characters 0x01 and 0x17 and send '\x09\x01\x17'.

Special characters which control decoration are two character sequences where the first character is an escape (0x1b) and the second character is as described below.

<table>
<thead>
<tr>
<th>Bit 7</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bit 6</td>
<td>If set, inverse video is toggled from current state and the following text is displayed in the new inverse state until the state is toggled again. Remaining bits are ignored</td>
</tr>
<tr>
<td>Bit 5</td>
<td>If set, the color index in the four LSB’s (bits 0 through 3) is applied to the foreground or background color depending on the fg/bg bit (bit 4).</td>
</tr>
<tr>
<td>--------------</td>
<td>------------------------------------------------------------------------------------------------------------------------------------</td>
</tr>
<tr>
<td>Bit 4</td>
<td>If set, color change is applied to the background, otherwise applies to the foreground.</td>
</tr>
<tr>
<td>Bit 0 – 3</td>
<td>Specifies the color index (0 through 15) to change color as specified below:</td>
</tr>
<tr>
<td></td>
<td>Index 0  Black (background)</td>
</tr>
<tr>
<td></td>
<td>Index 1  Yellow (Ch 1)</td>
</tr>
<tr>
<td></td>
<td>Index 2  Cyan (Ch 2)</td>
</tr>
<tr>
<td></td>
<td>Index 3  Magenta (Ch 3)</td>
</tr>
<tr>
<td></td>
<td>Index 4  Green (Ch 4)</td>
</tr>
<tr>
<td></td>
<td>Index 5  Red (math)</td>
</tr>
<tr>
<td></td>
<td>Index 6  White (reference)</td>
</tr>
<tr>
<td></td>
<td>Index 7  Orange</td>
</tr>
<tr>
<td></td>
<td>Index 8  Gray (Graticule)</td>
</tr>
<tr>
<td></td>
<td>Index 9  White (text)</td>
</tr>
<tr>
<td></td>
<td>Index 10 Tek blue</td>
</tr>
<tr>
<td></td>
<td>Index 11 Bright blue</td>
</tr>
<tr>
<td></td>
<td>Index 12 Undefined</td>
</tr>
<tr>
<td></td>
<td>Index 13 Blue</td>
</tr>
<tr>
<td></td>
<td>Index 14 Undefined</td>
</tr>
<tr>
<td></td>
<td>Index 15 Dark blue</td>
</tr>
<tr>
<td>Bit 4</td>
<td>If set, the foreground color is set to the default foreground color.</td>
</tr>
<tr>
<td>Bit 3</td>
<td>If set, the background color is set to the default background color.</td>
</tr>
<tr>
<td>Bit 2</td>
<td>Undefined</td>
</tr>
<tr>
<td>Bit 1</td>
<td>Undefined</td>
</tr>
<tr>
<td>Bit 0</td>
<td>Undefined</td>
</tr>
</tbody>
</table>

The ESC (escape) character followed by the @ character turns inverse video on or off and can be embedded in the message string. Example: “abcESC@defESC@g@ghi” specifies the string “abcdefg@hi” where the “def” portion is displayed in inverse video.

Example: “abcESC#defESC)ESC@ghi” specifies the string “abcdefg@hi” where the “def” portion appears in the channel 3 color (magenta) and the “ghi” portion appears in the normal text color except it’s in inverse video.

An alternate way to enter characters is octal escape sequences. This consists of a backslash followed by numerals in the standard C language printf fashion.

Another way to enter characters is ‘\xnn where the nn is the hexadecimal value of the character to display.
An advantage of these methods is that any controller program can be used. Another advantage is it’s easy to access characters with the high bit set, that is, those characters with a decimal value greater than 127.

An alternate way to enter certain characters is with a backslash followed by a single character (following “standard” Unix) as described in the table below.

<table>
<thead>
<tr>
<th>Character</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>n</td>
<td>Newline (carriage return and line feed)</td>
</tr>
<tr>
<td>\</td>
<td>Backslash (\ needs to be used to get a \ character)</td>
</tr>
<tr>
<td>t</td>
<td>Horizontal tab; the next 2 characters specify the pixel column to tab to as explained earlier</td>
</tr>
</tbody>
</table>

If a backslash is followed by an undefined special character, the backslash is ignored and the character following it is accepted as is.

NOTE. The use of any escape codes other than those described above may produce unpredictable results.

Examples

MESSage:SHOW “Hello World” displays “Hello world” in the upper left corner of the box (you can define the box size with the MESSAGE BOX command).

MESSage:SHOW “-court@Hello World-court ... hello” displays “Hello world ... hello” in the upper left corner of the box and the word “world” is displayed in inverse video. In this example, court stands for the escape character. The escape character may appear differently for you depending on your controller program.

MESSage:STATE

Controls the display of the message box.

Group Display

Syntax MESSage:STATE {OFF|ON|0|1}
MESSage:STATE?

Related Commands MESSage:BOX
MESSage:SHOW, MESSage:CLEAR

Arguments OFF or <NR1> = 0 removes the message box from the screen.
ON or <NR1> ≠ 0 displays the message box and its contents on the screen.
**NEWpass (No Query Form)**

This command changes the password that enables access to password protected data. The PASSWord command must be successfully executed before using this command or an execution error will be generated.

**Group**  
Miscellaneous

**Syntax**  
`NEWpass <QString>`

**Related Commands**  
*PUD  
PASSWord

**Arguments**  
`<QString>` is the new password, which can contain up to 16 characters.

**Examples**  
`NEWPASS "mypassword"` creates a new password (mypassword) for accessing your protected data.

***OPC**

Generates the operation complete message in the Standard Event Status Register (SESR) when all pending commands that generate an OPC message are complete. The *OPC? query places the ASCII character "1" into the output queue when all such OPC commands are complete. The *OPC? response is not available to read until all pending operations finish. (See page 3-1, Status and Events.)

The *OPC command allows you to synchronize the operation of the oscilloscope with your application program. (See page 3-7, Synchronization Methods.)
### Commands Listed in Alphabetical Order

#### Table 2-46: Commands that Generate an OPC Message

<table>
<thead>
<tr>
<th>Operation</th>
<th>Command</th>
</tr>
</thead>
<tbody>
<tr>
<td>Single sequence acquisition</td>
<td>ACQuire:STATE {ON</td>
</tr>
<tr>
<td></td>
<td>AUXin:PRObe:DEGAUss EXECute</td>
</tr>
<tr>
<td></td>
<td>CH&lt;x&gt;:PRObe:DEGAUss EXECute</td>
</tr>
<tr>
<td></td>
<td>DIAg:STATE EXECute</td>
</tr>
<tr>
<td></td>
<td>RECALL:SETUp &lt;file path&gt;</td>
</tr>
<tr>
<td></td>
<td>RECALL:WAVEform &lt;file path&gt;,REF&lt;x&gt;</td>
</tr>
<tr>
<td></td>
<td>SAVe:IMAGe &lt;file path&gt;</td>
</tr>
<tr>
<td></td>
<td>SAVe:SETUp &lt;file path&gt;</td>
</tr>
<tr>
<td></td>
<td>SAVe:WAVEform &lt;wfm&gt;, {REF&lt;x&gt;}</td>
</tr>
<tr>
<td></td>
<td>TEKSecure</td>
</tr>
<tr>
<td>Hard copy operation</td>
<td>HARDCopy START</td>
</tr>
<tr>
<td>Calibration step</td>
<td>{START</td>
</tr>
</tbody>
</table>

**Group** Status and Error

**Syntax**

*OPC

*OPC?

**Related Commands**

BUSY?, *WAI

**Examples**

*OPC generates the operation complete message in the SESR at the completion of all pending OPC operations.

*OPC? might return 1 to indicate that all pending OPC operations are finished.

**PASSWord(No Query Form)**

Enables the *PUD and NEWpass set commands. Sending PASSWord without any arguments disables these same commands. Once the password is successfully entered, the *PUD and NEWpass commands are enabled until the oscilloscope is powered off, or until the FACTory command or the PASSWord command with no arguments is issued.

To change the password, you must first enter the valid password with the PASSWord command and then change to your new password with the NEWpass command. Remember that the password is case sensitive.

**Group** Miscellaneous
**Commands Listed in Alphabetical Order**

**Syntax**

```
PASSWord <QString>
```

**Related Commands**

NEWpass, *PUD

**Arguments**

`<QString>` is the password and can include up to 10 characters. The factory default password is “XYZZY” and is always valid.

**Examples**

```
PASSWORD “XYZZY” enables the *PUD and NEWpass set commands.
```

```
PASSWORD enables the *PUB and NEWpass set commands. You can still use the query version of *PUD.
```

---

**PICTBridge:DATEPrint**

Enables or disables printing the date on the print output

**Group**

PictBridge

**Syntax**

```
PICTBridge:DATEPrint {DEFLT|OFF|ON}
PICTBridge:DATEPrint?
```

**Arguments**

DEFLT is the default setting of the printer.

ON enables the date print on the print output.

OFF disables the date print on the print output.

**Examples**

```
PICTBRIDGE:DATEPRINT ON enables the date print on the print output.
```

```
PICTBRIDGE:DATEPRINT? might return PICTBRIDGE:DATEPRINT DEFLT indicating the default setting of the printer.
```

---

**PICTBridge:DEFault (No Query Form)**

Sets the arguments for all PictBridge commands to their default values. The default values are same as printer default settings.

**Group**

PictBridge

**Syntax**

```
PICTBridge:DEFault
```
**Examples**  
PICTBRIDGE:DEFAULT sets all PICTBridge commands to their default values.

**PICTBridge:IDPrint**

Enables or disables printing the oscilloscope model and serial number on the print output.

**Group**  
PictBridge

**Syntax**  
PICTBridge:IDPrint {DEFLT|OFF|ON}  
PICTBridge:IDPrint?

**Related Commands**

**Arguments**  
DEFLT is the default setting of the printer.  
ON enables the oscilloscope model and serial number print on the print output.  
OFF disables the oscilloscope model and serial number print on the print output.

**Examples**  
PICTBRIDGE:IDPRINT ON enables the printing of oscilloscope model and serial number on the print output.  
PICTBRIDGE:IDPRINT? might return PICTBRIDGE:IDPRINT OFF indicating that the ID print is disabled on the print output.

**PICTBridge:IMAGESize**

Sets or returns the image print size.

**Group**  
PictBridge

**Syntax**  
PICTBridge:IMAGESize {DEFLT|IN2P5BY3P25|L|IN4BY6|L2|IN8BY10|L4|E|CARD|HAGAKI|PCARD|CM6BY8|CM7BY10|CM9BY13|CM10BY15|CM13BY18|CM15BY21|CM18BY24|A4|LETTER}  
PICTBridge:IMAGESize?

**Arguments**  
DEFLT for a default image print size.  
IN2P5BY3P25 for a 2_5*3_25 image print size.  
L for a 3_5*5 image print size.
IN4BY6 for a 4*6 image print size.
L2 for a 5*7 image print size.
IN8BY10 for a 8*10 image print size.
L4 for a 254 MM*178 MM image print size.
E for a 110 MM*74 MM image print size.
CARD for a 89 MM*55 MM image print size.
HAGAKIPCARD for a 100 MM*148 MM image print size.
CM6BY8 for a 6 CM*8 CM image print size.
CM7BY10 for a 7 CM*10 CM image print size.
CM9BY13 for a 9 CM*13 CM image print size.
CM10BY15 for a 10 CM*15 CM image print size.
CM13BY18 or a 13 CM*18 CM image print size.
CM15BY21 for a 15 CM*21 CM image print size.
CM18BY24 for a 18 CM*24 CM image print size.
A4 for a A4 image print size.
LETTER for a Letter image print size.

Examples
PICTBRIDGE:IMAGESIZE CARD sets the image print size to 89 MM* 55 MM.

PICTBRIDGE:IMAGESIZE? might return PICTBRIDGE:IMAGESIZE DEFLT indicating the default image print size.

PICTBridge:PAPERSize

Sets the output print paper size.

Group
PictBridge

Syntax
PICTBridge:PAPERSize
DEFLT|L|L2|HAGAKIPCARD|MM54BY86|MM100BY150|IN4BY6|IN8BY10
|LETTER|IN11BY17|A0|A1|A2|A3|A4|A5|A6|A7|A8
|A9|B0|B1|B2|B3|B4|B5|B6|B7|B8|B9|ROLL89MM
|ROLL127MM|ROLL100MM|ROLL210MM
PICTBridge:PAPERSize?
Arguments

DEFLT for a default paper size.

L for a paper size L.

L2 for a paper size 2L.

HAGAKIPCARD for a paper size Hagaki.

MM54BY86 for a card paper size.

MM100BY150 for paper size of 100*150 MM.

IN4BY6 for a paper size of 4*6.

IN8BY10 for a paper size of 8*10.

LETTER for a letter paper size.

IN11BY17 for a paper size of 11*17.

A0 for a A0 paper size.

A1 for a A1 paper size.

A2 for a A2 paper size.

A3 for a A3 paper size.

A4 for a A4 paper size.

A5 for a A5 paper size.

A6 for a A6 paper size.

A7 for a A7 paper size.

A8 for a A8 paper size.

A9 for a A9 paper size.

B0 for a B0 paper size.

B1 for a B1 paper size.

B2 for a B2 paper size.

B3 for a B3 paper size.

B4 for a B4 paper size.

B5 for a B5 paper size.

B6 for a B6 paper size.

B7 for a B7 paper size.

B8 for a B8 paper size.

B9 for a B9 paper size.

ROLL89MM for a 89 MM Roll paper size.
ROLL127MM for a 127 MM Roll paper size.
ROLL100MM for a 100 MM Roll paper size.
ROLL210MM for a 210 MM Roll paper size.

**Examples**

PICTBRIDGE:PAPERSIZE sets the paper size to L.
PICTBRIDGE:PAPERSIZE? might return PICTBRIDGE:PAPERSIZE DEFLT indicating the paper size is set to Default.

**PICTBridge:PAPERType**

Sets or returns the paper type.

**Group**
PictBridge

**Syntax**

PICTBridge:PAPERTYPE {DEFLT|PLAIN|PHOTO|FASTPHOTO}
PICTBridge:PAPERTYPE?

**Arguments**

DEFLT for a default print paper type.
PLAIN for a plain print paper type.
PHOTO for a photo print paper type.
FASTPHOTO for a fastphoto print paper type.

**Examples**

PICTBRIDGE:PAPERTYPE PLAIN sets the paper type to Plain.
PICTBRIDGE:PAPERTYPE? might return PICTBRIDGE:PAPERTYPE DEFLT indicating the default paper type.

**PICTBridge:PRINTQual**

Sets or returns the output print quality.

**Group**
PictBridge

**Syntax**

PICTBridge:PRINTQual {DEFLT|NRMAL|FINE|DRAFT}
PICTBridge:PRINTQual?

MSO3000 and DPO3000 Series Programmer Manual 2-293
Arguments

DEFLT for the default quality print.
NRMAL for a normal quality print.
FINE for a fine quality print.
DRAFT for a draft quality print.

Examples

PICTBRIDGE:PRINTQUAL FINE sets the print quality to Fine.
PICTBRIDGE:PRINTQUAL? might return PICTBRIDGE:PRINTQUAL DEFLT indicating the default quality print.

POWer:CURRENTSOURCE

Sets or returns the current source for the power application.

Conditions

This command requires a DPO3PWR application module.

Group

Power

Syntax

POWer:CURRENTSOURCE {CH1|CH2|CH3|CH4|REF1|REF2|REF3|REF4}
POWer:CURRENTSOURCE?

Arguments

CH1–CH4 sets an analog channel as the current source.
REF1–REF4 sets a reference as the current source.

Examples

POWER:CURRENTSOURCE CH1 sets the current source as CH1.
POWER:CURRENTSOURCE? might return POWER:CURRENTSOURCE CH2 indicating that CH2 is the current source.

POWer:DISplay

Sets or returns the display state for the power application. This is the equivalent to pressing the front-panel Test button and then selecting the power application. The same control is provided for each application.

Conditions

This command requires a DPO3PWR application module.

Group

Power
**Commands Listed in Alphabetical Order**

### POWER:DISPLAY

**Syntax**

```
POWER:DISPLAY {OFF|ON|0|1}
POWER:DISPLAY?
```

**Arguments**

- OFF or 0 turns off the display settings.
- ON or 1 turns on the display settings.

**Examples**

- `POWER:DISPLAY 1` turns on the display.
- `POWER:DISPLAY?` might return `:POWER:DISPLAY 0` indicating that the display is off.

### POWER:GATESource

Sets or returns the gate source for the power application.

**Conditions**

This command requires a DPO3PWR application module.

**Group**

Power

**Syntax**

```
POWER:GATESource {CH1|CH2|CH3|CH4|REF1|REF2|REF3|REF4|NONE}
POWER:GATESource?
```

**Arguments**

- CH1–CH4 sets an analog channel as the gate source.
- REF1–REF4 sets a reference as the gate source.
- NONE is set when the gate source is not used in the application.

**Examples**

- `POWER:GATESOURCE CH1` sets the gate source as CH1.
- `POWER:GATESOURCE?` might return `POWER:GATESOURCE CH2` indicating that CH2 is the gate source.

### POWER:GATING

Sets or returns the power application gating.

**Conditions**

This command requires a DPO3PWR application module.

**Group**

Power
**POWer:GATing**

Syntax

```
POWer:GATing {OFF|SCREen|CURSor}
POWer:GATing?
```

Arguments

- **OFF** turns off measurement gating (full record).
- **SCREen** turns on gating, using the left and right edges of the screen.
- **CURSor** limits measurements to the portion of the waveform between the vertical bar cursors, even if they are off screen.

Examples

```
POWER:GATING CURSor
```

sets cursor gating on the oscilloscope.

```
POWER:GATING?
```

might return `POWER:GATING OFF` indicating that gating is turned off on the oscilloscope.

**POWer:HARMonics:DISPlay:SElYet**

Sets or returns the harmonics to be displayed when the harmonics standard is **NONE**.

Conditions

This command requires a DPO3PWR application module.

Group

Power

Syntax

```
POWer:HARMonics:DISPlay:SElYet {ODD|EVEN|ALL}
POWer:HARMonics:DISPlay:SElYet?
```

Arguments

- **ODD** to display only odd harmonics.
- **EVEN** to display only even harmonics.
- **ALL** to display both odd and even harmonics.

Examples

```
POWER:HARMONICS:DISPLAY:SELECT EVEN
```

displays only even harmonics.

```
POWER:HARMONICS:DISPLAY:SELECT?
```

might return `POWER:HARMONICS:DISPLAY:SELECT ALL` indicating that both odd and even harmonics are displayed.

**POWer:HARMonics:DISPlay:TYPe**

Sets or returns the display type for harmonics tests.
Commands Listed in Alphabetical Order

**POWer:HARMonics:DISPLAY:TYPE**

This command requires a DPO3PWR application module.

**Group**

Power

**Syntax**

```
POWer:HARMonics:DISPlay:TYPE {GRAph|TABle}
POWer:HARMonics:DISPlay:TYPE?
```

**Arguments**

- **GRAph** displays harmonic tests results in graphical format.
- **TABle** displays harmonic tests results in tabular format.

**Examples**

```
POWER:HARMONICS:DISPLAY:TYPE GRAph
```

sets the display type to graphical.

```
POWER:HARMONICS:DISPLAY:TYPE?
```

might return `:POWER:HARMONICS:DISPLAY:TYPE TAB` indicating that the display type is set to tabular.

**POWer:HARMonics:FREQRef**

Sets or returns the frequency reference used when the harmonic standard is None.

This command requires a DPO3PWR application module.

**Group**

Power

**Syntax**

```
POWer:HARMonics:FREQRef {VOLTage|CURRent|HARMSOURce|FIXEDFREQuency}
POWer:HARMonics:FREQRef?
```

**Arguments**

- **VOLTage** to use a voltage waveform as the frequency reference.
- **CURRent** to use a current waveform as the frequency reference.
- **HARMSOURce** to use a harmonic source waveform as the frequency reference.
- **FIXEDFREQuency** to use a fixed frequency value instead of a waveform for the frequency reference.

**Examples**

```
POWER:HARMONICS:FREQRef VOLTage
```

sets voltage source as the frequency reference.

```
POWER:HARMONICS:FREQRef?
```

might return `:POWER:HARMONICS:FREQRef FIXEDFREQ` indicating that the frequency reference is a fixed value.
Commands Listed in Alphabetical Order

**POWer:HARMonics:FREQRef:FIXEDFREQValue**

Sets or returns the frequency value when the :FREQRef selection is FIXEDFREQuency.

**Conditions**
This command requires a DPO3PWR application module.

**Group**
Power

**Syntax**
POWer:HARMonics:FREQRef:FIXEDFREQValue <NR3>
POWer:HARMonics:FREQRef:FIXEDFREQValue?

**Arguments**
<NR3> is the fixed frequency value.

**Examples**
POWER:HARMONICS:FREQREF:FIXEDFREQVALUE 100 sets the frequency to 100 Hz.
POWER:HARMONICS:FREQREF:FIXEDFREQVALUE? might return
:POWer:HARMonics:FREQREF:FIXEDFREQVALUE 60 indicating that the fixed frequency value is set to 60 Hz.

**POWer:HARMonics:IEC:CLAss**

Sets or returns the equipment class for IEC harmonics.

**Conditions**
This command requires a DPO3PWR application module.

**Group**
Power

**Syntax**
POWer:HARMonics:IEC:CLAss {A|B|C1|C2|C3|D}
POWer:HARMonics:IEC:CLAss?

**Arguments**
A specifies Class A Equipment.
B specifies Class B Equipment.
C1 specifies Class C Equipment that use Table 1 limits of the IEC standard.
C2 specifies Class C Equipment that use Table 2 limits of the IEC standard.
C3 specifies Class C Equipment that use Table 3 limits of the IEC standard.
D specifies Class D Equipment.
**Examples**


**POWer:HARMonics:IEC:FILter**

Sets or returns the enabled state for filtering of IEC harmonics.

**Conditions**

This command requires a DPO3PWR application module.

**Group**

Power

**Syntax**

`POWER:HARMONICS:IEC:FILTER {OFF|ON|0|1}`

`POWER:HARMONICS:IEC:FILTER?`

**Arguments**

ON or 1 enables filtering of IEC harmonics.

OFF or 0 disables filtering of IEC harmonics.

**Examples**


**POWer:HARMonics:IEC:FUNDamental**

Sets or returns the rated fundamental current for IEC harmonics. Valid values ranges from 0 to 16 in increments of 0.1. The unit is ampere.

**Conditions**

This command requires a DPO3PWR application module.

**Group**

Power

**Syntax**

`POWER:HARMONICS:IEC:FUNDamental <NR3>`

`POWER:HARMONICS:IEC:FUNDamental?`

**Arguments**

<NR3> is the fundamental current in amperes.
### Examples

`POWER:HARMONICS:IEC:FUNDAMENTAL` 1 sets the fundamental current to 1.0000 A.


### POWER:HARMONICS:IEC:GROUPing

Sets or returns the enabled state for grouping of IEC harmonics.

#### Conditions

This command requires a DPO3PWR application module.

#### Group

Power

#### Syntax

`POWER:HARMONICS:IEC:GROUPing {OFF|ON|1|0}`

`POWER:HARMONICS:IEC:GROUPing?`

#### Arguments

ON or 1 enables grouping of IEC harmonics.

OFF or 0 disables grouping of IEC harmonics.

#### Examples


### POWER:HARMONICS:IEC:INPUTPOWER

Sets or returns the class D rated input power for IEC harmonics.

#### Conditions

This command requires a DPO3PWR application module.

#### Group

Power

#### Syntax

`POWER:HARMONICS:IEC:INPUTPOWER <NR3>`

`POWER:HARMONICS:IEC:INPUTPOWER?`

#### Arguments

`<NR3>` is the class D input power. Valid values range from 0 to 600 in increments of 10. The unit of measure is watts.
Examples

- \texttt{POWER:HARMONICS:IEC:INPUTPOWER 600} sets the class D input power to 600 W.
- \texttt{POWER:HARMONICS:IEC:INPUTPOWER?} might return \texttt{:POWER:HARMONICS:IEC:INPUTPOWER 100} indicating that the class D input power is set to 100 W.

\textbf{POWER:HARMONICS:IEC:LINEFREQUENCY}

Sets or returns the line frequency for the IEC standard.

\textbf{Conditions}

This command requires a DPO3PWR application module.

\textbf{Group}

Power

\textbf{Syntax}

\texttt{POWER:HARMONICS:IEC:LINEFREQUENCY <NR3>}
\texttt{POWER:HARMONICS:IEC:LINEFREQUENCY?}

\textbf{Arguments}

\texttt{<NR3>} is the line frequency. The valid values are 50 and 60.

\textbf{Examples}

- \texttt{POWER:HARMONICS:IEC:LINEFREQUENCY 50} sets the line frequency to 50 Hz.
- \texttt{POWER:HARMONICS:IEC:LINEFREQUENCY?} might return \texttt{:POWER:HARMONICS:IEC:LINEFREQUENCY 60} indicating that the line frequency value is set to 60 Hz.

\textbf{POWER:HARMONICS:IEC:OBSPERIOD}

Sets or returns the IEC observation period.

\textbf{Conditions}

This command requires a DPO3PWR application module.

\textbf{Group}

Power

\textbf{Syntax}

\texttt{POWER:HARMONICS:IEC:OBSPERIOD <NR3>}
\texttt{POWER:HARMONICS:IEC:OBSPERIOD?}

\textbf{Arguments}

\texttt{<NR3>} is the IEC observation period. Valid values range from 0.2 to 10 s.
Examples

POWER:HARMONICS:IEC:OBSPERIOD 3 sets the IEC observation period to 3.0000 s.


**POWer:HARMonics:IEC:POWERFACtor**

Sets or returns the rated power factor for IEC harmonics.

**Conditions**

This command requires a DPO3PWR application module.

**Group**

Power

**Syntax**

POWer:HARMonics:IEC:POWERFACtor <NR3>

POWer:HARMonics:IEC:POWERFACtor?

**Arguments**

<NR3> is the power factor. Valid values range from 0 to 1 in increments of 0.1.

**Examples**

POWER:HARMONICS:IEC:POWERFACTOR 1 sets the power factor to 1.0000.

POWER:HARMONICS:IEC:POWERFACTOR? might return:POWER:HARMONICS:IEC:POWERFACTOR 900.0000E-03 indicating that the power factor is set to 0.9.

**POWer:HARMonics:MIL:FUNDamental:CALCmethod**

Sets or returns the measurement method for the MIL harmonics fundamental current for use in calculating limits.

**Conditions**

This command requires a DPO3PWR application module.

**Group**

Power

**Syntax**

POWer:HARMonics:MIL:FUNDamental:CALCMmethod {MEAS|USER}

POWer:HARMonics:MIL:FUNDamental:CALCMmethod?

**Arguments**

MEAS specifies that the value of the fundamental current used in calculating limits is measured.
USER specifies that the value of the fundamental current used in calculating limits is user defined.

**Examples**

```
POWER:HARMONICS:MIL:FUNDAMENTAL:CALCMETHOD USER
```

sets the measurement method to User.

```
POWER:HARMONICS:MIL:FUNDAMENTAL:CALCMETHOD?
```

might return :

```
:POWER:HARMONICS:MIL:FUNDAMENTAL:CALCMETHOD MEAS
```

indicating that the measurement method is set to Meas.

### POWER:HARMONICS:MIL:FUNDAMENTAL:USER:CURRENT

Sets or returns RMS amperes for USER CALCmethod.

**Conditions**

This command requires a DPO3PWR application module.

**Group**

Power

**Syntax**

```
```

**Arguments**

`<NR3>` is the current in amperes for USER CALCmethod.

**Examples**

```
```

sets the RMS fundamental current to 2 A in calculating limits.

```
```

might return :

```
```

indicating that the RMS fundamental current for use in calculating limits is 1.0000 A.

### POWER:HARMONICS:MIL:LINEFREQuency

Sets or returns the line frequency for MIL-STD-1399 harmonics tests.

**Conditions**

This command requires a DPO3PWR application module.

**Group**

Power

**Syntax**

```
POWER:HARMONICS:MIL:LINEFREQuency <NR3>
POWER:HARMONICS:MIL:LINEFREQuency?
```

MSO3000 and DPO3000 Series Programmer Manual 2-303
Arguments  

<NR3> is the line frequency for MIL standard. Valid values are 60 and 400 Hz.

Examples  

POWER:HARMONICS:MIL:LINEFREQUENCY 60 sets the MIL line frequency to 60 Hz.

POWER:HARMONICS:MIL:LINEFREQUENCY? might return :POWER:HARMONICS:MIL:LINEFREQUENCY 400 indicating that the MIL line frequency is set to 400 Hz.

POWeR:HARMonics:MIL:POWERLEVEL

Sets or returns the power level for calculating limits for MIL-STD-1399 harmonics tests.

Conditions  

This command requires a DPO3PWR application module.

Group  

Power

Syntax  

POWER:HARMONICS:MIL:POWERLEVEL {LOW|HIGH}

POWeR:HARMonics:MIL:POWERLEVEL?

Arguments  

LOW specifies low power level for MIL-STD-1399 harmonics tests.

HIGH specifies high power level for MIL-STD-1399 harmonics tests.

Examples  

POWER:HARMONICS:MIL:POWERLEVEL HIGH sets the MIL power level to High.


POWeR:HARMonics:NR_HARMonics

Sets or returns the number of harmonics when the harmonics standard is NONe.

Conditions  

This command requires a DPO3PWR application module.

Group  

Power

Syntax  

POWER:HARMONICS:NR_HARMonics <NR3>

POWeR:HARMonics:NR_HARMonics?
Arguments  

<NR3> is the number of harmonics. Values range from 20 to 400.

Examples  

POWER:HARMONICS:NR_HARMONICS 100 sets the number of harmonics to 100.

POWER:HARMONICS:NR_HARMONICS? might return
:POWER:HARMONICS:NR_HARMONICS 40 indicating that the number of harmonics is set to 40.

POWer:HARMonics:RESults:HAR<1-400>:FREQuency? (Query Only)  

Returns the frequency of the harmonic.

**NOTE.** The command returns NA, if the current harmonic standard is set to a new standard other than the returned query.

Conditions  

This command requires a DPO3PWR application module.

Group  

Power

Syntax  

POWER:HARMONICS:RESULTS:HAR<1-400>:FREQUENCY?

Examples  

:POWER:HARMONICS:RESULTS:HAR400:FREQUENCY 24000 indicating that the harmonic frequency is set to 24000.

POWer:HARMonics:RESults:HAR<1-400>:IECMAX? (Query Only)  

The IEC Standard specifies harmonics measurements to be computed in time windows, with each time window being nominally 200 ms. This returns the maximum of the RMS magnitude of the harmonic, computed across successive 200 ms time windows within an observation period entered by the user.

**NOTE.** The command returns NA, if the current harmonic standard is set to a new standard other than the returned query.

Conditions  

This command requires a DPO3PWR application module.

Group  

Power
Commands Listed in Alphabetical Order

Syntax

POWer:HARMonics:RESults:HAR<1-400>:IECMAX?

Examples

POWer:HARMONICS:RESULTS:HAR400:IECMAX? might return 
:POWER:HARMONICS:RESULTS:HAR400:IECMAX 1.0 indicating that the 
maximum value is 1.0 A for 400th harmonic.

POWer:HARMonics:RESuLts:HAR<1-400>:LIMIt? (Query Only)

The IEC and MIL standards specify a limit for each harmonic magnitude. Returns 
the limit in absolute units, or as a percentage of the fundamental as specified by 
the standard. IEC Class C (Table 2) and MIL standards specify the limit as a 
percentage of the fundamental.

Conditions

This command requires a DPO3PWR application module.

Group

Power

Syntax

POWer:HARMonics:RESults:HAR<1-400>:LIMIt?

Examples

POWer:HARMONICS:RESULTS:HAR3:LIMIT? might return 
:POWER:HARMONICS:RESULTS:HAR3:LIMIT 2.30 indicating that 
the harmonic magnitude limit for IEC standard for the 3rd harmonic is set to 
2.30 A.

POWer:HARMonics:RESuLts:HAR<1-400>:PHASe? (Query Only)

Returns the phase of the harmonic in degrees. The phase is measured relative 
to the zero-crossing of the reference waveform. When there is no reference 
waveform, the phase is relative to the fundamental component.

Conditions

This command requires a DPO3PWR application module.

Group

Power

Syntax

POWer:HARMonics:RESuLts:HAR<1-400>:PHASe?
Examples  
POWER:HARMONICS:RESULTS:HAR400:PHASE? might return  
:POWER:HARMONICS:RESULTS:HAR400:PHASE 0 indicating that the harmonic 
phase is set to 0 in degrees.

POWer:HARMonics:RESults:HAR<1-400>:RMS:ABSolute? (Query Only)  
Returns the RMS magnitude of the harmonic in absolute units.

Conditions  
This command requires a DPO3PWR application module.

Group  
Power

Syntax  
POWER:HARMONICS:RESULTS:HAR<1-400>:RMS:ABSOLUTE?

Examples  
:POWER:HARMONICS:RESULTS:HAR400:RMS:ABSOLUTE 1.0 indicating that 
the RMS magnitude of the harmonic is set to 1.0 A.

POWer:HARMonics:RESults:HAR<1-400>:RMS:PERCent? (Query Only)  
Returns the RMS magnitude of the harmonic expressed as a percentage of the 
fundamental.

Conditions  
This command requires a DPO3PWR application module.

Group  
Power

Syntax  
POWER:HARMONICS:RESULTS:HAR<1-400>:RMS:PERCENT?

Examples  
:POWER:HARMONICS:RESULTS:HAR400:RMS:PERCENT 33 indicating that the 
RMS magnitude of the harmonic is set to 33 %.

POWer:HARMonics:RESults:HAR<1-400>:TEST:IEC:CLASSALIMit? (Query Only)  
Specifies if the IEC Class A higher harmonic limit and conditions are met.
Commands Listed in Alphabetical Order

**NOTE.** The command returns NA if the standard does not specify a limit, or the equipment is not class A.

**Conditions**
This command requires a DPO3PWR application module.

**Group**
Power

**Syntax**
POWer:HARMonics:RESults:HAR<1-400>:TEST:IEC:CLASALIMIT?

**Returns**
PASS, FAIL, or NA

Specifies if the Normal IEC harmonic limits are met.

**NOTE.** The command returns NA if the standard does not specify a limit.

**Conditions**
This command requires a DPO3PWR application module.

**Group**
Power

**Syntax**
POWer:HARMonics:RESults:HAR<1-400>:TEST:IEC:NORMAL?

**Returns**
PASS, FAIL, or NA

Specifies if the higher harmonic limit and conditions for the 21st and higher order odd harmonics are met.

**NOTE.** The command returns NA if the limit does not apply for a specific harmonic.

**Conditions**
This command requires a DPO3PWR application module.

**Group**
Power
Syntax
POWER:HARMonics:RESults:HAR<1-400>:TEST:IEC:POHCLImit?

Returns
PASS, FAIL, or NA

Returns the test result for the specified harmonic for the MIL-STD-1399 testing standard.

This query is analogous to that for the IEC 61000-3-2 standard

NOTE. The command returns NA if the standard does not specify a limit for the specific harmonic.

Conditions
This command requires a DPO3PWR application module.

Group
Power

Syntax
POWER:HARMonics:RESults:HAR<1-400>:TEST:MIL:NORMAL?

Returns
PASS, FAIL, or NA

POWER:HARMonics:RESults:IEC:FUNDamental? (Query Only)
Returns the measured IEC fundamental current used in calculating limits.

Conditions
This command requires a DPO3PWR application module.

Group
Power

Syntax
POWER:HARMonics:RESults:IEC:FUNDamental?

Examples
POWER:HARMonics:RESults:IEC:FUNDamental? might return
:POWER:HARMONICS:RESULTS:IEC:FUNDAMENTAL 1.0 indicating that the IEC fundamental frequency is set to 1.0 A.
POWer:HARMonics:RESults:IEC:HARM3ALTernate? (Query Only)

Returns the IEC harmonics test result for the 3rd harmonic.

**NOTE.** The command returns NA if the limit does not apply.

**Conditions**
This command requires a DPO3PWR application module.

**Group**
Power

**Syntax**
POWer:HARMonics:RESults:IEC:HARM3ALTernate?

**Returns**
PASS, FAIL, or NA

**Examples**
POWer:HARMonics:RESults:IEC:HARM3ALTernate? might return
POWer:HARMonics:RESults:IEC:HARM3ALTernate PASS indicating the test result.

POWer:HARMonics:RESults:IEC:HARM5ALTernate? (Query Only)

Returns the overall harmonics test result for the 5th harmonic.

**NOTE.** The command returns NA if the harmonic limit does not apply.

**Conditions**
This command requires a DPO3PWR application module.

**Group**
Power

**Syntax**
POWer:HARMonics:RESults:IEC:HARM5ALTernate?

**Returns**
PASS, FAIL, or NA

**Examples**
POWer:HARMonics:RESults:IEC:HARM5ALTernate? might return
POWer:HARMonics:RESults:IEC:HARM5ALTernate PASS indicating the test result.
POWer:HARMonics:RESults:IEC:POHC? (Query Only)

Returns the IEC POHC measurement.

Conditions
This command requires a DPO3PWR application module.

Group
Power

Syntax
POWer:HARMonics:RESults:IEC:POHC?

Examples
:POWER:HARMONICS:RESULTS:IEC:POHC 0.5 A indicating that
the IEC POHC is set to 0.5 A.

POWer:HARMonics:RESults:IEC:POHL? (Query Only)

Returns the IEC POHL measurement.

Conditions
This command requires a DPO3PWR application module.

Group
Power

Syntax
POWer:HARMonics:RESults:IEC:POHL?

Examples
:POWER:HARMONICS:RESULTS:IEC:POHL 0.5 indicating that the
IEC POHL is set to 0.5 A.

POWer:HARMonics:RESults:IEC:POWer? (Query Only)

Returns the measured IEC input power that is used to calculate limits.

Conditions
This command requires a DPO3PWR application module.

Group
Power

Syntax
POWer:HARMonics:RESults:IEC:POWer?
**Examples**


**POWer:HARMonics:RESults:IEC:POWRFactor? (Query Only)**

Returns the measured IEC power factor measurement.

**Conditions**

This command requires a DPO3PWR application module.

**Group**

Power

**Syntax**

POWer:HARMonics:RESults:IEC:POWRFactor?

**Examples**


**POWer:HARMonics:RESults:PASSFail? (Query Only)**

Returns the overall harmonics test result.

**Conditions**

This command requires a DPO3PWR application module.

**Group**

Power

**Syntax**

POWer:HARMonics:RESults:PASSFail?

**Returns**

PASS, FAIL, or NA

**Examples**


**POWer:HARMonics:RESults:RMS? (Query Only)**

Returns the root mean square value of the harmonics source waveform.
**Conditions**  
This command requires a DPO3PWR application module.

**Group**  
Power

**Syntax**  
`POWER:HARMONICS:RESULTS:RMS?`

**Examples**  
`POWER:HARMONICS:RESULTS:RMS?` might return `:POWER:HARMONICS:RESULTS:RMS 1.0` indicating that the harmonics source waveform RMS is set to 1.0.

---

**POWer:HARMonics:RESults:SAVe (No Query Form)**

Saves the harmonic results to the specified file in CSV format.

**Conditions**  
This command requires a DPO3PWR application module.

**Group**  
Power

**Syntax**  
`POWER:HARMONICS:RESULTS:SAVE <String>`

---

**POWer:HARMonics:RESults:THDF? (Query Only)**

Returns the Total Harmonic Distortion (THD) in percentage, measured as a ratio to the RMS value of the fundamental component of the source waveform.

**Conditions**  
This command requires a DPO3PWR application module.

**Group**  
Power

**Syntax**  
`POWER:HARMONICS:RESULTS:THDF?`

**Examples**  
POWer:HARMonics:RESults:THDR? (Query Only)

Returns the Total Harmonic Distortion (THD) in percentage, measured as a ratio to the RMS value of the source waveform.

**Conditions**
This command requires a DPO3PWR application module.

**Group**
Power

**Syntax**
POWer:HARMonics:RESults:THDR?

**Examples**
POWer:HARMonics:RESults:THDR? might return
:POWer:HARMonics:RESults:THDR 40 indicating that the THDR is set to 40.

POWer:HARMonics:SOURce

Sets or returns the source waveform for harmonics tests. The voltage source waveform is specified using the POWer:VOLTAGE:SOURce command and the current waveform is specified using the POWer:CURRENT:SOURce command.

**Conditions**
This command requires a DPO3PWR application module.

**Group**
Power

**Syntax**
POWer:HARMonics:SOURce {VOLTage|CURRent}
POWer:HARMonics:SOURce?

**Arguments**
VOLTage specifies voltage source waveform for harmonic tests.
CURRent specifies current source waveform for harmonic tests.

**Examples**
POWer:HARMonics:SOURce VOLTage sets voltage source for harmonic tests.
POWer:HARMonics:SOURce? might return :POWer:HARMonics:SOURce CURRent indicating that the harmonic source is set to current.

POWer:HARMonics:STANDard

Sets or returns the standard for harmonics tests.
**Conditions**
This command requires a DPO3PWR application module.

**Group**
Power

**Syntax**
```
POWer:HARMonics:STANDard {NONe|IEC|MIL}
POWer:HARMonics:STANDard?
```

**Arguments**
- **NONe** sets no standard for harmonic tests.
- **IEC** sets IEC 610003-2 standard for harmonic tests.
- **MIL** sets MIL1399 standard for harmonic tests.

**Examples**
```
POWER:HARMONICS:STANDARD IEC
```
sets IEC standard for harmonic tests.
```
POWER:HARMONICS:STANDard?
```
might return `:POWer:HARMonics:STANDard NONe` indicating that no standard is set.

**POWer:INDICators**
Sets or returns the state of the measurement indicators for the power application.

**Conditions**
This command requires a DPO3PWR application module.

**Group**
Power

**Syntax**
```
POWer:INDICators {OFF|ON|0|1}
POWer:INDICators?
```

**Arguments**
- **OFF** or 0 turns off the measurement indicators.
- **ON** or 1 turns on the measurement indicators.

**Examples**
```
POWER:INDICATORS 1
```
turns on the indicator.
```
POWER:INDICATORS?
```
might return `:POWer:INDICators 0` indicating that the indicator is off.
**POWer:MODulation:SOURce**

Sets or returns the source waveform for modulation tests. The voltage source waveform is specified using the `POWer:VOLTAGESOURce` command and the current waveform is specified using the `POWer:CURRENTSOURce` command.

**Conditions**
This command requires a DPO3PWR application module.

**Group**
Power

**Syntax**

```
POWer:MODulation:SOURce {VOLTage|CURRent}
POWer:MODulation:SOURce?
```

**Arguments**

- **VOLTage** specifies voltage source waveform for modulation tests.
- **CURRent** specifies current source waveform for modulation tests.

**Examples**

```
POWer:MODULATION:SOURce CURRent
```

sets the modulation source to Current.

```
POWer:MODULATION:SOURce?
```

might return `POWer:MODULATION:SOURce VOLT` indicating that the modulation source is set to Voltage.

**POWer:MODulation:TYPOe**

Sets or returns the modulation type.

**Conditions**
This command requires a DPO3PWR application module.

**Group**
Power

**Syntax**

```
POWer:MODulation:TYPOe {PWIdth|NWIdth|PERIod|PDUty|NDUty|FREQuency}
POWer:MODulation:TYPOe?
```

**Arguments**

- **PWIdth** (positive width) is the distance (time) between the middle reference (default = 50%) amplitude points of a positive pulse. The measurement is made on all the cycles in the waveform or gated region.

- **NWIdth** (negative width) measurement is the distance (time) between the middle reference (default = 50%) amplitude points of a negative pulse. The measurement is made on all the cycles in the waveform or gated region.
PERIOD is the time required to complete the first cycle in a waveform or the gated region. The time is measured between the mid reference (default being 50%) amplitude points of the waveform.

PDUty (positive duty cycle) is the ratio of the positive pulse width to the signal period, expressed as a percentage. It is measured on all the cycles in the waveform or gated region.

\[
Positive \ Duty \ Cycle = \left( \frac{Positive \ Width}{Period} \right) \times 100\%
\]

NDUty (negative duty cycle) is the ratio of the negative pulse width to the signal period, expressed as a percentage. The duty cycle is measured on all the cycles in the waveform or gated region.

\[
Negative \ Duty \ Cycle = \left( \frac{Negative \ Width}{Period} \right) \times 100\%
\]

FREQUENCY measures all the cycles in the waveform or gated region. Frequency is the reciprocal of the period and is measured in hertz (Hz), where 1 Hz = 1 cycle per second.

\[
Frequency = \frac{1}{Period}
\]

**Examples**

POWER:MODULATION:TYPE NWIDTH sets the modulation type to Negative Width.

POWER:MODULATION:TYPE? might return :POWER:MODULATION:TYPE PWI indicating that the modulation type is set to Positive Width.

**POWer:QUALity:APPpwr? (Query Only)**

Returns the apparent power measurement.

**Conditions**

This command requires a DPO3PWR application module.

**Group**

Power

**Syntax**

POWer:QUALity:APPpwr?

**Examples**

POWER:QUALITY:APPpwr? might return :POWER:QUALITY:APPpwr 100 indicating that the apparent power value is set to 100 VA.

**POWer:QUALity:DISplay:APPpwr**

Sets or returns the display state for the apparent power readout.
Conditions  This command requires a DPO3PWR application module.

Group  Power

Syntax  

POWer:QUALity:DISplay:APPpwr {OFF|ON|0|1}
POWer:QUALity:DISplay:APPpwr?

Arguments  OFF or 0 turns off the apparent power display.
ON or 1 turns on the apparent power display.

Examples  

POWER:QUALITY:DISPLAY:APPPWR 1 turns on the apparent power display.
POWER:QUALITY:DISPLAY:APPPWR? might return
:POWER:QUALITY:DISPLAY:APPPWR 0 indicating that the apparent power display is off.

POWer:QUALity:DISplay:FREQuency  

Sets or returns the display state for the frequency readout.

Conditions  This command requires a DPO3PWR application module.

Group  Power

Syntax  

POWer:QUALity:DISplay:FREQuency {OFF|ON|0|1}
POWer:QUALity:DISplay:FREQuency?

Arguments  OFF or 0 turns off the frequency display.
ON or 1 turns on the frequency display.

Examples  

POWER:QUALITY:DISPLAY:FREQUENCY 1 turns on the frequency readout display.
POWER:QUALITY:DISPLAY:FREQUENCY? might return
:POWER:QUALITY:DISPLAY:FREQUENCY 0 indicating that the frequency readout display is off.
POWer:QUALity:DISplay:ICRESTfactor

Sets or returns the display state for the current crest factor readout.

Conditions
This command requires a DPO3PWR application module.

Group
Power

Syntax
POWer:QUALity:DISplay:ICRESTfactor {OFF|ON|0|1}
POWer:QUALity:DISplay:ICRESTfactor?

Arguments
OFF or 0 turns off the current crest factor display.
ON or 1 turns on the current crest factor display.

Examples
POWER:QUALITY:DISPLAY:ICRESTFACTOR 1 turns on the current crest factor display.
POWER:QUALITY:DISPLAY:ICRESTFACTOR? might return :POWER:QUALITY:DISPLAY:ICRESTFACTOR 0 indicating that the current crest factor display is off.

POWer:QUALity:DISplay:IRMS

Sets or returns the display state for the RMS current readout.

Conditions
This command requires a DPO3PWR application module.

Group
Power

Syntax
POWer:QUALity:DISplay:IRMS {OFF|ON|0|1}
POWer:QUALity:DISplay:IRMS?

Arguments
OFF or 0 turns off the RMS current display.
ON or 1 turns on the RMS current display.
Examples  POWER:QUALITY:DISPLAY:IRMS 1 turns on the RMS current display.  
POWER:QUALITY:DISPLAY:IRMS? might return  
:POWER:QUALITY:DISPLAY:IRMS 0 indicating that the RMS current display  
is off.

**POWER:QUALITY:DISPLAY:PHASEangle**

Sets or returns the display state for the phase angle readout.

**Conditions**  This command requires a DPO3PWR application module.

**Group**  Power

**Syntax**  POWER:QUALITY:DISPLAY:PHASEangle {OFF|ON|0|1}  
POWER:QUALITY:DISPLAY:PHASEangle?

**Arguments**  OFF or 0 turns off the phase angle display.  
ON or 1 turns on the phase angle display.

**Examples**  POWER:QUALITY:DISPLAY:PHASEANGLE 1 turns on the phase angle display.  
POWER:QUALITY:DISPLAY:PHASEANGLE? might return  
:POWER:QUALITY:DISPLAY:PHASEANGLE 0 indicating that the  
phase angle display is off.

**POWER:QUALITY:DISPLAY:POWERFACTOR**

Sets or returns the display state for the power factor readout.

**Conditions**  This command requires a DPO3PWR application module.

**Group**  Power

**Syntax**  POWER:QUALITY:DISPLAY:POWERFACTOR {OFF|ON|0|1}  
POWER:QUALITY:DISPLAY:POWERFACTOR?

**Arguments**  OFF or 0 turns off the power factor display.  
ON or 1 turns on the power factor display.
**Examples**

POWER:QUALITY:DISPLAY:POWERFACTOR 1 turns on the power factor display.

POWER:QUALITY:DISPLAY:POWERFACTOR? might return
:POWER:QUALITY:DISPLAY:POWERFACTOR 0 indicating that the
power factor display is off.

**POWer:QUALity:DISplay:REACTpwr**

Sets or returns the display state for the reactive power readout.

**Conditions**

This command requires a DPO3PWR application module.

**Group**

Power

**Syntax**

POWER:QUALITY:DISPLAY:REACTpwr {OFF|ON|0|1}

POWER:QUALITY:DISPLAY:REACTpwr?

**Arguments**

OFF or 0 turns off the reactor power display.

ON or 1 turns on the reactor power display.

**Examples**

POWER:QUALITY:DISPLAY:REACTPWR 1 turns on the reactor power display.

POWER:QUALITY:DISPLAY:REACTPWR? might return
:POWER:QUALITY:DISPLAY:REACTPWR 0 indicating that the reactor power
display is off.

**POWer:QUALity:DISplay:TRUEpwr**

Sets or returns the display state for the true power readout.

**Conditions**

This command requires a DPO3PWR application module.

**Group**

Power

**Syntax**

POWER:QUALITY:DISPLAY:TRUEpwr {OFF|ON|0|1}

POWER:QUALITY:DISPLAY:TRUEpwr?

**Arguments**

OFF or 0 turns off the true power display.

ON or 1 turns on the true power display.
**Examples**  
POWER:QUALITY:DISPLAY:TRUEPWR 1 turns on the true power display.  
POWER:QUALITY:DISPLAY:TRUEPWR? might return  
:POWER:QUALITY:DISPLAY:TRUEPWR 0 indicating that the true power display is off.

**POWer:QUALity:DISplay:VCRESTfactor**  
Sets or returns the display state for the voltage crest factor readout.

**Conditions**  
This command requires a DPO3PWR application module.

**Group**  
Power

**Syntax**  
POWer:QUALity:DISplay:VCRESTfactor {OFF|ON|0|1}  
POWer:QUALity:DISplay:VCRESTfactor?

**Arguments**  
OFF or 0 turns off the voltage crest factor display.  
ON or 1 turns on the voltage crest factor display.

**Examples**  
POWER:QUALITY:DISPLAY:VCRESTFACTOR 1 turns on the voltage crest factor display.  
POWER:QUALITY:DISPLAY:VCRESTFACTOR? might return  
:POWER:QUALITY:DISPLAY:VCRESTFACTOR 0 indicating that the voltage crest factor display is off.

**POWer:QUALity:DISplay:VRMS**  
Sets or returns the display state for the RMS voltage readout.

**Conditions**  
This command requires a DPO3PWR application module.

**Group**  
Power

**Syntax**  
POWer:QUALity:DISplay:VRMS {OFF|ON|0|1}  
POWer:QUALity:DISplay:VRMS?
Arguments

OFF or 0 turns off the RMS voltage display.
ON or 1 turns on the RMS voltage display.

Examples

POWER:QUALITY:DISPLAY:VRMS0 turns off the RMS voltage display.
POWER:QUALITY:DISPLAY:VRMS? might return
:POWER:QUALITY:DISPLAY:VRMS 1 indicating that the RMS voltage display
is on.

POWer:QUALity:FREQREFerence

Sets or returns the power quality frequency reference.

Conditions
This command requires a DPO3PWR application module.

Group
Power

Syntax
POWer:QUALity:FREQREFerence {VOLTage|CURRent}
POWer:QUALity:FREQREFerence?

Arguments

VOLTage sets voltage as the power quality frequency reference source.
CURRent sets current as the power quality frequency reference source.

Examples

POWER:QUALITY:FREQREFERENCE CURRent sets current as the power quality
frequency reference source.
POWER:QUALITY:FREQREFERENCE? might return
:POWER:QUALITY:FREQREFERENCE VOLTAGE indicating that the power quality
frequency reference source is set to Voltage.

POWer:QUALity:FREQuency? (Query Only)

Returns the frequency measurement.

Conditions
This command requires a DPO3PWR application module.

Group
Power

Syntax
POWer:QUALity:FREQuency?
Examples

POWER:QUALITY:FREQUENCY? might return :POWER:QUALITY:FREQUENCY 60 indicating that the frequency is set to 60 Hz.

**POWer:QUALity:ICRESTfactor? (Query Only)**

Returns the current crest factor measurement.

**Conditions**
This command requires a DPO3PWR application module.

**Group**
Power

**Syntax**
POWER:QUALITY:ICRESTfactor?

**Examples**
POWER:QUALITY:ICRESTFACTOR? might return :POWER:QUALITY:ICRESTfactor 1.4 indicating that the current crest factor value is set to 1.4.

**POWer:QUALity:IRMS? (Query Only)**

Returns the RMS current measurement.

**Conditions**
This command requires a DPO3PWR application module.

**Group**
Power

**Syntax**
POWER:QUALITY:IRMS?

**Examples**
POWER:QUALITY:IRMS? might return :POWER:QUALITY:IRMS 1.00 indicating that the RMS current value is set to 1.00 A.

**POWer:QUALity:PHASEangle? (Query Only)**

Returns the phase angle measurement.

**Conditions**
This command requires a DPO3PWR application module.

**Group**
Power
Syntax

POWer:QUALity:PHASEangle?

Examples

POWer:QUALity:PHASEangle? might return :POWer:QUALity:PHASEangle 0 indicating that the phase angle is set to 0.

POWer:QUALity:POWERFACTOR? (Query Only)

Returns the power factor measurement.

Conditions

This command requires a DPO3PWR application module.

Group

Power

Syntax

POWer:QUALity:POWERFACTOR?

Examples

POWer:QUALity:POWERFACTOR? might return :POWer:QUALity:POWERFACTOR 1.0 indicating that the power factor is set to 1.0.

POWer:QUALity:REACTpwr? (Query Only)

Returns the reactive power measurement.

Conditions

This command requires a DPO3PWR application module.

Group

Power

Syntax

POWer:QUALity:REACTpwr?

Examples

POWer:QUALity:REACTpwr? might return :POWer:QUALity:REACTpwr 100 indicating that the reactor power value is set to 100 VAR.

POWer:QUALity:TRUEpwr? (Query Only)

Returns the true power measurement.

Conditions

This command requires a DPO3PWR application module.
Group  
Power

Syntax
POWer:QUALity:TRUEpwr?

Examples
POWER:QUALITY:TRUEPWR? might return POWER:QUALITY:TRUEpwr 1000 W indicating that the true power value is set to 1000 W.

POWER:QUALity:VRMS? (Query Only)

Returns the RMS voltage measurement.

Conditions
This command requires a DPO3PWR application module.

Group  
Power

Syntax
POWer:QUALity:VRMS?

Examples
POWER:QUALITY:VRMS? might return POWER:QUALITY:VRMS 115 indicating that the RMS voltage value is set to 115 V.

POWER:REFLevel:ABSolute (No Query Form)

Sets the reference levels to their default unit values.

Conditions
This command requires a DPO3PWR application module.

Group  
Power

Syntax
POWer:REFLevel:ABSolute {SETTODEFaults}

Arguments
SETTODEFaults sets the reference levels to their default values.

POWER:REFLevel:ABSolute:HIGH

Sets or returns the top reference level for power measurements.
**POWer:REFLevel:ABSolute:HIGh**

Sets or returns the high reference level for power measurements.

**Syntax**

```
POWer:REFLevel:ABSolute:HIGh <NR3>; Ranges={D,-1e6,+1E6}
POWer:REFLevel:ABSolute:HIGh?
```

**Arguments**

<NR3> is the absolute high value in volts. Default value is 0.0E+0.

**Examples**

```
POWer:REFLevel:ABSolute:HIGh 2
```

sets the absolute high value to 2.000.

```
POWer:REFLevel:ABSolute:HIGh?
```

might return

```
POWer:REFLevel:ABSolute:HIGh 2
```

indicating that the absolute high value is set to 2 V.

**POWer:REFLevel:ABSolute:LOW**

Sets or returns the low reference level for power measurements.

**Syntax**

```
POWer:REFLevel:ABSolute:LOW <NR3>; Ranges={D,-1e6,+1E6}
POWer:REFLevel:ABSolute:LOW?
```

**Arguments**

<NR3> is the absolute low value in volts. Default value is 0.0E+0.

**Examples**

```
POWer:REFLevel:ABSolute:LOW 1.0
```

sets the absolute high value to 1.0000.

```
POWer:REFLevel:ABSolute:LOW?
```

might return

```
POWer:REFLevel:ABSolute:LOW 1.0000
```

indicating that the absolute low value is set to 1 V.

**POWer:REFLevel:ABSolute:MID<1-3>**

Sets or returns the mid reference level for measurements. MID3 is specific to the power application.
Conditions  This command requires a DPO3PWR application module.

Group    Power

Syntax  
`POWer:REFlEvel:ABSolute:MID<1-3> <NR3>; Ranges={D,-1e6,+1E6}`  
`POWer:REFlEvel:ABSolute:MID<1-3>?`

Arguments  
<NR3> is the absolute mid reference value.

Examples  
`POWER:REFlEvel:ABSolute:MID1 1`  sets the mid reference voltage to 1V.  
`POWER:REFlEvel:ABSolute:MID1?`  might return  
`POWER:REFlEvel:ABSolute:MID1 0.0E+0`  indicating that the absolute reference voltage level is set to 0.0E+0 V.

POWer:REFlEvel:HYSTeresis  
Sets or returns the measurement reference level hysteresis value.

Conditions  This command requires a DPO3PWR application module.

Group    Power

Syntax  
`POWer:REFlEvel:HYSTeresis <NR3>`  
`POWer:REFlEvel:HYSTeresis?`

Arguments  
<NR3> is the hysteresis value.

Examples  
`POWER:REFlEvel:HYSTeresis 30`  sets the hysteresis value to 30.  
`POWER:REFlEvel:HYSTeresis?`  might return  
`POWER:REFlEvel:HYSTeresis 10`  indicating that the hysteresis value is set to 10.

POWer:REFlEvel:METHod  
Sets or returns the method used to calculate the 0% and 100% reference level.

Conditions  This command requires a DPO3PWR application module.
Group  
Power  

Syntax  
POWer:REFLevel:METHod {ABSolute|PERCent}  
POWer:REFLevel:METHod?

Arguments  
ABSolute specifies that the reference levels are set explicitly using the MEASUrement:REFLevel:ABSolute commands. This method is useful when precise values are required.

PERCent specifies that the reference levels are calculated as a percent of the signal amplitude. The percentages are defined using the MEASUrement:REFLevel:PERCent commands.

Examples  
POWER:REFLEVEL:METHOD ABSOLUTE specifies that explicit user-defined values are used for the reference levels.

POWER:REFLEVEL:METHOD? might return POWER:REFLEVEL:METHOD PERCENT indicating that the reference level units used are calculated as a percent relative to HIGH and LOW.

POWer:REFLevel:PERCent (No Query Form)  

Sets the reference levels to the default percentage values.

Conditions  
This command requires a DPO3PWR application module.

Group  
Power  

Syntax  
POWer:REFLevel:PERCent <SETTODEfaults>

Arguments  
SETTODEfaults sets the reference levels to their default percentage values.

POWer:REFLevel:PERCent:HIGH  

Sets or returns the top reference percent level for power measurements.

Conditions  
This command requires a DPO3PWR application module.

Group  
Power
POWer:REFLevel:PERCent:HIGH

Syntax

POWer:REFLevel:PERCent:HIGH <NR3>; Ranges={D,0.0,100.0}
POWer:REFLevel:PERCent:HIGH?

Arguments

<NR3> is the high value in percent.

Examples

POWER:REFLEVEL:PERCENT:HIGH 95 sets the high reference level to 95% of the signal amplitude.

POWER:REFLEVEL:PERCENT:HIGH? might return :POWER:REFLEVEL:PERCENT:HIGH 90 indicating that the percentage high reference level is set to 90% of the signal amplitude.

POWer:REFLevel:PERCent:LOW

Sets or returns the low reference percent level for power measurements.

Conditions

This command requires a DPO3PWR application module.

Group

Power

Syntax

POWer:REFLevel:PERCent:LOW <NR3>; Ranges={D,0.0,100.0}
POWer:REFLevel:PERCent:LOW?

Arguments

<NR3> is the low value in percentage.

Examples

POWER:REFLEVEL:PERCENT:LOW 15 sets the low reference level to 15% of the signal amplitude.

POWER:REFLEVEL:PERCENT:LOW? might return :POWER:REFLEVEL:PERCENT:LOW 10 indicating that the percentage low reference level is set to 90% of the signal amplitude.

POWer:REFLevel:PERCent:MID<1-3>

Sets or returns the mid reference percent level for waveform measurements. Mid3 is specific to the power application.

Conditions

This command requires a DPO3PWR application module.

Group

Power
Syntax

POWer:REFLevel:PERCent:MID<1-3> <NR3>; Ranges={D,0.0,100.0}  
POWer:REFLevel:PERCent:MID<1-3>?  

Arguments

<NR3> is the mid value in percentage.

Examples

POWER:REFLEVEL:PERCENT:MID1 25 sets the mid reference voltage to 25%.  
POWER:REFLEVEL:PERCENT:MID1? might return  
POWER:REFLEVEL:PERCENT:MID1 50.0000 indicating that the mid reference voltage level is set to 50%.

POWer:RIPPlE (No Query Form)

Does a vertical autoset for ripple measurements or sets the vertical offset to 0.

Conditions

This command requires a DPO3PWR application module.

Group

Power

Syntax

POWer:RIPPle {VERTAUTOset|VERTDEFault}

Arguments

VERTAUTOset automatically scales the source waveform to optimize ripple measurements.

VERTDEFault sets the vertical offset of the source waveform to 0 volts (for voltage source) or 0 amperes (for current source).

POWer:RIPPlE:RES ults:AMPLitude? (Query Only)

Returns the peak-to-peak ripple measurement.

Conditions

This command requires a DPO3PWR application module.

Group

Power

Syntax

POWer:RIPPlE:RES ults:AMPLitude?

Examples

POWER:RIPPLE:RESULTS:AMPLITUDE? might return :POWER:RIPPLE: 
RESULTS:AMPLITUDE 1 indicating that the peak-to-peak amplitude is set to 1 V.
**POWer:RIPPle:RESults:MAX? (Query Only)**

Returns the maximum of the peak-to-peak ripple measurements.

**Conditions**
This command requires a DPO3PWR application module.

**Group**
Power

**Syntax**
POWer:RIPPle:RESults:MAX?

**Examples**
POWer:RIPPle:RESults:MAX? might return :POWER:RIPPLE:RESULTS:MAX 1.1 indicating that the maximum peak-to-peak amplitude is set to 1.1 V.

**POWer:RIPPle:RESults:MEAN? (Query Only)**

Returns the mean of the peak-to-peak ripple measurements.

**Conditions**
This command requires a DPO3PWR application module.

**Group**
Power

**Syntax**
POWer:RIPPle:RESults:MEAN?

**Examples**
POWer:RIPPle:RESults:MEAN? might return :POWER:RIPPLE:RESULTS:MEAN 1.0 indicating that the mean peak-to-peak amplitude is set to 1.0 V.

**POWer:RIPPle:RESults:MIN? (Query Only)**

Returns the minimum of the peak-to-peak ripple measurement.

**Conditions**
This command requires a DPO3PWR application module.

**Group**
Power

**Syntax**
POWer:RIPPle:RESults:MIN?
Examples  

POWER:RIPPLE:RESULTS:MIN? might return :POWER:RIPPLE:RESULTS:MIN 0.9 indicating that the minimum peak-to-peak amplitude is set to 0.9 V.

POWer:RIPPLE:RESults:STDdev? (Query Only)

Returns the standard deviation of the peak-to-peak ripple measurements.

Conditions  

This command requires a DPO3PWR application module.

Group  

Power

Syntax  

POWer:RIPPLE:RESults:STDdev?

Examples  

POWER:RIPPLE:RESULTS:STDDEV? might return :POWER:RIPPLE:RESULTS:STDDEV 0.14 indicating that the standard deviation of the peak-to-peak amplitude is set to 0.14.

POWer:RIPPLE:SOUrce

Sets or returns the source waveform for ripple tests. The voltage source waveform is specified using the POWer:VOLTAGESOurce command and the current waveform is specified using the POWer:CURRENTSOurce command.

Conditions  

This command requires a DPO3PWR application module.

Group  

Power

Syntax  

POWer:RIPPLE:SOUrce {VOLTage|CURRent}

Arguments  

VOLTage specifies voltage source waveform for ripple tests.  
CURRent specifies current source waveform for ripple tests.

Examples  

POWER:RIPPLE:SOURCe CURRent sets the ripple source to Current.  
POWER:RIPPLE:SOURCe? might return :POWER:RIPPLE:SOURCe VOLT indicating that the ripple source is set to Voltage.
POWer:SOA:LINear:XMAX

Sets or returns the user XMAX value for use in linear SOA calculations.

**Conditions**
This command requires a DPO3PWR application module.

**Group**
Power

**Syntax**
```
POWer:SOA:LINear:XMAX <NR3>
POWer:SOA:LINear:XMAX?
```

**Arguments**
<NR3> is the XMAX value used for linear SOA calculations.

**Examples**
```
POWER:SOA:LINEAR:XMAX 700 sets the XMAX value to 700.0000.
POWER:SOA:LINEAR:XMAX? might return :POWER:SOA:LINEar:XMAX 500.0000 indicating that the XMAX value for linear plot type is set to 500.0000.
```

POWer:SOA:LINear:XMIN

Sets or returns the user XMIN value for use in linear SOA calculations.

**Conditions**
This command requires a DPO3PWR application module.

**Group**
Power

**Syntax**
```
POWer:SOA:LINear:XMIN <NR3>
POWer:SOA:LINear:XMIN?
```

**Arguments**
<NR3> is the XMIN value used for linear SOA calculations.

**Examples**
```
POWER:SOA:LINEAR:XMIN 2 sets the XMIN value to 2.0000.
POWER:SOA:LINEAR:XMIN? might return :POWER:SOA:LINEar:XMIN 0.0E+0 indicating that the XMIN value for linear plot type is set to 0.0E+0.
```

POWer:SOA:LINear:YMAX

Sets or returns the user YMAX value for use in linear SOA calculations.
POWer:SOA:LINear:YMAX

Sets or returns the user YMAX value for use in linear SOA calculations.

Syntax: POWER:SOA:LINear:YMAX <NR3>

Arguments: <NR3> is the YMAX value used for linear SOA calculations.

Examples:
- `POWER:SOA:LINEAR:YMAX 700` sets the YMAX value to 700.0000.
- `POWER:SOA:LINEAR:YMAX` might return `POWER:SOA:LINear:YMAX 50.0000` indicating that the YMAX value for linear plot type is set to 50.0000.

POWer:SOA:LINear:YMIN

Sets or returns the user YMIN value for use in linear SOA calculations.

Syntax: POWER:SOA:LINear:YMIN <NR3>

Arguments: <NR3> is the YMIN value used for linear SOA calculations.

Examples:
- `POWER:SOA:LINEAR:YMIN 2` sets the YMIN value to 2.0000.
- `POWER:SOA:LINEAR:YMIN` might return `POWER:SOA:LINear:YMIN 0.0E+0` indicating that the YMIN value for linear plot type is set to 0.0E+0.

POWer:SOA:LOG:XMAX

Sets or returns the user XMAX value for use in Log SOA calculations.

Syntax: POWER:SOA:LOG:XMAX <NR3>

Arguments: <NR3> is the XMAX value used for Log SOA calculations.

Examples:
- `POWER:SOA:LOG:XMAX 100` sets the XMAX value to 100.0000.
Commands Listed in Alphabetical Order

**POWer:SOA:LOG:XMAX**

Sets or returns the user XMAX value for use in Log SOA calculations.

**Syntax**

POWer:SOA:LOG:XMAX <NR3>
POWer:SOA:LOG:XMAX?

**Arguments**

<NR3> is the XMAX value used for log SOA calculations.

**Examples**

POWER:SOA:LOG:XMAX 1 sets the XMAX value to 1.0000.


**POWer:SOA:LOG:XMIN**

Sets or returns the user XMIN value for use in Log SOA calculations.

**Syntax**

POWer:SOA:LOG:XMIN <NR3>
POWer:SOA:LOG:XMIN?

**Arguments**

<NR3> is the XMIN value used for log SOA calculations.

**Examples**

POWER:SOA:LOG:XMIN 2 sets the XMIN value to 2.0000.

POWER:SOA:LOG:XMIN ? might return :POWER:SOA:LOG:XMIN 100.0000E-3 indicating that the XMIN value for log plot type is set to 100.0000E-3.

**POWer:SOA:LOG:YMAX**

Sets or returns the user YMAX value for use in Log SOA calculations.

**Conditions**

This command requires a DPO3PWR application module.

**Group**  
Power
Commands Listed in Alphabetical Order

Syntax

POWer:SOA:LOG:YMAX <NR3>
POWer:SOA:LOG:YMAX?

Arguments

<NR3> is the YMAX value used for log SOA calculations.

Examples

POWER:SOA:LOG:YMAX 10 sets the YMAX value to 10.0000.

POWER:SOA:LOG:YMAX ? might return :POWER:SOA:LOG:YMAX 100.0000 indicating that the YMAX value for log plot type is set to 100.0000.

POWer:SOA:LOG:YMIN

Sets or returns the user YMIN value for use in Log SOA calculations.

Conditions

This command requires a DPO3PWR application module.

Group

Power

Syntax

POWer:SOA:LOG:YMIN <NR3>
POWer:SOA:LOG:YMIN?

Arguments

<NR3> is the YMIN value used for log SOA calculations.

Examples

POWER:SOA:LOG:YMIN 1 sets the YMIN value to 1.0000.

POWER:SOA:LOG:YMIN ? might return :POWER:SOA:LOG:YMIN 100.0000E-3 indicating that the YMIN value for log plot type is set to 100.0000E-3.

POWer:SOA:MASK:DEFine

Sets or returns the X (Volts) and Y (Amps) coordinates of the current SOA mask. You can specify the number of points from 2 to 10, minimum being 2. Successive X values must be ≥ the preceding X values. The number of XY points sent determines the value of NR_PT.

Conditions

This command requires a DPO3PWR application module.

Group

Power
Commands Listed in Alphabetical Order

**POWer:SOA:MASK:DEFine**

**Syntax**

POWer:SOA:MASK:DEFine <NR3>

POWer:SOA:MASK:DEFine?

**Arguments**

<NR3> represents SOA mask coordinates.

**Examples**

POWer:SOA:MASK:DEFine 10 specifies the SOA mask coordinates as 0.0E+0,0.0E+0,0.0E+0,0.0E+0,0.0E+0,30.0000,30.0000,30.0000,30.0000,30.0000,2.4000,30.0000,2.2000,30.0000,2.0000,30.0000,1.9000,30.0000,1.3000,30.0000,0.0E+0.

POWer:SOA:MASK:DEFine? might return POWer:SOA:MASK:DEFine 0.0E+0,30.0000,25.0000,30.0000,30.0000,2.5000,30.0000,0.0E+0 indicating that the SOA mask coordinates are set to 0.0E+0,30.0000,25.0000,30.0000,30.0000,2.5000,30.0000,0.0E+0.

**POWer:SOA:MASK:MAXAmps**

Sets or returns the maximum current applied to SOA mask testing.

**Conditions**

This command requires a DPO3PWR application module.

**Group**

Power

**Syntax**

POWer:SOA:MASK:MAXAmps <NR3>

POWer:SOA:MASK:MAXAmps?

**Arguments**

<NR3> is the maximum current applied to SOA mask testing.

**Examples**

POWer:SOA:MASK:MAXAmps 40 sets the SOA mask testing current to 40 A.

POWer:SOA:MASK:MAXAmps? might return :POWer:SOA:MASK:MAXAmps 30.0000 indicating that the SOA mask testing maximum current is set to 30 A.

**POWer:SOA:MASK:MAXVolts**

Sets or returns the maximum voltage applied to SOA mask testing.

**Conditions**

This command requires a DPO3PWR application module.

**Group**

Power
Commands Listed in Alphabetical Order

**Commands Listed in Alphabetical Order**

**Syntax**

POWer:SOA:MASK:MAXVolts <NR3>
POWer:SOA:MASK:MAXVolts?

**Arguments**

<NR3> is the maximum voltage applied to SOA mask testing.

**Examples**

POWER:SOA:MASK:MAXVOLTS 200 sets the SOA mask testing voltage to 200 V.
POWER:SOA:MASK:MAXVOLTS? might return :POWER:SOA:MASK:MAXVOLTS 300.0000 indicating that the SOA mask testing maximum voltage is set to 300 V.

**POWer:SOA:MASK:MAXWatts**

Sets or returns the maximum power applied to SOA mask testing.

**Conditions**

This command requires a DPO3PWR application module.

**Group**

Power

**Syntax**

POWer:SOA:MASK:MAXWatts <NR3>
POWer:SOA:MASK:MAXWatts?

**Arguments**

<NR3> is the maximum power applied to SOA mask testing.

**Examples**

POWER:SOA:MASK:MAXWATTS 1000 sets the SOA mask testing power to 1.0000E+3 W.
POWER:SOA:MASK:MAXWATTS? might return :POWER:SOA:MASK:MAXWATTS 750.0000 indicating that the SOA mask testing maximum power is set to 750 W.

**POWer:SOA:MASK:NR_PT? (Query Only)**

Returns the number of mask points defined.

**Conditions**

This command requires a DPO3PWR application module.

**Group**

Power

**Syntax**

POWer:SOA:MASK:NR_PT?
Examples


**POWer:SOA:MASK:STATE**

Sets or returns the state of the mask for SOA calculations.

**Conditions**

This command requires a DPO3PWR application module.

**Group**

Power

**Syntax**

POWeR:SOA:MASK:STATe {OFF|LIMITS|POINTS}

POWeR:SOA:MASK:STATe?

**Arguments**

OFF disables mask testing.


POINTS enables mask testing based on masks points defined.

**Examples**

POWER:SOA:MASK:STATE POINTS enables mask testing power based on points defined.


**POWeR:SOA:MASK:STOPOnviol**

Sets or returns the enabled state of the mask stop on violation condition.

**Conditions**

This command requires a DPO3PWR application module.

**Group**

Power

**Syntax**

POWeR:SOA:MASK:STOPOnviol {OFF|ON|0|1}

POWeR:SOA:MASK:STOPOnviol?
Arguments

OFF or 0 enables mask stop on violations.
ON or 1 disables mask stop on violations.

Examples

POWER:SOA:MASK:STOPONVIOL 1 disables the state of the mask stop on violation condition.

POWER:SOA:MASK:STOPONVIOL ? might return :POWER:SOA:MASK:STOPONVIOL 0 indicating that the mask stop is enabled.

POWer:SOA:PLOTTYPe

Sets or returns the Safe Operating Area (SOA) plot type.

Conditions

This command requires a DPO3PWR application module.

Group

Power

Syntax

POWer:SOA:PLOTTYPe {LOG|LINear}
POWer:SOA:PLOTTYPe?

Arguments

LOG for logarithmic SOA plot type.
LINear for linear SOA plot type.

Examples

POWER:SOA:PLOTTYPE LINear sets the SOA plot type to Linear.

POWER:SOA:PLOTTYPE ? might return :POWER:SOA:PLOTTYPE LOG indicating that the SOA plot type is set to Log.

POWer:SOA:RESult:FAILures:QTY? (Query Only)

Returns the number of failures in the test.

Conditions

This command requires a DPO3PWR application module.

Group

Power

Syntax

POWer:SOA:RESult:FAILures:QTY?
**Examples**  
POWER:SOA:RESULT:FAILURES:QTY? might return  
:POWER:SOA:RESULT:FAILURES 0 indicating that the number of failures is 0.

**POWer:SOA:RESult:NUMAcq? (Query Only)**  
Returns the number of acquisitions in the test.

**Conditions**  
This command requires a DPO3PWR application module.

**Group**  
Power

**Syntax**  
POWer:SOA:RESult:NUMAcq?

**Examples**  
POWER:SOA:RESULT:NUMACQ? might return  
:POWER:SOA:RESULT:NUMACQ 10 indicating that the number of acquisitions is 10.

**POWer:SOA:RESult:STATE? (Query Only)**  
Returns the pass/fail state of the SOA test.

**Conditions**  
This command requires a DPO3PWR application module.

**Group**  
Power

**Syntax**  
POWer:SOA:RESult:STATE?

**Returns**  
PASS or FAIL

**Examples**  
POWER:SOA:RESULT:STATE? might return  
:POWER:SOA:MASK:STATE PASS indicating that the SOA test state is PASS.

**POWer:STATIstics (No Query Form)**  
Clears all the accumulated statistics of all measurements. Performs the same function as the MEASUrement:STATIstics command.

**Conditions**  
This command requires a DPO3PWR application module.
POWer:STATIstics {RESET}

Arguments
RESET clears the measurement statistics.

POWer:STATIstics:MODE

Enables or disables the display of the measurement statistics. Performs the same function as the MEASUrement:STATIstics:MODE command.

Conditions
This command requires a DPO3PWR application module.

POWer:STATIstics:WEIghting

Sets the number of samples which are included for the statistics computations for mean and the standard deviation. Performs the same function as the MEASUrement:STATIstics:WEIghting command.

Conditions
This command requires a DPO3PWR application module.

Group
Power
Syntax
POWER:STATISTICS:WEIGHTING <NR1>;Ranges {L,2,1000}
POWER:STATISTICS:WEIGHTING?

Arguments
<NR1> is the number of samples used for the mean and standard deviation statistical accumulations

Examples
POWER:STATISTICS:WEIGHTING 4 sets statistical weighting to four samples.
POWER:STATISTICS:WEIGHTING ? might return :POWER:STATISTICS:WEIGHTING 4 indicating that statistics weighting is currently set to 4 samples.

POWER:SWLoss:CONDCalcMethod
Sets or returns the power application switching loss conduction calculation method.

Conditions
This command requires a DPO3PWR application module.

Group
Power

Syntax
POWER:SWLoss:CONDCalcMethod {VOLTage|RDSon|VCEsat}
POWER:SWLoss:CONDCalcMethod?

Arguments
VOLTage sets voltage as the conduction calculation method.
RDSon sets RDSon as the conduction calculation method.
VCEsat sets VCEsat as the conduction calculation method.

Examples
POWER:SWLoss:CONDCalcMethod RDSon sets the conduction calculation method to RDSon.
POWER:SWLoss:CONDCalcMethod ? might return :POWER:SWLOSS:CONDCalcMethod VOLT indicating that the conduction calculation method is set to Voltage.

POWER:SWLoss:CONDuction:ENERGY:MAX? (Query Only)
Returns the maximum conduction energy for the switching loss calculation.

Conditions
This command requires a DPO3PWR application module.
Commands Listed in Alphabetical Order

**Group**  
Power

**Syntax**  
POWer:SWLoss:CONDuction:ENERGY:MAX?

**Examples**  
POWer:SWLoss:CONDuction:ENERGY:MAX? might return :POWer:SWLoss:
CONDUCTION:ENERGY:MAX 1 indicating that the maximum conduction energy
switching loss calculation is set to 1 J.

**POWer:SWLoss:CONDuction:ENERGY:MEAN? (Query Only)**

Returns the mean conduction energy in the conduction period for the switching
loss calculation.

**Conditions**  
This command requires a DPO3PWR application module.

**Group**  
Power

**Syntax**  
POWer:SWLoss:CONDuction:ENERGY:MEAN?

**Examples**  
POWer:SWLoss:CONDuction:ENERGY:MEAN? might return :POWer:SWLoss:
CONDUCTION:ENERGY:MEAN 1 indicating that the mean conduction energy
switching loss calculation is set to 1 J.

**POWer:SWLoss:CONDuction:ENERGY:MIN? (Query Only)**

Returns the minimum conduction energy for the switching loss calculation.

**Conditions**  
This command requires a DPO3PWR application module.

**Group**  
Power

**Syntax**  
POWer:SWLoss:CONDuction:ENERGY:MIN?

**Examples**  
POWer:SWLoss:CONDuction:ENERGY:MIN? might return :POWer:SWLoss:
CONDUCTION:ENERGY:MIN 1 indicating that the minimum conduction energy
switching loss calculation is set to 1 J.
POWer:SWLoss:CONDuction:POWER:MAX? (Query Only)

Returns the maximum conduction power for the switching loss calculation.

