Tektronix[®]

RSA7100A Real-Time Signal Analyzer Specifications and Performance Verification

Technical Reference

Tektronix[®]

RSA7100A Real-Time Signal Analyzer Specifications and Performance Verification

Technical Reference

This document applies to instruments running software version 3.19.x or later.

Warning

The servicing instructions are for use by qualified personnel only. To avoid personal injury, do not perform any servicing unless you are qualified to do so. Refer to all safety summaries prior to performing service.

www.tek.com

077-1299-02

Copyright © Tektronix. All rights reserved. Licensed software products are owned by Tektronix or its subsidiaries or suppliers, and are protected by national copyright laws and international treaty provisions.

Tektronix products are covered by U.S. and foreign patents, issued and pending. Information in this publication supersedes that in all previously published material. Specifications and price change privileges reserved.

TEKTRONIX and TEK are registered trademarks of Tektronix, Inc.

Contacting Tektronix

Tektronix, Inc. 14150 SW Karl Braun Drive P.O. Box 500 Beaverton, OR 97077 USA

For product information, sales, service, and technical support:

- In North America, call 1-800-833-9200.
- Worldwide, visit www.tek.com to find contacts in your area.

Warranty

Tektronix warrants that this product will be free from defects in materials and workmanship for a period of one (1) year from the date of shipment. If any such product proves defective during this warranty period, Tektronix, at its option, either will repair the defective product without charge for parts and labor, or will provide a replacement in exchange for the defective product. Parts, modules and replacement products used by Tektronix for warranty work may be new or reconditioned to like new performance. All replaced parts, modules and products become the property of Tektronix.

In order to obtain service under this warranty, Customer must notify Tektronix of the defect before the expiration of the warranty period and make suitable arrangements for the performance of service. Customer shall be responsible for packaging and shipping the defective product to the service center designated by Tektronix, with shipping charges prepaid. Tektronix shall pay for the return of the product to Customer if the shipment is to a location within the country in which the Tektronix service center is located. Customer shall be responsible for paying all shipping charges, duties, taxes, and any other charges for products returned to any other locations.

This warranty shall not apply to any defect, failure or damage caused by improper use or improper or inadequate maintenance and care. Tektronix shall not be obligated to furnish service under this warranty a) to repair damage resulting from attempts by personnel other than Tektronix representatives to install, repair or service the product; b) to repair damage resulting from improper use or connection to incompatible equipment; c) to repair any damage or malfunction caused by the use of non-Tektronix supplies; or d) to service a product that has been modified or integrated with other products when the effect of such modification or integration increases the time or difficulty of servicing the product.

THIS WARRANTY IS GIVEN BY TEKTRONIX WITH RESPECT TO THE PRODUCT IN LIEU OF ANY OTHER WARRANTIES, EXPRESS OR IMPLIED. TEKTRONIX AND ITS VENDORS DISCLAIM ANY IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. TEKTRONIX' RESPONSIBILITY TO REPAIR OR REPLACE DEFECTIVE PRODUCTS IS THE SOLE AND EXCLUSIVE REMEDY PROVIDED TO THE CUSTOMER FOR BREACH OF THIS WARRANTY. TEKTRONIX AND ITS VENDORS WILL NOT BE LIABLE FOR ANY INDIRECT, SPECIAL, INCIDENTAL, OR CONSEQUENTIAL DAMAGES IRRESPECTIVE OF WHETHER TEKTRONIX OR THE VENDOR HAS ADVANCE NOTICE OF THE POSSIBILITY OF SUCH DAMAGES.

[W2 - 15AUG04]

Table of Contents

Important safety information	. v
General safety summary	. v
Service safety summary	vii
Terms in this manual	viii
Symbols and terms on the product	viii
Preface	ix
Related Documentation	ix
Specifications	. 1
Performance Conditions	. 2
Electrical Specifications	. 2
Electrical Functional Specifications	27
Physical Characteristics	40
Safety	42
Certifications and Compliances	42
Performance Verification	43
Prerequisites	43
Required Equipment	43
Preliminary Checks	45
Warranted characteristics tests	47
Frequency Accuracy	47
Amplitude	49
Noise and Distortion	52
Spurious Response	56
Test record	59

List of Figures

47
48
48
49
49
52
57

List of Tables

Table 1: Specification categories	1
Table 2: Connector interfaces (RSA7100A).	2
Table 3: Frequency range	2
Table 4: Frequency reference	3
Table 5: Phase noise (typical)	3
Table 6: RF input	4
Table 7: Maximum RF input level	5
Table 8: Input attenuator	5
Table 9: Input preselector.	5
Table 10: Amplitude and RF flatness (excluding mismatch error).	6
Table 11: Noise and distortion 1	7
Table 12: Channel Response (Amplitude and Phase Flatness deviations), typical	9
Table 13: Residual spurious response	9
Table 14: Spurious response with signal at input	10
Table 15: Wideband extended tuning	12
Table 16: Trigger	12
Table 17: Trigger timing	14
Table 18: Real-time Event Minimum Duration for 100% probability of Trigger	15
Table 19: Real-time transforms per second	17
Table 20: Sweep speed	18
Table 21: Recording to RAID, nominal	18
Table 22: GPS location and timing	19
Table 23: Pulse measurements, typical.	19
Table 24: Acquisition	26
Table 25: Amplitude vs. time, nominal	26
Table 26: Measurement function	27
Table 27: Views by domain	28
Table 28: General Purpose Analog modulation accuracy	29
Table 29: General purpose digital modulation analysis (Option SVM)	29
Table 30: Digital demodulation accuracy (Option SVM)	30
Table 31: Adaptive equalizer	32
Table 32: OFDM measurement (Option SVO).	32
Table 33: WLAN 802.11a/b/g/j/p Tx measurement (Option SV23)	32
Table 34: WLAN 802.11n Tx measurement (Option SV24)	32
Table 35: WLAN 802.11ac Tx measurement (Option SV25H)	32
Table 36: P25 analysis (Option SV26)	33
Table 37: Bluetooth® analysis (Option SV27)	33
Table 38: LTE measurement	34

Table 39: ACLR measurement	34
Table 40: DPX spectrum processing	34
Table 41: OBW Measurement	35
Table 42: xdB Bandwidth Measurement.	35
Table 43: Frequency Settling Time measurement (Option SVT)	35
Table 44: AM/FM/PM measurements.	37
Table 45: Power requirements	40
Table 46: Environmental requirements	40
Table 47: Dynamics	40
Table 48: Physical characteristics (RSA7100A)	41
Table 49: Physical characteristics (CTRL7100A)	41
Table 50: Status indicators	41
Table 51: CTRL7100A PC characteristics.	42
Table 52: Equipment required for Performance Verification	43
Table 53: RF Flatness (Preamp OFF, attenuator = 10 dB) for Band 100 MHz to 3.6 GHz	50
Table 54: RF Flatness (Preamp OFF, attenuator = 10 dB) for Band 3.6 GHz to 8.5 GHz	51
Table 55: RF Flatness (Preamp OFF, attenuator = 10 dB) for Band 8.5 GHz to 14 GHz	51
Table 56: RF Flatness (Preamp OFF, attenuator = 10 dB) for Band 14 GHz to 20 GHz	51
Table 57: RF Flatness (Preamp OFF, attenuator = 10 dB) for Band 20 GHz to 26.5 GHz	51
Table 58: Frequencies of interest for DANL (Preamp OFF)	54
Table 59: Frequencies of interest for DANL (Preamp ON).	56
Table 60: Residual response center frequencies.	57
Table 61: Image suppression settings	58

Important safety information

This manual contains information and warnings that must be followed by the user for safe operation and to keep the product in a safe condition.

To safely perform service on this product, additional information is provided at the end of this section. (See page vii, *Service safety summary*.)

General safety summary

Use the product only as specified. Review the following safety precautions to avoid injury and prevent damage to this product or any products connected to it. Carefully read all instructions. Retain these instructions for future reference.

Comply with local and national safety codes.

For correct and safe operation of the product, it is essential that you follow generally accepted safety procedures in addition to the safety precautions specified in this manual.

The product is designed to be used by trained personnel only.

Only qualified personnel who are aware of the hazards involved should remove the cover for repair, maintenance, or adjustment.

Before use, always check the product with a known source to be sure it is operating correctly.

This product is not intended for detection of hazardous voltages.

Use personal protective equipment to prevent shock and arc blast injury where hazardous live conductors are exposed.

While using this product, you may need to access other parts of a larger system. Read the safety sections of the other component manuals for warnings and cautions related to operating the system.

When incorporating this equipment into a system, the safety of that system is the responsibility of the assembler of the system.

To avoid fire or personal injury Use proper power cord. Use only the power cord specified for this product and certified for the country of use.

Do not use the provided power cord for other products.

Ground the product. This product is grounded through the grounding conductor of the power cord. To avoid electric shock, the grounding conductor must be connected to earth ground. Before making connections to the input or output terminals of the product, make sure that the product is properly grounded.

Do not disable the power cord grounding connection.

Power disconnect. The power cord disconnects the product from the power source. See instructions for the location. Do not position the equipment so that it is difficult to operate the power cord; it must remain accessible to the user at all times to allow for quick disconnection if needed.

Observe all terminal ratings. To avoid fire or shock hazard, observe all ratings and markings on the product. Consult the product manual for further ratings information before making connections to the product. Do not exceed the Measurement Category (CAT) rating and voltage or current rating of the lowest rated individual component of a product, probe, or accessory. Use caution when using 1:1 test leads because the probe tip voltage is directly transmitted to the product.

Do not apply a potential to any terminal, including the common terminal, that exceeds the maximum rating of that terminal.

The measuring terminals on this product are not rated for connection to mains or Category II, III, or IV circuits.

Do not operate without covers. Do not operate this product with covers or panels removed, or with the case open. Hazardous voltage exposure is possible.

Avoid exposed circuitry. Do not touch exposed connections and components when power is present.

Do not operate with suspected failures. If you suspect that there is damage to this product, have it inspected by qualified service personnel.

Disable the product if it is damaged. Do not use the product if it is damaged or operates incorrectly. If in doubt about safety of the product, turn it off and disconnect the power cord. Clearly mark the product to prevent its further operation.

Examine the exterior of the product before you use it. Look for cracks or missing pieces.

Use only specified replacement parts.

Do not operate in wet/damp conditions. Be aware that condensation may occur if a unit is moved from a cold to a warm environment.

Do not operate in an explosive atmosphere.

Keep product surfaces clean and dry. Remove the input signals before you clean the product.

Provide proper ventilation. Refer to the installation instructions in the manual for details on installing the product so it has proper ventilation.

Slots and openings are provided for ventilation and should never be covered or otherwise obstructed. Do not push objects into any of the openings.

Provide a safe working environment. Always place the product in a location convenient for viewing the display and indicators.

Avoid improper or prolonged use of keyboards, pointers, and button pads. Improper or prolonged keyboard or pointer use may result in serious injury.

Be sure your work area meets applicable ergonomic standards. Consult with an ergonomics professional to avoid stress injuries.

Use care when lifting and carrying the product. This product is provided with handles for lifting and carrying.

WARNING. The product is heavy. To reduce the risk of personal injury or damage to the device get help when lifting or carrying the product. Use a two-person lift or a mechanical aid.

Use only the Tektronix rackmount hardware specified for this product.

Service safety summary

The *Service safety summary* section contains additional information required to safely perform service on the product. Only qualified personnel should perform service procedures. Read this *Service safety summary* and the *General safety summary* before performing any service procedures.

To avoid electric shock. Do not touch exposed connections.

Do not service alone. Do not perform internal service or adjustments of this product unless another person capable of rendering first aid and resuscitation is present.

Disconnect power. To avoid electric shock, switch off the product power and disconnect the power cord from the mains power before removing any covers or panels, or opening the case for servicing.

Use care when servicing with power on. Dangerous voltages or currents may exist in this product. Disconnect power, remove battery (if applicable), and disconnect test leads before removing protective panels, soldering, or replacing components.

Verify safety after repair. Always recheck ground continuity and mains dielectric strength after performing a repair.

Terms in this manual

These terms may appear in this manual:

WARNING. Warning statements identify conditions or practices that could result in injury or loss of life.

CAUTION. Caution statements identify conditions or practices that could result in damage to this product or other property.

Symbols and terms on the product

These terms may appear on the product:

- DANGER indicates an injury hazard immediately accessible as you read the marking.
- WARNING indicates an injury hazard not immediately accessible as you read the marking.
- CAUTION indicates a hazard to property including the product.

When this symbol is marked on the product, be sure to consult the manual to find out the nature of the potential hazards and any actions which have to be taken to avoid them. (This symbol may also be used to refer the user to ratings in the manual.)

The following symbol(s) may appear on the product:

Refer to Manual

(Earth) Terminal

CAUTION

shelf or work space

Do not use side/raill mounted equipment as a

If more than one power connector is attached, unplug all connectors

Protective Ground Earth Terminal

This document contains the Specifications and the Performance Verification for the RSA7100A Real-Time Spectrum Analyzer. It contains procedures suitable for determining that the analyzer functions, is adjusted properly, and meets the performance characteristics as warranted.

Related Documentation

Product documentation	The following documents relate to the operation of the analyzer.
	The <i>RSA7100A Real-Time Spectrum Analyzer Quick Start User Manual</i> provides installation, setup, and basic operating information.
	• The <i>SignalVu-PC Vector Signal Analysis Software Help</i> provides detailed information about how to use the measurements and capabilities of the application with the RSA7100A. This is available in the instrument UI and on the web as a PDF at www.Tek.com.
	• The <i>SignalVu-PC Programmer Manual</i> describes how to use a computer to control the application and RSA7100A through the remote commands.
	• The <i>RSA7100A Real-Time Spectrum Analyzer Specifications and Performance Verification Technical Reference</i> provides specifications and performance verification procedures for the RSA7100A.
Demonstration guides	The following demonstration guides are available for download on www.Tek.com.
	Interference Hunting
	This demonstration guide shows how spectrum management operators can discover and capture signals of interest, using Swept DPX, with as short as 100 us duration and 100% Probability of Intercept (POI) that would be easily hidden with traditional instruments. DPX can now be used to sweep across the entire instrument's frequency range. With traditional swept spectrum analyzers and vector signal analyzers, only 1 spectrum trace is displayed. With Swept DPX, the instrument dwells at each step to build the entire spectrum with thousands of spectrums displayed in a way that is usable for the engineers or spectrum managers.
	EMC Precompliance and EMC testing

Signal Locating

RSA Map tool in the Tektronix RSA/SignalVu-PC/SPECMON lets you use an on-screen map to record the location and value of RSA/SignalVu-PC/SPECMON measurements. With RSA Map you can use a GPS receiver to automatically position measurements at your current location on maps with geophysical reference information. The example in this Demo guide uses a free online mapping source OpenStreetMap to capture maps. OpenStreetMap is a collaborative project to create a free editable map of the world. It can capture a map anywhere in the world and can export it in its native format, bitmap image, and embeddable HTML.

LTE

In this demonstration guide, you will learn how to make LTE downlink measurements either using RSA demo board for base station transmitter tests, or using an antenna for the over-the-air signal analysis.