Conditions
This command requires a DPO3PWR application module.

Group
Power

Syntax
POWeR:SWLoss:CONDution:POWER:MAX?

Examples
POWeR:SWLoss:CONDution:POWER:MAX? might return
:POWeR:SWLoss:CONDution:POWER:MAX 1 indicating that the
maximum conduction power switching loss calculation is set to 1 W.

POWer:SWLoss:CONDuction:POWER:MEAN? (Query Only)

Returns the mean conduction power for the switching loss calculation.

Conditions
This command requires a DPO3PWR application module.

Group
Power

Syntax
POWeR:SWLoss:CONDution:POWER:MEAN?

Examples
POWeR:SWLoss:CONDution:POWER:MEAN? might return
:POWeR:SWLoss:CONDution:POWER:MEAN 1 indicating that the
mean conduction power switching loss calculation is set to 1 W.

POWer:SWLoss:CONDuction:POWER:MIN? (Query Only)

Returns the minimum conduction power for the switching loss calculation.

Conditions
This command requires a DPO3PWR application module.

Group
Power

Syntax
POWeR:SWLoss:CONDution:POWER:MIN?
Examples

POWER:SWLOSS:CONDUCTION:POWER:MIN? might return
:POWER:SWLOSS:CONDUCTION:POWER:MIN 1 indicating that the
minimum conduction power switching loss calculation is set to 1 W.

POWer:SWLoss:DISplay

Sets or returns the display selection for switching loss results: All measurements,
energy loss measurements or power loss measurements.

Conditions

This command requires a DPO3PWR application module.

Group

Power

Syntax

POWer:SWLoss:DISplay {ALL|ENERGYLoss|POWERLoss}
POWer:SWLoss:DISplay?

Arguments

ALL displays both energy and power loss measurements in the results.
ENERGYLoss displays only energy loss measurements in the results.
POWERLoss displays only power loss measurements in the results.

Examples

POWER:SWLOSS:DISPLAY ENERGYLoss displays only energy loss measurements
in the results.

indicating that the results displays both energy and power loss measurements.

POWer:SWLoss:GATE:POLarity

Sets or returns the switching loss gate polarity.

Conditions

This command requires a DPO3PWR application module.

Group

Power

Syntax

POWer:SWLoss:GATE:POLarity {FALL|RISe}
POWer:SWLoss:GATE:POLarity?
Arguments
FALL sets falling edge as the switching loss gate polarity.
RISe sets rising edge as the switching loss gate polarity.

Examples
POWER:SWLOSS:GATE:POLARITY FALL sets the gate polarity to Fall.
POWER:SWLOSS:GATE:POLARITY ? might return
:POWER:SWLOSS:GATE:POLARITY RISE indicating that the gate polarity
is set to Rise.

**POWer:SWLoss:GATe:TURNON**
Sets or returns the gate turn on level for switching loss power measurements.

Conditions
This command requires a DPO3PWR application module.

Group
Power

Syntax
POWer:SWLoss:GATE:TURNON <NR3>
POWer:SWLoss:GATE:TURNON?

Examples
POWER:SWLOSS:GATE:TURNON 3.5 sets the gate turn on level to 3.5000.
1.5 indicating that the gating turn on level is set to 1.5.

**POWer:SWLoss:NUMCYCles? (Query Only)**
Returns the number of cycles counted for the switching loss calculation.

Conditions
This command requires a DPO3PWR application module.

Group
Power

Syntax
POWer:SWLoss:NUMCYCles? <NR3>

Examples
POWER:SWLoss:NUMCYCles? might return the number of cycles for
switching loss calculation, if the POWer:TYPe is set to Switching Loss
(POWer:TYPe:SWITCHingLoss). If the query times out with the Switching
Loss power enabled, it indicates the possibility of incorrect settings and might return the following:

*ESR?
20
ALLEV?
2202,"Measurement error, No period found;
:power:swloss:numcycles?",410,"Query INTERRUPTED"

**POWer:SWLoss:RDSON**

Sets or returns the user RDSON value for use in switching loss calculations when the conduction calculation method is RDSON.

**Conditions**
This command requires a DPO3PWR application module.

**Group**
Power

**Syntax**
POWer:SWLoss:RDSON <NR3>
POWer:SWLoss:RDSON?

**Arguments**
<NR3> is the RDSON switching loss calculation.

**Examples**
POWER:SWLOSS:RDSON 30 sets the RDSon value to 30.0000.

POWER:SWLOSS:RDSON ? might return :POWer:SWLOSS:RDSon 20.0000E-3 indicating that the RDSon value is set to 20.0000E-3.

**POWer:SWLoss:REFLevel:ABSolute:GATEMid**

Sets or returns the mid voltage reference level used in switching loss power measurements in volts.

**Conditions**
This command requires a DPO3PWR application module.

**Group**
Power

**Syntax**
POWer:SWLoss:REFLevel:ABSolute:GATEMid <NR3>
POWer:SWLoss:REFLevel:ABSolute:GATEMid?
Arguments

<NR3> is the mid voltage reference level in volts.

Examples

POWER:SWLOSS:REFLEVEL:ABSOLUTE:GATEMID 100 sets the absolute gate mid reference voltage to 100.0000 V.

POWER:SWLOSS:REFLEVEL:ABSOLUTE:GATEMID ? might return :POWER:SWLOSS:REFLEVEL:ABSOLUTE:GATEMID 50.0000 indicating that the gate mid reference voltage is set to 50.0000 V.

**POWer:SWLoss:REFLevel:ABSolute:LOWCurrent**

Sets or returns the low current reference level used in switching loss power measurements in amperes.

Conditions

This command requires a DPO3PWR application module.

Group

Power

Syntax

POWer:SWLoss:REFLevel:ABSolute:LOWCurrent <NR3>

POWer:SWLoss:REFLevel:ABSolute:LOWCurrent?

Arguments

<NR3> is the low voltage current level in amperes.

Examples

POWER:SWLOSS:REFLEVEL:ABSOLUTE:LOWCURRENT 2.8 sets the absolute reference low current to 2.8000 A.

POWER:SWLOSS:REFLEVEL:ABSOLUTE:LOWCURRENT ? might return :POWER:SWLOSS:REFLEVEL:ABSOLUTE:LOWCURRENT 5.0000 indicating that the absolute reference low current is set to 5.0000 A.

**POWer:SWLoss:REFLevel:ABSolute:LOWVoltage**

Sets or returns the low voltage reference level used in switching loss power measurements in volts.

Conditions

This command requires a DPO3PWR application module.

Group

Power
Commands Listed in Alphabetical Order

**Syntax**

POWe:SWLoss:REFLevel:ABSolute:LOWVoltage <NR3>

POWe:SWLoss:REFLevel:ABSolute:LOWVoltage?

**Arguments**

<NR3> is the low voltage reference level in volts.

**Examples**

POWe:SWLoss:REFLevel:ABSolute:LOWVoltage 2.5 sets the absolute reference low voltage to 2.5000 V.

POWe:SWLoss:REFLevel:ABSolute:LOWVoltage ? might return :POWe:SWLoss:REFLevel:ABSolute:LOWVoltage 5.0000 indicating that the absolute reference low voltage is set to 5.0000 V.

**POWe:SWLoss:REFLevel:PERCent:GATEMid**

Sets or returns the mid voltage reference level used in switching loss power measurements in percent.

**Conditions**

This command requires a DPO3PWR application module.

**Group**

Power

**Syntax**

POWe:SWLoss:REFLevel:PERCent:GATEMid <NR3>

POWe:SWLoss:REFLevel:PERCent:GATEMid?

**Arguments**

<NR3> is the mid voltage reference level in volts.

**Examples**

POWe:SWLoss:REFLevel:PERCent:GATEMid 30 sets the gate mid reference voltage to 30%.

POWe:SWLoss:REFLevel:PERCent:GATEMid ? might return :POWe:SWLoss:REFLevel:PERCent:GATEMid 50.0000 indicating that the gate mid reference voltage is set to 50%.

**POWe:SWLoss:REFLevel:PERCent:LOWCurrent**

Sets or returns the low current reference level used in switching loss power measurements in percent.

**Conditions**

This command requires a DPO3PWR application module.
Commands Listed in Alphabetical Order

**Group**  
Power

**Syntax**  
```
POWer:SWLoss:REFLevel:PERCent:LOWCurrent <NR3>
POWer:SWLoss:REFLevel:PERCent:LOWCurrent?
```

**Arguments**  
<NR3> is the low voltage reference level percent.

**Examples**  
```
POWER:SWLOSS:REFLEVEL:PERCENT:LOWCURRENT 15 sets the reference low current to 15%.
```

**POWER:SWLoss:REFLevel:PERCent:LOWVoltage**

Sets or returns the low voltage reference level used in switching loss power measurements in percent.

**Conditions**  
This command requires a DPO3PWR application module.

**Group**  
Power

**Syntax**  
```
POWer:SWLoss:REFLevel:PERCent:LOWVoltage <NR3>
POWer:SWLoss:REFLevel:PERCent:LOWVoltage?
```

**Arguments**  
<NR3> is the low voltage reference level in percent.

**Examples**  
```
POWER:SWLOSS:REFLEVEL:PERCENT:LOWVOLTAGE 10 sets the reference low voltage to 10%.
POWER:SWLOSS:REFLEVEL:PERCENT:LOWVOLTAGE? might return :POWER:SWLOSS:REFLEVEL:PERCENT:LOWVOLTAGE 5.0000 indicating that the reference low voltage is set to 5%.
```


Returns the maximum Toff energy for the switching loss calculation.

**Conditions**  
This command requires a DPO3PWR application module.
Commands Listed in Alphabetical Order

Group Power

Syntax POWER:SWLoss:TOFF:ENERGY:MAX?

Examples POWER:SWLoss:TOFF:ENERGY:MAX? might return :POWER:SWLoss:TON:ENERGY:MAX 1 indicating that the maximum Toff energy switching loss calculation is set to 1 J.

POWer:SWLoss:TOFF:ENERGY:MEAN? (Query Only)

Returns the mean Toff energy for the switching loss calculation.

Conditions This command requires a DPO3PWR application module.

Group Power

Syntax POWER:SWLoss:TOFF:ENERGY:MEAN?

Examples POWER:SWLoss:TOFF:ENERGY:MEAN? might return :POWER:SWLoss:TON:ENERGY:MEAN 1 indicating that the mean Toff energy switching loss calculation is set to 1 J.

POWer:SWLoss:TOFF:ENERGY:MIN? (Query Only)

Returns the minimum Toff energy for the switching loss calculation.

Conditions This command requires a DPO3PWR application module.

Group Power

Syntax POWER:SWLoss:TOFF:ENERGY:MIN?

Examples POWER:SWLoss:TOFF:ENERGY:MIN? might return :POWER:SWLoss:TON:ENERGY:MIN 1 indicating that the minimum Toff energy switching loss calculation is set to 1 J.
POWeR:SWLoss:TOFF:POWER:MAX? (Query Only)

Returns the maximum Toff power for the switching loss calculation.

Conditions  This command requires a DPO3PWR application module.

Group  Power

Syntax  POWeR:SWLoss:TOFF:POWER:MAX?

Examples  POWeR:SWLoss:TOFF:POWER:MAX? might return
:POWeR:SWLoss:TON:POWER:MAX 1 indicating that the maximum Toff power
switching loss calculation is set to 1 W.

POWeR:SWLoss:TOFF:POWER:MEAN? (Query Only)

Returns the mean Toff power for the switching loss calculation.

Conditions  This command requires a DPO3PWR application module.

Group  Power

Syntax  POWeR:SWLoss:TOFF:POWER:MEAN?

Examples  POWeR:SWLoss:TOFF:POWER:MEAN? might return
:POWeR:SWLoss:TON:POWER:MEAN 1 indicating that the mean Toff power
switching loss calculation is set to 1 W.

POWeR:SWLoss:TOFF:POWER:MIN? (Query Only)

Returns the minimum Toff power for the switching loss calculation.

Conditions  This command requires a DPO3PWR application module.

Group  Power

Syntax  POWeR:SWLoss:TOFF:POWER:MIN?


**Examples**

```
POWER:SWLOSS:TOFF:POWER:MIN? might return
:POWER:SWLOSS:TON:POWER:MIN 1 indicating that the minimum Toff power
switching loss calculation is set to 1 W.
```


Returns the maximum Ton energy for the switching loss calculation.

**Conditions**

This command requires a DPO3PWR application module.

**Group**

Power

**Syntax**

```
POWER:SWLoss:TON:ENERGY:MAX?
```

**Examples**

```
ENERGY:MAX 1 indicating that the maximum Ton energy switching loss
calculation is set to 1 J.
```


Returns the mean Ton energy for the switching loss calculation.

**Conditions**

This command requires a DPO3PWR application module.

**Group**

Power

**Syntax**

```
POWER:SWLoss:TON:ENERGY:MEAN?
```

**Examples**

```
ENERGY:MEAN 1 indicating that the mean Ton energy switching loss
calculation is set to 1 J.
```

**POWER:SWLoss:TON:ENERGY:MIN? (Query Only)**

Returns the minimum Ton energy for the switching loss calculation.

**Conditions**

This command requires a DPO3PWR application module.
**POWer:SWLoss:TON:POWER:MAX? (Query Only)**

Returns the maximum Ton power for the switching loss calculation.

**Conditions**
This command requires a DPO3PWR application module.

**Examples**
POWER:SWLoss:TON:POWER:MAX? might return :POWER:SWLoss:TON:POWER:MAX 1 indicating that the maximum Ton power switching loss calculation is set to 1 W.

**POWer:SWLoss:TON:POWER:MEAN? (Query Only)**

Returns the mean Ton power for the switching loss calculation.

**Conditions**
This command requires a DPO3PWR application module.

**Examples**
POWER:SWLoss:TON:POWER:MEAN? might return :POWER:SWLoss:TON:POWER:MEAN 1 indicating that the mean Ton power switching loss calculation is set to 1 W.
POWer:SWLoss:TON:POWER:MIN? (Query Only)

Returns the minimum Ton power for the switching loss calculation.

**Conditions**
This command requires a DPO3PWR application module.

**Group**
Power

**Syntax**
POWer:SWLoss:TON:POWER:MIN?

**Examples**
POWer:SWLoss:TON:POWER:MIN? might return
:POWer:SWLoss:TON:POWER:MIN 1 indicating that the minimum Ton power switching loss calculation is set to 1 W.

POWer:SWLoss:TOTal:ENERGY:MAX? (Query Only)

Returns the maximum total energy for the switching loss calculation.

**Conditions**
This command requires a DPO3PWR application module.

**Group**
Power

**Syntax**
POWer:SWLoss:TOTal:ENERGY:MAX?

**Examples**
:POWer:SWLoss:TOTal:ENERGY:MAX 1 indicating that the maximum conduction energy switching loss calculation is set to 1 J.

POWer:SWLoss:TOTal:ENERGY:MEAN? (Query Only)

Returns the mean total energy for the switching loss calculation.

**Conditions**
This command requires a DPO3PWR application module.

**Group**
Power

**Syntax**
POWer:SWLoss:TOTal:ENERGY:MEAN?
Examples  POWER:SWLOSS:TOTAL:ENERGY:MEAN? might return  :POWER:SWLOSS:TOTAL:ENERGY:MEAN 1 indicating that the mean conduction energy switching loss calculation is set to 1 J.


Returns the minimum total energy for the switching loss calculation.

**Conditions**  This command requires a DPO3PWR application module.

**Group**  Power

**Syntax**  POWER:SWLoss:TOTal:ENERGY:MIN?

**Examples**  POWER:SWLOSS:TOTAL:ENERGY:MIN? might return  :POWER:SWLOSS:TOTAL:ENERGY:MIN 1 indicating that the minimum conduction energy switching loss calculation is set to 1 J.


Returns the maximum total power loss.

**Conditions**  This command requires a DPO3PWR application module.

**Group**  Power

**Syntax**  POWER:SWLoss:TOTal:POWER:MAX?

**Examples**  POWER:SWLOSS:TOTAL:POWER:MAX? might return  :POWER:SWLOSS:TOTAL:POWER:MAX 1 indicating that the maximum total power switching loss calculation is set to 1 W.


Returns the mean total power loss.

**Conditions**  This command requires a DPO3PWR application module.
Commands Listed in Alphabetical Order

**Syntax**

POWer:SWLoss:TOTal:POWER:MEAN?

**Examples**

POWer:SWLoss:TOTal:POWER:MEAN? might return :POWER:SWLoss:TOTotal:POWER:MEAN 1 indicating that the mean total power switching loss calculation is set to 1 W.

**POWer:SWLoss:TOTal:POWER:MIN? (Query Only)**

Returns the minimum total power loss.

**Conditions**

This command requires a DPO3PWR application module.

**Syntax**

POWer:SWLoss:TOTal:POWER:MIN?

**Examples**

POWer:SWLoss:TOTal:POWER:MIN? might return :POWER:SWLoss:TOTotal:POWER:MIN 1 indicating that the minimum total power switching loss calculation is set to 1 W.

**POWer:SWLoss:VCEsat**

Sets or returns VCESAT value for use in switching loss calculations when the conduction calculation method is VCESAT.

**Conditions**

This command requires a DPO3PWR application module.

**Syntax**

POWer:SWLoss:VCEsat <NR3>

POWer:SWLoss:VCEsat?

**Arguments**

<NR3> is the VCESat switching loss calculation.
**Examples**

POWER:SWLOSS:VCESAT 5 sets the VCEsat value to 5.0000.

POWER:SWLOSS:VCESAT ? might return :POWER:SWLOSS:VCESAT 2.0000 indicating that the VCEsat value is set to 2.0000.

**POWer:TYPE**

Sets or returns the power application measurement type.

**Conditions**

This command requires a DPO3PWR application module.

**Group**

Power

**Syntax**

```
POWer:TYPE {NONE|QUALity|SWITCHingloss|SOA |HARMonics|RIPPle|MODulationanalysis|DESkew}
POWer:TYPE?
```

**Arguments**

NONE Use to set the measurement type to None.

QUALity Use the power quality functions to obtain measurements and statistics about the general power quality in your test circuit.

SWITCHingloss Use the switching loss functions to obtain the power loss and energy loss across the acquired waveform, including turn-on loss, turn-off loss, conduction loss, and total loss. Typically, use these functions to characterize losses in power supply switching devices, as they switch on and off.

SOA Use the safe operating functions to obtain an X-Y display of the switching device-under-test's voltage and current. Also use them to perform a mask test of the X-Y signal relative to the graphical X-Y description of the device specification table. The safe operating area is typically the voltage and current values that a semiconductor can operate without damaging itself.

HARMonics Use the harmonics functions to obtain the frequency spectrum of the source waveform and associated measurement values. Harmonic measurements can help one perform in-depth troubleshooting of power quality problems.

RIPPle Use the ripple functions to obtain measurements and statistics for the AC components of the acquired waveform. Ripples are often found on top of a large DC signal.

MODulationanalysis Use the modulation functions to obtain a trend plot of a measurement value across the acquired waveform. This is useful for showing the variations in the modulated switching signal.

DESkew Run the deskew procedure to match the delays through the probes. Different probes introduce different delays between the probe tip and the
oscilloscope. Many oscilloscope users do not have to worry about this because they use the same type of probe on all channels. Power measurement users, however, frequently use both a voltage probe and a current probe. A current probe typically has a larger delay than a voltage probe, so setting deskew values becomes important.

**Examples**

`POWER:TYPE HARMONICS` sets the measurement type to Harmonics.

`POWER:TYPE?` might return `POWER:TYPE NON` indicating that no measurement type is set.

**POWer:VOLTAGESOurce**

Sets or returns the voltage source for the power application.

**Conditions**

This command requires a DPO3PWR application module.

**Group**

Power

**Syntax**

`POWer:VOLTAGESOurce {CH1|CH2|CH3|CH4|REF1|REF2|REF3|REF4}`

`POWer:VOLTAGESOurce?`

**Arguments**

CH1–CH4 or REF1–REF4 sets channel or ref as the voltage source.

**Examples**

`POWER:VOLTAGESOURCe CH1` sets the voltage source as CH1.

`POWER:VOLTAGESOURCe?` might return `POWER:VOLTAGESOURCe CH1` indicating that the voltage source is set to CH1.

**PSC**

Sets or returns the power-on status flag that controls the automatic power-on handling of the DESER, SRER, and ESER registers. When `*PSC` is true, the DESER register is set to 255 and the SRER and ESER registers are set to 0 at power-on. When `*PSC` is false, the current values in the DESER, SRER, and ESER registers are preserved in nonvolatile memory when power is shut off and are restored at power-on.

**Group**

Status and Error
**Syntax**

*PSC {OFF|ON|NR1}*

*PSC?

**Related Commands**  
DESE, *ESE, FACtory, *RST, *SRE

**Arguments**

OFF sets the power-on status clear flag to false.

ON sets the power-on status clear flag to true.

<NR1> = 0 sets the power-on status clear flag to false. This disables the power-on clear allowing the oscilloscope to possibly assert SRQ after power-on; any other value sets the power-on status clear flag to true, enabling the power-on status clear preventing any SRQ assertion after power on.

**Examples**

*PSC 0 sets the power-on status clear flag to false.

*PSC? might return 1 to indicate that the power-on status clear flag is set to true.

---

**PUD**

Sets or returns a string of Protected User Data. This data is protected by the PASSWord command. You can modify it only by first entering the correct password. This password is not necessary to query the data.

**Group**  
Status and Error

**Syntax**

*PUD {<Block>|<QString>}

*PUD?

**Related Commands**  
PASSWord

**Arguments**

<Block> is a block containing up to 300 ASCII characters.

<QString> is a string containing up to 300 ASCII characters.

**Examples**

*PUD #229This oscilloscope belongs to me stores the string "This oscilloscope belongs to me" in the user protected data area.

*PUD? might return #221PROPERTY OF COMPANY X
**RCL (No Query Form)**

This command restores the state of the oscilloscope from a copy of the settings stored in memory (The settings are stored using the *SAV command).

**Group**  
Save and Recall

**Syntax**  
*RCL <NR1>

**Related Commands**  

**Arguments**  
<NR1> is a value in the range from 1 to 10, which specifies a saved setup storage location.

**Examples**  
*RCL 3 restores the oscilloscope from a copy of the settings stored in memory location 3.

**RECALL:SETUp (No Query Form)**

Restores the state of the oscilloscope from a copy of the settings stored in memory. The settings are stored using the *SAV command.

**Group**  
Save and Recall

**Syntax**  
RECALL:SETUp {FACTory|<NR1>|<file path>}

**Related Commands**  

**Arguments**  
FACTory restores the factory setup.

<NR1> is a value in the range from 1 to 10, which specifies a saved setup storage location.

<file path> specifies a location for an oscilloscope setup file. <file path> is a quoted string that defines the file name and path. Input the file path using the form <drive>:/<dir>/<filename>.<extension> and one or <dir>s are optional. If you do not specify them, the oscilloscope will read the file from the default directory (see FILESystem:CWD). <filename> stands for a filename; the use of wildcard characters in filenames is not supported. Filename extensions are not required, but highly recommended.
Examples

RECALL:SETUP FACTORY recalls (and makes current) the oscilloscope setup to its factory defaults.

RECALL:SETUP 2 recalls the oscilloscope setup from setup storage location 2.

RECALL:SETUP "TEK00000.SET" recalls the setup from the file TEK00000.SET in the current working directory.

RECALL:WAVEform (No Query Form)

This command (no query form) recalls a stored waveform to a reference location. Only the first waveform in a .CSV file is recalled for multiple waveform .CSV files. Recall of digital waveforms (D0 through D15) is not supported.

Group
Save and Recall

Syntax
RECALL:WAVEform <QString>,REF<x>

Related Commands
SAVE:WAVEform, FILESystem:CWD, FILESystem?

Arguments

<QString> is a quoted string that specifies a location for an oscilloscope file. The file name and path should be input using the form <drive>:/<dir>/<filename>.<extension>.

REF<x> specifies a location in internal reference memory. Reference memory location values range from 1 through 4.

NOTE. The use of <drive>: and <dir>/ are optional; if you do not specify the drive and directory, then the instrument will write them to the current working directory as specified by FILESystem:CWD.

Examples
RECALL:WAVEFORM "TEK00000.ISF",REF1 recalls the waveform stored in the file named TEK00000.ISF from the current directory for waveforms to the reference location 1.

REF<x>? (Query Only)

Returns reference waveform settings for the reference waveform <x>.

Group
Vertical
Syntax

REF<x>?

Examples

REF1? might return :REF1:LABEL "Race Condition";VERTICAL:POSITION 0.0E+0;SCALE 100.0000E-6;:REF1:HORIZONTAL:DELAY:TIME 0.0E+0;:REF1:HORIZONTAL:SCALE 4.0000E-6;:REF1:DATE "01-08-09";TIME "20:21:38".

REF<x>:DATE? (Query Only)

Returns the date that reference waveform data for channel <x> was copied into the internal reference memory, where x is the reference channel number.

Group
Vertical

Syntax

REF<x>:DATE?

REF<x>:HORizontal:DELay:TIMe

Sets or returns the horizontal delay time for reference waveform <x>, where x is the reference channel number. The delay time is expressed in seconds and is limited to ±5 times the reference horizontal scale.

Group
Vertical

Syntax

REF<x>:HORizontal:DELay:TIMe <NR3>
REF<x>:HORizontal:DELay:TIMe?

Arguments

<NR3> is the delay time in seconds.

Examples

REF2:HORIZONTAL:DELAY:TIME 4.0E-6 sets the horizontal delay time for the REF2 waveform to 4 μs.

REF<x>:HORizontal:SCAle

Sets or returns the horizontal scale for reference waveform <x>, where x is the reference channel number.
Commands Listed in Alphabetical Order

**Group** Vertical

**Syntax**
- `REF<x>:HORIZONTAL:SCALE <NR3>`
- `REF<x>:HORIZONTAL:SCALE?`

**Arguments**
- `<NR3>` is the horizontal scale in seconds.

**Examples**
- `REF1:HORIZONTAL:SCALE?` might return `REF1:HORIZONTAL:SCALE 4.0E-4`

**REF<x>:LABel**

Sets or returns the reference waveform label for the channel specified by `<x>`, where x is the reference channel number.

**Group** Vertical

**Syntax**
- `REF<x>:LABel <Qstring>`
- `REF<x>:LABel?`

**Arguments**
- `<Qstring>` is an alpha-numeric string of text, enclosed in quotes, that contains the label text for the reference channel `<x>` waveform. The text string is limited to 30 characters.

**Examples**

**REF<x>:TIMe? (Query Only)**

Returns the time that reference waveform data was copied into the internal reference memory for reference channel `<x>`, where x is the reference channel number.

**Group** Vertical

**Syntax** `REF<x>:TIMe?`

**Examples**
- `REF4:TIME?` might return “16:54:05”
REF<x>::VERTical:POSition

Sets or returns the vertical position of the reference waveform specified by <x>, where x is the reference channel number.

Increasing the position value of a waveform causes the waveform to move up, and decreasing the position value causes the waveform to move down. Position adjusts only the display position of a waveform. The position value determines the vertical graticule coordinate at which signal values are displayed. For example, if the position for Reference 3 is set to 2.0, the signal represented by that reference will be displayed at 2.0 divisions above the center of the screen.

Group          Vertical
Syntax         REF<x>::VERTical:POSITION <NR3>
               REF<x>::VERTical:POSITION?
Related Commands CH<x>::POSition, MATH[1]:VERTical:POSition
Arguments      <NR3> is the desired position, in divisions from the center horizontal graticule. The range is from -4.0 to 4.0 divisions.
Examples       REF2::VERTICAL:POSITION  1.3E+00 positions the Reference 2 input signal 1.3 divisions above the center horizontal graticule.
               REF1::VERTICAL:POSITION? might return :REF1::VERTICAL:POSITION -1.3000E+00 indicating that the current position of Reference 1 is 1.3 divisions below the center horizontal graticule.

REF<x>::VERTical:SCAle

Sets or returns the vertical scale for the reference waveform specified by <x>, where x is the reference channel number.

Each waveform has a vertical scale parameter. For a signal with constant amplitude, increasing the Scale causes the waveform to be displayed smaller. Decreasing the scale causes the waveform to be displayed larger.
Scale affects all waveforms, but affects reference and math waveforms differently from channel waveforms:

- For reference and math waveforms, this setting controls the display only, graphically scaling these waveforms and having no affect on the acquisition hardware.
- For channel waveforms, this setting controls the vertical size of the acquisition window as well as the display scale. The range and resolution of scale values depends on the probe attached and any other external factors you have specified.

**Group**  
Vertical

**Syntax**  
REF<x>:VERTical:SCAle <NR3>  
REF<x>:VERTical:SCAle?

**Related Commands**  
CH<x>:SCAle, MATH[1]:VERTical:SCAle

**Arguments**  
<NR3> is the gain in user units-per-division.

**Examples**  
REF4:VERTICAL:SCALE 100E-03 sets the Reference 4 scale to 100 mV per division.

REF4:VERTICAL:SCALE? might return :REF2:VERTICAL:SCALE 1.0000e+00 indicating that the current vertical scale setting for Reference 2 is 1 V per division.

### REM (No Query Form)

Embeds a comment within programs as a means of internally documenting the programs. The oscilloscope ignores these embedded comment lines.

**Group**  
Miscellaneous

**Syntax**  
REM <QString>

**Arguments**  
<QString> is a string that can contain a maximum of 80 characters.

**Examples**  
REM "This is a comment" is a comment string that the oscilloscope will ignore.
**Commands Listed in Alphabetical Order**

**RST (No Query Form)**

Resets the oscilloscope to the factory default settings. The *RST command does not alter the following:

- Calibration data that affect device specifications
- The Output Queue
- The Service Request Enable Register setting
- The Power-on status clear flag setting
- Alias definitions
- Stored settings
- The *PUD? Response
- Any of the values associated with the DATA command.
- Oscilloscope password

**Group** Status and Error

**Syntax** *RST


**Arguments** None

**Examples** *RST resets the oscilloscope settings to factory defaults.

**SAV (No Query Form)**

Stores the state of the oscilloscope to a specified memory location. You can use the *RCL command to restore the oscilloscope to this saved state at a later time.

**Group** Save and Recall

**Syntax** *SAV <NR1>

**Related Commands** *RCL, RECALL:SETUp, SAVe:SETUp
Arguments

<NR1> specifies a location in which to save the state of the oscilloscope. Location values range from 1 through 10. Using an out-of-range location value causes an execution error. Any settings that have been stored previously at this location will be overwritten.

Examples

*SAV 2 saves the current oscilloscope state in memory location 2.

SAVe:ASSIgn:TYPe

Sets or returns the assignment of the data to be saved when the front-panel Save button is pressed.

Group

Save and Recall

Syntax

SAVe:ASSIgn:TYPe {IMAGe|WAVEform|SETUp}
SAVe:ASSIgn:TYPe?

Arguments

IMAGe assigns the Save button to save screen images.
WAVEform assigns the Save button to save waveforms.
SETUp assigns the Save button to save setups.

SAVe:EVENTtable:BUS<x> (No Query Form)

Saves the data from bus<x> to a specified file and location; where x is the bus number.

Group

Save and Recall

Syntax

SAVe:EVENTtable:BUS<x> <file path>

Arguments

<file path> is a quoted string that defines the file name and path location where the event table will be stored.

NOTE. <filename> stands for a filename of up to 125 characters, followed by a period ("."), and the three-character extension. Waveform files should have a .csv extension for comma-separated spreadsheet format files.
SAVe:IMAGe (No Query Form)

Saves a capture of the screen image into the specified file. Supported image formats are PNG, Windows Bitmap, and TIFF. If an extension for a supported file type is added to the file name, then the corresponding format will be used. If no supported extension is added to the file, the format to use will be determined by the value obtained from the :SAVe:IMAGe:FILEFormat? query.

Group       Save and Recall

Syntax      SAVe:IMAGe <file path>

Related Commands      SAVe:ASSIgn:TYPe

Arguments    <file path> is a filename, including path, where the image will be saved. If you do not specify a directory, the oscilloscope will store the file in the current working directory. File name extensions are not required but are highly recommended. The images will be saved in the current working directory.

SAVe:IMAGe:FILEFormat

Sets or returns the file format to use for saving screen images.

NOTE. The file format is not automatically determined by the file name extension. You need to choose a file format with an extension which is consistent with the selected file format.

Group       Save and Recall

Syntax      SAVe:IMAGe:FILEFormat {PNG|BMP|TIff}
            SAVe:IMAGe:FILEFormat?

Related Commands      SAVe:IMAGe

Arguments    PNG saves the file in Portable Network Graphics format.
            BMP saves the file in Microsoft Windows bitmap format.
            TIff saves the file in Tagged Image File Format.
SAVe:IMAGe:INKSaver

Sets or returns the current ink saver setting for the SAVe:IMAGe command. If set to “ON” or “1”, images will be generated using the ink saver palette. If set to “OFF” or “0”, images will be generated using the standard palette.

Group
Save and Recall

Syntax
SAVe:IMAGe:INKSaver {OFF|ON|0|1}
SAVe:IMAGe:INKSaver?

Arguments
OFF or 0 generates images from the Inksaver palette.
ON or 1 generates images using the Standard palette.

SAVe:IMAGe:LAYout

Sets or returns the layout to use for saved screen images.

Group
Save and Recall

Syntax
SAVe:IMAGe:LAYout {LANdscape|PORTRait}
SAVe:IMAGe:LAYout?

Arguments
LANdscape specifies that screen images are saved in landscape format.
PORTRait specifies that screen images are saved in portrait format.

SAVe:SETUp (No Query Form)

Stores the state of the oscilloscope to a specified memory location. You can later use the *RCL command to restore the oscilloscope to this saved state.

Group
Save and Recall

Syntax
SAVe:SETUp {<file path>|<NR1>}

MSO3000 and DPO3000 Series Programmer Manual
Commands Listed in Alphabetical Order

Related Commands

*RCL, RECALL:SETUp, *SAV

Arguments

<file path> is the target location for storing the setup file. <file path> is a quoted string that defines the file name and path. Input the file path using the form <drive>:/<dir>/<filename>. <extension> and one or <dir>s are optional. If you do not specify them, the oscilloscope will store the file in the current working directory. <filename> stands for a filename. (Use of wildcard characters in filenames is not supported.) Filename extensions are not required but are highly recommended. For setups, use the extension ".SET".

<NR1> specifies a location for saving the current front-panel setup. The front-panel setup value ranges from 1 to 10. Using an out-of-range value causes an execution error. Any settings that have been stored previously at this location will be overwritten.

Examples

SAVE:SETUP 5 saves the current oscilloscope setup in memory location 5.

SAVE:SETUP "TEK00000.SET" saves the current oscilloscope setup in the file TEK00000.SET in the current working directory.

SAVe:WAVEform (No Query Form)

This command saves a specified waveform or all displayed waveforms (excluding serial bus waveforms). Only individual analog waveforms (CH<x>, MATH and REF<x>) can be saved to reference memory locations.

You can save all displayed waveforms, excluding serial bus waveforms, to a single CSV file when the SAVE:WAVEFORM:FILEFORMAT is set to SPREADSHEET.

You can save all displayed waveforms, excluding serial bus waveforms and digital channels (MSO models) to consecutive ISF (internal save format) files when the SAVE:WAVEFORM:FILEFORMAT is set to INTERNAL.

Group

Save and Recall

Syntax

SAVE:WAVEform [<wfm>,{REF<x>}] | [<wfm>, <QString>] | [ALL, <QString>]

Related Commands

RECALL:WAVEform, SAVe:WAVEform:FILEFormat

Arguments

<wfm>, <REF<x>> saves the specified waveform to the specified reference memory location. <wfm> can be any live analog channel (where <x> is the channel number), the MATH1 waveform, or another reference waveform (such as REF1).
<wfm>, <QString> saves the specified waveform to the file specified in the quoted string argument. Any live channel (such as CH1), the MATH1 waveform, any reference waveform can be saved to a file.

ALL, <QString> saves all displayed waveforms, excluding serial bus waveforms, to a single CSV file specified by the quoted string argument when the SAVE:WAVEFORM:FILEFORMAT is set to SPREADSHEET, or saves all displayed waveforms, excluding serial bus waveforms and digital channel waveforms (MSO models) to individual ISF (internal save format) files with a file name prefix specified by the argument with an underscore (_) and the waveform ID (such as CH1, REF1, MATH) appended to the file name(s).

**Examples**

```
SAVE:WAVEFORM CH1,REF1 saves the CH1 waveform in reference memory location 1.

:SAVE:WAVEFORM:FILEFORMAT SPREADSHEET; :SAVE:WAVEFORM ALL, "E:/test_folder/test1_all.csv" saves all displayed waveforms (excluding serial bus waveforms) to E:/test_folder/test1_all.csv.

:SAVE:WAVEFORM:FILEFORMAT INTERNal; :SAVE:WAVEFORM ALL, "E:/test_folder/test1_<wfm>.isf" saves all displayed waveforms (excluding serial bus waveforms and digital channels for MSO models) to individual files named E:/test_folder/test1_<wfm>.isf (for example test1_CH1.isf).
```

**SAVe:WAVEform:FILEFormat**

Specifies or returns the file format for saved waveforms. Waveform header and timing information is included in the resulting file of non-internal formats. The oscilloscope saves DPO waveforms as a 500 x 200 matrix, with the first row corresponding to the most recently acquired data. The values specified by DATa:STARt and DATa:STOP determine the range of waveform data to output. In the event that DATa:STOP value is greater than the current record length, the current record length determines the last output value.

**Group**

Save and Recall

**Syntax**

```
SAVe:WAVEform:FILEFormat {INTERNal|SPREADSheet}
SAVe:WAVEform:FILEFormat?
```

**Related Commands**

CURVe, DATa, DATa:STARt, DATa:STOP, SAVe:WAVEform, WFMInpre:NR_Pt, WFMOutpre:NR_Pt?

**Arguments**

INTERNal specifies that waveforms are saved in an internal format, using a .isf filename extension. These files can be recalled as reference waveforms. When this
argument is specified, the settings specified via the DATa:STARt and DATa:STOP commands have no meaning as the entire waveform is saved.

**SPREADsheet** specifies that waveform data is saved in a format that contains comma delimited values. These waveform data files are named using the .csv filename extension. Saving waveforms in CSV format enables spreadsheet programs to import the data.

**Examples**

```
SAVE:WAVEFORM:FILEFORMAT INTERNAL specifies that the internal file format is the format used for saving waveforms.

SAVE:WAVEFORM:FILEFORMAT? might return :SAVE:WAVEFORM:FILEFORMAT INTERNAL indicating that waveforms are saved using the internal format.
```

### SAVe:WAVEform:GATIng

Specifies whether save waveform operations should save the entire waveform (NONE) or a specified portion of the waveform.

**Group**  
Save and Recall

**Syntax**

```
SAVE:WAVEform:GATIng {NONE|CURSors|SCREEN}
SAVE:WAVEform:GATIng?
```

**Arguments**

- **CURSors** turns on cursors and the gates are the waveform record points at the cursor positions.
- **NONE** saves the entire waveform.
- **SCREEN**, if zoom is on, the gates are the start and end waveform record points of the zoom (upper) graticule, otherwise the gates are the start and end waveform record points of the main graticule.

**Examples**

```
SAVE:WAVEFORM:GATING CURSors specifies that, when the waveform gating is set to cursors, save waveform operations should save the waveform points between the cursors. If cursors are turned off, waveform gating automatically reverts to NONE.
```

### SEARCH? (Query Only)

Returns all search-related settings.

**Group**  
Search
Commands Listed in Alphabetical Order

Syntax

SEARCH?

Examples

SEARCH? might return:

:SEARCH:SEARCH1:TRIG:A:BUS:B1:SPI:COND SS;DAT:MOSI:VAL "XXXXXXXX";:SEARCH:SEARCH1:TRIG:A:BUS:B1:SPI:DAT:MISO:VAL "XXXXXXXX";:SEARCH:SEARCH1:TRIG:A:BUS:B1:SPI:DAT:SIZ 1;:SEARCH:SEARCH1:TRIG:A:BUS:B1:I2C:COND STAR;DAT:VAL "XXXXXXXX";SIZ 1;DIR NOCARE;:SEARCH:SEARCH1:TRIG:A:BUS:B1:I2C:ADDR:MOD ADDR7;TYP USER;VAL "XXXXXXXX";:SEARCH:SEARCH1:TRIG:A:BUS:B1:CAN:COND SOF;FRAME DATA;DAT:VAL "XXXXXXXX";SIZ 1;DIR NOCARE;QUAL EQU;:SEARCH:SEARCH1:TRIG:A:BUS:B1:CAN:ID:MOD ST;VAL "XXXXXXXXXXXX";:SEARCH:SEARCH1:TRIG:A:BUS:B1:CAN:ID:MOD ST;VAL "XXXXXXXXXXXX";:SEARCH:SEARCH1:TRIG:A:BUS:B2:SPI:COND SS;DAT:MOSI:VAL "XXXXXXXX";:SEARCH:SEARCH1:TRIG:A:BUS:B2:SPI:DAT:MISO:VAL "XXXX XXX";:SEARCH:SEARCH1:TRIG:A:BUS:B2:SPI:DAT:SIZ 1;:SEARCH:SEARCH1:TRIG:A:BUS:B2:I2C:COND STAR;DAT:VAL "XXXXXXXX";SIZ 1;DIR NOCARE;:SEARCH:SEARCH1:TRIG:A:BUS:B2:I2C:ADDR:MOD ADDR7;TYP USER;VAL "XXXXXXXX";:SEARCH:SEARCH1:TRIG:A:BUS:B2:CAN:COND SOF;FRAME DATA;DAT:VAL "XXXXXXXX";SIZ 1;DIR NOCARE;QUAL EQU;:SEARCH:SEARCH1:TRIG:A:BUS:B2:CAN:ID:MOD ST;VAL "XXXXXXXXXXXX";:SEARCH:SEARCH1:TRIG:A:BUS:SOU B1;:SEARCH:SEARCH1:TRIG:A:TYP EDG;LEV 0.0000;LEV:CH1 0.0000;CH2 0.0000;CH3 0.0000;CH4 0.0000;MATH 0.0000;REF1 0.0000;REF2 0.0000;REF3 0.0000;REF4 0.0000;:SEARCH:SEARCH1:TRIG:A:UPP:CH1 800.0000E-3;CH2 800.0000E-3;CH4 800.0000E-3;MATH 800.0000E-3;REF1 800.0000E-3;REF2 800.0000E-3;REF3 800.0000E-3;REF4 800.0000E-3;:SEARCH:SEARCH1:TRIG:A:LOW:CH1 0.0000;CH2 0.0000;CH3 0.0000;CH4 0.0000;MATH 0.0000;REF1 0.0000;REF2 0.0000;REF3 0.0000;REF4 0.0000;:SEARCH:SEARCH1:TRIG:A:EDGE:SOU CH1;SLO 0.0000;CH2 0.0000;CH3 0.0000;CH4 0.0000;MATH 0.0000;REF1 0.0000;REF2 0.0000;REF3 0.0000;REF4 0.0000;:SEARCH:SEARCH1:TRIG:A:LOGI:FUNC AND;THR:CH1 0.0000;CH2 0.0000;CH3 0.0000;CH4 0.0000;MATH 0.0000;REF1 0.0000;REF2 0.0000;REF3 0.0000;REF4 0.0000;:SEARCH:SEARCH1:TRIG:A:LOGI:INP:CH1 X;CH2 X;CH3 X;CH4 X;MA TH X;REF1 X;REF2 X;REF3 X;REF4 X;CLOC:SOU NONE;EDGE RIS;:SEARCH:SEARCH1:TRIG:A:LOGI:PAT:INP:CH1 X;CH 2 X;CH3 X;CH4 X;MA TH X;REF1 X;REF2 X;REF3 X;REF4 X;:SEARCH:SEARCH1:TRIG:A:LOGI:PAT:WHE TRU;WHE:LESSL 8.0000E-9;L 8.0000E-9;:SEARCH:SEARCH1:TRIG:A:PULSEW:SOU CH1;POL POS;WHE LESS;WID 8.0000E-9;:SEARCH:SEARCH1:TRIG:A:RUNT:SOU CH1;POL POS;WHE OCCURS;WID 8.0000E-9;:SEARCH:SEARCH1:TRIG:A:TRAN:SOU CH1;POL POS;WHE SLOW;DELT 8.0000E-9;:SEARCH:SEARCH1:TRIG:A:SETH:CLOC:SOU
Commands Listed in Alphabetical Order

CH1;EDGE RIS;THR 0.0000;:SEARCH:SEARCH1:TRIG:A:SETH:DAT:SOU
CH2;THR 0.0000;:SEARCH:SEARCH1:TRIG:A:SETH:HOLDT
8.0000E-9;SETP 8.0000E-9;:SEARCH:SEARCH1:STATE 0

SEARCH:SEARCH<x>:COPY (No Query Form)

Copies the search criteria to the trigger, or the trigger criteria to a search. <x> is the search number.

**Group** Search

**Syntax** SEARCH:SEARCH<x>:COPY {SEARCHtotrigger|TRIGgertosearch}

**Arguments**
- SEARCHtotrigger copies the search criteria to the trigger
- TRIGgertosearch copies the trigger criteria to the search

SEARCH:SEARCH<x>:STATE

Sets the search state to on or off. <x> is the search number, which is always 1. The query form returns the search state.

**Group** Search

**Syntax** SEARCH:SEARCH<x>:STATE {<NR1>|OFF|ON}
SEARCH:SEARCH<x>:STATE?

**Arguments**
- OFF or <NR1> = 0 sets the search state to off.
- ON or <NR1> ≠ 0 sets the search state to on.

SEARCH:SEARCH<x>:TOTAL? (Query Only)

Returns the total number of matches for the search. The total number of matches may be than the number of marks placed. <x> is the search number, which is always 1.

**Group** Search

MSO3000 and DPO3000 Series Programmer Manual 2-377
Syntax
SEARCH:SEARCH<x>:TOTAL?

Returns
<NRI> is the total number of matches.

**SEARCH:SEARCH<x>:TRIGger:A:BUS? (Query Only)**

Queries the SEARCH:SEARCH<x>:TRIGger:A:BUS settings. <x> is the search number, which is always 1. There are two serial buses, B1 and B2.

To set the search type to bus, use SEARCH:SEARCH<x>:TRIGger:A:TYPe BUS.

**Conditions**
This command requires the appropriate application module for the bus. (See page 2-13, *Bus Command Group*.)

**Group**
Search

**Syntax**
SEARCH:SEARCH<x>:TRIGger:A:BUS?

**Returns**
I2C specifies the Inter-IC bus.

SPI specifies the Serial Peripheral Interface bus (not available on two-channel models).

CAN specifies the Controller Area Network bus.

RS232C specifies the RS-232C bus.

PARallel specifies the Parallel bus.

LIN specifies the LIN bus.

FLEXRay specifies the FLexRay bus.

AUDio specifies the audio bus.

MIL1553B specifies the MIL-STD-1553 bus.

**Examples**
SEARCH:SEARCH1:TRIGGER:A:BUS? might return
SEARCH:SEARCH<x>:TRIGger:A:BUS:B<x>:AUDio:CONDition

This command sets the condition (start of frame or matching data) to be used to search on audio bus data. SEARCH<x> is the search number, which is always 1, and B<x> is the bus number, which is 1 or 2.

Conditions
This command requires a DPO3AUDIO application module.

Group
Search

Syntax
SEARCH:SEARCH<x>:TRIGger:A:BUS:B<x>:AUDio:CONDition {SOF|DATA}
SEARCH:SEARCH<x>:TRIGger:A:BUS:B<x>:AUDio:CONDition?

Arguments
SOF specifies to search on the start of frame.
DATA specifies to search on matching data.


This command sets the upper word value to be used to search on audio bus data. (Use SEARCH:SEARCH<x>:TRIGger:A:BUS:B<x>:AUDio:DATa:VALue to search on the lower word value.) The search condition must be set to DATA using SEARCH:SEARCH<x>:TRIGger:A:BUS:B<x>:AUDio:CONDition.

SEARCH<x> is the search number, which is always 1, and B<x> is the bus number, which is 1 or 2.

Conditions
This command requires a DPO3AUDIO application module.

Group
Search

Syntax

Arguments
<String> specifies the upper word value.

This command sets the data offset value to be used to search on audio bus data. The search condition must be set to DATA using SEARCH:SEARCH<x>:TRIGger:A:BUS:B<x>:AUDio:CONDition.

SEARCH<x> is the search number, which is always 1, and B<x> is the bus number, which is 1 or 2.

**Conditions**
This command requires a DPO3AUDIO application module.

**Group**
Search

**Syntax**
SEARCH:SEARCH<x>:TRIGger:A:BUS:B<x>:AUDio:DATa:OFFSet <NR1>

**Arguments**
<NR1> is the data offset value.


This command sets the qualifier (<, >, =, <=, >=, not =, in range, out of range) to be used to search on audio bus data. The search condition must be set to DATA using SEARCH:SEARCH<x>:TRIGger:A:BUS:B<x>:AUDio:CONDition.

SEARCH<x> is the search number, which is always 1, and B<x> is the bus number, which is 1 or 2.

**Conditions**
This command requires a DPO3AUDIO application module.

**Group**
Search

**Syntax**
SEARCH:SEARCH<x>:TRIGger:A:BUS:B<x>:AUDio:DATa:QUALifier {LESSthan|MOREthan|EQUAL|UNEQUAL|LESSEQUAL|MOREEQUAL|INrange|OUTrange}

**Arguments**
LESSthan sets the qualifier to less than.
MOREthan sets the qualifier to greater than.
EQUAL sets the qualifier to equal.
UNEQUAL sets the qualifier to not equal.
LESSEqual sets the qualifier to less than or equal.
MOREEqual sets the qualifier to greater than or equal.
INrange sets the qualifier to in range.
OUTrange sets the qualifier to out of range.

**SEARCH:SEARCH<x>:TRIGger:A:BUS:B<x>:AUDio:DATa:VALue**

This command sets the lower word value to be used to search on audio bus data. (Use SEARCH:SEARCH<x>:TRIGger:A:BUS:B<x>:AUDio:DATa:HIVALue to set the upper word value.) The search condition must be set to DATA using SEARCH:SEARCH<x>:TRIGger:A:BUS:B<x>:AUDio:CONDition.

SEARCH<x> is the search number, which is always 1, and B<x> is the bus number, which is 1 or 2.

**Conditions**
This command requires a DPO3AUDIO application module.

**Group**
Search

**Syntax**

**Arguments**
<String> is the lower word value.


This command sets the alignment of the data (left, right or either) to be used to search on audio bus data. The search condition must be set to DATA using SEARCH:SEARCH<x>:TRIGger:A:BUS:B<x>:AUDio:CONDition.

SEARCH<x> is the search number, which is always 1, and B<x> is the bus number, which is 1 or 2.

**Conditions**
This command requires a DPO3AUDIO application module.

**Group**
Search

**Syntax**
SEARCH:SEARCH<x>:TRIGger:A:BUS:B<x>:AUDio:DATa:WORD {EITHER|LEFT|RIGHT}

**Arguments**
- EITher aligns the data to either left or right.
- LEFT aligns the data to the left.
- RIGHT aligns the data to the right.

**SEARCH:SEARCH<x>:TRIGger:A:BUS:B<x>:CAN:CONDition**

This command sets the condition (start of frame, frame type, identifier, matching data, EOF, missing ACK field, bit-stuffing error) to be used to search on CAN bus data. SEARCH<x> is the search number, which is always 1, and B<x> is the bus number, which is 1 or 2.

**Conditions**
This command requires a DPO3AUTO application module.

**Group**
Search

**Syntax**

**Arguments**
- SOF specifies a search based on the start of frame.
- FRAMEtype specifies a search based on the frame type.
- IDentifier specifies a search based on the frame identifier.
- DATA specifies a search based on the frame data.
- IDANDDATA specifies a search based on the frame identifier and data.
- EOF specifies a search based on the end of frame.
- ACKMISS specifies a search based on the missing ACK field.
- ERROR specifies a search based on a bit stuffing error.

**SEARCH:SEARCH<x>:TRIGger:A:BUS:B<x>:CAN:DATa:DIRection**

This command sets the data direction (read, write or nocare) to be used to search on CAN bus data. This only applies if the search condition has been set to IDentifier (using SEARCH:SEARCH<x>:TRIGger:A:BUS:B<x>:CAN:CONDition).

2-382 MSO3000 and DPO3000 Series Programmer Manual
SEARCH<x> is the search number, which is always 1, and B<x> is the bus number, which is 1 or 2.

Conditions
This command requires a DPO3AUTO application module.

Group
Search

Syntax
SEARCH:SEARCH<x>:TRIGger:A:BUS:B<x>:CAN:DATa:DIRection
{READ|WRITE|NOCARE}
SEARCH:SEARCH<x>:TRIGger:A:BUS:B<x>:CAN:DATa:DIRection?

Related Commands
SEARCH:SEARCH<x>:TRIGger:A:BUS:B<x>:CAN:CONDition

Arguments
READ specifies the read direction.
WRITE specifies the write direction.
NOCARE specifies either a read or write direction.

SEARCH:SEARCH<x>:TRIGger:A:BUS:B<x>:CAN:DATa:QUALifier
This command sets the qualifier (<, >, =, not =, <=) to be used to search on CAN bus data. This only applies if the search condition has been set to IDANDDATA or DATA (using SEARCH:SEARCH<x>:TRIGger:A:BUS:B<x>:CAN:CONDition).
SEARCH<x> is the search number, which is always 1, and B<x> is the bus number, which is 1 or 2.

Conditions
This command requires a DPO3AUTO application module.

Group
Search

Syntax
SEARCH:SEARCH<x>:TRIGger:A:BUS:B<x>:CAN:DATa:QUALifier
{LESSthan|MOREthan|EQUAL|UNEQual|LESSEqual|EQUAL}

Related Commands
SEARCH:SEARCH<x>:TRIGger:A:BUS:B<x>:CAN:DATa:VALue

Arguments
LESSthan searches for bus data less than the value specified by SEARCH:SEARCH<x>:TRIGger:A:BUS:B<x>:CAN:DATa:VALue.
MORE than searches for bus data greater than the value specified by 

EQua1 searches for bus data equal to the value specified by 

UneQua1 searches for bus data not equal to the value specified by 

LesSEQua1 searches for bus data less equal to the value specified by 

EQua1 searches for bus data equal to the value specified by 


This command sets the length of the data string, in bytes, to be used to search 
on CAN bus data. This only applies if the search condition has been set to 
IDANDDATA or DATA (using SEARCH:SEARCH<x>:TRIgger:A:BUS:B<x>: 
CAN:CONDition).

SEARCH<x> is the search number, which is always 1, and B<x> is the bus number, 
which is 1 or 2.

Conditions  This command requires a DPO3AUTO application module.

Group    Search

Syntax  
SEARCH:SEARCH<x>:TRIgger:A:BUS:B<x>:CAN:DATa:SIZe <NR1>

Arguments  <NR1> is the data string length in bytes.


This command sets the binary data value to be used to search on CAN bus data. 
This only applies if the search condition has been set to IDANDDATA or DATA 

SEARCH<x> is the search number, which is always 1, and B<x> is the bus number, 
which is 1 or 2.

Conditions  This command requires a DPO3AUTO application module.
Group: Search

Syntax:

SEARCH:SEARCH<x>:TRIGger:A:BUS:B<x>:CAN:DATa:VALue <bin>
SEARCH:SEARCH<x>:TRIGger:A:BUS:B<x>:CAN:DATa:VALue?

Related Commands:
SEARCH:SEARCH<x>:TRIGger:A:BUS:B<x>:CAN:DATa:QUALi

Arguments:

- <bin> is the data in binary format.

**SEARCH:SEARCH<x>:TRIGger:A:BUS:B<x>:CAN:FRAMEtype**

This command sets the frame type (data, remote, error or overload) to be used to search on CAN bus data. This only applies if the search condition has been set to FRAMEtype (using SEARCH:SEARCH<x>:TRIGger:A:BUS:B<x>:CAN:CONDition).

SEARCH<x> is the search number, which is always 1, and B<x> is the bus number, which is 1 or 2.

Conditions:

This command requires a DPO3AUTO application module.

Group: Search

Syntax:

SEARCH:SEARCH<x>:TRIGger:A:BUS:B<x>:CAN:FRAMEtype {DATA|REMote|ERRor|OVERLoad}
SEARCH:SEARCH<x>:TRIGger:A:BUS:B<x>:CAN:FRAMEtype?

Arguments:

- DATA specifies a data frame.
- REMote specifies a remote frame.
- ERRor specifies an error frame.
- OVERLoad specifies an overload frame.

**SEARCH:SEARCH<x>:TRIGger:A:BUS:B<x>:CAN{:IDenti fier|ADDRess}:MODe**

This command sets the addressing mode (standard or extended format) to be used to search on CAN bus data. This only applies if the search condition has been set to IDANDDATA or DATA (using SEARCH:SEARCH<x>:TRIGger:A:BUS:B<x>:CAN:CONDition).
SEARCH<x> is the search number, which is always 1, and B<x> is the bus number, which is 1 or 2.

**Conditions**
This command requires a DPO3AUTO application module.

**Group**
Search

**Syntax**
```
SEARCH:SEARCH<x>:TRIGger:A:BUS:B<x>:CAN{:IDentifier|:ADDRess}:MODe {STandard|EXTended}
SEARCH:SEARCH<x>:TRIGger:A:BUS:B<x>:CAN{:IDentifier|:ADDRess}:MODe?
```

**Arguments**
- **STandard** specifies an 11-bit identifier field.
- **EXTended** specifies a 29-bit identifier field.

**SEARCH:SEARCH<x>:TRIGger:A:BUS:B<x>:CAN{:IDentifier|:ADDRess}:VALue**
This command sets the binary address value to be used to search on CAN bus data. This only applies if the search condition has been set to IDANDDATA or DATA (using `SEARCH:SEARCH<x>:TRIGger:A:BUS:B<x>:CAN:CONDition`).

SEARCH<x> is the search number, which is always 1, and B<x> is the bus number, which is 1 or 2.

**Conditions**
This command requires a DPO3AUTO application module.

**Group**
Search

**Syntax**
```
SEARCH:SEARCH<x>:TRIGger:A:BUS:B<x>:CAN{:IDentifier|:ADDRess}:VALue <bin>
SEARCH:SEARCH<x>:TRIGger:A:BUS:B<x>:CAN{:IDentifier|:ADDRess}:VALue?
```

**Arguments**
- `<bin>` is the address in binary format.

**SEARCH:SEARCH<x>:TRIGger:A:BUS:B<x>:FLEXray:CONDition**
This command specifies the condition to use when searching on FlexRay bus data (start of frame, frame type, ID, cycle count, header, data, ID and data, EOF, error).
SEARCH<x> is the search number, which is always 1, and B<x> is the serial bus number, which can be 1 or 2.

**Conditions**

This command requires a DPO3FLEX application module.

**Group**

Search

**Syntax**

SEARCH:SEARCH<x>:TRIGger:A:BUS:B<x>:FLEXray:CONDition
{SOF|FRAMETYPEid|CYCLEcount|HEADER|DATA|IDANDDATA|EOF|ERROR}

SEARCH:SEARCH<x>:TRIGger:A:BUS:B<x>:FLEXray:CONDition?

**Arguments**

SOF sets the search condition to start of frame.

FRAMETYPEid sets the search condition to a frame type id.

CYCLEcount sets the search condition to cycle count.

HEADER sets the search condition to header.

DATA sets the search condition to data.

IDANDDATA sets the search condition to ID and data.

EOF sets the search condition to EOF.

ERROR sets the search condition to an error.

**Examples**

SEARCH:SEARCH1:TRIGGER:A:BUS:B1:FLEXRAY:CONDITION ERROR sets the FlexRay condition to ERROR


**SEARCH:SEARCH<x>:TRIGger:A:BUS:B<x>:FLEXray:CYCLEcount:HIVALue**

This command specifies the upper data value of the range to be used when searching on the FlexRay bus cycle count field. (Use SEARCH:SEARCH<x>:TRIGger:A:BUS:B<x>:FLEXray:CYCLEcount:VALue to set the low value.) The search condition must be set to CYCLEcount (using SEARCH:SEARCH<x>:TRIGger:A:BUS:B<x>:FLEXRay:CONDITION). SEARCH<x> is the search number, which is always 1, and B<x> is the bus number, which is 1 or 2.

**Conditions**

This command requires a DPO3FLEX application module.
Commands Listed in Alphabetical Order

**Group**
Search

**Syntax**
SEARCH:SEARCH<x>:TRIGger:A:BUS:B<x>:FLEXray:CYCLEcount:HIVALue <QString>
SEARCH:SEARCH<x>:TRIGger:A:BUS:B<x>:FLEXray:CYCLEcount:HIVALue?

**Arguments**
<QString> is a quoted string that is the cycle count high value.

**Examples**
SEARCH:SEARCH1:TRIGGER:A:BUS:B1:FLEXRAY:CYCLECOUNT:HIVALUE "XXXXXX" indicating the cycle count high value is set to don't cares.

**SEARCH:SEARCH<x>:TRIGger:A:BUS:B<x>:FLEXray:CYCLEcount:QUALifier**

This command specifies the qualifier (<, >, =, <=, >=, not =, in range, out of range) to use when searching on the FlexRay bus cycle count field. The search condition must be set to CYCLEcount (using SEARCH:SEARCH<x>:TRIGger:A:BUS:B<x>:FLEXray:CONDITION).
SEARCH<x> is the search number, which is always 1, and B<x> is the bus number, which is 1 or 2.

**Conditions**
This command requires a DPO3FLEX application module.

**Group**
Search

**Syntax**
SEARCH:SEARCH<x>:TRIGger:A:BUS:B<x>:FLEXray:CYCLEcount:QUALifier
{LESSthan|MOREthan|EQual|UNEQual|LESSEEQual|MOREEQual|INrange|OUTrange}
SEARCH:SEARCH<x>:TRIGger:A:BUS:B<x>:FLEXray:CYCLEcount:QUALifier?

**Arguments**
LESSthan sets the cycle count qualifier to less than.
MOREthan sets the cycle count qualifier to greater than.
EQual sets the cycle count qualifier to equal.
UNEQual sets the cycle count qualifier to not equal.
LESSEQual sets the cycle count qualifier to less than or equal.
MOREEQual sets the cycle count qualifier to greater than or equal.
INrange sets the cycle count qualifier to in range.
OUTrange sets the cycle count qualifier to out of range.

Examples

SEARCH:SEARCH<x>:TRIGger:A:BUS:B<x>:FLEXray:CYCLEcount:VALue
This command specifies the low data value to be used when searching on the FlexRay bus cycle count field. The search condition must be set to CYCLEcount (using SEARCH:SEARCH<x>:TRIGger:A:BUS:B<x>:FLEXray:CONDition). SEARCH<x> is the search number, which is always 1, and B<x> is the bus number, which is 1 or 2.

Conditions
This command requires a DPO3FLEX application module.

Group
Search

Syntax
SEARCH:SEARCH<x>:TRIGger:A:BUS:B<x>:FLEXray:CYCLEcount:VALue
<QString>
SEARCH:SEARCH<x>:TRIGger:A:BUS:B<x>:FLEXray:CYCLEcount:VALue?

Arguments
<QString> is a quoted string that is the cycle count binary value.

Examples
SEARCH:SEARCH1:TRIGGER:A:BUS:B1:FLEXRAY:CYCLECOUNT:VALUE "XXXXXX" indicating the cycle count value is don't cares.
**SEARCH:SEARCH<x>:TRIGger:A:BUS:B<x>:FLEXray:DATa:HIVALue**

This command specifies the high value to use when searching on the FlexRay bus data field. The search condition needs to be set to ID or IDANDDATA (using `SEARCH:SEARCH<x>:TRIGger:A:BUS:B<x>:FLEXray:CONDition`). `SEARCH<x>` is the search number, which is always 1, and `B<x>` is the bus number, which is 1 or 2.

**Conditions**
This command requires a DPO3FLEX application module.

**Group**
Search

**Syntax**

```
SEARCH:SEARCH<x>:TRIGger:A:BUS:B<x>:FLEXray:DATa:HIVALue
<QString>
SEARCH:SEARCH<x>:TRIGger:A:BUS:B<x>:FLEXray:DATa:HIVALue?
```

**Related Commands**
`SEARCH:SEARCH<x>:TRIGger:A:BUS:B<x>:FLEXray:CONDition`

**Arguments**
`<QString>` is a quoted string that is the data field high binary value.

**Examples**

```
"11001010" sets the high value 11001010.

"XXXXXXXX" indicating the high value is don't cares.
```


This command specifies the offset of the data string in bytes to be used when searching on the FlexRay bus data field. The search condition needs to be set to ID or IDANDDATA (using `SEARCH:SEARCH<x>:TRIGger:A:BUS:B<x>:FLEXray:CONDition`). `SEARCH<x>` is the search number, which is always 1, and `B<x>` is the bus number, which is 1 or 2.

**Conditions**
This command requires a DPO3FLEX application module.

**Group**
Search

**Syntax**

```
<NR1>
```

**Arguments**

<x>NR1> is the data offset in bytes. A byte offset of -1 signifies don't care, and no byte offset is used. The instrument will search or match any byte value that fits.

**Examples**


**SEARCH:SEARCH<x>:TRIGger:A:BUS:B<x>:FLEXray:DATa:QUALifier**

This command specifies the qualifier (<, >, =, <=, >=, not =, in range, out of range) to use when searching on the FlexRay bus data field. The search condition needs to be set to ID or IDANDDATA (using SEARCH:SEARCH<x>:TRIGger:A:BUS:B<x>:FLEXray:CONDition). SEARCH<x> is the search number, which is always 1, and B<x> is the bus number, which is 1 or 2.

**Conditions**

This command requires a DPO3FLEX application module.

**Group**

Search

**Syntax**

SEARCH:SEARCH<x>:TRIGger:A:BUS:B<x>:FLEXray:DATa:QUALifier

{LESSthan|MOREthan|EQual|UNEQual|LESSEqual|MOREEQual|INrange|OUTrange}

SEARCH:SEARCH<x>:TRIGger:A:BUS:B<x>:FLEXray:DATa:QUALifier?

**Arguments**

LESSthan sets the data qualifier to less than.
MOREthan sets the data qualifier to greater than.
EQual sets the data qualifier to equal.
UNEQual sets the data qualifier to not equal.
LESSEqual sets the data qualifier to less than or equal.
MOREEQual sets the data qualifier to greater than or equal.
INrange sets the data qualifier to in range.
OUTrange sets the data qualifier to out of range.
**Examples**


**SEARCH:SEARCH<x>:TRIGGER:A:BUS:B<x>:FLEXray:DATa:SIZe**

This command specifies the length of the data string, in bytes, to use when searching on the FlexRay bus data field. The search condition needs to be set to ID or IDANDDATA (using SEARCH:SEARCH<x>:TRIGGER:A:BUS:B<x>:FLEXray:CONDition). SEARCH<x> is the search number, which is always 1, and B<x> is the bus number, which is 1 or 2.

**Conditions**

This command requires a DPO3FLEX application module.

**Group**

Search

**Syntax**

SEARCH:SEARCH<x>:TRIGGER:A:BUS:B<x>:FLEXray:DATa:SIZE <NR1>


**Arguments**

<NR1> is the length of the data string in bytes. Length range is 1 to 8.

**Examples**


**SEARCH:SEARCH<x>:TRIGger:A:BUS:B<x>:FLEXray:DATa:VALue**

This command specifies the low value to use when searching on the FlexRay bus data field. The search condition needs to be set to ID or IDANDDATA (using TRIGger:A:BUS:B<x>:FLEXray:CONDition). SEARCH<x> is the search number, which is always 1, and B<x> is the bus number, which is 1 or 2.

**Conditions**

This command requires a DPO3FLEX application module.

**Group**

Search
Commands Listed in Alphabetical Order

Syntax
SEARCH:SEARCH<x>:TRIGger:A:BUS:B<x>:FLEXray:DATa:VALue
<QString>
SEARCH:SEARCH<x>:TRIGger:A:BUS:B<x>:FLEXray:DATa:VALue?

Related Commands
SEARCH:SEARCH<x>:TRIGger:A:BUS:B<x>:FLEXray:CONDition

Arguments
<QString> is a quoted string that is the low binary data string to be used for a FlexRay search if the search condition is set to IDANDDATA.

Examples
"11001010" sets the binary data string to 11001010.
"XXXXXXXX" indicates the binary data string is don't cares.

SEARCH:SEARCH<x>:TRIGger:A:BUS:B<x>:FLEXray:EOFTYPE

This command specifies which end of file type to use (static, dynamic or any) when searching on the FlexRay bus EOF field. The search condition needs to be set to EOF (using SEARCH:SEARCH<x>:TRIGger:A:BUS:B<x>:FLEXray:CONDition). SEARCH<x> is the search number, which is always 1, and B<x> is the bus number, which is 1 or 2.

Conditions
This command requires a DPO3FLEX application module.

Group
Search

Syntax
SEARCH:SEARCH<x>:TRIGger:A:BUS:B<x>:FLEXray:EOFTYPE
{STATic|DYNAMic|ANY}
SEARCH:SEARCH<x>:TRIGger:A:BUS:B<x>:FLEXray:EOFTYPE?

Arguments
STATic sets the FlexRay end of frame type to STATIC.
DYNAMic sets the FlexRay end of frame type to DYNAMIC.
ANY sets the FlexRay end of frame type to ANY type.

Examples
ANY sets the FlexRay end of frame type to any type.
SEARCH:SEARCH\(<x>\):TRIGGER:A:BUS:B<\(x\)>:FLEXray:ERRTYPE

This command specifies the error type to use when searching on the FlexRay bus signal. The search condition needs to be set to ERROR (using SEARCH:SEARCH\(<x>\):TRIGGER:A:BUS:B<\(x\)>:FLEXray:CONDITION).

SEARCH<\(x\)> is the search number, which is always 1, and B<\(x\)> is the bus number, which is 1 or 2.

**Arguments**
- CRCHeader sets the error type to CRC header.
- CRCTrailer sets the error type to CRC trailer.
- SYNCFrame sets the error type to sync frame.
- STARTupnosync sets the error type to start up with no sync.
- NULLFRStatic sets the error type to null frame static.
- NULLFRDynamic sets the error type to null frame dynamic.

**Examples**
SEARCH:SEARCH1:TRIGGER:A:BUS:B1:FLEXRAY:ERRTYPE SYNCFRAME sets the error type to sync frame


SEARCH:SEARCH\(<x>\):TRIGGER:A:BUS:B<\(x\)>:FLEXray:FRAMEID:HIVALue

This command specifies the high value to use when searching on the FlexRay bus frame ID field. (Use SEARCH:SEARCH\(<x>\):TRIGGER:A:BUS:B<\(x\)>:FLEXray:FRAMEID:VALue to set the low value.) The search condition needs to be set
to IDenti (using \texttt{SEARCH:SEARCH<x>:TRIGger:A:BUS:B<x>:FLEXray:CONDition}). \texttt{SEARCH<x>} is the search number, which is always 1, and \texttt{B<x>} is the bus number, which is 1 or 2.

\textbf{Conditions} \hspace{1cm} This command requires a DPO3FLEX application module.

\textbf{Group} \hspace{1cm} Search

\textbf{Syntax} \hspace{1cm} \texttt{SEARCH:SEARCH<x>:TRIGger:A:BUS:B<x>:FLEXray:FRAMEID:HIVALue}\textless{QString}\textgreater; \texttt{SEARCH:SEARCH<x>:TRIGger:A:BUS:B<x>:FLEXray:FRAMEID:HIVALue?}

\textbf{Arguments} \hspace{1cm} \textless{QString}\textgreater; is a quoted string representing the binary data string used for FlexRay frame ID high value.

\textbf{Examples} \hspace{1cm} \texttt{SEARCH:SEARCH1:TRIGGER:A:BUS:B1:FLEXRAY:FRAMEID:HIVALUE} “00101100101” sets the frame id high value to 00101100101.

\texttt{SEARCH:SEARCH1:TRIGGER:A:BUS:B1:FLEXRAY:FRAMEID:HIVALUE "XXXXXXXXXXX"} indicating the frame id high value is don't cares.

\textbf{SEARCH:SEARCH<x>:TRIGger:A:BUS:B<x>:FLEXray:FRAMEID:QUALifier} \hspace{1cm} This command specifies the qualifier to use when searching on the FlexRay bus frame ID field. The search condition needs to be set to IDenti (using \texttt{SEARCH:SEARCH<x>:TRIGger:A:BUS:B<x>:FLEXray:CONDition}). \texttt{SEARCH<x>} is the search number, which is always 1, and \texttt{B<x>} is the bus number, which is 1 or 2.

\textbf{Conditions} \hspace{1cm} This command requires a DPO3FLEX application module.

\textbf{Group} \hspace{1cm} Search

\textbf{Syntax} \hspace{1cm} \texttt{SEARCH:SEARCH<x>:TRIGger:A:BUS:B<x>:FLEXray:FRAMEID:QUALifier}\{\texttt{LESSthan}\texttt{|MOREthan}\texttt{|EQUAL}\texttt{|UNEQual}\texttt{|LESSEQual}\texttt{|MOREEQual}\texttt{|INrange}\texttt{|OUTrange}\}

\texttt{SEARCH:SEARCH<x>:TRIGger:A:BUS:B<x>:FLEXray:FRAMEID:QUALifier?}
Arguments

LESSthan sets the frame ID qualifier to less than.
MOREthan sets the frame ID qualifier to more than.
EQUa1 sets the frame ID qualifier to equal.
UNEQUa1 sets the frame ID qualifier to unequal.
LESSEQUa1 sets the frame ID qualifier to less than or equal.
MOREEQUa1 sets the frame ID qualifier to greater than or equal.
INrange sets the frame ID qualifier to in range.
OUTrange sets the frame ID qualifier to outside of range.

Examples

might return
SEARCH:SEARCH1:TRIGGER:A:BUS:B1:FLEXRAY:FRAMEID:QUALIFIER EQUAL indicating the frame ID qualifier is EQUAL.


This command specifies the low value to use when searching on the FlexRay bus frame ID field. (Use SEARCH:SEARCH<x>:TRIGger:A:BUS:B<x>:FLEXray:FRAMEID:HIVALue to set the high value.) The search condition needs to be set to IDentifier (using SEARCH:SEARCH<x>:TRIGger:A:BUS:B<x>:FLEXray:CONDition). SEARCH<x> is the search number, which is always 1, and B<x> is the bus number, which is 1 or 2.

Conditions

This command requires a DPO3FLEX application module.

Group

Search

Syntax

QString
SEARCH:SEARCH<x>:TRIGger:A:BUS:B<x>:FLEXray:FRAMEID:VALue?

Arguments

QString is a quoted string representing the binary data string used for FlexRay frame ID low value.

Examples

“11001101010” sets the value of the frame ID is 11001101010.

**SEARCH:SEARCH<x>:TRIGger:A:BUS:B<x>:FLEXray:FRAMEType**

This command specifies the frame type (normal, payload, null, sync or startup) to use when searching on FlexRay bus data. The search condition needs to be set to FRAMEType (using SEARCH:SEARCH<x>:TRIGger:A:BUS:B<x>:FLEXray:CONDition). SEARCH<x> is the search number, which is always 1, and B<x> is the bus number, which is 1 or 2.

**Conditions**
This command requires a DPO3FLEX application module.

**Group**
Search

**Syntax**
SEARCH:SEARCH<x>:TRIGger:A:BUS:B<x>:FLEXray:FRAMEType
{NORMal|PAYLoad|NULL|SYNC|STARTup}

SEARCH:SEARCH<x>:TRIGger:A:BUS:B<x>:FLEXray:FRAMEType?

**Arguments**
NORMal sets the frame type to normal.
PAYLoad sets the frame type to payload.
NULL sets the frame type to NULL.
SYNC sets the frame type to sync.
STARTup sets the frame type to start up.

**Examples**


**SEARCH:SEARCH<x>:TRIGger:A:BUS:B<x>:FLEXray:HEADER:CRC**

This command specifies the CRC portion of the binary header string to be used when searching on FlexRay bus data. The search condition needs to be set to HEADer (using SEARCH:SEARCH<x>:TRIGger:A:BUS:B<x>:FLEXray:CONDition).
条件下。

**条件**：此命令需要 DPO3FLEX 应用模块。

**组**：搜索

**语法**：

**参数**：
- `<QString>` 是一个引号内的字符串，表示 FlexRay 头部字符串中的 CRC 部分。

**示例**：

### SEARCH:SEARCH<x>:TRIGger:A:BUS:B<x>:FLEXray:HEADER:CYCLEcount

此命令指定当在 FlexRay 总线上搜索时使用头部字符串中的循环计数部分。搜索条件需要设置为 HEADer（使用 `SEARCH:SEARCH<x>:TRIGger:A:BUS:B<x>:FLEXray:CONDition`）。`SEARCH<x>` 是搜索编号，总是 1，`B<x>` 是总线编号，为 1 或 2。

**条件**：此命令需要 DPO3FLEX 应用模块。

**组**：搜索

**语法**：

**参数**：
- `<QString>` 是一个引号内的字符串，表示 FlexRay 头部字符串中的循环计数部分。

**示例**：
**Examples**

```
```

```
```


This command specifies to use the frame ID portion of the binary header string when searching on the FlexRay bus header. The search condition needs to be set to HEADER (using `SEARCH:SEARCH<x>:TRIGger:A:BUS:B<x>:FLEXray:CONDition`). `SEARCH<x>` is the search number, which is always 1, and `B<x>` is the bus number, which is 1 or 2.

**Conditions**

This command requires a DPO3FLEX application module.

**Group**

Search

**Syntax**

```
```

**Arguments**

`<QString>` is a quoted string representing the frame ID portion of the binary header string used for a FlexRay search.

**Examples**

```
```

```
SEARCH:SEARCH1:TRIGGER:A:BUS:B1:FLEXRAY:HEADER:FRAMEID "XXXXXXXXXXX" indicating the frame ID portion of the binary header string is don't cares.
```

**SEARCH:SEARCH<x>:TRIGger:A:BUS:B<x>:FLEXray:HEADER:INDBits**

This command specifies to use the indicator bits portion of the binary header string when searching on the FlexRay bus header. The search condition needs to be set to HEADER (using `SEARCH:SEARCH<x>:TRIGger:A:BUS:B<x>:FLEXray:CONDition`). `SEARCH<x>` is the search number, which is always 1, and `B<x>` is the bus number, which is 1 or 2.
Commands Listed in Alphabetical Order

**Conditions**
This command requires a DPO3FLEX application module.

**Group**
Search

**Syntax**
```
<QString>
```

**Arguments**
<QString> is a quoted string representing the indicator bits portion of the binary header string used in a FlexRay search.

**Examples**
```
"10100"
```


This command specifies to use the payload length portion of the binary header string when searching on the FlexRay bus header. This command specifies the payload length to be used in a FlexRay search. The search condition needs to be set to HEADer (using `SEARCH:SEARCH<x>:TRIGger:A:BUS:B<x>:FLEXray:CONDition`). `SEARCH<x>` is the search number, which is always 1, and `B<x>` is the bus number, which is 1 or 2.

**Conditions**
This command requires a DPO3FLEX application module.

**Group**
Search

**Syntax**
```
<QString>
```

**Arguments**
<QString> is a quoted string representing the payload length portion of the binary header string used for a FlexRay search.

**Examples**
```
"1001101"
```

"1001101" sets the payload length portion of the binary header string to 1001101.

Sets or returns the I2C address mode to 7 or 10-Bit. \( \text{SEARCH<x>} \) is the search number and \( B<x> \) is the bus number.

**Conditions**

This command requires a DPO3EMBD application module.

**Group**

Search

**Syntax**

\[
\text{SEARCH:SEARCH<x>:TRIGGER:A:BUS:B<x>:I2C:ADDRESS:MODE} \{\text{ADDR7|ADDR10}\} \\
\text{SEARCH:SEARCH<x>:TRIGGER:A:BUS:B<x>:I2C:ADDRESS:MODE?}
\]

**Arguments**

\( \text{ADDR7} \) specifies 7-bit addresses.

\( \text{ADDR10} \) specifies 10-bit addresses.


Sets or returns the I2C address type. \( \text{SEARCH<x>} \) is the search number and \( B<x> \) is the bus number.

**Conditions**

This command requires a DPO3EMBD application module.

**Group**

Search

**Syntax**

\[
\text{SEARCH:SEARCH<x>:TRIGGER:A:BUS:B<x>:I2C:ADDRESS:TYPE} \{\text{GENERALCALL|STARTBYTE|HSmode|EEPROM|USER}\} \\
\]

**Arguments**

\( \text{GENERALCALL} \) specifies the GENERALCALL address type.

\( \text{STARTBYTE} \) specifies the STARTBYTE address type.

\( \text{HSmode} \) specifies the HSmode address type.

---


might return

\[ \text{SEARCH:SEARCH1:TRIGGER:A:BUS:B1:FLEXRAY:HEADER:PAYLENGTH "XXXXXXX"} \]

indicating the payload length portion of the binary header string is don't cares.
**Commands Listed in Alphabetical Order**

**EEPROM**

specifies the EEPROM address type.

**USER**

specifies a user address.

**SEARCH:SEARCH<x>:TRIGger:A:BUS:B<x>:I2C:ADDRess:VALue**

Sets or returns the binary address string to be used for an I2C trigger search if the search condition is ADDR or ADDRANDDATA. **SEARCH<x>** is the search number and **B<x>** is the bus number.