Internet of Things (IoT)

In this demonstration guide, you will learn how to use Tektronix USB RSA to make the standard certification tests on IoT devices. Wireless technology standards are needed to ensure that products can interoperate within the ecosystem where they will be deployed. There are a number of technologies to choose from, including Wi-Fi®, Bluetooth®, ZigBee®, and LoRa®. However, to adhere to the standard, new products will need to meet qualification as defined per the standard selected. Failing qualification can mean design turns that will delay the final product release and draw additional significant development cost.

SignalVu-PC

This demonstration guide is designed to help you understand the benefits of SignalVu PC for analysis of waveforms captured by Tektronix DPO/DSA/MSO Series digital oscilloscopes, MDO4000 Multi-Domain Oscilloscopes and Tektronix Real Time Signal Analyzers. Applications include: CW Tone, Wideband Radar, Hopping Waveforms, Wideband Monudaltion, Multi-domain oscilloscope acquisitions, AM/FM/PM/Audio Analysis, Signal Monitoring with RTSA waveforms, and WLAN 802.11ac Signal Analysis.

Specifications

This section contains specifications for the RSA7100A Real-Time Spectrum Analyzer. All specifications are warranted unless noted as a typical specification.

Category	Description		
Specified Characteristics	These are the warranted characteristics of the device, and are tested either on each unit in manufacturing or by type-testing. Specified characteristics include measurement tolerance and temperature limits.		
Typical	This is performance that will be met by 80% of measured values meeting the specification with 80% confidence, for ambient temperatures in the range of 18 °C to 28 °C, immediately after performing a full alignment. Values include the effects of the uncertainties of external calibration references and aging over the course of the published calibration interval. These values are determined from qualification testing and are not warranted or tested in the performance verification.		
Typical-95	This is performance that will be met by 95% of instruments with 95% confidence, for ambient temperatures in the range of 18 °C to 28 °C, immediately after performing an alignment. Values include the effects of the uncertainties of external calibration references and aging over the course of the recommended calibration interval. These values are determined from qualification testing and are no warranted or tested in the performance verification.		
Typical-mean	In This represents the mean of performance measure on a sample of units. Sample data is collected at laboratory temperature, immediately after performir an alignment. Values do not include the effects of uncertainties of external calibration references and aging over the course of the recommended calibration interval. These values are determined fr qualification testing and are not warranted or tested the performance verification.		
Nominal	Guaranteed by design. Characteristics do not have tolerance limits.		

Table 1: Specification categories

Specifications that are marked with the \nvdash symbol are checked in the Performance Verification section.

Performance Conditions

The performance limits in these specifications are valid with these conditions:

- The signal analyzer must have been calibrated and adjusted at an ambient temperature between +18 °C (+64 °C) and +28 °C (+82 °C).
- The signal analyzer must be in an environment with temperature, altitude, humidity, and vibration within the operating limits described in these specifications.
- The signal analyzer must have had a warm-up period of at least 30 minutes after starting the RSA7100A application and at the operating temperature.
- **Power sequence** The converter unit (RSA7100A) must be plugged in prior to powering up the controller (CTRL7100A). If the converter is disconnected from power, or otherwise becomes nonresponsive, the controller must be powered down and restarted to reset the converter. It is not sufficient to use the Windows "Restart" function; the controller must be powered down with the Windows "Shutdown" function or equivalent.

Electrical Specifications

Table 2: Connector interfaces (RSA7100A)

Characteristic	Description	
RF Input	40 GHz Planar Crown bulkhead with 3.5 mm female coaxial adapter	
External Frequency Reference Input	BNC, female	
External Frequency Reference Output	BNC, female	
Trigger/Sync Input	BNC, female	
Noise Source Control	BNC, female	
GPS Antenna	BNC, female	
IRIG-B Input	BNC, female	
1PPS	SMA, female	

Table 3: Frequency range

Characteristic	Description
Frequency range	With preamp on or auto, the RSA7100A may be tuned or swept to frequencies > 3.6 GHz, but the preamp will only be on for frequencies \leq 3.6 GHz.
Preamp off	16 kHz to 14 GHz (RSA7100A Opt 14)
	16 kHz to 26.5 GHz (RSA7100A Opt 26)
Preamp on	10 MHz to 3.6 GHz

Characteristic	Description
Tuning resolution	1x10 ⁻³ Hz
Frequency marker readout	±(RE x MF + 0.001 x Span) Hz
accuracy	RE: Reference Frequency Error
	MF: Marker Frequency [Hz]

Table 3: Frequency range (cont.)

Table 4: Frequency reference

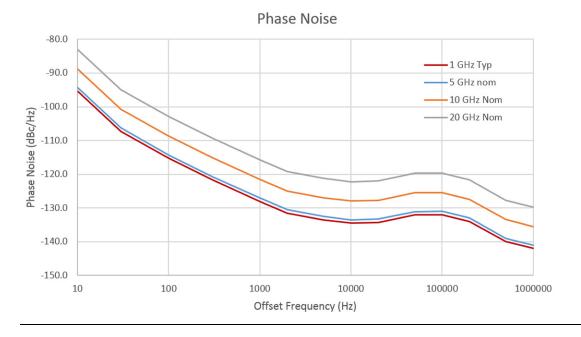

Characteristic	Description
Frequency	10 MHz
Initial accuracy at Cal (10 min warmup),	± 50 x 10 ^{.9} , 23 °C to 28 °C
Aging After 30 days of continuous	± 0.5 x 10 -9 per day
operation, typical	± 100 x 10 -9 first year
Cumulative Error (Initial + Temperature + Aging), typical	200 x 10 -9 (1 year)
Temperature drift, 🖊	± 10 x 10 ⁻⁹ (23 °C to 28 °C)
	± 50 x 10 ^{.9} (0 °C to 55 °C)
External reference output	BNC connector, 50 Ω nominal
External reference output level 🛩	0.71 Vpp to 2 Vpp into 50 Ω
External reference output level, typical	1.2 Vpp into 50 Ω
External reference input	BNC connector, 50 Ω nominal
External reference input frequency	10 MHz ± 0.2 x 10 ⁻⁶
External reference input level	0.5 Vpp to 2 Vpp into 50 Ω

Table 5: Phase noise (typical)

Characteristic	Description	Offset	
Frequency = 1 GHz	–115 dBc/Hz	100 Hz	
(Typical, mean)	–128 dBc/Hz	1 kHz	
	–134 dBc/Hz	10 kHz	
	–132 dBc/Hz	100 kHz	
	–142 dBc/Hz	1 MHz	
Frequency = 5 GHz	–114 dBc/Hz	100 Hz	
	–127 dBc/Hz	1 kHz	
	–133 dBc/Hz	10 kHz	
	–131 dBc/Hz	100 kHz	
	–141 dBc/Hz	1 MHz	

Table 5: Phase noise (typical) (cont.)

Characteristic	Description	Offset	
Frequency = 10 GHz	–109 dBc/Hz	100 Hz	
	–122 dBc/Hz	1 kHz	
	–128 dBc/Hz	10 kHz	
	–125 dBc/Hz	100 kHz	
	–136 dBc/Hz	1 MHz	
Frequency = 20 GHz	–103 dBc/Hz	100 Hz	
	–116 dBc/Hz	1 kHz	
	–122 dBc/Hz	10 kHz	
	–120 dBc/Hz	100 kHz	
	–130 dBc/Hz	1 MHz	

Table 6: RF input

Characteristic	Description
RF Input Impedance	50 Ω
RF VSWR, typical	<1.5 (10 MHz to 14 MHz)
(RF Attn ≥10 dB)	<1.7 (>14 MHz to 26.5 GHz)

Table 7: Maximum RF input level

Characteristic	Description
Maximum DC voltage	±40 V (RF Input)
Maximum safe input power	+30 dBm
Maximum measurable input power	+30 dBm
	ADC and IF overload are detected and the user is informed and streaming data is flagged, but not stopped. Furthermore, an IF overload will initiate a protection event that will switch out the input signal.
	If SignalVu-PC is acquiring samples when this occurs, SignalVu-PC will automatically reset the switch periodically so that if the overload condition goes away, the input will continue to be sampled normally.

Table 8: Input attenuator

Characteristic	Description	
RF Attenuator	0 dB to 100 dB (in 1 dB steps), 16 kHz to 3.6 GHz	
	0 dB to 75 dB (in 5 dB steps), 3.6 GHz to 26.5 GHz	
	0 dB to 75 dB (in 5 dB steps), 3.2 GHz to 3.6 GHz ¹	

1 Wideband Extended Tuning mode.

Table 9: Input preselector

Acquisition mode	Preselector mode	Preselector On	Preselector Off
Swept, 50 MHz steps	On	On	Step CF ≤ 3.6 GHz: On
			Step CF > 3.6 GHz: Off
			Step CF > 3.2 GHz: Off ¹
Swept, 320 MHz steps	NA	NA	Step CF ≤ 3.41 GHz: On
			Step CF > 3.41 GHz: Off
			Step CF > 3.2 GHz: Off ¹

Acquisition mode	Preselector mode	Preselector On	Preselector Off
Real-Time span ≤ 50 MHz	On	On	CF ≤ 3.6 GHz: On
			CF > 3.6 GHz: Off
			CF > 3.2 GHz: Off ¹
Real-Time span > 50 MHz	CF ≤ 3.41 GHz: On	NA	CF ≤ 3.41 GHz: On
	CF > 3.41 GHz: Off		CF > 3.41 GHz: Off
	CF > 3.21 GHz: Off ¹		CF > 3.2 GHz: Off ¹

Table 9: Input preselector (cont.)

1 Wideband Extended Tuning mode.

The preselector is input filters used for image suppression when the span of the instrument allows for its use. Two methods of preselection are used in the RSA7100A: a fixed low-pass filter (LPF) and a tunable bandpass filter (BPF).

Due to the narrow-band nature of the tuned BPF, it is necessary to bypass this filter for wideband analysis of signals with bandwidth >50 MHz. The tuned BPF preselector is enabled depending on the acquisition mode (swept or real-time), frequency range, and user selection of preselector state as described in the table. The LPF preselector is naturally wideband, so that filter is always present, even when the preselector "Off" mode is manually selected.

Swept Acq Mode is enabled when the span is greater than the maximum allowed acquisition BW. In swept mode, the frequency range is spanned in discrete steps of 50 MHz or 320 MHz depending on the state of the preselector.

Table 10: Amplitude and RF flatness (excluding mismatch error)

Characteristic	Description	
Reference level setting range	-170 dBm to +40 dBm, 0.1 dB step	
Frequency response (18 °C to 28 °C)		

Alignment run prior to testing.

Span \leq 100 MHz; For CF < 100 MHz, specifications apply for Ref Level \geq - 40 dBm; Verified with input level of -20 to -15 dBm; Ref level = -15 dBm, 10 dB RF attenuation, all settings auto-coupled; Signal to noise ratios > 40 dB.

	Center frequency range	18 °C to 28 °C	18 °C to 28 °C	0 °C to 55 °C
			(typical)	(typical)
At 10 dB RF	10 MHz to <100 MHz	_	±0.11 dB	_
attenuator	100 MHz to <2.8 GHz	±0.16 dB	±0.13 dB	±0.18 dB
setting (Preamp Off)	2.8 GHz to 3.6 GHz	±0.16 dB	±0.13 dB	±0.38 dB
At 10 dB RF	10 MHz to <100 MHz	_	±0.2 dB	_
attenuator	100 MHz to <2.8 GHz	±0.20 dB	±0.14 dB	±0.10 dB
setting (Preamp On)	2.8 GHz to 3.6 GHz	±0.20 dB	±0.14 dB	±0.26 dB

Table 10: Amplitude and RF flatness (excluding mismatch error) (cont.)

racteristic		Description		
Alignment run p	rior to testing.			
	z; For CF < 100 MHz, specifications a RF attenuation, all settings auto-coup			of 0 to -10 dBm below
	Center frequency range	18 °C to 28 °C	18 °C to 28 °C	0 °C to 55 °C
			(typical)	(typical)
At –10 dB	10 MHz to <100 MHz	_	±0.3 dB	_
ref level,	100 MHz to 3.6 GHz	±0.8 dB	±0.4 dB	±0.8 dB
100 MHz span.	3.6 GHz to 8.5 GHz	±0.9 dB	±0.4 dB	±1.1 dB
preselector	8.5 GHz to 14 GHz	±1.0 dB	±0.5 dB	±1.4 dB
bypassed	14 GHz to 20 GHz	±1.7 dB	±1.0 dB	±1.7 dB
(Preamp Off)	20 GHz to 26.5 GHz	±2.0 dB	±1.2 dB	±2.2 dB
At –30 dB	10 MHz to <100 MHz	_	±0.4 dB	_
ref level, 100 MHz span, (Preamp On)	100 MHz to 3.6 GHz	±1.2 dB	±0.6 dB	±1.2 dB
At –10 dB	3.6 GHz to 8.5 GHz	±1.6 dB	±0.8 dB	±1.7 dB
ref level,	8.5 GHz to 14 GHz	±1.5 dB	±0.7 dB	±1.5 dB
50 MHz span, preselector	14 GHz to 20 GHz	±2.6 dB	±1.3 dB	±2.2 dB
enabled (Preamp On)	20 GHz to 26.5 GHz	±2.8 dB	±1.5 dB	±2.2 dB

Table 11: Noise and distortion ¹

Characteristic	Description 2-tone signal level -20 dBm per tone at the RF input. 1 MHz tone separation. Attenuator = 0 dB, Ref Level = -10 dBm. 5 MHz span, RBW set so noise is 10 dB below the IM3 tone level or lower. Production tested in a verification mode not part of normal operation.		
3rd Order IM Intercept			
	3.3 GHz, Preamp Off	+24 dBm	
3rd Order IM Intercept (TOI), typical		e RF input. 1 MHz tone separation. Attenuator = 0 dB, Ref so noise is 10 dB below the IM3 tone level or lower.	
	10 MHz to 3.6 GHz, Preamp On	–12 dBm	
	10 MHz to 100 MHz, Preamp Off	+19 dBm	
	100 MHz to 3.6 GHz, Preamp Off	+24 dBm	
	3.6 GHz to 7.5 GHz	+20 dBm	
	7.5 GHz to 14 GHz	+27 dBm	
	14 GHz to 26.5 GHz	+21 dBm	

Table 11: Noise and distortion ¹ (cont.)

Characteristic	Description			
Brd Order Intermodulation Distortion, typical	Preamp OFF, Preselector Off, 320 MHz acquisition bandwidth. 2-tone signal level -20 dBm per tone at the RF input. 50 MHz tone separation. Attenuator = 0 dB, Ref Level = -10 dBm.			
	100 MHz to 3.4 GHz	–85 dBc		
	3.4 GHz to 6 GHz	–65 dBc		
	6 GHz to 26.5 GHz	–80 dBc		
2 nd Harmonic Intercept,	Preselector Enabled, Preamp Off.			
ypical	0 dBm CW at the RF input. Attenuator = 1	0 dB, Ref Level = 0 dBm. Span 50 ≤ MHz		
	100 MHz to 3.4 GHz input signal	+40 dBm		
	3.4 GHz to 6 GHz input signal	+74 dBm		
	1.8 GHz to 13.25 GHz input signal	+68 dBm		
Displayed Average Noise ∟evel (DANL) <i>⊭</i> ∕	Normalized to 1 Hz RBW with log-average OFF, Preselector bypassed, 18 °C to 28 °	e detector, 0 dB attenuation, ref level -50 dBm. Preamp C.		
	>10 MHz to 1.7 GHz	–153 dBm/Hz		
	>1.7 GHz to 2.8 GHz	–150 dBm/Hz		
	>2.8 GHz to 3.6 GHz	–148 dBm/Hz		
	>3.6 GHz to 14 GHz	–152 dBm/Hz		
	>14 GHz to 17 GHz	–145 dBm/Hz		
	>17 GHz to 24 GHz	–150 dBm/Hz		
	>24 GHz to 26.5 GHz	–146 dBm/Hz		
Displayed Average Noise	Preamp Off, Preselector Off.			
_evel (DANL), typical	Normalized to 1 Hz RBW, with log-average detector, 0 dB attenuation.			
	200 kHz to 10 MHz	–153 dBm/Hz		
	10 MHz to 100 MHz	–155 dBm/Hz		
	100 MHz to 1.7 GHz	–156 dBm/Hz		
	1.7 GHz to 2.8 GHz	–154 dBm/Hz		
	2.8 GHz to 3.6 GHz	–151 dBm/Hz		
	3.6 GHz to 14 GHz	–156 dBm/Hz		
	14 GHz to 24 GHz	–152 dBm/Hz		
	24 GHz to 26.5 GHz	–150 dBm/Hz		
Displayed Average Noise	Preamp Off, Preselector bypassed, 18 °C	to 28 °C.		
evel (DANL) 🖊	Normalized to 1 Hz RBW, with log-average	e detector, 0 dB attenuation, ref level -50 dBm.		
	10 MHz to 50 MHz	–163 dBm/Hz		
	50 MHz to 1.7 GHz	–164 dBm/Hz		
	>1.7 GHz to 3.6 GHz	–162 dBm/Hz		

Table 11: Noise and distortion ¹ (cont.)

Characteristic	Description		
Displayed Average Noise	Preamp On.		
Level (DANL), typical	Normalized to 1 Hz RBW, with log-average detector, 0 dB attenuation.		
	10 MHz to 100 MHz	–168 dBm/Hz	
	100 MHz to 1.7 GHz	–168 dBm/Hz	
	1.7 GHz to 3.6 GHz	–165 dBm/Hz	
	Preselector Enabled.		
	Normalized to 1 Hz RBW, with log-a	average detector, 0 dB attenuation, ref level -50 dBm.	
	3.6 GHz to 14 GHz	–152 dBm/Hz	
	14 GHz to 26.5 GHz	–147 dBm/Hz	

1 All noise and distortion measurements are made with Preamp Off except where noted.

Table 12: Channel Response (Amplitude and Phase Flatness deviations), typical

Characteristic			Description		
Measurement center frequency	Span (MHz)	Amplitude flatness (dBrms)	Phase linearity (degrees rms)	Amplitude flatness (dB)	Phase linearity (degrees)
10 MHz to 3.6	10	0.06	0.08	±0.08	±0.1
GHz (CF ≥ Span)	25	0.15	0.4	±0.2	±0.5
	50	0.2	1.0	±0.3	±1.3
	100	0.4	2.5	±0.6	±3.5
	320	1.0	10	±1.4	±13
3.6 GHz to 26.5	10	0.07	0.08	±0.1 dB	±0.1
GHz	25	0.1	0.3	±0.12 dB	±0.5
	50	0.1	0.8	±0.15 dB	±1.1
	100	0.17	1.2	±0.24 dB	±1.8
	320	0.6	5	±0.86 dB	±8
	800	0.9	11	±1.27 dB	±16

¹ For these specifications, set Preselector as Off, Attenuator to 10 dB, 18 °C to 28 °C.

Table 13: Residual spurious response

Characteristic		Description
Residual response (100 MHz span) ¹	100 MHz to 3.6 GHz	<99 dBm
	>3.6 GHz to 11 GHz	<-102 dBm
	>11 GHz to 14 GHz	<-86 dBm
	>14 GHz to 24 GHz, Option 26	<-86 dBm
	>24 GHz to 26.5 GHz, Option 26	<-84 dBm

Table 13: Residual spurious response (cont.)

Characteristic		Description	
Residual response (5 MHz span), typical ²	100 MHz to 3.6 GHz	<–115 dBm	
	3.6 GHz to 11 GHz	<–115 dBm	
	11 GHz to 14 GHz	<–105 dBm	
	14 GHz to 24 GHz	<–105 dBm	
	24 GHz to 26.5 GHz	<–95 dBm	
Residual response (320 MHz span), typical ³	100 MHz to 3.6 GHz	<–110 dBm	
	3.6 GHz to 11 GHz	<-105 dBm	
	11 GHz to 14 GHz	<–85 dBm	
	14 GHz to 26.5 GHz	<–85 dBm	
Residual response (800 MHz span), typical 4	3.6 GHz to 14 GHz	<–85 dBm	
	14 GHz to 20 GHz	<–85 dBm	
	20 GHz to 26.5 GHz	<75 dBm	

1 These are not related to input signals. Measured with input terminated, 100 MHz span, 0 dB attenuation, Ref= -60 dBm, preamp off, preselector bypassed at >3.6 GHz, 18 °C to 28 °C.

² These are not related to input signals. Span < 5 MHz Measured with input terminated, 5 MHz span, 0 dB attenuation, ref = -60 dBm, preamp off.

³ These are not related to input signals. Measured with input terminated, 320 MHz span, 0 dB attenuation, preamp off, ref = -60 dBm, preselector bypassed.

⁴ These are not related to input signals. Measured with input terminated, 800 MHz span, 0 dB attenuation, preamp off, ref = -60 dBm, preselector bypassed.

Table 14: Spurious response with signal at input

Characteristic	Center frequency	Value	
Spurious response with image	100 MHz to 3.6 GHz	<–98 dBc	
signal (18 °C to 28 °C) ¹	(Input at CF + 9.225 GHz)		
	>3.6 GHz to 11 GHz	<81 dBc	
	(Input at CF + 1.225 GHz)		
	>11 GHz to 14 GHz	<74 dBc	
	(Input at CF + 1.225 GHz)		
Spurious response with signal at CF (spur offset > 2.5 MHz),	100 MHz to 3.6 GHz <80 dBc		
	(Span = 320 MHz)		
typical ²	3.2 GHz to 3.55 GHz	<-65 dBc	
	(Span = 320 MHz)		
	3.6 GHz to 14 GHz	<-85 dBc	
	(Span = 320 MHz)		
	14 GHz to 26.5 GHz	<-80 dBc	
	(Span = 320 MHz)		
	> 3.6 GHz to 14 GHz	<–65 dBc	
	(Span = 800 MHz)		
	14 GHz to 26.5 GHz	<–65 dBc	
	(Span = 800 MHz)		

	Table 14:	Spurious	response	with signal	at inpu	t (cont.)
--	-----------	----------	----------	-------------	---------	-----------

Characteristic	Center frequency	Value
Spurious response with signal	100 MHz to 3.6 GHz	<-80 dBc
at CF (50 kHz ≤ spur offset <	(except 3.38 - 3.39 GHz)	
2.5 MHz), typical ³	3.38 GHz to 3.39 GHz	<-70 dBc
	3.6 GHz to 14 GHz	<75 dBc
	14 GHz to 26.5 GHz	<-65 dBc
Spurious response with signal	100 MHz to 3.6 GHz	<-80 dBc
within capture bandwidth	(except 3.2 - 3.55 GHz)	
at other than CF (Span = 320 MHz), typical ⁴	3.04 GHz to 3.6 GHz	<-65 dBc
	(signal at 3.2 to 3.55 GHz)	
	3.6 GHz to 14 GHz	<-85 dBc
	14 GHz to 26.5 GHz	<-80 dBc
Spurious response with signal within capture bandwidth at other than CF (Span = 800 MHz), typical mean ⁴ , ⁵	3.6 GHz to 26.5 GHz	<-65 dBc
Spurious response with signal	100 MHz to 3.6 GHz	<-80 dBc
outside span (except for signal frequencies specified here) (Span ≤ 50 MHz), typical ⁶	3.6 GHz to 26.5 GHz	<-80 dBc
Spurious response due to signal applied at CF+1225 MHz to CF+1250 MHz and 2290 MHz to 2320 MHz, typical ⁷	100 MHz to 2.5 GHz	<-55 dBc
Spurious response due to signal applied at 160 MHz to 215 MHz and 3360 MHz to 3415 MHz, typical	100 MHz to 3.6 GHz	<-65 dBc
Spurious response due to signal applied at 585 MHz to 640 MHz and 4585 MHz to 4640 MHz, typical ⁷	100 MHz to 3.6 GHz	<-70 dBc
Local oscillator feed-through to	≤ 3.6 GHz	<-110 dBm (preamp off)
input connector (Attenuator = 10 dB), typical	>3.6 GHz	<-60 dBm (preselector enabled)

¹ Input level = 0 dBm, ref level = 0 dBm. RF atten = 10 dB. 50 MHz span, preselector enabled.

² These are not related to input signals. Span < 5 MHz Measured with input terminated, 5 MHz span, 0 dB attenuation, ref = -60 dBm, preamp off.

³ Input level = -10 dBm, ref level = -10 dBm. RF atten = 10 dB. Span = 5 MHz, preselector enabled.

4 Ref Level = -10 dBm, RF atten = 10 dB, input level = -10 dBm. Because the preselector is bypassed, signals applied outside capture bandwidth may generate larger inband spurs.

⁵ The mean is taken from the largest spur within the span at each CF step and each input frequency stepped across the span. The input signal is stepped at 80 MHz/step across the span and the CF is stepped at 800 MHz/step across the specified frequency range. If a particular span and input combination has no spurs > -70 dBc it is not included in the mean so it does not contribute to reducing the mean.

6 Input level = -30 dBm, ref level = -30 dBm, RF atten = 10 dB. Span ≤ 50 MHz, preselector enabled.

⁷ Input level = -10 dBm, ref level = -10 dBm. RF atten = 10 dB. Span \leq 50 MHz.

Table 15: Wideband extended tuning

Characteristic	Description			
Frequency response at 18° C to	±4.0 dB (3.2 GHz to 3.6 GHz)			
28° C (Preamp OFF), typical	(Verified with input level of -20 to -15 dBm, Ref level = -15 dBm, 10 dB RF attenuation, all settings auto-coupled.)			
	(Span >320 MHz. Signal to noise ratios >40 dB.)			
Channel response at 18° C to 28° C,	Measurement CF = 3.2 GHz to 3.6 GHz			
typical	Span = 800 MHz			
	Amplitude flatness = 1.0 dBrms			
	Amplitude flatness = $\pm 4.0 \text{ dB}$			
	(RF attenuation = 10 dB. Preselector bypassed.)			
Residual response, typical	< –105 dBm (3.2 GHz to 3.6 GHz)			
	(These are not related to input signals. Span = 800 MHz. Ref level = -60 dBm. Measured with input terminated, 0 dB attenuation, preamp off.)			

Table 16: Trigger

Characteristic	Description				
Trigger mode, type, and source,	Modes:				
nominal	Free Run (Triggered by the end of the preceding acquisition)				
	Triggered (Triggered by Event)				
	Types:				
	Single (one acquisition from one trigger)				
	Continuous (repeated acquisitions from repeating triggers)				
	Sources:				
	RF Input (downconverted to IQ)				
	Trigger Input				
	Host (trigger initiated by host)				
Trigger event types	Power level within span (RF Input)				
	Time qualified (RF Input)				
	Frequency mask (Host)				
	Host request (Host)				
	Trigger edge (Trigger Input)				
	DPX Density (Host)				
Trigger GPS time stamp, typical	< 15 ns relative to GPS time				
	GPS satellites may have error up to ±90 ns relative to UTC				
Pre/Post Trigger Setting, nominal	Trigger Position is settable within 1% to 99% of Total Data Length				
Time Qualified Trigger (Power) time	34 ns for SPAN >40 MHz				
resolution, nominal	64 ns for SPAN <40 MHz				
Time Qualified Trigger (Power) range, nominal	0 ns to 1 s				

Table 16: Trigger (cont.)

Characteristic	Description
Time Qualified Trigger (Power) time	±(2*Power Trigger Position Timing Uncertainty + 5 ns)
accuracy, nominal	(All conditions for Power Trigger Position Timing Uncertainty must be met.)
Power Trigger Level Range, nominal	30 dBm to –170 dBm
Power Trigger Level Resolution, nominal	0.1 dB
Power Trigger Level Accuracy, typical	± 1 dB (level ≥ -50 dB from Reference Level) for trigger levels >30 dB above the noise floor at the center frequency
	Instrument center frequency = ≥ 100 MHz
	This applies when the Trigger Level is between 10% and 90% of the signal amplitude.
	This specification is in addition to the overall amplitude accuracy uncertainty for spectrum analyzer mode.
Power Trigger Position Timing Uncertainty, typical	±8 ns
Power Trigger Bandwidth setting, nominal	Not an independent setting. This is set by the "Time Domain Bandwidth" control. Power Trigger Bandwidth is determined by Acq BW.
Power Trigger Minimum Event Duration, nominal	4 ns
Frequency Mask Trigger Mask Point Horizontal Resolution, nominal	<0.13% of span
Frequency Mask Trigger Level Range, nominal	0 to -80 dB from reference level
Frequency Mask Trigger Level Resolution, nominal	0.1 dB
Frequency Mask Trigger Level Accuracy (with respect to Reference Level)	\pm (Channel Response Flatness + 2.5 dB) for mask levels ≥ –50 dB and >30 dB above the noise floor
Frequency Mask Trigger Timing Uncertainty, nominal	±(0.5 *Spectrum time)
External Trigger Threshold Voltage, nominal	3.3 V TTL, VIL 0.8 V, VIH 2.0 V
External Trigger Input Impedance, nominal	10 kΩ
External Trigger Minimum Pulse Width, nominal	>10 ns
External Trigger Timing Uncertainty, nominal	±8 ns
DPX Density Trigger Area of Interest Range, nominal	2 to 801 pixels (horizontal) x 2 to 201 pixels (vertical)

Table 17: Trigger timing

Characteristic	Description
Trigger rearm time (minimum), nominal	10 µs
(Only available when operating in Fast Frame mode.)	
Trigger holdoff time, nominal	Trigger holdoff is the time following an acquisition during which no new trigger events are
(Only available when operating in	accepted.
Fast Frame mode.)	Acq BW > 320 MHz: 1 ns to 1000 mS
	320 MHz ≥ Acq BW > 160 MHz: 2 ns to 1000 mS
	160 MHz ≥ Acq BW > 100 MHz: 4 ns to 1000 mS
	100 MHz ≥ Acq BW > 50 MHz: 6.67 ns to 1000 mS
	50 MHz ≥ Acq BW > 40 MHz: 13.3 ns to 1000 mS
	40 MHz ≥ Acq BW > 20 MHz: 16 ns to 1000 mS
	20 MHz ≥ Acq BW > 10 MHz: 32 ns to 1000 mS
	Acq BW \leq 10 MHz: 64 ns to 1000 mS

Characteristic	Description							
Real-time Event /inimum Duration				Minimu	0	n for 100% prob 00% amplitude	ability of	
or 100% probability					ц)	sec)		
f Trigger, typical	Span (MHz)	RBW (kHz)	FFT length (ns/points)	DPX Spectrum	DPXogram	Freq mask trigger	Density trigger	
	800	50000	38 / 256	0.419	0.844	0.419	0.946	
		20000	95 / 256	0.516	0.947	0.572	1.025	
		10000	190 / 256	0.686	1.115	0.768	1.164	
		1000	1,900 / 2,048	3.006	4.071	3.483	3.377	
		300	6,333 / 8,192	11.836	15.412	12.654	12.008	
		100	19,000 / 32,768	45.031	60.086	52.755	46.581	
		30	63,333 / 65,536	131.352	166.418	140.185	130.031	
		25	76,000 / 132,072	212.109	268.897	227.644	212.050	
		1	1,900,000 / 2,097,152	3824	3831	4154	3733	
		0.12	15,833,333 / 16,777,216	42120	42269	44721	41520	
	320	32,000	60 / 256	0.431	0.860	0.469	0.678	
		20,000	94 / 256	0.476	0.908	0.517	0.684	
		10,000	190 / 256	0.600	1.042	0.651	0.813	
		1,000	1,900 / 1,024	2.685	3.229	2.870	2.754	
		300	6,334 / 4,096	9.156	10.962	10.208	9.778	
		100	19,000 / 16,384	32.464	40.156	37.425	33.908	
		30	63,334 / 32,768	92.512	106.968	101.865	94.935	
		25	76,000 / 65,536	134.919	161.777	159.405	148.456	
		1	1,900,000 / 1,048,576	2760	2779	2890	2696	
		0.1	19,000,000 / 16,777,216	39754	39909	41804	39170	

Table 18: Real-time Event Minimum Duration for 100% probability of Trigger

torioti л, rintia Ch Re Min for of

Table 18: Deal-time	Event Minimum	Duration for	100% m	arobability of	Trigger (cont.)
Table 18: Real-time		Duration for	100 /0 μ	JI ODADIIILY OI	myyer (cont.)