**Conditions**

This command requires a DPO3EMBD application module.

**Group**

Search

**Syntax**

SEARCH:SEARCH<x>:TRIGger:A:BUS:B<x>:I2C:ADDRess:VALue <bin>

SEARCH:SEARCH<x>:TRIGger:A:BUS:B<x>:I2C:ADDRess:VALue?

**Arguments**

<bin> is the address in binary format.

**SEARCH:SEARCH<x>:TRIGger:A:BUS:B<x>:I2C:CONDition**

Sets or returns the search condition for an I2C trigger search. **SEARCH<x>** is the search number and **B<x>** is the bus number.

**Conditions**

This command requires a DPO3EMBD application module.

**Group**

Search

**Syntax**

SEARCH:SEARCH<x>:TRIGger:A:BUS:B<x>:I2C:CONDition {STARt|STOP|REPEATstart|ACKMISS|ADDRess|DATA|ADDRANDDATA}

SEARCH:SEARCH<x>:TRIGger:A:BUS:B<x>:I2C:CONDition?

**Arguments**

**START** specifies a search based on a start condition.

**STOP** specifies a search based on a stop condition.

**REPEATstart** specifies a search based on a repeat of start condition.

**ACKMISS** specifies a search based on a missing acknowledgement condition.

**ADDRess** specifies a search based on an address.
DATA specifies a search based on a data condition.

ADDRANDDATA specifies a search based on an address and data condition.

**SEARCH:SEARCH<x>:TRIGger:A:BUS:B<x>:I2C:DATa:DIRection**

Sets or returns the I2C search condition to be valid on a Read, Write, or Either condition. SEARCH<x> is the search number and B<x> is the bus number.

**Conditions**
This command requires a DPO3EMBD application module.

**Group**
Search

**Syntax**
```
SEARCH:SEARCH<x>:TRIGger:A:BUS:B<x>:I2C:DATa:DIRection {READ|WRITE|NOCARE}
SEARCH:SEARCH<x>:TRIGger:A:BUS:B<x>:I2C:DATa:DIRection?
```

**Arguments**
READ specifies a read condition.
WRITE specifies a write condition.
NOCARE specifies either a read or write condition.

**SEARCH:SEARCH<x>:TRIGger:A:BUS:B<x>:I2C:DATa:SIZe**

Sets or returns the length of the data string in bytes to be used for an I2C trigger search if the search condition is DATA or ADDRANDDATA. SEARCH<x> is the search number and B<x> is the bus number.

**Conditions**
This command requires a DPO3EMBD application module.

**Group**
Search

**Syntax**
```
SEARCH:SEARCH<x>:TRIGger:A:BUS:B<x>:I2C:DATa:SIZe <NR1>
SEARCH:SEARCH<x>:TRIGger:A:BUS:B<x>:I2C:DATa:SIZe?
```

**Arguments**
<NR1> is the data string length in bytes.
SEARCH:SEARCH<x>:TRIGger:A:BUS:B<x>:I2C:DATa:VALue

Sets or returns the binary data string to be used for an I2C trigger search if the search condition is DATA or ADDRANDDATA. SEARCH<x> is the search number and B<x> is the bus number.

**Conditions**
This command requires a DPO3EMBD application module.

**Group**
Search

**Syntax**
SEARCH:SEARCH<x>:TRIGger:A:BUS:B<x>:I2C:DATa:VALue <bin>
SEARCH:SEARCH<x>:TRIGger:A:BUS:B<x>:I2C:DATa:VALue?

**Arguments**
<bin> is the data in binary format.

SEARCH:SEARCH<x>:TRIGger:A:BUS:B<x>:LIN:CONDition

Sets or returns the search condition for a LIN search.

**Group**
Search

**Syntax**
SEARCH:SEARCH<x>:TRIGger:A:BUS:B<x>:LIN:CONDition {SYNCField|IDentifier|DATA|IDANDDATA|WAKEup|SLEEP|ERROR}
SEARCH:SEARCH<x>:TRIGger:A:BUS:B<x>:LIN:CONDition?

**Arguments**
SYNCField specifies to search on the sync field.
IDentifier specifies to search on the identifier.
DATA specifies to search on the data.
IDANDDATA specifies to search on the identifier and the data.
WAKEup specifies to search on wake up.
SLEEP specifies to search on sleep.
ERROR specifies to search on errors.

**Examples**
SEARCH:SEARCH<x>:TRIGger:A:BUS:B<x>:LIN:DATa:HIVALue

Sets or returns the binary data string to be used for LIN searches if the search condition is ID or IDANDDATA.

Syntax

SEARCH:SEARCH<x>:TRIGger:A:BUS:B<x>:LIN:DATa:HIVALue
<QString>
SEARCH:SEARCH<x>:TRIGger:A:BUS:B<x>:LIN:DATa:HIVALue?

Arguments

<QString> is a quoted string of 1s, 0s, or Xs representing the binary data string to be used for LIN searches if the search condition is ID or IDANDDATA.

Examples


SEARCH:SEARCH<x>:TRIGger:A:BUS:B<x>:LIN:DATa:QUALifier

Sets or returns the LIN data qualifier. This only applies if the trigger condition is IDANDDATA or DATA.

Syntax

SEARCH:SEARCH<x>:TRIGger:A:BUS:B<x>:LIN:DATa:QUALifier
{LESSthan|MOREthan|EQUAL|UNEQUAL|LESSEEQual|MOREEQual|INrange|OUTrange}
SEARCH:SEARCH<x>:TRIGger:A:BUS:B<x>:LIN:DATa:QUALifier?

Arguments

LESSthan sets the LIN data qualifier to less than.
MOREthan sets the LIN data qualifier to greater than.
EQUAL sets the LIN data qualifier to equal.
UNEQUAL sets the LIN data qualifier to not equal.
LESSEEQual sets the LIN data qualifier to less than or equal.
MOREEQual sets the LIN data qualifier to greater than or equal.
INrange sets the LIN data qualifier to in range.
OUTrange sets the LIN data qualifier to out of range.

**Examples**


Sets or returns the length of the data string in bytes to be used for LIN Search, if search condition is DATA or IDANDDATA.

**Group**

Search

**Syntax**


**Arguments**

<NR1> is the length of the data in bytes.

**Examples**


Sets or returns the binary data string used for a LIN search if the search condition is ID or IDANDDATA.

**Group**

Search

**Syntax**


**Arguments**

<QString> is the binary data string for the search.
**Examples**


**SEARCH:SEARCH<x>:TRIGGER:A:BUS:B<x>:LIN:ERRTYPE**

Sets or returns the error type used for a LIN Search.

**Group**

Search

**Syntax**

SEARCH:SEARCH<x>:TRIGGER:A:BUS:B<x>:LIN:ERRTYPE
{SYNC|PARity|CHecksum|HEADertime|RESPtime|FRAMetime}
SEARCH:SEARCH<x>:TRIGGER:A:BUS:B<x>:LIN:ERRTYPE?

**Arguments**

SYNC specifies a sync error type.
PARity specifies a parity error type.
CHecksum specifies a checksum error type.
HEADertime specifies a header time error type.
RESPtime specifies a response time error type.
FRAMetime specifies a frame time error type.

**Examples**

SYNC error type.

**SEARCH:SEARCH<x>:TRIGGER:A:BUS:B<x>:LIN:IDentiﬁer:VALue**

Sets or returns the binary address string used for LIN search if search condition is ID or IDANDDATA.

**Group**

Search

**Syntax**


**Arguments**

<QString> is a quoted string specifying the binary address string to be used for
LIN search if search condition is ID or IDANDDATA.
**Examples**  


When the MIL-STD-1553 bus search condition is set to COMMAND, and the qualifier is set to INrange or OUTrange, this command specifies the upper limit of the range for the remote terminal address field. (Use the command SEARCH:SEARCH<x>:TRIGger:A:BUS:B<x>:MIL1553B:COMMAND:ADDRess:VALueto specify the lower limit of the range.) SEARCH<x> is the search number, which is always 1, and B<x> is the bus number, which is 1 or 2.

**Conditions**  
This command requires a DPO3AERO application module.

**Group**  
Search

**Syntax**


**Related Commands**

SEARCH:SEARCH<x>:TRIGger:A:BUS:B<x>:MIL1553B:CONDition


**Arguments**

QString is a quoted string of up to 5 characters where the allowable characters are 0, 1, and X.

**Examples**

SEARCH:SEARCH1:TRIGger:A:BUS:B1:MIL1553B:HIVALue “01000” sets the upper limit of the remote terminal address range to 01000 (when the search condition has been set to MIL1553B, and the qualifier has been set to INrange or OUTrange).


MSO3000 and DPO3000 Series Programmer Manual

When the MIL-STD-1553 bus search condition is set to COMMAND, this command specifies the qualifier to be used with the remote terminal address field. SEARCH<x> is the search number, which is always 1, and B<x> is the bus number, which is 1 or 2.

**Conditions**

This command requires a DPO3AERO application module.

**Group**

Search

**Syntax**

SEARCH:SEARCH<x>:TRIGger:A:BUS:B<x>:MIL1553B:COMMAND:ADDRess:QUALifier {LESSthan|MOREthan|EQual |UNEQual|LESSEqual|MOREEQual|INrange|OUTrange}


**Related Commands**


**Arguments**

LESSthan sets the Command Address qualifier to less than.

MOREthan sets the Command Address qualifier to greater than.

EQual sets the Command Address qualifier to equal.

UNEQual sets the Command Address qualifier to not equal.

LESSEqual sets the Command Address qualifier to less than or equal.

MOREEQual sets the Command Address qualifier to greater than or equal.

INrange sets the Command Address qualifier to in range.

OUTrange sets the Command Address qualifier to out of range.

**Examples**

SEARCH:SEARCH1:TRIGger:A:BUS:B1:MIL1553B:COMMAND:ADDRess:QUALifier EQual sets the qualifier to be used with the remote terminal address to equal.


When the MIL-STD-1553 bus search condition is set to COMMAND, and the qualifier is set to LESSthan, MOREthan, EQUAL, UNEQUAL, LESSEQUAL or MOREEQUAL, this command specifies the value of the 5–bit remote terminal address to be used in the search. When the MIL-STD-1553 bus search condition is set to COMMAND, and the qualifier is set to INrange or OUTrange, this command specifies the lower limit of the remote terminal address range. The default is all X’s (don’t care). SEARCH<x> is the search number, which is always 1, and B<x> is the bus number, which is 1 or 2.

Conditions
This command requires a DPO3AERO application module.

Group
Search

Syntax

Related Commands
SEARCH:SEARCH<x>:TRIGger:A:BUS:B<x>:MIL1553B:CONDition

Arguments
QString is a quoted string of up to 5 characters, where the allowable characters are 0, 1, and X.

Examples
SEARCH:SEARCH1:TRIGger:A:BUS:B1:MIL1553B:COMMAND: ADDRess:VALUE “01000” sets the remote terminal address to be used in the search to 01000.

SEARCH:SEARCH<x>:TRIGger:A:BUS:B<x>:MIL1553B:COMMAND:COUNt

When the MIL-STD-1553 bus search condition is set to COMMAND, this command specifies the bit pattern for the 5–bit Word Count/Mode Code sub-address field that is to be used in the search. (Use the command SEARCH:SEARCH<x>:}
**TRIGger:A:BUS:B<x>:MIL1553B:COMMAND:SUBAdress** to specify Word Count or Mode Code.) In Word Count mode, this field defines the number of data words that is to be transmitted, or received, depending on the T/R bit setting. (Use the command **SEARCH:SEARCH<x>:TRIGger:A:BUS:B<x>:MIL1553B:COMMAND:TRBit** to set the T/R bit.) A word count value of 0 actually indicates a transfer of 32 data words. **SEARCH<x>** is the search number, which is always 1, and **B<x>** is the bus number, which is 1 or 2.

**Conditions**
This command requires a DPO3AERO application module.

**Group**
Search

**Syntax**
**SEARCH:SEARCH<x>:TRIGger:A:BUS:B<x>:MIL1553B:COMMAND:COUNt**
**<QString>**
**SEARCH:SEARCH<x>:TRIGger:A:BUS:B<x>:MIL1553B:COMMAND:COUNt?**

**Related Commands**
**SEARCH:SEARCH<x>:TRIGger:A:BUS:B<x>:MIL1553B:CONDITION**
**SEARCH:SEARCH<x>:TRIGger:A:BUS:B<x>:MIL1553B:COMMAND:SUBAdress**
**SEARCH:SEARCH<x>:TRIGger:A:BUS:B<x>:MIL1553B:COMMAND:TRBit**

**Arguments**
**QString** is a quoted string of up to 5 characters, where the allowable characters are 0, 1 and X.

**Examples**
“01000” sets the bit pattern for the Word Count/Mode Code field to 01000.


**SEARCH:SEARCH<x>:TRIGger:A:BUS:B<x>:MIL1553B:COMMAND:PARity**

When the MIL-STD-1553 bus search condition is set to **COMMAND**, this command specifies the Command word parity that is to be used in the search. **SEARCH<x>** is the search number, which is always 1, and **B<x>** is the bus number, which is 1 or 2.

**Conditions**
This command requires a DPO3AERO application module.

**Group**
Search
Commands Listed in Alphabetical Order

Syntax

SEARCH:SEARCH<x>:TRIGger:A:BUS:B<x>:MIL1553B:COMMAND:PARity
{0|1|X|ZERO|ONE|NOCARE|OFF|ON}

SEARCH:SEARCH<x>:TRIGger:A:BUS:B<x>:MIL1553B:COMMAND:PARity?

Related Commands

SEARCH:SEARCH<x>:TRIGger:A:BUS:B<x>:MIL1553B:CONDition

Arguments

0
1

X sets the value to X ("don’t care") which is the default.

ZERO sets the value to 0.

ONE sets the value to 1.

NOCARE sets the value to X ("don’t care") which is the default.

OFF sets the value to 0.

ON sets the value to 1.

Examples

sets the Command word parity bit to 0.

might return 0, 1 or X.


When the MIL-STD-1553 bus search condition is set to COMMAND, this command specifies the 5 bit sub-address that is to be used in the search. When the sub-address value is set to 00000 or 11111 binary, it specifies that the command is a “Mode Code” command. Any other value specifies that it is a “Word Count” command. The default is all X’s (don’t care). SEARCH<x> is the search number, which is always 1, and B<x> is the bus number, which is 1 or 2.

NOTE. The sub-address field is used to direct data to different functions within the subsystem for values 1 — 30.

Conditions

This command requires a DPO3AERO application module.

Group

Search
Syntax

SEARCH:SEARCH<x>:TRIGger:A:BUS:B<x>:MIL1553B:COMMAND:
SUBADdress <QString>

SEARCH:SEARCH<x>:TRIGger:A:BUS:B<x>:MIL1553B:COMMAND:
SUBADdress?

Related Commands

SEARCH:SEARCH<x>:TRIGger:A:BUS:B<x>:MIL1553B:CONDITION
SEARCH:SEARCH<x>:TRIGger:A:BUS:B<x>:MIL1553B:COMMAND:
COUNt

Arguments

QString is a quoted string of up to 5 characters, where the allowable characters are 0, 1, and X.

Examples

SEARCH:SEARCH1:TRIGger:A:BUS:B1:MIL1553B:COMMAND:
SUBADdress “01000” sets the sub-address to be used in the search to 01000.

SEARCH:SEARCH<x>:TRIGger:A:BUS:B<x>:MIL1553B:COMMAND:TRBit

When the MIL-STD-1553 bus search condition is set to COMMAND, this command specifies that the transmit/receive bit (bit 9) is to be used in the search. The transmit/receive bit defines the direction of information flow, and is always from the point of view of the remote terminal. SEARCH<x> is the search number, which is always 1, and B<x> is the bus number, which is 1 or 2.

Conditions

This command requires a DPO3AERO application module.

Group

Search

Syntax

SEARCH:SEARCH<x>:TRIGger:A:BUS:B<x>:MIL1553B:COMMAND:TRBit
{RX|TX|X}
SEARCH:SEARCH<x>:TRIGger:A:BUS:B<x>:MIL1553B:COMMAND:TRBit?

Related Commands

SEARCH:SEARCH<x>:TRIGger:A:BUS:B<x>:MIL1553B:CONDITION
SEARCH:SEARCH<x>:TRIGger:A:BUS:B<x>:MIL1553B:COMMAND:
COUNt

Arguments

RX (logic 0) directs the instrument to search for a TX or "transmit" from a remote terminal.
TX (logic 1) directs the instrument to search for an RX or "receive" from a remote terminal.

X indicates “don’t care”.

**Examples**

TRIGger:A:BUS:B1:MIL1553B:COMMAND:TRBit TX directs the instrument to search for a TX or “transmit” from a remote terminal.


**SEARCH:SEARCH<x>:TRIGger:A:BUS:B<x>:MIL1553B:CONDition**

This command specifies a word type or condition within a MIL-STD-1553 bus word to search for. SEARCH<x> is the search number, which is always 1, and B<x> is the serial bus number.

**NOTE.** There are three types of MIL-STD-1553 (Aircraft) bus words: Command, Status, and Data, all sharing a common structure twenty bits in length. The first three bits are used as a synchronization field. The last bit is the odd parity of the previous 16 bits.

**Conditions**

This command requires a DPO3AERO application module.

**Group**

Search

**Syntax**

SEARCH:SEARCH<x>:TRIGger:A:BUS:B<x>:MIL1553B:CONDition

{SYNC|COMMAND|STATUS|DATA|TIME|ERROR}

SEARCH:SEARCH<x>:TRIGger:A:BUS:B<x>:MIL1553B:CONDition?

**Related Commands**

Most of the other SEARCH:SEARCH1:TRIGger:A:BUS:B<x>:MIL1553B commands are impacted by the setting of this command.

TRIGger:A:BUS:B<x>:MIL1553B:CONDition

BUS:B<x>:MIL1553B:SOUrce

**Arguments**

SYNC refers to the 3–bit sync pulse that precedes each word.

COMMAND is one of 3 16–bit word types. It specifies the function that a remote terminal is to perform.

STATUS is one of 3 16–bit word types. Remote terminals respond to valid message transmissions via status words.
DATA is one of 3 16-bit word types.


ERROR specifies to search for a signaling error. (You can specify which type of error — Parity, Sync, Manchester or Non-contiguous Data — by using the command SEARCH:SEARCH<x>:TRIGger:A:BUS:B<x>:MIL1553B:ERRTYPE.)

**NOTE.** Use the
SEARCH:SEARCH1:TRIGger:A:BUS:B<x>:MIL1553B:CONDition:STATus:BIT commands to set the following bits:

9 — message error

10 — instrumentation

11 — SRQ (service request)

15 — BCR (broadcast command received)

16 — busy

17 — subsystem flag

18 — DBCA (dynamic bus control acceptance)

19 — terminal flag

**Examples**

SEARCH:SEARCH1:TRIGger:A:BUS:B1:MIL1553B:CONDition STAT sets the word type to search for to STATus.

**SEARCH:SEARCH<x>:TRIGger:A:BUS:B<x>:MIL1553B:DATa:PARity**

When the MIL-STD-1553 bus search condition is set to \texttt{DATa}, this command specifies the data parity bit to be used in the search. Returned values are 0, 1, or X (don’t care). \texttt{SEARCH<x>} is the search number, which is always 1, and \texttt{B<x>} is the bus number, which is 1 or 2.

**Conditions**
This command requires a DPO3AERO application module.

**Group**
Search

**Syntax**
\texttt{SEARCH:SEARCH<x>:TRIGger:A:BUS:B<x>:MIL1553B:DATa:PARity}\{0|1|X|ZERO|ONE|NOCARE|OFF|ON\}

\texttt{SEARCH:SEARCH<x>:TRIGger:A:BUS:B<x>:MIL1553B:DATa:PARity?}

**Related Commands**
\texttt{SEARCH:SEARCH<x>:TRIGger:A:BUS:B<x>:MIL1553B:CONDition}
\texttt{SEARCH:SEARCH<x>:TRIGger:A:BUS:B<x>:MIL1553B:DATa:VALue}

**Arguments**

0

1

X sets the value to X (“don’t care”) which is the default.

ZERO sets the value to 0.

ONE sets the value to 1.

NOCARE sets the value to X (“don’t care”) which is the default.

OFF sets the value to 0.

ON sets the value to 1.

**Examples**
\texttt{SEARCH:SEARCH1:TRIGger:A:BUS:B1:MIL1553B:DATa:PARity 1} sets the data parity bit to be used in a MIL-STD-1553 bus search to 1.

\texttt{SEARCH:SEARCH1:TRIGger:A:BUS:B1:MIL1553B:DATa:PARity?} might return 0, indicating that the data parity bit to be used in a MIL-STD-1553 bus search is set to 0.

**SEARCH:SEARCH<x>:TRIGger:A:BUS:B<x>:MIL1553B:DATa:VALue**

When the MIL-STD-1553 bus search condition is set to \texttt{DATa}, this command specifies the data binary pattern to be used in the search. This is a 16-bit field.
SEARCH<x> is the search number, which is always 1, and B<x> is the bus number, which is 1 or 2.

**Conditions**
This command requires a DPO3AERO application module.

**Group**
Search

**Syntax**
SEARCH:SEARCH<x>:TRIGger:A:BUS:B<x>:MIL1553B:DATa:VALue <QString>
SEARCH:SEARCH<x>:TRIGger:A:BUS:B<x>:MIL1553B:DATa:VALue?

**Related Commands**
SEARCH:SEARCH<x>:TRIGger:A:BUS:B<x>:MIL1553B:CONDition
SEARCH:SEARCH<x>:TRIGger:A:BUS:B<x>:MIL1553B:DATa:PARity

**Arguments**
QString is a quoted string of up to 16 characters, where the allowable characters are 0, 1, and X.

**Examples**
SEARCH:SEARCH1:TRIGger:A:BUS:B1:MIL1553B:DATa:VALue "01000" sets the data binary pattern to be used in a MIL-STD-1553 bus search to 01000.

**SEARCH:SEARCH<x>:TRIGger:A:BUS:B<x>:MIL1553B:ERRTYPE**

When the MIL-STD-1553 bus search condition is set to ERROR, this command specifies the signaling error type to be used in the search: Parity, Sync, Manchester or Data. SEARCH<x> is the search number, which is always 1, and B<x> is the bus number, which is 1 or 2.

**Conditions**
This command requires a DPO3AERO application module.

**Group**
Search

**Syntax**
SEARCH:SEARCH<x>:TRIGger:A:BUS:B<x>:MIL1553B:ERRTYPE {PARity|SYNC|MANChester|DATA}
SEARCH:SEARCH<x>:TRIGger:A:BUS:B<x>:MIL1553B:ERRTYPE?
Commands Listed in Alphabetical Order

## Related Commands

```plaintext
SEARCH:SEARCH<x>:TRIGger:A:BUS:B<x>:MIL1553B:CONDition
```

## Arguments

- **PARity** — an incorrect parity setting.
- **SYNc** — the high to low, or low to high transition doesn’t happen in the middle of the sync time as it should.
- **MANCHester** — no transition in a bit time.
- **DATA** — a non-contiguous data error.

## Examples

```plaintext
SEARCH:SEARCH1:TRIGger:A:BUS:B1:MIL1553B:ERRTYPE PARity sets
the error type to be used in the search to PARITY.
SYNC.
```

### SEARCH:SEARCH<x>:TRIGger:A:BUS:B<x>:MIL1553B:STATus:ADDRess:HIVALue

When the MIL-STD-1553 bus search condition is set to **STATus**, and the qualifier is set to **INrange** or **OUTrange**, this command specifies the upper limit for the 5 bit remote terminal address field of the Status word. (Use the command `TRIGger:A:BUS:B<x>:MIL1553B:STATus:ADDRess:VALue` to specify the lower limit.) The default is all X’s (don’t care).

- **SEARCH<x>** is the search number, which is always 1, and **B<x>** is the serial bus number.

## Conditions

This command requires a DPO3AERO application module.

## Group

Search

## Syntax

```plaintext
```

## Related Commands

- `SEARCH:SEARCH<x>:TRIGger:A:BUS:B<x>:MIL1553B:CONDition`

2-418 MSO3000 and DPO3000 Series Programmer Manual
Arguments
QString is a quoted string of up to 5 characters, where the allowable characters are 0, 1, and X.

Examples
SEARCH:SEARCH1:TRIGger:A:BUS:B1:MIL1553B:HIVALue “01000” sets the upper limit of the range of the terminal address to 01000 (when the search condition is set to MIL1553B, and the qualifier is set to INrange or OUTrange).

When the MIL-STD-1553 bus search condition is set to STATus, this command specifies the qualifier to be used with the address field. SEARCH<x> is the search number, which is always 1, and B<x> is the serial bus number.

Conditions
This command requires a DPO3AERO application module.

Group
Search

Syntax
SEARCH:SEARCH<x>:TRIGger:A:BUS:B<x>:MIL1553B:STATus:ADDRess:QUALifier {LESSthan|MOREthan|EQUAL|UNEQUAL|LESSEQual|MORREEqual|INrange|OUTrange}

Related Commands
SEARCH:SEARCH<x>:TRIGger:A:BUS:B<x>:MIL1553B:CONDition

Arguments
LESSthan sets the Status Address qualifier to less than.
MOREthan sets the Status Address qualifier to greater than.
EQUAL sets the Status Address qualifier to equal.
UNEQUAL sets the Status Address qualifier to not equal.
LESEEQua1 sets the Status Address qualifier to less than or equal.
MOREEQua1 sets the Status Address qualifier to greater than or equal.
INrange sets the Status Address qualifier to in range.
OUTrange sets the Status Address qualifier to out of range.

Examples
SEARCH:SEARCH1:TRIGger:A:BUS:B1:MIL1553B:STATus:ADDRess:QUALifier MOREthan sets the qualifier to be used with the address field to greater than.


When the MIL-STD-1553 bus search condition is set to STATus, and the qualifier is set to LESSthan, MOREthan, EQual, UNEQual, LESSEQua1 or MOREEQua1, this command specifies the value of the 5-bit remote terminal address to be used in the search. When the MIL-STD-1553 bus search condition is set to STATus, and the qualifier is set to INrange or OUTrange, this command specifies the lower limit of the range. (Use the command SEARCH:SEARCH<x>:TRIGger:A:BUS:B<x>:MIL1553B:STATus:ADDRess:HIVALue to specify the upper limit of the range.) The default is all X’s (don’t care). SEARCH<x> is the search number, which is always 1, and B<x> is the serial bus number.

Conditions
This command requires a DPO3AERO application module.

Group
Search

Syntax

Related Commands
SEARCH:SEARCH<x>:TRIGger:A:BUS:B<x>:MIL1553B:CONDition
Arguments
QString is a quoted string of up to 5 characters, where the allowable characters are 0, 1, and X.

Examples
SEARCH:SEARCH1:TRIGger:A:BUS:B1:MIL1553B:STATus:ADDRess:VALUE "01000" sets the value of the 5–bit remote terminal address to be used in the search, when the qualifier has been set to LESSthan, MOREthan, EQual, UNEQual, LESSEQual or MOREEQual.

SEARCH:SEARCH1:TRIGger:A:BUS:B1:MIL1553B:STATus:ADDRess:VALUE "01000" sets the lower limit of the range to 01000, if the qualifier has been set to INrange or OUTrange.


When the MIL-STD-1553 bus search condition is set to STATus, this command specifies the status word broadcast command received (BCR) bit value (bit 15) to be used in the search. SEARCH<x> is the search number, which is always 1, and B<x> is the serial bus number.

Conditions
This command requires a DPO3AERO application module.

Group
Search

Syntax
{0|1|X|ZERO|ONE|NOCARE|OFF|ON}


Related Commands
SEARCH:SEARCH<x>:TRIGger:A:BUS:B<x>:MIL1553B:CONDition

Arguments
0
1
X sets the value to X (“don’t care”) which is the default.
ZERO sets the value to 0.
ONE sets the value to 1.
NOCARE sets the value to X (“don’t care”) which is the default.
OFF sets the value to 0.
ON sets the value to 1.

**Examples**

```
NOCARE sets the BCR bit value to be used in the search to X.
```

```
might return 1.
```


When the MIL-STD-1553 bus search condition is set to STATus, this command specifies the status word busy bit value (bit 16) to be used in the search. Returned values are 0, 1, or X (don’t care, which is the default). SEARCH<x> is the search number, which is always 1, and B<x> is the serial bus number.

**Conditions**

This command requires a DPO3AERO application module.

**Group**

Search

**Syntax**

```
{0|1|X|ZERO|ONE|NOCARE|OFF|ON}
```

```
```

**Related Commands**

SEARCH:SEARCH<x>:TRIGger:A:BUS:B<x>:MIL1553B:CONDition

**Arguments**

0

1

X sets the value to X (“don’t care”) which is the default.

ZERO sets the value to 0.

ONE sets the value to 1.

NOCARE sets the value to X (“don’t care”) which is the default.

OFF sets the value to 0.

ON sets the value to 1.

**Examples**

```
NOCARE sets the status word busy bit value to be used in the search to X.
```

When the MIL-STD-1553 bus search condition is set to STATus, this command specifies the status word dynamic bus control acceptance (DBCA) bit value (bit 18) to be used in the search. Returned values are 0, 1, or X (don’t care, which is the default). SEARCH<x> is the search number, which is always 1, and B<x> is the serial bus number.

Conditions
This command requires a DPO3AERO application module.

Group
Search

Syntax
{0|1|X|ZERO|ONE|NOCARE|OFF|ON}

Related Commands
SEARCH:SEARCH<x>:TRIGger:A:BUS:B<x>:MIL1553B:CONDition

Arguments
0
1
X sets the value to X (“don’t care”) which is the default.
ZERO sets the value to 0.
ONE sets the value to 1.
NOCARE sets the value to X (“don’t care”) which is the default.
OFF sets the value to 0.
ON sets the value to 1.

Examples
NOCARE sets the status word dynamic bus control acceptance (DBCA) bit value to be used in the search to X.

might return 1.

When the MIL-STD-1553 bus search condition is set to STATUS, this command specifies the status word instrumentation bit value (bit 10) to be used in the search. Returned values are 0, 1, or X (don’t care, which is the default). SEARCH<x> is the search number, which is always 1, and B<x> is the serial bus number.

Conditions
This command requires a DPO3AERO application module.

Group
Search

Syntax
SEARCH:SEARCH<x>:TRIGger:A:BUS:B<x>:MIL1553B:STATus:BIT:INSTR {0|1|X|ZERO|ONE|NOCARE|OFF|ON}


Related Commands
SEARCH:SEARCH<x>:TRIGger:A:BUS:B<x>:MIL1553B:CONDition

Arguments
0
1
X sets the value to X (“don’t care”) which is the default.

ZERO sets the value to 0.

ONE sets the value to 1.

NOCARE sets the value to X (“don’t care”) which is the default.

OFF sets the value to 0.

ON sets the value to 1.

Examples
NOCARE sets the status word status word instrumentation bit value to be used in the search to X.

might return 1.

When the MIL-STD-1553 bus search condition is set to STATus, this command specifies the status word message error bit value (bit 9) to be used in the search. Returned values are 0, 1, or X (don’t care, which is the default). SEARCH<x> is the search number, which is always 1, and B<x> is the serial bus number.

**Conditions**
This command requires a DPO3AERO application module.

**Group**
Search

**Syntax**
```
{0|1|X|ZERO|ONE|NOCARE|OFF|ON}
```
```
```

**Related Commands**
SEARCH:SEARCH<x>:TRIGger:A:BUS:B<x>:MIL1553B:CONDition

**Arguments**
0
1
X sets the value to X (“don’t care”) which is the default.
ZERO sets the value to 0.
ONE sets the value to 1.
NOCARE sets the value to X (“don’t care”) which is the default.
OFF sets the value to 0.
ON sets the value to 1.

**Examples**
```
NOCARE sets the status word message error bit value to be used in the search to X.
```
```
might return 1.
```


When the MIL-STD-1553 bus search condition is set to STATus, this command specifies the status word service request (SRQ) bit value (bit 11) to be used in the search. Returned values are 0, 1, or X (don’t care, which is the default).
SEARCH<x> is the search number, which is always 1, and B<x> is the serial bus number.

**Conditions**
This command requires a DPO3AERO application module.

**Group** Search

**Syntax**
{0|1|X|ZERO|ONE|NOCARE|OFF|ON}


**Related Commands**
SEARCH:SEARCH<x>:TRIGger:A:BUS:B<x>:MIL1553B:CONDition

**Examples**
NOCARE sets the status word SRQ bit value to be used in the search to X.

might return 1.


When the MIL-STD-1553 bus search condition is set to STATus, this command specifies the status word subsystem flag bit value (bit 17) to be used in the search. Returned values are 0, 1, or X (don’t care, which is the default). SEARCH<x> is the search number, which is always 1, and B<x> is the serial bus number.

**Conditions**
This command requires a DPO3AERO application module.

**Group** Search

**Syntax**
{0|1|X|ZERO|ONE|NOCARE|OFF|ON}


**Related Commands**
SEARCH:SEARCH<x>:TRIGger:A:BUS:B<x>:MIL1553B:CONDition
Arguments

0
1

X sets the value to X (“don’t care”) which is the default.
ZERO sets the value to 0.
ONE sets the value to 1.
NOCARE sets the value to X (“don’t care”) which is the default.
OFF sets the value to 0.
ON sets the value to 1.

Examples

SEARCH:SEARCH1:TRIGger:A:BUS:B1:MIL1553B:STATus:BIT:SUBSF NOCARE sets the status word subsystem flag bit value to be used in the search to X.


When the MIL-STD-1553 bus search condition is set to STATus, this command specifies the status word terminal flag bit value (bit 19) to be used in the search. Returned values are 0, 1, or X (don’t care, which is the default). SEARCH<x> is the search number, which is always 1, and B<x> is the serial bus number.

Conditions

This command requires a DPO3AERO application module.

Group

Search

Syntax

SEARCH:SEARCH<x>:TRIGger:A:BUS:B<x>:MIL1553B:STATus:BIT:TF {0|1|X|ZERO|ONE|NOCARE|OFF|ON}

Related Commands

SEARCH:SEARCH<x>:TRIGger:A:BUS:B<x>:MIL1553B:CONDition

Arguments

0
1

X sets the value to X (“don’t care”) which is the default.
Commands Listed in Alphabetical Order

ZERO sets the value to 0.
ONE sets the value to 1.
NOCARE sets the value to X (“don’t care”) which is the default.
OFF sets the value to 0.
ON sets the value to 1.

Examples
NOCARE sets the status word terminal flag bit value to be used in the search to X.

SEARCH:SEARCH<x>:TRIGGER:A:BUS:B<x>:MIL1553B:STATUS:PARity

When the MIL-STD-1553 bus search condition is set to STATUS, this command specifies the status parity bit value to be used in the search. Returned values are 0, 1, or X (don’t care, which is the default). SEARCH<x> is the search number, which is always 1, and B<x> is the serial bus number.

Conditions
This command requires a DPO3AERO application module.

Group
Search

Syntax
SEARCH:SEARCH<x>:TRIGGER:A:BUS:B<x>:MIL1553B:STATUS:PARity
{0|1|X|ZERO|NOCARE|OFF|ON}
SEARCH:SEARCH<x>:TRIGGER:A:BUS:B<x>:MIL1553B:STATUS:PARity?

Related Commands
SEARCH:SEARCH<x>:TRIGGER:A:BUS:B<x>:MIL1553B:CONDITION

Arguments
0
1
X sets the value to X (“don’t care”) which is the default.
ZERO sets the value to 0.
ONE sets the value to 1.
NOCARE sets the value to X (“don’t care”) which is the default.
OFF sets the value to 0.
ON sets the value to 1.

**Examples**

```
ONE sets the parity bit value to be used in the search to 1.
```

might return X, indicating that the parity doesn’t matter.

**SEARCH:SEARCH<x>:TRIGger:A:BUS:B<x>:MIL1553B:TIMe:LESSLimit**

When the MIL-STD-1553 bus search condition is set to TIMe, this command specifies either the minimum remote terminal response time (RT) limit for the amount of time the terminal has to transmit, or it specifies the minimum inter-message gap (IMG). (You can specify RT or IMG using the SEARCH:SEARCH<x>:TRIGger:A:BUS:B<x>:MIL1553B:CONDition TIMe command.) SEARCH<x> is the search number, which is always 1, and B<x> is the bus number, which is 1 or 2.

**Conditions**

This command requires a DPO3AERO application module.

**Group**

Search

**Syntax**

```
```

**Related Commands**

```
SEARCH:SEARCH<x>:TRIGger:A:BUS:B<x>:MIL1553B:CONDition
SEARCH:SEARCH<x>:TRIGger:A:BUS:B<x>:MIL1553B:TIMe:MORELimit
```

**Arguments**

<NR3> is a floating point number that specifies either the minimum remote terminal response time (RT) or the inter-message gap (IMG) in seconds.

**Examples**

```
3.0000e-6 would set either the remote terminal response time (RT) or the inter-message gap (IMG) to 3.00 \(\mu \)S.

```

might return 2.0000e-6, indicating that the RT or IMG has been set to 2.00 \( \mu \)S.
**SEARCH:SEARCH<x>:TRIGger:A:BUS:B<x>:MIL1553B:TIMe:MORELimit**

When the MIL-STD-1553 bus search condition is set to **TIME**, this command specifies either the maximum remote terminal response time (RT) limit for the amount of time the terminal has to transmit, or it specifies the maximum inter-message gap (IMG). (You can specify RT or IMG using the `SEARCH:SEARCH<x>:TRIGger:A:BUS:B<x>:MIL1553B:CONDition` TIME command.) `SEARCH<x>` is the search number, which is always 1, and `B<x>` is the bus number, which is 1 or 2.

**Conditions**

This command requires a DPO3AERO application module.

**Group**

Search

**Syntax**

```
SEARCH:SEARCH<x>:TRIGger:A:BUS:B<x>:MIL1553B:TIMe:MORELimit
<NR3>
SEARCH:SEARCH<x>:TRIGger:A:BUS:B<x>:MIL1553B:TIMe:MORELimit?
```

**Related Commands**

```
SEARCH:SEARCH<x>:TRIGger:A:BUS:B<x>:MIL1553B:CONDition
SEARCH:SEARCH<x>:TRIGger:A:BUS:B<x>:MIL1553B:TIMe:LESSLimit
```

**Arguments**

<NR3> is a floating point number that specifies either the maximum remote terminal response time (RT) or the inter-message gap (IMG) in seconds.

**Examples**

```
80.0000e-6 would set either the remote terminal response time (RT) or the inter-message gap (IMG) to be used in the search to 80.0 μS.

might return 100.0000e-6, indicating that the RT or IMG has been set to 100.00 μS.
```

**SEARCH:SEARCH<x>:TRIGger:A:BUS:B<x>:MIL1553B:TIMe:QUALifier**

When the MIL-STD-1553 bus search condition is set to **TIME**, this command specifies the search data time qualifier. (This includes a smaller set of arguments than other qualifier commands.) `B<x>` is the bus number, which is 1 or 2.

**Conditions**

This command requires a DPO3AERO application module.

**Group**

Search
Commands Listed in Alphabetical Order

Syntax

```
SEARCH:SEARCH<x>:TRIGger:A:BUS:B<x>:MIL1553B:TIME:QUALifier
{LESSthan|MOREthan|INrange|OUTrange}
```

```
SEARCH:SEARCH<x>:TRIGger:A:BUS:B<x>:MIL1553B:TIME:QUALifier?
```

Related Commands

```
SEARCH:SEARCH<x>:TRIGger:A:BUS:B<x>:MIL1553B:CONDition
```

```
```

```
```

Arguments

LESSthan sets the Time qualifier to less than minimum.
MOREthan sets the Time qualifier to greater than maximum
INrange sets the Time qualifier to inside range.
OUTrange sets the Time qualifier to out of range.

Examples

```
LESSthan sets the Time qualifier to less than minimum.
```

```
might return OUTRANGE.
```

```
SEARCH:SEARCH<x>:TRIGger:A:BUS:B<x>:PARallel:VALue
```

Sets or returns the binary data string to be used for a Parallel trigger search.
SEARCH<x> is the search number and B<x> is the bus number.

Group

Search

Syntax

```
SEARCH:SEARCH<x>:TRIGger:A:BUS:B<x>:PARallel:VALue <QString>
```

```
SEARCH:SEARCH<x>:TRIGger:A:BUS:B<x>:PARallel:VALue?
```

Arguments

<QString> is the binary data string.

```
```

Sets or returns the condition for an RS-232 trigger search. SEARCH<x> is the search number and B<x> is the bus number.

 Conditions 

This command requires a DPO3COMP application module.
GROUP: Search

{RXSTART|RXDATA|RXENDPacket|TXSTART|TXDATA|TXENDPacket}

ARGUMENTS:
RXSTART specifies a search based on the RX Start Bit.
RXDATA specifies a search based on RX Data.
RXENDPacket specifies a search based on the RX End of Packet condition.
TXSTART specifies a search based on the TX Start Bit.
TXDATA specifies a search based on TX Data.
TXENDPacket specifies a search based on the TX End of Packet condition.

Sets or returns the length of the data string for an RS-232 trigger search if the
trigger condition is RX. SEARCH<x> is the search number and B<x> is the bus
number.

CONDITIONS:
This command requires a DPO3COMP application module.

GROUP: Search


ARGUMENTS:
<NR1> is the length of the data string in Bytes.

Sets or returns the binary data string for an RS-232 trigger search if the condition
involves RX. SEARCH<x> is the search number and B<x> is the bus number.

CONDITIONS:
This command requires a DPO3COMP application module.

GROUP: Search

Sets or returns the binary data string to be used for an RS-232 trigger search if the condition involves RX. SEARCH<x> is the search number and B<x> is the bus number.

**Conditions**
This command requires a DPO3COMP application module.

**Group**
Search

**Syntax**

<NR1> is the length of the data string in Bytes.

SEARCH:SEARCH<x>:TRIGger:A:BUS:B<x>:SPI:CONDition
Sets or returns the search condition for a SPI trigger search. SEARCH<x> is the search number and B<x> is the bus number.

**Conditions**
This command requires a DPO3EMBD application module.
Commands Listed in Alphabetical Order

**Group**  
Search

**Syntax**  
SEARCH:SEARCH<x>:TRIGger:A:BUS:B<x>:SPI:CONDition
{SS|MISO|MOSI|MISOMOSI}
SEARCH:SEARCH<x>:TRIGger:A:BUS:B<x>:SPI:CONDition?

**Arguments**  
SS specifies a search based on the Slave Selection condition.
MISO specifies a search based on the Master-In Slave-Out condition.
MOSI specifies a search based on the Master-Out Slave-In condition.
MISOMOSI specifies a search based on the Master-In Slave-Out and Master-Out Slave-In conditions.

**SEARCH:SEARCH<x>:TRIGger:A:BUS:B<x>:SPI:DATa{:MISO|:IN}:VALue**

Sets or returns the binary data string for an SPI trigger search if the search condition is MISO or MISOMOSI. SEARCH<x> is the search number and B<x> is the bus number.

**Conditions**  
This command requires a DPO3EMBD application module.

**Group**  
Search

**Syntax**  
SEARCH:SEARCH<x>:TRIGger:A:BUS:B<x>:SPI:DATa{:MISO|:IN}:VALue <bin>
SEARCH:SEARCH<x>:TRIGger:A:BUS:B<x>:SPI:DATa{:MISO|:IN}:VALue?

**Arguments**  
<bin> is the data string in binary format.

**SEARCH:SEARCH<x>:TRIGger:A:BUS:B<x>:SPI:DATa{:MOSI|:OUT}:VALue**

Sets or returns the binary data string for an SPI trigger search if search the condition is MOSI, or MISOMOSI. SEARCH<x> is the search number and B<x> is the bus number.

**Conditions**  
This command requires a DPO3EMBD application module.

Sets or returns the length of the data string for an SPI trigger search if the search condition is MISO, MOSI, or MISOMOSI. `SEARCH<x>` is the search number and `B<x>` is the bus number.

**Conditions**
This command requires a DPO3EMBD application module.

**Group**
Search

**Syntax**
```
SEARCH:SEARCH<x>:TRIGGER:A:BUS:B<x>:SPI:DATA:SIZe <NR1>
```

**Arguments**

- `<NR1>` is the data string length in bytes.

### SEARCH:SEARCH<x>:TRIGGER:A:BUS:SOURce

Sets or returns a bus serial search. `<x>` is the search number.

**Conditions**
This command requires a DPO3AUTO or DPO3EMBD application module.

**Group**
Search

**Syntax**
```
SEARCH:SEARCH<x>:TRIGGER:A:BUS:SOURce {B1|B2|B3|B4}
SEARCH:SEARCH<x>:TRIGGER:A:BUS:SOURce?
```

**Arguments**

- `B1` specifies the Bus 1 source.
- `B2` specifies the Bus 2 source.
- `B3` specifies the Bus 3 source.
- `B4` specifies the Bus 4 source.
**SEARCH:SEARCH<x>:TRIGger:A:EDGE:SLOpe**

Sets or returns the slope for an edge trigger search to determine where to place a mark. \(<x>\) is the search number.

**Group** Search

**Syntax**

```
SEARCH:SEARCH<x>:TRIGger:A:EDGE:SLOpe {RISe|FALL}
SEARCH:SEARCH<x>:TRIGger:A:EDGE:SLOpe?
```

**Arguments**

RISe specifies a rising edge.

FALL specifies a falling edge.

**SEARCH:SEARCH<x>:TRIGger:A:EDGE:SOURce**

Sets or returns the source waveform for an edge trigger search to determine where to place a mark. \(<x>\) is the search number.

**Group** Search

**Syntax**

```
SEARCH:SEARCH<x>:TRIGger:A:EDGE:SOURce {CH1|CH2|CH3|CH4|MATH}
SEARCH:SEARCH<x>:TRIGger:A:EDGE:SOURce?
```

**Arguments**

CH<x> specifies one input channel as the edge source, where \(<x>\) is the channel number.

MATH specifies the math waveform as the search source.

**SEARCH:SEARCH<x>:TRIGger:A:LEVel**

Sets or returns the level for an edge trigger search to determine where to place a mark. \(<x>\) is the search number.

**Group** Search

**Syntax**

```
SEARCH:SEARCH<x>:TRIGger:A:LEVel {<NR3>|TTL}
SEARCH:SEARCH<x>:TRIGger:A:LEVel?
```
Arguments  
<br/>
<br/>
<br/>
<br/>

**SEARCH:SEARCH<x>:TRIGger:A:LEVel:CH<x>**

Sets or returns the level for an edge trigger search to determine where to place a mark. **SEARCH<x>** is the search number and **CH<x>** is the channel number. Each channel can have an independent level.

**Group**  
Search

**Syntax**  
SEARCH:SEARCH<x>:TRIGger:A:LEVel:CH<x> {<NR3>|TTL}
SEARCH:SEARCH<x>:TRIGger:A:LEVel:CH<x>?  

**Arguments**  
<br/>

**SEARCH:SEARCH<x>:TRIGger:A:LEVel:MATH[1]**

Sets or returns the math waveform level for an edge trigger search to determine where to place a mark. **<x>** is the search number. The value of MATH is 1 for all oscilloscopes.

**Group**  
Search

**Syntax**  
SEARCH:SEARCH<x>:TRIGger:A:LEVel:MATH {TTL}
SEARCH:SEARCH<x>:TRIGger:A:LEVel:MATH?

**Arguments**  
<br/>

**SEARCH:SEARCH<x>:TRIGger:A:LEVel:REF<x>**

Sets or returns the specified reference waveform level for an edge trigger search to determine where to place a mark. **SEARCH<x>** is the search number and **REF<x>** is the reference channel number.

**Group**  
Search
Commands Listed in Alphabetical Order

**Syntax**

```
SEARCH:SEARCH<x>:TRIGger:A:LEVel:REF<x> {TTL}
SEARCH:SEARCH<x>:TRIGger:A:LEVel:REF<x>?
```

**Arguments**

TTL specifies a preset TTL high level of 1.4 V.

**SEARCH:SEARCH<x>:TRIGger:A:LOGIc:FUNCtion**

Sets or returns the logic operator for a logic trigger search to determine where to place a mark. `<x>` is the search number.

**Group**

Search

**Syntax**

```
SEARCH:SEARCH<x>:TRIGger:A:LOGIc:FUNCtion {AND|NAND|NOR|OR}
SEARCH:SEARCH<x>:TRIGger:A:LOGIc:FUNCtion?
```

**Arguments**

AND places a mark if all conditions are true.

NAND places a mark if any of the conditions are false.

NOR places a mark if all conditions are false.

OR places a mark if any of the conditions are true.

**SEARCH:SEARCH<x>:TRIGger:A:LOGIc:INPut:CH<x>**

Sets or returns the Boolean logic criteria for a logic trigger search to determine where to place a mark. SEARCH<x> is the search number and CH<x> is the channel number.

**Group**

Search

**Syntax**

```
SEARCH:SEARCH<x>:TRIGger:A:LOGIc:INPut:CH<x> {HIGH|LOW|X}
SEARCH:SEARCH<x>:TRIGger:A:LOGIc:INPut:CH<x>?
```

**Arguments**

HIGH specifies the logic high.

LOW specifies the logic low.

X specifies a "don't care" state.
SEARCH:SEARCH<x>:TRIGger:A:LOGIc:INPut:CLOCk:EDGE

Sets or returns whether the clock edge is a rising or falling for a logic search to determine where to place a mark. <x> is the search number.

Group Search

Syntax

SEARCH:SEARCH<x>:TRIGger:A:LOGIc:INPut:CLOCk:EDGE
{FALL | RISE}
SEARCH:SEARCH<x>:TRIGger:A:LOGIc:INPut:CLOCk:EDGE?

Arguments

RISe specifies a rising edge.
FALL specifies a falling edge.


Sets or returns the clock source definition for a logic trigger search. <x> is the search number. If a clock source is defined, then the logic search is determined by the state of the other inputs at the clock transition. If no clock source is defined, then the logic search is determined only by the state of the inputs.

Group Search

Syntax

{CH1 | CH2 | CH3 | CH4 | MATH | REF | NONE}
SEARCH:SEARCH<x>:TRIGger:A:LOGIc:INPut:CLOCk:SOUrce?

Arguments

CH<x> specifies a channel input as the clock source, where <x> = 1, 2, 3, or 4.
MATH specifies the math waveform as the clock source.
REF specifies the reference waveform as the clock source.
NONE specifies no clock source.

SEARCH:SEARCH<x>:TRIGger:A:LOGIc:INPut:D<x>

Sets or returns the waveform logic criteria for a trigger search. SEARCH<x> is the search number and D<x> is the digital channel number.

Group Search
**SEARCH:SEARCH<x>:TRIGger:A:LOGIc:INPut:D<x>**

Syntax

```
SEARCH:SEARCH<x>:TRIGger:A:LOGIc:INPut:D<x> {HIGH|LOW|X}
SEARCH:SEARCH<x>:TRIGger:A:LOGIc:INPut:D<x>?
```

Arguments

- **HIGH** specifies a high logic level.
- **LOW** specifies a low logic level.
- **X** specifies a “don’t care” condition.

**SEARCH:SEARCH<x>:TRIGger:A:LOGIc:INPut:MATH**

Syntax

```
SEARCH:SEARCH<x>:TRIGger:A:LOGIc:INPut:MATH {HIGH|LOW|X}
SEARCH:SEARCH<x>:TRIGger:A:LOGIc:INPut:MATH?
```

Arguments

- **HIGH** specifies a high logic level.
- **LOW** specifies a low logic level.
- **X** specifies a “don’t care” condition.

**SEARCH:SEARCH<x>:TRIGger:A:LOGIc:INPut:REF<x>**

Syntax

```
SEARCH:SEARCH<x>:TRIGger:A:LOGIc:INPut:REF<x> {HIGH|LOW|X}
SEARCH:SEARCH<x>:TRIGger:A:LOGIc:INPut:REF<x>?
```

Arguments

- **HIGH** specifies a high logic level.
- **LOW** specifies a low logic level.
- **X** specifies a “don’t care” condition.
SEARCH:SEARCH\(<x>\):TRIGger:A:LOGIc:PAItern:INPut:CH\(<x>\)

Sets or returns the logic criteria for a logic pattern trigger search to determine where to place a mark. SEARCH\(<x>\) is the search number and CH\(<x>\) is the channel number.

**Group**
Search

**Syntax**
SEARCH:SEARCH\(<x>\):TRIgger:A:LOGIc:PAItern:INPut:CH\(<x>\)
{HIGH|LOW|X}
SEARCH:SEARCH\(<x>\):TRIgger:A:LOGIc:PAItern:INPut:CH\(<x>\)?

**Arguments**
HIGH specifies a high logic level.
LOW specifies a low logic level.
X specifies a “don't care” condition.

SEARCH:SEARCH\(<x>\):TRIgger:A:LOGIc:PAItern:INPut:D\(<x>\)

Sets or returns the logic criteria for a logic pattern search to determine where to place a mark. SEARCH\(<x>\) is the search number and D\(<x>\) is the digital channel number.

**Group**
Search

**Syntax**
SEARCH:SEARCH\(<x>\):TRIgger:A:LOGIc:PAItern:INPut:D\(<x>\)
{HIGH|LOW|X}
SEARCH:SEARCH\(<x>\):TRIgger:A:LOGIc:PAItern:INPut:D\(<x>\)?

**Arguments**
HIGH specifies a high logic level.
LOW specifies a low logic level.
X specifies a “don't care” condition.

SEARCH:SEARCH\(<x>\):TRIgger:A:LOGIc:PAItern:INPut:MATH

Sets or returns the Boolean logic criteria for a logic pattern trigger search to determine where to place a mark. \(<x>\) is the search number.

**Group**
Search
Syntax

```
{HIGH|LOW|X}
```

Arguments

- **HIGH** specifies a high logic level.
- **LOW** specifies a low logic level.
- **X** specifies a “don’t care” condition.

**SEARCH:SEARCH<x>:TRIGger:A:LOGIC:PAUn:INPut:REF<x>**

Sets or returns the Boolean logic criteria for a pattern trigger search to determine where to place a mark. **SEARCH<x>** is the search number and **REF<x>** is the reference channel number.

Group

Search

Syntax

```
SEARCH:SEARCH<x>:TRIGger:A:LOGIC:PAUn:INPut:REF<x>
{HIGH|LOW|X}
SEARCH:SEARCH<x>:TRIGger:A:LOGIC:PAUn:INPut:REF<x>?
```

Arguments

- **HIGH** specifies a high logic level.
- **LOW** specifies a low logic level.
- **X** specifies a “don’t care” condition.

**SEARCH:SEARCH<x>:TRIGger:A:LOGIC:PAUn:WHEn**

Sets or returns the condition for generating a logic pattern trigger search to determine where to place a mark. **<x>** is the search number.

Group

Search

Syntax

```
SEARCH:SEARCH<x>:TRIGger:A:LOGIC:PAUn:WHEn
{TRUE|FALSE|LESSthan|MOREthan|EQual|UNEQual}
SEARCH:SEARCH<x>:TRIGger:A:LOGIC:PAUn:WHEn?
```

Arguments

- **TRUE** places a mark when the pattern becomes true.
- **FALSE** places a mark when the pattern becomes false.
LESS than places a mark if the specific pattern is true less than the time set by the SEARCH:SEARCH<x>:TRIGGER:A:LOGIC:PARTERN:WHEN:LESSLimit command.

MORE than places a mark if the specific pattern is true longer than the specified time set by the SEARCH:SEARCH<x>:TRIGGER:A:LOGIC:PARTERN:WHEN:MORELimit command.

EQUAL places a mark if the specific pattern is true longer than the time set by the SEARCH:SEARCH<x>:TRIGGER:A:LOGIC:PARTERN:WHEN:LESSLimit command, but less than the specified time set by the SEARCH:SEARCH<x>:TRIGGER:A:LOGIC:PARTERN:WHEN:MORELimit command.

UNEQUAL places a mark if the specific pattern is true less than the time set by the SEARCH:SEARCH<x>:TRIGGER:A:LOGIC:PARTERN:WHEN:LESSLimit command, or longer than the specified time set by the SEARCH:SEARCH<x>:TRIGGER:A:LOGIC:PARTERN:WHEN:MORELimit command.

Sets or returns the maximum time that the selected pattern may be true and still generate an A logic pattern search to place a mark. <x> is the search number.

Group Search


Arguments <NR3> specifies the maximum amount of time to hold the pattern true.

Sets or returns the minimum time that the selected pattern may be true and still generate an A logic pattern search to place a mark. <x> is the search number.

Group Search

Arguments  <NR3> specifies the minimum amount of time to hold the pattern true.

SEARCH:SEARCH<x>:TRIGger:A:LOGIc:THReshold:CH<x>

Sets or returns the channel threshold level for a logic trigger search to determine where to place a mark. SEARCH<x> is the search number and CH<x> is the channel number.

Group  Search

Syntax  SEARCH:SEARCH<x>:TRIGger:A:LOGIc:THReshold:CH<x> {<NR3>|TTL}
SEARCH:SEARCH<x>:TRIGger:A:LOGIc:THReshold:CH<x>?

Arguments  <NR3> specifies the trigger level, in volts.
TTL specifies a preset TTL high level of 1.4 V.

SEARCH:SEARCH<x>:TRIGger:A:LOGIc:THReshold:MATH

Sets or returns the math waveform threshold level for a logic trigger search to determine where to place a mark. <x> is the search number.

Group  Search

Syntax  SEARCH:SEARCH<x>:TRIGger:A:LOGIc:THReshold:MATH {TTL}
SEARCH:SEARCH<x>:TRIGger:A:LOGIc:THReshold:MATH?

Arguments  TTL specifies a preset TTL high level of 1.4 V.

SEARCH:SEARCH<x>:TRIGger:A:LOGIc:THReshold:REF<x>

Sets or returns the reference waveform threshold level for a logic trigger search to determine where to place a mark. SEARCH<x> is the search number and REF<x> is the reference channel number.

Group  Search

Syntax  SEARCH:SEARCH<x>:TRIGger:A:LOGIc:THReshold:REF<x> {TTL}
SEARCH:SEARCH<x>:TRIGger:A:LOGIc:THReshold:REF<x>?
Arguments

TTL specifies a preset TTL high level of 1.4 V.

SEARCH:SEARCH<x>:TRIGger:A:LOWerthreshold:CH<x>

Sets or returns the channel waveform lower threshold to determine where to place a mark. This setting is applied to all channel searches that use a lower threshold. SEARCH<x> is the search number and CH<x> is the channel number.

Group
Search

Syntax
SEARCH:SEARCH<x>:TRIGger:A:LOWerthreshold:CH<x> {TTL}
SEARCH:SEARCH<x>:TRIGger:A:LOWerthreshold:CH<x>?

Arguments

TTL specifies a preset TTL high level of 1.4 V.

SEARCH:SEARCH<x>:TRIGger:A:LOWerthreshold:MATH

Sets or returns the math waveform lower threshold to determine where to place a mark. This setting is applied to all math searches that use a lower threshold. <x> is the search number.

Group
Search

Syntax
SEARCH:SEARCH<x>:TRIGger:A:LOWerthreshold:MATH {TTL}
SEARCH:SEARCH<x>:TRIGger:A:LOWerthreshold:MATH?

Arguments

TTL specifies a preset TTL high level of 1.4 V.

SEARCH:SEARCH<x>:TRIGger:A:LOWerthreshold:REF<x>

Sets or returns the reference waveform lower threshold to determine where to place a mark. This setting is applied to all reference searches that use a lower threshold. SEARCH<x> is the search number and REF<x> is the reference channel number.

Group
Search
Commands Listed in Alphabetical Order

**SEARCH:SEARCH<x>:TRIGger:A:LOWerthreshold:REF<x> {TTL}**

**SEARCH:SEARCH<x>:TRIGger:A:LOWerthreshold:REF<x>?**

**Syntax**

TTL specifies a preset TTL high level of 1.4 V.

**SEARCH:SEARCH<x>:TRIGger:A:PULSEWidth:HIGHLimit**

This command specifies the upper limit, in seconds, when searching the record for pulses whose widths are within or outside of a specified range of two values. (Use `SEARCH:SEARCH<x>:TRIGger:A:PULSEWidth:LOWLimit` to specify the lower limit of the range.)

**Group**

Search

**Syntax**

`SEARCH:SEARCH<x>:TRIGger:A:PULSEWidth:HIGHLimit <NR3>`

`SEARCH:SEARCH<x>:TRIGger:A:PULSEWidth:HIGHLimit?`

**Related Commands**


**Arguments**

<NR3> is a floating point number that represents the higher value of a range.

**Examples**

To find all pulses in the waveform record with durations (widths) that fall outside of the range of 100 nanoseconds to 110 nanoseconds:

`SEARCH:SEARCH1:TRIGger:A:PULSEWidth:LOWLimit 100.0E-9`

`SEARCH:SEARCH1:TRIGger:A:PULSEWidth:HIGHLimit 110.0E-9`

`SEARCH:SEARCH1:TRIGger:A:PULSEWidth:WHEn OUTside`

**SEARCH:SEARCH<x>:TRIGger:A:PULSEWidth:LOWLimit**

This command specifies the lower limit, in seconds, when searching the record for pulses whose widths are within or outside of a specified range of two values. (Use `SEARCH:SEARCH<x>:TRIGger:A:PULSEWidth:HIGHLimit` to specify the upper limit of the range.)

**Group**

Search
Commands Listed in Alphabetical Order

**Syntax**

```
SEARCH:SEARCH<x>:TRIGGER:A:PULSWidth:LOWLimit <NR3>
SEARCH:SEARCH<x>:TRIGGER:A:PULSWidth:LOWLimit?
```

**Related Commands**

```
SEARCH:SEARCH<x>:TRIGGER:A:PULSWidth:HIGHLimit,
SEARCH:SEARCH<x>:TRIGGER:A:PULSWidth:WHEN
```

**Arguments**

`<NR3>` is a floating point number that represents the lower value of a range.

**Examples**

To find all pulses in the waveform record with durations (widths) that fall outside of the range of 100 nanoseconds to 110 nanoseconds:

```
SEARCH:SEARCH1:TRIGGER:A:PULSWidth:LOWLimit 100.0E-9
SEARCH:SEARCH1:TRIGGER:A:PULSWidth:HIGHLimit 110.0E-9
SEARCH:SEARCH1:TRIGGER:A:PULSWidth:WHEN OUTside
```

**SEARCH:SEARCH<x>:TRIGGER:A:PULSWidth:POLarity**

Sets or returns the polarity for a pulse trigger search to determine where to place a mark. `<x>` is the search number.

**Group**

Search

**Syntax**

```
SEARCH:SEARCH<x>:TRIGGER:A:PULSWidth:POLarity
{NEGative|POSitive}
SEARCH:SEARCH<x>:TRIGGER:A:PULSWidth:POLarity?
```

**Arguments**

POSITIVE places a mark only when the polarity of the pulse is positive.

NEGative places a mark only when the polarity of the pulse is negative.

**SEARCH:SEARCH<x>:TRIGGER:A:PULSWidth:SOURce**

Sets or returns the source waveform for a pulse trigger search to determine where to place a mark. `<x>` is the search number.

**Group**

Search

**Syntax**

```
SEARCH:SEARCH<x>:TRIGGER:A:PULSWidth:SOURce
{CH1|CH2|CH3|CH4|MATH|REF}
SEARCH:SEARCH<x>:TRIGGER:A:PULSWidth:SOURce?
```
**Arguments**

- **CH<x>** specifies one input channel as the edge source, where <x> = 1, 2, 3 or 4.
- **MATH** specifies the math waveform as the search source.
- **REF** specifies the reference waveform as the search source.

**SEARCH:SEARCH<x>:TRIGger:A:PULSEWidth:WHEN**

This command specifies to search the waveform record for pulses with a width (duration) that is less than, greater than, equal to, or unequal to a specified value (set using `SEARCH:SEARCH<x>:TRIGger:A:PULSEWidth:WIDTH`), OR whose widths fall outside of or within a specified range of two values (set using `SEARCH:SEARCH<x>:TRIGger:A:PULSEWidth:LOWLimit` and `SEARCH:SEARCH<x>:TRIGger:A:PULSEWidth:HIGHLimit`).

**Group**

Search

**Syntax**

```
SEARCH:SEARCH<x>:TRIGger:A:PULSEWidth:WHEn
{LESSthan|MOREthan|EQUAL|UNEQual|WITHin|OUTside}
SEARCH:SEARCH<x>:TRIGger:A:PULSEWidth:WHEn?
```

**Arguments**

- **LESSthan** places a mark if the pulse width is less than the time set by the `SEARCH:SEARCH<x>:TRIGger:A:PULSEWidth:WIDTH` command.
- **MOREthan** places a mark if the pulse width is true longer than the specified time set by the `SEARCH:SEARCH<x>:TRIGger:A:PULSEWidth:WIDTH` command.
- **EQUAL** places a mark if the pulse width is equal to the time set by the `SEARCH:SEARCH<x>:TRIGger:A:PULSEWidth:WIDTH` command within a tolerance of ±5%.
- **UNEQua1** places a mark if the pulse width is unequal to the time the time set by the `SEARCH:SEARCH<x>:TRIGger:A:PULSEWidth:WIDTH` command within a tolerance of ±5%.
- **WITHin** searches for pulse widths less than the specified HIGHLimit and greater than the specified LOWLimit. The limits are specified using `SEARCH:SEARCH<x>:TRIGger:A:PULSEWidth:LOWLimit` and `SEARCH:SEARCH<x>:TRIGger:A:PULSEWidth:HIGHLimit`.
- **OUTside** searches for pulse widths greater than the specified HIGHLimit or less than the specified LOWLimit. The limits are specified using `SEARCH:SEARCH<x>:TRIGger:A:PULSEWidth:LOWLimit` and `SEARCH:SEARCH<x>:TRIGger:A:PULSEWidth:HIGHLimit`.
SEARCH:SEARCH<x>:TRIGger:A:PULSEWidth:WIDth

Sets or returns the pulse width setting for a pulse width trigger search to determine where to place a mark. <x> is the search number.

**Group**
Search

**Syntax**
SEARCH:SEARCH<x>:TRIGger:A:PULSEWidth:WIDth <NR3>
SEARCH:SEARCH<x>:TRIGger:A:PULSEWidth:WIDth?

**Arguments**
<NR3> is the pulse width.

SEARCH:SEARCH<x>:TRIGger:A:RUNT:POLarity

Sets or returns the polarity setting for a runt trigger search to determine where to place a mark. <x> is the search number.

**Group**
Search

**Syntax**
SEARCH:SEARCH<x>:TRIGger:A:RUNT:POLarity {EITher|NEGative|POSitive}
SEARCH:SEARCH<x>:TRIGger:A:RUNT:POLarity?

**Arguments**
POSitive places a mark when the rising edge crosses the low threshold and the falling edge re-crosses the low threshold without either edge ever crossing the high threshold.

NEGative places a mark when the falling edge crosses the high threshold and the rising edge re-crosses the high threshold without either edge ever crossing the low threshold.

EITHER places a mark on a runt of either polarity.

SEARCH:SEARCH<x>:TRIGger:A:RUNT:SOUrce

Sets or returns the source setting for a runt trigger search to determine where to place a mark. <x> is the search number.

**Group**
Search
**Syntax**
```
SEARCH:SEARCH<x>:TRIGger:A:RUNT:SOUrce
{CH1|CH2|CH3|CH4|MATH|REF}
SEARCH:SEARCH<x>:TRIGger:A:RUNT:SOUrce?

Arguments
CH1–CH4 specifies an input channel as the edge source.
MATH specifies the math waveform as the search source.
REF specifies the reference waveform as the search source.
```

**SEARCH:SEARCH<x>:TRIGger:A:RUNT:WHEn**

Sets or returns the condition setting for a runt trigger search to determine where to place a mark. `<x>` is the search number.

**Group**
Search

**Syntax**
```
SEARCH:SEARCH<x>:TRIGger:A:RUNT:WHEn
{LESSthan|than|EQual|UNEQual|OCCURS}
SEARCH:SEARCH<x>:TRIGger:A:RUNT:WHEn?
```

**Arguments**
OCCURS argument specifies a trigger event if a runt of any detectable width occurs.
LESSthan argument sets the oscilloscope to trigger if the a runt pulse is detected with width less than the time set by the `SEARCH:SEARCH<x>:TRIGger:A:RUNT:WIDth` command.
than argument sets the oscilloscope to trigger if the a runt pulse is detected with width than the time set by the `SEARCH:SEARCH<x>:TRIGger:A:RUNT:WIDth` command.
EQua1 argument sets the oscilloscope to trigger when the pattern is true for a time period equal to the time period specified in `SEARCH:SEARCH<x>:TRIGger:A:RUNT:WIDth` within a ±5% tolerance.
NOTEQua1 argument sets the oscilloscope to trigger when the pattern is true for a time period greater than or less than (but not equal) the time period specified in `SEARCH:SEARCH<x>:TRIGger:A:RUNT:WIDth` within a ±5% tolerance.

**SEARCH:SEARCH<x>:TRIGger:A:RUNT:WIDth**

Sets or returns the width setting for a runt trigger search to determine where to place a mark. `<x>` is the search number.

**Group**
Search
Syntax

SEARCH:SEARCH<x>:TRIGger:A:RUNT:WIDth <NR3>
SEARCH:SEARCH<x>:TRIGger:A:RUNT:WIDth?

Arguments
<NR3> specifies the minimum width, in seconds.

SEARCH:SEARCH<x>:TRIGger:A:SETHold:CLOCk:EDGE

Sets or returns the clock slope setting for a setup/hold trigger search to determine where to place a mark. <x> is the search number.

Group
Search

Syntax

SEARCH:SEARCH<x>:TRIGger:A:SETHold:CLOCK:EDGE {FALL|RISe}
SEARCH:SEARCH<x>:TRIGger:A:SETHold:CLOCK:EDGE?

Arguments
FALL specifies polarity as the clock falling edge.
RISe specifies polarity as the clock rising edge.

SEARCH:SEARCH<x>:TRIGger:A:SETHold:CLOCk:SOUrce

Sets or returns the clock source setting for an setup/hold trigger search to determine where to place a mark. <x> is the search number.

Group
Search

Syntax

SEARCH:SEARCH<x>:TRIGger:A:SETHold:CLOCK:SOURce {CH1|CH2|CH3|CH4|MATH|REF}
SEARCH:SEARCH<x>:TRIGger:A:SETHold:CLOCK:SOURce?

Related Commands
SEARCH:SEARCH<x>:TRIGger:A:SETHold:DATa:SOURce

Arguments
CH1–CH4 specifies an input channel as the edge source.
MATH specifies the math waveform as the search source.
REF specifies the reference waveform as the search source.
SEARCH:SEARCH<x>:TRIGger:A:SETHold:CLOCK:THReshold

Sets or returns the clock threshold setting for an setup/hold trigger search to determine where to place a mark. <x> is the search number.

Group
Search

Syntax
SEARCH:SEARCH<x>:TRIGger:A:SETHold:CLOCK:THReshold
{<NR3>|TTL|ECL}
SEARCH:SEARCH<x>:TRIGger:A:SETHold:CLOCK:THReshold?

Arguments
TTL specifies a preset TTL high level of 1.4 V.
ECL specifies a preset ECL high level of -1.3V.
<NR3> is the clock level, in volts.

SEARCH:SEARCH<x>:TRIGger:A:SETHold:DATa:SOUrce

Sets or returns the data source setting for an setup/hold trigger search to determine where to place a mark. <x> is the search number. You cannot specify the same source for both clock and data.

Group
Search

Syntax
DPO Models:
SEARCH:SEARCH<x>:TRIGger:A:SETHold:DATa:SOUrce
{CH1|CH2|CH3|CH4|MATH|REF}
MSO Models:
SEARCH:SEARCH<x>:TRIGger:A:SETHold:DATa:SOUrce <wfm>[,<wfm>]
SEARCH:SEARCH<x>:TRIGger:A:SETHold:DATa:SOUrce?

Related Commands
SEARCH:SEARCH<x>:TRIGger:A:SETHold:CLOCK:SOUrce

Arguments
DPO Models:
CH1–CH4 specifies an input channel as the search source.

MATH specifies the math waveform as the search source.

REF specifies the reference waveform as the search source.
MSO Models:
<wfm> can be any combination of the channel, math, reference and digital waveforms.

**SEARCH:SEARCH<x>:TRIGger:A:SETHold:DATa:THReshold**

Sets or returns the data threshold setting for an setup/hold trigger search to determine where to place a mark. <x> is the search number.

**Group** Search

**Syntax**

```
SEARCH:SEARCH<x>:TRIGger:A:SETHold:DATa:THReshold
{<NR3>|TTL}
SEARCH:SEARCH<x>:TRIGger:A:SETHold:DATa:THReshold?
```

**Arguments**

TTL specifies a preset TTL high level of 1.4 V.

<NR3> is the clock level, in volts.

**SEARCH:SEARCH<x>:TRIGger:A:SETHold:HOLDTime**

Sets or returns the hold time setting for an setup/hold trigger search to determine where to place a mark. <x> is the search number.

**Group** Search

**Syntax**

```
SEARCH:SEARCH<x>:TRIGger:A:SETHold:HOLDTime <NR3>
SEARCH:SEARCH<x>:TRIGger:A:SETHold:HOLDTime?
```

**Arguments**

<NR3> specifies the hold time setting in seconds. Positive values for hold time occur after the clock edge. Negative values occur before the clock edge.

**SEARCH:SEARCH<x>:TRIGger:A:SETHold:SETTime**

Sets or returns the setup time setting for an setup/hold trigger search to determine where to place a mark. <x> is the search number.

**Group** Search
Commands Listed in Alphabetical Order

**Syntax**

SEARCH:SEARCH<x>:TRIGger:A:SETHold:SETTime <NR3>
SEARCH:SEARCH<x>:TRIGger:A:SETHold:SETTime?

**Arguments**

<NR3> specifies the setup time for setup and hold violation triggering.

**SEARCH:SEARCH<x>:TRIGger:A:SETHold:THReshold:CH<x>**

Sets or returns the trigger search setup and hold threshold for the selected channel. This helps determine where to place search marks. Search<x> is the search number, which is always 1. CH<x> is the channel number.

**Conditions**

MSO oscilloscopes only.

**Group**

Search

**Syntax**

SEARCH:SEARCH<x>:TRIGger:A:SETHold:THReshold:CH<x> <NR3>
SEARCH:SEARCH<x>:TRIGger:A:SETHold:THReshold:CH<x>?

**Arguments**

<NR3> is the lower threshold in volts.

**SEARCH:SEARCH<x>:TRIGger:A:SETHold:THReshold{:MATH|:MATH1}**

Sets or returns the trigger search setup and hold threshold for the math waveform. This helps to determine where to place search marks. Search<x> is the search number, which is always 1.

**Conditions**

MSO oscilloscopes only.

**Group**

Search

**Syntax**

SEARCH:SEARCH<x>:TRIGger:A:SETHold:THReshold{:MATH|:MATH1} <NR3>
SEARCH:SEARCH<x>:TRIGger:A:SETHold:THReshold{:MATH|:MATH1}?

**Arguments**

<NR3> is the lower threshold in volts.
SEARCH:SEARCH<x>:TRIGger:A:SETHold:THReshold:REF<x>

Sets or returns the trigger search setup and hold threshold for the selected reference waveform. This helps determine where to place search marks. Search<x> is the search number, which is always 1. REF<x> is the reference waveform number.

**Conditions**
MSO oscilloscopes only.

**Group**
Search

**Syntax**
```
SEARCH:SEARCH<x>:TRIGger:A:SETHold:THReshold:REF<x> <NR3>
SEARCH:SEARCH<x>:TRIGger:A:SETHold:THReshold:REF<x>?
```

**Arguments**

<NR3> is the lower threshold in volts.

SEARCH:SEARCH<x>:TRIGger:A{:TRANSition|:RISEFall}:DELTatime

Sets or returns the transition time setting for a transition trigger search to determine where to place a mark. <x> is the search number.

**Group**
Search

**Syntax**
```
SEARCH:SEARCH<x>:TRIGger:A{:TRANSition|:RISEFall}:DELTatime <NR3>
SEARCH:SEARCH<x>:TRIGger:A{:TRANSition|:RISEFall}:DELTatime?
```

**Arguments**

<NR3> specifies the transition time, in seconds.

SEARCH:SEARCH<x>:TRIGger:A{:TRANSition|:RISEFall}:POLarity

Sets or returns the polarity setting for a transition trigger search to determine where to place a mark. <x> is the search number.

**Group**
Search

**Syntax**
```
SEARCH:SEARCH<x>:TRIGger:A{:TRANSition|:RISEFall}:POLarity {EITher|NEGative|POSitive}
SEARCH:SEARCH<x>:TRIGger:A{:TRANSition|:RISEFall}:POLarity?
```
**Arguments**

PoSiTive specifies that a pulse edge must traverse from the lower (most negative) to higher (most positive) level for transition triggering to occur.

NEGaTiVe specifies that a pulse edge must traverse from the upper (most positive) to lower (most negative) level for transition triggering to occur.

EITHER specifies either positive or negative polarity.

---

**SEARCH:**SEARCH<x>:TRIGger:A{:TRANSition|:RISEFall}:SOUrce

Sets or returns the source setting for a transition trigger search to determine where to place a mark. <x> is the search number.

**Group**

Search

**Syntax**

SEARCH:SEARCH<x>:TRIGger:A{:TRANSition|:RISEFall}:SOUrce

{CH1|CH2|CH3|CH4|MATH}

SEARCH:SEARCH<x>:TRIGger:A{:TRANSition|:RISEFall}:SOUrce?

**Arguments**

CH1–CH4 specifies one input channel as the edge source.

MATH specifies the math waveform as the search source.

---

**SEARCH:**SEARCH<x>:TRIGger:A{:TRANSition|:RISEFall}:WHEn

Sets or returns the condition setting for a transition trigger search to determine where to place a mark. <x> is the search number.

**Group**

Search

**Syntax**

SEARCH:SEARCH<x>:TRIGger:A{:TRANSition|:RISEFall}:WHEn

{SLOWer|FASTer|EQual|UNEQual}

SEARCH:SEARCH<x>:TRIGger:A{:TRANSition|:RISEFall}:WHEn?

**Arguments**

FASTer sets the trigger to occur when the transitioning signal is faster than the set volts/second rate.

SLOWer sets the trigger to occur when the transitioning signal is slower than the set volts/second rate.

EQual sets the trigger to occur when the transitioning signal is equal to the set volts/second rate within a ±5% tolerance.
UNEQua1 sets the trigger to occur when the transitioning signal is not equal to the set volts/second rate ±5%.

**SEARCH:SEARCH<x>:TRIGger:A:TYPe**

This command sets the type of A trigger to search on. <x> is the search number, which is always 1. The following search types can be performed: edge, setup and hold, pulse width, runt, transition (also called rise/fall time), logic, timeout and bus. (Although it is possible to trigger using a video signal, it is not possible to do a search using a video signal.)

**Group** Search

**Syntax**

```
SEARCH:SEARCH<x>:TRIGger:A:TYPe
{EDGE|SETHold|PULSEwidth|RUNt|TRANSition|LOGIc|TIMEout|BUS}
SEARCH:SEARCH<x>:TRIGger:A:TYPe?
```

**Arguments**

- **EDGE** is the default search. An edge search occurs when a signal passes through a specified voltage level in a specified direction and is controlled by the `SEARCH:SEARCH<x>:TRIGger:A:EDGE:SOUrce` and `SEARCH:SEARCH<x>:TRIGger:A:EDGE:SLOpe` commands.

- **SETHold** searches for setup and hold violations between a data source and a clock source.

- **PULSEwidth** searches for pulses that are less than, greater than, equal to, or not equal to a specified time. Additionally, you can trigger when a pulse width is within or outside a range of two different specified times. You can also trigger on positive or negative pulses.

- **RUNt** searches for any pulse that crosses the first preset voltage threshold, but does not cross the second preset threshold before recrossing the first. The thresholds are set using the `SEARCH:SEARCH<x>:TRIGger:A:LOWerthreshold:CH<x>` and `SEARCH:SEARCH<x>:TRIGger:A:UPPerthreshold:CH<x>` commands.

- **TRANSition** searches for any pulse that a. crosses both thresholds in the same direction as the specified polarity, and b. where the transition time between the two threshold crossings is greater or less than the specified time delta.

- **LOGIc** specifies that a search occurs when specified conditions are met, and is controlled by the `SEARCH:A:LOGIc` commands.

- **TIMEout** specifies that a search occurs when no pulse is detected in a specified time.

- **BUS** specifies that a search occurs when a communications signal is found.
**SEARCH:SEARCH<x>:TRIGger:A:UPPerthreshold:CH<x>**

Sets or returns the channel waveform upper threshold to determine where to place a mark. This setting is applied to all channel searches that uses an upper threshold. SEARCH<x> is the search number and CH<x> is the channel number.

**Group** Search

**Syntax**

```
SEARCH:SEARCH<x>:TRIGger:A:UPPerthreshold:CH<x> {TTL}
SEARCH:SEARCH<x>:TRIGger:A:UPPerthreshold:CH<x>?
```

**Arguments** TTL specifies a preset TTL high level of 1.4 V.

**SEARCH:SEARCH<x>:TRIGger:A:UPPerthreshold:MATH**

Sets or returns the math waveform upper threshold to determine where to place a mark. This setting is applied to all math waveform searches that uses an upper threshold. <x> is the search number.

**Group** Search

**Syntax**

```
SEARCH:SEARCH<x>:TRIGger:A:UPPerthreshold:MATH {TTL}
SEARCH:SEARCH<x>:TRIGger:A:UPPerthreshold:MATH?
```

**Arguments** TTL specifies a preset TTL high level of 1.4 V.

**SEARCH:SEARCH<x>:TRIGger:A:UPPerthreshold:REF<x>**

Sets or returns the reference waveform upper threshold to determine where to place a mark. This setting is applied to all reference waveform searches that uses an upper threshold. SEARCH<x> is the search number and REF<x> is the reference channel number.

**Group** Search

**Syntax**

```
SEARCH:SEARCH<x>:TRIGger:A:UPPerthreshold:REF<x> {TTL}
SEARCH:SEARCH<x>:TRIGger:A:UPPerthreshold:REF<x>?
```

**Arguments** TTL specifies a preset TTL high level of 1.4 V.
SELect

Sets or returns the selected waveform display (controlled by the front-panel) on or off.

Group  Vertical

Syntax  SELect {ON|OFF}

Arguments  ON turns the selected waveform display on.
OFF turns the selected waveform display off.

Examples  SELECT might return the following
:SELECT:BUS1 0;BUS2 0;CH1 1;CH2 0;CH3 0;CH4 0;MATH 0;REF1 0;REF2 0;REF3 0;REF4 0;CONTROL CH1

SELect:BUS<x>

This command turns on and off the display of the waveform for <x>, where x is the bus number. The query returns whether the channel is on or off but does not indicate whether it is the selected waveform.

Group  Vertical

Syntax  SELect:BUS<x> {<NR1>|OFF|ON}
SELect:BUS<x>?

SELect:CH<x>

Turns the display of the channel <x> waveform on or off, where <x> is the channel number. This command also resets the acquisition. The query returns whether the channel is on or off but does not indicate whether it is the selected waveform.

Group  Vertical

Syntax  SELect:CH<x> {ON|OFF|<NR1>}
SELect:CH<x>?
Arguments

ON turns on the display of the specified waveform. This waveform also becomes the selected waveform.

OFF turns off the display of the specified waveform.

<NR1> = 0 turns off the display of the specified waveform; any other value turns on the display of the specified waveform.

Examples

SELECT:CH2 ON turns the channel 2 waveform display on, and selects channel 2.

SELECT:CH1? might return :SELECT:CH1 1 indicating that channel 1 is being displayed.

SELect:CONTROL

Sets or returns the waveform that is the recipient of future channel-related commands, for example, the cursor commands. The command form also performs the equivalent of a SELect:CH<x> ON command, as well as the Math, Reference, and Bus variations of that command.

Group

Vertical

Syntax

SELect:CONTROL {CH<x>|MATH|BUS<x>}

SELect:CONTROL?

Arguments

CH<x> specifies a channel waveform as the waveform affected by the front-panel controls. <x> is the channel number.

MATH specifies the math waveform as the waveform that is affected by the front-panel controls.

BUS<x> specifies a bus waveform as the waveform affected by the front-panel controls. <x> specifies the bus number.

Returns

NONE if all the channels are turned off. NONE is ignored on input.

Examples

SELECT:CONTROL CH2 resets acquisition displays on channel 2, and causes the selected waveform to be the implied object of waveform commands.

SELECT:CONTROL? might return :SELECT:CONTROL MATH indicating that math is the implied object of waveform commands.
**SESelect:D<x>**

Turns on the display of the digital channel `<x>` and resets the acquisition. `<x>` is the channel number. The query returns whether the channel is on or off but does not indicate whether it is the selected waveform.

**Group** Vertical

**Syntax**

```
SESelect:D<x> {<NR1>|OFF|ON}
SESelect:D<x>?
```

**Arguments**

ON turns on the display of the specified waveform. This waveform also becomes the selected waveform.

OFF turns off the display of the specified waveform.

`<NR1>` = 0 turns off the display of the specified waveform; any other value turns on the display of the specified waveform.

**Examples**

```
SELECT:D2 ON
```

turns the digital channel 2 waveform display on, and selects digital channel 2.

```
SELECT:D2?
```

might return :SELECT:D2 1 indicating that digital channel 2 is being displayed.

**SESelect:MATH[1]**

Turns on and off the display of the math waveform. The query returns whether the math waveform is on or off but does not indicate whether it is the selected waveform.

**Group** Vertical

**Syntax**

```
SESelect:MATH[1] {ON|OFF|<NR1>}
SESelect:MATH[1]?
```

**Arguments**

ON turns on the display of the specified waveform. This waveform also becomes the selected waveform.

OFF turns off the display of the specified waveform.

`<NR1>` = 0 turns off the display of the specified waveform; any other value turns on the display of the specified waveform.
SELect:REF<x>

Turns on and off the display of the reference waveform <x>. The <x> variable represents the reference channel number. The query returns whether the channel is on or off.

Syntax

SELect:REF<x> {ON|OFF|<NR1>}

Arguments

ON turns on the display of the specified waveform. This waveform also becomes the selected waveform.

OFF turns off the display of the specified waveform.

<NR1> = 0 turns off the display of the specified waveform; any other value turns on the display of the specified waveform.

Examples

SELECT:REF2 ON turns the channel 2 waveform display on, and selects reference waveform 2.

SELECT:REF2? might return :SELECT:REF2 1 indicating that reference waveform 2 is being displayed.

SET? (Query Only)

Returns the commands that list the oscilloscope settings except for configuration information for the calibration values, the WFMInpre? query, and the WFMOutpre? query. This query allows you to record or "learn" the current oscilloscope settings. You can use these commands to return the oscilloscope to the state it was in when you made the SET? query. The SET? query always returns command headers, regardless of the setting of the HEADer command. This is because the returned commands are intended to be sent back to the oscilloscope as a command string. The VERBose command can still be used to specify whether the returned headers should be abbreviated or full-length.

This command is identical to the *LRN? command.
Commands Listed in Alphabetical Order

Group      Miscellaneous

Syntax     SET?

Related Commands     HEADer, *LRN?, VERBose

Examples     SET? returns a long response, part of which could be as follows:
:SET 
:ACQUIRE:STOPAFTER RUNSTOP;STATE 1;MODE SAMPLE;NUMENV INFINITE;NUMAVG 16;SAMPLINGMODE RT;:HEADER 1;:LOCK NONE;:LANGUAGE ENGLISH;:VERBOSE 1;:ALIAS:STATE 0;:
DISPLAY:COLOR:PALETTE NORMAL;:DISPLAY:STYLE:DOTSONLY 0;:
DISPLAY:PERSISTENCE 0.0000;CLOCK 1;GRATICULE FULL;INTEnsITY:WAVEFORM 30;GRATICULE 75;BACKLIGHT HIGH;
:HARDCOPY:INKSAVER OFF;LAYOUT LANDSCAPE;PREVIEW 0;:
:SAVE:IMAGE:FILEFORMAT BMP;:SAVE:WAVEFORM:FILEFORMAT INTERNAL;:SAVE:ASSIGN:TYPE SETUP;:TRIGGER:A:MODE AUTO;:TYPE EDGE;:LEVEL 20.0000E-3;LEVEL:CH1 20.0000E-3;CH2 0.0000;CH3 0.0000;CH4 0.0000;:TRIGGER:A:UPPERTHRESHOLD:CH1 1.4000;CH2 800.0000E-3;CH3 800.0000E-3;CH4 800.0000E-3;:
TRIGGER:A:LOWERTHRESHOLD:CH1 20.0000E-3;CH2 0.0000;CH3 0.0000;CH4 0.0000;:TRIGGER:A:HOLOFF:TIME 20.0000E-9;:TRIGGER:A:EDGE:SOURCE CH1;COUPLING DC;SLOPE RISE;:TRIGGER:A:LOGIC:CLASS SETHOLD;FUNCTION AND;THRESHOLD:CH1 20.0000E-3;CH2 0.0000;CH3 0.0000;CH4 0.0000;:TRIGGER:A:LOGIC:INPUT:CH1 X;CH2 X;CH3 X;CH4 X;CLOCK:SOURCE NONE;EDGE RISE;:TRIGGER:A:LOGIC:PATTERN:INPUT:CH1 X;CH2 X;CH3 X;CH4 X;:TRIGGER:A:LOGIC:PATTERN:WHEN TRUE;WHEN:LESSLIMIT 4.0000E-9;LIMIT 4.0000E-9;:TRIGGER:A:SETHOLD:CLOCK:SOURCE CH1;EDGE RISE;THRESHOLD 20.0000E-3;:TRIGGER:A:SETHOLD:DATA:SOURCE CH2;

SETUP<x>::DATE? (Query Only)

Returns the date when the oscilloscope setup was saved for the specified channel <x>.

Group      Save and Recall

Syntax     SETUP<x>::DATE?
**Examples**  
SETUP4:DATE? might return SETUP4:DATE: 04–18–06 which is the setup date for channel 4.

**SETUP<x>:LABEL**

Sets or returns the setup label for the specified channel <x>.

**Group**  
Save and Recall

**Syntax**  
SETUP<x>:LABEL <Qstring>

**Arguments**  
<Qstring> is an alpha-numeric string of characters, enclosed in quotes, that defines the label text for SETUP<x>. The length of the string is limited to 30 characters.

**Examples**  
SETUP:LABEL? might return SETUP1:LABEL: TEST 2 which is the label setup for channel 1.

**SETUP<x>:TIME? (Query Only)**

Returns the time when the oscilloscope setup was saved for the specified channel <x>.

**Group**  
Save and Recall

**Syntax**  
SETUP<x>:TIME?

**Examples**  

**SRE**

The *SRE (Service Request Enable) command sets or returns the bits in the Service Request Enable Register. For information, refer to Registers.

**Group**  
Status and Error
Syntax

*SRE <NR1>
*SRE?

Related Commands


Arguments

<NR1> is a value in the range from 0 through 255. The binary bits of the SRER are set according to this value. Using an out-of-range value causes an execution error. The power-on default for SRER is 0 if *PSC is 1. If *PSC is 0, the SRER maintains the previous power cycle value through the current power cycle.

Examples

*SRE 48 sets the bits in the SRER to binary 00110000.

*SRE? might return 32, showing that the bits in the SRER have the binary value of 00100000.

*STB? (Query Only)

*STB? (Read Status Byte) returns the contents of the Status Byte Register (SBR) using the Master Summary Status (MSS) bit. For information, refer to Registers.

Group

Status and Error

Syntax

*STB?

Related Commands


Returns

<NR1>

Examples

*STB? might return 96, showing that the SBR contains the binary value 01100000.

TEKSecure (No Query Form)

This command initializes both waveform and setup memories, overwriting any previously stored data. These are the WFMInpre?, WFMOutpre?, and DAta command values after the TEKSecure operation.

:WFMOUTPRE:BYT_NR 1 :WFMOUTPRE:BIT_NR 8 :WFMOUTPRE:ENCdG
BIN :WFMOUTPRE:BN_FMT RI :WFMOUTPRE:BYT_OR MSB
:WFMOUTPRE:WFiD "Ch1, DC coupling, 100.0mV/div,
4.000us/div, 10000 points, Sample mode" :WFMOUTPRE:NR_PT
10000 :WFMOUTPRE:PT_FMT Y :WFMOUTPRE:XUNIT "s"
:WFMOUTPRE:PT_OFF 0 :WFMOUTPRE:YUNIT "V" :WFMOUTPRE:YMULT 4.0000E-3
:WFMOUTPRE:YOFF 0.0000 :WFMOUTPRE:YZERO 0.0000
:WFMOUTPRE:PT_FMT Y :WFMOUTPRE:XUNIT "s"
:WFMOUTPRE:XZERO -20.0000E-6 :WFMOUTPRE:YMULT 4.0000E-3
:WFMOUTPRE:YOFF 0.0000 :WFMOUTPRE:YZERO 0.0000
:WFMOUTPRE:PT_FMT Y :WFMOUTPRE:XUNIT "s"
:WFMOUTPRE:XZERO -20.0000E-6

NOTE. The TEKSecure command can take up to five minutes to complete. The oscilloscope is inoperable during this period.

Group
Miscellaneous

Syntax
TEKSecure

Examples
TEKSECURE initializes both waveform and setup memories.

This is a program example of how to generate an SRQ when TEKSECURE completes:

# Bit 0 of the DESE (Device Event Status Enable Register)
# enables OPC to be reported to the SESR (Standard Event Status Register)
DESE 255
# Bit 0 of the ESER (Event Status Enable Register)
# enables OPC to be summarized in the ESB (Event Status # Bit) of the SBR (Status Byte Register)
*ESE 255
# Bit 5 of the SRE (Service Request Enable Register) enables
# the generation of SRQ when the ESB bit of the SBR becomes # TRUE
*SRE 32
TEKSECURE;*OPC

When the TEKSECURE operation has completed, the OPC bit of the SESR will be TRUE and SRQ will have been generated.
TIME

Sets or returns the time that the oscilloscope displays.

**Group**  Miscellaneous

**Syntax**  

```plaintext
TIME <QString>
TIME?
```

**Related Commands**  DATE

**Arguments**  

<QString> is a time in the form "hh:mm:ss" where hh refers to a two-digit hour number, mm refers to a two-digit minute number from 00 to 59, and ss refers to a two-digit second number from 00 to 59.

**Examples**  

```
TIME "14:00:00" sets the time to exactly 2:00 p.m.
TIME? might return :TIME "14:05:17" indicating the current time is set to 2:05 p.m. and 17 seconds.
```

TOTaluptime? (Query Only)

This command returns the total number of hours that the oscilloscope has been powered on since the nonvolatile memory was last programmed (usually since the initial manufacturing process).

**Group**  Miscellaneous

**Syntax**  

```
TOTaluptime?
```

*TRG (No Query Form)

Performs a group execute trigger on commands defined by *DDT.

**Group**  Miscellaneous

**Syntax**  

```
*TRG
```
Related Commands

*DDT

Examples

*TRG immediately executes all commands that have been defined by *DDT.

TRIGger (No Query Form)

Forces a trigger event to occur.

Group

Trigger

Syntax

TRIGger FORCe
TRIGger?

Arguments

FORCe creates a trigger event. If TRIGger:STATE is set to READY, the acquisition will complete. Otherwise, this command will be ignored.

Examples

TRIGGER FORCE forces a trigger event to occur.

TRIGger:A

Sets the A trigger level automatically to 50% of the range of the minimum and maximum values of the trigger input signal. The query returns current A trigger parameters. The trigger level is the voltage threshold through which the trigger source signal must pass to generate a trigger event. This command works for the following cases: Edge Trigger (when source is Not Line), Logic Trigger (when Clock Source is not Off or Logic Pattern is Don't Care), and Pulse Width Trigger.

Group

Trigger

Syntax

TRIGger:A SETLevel
TRIGger:A?

Related Commands


Arguments

SETLevel sets the A trigger level to 50% of the range of the minimum and maximum values of the trigger input signal.
Examples

TRIGGER:A SETLEVEL sets the A trigger level to 50% of the range of the minimum and maximum values of the trigger input signal.

TRIGGER:A? might return a long response with A trigger parameters, some of which could be as follows:

```plaintext
:TRIGGER:A:MODE AUTO;TYPE EDGE;LEVEL 20.0000E-3;LEVEL:CH1 20.0000E-3;CH2 0.0000;CH3 0.0000;CH4 0.0000;:TRIGGER:A:UPPERTHRESHOLD:CH1 1.4000;CH2 80.0000E-3;CH3 8.0000E-3;CH4 8.0000E-3;:TRIGGER:A:LOWERTHRESHOLD:CH1 20.0000E-3;CH2 0.0000;CH3 0.0000;CH4 0.0000;:TRIGGER:A:HOLDOFF:TIME 20.0000E-9;:TRIGGER:A:EDGE:SOURCE CH1;COUPLING DC;SLOPE RISE;:TRIGGER:A:LOGIC:CLASS SETHOLD;FUNCTION AND;THRESHOLD: CH1 20.0000E-3;CH2 0.0000;CH3 0.0000;CH4 0.0000;:TRIGGER:A:LOGIC:INPUT:CH1 X;CH2 X;CH3 X;CH4 X;CLOCK:SOURCE NONE;EDGE RISE;:TRIGGER:A:LOGIC:_PATTERN:INPUT:CH1 X; CH2 X;CH3 X;CH4 X;:TRIGGER:A:LOGIC:_PATTERN:WHEN TRUE;WHEN:LESSLIMIT 4.0000E-9;MO RELIMIT 4.0000E-9;:TRIGGER:A:SETHOLD:CLOCK:SOURCE CH1;EDGE RISE;THRESHOLD 20.0000E-3;:TRIGGER:A:SETHOLD:DATA:SOURCE CH2;THRESHOLD 0.0000;:TRIGGER:A:SETHOLD:HOLD TIME 4.0000E-9;SETTIME 4.0000E-9;:TRIGGER:A:PULSE:CLASS TRANSITION;:TRIGGER:A:PULSEWIDTH:SOURCE CH1;POLARITY POSITIVE;WHEN LESSTHAN:WIDTH 4.0000E-9;:TRIGGER:A:RUNT:SOURCE CH1;POLARITY POSITIVE;WHEN OCCURS:WIDTH 4.0000E-9;:TRIGGER:A:TRANSITION:SOURCE CH1;POLARITY POSITIVE;WHEN SLOWER:Deltatime 4.0000E-9;:TRIGGER:A:VIDEO:POLARITY POSITIVE:SOURCE CH1;STANDARD NTSC;SYNC ALL LINES;HOLDOFF:FIELD 0.0000;:TRIGGER:A:VIDEO:FORMAT PROGRESSIVE;SCAN RATE 15K;:TRIGGER:A:BUS:SOURCE B1;B1:I2C:CONDITION START;DATA:VALUE "XXXXXXXX";SIZE 1;START 0.0000;DIRECTION NOCARE;:TRIGGER:A:BUS:B1:I2C:ADDRESS:MODE ADDR7;TYPE USER;VALUE "XXXXXXXX";:TRIGGER:A:BUS:B1:SPI:CONDITION MOSI;DATA:OUT :VALUE "XXXXXXXX";:TRIGGER:A:BUS:B1:SPI:DATA:IN:VALUE "XXXXXXXX";:TRIGGER:A:BUS: B1:SPI:DATA:SIZE 1;START 0.0000;
```

TRIGger:A:BUS

This command specifies the bus type to be used in a trigger operation. It supports CAN, I2C, SPI, RS-232, MIL-STD-1553, LIN, audio, FlexRay and Parallel bus signals with the appropriate add-on module installed. (See page 2-13, Bus Command Group.) There are two serial buses, B1 and B2, which can each be set independently to one of the serial trigger types.
Commands Listed in Alphabetical Order

**NOTE.** Parallel bus commands work with MSO3000 Series oscilloscopes only.

<table>
<thead>
<tr>
<th>Group</th>
<th>Trigger</th>
</tr>
</thead>
</table>

**Syntax**

```
TRIGger:A:BUS
{I2C|SPI|CAN|RS232C|PARallel|LIN|FLEXRay|AUDio|MIL1553B}
TRIGger:A:BUS?
```

**Arguments**

- **I2C** specifies the Inter-IC bus.
- **SPI** specifies the Serial Peripheral Interface bus (not available on two-channel models).
- **CAN** specifies the Controller Area Network bus.
- **RS232C** specifies the RS-232C bus.
- **PARallel** specifies the Parallel bus.
- **LIN** specifies the LIN bus.
- **FLEXRay** specifies the FLexRay bus.
- **AUDio** specifies the audio bus.
- **MIL1553B** specifies the MIL-STD-1553 bus.

**TRIGger:A:BUS:B<x>:AUDio:CONDition**

This command sets the condition (start of frame or matching data) to be used when triggering on audio bus data. B<x> is the bus number, which is 1 or 2.

**Conditions**

This command requires a DPO3AUDIO application module.

<table>
<thead>
<tr>
<th>Group</th>
<th>Trigger</th>
</tr>
</thead>
</table>

**Syntax**

```
TRIGger:A:BUS:B<x>:AUDio:CONDition {SOF|DATA}
TRIGger:A:BUS:B<x>:AUDio:CONDition?
```

**Arguments**

- **SOF** enables triggering on the start of frame.
- **DATA** enables triggering on matching data.
**TRIGger:A:BUS:B<x>:AUDio:DATa:HIVALue**

This command sets the upper word value to be used when triggering on audio bus data. The trigger condition must be set to DATA using `TRIGger:A:BUS:B<x>:AUDio:CONDition`.

$b<x>$ is the bus number, which is 1 or 2.

**Conditions**
This command requires a DPO3AUDIO application module.

**Group**
Trigger

**Syntax**
```
TRIGger:A:BUS:B<x>:AUDio:DATa:HIVALue <String>
TRIGger:A:BUS:B<x>:AUDio:DATa:HIVALue?
```

**TRIGger:A:BUS:B<x>:AUDio:DATa:OFFSet**

This command sets the data offset value to be used when triggering on audio bus data. The trigger condition must be set to DATA using `TRIGger:A:BUS:B<x>:AUDio:CONDition`.

$b<x>$ is the bus number, which is 1 or 2.

**Conditions**
This command requires a DPO3AUDIO application module.

**Group**
Trigger

**Syntax**
```
TRIGger:A:BUS:B<x>:AUDio:DATa:OFFSet <NR1>
TRIGger:A:BUS:B<x>:AUDio:DATa:OFFSet?
```

**Arguments**
$<NR1>$ is the data offset value.

**TRIGger:A:BUS:B<x>:AUDio:DATa:QUALifier**

This command sets the qualifier ($<$, $>$, $=$, $<=$, $>$=, not $=$, in range, out of range) to be used when triggering on audio bus data. The trigger condition must be set to DATA using `TRIGger:A:BUS:B<x>:AUDio:CONDition`.

$b<x>$ is the bus number, which is 1 or 2.

**Conditions**
This command requires a DPO3AUDIO application module.
**Group**	Trigger

**Syntax**

```
TRIGGER:A:BUS:B<x>:AUDIO:DATA:QUALIFIER
{LESSthan|MOREthan|EQUAL|UNEQUAL|LESSEQUAL|MOREEQUAL|INrange|OUTrange}
TRIGGER:A:BUS:B<x>:AUDIO:DATA:QUALIFIER?
```

**Arguments**

LESSthan sets the qualifier to less than.
MOREthan sets the qualifier to greater than.
EQUAL sets the qualifier to equal.
UNEQUAL sets the qualifier to not equal.
LESSEQUAL sets the qualifier to less than or equal.
MOREEQUAL sets the qualifier to greater than or equal.
INrange sets the qualifier to in range.
OUTrange sets the qualifier to out of range.

**TRIGGER:A:BUS:B<x>:AUDIO:DATA:VALUE**

This command sets the lower word value to be used when triggering on audio bus data. The trigger condition must be set to DATA using TRIGGER:A:BUS:B<x>:AUDIO:CONDITION.

B<x> is the bus number, which is 1 or 2.

**Conditions**

This command requires a DPO3AUDIO application module.

**Group**	Trigger

**Syntax**

```
TRIGGER:A:BUS:B<x>:AUDIO:DATA:VALUE?
```

**Arguments**

<String> specifies the trigger data lower word.

**TRIGGER:A:BUS:B<x>:AUDIO:DATA:WORD**

This command sets the alignment of the data (left, right or either) to be used to search on audio bus data. The trigger condition must be set to DATA using TRIGGER:A:BUS:B<x>:AUDIO:CONDITION.
B<x> is the bus number, which is 1 or 2.

**Conditions**
This command requires a DPO3AUDIO application module.

**Group**
Trigger

**Syntax**
```
TRIGger:A:BUS:B<x>:AUDio:DATa:WORD {EITHER|LEFT|RIGHT}
TRIGger:A:BUS:B<x>:AUDio:DATa:WORD?
```

**Arguments**
- **EITHER** aligns the trigger data to either left or right.
- **LEFT** aligns the trigger data to the left.
- **RIGHT** aligns the trigger data to the right.

**TRIGger:A:BUS:B<x>:CAN:CONDition**
This command sets the condition (start of frame, frame type, identifier, matching data, EOF, missing ACK field, bit-stuffing error) to be used when triggering on CAN bus data. B<x> is the bus number, which is 1 or 2.

**Conditions**
Requires a DPO3AUTO application module.

**Group**
Trigger

**Syntax**
```
TRIGger:A:BUS:B<x>:CAN:CONDition
{SOF|FRAMEtype|IDentifier|DATA|IDANDDATA|EOF|ACKMISS:ERROR}
TRIGger:A:BUS:B<x>:CAN:CONDition?
```

**Arguments**
- **SOF** enables triggering on the start of frame.
- **FRAMEtype** enables triggering on the type of frame.
- **IDentifier** enables triggering on a matching identifier.
- **DATA** enables triggering on matching data.
- **IDANDDATA** enables triggering on a matching identifier and matching data.
- **EOF** enables triggering on the end of frame.
- **ACKMISS** enables triggering on a missing acknowledge.
- **ERROR** specifies a search based on a bit stuffing error.
**Examples**


**TRIGGER:A:BUS:B<x>:CAN:DATA:DIRection**

This command sets the data direction (read, write or nocare) to be used to search on CAN bus data. The trigger condition must be set to IDentifier (using TRIGGER:A:BUS:B<x>:CAN:CONDITION). B<x> is the bus number, which is 1 or 2.

**Conditions**

Requires a DPO3AUTO application module.

**Group**

Trigger

**Syntax**

TRIGGER:A:BUS:B<x>:CAN:DATA:DIRection {READ|WRITE|NOCARE}

TRIGGER:A:BUS:B<x>:CAN:DATA:DIRection?

**Arguments**

READ sets the CAN data direction to READ.

WRITE sets the CAN data direction to WRITE.

NOCARE sets the CAN data direction to either.

**Examples**


**TRIGGER:A:BUS:B<x>:CAN:DATA:QUALifier**

This command sets the qualifier (<, >, =, not =, <=) to be used when triggering on CAN bus data. The trigger condition must be set to IDANDDATA OR DATA (using TRIGGER:A:BUS:B<x>:CAN:CONDITION). B<x> is the bus number, which is 1 or 2.

**Conditions**

Requires a DPO3AUTO application module.

**Group**

Trigger
Syntax

TRIGger:A:BUS:B<x>:CAN:DATA:QUALifier
{LESSthan|Than|EQual|UNEQual|LESSEQual|EQual}
TRIGger:A:BUS:B<x>:CAN:DATA:QUALifier?

Arguments

LESSthan sets the oscilloscope to trigger when the data is less than the qualifier value.

Than sets the oscilloscope to trigger when the data is than the qualifier value.

EQual sets the oscilloscope to trigger when the data is equal to the qualifier value.

UNEQual sets the oscilloscope to trigger when the data is not equal to the qualifier value.

LESSEqual sets the oscilloscope to trigger when the data is less than or equal to the qualifier value.

EQual sets the oscilloscope to trigger when the data is than or equal to the qualifier value.

Examples

TRIGGER:A:BUS:B1:CAN:DATA:QUALIFIER LESSTHAN sets the oscilloscope to trigger when the data is less than the qualifier value.


TRIGger:A:BUS:B<x>:CAN:DATa:SIZe

This command sets the length of the data string, in bytes, to be used when triggering on CAN bus data. The trigger condition must be set to IDANDDATA OR DATA (using TRIGger:A:BUS:B<x>:CAN:CONDITION). B<x> is the bus number, which is 1 or 2.

Conditions

This command requires a DPO3AUTO application module.

Group

Trigger

Syntax

TRIGger:A:BUS:B<x>:CAN:DATa:SIZe <NR1>
TRIGger:A:BUS:B<x>:CAN:DATa:SIZe?

Arguments

<NR1> is the length of the data string in bytes.
**TRIGger:A:BUS:B<x>:CAN:DATa:VALue**

This command sets the binary data value to be used when triggering on CAN bus data. The trigger condition must be set to IDANDDATA OR DATA (using TRIGger:A:BUS:B<x>:CAN:CONDition). B<x> is the bus number, which is 1 or 2.

**Conditions**
This command requires a DPO3AUTO application module.

**Group**
Trigger

**Syntax**
TRIGger:A:BUS:B<x>:CAN:DATa:VALue <QString>
TRIGger:A:BUS:B<x>:CAN:DATa:VALue?

**Arguments**
QString is the data value in binary format. The only allowed characters in the QString are 0, 1, and X.

**Examples**

**TRIGger:A:BUS:B<x>:CAN:FRAMEtype**

This command sets the frame type (data, remote, error or overload) to be used when triggering on CAN bus data. The trigger condition must be set to FRAMEtype (using TRIGger:A:BUS:B<x>:CAN:CONDition). B<x> is the bus number, which is 1 or 2.

**Conditions**
This command requires a DPO3AUTO application module.

**Group**
Trigger

**Syntax**
TRIGger:A:BUS:B<x>:CAN:FRAMEtype {DATA|REMOTE|ERROR|OVERLOAD}
TRIGger:A:BUS:B<x>:CAN:FRAMEtype?

**Arguments**
DATA specifies a data frame type.
REMOTE specifies a remote frame type.
ERROR specifies an error frame type.
OVERLOAD specifies an overload frame type.
Examples
TRIGGER:A:BUS:B1:CAN:FRAMETYPE DATA sets the CAN trigger frame type to DATA.

TRIGGER:A:BUS:B<x>:CAN{:IDENTIFIER|:ADDRESS}:MODE

This command sets the addressing mode (standard or extended format) to be used when triggering on CAN bus data. The trigger condition must be set to IDANDDATA OR DATA (using TRIGGER:A:BUS:B<x>:CAN:CONDition). B<x> is the bus number, which is 1 or 2.

Conditions
This command requires a DPO3AUTO application module.

Group
Trigger

Syntax
TRIGGER:A:BUS:B<x>:CAN{:IDENTIFIER|:ADDRESS}:MODE {STANDARD|EXTENDED}
TRIGGER:A:BUS:B<x>:CAN{:IDENTIFIER|:ADDRESS}:MODE?

Arguments
STANDARD specifies the standard addressing mode.
EXTENDED specifies the extended addressing mode.

TRIGGER:A:BUS:B<x>:CAN{:IDENTIFIER|:ADDRESS}:VALUE

This command sets the binary address value to be used when triggering on CAN bus data. The trigger condition must be set to IDANDDATA OR DATA (using TRIGGER:A:BUS:B<x>:CAN:CONDition). B<x> is the bus number, which is 1 or 2.

Conditions
This command requires a DPO3AUTO application module.

Group
Trigger

Syntax
TRIGGER:A:BUS:B<x>:CAN{:IDENTIFIER|:ADDRESS}:VALUE <QString>
TRIGGER:A:BUS:B<x>:CAN{:IDENTIFIER|:ADDRESS}:VALUE?

Arguments
<QString> is up to 29 bits specifying the binary identifier value. The only allowed characters in the QString are 0, 1, and X.
**Examples**


**TRIGger:A:BUS:B<x>:FLEXray:CONDition**

This command specifies the condition to use when triggering on the FlexRay bus signal (start of frame, frame type, ID, cycle count, header, data, ID and data, EOF, error). B<x> is the bus number, which is 1 or 2.

**Conditions**

Requires a DPO3FLEX application module.

**Group**

Trigger

**Syntax**

```
TRIGger:A:BUS:B<x>:FLEXray:CONDition
{SOF|FRAMEType|IDentifier|CYCLEcount|HEADer|DATA |IDANDDATA|EOF|ERROR}
```

TRIGger:A:BUS:B<x>:FLEXray:CONDition?

**Arguments**

SOF sets the trigger condition to start of frame.

FRAMEType sets the trigger condition to frame type.

IDentifier sets the trigger condition to identifier.

CYCLEcount sets the trigger condition to cycle count.

HEADer sets the trigger condition to header.

DATA sets the trigger condition to data.

IDANDDATA sets the trigger condition to id and data.

EOF sets the trigger condition to end of frame.

ERROR sets the trigger condition to error.

**Examples**


**TRIGger:A:BUS:B<x>:FLEXray:CYCLEcount:HIVALue**

This command specifies the high value when triggering on the FlexRay bus cycle count field. (Use TRIGger:A:BUS:B<x>:FLEXray:CYCLEcount:VALue to set the low value.) The trigger condition must be set to CYCLEcount (using...
**TRIGger:A:BUS:B<x>:FLEXray:CONDition**.  \( B<x> \) is the bus number, which is 1 or 2.

**Conditions**
Requires a DPO3FLEX application module.

**Group**
Trigger

**Syntax**

```
TRIGger:A:BUS:B<x>:FLEXray:CYCLEcount:HIVALue <QString>
TRIGger:A:BUS:B<x>:FLEXray:CYCLEcount:HIVALue?
```

**Arguments**

*<QString>* is a quoted string that is the cycle count high value.

**Examples**

```
TRIGGER:A:BUS:B1:FLEXRAY:CYCLECOUNT:HIVALUE "110010" sets the cycle count high value to 110010.

```

**TRIGger:A:BUS:B<x>:FLEXray:CYCLEcount:QUALifier**

This command specifies the qualifier (\(<\), \(\geq\), \(\leq\), \(!=\), \(\in\) range, \(\notin\) range) to use when triggering on the FlexRay bus cycle count field. The trigger condition must be set to CYCLEcount (using TRIGger:A:BUS:B<x>:FLEXray:CONDition).  \( B<x> \) is the bus number, which is 1 or 2.

**Conditions**
Requires a DPO3FLEX application module.

**Group**
Trigger

**Syntax**

```
TRIGger:A:BUS:B<x>:FLEXray:CYCLEcount:QUALifier
{LESSthan|MOREthan|EQual|UNEQual|LESSEqual|MOREEQual|
INrange|OUTrange}
```

```
TRIGger:A:BUS:B<x>:FLEXray:CYCLEcount:QUALifier?
```

**Arguments**

*LESSthan* sets the cycle count qualifier to less than.

*MOREthan* sets the cycle count qualifier to more than.
Commands Listed in Alphabetical Order

**EQual** sets the cycle count qualifier to equal.

**UNEQual** sets the cycle count qualifier to not equal.

**LESSEQual** sets the cycle count qualifier to less than or equal.

**MOREEQual** sets the cycle count qualifier to greater than or equal.

**INrange** sets the cycle count qualifier to in range.

**OUTrange** sets the cycle count qualifier to out of range.

**Examples**

TRIGGER:A:BUS:B1:FLEXRAY:CYCLECOUNT:QUALIFIER LESSTHAN sets the cycle count qualifier to LESSTHAN.


**TRIGger:A:BUS:B<x>:FLEXray:CYCLEcount:VALue**

This command specifies the low value when triggering on the FlexRay bus cycle count field. The trigger condition must be set to CYCLEcount (using TRIGger:A:BUS:B<x>:FLEXray:CONDition).B<x> is the bus number, which is 1 or 2.

**Conditions** Requires a DPO3FLEX application module.

**Group** Trigger

**Syntax** TRIGger:A:BUS:B<x>:FLEXray:CYCLEcount:VALue <QString>

TRIGger:A:BUS:B<x>:FLEXray:CYCLEcount:VALue?

**Arguments** <QString> is a quoted binary data string that represents the cycle count low value.

**Examples** TRIGGER:A:BUS:B1:FLEXRAY:CYCLECOUNT:VALUE "11001101" sets the cycle count value to 11001101.

**TRIGger:A:BUS:B<x>:FLEXray:DATa:HIVALue**

This command specifies the high value when triggering on the FlexRay bus data field. The trigger condition needs to be set to ID or IDANDDATA (using TRIGger:A:BUS:B<x>:FLEXray:CONDition). B<x> is the bus number, which is 1 or 2.

**Conditions**
Requires a DPO3FLEX application module.

**Group**
Trigger

**Syntax**
TRIGger:A:BUS:B<x>:FLEXray:DATa:HIVALue <QString>
TRIGger:A:BUS:B<x>:FLEXray:DATa:HIVALue?

**Arguments**
<QString> is a quoted string that is the binary data high value.

**Examples**
"11001101XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX1" sets the binary data string high value to "11001101XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX1".

"XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXXXXX" indicating the binary data string high value is don't care.

**TRIGger:A:BUS:B<x>:FLEXray:DATa:OFFSet**

This command specifies the offset of the data string, in bytes, when triggering on the FlexRay bus data field. The trigger condition needs to be set to ID or IDANDDDATA (using TRIGger:A:BUS:B<x>:FLEXray:CONDition). B<x> is the bus number, which is 1 or 2.

**Conditions**
Requires a DPO3FLEX application module.

**Group**
Trigger

**Syntax**
TRIGger:A:BUS:B<x>:FLEXray:DATa:OFFSet <NR1>
TRIGger:A:BUS:B<x>:FLEXray:DATa:OFFSet?
Arguments

<NR1> is the offset of the data string in bytes. A byte offset of -1 signifies “don't care”, and no byte offset is used. The instrument will trigger on or match any byte value that fits.

Examples


TRIGGER:A:BUS:B<x>:FLEXray:DATa:QUALifier

This command specifies the qualifier (<, >, =, <=, >=, not =, in range, out of range) to use when triggering on the FlexRay bus data field. The trigger condition needs to be set to ID or IDANDDATA (using TRIGGER:A:BUS:B<x>:FLEXray:CONDition). B<x> is the bus number, which is 1 or 2.

Conditions

Requires a DPO3FLEX application module.

Group

Trigger

Syntax

TRIGGER:A:BUS:B<x>:FLEXray:DATa:QUALifier {LESSthan|MOREthan|EQUAL|UNEQUAL|LESSEQUAL|MOREEQUAL|INRange|OUTRange}

TRIGGER:A:BUS:B<x>:FLEXray:DATa:QUALifier?

Arguments

LESSthan sets the data qualifier to less than.
MOREthan sets the data qualifier to greater than.
EQUAL sets the data qualifier to equal.
UNEQUAL sets the data qualifier to not equal.
LESSEQUAL sets the data qualifier to less than or equal.
MOREEQUAL sets the data qualifier to greater than or equal.
INRange sets the data qualifier to in range.
OUTRange sets the data qualifier to out of range.

Examples

TRIGGER:A:BUS:B1:FLEXRAY:DATA:QUALIFIER LESSTHAN sets the data qualifier to LESSTHAN.
**TRIGGER:A:BUS:B<x>:FLEXray:DATA:QUALIFIER**

This command specifies the length of the data string, in bytes, when triggering on the FlexRay bus data field. The trigger condition needs to be set to ID or IDANDDATA (using TRIGGER:A:BUS:B<x>:FLEXray:CONIdition). B<x> is the bus number, which is 1 or 2.

**Group**

Trigger

**Syntax**

`TRIGGER:A:BUS:B<x>:FLEXray:DATA:SIZE <NR1>`

`TRIGGER:A:BUS:B<x>:FLEXray:DATA:SIZE?`

**Arguments**

<NR1> is the FlexRay data string length, in bytes.

**Examples**

TRIGGER:A:BUS:B1:FLEXRAY:DATA:SIZE 8 sets the data string size to 8 bytes.


TRIGGER:A:BUS:B1:FLEXRAY:DATA:SIZE 1 indicating the data size is 1 byte.

**TRIGGER:A:BUS:B<x>:FLEXray:DATA:VALue**

This command specifies the low value when triggering on the FlexRay bus data field. The trigger condition needs to be set to ID or IDANDDATA (using TRIGGER:A:BUS:B<x>:FLEXray:CONIdition). B<x> is the bus number, which is 1 or 2.

**Conditions**

Requires a DPO3FLEX application module.

**Group**

Trigger

**Syntax**

`TRIGGER:A:BUS:B<x>:FLEXray:DATA:VALue <QString>`

`TRIGGER:A:BUS:B<x>:FLEXray:DATA:VALue?`

**Arguments**

<QString> is a quoted string.
Examples


TRIGGER:A:BUS:B1:FLEXRAY:DATA:VALUE "XXXXXXXX" indicating the FlexRay data value is don't care.

TRIGger:A:BUS:B<x>:FLEXray:EOFTYPE

This command specifies the end of file type (static, dynamic or any) when triggering on the FlexRay bus EOF field. The trigger condition needs to be set to EOF (using TRIGger:A:BUS:B<x>:FLEXray:CONDition). B<x> is the bus number, which is 1 or 2.

Conditions
Requires a DPO3FLEX application module.

Group
Trigger

Syntax
TRIGger:A:BUS:B<x>:FLEXray:EOFTYPE {STATic|DYNAMic|ANY}
TRIGger:A:BUS:B<x>:FLEXray:EOFTYPE?

Arguments
STATic specifies triggering on the STATIC end of file type.
DYNAMic specifies triggering on the DYNAMIC end of file type.
ANY specifies triggering on a STATIC or DYNAMIC end of file type.

Examples
TRIGGER:A:BUS:B1:FLEXRAY:EOFTYPE ANY sets the FlexRay end of file type to ANY.
TRIGGER:A:BUS:B1:FLEXRAY:EOFTYPE STATIC indicating the FlexRay end of file type is STATIC

TRIGger:A:BUS:B<x>:FLEXray:ERRTYPE

This command specifies the error type when triggering on the FlexRay bus signal. The trigger condition needs to be set to ERROR (using TRIGger:A:BUS:B<x>:FLEXray:CONDition). B<x> is the bus number, which is 1 or 2.

Conditions
Requires a DPO3FLEX application module.
**Group**

Trigger

**Syntax**

```
TRIGger:A:BUS:B<x>:FLEXray:ERRTYPE
{CRCHeader|CRCTrailer|SYNCFrame|STARTupnosync|NULLFRStatic|NULLFRDynamic}
TRIGger:A:BUS:B<x>:FLEXray:ERRTYPE?
```

**Arguments**

- **CRCHeader** sets the error type to CRCHeader.
- **CRCTrailer** sets the error type to CRCTrailer.
- **SYNCFrame** sets the error type to SYNCFrame.
- **STARTupnosync** sets the error type to STARTupnosync.
- **NULLFRStatic** sets the error type to NULLFRStatic.
- **NULLFRDynamic** sets the error type to NULLFRDynamic.

**Examples**

```
TRIGGER:A:BUS:B1:FLEXRAY:ERRTYPE SYNCFRAME sets the trigger type is SYNCFRAME.
```

---

**TRIGger:A:BUS:B<x>:FLEXray:FRAMEID:HIVALue**

This command specifies the high value when triggering on the FlexRay bus frame ID field. (Use `TRIGger:A:BUS:B<x>:FLEXray:FRAMEID:VALue` to set the low value.) The trigger condition needs to be set to IDentiﬁer (using `TRIGger:A:BUS:B<x>:FLEXray:CONDition`). `B<x>` is the bus number, which is 1 or 2.

**Conditions**

Requires a DPO3FLEX application module.

**Group**

Trigger

**Syntax**

```
TRIGger:A:BUS:B<x>:FLEXray:FRAMEID:HIVALue <QString>
TRIGger:A:BUS:B<x>:FLEXray:FRAMEID:HIVALue?
```

**Arguments**

- `<QString>` is a quoted string that is the binary frame ID high value.
**Examples**

TRIGGER:A:BUS:B1:FLEXRAY:FRAMEID:HIVALUE "11001100101" sets the frame ID high value to 11001100101.


**TRIgger:A:BUS:B<x>:FLEXray:FRAMEID:QUALifier**

This command specifies the qualifier to use when triggering on the FlexRay bus frame ID field. The trigger condition needs to be set to IDentiﬁer (using TRIGger:A:BUS:B<x>:FLEXray:CONDITION). B<x> is the bus number, which is 1 or 2.

**Conditions**

Requires a DPO3FLEX application module.

**Group**

Trigger

**Syntax**

TRIGger:A:BUS:B<x>:FLEXray:FRAMEID:QUALifier

\{LESSthan|MOREthan|EQual|UNEQual|LESSEQual|MOR EEQual|INrange|OUTrange\}

TRIGger:A:BUS:B<x>:FLEXray:FRAMEID:QUALifier?

**Arguments**

LESSthan sets the frame ID qualiﬁer to less than.

MOREthan sets the frame ID qualiﬁer to greater than.

EQual sets the frame ID qualiﬁer to equal.

UNEQual sets the frame ID qualiﬁer to not equal.

LESSEQual sets the frame ID qualiﬁer to less than or equal.

MOR EEQual sets the frame ID qualiﬁer to greater than or equal.

INrange sets the frame ID qualiﬁer to in range.

OUTrange sets the frame ID qualiﬁer to out of range.

**Examples**

TRIGGER:A:BUS:B1:FLEXRAY:FRAMEID:QUALIFIER LESSTHAN sets the frame ID qualiﬁer to less than.

**TRIGger:A:BUS:B<x>:FLEXray:FRAMEID:VALue**

This command specifies the low value when triggering on the FlexRay bus frame ID field. (Use `TRIGger:A:BUS:B<x>:FLEXray:FRAMEID:HIVALue` to set the high value.) The trigger condition needs to be set to IDenti
er (using `TRIGger:A:BUS:B<x>:FLEXray:CONDition`). `B<x>` is the bus number, which is 1 or 2.

**Conditions**
Requires a DPO3FLEX application module.

**Group**
Trigger

**Syntax**

```
TRIGger:A:BUS:B<x>:FLEXray:FRAMEID:VALue <QString>
TRIGger:A:BUS:B<x>:FLEXray:FRAMEID:VALue?
```

**Arguments**

`<QString>` is a quoted string that is the FlexRay frame ID low value.

**Examples**

```
TRIGGER:A:BUS:B1:FLEXRAY:FRAMEID:VALUE "XXXXXXXXXXX" indicating the frame ID value is don't care.
```

**TRIGger:A:BUS:B<x>:FLEXray:FRAMEType**

This command specifies the frame type (normal, payload, null, sync or startup) when triggering on the FlexRay bus signal. The trigger condition needs to be set to FRAMEType (using `TRIGger:A:BUS:B<x>:FLEXray:CONDition`). `B<x>` is the bus number, which is 1 or 2.

**Conditions**
Requires a DPO3FLEX application module.

**Group**
Trigger

**Syntax**

```
TRIGger:A:BUS:B<x>:FLEXray:FRAMEType {NORMAL|PAYLoad|NULL|SYNC|STARTup}
TRIGger:A:BUS:B<x>:FLEXray:FRAMEType?
```

MSO3000 and DPO3000 Series Programmer Manual 2-487
Arguments

- \texttt{NORMAL} specifies the normal frame type.
- \texttt{PAYLoad} specifies the payload frame type.
- \texttt{NULL} specifies the null frame type.
- \texttt{SYNC} specifies the sync frame type.
- \texttt{STARTup} specifies the startup frame type.

Examples

- \texttt{TRIGGER:A:BUS:B1:FLEXRAY:FRAMETYPE PAYLOAD} sets the frame type to payload.

\textbf{TRIGger:A:BUS:B<x>:FLEXray:HEADER:CRC}

This command specifies the \texttt{CRC} portion of the binary header string when triggering on the FlexRay bus signal. The trigger condition needs to be set to \texttt{HEAder} (using \texttt{TRIGger:A:BUS:B<x>:FLEXray:CONDition}). \texttt{B<x>} is the bus number, which is 1 or 2.

Conditions

Requires a DPO3FLEX application module.

Group

Trigger

Syntax

\begin{verbatim}
TRIGger:A:BUS:B<x>:FLEXray:HEADER:CRC <QString>
TRIGger:A:BUS:B<x>:FLEXray:HEADER:CRC?
\end{verbatim}

Arguments

- \texttt{<QString>} is a quoted string that is the \texttt{CRC} portion of the binary header string.

Examples

- \texttt{TRIGGER:A:BUS:B1:FLEXRAY:HEADER:CRC "11001100101"} sets the \texttt{CRC} portion of the binary header string to 11001100101.

\textbf{TRIGger:A:BUS:B<x>:FLEXray:HEADER:CYCLEcount}

This command specifies the cycle count portion of the binary header string when triggering on the FlexRay bus header. The trigger condition needs to be set to
HEADer (using TRIGger:A:BUS:B<x>:FLEXray:CONDition). B<x> is the bus number, which is 1 or 2.

Conditions Requires a DPO3FLEX application module.

Group Trigger

Syntax TRIGger:A:BUS:B<x>:FLEXray:HEADER:CYCLEcount <QString>
TRIGger:A:BUS:B<x>:FLEXray:HEADER:CYCLEcount?

Arguments <QString> is a quoted string that is the cycle count portion of the binary header string.


TRIGger:A:BUS:B<x>:FLEXray:HEADER:FRAMEID

This command specifies the frame ID portion of the binary header string when triggering on the FlexRay bus header. The trigger condition needs to be set to HEADer (using TRIGger:A:BUS:B<x>:FLEXray:CONDition). B<x> is the bus number, which is 1 or 2.

Conditions Requires a DPO3FLEX application module.

Group Trigger

Syntax TRIGger:A:BUS:B<x>:FLEXray:HEADER:FRAMEID <QString>
TRIGger:A:BUS:B<x>:FLEXray:HEADER:FRAMEID?

Arguments <QString> is a quoted string that represents the frame ID portion of the binary header string.

Examples TRIGGER:A:BUS:B1:FLEXRAY:HEADER:FRAMEID "11001100101" sets the frame ID portion of the binary header string to 11001100101.

TRIGGER:A:BUS:B<x>:FLEXray:HEADER:INDBits

This command specifies the indicator bits portion of the binary header string when triggering on the FlexRay bus header. The trigger condition needs to be set to HEADer (using TRIGGER:A:BUS:B<x>:FLEXray:CONDITION). B<x> is the bus number, which is 1 or 2.

**Conditions**
Requires a DPO3FLEX application module.

**Group**
Trigger

**Syntax**
TRIGGER:A:BUS:B<x>:FLEXray:HEADER:INDBits <QString>
TRIGGER:A:BUS:B<x>:FLEXray:HEADER:INDBits?

**Arguments**
<QString> is a quoted string that is the indicator bits portion of the binary header string.

**Examples**

TRIGGER:A:BUS:B<x>:FLEXray:HEADER:PAYLength

This command specifies the payload length portion of the binary header string when triggering on the FlexRay bus header. The trigger condition needs to be set to HEADer (using TRIGGER:A:BUS:B<x>:FLEXray:CONDITION). B<x> is the bus number, which is 1 or 2.

**Conditions**
Requires a DPO3FLEX application module.

**Group**
Trigger
Commands Listed in Alphabetical Order

**Syntax**

TRIGger:A:BUS:B<x>:FLEXray:HEADER:PAYLength <QString>
TRIGger:A:BUS:B<x>:FLEXray:HEADER:PAYLength?

**Arguments**

<QString> is the length of the payload portion of the Binary header string.

**Examples**


**TRIGger:A:BUS:B<x>:I2C:ADDRess:MODe**

Sets or returns the I2C address mode to 7 or 10-bit. Applies to bus <x>, where x is the bus number.

**Conditions**

This command requires a DPO3EMBD application module.

**Group**

Trigger

**Syntax**

TRIGger:A:BUS:B<x>:I2C:ADDRess:MODe {ADDR7|ADDR10}
TRIGger:A:BUS:B<x>:I2C:ADDRess:MODe?

**Arguments**

ADDR7 specifies the 7-bit I2C address mode.

ADDR10 specifies the 10-bit I2C address mode.

**Examples**


**TRIGger:A:BUS:B<x>:I2C:ADDRess:TYPe**

Sets or returns the I2C address type. The only supported address type is USER. Applies to bus <x>, where x is the bus number.

**Conditions**

This command requires a DPO3EMBD application module.

**Group**

Trigger
**Syntax**

```
TRIGger:A:BUS:B<x>:I2C:ADDRESS:TYPE
{GENERALcall|STARTbyte|HSmode|EEPROM|USER}
TRIGger:A:BUS:B<x>:I2C:ADDRESS:TYPE?
```

**Arguments**

- **GENERALcall** specifies a general call address.
- **STARTbyte** specifies a start byte address.
- **HSmode** specifies a high-speed mode address.
- **EEPROM** specifies an EEPROM address.
- **USER** specifies a user address.

**TRIGger:A:BUS:B<x>:I2C:ADDRESS:VALue**

Sets or returns the binary address string used for the I2C trigger if the trigger condition is ADDRESS or ADDRANDDATA. Applies to bus <x>, where x is the bus number.

**Conditions**

This command requires a DPO3EMBD application module.

**Group**

Trigger

**Syntax**

```
TRIGger:A:BUS:B<x>:I2C:ADDRESS:VALue <QString>
TRIGger:A:BUS:B<x>:I2C:ADDRESS:VALue?
```

**Arguments**

- `<QString>` is up to 7 or 10-bits depending on the address mode that specifies the address. The only allowed characters in the `QString` are 0, 1, and X.

**Examples**

```
```

**TRIGger:A:BUS:B<x>:I2C:CONDITION**

Sets or returns the trigger condition for an I2C trigger. Applies to bus <x>, where x is the bus number.

**Conditions**

This command requires a DPO3EMBD application module.

**Group**

Trigger
**TRIGger:A:BUS:B<x>:I2C:CONDITION**

Syntax

```
{START|STOP|REPEATstart|ACKMISS|ADDRESS|DATA|ADDRANDDATA}
```

Arguments

**START** specifies a search based on start condition.

**STOP** specifies a search based on stop condition.

**REPEATstart** specifies a search based on repeat of start condition.

**ACKMISS** specifies a search based on missing acknowledgement condition.

**ADDRESS** specifies a search based on address.

**DATA** specifies a search based on data.

**ADDRANDDATA** specifies a search based on address and data.

Examples

```
```

**TRIGger:A:BUS:B<x>:I2C:DATa:DIRection**

Sets or returns the I2C trigger type to be valid on a Read, Write, or Either condition. Read or write is indicated by the R/W bit in the I2C protocol. Applies to bus <x>, where x is the bus number.

Conditions

This command requires a DPO3EMBD application module.

Group

Trigger

Syntax

```
TRIGGER:A:BUS:B<x>:I2C:DATa:DIRection {READ|WRITE|NOCARE}
```

Arguments

**READ** specifies read as the data direction.

**WRITE** specifies write as the data direction.

**NOCARE** specifies either as the data direction.

Examples

```
```
**TRIGger:A:BUS:B<x>:I2C:DATa:SIZE**

Sets or returns the length of the data string in bytes to be used for an I2C trigger if the trigger condition is DATA or ADDRANDDATA. Applies to bus <x>, where x is the bus number.

**Conditions**
This command requires a DPO3EMBD application module.

**Group**
Trigger

**Syntax**

TRIGger:A:BUS:B<x>:I2C:DATa:SIZE <NR1>

TRIGger:A:BUS:B<x>:I2C:DATa:SIZE?

**Arguments**

<NR1> is the length of the data string in bytes.

**TRIGger:A:BUS:B<x>:I2C:DATa:VALue**

Sets or returns the binary data string used for I2C triggering if the trigger condition is DATA or ADDRANDDATA. Applies to bus <x>, where x is the bus number.

**Conditions**
This command requires a DPO3EMBD application module.

**Group**
Trigger

**Syntax**

TRIGger:A:BUS:B<x>:I2C:DATa:VALue <QString>

TRIGger:A:BUS:B<x>:I2C:DATa:VALue?

**Arguments**

<QString> is the binary data string, where the number of bits is 8 times the number of bytes specified. The only allowed characters in the string are 0, 1, and X.

**TRIGger:A:BUS:B<x>:LIN:CONDition**

Sets or returns the trigger condition for LIN.

**Group**
Trigger
Syntax

```
TRIGger:A:BUS:B<x>:LIN:CONDITION
{SYNCField|IDentifier|DATA|IDANDDATA|WAKEup|SLEEP|ERROR}
TRIGger:A:BUS:B<x>:LIN:CONDITION?
```

Arguments

- **SYNCField** sets the LIN trigger condition to sync field.
- **IDentifier** sets the LIN trigger condition to identifier.
- **DATA** sets the LIN trigger condition to data.
- **IDANDDATA** sets the LIN trigger condition to id and data.
- **WAKEup** sets the LIN trigger condition to wake up.
- **SLEEP** sets the LIN trigger condition to sleep.
- **ERROR** sets the LIN trigger condition to error.

Examples

```
TRIGGER:A:BUS:B1:LIN:CONDITION ERROR
```
sets the LIN trigger condition to error.

```
TRIGGER:A:BUS:B1:LIN:CONDITION?
```
might return

```
TRIGGER:A:BUS:B1:LIN:CONDITION SYNCFIELD
```
indicating the LIN trigger condition is sync field.

**TRIGger:A:BUS:B<x>:LIN:DATa:HIVALue**

Sets or returns the binary data string to be used for LIN trigger if trigger condition is ID or IDANDDATA.

Group

Trigger

Syntax

```
TRIGger:A:BUS:B<x>:LIN:DATa:HIVALue <QString>
TRIGger:A:BUS:B<x>:LIN:DATa:HIVALue?
```

Arguments

- **<QString>** is a quoted string that is the binary data string used for LIN trigger if the trigger condition is ID or IDANDDATA.

Examples

```
```
sets the high value to 11001010.

```
TRIGGER:A:BUS:B1:LIN:DATA:HIVALUE "XXXXXXXX" indicating the high value is don't care.
```
**TRIGger:A:BUS:B<x>:LIN:DATa:QUALifier**

Sets or returns the LIN data qualifier. This only applies if the trigger condition is IDANDDATA or DATA.

**Group** Trigger

**Syntax**

```
TRIGger:A:BUS:B<x>:LIN:DATa:QUALifier
{LESSthan|MOREthan|EQual|UNEQual|LESSEQual|MOREEQual|
INrange|OUTrange}
TRIGger:A:BUS:B<x>:LIN:DATa:QUALifier?
```

**Arguments**

- **LESSthan** sets the LIN data qualifier to less than.
- **MOREthan** sets the LIN data qualifier to greater than.
- **EQual** sets the LIN data qualifier to equal.
- **UNEQual** sets the LIN data qualifier to not equal.
- **LESSEQual** sets the LIN data qualifier to less than or equal.
- **MOREEQual** sets the LIN data qualifier to greater than or equal.
- **INrange** sets the LIN data qualifier to in range.
- **OUTrange** sets the LIN data qualifier to out of range.

**Examples**

```
```

**TRIGger:A:BUS:B<x>:LIN:DATa:SIZe**

Sets or returns the length of the data string in bytes to be used for LIN trigger.

**Group** Trigger

**Syntax**

```
TRIGger:A:BUS:B<x>:LIN:DATa:SIZe <NR1>
TRIGger:A:BUS:B<x>:LIN:DATa:SIZe?
```

**Arguments**

- **<NR1>** is the size of the data string in bytes.
Examples

TRIGGER:A:BUS:B1:LIN:DATA:SIZE 8 sets the data size to 8 bytes.
TRIGGER:A:BUS:B1:LIN:DATA:SIZE 1 indicating the data size is 1 byte.

TRIGger:A:BUS:B<x>:LIN:DATa:VALue

Sets or returns the binary data string to be used for LIN trigger condition if trigger condition is ID or IDANDDATA.

Group

Trigger

Syntax

TRIGger:A:BUS:B<x>:LIN:DATa:VALue <QString>
TRIGger:A:BUS:B<x>:LIN:DATa:VALue?

Arguments

<QString> is a quoted string that is the LIN trigger data value.

Examples

TRIGGER:A:BUS:B1:LIN:DATA:VALUE "11001101" sets the data value to 11001101.
TRIGGER:A:BUS:B1:LIN:DATA:VALUE "XXXXXXXX" indicating the data value is don't care.

TRIGger:A:BUS:B<x>:LIN:ERRTYPE

Sets or returns the error type be used for LIN trigger.

Group

Trigger

Syntax

TRIGger:A:BUS:B<x>:LIN:ERRTYPE {SYNC|PARity|Checksum|HEADertime|RESPtime|FRAMertime}
TRIGger:A:BUS:B<x>:LIN:ERRTYPE?

Arguments

SYNC sets the LIN error type to SYNC.
PARity sets the LIN error type to parity.
Checksum sets the LIN error type to checksum.
HEADertime sets the LIN error type to header time.
RESPtime sets the LIN error type to response time.
FRAMetime sets the LIN error type to frame time.

**Examples**

TRIGGER:A:BUS:B1:LIN:ERRTYPE CHECKSUM sets the LIN error type to checksum.


**TRIGger:A:BUS:B<x>:LIN:IDenti**

fier:VALue

Sets or returns the binary address string used for LIN trigger if the trigger condition is ID or IDANDDATA.

**Group**

Trigger

**Syntax**

TRIGger:A:BUS:B<x>:LIN:IDenti**

fier:VALue <QString>

TRIGger:A:BUS:B<x>:LIN:IDenti**

fier:VALue?

**Arguments**

<QString> is the binary address string used for LIN trigger if the trigger condition is ID or IDANDDATA.

**Examples**


**TRIGger:A:BUS:B<x>:MIL1553B:COM**

MAND:ADDRess:HIVALue

When the MIL-STD-1553 bus trigger condition is set to COMMAND, and the qualifier is set to INrange or OUTrange, this command specifies the upper limit of the range for the remote terminal address field. (Use the command TRIGger:A:BUS:B<x>:MIL1553B:COMMAND:ADDRess:VALue to specify the lower limit of the range.) The default is all X’s (don’t care). B<x> is the bus number, which is 1 or 2.

**Conditions**

This command requires a DPO3AERO application module.

**Group**

Trigger
Syntax

TRIGger:A:BUS:B<x>:MIL1553B:COMMAND:ADDRESS:HIVALue
QString

TRIGger:A:BUS:B<x>:MIL1553B:COMMAND:ADDRESS:HIVALue?

Related Commands

TRIGger:A:BUS:B<x>:MIL1553B:CONDITION

TRIGger:A:BUS:B<x>:MIL1553B:COMMAND:ADDRESS:QUALifier

TRIGger:A:BUS:B<x>:MIL1553B:COMMAND:ADDRESS:VALUE

Arguments

QString is a quoted string of up to 5 characters where the allowable characters are 0, 1, and X. The bits specified in the quoted string replace the least significant bits, leaving any unspecified upper bits unchanged.

Examples

TRIGger:A:BUS:B1:MIL1553B:HIVALue
“01000” sets the upper limit of the remote terminal address range to 01000 (when the trigger condition has been set to MIL1553B, and the qualifier has been set to INrange or OUTrange).


TRIGger:A:BUS:B<x>:MIL1553B:COMMAND:ADDRESS:QUALifier

When the MIL-STD-1553 bus trigger condition is set to COMMAND, this command specifies the qualifier to be used with the remote terminal address field. B<x> is the bus number, which is 1 or 2.

Conditions

This command requires a DPO3AERO application module.

Group

Trigger

Syntax

TRIGger:A:BUS:B<x>:MIL1553B:COMMAND:ADDRESS:QUALifier
{LESSthan|MOREthan|EQUAL|UNEQual|LESSEQual|MOREEQual|INrange|OUTrange}

TRIGger:A:BUS:B<x>:MIL1553B:COMMAND:ADDRESS:QUALifier?

Related Commands

TRIGger:A:BUS:B<x>:MIL1553B:CONDITION

TRIGger:A:BUS:B<x>:MIL1553B:COMMAND:ADDRESS:VALUE

TRIGger:A:BUS:B<x>:MIL1553B:COMMAND:ADDRESS:HIVALue
Arguments

LESSthan sets the Command Address qualifier to less than.
MOREthan sets the Command Address qualifier to greater than.
EQUAL sets the Command Address qualifier to equal.
UNEQUAL sets the Command Address qualifier to not equal.
LESSEQUAL sets the Command Address qualifier to less than or equal.
MOREEQUAL sets the Command Address qualifier to greater than or equal.
INrange sets the Command Address qualifier to in range.
OUTrange sets the Command Address qualifier to out of range.

Examples

TRIGger:A:BUS:B1:MIL1553B:COMMAND:ADDRess:QUALifier EQUAL sets the qualifier to be used with the remote terminal address to equal.

TRIGger:A:BUS:B<x>:MIL1553B:COMMAND:ADDRess:VALue

When the MIL-STD-1553 bus trigger condition is set to COMMAND, and the qualifier is set to LESS than, MORE than, EQUAL, UNEQUAL, LESSEQUAL or MOREEQUAL, this command specifies the value of the 5-bit remote terminal address to be used in the trigger. When the MIL-STD-1553 bus trigger condition is set to COMMAND, and the qualifier is set to INrange or OUTrange, this command specifies the lower limit of the remote terminal address range. The default is all X’s (don’t care). B<x> is the bus number, which is 1 or 2.

Conditions

This command requires a DPO3AERO application module.

Group

Trigger

Syntax

TRIGger:A:BUS:B<x>:MIL1553B:COMMAND:ADDRess:VALue <QString>
TRIGger:A:BUS:B<x>:MIL1553B:COMMAND:ADDRess:VALue?

Related Commands

TRIGger:A:BUS:B<x>:MIL1553B:CONDition
TRIGger:A:BUS:B<x>:MIL1553B:COMMAND:ADDRess:QUALifier
**Arguments**

QString is a quoted string of up to 5 characters, where the allowable characters are 0, 1, and X. The bits specified in the quoted string replace the least significant bits, leaving any unspecified upper bits unchanged.

**Examples**

TRIGger:A:BUS:B1:MIL1553B:COMMAND:ADDRess:VALUE “01000” sets the remote terminal address to be used in the trigger to 01000.


**TRIgger:A:BUS:B<x>:MIL1553B:COMMAND:COUNT**

When the MIL-STD-1553 bus trigger condition is set to COMMAND, this command specifies the bit pattern for the 5-bit Word Count/Mode Code sub-address field that is to be used in the trigger. (Use the command TRIGger:A:BUS:B<x>:MIL1553B:COMMAND:SUBADdress to specify Word Count or Mode Code.) In Word Count mode, this field defines the number of data words that is to be transmitted, or received, depending on the T/R bit setting. (Use the command TRIGger:A:BUS:B<x>:MIL1553B:COMMAND:TRBit to set the T/R bit.) A word count value of 0 actually indicates a transfer of 32 data words. B<x> is the bus number, which is 1 or 2.

**Conditions**

This command requires a DPO3AERO application module.

**Group**

Trigger

**Syntax**

TRIGger:A:BUS:B<x>:MIL1553B:COMMAND:COUNT <QString>

TRIGger:A:BUS:B<x>:MIL1553B:COMMAND:COUNT?

**Related Commands**

TRIGger:A:BUS:B<x>:MIL1553B:CONDition

TRIGger:A:BUS:B<x>:MIL1553B:COMMAND:SUBADdress

TRIGger:A:BUS:B<x>:MIL1553B:COMMAND:TRBit

**Arguments**

QString is a quoted string of up to 5 characters, where the allowable characters are 0, 1 and X. The bits specified in the quoted string replace the least significant bits, leaving any unspecified upper bits unchanged.

**Examples**


MSO3000 and DPO3000 Series Programmer Manual 2-501
**Commands Listed in Alphabetical Order**

**TRIGger:A:BUS:B<x>:MIL1553B:COMMAND:PARity**

When the MIL-STD-1553 bus trigger condition is set to COMMAND, this command specifies the Command word parity that is to be used in the trigger. B<x> is the bus number, which is 1 or 2.

**Conditions**
This command requires a DPO3AERO application module.

**Group**
Trigger

**Syntax**
```
TRIGger:A:BUS:B<x>:MIL1553B:COMMAND:PARity
{0|1|X|ZERO|ONE|NOCARE|OFF|ON}

TRIGger:A:BUS:B<x>:MIL1553B:COMMAND:PARity?
```

**Related Commands**
TRIGger:A:BUS:B<x>:MIL1553B:CONDition

**Arguments**
0
1
X sets the value to X (“don’t care”) which is the default.
ZERO sets the value to 0.
ONE sets the value to 1.
NOCARE sets the value to X (“don’t care”) which is the default.
OFF sets the value to 0.
ON sets the value to 1.

**Examples**
```
TRIGger:A:BUS:B1:MIL1553B:COMMAND:PARity ZERO sets the Command word parity bit to 0.
TRIGger:A:BUS:B1:MIL1553B:COMMAND:PARity? might return 0, 1 or X.
```

**TRIGger:A:BUS:B<x>:MIL1553B:COMMAND:SUBADdress**

When the MIL-STD-1553 bus trigger condition is set to COMMAND, this command specifies the 5 bit sub-address that is to be used in the trigger. When the sub-address value is set to 00000 or 11111 binary, it specifies that the command is a “Mode Code” command. Any other value specifies that it is a “Word Count” command. The default is all X’s (don’t care). B<x> is the bus number, which is 1 or 2.
NOTE. The sub-address field is used to direct data to different functions within the subsystem for values 1 — 30.

**Conditions**
This command requires a DPO3AERO application module.

**Group**
Trigger

**Syntax**
```
TRIGger:A:BUS:B<x>:MIL1553B:COMMAND:SUBAddress <QString>
TRIGger:A:BUS:B<x>:MIL1553B:COMMAND:SUBAddress?
```

**Related Commands**
- TRIGger:A:BUS:B<x>:MIL1553B:CONDition
- TRIGger:A:BUS:B<x>:MIL1553B:COMMAND:COUNt

**Arguments**
QString is a quoted string of up to 5 characters, where the allowable characters are 0, 1, and X. The bits specified in the quoted string replace the least significant bits, leaving any unspecified upper bits unchanged.

**Examples**
```
TRIGger:A:BUS:B1:MIL1553B:COMMAND:SUBAddress “01000” sets the sub-address to be used in the trigger to 01000.
```

**TRIGger:A:BUS:B<x>:MIL1553B:COMMAND:TRBit**

When the MIL-STD-1553 bus trigger condition is set to **COMMAND**, this command specifies that the transmit/receive bit (bit 9) is to be used in the trigger. The transmit/receive bit defines the direction of information flow, and is always from the point of view of the remote terminal. B<x> is the bus number, which is 1 or 2.

**Conditions**
This command requires a DPO3AERO application module.

**Group**
Trigger

**Syntax**
```
TRIGger:A:BUS:B<x>:MIL1553B:COMMAND:TRBit {RX|TX|X}
TRIGger:A:BUS:B<x>:MIL1553B:COMMAND:TRBit?
```

**Related Commands**
- TRIGger:A:BUS:B<x>:MIL1553B:CONDition
- TRIGger:A:BUS:B<x>:MIL1553B:COMMAND:COUNt

MSO3000 and DPO3000 Series Programmer Manual

2-503
Arguments

RX (logic 0) directs the instrument to trigger on a TX or "transmit" from a remote terminal.

TX (logic 1) directs the instrument to trigger on an RX or "receive" from a remote terminal.

X indicates “don’t care”.

Examples

TRIGger:A:BUS:B1:MIL1553B:COMMAND:TRBit TX directs the instrument to trigger on a TX or “transmit” from a remote terminal.


TRIGger:A:BUS:B<x>:MIL1553B:CONDition

This command specifies a word type or condition within a MIL-STD-1553 bus word to trigger on. B<x> is the serial bus number.

NOTE. There are three types of MIL-STD-1553 (Aircraft) bus words: Command, Status, and Data, all sharing a common structure twenty bits in length. The first three bits are used as a synchronization field. The last bit is the odd parity of the previous 16 bits.

Conditions

This command requires a DPO3AERO application module.

Group

Trigger

Syntax

TRIGger:A:BUS:B<x>:MIL1553B:CONDition

{SYNC|COMMAND|STATUS|DATA|TIME|ERROR}

TRIGger:A:BUS:B<x>:MIL1553B:CONDition?

Related Commands

Most of the other TRIGger:A:BUS:B<x>:MIL1553B commands are impacted by the setting of this command.

BUS:B<x>:MIL1553B:POLarity

BUS:B<x>:MIL1553B:SOUrce

Arguments

SYNC refers to the 3–bit sync pulse that precedes each word.

COMMAND is one of 3 16–bit word types. It specifies the function that a remote terminal is to perform.
STATUs is one of 3 16-bit word types. Remote terminals respond to valid message transmissions via status words.

DATA is one of 3 16-bit word types.


ERROR specifies to trigger upon a signaling error. (You can specify which type of error — Parity, Sync, Manchester or Non-contiguous Data — by using the TRIGger:A:BUS:B<x>:MIL1553B:ERRTYPE command.)

**NOTE.**

Use the TRIGger:A:BUS:B<x>:MIL1553B:CONDition:STATus:BIT commands to set the following bits:

9 — message error  
TRIGger:A:BUS:B<x>:MIL1553B:STATus:BIT:ME

10 — instrumentation  
TRIGger:A:BUS:B<x>:MIL1553B:STATus:BIT:INSTR

11 — SRQ (service request)  
TRIGger:A:BUS:B<x>:MIL1553B:STATus:BIT:SRQ

15 — BCR (broadcast command received)  

16 — busy  
TRIGger:A:BUS:B<x>:MIL1553B:STATus:BIT:BUSY

17 — subsystem flag  
TRIGger:A:BUS:B<x>:MIL1553B:STATus:BIT:SUBSF

18 — DBCA (dynamic bus control acceptance)  
TRIGger:A:BUS:B<x>:MIL1553B:STATus:BIT:DBCA

19 — terminal flag  
TRIGger:A:BUS:B<x>:MIL1553B:STATus:BIT:TF

**Examples**  
:TRIGger:A:BUS:B1:MIL1553B:CONDition STATus sets the word type to trigger on to STATus.  
**TRIgger:A:BUS:B<x>:MIL1553B:DATa:PARity**

When the MIL-STD-1553 bus trigger condition is set to DATa, this command specifies the data parity bit to be used in the trigger. Returned values are 0, 1, or X (don’t care). B<x> is the bus number, which is 1 or 2.

**Conditions**
This command requires a DPO3AERO application module.

**Group**
Trigger

**Syntax**
TRIgger:A:BUS:B<x>:MIL1553B:DATa:PARity
{0|1|X|ZERO|ONE|NOCARE|OFF|ON}

TRIgger:A:BUS:B<x>:MIL1553B:DATa:PARity?

**Related Commands**
TRIgger:A:BUS:B<x>:MIL1553B:CONDition
TRIgger:A:BUS:B<x>:MIL1553B:DATa:VALue

**Arguments**
0
1
X sets the value to X (“don’t care”) which is the default.
ZERO sets the value to 0.
ONE sets the value to 1.
NOCARE sets the value to X (“don’t care”) which is the default.
OFF sets the value to 0.
ON sets the value to 1.

**Examples**
TRIgger:A:BUS:B1:MIL1553B:DATa:PARity 1 sets the data parity bit to be used in a MIL-STD-1553 bus trigger to 1.

TRIgger:A:BUS:B1:MIL1553B:DATa:PARity? might return 0, indicating that the data parity bit to be used in a MIL-STD-1553 bus trigger is set to 0.

**TRIgger:A:BUS:B<x>:MIL1553B:DATa:VALue**

When the MIL-STD-1553 bus trigger condition is set to DATa, this command specifies the data binary pattern to be used in the trigger. This is a 16-bit field. The default is all X’s (don’t care). B<x> is the bus number, which is 1 or 2.
**Syntax**

```
TRIGger:A:BUS:B<x>:MIL1553B:DATa:VALue <QString>
TRIGger:A:BUS:B<x>:MIL1553B:DATa:VALue?
```

**Arguments**

QString is a quoted string of up to 16 characters, where the allowable characters are 0, 1, and X. The bits specified in the quoted string replace the least significant bits, leaving any unspecified upper bits unchanged.

**Examples**

```
TRIGger:A:BUS:B1:MIL1553B:DATa:VALue "01000" sets the data binary pattern to be used in a MIL-STD-1553 bus trigger to 01000.
```

**TRIGger:A:BUS:B<x>:MIL1553B:ERRTYPE**

When the MIL-STD-1553 bus trigger condition is set to ERROR, this command specifies the signaling error type to be used in the trigger: Parity, Sync, Manchester or Data. B<x> is the bus number, which is 1 or 2.

**Syntax**

```
TRIGger:A:BUS:B<x>:MIL1553B:ERRTYPE {PARity|SYNC|MANCHester|DATA}
TRIGger:A:BUS:B<x>:MIL1553B:ERRTYPE?
```

**Related Commands**

TRIGger:A:BUS:B<x>:MIL1553B:CONDition
Arguments

PARity — an incorrect parity setting.
SYNc — the high to low, or low to high transition doesn’t happen in the middle of the sync time as it should.
MANChester — no transition in a bit time.
DATA — a non-contiguous data error.

Examples

TRIGger:A:BUS:B1:MIL1553B:ERRTYPE PARity sets the error type to be used in the trigger to PARITY.

TRIGger:A:BUS:B<x>:MIL1553B:STATus:ADDRess:HIVALue

When the MIL-STD-1553 bus trigger condition is set to STATus, and the qualifier is set to INrange or OUTrange, this command specifies the upper limit for the 5 bit remote terminal address field of the Status word. (Use the command TRIGger:A:BUS:B<x>:MIL1553B:STATus:ADDRess:VALue to specify the lower limit.) The default is all X’s (don’t care). B<x> is the serial bus number.

Conditions

This command requires a DPO3AERO application module.

Group

Trigger

Syntax

TRIGger:A:BUS:B<x>:MIL1553B:STATus:ADDRess:HIVALue <QString>
TRIGger:A:BUS:B<x>:MIL1553B:STATus:ADDRess:HIVALue?

Related Commands

TRIGger:A:BUS:B<x>:MIL1553B:CONDition
TRIGger:A:BUS:B<x>:MIL1553B:STATus:ADDRess:VALue
TRIGger:A:BUS:B<x>:MIL1553B:STATus:ADDRess:QUALifier

Arguments

QString is a quoted string of up to 5 characters, where the allowable characters are 0, 1, and X. The bits specified in the quoted string replace the least significant bits, leaving any unspecified upper bits unchanged.

Examples

TRIGger:A:BUS:B1:MIL1553B:HIVAL “01000” sets the upper limit of the range of the terminal address to 01000 (when the trigger condition is set to MIL1553B, and the qualifier is set to INrange or OUTrange).
**TRIGger:A:BUS:B<x>:MIL1553B:STATus:ADDRess:QUALifier**

When the MIL-STD-1553 bus trigger condition is set to STATus, this command specifies the qualifier to be used with the address field. The default is EQUAL. B<x> is the serial bus number.

**Conditions**

This command requires a DPO3AERO application module.

**Group**

Trigger

**Syntax**

```
TRIGger:A:BUS:B<x>:MIL1553B:STATus:ADDRess:QUALifier
{LESSthan|MOREthan|EQUAL|UNEQual|LESSEQual|MOREEQual|INrange|OUTrange}

TRIGger:A:BUS:B<x>:MIL1553B:STATus:ADDRess:QUALifier?
```

**Related Commands**

- TRIGger:A:BUS:B<x>:MIL1553B:CONDition
- TRIGger:A:BUS:B<x>:MIL1553B:STATus:ADDRess:QUALifier
- TRIGger:A:BUS:B<x>:MIL1553B:STATus:ADDRess:HIVALue
- TRIGger:A:BUS:B<x>:MIL1553B:STATus:ADDRess:VALue

**Arguments**

- LESSthan sets the Status Address qualifier to less than.
- MOREthan sets the Status Address qualifier to greater than.
- EQUAL sets the Status Address qualifier to equal.
- UNEQual sets the Status Address qualifier to not equal.
- LESSEQual sets the Status Address qualifier to less than or equal.
- MOREEQual sets the Status Address qualifier to greater than or equal.
- INrange sets the Status Address qualifier to in range.
- OUTrange sets the Status Address qualifier to out of range.

**Examples**

```
sets the qualifier to be used with the address field to greater than.

```
**TRIGger:A:BUS:B<x>:MIL1553B:STATus:ADDRess:VALue**

When the MIL-STD-1553 bus trigger condition is set to *STATus*, and the qualifier is set to *LESSthan*, *MOREthan*, *EQUAL*, *UNEQUAL*, *LESSEQUAL* or *MOREEQUAL*, this command specifies the value of the 5–bit remote terminal address to be used in the trigger. When the MIL-STD-1553 bus trigger condition is set to *STATus*, and the qualifier is set to *INrange* or *OUTrange*, this command specifies the lower limit of the range. (Use the command TRIGger:A:BUS:B<x>:MIL1553B:STATus:ADDRess:HIValue to specify the upper limit of the range.) The default is all X’s (don’t care). B<x> is the serial bus number.

**Conditions**

This command requires a DPO3AERO application module.

**Group**

Trigger

**Syntax**

TRIGger:A:BUS:B<x>:MIL1553B:STATus:ADDRess:VALue <QString>
TRIGger:A:BUS:B<x>:MIL1553B:STATus:ADDRess:VALue?

**Related Commands**

TRIGger:A:BUS:B<x>:MIL1553B:CONDition
TRIGger:A:BUS:B<x>:MIL1553B:STATus:ADDRess:QUALifier

**Arguments**

QString is a quoted string of up to 5 characters, where the allowable characters are 0, 1, and X. The bits specified in the quoted string replace the least significant bits, leaving any unspecified upper bits unchanged.

**Examples**

TRIGger:A:BUS:B1:MIL1553B:STATus:ADDRess:VALue "01000" sets the value of the 5–bit remote terminal address to be used in the trigger, when the qualifier has been set to *LESSthan*, *MOREthan*, *EQUAL*, *UNEQUAL*, *LESSEQUAL* or *MOREEQUAL*.

TRIGger:A:BUS:B1:MIL1553B:STATus:ADDRess:VALue "01000" sets the lower limit of the range to 01000, if the qualifier has been set to *INrange* or *OUTrange*.

**TRIGger:A:BUS:B<x>:MIL1553B:STATus:BIT:BCR**

When the MIL-STD-1553 bus trigger condition is set to **STATus**, this command specifies the status word broadcast command received (BCR) bit value (bit 15) to be used in the trigger. Returned values are 0, 1, or X (don’t care, which is the default). B<x> is the serial bus number.