Characteristic	Descri	ption					
	100	8,000	240 / 256	0.611	1.041	0.648	0.905
		1,000	1,900 / 512	2.703	3.207	2.974	2.929
		300	6,334 / 1,024	7.816	8.884	8.286	7.989
		100	19,000 / 4,096	24.838	29.005	26.615	25.888
		30	63,334 / 16,384	88.503	99.438	95.286	94.922
		25	76,000 / 16,384	101.230	112.169	108.048	107.388
		1	1,900,000 / 524,288	2670	2780	2980	2461
		0.1	19,000,000 / 4,194,304	25641	26434	28128	24989
	50	4,000	480 / 256	0.850	1.227	0.888	1.181
		1,000	1,894 / 256	2.476	2.970	2.575	2.910
		300	6,334 / 512	7.835	9.017	8.345	8.232
		100	19,000 / 2,048	24.559	29.195	26.484	25.697
		30	63,334 / 8,192	85.654	96.715	93.143	92.642
		25	76,000 / 8,192	98.364	109.275	105.853	105.263
		1	1,900,000 / 262,144	2730	2778	2991	2322
		0.1	19,000,000 / 2,097,152	23430	24048	25055	22247

Table 19: Real-time transforms per second

Characteristic	Descripti	ion				
Real-time transforms				Transfor	ms per second	
per second, typical	Span (MHz)	RBW (kHz)	DPX Spectrum	DPXogram	Freq mask trigger	Density trigger
	800	50000	2,627,562	1,241,584	2,365,733	1,243,943
		20000	2,376,594	1,174,142	2,094,919	1,196,807
		10000	2,018,280	1,081,222	1,731,537	1,140,029
		1000	906,043	460,681	638,292	710,374
		300	181,750	110,150	158,214	176,353
		100	37,417	24,338	29,850	36,480
		30	14,701	9,700	13,023	14,995
		25	7,346	5,183	6,594	7,350
		1	519	517	443	544
		0.12	37	37	34	38
	320	32,000	2,696,885	1,250,776	2,444,144	1,676,513
		20,000	2,616,606	1,229,611	2,366,207	1,709,864
		10,000	2,436,340	1,174,661	2,167,808	1,605,154
		1,000	1,273,703	753,106	1,030,598	1,181,032
		300	354,423	216,078	258,150	301,316
		100	74,336	47,270	54,275	69,560
		30	34,275	22,918	25,954	32,883
		25	16,974	11,658	11,994	14,032
		1	1,161	1,137	1,009	1,255
		0.1	48	47	43	49
	100	8,000	2,699,036	1,248,489	2,448,673	1,556,652
		1,000	1,245,859	765,075	931,228	999,302
		300	674,595	392,013	512,214	625,691
		100	171,305	99,957	131,344	156,065
		30	39,730	27,702	31,299	33,285
		25	39,639	27,655	31,205	33,452
		1	1,297	1,134	925	1,781
		0.1	150	134	109	166
	50	4,000	2,703,955	1,254,739	2,452,569	1,472,428
		1,000	1,717,706	928,828	1,467,931	1,017,554
		300	658,103	372,705	497,315	553,161
		100	178,889	98,097	133,639	161,150
		30	44,806	29,969	33,554	36,719
		25	44,717	30,064	33,501	36,828
		1	1,204	1,137	916	2,369
		0.1	225	197	164	307

Table 20: Sweep speed

Characteristic	Description
Full-span sweep time, typical mean	(RBW: Auto, Span = 26.5 GHz)
	Preselector Auto: 14.75 sec
	Preselector Off: 1.93 sec

Table 21: Recording to RAID, nominal

Characteristic	Description			
Sampling rate and maximum record length, nominal	Acquisition BW	Streaming Sample Rate (For I and Q)	Maximum record length Opt B	Maximum record length Opt C
	>320 to 800 MHz	1000 MS/s	25 min	165 min
	>320 to 800 MHz	1000 MS/s, unpacked	20 min	120 min
	>160 to 320 MHz	500 MS/s	40 min	4 hr
	>50 to 160 MHz	250 MS/s	80 min	8 hr
	>50 to 100 MHz	150 MS/s	130 min	13 hr
	>40 to 50 MHz	75 MS/s	265 min	26 hr
	>20 to 40 MHz	62.5 MS/s	320 min	32 hr
	>10 to 20 MHz	31.25 MS/s	10 hr	64 hr
	≤10 MHz	15.625 MS/s	20 hr	128 hr
Disk size and lifetime, 300 MHz bandwidth	as shown above.	unpacked samples. In that case	Total time of all records	Expected lifetime of disk
	Option B at 1000 MS/s		55 min	290 hr
	Option B at 1000 MS/s,	stored unpacked	40 min	226 hr
	Option C at 1000 MS/s		165 min	900 hr
				900 11
	Option C at 1000 MS/s,	stored unpacked	120 min	680 hr
	Option C at 1000 MS/s, Values scale inversely w and maximum record le expected lifetime is 452 age. Expected lifetime is	stored unpacked with Streaming Sample Rate for un ngth, nominal" for sample rate a hours. Expected lifetime indicat s limited by the maximum numb eads the writes evenly across al	120 min unpacked samples. See a tt a specific bandwidth. E tes hours of recording tim er of writes of the SSDs in	680 hr above "Sampling rate g, at 500 MS/s, e, not chronological n the RAID system.

Table 22: GPS location and timing

Characteristic	Description
Format, nominal	GPS (L1: 1575.42 MHz)
GPS antenna power, nominal	5 V, 60 mA max
GPS active antenna power auto-detect threshold, nominal	7.9 mA, max
Maximum RF power at GPS input, nominal	+3 dBm
Horizontal position accuracy,	2.5 m CEP
nominal	3.5 m SEP
	(Test conditions: 24 hours static, -130 dBm received signal strength.)
GPS timestamp accuracy to UTC, typical	±100 ns

Table 23: Pulse measurements, typical

Characteristic	Description	
	40 MHz bandwidth	320 and 800 MHz bandwidth
Minimum Pulse Width for detection, typical	150 ns	50 ns
Average ON Power	±0.4 dB + absolute Amplitude Accuracy	
(18 °C to 28 °C), typical mean	For pulse widths ≥300 ns, and signal levels above 70 dB below reference level	For pulse widths ≥150 ns, duty cycles of .5 to .001, and S/N ratio ≥30 dB
Duty Factor, typical	±0.2% of reading	
	For pulse widths ≥450 ns, duty cycles of 0.5 to 0.001, and S/N ratio ≥ 30 dB	For pulse widths ≥150 ns, duty cycles of 0.5 to 0.001, and S/N ratio ≥ 30 dB
Average Transmitted Power, typical mean	±0.4 dB + absolute Amplitude Accuracy	
	For pulse widths ≥300 ns, duty cycles of 0.5 to 0.001, and S/N ratio ≥ 30 dB	For pulse widths ≥100 ns, duty cycles of 0.5 to 0.001, and S/N ratio ≥ 30 dB
Peak Pulse Power, typical mean	±0.4 dB + absolute Amplitude Accuracy	
	For pulse widths ≥300 ns, duty cycles of 0.5 to 0.001, and S/N ratio ≥ 30 dB	For pulse widths ≥100 ns, duty cycles of 0.5 to 0.001, and S/N ratio ≥ 30 dB
Pulse Width, typical	±0.25% of reading	
	For pulse widths \geq 450 ns, duty cycles of 0.5 to 0.001, and S/N ratio \geq 30 dB	For pulse widths ≥150 ns, duty cycles of 0.5 to 0.001, and signal levels >50 dB below reference Level
System Rise time, typical	<12 ns (85, 125 MHz BW)	<40 ns (25 MHz BW)
	<7 ns (160 MHz BW)	<25 ns (40 MHz BW)

aracteristic	Description	
lse-to-Pulse carrier phase, DN-Chirped Pulse, typical mean		
	40 MHz BW ¹	320 and 800 MHz BW ²
2 GHz	±0.4°	±0.5°
10 GHz	±0.4°	±0.5°
20 GHz	±0.4°	±0.5°
lse-to-Pulse Delta Frequency, DN-Chirped Pulse, typical mean	40 MHz BW ¹	320 MHz BW ³
2 GHz	±1 kHz	±20 kHz
10 GHz	±1 kHz	±20 kHz
10 GHz 20 GHz	±1 kHz ±5 kHz	±20 kHz ±25 kHz
	±5 kHz	
20 GHz	±5 kHz 800 MHz BW ³	

Table 23: Pulse measurements, typical (cont.)

Table 23: Pu	Ise measurements,	typical (cont.)
--------------	-------------------	-----------------

Characteristic	Description		
Pulse-to-Pulse carrier phase, Linear-Chir Pulse, typical mean	rped		
	40 MHz BW ⁴	320 MHz BW 5	
2 GHz	±0.3°	±0.5°	
10 GHz	±0.3°	±0.5°	
20 GHz	±0.5°	±0.5°	
	800 MHz BW 5		
2 GHz	±0.75°		
10 GHz	±0.75°		
20 GHz	±0.75°		
Pulse-to-Pulse carrier Frequency,			
ION-Chirped Pulse, typical mean			
	40 MHz BW ¹	320 MHz BW ³	
	40 MHz BW ¹ ±40 kHz	320 MHz BW ³ ±400 kHz	
ION-Chirped Pulse, typical mean			
ION-Chirped Pulse, typical mean	±40 kHz	±400 kHz	
ION-Chirped Pulse, typical mean 2 GHz 10 GHz	±40 kHz ±40 kHz	±400 kHz ±400 kHz	
ION-Chirped Pulse, typical mean 2 GHz 10 GHz	±40 kHz ±40 kHz ±40 kHz	±400 kHz ±400 kHz	
ION-Chirped Pulse, typical mean 2 GHz 10 GHz 20 GHz	±40 kHz ±40 kHz ±40 kHz 800 MHz BW ³	±400 kHz ±400 kHz	

Table 23: Pulse measurements, typical (cont.)

Characteristic	Description	
Pulse-to-Pulse carrier Frequency, Linear-Chirped Pulse, typical mean		
	40 MHz BW ⁴	320 MHz BW 5
2 GHz	±25 kHz	±400 kHz
10 GHz	±25 kHz	±400 kHz
20 GHz	±25 kHz	±400 kHz
	800 MHz BW 5	
2 GHz	±800 kHz	
10 GHz	±800 kHz	
20 GHz	±800 kHz	
Pulse Frequency Linearity (Absolute Frequency Error RMS), typical mean		
	40 MHz BW ⁶	320 MHz ⁷
2 GHz	±10 kHz	±100 kHz
10 GHz	±10 kHz	±100 kHz
20 GHz	±10 kHz	±100 kHz
	800 MHz BW 7	
2 GHz	±200 kHz	
10 GHz	±200 kHz	
20 GHz	±200 kHz	

 Table 23: Pulse measurements, typical (cont.)

Characteristic

Description

Chirp Frequency Linearity		
(Absolute Frequency Error RMS), typical		
mean		

	40 MHz BW ⁸	320 MHz BW ⁹	
2 GHz	±10 kHz	±150 kHz	
10 GHz	±10 kHz	±150 kHz	
20 GHz	±10 kHz	±150 kHz	
	800 MHz BW ⁹		
2 GHz	±300 kHz		
10 GHz	±300 kHz		
20 GHz	±500 kHz		

1 For conditions of: CW (non-chirped) pulses Frequency Estimation = Manual Pulse ON power \geq -20 dBm Signal peak at Ref Lvl. Atten = 0 dB Pulse width = 1 µs Duty cycle = 25% $t_{meas} - t_{reference} \le 10 \text{ ms}$ Measurement time position excludes the beginning and ending of the pulse extending for a time = (10/measurement Bandwidth) as measured from the 50% point of the Tr or Tf. 2 For conditions of: CW (non-chirped) pulses Frequency Estimation = Manual Pulse ON power ≥ -20 dBm Signal peak at Ref Lvl. Atten = 0 dB Pulse width for 320 MHz = 125 ns Pulse width for 800 MHz = 50 ns Duty cycle = 25% $t_{meas} - t_{reference} \le 10 \text{ ms}$ Measurement time position excludes the beginning and ending of the pulse extending for a time = (10/measurement Bandwidth) as measured from the 50% point of the Tr or Tf. ³ For conditions of: CW (non-chirped) pulses Frequency Estimation = Manual Pulse ON power ≥ -20 dBm Signal peak at Ref Lvl. Atten = 0 dB Pulse width at 320 MHz = 125 ns Pulse width at 800 MHz = 50 ns Duty cycle = 25% $t_{meas} - t_{reference} \le 10 \text{ ms}$ Measurement time position excludes the beginning and ending of the pulse extending for a time = (10/measurement Bandwidth) as measured from the 50% point of the Tr or Tf. 4 For conditions of:

Linear Chirped pulses For signal type: Linear Chirp, Peak-to-peak Chirp Deviation: ≤0.8 x Measurement BW. Frequency Estimation = Manual Pulse ON power ≥ -20 dBm Signal peak at Ref Lvl. Atten = 0 dB Pulse width = $1 \mu s$ Duty cycle = 25% $t_{meas} - t_{reference} \le 10 \text{ ms}$ Measurement time position excludes the beginning and ending of the pulse extending for a time = (10/measurement Bandwidth) as measured from the 50% point of the Tr or Tf. 5 For conditions of: Linear Chirped pulses For signal type: Linear Chirp, Peak-to-peak Chirp Deviation: ≤0.8 x Measurement BW. Frequency Estimation = Manual Pulse ON power ≥ -20 dBm Signal peak at Ref Lvl. Atten = 0 dB Pulse width for 320 MHz = 125 ns Pulse width for 800 MHz = 50 ns Duty cycle = 25% $t_{meas} - t_{reference} \le 10 ms$ Measurement time position excludes the beginning and ending of the pulse extending for a time = (10/measurement Bandwidth) as measured from the 50% point of the Tr or Tf. 6 For conditions of: CW (non-chirped) pulses Frequency Estimation = Manual Pulse ON power ≥ -20 dBm Signal peak at Ref Lvl. Atten = 0 dB Pulse width = $1 \mu s$ Duty cycle = 25% Absolute Frequency Error determined over center 50% of pulse. 7 For conditions of: CW (non-chirped) pulses Frequency Estimation = Manual Pulse ON power ≥ -20 dBm Signal peak at Ref Lvl. Atten = 0 dB Pulse width for 320 MHz = 125 ns Pulse width for 800 MHz = 50 ns Duty cycle = 25% Absolute Frequency Error determined over center 50% of pulse. 8 For conditions of: Linear Chirped pulses For signal type: Linear Chirp, Peak-to-peak Chirp Deviation: ≤0.8 x Measurement BW. Frequency Estimation = Manual Pulse ON power ≥ -20 dBm Signal peak at Ref Lvl. Atten = 0 dB Pulse width = $1 \mu s$ Duty cycle = 25% $t_{meas} - t_{reference} \le 10 ms$

Measurement time position excludes the beginning and ending of the pulse extending for a time = (10/measurement Bandwidth) as measured from the 50% point of the Tr or Tf.