**Conditions**
This command requires a DPO3AERO application module.

**Group**
Trigger

**Syntax**

```
{0|1|X|ZERO|ONE|NOCARE|OFF|ON}
```

```
TRIGger:A:BUS:B<x>:MIL1553B:STATus:BIT:BCR?
```

**Related Commands**

TRIGger:A:BUS:B<x>:MIL1553B:CONDition

**Arguments**

0

1

X sets the value to X (“don’t care”) which is the default.

ZERO sets the value to 0.

ONE sets the value to 1.

NOCARE sets the value to X (“don’t care”) which is the default.

OFF sets the value to 0.

ON sets the value to 1.

**Examples**

```
```

sets the BCR bit value to be used in the trigger to X.

```
```

might return 1.

---

**TRIGger:A:BUS:B<x>:MIL1553B:STATus:BIT:BUSY**

When the MIL-STD-1553 bus trigger condition is set to **STATus**, this command specifies the status word busy bit value (bit 16) to be used in the trigger. Returned values are 0, 1, or X (don’t care, which is the default). B<x> is the serial bus number.
**TRIGger:A:BUS:B<x>:MIL1553B:STATus:BIT:BUSY**

This command requires a DPO3AERO application module.

**Group**  
Trigger

**Syntax**  
```
TRIGger:A:BUS:B<x>:MIL1553B:STATus:BIT:BUSY
{0|1|X|ZERO|ONE|NOCARE|OFF|ON}

TRIGger:A:BUS:B<x>:MIL1553B:STATus:BIT:BUSY?
```

**Related Commands**  
TRIGger:A:BUS:B<x>:MIL1553B:CONDition

**Arguments**  
0

1

X sets the value to X (“don’t care”) which is the default.

ZERO sets the value to 0.

ONE sets the value to 1.

NOCARE sets the value to X (“don’t care”) which is the default.

OFF sets the value to 0.

ON sets the value to 1.

**Examples**  
TRIGger:A:BUS:B1:MIL1553B:STAT:BIT:BUSY NOCARE sets the status word busy bit value to be used in the trigger to X.


**TRIGger:A:BUS:B<x>:MIL1553B:STATus:BIT:DBCA**

When the MIL-STD-1553 bus trigger condition is set to STATus, this command specifies the status word dynamic bus control acceptance (DBCA) bit value (bit 18) to be used in the trigger. Returned values are 0, 1, or X (don’t care, which is the default). B<x> is the serial bus number.

**Conditions**  
This command requires a DPO3AERO application module.

**Group**  
Trigger
**Syntax**

```
TRIGger:A:BUS:B<x>:MIL1553B:STATus:BIT:DBCA
{0|1|X|ZERO|ONE|NOCARE|OFF|ON}

TRIGger:A:BUS:B<x>:MIL1553B:STATus:BIT:DBCA?
```

**Related Commands**

```
TRIGger:A:BUS:B<x>:MIL1553B:CONDition
```

**Arguments**

0
1

X sets the value to X (“don’t care”) which is the default.

ZERO sets the value to 0.

ONE sets the value to 1.

NOCARE sets the value to X (“don’t care”) which is the default.

OFF sets the value to 0.

ON sets the value to 1.

**Examples**

```
sets the status word dynamic bus control acceptance (DBCA) bit value to be used in the trigger to X.

```

**TRIGger:A:BUS:B<x>:MIL1553B:STATus:BIT:INSTR**

When the MIL-STD-1553 bus trigger condition is set to STATus, this command specifies the status word instrumentation bit value (bit 10) to be used in the trigger. Returned values are 0, 1, or X (don’t care, which is the default). B<x> is the serial bus number.

**Conditions**

This command requires a DPO3AERO application module.

**Group**

Trigger

**Syntax**

```
TRIGger:A:BUS:B<x>:MIL1553B:STATus:BIT:INSTR
{0|1|X|ZERO|ONE|NOCARE|OFF|ON}

TRIGger:A:BUS:B<x>:MIL1553B:STATus:BIT:INSTR?
```
Related Commands

**TRIGger:A:BUS:B<x>:MIL1553B:CONDition**

**Arguments**

0
1

X sets the value to X (“don’t care”) which is the default.
ZERO sets the value to 0.
ONE sets the value to 1.
NOCARE sets the value to X (“don’t care”) which is the default.
OFF sets the value to 0.
ON sets the value to 1.

**Examples**


ZERO sets the status word instrumentation bit value to be used in the trigger to 0.


might return 1.

**TRIGger:A:BUS:B<x>:MIL1553B:STATus:BIT:ME**

When the MIL-STD-1553 bus trigger condition is set to **STATus**, this command specifies the status word message error bit value (bit 9) to be used in the trigger. Returned values are 0, 1, or X (don’t care, which is the default). B<x> is the serial bus number.

**Conditions**

This command requires a DPO3AERO application module.

**Group**

Trigger

**Syntax**

**TRIGger:A:BUS:B<x>:MIL1553B:STATus:BIT:ME**

{0|1|X|ZERO|ONE|NOCARE|OFF|ON}

**TRIGger:A:BUS:B<x>:MIL1553B:STATus:BIT:ME?**

**Related Commands**

**TRIGger:A:BUS:B<x>:MIL1553B:CONDition**

**Arguments**

0
1

X sets the value to X (“don’t care”) which is the default.
Commands Listed in Alphabetical Order

ZERO sets the value to 0.
ONE sets the value to 1.
NOCARE sets the value to X (“don’t care”) which is the default.
OFF sets the value to 0.
ON sets the value to 1.

**Examples**

TRIGger:A:BUS:B1:MIL1553B:STATus:BIT:ME NOCARE sets the status word message error bit value to be used in the trigger to X.

**TRIGger:A:BUS:B<x>:MIL1553B:STATus:BIT:SRQ**

When the MIL-STD-1553 bus trigger condition is set to STATus, this command specifies the status word service request (SRQ) bit value (bit 11) to be used in the trigger. Returned values are 0, 1, or X (don’t care, which is the default). B<x> is the serial bus number.

**Conditions**
This command requires a DPO3AERO application module.

**Group**
Trigger

**Syntax**

```
TRIGger:A:BUS:B<x>:MIL1553B:STATus:BIT:SRQ
{0|1|X|ZERO|ONE|NOCARE|OFF|ON}
```

```
TRIGger:A:BUS:B<x>:MIL1553B:STATus:BIT:SRQ?
```

**Related Commands**
TRIGger:A:BUS:B<x>:MIL1553B:CONDition

**Arguments**
0
1
X sets the value to X (“don’t care”) which is the default.
ZERO sets the value to 0.
ONE sets the value to 1.
NOCARE sets the value to X (“don’t care”) which is the default.
OFF sets the value to 0.
ON sets the value to 1.
**Examples**

TRIGger:A:BUS:B1:MIL1553B:STAT:BIT:SRQ NOCARE sets the status word SRQ bit value to be used in the trigger to X.


**TRIGger:A:BUS:B<x>:MIL1553B:STATus:BIT:SUBSF**

When the MIL-STD-1553 bus trigger condition is set to STATus, this command specifies the status word subsystem flag bit value (bit 17) to be used in the trigger. Returned values are 0, 1, or X (don’t care, which is the default). B<x> is the serial bus number.

**Conditions**

This command requires a DPO3AERO application module.

**Group**

Trigger

**Syntax**

TRIGger:A:BUS:B<x>:MIL1553B:STATus:BIT:SUBSF

{0|1|X|ZERO|ONE|NOCARE|OFF|ON}

TRIGger:A:BUS:B<x>:MIL1553B:STATus:BIT:SUBSF?

**Related Commands**

TRIGger:A:BUS:B<x>:MIL1553B:CONDition

**Arguments**

0

1

X sets the value to X (“don’t care”) which is the default.

ZERO sets the value to 0.

ONE sets the value to 1.

NOCARE sets the value to X (“don’t care”) which is the default.

OFF sets the value to 0.

ON sets the value to 1.

**Examples**

TRIGger:A:BUS:B1:MIL1553B:STAT:BIT:SUBSF NOCARE sets the status word subsystem flag bit value to be used in the trigger to X.

TRIGger:A:BUS:B<x>:MIL1553B:STATus:BIT:TF

When the MIL-STD-1553 bus trigger condition is set to STATus, this command specifies the status word terminal flag bit value (bit 19) to be used in the trigger. Returned values are 0, 1, or X (don’t care, which is the default). B<x> is the serial bus number.

**Conditions**
This command requires a DPO3AERO application module.

**Group**
Trigger

**Syntax**
```
TRIGger:A:BUS:B<x>:MIL1553B:STATus:BIT:TF
{0|1|X|ZERO|ONE|NOCARE|OFF|ON}

TRIGger:A:BUS:B<x>:MIL1553B:STATus:BIT:TF?
```

**Related Commands**
TRIGger:A:BUS:B<x>:MIL1553B:CONDition

**Arguments**
0
1
X sets the value to X (“don’t care”) which is the default.
ZERO sets the value to 0.
ONE sets the value to 1.
NOCARE sets the value to X (“don’t care”) which is the default.
OFF sets the value to 0.
ON sets the value to 1.

**Examples**
```
TRIGger:A:BUS:B1:MIL1553B:STAT:BIT:TF NOCARE sets the status word terminal flag bit value to be used in the trigger to X.
```

TRIGger:A:BUS:B<x>:MIL1553B:STATus:PARity

When the MIL-STD-1553 bus trigger condition is set to STATus, this command specifies the status parity bit value to be used in the trigger. Returned values are 0, 1, or X (don’t care, which is the default). B<x> is the serial bus number.
Conditions  
This command requires a DPO3AERO application module.

Group  
Trigger

Syntax  
TRIGger:A:BUS:B<x>:MIL1553B:STATus:PARity  
{0|1|X|ZERO|ONE|NOCARE|OFF|ON}

TRIGger:A:BUS:B<x>:MIL1553B:STATus:PARity?

Related Commands  
TRIGger:A:BUS:B<x>:MIL1553B:CONDition

Arguments  
0
1
X sets the value to X ("don’t care") which is the default.
ZERO sets the value to 0.
ONE sets the value to 1.
NOCARE sets the value to X ("don’t care") which is the default.
OFF sets the value to 0.
ON sets the value to 1.

Examples  
TRIGger:A:BUS:B1:MIL1553B:STAT:PAR ONE sets the parity bit value to be used in the trigger to 1.

TRIGger:A:BUS:B<x>:MIL1553B:TIMe:LESSLimit

When the MIL-STD-1553 bus trigger condition is set to TIMe, this command specifies either the minimum remote terminal response time (RT) limit for the amount of time the terminal has to transmit, or it specifies the minimum inter-message gap (IMG). (You can specify RT or IMG using the TRIGger:A:BUS:B<x>:MIL1553B:CONDition TIMe command.) B<x> is the bus number, which is 1 or 2.

Conditions  
This command requires a DPO3AERO application module.

Group  
Trigger
Commands Listed in Alphabetical Order

Syntax

TRIGger:A:BUS:B<x>:MIL1553B:TIMe:LESSLimit <NR3>
TRIGger:A:BUS:B<x>:MIL1553B:TIMe:LESSLimit?

Related Commands

TRIGger:A:BUS:B<x>:MIL1553B:CONDition
TRIGger:A:BUS:B<x>:MIL1553B:TIMe:MORELimit

Arguments

<NR3> is a floating point number that specifies either the minimum remote terminal response time (RT) or the inter-message gap (IMG) in seconds.

Examples

TRIGger:A:BUS:B1:MIL1553B:TIMe:LESSLimit 3.0000e-6 would set either the remote terminal response time (RT) or the inter-message gap (IMG) to 3.00 μS.

TRIGger:A:BUS:B1:MIL1553B:TIMe:LESSLimit? might return 2.0000e-6, indicating that the RT or IMG has been set to 2.00 μS.

**TRIGger:A:BUS:B<x>:MIL1553B:TIMe:MORELimit**

When the MIL-STD-1553 bus trigger condition is set to TIMe, this command specifies either the maximum remote terminal response time (RT) limit for the amount of time the terminal has to transmit, or it specifies the maximum inter-message gap (IMG). (You can specify the RT and IMG using the TRIGger:A:BUS:B<x>:MIL1553B:CONDition TIMe command.) B<x> is the bus number, which is 1 or 2.

Conditions

This command requires a DPO3AERO application module.

Group

Trigger

Syntax

TRIGger:A:BUS:B<x>:MIL1553B:TIMe:MORELimit <NR3>
TRIGger:A:BUS:B<x>:MIL1553B:TIMe:MORELimit?

Related Commands

TRIGger:A:BUS:B<x>:MIL1553B:CONDition
TRIGger:A:BUS:B<x>:MIL1553B:TIMe:LESSLimit

Arguments

<NR3> is a floating point number that specifies either the maximum remote terminal response time (RT) or the inter-message gap (IMG) in seconds.
**Examples**  
TRIGger:A:BUS:B1:MIL1553B:TIME:MORELimit 80.0000e-6 would set either the remote terminal response time (RT) or the inter-message gap (IMG) to be used in the trigger to 80.0 μS.

TRIGger:A:BUS:B1:MIL1553B:TIME:MORELimit? might return 100.0000e-6, indicating that the RT or IMG has been set to 100.00 μS.

**TRIGger:A:BUS:B<x>:MIL1553B:TIME:QUALifier**

When the MIL-STD-1553 bus trigger condition is set to TIME, this command specifies the trigger data time qualifier. (This includes a smaller set of arguments than other qualifier commands.) B<x> is the bus number, which is 1 or 2.

**Conditions**  
This command requires a DPO3AERO application module.

**Group**  
Trigger

**Syntax**  
TRIGger:A:BUS:B<x>:MIL1553B:TIME:QUALifier  
{LESSthan|MOREthan|INrange|OUTrange}

TRIGger:A:BUS:B<x>:MIL1553B:TIME:QUALifier?

**Related Commands**  
TRIGger:A:BUS:B<x>:MIL1553B:CONDition

TRIGger:A:BUS:B<x>:MIL1553B:TIME:LESSLimit

TRIGger:A:BUS:B<x>:MIL1553B:TIME:MORELimit

**Arguments**  
LESSthan sets the Time qualifier to less than minimum.

MOREthan sets the Time qualifier to greater than maximum

INrange sets the Time qualifier to inside range.

OUTrange sets the Time qualifier to out of range.

**Examples**  
TRIGger:A:BUS:B1:MIL1553B:TIME:QUALifier LESSthan sets the Time qualifier to less than minimum.

TRIGger:A:BUS:B<x>:PARallel:VALue

Sets or returns the binary data string to be used for a Parallel trigger. Applies to bus <x>, where x is the bus number.

**Group**
Trigger

**Syntax**
TRIGger:A:BUS:B<x>:PARallel:VALue <QString>
TRIGger:A:BUS:B<x>:PARallel:VALue?

**Arguments**
<QString> is the binary data string.

TRIGger:A:BUS:B<x>:RS232C:CONDition

Sets or returns the condition for an RS-232 trigger, where x is the bus number.

**Conditions**
This command requires a DPO3COMP application module.

**Group**
Trigger

**Syntax**
TRIGger:A:BUS:B<x>:RS232C:CONDition {RXSTArt|RXDATA|RXENDPacket|TXSTArt|TXDATA|TXENDPacket}
TRIGger:A:BUS:B<x>:RS232C:CONDition?

**Arguments**
RXSTArt specifies a search based on the RX Start Bit.
RXDATA specifies a search based on RX Data.
RXENDPacket specifies a search based on the RX End of Packet condition.
TXSTArt specifies a search base on the TX Start Bit.
TXDATA specifies a search based on TX Data.
TXENDPacket specifies a search based on the TX End of Packet condition.


Sets or returns the length of the data string in Bytes for an RS-232 Trigger if the trigger condition is RXDATA. Applies to bus <x>, where x is the bus number.

**Conditions**
This command requires a DPO3COMP application module.
Commands Listed in Alphabetical Order

**Group**

Trigger

**Syntax**

TRIGger:A:BUS:B<x>:RS232C:RX:DATa:SIZE <NR1>


**Arguments**

<NR1> is the length of the data string in bytes.

**TRIGger:A:BUS:B<x>:RS232C:RX:DATa:VALue**

Sets or returns the binary data string for an RS-232 trigger if the trigger condition involves RX. Applies to bus <x>, where x is the bus number.

**Conditions**

This command requires a DPO3COMP application module.

**Group**

Trigger

**Syntax**


TRIGger:A:BUS:B<x>:RS232C:RX:DATa:VALue?

**Arguments**

<Qstring> is the binary data string to be used for the trigger.

**TRIGger:A:BUS:B<x>:RS232C:TX:DATa:SIZE**

Sets or returns the length of the data string for an RS-232 trigger if the trigger condition is TXDATA. Applies to bus <x>, where x is the bus number.

**Conditions**

This command requires a DPO3COMP application module.

**Group**

Trigger

**Syntax**

TRIGger:A:BUS:B<x>:RS232C:TX:DATa:SIZE <NR1>


**Arguments**

<NR1> is the length of the data string in Bytes.
TRIGger:A:BUS:B<x>:RS232C:TX:DATa:VALue

Sets or returns the binary data string for an RS-232 trigger if the condition involves TX. Applies to bus <x>, where x is the bus number.

**Conditions**
This command requires a DPO3COMP application module.

**Group**
Trigger

**Syntax**
TRIGger:A:BUS:B<x>:RS232C:TX:DATa:VALue
TRIGger:A:BUS:B<x>:RS232C:TX:DATa:VALue?

**Arguments**
<Qstring> is the binary data string to be used for the trigger.

TRIGger:A:BUS:B<x>:SPI:CONDition

Sets or returns the trigger condition for a SPI trigger. Applies to bus <x>, where x is the bus number.

**Conditions**
This command requires a DPO3EMBD application module.

**Group**
Trigger

**Syntax**
TRIGger:A:BUS:B<x>:SPI:CONDition {SS|MISO|MOSI|MISOMOSI}
TRIGger:A:BUS:B<x>:SPI:CONDition?

**Arguments**
SS specifies the Slave Selection condition.
MISO specifies the Master-In Slave-Out condition.
MOSI specifies the Master-Out Slave-In condition.
MISOMOSI specifies the Master-In Slave-Out and Master-Out Slave-In conditions.

TRIGger:A:BUS:B<x>:SPI:DATa{:IN|MISO}:VALue

Sets or returns the binary data string to be used for a SPI trigger if the trigger condition is MISO or MISOMOSI. Applies to bus <x>, where x is the bus number.

**Conditions**
This command requires a DPO3EMBD application module.
Group: Trigger

Syntax:

**TRIGger:A:BUS:B<x>:SPI:DATa{:IN|:MISO}:VALue**

TRIGger:A:BUS:B<x>:SPI:DATa{:IN|:MISO}:VALue <QString>

**TRIGger:A:BUS:B<x>:SPI:DATa{:IN|:MISO}:VALue?**

**Arguments**

<QString> is the binary data string, where the number of bits is 8 times the number of bytes specified. The only allowed characters in the string are 0, 1, and X.

**TRIGger:A:BUS:B<x>:SPI:DATa{:OUT|:MOSI}:VALue**

Sets or returns the binary data string to be used for a SPI trigger if the trigger condition is MOSI or MISOMOSI. Applies to bus <x>, where x is the bus number.

**Conditions**

This command requires a DPO3EMBD application module.

Group: Trigger

Syntax:

**TRIGger:A:BUS:B<x>:SPI:DATa{:OUT|:MOSI}:VALue**

TRIGger:A:BUS:B<x>:SPI:DATa{:OUT|:MOSI}:VALue <QString>

**TRIGger:A:BUS:B<x>:SPI:DATa{:OUT|:MOSI}:VALue?**

**Arguments**

<QString> is the binary data string with the number of bits specified by the TRIGger:A:BUS:B<x>:SPI:DATa:SIZE command. The only allowed characters in the QString are 0, 1, and X.

**TRIGger:A:BUS:B<x>:SPI:DATa:SIZE**

Sets or returns the length of the data string to be used for a SPI trigger if the trigger condition is MISO, MOSI, or MISOMOSI. Applies to bus <x>, where x is the bus number.

**Conditions**

This command requires a DPO3EMBD application module.
Arguments  

<NR1> is the length of the data string in bytes.

**TRIGger:A:BUS:SOURce**

Sets or returns the source for a Serial bus trigger.

**Conditions**  
This command requires a DPO3AUTO or DPO3EMBD application module.

**Group**  
Trigger

**Syntax**  
TRIGger:A:BUS:SOURce {SOF|DATA}  
TRIGger:A:BUS:SOURce?

**TRIGger:A:EDGE? (Query Only)**

Returns the trigger source, coupling, and slope for the A edge trigger.

**Group**  
Trigger

**Syntax**  
TRIGger:A:EDGE?

**Related Commands**  
TRIGger:A:PULse?, TRIGger:A:LOGIc?

**Examples**  

**TRIGger:A:EDGE:COUPling**

Sets or returns the type of coupling for the A edge trigger.

**Group**  
Trigger

**Syntax**  
TRIGger:A:EDGE:COUPling {AC|DC|HFRej|LFRej|NOISErej}  
TRIGger:A:EDGE:COUPling?

**Related Commands**  
TRIGger:A:EDGE:SOURce, TRIGger:A:EDGE:SLOpe
**Arguments**

- **AC** specifies AC trigger coupling.
- **DC** specifies DC trigger coupling, which passes all input signals to the trigger circuitry.
- **HFRej** specifies high-frequency rejection coupling, which attenuates signals above 50 kHz before passing the signals to the trigger circuitry.
- **LFRej** specifies low-frequency rejection coupling, which attenuates signals below 50 kHz before passing the signals to the trigger circuitry.
- **NOISErej** specifies noise-rejection coupling, which provides stable triggering by increasing the trigger hysteresis. Increased hysteresis reduces the trigger sensitivity to noise but may require greater trigger signal amplitude.

**Examples**

- **TRIGGER:A:EDGE:COUPLING DC** sets the A edge trigger coupling to DC.
- **TRIGGER:A:EDGE:COUPLING?** might return **:TRIGGER:A:EDGE:COUPLING DC** indicating that the A edge trigger coupling is set to DC.

---

**TRIGger:A:EDGE:SLOpe**

Sets or returns the slope for the A edge trigger.

- **Group**: Trigger
- **Syntax**: `TRIGger:A:EDGE:SLOpe {RISe|FALL}`  
  `TRIGger:A:EDGE:SLOpe?`

**Related Commands**


**Arguments**

- **RISe** specifies to trigger on the rising or positive edge of a signal.
- **FALL** specifies to trigger on the falling or negative edge of a signal.

**Examples**

- **TRIGGER:A:EDGE:SLOPE RISE** sets the A edge trigger slope to positive, which triggers on the rising edge of the signal.
- **TRIGGER:A:EDGE:SLOPE?** might return **:TRIGGER:A:EDGE:SLOPE FALL** indicating that the A edge trigger slope is negative.

---

**TRIGger:A:EDGE:SOUrce**

Sets or returns the source for the A edge trigger.
Group Trigger

Syntax `TRIGger:A:EDGE:SOURce` {CH1|CH2|CH3|CH4|D0|D1|D2|D3|D4|D5|D6|D7|D8|D9|D10|D11|D12|D13|D14|D15}


Related Commands `TRIGger:A:EDGE:SLOpe`, `TRIGger:A:EDGE:COUPling`

Arguments

- CH1–CH4 specifies an analog input channel as the A edge trigger source.
- D0–D15 specifies a digital channel as the source (MSO models only).
- EXT specifies an external trigger using the Aux In connector located on the front panel of the oscilloscope.
- LINE specifies the AC line as the trigger source.
- AUX specifies the Auxiliary Input as the trigger source (if available on your oscilloscope).

Examples

`TRIGger:A:EDGE:SOURce CH1` sets channel 1 as the A edge trigger source.

`TRIGger:A:EDGE:SOURce?` might return `:TRIGger:A:EDGE:SOURce CH1` indicating that channel 1 is the A edge trigger source.

**TRIGger:A:HOLDoff? (Query Only)**

Returns the A trigger holdoff parameters. These parameters specify the time period during which the trigger circuitry is not looking to generate a trigger event.

Group Trigger

Syntax `TRIGger:A:HOLDoff?`

Related Commands `TRIGger:A:HOLDoff:TIMe`

Examples

`TRIGger:A:HOLDoff?` might return `:TRIGger:A:HOLDoff:TIME 900.0000E-09; BY DEFAULT` indicating that the A edge trigger holdoff time (by default) is 900 ns.
**TRIGger:A:HOLDoff:TIME**

Sets or returns the A trigger holdoff time.

**Group** Trigger

**Syntax**

- `TRIGger:A:HOLDoff:TIME <NR3>`
- `TRIGger:A:HOLDoff:TIME?`

**Arguments**

- `<NR3>` specifies the holdoff time in seconds. The range is from 20 ns through 8.0 s.

**Examples**

- `TRIGGER:A:HOLDOFF:TIME 10` sets the A trigger holdoff time to 10 s.

**TRIGger:A:LEVel**

Sets or returns the trigger level for the A trigger.

**Group** Trigger

**Syntax**

- `TRIGger:A:LEVel {ECL|TTL|<NR3>}`
- `TRIGger:A:LEVel?`

**Arguments**

- `ECL` specifies a preset ECL high level of –1.3V.
- `TTL` specifies a preset TTL high level of 1.4V.
- `<NR3>` specifies the trigger level in user units (usually volts).

**Examples**

- `TRIGGER:A:LEVEL?` might return `:TRIGGER:A:LEVEL 1.3000E+00` indicating that the A edge trigger is set to 1.3 V.
- `TRIGGER:A:LEVEL TTL` sets the A edge trigger to TTL high level, which is 1.4 V.

**TRIGger:A:LEVel:AUXin**

Sets or returns the trigger level for the AUXIN port.

**Group** Trigger
**Syntax**

TRIGger:A:LEVel:AUXin {<NR3>|ECL|TTL}

TRIGger:A:LEVel:AUXin?

**Arguments**

<NR3> specifies the trigger level, in volts.

ECL specifies a preset ECL trigger level of –1.3V.

TTL specifies a preset TTL trigger level of 1.4V.

**Examples**

TRIGGER:A:LEVEL:AUXIN ECL sets the auxiliary input trigger level to -1.3 volts.

TRIGGER:A:LEVEL:AUXIN? might return TRIGGER:A:LEVEL:AUXIN 0.0E+0 indicating the auxiliary input trigger level is 0.0 volts.

**TRIGger:A:LEVel:CH<x>**

Sets or returns the trigger level for the specified channel. Each channel can have an independent level.

**Group**

Trigger

**Syntax**

TRIGger:A:LEVel:CH<x> {<NR3>|TTL|ECL}

TRIGger:A:LEVel:CH<x>?

**Arguments**

<NR3> specifies the trigger level in user units (usually volts).

TTL specifies a preset TTL high level of 1.4V.

ECL specifies a preset ECL high level of –1.3V.

**Examples**

TRIGGER:A:LEVEL:CH2? might return TRIGGER:A:LEVEL:CH2 1.3000E+00 indicating that the A edge trigger is set to 1.3 V for channel 2.

TRIGGER:A:LEVEL:CH3 TTL sets the A edge trigger to TTL high level for channel 3.

**TRIGger:A:LEVel:D<x>**

Sets or returns the trigger level for the specified digital channel <x>, where x is the channel number. Each digital channel can have an independent level.

**Group**

Trigger
Syntax

TRIGger:A:LEVel:D<x> {<NR3>|ECL|TTL}
TRIGger:A:LEVel:D<x>?

Arguments

ECL specifies a preset ECL high level of –1.3V.
TTL specifies a preset TTL high level of 1.4V.
<NR3> specifies the trigger level in volts.

TRIGger:A:LOGIc? (Query Only)

Returns all of the A logic trigger parameters.

Group

Trigger

Syntax

TRIGger:A:LOGIc?

Related Commands

TRIGger:A:LOGIc:CLAss

Examples

SETHOLD;FUNCTION AND;THRESHOLD:CH1 20.0000E-3;CH2 0.0000;
CH3 0.0000;CH4 0.0000;:TRIGGER:A:LOGIC:INPUT:CH1
X;CH2 X;CH3 X;CH4 X;CLOCK:SOURCE NONE;EDGE
RISE;:TRIGGER:A:LOGIC:INPUT:CH1 X;CH2 X;CH3
X;CH4 X;:TRIGGER :A:LOGIC:INPUT:WHEN TRUE;WHEN:LESSLIMIT
4.0000E-9;LIMIT 4.0000E-9;:TRIGGER:A:LOGIC:INPUT:DELTATIME
4.0000E-9

TRIGger:A:LOGIc:CLAss

This command sets the class of the logic trigger (logic or setup/hold). This
command is used in conjunction with the TRIGger:A:TYPe command.

Group

Trigger

Syntax

TRIGger:A:LOGIC:CLAss {LOGIC|SETHold}
TRIGger:A:LOGIC:CLAss?

Related Commands

TRIGger:A:TYPe, TRIGger:A:PULse:CLAss
Commands Listed in Alphabetical Order

Arguments

LOGIC sets the oscilloscope to trigger on logical combinations of the channels.

When the TRIGger:A:LOGIc:INPut:CLOCK:SOUrce is NONE, LOGIC sets the oscilloscope to trigger when the specified logical combinations of channels 1, 2, 3, and 4 are met on four-channel oscilloscopes. On two-channel oscilloscopes, only channel 1 and channel 2 are available.

When the TRIGger:A:LOGIc:INPut:CLOCK:SOUrce is set to one of the channels, LOGIC sets the oscilloscope to trigger when the specified logical combinations of the remaining channels is true during a transition on the clock channel.

SETRIgger:HOLD sets the oscilloscope to trigger on setup and hold violations between a data source and a clock source. You can use one channel input as the clock signal and any one or more other channel inputs as the data inputs. The clocking and data levels are used to determine if a clock or data transition has occurred.

Examples


TRIGGER:A:LOGIC:CLASS LOGIC sets the trigger A logic class to LOGIC, which causes the oscilloscope to trigger when the specified logical combinations of channels 1, 2, 3, and 4 are met.

TRIGGER:A:LOGIC:FUNCTION

Sets or returns the logical combination of the input channels for the A pattern and A state logic triggers.

Group

Trigger

Syntax

TRIGGER:A:LOGIC:FUNCTION {AND|NAND|NOR|OR}

TRIGGER:A:LOGIC:FUNCTION? 

Related Commands

TRIGGER:A:LOGIC:INPut:CH<x>

Arguments

AND specifies to trigger if all conditions are true.

NAND specifies to trigger if any of the conditions is false.

NOR specifies to trigger if all conditions are false.

OR specifies to trigger if any of the conditions is true.

Examples

which indicates that the oscilloscope will trigger if the AND logic conditions are false.

TRIGGER:A:LOGIC:FUNCTION AND sets the logical combination of channels to be true when all conditions are true.

TRIGGER:A:LOGIC:INPUT? (Query Only)

Returns the logic input values for all channels. If a clock channel is defined, it returns the clock source and edge.

Examples

TRIGGER:A:LOGIC:INPUT? might return :TRIGGER:A:LOGIC:INPUT:CH1 HIGH;CH2 X;CH3 X indicating that a logic high is expected on channel 1 while channel 2 and channel three are “don't care.”

TRIGGER:A:LOGIC:INPUT:CH<x>

Sets or returns the logical input condition for the channel specified by <x>.

Examples

TRIGGER:A:LOGIC:INPUT:CH1? might return :TRIGGER:A:LOGIC:INPUT:CH1 X indicating that the setting for the A logic trigger input to channel 1 does not matter.

TRIGGER:A:LOGIC:INPUT:CH2 HIGH sets the A logic trigger input to logic HIGH for channel 2.
**TRIGger:A:LOGIc:INPut:CLOCk:EDGE**

Sets the polarity of the clock channel.

**Group**  
Trigger

**Syntax**  
TRIGger:A:LOGIc:INPut:CLOCk:EDGE {FALL|RISe}  
TRIGger:A:LOGIc:INPut:CLOCk:EDGE?

**Arguments**  
RISe specifies to trigger on the rising or positive edge of a signal.  
FALL specifies to trigger on the falling or negative edge of a signal.

**TRIGger:A:LOGIc:INPut:CLOCk:SOUrce**

Sets or returns the channel to use as the clock source. The clock can be selected as NONE. A selection of None implies pattern trigger. Any other selection implies state trigger.

**Group**  
Trigger

**Syntax**  
TRIGger:A:LOGIc:INPut:CLOCk:SOUrce {CH1|CH2|CH3|CH4|D0|D1|D2|D3|D4|D5|D6|D7|D8|D9|D10|D11|D12|D13|D14|D15|NONE}  
TRIGger:A:LOGIc:INPut:CLOCk:SOUrce?

**Arguments**  
CH1–CH4 specifies the analog input channel source.  
D0–D15 specifies the digital input channel source.  
NONE specifies a Pattern trigger.

**TRIGger:A:LOGIc:INPut:D<x>**

Sets or returns the logic pattern for a trigger on digital channel <x>, where x is the channel number.

**Group**  
Trigger

**Syntax**  
TRIGger:A:LOGIc:INPut:D<x> {HIGH|LOW|X}  
TRIGger:A:LOGIc:INPut:D<x>?
Arguments

High specifies the logic high state.
Low specifies the logic low state.
X specifies a "don't care" state.

TRIGger:A:LOGIc:PAIttern? (Query Only)

Returns the conditions used for generating an A logic pattern trigger, with respect to the defined input pattern, and identifies the time that the selected pattern may be true and still generate the trigger.

Group
Trigger

Syntax
TRIGger:A:LOGIC:PAIttern?

Examples
TRIGGER:A:LOGIC:PAIttern? might return

TRIGger:A:LOGIc:PAIttern:DELTatetime

Sets or returns the pattern trigger delta time value. The time value is used as part of the pattern trigger condition to determine if the duration of a logic pattern meets the specified time constraints.

Group
Trigger

Syntax
TRIGger:A:LOGIC:PAIttern:DELTatetime <NR3>
TRIGger:A:LOGIC:PAIttern:DELTatetime?

Arguments

<NR3> is a floating point value with exponent that sets the pattern trigger time value. This argument has a range of 39.6E–9 (39.6 ns) to 10.0E0 (10 s), in increments of 13.2 ns. Values that are not an increment of 13.2 ns are rounded to the nearest correct value.

Examples
TRIGGER:A:LOGIC:PAIttern:DELTatetime 71.28E-8 sets the pattern trigger delta time value to 712.8 ns.
**TRIGger:A:LOGIc:PATrern:INPut:D<x>**

Sets or returns the A logic trigger input for the specified digital channel <x>, where x is the channel number. This command species the logic value used when the pattern trigger detects the threshold level.

**Group** Trigger

**Syntax** TRIGger:A:LOGIc:PATrern:INPut:D<x> {HIGH|LOW|X}  
TRIGger:A:LOGIc:PATrern:INPut:D<x>?  

**Arguments**  
HIGH specifies a logic high.  
LOW specifies a logic low.  
X specifies a “do not care” state.

**TRIGger:A:LOGIc:PATrern:WHEn**

Sets or returns the pattern logic condition on which to trigger the oscilloscope.

**Group** Trigger

**Syntax** TRIGger:A:LOGIc:PATrern:WHEn {TRUE|FALSE|LESSthan|MOREthan|EQual|UNEQual}  
TRIGger:A:LOGIc:PATrern:WHEn?

**Arguments**  
TRUE triggers the oscilloscope when the pattern becomes true.  
FALSE triggers the oscilloscope when the pattern becomes false.  
LESS THAN triggers the oscilloscope when the input pattern is true for a time period less than the time period specified in TRIGGER:A:LOGIC:PATTERN:DELTATIME.  
MORE THAN triggers the oscilloscope when the input pattern is true for a time period more (greater) than the time period specified in TRIGGER:A:LOGIC:PATTERN:DELTATIME.  
EQUAL triggers the oscilloscope when the input pattern is true for a time period equal to the time period specified in TRIGGER:A:LOGIC:PATTERN:DELTATIME, within a ±5% tolerance.  
UNEQUAL triggers the oscilloscope when the input pattern is true for a time period greater than or less than (not equal to) the time period specified in TRIGGER:A:LOGIC:PATTERN:DELTATIME, within a ±5% tolerance.
Examples

TRIGGER:A:LOGIC:PATTERN:WHEN:LESSTHAN sets the oscilloscope to trigger when the pattern is true for a time period less than the pattern trigger delta time setting.

**TRIGger:A:LOGIc:PATrern:WHEn:LESSLimit**

Sets or returns the maximum time that the selected pattern may be true and still generate an A logic pattern trigger.

**Group**

Trigger

**Syntax**

TRIGger:A:LOGIC:PATTERN:WHEN:LESSLimit <NR3>

TRIGger:A:LOGIC:PATTERN:WHEN:LESSLimit?

**Arguments**

<NR3> specifies the maximum amount of time to hold the pattern true.

**Examples**

TRIGGER:A:LOGIC:PATTERN:WHEN:LESSLIMIT 10.0E+00 sets the maximum time that the selected pattern may hold true (and generate an A logic pattern trigger) to 10 s.


**TRIGger:A:LOGIc:PATrern:WHEn:MORELimit**

Sets or returns the minimum time that the selected pattern may be true and still generate an A logic pattern trigger.

**Group**

Trigger

**Syntax**

TRIGger:A:LOGIC:PATTERN:WHEN:MORELimit <NR3>

TRIGger:A:LOGIC:PATTERN:WHEN:MORELimit?

**Arguments**

<NR3> specifies the minimum amount of time to hold the pattern true.

**Examples**

TRIGGER:A:LOGIC:PATTERN:WHEN:MORELIMIT 10.0E+00 sets the minimum time that the selected pattern may hold true (and generate an A logic pattern trigger) to 10 s.
TRIGGER:A:LOGIC:PATTERN:WHEN:MORELIMIT 8.0000E-9 indicating that
the selected pattern must hold true for at least 8 ns to generate an A logic pattern
trigger.

**TRIGGER:A:LOGIC:THRESHOLD:CH<x>**

This command sets or queries the trigger A logic threshold voltage for the
specified channel x.

**Group** Trigger

**Syntax**

```
TRIGGER:A:LOGIC:THRESHOLD:CH<x> {<NR3>|ECL|TTL}
TRIGGER:A:LOGIC:THRESHOLD:CH<x>?
```

**Arguments**

- `<NR3>` specifies the threshold voltage, in volts.
- ECL specifies a preset ECL high level of –1.3V.
- TTL specifies a preset TTL high level of 1.4V.

**Examples**

- `TRIGGER:A:LOGIC:THRESHOLD:CH2 3.0E-3` sets the A logic trigger threshold voltage for Channel 2 to 3 mV.
- `TRIGGER:A:LOGIC:THRESHOLD:CH3?` might return
  :TRIGGER:A:LOGIC:THRESHOLD:CH3 1.2000E+00, indicating that the A
  logic trigger threshold voltage for Channel 3 is 1.2 V.

**TRIGGER:A:LOGIC:THRESHOLD:D<x>**

Sets or returns the trigger A logic threshold level for the specified digital channel
<x>. This command affects all trigger types using the digital channel.

**Group** Trigger

**Syntax**

```
TRIGGER:A:LOGIC:THRESHOLD:D<x> {<NR3>|ECL|TTL}
TRIGGER:A:LOGIC:THRESHOLD:D<x>?
```

**Related Commands** TRIGGER:A:LEVEL:D<x>
Arguments

<NR3> specifies the threshold level in volts.

ECL specifies a preset ECL high level of –1.3V.

TTL specifies a preset TTL high level of 1.4V.

**TRIGger:A:LOWerthreshold:CH<x>**

Sets or returns the lower threshold for the channel selected. Each channel can have an independent level. Used in Runt and Rise/fall time triggers as the lower threshold. Used for all other trigger types as the single level/threshold.

**Group**

Trigger

**Syntax**

TRIGger:A:LOWerthreshold:CH<x> {ECL|TTL|<NR3>}

TRIGger:A:LOWerthreshold:CH<x>?

**Related Commands**

TRIGger:A:LEVel:CH<x>

**Arguments**

ECL specifies a preset ECL high level of –1.3V.

TTL specifies a preset TTL high level of 1.4V.

<NR3> is the clock level, in volts.

**Examples**

TRIGGER:A:LOWERTHRESHOLD:CH2 50E-3 sets the lower limit threshold for CH2 of the pulse runt trigger to 50 mV.

TRIGGER:A:LOWERTHRESHOLD:CH2? might return :TRIGGER:A:LOWERTHRESHOLD:CH2 1.2000E-01 indicating that the lower limit threshold for CH2 of the pulse runt trigger is set to 120 mV.

**TRIGger:A:LOWerthreshold:D<x>**

Sets the A trigger lower threshold for the digital channel selected. Each channel can have an independent level. Used in Runt and Rise/fall time triggers as the lower threshold. Used for all other trigger types as the single level/threshold.

**Group**

Trigger

**Syntax**

TRIGger:A:LOWerthreshold:D<x> {<NR3>|ECL|TTL}

TRIGger:A:LOWerthreshold:D<x>?
Arguments

<NR3> specifies the threshold voltage, in volts.

ECL specifies a preset ECL high level of –1.3V.

TTL specifies a preset TTL high level of 1.4V.

Examples

TRIGGER:A:LOWERTHRESHOLD:D1 0.5 sets the lower threshold to 0.5 volts.

TRIGGER:A:LOWERTHRESHOLD:D1? might return
TRIGGER:A:LOWERTHRESHOLD:D1 -1.3000 indicating the lower threshold
is set to -1.3 volts.

TRIGger:A:LOWerthreshold{:EXT|:AUX}

Sets or returns the lower threshold for the Auxiliary Input. Used for the following
trigger types: Runt, .

Group

Trigger

Syntax

TRIGger:A:LOWerthreshold{:EXT|:AUX} {<NR3>|ECL|TTL}

TRIGger:A:LOWerthreshold{:EXT|:AUX}?

Arguments

ECL specifies a preset ECL high level of –1.3V.

TTL specifies a preset TTL high level of 1.4V.

<NR3> specifies the threshold level in volts.

TRIGger:A:MODe

Sets or returns the A trigger mode.

Group

Trigger

Syntax

TRIGger:A:MODe {AUTO|NORMal}

TRIGger:A:MODe?

Related Commands

TRIGger:A:LEVEL

Arguments

AUTO generates a trigger if one is not detected within a specified time period.

NORMal waits for a valid trigger event.
Examples  TRIGGER:A:MODE NORMAL specifies that a valid trigger event must occur before a trigger is generated.

TRIGGER:A:MODE ? might return :TRIGGER:A:MODE NORMAL indicating that a valid trigger event must occur before a trigger is generated.

TRIGger:A:PULse? (Query Only)

Returns the A pulse trigger parameters.

Group  Trigger

Syntax  TRIGger:A:PULse?

Related Commands  TRIGger:A:EDGE?, TRIGger:A:LOGIc?


TRIGger:A:PULse:CLAss

This command sets the type of pulse on which to trigger (runt, width, transition or timeout). This command is used in conjunction with the TRIGger:A:TYPe command.

Group  Trigger

Syntax  TRIGger:A:PULse:CLAss \{RUNt|WIDth|TRANSition|TIMEOut\}

TRIGger:A:PULse:CLAss?


Arguments  RUNt triggers when a pulse crosses the first preset voltage threshold but does not cross the second preset threshold before recrossing the first.

WIDth triggers on pulses that are less than, greater than, equal to, or not equal to a specified time. Additionally, you can trigger when a pulse width is within or outside a range of two different specified times. You can also trigger on positive or negative pulses. Pulse width triggers are primarily used on digital signals for pulses with a specified polarity.
**TRANSition** triggers when a pulse crosses both thresholds in the same direction as the specified polarity and the transition time between the two threshold crossings is greater or less than the specified time delta.

**TIMEout** triggers when no pulse is detected in a specified time.

**Examples**


---

**TRIGger:A:PULSEWIDth? (Query Only)**

Returns the width parameters for the pulse width trigger.

**Group**

Trigger

**Syntax**

TRIGger:A:PULSEWIDth?

**Examples**

TRIGGER:A:PULSEWIDTH? might return

:TRIGGER:A:PULSEWIDTH:POLARITY POSITIVE;WHEN LESSTHAN;WIDTH 8.0000E-9

---

**TRIGger:A:PULSEWidth:HIGHLimit**

This command specifies the upper limit to use, in seconds, when triggering on detection of a pulse whose duration is inside or outside a range of two values. (Use TRIGger:A:PULSEWidth:LOWLimit to specify the lower value of the range.)

**Group**

Trigger

**Syntax**

TRIGger:A:PULSEWidth:HIGHLimit <NR3>

TRIGger:A:PULSEWidth:HIGHLimit?

**Related Commands**


**Arguments**

<NR3> is a floating point number that represents the higher value of the range.
**Examples**

To trigger on pulses with durations (widths) that fall outside of the range of 100 nanoseconds to 110 nanoseconds:

```
TRIGger:A:PULSEWidth:LOWLimit 100.0E-9
TRIGger:A:PULSEWidth:HIGHLimit 110.0E-9
TRIGger:A:PULSEWidth:WHen OUTside
```

**TRIGger:A:PULSEWidth:LOWLimit**

This command specifies the lower limit to use, in seconds, when triggering on detection of a pulse whose duration is inside or outside a range of two values. (Use **TRIGger:A:PULSEWidth:HIGHLimit** to specify the upper limit of the range.)

**Group**

Trigger

**Syntax**

```
TRIGger:A:PULSEWidth:LOWLimit <NR3>
TRIGger:A:PULSEWidth:LOWLimit?
```

**Related Commands**


**Arguments**

<NR3> is a floating point number that represents the lower value of the range.

**Examples**

To trigger on pulses with durations (widths) that fall outside of the range of 100 nanoseconds to 110 nanoseconds:

```
TRIGger:A:PULSEWidth:LOWLimit 100.0E-9
TRIGger:A:PULSEWidth:HIGHLimit 110.0E-9
TRIGger:A:PULSEWidth:WHen OUTside
```

**TRIGger:A:PULSEWidth:POLarity**

Sets or returns the polarity for the width trigger.

**Group**

Trigger

**Syntax**

```
TRIGger:A:PULSEWidth:POLarity {NEGative|POSitive}
TRIGger:A:PULSEWidth:POLarity?
```
Arguments

NEGative specifies a negative pulse.
POsitive specifies a positive pulse.

Examples

TRIGGER:A:PULSEWIDTH:POLARITY NEGATIVE sets the pulse polarity to negative.

TRIGger:A:PULSEWidth:SOUrce

Sets or returns the source for the pulse-width trigger.

Group

Trigger

Syntax

TRIGger:A:PULSEWidth:SOUrce {CH1|CH2|CH3|CH4|LINE|EXT}
TRIGger:A:PULSEwidth:SOUrce?

Arguments

CH1–CH4 specifies an analog input channel as the A edge trigger source.
EXT specifies an external trigger using the Aux In connector located on the front panel of the oscilloscope.
LINE specifies AC line voltage.

Examples

TRIGGER:A:PULSEWIDTH:SOURCE CH1 sets channel 1 as the pulse width source.

TRIGger:A:PULSEWidth:WHen

This command specifies to trigger when a pulse is detected with a width (duration) that is less than, greater than, equal to, or unequal to a specified value (set using TRIGger:A:PULSEWidth:WIDth), OR whose width falls outside of or within a specified range of two values (set using TRIGger:A:PULSEWidth:LOWLimit and TRIGger:A:PULSEWidth:HIGHLimit).

Group

Trigger

Syntax

TRIGger:A:PULSEwidth:WHen {LESSthan|MOREthan|EQUAL|NOTEQual|WIThin|OUTside}
TRIGger:A:PULSEWidth:WHEn?

Related Commands
TRIGger:A:PULSEWidth:WIDth

Arguments
LESSthan argument sets the oscilloscope to trigger if a pulse is detected with width less than the time set by the TRIGger:A:PULSEWidth:WIDth command.

than argument sets the oscilloscope to trigger if a pulse is detected with width than the time set by the TRIGger:A:PULSEWidth:WIDth command.

EQual argument sets the oscilloscope to trigger if a pulse is detected with width equal to the time period specified in TRIGger:A:PULSEWidth:WIDth within a ±5% tolerance.

NOTEQual argument sets the oscilloscope to trigger if a pulse is detected with width greater than or less than (but not equal) the time period specified in TRIGger:A:PULSEWidth:WIDth within a ±5% tolerance.

Within causes a trigger when a pulse is detected that is within a range set by two values.

OUTside causes a trigger when a pulse is detected that is outside of a range set by two values.

Examples
TRIGGER:A:PULSEWIDTH:WHEN LESSTHAN specifies that the duration of the A pulse will fall within defined high and low limits.


TRIGger:A:PULSEWidth:WIDth

Sets or returns the width setting for the pulse width trigger.

Group Trigger

Syntax
TRIGger:A:PULSEWidth:WIDth <NR3>
TRIGger:A:PULSEWidth:WIDth?

Related Commands
TRIGger:A:PULSEWidth:WHEn

Arguments
<NR3> specifies the pulse width in seconds.
Examples

TRIGGER:A:PULSEWIDTH:WIDTH 5.0E-6 sets the pulse width to 5 µs.


**TRIGger:A:RUNT? (Query Only)**

Returns the current A runt trigger parameters.

**Group**

Trigger

**Syntax**

TRIGger:A:RUNT?

**Examples**


**TRIGger:A:RUNT:POLarity**

Sets or returns the polarity for the runt trigger.

**Group**

Trigger

**Syntax**

TRIGger:A:RUNT:POLarity {EITher|NEGative|POSitive}

TRIGger:A:RUNT:POLarity?

**Arguments**

POSitive indicates that the rising edge crosses the low threshold and the falling edge recrosses the low threshold without either edge ever crossing the high threshold.

NEGative indicates that the falling edge crosses the high threshold and the rising edge recrosses the high threshold without either edge ever crossing the low threshold.

EITHER triggers on a runt of either polarity.

**Examples**

TRIGGER:A:RUNT:POLARITY NEGATIVE specifies that the polarity of the A pulse runt trigger is negative.

**TRIGger:A:RUNT:SOUrce**

Sets or returns the source for the A runt trigger.

**Group**  
Trigger

**Syntax**  
TRIGger:A:RUNT:SOUrce {CH1|CH2|CH3|CH4}  
TRIGger:A:RUNT:SOUrce?

**Arguments**  
CH1-CH4 specifies the input channel number, depending on the model of the oscilloscope.

**Examples**  
TRIGGER:A:RUNT:SOURCE CH4 sets channel 4 as the source for the A pulse trigger.


**TRIGger:A:RUNT:WHEn**

Sets or returns the type of pulse width the trigger checks for when it detects a runt.

**Group**  
Trigger

**Syntax**  
TRIGger:A:RUNT:WHEn {LESSthan|than|EQual|UNEQual|OCCURS}  
TRIGger:A:RUNT:WHEn?

**Related Commands**  
TRIGger:A:RUNT:WIDth

**Arguments**  
OCCURS argument specifies a trigger event if a runt of any detectable width occurs.  
LESSthan argument sets the oscilloscope to trigger if the a runt pulse is detected with width less than the time set by the TRIGger:A:RUNT:WIDth command.

than argument sets the oscilloscope to trigger if the a runt pulse is detected with width than the time set by the TRIGger:A:RUNT:WIDth command.

EQual argument sets the oscilloscope to trigger if a runt pulse is detected with width equal to the time period specified in TRIGger:A:RUNT:WIDth within a ±5% tolerance.
NOTEQual argument sets the oscilloscope to trigger if a runt pulse is detected with width greater than or less than (but not equal to) the time period specified in TRIGger:A:RUNT:WIDth within a ±5% tolerance.

Examples
TRIGGER:A:RUNT:WHEN THAN sets the runt trigger to occur when the oscilloscope detects a runt in a pulse wider than the specified width.


TRIGger:A:RUNT:WIDth

Sets or returns the width for a runt trigger.

Group
Trigger

Syntax
TRIGger:A:RUNT:WIDth <NR3>
TRIGger:A:RUNT:WIDth?

Related Commands
TRIGger:A:RUNT:WHEn

Arguments
<NR3> specifies the minimum width, in seconds.

Examples
TRIGGER:A:RUNT:WIDTH 15E-6 sets the minimum width of the pulse runt trigger to 15 µs.


TRIGger:A:SETHold? (Query Only)

Returns the clock edge polarity, voltage threshold and source input; data voltage threshold and source; and both setup and hold times for setup and hold violation triggering.

Group
Trigger

Syntax
TRIGger:A:SETHold?
**TRIGger:A:SETHold:CLOCK?** *(Query Only)*

Returns the clock edge polarity, voltage threshold, and source input for setup and hold triggering.

**Group**
Trigger

**Syntax**
TRIGger:A:SETHold:CLOCK?

**Examples**
TRIGGER:A:SETHOLD:CLOCK? might return
:TRIGGER:A:SETHOLD:CLOCK:SOURCE CH1;EDGE RISE;THRESHOLD 100.0000E-3;TRIGGER:A:SETHOLD:DATA:SOURCE CH2;THRESHOLD 80.0000E-3;TRIGGER:A:SETHOLD:HOLDTIME 20.0000E-9;SETTIME 8.00000E-9

**TRIGger:A:SETHold:CLOCK:EDGE**

Sets or returns the clock edge polarity for setup and hold triggering.

**Group**
Trigger

**Syntax**
TRIGger:A:SETHold:CLOCK:EDGE {FALL|RISe}
TRIGger:A:SETHold:CLOCK:EDGE?

**Arguments**
FALL specifies polarity as the clock falling edge.
RISe specifies polarity as the clock rising edge.

**Examples**
TRIGGER:A:SETHOLD:CLOCK:EDGE RISE specifies the polarity as the clock rising edge.
**TRIGger:A:SETHold:CLOCK:SOUrce**

Sets or returns the clock source for the setup and hold triggering.

**Group**  
Trigger

**Syntax**  
TRIGger:A:SETHold:CLOCK:SOUrce  
{CH1|CH2|CH3|CH4|D0|D1|D2|D3|D4|D5|D6|D7|D8|D9|D10|D11|D12|D13|D14|D15}

TRIGger:A:SETHold:CLOCK:SOUrce?

**Related Commands**  
TRIGger:A:SETHold:DATa:SOUrce

**Arguments**  
CH1–CH4 or D0–D15 specifies the input channel number. D0–D15 is only for MSO models.

AUX or EXT specifies an external trigger using the Aux Input connector located on the front panel of the oscilloscope.

**Examples**  
TRIGGER:A:SETHOLD:CLOCK:SOURCE CH1 specifies channel 1 as the clock input for setup and hold input.


**TRIGger:A:SETHold:CLOCk:THReshold**

Sets or returns the clock voltage threshold for the setup and hold trigger.

**Group**  
Trigger

**Syntax**  
TRIGger:A:SETHold:CLOCk:THReshold {<NR3>|TTL}

TRIGger:A:SETHold:CLOCk:THReshold?

**Arguments**  
TTL specifies a preset TTL high level of 1.4 V.

<NR3> is the clock level, in volts.

**Examples**  
TRIGGER:A:SETHOLD:CLOCK:THRESHOLD TTL specifies the preset TTL value of 1.4 V as the clock threshold for the setup and hold trigger.
indicating that the clock threshold for the setup and hold trigger is 1.2 V.

**TRIGger:A:SETHold:DATa? (Query Only)**

Returns the voltage threshold and data source for the setup and hold trigger.

**Group** Trigger

**Syntax** TRIGger:A:SETHold:DATa?

**Related Commands** TRIGger:A:SETHold:CLOCk?

**Examples** TRIGGER:A:SETHOLD:DATA? might return
:TRIGGER:A:SETHOLD:DATA:SOURCE CH2;THRESHOLD 80.0000E-3

**TRIGger:A:SETHold:DATa:SOUrce**

Sets or returns the data source for the setup and hold trigger. You cannot specify
the same source for both clock and data.

For DPO models, you can specify only a single data source. Data sources for DPO
models may be one of CH1-CH4 or the Auxin port (EXT or AUX).

For MSO models, you can specify any combination of CH1-CH4 and D0-D15 as
the data sources.

**Group** Trigger

**Syntax** DPO Models:
TRIGger:A:SETHold:DATa:SOUrce

MSO Models:
TRIGger:A:SETHold:DATa:SOUrce <wfm>[,<wfm>][,<wfm>][,<wfm>][,<wfm>][,<wfm>][,<wfm>][,<wfm>][,<wfm>][,<wfm>][,<wfm>]

TRIGger:A:SETHold:DATa:SOUrce?

**Related Commands** TRIGger:A:SETHold:CLOCk:SOUrce
DPO Models:
<wfm> specifies the source channel number and is one of CH1-CH4, EXT or AUX. You can specify only one waveform on a DPO.

MSO Models:
<wfm> specifies the source channel numbers. Each <wfm> can be one of CH1-CH4 or D0-D15. Auxin (EXT or AUX) is not valid as a data source.

**Examples**

`TRIGGER:A:SETHOLD:DATA:SOURCE CH1` sets channel 1 as the clock source for the setup and hold trigger.


---

**TRIGger:A:SETHold:DATa:THReshold**

Sets or returns the data voltage threshold for setup and hold trigger.

**Group** Trigger

**Syntax**

TRIGger:A:SETHold:DATa:THReshold {<NR3>|TTL}

TRIGger:A:SETHold:DATa:THReshold?

**Arguments**

TTL specifies the preset TTL high level of 1.4 V.

<NR3> is the setup and hold data level, in V.

**Examples**

TRIGger:A:SETHold:DATa:THReshold TTL specifies the preset high level of 1.4 V as the current data voltage level for the setup and hold trigger.


---

**TRIGger:A:SETHold:HOLDTime**

Sets or returns the hold time for setup and hold violation triggering.

**Group** Trigger
Commands Listed in Alphabetical Order

**TRIGger:A:SETHold:HOLDTime**

- **Syntax**: `TRIGGER:A:SETHold:HOLDTime <NR3>`
  `TRIGGER:A:SETHold:HOLDTime?`
- **Arguments**: `<NR3>` specifies the hold time setting in seconds. Positive values for hold time occur after the clock edge. Negative values occur before the clock edge.
- **Examples**: `TRIGGER:A:SETHOLD:HOLDTIME 3.0E-3` sets the hold time for the setup and hold trigger to 3 ms.
  `TRIGGER:A:SETHOLD:HOLDTIME?` might return `:TRIGGER:A:SETHOLD:HOLDTIME 2.0000E-09` indicating that the current hold time for the setup and hold trigger is 2 ns.

**TRIGger:A:SETHold:SETTime**

- **Syntax**: `TRIGGER:A:SETHold:SETTime <NR3>`
  `TRIGGER:A:SETHold:SETTime?`
- **Arguments**: `<NR3>` specifies the setup time for setup and hold violation triggering.
- **Examples**: `TRIGGER:A:SETHOLD:SETTIME 3.0E-6` specifies that the current setup time for setup and hold trigger is 3 µs.

**TRIGger:A:SETHold:THReshold:CH<x>**

- **Syntax**: `TRIGGER:A:SETHold:THReshold:CH<x> {<NR3>|ECL|TTL}`
  `TRIGGER:A:SETHold:THReshold:CH<x>?`
- **Group**: Trigger
- **Arguments**: Sets or queries the threshold for the channel specified by x. Affects all trigger types using the channel.
### Arguments

<NR3> specifies the threshold voltage, in volts.

- **ECL** specifies a preset ECL high level of \(-1.3\) V.
- **TTL** specifies a preset TTL high level of 1.4 V.

### Examples

- `TRIGGER:A:SETHOLD:THRESHOLD:CH1 1.5` sets the channel 1 threshold to 1.5 volts.
- `TRIGGER:A:SETHOLD:THRESHOLD:CH1?` might return `TRIGGER:A:SETHOLD:THRESHOLD:CH1 0.0E+0` indicating the channel 1 threshold is set to 0.0 volts.

### TRIGger:A:SETHold:THReshold:D<x>

Sets the A trigger setup and hold threshold for the selected digital channel. Affects all trigger types using the digital channel.

- **Group**: Trigger
- **Syntax**: `TRIGger:A:SETHold:THReshold:D<x> {<NR3>|ECL|TTL}`

<table>
<thead>
<tr>
<th>Arguments</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>&lt;NR3&gt;</td>
<td>Specifies the threshold voltage, in volts.</td>
</tr>
<tr>
<td>ECL</td>
<td>Specifies a preset ECL high level of (-1.3) V.</td>
</tr>
<tr>
<td>TTL</td>
<td>Specifies a preset TTL high level of 1.4 V.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Examples</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>TRIGGER:A:SETHOLD:THRESHOLD:D1 ECL</code></td>
<td>ECL sets the threshold to ECL levels.</td>
</tr>
</tbody>
</table>

### TRIGger:A{:TRANSition|RISEFall}? (Query Only)

Returns transition time trigger parameters.

- **Group**: Trigger
- **Syntax**: `TRIGger:A{:TRANSition|RISEFall}?`
Commands Listed in Alphabetical Order

Related Commands

TRIGger:A:UPPerthreshold:CH<x> , TRIGger:A:LOWerthreshold:CH<x>

Examples

TRIGGER:A::TRANSITION? might return
:TRIGGER:A:TRANSITION:POLARITY POSITIVE;WHEN SLOWER;DELTATIME 8.0000E-9

TRIGger:A{:TRANsition|:RISEFall}:DELTatime

Sets or returns the delta time used in calculating the transition value for the transition trigger.

Group

Trigger

Syntax

TRIGger:A{:TRANSition|:RISEFall}:DELTatime <NR3>
TRIGger:A{:TRANSition|:RISEFall}:DELTatime?

Arguments

<NR3> specifies the delta time, in seconds.

Examples

TRIGGER:A:TRANSITION:DELTATIME 15E-6 sets the delta time of the transition trigger to 15 µs.


TRIGger:A{:TRANsition|:RISEFall}:POLarity

Sets or returns the polarity for the transition trigger.

Group

Trigger

Syntax

TRIGger:A{:TRANSition|:RISEFall}:POLarity {EITher|NEGative|POSitive}
TRIGger:A{:TRANSition|:RISEFall}:POLarity?

Arguments

POSitive indicates that a pulse edge must traverse from the lower (most negative) to higher (most positive) level for transition triggering to occur.

NEGative indicates that a pulse edge must traverse from the upper (most positive) to lower (most negative) level for transition triggering to occur.
**EITHER** indicates either positive or negative polarity.

**Examples**

- **TRIGGER:A:TRANSITION:POLARITY** NEGATIVE sets the transition polarity to negative.
- **TRIGGER:A:TRANSITION:POLARITY?** might return **:TRIGGER:A:TRANSITION:POLARITY EITHER** indicating that the polarity can be either positive or negative.

**TRIGGER:A{:TRANS|RISEFall}:SOURce**

Sets or returns the source for transition trigger.

**Group** Trigger

**Syntax**

- TRIGGER:A{:TRANS|RISEFall}:SOURce {CH1|CH2|CH3|CH4}
- TRIGGER:A{:TRANS|RISEFall}:SOURce?

**Arguments**

- CH1–CH4 specifies one of the input channels.

**Examples**

- **TRIGGER:A:TRANSITION:SOURce CH4** sets channel 4 as the source for the transition trigger.
- **TRIGGER:A:TRANSITION:SOURce?** might return **:TRIGGER:A:TRANSITION:SOURce CH2** indicating that channel 2 is the source for the transition trigger.

**TRIGGER:A{:TRANS|RISEFall}:WHEn**

Sets or returns whether to check for a transitioning signal that is faster or slower than the specified delta time.

**Group** Trigger

**Syntax**

- TRIGGER:A{:TRANS|RISEFall}:WHEn: {SLOWer|FASTer|EQual|UNEQual}
- TRIGGER:A{:TRANS|RISEFall}:WHEn?

**Arguments**

- FASTer sets the trigger to occur when the signal transition time is faster than the time set by TRIGGER:A{:TRANS|RISEFall}:DELTatime.
Commands Listed in Alphabetical Order

**SLOWer** sets the trigger to occur when the signal transition time is slower than the time set by TRIGger:A{:TRANSition|:RISEFall}:DELTatime.

**EQual** sets the trigger to occur when the signal transition time is equal to the time set by TRIGger:A{:TRANSition|:RISEFall}:DELTatime.

**UNEQual** sets the trigger to occur when the signal transition time is not equal to the time set by TRIGger:A{:TRANSition|:RISEFall}:DELTatime.

**Examples**

TRIGGER:A:TRANSITION:WHEN SLOWER sets the trigger to occur when the signal transition time is slower than the time set by the TRIGger:A{:TRANSition|:RISEFall}:DELTatime command.


**TRIGger:A:TYPe**

This command sets the type of A trigger (edge, logic, pulse, bus or video). If you set the trigger type to LOGIc, you also need to set the logic trigger class (logic or setup/hold) using the command TRIGger:A:LOGIc:CLAss. If you set the trigger type to PULSe, you also need to set the pulse trigger class (runt, width, transition or timeout), using the command TRIGger:A:PULse:CLAss. If you set the trigger type to BUS, you also need to set the bus type (CAN, I2C, SPI, RS-232, MIL-STD-1553, LIN, audio, FlexRay or parallel) using the command TRIGger:A:BUS.

**Group**  Trigger

**Syntax**  TRIGger:A:TYPe {EDGe|LOGIc|PULSe|BUS|VIDeo}


**Arguments**  

**EDGe** is the default search. An edge trigger occurs when a signal passes through a specified voltage level in a specified direction and is controlled by the TRIGger:A:EDGE:SOUrce, TRIGger:A:EDGE:COUPling, and TRIGger:A:EDGE:SLOpe commands.

**LOGIc** specifies to use a logic or a setup and hold trigger, and is controlled by the TRIGger:A:LOGIc:CLAss commands.

**PULSe** specifies to use a runt, width, transition or timeout trigger, and is controlled by the TRIGger:A:PULse:CLAss commands.
BUS specifies to trigger using a bus signal. Supports CAN, PC, SPI, RS-232, MIL-STD-1553, LIN, audio and FlexRay buses (with the appropriate add-on module installed) as well parallel signals (MSO models only).

VIDEO specifies to trigger on a video signal.

**NOTE.** Although it is possible to trigger using a video signal, it is not possible to do a search using a video signal.

**Examples**

TRIGGER:A:TYPE EDGE sets the A trigger type to edge.

TRIGGER:A:TYPE? might return :TRIGGER:A:TYPE PULSE indicating that the A trigger type is a pulse trigger.

**TRIGGER:A:UPPERthreshold:CH<x>**

Sets the upper threshold for channel <x>, where x is the channel number. Each channel can have an independent level. Used only for Runt and Rise/fall time trigger types.

**Group** Trigger

**Syntax**

TRIGGER:A:UPPERthreshold:CH<x> [<NR3>|ECL|TTL]

TRIGGER:A:UPPERthreshold:CH<x>? 

**Arguments**<br>

<NR3> is the threshold level in volts.

ECL specifies a preset ECL high level of –1.3V.

TTL specifies a preset TTL high level of 1.4V.

**Examples**

TRIGGER:A:UPPERTHRESHOLD:CH2 50E-3 sets the upper limit of the pulse runt trigger to 50 mV for channel 2.

TRIGGER:A:UPPERTHRESHOLD:CH2? might return :TRIGGER:A:UPPERTHRESHOLD:CH2 1.2000E-01 indicating that the upper limit of the pulse runt trigger is set to 120 mV.

**TRIGGER:A:VIDEO? (Query Only)**

Returns the A trigger video parameters.
**TRIGGER:A:VIDEO**

This command sets the video trigger format (either interlaced or progressive) to use for triggering on video signals. To use this command, you must also set the video standard to `BILEvel:custom` or `TRILevel:custom` (using `TRIGGER:A:VIDEO:STANDARD`).

**Conditions**
This command requires a DPO3VID application module.

**Syntax**

```
TRIGGER:A:VIDEO:CUSTom:FORMAT {INTERLAced|PROGressive}
TRIGGER:A:VIDEO:CUSTom:FORMAT?
```

**Arguments**

- **INTERLAced** argument sets the format to interlaced video lines.
- **PROGressive** argument sets the format to progressive video lines.

**Examples**

```
TRIGGER:A:VIDEO:CUSTom:FORMAT PROGRESSIVE sets the custom format for the A video trigger to progressive lines.
```

**TRIGGER:A:VIDEO:CUSTom:LINEPeriod**

This command sets the line period for the standard under test. To use this command, you must also set the video standard to `BILEvel:custom` or `TRILevel:custom` (using `TRIGGER:A:VIDEO:STANDARD`).
**TRIGger:A:VIDeo:CUSTom:LINEPeriod**

This command requires a DPO3VID application module.

**Group**

Trigger

**Syntax**

TRIGger:A:VIDeo:CUSTom:LINEPeriod <NR3>
TRIGger:A:VIDeo:CUSTom:LINEPeriod?

**Arguments**

<NR3> is the custom video line period.

**Examples**

TRIGGER:A:VIDEO:CUSTOM:LINEPERIOD 50.5E-6 sets the video line period to 50.5 μs.


---

**TRIGger:A:VIDeo:CUSTom:SYNCInterval**

This command sets the sync interval for the standard under test to use for triggering on video signals. This is only required for BiLevel Custom. To use this command, you must also set the video standard to BILEvelcustom (using TRIGger:A:VIDeo:STANdard).

**Conditions**

This command requires a DPO3VID application module.

**Group**

Trigger

**Syntax**

TRIGger:A:VIDeo:CUSTom:SYNCInterval <NR3>
TRIGger:A:VIDeo:CUSTom:SYNCInterval?

**Arguments**

<NR3> is the sync interval.

**Examples**

TRIGGER:A:VIDEO:CUSTOM:SYNCINTERVAL 4.0E-6 sets the sync interval is set to 4.0 μs.

**TRIGger:A:VIDeo:HOLDoff:FIELD**

This command sets the video trigger holdoff, in terms of video fields, to use for triggering on video signals.

**Group**  
Trigger

**Syntax**  
TRIGger:A:VIDeo:HOLDoff:FIELD <NR3>  
TRIGger:A:VIDeo:HOLDoff:FIELD?

**Arguments**  
<NR3> argument is a real number from 0.0 to 8.5 in increments of 0.5. The argument sets the number of fields that the oscilloscope waits before rearming the video trigger.

**Examples**  
TRIGGER:A:VIDEO:HOLDoff:FIELD? might return  
:TRIGger:A:VIDeo:HOLDoff:FIELD 5 indicating that the oscilloscope is set to wait 5 video fields before rearming the trigger.  
TRIGGER:A:VIDEO:HOLDoff:FIELD 4.5 sets the oscilloscope to wait 4.5 video fields before rearming the trigger.

**TRIGger:A:VIDeo:LINE**

This command sets the video line number to use for triggering on video signals. Use the TRIGger:A:VIDeo{:SYNC|:FIELD} command to actually trigger the oscilloscope on the line that you specify with this command.

**Group**  
Trigger

**Syntax**  
TRIGger:A:VIDeo:LINE <NR1>  
TRIGger:A:VIDeo:LINE?

**Related Commands**  
TRIGger:A:VIDeo{:SYNC|:FIELD}

**Arguments**  
<NR1> argument is an integer that sets the video line number on which the oscilloscope triggers. The following table lists the valid choices, depending on the active video standard.
Table 2-47: Video Line Numbering Ranges

<table>
<thead>
<tr>
<th>Video Standard</th>
<th>Line Number Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>525/NTSC</td>
<td>1–525</td>
</tr>
<tr>
<td>625/PAL, SECAM</td>
<td>1–625</td>
</tr>
<tr>
<td>SECAM</td>
<td>1–625</td>
</tr>
</tbody>
</table>

**Examples**

TRIGGER:A:VIDEO:LINE 23 sets the oscilloscope to trigger on the line 23.


**TRIGGER:A:VIDEO:POLarity**

This command sets the polarity to use for triggering on video signals.

**Group**

Trigger

**Syntax**

TRIGGER:A:VIDEO:POLarity {NEGative|POSitive}

TRIGGER:A:VIDEO:POLarity?

**Arguments**

POSitive argument sets the oscilloscope to trigger on a positive video sync pulse.

NEGative argument sets the oscilloscope to trigger on a negative video sync pulse.

**Examples**

TRIGGER:A:VIDEO:POLARITY NEGATIVE sets the oscilloscope to trigger on a negative video pulse.

TRIGGER:A:VIDEO:POLARITY? might return TRIGGER:A:VIDEO:POLARITY POSITIVE indicating that the oscilloscope is set to trigger on a positive video sync pulse.

**TRIGGER:A:VIDEO:SOURCE**

This command sets the source channel to use for triggering on video signals.

**Group**

Trigger
Commands Listed in Alphabetical Order

Syntax

TRIGger:A:VIDeo:SOUrce
{CH1|CH2|CH3|CH4|D0|D1|D2|D3|D4|D5|D6|D7|D8|D9|D10|D11
|D12|D13|D14|D15}

TRIGger:A:VIDeo:SOUrce?

Arguments

CH1–CH4 or D0–D15 specifies the input channel to use as the A video trigger.

Examples

TRIGGER:A:VIDEO:SOURCE CH1 sets the source for A video trigger to Channel 1.


TRIGger:A:VIDeo:STANdard

This command sets the standard to use for triggering on video signals.

Group

Trigger

Syntax

TRIGger:A:VIDeo:STANdard {NTSc|PAL|SECAM|BILevelcustom|
TRILevelcustom|HD480P60|HD576P50|HD720P30|HD720P50
|HD720P60|HD875I60|HD1080P24|HD1080SF24|HD1080I50
|HD1080I60|HD1080P25|HD1080P30|HD1080P50|HD1080P60}

TRIGger:A:VIDeo:STANdard?

Related Commands

TRIGger:A:VIDeo:CUSTom:FORMat, TRIGger:A:VIDeo:CUSTom:
LINEPeriod, TRIGger:A:VIDeo:CUSTom:SYNCInterval

Arguments

NTSc sets the oscilloscope to trigger on video signals that meet the NTSC 525/60/2:1 standard (a line rate of 525 lines per frame and a field rate of 60 Hz).

PAL sets the oscilloscope to trigger on video signals that meet the NTSC 625/50/2:1 standard (a line rate of 625 lines per frame and a field rate of 50 Hz).

SECAM sets the oscilloscope to trigger on video signals that meet the SECAM standard.


TRILevelcustom sets the oscilloscope to trigger on video horizontal scan rate parameters defined by the TRIGger:A:VIDeo:CUSTom:FORMat,

HD480P60 | HD576P50 | HD720P30 | HD720P50 | HD720P60 | HD875I60 | HD1080P24 | HD1080P50 | HD1080P60 set the oscilloscope to trigger on an HDTV video signal that meets standards defined in the following table. Requires installation of a DPO3VID application module.

Table 2-48: Available HDTV formats

<table>
<thead>
<tr>
<th>HDTV format</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>480p60</td>
<td>525 lines (480 active), 640 or 704 x 480 pixel, progressive, 60 fps</td>
</tr>
<tr>
<td>576p50</td>
<td>EDTV with 625 lines (576 active), 1024 x 576 pixel, progressive, 50 fps</td>
</tr>
<tr>
<td>720p30</td>
<td>750 lines (720 active), 1280 x 720 pixel, progressive, 30 fps</td>
</tr>
<tr>
<td>720p50</td>
<td>750 lines (720 active), 1280 x 720 pixel, progressive, 50 fps</td>
</tr>
<tr>
<td>720p60</td>
<td>750 lines (720 active), 1280 x 720 pixel, progressive, 60 fps</td>
</tr>
<tr>
<td>875i60</td>
<td>875 active lines, interlaced, 60 fps</td>
</tr>
<tr>
<td>1080i50</td>
<td>1125 Lines (1080 active), 1920 x 1080 pixel, interlaced, 50 fps</td>
</tr>
<tr>
<td>1080i60</td>
<td>1125 lines (1080 active), 1920 x 1080 pixel, interlaced, 60 fps</td>
</tr>
<tr>
<td>1080p24</td>
<td>1125 lines (1080 active), 1920 x 1080 pixel, progressive, 24 fps</td>
</tr>
<tr>
<td>1080sF24</td>
<td>1125 lines (1080 active), 1920 x 1080 pixel, progressive (sF), 24 fps</td>
</tr>
<tr>
<td>1080p25</td>
<td>1125 lines (1080 active), 1920 x 1080 pixel, progressive, 25 fps</td>
</tr>
<tr>
<td>1080P30</td>
<td>1125 lines (1080 active), 1920 x 1080 pixel, progressive, 30 fps</td>
</tr>
<tr>
<td>1080P50</td>
<td>1125 lines (1080 active), 1920 x 1080 pixel, progressive, 50 fps</td>
</tr>
<tr>
<td>1080P60</td>
<td>1125 lines (1080 active), 1920 x 1080 pixel, progressive, 60 fps</td>
</tr>
</tbody>
</table>

Examples

TRIGGER:A:VIDEO:STANDARD NTSC sets the oscilloscope to trigger on NTSC-standard video signals.

TRIGGER:A:VIDEO:STANDARD? might return :TRIGger:A:VIDeo:STANDARD NTSC indicating that the oscilloscope is set to trigger on an NTSC format.
**TRIGger:A:VIDeo{:SYNC|:FIELD}**

This command sets the video field or line to use for triggering on video signals.

**Group**
Trigger

**Syntax**

```
TRIGger:A:VIDeo{:SYNC|:FIELD}
{ODD|EVEN|ALLFields|ALLLines|NUMERic}
TRIGger:A:VIDeo{:SYNC|:FIELD}?
```

**Arguments**

- **ODD** argument sets the oscilloscope to trigger on interlaced video odd fields.
- **EVEN** argument sets the oscilloscope to trigger on interlaced video even fields.
- **ALLFields** argument sets the oscilloscope to trigger on all fields.
- **ALLLines** argument sets the oscilloscope to trigger on all video lines.
- **NUMERic** argument sets the oscilloscope to trigger on the video signal line specified by the **TRIGger:A:VIDeo:LINE** command.

**Examples**

```
TRIGGER:A:VIDEO:FIELD EVEN
```

sets the A video trigger so that it will trigger on even fields.

```
TRIGGER:A:VIDEO:FIELD?
```

might return `:TRIGGER:A:VIDEO:FIELD ALLFIELDS` indicating that the A video will trigger on all video fields.

**TRIGger:B**

Sets the B trigger level to 50% of minimum and maximum. The query form of this command returns the B trigger parameters. This command is similar to selecting B Event (Delayed) Trigger Setup from the Trig menu and then viewing the current setups.

**Group**
Trigger

**Syntax**

```
TRIGger:B SETLevel
TRIGger:B?
```

**Related Commands**

**TRIGger:A**

**Arguments**

- **SETLevel** sets the B trigger level to 50% of MIN and MAX.
Examples  

TRIGGER:B SETLEVEL sets the B trigger level to 50% of MIN and MAX.

TRIGGER:B? might return the following B trigger parameters:
:TRIGGER:B:STATE 0;TYPE EDGE; LEVEL -220.0000E-3;BY TIME;EDGE:SOURCE CH1;SLOPE RISE;COUPLING DC; :TRIGGER:B:TIME 16.0000E-9;EVENTS:COUNT 2

**TRIGger:B:BY**

Selects or returns whether the B trigger occurs after a specified number of events or a specified period of time after the A trigger.

**Group**  
Trigger

**Syntax**  
TRIGger:B:BY {EVENTS|TIME}  
TRIGger:B:BY?

**Related Commands**  
TRIGger:B:EVENTS:COUNt, TRIGger:B:TIMe,

**Arguments**  
EVENTS sets the B trigger to take place following a set number of trigger events after the A trigger occurs. The number of events is specified by TRIGger:B:EVENTS:COUNt.

TIME sets the B trigger to occur a set time after the A trigger event. The time period is specified by TRIGger:B:TIMe.

**Examples**  

TRIGGER:B:BY TIME sets the B trigger to occur at a set time after the A trigger event.

TRIGGER:B:BY? might return :TRIGGER:B:BY EVENTS indicating that the B trigger takes place following a set number of trigger events after the A trigger occurs.

**TRIGger:B:EDGE? (Query Only)**

Returns the source, slope, and coupling for B trigger.

**Group**  
Trigger

**Syntax**  
TRIGger:B:EDGE?
Commands Listed in Alphabetical Order

**Related Commands**

TRIGger:B:EDGE:COUPling, TRIGger:B:EDGE:SLOpe, TRIGger:B:EDGE:SOUrce

**Examples**

TRIGGER:B:EDGE? might return TRIGGER:B:EDGE:SOURCe CH1; SLOPE RISE;COUPLING DC

**TRIGger:B:EDGE:COUPling**

Sets or returns the type of coupling for the B trigger.

**Group**

Trigger

**Syntax**

TRIGger:B:EDGE:COUPling {DC|HFRej|LFRej|NOISErej}

TRIGger:B:EDGE:COUPling?

**Related Commands**

TRIGger:B:EDGE?

**Arguments**

DC selects DC trigger coupling.

HFRej selects high-frequency reject coupling.

LFRej selects low-frequency reject coupling.

NOISErej selects DC low sensitivity.

**Examples**

TRIGGER:B:EDGE:COUPLING DC selects DC for the B trigger coupling.


**TRIGger:B:EDGE:SLOpe**

Sets or returns the slope for the B trigger.

**Group**

Trigger

**Syntax**

TRIGger:B:EDGE:SLOpe {RISe|FALL}

TRIGger:B:EDGE:SLOpe?

**Related Commands**

TRIGger:B:EDGE?
**Arguments**

RISe triggers on the rising or positive edge of a signal.
FALL triggers on the falling or negative edge of a signal.

**Examples**

TRIGGER:B:EDGE:SLOPE FALL sets the B edge trigger to occur on the falling slope.

TRIGGER:B:EDGE:SLOPE? might return :TRIGGER:B:EDGE:SLOPE RISE indicating that the B edge trigger occurs on the rising slope.

---

**TRIGger:B:EDGE:SOUrce**

Sets or returns the source for the B trigger.

**Group**

Trigger

**Syntax**

TRIGger:B:EDGE:SOUrce \{CH<x>|EXT|LINE\}

TRIGger:B:EDGE:SOUrce?

**Related Commands**

TRIGger:B:EDGE?

---

**Arguments**

CH<x> specifies one of the input channels as the B trigger source.

EXT specifies an external trigger (using the Aux In connector, located on the front panel of the oscilloscope) as the B trigger source.

LINE specifies the power line as the B trigger source.

**Examples**

TRIGGER:B:EDGE:SOURce CH4 sets channel 4 as the input source for the B trigger.

TRIGGER:B:EDGE:SOURce? might return :TRIGGER:B:EDGE:SOURce CH1 indicating that the current input source for the B trigger is channel 1.

---

**TRIGger:B:EVENTS? (Query Only)**

Returns the current B trigger events parameter.

**Group**

Trigger

**Syntax**

TRIGger:B:EVENTS?
**Related Commands**

TRIGger:B:EVENTS:COUNt

**Examples**

TRIGGER:B:EVENTS? might return

:TRIGGER:B:EVENTS:COUNT 2

indicating that 2 events must occur before the B trigger occurs.

---

**TRIGger:B:EVENTS:COUNt**

Sets or returns the number of events that must occur before the B trigger (when TRIG:DELay:BY is set to EVENTS).

**Group**

Trigger

**Syntax**

TRIGger:B:EVENTS:COUNt <NR1>

TRIGger:B:EVENTS:COUNt?

**Related Commands**

TRIGger:B:EVENTS?

**Arguments**

<NR1> is the number of B trigger events, which can range from 1 to 5,000,000.

**Examples**

TRIGGER:B:EVENTS:COUNT 4 specifies that the B trigger will occur four trigger events after the A trigger.

TRIGGER:B:EVENTS:COUNT? might return :TRIGGER:B:EVENTS:COUNT 2 indicating that two events must occur after the A trigger before the B trigger can occur.

---

**TRIGger:B:LEVel**

Sets or returns the level for the B trigger.

**Group**

Trigger

**Syntax**

TRIGger:B:LEVel {TTL|<NR3>}

TRIGger:B:LEVel?

**Related Commands**

TRIGger:A:LEVel, TRIGger:B, TRIGger:B:EDGE:SOUrce
Commands Listed in Alphabetical Order

**Arguments**

- **TTL** specifies a preset TTL high level of 1.4 V.
- `<NR3>` is the B trigger level, in volts.

**Examples**

- `TRIGGER:B:LEVEL` TTL sets the B trigger level to 1.4 V.
- `TRIGGER:B:LEVEL?` might return `:TRIGGER:B:LEVEL 173.0000E-03` indicating that the B trigger level is currently set at 173 mV.

**TRIGger:B:LEVel:CH<x>**

Sets or returns the B trigger level for channel `<x>`, where `x` is the channel number. Each Channel can have an independent Level.

**Group**

- Trigger

**Syntax**

- `TRIGger:B:LEVel:CH<x> {ECL|TTL|<NR3>}`
- `TRIGger:B:LEVel:CH<x>?`

**Arguments**

- **ECL** specifies a preset ECL high level of –1.3V.
- **TTL** specifies a preset TTL high level of 1.4V.
- `<NR3>` specifies the trigger level in user units (usually volts).

**Examples**

- `TRIGGER:B:LEVEL:CH2?` might return `:TRIGGER:B:LEVEL:CH2 1.3000E+00` indicating that the B edge trigger is set to 1.3 V for channel 2.
- `TRIGGER:B:LEVEL:CH3 TTL` sets the B edge trigger to TTL high level for channel 3.

**TRIGger:B:LEVel:D<x>**

Sets or returns the B trigger level for digital channel `<x>`, where `x` is the channel number. Each channel can have an independent Level.

**Group**

- Trigger

**Syntax**

- `TRIGger:B:LEVel:D<x> {ECL|TTL|<NR3>}`
- `TRIGger:B:LEVel:D<x>?`
Arguments

ECL specifies a preset ECL high level of −1.3V.
TTL specifies a preset TTL high level of 1.4V.

<TNR3> specifies the trigger level in user units (usually volts).

**TRIGGER:B:LOWERthreshold:CH<x>**

Sets or returns the B trigger lower threshold for the channel <x>, where x is the channel number. Each channel can have an independent level. Used in Runt and Rise/fall time triggers as the lower threshold. Used for all other Trigger Types as the single level/threshold.

**Group**  
Trigger

**Syntax**

TRIGGER:B:LOWERthreshold:CH<x> {ECL|TTL|<N3>}  
TRIGGER:B:LOWERthreshold:CH<x>?

**Arguments**

ECL specifies a preset ECL high level of −1.3V.
TTL specifies a preset TTL high level of 1.4V.

<TNR3> is the threshold level, in volts.

**TRIGGER:B:LOWERthreshold:D<x>**

Sets or queries the B trigger lower threshold for the digital channel selected. Each channel can have an independent level. Used in Runt and Rise/fall time triggers as the lower threshold. Used for all other trigger types as the single level/threshold.

**Group**  
Trigger

**Syntax**

TRIGGER:B:LOWERthreshold:D<x> {<N3>|ECL|TTL}  
TRIGGER:B:LOWERthreshold:D<x>?

**Arguments**

<TNR3> specifies the threshold in volts.
ECL specifies a preset ECL high level of −1.3V.
TTL specifies a preset TTL high level of 1.4V.
Examples

TRIGGER:B:LOWERTHRESHOLD:D1? might return
TRIGGER:B:LOWERTHRESHOLD:D1 1.4000 indicating the threshold is set to 1.4 volts.

**TRIGger:B:STATE**

Sets or returns the state of B trigger activity. If the B trigger state is on, the B trigger is part of the triggering sequence. If the B trigger state is off, then only the A trigger causes the trigger event.

**Group**

Trigger

**Syntax**

TRIGger:B:STATE {ON|OFF|<NR1>}
TRIGger:B:STATE?

**Related Commands**

TRIGger:A:MODE

**Arguments**

ON specifies that the B trigger is active and in causes trigger events conjunction with the A trigger.

OFF specifies that only the A trigger causes trigger events.

<NR1> a 0 turns off the B trigger; any other value activates the B trigger.

**Examples**

TRIGGER:B:STATE ON sets the B trigger to active, making it capable of causing trigger events.

TRIGGER:B:STATE? might return :TRIGGER:B:STATE 0 indicating that the B trigger is inactive and that only the A trigger causes trigger events.

**TRIGger:B:TIMe**

Sets or returns B trigger delay time. The B Trigger time applies only if TRIGger:B:BY is set to TIme.

**Group**

Trigger

**Syntax**

TRIGger:B:TIMe <NR3>
TRIGger:B:TIMe?

**Related Commands**

TRIGger:B:BY, TRIGger:B:EVENTS:COUNt
Arguments  <NR3> is the B trigger delay time in seconds.

Examples  TRIGGER:B:TIME 4E-6 sets the B trigger delay time to 4 µs.

TRIGGER:B:TIME? might return :TRIGGER:B:TIME 16.0000E-9 indicating that the B trigger time is set to 16 ns.

TRIGger:B:TYPe

Sets or returns the type of B trigger. The only supported B trigger type is EDGE.

Group  Trigger

Syntax  TRIGger:B:TYPe EDGE
TRIGger:B:TYPe?

Related Commands  TRIGger:A:TYPe

Arguments  EDGE sets the B trigger type to edge.

Examples  TRIGGER:B:TYPE EDGE sets the B trigger type to edge.

TRIGGER:B:TYPE? might return :TRIGGER:B:TYPE EDGE.

TRIGger:B:UPPerthreshold:CH<x>

Sets the upper threshold for the channel selected. Each channel can have an independent level.

Group  Trigger

Syntax  TRIGger:B:UPPerthreshold:CH<x> {<NR3>|TTL}
TRIGger:B:UPPerthreshold:CH<x>?

Arguments  TTL specifies a preset TTL high level of 1.4 V.

<NR3> is the clock level, in volts.
**TRIgger:EXTernal? (Query Only)**

Returns all external trigger parameters.

- **Group**: Trigger
- **Syntax**: TRIGger:EXTernal?

**TRIgger:EXTernal:PRObe**

Sets or returns the attenuation factor value of the external probe connector.

- **Group**: Trigger
- **Syntax**: TRIGger:EXTernal:PRObe <NR3>
  TRIGger:EXTernal:PRObe?
- **Arguments**: <NR3> is the attenuation factor of the probe.
- **Examples**: TRIGGER:EXTERNAL:PROBE? might return \( :TRIGGER:EXTERNAL:PROBE 1.0E1 \) for a 10X probe.

**TRIgger:EXTernal:YUNIts? (Query Only)**

Returns the external trigger vertical (Y) units value.

- **Group**: Trigger
- **Syntax**: TRIGger:EXTernal:YUNIts?
- **Examples**: TRIGGER:EXTERNAL:YUNITS? might return TRIGGER:EXTERNAL:YUNITS “V” if the vertical unit is volts.

**TRIgger:FREQuency? (Query Only)**

Returns the trigger frequency in hertz if available. If the trigger frequency is not currently available, the IEEE Not A Number (NaN = 99.10E+36) value is returned. The maximum precision of the returned frequency is 12 digits.
### TRIGger:FREQuency?

**Group** Trigger  
**Syntax** `TRIGger:FREQuency?`

**Examples** `TRIGGER:FREQUENCY?` might return `TRIGGER:FREQUENCY 99.10+36` indicating that the trigger frequency is not available.

### TRIGger:STATE?

*(Query Only)*

Returns the current state of the triggering system.

**Group** Trigger  
**Syntax** `TRIGger:STATE?`

**Related Commands** `TRIGger:A:MODE`

**Returns**  
- ARMED indicates that the oscilloscope is acquiring pretrigger information.  
- AUTO indicates that the oscilloscope is in the automatic mode and acquires data even in the absence of a trigger.  
- READY indicates that all pretrigger information has been acquired and that the oscilloscope is ready to accept a trigger.  
- SAVE indicates that the oscilloscope is in save mode and is not acquiring data.  
- TRIGGER indicates that the oscilloscope triggered and is acquiring the post trigger information.

**Examples** `TRIGGER:STATE?` might return `:TRIGGER:STATE ARMED` indicating that the pretrigger data is being acquired.

### *TST? (Query Only)

Tests (self-test) the interface and returns a 0.

**Group** Miscellaneous  
**Syntax** `*TST?`
Examples

*TST? always returns 0.

UNLock (No Query Form)

Unlocks the front panel. The command is equivalent to LOCk NONe.

Group Miscellaneous

Syntax UNLock ALL

Related Commands LOCk

Arguments

ALL specifies that all front-panel buttons and knobs are unlocked.

Examples UNLOCK ALL unlocks all front-panel buttons and knobs.

USBTMC? (Query Only)

Returns the USBTMC information used by the USB hosts to determine the instrument interfaces.

Group Miscellaneous

Syntax USBTMC?

USBDevice:CONFigure

Enables or disables the rear USB port for use with Pictbridge printers.

Group PictBridge

Syntax USBDevice:CONFigure {DI سابled|IMAge|USBTmc} USBDevice:CONFigure?

Arguments DI سابled disables the rear USB port.
IMAge enables the rear USB port as an SIC device.
USBTmc enables the rear USB port as a USBTMC device.

**Examples**

`USBDEVICE:CONFIGURE IMAGE` enables the rear USB port as an SIC device

`USBDEVICE:CONFIGURE ?` might return `USBDEVICE:CONFIGURE USBT` indicating a USBTMC device.

**USBTMC:PRODUCTID:DECimal? (Query Only)**

Returns the product ID of the USBTMC device in decimal format.

**Group** Miscellaneous

**Syntax** `USBTMC:PRODUCTID:DECimal?`

**Examples** `USBTMC:PRODUCTID:DECIMAL?` might return `USBTMC:PRODUCTID:DECIMAL 1025` indicating the product ID is 1025 in decimal format.

**USBTMC:PRODUCTID:HEXadecimal? (Query Only)**

Returns the product ID of the USBTMC device in hexadecimal format.

**Group** Miscellaneous

**Syntax** `USBTMC:PRODUCTID:HEXadecimal?`

**Examples** `USBTMC:PRODUCTID:HEXADECIMAL?` might return `USBTMC:PRODUCTID:HEXADECIMAL 0x0401` indicating the product ID is 0x0401 in hexadecimal format.

**USBTMC:SERIALnumber? (Query Only)**

Returns the serial number of the USBTMC device.

**Group** Miscellaneous

**Syntax** `USBTMC:SERIALnumber?`
Examples  USBTMC:SERIALNUMBER? might return USBTMC:SERIALNUMBER PQ3N060 indicating that the instrument serial number is PQ3N060.

**USBTMC:VENDORID:DECimal? (Query Only)**

Returns the vendor ID of the USBTMC device in decimal format.

**Group**  Miscellaneous

**Syntax**  USBTMC:VENDORID:DECimal?

**Examples**  USBTMC:VENDORID:DECIMAL? might return USBTMC:VENDORID:DECIMAL 1689 indicating that the Vendor ID is 1680 in decimal format.

**USBTMC:VENDORID:HEXadecimal? (Query Only)**

Returns the vendor ID of the USBTMC device in hexadecimal format.

**Group**  Miscellaneous

**Syntax**  USBTMC:VENDORID:HEXadecimal?

**Examples**  USBTMC:VENDORID:HEXADECIMAL? might return USBTMC:VENDORID:HEXADECIMAL 0x0699 indicating that the Vendor ID is 0x0699 in hexadecimal format.

**VERBose**

Sets or returns the Verbose state that controls the length of keywords on query responses. Keywords can be both headers and arguments.

**NOTE.** This command does not affect IEEE Std 488.2-1987 Common Commands (those starting with an asterisk). This command does affects the verbose state of both the USBTMC and VXI-11 interfaces. Refer to the Introduction for information.

**Group**  Miscellaneous
Commands Listed in Alphabetical Order

Syntax

VERBose {OFF|ON|<NR1>}

Related Commands

HEADer, *LRN?, SET?

Arguments

OFF sets the Verbose state to false, which returns minimum-length keywords for applicable setting queries.

ON sets the Verbose state to true, which returns full-length keywords for applicable setting queries.

<NR1> a 0 returns minimum-length keywords for applicable setting queries; any other value returns full-length keywords.

Examples

VERBOSE ON enables the Verbose state.

VERBOSE ? might return :VERB 0 indicating that the Verbose state is disabled.

*WAI (No Query Form)

Prevents the oscilloscope from executing further commands or queries until all pending commands that generate an OPC message are complete. This command allows you to synchronize the operation of the oscilloscope with your application program. (See page 3-7, Synchronization Methods.)

Group

Status and Error

Syntax

*WAI

Related Commands

BUSY?, *OPC

Examples

*WAI prevents the oscilloscope from executing any further commands or queries until all pending commands that generate an OPC message are complete.

WAVFrm? (Query Only)

This query returns the waveform preamble and the waveform data for the source waveform specified by the DATA:SOURce command. This command is equivalent to sending both WFMOutpre? and CURve?, with the additional provision that the response to WAVFrm? is guaranteed to provide a synchronized preamble and curve. The source waveform, as specified by DATA:SOURce, must be active or the query will not return any data and will generate an error event.
Group  
Waveform Transfer

Syntax  
WAVFrm?

Related Commands  
CURVe,  
DATa:SOURce,  
WFMOutpre?

Examples  
WAVFrm? might return the waveform data as:  
:WFMOUTPRE:BYT_NR 1;BIT_NR 8;ENCDG ASCII;BN_FMT RI;BYT_OR MSB;WFID “Ch1, DC coupling, 100.0mV/div, 4.000us/div, 10000 points, Sample mode”;NR_PT 20;PT_FMT Y;XUNIT “s”;XINCR 4.0000E-9;XZERO -20.0000E-6;PT_OFF 0;YUNIT “V”;YMULT 4.0000E-3;YOFF 0.0000;YZERO 0.0000;:CURVe 2,1,4,2,4,3,0,3,3,3,3,3,3,4,3,5,6,6,7,3

For binary encodings, WAVFrm? might return the waveform data as:  
:WFMOUTPRE:BYT_NR 1;BIT_NR 8;ENCDG BINARY;BN_FMT RI;BYT_OR MSB;WFID “Ch1, DC coupling, 100.0mV/div, 4.000us/div, 10000 points, Sample mode”;NR_PT 10000;PT_FMT Y;XUNIT “s”;XINCR 4.0000E-9;XZERO -20.0000E-6;PT_OFF 0;YUNIT “V”;YMULT 4.0000E-3;YOFF 0.0000;YZERO 0.0000;:CURVe #510000<10,000 binary data bytes>

WFMInpre? (Query Only)

Returns the waveform formatting and scaling specifications to be applied to the next incoming CURVe command data.

Group  
Waveform Transfer

Syntax  
WFMInpre?

Related Commands  
WFMOutpre?
**Examples**

`WFMInpre?` might return the waveform formatting as:
```
:WFMInpre:BYT_NR 1;BIT_NR 8;ENCdg BINARY;BN_FMT RI;BYT_OR MSB;NR_PT 10000;PT_FMT Y;XUNIT "s";XINCR 4.0000E-9;XZERO 0.0E+0;PT_OFF 0;YUNIT "V";YMULT 4.0000E-3;YOFF 0.0E+0;YZERO 0.0E+0;DOMAIN TIME;WFMTYPE ANALOG;CENTERFREQUENCY 0.0E+0;SPAN 0.0E+0;REFLEVEL 0.0E+0
```

**WFMInpre:BIT_Nr**

This command specifies the number of bits per data point in the waveform data to be sent to the oscilloscope using the `CURVe` command. Changing this value also changes the value of `WFMInpre:BYT_Nr`.

(See page 2-78, Waveform Transfer Command Group.)

**NOTE.** The `WFMInpre:BYT_Nr` and `WFMInpre:BIT_Nr` settings are directly related; setting one causes the other to be set accordingly. For example, `WFMInpre:BYT_Nr 2` causes `WFMInpre:BIT_Nr` to be set to 16 (2 * 8 bits/byte). Similarly, setting `WFMInpre:BIT_Nr to 16 causes WFMInpre:BYT_Nr to be set to 2.

**Group**

Waveform Transfer

**Syntax**

```
WFMInpre:BIT_Nr <NR1>
WFMInpre:BIT_Nr?
```

**Related Commands**

`WFMInpre:BYT_Nr`

**Arguments**

`<NR1>` number of bits per data point can be 8 or 16.

**Examples**

`WFMInpre:BIT_Nr 16` sets the number of bits per waveform point to 16, for incoming data.

`WFMInpre:BIT_Nr?` might return `:WFMInpre:BIT_Nr 8` indicating that incoming waveform data uses 8 bits per waveform point.

**WFMInpre:BN_Fmt**

This command specifies the format of the data for outgoing waveforms when `WFMInpre:ENCdg` is set to `BINary`. The format can either be `RI` (signed integer) or `RP` (positive integer).

(See page 2-78, Waveform Transfer Command Group.)
Group Waveform Transfer

Syntax

WFMInpre:BN_Fmt {RI|RP}
WFMInpre:BN_Fmt?

Related Commands

WFMOutpre:BN_Fmt
WFMInpre:ENCdg

Arguments

RI specifies signed integer data point representation.
RP specifies positive integer data point representation.

Examples

WFMInpre:BN_FMT RP specifies positive integer data point representation.
WFMInpre:BN_FMT? might return :WFMInpre:BN_FMT RI indicating that the incoming data is currently interpreted as signed integers.

WFMInpre:BYT_Nr

This command specifies the number of bytes per data point in the waveform data to be sent to the oscilloscope using the CURve command. Changing this value also changes the value of WFMInpre:BIT_Nr.

(See page 2-78, Waveform Transfer Command Group.)

NOTE. The WFMInpre:BYT_Nr and WFMInpre:BIT_Nr settings are directly related; setting one causes the other to be set accordingly. For example, WFMInpre:BYT_Nr 2 causes WFMInpre:BIT_Nr to be set to 16 (2 * 8 bits/byte). Similarly, setting WFMInpre:BIT_Nr to 16 causes WFMInpre:BYT_Nr to be set to 2.

Group Waveform Transfer

Syntax

WFMInpre:BYT_Nr <NR1>
WFMInpre:BYT_Nr?

Related Commands

WFMInpre:BIT_Nr

Arguments

<NR1> is the number of bytes per data point. The number of bytes can be 1 or 2 for Analog, Math or the digital channels D0 – D15. It can be 4 or 8 for DIGital collection data.
**WFMINPRE:BYT_NR**

This command sets the number of bytes per incoming waveform data point to 1, which is the default setting.

**WFMINPRE:BYT_NR?** might return **WFMINPRE:BYT_NR 2** indicating that there are 2 bytes per incoming waveform data point.

**WFMinpre:BYT_Or**

This command specifies which byte of incoming binary waveform data is transmitted first (the byte order). The byte order can either be MSB (most significant byte first) or LSB (least significant byte first, also known as IBM format). This specification only has meaning when **WFMinpre:ENCdg** is set to BINary and **WFMinpre:BYT_Nr** is 2.

(See page 2-78, *Waveform Transfer Command Group*.)

**Group** Waveform Transfer

**Syntax**

```
WFMinpre:BYT_Or {LSB|MSB}
WFMinpre:BYT_Or?
```

**Related Commands**

- **WFMinpre:ENCdg**, **WFMinpre:BYT_Nr**, **WFMOutpre:BYT_Or**

**Arguments**

- **LSB** specifies that the least significant byte will be expected first.
- **MSB** specifies that the most significant byte will be expected first.

**Examples**

**WFMINPRE:BYT_OR MSB** sets the most significant incoming byte of incoming waveform data to be expected first.

**WFMINPRE:BYT_OR?** might return **WFMINPRE:BYT_OR LSB** indicating that the least significant incoming CURVe data byte will be expected first.

**WFMinpre:CENTEFREQuency**

This command specifies the center frequency of the incoming RF trace (waveform), in Hertz. This command is provided for waveform transfer compatibility with mixed domain oscilloscopes only. The command form is ignored and the query always returns 0.0000.
Group  Waveform Transfer

Syntax  WFMInpre:CENTRFREQuency <NR3>
        WFMInpre:CENTRFREQuency?

WFMInpre:DOMain

This command is provided for waveform transfer compatibility with mixed
domain oscilloscopes only. The command form is ignored and the query always
returns TIME.

Group  Waveform Transfer

Syntax  WFMInpre:DOMain {TIME|FREQuency}
        WFMInpre:DOMain?

WFMInpre:ENCdg

This command specifies the type of encoding of the incoming waveform data
to be sent to the oscilloscope using the CURve command. Supported types are
BINary and ASCii.

(See page 2-78, Waveform Transfer Command Group.)

Group  Waveform Transfer

Syntax  WFMInpre:ENCdg {ASCii|BINary}
        WFMInpre:ENCdg?

Related Commands  WFMOutpre:ENCdg

Arguments  ASCii specifies that the incoming data is in ASCII format.
            BINary specifies that the incoming data is in a binary format whose further
            interpretation requires knowledge of BYT_NR, BIT_NR, BN_FMT, and
            BYT_OR.

Examples  WFMINPRE:ENCDG ASC sets the format of incoming waveform data to ASCII
          format.
WFMINPRE:ENCDG ? might return :WFMINPRE:ENCDG BIN indicating that the incoming waveform data is in binary format.

**WFMINPRE:NR_Pt**

This command specifies the number of data points that are in the incoming waveform record to be sent to the oscilloscope using the **CURVe** command.  
(See page 2-78, *Waveform Transfer Command Group.*

**Group**  
Waveform Transfer

**Syntax**  
WFMINPRE:NR_Pt <NR1>  
WFMINPRE:NR_Pt?

**Related Commands**  
CURVe,  
DATa,  
DATa:STARt,  
DATa:STOP,  
SAVe:WAVEform,  
SAVe:WAVEform:FILEFormat,  
WFMOutpre:NR_Pt?

**Arguments**  
<NR1> is the number of data points if WFMInpre:PT_Fmt is set to Y. It is the number of min-max pairs if WFMInpre:PT_Fmt is set to ENV.

**Examples**  
WFMINPRE:NR_PT 10000 specifies that 10000 data points will be expected.  
WFMINPRE:NR_PT ? might return :WFMINPRE:NR_PT 10000 indicating that there are 10000 data points in the expected incoming waveform record.

**WFMINPRE:PT_Fmt**

This command specifies the acquisition format of the data points to be sent to the oscilloscope using the **CURVe** command. This can be Y for YT format, or ENV for envelope mode (min/max pairs). For YT format, each data value represents a single waveform data point. For envelope format, each data point represents a min/max pair, where the minimum value precedes the maximum value.  
(See page 2-78, *Waveform Transfer Command Group.*)
Group Waveform Transfer

Syntax

WFMInpre:PT_FMT {ENV|Y}
WFMInpre:PT_FMT?

Related Commands

WFMOutpre:PT_FMT?

Arguments

ENV specifies that the waveform is to be transmitted in envelope mode as minimum and maximum point pairs. Only \( Y \) values are explicitly transmitted. Absolute coordinates are given by:

\[
X_n = XZEr + XINcr \ (n - PT\_Off)
\]

\[
Y_{n\text{max}} = YZEr + YMult \ (yn_{\text{max}} - YOFf)
\]

\[
Y_{n\text{min}} = YZEr + YMult \ (yn_{\text{min}} - YOFf)
\]

\( Y \) specifies a normal waveform where one ASCII or binary data point is transmitted for each point in the waveform record. Only \( Y \) values are explicitly transmitted. Absolute coordinates are given by:

\[
X_n = XZEr + XINcr \ (n - PT\_Off)
\]

\[
Y_n = YZEr + YMult \ (yn - YOFf)
\]

Examples

WFMInpre:PT_FMT ENV sets the incoming waveform data point format to enveled.

WFMInpre:PT_FMT? might return :WFMInpre:PT_FMT ENV indicating that the waveform is transmitted as minimum and maximum point pairs.

WFMInpre:PT_Off

The set form of this command is ignored. The query form always returns a 0. (This command is listed for compatibility with other Tektronix oscilloscopes.)

(See page 2-78, Waveform Transfer Command Group.)

Group Waveform Transfer

Syntax

WFMInpre:PT_Off <NR1>
WFMInpre:PT_Off?

Arguments

Arguments are ignored.
**WFMInpre:REFLevel**

This command specifies the Reference Level of the incoming waveform. This command is provided for waveform transfer compatibility with mixed domain oscilloscopes only. The command form is ignored and the query always returns 0.0000.

**Group** Waveform Transfer

**Syntax**

```
WFMInpre:REFLevel <NR3>
WFMInpre:REFLevel?
```

---

**WFMInpre:SPAN**

This command specifies the frequency span of an incoming RF trace. This command is provided for waveform transfer compatibility with mixed domain oscilloscopes only. The command form is ignored and the query always returns 0.0000.

**Group** Waveform Transfer

**Syntax**

```
WFMInpre:SPAN <NR3>
WFMInpre:SPAN?
```

---

**WFMInpre:WFMTYPE**

This command specifies the type of waveform that is being transferred to the oscilloscope for storage in one of the REF1 — REF4 memory locations. This command is provided for waveform transfer compatibility with mixed domain oscilloscopes only. The command form is ignored and the query always returns ANALOG.

**Group** Waveform Transfer

**Syntax**

```
WFMInpre:WFMTYPE {ANALOG|RF_TD|RF_FD}
WFMInpre:WFMTYPE?
```
### WFMInpre:XINcr

This command specifies the horizontal interval between incoming waveform points sent to the oscilloscope using the CURVE command. The units are time, in seconds, or frequency, in hertz, and can be specified or queried using the WFMInpre:XUNit command.

(See page 2-78, *Waveform Transfer Command Group.*

**Group**  
Waveform Transfer

**Syntax**  
```
WFMInpre:XINcr <NR3>
WFMInpre:XINcr?
```

**Related Commands**  
WFMInpre:XUNit,  
WFMOutpre:XINcr?

**Arguments**  
<NR3> is a floating point number that specifies the horizontal interval representation.

**Examples**  
```
WFMInpre:XINCR 3E-3
```
sets the interval between incoming waveform points to 3 ms.

```
WFMInpre:XINCR ?
```
might return `:WFMInpre:XINCR 1.0000E-3` indicating that if WFMInpre:XUNit is set to "s", there is a 1 ms interval between incoming waveform points.

### WFMInpre:XUNit

This command specifies the horizontal units of the x-axis of the data points being sent to the oscilloscope using the CURVE command. This value can be in “s” for seconds, or “Hz”.

(See page 2-78, *Waveform Transfer Command Group.*

**Group**  
Waveform Transfer

**Syntax**  
```
WFMInpre:XUNit <QString>
WFMInpre:XUNit?
```

**Related Commands**  
WFMOutpre:XUNit?
Arguments  <QString> contains the characters that represent the horizontal units for the incoming waveform.

Examples  WFMInpre:XUNIT "HZ" specifies that the horizontal units for the incoming waveform are hertz.

WFMInpre:XUNIT? might return :WFMInpre:XUNIT "s" indicating that the horizontal units for the incoming waveform are seconds.

WFMInpre:XZErO

This command specifies the position value of the first data point in the incoming waveform record being sent to the oscilloscope using the CURVE command. The units are determined or queried using the WFMInpre:XUnit command and are typically time, in seconds, or frequency, in hertz. This time or frequency is relative to the time or frequency of the trigger, which is always 0. Thus, the XZErO value can be negative.

(See page 2-78, Waveform Transfer Command Group.)

Group  Waveform Transfer

Syntax  WFMInpre:XZErO <NR3>
        WFMInpre:XZErO?

Related Commands  WFMInpre:XINcr,
                  WFMInpre:XUnit,
                  WFMOutpre:XZErO?

Arguments  <NR3> is the floating point value of the position, in XUnits, of the first sample in the incoming waveform. If XUnits is “s”, <NR3> is the time of the first sample in the incoming waveform.

Examples  WFMInpre:XZErO 5.7E-6, which indicates the trigger occurred 5.7 µs before the first sample in the waveform.

WFMInpre:XZErO? might return :WFMInpre:XZErO -7.5000E-6 indicating that the trigger occurs 7.5 µs after the first sample in the waveform.
WFMIpre:YMUlt

This command specifies the vertical scale multiplying factor to be used to convert the incoming data point values being sent to the oscilloscope, from digitizing levels into the units specified by the WFMIpre:YUNit command. For one byte waveform data, there are 256 digitizing levels. For two byte waveform data there are 65,536 digitizing levels.

The WFMIpre:YMUlt, WFMIpre:YOFf, and WFMIpre:YZEro values are used to convert waveform record values to units specified using the WFMIpre:YUNit command (YUNit units). It uses the following formula (where dl means digitizing level; curve_in_dl is a data point value in the CURVe data):

\[ \text{Value in YUNit units} = ((\text{curve}_{\text{in}}_{\text{dl}} - \text{YOFf}) \times \text{YMUlt}) + \text{YZEro} \]

(See page 2-78, Waveform Transfer Command Group.)

**NOTE.** For a given waveform record, YMUlt, YOFf, and YZEro have to be a consistent set, otherwise vertical cursor readouts and vertical measurements may give incorrect results.

**Group**  
Waveform Transfer

**Syntax**  
WFMIpre:YMUlt <NR3>  
WFMIpre:YMUlt?

**Related Commands**  
DATa:DESTination,  
WFMIpre:BYT_Nr,  
WFMIpre:YUNit

**Arguments**  
<NR3> is a floating point number that specifies the vertical scale factor per digitizing level of the incoming waveform points.

**Examples**  
WFMIpre:YMUlt? might return :WFMIpre:YMULT 40.0000E-3, which (if YUNit is “V”) indicates that the vertical scale is 40 mV/digitizing level (1V/div for 8-bit data).

WFMIpre:YMULT 20E-3 specifies that (if WFMIpre:YUNit is "V" and WFMIpre:BYT_Nr is 1), the vertical scale is 20 mV/digitizing level (500 mV/div).
**WFMInpre:YOFF**

This command specifies the vertical position of the destination reference waveform in digitizing levels. There are 25 digitizing levels per vertical division for 1-byte data, and 6400 digitizing levels per vertical division for 2-byte data. Variations in this number are analogous to changing the vertical position of the waveform.

The `WFMInpre:YMult`, `WFMInpre:YOFF`, and `WFMInpre:YZero` commands are used to convert waveform record values to units specified using the `WFMInpre:YUNit` command (YUNit units). It uses the following formula (where `dl` means digitizing levels, and `curve_in_dl` is a data point value in the `CURVe` data):

\[
\text{Value in YUNit units} = \left(\text{curve\_in\_dl} - \text{YOFF}\right) \times \text{YMUlt} + \text{YZero}
\]

**NOTE.** For a given waveform record, YMUlt, YOFF, and YZero have to be a consistent set, otherwise vertical cursor readouts and vertical measurements may give incorrect results.

*(See page 2-78, Waveform Transfer Command Group.)*

**Group**

Waveform Transfer

**Syntax**

`WFMInpre:YOFF <NR3>`

`WFMInpre:YOFF?`

**Related Commands**

`WFMInpre:BYT_Nr`

`WFMInpre:YMUlt`

`WFMOutpre:YOFF?`

**Arguments**

`<NR3>` is a floating point number that specifies the vertical offset in digitizing levels.

**Examples**

`WFMInpre:YOFF 50` specifies that the zero reference point for the incoming waveform is 50 digitizing levels (2 divisions, for 8-bit data; 0.0078125 division for 16-bit data) above the center of the graticule.

`WFMInpre:YOFF?` might return `:WFMInpre:YOFF 25` indicating the vertical position of the incoming waveform is 25 digitizing levels.
**WFMInpre:YUNit**

This command specifies the vertical units of data points in the incoming waveform record sent to the oscilloscope using the CURVE command. This can be any of several string values, depending upon the vertical units of the waveform being sent.


**NOTE.** (See page 2-78, Waveform Transfer Command Group.)

**Group**
Waveform Transfer

**Syntax**
WFMInpre:YUNit <QString>
WFMInpre:YUNit?

**Related Commands**
WFMOutpre:YUNit?

**Arguments**
<QString> contains the characters that represent the vertical units for the incoming waveform.

**Examples**
WMINPRE:YUNIT? might return :WMINPRE:YUNIT "V" indicating the vertical units for the incoming waveform are volts.
WMINPRE:YUNIT "A" specifies that the vertical units for the incoming waveform are Amperes.

**WFMInpre:YZEro**

This command specifies the vertical offset of the destination reference waveform in units specified by the WFMInpre:YUNit command. Variations in this number are analogous to changing the vertical offset of the waveform.

The WFMInpre:YMUlt, WFMInpre:YOFF, and WFMInpre:YZEro commands are used to convert waveform record values to units specified using the WFMInpre:YUNit command (YUNit units). It uses the following formula (where dl means digitizing levels; curve_in_dl is a data point value in the CURVe data):

Value in YUNit units = ((curve_in_dl - YOFF) * YMUlt) + YZEro
NOTE. For a given waveform record, YMUlt, YOFF, and YZERO have to be a consistent set, otherwise vertical cursor readouts and vertical measurements may give incorrect results.

(See page 2-78, Waveform Transfer Command Group.)

**Group**  
Waveform Transfer

**Syntax**  
WFMInpre:YZERO <NR3>  
WFMInpre:YZERO?

**Related Commands**  
WFMInpre:YUNit  
WFMInpre:YZero

**Arguments**  
<NR3> is a floating point number that specifies the offset in units specified by the WFMInpre:YUNit command (YUNits).

**Examples**  
WFMInpre:YZERO 1.5E+0 specifies that the zero reference point for the incoming waveform is 1.5 V below the center of the data range (given that WFMInpre:YUNit is set to V).

WFMInpre:YZERO? might return :WFMInpre:YZERO 7.5000E-6 indicating that the zero reference for the incoming waveform is 7.5 µV below the center of the data range (given that WFMInpre:YUNit is set to V).

**WFMOutpre? (Query Only)**

This query returns the information needed to interpret the waveform data points returned by the CURVe? query. It returns the waveform transmission and formatting parameters for the waveform specified by the DATa:SOUrce command. If the waveform specified by the DATa:SOUrce command is not displayed, the oscilloscope returns only the waveform transmission parameters (BYT_Nr, BIT_Nr, ENCdg, BN_FMT, BYT_Or) and sets an error event indicating that the source waveform is not turned on.

The Waveform Transfer command group text contains more comprehensive information. (See page 2-78, Waveform Transfer Command Group.)

(See page D-1, Waveform Transfer (WFMOutpre and CURVe Query) Examples.)
NOTE. For command sequence examples, see Appendix D. (See page D-1, Waveform Transfer (WFMOutpre and CURVe Query) Examples.)

Example 1: Analog Waveform (channel 1 - 4)
Example 2: Digital Waveform (channel DO-D15)
Example 3: The Digital Collection with 4 Bytes Per Point with MagniVu Off
Example 4: The Digital Collection with 8 Bytes Per Point with MagniVu Off
Example 5: The Digital Collection with 4 Bytes Per Point with MagniVu On
Example 6: The Digital Collection with 8 Bytes Per Point with MagniVu On

**Group** Waveform Transfer

**Syntax** WFMOutpre?

**Examples** WFMOUTPRE? might return the waveform formatting data as:

```
:WFMOUTPRE:BYT_NR 1;BIT_NR 8;ENCODG BINARY;BN_FMT RI;BYT_OR MSB;WFID "Ch1, DC coupling, 100.0mV/div, 4.000us/div, 10000 points, Sample mode";NR_PT 10000;PT_FMT Y;PT_ORDER LINEAR;XUNIT "s";XINCR 4.0000E-9;XZERO -20.0000E-6;PT_OFF 0;YUNIT "v";YMULT 4.0000E-3;YOFF 0.0E+0;YZERO 0.0E+0;DOMAIN TIME;WFMTYPE ANALOG;CENTERFREQUENCY 0.0E+0;SPAN 0.0E+0;REFLEVEL 0.0E+0
```

**WFMOutpre:BIT_Nr**

This command specifies the number of bits per data point in the outgoing waveform being transferred using the CURVe? query. Changing the value of WFMOutpre:BIT_Nr also changes the values of WFMOutpre:BYT_Nr and DATa:WIDth. The waveform is specified by the DATa:SOURce command.

(See page 2-78, Waveform Transfer Command Group.)
(See page D-1, Waveform Transfer (WFMOutpre and CURVe Query) Examples.)

**NOTE.** The **WFMOutpre:BYT_Nr** and **WFMOutpre:BIT_Nr** settings are directly related: setting one causes the other to be set accordingly. For example, WFMOutpre:BYT_Nr 2 causes WFMOutpre:BIT_Nr to be set to 16 (2 * 8 bits/byte). Similarly, setting WFMOutpre:BIT_Nr to 16 causes WFMOutpre:BYT_Nr to be set to 2.

**Group** Waveform Transfer
Commands Listed in Alphabetical Order

**WFOutpre:BIT_Nr**

**Syntax**

```
WFOutpre:BIT_Nr <NR1>
WFOutpre:BIT_Nr?
```

**Related Commands**

DATa:SOUrce,
DATa:WIDth,
WFOutpre:BYT_Nr

**Arguments**

<NR1> is the number of bits per data point and can be 8 or 16.

**Examples**

- `WFOutpre:BIT_Nr 16` sets the number of bits per waveform point to 16 for outgoing waveforms.
- `WFOutpre:BIT_Nr?` might return `:WFOutpre:BIT_Nr 8` indicating that outgoing waveforms use 8 bits per waveform point.

**WFOutpre:BN_Fmt**

This command specifies the format of the binary data for outgoing waveforms when `WFOutpre:ENCdg` is set to `BINary`. The format can be RI (signed integer) or RP (positive integer) for analog channels. Changing the value of `WFOutpre:BN_Fmt` also changes the value of DATa:ENCdg. The waveform is specified by the DATa:SOUrce command.

(See page 2-78, Waveform Transfer Command Group.)

(See page D-1, Waveform Transfer (WFOutpre and CURVe Query) Examples.)

**Group**

Waveform Transfer

**Syntax**

```
WFOutpre:BN_FMT {RI|RP}
WFOutpre:BN_FMT?
```

**Related Commands**

DATa:ENCdg,
DATa:SOUrce

**Arguments**

RI specifies signed integer data point representation.
RP specifies positive integer data point representation.

**Examples**

- `WFOutpre:BN_FMT RP` specifies that outgoing waveform data will be in positive integer format.
**WFMOutpre:BYT_Nr**

This command specifies the data width for the outgoing waveform specified by the DATa:SOUrce command. (This command is synonymous with DATa:WIDTH.) Note that changing WFMOutpre:BYT_Nr also changes WFMOutpre:BIT_Nr and DATa:WIDth.

(See page 2-78, Waveform Transfer Command Group.)

(See page D-1, Waveform Transfer (WFMOutpre and CURVe Query) Examples.)

---

**NOTE.** The WFMOutpre:BYT_Nr and WFMOutpre:BIT_Nr settings are directly related; setting one causes the other to be set accordingly. For example, WFMOutpre:BYT_Nr 2 causes WFMOutpre:BIT_Nr to be set to 16 (2 * 8 bits/byte). Similarly, setting WFMOutpre:BIT_Nr to 16 causes WFMOutpre:BYT_Nr to be set to 2.

---

**Group**  
Waveform Transfer

**Syntax**  
WFMOutpre:BYT_Nr <NR1>  
WFMOutpre:BYT_Nr?

**Related Commands**  
DATa:SOUrce,  
DATa:WIDth,  
WFMOutpre:BIT_Nr

**Arguments**  
<NR1> is the number of bytes per data point. The number of bytes can be 1 or 2 for Analog, Math or the digital channels D0 – D15. It can be 4 or 8 for DIGital collection data.

**Examples**  
WFMOUTPRE:BYT_NR 1 sets the number of bytes per outgoing waveform data point to 1, which is the default setting.  
WFMOUTPRE:BYT_NR? might return :WFMOUTPRE:BYT_NR 2 indicating that there are 2 bytes per outgoing waveform data point.
WFMOutpre:BYT_Or

This command specifies which byte of outgoing binary waveform data is transmitted first (the byte order). The byte order can either be MSB (most significant byte first) or LSB (least significant byte first, also known as IBM format). This specification only has meaning when WFMOutpre:ENCdg is set to BINary and WFMOutpre:BYT_Nr is 2. Changing WFMOutpre:BYT_Or also changes DATa:ENCdg (if DATa:ENCdg is not ASCIi).

(See page 2-78, Waveform Transfer Command Group.)

(See page D-1, Waveform Transfer (WFMOutpre and CURVe Query) Examples.)

Group Waveform Transfer

Syntax WFMOutpre:BYT_Or {LSB|MSB}
WFMOutpre:BYT_Or?

Related Commands WFMOutpre:ENCdg,
WFMOutpre:BYT_Nr

Arguments LSB specifies that the least significant byte will be transmitted first.
MSB specifies that the most significant byte will be transmitted first.

Examples WFMOUTPRE:BYT_OR MSB sets the most significant outgoing byte of waveform data to be transmitted first.
WFMOUTPRE:BYT_OR? might return :WFMOUTPRE:BYT_OR LSB indicating that the least significant data byte will be transmitted first.

WFMOutpre:CENTERFREQuency? (Query Only)

This query returns the center frequency of an incoming waveform. This query is provided for waveform transfer compatibility with mixed domain oscilloscopes only and always returns 0.0000.

Group Waveform Transfer

Syntax WFMOutpre:CENTERFREQuency?
**WFMOutpre:DOMain? (Query Only)**

This query returns the domain of the outgoing waveform, either TIMe or FREQuency. This query is provided for waveform transfer compatibility with mixed domain oscilloscopes only and always returns TIMe.

**Group**  
Waveform Transfer

**Syntax**  
WFMOutpre:DOMain?

**WFMOutpre:ENCdg**

This command specifies the type of encoding (BINary or ASCii) of the outgoing waveform data queried using the CURVe? query. (This can also be set using the DATa:ENCdg command, which provides the ability to set WFMOutpre:ENCdg, WFMOutpre:BN_FMT, and WFMOutpre:BYT_OR using a single command.)

(See page 2-78, Waveform Transfer Command Group.)

(See page D-1, Waveform Transfer (WFMOutpre and CURVe Query) Examples.)

**Group**  
Waveform Transfer

**Syntax**  
WFMOutpre:ENCdg {ASCii|BINary}  
WFMOutpre:ENCdg?

**Related Commands**  
DATa:ENCdg,  
WFMOutpre:BYT_Nr,  
WFMOutpre:BYT_Or,  
WFMOutpre:BIT_Nr,  
WFMOutpre:BN_FMT

**Arguments**  
ASCii specifies that the outgoing data is to be in ASCII format. Waveforms will be sent as <NR1> numbers.

BINary specifies that outgoing data is to be in a binary format whose further specification is determined by WFMOutpre:BYT_Nr, WFMOutpre:BIT_Nr, WFMOutpre:BN_FMT and WFMOutpre:BYT_Or.
Examples

WFMOUTPRE:ENCDG? might return :WFMOUTPRE:ENCDG BIN indicating that outgoing waveform data will be sent in binary format.

WFMOUTPRE:ENCDG ASC specifies that the outgoing waveform data will be sent in ASCII format.

**WFMOUTPRE:NR_Pt? (Query Only)**

This query returns the number of data points in the waveform record that will be transmitted in response to a CURVe? query. This value is the adjusted range specified by DATA:START and DATA:STOP commands. Note that the oscilloscope automatically adjusts the DATA:START and DATA:STOP values when the DATA:STOP value is less than the DATA:START value, and when the DATA:START and/or DATA:STOP value is greater than the record length of the source waveform. The adjusted DATA:START and DATA:STOP values determine WFMOUTPRE:NR_PT. (You can use DATa:START and DATa:STOP to transfer partial waveforms.) If the waveform specified by the DATa:SOURce command is not turned on, an error will be generated.

(See page 2-78, *Waveform Transfer Command Group.*)

**Group**
Waveform Transfer

**Syntax**

WFMOutpre:NR_Pt?

**Related Commands**
CURVe,
DATa,
DATa:STARt,
DATa:STOP,
SAVE:WAVEform,
SAVE:WAVEform:FILEFormat,
WFMInpre:NR_Pt

**Examples**

WFMOUTPRE:NR_PT? might return :WFMOUTPRE:NR_PT 10000 indicating that there are 10000 data points to be sent.

**WFMOutpre:PT_Fmt? (Query Only)**

This query returns the point format of the data points in the outgoing waveform record transferred using the CURVe? query. The returned values can be Y, which
indicates normal waveform points for YT format, or ENV, which indicates envelope mode format in which the data is returned as a series of min/max pairs. The minimum value precedes the maximum.

The outgoing waveform is specified by the DATa:SOUrce command. The query command will time out and an error will be generated if the waveform specified by DATa:SOUrce is not turned on.

(See page 2-78, Waveform Transfer Command Group.)

(See page D-1, Waveform Transfer (WFMOutpre and CURVe Query) Examples.)

Group Waveform Transfer

Syntax WFMOutpre:PT_Fmt?

Related Commands CURVe, DATa:SOUrce

Examples WFMOUTPRE:PT_FMT? might return :WFMOutpre:PT_FMT ENV indicating that the waveform data is a series of min-max pairs.

WFMOutpre:PT_Off? (Query Only)

This query always returns 0 if the waveform specified by DATA:SOURce is on or displayed. If the waveform is not displayed, the query form generates an error. (It is provided for compatibility with other Tektronix oscilloscopes.)

(See page 2-78, Waveform Transfer Command Group.)

(See page D-1, Waveform Transfer (WFMOutpre and CURVe Query) Examples.)

Group Waveform Transfer

Syntax WFMOutpre:PT_Off?

Related Commands DATa:SOUrce

Arguments Arguments are ignored.

Examples WFMOUTPRE:PT_OFF? might return WFMOUTPRE:PT_OFF 0.
**WFMOutpre:PT_ORder? (Query Only)**

This query returns the point ordering, which is always linear (included for compatibility with other Tektronix oscilloscopes).

(See page 2-78, *Waveform Transfer Command Group*.)

(See page D-1, *Waveform Transfer (WFMOutpre and CURVe Query) Examples*.)

**Group**  
Waveform Transfer

**Syntax**  
WFMOutpre:PT_ORDer?

**Related Commands**  
DATa:SOUrce

**Examples**  
WFMOUTPRE:PT_ORDER? returns :WFMOUTPRE:PT_ORDER LINEAR.

**WFMOutpre:REFLEvel? (Query Only)**

This query returns the Reference Level of an outgoing waveform. This command is provided for waveform transfer compatibility with mixed domain oscilloscopes only. The command form is ignored, and the query always returns 0.0000.

**Group**  
Waveform Transfer

**Syntax**  
WFMOutpre:REFLEvel?

**WFMOutpre:SPAN? (Query Only)**

This query returns the frequency span of the outgoing waveform. This query is provided for waveform transfer compatibility with mixed domain oscilloscopes only and always returns 0.0000.

**Group**  
Waveform Transfer

**Syntax**  
WFMOutpre:SPAN?
WFMOutpre:WFId? (Query Only)

This query returns a string that describes several aspects of the acquisition parameters for the source waveform, including Source, Coupling, Vertical Scale, Horizontal Scale, Record Length and Acquisition Mode. If the waveform specified by DATa:SOUrce command is not turned on, an error will be generated.

(See page 2-78, Waveform Transfer Command Group.)

(See page D-1, Waveform Transfer (WFMOutpre and CURVe Query) Examples.)

Group Waveform Transfer

Syntax WFMOutpre:WFId?

Related Commands DATa:SOUrce

Returns <QString> comprises the following comma-separated fields documented in the tables below:

Table 2-49: Waveform Suffixes

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
<th>Examples</th>
</tr>
</thead>
<tbody>
<tr>
<td>Source</td>
<td>The source identification string as it appears in the front-panel scale factor readouts.</td>
<td>“CH1–4”</td>
</tr>
<tr>
<td></td>
<td></td>
<td>“Math1”</td>
</tr>
<tr>
<td></td>
<td></td>
<td>“Ref1–4”</td>
</tr>
<tr>
<td>Coupling</td>
<td>A string describing the vertical coupling of the waveform (the Source1 waveform in the case of Dual Waveform Math).</td>
<td>“AC coupling”</td>
</tr>
<tr>
<td></td>
<td></td>
<td>“DC coupling”</td>
</tr>
<tr>
<td></td>
<td></td>
<td>“GND coupling”</td>
</tr>
<tr>
<td>Vert Scale</td>
<td>A string containing the vertical scale factor of the unzoomed waveform. The numeric portion will always be four digits. The examples cover all supported units.</td>
<td>“100.0 mV/div”</td>
</tr>
<tr>
<td></td>
<td></td>
<td>“20.00 dB/div”</td>
</tr>
<tr>
<td></td>
<td></td>
<td>“45.00 deg/div”</td>
</tr>
<tr>
<td></td>
<td></td>
<td>“785.4 mrad/div”</td>
</tr>
<tr>
<td></td>
<td></td>
<td>“500.0 µVs/div”</td>
</tr>
<tr>
<td></td>
<td></td>
<td>“10.00 kV/s/div”</td>
</tr>
<tr>
<td></td>
<td></td>
<td>“200.0 mV/div”</td>
</tr>
<tr>
<td></td>
<td></td>
<td>“50.00 unk/div”</td>
</tr>
<tr>
<td>Horiz Scale</td>
<td>A string containing the horizontal scale factor of the unzoomed waveform. The numeric portion will always be four digits. The examples cover all supported units.</td>
<td>“100 ms/div”</td>
</tr>
<tr>
<td></td>
<td></td>
<td>“10.00 kHz/div”</td>
</tr>
</tbody>
</table>
### Table 2-49: Waveform Suffixes (cont.)

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
<th>Examples</th>
</tr>
</thead>
<tbody>
<tr>
<td>Record Length</td>
<td>A string containing the number of waveform points available in the entire record. The numeric portion is given as an integer.</td>
<td>“1000 points”</td>
</tr>
<tr>
<td>Acquisition Mode</td>
<td>A string describing the mode used to acquire the waveform.</td>
<td>“Sample mode”</td>
</tr>
<tr>
<td></td>
<td></td>
<td>“Pk Detect mode”</td>
</tr>
<tr>
<td></td>
<td></td>
<td>“Envelope mode”</td>
</tr>
<tr>
<td></td>
<td></td>
<td>“Average mode”</td>
</tr>
</tbody>
</table>

#### Examples

`WFMOUTPRE:WFID?` might return:

> WFMOUTPRE:WFID "Ch1, DC coupling, 100.0mvolts/div, 500.0µs/div, 1000 points, Sample mode"

---

**WFMOutpre:WFMTYPe? (Query Only)**

This query returns the type of an outgoing waveform. This query is provided for waveform transfer compatibility with mixed domain oscilloscopes only and always returns ANALOG.

**Group** Waveform Transfer

**Syntax** `WFMOutpre:WFMTYPe?`

---

**WFMOutpre:XINcr? (Query Only)**

This query returns the horizontal point spacing in units of time (seconds), or frequency (hertz) between data points in the waveform record transferred using the `:CURVe?` query. This value corresponds to the sampling interval.

If the waveform specified by the `DATa:SOURce` command is not turned on, an error will be generated.

(See page 2-78, *Waveform Transfer Command Group.*)

(See page D-1, *Waveform Transfer (WFMOutpre and CURVe Query) Examples.*)

**Group** Waveform Transfer

**Syntax** `WFMOutpre:XINcr?`
**Related Commands**

DATa:SOUrce,

WFMOutpre:XUNit?

**Examples**

WFMOutpre:XINCR? might return 10.0000E-6 indicating that the horizontal sampling interval is 10 µs/point.

**WFMOutpre:XUNit? (Query Only)**

This query indicates the horizontal units of the x-axis of the waveform record transferred using the CURVe? query. Typically, this value is "s" when the waveform source is displayed in the time domain, and "Hz" when the waveform source is displayed in the frequency domain. When the waveform source is Math or a reference waveform, the value can be "s" or "Hz".

If the waveform specified by DATa:SOUrce is not turned on, nothing is returned and an error event is generated.

(See page 2-78, Waveform Transfer Command Group.)

(See page D-1, Waveform Transfer (WFMOutpre and CURVe Query) Examples.)

**Group**

Waveform Transfer

**Syntax**

WFMOutpre:XUNit?

**Related Commands**

DATa:SOUrce

**Examples**

WFMOutpre:XUNIT? might return "HZ" indicating that the horizontal units for the waveform are in Hertz.

**WFMOutpre:XZEro? (Query Only)**

This query returns the time coordinate, in seconds, or frequency, in hertz, of the first data point in the outgoing waveform record transferred using the CURVe? query. This time or frequency is relative to the time of the trigger, which is always 0. Thus, the XZErO time or frequency can be negative. You can query the units using the WFMOutpre:XUNit? command. If the waveform specified by DATa:SOUrce is not turned on, nothing is returned and an error event is generated.

(See page 2-78, Waveform Transfer Command Group.)

(See page D-1, Waveform Transfer (WFMOutpre and CURVe Query) Examples.)
Group     Waveform Transfer
Syntax    WFMOutpre:XZErO?
Related Commands  DATa:SOURce, WFMOutpre:XUNit?
Examples  WFMOUTPRE:XZERO? might return :WFMOUTPRE:XZERO 5.6300E-9 indicating that the trigger occurred 5.63 ns before the first sample in the waveform record.

WFMOutpre:YMUlt? (Query Only)

This query returns the vertical scale multiplying factor used to convert the waveform data point values in the outgoing waveform record from digitizing levels to the YUnit units. You can determine the units by using the WFMOutpre:YUNit query.

See the description of the WFMInpre:YMUlt command to see how this scale factor is used to convert waveform sample values to volts.

If the waveform specified by DATa:SOURce is not turned on, nothing is returned and an error event is generated.

(See page 2-78, Waveform Transfer Command Group.)

(See page D-1, Waveform Transfer (WFMOutpre and CURVe Query) Examples.)

Group     Waveform Transfer
Syntax    WFMOutpre:YMUlt?
Related Commands  DATa:SOURce,
                   WFMInpre:YMUlt
Examples  WFMOUTPRE:YMULT? might return :WFMOUTPRE:YMULT 4.0000E-3 indicating that the vertical scale for the corresponding waveform is 100 mV/div (for 8-bit waveform data or 0.390625 V/div for 16–bit data).

WFMOutpre:YOFf? (Query Only)

This query returns the vertical position of the source waveform in digitizing levels. There are 25 digitizing levels per vertical division for 1-byte data, and
6400 digitizing levels per vertical division for 2-byte data. See the description of \texttt{WFMInpre:YOFF} to see how this position is used to convert waveform sample values to volts. If the waveform specified by \texttt{DATa:SOURce} is not turned on, nothing is returned and an error event is generated.

(See page 2-78, \textit{Waveform Transfer Command Group}.)

(See page D-1, \textit{Waveform Transfer (WFMOutpre and CURVe Query) Examples}.)

\textbf{Group} \hspace{1cm} Waveform Transfer

\textbf{Syntax} \hspace{1cm} \texttt{WFMOutpre:YOFF?}

\textbf{Related Commands} \hspace{1cm} \texttt{DATa:SOURce, WFMOutpre:BYT_Nr}

\textbf{Examples} \hspace{1cm} \texttt{WFMOUTPRE:YOFF?} might return \texttt{:WFMOUTPRE:YOFF -50.0000E+0} indicating that the position indicator for the waveform was 50 digitizing levels (2 divisions) below center screen (for 8-bit waveform data).

\textbf{WFMOutpre:YUNIT? (Query Only)}

This query returns the units of data points in the outgoing waveform record transferred using the \texttt{CURVe?} query. This can be any of several string values, depending upon the vertical units of the source waveform (specified by the \texttt{DATa:SOURce} command). Typically, this is \textquotedblleft V\textquotedblright\ for volts. If the waveform specified by \texttt{DATa:SOURce} is not turned on, nothing is returned and an error event is generated.

(See page 2-78, \textit{Waveform Transfer Command Group}.)

(See page D-1, \textit{Waveform Transfer (WFMOutpre and CURVe Query) Examples}.)

\textbf{Group} \hspace{1cm} Waveform Transfer

\textbf{Syntax} \hspace{1cm} \texttt{WFMOutpre:YUNIT?}

\textbf{Related Commands} \hspace{1cm} \texttt{DATa:SOURce}

\textbf{Examples} \hspace{1cm} \texttt{WFMOUTPRE:YUNIT?} might return \texttt{:WFMOUTPRE:YUNIT "dB"} indicating that the vertical units for the waveform are measured in decibels.
WFMOutpre:YZEro? (Query Only)

This query returns the vertical offset of the source waveform. You can determine the units using the WFMOutpre:YUNit? query. See the description of WFMIinpre:YZEro to see how this offset is used to convert waveform sample values to volts. If the waveform specified by DATa:SOURce is not turned on, nothing is returned and an error event is generated.

(See page 2-78, Waveform Transfer Command Group.)

(See page D-1, Waveform Transfer (WFMOutpre and CURVe Query) Examples.)

Group
Waveform Transfer

Syntax
WFMOutpre:YZEro?

Related Commands
DATa:SOURce,
WFMOutpre:YUNit?

Examples
WFMOUTPRE:YZERO? might return :WFMOUTPRE:YZERO -100.0000E-3 indicating that vertical offset is set to -100 mV.

ZOOM? (Query Only)

Returns the current vertical and horizontal positioning and scaling of the display.

Group
Zoom

Syntax
ZOOM?

Examples
ZOOM? might return :ZOOM:MODE 1;GRATICULE:SIZE 80;SPLIT EIGHTYTWENTY;:ZOOM:ZOOM1:STATE 1;SCALE 400. 0000E-12;POSITION 46.8986;FACTOR 50.0000E+3;HORIZONTAL:POSITION 46.8986;SCALE 40 0.0000E-12

ZOOM:MODE

Turns Zoom mode on or off. The Zoom query returns the current state of Zoom mode. This command is equivalent to pressing the zoom button located on the front panel.
Commands Listed in Alphabetical Order

Group Zoom

Syntax ZOOM:MODE {ON|OFF|<NR1>}

Zoom:MODE

Arguments ON turns on Zoom mode.
OFF turns off Zoom mode.
<NR1> = 0 turns off Zoom mode; any other value turns on Zoom mode.

Examples ZOOM:MODE OFF turns off Zoom mode.
ZOOM:MODE? might return :ZOOM:MODE 1 indicating that Zoom mode is currently turned on.

ZOOM:ZOOM<x>? (Query Only)

Returns the current vertical and horizontal positioning and scaling of the display. <x> can only be 1.

Group Zoom

Syntax ZOOM:ZOOM<x>?

Examples ZOOM:ZOOM1? might return :ZOOM:ZOOM1:STATE 1;SCALE 400.0000E-12;POSITION 46.8986;FACTOR 50.0000E+3;HORIZONTAL:POSITION 46.8986;SCALE 400.0000E-12.

ZOOM:ZOOM<x>:FACTOR? (Query Only)

Returns the zoom factor of a particular zoom box. <x> can only be 1.

Group Zoom

Syntax ZOOM:ZOOM<x>:FACTOR?

Returns <NR1> is the zoom factor of a zoom box.
**ZOOM:ZOOM<x>:POSition**

Sets the horizontal position of the zoom box, in terms of 0 to 100.0% of upper window. <x> can only be 1.

**Group**  
Zoom

**Syntax**  
ZOOM:ZOOM<x>:POsition <NR3>  
ZOOM:ZOOM<x>:POsition?

**Arguments**  
<NR3> is the horizontal position as a percent of the upper window.

**ZOOM:ZOOM<x>:SCALE**

Sets or returns the horizontal scale of the zoom box. <x> can only be 1.

**Group**  
Zoom

**Syntax**  
ZOOM:ZOOM<x>:SCALE <NR3>  
ZOOM:ZOOM<x>:SCALE?

**Arguments**  
<NR3> is the horizontal scale of the zoom box.

**ZOOM:ZOOM<x>:STATE**

Sets or returns the specified zoom on or off, where x is the integer 1 representing the single zoom window. <x> can only be 1.

**Group**  
Zoom

**Syntax**  
ZOOM:ZOOM<x>:STATE {ON|OFF|<NR1>}  
ZOOM:ZOOM<x>:STATE?

**Arguments**  
ON turns Zoom 1 on.  
OFF turns Zoom 1 off.  
<NR1> = 0 disables the specified zoom; any other value enables the specified zoom.
Examples

ZOOM:ZOOM1:STATE ON turns Zoom1 on.

ZOOM:ZOOM1:STATE? might return :ZOOM:ZOOM1:STATE 1 indicating that Zoom1 is on.
Status and Events

The oscilloscope provides a status and event reporting system for the Ethernet, GPIB (with the TEK-USB-488 Adapter), and USB interfaces. This system informs you of certain significant events that occur within the oscilloscope.

The oscilloscope status handling system consists of five 8-bit registers and two queues for each interface. The remaining Status subtopics describe these registers and components. They also explain how the event handling system operates.

Registers

Overview

The registers in the event handling system fall into two functional groups:

- Status Registers contain information about the status of the oscilloscope. They include the Standard Event Status Register (SESR).

- Enable Registers determine whether selected types of events are reported to the Status Registers and the Event Queue. They include the Device Event Status Enable Register (DESER), the Event Status Enable Register (ESER), and the Service Request Enable Register (SRER).

Status Registers

The Standard Event Status Register (SESR) and the Status Byte Register (SBR) record certain types of events that may occur while the oscilloscope is in use. IEEE Std 488.2-1987 defines these registers.

Each bit in a Status Register records a particular type of event, such as an execution error or message available. When an event of a given type occurs, the oscilloscope sets the bit that represents that type of event to a value of one. (You can disable bits so that they ignore events and remain at zero. See Enable Registers). Reading the status registers tells you what types of events have occurred.

**The Standard Event Status Register (SESR).** The SESR records eight types of events that can occur within the oscilloscope. Use the *ESR? query to read the SESR register. Reading the register clears the bits of the register so that the register can accumulate information about new events.

**NOTE.** TekVISA applications use SESR bit 6 to respond to any of several events, including some front panel actions.

Figure 3-1: The Standard Event Status Register (SESR)
### Table 3-1: SESR Bit Functions

<table>
<thead>
<tr>
<th>Bit</th>
<th>Function</th>
</tr>
</thead>
</table>
| 7 (MSB) | PON  
Power On. Shows that the oscilloscope was powered on. On completion, the diagnostic self tests also set this bit. |
| 6 | URQ  
User Request. Indicates that an application event has occurred. *See note. |
| 5 | CME  
Command Error. Shows that an error occurred while the oscilloscope was parsing a command or query. |
| 4 | EXE  
Execution Error. Shows that an error executing a command or query. |
| 3 | DDE  
Device Error. Shows that a device error occurred. |
| 2 | QYE  
Query Error. Either an attempt was made to read the Output Queue when no data was present or pending, or that data in the Output Queue was lost. |
| 1 | RQC  
Request Control. This is not used. |
| 0 (LSB) | OPC  
Operation Complete. Shows that the operation is complete. This bit is set when all pending operations complete following an *OPC command. |

### The Status Byte Register (SBR)

Records whether output is available in the Output Queue, whether the oscilloscope requests service, and whether the SESR has recorded any events.

Use a Serial Poll or the *STB? query to read the contents of the SBR. The bits in the SBR are set and cleared depending on the contents of the SESR, the Event Status Enable Register (ESER), and the Output Queue. When you use a Serial Poll to obtain the SBR, bit 6 is the RQS bit. When you use the *STB? query to obtain the SBR, bit 6 is the MSS bit. Reading the SBR does not clear the bits.

![Figure 3-2: The Status Byte Register (SBR)](image_url)

### Table 3-2: SBR Bit Functions

<table>
<thead>
<tr>
<th>Bit</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>7 (MSB)</td>
<td>Not used.</td>
</tr>
</tbody>
</table>
| 6 | RQS  
Request Service. Obtained from a serial poll. Shows that the oscilloscope requests service from the GPIB controller. |
| 6 | MSS  
Master Status Summary. Obtained from *STB? query. Summarizes the ESB and MAV bits in the SBR. |
| 5 | ESB  
Event Status Bit. Shows that status is enabled and present in the SESR. |
Table 3-2: SBR Bit Functions (cont.)

<table>
<thead>
<tr>
<th>Bit</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>MAV</td>
</tr>
<tr>
<td></td>
<td>Message Available. Shows that output is available in the Output Queue.</td>
</tr>
<tr>
<td>3</td>
<td>————</td>
</tr>
<tr>
<td></td>
<td>Not used.</td>
</tr>
<tr>
<td>2</td>
<td>————</td>
</tr>
<tr>
<td></td>
<td>Not used.</td>
</tr>
<tr>
<td>1–0</td>
<td>————</td>
</tr>
<tr>
<td></td>
<td>Not used.</td>
</tr>
</tbody>
</table>

Enable Registers

DESER, ESER, and SRER allow you to select which events are reported to the Status Registers and the Event Queue. Each Enable Register acts as a filter to a Status Register (the DESER also acts as a filter to the Event Queue) and can prevent information from being recorded in the register or queue.

Each bit in an Enable Register corresponds to a bit in the Status Register it controls. In order for an event to be reported to a bit in the Status Register, the corresponding bit in the Enable Register must be set to one. If the bit in the Enable Register is set to zero, the event is not recorded.

Various commands set the bits in the Enable Registers. The Enable Registers and the commands used to set them are described below.

The Device Event Status Enable Register (DESER). This register controls which types of events are reported to the SESR and the Event Queue. The bits in the DESER correspond to those in the SESR.

Use the DESE command to enable and disable the bits in the DESER. Use the DESE? query to read the DESER.

The Event Status Enable Register (ESER). This register controls which types of events are summarized by the Event Status Bit (ESB) in the SBR. Use the *ESE command to set the bits in the ESER. Use the *ESE? query to read it.

The Service Request Enable Register (SRER). This register controls which bits in the SBR generate a Service Request and are summarized by the Master Status Summary (MSS) bit.
Use the *SRE command to set the SRER. Use the *SRE? query to read
the register. The RQS bit remains set to one until either the Status
Byte Register is read with a Serial Poll or the MSS bit changes back
to a zero.

<table>
<thead>
<tr>
<th>7</th>
<th>6</th>
<th>5</th>
<th>4</th>
<th>3</th>
<th>2</th>
<th>1</th>
<th>0</th>
</tr>
</thead>
</table>

**Figure 3-5: The Service Request Enable Register (SRER)**

**PSC Command**

The *PSC command controls the Enable Registers contents at power-on. Sending *PSC 1 sets the Enable Registers at power on as follows:

- DESER 255 (equivalent to a DESe 255 command)
- ESER 0 (equivalent to an *ESE 0 command)
- SRER 0 (equivalent to an *SRE 0 command)

Sending *PSC 0 lets the Enable Registers maintain their values in nonvolatile memory through a power cycle.

**NOTE.** To enable the PON (Power On) event to generate a Service Request, send *PSC 0, use the DESe and *ESE commands to enable PON in the DESER and ESER, and use the *SRE command to enable bit 5 in the SRER. Subsequent power-on cycles will generate a Service Request.

**Queues**

The *PSC command controls the Enable Registers contents at power-on. Sending *PSC 1 sets the Enable Registers at power on as follows:

**Output Queue**

The oscilloscope stores query responses in the Output Queue and empties this queue each time it receives a new command or query message after an <EOM>. The controller must read a query response before it sends the next command (or query) or it will lose responses to earlier queries.

**CAUTION.** When a controller sends a query, an <EOM>, and a second query, the oscilloscope normally clears the first response and outputs the second while reporting a Query Error (QYE bit in the ESER) to indicate the lost response. A fast controller, however, may receive a part or all of the first response as well. To avoid this situation, the controller should always read the response immediately after sending any terminated query message or send a DCL (Device Clear) before sending the second query.
Event Queue

The Event Queue stores detailed information on up to 33 events. If more than 32 events stack up in the Event Queue, the 32nd event is replaced by event code 350, "Queue Overflow."

Read the Event Queue with the EVENT? query (which returns only the event number), with the EVMSG? query (which returns the event number and a text description of the event), or with the ALLEV? query (which returns all the event numbers along with a description of the event). Reading an event removes it from the queue.

Before reading an event from the Event Queue, you must use the *ESR? query to read the summary of the event from the SESR. This makes the events summarized by the *ESR? read available to the EVENT? and EVMSG? queries, and empties the SESR.

Reading the SESR erases any events that were summarized by previous *ESR? reads but not read from the Event Queue. Events that follow an *ESR? read are put in the Event Queue but are not available until *ESR? is used again.

Event Handling Sequence

The figure below shows how to use the status and event handling system. In the explanation that follows, numbers in parentheses refer to numbers in the figure.
When an event occurs, a signal is sent to the DESER (1). If that type of event is enabled in the DESER (that is, if the bit for that event type is set to 1), the appropriate bit in the SESR is set to one, and the event is recorded in the Event Queue (2). If the corresponding bit in the ESER is also enabled (3), then the ESB bit in the SBR is set to one (4).

When output is sent to the Output Queue, the MAV bit in the SBR is set to one (5).

When a bit in the SBR is set to one and the corresponding bit in the SRER is enabled (6), the MSS bit in the SBR is set to one and a service request is generated (7).
Synchronization Methods

Overview

Although most commands are completed almost immediately after being received by the oscilloscope, some commands start a process that requires time. For example, once a single sequence acquisition command is executed, depending upon the applied signals and trigger settings, it may take an extended period of time before the acquisition is complete. Rather than remain idle while the operation is in process, the oscilloscope will continue processing other commands. This means that some operations will not be completed in the order that they were sent. Furthermore, sometimes the result of an operation depends upon the result of an earlier operation. A first operation must complete before the next one is processed.

In order to handle these situations, the oscilloscope status and event reporting system allows you to synchronize the operation of the oscilloscope with your application program, using the Operation Complete function. Note, however, that only some operations are able to take advantage of this function; a table is provided below of commands that support this.

The following commands are used to synchronize the oscilloscope functions using Operation Complete. See examples of how to use these commands later on in this section:

*OPC — sending the *OPC command will set bit 0 of the SESR (Standard Events Status Register). The bit will only be set high when all pending operations that generate an OPC message have finished execution. (The SESR is queried using *ESR?) The *OPC? query form returns 1 only when all operations have completed, or a device clear is received.

*WAI — prevents the oscilloscope from executing further commands or queries until all pending commands that generate an OPC message are complete.

BUSY? — returns the status of operations: 1 means there are pending operations, 0 means that all pending operations are complete.

NOTE. Some OPC operations may require an extended period of time to complete or may never complete. For example, a single sequence acquisition may never complete when no trigger event occurs. You should be aware of these conditions and tailor your program accordingly by:

— setting the timeout sufficiently for the anticipated maximum time for the operation and

— handle a timeout appropriately by querying the SESR (*ESR?) and event queue (EVMsg? or ALLEv?).
NOTE. The *OPC command form can also be used to cause an SRQ to be generated upon completion of all pending operations. This requires that the ESB (Event Status Bit, bit 5) of the SRER (Service Request Enable Register) is set, and the OPC bit (bit 0) of the DESR (Device Event Status Enable Register) and the ESER (Event Status Enable Register) are set. (The SRER is set/queried using *SRE. The DESR is set/queried using DESE. The ESER is set/queried using *ESE.)

Only a subset of oscilloscope operations support the Operation Complete function (OPC):

Table 3-3: Oscilloscope operations that can generate OPC

<table>
<thead>
<tr>
<th>Command</th>
<th>Conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACQuire:STATE &lt;non-zero NR1&gt;</td>
<td>ON</td>
</tr>
<tr>
<td>CALibrate:INTERNal</td>
<td></td>
</tr>
<tr>
<td>CALibrate:INTERNal:STARt</td>
<td></td>
</tr>
<tr>
<td>CALibrate:FACTory STARt</td>
<td></td>
</tr>
<tr>
<td>CALibrate:FACTory CONTinue</td>
<td></td>
</tr>
<tr>
<td>CALibrate:FACTory PREVious</td>
<td></td>
</tr>
<tr>
<td>CH&lt;x&gt;:PRObe:AUTOZero EXECute</td>
<td></td>
</tr>
<tr>
<td>CH&lt;x&gt;:PRObe:DEGAuss EXECute</td>
<td></td>
</tr>
<tr>
<td>DIAg:STATE EXECute</td>
<td></td>
</tr>
<tr>
<td>FACTory</td>
<td></td>
</tr>
<tr>
<td>HARDCopy</td>
<td></td>
</tr>
<tr>
<td>HARDCopy START</td>
<td></td>
</tr>
<tr>
<td>MASK:TEST:SRQ:COMPLEtion (1</td>
<td>ON)</td>
</tr>
<tr>
<td>MASK:TEST:SRQ:FAILure (1</td>
<td>ON)</td>
</tr>
<tr>
<td>RECALL:MASK &lt;file&gt;</td>
<td></td>
</tr>
<tr>
<td>RECALL:SETUp (&lt;file as quoted string&gt;)</td>
<td>FACTory)</td>
</tr>
<tr>
<td>RECALL:WAVEform &lt;.ISF or .CSV file&gt;,&lt;REF1</td>
<td>REF2</td>
</tr>
<tr>
<td>*RST</td>
<td></td>
</tr>
<tr>
<td>SAVe:IMAGE &lt;file as quoted string&gt;</td>
<td></td>
</tr>
<tr>
<td>SAVe:SETUp &lt;file as quoted string&gt;</td>
<td></td>
</tr>
<tr>
<td>SAVe:WAVEform &lt;source wfm&gt;, (&lt;REF1</td>
<td>REF2</td>
</tr>
<tr>
<td>TEKSecure</td>
<td></td>
</tr>
</tbody>
</table>
Example of Acquiring and Measuring a Single-Sequence Waveform

For example, a typical application might involve acquiring a single-sequence waveform and then taking a measurement on the acquired waveform. You could use the following command sequence to do this:

```plaintext
/** Set up conditional acquisition **/
ACQUIRE:STATE OFF
SELECT:CH1 ON
HORIZONTAL:RECORDLENGTH 1000
ACQUIRE:MODE SAMPLE
ACQUIRE:STOPAFTER SEQUENCE
/** Acquire waveform data **/
ACQUIRE:STATE ON
/** Set up the measurement parameters **/
MEASUREMENT:IMMED:TYPE AMPLITUDE
MEASUREMENT:IMMED:SOURCE CH1
/** Take amplitude measurement **/
MEASUREMENT:MEAS1:VALUE?
```

The acquisition of the waveform requires extended processing time. It may not finish before the oscilloscope takes an amplitude measurement (see the following figure). This can result in an incorrect amplitude value.

**Figure 3-7: Command Processing Without Using Synchronization**

To ensure the oscilloscope completes waveform acquisition before taking the measurement on the acquired data, you can synchronize the program using *WAI, BUSY, *OPC, and *OPC?.

**Figure 3-8: Processing Sequence With Synchronization**

**Example of Using the *OPC Command**

If the corresponding status registers are enabled, the *OPC command sets the OPC bit in the Standard Event Status Register (SESR) when an operation is complete. You achieve synchronization by using this command with either a serial poll or service request handler.
**Serial Poll Method:** Enable the OPC bit in the Device Event Status Enable Register (DESER) and the Event Status Enable Register (ESER) using the DESE and *ESE commands.

When the operation is complete, the OPC bit in the Standard Event Status Register (SESR) will be enabled and the Event Status Bit (ESB) in the Status Byte Register will be enabled.

The same command sequence using the *OPC command for synchronization with serial polling looks like this:

```c
/* Set up conditional acquisition */
ACQUIRE:STATE OFF
SELECT:CH1 ON
HORIZONTAL:RECORDLENGTH 1000
ACQUIRE:MODE SAMPLE
ACQUIRE:STOPAFTER SEQUENCE
/* Enable the status registers */
DESE 1
*ESE 1
*SRE 0
/* Acquire waveform data */
ACQUIRE:STATE ON
/* Set up the measurement parameters */
MEASUREMENT:IMMED:TYPE AMPLITUDE
MEASUREMENT:IMMED:SOURCE CH1
/* Wait until the acquisition is complete before taking the measurement. */
*OPC
While serial poll = 0, keep looping
/* Take amplitude measurement */
MEASUREMENT:IMMED:VALUE?
```

This technique requires less bus traffic than did looping on BUSY.

**Service Request Method:** Enable the OPC bit in the Device Event Status Enable Register (DESER) and the Event Status Enable Register (ESER) using the DESE and *ESE commands.

You can also enable service requests by setting the ESB bit in the Service Request Enable Register (SRER) using the *SRE command. When the operation is complete, the oscilloscope will generate a Service Request.

The same command sequence using the *OPC command for synchronization looks like this:

```c
/* Set up conditional acquisition */
ACQUIRE:STATE OFF
SELECT:CH1 ON
HORIZONTAL:RECORDLENGTH 1000
ACQUIRE:MODE SAMPLE
```
ACQUIRE:STOPAFTER SEQUENCE
/* Enable the status registers */
DESE 1
*ESE 1
*SRE 32
/* Acquire waveform data */
ACQUIRE:STATE ON
/* Set up the measurement parameters */
MEASUREMENT:IMMED:TYPE AMPLITUDE
MEASUREMENT:IMMED:SOURCE CH1
/* Wait until the acquisition is complete before taking the measurement*/
*OPC

The program can now do different tasks such as talk to other devices. The SRQ, when it comes, interrupts those tasks and returns control to this task.
/* Take amplitude measurement */
MEASUREMENT:IMMED:VALUE?

Example of Using the *OPC? Query

The *OPC? query places a 1 in the Output Queue once an operation that generates an OPC message is complete. The *OPC? query does not return until all pending OPC operations have completed. Therefore, your time-out must be set to a time at least as long as the longest expected time for the operations to complete.

The same command sequence using the *OPC? query for synchronization looks like this:

/* Set up single sequence acquisition */
ACQUIRE:STATE OFF
SELECT:CH1 ON
HORIZONTAL:RECORDLENGTH 1000
ACQUIRE:MODE SAMPLE
ACQUIRE:STOPAFTER SEQUENCE
/* Acquire waveform data */
ACQUIRE:STATE ON
/* Set up the measurement parameters */
MEASUREMENT:IMMED:TYPE AMPLITUDE
MEASUREMENT:IMMED:SOURCE CH1
/* Wait until the acquisition is complete before taking the measurement*/
*OPC?
Wait for read from Output Queue.
/* Take amplitude measurement */
MEASUREMENT:IMMED:VALUE?

This is the simplest approach. It requires no status handling or loops. However, you must set the controller time-out for longer than the acquisition operation.
Example of Using the *WAI Command

The *WAI command forces completion of previous commands that generate an OPC message. No commands after the *WAI are processed before the OPC message(s) are generated.