Absolute Frequency Error determined over center 50% of pulse.
9 For conditions of:
Linear Chirped pulses
For signal type: Linear Chirp, Peak-to-peak Chirp Deviation: ≤0.8 x Measurement BW.
Frequency Estimation = Manual
Pulse ON power ≥ -20 dBm
Signal peak at Ref Lvl.
Atten = 0 dB
Pulse width for 320 MHz = 125 ns
Pulse width for 800 MHz = 50 ns
Duty cycle = 25%
t_{meas} - t_{reference} ≤ 10 ms
Measurement time position excludes the beginning and ending of the pulse extending for a time = (10/measurement Bandwidth) as measured from the 50% point of the Tr or Tf.
Absolute Frequency Error determined over center 50% of pulse.

Table 24: Acquisition

Characteristic	Description				
Real-time Capture Bandwidth, nominal	320 MHz (Standard)				
	800 MHz (Opt	tion B800)			
Sampling Rate and Available Memory time in RTSA/Time/Demod Mode, nominal	Acquisition BW	Sample rate (For I and Q)	Significant bits (I and Q, each)	Record length	Max record time (sec)
	800 MHz	1000 MS/s	12	2 G samples	2.1
	320 MHz	500 MS/s	13	2 G samples	4.2
	160 MHz	250 MS/s	13	2 G samples	8.5
	100 MHz	150 MS/s	13	2 G samples	14.3
	50 MHz	125 MS/s	14	2 G samples	17.1
	40 MHz	62.5 MS/s	14	2 G samples	34.3
	20 MHz	31.25 MS/s	15	2 G samples	68.7
	10 MHz	15.625 MS/s	15	2 G samples	137.4
	5 MHz	7.8125 MS/s	16	1 GSa	137.4
	2 MHz	3.125 MS/s	16	400 MSa	137.4
	1 MHz	1.5625 MS/s	17	200 MSa	137.4
	100 kHz	156.25 kS/s	18	20 MSa	137.4
	10 kHz	15.625 kS/s	19	2 MSa	137.4
	1 kHz	1.5625 kS/s	21	200 kSa	137.4
Minimum Acquisition Length in RTSA/Time/Demod Mode, nominal	64 samples				
Acquisition Length Setting resolution in RTSA/Time/Demod Mode, nominal	1 sample				

Table 25: Amplitude vs. time, nominal

Characteristic	Description
Time Scale (Zero Span)	1 μs min to 2000 s max
Time Accuracy	±0.5% of total time
Time Resolution	0.1% of total time
Time Linearity	$\pm 0.5\%$ of total time (measured at 11 equally-spaced points across the display, including the ends)

Electrical Functional Specifications

Table 26: Measurement function

Characteristic	Description
Frequency Domain Measurement Functions, nominal	Channel Power Adjacent Channel Power Multi-carrier Adjacent Channel Power/Leakage Ratio dBm/Hz Marker dBc/Hz Marker
Time Domain and Statistical Measurement Functions, nominal	RF I/Q vs. Time Power vs. Time Frequency vs. Time Phase vs. Time CCDF Peak-to-Average Ratio
Advanced Measurements Suite (Option SVPH), nominal	Rise Time Fall Time Pulse Width Pulse Peak Power Pulse Average Power Pulse Ripple Pulse Repetition Interval Duty Cycle Pulse-to-Pulse Phase Frequency Error Droop Trend FFT of Trend
General Purpose Digital Modulation Analysis (Option SVM), nominal	Constellation Magnitude Error vs. Time (RMS/Peak) Phase Error vs. Time (RMS/Peak) EVM (RMS/Peak, EVM vs. Time) Waveform Quality (ρ) Frequency Error IQ Origin Offset Gain Imbalance Quadrature Error Symbol Table

Table 26: Measurement function (cont.)

Characteristic	Description
P25 Analysis (Option SV26)	Constellation
	Modulation Fidelity
	Frequency Deviation
	Power Measurements
	Trigger Measurements
Bluetooth Analysis (Option SV27)	Constellation
	Frequency Deviation
	Modulation/Frequency offset/Drift/Output power
	Inband emissions
	Tx output spectrum—20dB bandwidth
	Noncompliance

Table 27: Views by domain

Characteristic	Description
Frequency, nominal	Spectrum (Amplitude vs. Frequency)
	DPX™ Spectrum Display (Color-Graded Frequency-of-Occurrence)
	Spectrogram (Spectrums over Time vs. Frequency)
Time and Statistics, nominal	Frequency vs. Time
	Amplitude vs. Time
	Phase vs. Time
	RF I&Q vs. Time
	Time Overview
	CCDF
	Peak-Average-Ratio
Advanced Measurements Suite (Option	Pulse Results Table
SVPH), nominal	Pulse Trace (Selectable by pulse number)
	Pulse Statistics (Trend of Pulse Results and FFT of Trend)
General Purpose Digital Modulation Analysis	Constellation Diagram
(Option SVM), nominal	I/Q vs. Time
	EVM vs. Time
	Symbol Table (Binary or Hexadecimal)

Table 27: Views by domain (cont.)

Characteristic	Description
P25 Analysis (Option SV26)	P25 Constellation
	P25 Summary
	P25 Eye Diagram
	P25 Frequency Deviation vs. Time
	P25 Power vs. Time
	P25 Symbol Table
Bluetooth Analysis (Option SV27) and	BT CF Offset and Drift
Bluetooth 5 Analysis (SV31)	BT Eye Diagram
	BT Constellation
	BT Frequency Deviation vs. Time
	BT Summary
	BT Symbol Table
	BT 20dB BW (Tx output spectrum, 20dB bandwidth)

Table 28: General Purpose Analog modulation accuracy

Characteristic	Description
AM Demodulation Accuracy, typical	±2%
	(0 dBm Input at center, Carrier Frequency 1 GHz, 10 to 60 % Modulation Depth; 1 kHz/5 kHz Input/Modulated frequency; 0 dBm Input Power Level, Reference Level 10 dBm, Atten = Auto)
PM Demodulation Accuracy, typical	±3°
	(0 dBm Input at center; Carrier Frequency 1 GHz, 400 Hz/1 kHz Input/Modulated Frequency; 0 dBm Input Power Level, Reference Level 10 dBm, Atten = Auto)
FM Demodulation Accuracy, typical	±1% of Span
	(0 dBm Input at center; Carrier Frequency 1 GHz, 1 kHz/5 kHz Input/Modulated Frequency, 0 dBm Input Power Level, Reference Level 10 dBm, Atten = Auto)

Table 29: General purpose digital modulation analysis (Option SVM)

Characteristic	Description
Carrier Type, nominal	Continuous, Burst (5 µs minimum on-time)
Analysis Period, nominal	Up to 164,840 samples
Modulation Format Presets, nominal	π/2 DBPSK, BPSK, SBPSK, QPSK, DQPSK, π/4 DQPSK, D8PSK, D16PSK, 8PSK, OQPSK, SOQPSK, CPM, 16QAM, 32QAM, 64QAM, 128QAM, 256QAM, MSK, GFSK, 2FSK, 4FSK, 8FSK, 16FSK, C4FM, 16-APSK, 32-APSK
Measurement Filter, nominal	Root Raised Cosine, Raised Cosine, Gaussian, Rectangular, IS-95 Base EQ, None
Reference Filter, nominal	Gaussian, Raised Cosine, Rectangular, IS-95 baseband, None
Filter Rolloff Factor, nominal	a : 0.001 to 1, 0.001 step
Maximum Symbol Rate, nominal	40 MS/s (Option SVM)
Standard Setup Presets, nominal	None

Characteristic	Description
Measurement Functions, nominal	Constellation, EVM, Symbol Table
Vector Diagram Display Format, nominal	Symbol/Locus Display,
	Frequency Error Measurement,
	Origin Offset Measurement
Constellation Diagram Display Format, nominal	Symbol Display,
	Frequency Error Measurement,
	Origin Offset Measurement
Eye Diagram Display Format, nominal	None
Error Vector Diagram Display Format, nominal	EVM, Magnitude Error, Phase Error,
	Waveform Quality (ρ) Measurement,
	Frequency Error Measurement,
	Origin Offset Measurement
Symbol Table Display Format, nominal	Binary, Hexadecimal

Table 29: General purpose digital modulation analysis (Option SVM) (cont.)

Table 30: Digital demodulation accuracy (Option SVM)

Characteristic			Description
QPSK Residual EVM, typical mean	CF		2 GHz
	Symbol Rate	100 kHz	0.35%
		1 MHz	0.35%
		10 MHz	0.4%
		30 MHz	0.75%
		60 MHz	0.75%
		120 MHz	1.5%
		240 MHz	2.0%
256 QAM	CF		2 GHz
Residual EVM,	Symbol Rate	10 MHz	0.4%
typical mean		30 MHz	0.6%
		60 MHz	0.6%
400 symbols		120 MHz	1.0%
		240 MHz	1.5%
	400 symbols me	asurement length, 20 Aver	ages, Normalization reference = Max Symbol Magnitude
OQPSK	CF		2 GHz
Residual EVM, Syml typical mean	Symbol Rate	100 kHz	0.6%, 200 kHz measurement BW
		1 MHz	0.6%, 2 MHz measurement BW
		10 MHz	1.0%, 20 MHz measurement BW
	Reference Filter	: Raised Cosine. Measurer	nent Filter: Root Raised Cosine. Filter Parameter: Alpha = 0.3

Characteristic			Description
S-OQPSK (MIL) Residual	CF		250 MHz
	Symbol Rate	4 kHz	0.3%, 64 kHz measurement bandwidth
EVM, typical mean	Reference Filter:	MIL STD, Measurement Filter: None	
S-OQPSK	CF		2 GHz
(MIL) Residual	Symbol Rate	20 kHz	0.5%, 320 kHz measurement bandwidth
EVM, typical mean		100 kHz	0.5%, 1.6 MHz measurement bandwidth
litean		1 MHz	0.5%, 16 MHz measurement bandwidth
	Reference Filter:	MIL STD, Measurement Filter: None	
S-OQPSK	CF		250 MHz
(ARTM)	Symbol Rate	4 kHz	0.3%, 64 kHz measurement bandwidth
Residual EVM, typical mean	Reference Filter:	ARTM STD, Measurement Filter: None	
S-OQPSK	CF		2 GHz
(ARTM)	Symbol Rate	20 kHz	0.5%, 320 kHz measurement bandwidth
Residual EVM, typical mean		100 kHz	0.5%, 1.6 MHz measurement bandwidth
(jpical filoal)		1 MHz	0.5%, 16 MHz measurement bandwidth
	Reference Filter:	ARTM STD, Measurement Filter: None	
S-BPSK (MIL)	CF		250 MHz
Residual EVM,	Symbol Rate	4 kHz	0.3%, 64 kHz measurement bandwidth
typical mean	Reference Filter:	MIL STD, Measurement Filter: None	
S-BPSK (MIL)	CF		2 GHz
Residual EVM, typical mean	Symbol Rate	20 kHz	0.5%, 320 kHz measurement bandwidth
typical mean		100 kHz	0.5%, 1.6 MHz measurement bandwidth
		1 MHz	0.5%, 16 MHz measurement bandwidth
	Reference Filter:	MIL STD, Measurement Filter: None	
CPM (MIL)	CF		250 MHz
Residual EVM, typical mean	Symbol Rate	4 kHz	0.3%, 64 kHz measurement bandwidth
	Reference Filter:	MIL STD, Measurement Filter: None	
CPM (MIL)	CF		2 GHz
Residual EVM,	Symbol Rate	20 kHz	0.5%, 320kHz measurement bandwidth
typical mean		100 kHz	0.5%, 1.6 MHz measurement bandwidth
		1 MHz	0.5%, 16 MHz measurement bandwidth
	Reference Filter:	MIL STD, Measurement Filter: None	
2/4/8/16 FSK	CF		2 GHz
Residual RMS	Symbol Rate	10 kHz	0.5 % (2/4FSK), 10 kHz frequency deviation
FSK Error, typical mean			0.4 % (/8/16FSK), 10 kHz frequency deviation
	D (None, Measurement Filter: None	

Table 30: Digital demodulation accuracy (Option SVM) (cont.)