The same command sequence using the *WAI command for synchronization looks like this:

```plaintext
/* Set up conditional acquisition */
ACQUIRE:STATE OFF
SELECT:CH1 ON
HORIZONTAL:RECORDLENGTH 1000
ACQUIRE:MODE SAMPLE
ACQUIRE:STOPAFTER SEQUENCE
/* Acquire waveform data */
ACQUIRE:STATE ON
/* Set up the measurement parameters */
MEASUREMENT:IMMED:TYPE AMPLITUDE
MEASUREMENT:IMMED:SOURCE CH1
/* Wait until the acquisition is complete before taking the measurement*/
*/
/*
*/
/*WAI
/* Take amplitude measurement */
MEASUREMENT:IMMED:VALUE?
```

The controller can continue to write commands to the input buffer of the oscilloscope, but the commands will not be processed by the oscilloscope until all in-process OPC operations are complete. If the input buffer becomes full, the controller will be unable to write commands to the buffer. This can cause a time-out.

Example of Using the BUSY Query

The BUSY? query allows you to find out whether the oscilloscope is busy processing a command that has an extended processing time such as single-sequence acquisition.

The same command sequence, using the BUSY? query for synchronization, looks like this:

```plaintext
/* Set up conditional acquisition */
ACQUIRE:STATE OFF
SELECT:CH1 ON
HORIZONTAL:RECORDLENGTH 1000
ACQUIRE:MODE SAMPLE
ACQUIRE:STOPAFTER SEQUENCE
/* Acquire waveform data */
ACQUIRE:STATE ON
/* Set up the measurement parameters */
MEASUREMENT:IMMED:TYPE AMPLITUDE
MEASUREMENT:IMMED:SOURCE CH1
```
/* Wait until the acquisition is complete before taking the measurement */
while BUSY?
  /* Take amplitude measurement */
  MEASUREMENT:IMMED:VALUE?

This sequence lets you create your own wait loop rather than using the *WAI command. The BUSY? query helps you avoid time-outs caused by writing too many commands to the input buffer. The controller is still tied up though, and the repeated BUSY? query will result in bus traffic.

Messages

The information contained in the topics above covers all the programming interface messages the oscilloscope generates in response to commands and queries.

For most messages, a secondary message from the oscilloscope gives detail about the cause of the error or the meaning of the message. This message is part of the message string and is separated from the main message by a semicolon.

Each message is the result of an event. Each type of event sets a specific bit in the SESR and is controlled by the equivalent bit in the DESER. Thus, each message is associated with a specific SESR bit. In the message tables, the associated SESR bit is specified in the table title, with exceptions noted with the error message text.

No Event

The following table shows the messages when the system has no events or status to report. These have no associated SESR bit.

<table>
<thead>
<tr>
<th>Code</th>
<th>Message</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>No events to report; queue empty</td>
</tr>
<tr>
<td>1</td>
<td>No events to report; new events pending *ESR?</td>
</tr>
</tbody>
</table>

Command Error

The following table shows the command error messages generated by improper syntax. Check that the command is properly formed and that it follows the rules in the section on command Syntax.

<table>
<thead>
<tr>
<th>Code</th>
<th>Message</th>
</tr>
</thead>
<tbody>
<tr>
<td>100</td>
<td>Command error</td>
</tr>
<tr>
<td>101</td>
<td>Invalid character</td>
</tr>
<tr>
<td>102</td>
<td>Syntax error</td>
</tr>
<tr>
<td>103</td>
<td>Invalid separator</td>
</tr>
<tr>
<td>104</td>
<td>Data type error</td>
</tr>
</tbody>
</table>
Table 3-5: Command Error Messages (CME Bit 5) (cont.)

<table>
<thead>
<tr>
<th>Code</th>
<th>Message</th>
</tr>
</thead>
<tbody>
<tr>
<td>105</td>
<td>GET not allowed</td>
</tr>
<tr>
<td>108</td>
<td>Parameter not allowed</td>
</tr>
<tr>
<td>109</td>
<td>Missing parameter</td>
</tr>
<tr>
<td>110</td>
<td>Command header error</td>
</tr>
<tr>
<td>112</td>
<td>Program mnemonic too long</td>
</tr>
<tr>
<td>113</td>
<td>Undefined header</td>
</tr>
<tr>
<td>120</td>
<td>Numeric data error</td>
</tr>
<tr>
<td>121</td>
<td>Invalid character in numeric</td>
</tr>
<tr>
<td>123</td>
<td>Exponent too large</td>
</tr>
<tr>
<td>124</td>
<td>Too many digits</td>
</tr>
<tr>
<td>130</td>
<td>Suffix error</td>
</tr>
<tr>
<td>131</td>
<td>Invalid suffix</td>
</tr>
<tr>
<td>134</td>
<td>Suffix too long</td>
</tr>
<tr>
<td>140</td>
<td>Character data error</td>
</tr>
<tr>
<td>141</td>
<td>Invalid character data</td>
</tr>
<tr>
<td>144</td>
<td>Character data too long</td>
</tr>
<tr>
<td>150</td>
<td>String data error</td>
</tr>
<tr>
<td>151</td>
<td>Invalid string data</td>
</tr>
<tr>
<td>152</td>
<td>String data too long</td>
</tr>
<tr>
<td>160</td>
<td>Block data error</td>
</tr>
<tr>
<td>161</td>
<td>Invalid block data</td>
</tr>
<tr>
<td>170</td>
<td>Command expression error</td>
</tr>
<tr>
<td>171</td>
<td>Invalid expression</td>
</tr>
</tbody>
</table>

Execution Error

The following table lists the execution errors that are detected during execution of a command.

Table 3-6: Execution Error Messages (EXE Bit 4)

<table>
<thead>
<tr>
<th>Code</th>
<th>Message</th>
</tr>
</thead>
<tbody>
<tr>
<td>200</td>
<td>Execution error</td>
</tr>
<tr>
<td>221</td>
<td>Settings conflict</td>
</tr>
<tr>
<td>222</td>
<td>Data out of range</td>
</tr>
<tr>
<td>224</td>
<td>Illegal parameter value</td>
</tr>
<tr>
<td>241</td>
<td>Hardware missing</td>
</tr>
<tr>
<td>250</td>
<td>Mass storage error</td>
</tr>
<tr>
<td>251</td>
<td>Missing mass storage</td>
</tr>
</tbody>
</table>
Table 3-6: Execution Error Messages (EXE Bit 4) (cont.)

<table>
<thead>
<tr>
<th>Code</th>
<th>Message</th>
</tr>
</thead>
<tbody>
<tr>
<td>252</td>
<td>Missing media</td>
</tr>
<tr>
<td>253</td>
<td>Corrupt media</td>
</tr>
<tr>
<td>254</td>
<td>Media full</td>
</tr>
<tr>
<td>255</td>
<td>Directory full</td>
</tr>
<tr>
<td>256</td>
<td>File name not found</td>
</tr>
<tr>
<td>257</td>
<td>File name error</td>
</tr>
<tr>
<td>258</td>
<td>Media protected</td>
</tr>
<tr>
<td>259</td>
<td>File name too long</td>
</tr>
<tr>
<td>270</td>
<td>Hardcopy error</td>
</tr>
<tr>
<td>271</td>
<td>Hardcopy device not responding</td>
</tr>
<tr>
<td>272</td>
<td>Hardcopy is busy</td>
</tr>
<tr>
<td>273</td>
<td>Hardcopy aborted</td>
</tr>
<tr>
<td>274</td>
<td>Hardcopy configuration error</td>
</tr>
<tr>
<td>280</td>
<td>Program error</td>
</tr>
<tr>
<td>282</td>
<td>Insufficient network printer information</td>
</tr>
<tr>
<td>283</td>
<td>Network printer not responding</td>
</tr>
<tr>
<td>284</td>
<td>Network printer server not responding</td>
</tr>
<tr>
<td>286</td>
<td>Program runtime error</td>
</tr>
<tr>
<td>287</td>
<td>Print server not found</td>
</tr>
<tr>
<td>2200</td>
<td>Measurement error, Measurement system error</td>
</tr>
<tr>
<td>2201</td>
<td>Measurement error, Zero period</td>
</tr>
<tr>
<td>2202</td>
<td>Measurement error, No period, second waveform</td>
</tr>
<tr>
<td>2203</td>
<td>Measurement error, No period, second waveform</td>
</tr>
<tr>
<td>2204</td>
<td>Measurement error, Low amplitude, second waveform</td>
</tr>
<tr>
<td>2205</td>
<td>Measurement error, Low amplitude, second waveform</td>
</tr>
<tr>
<td>2206</td>
<td>Measurement error, Invalid gate</td>
</tr>
<tr>
<td>2207</td>
<td>Measurement error, Measurement overflow</td>
</tr>
<tr>
<td>2208</td>
<td>Measurement error, No backwards Mid Ref crossing</td>
</tr>
<tr>
<td>2209</td>
<td>Measurement error, No second Mid Ref crossing</td>
</tr>
<tr>
<td>2210</td>
<td>Measurement error, No Mid Ref crossing, second waveform</td>
</tr>
<tr>
<td>2211</td>
<td>Measurement error, No backwards Mid Ref crossing</td>
</tr>
<tr>
<td>2212</td>
<td>Measurement error, No negative crossing</td>
</tr>
<tr>
<td>2213</td>
<td>Measurement error, No positive crossing</td>
</tr>
<tr>
<td>2214</td>
<td>Measurement error, No crossing, target waveform</td>
</tr>
<tr>
<td>2215</td>
<td>Measurement error, No crossing, second waveform</td>
</tr>
<tr>
<td>2216</td>
<td>Measurement error, No crossing, target waveform</td>
</tr>
<tr>
<td>2217</td>
<td>Measurement error, Constant waveform</td>
</tr>
</tbody>
</table>
### Table 3-6: Execution Error Messages (EXE Bit 4) (cont.)

<table>
<thead>
<tr>
<th>Code</th>
<th>Message</th>
</tr>
</thead>
<tbody>
<tr>
<td>2219</td>
<td>Measurement error, No valid edge - No arm sample</td>
</tr>
<tr>
<td>2220</td>
<td>Measurement error, No valid edge - No arm cross</td>
</tr>
<tr>
<td>2221</td>
<td>Measurement error, No valid edge - No trigger cross</td>
</tr>
<tr>
<td>2222</td>
<td>Measurement error, No valid edge - No second cross</td>
</tr>
<tr>
<td>2223</td>
<td>Measurement error, Waveform mismatch</td>
</tr>
<tr>
<td>2224</td>
<td>Measurement error, WAIT calculating</td>
</tr>
<tr>
<td>2225</td>
<td>Measurement error, No waveform to measure</td>
</tr>
<tr>
<td>2226</td>
<td>Measurement error, Null Waveform</td>
</tr>
<tr>
<td>2227</td>
<td>Measurement error, Positive and Negative Clipping</td>
</tr>
<tr>
<td>2228</td>
<td>Measurement error, Positive Clipping</td>
</tr>
<tr>
<td>2229</td>
<td>Measurement error, Negative Clipping</td>
</tr>
<tr>
<td>2230</td>
<td>Measurement error, High Ref &lt; Low Ref</td>
</tr>
<tr>
<td>2231</td>
<td>Measurement error, No statistics available</td>
</tr>
<tr>
<td>2233</td>
<td>Requested waveform is temporarily unavailable</td>
</tr>
<tr>
<td>2235</td>
<td>Math error, invalid math description</td>
</tr>
<tr>
<td>2240</td>
<td>Invalid password</td>
</tr>
<tr>
<td>2241</td>
<td>Waveform requested is invalid</td>
</tr>
<tr>
<td>2244</td>
<td>Source waveform is not active</td>
</tr>
<tr>
<td>2245</td>
<td>Saveref error, selected channel is turned off</td>
</tr>
<tr>
<td>2250</td>
<td>Reference error, the reference waveform file is invalid</td>
</tr>
<tr>
<td>2253</td>
<td>Reference error, too many points received</td>
</tr>
<tr>
<td>2254</td>
<td>Reference error, too few points received</td>
</tr>
<tr>
<td>2259</td>
<td>File too big</td>
</tr>
<tr>
<td>2270</td>
<td>Alias error</td>
</tr>
<tr>
<td>2271</td>
<td>Alias syntax error</td>
</tr>
<tr>
<td>2273</td>
<td>Illegal alias label</td>
</tr>
<tr>
<td>2276</td>
<td>Alias expansion error</td>
</tr>
<tr>
<td>2277</td>
<td>Alias redefinition not allowed</td>
</tr>
<tr>
<td>2278</td>
<td>Alias header not found</td>
</tr>
<tr>
<td>2285</td>
<td>TekSecure(R) Pass</td>
</tr>
<tr>
<td>2286</td>
<td>TekSecure(R) Fail</td>
</tr>
<tr>
<td>2500</td>
<td>Setup error, file does not look like a setup file</td>
</tr>
<tr>
<td>2501</td>
<td>Setup warning, could not recall all values from external setup</td>
</tr>
<tr>
<td>2620</td>
<td>Mask error, too few points received</td>
</tr>
<tr>
<td>2760</td>
<td>Mark limit reached</td>
</tr>
<tr>
<td>2761</td>
<td>No mark present</td>
</tr>
<tr>
<td>2762</td>
<td>Search copy failed</td>
</tr>
</tbody>
</table>
Device Error

The following table lists the device errors that can occur during oscilloscope operation. These errors may indicate that the oscilloscope needs repair.

Table 3-7: Device Error Messages (DDE Bit 3)

<table>
<thead>
<tr>
<th>Code</th>
<th>Message</th>
</tr>
</thead>
<tbody>
<tr>
<td>310</td>
<td>System error</td>
</tr>
<tr>
<td>311</td>
<td>Memory error</td>
</tr>
<tr>
<td>312</td>
<td>PUD memory lost</td>
</tr>
<tr>
<td>314</td>
<td>Save/recall memory lost</td>
</tr>
</tbody>
</table>

System Event

The following table lists the system event messages. These messages are generated whenever certain system conditions occur.

Table 3-8: System Event Messages

<table>
<thead>
<tr>
<th>Code</th>
<th>Message</th>
</tr>
</thead>
<tbody>
<tr>
<td>400</td>
<td>Query event</td>
</tr>
<tr>
<td>401</td>
<td>Power on (PON bit 7 set)</td>
</tr>
<tr>
<td>402</td>
<td>Operation complete (OPC bit 0 set)</td>
</tr>
<tr>
<td>403</td>
<td>User request (URQ bit 6 set)</td>
</tr>
<tr>
<td>404</td>
<td>Power fail (DDE bit 3 set)</td>
</tr>
<tr>
<td>405</td>
<td>Request control</td>
</tr>
<tr>
<td>410</td>
<td>Query INTERRUPTED (QYE bit 2 set)</td>
</tr>
<tr>
<td>420</td>
<td>Query UNTERMINATED (QYE bit 2 set)</td>
</tr>
<tr>
<td>430</td>
<td>Query DEADLOCKED (QYE bit 2 set)</td>
</tr>
<tr>
<td>440</td>
<td>Query UNTERMINATED after indefinite response (QYE bit 2 set)</td>
</tr>
<tr>
<td>468</td>
<td>Knob/Keypad value changed</td>
</tr>
<tr>
<td>472</td>
<td>Application variable changed</td>
</tr>
</tbody>
</table>

Execution Warning

The following table lists warning messages that do not interrupt the flow of command execution. They also notify you of possible unexpected results.

Table 3-9: Execution Warning Messages (EXE Bit 4)

<table>
<thead>
<tr>
<th>Code</th>
<th>Message</th>
</tr>
</thead>
<tbody>
<tr>
<td>528</td>
<td>Parameter out of range</td>
</tr>
<tr>
<td>532</td>
<td>Curve data too long, Curve truncated</td>
</tr>
<tr>
<td>533</td>
<td>Curve error, Preamble values are inconsistent</td>
</tr>
<tr>
<td>540</td>
<td>Measurement warning, Uncertain edge</td>
</tr>
<tr>
<td>541</td>
<td>Measurement warning, Low signal amplitude</td>
</tr>
<tr>
<td>542</td>
<td>Measurement warning, Unstable histogram</td>
</tr>
</tbody>
</table>
Table 3-9: Execution Warning Messages (EXE Bit 4) (cont.)

<table>
<thead>
<tr>
<th>Code</th>
<th>Message</th>
</tr>
</thead>
<tbody>
<tr>
<td>543</td>
<td>Measurement warning, Low resolution</td>
</tr>
<tr>
<td>544</td>
<td>Measurement warning, Uncertain edge</td>
</tr>
<tr>
<td>545</td>
<td>Measurement warning, Invalid in minmax</td>
</tr>
<tr>
<td>546</td>
<td>Measurement warning, Need 3 edges</td>
</tr>
<tr>
<td>547</td>
<td>Measurement warning, Clipping positive/negative</td>
</tr>
<tr>
<td>548</td>
<td>Measurement warning, Clipping positive</td>
</tr>
<tr>
<td>549</td>
<td>Measurement warning, Clipping negative</td>
</tr>
</tbody>
</table>

Table 3-10: Execution Warning Messages (EXE Bit 4)

<table>
<thead>
<tr>
<th>Code</th>
<th>Message</th>
</tr>
</thead>
<tbody>
<tr>
<td>540</td>
<td>Measurement warning</td>
</tr>
<tr>
<td>541</td>
<td>Measurement warning, Low signal amplitude</td>
</tr>
<tr>
<td>542</td>
<td>Measurement warning, Unstable histogram</td>
</tr>
<tr>
<td>543</td>
<td>Measurement warning, Low resolution</td>
</tr>
<tr>
<td>544</td>
<td>Measurement warning, Uncertain edge</td>
</tr>
<tr>
<td>545</td>
<td>Measurement warning, Invalid min max</td>
</tr>
<tr>
<td>546</td>
<td>Measurement warning, Need 3 edges</td>
</tr>
<tr>
<td>547</td>
<td>Measurement warning, Clipping positive/negative</td>
</tr>
<tr>
<td>548</td>
<td>Measurement warning, Clipping positive</td>
</tr>
<tr>
<td>549</td>
<td>Measurement warning, Clipping negative</td>
</tr>
</tbody>
</table>

Internal Warning

The following table shows internal errors that indicate an internal fault in the oscilloscope.

Table 3-11: Internal Warning Messages

<table>
<thead>
<tr>
<th>Code</th>
<th>Message</th>
</tr>
</thead>
<tbody>
<tr>
<td>630</td>
<td>Internal warning, 50Ω overload</td>
</tr>
</tbody>
</table>
## Appendix A: Character Set

B7 B6 B5	0 0 0 0	0 0 0 1	0 0 1 0	0 0 1 1	0 1 0 0	0 1 0 1	0 1 1 0	0 1 1 1	1 0 0 0	1 0 0 1	1 0 1 0	1 0 1 1	1 1 0 0	1 1 0 1	1 1 1 0	1 1 1 1																			
B4 B3 B2 B1	CONTROL	NUMBERS	SYMBOLS	UPPER CASE	LOWER CASE	CONTROL	NUMBERS	SYMBOLS	UPPER CASE	LOWER CASE	CONTROL	NUMBERS	SYMBOLS	UPPER CASE	LOWER CASE	CONTROL	NUMBERS	SYMBOLS	UPPER CASE	LOWER CASE															
0 0 0 0	0	NUL	20	DLE	40	SP	LA0	60	LA16	100	TA0	120	TA16	140	SA0	160	SA16	0 0 0 0	0	NUL	20	DLE	40	SP	LA0	60	LA16	100	TA0	120	TA16	140	SA0	160	SA16
0 0 0 1	1	GTL	21	LL0	41	LA1	61	LA17	101	TA1	121	TA17	141	SA1	161	SA17	0 0 0 1	1	GTL	21	LL0	41	LA1	61	LA17	101	TA1	121	TA17	141	SA1	161	SA17		
0 0 1 0	2	STX	22	DC2	42	LA2	62	LA18	102	TA2	122	TA18	142	SA2	162	SA18	0 0 1 0	2	STX	22	DC2	42	LA2	62	LA18	102	TA2	122	TA18	142	SA2	162	SA18		
0 0 1 1	3	ETX	23	DC3	43	LA3	63	LA19	103	TA3	123	TA19	143	SA3	163	SA19	0 0 1 1	3	ETX	23	DC3	43	LA3	63	LA19	103	TA3	123	TA19	143	SA3	163	SA19		
0 1 0 0	4	EOT	24	DC4	44	LA4	64	LA20	104	TA4	124	TA20	144	SA4	164	SA20	0 1 0 0	4	EOT	24	DC4	44	LA4	64	LA20	104	TA4	124	TA20	144	SA4	164	SA20		
0 1 0 1	5	ENQ	25	NAK	45	LA5	65	LA21	105	TA5	125	TA21	145	SA5	165	SA21	0 1 0 1	5	ENQ	25	NAK	45	LA5	65	LA21	105	TA5	125	TA21	145	SA5	165	SA21		
0 1 1 0	6	ACK	26	SYN	46	LA6	66	LA22	106	TA6	126	TA22	146	SA6	166	SA22	0 1 1 0	6	ACK	26	SYN	46	LA6	66	LA22	106	TA6	126	TA22	146	SA6	166	SA22		
0 1 1 1	7	BEL	27	ETB	47	LA7	67	LA23	107	TA7	127	TA23	147	SA7	167	SA23	0 1 1 1	7	BEL	27	ETB	47	LA7	67	LA23	107	TA7	127	TA23	147	SA7	167	SA23		
1 0 0 0	10	BS	30	CAN	50	LA8	70	LA24	110	TA8	130	TA24	150	SA8	170	SA24	1 0 0 0	10	BS	30	CAN	50	LA8	70	LA24	110	TA8	130	TA24	150	SA8	170	SA24		
1 0 0 1	11	HT	31	EM	51	LA9	71	LA25	111	TA9	131	TA25	151	SA9	171	SA25	1 0 0 1	11	HT	31	EM	51	LA9	71	LA25	111	TA9	131	TA25	151	SA9	171	SA25		
1 0 1 0	12	LF	32	SUB	52	LA10	72	LA26	112	TA10	132	TA26	152	SA10	172	SA26	1 0 1 0	12	LF	32	SUB	52	LA10	72	LA26	112	TA10	132	TA26	152	SA10	172	SA26		
1 0 1 1	13	VT	33	ESC	53	LA11	73	LA27	113	TA11	133	TA27	153	SA11	173	SA27	1 0 1 1	13	VT	33	ESC	53	LA11	73	LA27	113	TA11	133	TA27	153	SA11	173	SA27		
1 1 0 0	14	FF	34	FS	54	LA12	74	LA28	114	TA12	134	TA28	154	SA12	174	SA28	1 1 0 0	14	FF	34	FS	54	LA12	74	LA28	114	TA12	134	TA28	154	SA12	174	SA28		
1 1 0 1	15	CR	35	GS	55	LA13	75	LA29	115	TA13	135	TA29	155	SA13	175	SA29	1 1 0 1	15	CR	35	GS	55	LA13	75	LA29	115	TA13	135	TA29	155	SA13	175	SA29		
1 1 1 0	16	SO	36	RS	56	LA14	76	LA30	116	TA14	136	TA30	156	SA14	176	SA30	1 1 1 0	16	SO	36	RS	56	LA14	76	LA30	116	TA14	136	TA30	156	SA14	176	SA30		
1 1 1 1	17	SI	37	US	57	LA15	77	UNL	117	TA15	137	UNT	157	SA15	177	RUBOUT	1 1 1 1	17	SI	37	US	57	LA15	77	UNL	117	TA15	137	UNT	157	SA15	177	RUBOUT		

**Table Key:**
- **Octal (0-7):** 5
- **Hexadecimal (0-9, A-F):** 5

**Legend:**
- **PPC:** GPIB code (with ATN asserted)
- **ENQ:** ASCII character
- **Decimal:**

**Notes:**
- **Addressed Commands:**
- **Universal Commands:**
- **Listen Addresses:**
- **Talk Addresses:**
- **Secondary Addresses or Commands:**

**Tektronix:**
- **REF:** ANSI STD X3.4-1977
- **IEEE STD 488.1-1987
- **ISO STD 646-2973**
Appendix B: Reserved Words

This is a list of reserved words for your instrument. Capital letters identify the required minimum spelling.

*CAL    ADDR10    BANDwidth    CLOck
*CLS    ADDR7     BASE      CM10BY15
*DDT    ADDRANDDATA    BDIFFBP    CM13BY18
*ESE    ADDRESS     BINary    CM15BY21
*ESR    ADDRESS     BITDelay    CM18BY24
*IDN    Advanced    BITOrder    CM6BY8
*LRN    ALIas       BITRate    CM7BY10
*OPC    ALIas[]     BIT_Nr    CM9BY13
*PSC    ALL         BIT      CMEan
*PUD    ALLEV       BLackmanharris    COLUMN
*RCL    ALLFields   BM      COMMAND
*RST    ALLLines    BMP     CONDCALCmethod
*SAV    ALLQString  BN_Fmt     CONDITION
*SRE    ALTERNATE   BOTH      CONDUCTION
*STB    ALWAYS      BOX       CONFIGURE
*TRG    AMPLitude   BTRIGger    CONTROL
*TST    AMPLitude   BURst      CONTINUE
*WAI    AND         BUS       COPY
0      APPKey      BUSy      COUNT
1      APPpwr      BYPass     COUPling
1NR3   AREA        BYT_Nr     CPU
7      ASCII       BYT_Or     CR
8      ASSign      Block      CRC
9      ATRIGger    C1        CRCHeader
A      Audio       C2        CRCTRailer
A0     AUTO       C3        CREATE
A1     AUTOSet     CALCmethod    CRMs
A2     AUTOZero    CALibrate    CROSSHair
A3     AUX        CAN       CURRENTSOurce
A4     AUXOut     CANH      CURRENT
A5     AUXin      CANL      CURSor
A6     AVERAGE    CARD      CURSors
A7     Auto       CATalog    CURVe
A8     B          CH1       CURrent
A9     B0         CH2       CUSTom
ABORt  B1         CH3       CWD
ABOrt  B2         CH4       CYCLEcount
ABSolute  B3     CHANnel     D
AC     B4         Checksum   D0
ACKMISS  B5     CLASSALIMit  D1
ACKMISSERROR  B6    CLASS      D10
ACQ     B7        CLEAR      D11
ACQLENGTH  B8    CLEARMenu   D12
ACQuire  B9        CLEARSNapshot   D13
ACTIVEprinter BACKLight  CLEar   D14
ADD     BACKWards  CLOCK    D15
## Appendix B: Reserved Words

<table>
<thead>
<tr>
<th>Reserved Word</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>D2</td>
<td>END</td>
</tr>
<tr>
<td>D3</td>
<td>ENERGY</td>
</tr>
<tr>
<td>D4</td>
<td>ENERGYLoss</td>
</tr>
<tr>
<td>D5</td>
<td>ENET</td>
</tr>
<tr>
<td>D6</td>
<td>ENGLISH</td>
</tr>
<tr>
<td>D7</td>
<td>ENV</td>
</tr>
<tr>
<td>D8</td>
<td>Envelope</td>
</tr>
<tr>
<td>D9</td>
<td>EOF</td>
</tr>
<tr>
<td>DATA</td>
<td>EOFFSET</td>
</tr>
<tr>
<td>DATABits</td>
<td>Equal</td>
</tr>
<tr>
<td>DATE</td>
<td>Equal</td>
</tr>
<tr>
<td>DATEPrint</td>
<td>ERROR</td>
</tr>
<tr>
<td>Data</td>
<td>ERTYPE</td>
</tr>
<tr>
<td>DAll</td>
<td>ERRlog</td>
</tr>
<tr>
<td>DB</td>
<td>ETHERnet</td>
</tr>
<tr>
<td>DDC</td>
<td>EVEN</td>
</tr>
<tr>
<td>DECimal</td>
<td>EVENT</td>
</tr>
<tr>
<td>DFLT</td>
<td>EVENTS</td>
</tr>
<tr>
<td>Default</td>
<td>EvMsg</td>
</tr>
<tr>
<td>Define</td>
<td>EVQty</td>
</tr>
<tr>
<td>DEGAuss</td>
<td>EXECute</td>
</tr>
<tr>
<td>DEGrees</td>
<td>Ext</td>
</tr>
<tr>
<td>Delete</td>
<td>Extended</td>
</tr>
<tr>
<td>DELIMITER</td>
<td>External</td>
</tr>
<tr>
<td>DELTA</td>
<td>Factor</td>
</tr>
<tr>
<td>DELTatime</td>
<td>Factory</td>
</tr>
<tr>
<td>Delay</td>
<td>FAIL</td>
</tr>
<tr>
<td>Delayed</td>
<td>FAILures</td>
</tr>
<tr>
<td>DESE</td>
<td>FALL</td>
</tr>
<tr>
<td>DESKew</td>
<td>FALSE</td>
</tr>
<tr>
<td>DESTINATION</td>
<td>FALLing</td>
</tr>
<tr>
<td>DHCPbootp</td>
<td>FASTPHOTO</td>
</tr>
<tr>
<td>Diag</td>
<td>FASTer</td>
</tr>
<tr>
<td>DIFFERENTIAL</td>
<td>FASTest</td>
</tr>
<tr>
<td>Digital</td>
<td>FFT</td>
</tr>
<tr>
<td>DIRECTION</td>
<td>FIELD</td>
</tr>
<tr>
<td>DISABLED</td>
<td>FIFTy</td>
</tr>
<tr>
<td>DISPLAY</td>
<td>FILEFormat</td>
</tr>
<tr>
<td>DISPLAYMODE</td>
<td>FILESystem</td>
</tr>
<tr>
<td>DNS</td>
<td>FILTER</td>
</tr>
<tr>
<td>DOMAINName</td>
<td>FINE</td>
</tr>
<tr>
<td>DOTsonly</td>
<td>FIRST</td>
</tr>
<tr>
<td>DPOModels</td>
<td>FIVEdivs</td>
</tr>
<tr>
<td>DRAFT</td>
<td>FIXEDFREQValue</td>
</tr>
<tr>
<td>DUAL</td>
<td>FIXEDFREQuency</td>
</tr>
<tr>
<td>DYNAMIC</td>
<td>Flag</td>
</tr>
<tr>
<td>ECL</td>
<td>FLEXray</td>
</tr>
<tr>
<td>EDGE</td>
<td>FOCUS</td>
</tr>
<tr>
<td>EEPROM</td>
<td>FOLDER</td>
</tr>
<tr>
<td>EITHER</td>
<td>FORCEDRange</td>
</tr>
<tr>
<td>Enable</td>
<td>FORCe</td>
</tr>
<tr>
<td>ENCdg</td>
<td>FORMAT</td>
</tr>
<tr>
<td>END</td>
<td>FORWards</td>
</tr>
<tr>
<td>ENERGY</td>
<td>FPanel</td>
</tr>
<tr>
<td>ENERGYloss</td>
<td>FRACTIONal</td>
</tr>
<tr>
<td>ENET</td>
<td>FRAME</td>
</tr>
<tr>
<td>ENGLISH</td>
<td>FRAMEID</td>
</tr>
<tr>
<td>ENV</td>
<td>FRAMESync</td>
</tr>
<tr>
<td>Envelope</td>
<td>FRAMETYPE</td>
</tr>
<tr>
<td>EOF</td>
<td>FRAMETYPEid</td>
</tr>
<tr>
<td>EOFFSET</td>
<td>FRAMETYPE</td>
</tr>
<tr>
<td>Equal</td>
<td>FRAMetime</td>
</tr>
<tr>
<td>Equal</td>
<td>FRAMing</td>
</tr>
<tr>
<td>ERROR</td>
<td>FRAME</td>
</tr>
<tr>
<td>ERTYPE</td>
<td>FREE</td>
</tr>
<tr>
<td>ERRlog</td>
<td>FREESpace</td>
</tr>
<tr>
<td>ETHERnet</td>
<td>FRENCH</td>
</tr>
<tr>
<td>EVEN</td>
<td>FREQReference</td>
</tr>
<tr>
<td>EVENT</td>
<td>FREQRef</td>
</tr>
<tr>
<td>EVENTS</td>
<td>FREQUENCY</td>
</tr>
<tr>
<td>EVENTtable</td>
<td>FUNCTION</td>
</tr>
<tr>
<td>EXECute</td>
<td>GAIN</td>
</tr>
<tr>
<td>Ext</td>
<td>GATEmid</td>
</tr>
<tr>
<td>Extended</td>
<td>GATESource</td>
</tr>
<tr>
<td>External</td>
<td>GATEway</td>
</tr>
<tr>
<td>FACTor</td>
<td>GATE</td>
</tr>
<tr>
<td>FACTory</td>
<td>GATIng</td>
</tr>
<tr>
<td>FAIL</td>
<td>GATIng</td>
</tr>
<tr>
<td>FAILures</td>
<td>GENERICall</td>
</tr>
<tr>
<td>FALL</td>
<td>GERMan</td>
</tr>
<tr>
<td>FALSE</td>
<td>GND</td>
</tr>
<tr>
<td>FALLing</td>
<td>GPIBusb</td>
</tr>
<tr>
<td>FASTPHOTO</td>
<td>Graph</td>
</tr>
<tr>
<td>FASTer</td>
<td>GRaticule</td>
</tr>
<tr>
<td>FASTest</td>
<td>GRID</td>
</tr>
<tr>
<td>FFT</td>
<td>GROUPing</td>
</tr>
<tr>
<td>FIELD</td>
<td>HAGAKIPCARD</td>
</tr>
<tr>
<td>FIFTy</td>
<td>HAMming</td>
</tr>
<tr>
<td>FILEFormat</td>
<td>HANNing</td>
</tr>
<tr>
<td>FILESystem</td>
<td>HARDcopy</td>
</tr>
<tr>
<td>FILTER</td>
<td>HARM3ALTERNATE</td>
</tr>
<tr>
<td>FINE</td>
<td>HARM5ALTERNATE</td>
</tr>
<tr>
<td>FIRST</td>
<td>HARMSOURCE</td>
</tr>
<tr>
<td>FIVEdivs</td>
<td>HARMonics</td>
</tr>
<tr>
<td>FIXEDFREQValue</td>
<td>HBars</td>
</tr>
<tr>
<td>FIXEDFREQuency</td>
<td>HD1080I50</td>
</tr>
<tr>
<td>Flag</td>
<td>HD1080I60</td>
</tr>
<tr>
<td>FLEXray</td>
<td>HD1080P24</td>
</tr>
<tr>
<td>FOCUS</td>
<td>HD1080P25</td>
</tr>
<tr>
<td>FOLDER</td>
<td>HD1080PSF24</td>
</tr>
<tr>
<td>FORCEDRange</td>
<td>HD480P60</td>
</tr>
<tr>
<td>FORCe</td>
<td>HD720P60</td>
</tr>
<tr>
<td>FORMAT</td>
<td>HDtv</td>
</tr>
</tbody>
</table>

**Note:** This list includes reserved words for certain programming languages and systems, which may be used to ensure unique identifiers or to prevent conflicts in naming conventions.
<table>
<thead>
<tr>
<th>Reserved Word</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>IO</td>
<td>MAX</td>
</tr>
<tr>
<td>IPADdress</td>
<td>MAX</td>
</tr>
<tr>
<td>IRMS</td>
<td>MAXAmps</td>
</tr>
<tr>
<td>ITALian</td>
<td>MAXSamplerate</td>
</tr>
<tr>
<td>JAPAnese</td>
<td>MAXVolts</td>
</tr>
<tr>
<td>KOREan</td>
<td>MAXWatts</td>
</tr>
<tr>
<td>L</td>
<td>Maximum</td>
</tr>
<tr>
<td>L2</td>
<td>MEAN</td>
</tr>
<tr>
<td>L4</td>
<td>MEAS</td>
</tr>
<tr>
<td>LABEL</td>
<td>MEASurement</td>
</tr>
<tr>
<td>Label</td>
<td>MEDIum</td>
</tr>
<tr>
<td>LANGUAGE</td>
<td>MEG</td>
</tr>
<tr>
<td>LANDscape</td>
<td>MESSAGE</td>
</tr>
<tr>
<td>LARGE</td>
<td>METHOD</td>
</tr>
<tr>
<td>LAYOUT</td>
<td>MID</td>
</tr>
<tr>
<td>LEFT</td>
<td>MID2</td>
</tr>
<tr>
<td>LESSEqual</td>
<td>MID&lt;1-3&gt;</td>
</tr>
<tr>
<td>LESSLimit</td>
<td>MID&lt;x&gt;</td>
</tr>
<tr>
<td>LESSthan</td>
<td>MIL</td>
</tr>
<tr>
<td>LESSthan</td>
<td>MIN</td>
</tr>
<tr>
<td>LETTER</td>
<td>MINimum</td>
</tr>
<tr>
<td>LEVEL</td>
<td>MINMax</td>
</tr>
<tr>
<td>LF</td>
<td>MISO</td>
</tr>
<tr>
<td>LIMITS</td>
<td>MISOMOSI</td>
</tr>
<tr>
<td>LIMIT</td>
<td>MIXed</td>
</tr>
<tr>
<td>LIN</td>
<td>MKDir</td>
</tr>
<tr>
<td>LINE</td>
<td>MM100BY150</td>
</tr>
<tr>
<td>LINEar</td>
<td>MM54BY86</td>
</tr>
<tr>
<td>LINEFrequency</td>
<td>MODE</td>
</tr>
<tr>
<td>LINEPeriod</td>
<td>MODulationanalysis</td>
</tr>
<tr>
<td>LInear</td>
<td>MODE</td>
</tr>
<tr>
<td>LIST</td>
<td>MODEl</td>
</tr>
<tr>
<td>L3</td>
<td>MODulation</td>
</tr>
<tr>
<td>LOCK</td>
<td>MOREEqual</td>
</tr>
<tr>
<td>LOG</td>
<td>MORElimit</td>
</tr>
<tr>
<td>LOGIC</td>
<td>MOREthan</td>
</tr>
<tr>
<td>LOOP</td>
<td>MOREthan</td>
</tr>
<tr>
<td>LOW</td>
<td>MOSI</td>
</tr>
<tr>
<td>LOWCurrent</td>
<td>MSB</td>
</tr>
<tr>
<td>LOWLimit</td>
<td>NAME</td>
</tr>
<tr>
<td>LOVoltage</td>
<td>NAME]</td>
</tr>
<tr>
<td>LOWERthreshold</td>
<td>NAND</td>
</tr>
<tr>
<td>LSB</td>
<td>NDuty</td>
</tr>
<tr>
<td>MAG</td>
<td>NEGative</td>
</tr>
<tr>
<td>MAGnivu</td>
<td>NEWpass</td>
</tr>
<tr>
<td>MAIN</td>
<td>NEXT</td>
</tr>
<tr>
<td>MAINin</td>
<td>NOCARE</td>
</tr>
<tr>
<td>MARK</td>
<td>NONE</td>
</tr>
<tr>
<td>MARKSINCOLUMN</td>
<td>NOPARity</td>
</tr>
<tr>
<td>MASK</td>
<td>NOR</td>
</tr>
<tr>
<td>MATH</td>
<td>NORMAL</td>
</tr>
<tr>
<td>MATH1</td>
<td>NR1</td>
</tr>
<tr>
<td>MATHVAR</td>
<td>NR3</td>
</tr>
<tr>
<td>Reserved Word</td>
<td></td>
</tr>
<tr>
<td>---------------</td>
<td>---</td>
</tr>
<tr>
<td>RATE1M</td>
<td>RUNStop, SPI, TRIGgertosearch</td>
</tr>
<tr>
<td>RATE20K</td>
<td>RUNT, SPREADSheet, TRUEpwr</td>
</tr>
<tr>
<td>RATE25K</td>
<td>RUSSian, Space, TRUE</td>
</tr>
<tr>
<td>RATE35K</td>
<td>RWINCLUDE, SRIbinary, TTL</td>
</tr>
<tr>
<td>RATE50K</td>
<td>RX, SRPbinary, TURN</td>
</tr>
<tr>
<td>RATE800K</td>
<td>RXDATA, STANDARD, TURNon</td>
</tr>
<tr>
<td>RATIO</td>
<td>RXENDPacket, START, TWEnty</td>
</tr>
<tr>
<td>RATIO</td>
<td>RXSTART, STARTup, TWOfifty</td>
</tr>
<tr>
<td>RDElta</td>
<td>SAMPLERate, STARTupnosync, TX</td>
</tr>
<tr>
<td>RDSon</td>
<td>SAMPLEpoint, STARTbyte, TXDATA</td>
</tr>
<tr>
<td>REACTpwr</td>
<td>Sample, STATE, TXENDPacket</td>
</tr>
<tr>
<td>READ</td>
<td>SAVE, STATistics, TXRX</td>
</tr>
<tr>
<td>READFile</td>
<td>SCAN, STATUS, TXSTART</td>
</tr>
<tr>
<td>READOUT</td>
<td>SCALE, STATE, TYPE</td>
</tr>
<tr>
<td>RECALL</td>
<td>SCLK, STATic, Than</td>
</tr>
<tr>
<td>RECDESkew</td>
<td>SCREEN, UNDO</td>
</tr>
<tr>
<td>RECORDlength</td>
<td>SDATA, UNEQual</td>
</tr>
<tr>
<td>RECTangular</td>
<td>SEARCH, STOP, UNITS</td>
</tr>
<tr>
<td>REF</td>
<td>SECAM, STOPAFTER, UNLock</td>
</tr>
<tr>
<td>REF1</td>
<td>SECONDS, STOPOnviol, UPPerthreshold</td>
</tr>
<tr>
<td>REF2</td>
<td>SELECT, STRING, USBDevice</td>
</tr>
<tr>
<td>REF3</td>
<td>SELECTED, STYLE, USER</td>
</tr>
<tr>
<td>REF4</td>
<td>SEQUENCE, SUBNETMask, V1X</td>
</tr>
<tr>
<td>REFLevel</td>
<td>SERIALNUMBER, SWITCHINGloss, V2X</td>
</tr>
<tr>
<td>REM</td>
<td>SERNUMBER, SWLOSS, VALUE</td>
</tr>
<tr>
<td>REMote</td>
<td>SET, SYNC, VBARS</td>
</tr>
<tr>
<td>RENAME</td>
<td>SETALLOcrete, SYNCFIELD, VCEsat</td>
</tr>
<tr>
<td>REPEATstart</td>
<td>SETHOLD, SYNCFRAME, VCRESTfactor</td>
</tr>
<tr>
<td>RESET</td>
<td>SETLEVEL, SYNCINTERVAL, VDELTA</td>
</tr>
<tr>
<td>RESOLUTION</td>
<td>SETTODEFAULTS, STRING, VENDORID</td>
</tr>
<tr>
<td>RESPTIME</td>
<td>SETTIME, TABLE, VERTAUTOset</td>
</tr>
<tr>
<td>RESULT</td>
<td>SETUP, TDM, VERBOSE</td>
</tr>
<tr>
<td>RESISTANCE</td>
<td>SEVENTYFIVE, TEST, VERTDEFault</td>
</tr>
<tr>
<td>RESULTS</td>
<td>SHOW, TESTVOLUME, VERTICAl</td>
</tr>
<tr>
<td>RESISTANCE</td>
<td>SIGNEDDECIMAL, TERMINATION, VIDEo</td>
</tr>
<tr>
<td>RI</td>
<td>SIGNAL, VERTICAl</td>
</tr>
<tr>
<td>RIBINARY</td>
<td>SIGMATIC, VERTICAl</td>
</tr>
<tr>
<td>RIGHT</td>
<td>SIMPLIFIEDCHINESE, VERTICAl</td>
</tr>
<tr>
<td>RIPPle</td>
<td>SIZE, VERTICAl</td>
</tr>
<tr>
<td>RISEFall</td>
<td>SLEEP, VERTICAl</td>
</tr>
<tr>
<td>RISE</td>
<td>SLEWRATE, VERTICAl</td>
</tr>
<tr>
<td>RISING</td>
<td>SLOWER, WAVE</td>
</tr>
<tr>
<td>RJ</td>
<td>SLOPE, WAVE</td>
</tr>
<tr>
<td>RMDir</td>
<td>SMALL, WAVFrm</td>
</tr>
<tr>
<td>RMS</td>
<td>SNAPSHOT, TIFF, WEGHT</td>
</tr>
<tr>
<td>ROLL100MM</td>
<td>SNAP, TIME, WFI0</td>
</tr>
<tr>
<td>ROLL127MM</td>
<td>SOA, TOFF, WMFile</td>
</tr>
<tr>
<td>ROLL210MM</td>
<td>SOF, TON, WFMOUTpre</td>
</tr>
<tr>
<td>ROLL89MM</td>
<td>SOURCE, TOTAL, WIDTH</td>
</tr>
<tr>
<td>ROM</td>
<td>SOURCE2, TOTALupTIME, WINDOW</td>
</tr>
<tr>
<td>RBPbinary</td>
<td>SOURCE[1], TRACK, WORD</td>
</tr>
<tr>
<td>RS232</td>
<td>SPANISH, TRADITIONALCHINESE, WORDS</td>
</tr>
<tr>
<td>RS232C</td>
<td>SPC, TRANSITION, WRITE</td>
</tr>
<tr>
<td>RUN</td>
<td>SPECTRAL, TRIGGER, WRITEFILE</td>
</tr>
<tr>
<td>X</td>
<td>XMIN</td>
</tr>
<tr>
<td>-----</td>
<td>-------</td>
</tr>
<tr>
<td>X1Y1X2Y2</td>
<td>XUNIT</td>
</tr>
<tr>
<td>XDELta</td>
<td>XY</td>
</tr>
<tr>
<td>XFF</td>
<td>XZERo</td>
</tr>
<tr>
<td>XINcr</td>
<td>Y</td>
</tr>
<tr>
<td>XMAX</td>
<td>YDELta</td>
</tr>
</tbody>
</table>
Appendix C: Programming Example

The following series of commands and queries illustrate many of the most common commands and techniques. In this example, data sent from the controller computer to the oscilloscope is prefaced with the > symbol. Replies from the oscilloscope have no preface.

> rem “Check for any messages, and clear them from the queue.”
> *esr?
128
> allev?
:ALLEV 401, ”Power on; “

> rem “Set the scope to the default state.”
> factory

> rem “Set the scope parameters that differ from the defaults.”
> ch1:scale 2.0
> hor:scale 100e-6
> trig:a:level 2.4

> rem “Start a single sequence acquisition.”
> acquire:stopafter sequence
> acquire:state on
> rem “Wait for the acquisition to complete.”
> rem “Note: your controller program time-out must be set long enough to handle the wait.”
> *opc?
1
> rem “Use the oscilloscope built-in measurements to measure the waveform you acquired.”
> measu:immed:type mean
> measu:immed:value?
:MEASUREMENT:IMMED:VALUE 1.2767
> rem “Be sure to use the *esr? query to check for measurement errors.”
> measu:immed:type freq
> measu:immed:value
> :MEASUREMENT:IMMED:VALUE 9.9100E+37
> *esr?
> 16
> allev?
> :ALLEV 2202,"Measurement error, No period found “

> rem “Query out the waveform points, for later analysis on your controller computer.”
> data:enclg ascii
> curve?
> :CURVE 7,6,5,5,5,6,6,6,8 {...}

> rem “Query out the parameters used for calculated the times and voltages of the waveform points.”
> wfmpr?
> :WFMPRE:BYT_NR 1;BIT_NR 8;ENCDG ASCII;BN_FMT RI;BYT_OR MSB;NR_PT 1000; [...]

Appendix C: Programming Example

C-2 MSO3000 and DPO3000 Series Programmer Manual
Appendix D: Waveform Transfer (WFMOutpre and CURVe Query) Examples

Here are several examples of command sequences using the WFMOutpre? and CURVe? queries to transfer data from the oscilloscope to a PC, with different data sources, including Analog, Digital, and Digital Collection waveforms. Each command sequence example is followed by an explanation of the returned WFMOutpre? results. The WFMOutpre? values act as settings that apply to the CURVe query data being transferred.

**NOTE.** In order to guarantee that the waveform data returned from CURVe? queries of multiple waveforms are correlated to the same acquisition, you should use single sequence acquisition mode to acquire the waveform data from a single acquisition. Single sequence acquisition mode is enabled using ACQuire:STOPAfter SEQuence.

### Example 1: Analog Waveform (Channels 1–4)

Goal: Transfer 10,000 points of analog channel waveform data from the oscilloscope to a PC.

<table>
<thead>
<tr>
<th>Command</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>:DATa:SOURce CH1</td>
<td></td>
</tr>
<tr>
<td>:DATa:START 1</td>
<td></td>
</tr>
<tr>
<td>:DATa:STOP 10000</td>
<td></td>
</tr>
<tr>
<td>:WFMOutpre:ENCdg BINARY</td>
<td></td>
</tr>
<tr>
<td>:WFMOutpre:BYT_Nr 1</td>
<td></td>
</tr>
<tr>
<td>:HEADer 1</td>
<td></td>
</tr>
<tr>
<td>:WFMOutpre?</td>
<td>Returns the following values. Each value represents the current settings that a CURVe? query will use to format the data that will be transferred from the oscilloscope to a PC or other device (see next table for explanations): :WFMOUTPRE:BYT_NR 1;BIT_NR 8;ENCDG BINARY;BN_FMT RI;BYT_OR MSB;WFID &quot;Ch1, DC coupling, 100.0mV/div, 4.000us/div, 10000 points, Sample mode&quot;;NR_PT 10000;PT_FMT Y;PT_ORDER LINEAR;XUNIT &quot;s&quot;;XINCR 4.0000E-9;XZERO -20.0000E-6;PT_OFF 0;YUNIT &quot;V&quot;;YMULT 4.0000E-3;YOFF 0.0E+0;YZERO 0.0E+0</td>
</tr>
<tr>
<td>:CURVe?</td>
<td>Returns 10,000 data points:</td>
</tr>
<tr>
<td></td>
<td>:CURVe #510000&lt;10,000 binary bytes of waveform data.&gt;</td>
</tr>
</tbody>
</table>

**NOTE.** You can also use the WAVFrm? query, which concatenates the WFMOutpre? and CURVe? queries.
<table>
<thead>
<tr>
<th>WFMOutpre? Query results</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>BYT_NR 1</td>
<td>This value specifies the number of bytes per data point in the waveform data. To change this value automatically, use the WFMOutpre:BYT_Nr command. Note that changing this value automatically changes the BIT_NR value accordingly. (This value can also be set using the DATa:WIDth command.)</td>
</tr>
<tr>
<td>BIT_NR 8</td>
<td>This value specifies the number of bits per data point in the waveform data. To change this value, use the WFMOutpre:BIT_Nr command. Note that changing this value automatically changes the BYT_NR value accordingly.</td>
</tr>
<tr>
<td>ENCDG BINARY</td>
<td>This value specifies the encoding of the waveform data. To change this value (the other possibility is ASCII), use the WFMOutpre:ENCdg command. (This value can also be set using the DATa:ENCdg command, which provides the ability to set the wfmoutpre:ENCdg, wfmoutpre:BN_FMT, and wfmoutpre:BYT_Or values using a single command.)</td>
</tr>
<tr>
<td>BN_FMT RI</td>
<td>This value specifies the binary format, which in this case is RI (signed integer). To change this value (the other possibility is RP or positive integer), use the WFMOutpre:BN_FMT command. Note: this field is not applicable for ASCII encoding.</td>
</tr>
<tr>
<td>BYT_OR MSB</td>
<td>This value specifies the byte order for the BINARY encoding, which in this case is MSB (most significant byte first). To change this value to LSB, use the WFMOutpre:BYT_OR command. Note: this field is not applicable for ASCII encoding.</td>
</tr>
<tr>
<td>WFID &quot;Ch1, DC coupling, 100.0mV/div, 4.000us/div, 10000 points, Sample mode&quot;</td>
<td>This quoted string represents information about the source waveform that would be returned by a WFMOutpre:WFID? query.</td>
</tr>
<tr>
<td>NR_PT 10000</td>
<td>This value indicates the number of data points in the waveform record to be transferred using the CURVE? query. (If you would like to determine only this value, use the WFMOutpre:NR_Pt? query.) Note: this value is typically equal to the full record length, but you also have the option to transfer only a portion of the record length by using the DATa:STARt and DATa:STOP commands.</td>
</tr>
<tr>
<td>PT_FMT Y</td>
<td>This value indicates the format of the data points in the waveform record. In this case, the value represents YT format. This is query only – the returned values can be Y for YT format or ENV for envelope format (min/max pairs). (If you would like to determine only this value, use the WFMOutpre:PT_FMT? query.)</td>
</tr>
<tr>
<td>PT_ORDER LINEAR</td>
<td>This value is always LINEar.</td>
</tr>
<tr>
<td>XUNIT &quot;s&quot;</td>
<td>This value indicates the units of the x-axis of the waveform record. This is determined by the horizontal settings for the waveform source. Typically, this value is &quot;s&quot;, representing seconds. When using the math waveform as a source, the value can be &quot;s&quot; or &quot;Hz&quot;. This is query only. (If you would like to determine only this value, use the WFMOutpre:XUNIT? query.)</td>
</tr>
<tr>
<td>XINCR 4.0000E-9</td>
<td>This value indicates the time, in seconds, or frequency, in hertz, between data points in the waveform record. This is query only. (If you would like to determine only this value, use the WFMOutpre:XINCR? query.)</td>
</tr>
<tr>
<td>XZERO -20.0000E-6</td>
<td>This value indicates the time, in seconds, or frequency, in hertz, of the first data point in the waveform record. This time or frequency is relative to the time of the trigger, which is always 0. So, this XZEro time or frequency can be negative. This is query only. (If you would like to determine only this value, use the WFMOutpre:XZERO? query.)</td>
</tr>
<tr>
<td>PT_OFF 0</td>
<td>This is a query provided only for compatibility with performance oscilloscopes. The returned value is always 0. (If you would like to determine only this value, use the WFMOutpre:PT_OFF? query.)</td>
</tr>
</tbody>
</table>
Appendix D: Waveform Transfer (WFMOutpre and CURVe Query) Examples

### WFMOutpre? Query results

<table>
<thead>
<tr>
<th>Command</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>:WFMOutpre?</td>
<td>Returns the following values. Each value represents the current settings that a CURVe? query will use to format the data that will be transferred from the oscilloscope to a PC or other device (see next table for explanations):</td>
</tr>
<tr>
<td>:WFMOutpre:ENCdg ASCii</td>
<td></td>
</tr>
<tr>
<td>:WFMOutpre:BYT_NR 1</td>
<td></td>
</tr>
<tr>
<td>:HEAder 1</td>
<td></td>
</tr>
<tr>
<td>:VERBose 1</td>
<td></td>
</tr>
<tr>
<td>:WFMOutpre:YUNIT “V”</td>
<td>This value indicates the vertical units of data points in the waveform record. This can be any of several string values, depending upon the vertical units of the source waveform – in this case, volts. This is query only. (If you would like to determine only this value, use the WFMOutpre:YUNIT? query.)</td>
</tr>
<tr>
<td>:WFMOutpre:YMULT 4.0000E-3</td>
<td>This value indicates the multiplying factor to convert the data point values from digitizing levels to the units specified by the WFMOUTpre:YUnit command. This is query only. (If you would like to determine only this value, use the WFMOutpre:YMUlt? query.)</td>
</tr>
<tr>
<td>:WFMOutpre:YOFF 0.0E+0</td>
<td>This value indicates the vertical position of the source waveform in digitizing levels. There are 25 digitizing levels per vertical division. This is query only. (If you would like to determine only this value, use the WFMOutpre:YOFF? query.)</td>
</tr>
<tr>
<td>:WFMOutpre:YZERO 0.0E+0</td>
<td>This value indicates the vertical offset of the source waveform in units specified by the WFMOUTpre:YUnit command. This is query only. (If you would like to determine only this value, use the WFMOutpre:YZero? query.)</td>
</tr>
</tbody>
</table>

### Example 2: Digital Waveform (Channels DO-D15)

Goal: Transfer 25 points of digital channel waveform data from the oscilloscope to a PC.

<table>
<thead>
<tr>
<th>Command</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>:DATa:SOUrce D5</td>
<td></td>
</tr>
<tr>
<td>:DATa:START 1</td>
<td></td>
</tr>
<tr>
<td>:DATa:STOP 25</td>
<td></td>
</tr>
<tr>
<td>:WFMOutpre:ENCdg ASCii</td>
<td></td>
</tr>
<tr>
<td>:WFMOutpre:BYT_NR 1</td>
<td></td>
</tr>
<tr>
<td>:HEAder 1</td>
<td></td>
</tr>
<tr>
<td>:VERBose 1</td>
<td></td>
</tr>
</tbody>
</table>

\[\text{NOTE.} \quad \text{You can also use the \text{WAV Frm?} \text{query, which concatenates the \text{WFMOutpre?} and \text{CURVe?} \text{queries.}}\]
<table>
<thead>
<tr>
<th>WFMOutpre? Query results</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>WFMOUTPRE:BYT_NR 1</td>
<td>This value specifies the number of bytes per data point in the waveform data. To change this value automatically, use the WFMOutpre:BYT_Nr command. Note that changing this value automatically changes the BIT_NR value accordingly. (This value can also be set using the DATA:WIDTH command.)</td>
</tr>
<tr>
<td>BIT_NR 8</td>
<td>This value specifies the number of bits per data point in the waveform data. To change this value, use the WFMOutpre:BIT_Nr command. Note that changing this value automatically changes the BYT_NR value accordingly.</td>
</tr>
<tr>
<td>ENCDG ASCII</td>
<td>This value specifies the encoding of the waveform data. To change this value (the other possibility is BINARY), use the WFMOutpre:ENCdg command. (This value can also be set using the DATA:ENCdg command, which provides the ability to set the WFMOutpre:ENCdg, WFMOutpre:BN_Fmt, and WFMOutpre:BYT_Or values using a single command.)</td>
</tr>
<tr>
<td>BN_FMT RI</td>
<td>This value specifies the binary format, which in this case is RI (signed integer). To change this value (the other possibility is RP or positive integer), use the WFMOutpre:BN_FMT command. Note: this field is not applicable for ASCII encoding.</td>
</tr>
<tr>
<td>BYT_OR MSB</td>
<td>This value specifies the byte order for the BINARY encoding, which in this case is MSB (most significant byte first, also known as IBM format). To change this value to LSB, use the WFMOutpre:BYT_Or command. Note: this field is not applicable for ASCII encoding.</td>
</tr>
<tr>
<td>WFID &quot;D5, unknown coupling, 100.0us/div, 10000 points, Digital mode&quot;</td>
<td>This quoted string represents information about the source waveform that would be returned by a WFMOutpre:WFId? query. It cannot be changed.</td>
</tr>
<tr>
<td>NR_PT 25</td>
<td>This value indicates the number of data points in the waveform record to be transferred using the CURVE? query. (If you would like to determine only this value, use the WFMOutpre:NR_PT? query.) Note: this value is typically equal to the full record length, but you also have the option to transfer only a portion of the record length by using the DATA:START and DATA:STOP commands.</td>
</tr>
<tr>
<td>PT_FMT Y</td>
<td>This value indicates the format of the data points in the waveform record. In this case, the value represents YT format. This is query only. (If you would like to determine only this value, use the WFMOutpre:PT_Fmt? query.)</td>
</tr>
<tr>
<td>PT_ORDER LINEAR</td>
<td>This value is always LINEAR.</td>
</tr>
<tr>
<td>XUNIT &quot;s&quot;</td>
<td>This value indicates the units of the x-axis of the waveform record. This is determined by the horizontal settings for the waveform source. Typically, this value is &quot;s&quot;, representing seconds. When using the math waveform as a source, the value can be &quot;s&quot; or &quot;Hz&quot;. This is query only. (If you would like to determine only this value, use the WFMOutpre:XUNiT? query.)</td>
</tr>
<tr>
<td>XINCR 100.0000E-9</td>
<td>This value indicates the time, in seconds, or frequency, in hertz, between data points in the waveform record. This is query only. (If you would like to determine only this value, use the WFMOutpre:XINcr? query.)</td>
</tr>
<tr>
<td>XZERO -500.0000E-6</td>
<td>This value indicates the time, in seconds, or frequency, in hertz, of the first data point in the waveform record. This time or frequency is relative to the time of the trigger, which is always 0. So, this XZERO time or frequency can be negative. This is query only. (If you would like to determine only this value, use the WFMOutpre:XZEro? query.)</td>
</tr>
<tr>
<td>PT_OFF 0</td>
<td>This is a query provided only for compatibility with other Tektronix oscilloscopes. The returned value is always 0. (If you would like to determine only this value, use the WFMOutpre:PT_Off? query.)</td>
</tr>
</tbody>
</table>
Appendix D: Waveform Transfer (WFMOutpre and CURVe Query) Examples

<table>
<thead>
<tr>
<th>WFMOutpre? Query results</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>YUNIT “State”</td>
<td>This value indicates the vertical units of data points in the waveform record. This can be any of several string values, depending upon the vertical units of the source waveform – in this case, State. This is query only. (If you would like to determine only this value, use the WFMOutpre:YUNit? query.)</td>
</tr>
<tr>
<td>YMULT 1.0000</td>
<td>This value indicates the multiplying factor to convert the data point values from digitizing levels to the units specified by the WFMOutpre:YUNit command. This is query only. (If you would like to determine only this value, use the WFMOutpre:YMUlt? query.)</td>
</tr>
<tr>
<td>YOFF 0.0E+0</td>
<td>This value indicates the vertical position of the source waveform in digitizing levels. There are 25 digitizing levels per vertical division. This is query only. (If you would like to determine only this value, use the WFMOutpre:YOFf? query.)</td>
</tr>
<tr>
<td>YZERO 0.0E+0</td>
<td>This value indicates the vertical offset of the source waveform in units specified by the WFMOutpre:YUNit command. This is query only. (If you would like to determine only this value, use the WFMOutpre:YZEro? query.)</td>
</tr>
</tbody>
</table>

Example 3: The Digital Collection with 4 Bytes Per Point and MagniVu Off

Goal: Transfer 25 points of Digital Collection data from the oscilloscope to a PC using 4 bytes per point and MagniVu off.

<table>
<thead>
<tr>
<th>Command</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>:DATa:SOURce DIGital</td>
<td></td>
</tr>
<tr>
<td>:ACQuire:MAGnivu 0</td>
<td></td>
</tr>
<tr>
<td>:DATa:START 1</td>
<td></td>
</tr>
<tr>
<td>:DATa:STOP 25</td>
<td></td>
</tr>
<tr>
<td>:WFMOutpre:ENCdg ASCII</td>
<td></td>
</tr>
<tr>
<td>:WFMOutpre:BYT_Nr 4</td>
<td></td>
</tr>
<tr>
<td>:HEADer 1</td>
<td></td>
</tr>
<tr>
<td>:VERBose 1</td>
<td></td>
</tr>
</tbody>
</table>
| :WFMOutpre?      | Returns the following values. Each value represents the current settings that a CURVe? query will use to format the data that will be transferred from the oscilloscope to a PC or other device (see next table for explanations):
|                  | :WFMOUTpre:BYT_NR 4;BIT_NR 32;ENCDG ASCII;BN_FMT RI;BYT_OR MSB;WFID "Digital, unknown coupling, 100.0us/div, 10000 points, Digital mode";NR_PT 25;PT_FMT Y;PT_ORDER LINEAR;XUNIT "s";XINCR 100.0000E-9;XZERO -500.0000E-6;PT_OFF 0;YUNIT "State";YMULT 1.0000;YOFF 0.0E+0 |
| :CURVe?          | Returns the following values. Each value represents a data point:
|                  | :CURVe
Appendix D: Waveform Transfer (WFMOutpre and CURVe Query) Examples

**NOTE.** The returned hexadecimal data values for the Digital Collection are formatted without leading zeroes. For example, a 4-byte digital collection value of FB386 should be interpreted as 000FB386.

**NOTE.** You can also use the WAVFrm? query, which concatenates the WFMOutpre? and CURVe? queries.

<table>
<thead>
<tr>
<th>WFMOutpre? Query results</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>WFMOUTPRE:BYT_NR 4</td>
<td>This value specifies the number of bytes per data point in the waveform data. To change this value automatically, use the WFMOutpre:BYT_NR command. Note that changing this value automatically changes the BIT_NR value accordingly. (This value can also be set using the DATa:WIDth command.)</td>
</tr>
<tr>
<td>BIT_NR 32</td>
<td>This value specifies the number of bits per data point in the waveform data. To change this value, use the WFMOutpre:BIT_NR command. Note that changing this value automatically changes the BYT_NR value accordingly.</td>
</tr>
<tr>
<td>ENCDG ASCII</td>
<td>This value specifies the encoding of the waveform data. To change this value (the other possibility is BINARY), use the WFMOutpre:ENCdg command. (This value can also be set using the DATa:ENCdg command, which provides the ability to set the WFMOutpre:ENCdg, WFMOutpre:BN_FMT, and WFMOutpre:BYT_OR values using a single command.)</td>
</tr>
<tr>
<td>BN_FMT RI</td>
<td>This value specifies the binary format, which in this case is RI (signed integer). To change this value (the other possibility is RP or positive integer), use the WFMOutpre:BN_FMT command. Note: this field is not applicable for ASCII encoding.</td>
</tr>
<tr>
<td>BYT_OR MSB</td>
<td>This value specifies the byte order for the BINARY encoding, which in this case is MSB (most significant byte first, also known as IBM format). To change this value to LSB, use the WFMOutpre:BYT_OR command. Note: this field is not applicable for ASCII encoding.</td>
</tr>
<tr>
<td>WFID &quot;Digital, unknown coupling, 100.0us/div, 10000 points, Digital mode&quot;</td>
<td>This quoted string represents information about the source waveform that would be returned by a WFMOutpre:WFId? query. It cannot be changed.</td>
</tr>
<tr>
<td>NR_PT 25</td>
<td>This value indicates the number of data points in the waveform record to be transferred using the CURVe? query. (If you would like to determine only this value, use the WFMOutpre:NR_PT? query.) Note: this value is typically equal to the full record length, but you also have the option to transfer only a portion of the record length by using the DATa:STARt and DATa:STOP commands.</td>
</tr>
<tr>
<td>PT_FMT Y</td>
<td>This value indicates the format of the data points in the waveform record. In this case, the value represents YT format. This is query only – the returned values can be Y for YT format or ENV for envelope format (min/max pairs). (If you would like to determine only this value, use the WFMOutpre:PT_FMT? query.)</td>
</tr>
<tr>
<td>PT_ORDER LINEAR</td>
<td>This value is always LINEar.</td>
</tr>
<tr>
<td>XUNIT &quot;s&quot;</td>
<td>This value indicates the units of the x-axis of the waveform record. This is determined by the horizontal settings for the waveform source. For live channels, this value is &quot;s&quot;, representing seconds. When using the math waveform as a source, the value can be &quot;s&quot; or &quot;Hz&quot;. This is query only. (If you would like to determine only this value, use the WFMOutpre:XUNIt? query.)</td>
</tr>
</tbody>
</table>
Appendix D: Waveform Transfer (WFMOutpre and CURVe Query) Examples

<table>
<thead>
<tr>
<th>WFMOutpre? Query results</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>XINCR 100.0000E-9</td>
<td>This value indicates the time, in seconds, or frequency, in hertz, between data points in the waveform record. This is query only. (If you would like to determine only this value, use the WFMOutpre:XINcr? query.)</td>
</tr>
<tr>
<td>XZERO -500.0000E-6</td>
<td>This value indicates the time, in seconds, or frequency, in hertz, of the first data point in the waveform record. This time or frequency is relative to the time of the trigger, which is always 0. So, this XZEr0 time or frequency can be negative. This is query only. (If you would like to determine only this value, use the WFMOutpre:XZEro? query.)</td>
</tr>
<tr>
<td>PT_OFF 0</td>
<td>This is a query provided only for compatibility with performance oscilloscopes. The returned value is always 0. (If you would like to determine only this value, use the WFMOutpre:PT_Off? query.)</td>
</tr>
<tr>
<td>YUNIT “State”</td>
<td>This value indicates the vertical units of data points in the waveform record. This can be any of several string values, depending upon the vertical units of the source waveform – in this case, State. This is query only. (If you would like to determine only this value, use the WFMOutpre:YUNit? query.)</td>
</tr>
<tr>
<td>YMULT 1.0000</td>
<td>This value indicates the multiplying factor to convert the data point values from digitizing levels to the units specified by the WFMOutpre:YUNit command. This is query only. (If you would like to determine only this value, use the WFMOutpre:YMUlt? query.)</td>
</tr>
<tr>
<td>YOFF 0.0E+0</td>
<td>This value indicates the vertical position of the source waveform in digitizing levels. There are 25 digitizing levels per vertical division. This is query only. (If you would like to determine only this value, use the WFMOutpre:YOFf? query.)</td>
</tr>
<tr>
<td>YZERO 0.0E+0</td>
<td>This value indicates the vertical offset of the source waveform in units specified by the WFMOutpre:YUNit command. This is query only. (If you would like to determine only this value, use the WFMOutpre:YZEro? query.)</td>
</tr>
</tbody>
</table>

**Example 4: The Digital Collection with 8 Bytes Per Point and MagniVu Off**

Goal: Transfer 25 points of Digital Collection data from the oscilloscope to a PC using 8 bytes per point and MagniVu off.

<table>
<thead>
<tr>
<th>Command</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>:DATa:SOURce DIGital</td>
<td></td>
</tr>
<tr>
<td>:ACQuire:MAGnivu 0</td>
<td></td>
</tr>
<tr>
<td>:DATa:START 1</td>
<td></td>
</tr>
<tr>
<td>:DATa:STOP 25</td>
<td></td>
</tr>
<tr>
<td>:WFMOutpre:ENCdg ASCii</td>
<td></td>
</tr>
<tr>
<td>:WFMOutpre:BYT_Nr 8</td>
<td></td>
</tr>
<tr>
<td>:HEAder 1</td>
<td></td>
</tr>
<tr>
<td>:VERBose 1</td>
<td></td>
</tr>
</tbody>
</table>
## Appendix D: Waveform Transfer (WFMOutpre and CURVe Query) Examples

<table>
<thead>
<tr>
<th>Command</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>:WFMOutpre?</td>
<td>Returns the following values. Each value represents the current settings that a CURVe? query will use to format the data that will be transferred from the oscilloscope to a PC or other device (see next table for explanations):</td>
</tr>
<tr>
<td>:WFMOOutPRE:BYT_NR 8;BIT_NR 64;ENCdg ASCII;BN_FMT RI;BYT_OR MSB;WFID &quot;Digital, unknown coupling, 100.0us/div, 10000 points, Digital mode&quot;;NR_PT 25;PT_FMT Y;PT_ORDER LINEAR;XUNIT &quot;s&quot;;XINCR 100.0000E-9;ZERO -500.0000E-6;PT_OFF 0;YUNIT &quot;State&quot;;YMULT 1.0000;YOFF 0.0E+0+0</td>
<td></td>
</tr>
</tbody>
</table>

:CURVe?	Returns the following values. Each value represents a data point:
:CURVe	80000FB386,E0000FB386,80000FB3E6,80000FB3E6,80000FB3E6,80000FB3E6,80000FB3E6,
	C8000FB3A6,8C000FB3A6,8C000FB3A6,84000FB3AE,8C000FB3A6,8C000FB3E6,8C000FB3E6,
	8C000FB3E6,8C000FB3E6,8C000FB3E6,8C000FB3E6,8C000FB3E6,8C000FB3E6,8C000FB3E6,
	8C000FB3E6,8C000FB3E6,8C000FB3E6,8C000FB3E6,8C000FB3E6,8C000FB3E6,8C000FB3E6,
	8C000FB3E6,8C000FB3E6,8C000FB3E6,8C000FB3E6,8C000FB3E6,8C000FB3E6,8C000FB3E6,
	8C000FB3E6,8C000FB3E6,8C000FB3E6,8C000FB3E6,8C000FB3E6,8C000FB3E6,8C000FB3E6,

**NOTE.** The returned hexadecimal data values for the Digital Collection are formatted without leading zeroes.

**NOTE.** You can also use the WAVFrm? query, which concatenates the WFMOutpre? and CURVe? queries.

### WFMOutpre? Query results

<table>
<thead>
<tr>
<th>WFMOOutpre? Query results</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>WFMOOutPRE:BYT_NR 8</td>
<td>This value specifies the number of bytes per data point in the waveform data. To change this value automatically, use the WFMOutpre:BYT_Nr command. Note that changing this value automatically changes the BIT_NR value accordingly. (This value can also be set using the DATA:WIDTH command.)</td>
</tr>
<tr>
<td>BIT_NR 64</td>
<td>This value specifies the number of bits per data point in the waveform data. To change this value, use the WFMOutpre:BIT_Nr command. Note that changing this value automatically changes the BYT_NR value accordingly.</td>
</tr>
<tr>
<td>ENCDg ASCII</td>
<td>This value specifies the encoding of the waveform data. To change this value (the other possibility is BINARY), use the WFMOutpre:ENCdg command. (This value can also be set using the DATA:ENCdg command, which provides the ability to set the WFMOutpre:ENCdg, WFMOutpre:BN_FMT, and WFMOutpre:BYT_OR values using a single command.)</td>
</tr>
<tr>
<td>BN_FMT RI</td>
<td>This value specifies the binary format, which in this case is RI (signed integer). To change this value (the other possibility is RP or positive integer), use the WFMOutpre:BN_FMT command. Note: this field is not applicable for ASCII encoding.</td>
</tr>
<tr>
<td>BYT_OR MSB</td>
<td>This value specifies the byte order for the BINARY encoding, which in this case is MSB (most significant byte first, also known as IBM format). To change this value to LSB, use the WFMOutpre:BYT_OR command. Note: this field is not applicable for ASCII encoding.</td>
</tr>
</tbody>
</table>
### WFMOUtput? Query results

<table>
<thead>
<tr>
<th>Query</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>WFID</strong> &quot;Digital, unknown coupling, 100.0us/div, 10000 points, Digital mode&quot;</td>
<td>This quoted string represents information about the source waveform that would be returned by a WFMOUtput:WFId? query. It cannot be changed.</td>
</tr>
<tr>
<td><strong>NR_PT 25</strong></td>
<td>This value indicates the number of data points in the waveform record to be transferred using the CURVE? query. (If you would like to determine only this value, use the WFMOUtput:NR_PT? query.) Note: this value is typically equal to the full record length, but you also have the option to transfer only a portion of the record length by using the DATA:START and DATA:STOP commands.</td>
</tr>
<tr>
<td><strong>PT_FMT Y</strong></td>
<td>This value indicates the format of the data points in the waveform record. In this case, the value represents YT format. This is query only – the returned values can be Y for YT format or ENV for envelope format (min/max pairs). (If you would like to determine only this value, use the WFMOUtput:PT_FMT? query.)</td>
</tr>
<tr>
<td><strong>PT_ORDER LINEAR</strong></td>
<td>This value is always LINEar.</td>
</tr>
<tr>
<td><strong>XUNIT “s”</strong></td>
<td>This value indicates the units of the x-axis of the waveform record. This is determined by the horizontal settings for the waveform source. Typically, this value is &quot;s&quot;, representing seconds. When using the math waveform as a source, the value can be &quot;s&quot; or &quot;Hz&quot;. This is query only. (If you would like to determine only this value, use the WFMOUtput:XUNIT? query.)</td>
</tr>
<tr>
<td><strong>XINCR 100.0000E-9</strong></td>
<td>This value indicates the time, in seconds, or frequency, in hertz, between data points in the waveform record. This is query only. (If you would like to determine only this value, use the WFMOUtput:XINCR? query.)</td>
</tr>
<tr>
<td><strong>XZERO -500.0000E-6</strong></td>
<td>This value indicates the time, in seconds, or frequency, in hertz, of the first data point in the waveform record. This time or frequency is relative to the time of the trigger, which is always 0. So, this XZERO time or frequency can be negative. This is query only. (If you would like to determine only this value, use the WFMOUtput:XZERO? query.)</td>
</tr>
<tr>
<td><strong>PT_OFF 0</strong></td>
<td>This is a query provided only for compatibility with other Tektronix oscilloscopes. The returned value is always 0. (If you would like to determine only this value, use the WFMOUtput:PT_OFF? query.)</td>
</tr>
<tr>
<td><strong>YUNIT “State”</strong></td>
<td>This value indicates the vertical units of data points in the waveform record. This can be any of several string values, depending upon the vertical units of the source waveform – in this case, State. This is query only. (If you would like to determine only this value, use the WFMOUtput:YUNIT? query.)</td>
</tr>
<tr>
<td><strong>YMULT 1.0000</strong></td>
<td>This value indicates the multiplying factor to convert the data point values from digitizing levels to the units specified by the WFMOUtput:YUNIT command. This is query only. (If you would like to determine only this value, use the WFMOUtput:YMULT? query.)</td>
</tr>
<tr>
<td><strong>YOFF 0.0E+0</strong></td>
<td>This value indicates the vertical position of the source waveform in digitizing levels. There are 25 digitizing levels per vertical division. This is query only. (If you would like to determine only this value, use the WFMOUtput:YOFF? query.)</td>
</tr>
<tr>
<td><strong>YZERO 0.0E+0</strong></td>
<td>This value indicates the vertical offset of the source waveform in units specified by the WFMOUtput:YUNIT command. This is query only. (If you would like to determine only this value, use the WFMOUtput:YZERO? query.)</td>
</tr>
</tbody>
</table>
Example 5: The Digital Collection with 4 Bytes Per Point and MagniVu On

Goal: Transfer 25 points of Digital Collection data from the oscilloscope to a PC using 4 bytes per point and MagniVu on.

<table>
<thead>
<tr>
<th>Command</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>:DATa:SOUrce DIGital</td>
<td></td>
</tr>
<tr>
<td>:ACQuire:MAGnivu 1</td>
<td></td>
</tr>
<tr>
<td>:DATa:START 1</td>
<td></td>
</tr>
<tr>
<td>:DATa:STOP 25</td>
<td></td>
</tr>
<tr>
<td>:WFMOutpre:ENCdg ASCII</td>
<td></td>
</tr>
<tr>
<td>:WFMOutpre:BYT_Nr 4</td>
<td></td>
</tr>
<tr>
<td>:HEADer 1</td>
<td></td>
</tr>
<tr>
<td>:VERBose 1</td>
<td></td>
</tr>
<tr>
<td>:WFMOutpre?</td>
<td>Returns the following values. Each value represents the current settings that a CURve? query will use to format the data that will be transferred from the oscilloscope to a PC or other device (see next table for explanations):</td>
</tr>
<tr>
<td></td>
<td>:WFMOUTPRE:BYT_NR 4;BIT_NR 32;ENCDG ASCII;BN_FMT RI;BYT_OR MSB;WFID &quot;Digital, unknown coupling, 100.0us/div, 10000 points, Digital mode&quot;;NR_PT 25;PT_FMT Y;PT_ORDER LINEAR;XUNIT &quot;s&quot;;XINCR 1.2121E-9;XZERO -6.0606E-6;PT_OFF 0;YUNIT &quot;State&quot;;YMULT 1.0000;YOFF 0.0E+0;YZERO 0.0E+0</td>
</tr>
<tr>
<td>:CURve?</td>
<td>Returns the following values. Each value represents a data point:</td>
</tr>
<tr>
<td></td>
<td>:CURve</td>
</tr>
<tr>
<td></td>
<td>FB6E6,FB666,FB6E6,FB666,FB666,FB6E6,FB666,FB666,FB666,FB666,FB6E6,FB666,FB666,FB6E6,FB666,FB666,FB6E6,FB666,FB666,FB6E6,FB666,FB666,FB6E6,FB666,FB6E6,FB666,FB6E6,FB666</td>
</tr>
</tbody>
</table>

**NOTE.** The returned hexadecimal data values for the Digital Collection are formatted without leading zeroes.

**NOTE.** You can also use the WAVFrm? query, which concatenates the WFMOutpre? and CURve? queries.

<table>
<thead>
<tr>
<th>WFMOutpre? Query results</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>WFMOUTPRE:BYT_NR 4</td>
<td>This value specifies the number of bytes per data point in the waveform data. To change this value automatically, use the WFMOutpre:BYT_Nr command. Note that changing this value automatically changes the BIT_NR value accordingly. (This value can also be set using the Data:Width command.)</td>
</tr>
<tr>
<td>BIT_NR 32</td>
<td>This value specifies the number of bits per data point in the waveform data. To change this value, use the WFMOutpre:BIT_Nr command. Note that changing this value automatically changes the BYT_NR value accordingly.</td>
</tr>
</tbody>
</table>
### Appendix D: Waveform Transfer (WFMOutpre and CURVe Query) Examples

<table>
<thead>
<tr>
<th><strong>WFMOutpre? Query results</strong></th>
<th><strong>Explanation</strong></th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>ENCdg ASCII</strong></td>
<td>This value specifies the encoding of the waveform data. To change this value (the other possibility is BINARY), use the <code>WFMOutpre:ENCdg</code> command. (This value can also be set using the <code>DATA:ENCdg</code> command, which provides the ability to set the <code>WFMOutpre:ENCdg</code>, <code>WFMOutpre:BN_FMT</code>, and <code>WFMOutpre:BYT_Or</code> values using a single command.)</td>
</tr>
<tr>
<td><strong>BN_FMT RI</strong></td>
<td>This value specifies the binary format, which in this case is RI (signed integer). To change this value (the other possibility is RP or positive integer), use the <code>WFMOutpre:BN_FMT</code> command. Note: this field is not applicable for ASCII encoding.</td>
</tr>
<tr>
<td><strong>BYT_Or MSB</strong></td>
<td>This value specifies the byte order for the BINARY encoding, which in this case is MSB (most significant byte first, also known as IBM format). To change this value to LSB, use the <code>WFMOutpre:BYT_Or</code> command. Note: this field is not applicable for ASCII encoding.</td>
</tr>
<tr>
<td><strong>WFID &quot;Digital, unknown coupling, 100.0us/div, 10000 points, Digital mode&quot;</strong></td>
<td>This quoted string represents information about the source waveform that would be returned by a <code>WFMOutpre:WFId?</code> query. It cannot be changed.</td>
</tr>
<tr>
<td><strong>NR_PT 25</strong></td>
<td>This value indicates the number of data points in the waveform record to be transferred using the CURVE? query. (If you would like to determine only this value, use the <code>WFMOutpre:NR_PT</code> query.) Note: this value is typically equal to the full record length, but you also have the option to transfer only a portion of the record length by using the <code>DATA:START</code> and <code>DATA:STOP</code> commands.</td>
</tr>
<tr>
<td><strong>PT_FMT Y</strong></td>
<td>This value indicates the format of the data points in the waveform record. In this case, the value represents YT format. This is query only – the returned values can be Y for YT format or ENV for envelope format (min/max pairs). (If you would like to determine only this value, use the <code>WFMOutpre:PT_FMT</code> query.)</td>
</tr>
<tr>
<td><strong>PT_ORDER LINEAR</strong></td>
<td>This value is always LINEar.</td>
</tr>
<tr>
<td><strong>XUNIT “s”</strong></td>
<td>This value indicates the units of the x-axis of the waveform record. This is determined by the horizontal settings for the waveform source. Typically, this value is “s”, representing seconds. When using the math waveform as a source, the value can be “s” or “Hz”. This is query only. (If you would like to determine only this value, use the <code>WFMOutpre:XUNiT</code> query.)</td>
</tr>
<tr>
<td><strong>XINCR 1.2121E-9</strong></td>
<td>This value indicates the time, in seconds, or frequency, in hertz, between data points in the waveform record. This is query only. (If you would like to determine only this value, use the <code>WFMOutpre:XINCR</code> query.)</td>
</tr>
<tr>
<td><strong>XZERO -6.0606E-6</strong></td>
<td>This value indicates the time, in seconds, or frequency, in hertz, of the first data point in the waveform record. This time or frequency is relative to the time of the trigger, which is always 0. So, this XZERO time or frequency can be negative. This is query only. (If you would like to determine only this value, use the <code>WFMOutpre:XZEro</code> query.)</td>
</tr>
<tr>
<td><strong>PT_OFF 0</strong></td>
<td>This is a query provided only for compatibility with performance oscilloscopes. The returned value is always 0. (If you would like to determine only this value, use the <code>WFMOutpre:PT_OFF</code> query.)</td>
</tr>
<tr>
<td><strong>YUNIT “State”</strong></td>
<td>This value indicates the vertical units of data points in the waveform record. This can be any of several string values, depending upon the vertical units of the source waveform – in this case, State. This is query only. (If you would like to determine only this value, use the <code>WFMOutpre:YUNiT</code> query.)</td>
</tr>
<tr>
<td><strong>YMULT 1.0000</strong></td>
<td>This value indicates the multiplying factor to convert the data point values from digitizing levels to the units specified by the <code>WFMOutpre:YUNiT</code> command. This is query only. (If you would like to determine only this value, use the <code>WFMOutpre:YMULT</code> query.)</td>
</tr>
</tbody>
</table>
Appendix D: Waveform Transfer (WFMOutpre and CURVe Query) Examples

<table>
<thead>
<tr>
<th>WFMOutpre? Query results</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>YOFF 0.0E+0</td>
<td>This value indicates the vertical position of the source waveform in digitizing levels. There are 25 digitizing levels per vertical division. This is query only. (If you would like to determine only this value, use the WFMOutpre:YOFf? query.)</td>
</tr>
<tr>
<td>YZERO 0.0E+0</td>
<td>This value indicates the vertical offset of the source waveform in units specified by the WFMOutpre:YUNit command. This is query only. (If you would like to determine only this value, use the WFMOutpre:YZero? query.)</td>
</tr>
</tbody>
</table>

Example 6: The Digital Collection with 8 Bytes Per Point and MagniVu On

Goal: Transfer 25 points of Digital Collection data from the oscilloscope to a PC using 8 bytes per point and MagniVu on.

<table>
<thead>
<tr>
<th>Command</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>:DATa:SOURce DIGital</td>
<td></td>
</tr>
<tr>
<td>:ACQuire:MAGnivu 1</td>
<td></td>
</tr>
<tr>
<td>:DATa:START 1</td>
<td></td>
</tr>
<tr>
<td>:DATa:STOP 25</td>
<td></td>
</tr>
<tr>
<td>:WFMOutpre:ENCdg ASCII</td>
<td></td>
</tr>
<tr>
<td>:WFMOutpre:BYT_Nr 8</td>
<td></td>
</tr>
<tr>
<td>:HEADer 1</td>
<td>Returns the following values. Each value represents the current settings that a CURVe? query will use to format the data that will be transferred from the oscilloscope to a PC or other device (see next table for explanations):</td>
</tr>
<tr>
<td>:WFMOutpre:BYT_OR MSB</td>
<td>:WFMOUTPRE:BYT_NR 8;BIT_NR 64;ENCDG ASCII;BN_FMT RI;BYT_OR MSB;WFID &quot;Digital, unknown coupling, 100.0us/div, 10000 points, Digital mode&quot;;NR_PT 25;PT_FMT Y;PT_ORDER LINEAR;XUNIT &quot;s&quot;;XINCR 1.2121E-9;XZERO -6.0606E-6;PT_OFF 0;YUNIT &quot;State&quot;;YMULT 1.0000;YOFF 0.0E+0;YZERO 0.0E+0</td>
</tr>
<tr>
<td>:VERBose 1</td>
<td></td>
</tr>
<tr>
<td>:CURVe?</td>
<td>Returns the following values. Each value represents a data point:</td>
</tr>
<tr>
<td></td>
<td>:CURve 80000FB787,80000FB787,E8000FB787,8C000FB7E7,8C000FB7E7,84000FB7EF,CC000FB7A7,8C000FB7A7,8C000FB7A7,84000FB7A7,84000FB7A7,80000FB7A7,80000FB7A7,80000FB7A7,80000FB7A7,80000FB7A7,84000FB7EF,CC000FB7A7,8C000FB7A7,8C000FB7A7,84000FB7A7,84000FB7A7,80000FB7A7,80000FB7A7,80000FB7A7,80000FB7A7,8C000FB7A7,8C000FB7A7,8C000FB7A7</td>
</tr>
</tbody>
</table>

Note. The returned hexadecimal data values for the Digital Collection are formatted without leading zeroes.
**Appendix D: Waveform Transfer (WFMOutpre and CURVe Query) Examples**

NOTE. You can also use the WAVFrm? query, which concatenates the WFMOutpre? and CURVe? queries.

<table>
<thead>
<tr>
<th>WFMOutpre? Query results</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>WFMOUTPRE:BYT_NR 8</td>
<td>This value specifies the number of bytes per data point in the waveform data. To change this value automatically, use the WFMOutpre:BYT_Nr command. Note that changing this value automatically changes the BIT_NR value accordingly. (This value can also be set using the DATa:Width command.)</td>
</tr>
<tr>
<td>BIT_NR 64</td>
<td>This value specifies the number of bits per data point in the waveform data. To change this value, use the WFMOutpre:BIT_Nr command. Note that changing this value automatically changes the BYT_NR value accordingly.</td>
</tr>
<tr>
<td>ENCDG ASCII</td>
<td>This value specifies the encoding of the waveform data. To change this value (the other possibility is BINARY), use the WFMOutpre:ENCdg command. (This value can also be set using the DATa:ENCdg command, which provides the ability to set the WFMOutpre:ENCdg, WFMOutpre:BN_Fmt, and WFMOutpre:BYT_Or values using a single command.)</td>
</tr>
<tr>
<td>BN_FMT RI</td>
<td>This value specifies the binary format, which in this case is RI (signed integer). To change this value (the other possibility is RP or positive integer), use the WFMOutpre:BN_FMT command. Note: this field is not applicable for ASCII encoding.</td>
</tr>
<tr>
<td>BYT_OR MSB</td>
<td>This value specifies the byte order for the BINARY encoding, which in this case is MSB (most significant byte first, also known as IBM format). To change this value to LSB, use the WFMOutpre:BYT_Or command. Note: this field is not applicable for ASCII encoding.</td>
</tr>
<tr>
<td>WFID &quot;Digital, unknown coupling, 100.0us/div, 10000 points, Digital mode&quot;</td>
<td>This quoted string represents information about the source waveform that would be returned by a. WFMOutpre:WFId? query. It cannot be changed.</td>
</tr>
<tr>
<td>NR_PT 25</td>
<td>This value indicates the number of data points in the waveform record. (If you would like to determine only this value, use the WFMOutpre:NR_Pt? query.) Note: this value is typically equal to the full record length, but you also have the option to transfer only a portion of the record length by using the DATa:STARt and DATa:STOP commands.</td>
</tr>
<tr>
<td>PT_FMT Y</td>
<td>This value indicates the format of the data points in the waveform record. In this case, the value represents YT format. This is query only – the returned values can be Y for YT format or ENV for envelope format (min/max pairs). (If you would like to determine only this value, use the WFMOutpre:PT_FMT? query.)</td>
</tr>
<tr>
<td>PT_ORDER LINEAR</td>
<td>This value is always LINEAR.</td>
</tr>
<tr>
<td>XUNIT “s”</td>
<td>This value indicates the units of the x-axis of the waveform record. This is determined by the horizontal settings for the waveform source. Typically, this value is “s”, representing seconds. When using the math waveform as a source, the value can be “s” or “Hz”. This is query only. (If you would like to determine only this value, use the WFMOutpre:XUNIT? query.)</td>
</tr>
<tr>
<td>XINCREMENT 1.2121E-9</td>
<td>This value indicates the time, in seconds, or frequency, in hertz, between data points in the waveform record. This is query only. (If you would like to determine only this value, use the WFMOutpre:XINCREMENT? query.)</td>
</tr>
<tr>
<td>XZERO -6.0606E-6</td>
<td>This value indicates the time, in seconds, or frequency, in hertz, of the first data point in the waveform record. This time or frequency is relative to the time of the trigger, which is always 0. So, this XZERO time or frequency can be negative. This is query only. (If you would like to determine only this value, use the WFMOutpre:XZERO? query.)</td>
</tr>
</tbody>
</table>
### WFMOutpre? Query results

<table>
<thead>
<tr>
<th>Query</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>PT_OFF 0</strong></td>
<td>This is a query provided only for compatibility with other Tektronix oscilloscopes. The returned value is always 0. (If you would like to determine only this value, use the WFMOutpre:PT_Off? query.)</td>
</tr>
<tr>
<td><strong>YUNIT “State”</strong></td>
<td>This value indicates the vertical units of data points in the waveform record. This can be any of several string values, depending upon the vertical units of the source waveform – in this case, State. This is query only. (If you would like to determine only this value, use the WFMOutpre:YUNit? query.)</td>
</tr>
<tr>
<td><strong>YMULT 1.0000</strong></td>
<td>This value indicates the multiplying factor to convert the data point values from digitizing levels to the units specified by the WFMOutpre:YUNit command. This is query only. (If you would like to determine only this value, use the WFMOutpre:YMUlt? query.)</td>
</tr>
<tr>
<td><strong>YOFF 0.0E+0</strong></td>
<td>This value indicates the vertical position of the source waveform in digitizing levels. There are 25 digitizing levels per vertical division. This is query only. (If you would like to determine only this value, use the WFMOutpre:YOFF? query.)</td>
</tr>
<tr>
<td><strong>YZERO 0.0E+0</strong></td>
<td>This value indicates the vertical offset of the source waveform in units specified by the WFMOutpre:YUNit command. This is query only. (If you would like to determine only this value, use the WFMOutpre:YZero? query.)</td>
</tr>
</tbody>
</table>
Appendix E: Search and Trigger Command Sequence Examples

The following are some example command sequences that show a variety of different searches and triggers. The commands in these sequences are not order-dependent.

To use these examples, connect channel 1, channel 2, channel 3 and channel 4 to the probe compensation signal located on the right hand side of the front panel.

The search and trigger command group sections contain more information on general search and trigger concepts. (See page 2-45, Search Command Group.) (See page 2-57, Trigger Command Group.)

Example 1: Single Threshold Edge Search

Goal: Search the channel 2 waveform and place a mark at each instance where it crosses below a threshold of 1.4 volts.

<table>
<thead>
<tr>
<th>Command</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>*RST</td>
<td>Resets the oscilloscope. Wait for the reset to complete (approximately 3 seconds).</td>
</tr>
<tr>
<td>:SElect:CH2 1</td>
<td>Turns the CH2 waveform on.</td>
</tr>
<tr>
<td>:AUTOSet EXECute</td>
<td>Autosets the displayed waveform CH2. Wait for the autoset to complete (approximately 3 seconds).</td>
</tr>
<tr>
<td>:SEARCH:SEARCH1:TRIGger:A:TYPe EDGE</td>
<td>Specifies that this will be an edge search (a mark will be placed when the source waveform passes through a specified threshold level in the specified direction).</td>
</tr>
<tr>
<td>:SEARCH:SEARCH1:TRIGger:A:EDGE:SOUrce CH2</td>
<td>Specifies the CH2 waveform as the source waveform.</td>
</tr>
<tr>
<td>:SEARCH:SEARCH1:TRIGger:A:LOWerthreshold:CH2 1.4</td>
<td>Specifies 1.4 volts as the threshold level.</td>
</tr>
<tr>
<td>:SEARCH:SEARCH1:TRIGger:A:EDGE:SLOpe FALL</td>
<td>Specifies the falling edge as the direction.</td>
</tr>
<tr>
<td>:SEARCH:SEARCH1:STATE 1</td>
<td>Turns the search on.</td>
</tr>
<tr>
<td>:SEARCH:SEARCH1:TOTal?</td>
<td>Returns 4, indicating that CH2 fell below the 1.4 volt threshold 4 times.</td>
</tr>
<tr>
<td>:SEARCH:SEARCH1:LIST?</td>
<td>Returns a list of the 4 marks: CH2,11.2411,11.2411,11.2411,-1.5504E-3, 0.0E+0,0.0E+0,0.0E+0;CH2,37.0737,37.0737,37.0737,-517.0517E-6;CH2,62.9163,62.9163,62.9163,516.6517E-6;CH2,88.7489,88.7489,88.7489,1.5500E-3</td>
</tr>
</tbody>
</table>
Example 2: Single Threshold Edge Trigger

Goal: Trigger on the channel 2 waveform when the waveform crosses below a threshold of 1.4 volts.

<table>
<thead>
<tr>
<th>Command</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>*RST</td>
<td>Resets the oscilloscope. Wait for the reset to complete (approximately 3 seconds).</td>
</tr>
<tr>
<td>:SELect:CH2 1</td>
<td>Turns the CH2 waveform on.</td>
</tr>
<tr>
<td>:TRIGger:A:TYPe EDGE</td>
<td>Specifies that this will be an edge trigger (trigger will occur when the source waveform passes through a specified threshold level in the specified direction).</td>
</tr>
<tr>
<td>:TRIGger:A:EDGE:SOUrce CH2</td>
<td>Specifies the CH2 waveform as the source waveform.</td>
</tr>
<tr>
<td>:TRIGger:A:LOWerthreshold:CH2 1.4</td>
<td>Specifies 1.4 volts as the threshold level.</td>
</tr>
<tr>
<td>:TRIGger:A:EDGE:SLOpe FALL</td>
<td>Specifies as falling edge as the direction.</td>
</tr>
<tr>
<td>:TRIGger:STATE?</td>
<td>Should return TRIGGER, not AUTO.</td>
</tr>
</tbody>
</table>

Example 3: Dual Threshold Runt Search

Goal: Search the channel 3 waveform for negative runt pulses and place a mark at each instance when the waveform drops below an upper threshold of 1.4 volts, but does not cross a lower threshold of -2 volts before re-crossing the upper threshold. The pulse width must be less than 600 microseconds.

<table>
<thead>
<tr>
<th>Command</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>*RST</td>
<td>Resets the oscilloscope. Wait for the reset to complete (approximately 3 seconds).</td>
</tr>
<tr>
<td>:SELect:CH3 1</td>
<td>Turns the CH3 waveform on.</td>
</tr>
<tr>
<td>:AUTOSet EXECute</td>
<td>Autosets the displayed waveform CH3. Wait for the autoset to complete (approximately 3 seconds).</td>
</tr>
<tr>
<td>:SEARCH:SEARCH1:TRIGger:A:TYPe RUNT</td>
<td>Specifies that this will be a runt search (a mark will be placed on a pulse amplitude that crosses one threshold but fails to cross a second threshold before re-crossing the first).</td>
</tr>
<tr>
<td>:SEARCH:SEARCH1:TRIGger:A:EDGE:SOUrce CH3</td>
<td>Specifies to use channel 3 as the source waveform.</td>
</tr>
<tr>
<td>:SEARCH:SEARCH1:TRIGger:A:LOWerthreshold:CH3 -2</td>
<td>Specifies to use -2 volts as the lower threshold.</td>
</tr>
<tr>
<td>:SEARCH:SEARCH1:TRIGger:A:UPPerthreshold: CH3 1.4</td>
<td>Specifies to use 1.4 volts as the upper threshold.</td>
</tr>
<tr>
<td>:SEARCH:SEARCH1:TRIGger:A:RUNT:POLarity NEGative</td>
<td>Specifies to search for when the runt polarity is negative.</td>
</tr>
<tr>
<td>:SEARCH:SEARCH1:TRIGger:A:RUNT:WHen LESSthan</td>
<td>Specifies to search for when the pulse width is less than 600E-6 seconds.</td>
</tr>
<tr>
<td>:SEARCH:SEARCH1:STATE 1</td>
<td>Turns the search on.</td>
</tr>
</tbody>
</table>
### Appendix E: Search and Trigger Command Sequence Examples

#### :SEARCH:SEARCH1:TOTal? Command

Returns 3, indicating that 3 total negative runt pulses were less than 600E-6 seconds wide.

#### :SEARCH:SEARCH1:LIST? Command

Returns a list of 3 marks:

```
CH3,11.2311,24.1624,24.1624,1.0335E3,0.0E+0,0.0E+0,0.0E+0;
CH3,37.0837,50.0150,50.0150,600.0600E9,0.0E+0,0.0E+0,0.0E+0;
CH3,62.9263,75.8576,75.8576,1.0343E-3,0.0E+0,0.0E+0,0.0E+0
```

**NOTE.** You could use a similar command sequence with a transition type search.

### Example 4: Single Threshold Logic Search on Three Waveforms

**Goal:** Search the channel 1, 2 and 3 waveforms and place a mark at each instance when either channel 1 is above 1.4 volts, channel 2 is above 1.5 volts, or channel 3 is above 1.3 volts.

<table>
<thead>
<tr>
<th>Command</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>:RST</td>
<td>Resets the oscilloscope. Wait for the reset to complete (approximately 3 seconds).</td>
</tr>
<tr>
<td>:SELe:CH1 1</td>
<td>Turns the CH1 waveform on.</td>
</tr>
<tr>
<td>:SELe:CH2 1</td>
<td>Turns the CH2 waveform on.</td>
</tr>
<tr>
<td>:SELe:CH3 1</td>
<td>Turns the CH3 waveform on.</td>
</tr>
<tr>
<td>:AUTOSet EXECute</td>
<td>Autosets the displayed waveforms CH1, CH2 and CH3. Wait for the autoset to complete (approximately 3 seconds).</td>
</tr>
<tr>
<td>:SEARCH:SEARCH1:TRIGger:A:TYPe LOGIc</td>
<td>Specifies that this will be a logic search (a mark will be placed when all channels transition to the specified state).</td>
</tr>
<tr>
<td>:SEARCH:SEARCH1:TRIGger:A:LOGIc:INPut:CH1 HIGH</td>
<td>Specifies the Boolean logic criteria for channel 1; in this case, high.</td>
</tr>
<tr>
<td>:SEARCH:SEARCH1:TRIGger:A:LOGIc:INPut:CH2 HIGH</td>
<td>Specifies the Boolean logic criteria for channel 2; in this case, high.</td>
</tr>
<tr>
<td>:SEARCH:SEARCH1:TRIGger:A:LOGIc:INPut:CH3 HIGH</td>
<td>Specifies the Boolean logic criteria for channel 3; in this case, high.</td>
</tr>
<tr>
<td>:SEARCH:SEARCH1:TRIGger:A:LOGIc:THReshold:CH1 1.4</td>
<td>Specifies to use 1.4 volts as the threshold for CH1.</td>
</tr>
<tr>
<td>:SEARCH:SEARCH1:TRIGger:A:LOGIc:THReshold:CH2 1.5</td>
<td>Specifies to use 1.5 volts as the threshold for CH2.</td>
</tr>
<tr>
<td>:SEARCH:SEARCH1:TRIGger:A:LOGIc:THReshold:CH3 1.3</td>
<td>Specifies to use 1.3 volts as the threshold for CH3.</td>
</tr>
<tr>
<td>:SEARCH:SEARCH1:TRIGger:A:LOGIc:PATtem:WHen TRUE</td>
<td>Specifies the condition for generating a logic pattern search; in this case, true.</td>
</tr>
<tr>
<td>:SEARCH:SEARCH1:TRIGger:A:LOGIc:FUNCtion OR</td>
<td>Specifies the logic operator for the logic search; in this case, OR.</td>
</tr>
<tr>
<td>:SEARCH:SEARCH1:STATE 1</td>
<td>Turns the search on.</td>
</tr>
</tbody>
</table>
## Appendix E: Search and Trigger Command Sequence Examples

<table>
<thead>
<tr>
<th>Command</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>:SEARCH:SEARCH1:TOTal?</td>
<td>Returns 3 or 4, indicating 3 or 4 times when one of channels 1, 2 or 3 became high.</td>
</tr>
<tr>
<td></td>
<td>Note: Depending upon the number of transitions displayed, you may get 3 or 4 search marks for this example. If you get 3 search marks, try adjusting the horizontal position until you see 4 search marks.</td>
</tr>
</tbody>
</table>

| :SEARCH:SEARCH1:LIST? | Returns a list of 3 marks on 3 waveforms:                                                                                               |
|                       | CH1, 24.1600, 24.1600, 24.1600, 1.0336E3, 0.0E+0, 0.0E+0, 0.0E+0, 0.0E+0; CH2, 24.1600, 24.1600, 24.1600, 1.0336E3, 0.0E+0, 0.0E+0, 0.0E+0, 0.0E+0; CH3, 24.1600, 24.1600, 24.1600, 1.0336E3, 0.0E+0, 0.0E+0, 0.0E+0, 0.0E+0; etc... |
Index

Symbols and Numbers
, 2-87

A
ACQuire: MAGnivu, 2-93
ACQuire: MAXSamplerate?, 2-94
ACQuire: MODe, 2-94
ACQuire: NUMACq?, 2-95
ACQuire: NUMAv, 2-95
ACQuire: NUMEnv, 2-96
ACQuire: STATE, 2-97
ACQuire: STOPAfter, 2-97
ACQuire?, 2-93
Acquisition Command Group, 2-11
Alias Command Group, 2-12
ALLas, 2-98
ALLas: CATalog?, 2-99
ALLas: DEFine, 2-99
ALLas: DELEte, 2-100
ALLas: DELEte: ALL, 2-100
ALLas: DELEte[: NAME], 2-101
ALLas[: STATE], 2-101
ALLEv?, 2-101
APPLication: LICENSE: SLOT<x>: LOCATION?, 2-102
APPLication: LICENSE: SLOT<x>: TRANSFER, 2-103
APPLication: LICENSE: SLOT<x>: TYPE?, 2-104
AUTOSet, 2-104
AUTOSet: ENAble, 2-105
AUXin: PRObe, 2-105
AUXin: PRObe: AUTOZero, 2-106
AUXin: PRObe: COMMAND, 2-106
AUXin: PRObe: DEGAUss, 2-107
AUXin: PRObe: DEGAUss: STATE?, 2-107
AUXin: PRObe: FORCEDRange, 2-108
AUXin: PRObe: GAIN, 2-108
AUXin: PRObe: ID: SERnumber?, 2-108
AUXin: PRObe: ID: TYPE?, 2-108
AUXin: PRObe: RESistance?, 2-109
AUXin: PRObe: SIGnal, 2-109
AUXin: PRObe: UNIts?, 2-109
AUXin?, 2-105

B
BUS, 2-110
BUS:B<x>: AUDio: BITDelay, 2-110
BUS:B<x>: AUDio: BITOrder, 2-111
BUS:B<x>: AUDio: CHANnel: SIZE, 2-111
BUS:B<x>: AUDio: CLOCK: POLarity, 2-112
BUS:B<x>: AUDio: CLOCK: SOURCE, 2-112
BUS:B<x>: AUDio: DATA: POLarity, 2-113
BUS:B<x>: AUDio: DATA: SIZE, 2-113
BUS:B<x>: AUDio: DATA: SOURCE, 2-114
BUS:B<x>: AUDio: DISplay: FORMAT, 2-114
BUS:B<x>: AUDio: FRAME: SIZE, 2-115
BUS:B<x>: AUDio: FRAME: Sync: POLarity, 2-115
BUS:B<x>: AUDio: FRAME: Sync: SOURCE, 2-116
BUS:B<x>: AUDio: TYPE, 2-117
BUS:B<x>: AUDio: WORD: SELECT: POLarity, 2-117
BUS:B<x>: AUDio: WORD: SELECT: SOURCE, 2-118
BUS:B<x>: CAN: BITRate, 2-118
BUS:B<x>: CAN: PRObe, 2-119
BUS:B<x>: CAN: SAMPLE: Point, 2-120
BUS:B<x>: CAN: SOURCE, 2-120
BUS:B<x>: DISplay: FORMAT, 2-121
BUS:B<x>: DISplay: TYPE, 2-122
BUS:B<x>: FLEXray: BITRate, 2-122
BUS:B<x>: FLEXray: CHANNEL, 2-122
BUS:B<x>: FLEXray: SIGNAL, 2-123
BUS:B<x>: FLEXray: SOURCE, 2-124
BUS:B<x>: I2C: ADDRess: RW: INCLUDE, 2-124
BUS:B<x>: I2C: [ CLO CK]/ SCLK : SOURCE, 2-125
BUS:B<x>: I2C: [ DATA]/ SDATA : SOURCE, 2-125
BUS:B<x>: LABel, 2-126
BUS:B<x>: LIN: BITRate, 2-126
BUS:B<x>: LIN: ID: FORMAT, 2-126
BUS:B<x>: LIN: POLARity, 2-127
BUS:B<x>: LIN: SAMPLE: Point, 2-127
BUS:B<x>: LIN: SOURCE, 2-128
BUS:B<x>: LIN: STANDARD, 2-128
BUS:B<x>: MIL1553B: POLarity, 2-129
BUS:B<x>: MIL1553B: RESPONSE: MAXimum, 2-129
BUS:B<x>: MIL1553B: RESPONSE: MINimum, 2-130
BUS:B<x>: MIL1553B: SOURCE, 2-131
BUS:B<x>: PARallel: BIT<x>: SOURCE, 2-131
<table>
<thead>
<tr>
<th>Index</th>
</tr>
</thead>
<tbody>
<tr>
<td>BUS:B&lt;x&gt;:PARallel:CLOCK:EDGE, 2-132</td>
</tr>
<tr>
<td>BUS:B&lt;x&gt;:PARallel:CLOCK:ISCLKed, 2-132</td>
</tr>
<tr>
<td>BUS:B&lt;x&gt;:PARallel:CLOCK:SOURCE, 2-132</td>
</tr>
<tr>
<td>BUS:B&lt;x&gt;:PARallel:WIDTH, 2-133</td>
</tr>
<tr>
<td>BUS:B&lt;x&gt;:POSITION, 2-133</td>
</tr>
<tr>
<td>BUS:B&lt;x&gt;:RS232C:S SOURCE, 2-133</td>
</tr>
<tr>
<td>BUS:B&lt;x&gt;:RS232C:BIT Rate, 2-133</td>
</tr>
<tr>
<td>BUS:B&lt;x&gt;:RS232C:DATA Bits, 2-134</td>
</tr>
<tr>
<td>BUS:B&lt;x&gt;:RS232C:DELIMITER, 2-134</td>
</tr>
<tr>
<td>BUS:B&lt;x&gt;:RS232C:DISPLAY MODE, 2-135</td>
</tr>
<tr>
<td>BUS:B&lt;x&gt;:RS232C:PARITY, 2-135</td>
</tr>
<tr>
<td>BUS:B&lt;x&gt;:RS232C:POLARITY, 2-136</td>
</tr>
<tr>
<td>BUS:B&lt;x&gt;:RS232C:RX SOURCE, 2-136</td>
</tr>
<tr>
<td>BUS:B&lt;x&gt;:RS232C:TX SOURCE, 2-136</td>
</tr>
<tr>
<td>BUS:B&lt;x&gt;:SPI:DATA {IN</td>
</tr>
<tr>
<td>BUS:B&lt;x&gt;:SPI:DATA {IN</td>
</tr>
<tr>
<td>BUS:B&lt;x&gt;:SPI:DATA {OUT</td>
</tr>
<tr>
<td>BUS:B&lt;x&gt;:SPI:DATA {OUT</td>
</tr>
<tr>
<td>BUS:B&lt;x&gt;:SPI:CLOCK:POLARITY, 2-137</td>
</tr>
<tr>
<td>BUS:B&lt;x&gt;:SPI:CLOCK:SOURCE, 2-137</td>
</tr>
<tr>
<td>BUS:B&lt;x&gt;:SPI:SELECT:SS:POLARITY, 2-140</td>
</tr>
<tr>
<td>BUS:B&lt;x&gt;:SPI:SELECT:SS:SOURCE, 2-140</td>
</tr>
<tr>
<td>BUS:B&lt;x&gt;:STATE, 2-140</td>
</tr>
<tr>
<td>BUS:B&lt;x&gt;:TYPE, 2-141</td>
</tr>
<tr>
<td>BUS:B&lt;x&gt;:SPI:FRAMING, 2-139</td>
</tr>
<tr>
<td>BUS:LOWER THRESHOLD:CH&lt;x&gt;, 2-142</td>
</tr>
<tr>
<td>BUS:THRESHOLD:D&lt;x&gt;, 2-142</td>
</tr>
<tr>
<td>BUS:UPPER THRESHOLD:CH&lt;x&gt;, 2-143</td>
</tr>
<tr>
<td>BUSY?, 2-143</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>*CAL?, 2-144</td>
</tr>
<tr>
<td>CALibrate:FACTory:STATus?, 2-144</td>
</tr>
<tr>
<td>CALibrate:INTERNal, 2-145</td>
</tr>
<tr>
<td>CALibrate:INTERNal:START, 2-145</td>
</tr>
<tr>
<td>CALibrate:INTERNal:STOP?, 2-145</td>
</tr>
<tr>
<td>CALibrate:RESULTS:FACTORY, 2-146</td>
</tr>
<tr>
<td>CALibrate:RESULTS:SPC?, 2-147</td>
</tr>
<tr>
<td>CALibrate:RESULTS?, 2-146</td>
</tr>
<tr>
<td>Calibration and Diagnostic Command Group, 2-17</td>
</tr>
<tr>
<td>CH&lt;x&gt;:AMPSVIA VOLTs:ENABLE, 2-147</td>
</tr>
<tr>
<td>CH&lt;x&gt;:AMPSVIA VOLTs:FACTORY, 2-148</td>
</tr>
<tr>
<td>CH&lt;x&gt;:BANDWIDTH, 2-148</td>
</tr>
<tr>
<td>CH&lt;x&gt;:COUPLING, 2-149</td>
</tr>
<tr>
<td>CH&lt;x&gt;:DESKew, 2-149</td>
</tr>
<tr>
<td>CH&lt;x&gt;:INVERT, 2-150</td>
</tr>
<tr>
<td>CH&lt;x&gt;:LABEL, 2-150</td>
</tr>
<tr>
<td>CH&lt;x&gt;:OFFSET, 2-151</td>
</tr>
<tr>
<td>CH&lt;x&gt;:POSITION, 2-152</td>
</tr>
<tr>
<td>CH&lt;x&gt;:PROBE:AUTOZERO, 2-153</td>
</tr>
<tr>
<td>CH&lt;x&gt;:PROBE:COMMAND, 2-153</td>
</tr>
<tr>
<td>CH&lt;x&gt;:PROBE:DEGAUSS, 2-154</td>
</tr>
<tr>
<td>CH&lt;x&gt;:PROBE:DEGAUSS:STATE?, 2-154</td>
</tr>
<tr>
<td>CH&lt;x&gt;:PROBE:FORCED RANGE, 2-154</td>
</tr>
<tr>
<td>CH&lt;x&gt;:PROBE:GAIN, 2-155</td>
</tr>
<tr>
<td>CH&lt;x&gt;:PROBE:ID:SERIAL NUMBER?, 2-156</td>
</tr>
<tr>
<td>CH&lt;x&gt;:PROBE:ID:TYPE?, 2-156</td>
</tr>
<tr>
<td>CH&lt;x&gt;:PROBE:ID?, 2-155</td>
</tr>
<tr>
<td>CH&lt;x&gt;:PROBE:MODEL, 2-157</td>
</tr>
<tr>
<td>CH&lt;x&gt;:PROBE:PROPDESK, 2-157</td>
</tr>
<tr>
<td>CH&lt;x&gt;:PROBE:RECESK?, 2-157</td>
</tr>
<tr>
<td>CH&lt;x&gt;:PROBE:RESISTANCE?, 2-158</td>
</tr>
<tr>
<td>CH&lt;x&gt;:PROBE:SIGMA?, 2-158</td>
</tr>
<tr>
<td>CH&lt;x&gt;:PROBE:UNITS?, 2-158</td>
</tr>
<tr>
<td>CH&lt;x&gt;:PROBE?, 2-153</td>
</tr>
<tr>
<td>CH&lt;x&gt;:SCALE?, 2-159</td>
</tr>
<tr>
<td>CH&lt;x&gt;:TERMINATION, 2-160</td>
</tr>
<tr>
<td>CH&lt;x&gt;:Y UNITS?, 2-160</td>
</tr>
<tr>
<td>CH&lt;x&gt;?, 2-147</td>
</tr>
<tr>
<td>CLEAR Menu, 2-161</td>
</tr>
<tr>
<td>*CLS, 2-161</td>
</tr>
<tr>
<td>Command Groups, 2-11</td>
</tr>
<tr>
<td>Configuration Command Group, 2-17</td>
</tr>
<tr>
<td>CONFIGuration:ADV MATH?, 2-162</td>
</tr>
<tr>
<td>CONFIGuration:ANALOG:GND CPLG?, 2-162</td>
</tr>
<tr>
<td>CONFIGuration:ANALOG:MAX BAND Width?, 2-163</td>
</tr>
<tr>
<td>CONFIGuration:ANALOG:MAX SAMPLE RATE?, 2-163</td>
</tr>
<tr>
<td>CONFIGuration:ANALOG:NUM CHANNELS?, 2-163</td>
</tr>
<tr>
<td>CONFIGuration:ANALOG:RECL ENS?, 2-164</td>
</tr>
<tr>
<td>CONFIGuration:ANALOG:VERT INVERT?, 2-164</td>
</tr>
<tr>
<td>CONFIGuration:APPLICATIONS:LIMIT MASK?, 2-164</td>
</tr>
<tr>
<td>CONFIGuration:APPLICATIONS:POWER?, 2-165</td>
</tr>
<tr>
<td>CONFIGuration:AUX IN?, 2-165</td>
</tr>
<tr>
<td>CONFIGuration:BUS WAV EFORMS:AUDIO?, 2-165</td>
</tr>
<tr>
<td>CONFIGuration:BUS WAV EFORMS:CAN?, 2-166</td>
</tr>
<tr>
<td>CONFIGuration:BUS WAV EFORMS:ETHER NET?, 2-166</td>
</tr>
<tr>
<td>CONFIGuration:BUS WAV EFORMS: FLEXRAY?, 2-167</td>
</tr>
<tr>
<td>CONFIGuration:BUS WAV EFORMS:I2C?, 2-167</td>
</tr>
<tr>
<td>CONFIGuration:BUS WAV EFORMS:LIN?, 2-168</td>
</tr>
</tbody>
</table>
CONFIGuration: BUSWA VEFORMS:
  MIL1553B?, 2-168
CONFIGuration: BUSWA VEFORMS:
  NUMBUS?, 2-169
CONFIGuration: BUSWA VEFORMS:
  PARALLEL?, 2-169
CONFIGuration: BUSWA VEFORMS:
  RS232?, 2-169
CONFIGuration: BUSWA VEFORMS:
  SPI?, 2-170
CONFIGuration: BUSWA VEFORMS:
  USB:
    HS?, 2-171
CONFIGuration: BUSWA VEFORMS:
  USB?, 2-170
CONFIGuration: DIGITAL:
  MAGNIVU?, 2-171
CONFIGuration: DIGITAL:
  MAXSAMPLERate?, 2-171
CONFIGuration: DIGITAL:
  NUMCHANnels?, 2-172
CONFIGuration: EXTVIDEO?, 2-172
CONFIGuration: HISTOGRAM?, 2-173
CONFIGuration: NETWORKDRIVES?, 2-173
CONFIGuration: NUMMEAS?, 2-173
CONFIGuration: REFS:
  NUMREFS?, 2-174
CONFIGuration: RF:
  ADVTRIG?, 2-174
CONFIGuration: RF:
  MAXBANDWidth?, 2-174
CONFIGuration: RF:
  NUMCHANnels?, 2-175
CONFIGuration: ROSEC?, 2-175
CURSor Command Group, 2-21
CURSor:
  DDT?, 2-176
CURSor:
  FUNCTION, 2-176
CURSor:
  HBARs??, 2-177
CURSor:
  HBARs:POSITION<x>?, 2-177
CURSor:
  HBARs:UNIts?, 2-178
CURSor:
  HBARs:USE?, 2-178
CURSor:
  HBARs?, 2-177
CURSor:
  MODE?, 2-179
CURSor:
  VBARs:ALTERNATE<x>?, 2-180
CURSor:
  VBARs:DELTA?, 2-180
CURSor:
  VBARs:HPOS<x>?, 2-180
CURSor:
  VBARs:POSITION<x>?, 2-181
CURSor:
  VBARs:UNIts?, 2-182
CURSor:
  VBARs:USE?, 2-182
CURSor:
  VBARs:VDELTA?, 2-183
CURSor:
  VBARs?, 2-179
CURSor:
  XY:POLar:RADIUS:DELTA?, 2-183
CURSor:
  XY:POLar:RADIUS:POSITION<x>?, 2-183
CURSor:
  XY:POLar:RADIUS:UNIts?, 2-184
CURSor:
  XY:POLar:THETA:DELTA?, 2-184
CURSor:
  XY:POLar:THETA:POSITION<x>?, 2-184
CURSor:
  XY:POLar:THETA:UNIts?, 2-184
CURSor:
  XY:PRODUCT:DELTA?, 2-185
CURSor:
  XY:PRODUCT:POSITION<x>?, 2-185
CURSor:
  XY:PRODUCT:UNIts?, 2-185
CURSor:
  XY:RATIO:DELTA?, 2-185
CURSor:
  XY:RATIO:POSITION<x>?, 2-186
CURSor:
  XY:RATIO:UNIts?, 2-186
CURSor:
  XY:READOUT, 2-186
CURSor:
  XY:RECTangular:X:DELTA?, 2-186
CURSor:
  XY:RECTangular:X:POSITION<x>?, 2-187
CURSor:
  XY:RECTangular:X:UNIts?, 2-187
CURSor:
  XY:RECTangular:Y:DELTA?, 2-187
CURSor:
  XY:RECTangular:Y:POSITION<x>?, 2-187
CURSor:
  XY:RECTangular:Y:UNIts?, 2-188
CURSor?, 2-175
CURVe, 2-188

D
D<x>, 2-209
D<x>:LABel, 2-210
D<x>:POsition, 2-210
D<x>:THRESHold, 2-210
DATa, 2-190
DATa:DESTination, 2-192
DATa:ENCdg, 2-192
DATa:SOURce, 2-194
DATa:STARt, 2-195
DATa:STOP, 2-196
DATa:WIDth, 2-197
DATE, 2-198
*DDT, 2-199
DESE, 2-199
DESkew, 2-200
DESkew:DISPlay, 2-201
DIAg:LOOP:OPTion, 2-201
DIAg:LOOP:OPTion:NTIMes, 2-201
DIAg:LOOP:STOP, 2-202
DIAg:RESULT:FLAg?, 2-202
DIAg:RESULT:LOG?, 2-203
DIAg:SELECT, 2-203
DIAg:SELECT:<function>, 2-204
DIAg:STATE, 2-204
Display Command Group, 2-22
DIsplay:CLOCk, 2-205
DIsplay:DIGit:HEIght, 2-205
DIsplay:GraDieneULt, 2-206
DIsplay:INTENSITY:BACKLight, 2-207
DIsplay:INTENSITY:GRApineULt, 2-207
Index

DISplay:INTENSITY:WAVEform, 2-207
DISplay:INTENSITY?, 2-206
DISplay:PERsistence, 2-208
DISplay:STYle:DOTsonly, 2-208
DISplay:XY, 2-209
DISplay?, 2-205

E
*ESE, 2-211
*ESR?, 2-212
Ethernet Command Group, 2-23
ETHERnet:DHCPbootp, 2-212
ETHERnet:DNS:IPADDress, 2-213
ETHERnet:DOMAInname, 2-213
ETHERnet:ENET:ADDress?, 2-213
ETHERnet:GATEWay:IPADDress, 2-214
ETHERnet:HTTPPort, 2-214
ETHERnet:IPADDress, 2-215
ETHERnet:NAME, 2-215
ETHERnet:PASSWord, 2-215
ETHERnet:PING, 2-216
ETHERnet:PING:STATUS?, 2-216
ETHERnet:SUBNETMask, 2-216
EVENT?, 2-217
EMsg?, 2-217
EVQty?, 2-218

F
FACTory, 2-218
File System Command Group, 2-24
FILESystem:CWD, 2-220
FILESystem:DELete, 2-220
FILESystem:DIR?, 2-221
FILESystem:FORMAT, 2-222
FILESystem:FREESpace?, 2-222
FILESystem:MKDir, 2-222
FILESystem:READFile, 2-223
FILESystem:REName, 2-223
FILESystem:RDDir, 2-224
FILESystem:WRITEFile, 2-224
FILESystem?, 2-219
FPAnel:HOLD, 2-225
FPAnel:PRESS, 2-226
FPAnel:TURN, 2-227

G
GPIBUsb:ADDress?, 2-228
GPIBUsb:ID?, 2-228

H
Hard copy Command Group, 2-25
HARDCopy, 2-229
HARDCopy:ACTIveprinter, 2-229
HARDCopy:INKSaver, 2-230
HARDCopy:LAYout, 2-230
HARDCopy:PREVIEW, 2-231
HARDCopy:PRINTer:ADD, 2-231
HARDCopy:PRINTer:DELeTe, 2-231
HARDCopy:PRINTer:LIST?, 2-232
HARDCopy:PRINTer:REName, 2-232
HEADer, 2-232
Horizontal Command Group, 2-27
HORizontal:DELay:MODe, 2-233
HORizontal:DELay:TIMe, 2-234
HORizontal:DIGital:RECorDlength:MAgnivu?, 2-235
HORizontal:DIGital:RECorDlength:MAIN?, 2-235
HORizontal:DIGital:SAMPLerate:MAgnivu?, 2-235
HORizontal:DIGital:SAMPLerate:MAIN?, 2-235
HORizontal:POsition, 2-235
HORizontal:PREViewstate?, 2-236
HORizontal:RECorDlength, 2-236
HORizontal:SAMPLerate, 2-237
HORizontal:SCAle, 2-237
HORizontal?, 2-233

I
ID?, 2-238
*IDN?, 2-238

L
LANGuage, 2-238
LOck, 2-239
*LRN?, 2-239

M
Mark Command Group, 2-27
MARK, 2-240
MARK:CREATE, 2-241
MARK:DELeTe, 2-241
Index

MARK:FREE?, 2-242
MARK:SELECTed:END?, 2-242
MARK:SELECTed:FOCUS?, 2-242
MARK:SELECTed:MARKSINCOLumn?, 2-242
MARK:SELECTed:OWNer?, 2-243
MARK:SELECTed:SOURCE?, 2-243
MARK:SELECTed:STATe?, 2-243
MARK:SELECTed:ZOOm:POSition?, 2-244
MARK:TOTal?, 2-244
Math Command Group, 2-29
MATH[1]:DEFine, 2-245
MATH[1]:HORizontal:POSition, 2-246
MATH[1]:HORizontal:SCALE, 2-247
MATH[1]:HORizontal:UNIts, 2-247
MATH[1]:SPECTral:MAG, 2-248
MATH[1]:SPECTral:WINdow, 2-248
MATH[1]:TYPe, 2-249
MATH[1]:VERTical:POSition, 2-249
MATH[1]:VERTical:SCALE, 2-250
MATH[1]:VERTical:UNIts, 2-250
MATH[1]?, 2-244
{MATH|MATH1}:LABel, 2-244
MATHVAR:VAR<x>?, 2-251
MATHVAR?, 2-251
Measurement Command Group, 2-30
MEASUrement:CLEARSNapshot, 2-253
MEASUrement:GATing, 2-253
MEASUrement:IMMed:DELay:DIRection, 2-254
MEASUrement:IMMed:DELay:EDGE<x>?, 2-255
MEASUrement:IMMed:DELay?, 2-254
MEASUrement:IMMed:SOUrce<x>?, 2-257
MEASUrement:IMMed:SOUrce1, 2-255
MEASUrement:IMMed:SOUrce2, 2-256
MEASUrement:IMMed:TYPe, 2-257
MEASUrement:IMMed:UNIts?, 2-260
MEASUrement:IMMed:VALue?, 2-260
MEASUrement:IMMed?, 2-253
MEASUrement:INDICators:HORZ<x>?, 2-261
MEASUrement:INDICators:NUMHORZ?, 2-262
MEASUrement:INDICators:NUMVERT?, 2-262
MEASUrement:INDICators:STATE, 2-262
MEASUrement:INDICators:VERT<x>?, 2-263
MEASUrement:INDICators?, 2-261
MEASUrement:MEAS<x>?:COUNT?, 2-264
MEASUrement:MEAS<x>?:DELay:DIRection, 2-264
MEASUrement:MEAS<x>?:DELay:EDGE<x>?, 2-265
MEASUrement:MEAS<x>?:DELay?, 2-264
MEASUrement:MEAS<x>?:MAXimum?, 2-265
MEASUrement:MEAS<x>?:MEAN?, 2-266
MEASUrement:MEAS<x>?:MINimum?, 2-266
MEASUrement:MEAS<x>?:SOURCE[1], 2-266
MEASUrement:MEAS<x>?:SOURCE<x>, 2-268
MEASUrement:MEAS<x>?:SOURCEE2, 2-267
MEASUrement:MEAS<x>?:STATe, 2-268
MEASUrement:MEAS<x>?:STDdev?, 2-269
MEASUrement:MEAS<x>?:TYPe, 2-269
MEASUrement:MEAS<x>:UNIts?, 2-272
MEASUrement:MEAS<x>:VALue?, 2-272
MEASUrement:MEAS<x>?, 2-263
MEASUrement:MEAS<x>?, 2-263
MEASUrement:METHod, 2-273
MEASUrement:REFLLevel:ABSolute:HIGH, 2-274
MEASUrement:REFLLevel:ABSolute:LOW, 2-274
MEASUrement:REFLLevel:ABSolute:MID, 2-275
MEASUrement:REFLLevel:ABSolute:MID<x>, 2-276
MEASUrement:REFLLevel:ABSolute:MID2, 2-276
MEASUrement:REFLLevel:METHod, 2-277
MEASUrement:REFLLevel:PERCent:HIGH, 2-277
MEASUrement:REFLLevel:PERCent:LOW, 2-278
MEASUrement:REFLLevel:PERCent:MID, 2-279
MEASUrement:REFLLevel:PERCent:MID<x>, 2-280
MEASUrement:REFLLevel:PERCent:MID2, 2-279
MEASUrement:REFLLevel?:, 2-273
MEASUrement:SNAPShot, 2-280
MEASUrement:STATIstics, 2-281
MEASUrement:STATIstics:MODE, 2-281
MEASUrement:STATIstics:WEIghting, 2-281
MEASUrement?, 2-252
MESSage, 2-282
MESSage:BOX, 2-282
MESSage:CLEAR, 2-283
MESSage:SHOW, 2-283
MESSage:STATE, 2-286
Miscellaneous Command Group, 2-33

N
NEWpass, 2-287

O
*OPC, 2-287

P
PASSWord, 2-288
PICTBridge: DATEPrint, 2-289
PICTBridge: Default, 2-289
PICTBridge: IDPrint, 2-290
PICTBridge: ImageSize, 2-290
PICTBridge: PaperSize, 2-291
PICTBridge: PaperType, 2-293
PICTBridge: PRINTQual, 2-293
POWER: CURRENTSource, 2-294
POWER: Display, 2-294
POWER: GatesSource, 2-295
POWER: Gating, 2-295
POWER: Harmonics: Display: Select, 2-296
POWER: Harmonics: Display: Type, 2-296
POWER: Harmonics: FREQRef, 2-297
POWER: Harmonics: Frequency?, 2-298
POWER: Harmonics: IEC: Class, 2-298
POWER: Harmonics: IEC: Filter, 2-299
POWER: Harmonics: IEC: Fundamental, 2-299
POWER: Harmonics: IEC: Grouping, 2-300
POWER: Harmonics: IEC: Input Power, 2-300
POWER: Harmonics: IEC: Line Frequency, 2-301
POWER: Harmonics: IEC: Observed Period, 2-301
POWER: Harmonics: IEC: PowerFactor, 2-302
POWER: Harmonics: MIL: Line Frequency, 2-303
POWER: Harmonics: MIL: Power Level, 2-304
POWER: Harmonics: NR_Harmonics, 2-304
POWER: Harmonics: Results: HARM<1-400>: Frequency?, 2-305
POWER: Harmonics: Results: HARM<1-400>: IEC MAX?, 2-305
POWER: Harmonics: Results: HARM<1-400>: LIMIT?, 2-306
POWER: Harmonics: Results: HARM<1-400>: PHASE?, 2-306
POWER: Harmonics: Results: HARM<1-400>: RMS: Absolute?, 2-307
POWER: Harmonics: Results: HARM<1-400>: RMS: PERCent?, 2-307
POWER: Harmonics: Results: HARM<1-400>: TEST: IEC: Class LIMIT?, 2-307
POWER: Harmonics: Results: HARM<1-400>: TEST: IEC: Normal?, 2-308
POWER: Harmonics: Results: HARM<1-400>: TEST: IEC: POHC LIMIT?, 2-308
POWER: Harmonics: Results: HARM<1-400>: TEST: MIL: Normal?, 2-309
POWER: Harmonics: Results: IEC: Fundamental?, 2-309
POWER: Harmonics: Results: IEC: Harm3Alternate?, 2-310
POWER: Harmonics: Results: IEC: Harm5Alternate?, 2-310
POWER: Harmonics: Results: IEC: POHC?, 2-311
POWER: Harmonics: Results: IEC: PHASE?, 2-311
POWER: Harmonics: Results: IEC: Power?, 2-311
POWER: Harmonics: Results: IEC: Power Factor?, 2-312
POWER: Harmonics: Results: Pass/Fail?, 2-312
POWER: Harmonics: Results: RMS?, 2-312
POWER: Harmonics: Results: Saves, 2-312
POWER: Harmonics: Results: THD?, 2-313
POWER: Harmonics: Sources, 2-313
POWER: Harmonics: Standard, 2-313
POWER: Indicators, 2-315
POWER: Modulation: Source, 2-316
POWER: Modulation: Type, 2-316
POWER: QUALity: APPwr?, 2-317
POWER: QUALity: Display: APPwr, 2-317
POWER: QUALity: Display: Frequency, 2-318
POWER: QUALity: Display: ICRESt factor, 2-319
POWER: QUALity: Display: IRMS, 2-319
POWER: QUALity: Display: PHASEfactor, 2-320
POWER: QUALity: Display: POWERFACTOR, 2-320
POWER: QUALity: Display: REACTpwr, 2-321
POWER: QUALity: Display: VCRESt factor, 2-322
POWER: QUALity: Display: VRMS, 2-322
POWER: QUALity: FREQReferece, 2-323
POWER: QUALity: FREQuency?, 2-323
POWER: QUALity: ICRESt factor?, 2-324
POWER: QUALity: IRMS?, 2-324
POWER: QUALity: PHASEangle?, 2-324
POWER: QUALity: POWERFACTOR?, 2-325
POWER: QUALity: REACTpwr?, 2-325
POWER: QUALity: TRUEpwr?, 2-325
POWER: QUALity: VRMS?, 2-326
POWER: ReFLevel: Absolute, 2-326
POWER: ReFLevel: ABSolute: High, 2-326
POWer:REFLevel:ABSolute:LOW, 2-327
POWer:REFLevel:ABSolute:MID<1-3>, 2-327
POWer:REFLevel:HYSteresis, 2-328
POWer:REFLevel:METhod, 2-328
POWer:REFLevel:PERCent, 2-329
POWer:REFLevel:PERCent:HIGH, 2-329
POWer:REFLevel:PERCent:LOW, 2-330
POWer:REFLevel:PERCent:MID<1-3>, 2-330
POWer:RIPPle, 2-331
POWer:RIPPle:RESults:AMPLitude?, 2-331
POWer:RIPPle:RESults:MAX?, 2-332
POWer:RIPPle:RESults:MEAN?, 2-332
POWer:RIPPle:RESults:MIN?, 2-332
POWer:RIPPle:RESults:STDdev?, 2-333
POWer:SOA:LINear:XMAX, 2-334
POWer:SOA:LINear:XMIN, 2-334
POWer:SOA:LINear:YMAX, 2-334
POWer:SOA:LINear:YMIN, 2-335
POWer:SOA:LOG:XMAX, 2-335
POWer:SOA:LOG:XMIN, 2-336
POWer:SOA:LOG:YMAX, 2-336
POWer:SOA:LOG:YMIN, 2-337
POWer:SOA:MASK:DEFine, 2-337
POWer:SOA:MASK:MAXAmps, 2-338
POWer:SOA:MASK:MAXVolts, 2-338
POWer:SOA:MASK:MAXWatts, 2-339
POWer:SOA:MASK:NR_PT?, 2-339
POWer:SOA:MASK:STATe, 2-340
POWer:SOA:MASK:STOPOnviol, 2-340
POWer:SOA:PLOTTYpe, 2-341
POWer:SOA:RESult:FAILures:QTY?, 2-341
POWer:SOA:RESult:NUMAcq?, 2-342
POWer:SOA:RESult:STATe?, 2-342
POWer:STATIstics, 2-342
POWer:STATIstics:MODE, 2-343
POWer:STATIstics:WEIghting, 2-343
POWer:SWLoss:CONDcalc:METhod, 2-344
POWer:SWLoss:CONDuction:ENERGY:MAX?, 2-344
POWer:SWLoss:CONDuction:ENERGY:MEAN?, 2-345
POWer:SWLoss:CONDuction:ENERGY:MIN?, 2-345
POWer:SWLoss:CONDuction:POWER:MAX?, 2-346
POWer:SWLoss:CONDuction:POWER:MEAN?, 2-346
POWer:SWLoss:CONDuction:POWER:MIN?, 2-346
POWer:SWLoss:CONDuction:POWER:MIN?, 2-346
POWer:SWLoss:CONDuction:POWER:MIN?, 2-346
POWer:SWLoss:DISplay, 2-347
POWer:SWLoss:GATe:POLarity, 2-347
POWer:SWLoss:GATe:TURNNON, 2-348
POWer:SWLoss:NUMCyCles?, 2-348
POWer:SWLoss:RDSon, 2-349
POWer:SWLoss:REFLevel:ABSolute:GATEMid, 2-349
POWer:SWLoss:REFLevel:ABSolute:LOWCurrent, 2-350
POWer:SWLoss:REFLevel:ABSolute:LOWVoltage, 2-350
POWer:SWLoss:REFLevel:PERCent:GATEMid, 2-351
POWer:SWLoss:REFLevel:PERCent:LOWCurrent, 2-351
POWer:SWLoss:REFLevel:PERCent:LOWVoltage, 2-352
POWer:SWLoss:TOFF:ENERGY:MAX?, 2-352
POWer:SWLoss:TOFF:ENERGY:MEAN?, 2-353
POWer:SWLoss:TOFF:ENERGY:MIN?, 2-353
POWer:SWLoss:TOFF:POWER:MIN?, 2-354
POWer:SWLoss:TOFF:POWER:MIN?, 2-354
POWer:SWLoss:TON:ENERGY:MAX?, 2-355
POWer:SWLoss:TON:ENERGY:MEAN?, 2-355
POWer:SWLoss:TON:ENERGY:MIN?, 2-355
POWer:SWLoss:TON:POWER:MIN?, 2-356
POWer:SWLoss:TON:POWER:MIN?, 2-356
POWer:SWLoss:TOTAL:ENERGY:MAX?, 2-357
POWer:SWLoss:TOTAL:ENERGY:MEAN?, 2-357
POWer:SWLoss:TOTAL:ENERGY:MIN?, 2-357
POWer:SWLoss:TOTAL:POWER:MAX?, 2-358
POWer:SWLoss:TOTAL:POWER:MIN?, 2-358
POWer:SWLoss:TOTAL:POWER:MIN?, 2-358
POWer:VCEsat, 2-359
POWer:TYPE, 2-360
POWer:VOLTAGESoURce, 2-361
*PSC, 2-361
*PUD, 2-362

R
*RCL, 2-363
RECALL:SETUp, 2-363
RECALL:WAVEform, 2-364
REF<x>:DATE?, 2-365
SEARCH:SEARCH<x>:TRIGger:A:BUS:B<x>:FLEXray:HEADER:PAYLength, 2-400
SEARCH:SEARCH<x>:TRIGger:A:BUS:B<x>:I2C:ADDRess:TYPe, 2-401
SEARCH:SEARCH<x>:TRIGger:A:BUS:B<x>:I2C:CONDition, 2-402
SEARCH:SEARCH<x>:TRIGger:A:BUS:B<x>:I2C:DATa:DIRection, 2-403
SEARCH:SEARCH<x>:TRIGger:A:BUS:B<x>:I2C:DATa:SIZe, 2-403
SEARCH:SEARCH<x>:TRIGger:A:BUS:B<x>:I2C:DATa:VALue, 2-404
SEARCH:SEARCH<x>:TRIGger:A:BUS:B<x>:MIL1553B:COMMAND:COUNt, 2-410
SEARCH:SEARCH<x>:TRIGger:A:BUS:B<x>:MIL1553B:COMMAND:PARity, 2-411
SEARCH:SEARCH<x>:TRIGger:A:BUS:B<x>:MIL1553B:COMMAND:TRBit, 2-413
SEARCH:SEARCH<x>:TRIGger:A:BUS:B<x>:MIL1553B:CONDition, 2-414
SEARCH:SEARCH<x>:TRIGger:A:BUS:B<x>:MIL1553B:DATa:PARity, 2-416
SEARCH:SEARCH<x>:TRIGger:A:BUS:B<x>:MIL1553B:DATa:VALue, 2-416
SEARCH:SEARCH<x>:TRIGger:A:BUS:B<x>:MIL1553B:ERRTYPE, 2-417
SEARCH:SEARCH<x>:TRIGger:A:BUS:B<x>:MIL1553B:STATus:PARity, 2-428
SEARCH:SEARCH<x>:TRIGger:A:BUS:B<x>:PARallel:VALue, 2-431
SEARCH:SEARCH<x>:TRIGger:A:BUS:B<x>:RS232C:Rx:DATa:SIZe, 2-432
SEARCH:SEARCH<x>:TRIGger:A:BUS:B<x>:RS232C:Rx:DATa:VALue, 2-432
SEARCH:SEARCH<x>:TRIGger:A:BUS:B<x>:
RS232C:TX:DATA:SIZE, 2-433
SEARCH:SEARCH<x>:TRIGger:A:BUS:B<x>:
RS232C:TX:DATA:VALUE, 2-433
SEARCH:SEARCH<x>:TRIGger:A:BUS:B<x>:SPI:
CONDITION, 2-433
SEARCH:SEARCH<x>:TRIGger:A:BUS:B<x>:SPI:
DATA:SIZE, 2-435
SEARCH:SEARCH<x>:TRIGger:A:BUS:B<x>:SPI:
DATA:{MISO|IN}:VALUE, 2-434
SEARCH:SEARCH<x>:TRIGger:A:BUS:B<x>:SPI:
DATA:{MOSI|OUT}:VALUE, 2-434
SEARCH:SEARCH<x>:TRIGger:A:BUS:
SOURCE, 2-435
SEARCH:SEARCH<x>:TRIGger:A:BUS?, 2-378
SEARCH:SEARCH<x>:TRIGger:A:EDGE:
SLOPE, 2-436
SEARCH:SEARCH<x>:TRIGger:A:EDGE:
SOURCE, 2-436
SEARCH:SEARCH<x>:TRIGger:A:LEVEL, 2-436
SEARCH:SEARCH<x>:TRIGger:A:LEVEL:
CH<x>, 2-437
SEARCH:SEARCH<x>:TRIGger:A:LEVEL:
MATH, 2-437
SEARCH:SEARCH<x>:TRIGger:A:LEVEL:
REF<x>, 2-437
SEARCH:SEARCH<x>:TRIGger:A:LOGIC:
FUNCTION, 2-438
SEARCH:SEARCH<x>:TRIGger:A:LOGIC:INPUT:
CH<x>, 2-438
SEARCH:SEARCH<x>:TRIGger:A:LOGIC:INPUT:
CLOCK:EDGE, 2-439
SEARCH:SEARCH<x>:TRIGger:A:LOGIC:INPUT:
CLOCK:SOURCE, 2-439
SEARCH:SEARCH<x>:TRIGger:A:LOGIC:INPUT:
D<x>, 2-439
SEARCH:SEARCH<x>:TRIGger:A:LOGIC:INPUT:
MATH, 2-440
SEARCH:SEARCH<x>:TRIGger:A:LOGIC:INPUT:
REF<x>, 2-440
SEARCH:SEARCH<x>:TRIGger:A:LOGIC:INPUT:
INPUT:CH<x>, 2-441
SEARCH:SEARCH<x>:TRIGger:A:LOGIC:INPUT:
INPUT:D<x>, 2-441
SEARCH:SEARCH<x>:TRIGger:A:LOGIC:INPUT:
INPUT:MATH, 2-441
SEARCH:SEARCH<x>:TRIGger:A:LOGIC:INPUT:
INPUT:REF<x>, 2-442
SEARCH:SEARCH<x>:TRIGger:A:LOGIC:INPUT:
WHEN, 2-442
SEARCH:SEARCH<x>:TRIGger:A:LOGIC:INPUT:
WHEN:LESSLIMIT, 2-443
SEARCH:SEARCH<x>:TRIGger:A:LOGIC:INPUT:
WHEN:MORELIMIT, 2-443
SEARCH:SEARCH<x>:TRIGger:A:LOGIC:
THRESHOLD:CH<x>, 2-444
SEARCH:SEARCH<x>:TRIGger:A:LOGIC:
THRESHOLD:MATH, 2-444
SEARCH:SEARCH<x>:TRIGger:A:LOGIC:
THRESHOLD:REF<x>, 2-444
SEARCH:SEARCH<x>:TRIGger:A:LOGIC:
WHEN, 2-448
SEARCH:SEARCH<x>:TRIGger:A:LOGIC:
WIDTH, 2-449
SEARCH:SEARCH<x>:TRIGger:A:LOGIC:
WHEN, 2-450
SEARCH:SEARCH<x>:TRIGger:A:LOGIC:
WIDTH, 2-450
SEARCH:SEARCH<x>:TRIGger:A:LOGIC:
SET:EDGE, 2-451
SEARCH:SEARCH<x>:TRIGger:A:LOGIC:
SET:SOURCE, 2-451
SEARCH:SEARCH<x>:TRIGger:A:LOGIC:
SET:THRESHOLD, 2-452
Index

SEARCH:SEARCH<x>:TRIGger:A:SETHold:DATa:  
SOUrce, 2-452
SEARCH:SEARCH<x>:TRIGger:A:SETHold:DATa:  
THReshold, 2-453
SEARCH:SEARCH<x>:TRIGger:A:SETHold:  
HOLDTime, 2-453
SEARCH:SEARCH<x>:TRIGger:A:SETHold:  
SETTime, 2-453
SEARCH:SEARCH<x>:TRIGger:A:SETHold:  
THReshold:CH<x>, 2-454
SEARCH:SEARCH<x>:TRIGger:A:SETHold:  
THReshold:REF<x>, 2-455
SEARCH:SEARCH<x>:TRIGger:A:SETHold:  
THReshold{:MATH|:MATH1}, 2-454
SEARCH:SEARCH<x>:TRIGger:A:TYPe, 2-457
SEARCH:SEARCH<x>:TRIGger:A:UPPerthreshold:  
CH<x>, 2-458
SEARCH:SEARCH<x>:TRIGger:A:UPPerthreshold:  
MATH, 2-458
SEARCH:SEARCH<x>:TRIGger:A:UPPerthreshold:  
REF<x>, 2-458
SEARCH:SEARCH<x>:TRIGger:A {:TRANsition|:RISEFall}:DELtatime, 2-455
SEARCH:SEARCH<x>:TRIGger:A {:TRANsition|:RISEFall}:POLarity, 2-455
SEARCH:SEARCH<x>:TRIGger:A {:TRANsition|:RISEFall}:SOUrce, 2-456
SEARCH:SEARCH<x>:TRIGger:A {:TRANsition|:RISEFall}:WHEn, 2-456
SEARCH?, 2-375
SELect, 2-459
SELect:BUS<x>, 2-459
SELect:CH<x>, 2-459
SELect:CONTROL, 2-460
SELect:D<x>, 2-461
SELect:MATH[1], 2-461
SELect:REF<x>, 2-462
SET?, 2-462
SETUP<<:DATE?, 2-463
SETUP<<:LABEL, 2-464
SETUP<<:TIME?, 2-464
*SRE, 2-464
Status and Error Command Group, 2-56
*STB?, 2-465

T
TEKSecure, 2-465

TIME, 2-467
TOTaluptime?, 2-467
*TRG, 2-467
Trigger Command Group, 2-57
TRIGger, 2-468
TRIGger:A, 2-468
TRIGger:A:BUS, 2-469
TRIGger:A:BUS:B<x>:AUDio:CONDition, 2-470
TRIGger:A:BUS:B<x>:AUDio:DATa:  
HIValue, 2-471
TRIGger:A:BUS:B<x>:AUDio:DATa:VALue, 2-472
TRIGger:A:BUS:B<x>:CAN:CONDition, 2-473
TRIGger:A:BUS:B<x>:CAN:DATa:DIRection, 2-474
TRIGger:A:BUS:B<x>:CAN:DATa:QUALifier, 2-474
TRIGger:A:BUS:B<x>:CAN:DATa:SIZE, 2-475
TRIGger:A:BUS:B<x>:CAN:DATa:VALue, 2-476
TRIGger:A:BUS:B<x>:CAN:FRAMEtype, 2-476
TRIGger:A:BUS:B<x>:CAN{:IDenti}fier{:ADDRess}{:MODE}, 2-477
TRIGger:A:BUS:B<x>:CAN{:IDenti}fier{:ADDRess}{:VALue}, 2-477
TRIGger:A:BUS:B<x>:FLEXray:CONDition, 2-478
TRIGger:A:BUS:B<x>:FLEXray:CYCLEcount:  
HIValue, 2-478
TRIGger:A:BUS:B<x>:FLEXray:CYCLEcount:QUALifier, 2-479
TRIGger:A:BUS:B<x>:FLEXray:CYCLEcount:VALue, 2-480
TRIGger:A:BUS:B<x>:FLEXray:DATE?:  
HIValue, 2-481
TRIGger:A:BUS:B<x>:FLEXray:DATE?:OFFSet, 2-481
TRIGger:A:BUS:B<x>:FLEXray:DATE?:  
QUALifier, 2-482
TRIGger:A:BUS:B<x>:FLEXray:DATE?:SIZE, 2-483
TRIGger:A:BUS:B<x>:FLEXray:DATE?:VALue, 2-483
TRIGger:A:BUS:B<x>:FLEXray:EOFTYPE, 2-484
TRIGger:A:BUS:B<x>:FLEXray:ERRTYPE, 2-484
TRIGger:A:BUS:B<x>:FLEXray:FRAMEID:  
HIValue, 2-485
TRIGger:A:BUS:B<x>:FLEXray:FRAMEID:QUALifier, 2-486
Index

TRIGger:A:BUS:B<x>:FLEXray:FRAMEID: VALUE, 2-487
TRIGger:A:BUS:B<x>:FLEXray: FRAMEType, 2-487
TRIGger:A:BUS:B<x>:FLEXray:HEADER: CRC, 2-488
TRIGger:A:BUS:B<x>:FLEXray:HEADER: FRAMEID, 2-489
TRIGger:A:BUS:B<x>:FLEXray:HEADER: INDBits, 2-490
TRIGger:A:BUS:B<x>:FLEXray:HEADER: PAYLength, 2-490
TRIGger:A:BUS:B<x>:I2C:ADDRess:MODe, 2-491
TRIGger:A:BUS:B<x>:I2C:ADDRess:TYPe, 2-491
TRIGger:A:BUS:B<x>:I2C:ADDRess:VALUE, 2-492
TRIGger:A:BUS:B<x>:I2C:CONDition, 2-492
TRIGger:A:BUS:B<x>:I2C:DATa:DIRection, 2-493
TRIGger:A:BUS:B<x>:I2C:DATa:SIZE, 2-494
TRIGger:A:BUS:B<x>:I2C:DATa:VALUE, 2-494
TRIGger:A:BUS:B<x>:LIN:CONDition, 2-494
TRIGger:A:BUS:B<x>:LIN:DATa:HIVALue, 2-495
TRIGger:A:BUS:B<x>:LIN:DATa:QUALifier, 2-496
TRIGger:A:BUS:B<x>:LIN:DATa:SIZE, 2-496
TRIGger:A:BUS:B<x>:LIN:DATa:VALUE, 2-497
TRIGger:A:BUS:B<x>:LIN:ETYPE, 2-497
TRIGger:A:BUS:B<x>:LIN:IDENTifier:VALUE, 2-498
TRIGger:A:BUS:B<x>:MIL1553B:COMMAND: COUNT, 2-501
TRIGger:A:BUS:B<x>:MIL1553B:COMMAND: PARity, 2-502
TRIGger:A:BUS:B<x>:MIL1553B:COMMAND: TRBit, 2-503
TRIGger:A:BUS:B<x>:MIL1553B: CONDITION, 2-504
TRIGger:A:BUS:B<x>:MIL1553B:DATA: PARity, 2-506
TRIGger:A:BUS:B<x>:MIL1553B:DATA:VALUE, 2-506
TRIGger:A:BUS:B<x>:MIL1553B:ERROR_TYPE, 2-507
TRIGger:A:BUS:B<x>:MIL1553B:STATUS: ADDRess:HIVALue, 2-508
TRIGger:A:BUS:B<x>:MIL1553B:STATUS:BIT: SUBSF, 2-516
TRIGger:A:BUS:B<x>:MIL1553B:STATUS: PARity, 2-517
TRIGger:A:BUS:B<x>:MIL1553B:TIME: LESSLimit, 2-518
TRIGger:A:BUS:B<x>:MIL1553B:TIME: MORELimit, 2-519
TRIGger:A:BUS:B<x>:MIL1553B:TIME: QUALifier, 2-520
TRIGger:A:BUS:B<x>:PARallel:VALUE, 2-521
TRIGger:A:BUS:B<x>:RS232C:CONDition, 2-521
TRIGger:A:BUS:B<x>:SPI:CONDition, 2-523
TRIGger:A:BUS:B<x>:SPI:DATA:SIZE, 2-524
TRIGger:A:BUS:B<x>:SPI:DATA:{IN|MISO}: VALUE, 2-523
Index

TRIGger:A:BUS:B<x>:SPI:DATA::{OUT|:MOSI}: VALUE, 2-524
TRIGger:A:BUS:SOURce, 2-525
TRIGger:A:EDGE:COUPling, 2-525
TRIGger:A:EDGE:SLOpe, 2-526
TRIGger:A:EDGE:SOURce, 2-526
TRIGger:A:EDGE?, 2-525
TRIGger:A:HOLDoff:TIme, 2-528
TRIGger:A:HOLDoff?, 2-527
TRIGger:A:LEVel, 2-528
TRIGger:A:LEVel:AUXin, 2-528
TRIGger:A:LEVel:CH<x>, 2-529
TRIGger:A:LEVel:D<x>, 2-529
TRIGger:A:LOGIc:CLAss, 2-530
TRIGger:A:LOGIc:FUNCtion, 2-531
TRIGger:A:LOGIc:INPut:CH<x>, 2-532
TRIGger:A:LOGIc:INPut:CLOCK:EDGE, 2-533
TRIGger:A:LOGIc:INPut:CLOCK:SOURce, 2-533
TRIGger:A:LOGIc:INPut:D<x>, 2-533
TRIGger:A:LOGIc:INPut?, 2-532
TRIGger:A:LOGIc:PATitern:DELTatime, 2-534
TRIGger:A:LOGIc:PATitern:INPut:D<x>, 2-535
TRIGger:A:LOGIc:PATitern:WHen, 2-535
TRIGger:A:LOGIc:PATitern:WHen:
  LESSLimit, 2-536
TRIGger:A:LOGIc:PATitern:WHen:
  MORELimit, 2-536
TRIGger:A:LOGIc:PATitern?, 2-534
TRIGger:A:LOGIc:THReshold:CH<x>, 2-537
TRIGger:A:LOGIc:THReshold:D<x>, 2-537
TRIGger:A:LOGIc?, 2-530
TRIGger:A:LOWerthreshold:CH<x>, 2-538
TRIGger:A:LOWerthreshold:D<x>, 2-538
TRIGger:A:LOWerthreshold:CH<x>, 2-539
TRIGger:A:LOWerthreshold:D<x>, 2-539
TRIGger:A:MODE, 2-539
TRIGger:A:PULse:CLAss, 2-540
TRIGger:A:PULse?, 2-540
TRIGger:A:PULSEWidth:HIGHLimit, 2-541
TRIGger:A:PULSEWidth:LOWLimit, 2-542
TRIGger:A:PULSEWidth:POLarity, 2-542
TRIGger:A:PULSEWidth:SOURce, 2-543
TRIGger:A:PULSEWidth:WHen, 2-543
TRIGger:A:PULSEWidth:WHen, 2-544
TRIGger:A:PULSEWidth:D<x>, 2-544
TRIGger:A:PULSEWidth?, 2-541
TRIGger:A:RUNT:POLarity, 2-545
TRIGger:A:RUNT:SOURce, 2-546
TRIGger:A:RUNT:WHen, 2-546
TRIGger:A:RUNT:WIDth, 2-547
TRIGger:A:RUNT?, 2-545
TRIGger:A:SETHold:CLOCK:EDGE, 2-548
TRIGger:A:SETHold:INPut:CLOCK:SOUrce, 2-549
TRIGger:A:SETHold:INPut:CLOCK:THReshold, 2-549
TRIGger:A:SETHold:CLOCK?, 2-548
TRIGger:A:SETHold:DATA:SOURce, 2-550
TRIGger:A:SETHold:DATA:THReshold, 2-551
TRIGger:A:SETHold:DATA?, 2-550
TRIGger:A:SETHold:HOLDTime, 2-551
TRIGger:A:SETHold:SETTime, 2-552
TRIGger:A:SETHold:THReshold:CH<x>, 2-552
TRIGger:A:SETHold:THReshold:D<x>, 2-553
TRIGger:A:SETHold?, 2-547
TRIGger:A:TYPE, 2-556
TRIGger:A:UPPertreshold:CH<x>, 2-557
TRIGger:A:VIDeo:CUStom:FORMat, 2-558
TRIGger:A:VIDeo:CUStom:LINEPeriod, 2-558
TRIGger:A:VIDeo:CUStom:SYNCInterval, 2-559
TRIGger:A:VIDeo:HOLOff:FIELD, 2-560
TRIGger:A:VIDeo:LINE, 2-560
TRIGger:A:VIDeo:POLarity, 2-561
TRIGger:A:VIDeo:SOURce, 2-561
TRIGger:A:VIDeo:STANdard, 2-562
TRIGger:A:VIDeo?, 2-557
TRIGger:A:VIDeo::{SYNC|:FIELD}, 2-564
TRIGger:A::{TRANsition|:RISEFall}:
  DELTatime, 2-554
TRIGger:A::{TRANsition|:RISEFall}:POLarity, 2-554
TRIGger:A::{TRANsition|:RISEFall}:SOUrce, 2-555
TRIGger:A::{TRANsition|:RISEFall}:WHen, 2-555
TRIGger:A::{TRANsition|:RISEFall}? , 2-553
TRIGger:B, 2-564
TRIGger:B:BY, 2-565
TRIGger:B:EDGE:COUPling, 2-566
TRIGger:B:EDGE:SLOpe, 2-566
TRIGger:B:EDGE:SOURce, 2-567
TRIGger:B:EDGE?, 2-565
TRIGger:B:EVENTS:COUNt, 2-568
TRIGger:B:EVENTS?, 2-567
TRIGger:B:LEVEL, 2-568
TRIGger:B:LEVEL:CH<x>, 2-569
TRIGger:B:LEVEL:D<x>, 2-569
TRIGger:B:LOWerthreshold:CH<x>, 2-570
TRIGger:B:LOWerthreshold:D<x>, 2-570
TRIGger:B:STATE, 2-571
TRIGger:B:TIme, 2-571

MSO3000 and DPO3000 Series Programmer Manual

Index-13
TRIGger:B:TYPE, 2-572
TRIGger:B:UPPerthreshold:CH<x>, 2-572
TRIGger:EXTernal:PRObe, 2-573
TRIGger:EXTernal:YUNIts?, 2-573
TRIGger:EXTernal?, 2-573
TRIGger:FREQuency?, 2-573
TRIGger:STATE?, 2-574
*TST?, 2-574

U
UNLock, 2-575
USBDevice:CONFigure, 2-575
USBTMC:PRODUCTID:DECimal?, 2-576
USBTMC:PRODUCTID:HEXadecimal?, 2-576
USBTMC:SERIALnumber?, 2-576
USBTMC:VENDORID:DECimal?, 2-577
USBTMC:VENDORID:HEXadecimal?, 2-577
USBTMC?, 2-575

V
VERBose, 2-577
Vertical Command Group, 2-75

W
*WAI, 2-578
Waveform Transfer Command Group, 2-86
WAVFrm?, 2-578
WFMInpre:BIT_Nr, 2-580
WFMInpre:BN_Fmt, 2-580
WFMInpre:BYT_Nr, 2-581
WFMInpre:BYT_Or, 2-582
WFMInpre:CENTERFREQuency, 2-582
WFMInpre:DOMain, 2-583
WFMInpre:ENCdg, 2-583
WFMInpre:NR_Pt, 2-584
WFMInpre:PT_Fmt, 2-584
WFMInpre:PT_Off, 2-585
WFMInpre:REFLevel, 2-586
WFMInpre:SPAN, 2-586
WFMInpre:WFMTYPe, 2-586
WFMInpre:XINcr, 2-587
WFMInpre:XUNit, 2-587
WFMInpre:XZERo, 2-588
WFMInpre:YMUlt, 2-589
WFMInpre:YOFF, 2-590
WFMInpre:YUMit, 2-591
WFMInpre:YZERo, 2-591
WFMInpre?, 2-579
WFMOutpre:BIT_Nr, 2-593
WFMOutpre:BN_Fmt, 2-594
WFMOutpre:BYT_Nr, 2-595
WFMOutpre:BYT_Or, 2-596
WFMOutpre:CENTERFREQuency?, 2-596
WFMOutpre:DOMain?, 2-597
WFMOutpre:ENCdg, 2-597
WFMOutpre:NR_Pt?, 2-598
WFMOutpre:PT_Fmt?, 2-598
WFMOutpre:PT_Off?, 2-599
WFMOutpre:PT_ORDer?, 2-600
WFMOutpre:REFLevel?, 2-600
WFMOutpre:SPAN?, 2-600
WFMOutpre:WFid?, 2-601
WFMOutpre:WFMTYPe?, 2-602
WFMOutpre:XIc?, 2-602
WFMOutpre:XUNit?, 2-603
WFMOutpre:XZERo?, 2-603
WFMOutpre:YMUlt?, 2-604
WFMOutpre:YOFF?, 2-604
WFMOutpre:YUMit?, 2-605
WFMOutpre:YZERo?, 2-606
WFMOutpre?, 2-592

Z
Zoom Command Group, 2-91
ZOOm:MODe, 2-606
ZOOm:ZOOM<x>:FACTOR?, 2-607
ZOOm:ZOOM<x>:POSition, 2-608
ZOOm:ZOOM<x>:SCAle, 2-608
ZOOm:ZOOM<x>:STATE, 2-608
ZOOm:ZOOM<x>?, 2-607
ZOOm?, 2-606