Table 31: Adaptive equalizer

Characteristic	Description
Туре	Linear, decision-directed, feed-forward (FIR) equalizer with coefficient adaptation and adjustable convergence rate
Modulation types supported	BPSK, QPSK, 8PSK, OQPSK, DQPSK, π/2-DBPSK,π /4-DQPSK, D8PSK, D16PSK, 16/32/64/128/256-QAM, 16/32-APSK
Reference filters for all modulation types except for OQPSK	Raised Cosine, Rectangular, None
Reference filters for OQPSK	Raised Cosine, Half Sine
Filter length	1 - 128 taps
Taps/symbol: Raised Cosine, Half Sine, or No Filter	1, 2, 4, or 8
Taps/symbol: Rectangular Filter	1
Equalizer controls	Off, Train, Hold, Reset

Table 32: OFDM measurement (Option SVO)

Characteristic	Description
OFDM Maximum Residual EVM (RMS)	–52 dB at 2.4 GHz
(802.11a/g/j OFDM and 802.16-2004), typical	–50 dB at 5.8 GHz
mean	

Table 33: WLAN 802.11a/b/g/j/p Tx measurement (Option SV23)

Characteristic	Description
OFDM Maximum Residual EVM (RMS)	–50 dB at 2.4 GHz
(802.11a/g/j/p OFDM), typical mean	–50 dB at 5.8 GHz
802.11b Maximum Residual EVM (RMS), typical mean	1.0% at 2.4 GHz

Table 34: WLAN 802.11n Tx measurement (Option SV24)

Characteristic	Description
OFDM Maximum Residual EVM (RMS)	49 dB at 2.4 GHz
(802.11n OFDM) 40 MHz BW, typical mean	-49 dB at 5.8 GHz

Table 35: WLAN 802.11ac Tx measurement (Option SV25H)

Characteristic	Description
OFDM Maximum Residual EVM (RMS)	–50 dB at 40 MHz BW, CF = 5.8 GHz
(802.11ac OFDM), typical mean	–48 dB at 80 MHz BW, CF = 5.8 GHz
	–43 dB at 160 MHz BW, CF = 5.8 GHz

Table 36: P25 analysis (Option SV26)

Characteristic	Description
Residual modulation fidelity	
(CF = 460 MHz, 815 MHz)	
Phase 1 (C4FM), typical mean	≤1.0%
Phase 2 (HCPM), typical mean	≤0.5%
Phase 2 (HDQPSK), typical mean	≤0.25%

Table 37: Bluetooth® analysis (Option SV27)

Characteristic	Description
Supported standards	Bluetooth® 4.1 Basic Rate (BR) (power classes 1 to 3)
	Bluetooth® 4.1 Low Energy (LE)
	Packet types: DH1, DH3, DH5 (BR), Reference (LE)
Output power (BR and LE)	
Average and peak power in line with Bluet	ooth® RF test specifications RF TS 4.1.1, and BT LE RF PHY 4.1.1.
Supported measurements	Average power, peak power
Level uncertainty	Refer to (See Table 10 on page 6.)
Measurement range	Signal level >-70 dBm
Basic Rate modulation characteristics (center f	requency = 2400 MHz to 2500 MHz)
Supported measurements	ΔF1avg, ΔF2avg, ΔF2avg/ ΔF1avg, ΔF2max% ≥115 kHz
Deviation range	±280 kHz
Deviation uncertainty	<2 kHz + RSA frequency uncertainty
	(At nominal power level of 0 dBm)
Measurement resolution	10 Hz
Measurement range	Nominal channel frequency ±100 kHz
RF signal power range	>-70 dBm
Low Energy modulation characteristics (center	frequency = 2400 MHz to 2500 MHz)
Supported measurements	ΔF1avg, ΔF2avg, ΔF2avg/ ΔF1avg, ΔF2max% ≥185 kHz
Deviation range	±280 kHz
Deviation uncertainty	<3 kHz + RSA frequency uncertainty
	(At nominal power level of 0 dBm)
Measurement resolution	10 Hz
Measurement range	Nominal channel frequency ±100 kHz
RF signal power range	>-70 dBm
Initial carrier frequency tolerance (ICFT)	
Measurement uncertainty	<1 kHz + RSA frequency uncertainty
	(At nominal power level of 0 dBm)
Measurement resolution	10 Hz
Measurement range	Nominal channel frequency ±100 kHz

Characteristic	Description
RF signal power range	>-70 dBm
Carrier frequency drift	
Supported measurements	Max freq. offset, drift f_1 - f_0 , max drift f_n - f_0 , max drift f_n - f_{n-5} (BR and LE 50 µs)
Measurement uncertainty	<1 kHz + RSA frequency uncertainty
	(At nominal power level of 0 dBm)
Measurement resolution	10 Hz
Measurement range	Nominal channel frequency ±100 kHz
RF signal power range	>-70 dBm
In-band emissions (ACPR) level uncertainty	Refer to (See Table 10 on page 6.)
In-band emissions (ACPR) level uncertainty	Refer to (See Table 10 on page 6.)

Table 37: Bluetooth® analysis (Option SV27) (cont.)

Table 38: LTE measurement

Characteristic	Description
Channel power measurement accuracy, typical	For 40 MHz bandwidth, refer to (See Table 10.)

Table 39: ACLR measurement

Characteristic	Description		
ACLR (3GPP Down Link, 1 DPCH)	–67 dB (Adjacent Channel)		
(2130 MHz), typical mean	–67 dB (First Alternate Channel)		
ACLR (LTE), typical mean	–67 dB (Adjacent Channel)		
	-69 dB w/Noise Correction (Adjacent Channel)		
	–69 dB (First Alternate Channel)		
	-72 dB w/Noise Correction (First Alternate Channel)		
ACLR (P25 C4FM, HCPM, HDQPSK	–85 dB (CF = 460 MHz, 815 MHz))		
modulation (not noise corrected)), typical mean	(Measured at 25 kHz offset, 6 kHz measurement BW)		

Table 40: DPX spectrum processing

Characteristic	Description
DPX Spectrogram trace detection	+Peak, –Peak, Avg (Vrms)
DPX Spectrogram trace length	800 to 10401 points

Table 40: DPX spectrum processing (cont.)

Characteristic	Description	
DPX Spectrogram memory depth	Trace points	Number of traces
	801	921,594
	2,401	307,198
	4,001	184,318
	10,401	70,891
Time resolution per line	5 μs to 6400 s, user-settab (Minimum time resolution s	le pecified at 800 MHz RT BW, 1 MHz RBW, 801 trace points.)

Table 41: OBW Measurement

Characteristics	Description
OBW Accuracy (2 GHz OFDM Carrier, 10 MHz 99% OBW) (measured in a 20 MHz measurement BW, S/N > 30 dB), typical mean	±0.35%

Table 42: xdB Bandwidth Measurement

ltem	Description
xdB Bandwidth, typical mean	±3% to -18 dB below carrier

Table 43: Frequency Settling Time measurement (Option SVT)

Settled frequency uncertainty, typical mean

Measurement frequency, averages	Bandwidth					
	800 MHz	320 MHz	80 MHz	10 MHz	1 MHz	100 kHz
1 GHz						
Single measurement	NA	1 kHz	100 Hz	10 Hz	5 Hz	1 Hz
100 Averages	NA	200 Hz	25 Hz	5 Hz	0.5 Hz	0.1 Hz
1000 Averages	NA	50 Hz	50 Hz	2 Hz	1 Hz	0.05 Hz
10 GHz						
Single measurement	2 kHz	1 kHz	100 Hz	10 Hz	5 Hz	1 Hz
100 Averages	500 Hz	200 Hz	25 Hz	5 Hz	0.5 Hz	0.1 Hz
1000 Averages	250 Hz	100 Hz	10 Hz	1 Hz	0.25 Hz	0.05 Hz

Table 43: Frequency Settling Time measurement (Option SVT) (cont.)

Settled frequency uncertainty, typical mean

Measurement frequency, averages	Bandwidth					
	800 MHz	320 MHz	80 MHz	10 MHz	1 MHz	100 kHz
20 GHz						
Single measurement	3 kHz	1 kHz	100 Hz	25 Hz	5 Hz	1 Hz
100 Averages	1 kHz	200 Hz	25 Hz	10 Hz	1 Hz	0.5 Hz
1000 Averages	500 Hz	100 Hz	10 Hz	5 Hz	0.5 Hz	0.1 Hz
Reference information: Measured input	signal > -20 dBr	m, Attenuator: A	Auto			
tled phase uncertainty, typical mean						
Measurement frequency, averages	Phase unco	ertainty (degre	es)			
		800 MHz	320 MHz	50 MHz	10 MHz	1 MHz
1 GHz						
Single measurement		NA	0.50	0.50	0.50	0.50
100 Averages		NA	0.1	0.05	0.05	0.05
1000 Averages		NA	0.02	0.01	0.01	0.01
10 GHz						
Single measurement		0.50	0.50	0.50	0.50	0.50
100 Averages		0.1	0.1	0.05	0.05	0.05
1000 Averages		0.05	0.02	0.01	0.01	0.01
20 GHz						
Single measurement		0.50	0.50	0.50	0.50	0.50
		0.1	0.1	0.05	0.05	0.05
100 Averages		0.1				

Table 44: AM/FM/PM measurements

Characteristic	Description	Reference information		
Analog demodulation				
Carrier frequency range	16 kHz or $\frac{1}{2}$ × (Audio Analysis Bandwidth) to maximum input frequency	Distortion and noise performance reduced below 30 MHz CF.		
Maximum audio frequency span	10 MHz			
Global Conditions for Audio Measurements	Input Frequency: <2 GHz RBW: Auto			
	Averaging: Off Filters: Off			
	FM Performance: Modulation Index >0.1			
Audio filters				
Low Pass	300 Hz, 3 kHz, 15 kHz, 30 kHz, 80 kHz, 300 kHz, and user-entered up to 0.9 × (audio bandwidth)			
High Pass (Hz)	20, 50, 300, 400, and user-entered up to 0.9 × (audio bandwidth)			
Standard	CCITT, C-Message			
De-emphasis (µs)	25, 50, 75, 750, and user-entered			
User-defined audio file format	User-supplied .txt or .csv file of amplitude/frequency pairs. Up to 1000 amplitude/frequency pairs supported.			

Characteristic	Description	Reference information		
FM modulation analysis				
FM Measurements	Carrier Power			
	Frequency Error			
	Audio Frequency			
	Deviation (+peak, -peak, pk-pk/2, RMS)			
	SINAD			
	Modulation Distortion			
	S/N			
	Total Harmonic Distortion			
	Total Non-Harmonic Distortion			
	Hum and Noise			
FM carrier power accuracy, typical mean	±0.85 dB	Carrier frequency: 10 MHz to 2 GHz		
		Input power: -20 to 0 dBm		
FM carrier frequency accuracy, typical mean	±0.5 Hz + (transmitter frequency × reference frequency error)	Deviation: 1 to 10 kHz		
FM deviation accuracy, typical mean	± (1% of (rate + deviation) + 50 Hz)	Rate: 1 kHz to 1 MHz		
FM rate accuracy, typical mean	±0.2 Hz	Deviation: 1 to 100 kHz		
FM residual THD, typical mean	0.10%	Rate: 1 to 10 kHz		
		Deviation: 5 kHz		
FM residual distortion, typical mean	0.7%	Rate: 1 to 10 kHz		
		Deviation: 5 kHz		
FM residual SINAD, typical mean	43 dB	Rate: 1 to 10 kHz		
		Deviation: 5 kHz		
AM modulation analysis				
AM Measurements	Carrier Power			
	Audio Frequency			
	Modulation Depth (+peak, -peak, pk-pk/2, RMS)			
	SINAD			
	Modulation Distortion			
	S/N			
	Total Harmonic Distortion			
	Total Non-Harmonic Distortion			
	Hum and Noise			
AM carrier power accuracy, typical mean	±0.85 dB	Carrier frequency: 10 MHz to 2 GHz		
		Input power: -20 to 0 dBm		
AM depth accuracy, typical mean	$\pm 0.2\%$ + (0.01 × measured value)	Rate: 1 kHz to 100 kHz		
	· · · · · · · · · · · · · · · · · · ·	Depth: 10% to 90%		

Table 44: AM/FM/PM measurements (cont.)

Table 44:	AM/FM/PM	measurements	(cont.)
-----------	----------	--------------	---------

Characteristic	Description	Reference information
AM rate accuracy, typical mean	±0.2 Hz	Rate: 1 kHz to 1 MHz
		Depth: 50%
AM residual THD, typical mean	0.16%	Rate: 1 to 10 kHz
		Depth: 50%
AM residual distortion, typical mean	0.13%	Rate: 1 to 10 kHz
		Depth: 50%
AM residual SINAD, typical mean	58 dB	Rate: 1 to 10 kHz
		Depth: 50%
PM modulation analysis		
PM Measurements	Carrier Power, Carrier Frequency Error, Audio Frequency, Deviation (+peak, -peak, pk-pk/2, RMS), SINAD, Modulation Distortion, S/N, Total Harmonic Distortion, Total Non-Harmonic Distortion, Hum and Noise	
PM carrier power accuracy, typical mean	±0.85 dB	Carrier frequency: 10 MHz to 2 GHz
		Input power: -20 to 0 dBm
PM carrier frequency accuracy, typical mean	±0.2 Hz + (transmitter frequency × reference frequency error)	Deviation: 0.628 radians
PM deviation accuracy, typical mean	±100% × (0.01 + (measured rate /	Rate: 10 kHz to 20 kHz
	1 MHz))	Deviation: 0.628 to 6 radians
PM rate accuracy, typical mean	±0.2 Hz	Rate: 1 kHz to 10 kHz
		Deviation: 0.628 radians
PM residual THD, typical mean	0.1%	Rate: 1 kHz to 10 kHz
		Deviation: 0.628 radians
PM residual distortion, typical mean	1%	Rate: 1 kHz to 10 kHz
		Deviation: 0.628 radians
PM residual SINAD, typical mean	40 dB	Rate: 1 kHz to 10 kHz
		Deviation: 0.628 radians

Physical Characteristics

Table 45: Power requirements

Characteristic	Description		
	RSA7100A	CTRL7100A	
Max power dissipation (fully loaded) 🛩	400 Watts max. Maximum line current is 4.5 Amps at 90 V line. 300 W typical.	500 Watts max. Maximum line current is 5.5 Amps at 90 V line. 400 W typical.	
Voltage	100 to 240 V at 50 to 60 Hz	90 to 264 V at 47 to 63 Hz	

Table 46: Environmental requirements

Characteristic	Description		
	RSA7100A	CTRL7100A	
Clearance for cooling			
Bottom/top	44.45 mm (1.75 in)	6.4 mm (0.25 in)	
Both sides	44.45 mm (1.75 in)	6.4 mm (0.25 in)	
Rear	76.2 mm (3.0 in)	76.2 mm (3.0 in)	
	(Ensure no outside fans are blowing into the RSA7100A rear fans.)		
Front	NA	76.2 mm (3.0 in)	
Temperature 🛩	Operating: 0 °C to +40 °C	Operating: +10 °C to +35 °C	
	Nonoperating: -20 °C to +60 °C	Nonoperating: -20 °C to +60 °C	
Relative humidity (noncondensing), typical	Operating: 10% to 90% up to +40 °C	Operating: 40% to 70% up to +35 °C	
Altitude 🛩	Operating: Up to 2000 m (6561 ft)	Operating: Up to 3000 m (9842 ft)	
	Nonoperating: Up to 12000 m (39370 ft)	Nonoperating: Up to 12000 m (39370 ft)	
Table 47: Dynamics			
Characteristic	Description		
	RSA7100A	CTRL7100A	
Random vibration	Operating: 5 to 500 Hz, 0.3 G _{rms}	Operating: 5 to 500 Hz, 1.0 G _{ms}	
	Nonoperating: 5 to 500 Hz, 2.45 G _{ms}	Nonoperating: 5 to 500 Hz, 2.28 G _{rms}	

Environmental specifications are met in bench configuration of the instrument. Rackmounts supplied with the instrument are intended for stationary applications where high shock and vibration does not occur.

Shock 🖊

Operating	30 g half-sine, 11 ms duration (RF attenuator may change states dur horizontal shock. To reset, change to any other state and then back to desir state.)	
		in bench configuration of the instrument. nent are intended for stationary applications not occur.
Nonoperating	30 g half-sine, 11 ms duration	25 g half-sine, 11 ms duration

Table 47: Dynamics (cont.)

Table 48: Physical characteristics (RSA7100A)

Characteristic	Description		
Dimensions	mm	in	
Width (with feet)	445.5	17.54	
Height (with feet)	177.1	6.79	
Length	577.9	22.75	
Weight (without accessories)	kg	lb	
Net, nominal	24.2	53.2	
<u></u>			

3U rack size.

The rackmount kits that come with the RSA7100A and CTRL7100A are not meant for use in vehicles. They are intended only for racks in a stationary environment such as a laboratory or factory. If vehicle rack mount is desired, a tray plus perimeter clamp should be used instead of the rails.

Table 49: Physical characteristics (CTRL7100A)

Characteristic	Description		
Dimensions	mm	in	
Width	177.8	7.0	
Height	450.9	17.75	
Depth	660.4	26	
Weight	kg	lb	
Net, nominal	23.8	52.4	
(with Option C7100-B)			

Table 50: Status indicators

Characteristic	Description
Power LED	LED, red

Table 51: CTRL7100A PC characteristics

Characteristic	Description
1/0	PCIe
	2x USB 3.0 on front panel
	2x USB 3.0 on rear panel
	2x USB 2.0 on rear panel
	17 removable drive bays (one for OS, 16 for RAID)
	6 Mini-Display ports
	2x 10 Gbit Ethernet
RAID	20 minute option includes 10x 1TB drives.
	120 minute option includes 16x 2TB drives.
Internal characteristics	GPU: AMD W9100
	Dual Intel Xeon E5-2623 V4 4-core (Broadwell)
	Clock 2.6 GHz
	Internal cache 10 MB
	64 GB DDR4 2133 RAM
	512 GB SSD (removable from front panel)
	Windows 7 OS
	Optional RAID controller and front-panel removable drives supports 4 GB/s and up to 32 TB

Safety

For detailed information on Safety, see the *RSA7100A Real-Time Spectrum Analyzer Quick Start User Manual*, Tektronix part number 071-3504-XX.

Certifications and Compliances

For detailed information on Certifications and Compliances, see the *RSA7100A Real-Time Spectrum Analyzer Quick Start User Manual*, Tektronix part number 071-3504-XX.

Performance Verification

NOTE. The performance verification procedure is not a calibration procedure. The performance verification procedure only verifies that your instrument meets key specifications. For your instrument to be calibrated, it must be returned to a Tektronix service facility.

Prerequisites

The tests in this section make up an extensive, valid confirmation of performance and functionality when the following requirements are met:

- The cabinet must be installed on the instrument.
- The instrument must have passed the Power On Self Tests (POST).
- The instrument must have been last adjusted at an ambient temperature between +18 °C (+64 °F) and +28 °C (+82 °F), must have been operating for a warm-up period of at least 30 minutes after starting the RSA7100A application, and must be operating at an ambient temperature. (See Table 46.)

Required Equipment

The procedures use external, traceable signal sources to directly check warranted characteristics. (See page 47, *Warranted characteristics tests.*) The following table lists the equipment required for this procedure.

Item number and		number and Minimum requirements		Purpose
1.	Frequency Counter	Frequency Range: 10 MHz; Accuracy: 1 x 10-9	Agilent 53132A Option 10	Checking reference output frequency accuracy
2.	RF Power Meter	_	Agilent E4418B	Adjusting signal
3.	RF Power Sensor 1	9 kHz to 18 GHz RF Flatness: <3% Calibration factor data uncertainty: <2% (RSS)	Agilent E9304A Option H18	generator output level, checking reference output power level
4.	RF Power Sensor 2	10 MHz to 26.5 GHz RF Flatness	Agilent E4413A, Option H10	_
5.	Signal Generator	Frequency Accuracy: ±3 x 10-7 Output Frequency: 0 to 40 GHz	Anritsu MG3694B Options 2A, 3A, 4, 15A, 16, 22, SM5821	Checking RF flatness, intermodulation distortion, image suppression, and external reference lock check.

Table 52:	Equipment	required for	Performance	Verification
-----------	-----------	--------------	-------------	--------------

Item number and		umber and Minimum requirements		Example	Purpose
6.	RF Signal Generator	Output Frequency 10 MHz to 26.5 GHz Phase Noise at Center Frequency = 1 GHz		Anritsu MG3694B	Checking phase
				Options 2A, 3A, 4, 15A, —16, 22, SM5821	noise and third order intermodulation
		Offset SSB Phase Noise			distortion.
		100 Hz –121		Higher (worse) phase	
		1 kHz	-134		noise is acceptable
		10 kHz	–140		if phase noise is not
		100 kHz	–138		being checked.
		1 MHz	–148		
7.	Precision Attenuator	30 dB			_
8.	Power Splitter	_		Agilent 11667B	Adjusting signal generator output level
9.	Power Combiner	_		Anritsu 2089-6208-00	Checking intermodulation distortion
10.	Low Pass Filters	<3 dB loss D	C –3.5 GHz	_	Checking third order
	(2)	>50 dB reject	ion 5 GHz to 14 GHz		intermodulation distortion
11.	BNC Cable	50 Ω, 36 in. n	nale to male BNC connectors	_	Signal interconnection
12.	3.5 mm -3.5 mm Cable	50 Ω, 36 in. n	nale to male 3.5 mm connectors	_	Signal interconnection
13.	N-SMA Cable	50 Ω, 36 in. n	nale N to male SMA connectors	_	Signal interconnection
14.	Termination, Precision 50 Ω	Impedance: 5	$50~\Omega$ 3.5 mm male	_	Signal interconnection
15.	3.5 mm (F) to 3.5 mm (F) coaxial adapter	_		Tektronix part number 131-8508-00	_
16.	N-3.5mm cable	50 Ω, 36 in. n	nale N to male 3.5 mm connectors	-	_
17.	N-Male to 3.5 mm male adapter	_		_	_

Table 52: Equipment required for Performance Verification (cont.)

Table 52: Equipment required for Performance Verification (cont.)

Item number and		Minimum requirements	Example	Purpose	
18.	3.5 mm attenuator	3 dB (two required) Midwest Microwave ATT-0550-03-35M-02		Checking third order intermodulation distortion	
19.	Planar Crown RF Input Connector - 3.5 mm	_	Tektronix part number 131-9062-00	_	

NOTE. You may need more adaptors than come with the instrument.

NOTE. Always use the Planar Crown adaptor that comes with the RSA7100A instrument to connect to other equipment. Use a proper adaptor when connecting cables with a different connector type.

NOTE. Be sure that any adaptor and cable you use is specified to operate at the frequency range of the test you are performing.

Preliminary Checks

These steps should be performed before proceeding to the Warranted Characteristics tests.

- **Fan Check** 1. Connect the RSA7100A to the CTRL7100A with the PCIe cable that shipped with the instrument.
 - 2. Connect the CTRL7100A power cord to a power source.
 - 3. Connect the RSA7100A power cord to a power source.
 - **4.** Turn on the CTRL7100A. The controller will automatically launch the SignalVu-PC application and turn on the RSA7100A.
 - **5.** The fans should turn on at 100%. They will be reduced after the application and instrument completes startup.

CAUTION. Turn the RSA7100A off immediately if the fans are not operating. Operating the analyzer without fans will damage the instrument.

Warm-up Make sure the SignalVu-PC application is running and that the RSA7100A has powered on. Allow the instrument to warm up for at least 30 minutes.

NOTE. The fans will slow down and be quieter when the application is started; this is normal. Fan speed may vary while the application is running, depending on the internal temperature detected by the instrument.

- Alignment You should align the instrument before proceeding with the Warranted Characteristics tests.
 - 1. Select Alignments in the Tools menu. The Alignments dialog box will open.
 - 2. Select Align Now. The alignment process will take a few minutes.
 - 3. Verify that no alignment failures are reported in the status bar.

Warranted characteristics tests

The following procedures verify the RSA7100A performance is within the warranted specifications.

Frequency Accuracy

Check Reference Output Frequency Accuracy

- 1. Connect **Ref Out** on the RSA7100A front panel through a 50 Ω precision coaxial cable to the frequency counter input. See the following figure.
- 2. Connect a precision frequency reference to the frequency counter.

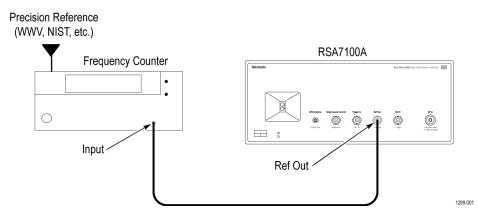


Figure 1: Connections for Reference Frequency Output Accuracy check

3. Set the Frequency counter:

Function	Frequency
Gate time	2 s

4. Check that the frequency counter reads 10 MHz \pm 2 Hz. Enter the frequency in the test record.

Check Reference Output Power Level

1. Set up the power meter and sensor.

NOTE. Store the power sensor correction factors in the power meter, if you have not yet done so.

a. Connect the power sensor to the Sensor input on the power meter, as shown in the following figure.

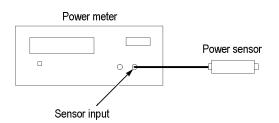


Figure 2: Power meter setup

- b. Press Zero/Cal, and then press ZERO on the power meter.
- **c.** Connect the RF input of the power sensor to the power meter power reference output, as shown in the following figure.

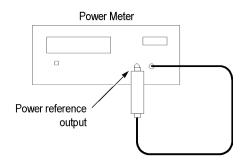


Figure 3: Power meter calibration

- d. Press CAL to execute the calibration.
- e. Disconnect the RF input of the power sensor from the power meter reference output.

- 2. Connect the power sensor RF input to the Ref Out connector on the RSA7100A front panel. (See the following figure.)
- 3. Press Frequency/Cal Factor, and then set Freq to 10 MHz.
- 4. Check that the Ref Out signal is >1 dBm. Enter this level in the test record.

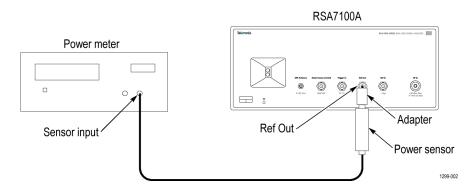


Figure 4: Equipment connections for Ref Out power level check

Amplitude

RF Flatness (Frequency Response) and Absolute Amplitude Accuracy 10 MHz to 26.5 GHz 1. Connect the RF generator, power splitter, power meter, and RSA7100A, as shown in the following figure.

The power splitter outputs should connect directly to the analyzer RF Input and to the power sensor without using cables.

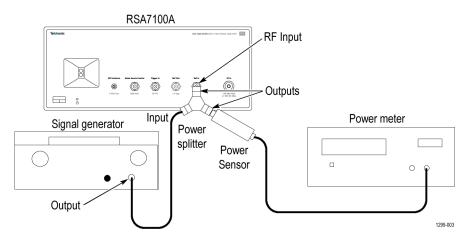


Figure 5: Equipment connections for RF flatness check

- 2. To record the test readings, you can make a printout of the following table. (See Table 53.)
- **3.** Reset the analyzer to factory defaults: Setup > Preset (Main).
- 4. Select Tools > Alignments and then select Align Now.

5. Set the analyzer as follows

Ref Level Setup > Amplitude >Internal Settings > Ref Level	–15 dBm
Internal Attenuator	10 dB (Auto unchecked)
Setup > Amplitude > Internal Settings > Internal Attenuator	
Span	1 MHz
Setup > Settings > Freq & Span> Span	

- 6. Set the RF signal generator for a -14 dBm output amplitude and turn RF On. This will produce about -20 dBm after the -6 dB splitter.
- 7. Set both the RF signal generator output frequency and the analyzer Center Frequency to the frequency in the RF Flatness table. (See Table 53.)
- 8. Select the Markers Peak key to set the Reference Marker (MR) to the carrier peak.
- 9. Adjust the RF signal generator output level for a marker reading of -20 ± 0.5 dBm.
- **10.** Record the Power Meter reading and the analyzer marker reading in the following table.
- **11.** Calculate the Absolute Amplitude Accuracy (AAA) and record in the table *AAA* = *Marker Reading* – *Power Meter Reading*.
- **12.** Repeat items 7 through 11 for each of the center frequencies shown in the RF Flatness table up to the maximum operating frequency of the device-under-test. (See Table 53.)
- **13.** Once the table is complete, determine the RF Flatness for each specified band as follows:

RF Flatness = $\frac{1}{2}$ (largest AAA in band – smallest AAA in band)

Table 53: RF Flatness (Preamp OFF, attenuator = 10 dB) for Band 100 MHz to 3.6 GHz

Max AAA 0.2 dB	Min AAA –0.3 dB	RF flatness ±0.25 dB
Power meter reading	Marker reading	AAA
-20.2	-20.25	-0.05
-20.3	-20.25	0.05
he specified band)		
-20.2	-20.0	0.2
–19.9	-20.1	-0.3
-19.8	-19.6	0.2
	Power meter reading -20.2 -20.3 he specified band) -20.2 -19.9	Power meter reading Marker reading -20.2 -20.25 -20.3 -20.25 he specified band) -20.2 -20.2 -20.0 -19.9 -20.1

Band 3.6 GHz to 8.5 GHz	Max AAA 0.4 dB	Min AAA –0.2 dB	RF flatness ±0.3 dB
Frequency	Power meter reading	Marker reading	AAA
3600 MHz	-20.2	-20.4	-0.2
3700 MHz	-20.3	-19.9	0.4
(additional frequencies within	the specified band)		
8300 MHz	-20.2	-20.0	0.2
8400 MHz	-19.9	-19.7	0.2
8500 MHz	-19.8	-20.2	-0.2

Table 54: RF Flatness (Preamp OFF, attenuator = 10 dB) for Band 3.6 GHz to 8.5 GHz

Table 55: RF Flatness (Preamp OFF, attenuator = 10 dB) for Band 8.5 GHz to 14 GHz

Band 8.5 GHz to 14 GHz	Max AAA 0.4 dB	Min AAA –0.2 dB	RF flatness ±0.3 dB
Frequency	Power meter reading	Marker reading	AAA
8500 MHz	-20.2	-20.4	-0.2
8600 MHz	-20.3	-19.9	0.4
(additional frequencies within the specified band)			

Table 56: RF Flatness (Preamp OFF, attenuator = 10 dB) for Band 14 GHz to 20 GHz

Band 14 GHz to 20 GHz	Max AAA 0.4 dB	Min AAA –0.2 dB	RF flatness ±0.3 dB
Frequency	Power meter reading	Marker reading	AAA
14000 MHz	-20.2	-20.4	-0.2
14100 MHz	-20.3	-19.9	0.4
(additional frequencies within	the specified band)		

Table 57: RF Flatness (Preamp OFF, attenuator = 10 dB) for Band 20 GHz to 26.5 GHz

Band 20 GHz to 26.5 GHz	Max AAA 0.4 dB	Min AAA –0.2 dB	RF flatness ±0.3 dB
Frequency	Power meter reading	Marker reading	AAA
20000 MHz	-20.2	-20.4	-0.2
20100 MHz	-20.3	-19.9	0.4

Noise and Distortion

Third Order Intermodulation Distortion 1. Set up the RF CW generators, Lowpass filters, Signal Combiner, and analyzer as shown in the following figure.

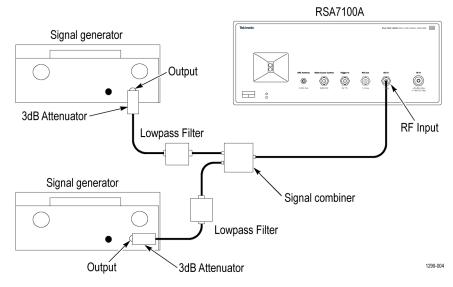


Figure 6: Equipment connections for Third Order Intermodulation Distortion check

- 2. Reset the analyzer to factory defaults: select Setup > Preset (Main).
- 3. Select Tools > Alignments and select Align Now.
- 4. Set the analyzer as follows:

Ref Level	–10 dBm
Setup > Amplitude > Internal Settings > Ref Level	
Internal Attenuator	0 dB (Auto unchecked)
Setup > Amplitude > Internal Settings > Internal Attenuator	
Span	5 MHz
Setup > Settings > Freq & Span > Span	
RBW	20 kHz
Setup > Settings > BW > RBW	
Function	Avg (VRMS)
Setup > Settings > Traces > Function	
Averaging	25 (Count checked)
(Settings >Traces > Avg (VRMS)	

- 5. Set each of the RF signal generators to provide a power level of -20 dBm and turn RF On.
 - **a.** Set the first generator output frequency to 2449.5 MHz, and the second generator output frequency to 2450.5 MHz.
 - **b.** Set the analyzer Function to Normal (Setup > Settings > Traces > Function > Normal).
 - **c.** Set the analyzer Center frequency to 2450 MHz. Click the **Markers Peak** button. Adjust the first generator output level for a marker reading of -20.0 dBm. Record this as carrier #1.
 - **d.** Click the **Markers Next Peak Down** button. Adjust the second generator output level for a marker reading of –20.0. This is carrier amplitude #2.
- 6. Restart the analyzer averaging by clicking the Clear button. After averaging has completed, click the Markers Next Peak Down button and read the marker level. Record this as IM3.
- 7. Calculate the Third Order Intermodulation Intercept (TOI) using the following equation. Record the results in the test record.

 $TOI = -30 \ dBm - IM3/2$

- **DANL Preamp OFF** 1. Terminate the RSA7100A RF Input with a 50 Ω terminator.
 - 2. Reset the analyzer to factory defaults: select **Setup** > **Preset** (Main).
 - 3. Select Tools > Alignments and select Align Now.
 - 4. Set the analyzer as follows:

Reference Level	–50 dBm
Setup > Amplitude > Internal Settings > Ref Level	
Internal Attenuator	0 dB (Auto unchecked)
Setup > Amplitude > Internal Settings > Internal Attenuator	
Center Frequency	10 MHz
Setup > Settings > Freq & Span > Center	
Span	100 kHz
Setup > Settings > Freq & Span > span	
RBW	Auto (box checked)
Setup > Settings > BW > RBW	
Detection	Avg (of logs)
Setup > Settings > Traces > Detection	

FunctionAvg (of logs)Setup > Settings > Traces > Function1000 (Count box checked)Setup > Settings > Traces > Function1000 (Count box checked)

- 5. Set the markers for Noise Mode operation:
 - a. Select Markers > Define Markers.
 - **b.** Select **Add** to add the Reference marker (MR).
 - c. Select Setup > Settings, click the Prefs tab, and then check the Marker Noise Mode checkbox.
- 6. Set the analyzer to each of the Center Frequencies listed in the following table by entering the value in the Frequency field. After averaging is completed, select the **Markers** > **Peak** buttons for each Center Frequency setting. As noted below, if the peak is on a spur, not the noise floor, place the marker on the highest point of the noise floor.

Center frequency	Marker noise level	Frequency range
10 MHz		10 MHz - 1.7 GHz
1.7 GHz		
1.71 GHz		1.7 GHz - 2.8 GHz
2.8 GHz		
2.81 GHz		2.8 GHz - 3.6 GHz
3.6 GHz		
3.61 GHz		3.6 GHz - 14 GHz
14 GHz		
14.1 GHz		14 GHz -17 GHz
17 GHz		
17.1 GHz		17 GHz -24 GHz
24 GHz		
24 GHz		24 GHz -26.5 GHz
26.5 GHz		

Table 58: Frequencies of interest for DANL (Preamp OFF)

7. Enter the highest noise level for each of the frequency ranges shown into the test record. (Limits are shown in the test record.)

DANL – Preamp ON

- 1. Reset the RSA7100A to factory defaults: select **Setup** > **Preset** (Main).
- 2. Select Tools > Alignments and select Align Now.
- **3.** Set the analyzer as follows:

Reference Level	–50 dBm
Setup > Amplitude > Internal Settings > Ref Level	
Internal Attenuator	0 dB (Auto unchecked)
Setup > Amplitude > Internal Settings > Internal Attenuator	
Internal Preamp	ON (Internal Preamp box checked)
Setup > Amplitude > Internal Settings > Internal Preamp	
Center Frequency	10 MHz
Setup > Settings > Freq & Span > Center	
Span	100 kHz
Setup > Settings > Freq & Span > span	
RBW	Auto (box checked)
Setup > Settings > BW > RBW	
Detection	Avg (of logs)
Setup > Settings > Traces > Detection	
Function	Avg (of logs)
Setup > Settings > Traces > Function	
Count	100 (Count box checked)
Setup > Settings > Traces > Function	

- 4. Set the markers for Noise Mode operation:
 - a. Select Markers > Define Markers.
 - **b.** Click the **Add** button to add the Reference marker (MR).
 - c. Select Setup > Settings and select the Prefs tab. Check the Marker Noise Mode checkbox.
- Set the analyzer to each of the Center Frequencies listed in the following table by entering the value in the Frequency field. After averaging is completed, select the Markers > Peak buttons for each Center Frequency setting. As

noted below, if the peak is on a spur, not the noise floor, place the marker on the highest point of the noise floor.

NOTE. The intent of the DANL test is to measure the average internal noise level of the instrument. The DANL specification does not cover residual spurs. If the specific measurement frequency results in measuring a residual spur that is visible above the noise level, the DANL specification applies not to the spur but to the noise level on either side of the spur. Please refer to the Spurious Response specifications. (See Table 14.) Also, refer to the Spurious Response section of this procedure to determine whether or not a residual spur is within the specification. (See page 56, Spurious Response.)

Table 59: Frequencies of interest for DANL (Preamp ON)

Center frequency	Marker noise level	Frequency range
10 MHz		10 MHz - 100 MHz
100 MHz		
101 MHz		100 MHz - 1.7 GHz
1.7 GHz		
1.71 GHz		1.7 GHz - 3.6 GHz
3.6 GHz		

6. Enter the highest noise level for each of the frequency ranges shown into the test record. (Limits are shown in the test record.)

Spurious Response

Residual Response

- 1. Terminate the RSA7100A RF Input with a 50 Ω terminator.
 - 2. Reset the analyzer to factory defaults: select Setup > Preset (Main).
 - 3. Select Tools > Alignments and select Align Now.
 - 4. Set the analyzer as follows:

Ref Level	-60 dBm
Setup > Amplitude >	
Internal Attenuator	0 dB (Auto unchecked)
Setup > amplitude > Internal Settings > Internal Attenuator	
RBW	1 kHz
Setup > Settings > BW > RBW	

Function	Avg (of logs)
Setup > Settings > Traces > Function	
Count	10 (Count checked)
Setup > Settings > Traces > Function > Count	

- 5. Set the Frequency to each center frequency in the Residual Response Center Frequencies table. Set the span to 50 MHz. Adjust RBW until the noise floor is 10 dB below the residual spur specification. Wait for the averaging to complete, then select Markers > Peak and record the marker amplitude in the table.
- 6. Enter the highest of these signal levels into the test record.

Table 60: Residual response center frequencies

Center				
frequency	Span	Range	Marker amplitude	
1.85 GHz	3.5 GHz	100 MHz to 3.6 GHz		
7.3 GHz	7.4 GHz	3.6 GHz to 11 GHz		
11 GHz	14 GHz	11 GHz to 14 GHz		
Option 26 only				
19 GHz	10 GHz	14 GHz to 24 GHz		
25.25 GHz	2.5 GHz	24 GHz to 26.5 GHz		

Image Suppression

1. Connect the RF generator capable of at least 26.5 GHz to the RSA7100A RF Input, as shown in the following figure.

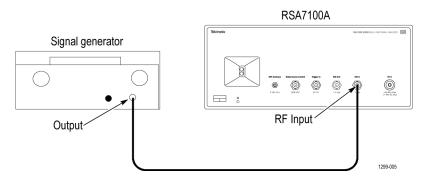


Figure 7: Equipment connections for Image Suppression check

- 2. Reset the analyzer to factory defaults: select Setup > Preset (Main).
- 3. Select Tools > Alignments and select Align Now.
- 4. Set the analyzer as follows:

Ref Level	0 dBm
Setup > Amplitude > Internal Settings > Ref Level	
Internal Attenuator	10 dB (Auto unchecked)
Setup > Amplitude > Internal Settings > Internal Attenuator	
Span	50 MHz
Setup > Settings > Freq & Span > Span	
RBW	1 kHz (Auto unchecked)
Setup > Settings > BW > RBW	
Function	Avg (of logs)
Setup > Settings > Traces > Function	
Averages	10 (Count checked)
Setup > Settings > Traces > Count	

- 5. Set the RF generator: Output Level to 0 dBm at the end of the cable and turn RF On. Verify the output level with the power meter, if necessary.
- 6. For each row of the table below (as appropriate to your instrument model):
 - **a.** Set the RSA7100A to the Center Frequency shown in the first column.
 - b. Set the RF signal generator frequency to that shown in the first column.
 - **c.** Set **Function** to **Normal** (Setup > Settings > Traces > Function > Normal).
 - d. Select the Markers > Peak.
 - e. Adjust the RF signal generator amplitude to produce a signal level within 1 dB of the Reference Level. Record this value as the carrier level.
 - **f.** Set the RF generator output frequency to the Image Frequency shown in the second column.
 - g. Set Function to Avg(VRMS) (Setup>Settings>Traces>Function).
 - **h.** After the averaging has completed, select **Markers** > **Peak** to move the MR marker to the peak signal value.
 - i. Read the marker amplitude, in dBm, at the upper-left on the screen. Subtract the carrier level (step e) from the signal image amplitude (step h), to convert it to dBc.
 - j. Enter this value in the test record.
- 7. Repeat steps through 6 for each frequency in the following table.

Table 61: Image suppression settings

Center Frequency	RF Generator Output Frequency (Image)
2.0 GHz	11.225 GHz
3.0 GHz	12.225 GHz

Center Frequency	RF Generator Output Frequency (Image)	
6 GHz	7.225 GHz	
10 GHz	11.225 GHz	
14 GHz	15.225 GHz	
Option 26 only		
18 GHz	19.225 GHz	
22 GHz	12.225 GHz	
25 GHz	26.225 GHz	

Table 61: Image suppression settings (cont.)

NOTE. The intent of the image spurious test is to measure spurious responses caused by the injection of an external signal that would induce an image product on the display. These images can be the same frequencies as residual spurs. In case of question, slightly change the frequency of the input signal to induce a corresponding change in the displayed frequency of the image spur. Change the input frequency in steps that allow the product to stay within the on-screen frequency span. If the on-screen spur does not move in response to the input signal change, it is not an image and is not covered in the image spurious specification. Some care must be taken in noting the frequency change. The images specified in the specification are 1:1 images and they will move -1:1 with changes in input signal frequency. Never discount the possibility that a spur in question could be coming from the test signal generator. Such spurious responses can also move with changes in signal generator frequency. In case of question, validate the performance of the generator to remove unwanted products.

If the spur seen on screen is a residual, it will still be present with the input to the signal analyzer terminated in 50 ohms. Residual spurs are subject to separate specification limits.

Test record

Print out the following test record pages and use them to record the performance test results for your analyzer.

RSA7100A test record

Model: Certificate Number: Technician: Serial Number: Calibration Date:

Frequency Accuracy	Low limit	Test result	High limit
Reference output frequency accuracy	9,999,998 Hz		10,000,002 Hz
Reference output power level	1 dBm		10 dBm

Absolute amplitude accuracy (unless frequency response is specified)	Low limit	Test result	High limit	
Attenuator = 10 dB				
10 MHz - 3.6 GHz (Preamp OFF, frequency response)	–0.16 dB		+0.16 dB	
10 MHz - 3.6 GHz (Preamp ON, frequency response)	–0.2 dB		+0.2 dB	
10 MHz - 3.6 GHz (Preamp OFF)	–0.8 dB		+0.8 dB	
100 MHz - 3.6 GHz (Preamp ON)	–1.2 dB		+1.2 dB	
3.6 GHz - 8.5 GHz (Preselector OFF)	–0.9 dB		+0.9 dB	
3.6 GHz – 8.5 GHz (Preselector ON)	–1.6 dB		+1.6 dB	
8.5 GHz - 14 GHz (Preselector OFF)	–1.0 dB		+1.0 dB	
8.5 GHz - 14 GHz (Preselector ON)	–1.5 dB		+1.5 dB	
14 GHz - 20 GHz (Preselector OFF)	–1.7 dB		+1.7 dB	
14 GHz – 20 GHz (Preselector ON)	–2.6 dB		+2.6 dB	
20 GHz - 26.5 GHz (Preselector OFF)	–2.0 dB		+2.0 dB	
20 GHz - 26.5 GHz (Preselector ON)	–2.8 dB		+2.8 dB	

Third Order Intermodulation Distortion (3rd Order Intercept)	Low limit	Test result
3.3 GHz	24 dBm	

Displayed Average Noise

Level (DANL)	Test result	High limit
Preamp OFF, normalized to 1 Hz RBW, with	n log-average detector	
10 MHz – 1.7 GHz		–153 dBm/Hz
1.7 GHz – 2.8 GHz		–150 dBm/Hz
2.8 GHz – 3.6 GHz		–148 dBm/Hz
3.6 GHz – 14 GHz		–152 dBm/Hz
14 GHz – 17 GHz		–145 dBm/Hz
17 GHz – 24 GHz		–150 dBm/Hz
24 GHz – 26.5 GHz		–146 dBm/Hz

Displayed Average Noise

Level (DANL)	Test result	High limit
Preamp ON, normalized to 1 Hz RBW, with log-average detector		
10 MHz – 100 MHz		–163 dBm/Hz
100 MHz – 1.7 GHz		–164 dBm/Hz
1.7 GHz – 3.6 GHz		–162 dBm/Hz

Residual Response	Test Result	High limit
100 MHz – 3.6 GHz		–99 dBm
3.6 GHz – 11 GHz		–102 dBm
11 GHz – 14 GHz		–86 dBm
14 GHz – 24 GHz (Option 26)		–86 dBm
24 GHz – 26.5 GHz		–84 dBm
(Option 26)		

Image response	Test result	High limit	
100 MHz to 3.6 GHz		–98 dBc	
3.6 GHz to 14 GHz		–81 dBc	
14 GHz to 26.5 GHz		–74 dBc	
(Option 26)			